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ABSTRACT

This dissertation proposes a design for a machine structure which is ap-
propriate for APL and which evaluates programs in this language efficiently.

The approach taken is to study the semantics of APL operators and data
structures rigorously and analytically. We exhibit a compactly representable
standard form for select expressions, which are composed of operators which
alter the size and ordering of array structures. In addition, we present a set
of transformations sufficient to derive the equivalent standard form for any
select expression. The standard form and transformations are then extended
to include expressions containing other APL operators.

By applying the standard form transformations to storage access functions
for arrays, select expressions in the machine can be evaluated without having
to manipulate array values; this process is called beating. Drag-along is a
second fundamental process which defers operations on array expressions,
making possible simplifications of entire expressions through beating and also
leading to more efficient evaluations of array expressions containing several
operations.

The APL machine consists of two separate sub-machines sharing the sanie
memory and registers. The D-machine applies beating and drag-along to defer
simplified programs which the E-machine then evaluates. The major machine
registers are stacks, and programs are organized into logical segments.

The performance of the entire APL machine is evaluated analytically by
comparing it to a hypothetical naive machine based upon presently-available
implementations for the language. For a variety of problems examined, the
APL machine is the more efficient of the two in that it uses fewer memory
accesses, arithmetic operations, and temporary stores; for some examples,

the factor of improvement is proportional to the size of array operands.
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CHAPTER I
INTRODUCTION

an optimist is a guy that has never
had much experience

Don 'Marqxi.is, archy and mehitabel

The electronic digital computer has progressed from being a dream, to an
esoteric curiosity, to its present pervasive and indispensable role in modern
society. Over the years, man's uses of computers have become increasingly
sophisticated. Of particular importance is the use of high-level programming
languages which have made machines more accessible to problem-solvers.

In general, the use of problem-oriented programming languages requires a
relatively complex translation process in order to present them to machines.
Although this can be done automatically by compilers, there is a wide gap to
bridge between the highly-structured concepts in a programming language such
as ALGOL, PL/I, or APL and the relatively atomic regime of today's computers.
In effect, there exists a mismatch between the kinds of tasks we want to present
to machines and the machines themselves. One possible way to eliminate this
difference is to investigate ways of structuring machines to bring them closer

to the kinds of problems people wish to solve with them,

A. A Programming Language

A particular programming language in which this mismatch with contemporary

machines is especially obvious is APL, based on the work of K. E. Iverson
(Iverson [1962]). APL is a concise, highly mathematical programming language
designed to deal with array-structured data. APL programs generally contain

expressions with arrays as operands and which eﬁaluate to arrays, while most



other languages require that array manipulations be expressed element-by-element.
To complement its use of arrays as operands, APL is rich in operators which
facilitate array calculations. Also, it is highly consistent internally both syntac-
tically and semantically, and hence could be called ""mathematical''. Because of

its use of structured data and its set of primitives which are quite different from
those of a classical digital computer, APL does not fit well onto ordinary machines.
It is possible to do so, and interpreters have been written for at least three dif-
ferent machines (Abrams [1966); Berry [1968]; Pakin [1968]). Finally, because

of its mathematical properties, it is possible to discuss the semantics of the
language rigorously and to derive significant formal results about expressions in

the language.

B. The Problem

The problem considered in this dissertation is to design a machine structure
which is appropriate to APL, ""Machine structure' here means a general func-
tional scheme and not a detailed logical design. The expected result is not a set
of specifications from which a circuit designer could produce a working device,
but rather a superstructure into which the features of the language fit cleanly.
Thus, this design must in some sense be natural for the language. For example,
the primitive operations and data structures shpuld include those of APL. In
addition, the machine should take advantage of all available information in order
to execute programs as efficiently as possible. We use the word ""machine' in
a very broad sense: what it really means here is "algorithm' and not necessarily
any particular physical device. Such a machine could be implemented as a con-
ventional program or as a hardwired device or as a microprogram in an appropriate

system. For the purposes of this work, it doesn't really matter.



"APL'" means any programming language which includes the semantics of
APL\360 (Pakin [1968]). We shall not be concerned with the particular syntax
of APL, although this currently appears to be the best way to represent the
semahtic ideas of the language. In short, the machine should be able to handle
array-structured data with ease and should be able to evaluate functions on such
data using the operators of APL as basic primitives,

The approach taken is to invest a considerable amount of effort in the analysis
of the mathematical properties of the operators and data structures of APL and
to exploit these results in the design of the machine. Thus, a major part of this
work will be dedicated to a rigorous, mathematical investigation of APL expres-
sions. This study is contained in Chapter II. In Chapter III, the work of Chapter
II is related to the design of a machine, and the design goals are set forth in
detail. Chapter IV discusses the proposed machine design, and Chapter V is an
evaluation of the machine with respect to the goals of Chapter III.

It should be emphasized that the goal of designing an APL machine is a rather
broad one. Although there are clearly practical applications of such a design,
that is not the major focus of this work. Rather, we hope that by investigating
this language and machine in detail, it will be possible to learn something about
the basic processes in computing and find ways of reflecting these processes in
a machine structure. The results summarized in Chapter VI and the new research

problems suggested by this work indicate that this goal has been fulfilled.

C. Historical Perspective

For the purposes of this dissertation, we are primarily interested in previous
work inthe area of language-directed machine design (McKeeman [1967); Barton [1965]).
To some extent, all machine design can be considered to be language-directed, in

that one wishes to implement some particular (machine) language in a piece of
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hardware. However, let us consider only the class of machines which might
better be called '"higher language inspired"; that is, machines which are based
in some way on languages capable of expressing concepts at a higher level than
are normally associated with assembly code.

The first such machine was reported in 1954, and was a relay device capable
of directly evaluating logical expressions (Burks, Warren, and Wright [1954]).

In addition, this machine used input in parenthesis-free (Polish) notation, thus
doubling its historical interest. The logic machine typifies one major class of
language-inspired machine designs in that its machine language is identical to the
high-level source language. The other major class of language-inspired designs
is more concerned with the processing of the semantics of the source language,
rather than direct acceptance of the exact language by the machine, In fact, most
designs fall between the two extremes, as even those which accept the source
language directly do some preliminary transformations on it to produce a simpler
intermediate language.

Other language-inspired machines accepting source language directly include
an ALGOL 60 machine (Anderson [1961}), two FORTRAN machines (Bashkow,
Sasson and Kronfeld [1967]; Melbourne and Pugmire [1965]), the ADAM machine,
based on a special symbol-oriented language (Mullery, Schauer and Rice [1963];
Meggitt [1964]), and a machine for EULER, a géneralization of ALGOL (Weber
[1967]), Of these devices, some were to be implemented in hardware (e.g.,
Bashkow et al.; Mullery et al) while others were implemented in microprogram
(Meggitt; Weber).

Machines which are more concerned with semantic processing to the extent
that their machine languages are significantly different from a higher-level

language include the Burroughs B5000 (Barton [1961]; Burroughs [1963]) which is

-4



essentially an ALGOL machine, a PL/I machine (Sugimoto [1969]) and the Rice
University computer (Lliffe and Jadeit [1962:]). Current work in this area includes
a PL/I machine (Wortman {1970]) and a micro-computer capable of emulating
high-level processes easily (Lesser [1969]).

Most of these efforts are not directly relevant to the work in this dissertation
and are thus reported here only for completeness. The common aspect of all these
designs is that they are concerned with the processing of more highly organized
information and programs than are found in the conventional von Neumann
type architectures. Most of them include generalized addressing schemes using
some modification of descriptors, as well as at least one stack.

Although the Burks, Warren, and Wright machine was the first to use Polish
notation as a machine language, the first commercially produced devices to do so
apparently were the English Electric KDF9 (Davis [1960]) and the Burroughs B5000,
Both of these machines included stacks. Other related efforts not yet mentioned
are two machines based on lower-level machine languages, but intended to deal
with high-level primitives. One of these (Iliffe [1968]) is based on extensive use
of descriptor logic for both programs and data, while the other (Myamlin and
Smirnov [1968]) is somewhat more closely oriented toward higher-level languages.
The latter, in particular, does run-time evaluation of infix arithmetic expressions.

Aside from the work of Burks et al., none of the designs in the literature seem
to be derived from explicit mathematical analysis of their input languages. Further,
except for simulations or actual performance, none of the papers in the literature
present satisfactory evaluations of their designs. This is not to say that the
designs are not satisfactory: to the contrary, the success of the Burroughs family
of computers and the KDF9 show that language-inspired designs are a viable ap-
proach to the developlhént of new machines. On the other hand, nobody seems to

have established exactly how viable such designs really are.
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D. Conclusion
Having briefly reviewed the developments of language-inspired machine design
to date, they can now be left in the background. The present approach is different
from those in the past in that it is based on a mathematical analysis of the seman-
tics of the source language. Also, the evaluation of the resulting design is analytic,
and gives a clear comparison of this APL machine to other similar devices. There !
are, of course, similarities to the designs of the past. In particular, the use of
program segments, data descriptors, and stacks is not novel in itself, although

the machine developed here is substantially different from those mentioned in the

last section.

"The thing can be done, "' said the Butcher, 'I think.
The thing must be done, I am sure,
The thing shall be done! Bring me paper and ink,
The best there is time to procure."

L. Carroll, The Hunting of the Snark




CHAPTER It

MATHEMATICAL ANALYSIS OF APL OPERATORS

This chapter examines the mathematical properties of some of the APL
operators. Mathematical definitions of the operators are given from which it is
possible to deduce their properties. We show that there is a standard form for
expressions containing selection operators, and that there is a complete set of
transformations to obtain it. A similar form which generalizes inner and outer
products is introduced with transformations appropriate to obtain it. Finally,
the relation between these operators and others in APL is discussed.

This kind of analysis is important for several reasons. First, in its own
right it contributes to the understanding of the operators and data-structures in
APL. Second, and most important for this work, it provides a strong mathematical
basis for the design of the machine to be discussed later. In particular, the ideas
discussed hére are reflected in the drag-along and beating processes, which are

fundamental in the proposed machine design.

A. On Meta-Notation

APL is a programming language,and as such is best suited for describing
processes, while mathematics is primarily concerned with discussing relations
rather than processes. Thus, in order to do mathematics with APL, it is neces-
sary to use some notations that are not available in the language itself. Some of
these meta-notations are actually extensions of the language which might well be
included in APL to make it more powerful, while others are necessitated by the
analytic approach, and do not reflect shortcomings in APL. In the next section,

definitions of objects not in APL are clearly noted as such.



B. Preliminary Definitions

The definitions to follow are given partly in APL and partly in meta-notation.
Hence this and the remaining sections in this chapter assume a minimal "reading
knowledge" of APL. The APL summary in Appendix A will be helpful to the reader

not fluent in this language. Also recommended are the APL\360 Primer (Berry

(1969])and APL\360 Reference Manual (Pakin [1968]). At first, it might appear

that defining APL operators in terms of other (intuitively but not formally defined)
APL operators is elliptical. In fact, there is no circularity since the definitions
could be given in more primitive forms, but at the cost of less perspicuity. Since
the goal here is not the development of a coherent theory of APL expressions but
rather the illumination of the behavior of these expressions, the current mode of
explication was chosen. The use of '"undefined” APL operators is made advisedly
and no special or esoteric applications of them are made in the following definitions.
The basic problem here is that of using a formalism to describe a formalism,

At some point it is necessary to assume a previous knowledge of something in
order to avoid an infinite regress. '"Nothing can be explained to a stone; the
reader must understand something beforehand." (McCarthy [1964], p. 7)

The definitions will be numbered Dn for easier reference. Theorems and
transformations will be numbered Tn and TRn, respectively. In APL expressions
to follow, the convention that unparenthesized subexpressions associate to the
right will be used wherever this does not lead to confusion. Material which can
be skipped in the first reading is enclosed in heavy brackets. For the most part,
this includes formal statements in definitions which are necessary for proving
theorems and correctness of transformations, but which are not essential to

understanding the content of this chapter.



D0. Identity: (Meta) If.Z and & are expressions, then
A >R
means they have identical values.
The sign ' is used for identity because the more traditional equality

sign ="' is reserved for use as a dyadic scalar operator in APL,

D1. Conditional Expression: (Meta) The conditonal expression

IE B THEN A ELSE C
has as its value the value of A if B += 1,the value of Cif B <> 0,and is
undefined otherwise,
McCarthy [1963] discusses formal properties of conditional expressions,

some of which are used in the proofs in this chapter.

D2. Index Origin: (Meta) The index origin is the lower bound on subscripts in

APL expressions. It will be referred to as IORG.

In general, this work attempts to show explicit dependencies on index origin.
However, to do so throughout simply complicates many expressions without adding

insight. Whenever it is unstated we use l-origin indexing.

6]
.

Interval Function: If ¥ is a non-negative integer scalar, the interval

function of V,denoted by ¥, is a vector of length ¥ whose first element is

IORG, and whose successive elements increase by 1.

[Formally, \N <> IF N=0 THEN EMPTY VECTOR ELSE (11v—1),1v+=r_<_>1_z?g-1.]

Thus, one representation for the empty vector is 10.

D4. Odometer Function: (Meta) If Fis a vector of non-negative integers, the

odometer function of R, denoted by 1R, is a matrix with dimension (x/R),pR



whose rows are the mixed-radix representation to base £, of the (x/pFR)
consecutive integers, starting with ZORG. This extension is not a part
of APL, but is useful for discussing individual subscripts of an array.

[Formally, for each ITe1x/R, (R)LI;] _L@Q+RTI—IORQ.]

Example: 13,2 <« 1 1
12
21
2 2
31
3 2
D5. Row Membership: ELT is a function whose left operand is a vector and

whose right operand is a matrix, defined as follows:
L ELT R <> IF (pL)=(pR)[2] THEN V/RA.=L ELSE O.
That is, the relation is true (has value 1) if and only if the left operand

vector is identical to one of the rows in the right operand matrix.

Example: (1,3) ELT 13,2 <+ O

(2,2) ELT 13,2 <> 1

&

List:(Meta) If L is a vector, then the list of I, denoted by ;/L, is a
subscript list made up of the elements of L. That is,

3/L <> L[11;0[2]s..;LlpL].

Example: ML 3/15] <> ML1;233;4;5]

D7. Ravel: The ravel of ¥, denoted by,¥ , is a vector containing the elements

1
of M in row-major order. The dimension is

p.M > x/pM

If Mis a scalar, then ,¥ is a one-element vector.

- 10 -



[Otherwise for each Tevx/pM, (\M)[I] <> M[;/( 1pM)[I;]]]

D8, Reshape: LetR be a vector of non-negative integers. Then the % reshape
of M , denoted by ApM is an array with dimension 7, whose elements are
taken from M (possibly with repetition) in row-major order.

Formally, for each L ELT 1R,

(RoM)L 5 /L] <> (,M)LIORG+(x/pM) |\RLL-I0RG]

Example: (3,2)p16 «> 1 2
3y
56

4p1,2,3,4,5 <= 1,2,3,4

(2,4)p13 «~ 1 2 3 1
2312

D9. Partial Subscrioting: (Meta) M[[X] S] denotes the partial subscripting

of array ¥ along the X th coordinate. In other words,
MILK] ST < M(5...38;...51]
4 4 4
1 K ppM
Formally, ]
pMLLK] 81 > ((K-1)+pM),(pS),(K+pM)
and for each L ELT 1pM[K] 51,
' if S is a vector, then
(MLEK]Y ST /LY > ML /((K-1)4L) ,STLLK]] KVL]

and if S is a scalar, then

(MCCK] SDL5/L] <> MU /((K-1)4L),5,(K-1)+L]

-11 -



D10. Subscripting: If Mis a rankX array, then for any 51,52,...,5KM1,5K

MLS1;...38KM138K] +> (... ((M[LpoM] SKI)IL(ppM)-11 SKM1])...)L[1] 511

The above simply gives a formal definition for array subscripting. It looks
more complex than it really is because APL uses a different syntax for subscripting
than for other operators. If we write SK X[X1 Minstead of M[[K] S], then the
value of the above expression can be rewritten as:

S1 x[1] ... SKM1 X[ (ppM)-1 SK X(poM] M

D11, J-Function: Let ZLEN be a non-negative integer, ORG an integer, and S5¢0,1.

Then J LEN,ORG,S is an interval vector of length LEN whoseleast element

is ORG; if S <> 0 then successive elements increase by 1, else they decrease
by 1. Formally,

J LEN,ORG,S

< IF 5=0 THEN ORG+(\LEN)-IORG ELSE (LEN+ORG-1)-((1LEN)-IORG).

J-vectors are a generalization of the interval function. In particular, J-vectors
can have any origin, are invariant under changes of JORG, and can run forward

or backward.

1%

Example: 4,2,0 <> 2,3,4,5

J 4,2,1 <> 5,4,3,2 and these relations are true for any I0RG.

D12, Subarray: (Meta) Let! be any array and Fan array with dimension

(ppM),3. Then the subarray selected byF , denoted FAM, is

FAM < MLJ F[1;33d F[231; ... 3d FlppM;])
where the elements of Fare assumed to be in the domain of the above

expression.
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A subarray selected by this function is compact. The subarray function will be
used to provide a standard representation for all the various ways of selecting
compact subarrays.
Example: Let pM <> 10,15
and F <« 4 30
351
then FAM <> M[J 4,3,0 ; J 3,5,1]

<« M(3,4,5,6 ; 7,6,5]

D13. Whole Array: (Meta) For any array ¥, the whole array of ¥, denoted

by AM, produces as a result the F such that pay < M.

[Formally, MM > 8(3,ppM)p(pM) ,((ppM)pIORG), (DOM)DO]

Example: I pM <> 6,10,32, then AM <> 6 1 0

101 0
and .-ZQ.EQHl 32 1 0

D14. Cross Section: (Meta) LetM be any array, F an array with dimension

(ppM),2 such that
(i) FL31]e0,1
(i) (~FL;11)/FL;2] <> (+/~FL;11)p0
(iil) (FL311/F[32]) ELT 1F(311/pM
Then the F cross section of M, denoted by FAM, is: pFAM < (~F[;1])/pM

and for each L ELT 1oFAM, (FAM)L3/LY <> ML/ (x/F)+(~F[;11)\L]

Cross section is used to formalize the subscripting of arrays by scalars. The
first column of 7 contains zeros for coordinates to be left intact. Condition (ii)
requires that if F[J;1] <> 0 then F[J;2] «> 0. This is primarily to make some
of the theorems easier to prove. Entries of 1 in F[ ;1] correspond to coordinates

indexed by scalars in the corresponding element of F[ ;2] .
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Example: Let oM «> 4,7,13

F

R o IS
= o N

0

then FAM < M[2; ;101

D15. Take: If Mis any array and 4 is an integer vector with p4 <> ppM and
(14)<m , then A4M is an array of the same rank of ¥, as follows: for each
TerppM, if A[T]20 then include the first A[ 7] elements along the I th coordinate
of M; otherwise if A[I]<0Othen take the last |ALI] elements.
Formally, A+M < FAM

where F <> Q(3,ppM)p( 14),(I0ORG+(A<0)x(pM)-14),(ppM)p0

D16. Drop: IfM and 4Aare as above, then4iy is similar to the take except that
for each coordinate, the first (or last)|A[ 7] elements are ignored.

Formally, AM <> GAM

where G <> Q(3,ppM)p((pM)-|A4),(IORG+OTA),(ppM)p0

D17. Reversal: If Mis any array thend[X1¥ is the reversal of ¥ along the th

coordinate.
Formally ¢[KIM < HAM
where H <= ®(3,ppM)p(AM)[ ;1],(aM)[ ;2] ,K=1ppM

If the subscript on the operator is elided, it is taken to be ppM.

Examgle: Let M« 1 2 3
4 56
7 8 9
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then, (2,2)4M <> 1 2 (2,72)4M <+ 2 3
4 5 5 6
(2,1)4M <> 8 9 (T1,1)¢M <> 2 3
56
®L1IM <= 7 8 9
L 56
123

D18. Transpose: If ¥ is any array and 4 is an integral vector satisfying

(i)  pA > poM
(ii) A/4erppM i.e.,A contains only coordinate numbers of ¥
(iii) A/([/A)eA i.e., A is dense
then the transpose AQY of M byA is defined as follows:
1. ppA®M <« 1+([/A)-I0RG
2. For each TeippAyM,
(pAQMILI] <> L/(A=I)/poM
3. Foreach L ELT 1p ABM,
(ASM)[ /L] « ML ;/LLA]]
In other words, 4 permutes the coordinates of ¥. Transpose can also

specify an arbitrary diagonal slice.

Example: Suppose ¥ is a matrix with pp <+ 5,6. Thenifp «— (2,1)gy , and
IORG +» 1 we have ppR <> 142-1 <« 2' . Further, (pR)[1] « L/(1=2,1)/5,6 <> 6
(pR)[2] > L/(2 +> 2,1)/5,6 <> 5 andforeach L ELT 16,5, R[;/L] <> M[;/(,0)[2,1]1]
or RCL[1]; LL23] «» MCL[2]1; L[1311.
Thus, R is the ordinary matrix transpose of 4.

Now suppose M is same as above and R < (1,1)84. Then, ppR <« 1+1-1 < 1.

So the result is a vector. Then (pRF)[1] < L/(1=1,1)/5,6 <« 5.
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Then for each Le15, we have R[L] <> M[:/(,L){1,1]]

~— ML ; L]

So R is the main diagonal of ¥.

D19. Compression: If X is any vector and U is a logical vector of the same

length, theny/x is the result of suppressing from X all elements whose
corresponding entry in U is O, For an arbitrary array X, U/[I] X compresses
X along the 7 th coordinate.

PFormatlly, forvector X, plU/X < +/U and for each Ie1pU,
IF ULI1=1 THEN(U/X)[+/I4U] < X[I]

This is not a constructive formula for (U/X)(I]1; however, such a

formula is too complex to be useful here. For any arrayX ,

LU/[I] X «— X{U1] U/(pX)LI].

D20. Expansion: ¥ Xis any vector and Uis a logical vector with +/U <> pX,

then U\X is a vector with 0 elements wherever U has, and whose other ‘
elements are taken from X in order.
The definition of expansion is extended to higher-dimensional arrays in
the same way as for compression.
Formally, pU\X <+ pU and for each IepU,

(I\X)LI] «» IF ULI] THEN X[+/I4U] ELSE ©

Exa.mE].e: (1;1a03190)/1’2933435 ~ 13234

(1,1,0,1,0)\1,2,3 <> 1,2,0,3,0
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C. The Standard Form for Select Expressions

In this section the selection operators considered are take, drop, reversal,
transpose, and subscripting by scalars or J-vectors. Because of the similarity
among the selection operators, we might expect that an expression consisting only
of selection operators applied to a single array could be expressed equivalently in
terms of some simpler set of operators. This expectation is fulfilled in the
standard form for select expressions, to be discussed below.

If the existence of a standard form is to be at all useful, there must be a way
to decide whether a particular expression has a standard form representation and
if so, there must be an effective method to obtain it. In the sequel we show that
every select expression has an equivalent standard form, and exhibit a set of
formal transformations which are sufficient to derive the standard form from an
arbitrary expression.

It may at first seem strange to include subscripting in the set of selection
operators, since its parameters are of a different kind than those for the other
select operators. In the other select operators such as take or drop, the left
operand is a count, which is independent of ways of accessing the argument array.
On the other hand, in subscripting the arguments act like maps rather than counts.
For example, an expression like A+¥ has meaning out of context, as long as the
values of 4 andM are known. Contrariwise the expression M[1;3] cannot be
evaluated without knowledge of the index origin. In the theorems and proofs to
follow, the major complications often come from this dichotomy in the way of
specifying select operations, rather than from the actual content of the material,
Subscripting is included because its effect is similar to the other selection

operators, all of which change only the dimensions and orderings of their operands.
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D21. Select Expression: Let & be any (wellformed) array-valued expression.

Then ¥is as a select expression on & if it is a well-formed expression ?

consisting of an arbitrary number (including 0) of the following operators

applied to &':
(i) Take
(ii) Drop

(iii) Reversal
(iv) Transpose
(v) Subscripting by scalars of J-vectors
By extension, we will also include the subarray and cross section operators

in this class.

Example: Let Mbe a rank-3 array. Then by D21, ,
(2,1,3)8(¢021(4,76,3)¥M)[; ; J6,2,1]
is a select expression on M, but
-ML; 3 5,7,3,1]
is not because it contains the scalar operator '-' and the subscripting is not by

a scalar or J-vector. The definition also admits M as a select expression on M.

D22. Equivalence Transformation: An equivalence transformation on expressions

is a rule of the form:
if set of assertions then & =>%
where & and ¥ are expressions. If the set of assertions is true, then expression

&may be replaced by expression # and the truth of the assertions guarantees

that &=>%

For example (if X is any vector then ¢¢x=>x ) is an equivalence transformation, o

since it is always true that if X is any vector,¢dx «— X.
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For any given transformation, it is necessary to prove that it is indeed
equivalence-preserving. If this is the case the transformation is said to be
correct. Note that the notions of expression and transformation and standard
form used here are informal ones. It is possible to make them rigorous, so as
to be acceptable to a logician, but that is irrelevant to the current aims and would
only serve to obfuscate the important mathematical relationships we are trying

to explicate. The correctness proof for each transformation will be called

"Proof of TRn''.

D23. Standard Form: A select expression on an arrayM is in standard form

(SF) if it is represented as AQRFAGAMwhere 4,F,G are all of the correct

size and domain.

In the remainder of this section, we introduce a set of equivalence transfor-
mations sufficient to transform most select expressions into standard form. In
the process we prove the correctness of each transformation. The effect of this

process is a proof of the following important theorem:

COMPLETENESS THEOREM 1: If &is any select expression on an array¥,

then & can be transformed into an equivalent expression % in standard form.

In order to obtain an SF representation of an arbitrary select expression, we
must first be able to eliminate the operators take, drop, reversal and subscripting.

The first four transformations below do this.

TR1. IfMisanyarray and 4 is conformable to ¥ for take, then A+M => FAM

where F <> &(3,ppM)p([A) ,( IORG+(A<0)x(pM)-|A), (ppM)p0 .
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TR2. If Mis any array and 4 is conformable to ¥ for drop, then A+M => FAM

where F < &(3,ppM)p((oM)~14),(IORG+O[A),(ppM)p0.

TR3. X Mis any array then ¢[ XM => FAM

where F <> Q(3,ppM)p(AM)I[s1]1,(aM)[;2],K=1ppM.

These three transformations are obviously correct, as they follow directly from
the definitions of the operators take, drop, and reversal. Their proofs will thus

be omitted.

TR4. If M is any array then ML{X1 J LEN,ORG,S]1 => FAM

where FLK;] <> LEN,0ORG,S and (KzippM)/[11F <> (KzippM)/[11MM

That the above is an equivalence transformation requires a small proof:
Proof of TR4:
We must prove that for any array ¥,
MI[K] J LEN,0RG,S5] <> FAM

where F is as given in TR4. In order to prove the identity, we show first that both
quantities have the same dimensions. Then we show that corresponding elements
of each are identical.
Let R <« MI[K] J LEN,ORG,S].
1. By definition, pR <> ((X-1)4pM),(p J LEN,0RG,S),K¢oM

<> ((K-1)+poM),LEN ,KipM

and oFAM <> F[;1]
< ((K-1)+(AM)L31]) ,LEN K+ (AM)[ 31]
<> ((K-1)+pM),LEN KoM

<« pR
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2. Foreach L ELT 1pR,
RL3/L] <> MU;/((K-1)4L),(J LEN,0RG,S)[LLK]],K4L]
and (FAMY /L] <> (M{J FL1;] 3 J F[2:3 5 ... 3 J FlppM;110;/L]
— MI(J FL1;DDIL021]s ... 5 (J FlpeM;1)ILIMI]]
(by L3 in Appendix B).
But for each I#K, (J FLI;DILLIT] «= (4 (pM)LIY,IORG,0)LLLT]]
< L{I] (by L4, Appendix B)
and (J FLK;1)ILLK]] « (J LEN,ORG,S)LLLK]]. Therefore,
(FaM)U /L3 < MILL1] 5 L02] 5 ... 3 LLK-1] ; (J LEN,ORG,S)LLLK]];
L{K+11; ... ;LLppM]]
<~ ML, /((K-1)+L),(J LEN,ORG,S)[LLK]11,KvL]

<> R[;/L7 QED.

The preceding proof of TR4 is reasonably simple, and is representative of
the kind of proof required. Although similar in style, the proofs of the remaining
transformations are more complex. Since they add little to the exposition, they
are given in Appendix B.

The following transformation makes it possible to reduce the number of

occurrances of adjacent subarray operators in an expression.

TR5. If Mis any array and Fand G are conformable for subarrays, then
FAGAM => HAM
where pH <> oF and for each TIec1ppM, H[I;] < L,0R,S

where J L,0R,5 <> (J GLI;1)J F[I;1]

Transformations TR1 through TR4 are used to eliminate instances of the
operators take, drop, reversal, and indexing from select expressions by trans-
forming them into equivalent expressions involving subarray and cross section

operators. TR5 shows how to coalesce two adjacent occurrances of subarray into
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one. The remaining transformations, TR6 through TR10 are similar in spirit
and are used to permute the remaining operations into the order required by the

standard form.

TR6. If Misany array and Fand G are conformable, then FAGAM => G'AFR'AM,
where  G' <« (~F[;11)/[11G
and F'[;1] <> F[;1]
and F'[;2] <«

FU31Ix(GL 321+ (~GL ;31 )xFL 321-I0RGY+(GL 33 1x(GL 31 I+I0RG+™ 1-F(321)))

TR7. If ¥is any array and F and; are conformable toM for cross section,
then FAGAM => HAM
where H[;1] < GL31Iv(~GL;1I\F[;1]

and H(;2] < GL;21+(~GL;1I\F( ;2]

TR8. If Mis any array and 7,4 are conformable to ¥ for subarray and transpose,
respectively, then

FAARM => AQFLA;]AM.

TRY9. I Mis any array, ¢ a scalar, JeippASQM then
(ASM)ILJ1Q] => IF 1=ppA&M THEN BAM ELSE A'&BAM
where A' <> (A=J)/A-J<A '
and Bl;1] +> J = 4

and BL;2] <> @xB[;1].

TR10. If Mis any array and B and 4 are conformable for transpose, then
BRARM => (QM

where ¢ <> B[A].
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Now that we have transformations TR1 through TR10 which are proved correct
in Appendix B, we can outline a proof of Completeness Theorem 1. First
note that for any array M, M <= (1ppM)R(AM)A(((ppM),2)p0)AM.

1. Let & be any select expression on ¥ which satisfies the hypotheses of the
theorem. Apply TR1, TR2, and TR3 to & enough times to eliminate all instances
of the operators take, drop, and reversal. (In order to be absolutely rigorous,
we would have to prove a replacement theorem which says that if in an expression
~Z, an occurrance of a subexpression & is replaced by an equivalent subexpression
B (i.e., B++RB"), then the resulting expression.' is equivalent to.«, only
o' <> of . Call the result of this operation &'. Note that &' contains only
subscript, A, and & operations. Clearly &'« & because we have applied
only equivalence transformations.

2. Now for each instance of an indexed quantity, substitute the equivalent

expression using partial indexing, as per definition D10, Write this using the
IX notation mentioned there and apply TR4 to eliminate all instances of J-vector
subscripts and call the resulting expression &', It should be obvious that &
has the form S1 61 S2 62 ... SN 6N M, where the S quantities are left operands
for the operators 6 and the 6's areA, & and IX in arbitrary order. Finally
substitute the expression (1ppM)Q(AM)A(((ppM),2)p0)AM for pm_ and note that this

subexpression, call it ’?N’ is in standard form. Call the resulting expression gN’

and again note that 97N<—+ <.
3. Consider the following algorithm: at each step, the input is
'71{*‘* 5161 52 62 ... SK 6K Py where I/K is in standard form, i.e.,
F  AKSFKAGKDM .
(a) If X <> O then the algorithm is terminated. Otherwise, look at the operator

oK. Do step 1, 2, or 3 below depending on whether 89X is®, A or IX, respectively,

and return to step (a).
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1. 6K is transpose, & . Apply TR10 to the expression SKQ% <> SKQAKQFKAGKAM,
to get the equivalent QKQFKAGKAM, where @K <> SK[AK] and call this .?}(_ -

2, ©K is subarray,A. Apply transformations TR8 and TR5 to SKA.% to
get SKA% > SKAAKQFKAGKAM => AKQSK[AK; JAFKAGKAM => AKQFK'AGKAM, where FK!
is obtained by TRS.

3. 6K is indexing by a scalar, Ix[J1 . Apply transformations TR9, TRS6,
and TR7 to SK IX[J].%, getting

SK IXULJ] AKRFKAGKAM => AK'®BKAFKAGKAM
=> AK'QFK'ABK'AGKAM
=> AK'QFK'AGK'AM.

In each of steps 1, 2, 3 above, a set of transformations was applied to the
subexpression SK QKSPK of 'OIK' Call the resulting subexpression yK—l‘ Since all
transformations were equivalence transforms, it is clear that SK QKS% > yK—-l’
Let 'rK—l be the resulting expression from plugging '?K—l into J,,. Clearly

K
Ix 1< Iy Finally observe that eaché% is in standard form. Hence, in N steps,

0
which is in standard form. This is the desired result. QED.

the algorithm will terminate with result & > gif—» R g‘N &, and 916 s yO’

So far, we have defined a standard form for a subset of select expressions
and exhibited a complete set of transformations for obtaining the standard form
representation of an arbitrary expression in this class. Moreover, the proof of
the completeness theorem gives an algorithm for obtaining the SFofan expression.
Note that there are alternate ways of formulating the standard form. For instance,
an equivalent formulation says that an expression is in standard form if it is
represented as ARB+CYOLK] DAM with B,C non-negative and X a vector of indices
so that the definition of ¢[X] extends in the obvious way. The choice of using

the meta-notation formulations was made for two major reasons. First, fewer
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transformations and therefore fewer proofs are needed to establish completeness.
Second, this formulation is closer to the way these results will be used in the
design of the machine.

Another point to note is that the standard form could be made more general,
by allowing more operators to be included in the set of selection operators. In
particular, compression and expansion might be included, as well as reshape
and catenation. The general rotation operator at first seems to be a possible
candidate for inclusion, but in fact does not fit in cleanly. This is primarily
because rotations involve taking residues of subscripts, which do not compose in
a simple way. A further extension would allow arbitrary indexing of select
expressions and perhaps extend operations on select expressions to operations
on their subscripts, as in the case ¢VLS] < V[ $S].

A final point concerns the significance of the SF and completeness results.
These results are important in that they establish fdrmally some of the relation-
ships between APL-like operators which informally may appear obvious. This
not only provides a useful tool for the programmer, who may make formal trans-
formations on his programs without a second thought, but it also provides a formal
basis for automatic transformation of programs and expressions. This second
property is heavily used in the design of the APL machine. Also important is
that results such as we have described aid in the understanding of array operators,
which might be used in generalizing them further or in strengthening the theoretical

foundation for operations on array data.

D. The Relation Between Select Operators and Reduction

Obviously there is more to APL than just selection operators. If the results
of the previous section are to be generally applicable, we must look into the

relationships between select operators and some of the other kinds of operators
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in an array language. One result that has been used implicitly in some of the
proofs in Section C is that selection operators are distributive with respect to
scalar arithmetic operators. For instance, (4+B)[S] <= A[S1+B[S] and

-0V <> ¢-y. This property follows immediately from the definition of scalar
arithmetic operators and the definitions of the select operators, and is stated

formally in the theorem T1 below:

T1. Let 4 and B be arrays with the same dimensions and ¥ and D be monadic
and dyadic scalar arithmetic operators and T a selection operator; then
(i) if A D B is defined,
T (ADB)~~> (T A)D(I B)

(ii) if M Ais defined

IMA—>MTA

T1 contains the restriction that4 D B and ¥ 4 be defined, in order to deal
with cases like ((1,1,1)+1,1,0)[1,2] in which the result is undefined as written
but is defined after distribufing the indexing operator. This result is in fact more
general than as stated. It should be clear that the operator T can also be rotation,
compression, expansion (for some scalar operators) or operators such as ravel
or reshape. A similar result holds if one of Aor B is a scalar.

One of the most important constructions in APL is reduction which applies a
dyadic scalar operator between all elements o.f avector, Reduction is not an
operator in the sense we have been using, buf is more like a functional. As will
be shown below, it is possible to change the order of select operators and reductions
as well as to permute the coordinates of the reducee. As in the previous section,
these facts will have direct use in the APL machine. The remainder of this section
defines reduction formally, and presents a set of equivalence transformations

for expressions involving reductions.

- 26 -



D24. Reduction: IfD is a dyadic scalar operator and Vis a vector, then theD

reduction of v, written D/V, is a scalar defined as follows:
D/V <> IF (pV)>1 THEN V{11 D V[2] D ... D VlppV]
ELSE IF (pV) = 1 THEN V(1] ELSE (IDENTITY OF D)
In the expression above, the operators D associate to the right, as usual.
The identities of the scalar dyadic operators are listed in Appendix C.
If ¥is any array and D is as above then the D reduction over theX th
coordinate of M is defined as follows:
pD/LK] M < ((K-1)+pM),KioM
and for each L ELT 1pD/[K]1 M
(D/LKY M)Us/L] <> D/FAM
where F[;1]1 <> Kz1ppM AND F[ ;2] <> F[;11\L
If the subscript X is elided in the expression D/[X] M, it is taken to be

the last coordinate of M,which ispp¥M in l-drigin and [ /1ppM in general.

In order to do some of the proofs required by this section, we will need to use the

membership and ranking operators, so these operators are defined formally first.

D25. Membership: If 4is a scalar and B is any array, then the membership

relation AeB has value 1 if at least one of the elements of B is identical to
A | otherwise the value is 0. . The dimension of the result is the same as
that of A, and the definition is extended element-by-element on 4.

[Thatis AeB <> v/ ... V/A°.=B]
N
0B TIMES

D26. Ranking: If Bis a vector and 4 is a scalar, then B14 denotes the index

of A in B, namely the least subscript I of B such that4 «— B[TI].

[Formally, B14 < [ /(A=B,A)/ 11+pB.]
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From the expression above, it is clear that if ~AeB then the result is

1+[ /1pB. The operation is extended to arbitrary arrays 4 element-by-

element.

Thus, if Ais any array, then for each L ELT 1p4,
(B4 /L) < L/(AL;/L] = B,AL3/L1)/11+pB.

An interesting question about reductions is under what circuﬁlstances can the
coordinates of the reducee be permuted, with reduction carried out on a different
coordinate, and still have the result remain the same? It is intuitively obvious,
for example, that +/[1] ¥ < +/[2] (2,1)8, when ¥ is a matrix, since adding
the rows is the same as adding the columns of the transpose. Theorem T2 shows
that this kind of permuting can be carried out as long as the coordinates that are

left after reduction are in the same order.

T2, Let Mbe any array, D any scalar dyadic operator, X a scalar, and P any
permutation of 1pcM, Then,
D/LK} M < D/LPLK]] PyM
if and only if

(PLK]#1ppM) /P11pP <> (K=1ppM)/1p0pM

Proof: See Appendix B.

The complicated condition in T2 is a forr_nal statement of the requirement
that permutation by P does not disturb the ordering of the coordinates in M other
than X
Example: Let¥ be a rank-4 array. Then, by theorem T2, all of the following
are true:

+/021M ~— +/[1] (2,1,3,4)8¥
< +/03] (1,3,2,4)8M

— +/[u4] (1,4,2,3)8M
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No other values of P satisfy the condition in T2, For instance ifP < 4,2,1,3,
P[2] <> 2and Pi1pP < 3,2,4,1. So(2#1,2,3,4)/3,2,4,1 <> 3,4,1 which is
not (2#1,2,3,4)/1,2,3,4 < 1,3,4. This theorem suggests the following trans-

formation:

TR11, If Mis any array and Dis a dyadic scalar operator, then
D/[K] M <> D/[LAST] AWM.
where LASTis the index of the last coordinate of ¥ (ppM for 1-origin and

[/1ppM in general) and A <> (1K-1),LAST,((K-1)+1(ppM)~K)

TR11 above and TR12, TR13, and TR14 to follow can be used to transform a

select expression on a reduction to a reduction along the last coordinate of a

select expression.

TR12, If Mis any array and D a dyadic scalar operator then

ARD/M => D/(A,1+[/A)8QM.

TR13. If Mis any array, D a dyadic scalar operator, then
GAD/M => D/G'AM

where G' <> (pAMM)p(,G),( 14pM),I0RG,0.

TR14. If Mis any array, D a dyadic scalar operator, andg a scalar,

then (D/M)LLJ1Q1 => D/MLLJ1Q].

Proofs of TR11, TR13, TR14: Immediate from theorems T2, T3, T4,

Proof of TR12: See Appendix B.

Transformation TR11 forces all reductions to be along the last coordinate of
their operand array. TRI12, TR13, and TR14 permit reduction to be "factored

out" of select expressions,
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Given these transformations, we can extend the completeness result of the previous

section as follows:

COMPLETENESS THEOREM 2: I & is an expression on an array ¥ containing

only selection operators and reductions, then it can be transformed into an
equivalent expression % of the form _221/1_72/. . .QK/,?" ! where the D ; are the reduction

operators in the order they appeared in & and where #" is in standard form.,

Since the proof of this theorem is similar to that for the first completeness theorem,
it will be omitted. Such a proof depends on the correctness of transformations

TR11 through TR14, which follow from the theorems below:

T3. If ¥is any array, D a dyadic scalar operator then

GAD/LKIM < D/[K1G'AM

where (Kz1ppM)/[11G" <> G AND G'[K;] < (AM)[K:]
Proof: See Appendix B.

T4, For any array M and D a dyadic scalar operator,
GAD/M <> D/G'AM

where G' <~ ((ppM),2)p(,G),0,0

Proof: See Appendix B.
The following example takes an expression and derives the standard form of
Completeness Theorem 2,
Example: Let oM <> 6,10,12,19 and consider the select expression with
reductions:

E <« (2,1)8+/011(3,7, w)4x/[ulM

In each step, we note the transformations applied.
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1, &<(2,1)8+/031(3,1,2)8FAx/[41M (TR11, TR1)

where 7«3 1 0

2. & +/[31(2,1,3)8(3,1,2)8x/[ulcav  (TR12, TR13)

where g <«>3 1 0

7 1 0

4 9 0

19 1 0
3., &< +/[31(3,2,1)8x/[4]1GAM (TR10)
4, &< +/[31x/[141(3,2,1,4)8GM (TR12)

5. €« +/[31x/[141(3,2,1,4)8GAHAM

where F <« by definition of A

[eNeNeRe
[eNeNeNel

The above expression is in SF.

E. The General Dyadic Form — A Generalization of Inner and Outer Products

In APL there are three ways of applying dyadic scalar operators to a pair of

operands. The simplest, the scalar product, is the element-by-element application

of a scalar operator to corresponding elements of conformable arrays. The next

simplest is the outer product, in which the result is obtained by applying the

operator to all possible pairs of elements, one from each operand array, ina
specified order. Finally, the inner product is a generalization of ordinary matrix
product in linear algebra, except that arbitrary (conformable) arrays may partici-
pate as operands and any pair of operators may be used. Before proceeding, let

us present the formal definitions of inner and outer products.
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D27, Outer Product: If yand y are arbitrary arrays and D is any dyadic scalar

operator, then the D outer product of ¥ and y, written ¥ -.p ¥, is defined

as follows: pM o.D N <> (pM),pN. Then for each L ELT 1pM o.D N,

(M o.D N)L5/L] <> M5 /CooM)4L] D NL;/(poMIL].

D28. Inner Product: If¥ and NVare any arrays such that “14pM <= 14p¥ and if

D and F are two dyadic scalar operators, then theD-F inner product of
M and N written M D.F N, is defined as follows: pM D.F N < (" 14pM),14plN
and for each L ELT 1pM D.F N, (M D.F N)L;/L] <= D/(GAM) F HALN,
where G[;1] <> ((T1+poM)p1),0  GL;2]1 < ((T1+ppM)tL),0

H( 311 < 0,( 1+ppN)pl

H{ ;21 > 0,(1-ppN)1L

If one of ¥ orV is a scalar, it is extended to a vector of the same length as
the reduction coordinate., In the sequel, we assume that all operands of inner
product are array-shaped (or have already been extended).

Example: (1,2,3) oux 4,5 <> 4 5

8 10
12 15

(1,2,3) T.+ 4,5,6 <> [/(1,2,3)+4,5,6
> g
If Mand NV are conformable matrices, then
M+.x N
is the ordinary matrix product of linear algebra.
Although these three product forms appear to be different syntactically and
also in their effect, they are in fact intimately related, and can be considered
as aspects of the same thing. This section shows the close relationship between

scalar, inner, and outer products, and introduces a new (meta) form which
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includes these as special cases, We also investigate the effect of select operations
on this new construction called the general dyadic form (GDF), and show that it,
like the standard form on select expressions, is closed under application of select
operations.

The key to the relationship between these apparently diverse constructions
is the generalized transpose operation. By applying a transpose to an outer product,
it is possible to write an expression which specifies a diagonal slice of the original
outer product. For example, if V is a vector, ¥ a matrix, then the expression
1 1 28Ve.+M describes the result of adding V to each of the columns of ¥, It
would be desirable to understand this expression to mean the result it describes,
namely the result of adding the vector V to the columns of ¥, rather than the process,
that is the transpose of the outer product of V¥ and #. The difference is important
for two reasons. Using the first interpretation in a situation where the expression
must actually be evaluated, as in a program, requires only the pertinent elements
of the result to be computed. This is especially important when the operands are
large arrays. Second, some information is lost by ignoring the partial results.
For example, the expression ((1,2):(1,0))[1] is undefined in the literal sense
but the apparent intended interpretation gives the value 1. Both in the case of
select expressions and in transposes of outer products this is a serious problem,
as it is in direct conflict with the semantics of APL. Formally, the definition of
the language renders expressions such as the one just mentioned undefined, yet
this is really a matter of taste and style. My contention is that at worst this
kind of situation should be an ambiguous one, since it is essentially an instance
of a side effect. That is, the programmer writing such an expression should not
depend on the processor of his program to indicate that a domain error occurred

in the evaluation of an irrelevant partial result. If that is what he wants, there

- 33 -



are direct ways of expressing it, such as writing A4«(1,2)+(1,0), followed by 4{11].
In any case, I have taken the view that what should be evaluated is the intent of
an expression, if this is perceivable, rather than the literal expression itself.
Except in cases which produce side effects, both approaches compute identical
values.

Theorems T5 and T6 which follow, establish the essential connections among

the product forms and the transpose.

T5. If Aand B are conformable for scalar product, and if D is a dyadic scalar

operator then 4 D B <> ((1ppA),1ppB)8RA °.D B.
Proof: See Appendix B.

T6. If Mand NV are two arrays conformable for inner product and L and ¥ are
dyadic scalar operators, then M D.F N <> D/AQM o.F N,

where A <> (1 1+ppM),(2p LAST1),( 1+ppM)+1 1+ppWN

and LAST1 is the index of second-to-last coordinates inM o .F N

(in 1-origin this is (ppM)+(ppN)-1and [ /1(ppM)+(ppN)-1 in general),

Proof: See Appendix B.
Example: (T6) If 4 andB are matrices then
A +.x B «> +/(1-,3,3,2)QA o.x B.
We can see this as follows:
(+/(1,3,3,2)84 o.x B)[I;J]
— +/((1,3,3,2)84 o.x BLI;J;]
< +/ALI;IxB( ;7]

<« (4 +.x BY[I;J]
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In previous sections we have looked into the effect of select operators on
single arrays and scalar products. A natural question then is, what is the effect
of the select operators on inner and outer products. In order to approach an
answer, it was necessary to discover an alternate formulation of these constructions,

which facilitates this kind of analysis. Such an alternative is the general dyadic

form, defined below.

D29. General Dyadic Form: An expression on two array operands ® and S,

with dyadic scalar operator D is in general dyadic form (GDF) if it is
expressed in the form: '
ARQR' o.D S'
and the following conditions are satisfied;
(i) R'and &' are the standard forms of select expressions on R ands.
(ii) A4 is a conformable transpose vector for which each of (ppR')+4

and (ppFR')+4are in ascending order, and each contains no duplicate

values,

(iii) (pA8R'e.D S')[A < (pR'), pS'

The last condition guarantees that if A takes a diagonal slice of the outer product
R' o.p §', then the length of corresponding coordinates in R' and S' are the same,

This can always be done by performing a take operation affecting these coordinates

(see TRIT).

Example: If Vis a vector, M and ¥ matrices, then the following are in GDF:

(1,1,2)8V °.D M,
(1,3,2,3)8 o.D (2,1)8N,

(1,)8((1,1)8) o.D V
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but the following are not in GDF because the conditions on 4 are not satisfied:
(1,3,3,2)8 ».D N
(1,1,1)84 o.D V
From definitions D27, D29 and Theorem T5, if is clear that the scalar product
and outer product of X and S by D are special cases of the GDF, obtained by taking
A > (10pR),10pSand A <> 1(ppR)+ppS, respectively; D28 and T6 indicate that
an inner product can be expressed as a reduction of a GDF.
In discussing the effect of select operators on GDF's, we will present a series
of transformations, with proofs of their correctness in Appendix B. In the following
transformations, let

F <+ (ppR'")44 and G <> (ppR')¥4.

TR15, IfW <> AQR' o.D S' is in GDF then HAW => ARU o.D V where
U is the SF of R" <> H[F;]AR'

V is the SF of S'"' <« H{G;]1AS!

TR16. If Wis as above and ¢ is a scalar, then W[[J1Q] => B8 o.D V
where B > (JzA)/A-J<A and
Uis the SF of IF JeF THEN R'[[F1J] @1 ELSE R'

Vis the SF of IF JeG THEN S'[LGwJ] Q] ELSE S'

TR17. If Wis as above then BRW => (F',G')8QU o.D V
where  F' < (MeBLF])/M
G' +> (MeBLGI)/M M <> (I /B)+1-I0RG
Uis the SF of R'" <> (F'1\BLF1)Q(pB&W)(B[FIItR"

Vis the SF of S" <> (G'"1BLG1)&(pBAW)[BLG114S"
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TRI18. If Yand ¥V are conformable for inner product and D and F are dyadic scalar
operators, then ¥ D.F N => D/AQM' o.F N'
where 4 < (1 1+ppM), LAST1,( 1+ppM)+1pplN
M' is the SF of M
V' is the SF of (LASTN,1 1+ppN)&N
LAST1 is the index of the second-to-last coordinate of ¥ °.E V.
( CopM)+(ppN)-1 in 1-origin; [/1(ppM)+(ppN)-1 in general)
LASTN is the index of the last coordinate of V.

( ooV in 1-origin;[ /1pp/N in general),

These transformations are sufficient to establish:

COMPLETENESS THEQOREM 3: Let € be an expression consisting only of

reductions and select operators applied to a scalar product, inner product, or
outer product of expressions .« and B, where .« and & are select expressions
on arrays 4 and B respectively. Then & can be transformed into an equivalent

expression #F of the form D, /D

i Yo i ?
D, _2/...QK/.97 , where ¥ 'isin GDFandtheQI s are

the reduction operators appearing in &, in the same order. If the original
expression & contained an inner product, D, is the first operator of the inner

product.

Proof: Similar to Completeness Theorem 1,

F. Conclusion

This chapter has discussed some of the formal mathematical properties of
the operators found in APL. Of particular interest are the completeness theorems,
which give conditions under which a subset of APL expressions can be put into

standard form. The general idea of the standard form is that sequences of selection
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operators on an expression can be transformed into a shorter sequence of opera-
tions on the same expression. In other words, if &is an expression and $1,...,58K
are selection operators, then there is a process for finding A, F, and G such that
S1 52 ... SK&E > ARFAGAE.
Completeness Theorem 3 further shows that, in essence, selection operations on
inner, outer, or scalar products can be absorbed into the individual operands.
Also by Completeness Theorems 2 and 3, reductions can be factored out of select
expressions.

Clearly, the whole story has not been told at this point; indeed, the contents
of this chapter barely scratch the surface of the general problem of analysis of
APIL semantics. Even so, the results discussed are a sufficient base for the
design of the APL machine discussed in the next chapters. In particular, the
analysis here provides a formal basis for the beating and drag-along processes,

which are the two foundations upon which the APL machine design rests.
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APPENDIX A

SUMMARY OF APL

Monadic form f£B 3 Dyadic form AfB
Definition Name Name Definition
or example or example
+B ++ 0+B Plus + | Plus 243.2 «+ 5,2
-B <+ 0-B Negative - | Minus 2-3.2 +> "1.2
xB <+ (B>0)-(B<0) Signum x | Times 2x3,2 ++ 6.4
tB +> 1:B Reciprocal + | Divide 2#3,2 «* 0.625
B l fBl LB Ceiling [ | Maximum 3[7 «+ 7
3.14% 4 3
T3.14{73 |4 Floor L | Minimum 3L7 «+ 3
*B «> (2.71828,.)*B|Exponential | » | Power 2%3 «+ 8
OxN <> N «+ »@N Natural e | Logarithm A®B «» Log B base 4
logarithm A®B <++ (eB):e4
73,14 <> 3.14 Magnitude | | Residue Case AlB
A=0 B-(14)xLB+lA
A=0,B20|B
A=0,B<0|Domain error
'0 +»> 1 Factorial ' | Binomial A'B +» (!B):('A)x'B-4
!B «+ Bx!'B-1 coefficient |2!5 «» 10 3!'5 «+ 10
or !B <«+ Gamma(B+1)
?B +» Random choice|Roll ? | Deal A Mixed Function (See
from 1B Table 3.8)
OB «+ Bx3,14159,,., |Pi times 0 | Circular See Table at left
~1 > 0 ~0 <=1 Not ~
A | and 4|BlanBlave|ans|avB
(-A)0B A AOB v |Oor 0]o0| o 0 1 1
(1-B*x2)*x,5 |0] (1-B*2)*.5 ~ | Nand ol1] o 1 1 0
Arcsin B |1| Sine B » | Nor 1{0f o 1 1 0
Arccos B |2 ]| Cosine B 1)1 1 1 0 0
_ Arctan B |3| Tangent B
(T1+B*2)*x,5 |4 | (1+B*2)=*,5 < | Less Relations
Arcsinh B | 5| Sinh B < | Not greater Result is 1 if the
Arccosh B |6} Cosh B = | Equal relation holds, ¢
Arctanh B |7 | Tanh B 2 | Not less if it does not:
" > | Greater 357 «+ 1
Table of Dyadic o Functions = | Not Equal 753 ++ 0O

Primitive Scalar Functions
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Name Isign' | befinition or example?
Size pA pP ++ 4 pE «+ 3 4 p5 ++ 10
Reshape VoA Reshape 4 to dimension V 3 U4p112 <+ E
12pE ++ 112 QpE «+ 10
Ravel LA JA v (x/pA)pA JE ++112 p,5 «+ 1
Catenate Vv,V P,12 «+ 2 3 5 7 1 2 ‘Tt 'HISY +» 'THIS!
vial P(2) «~+3 Pl4 3 2 1) «»7 5 3 2
Index34 M[AA) El1 3;3 2 1] ++ 3 2 1
11 10 9
ALA; .. E[1;] «+ 1 2 3 4 ABCD
.34 E(;1] ++ 1 5 9 '"ABCDEFGHIJKL'(E] «+ EFGH
IJK
Index 1S First S integers = 4 «+ 1 2 3 4
generator3 10 «+ an empty vector
Index of3 |V4 Least index of 4 P13 +»2 5125
in Vv, oxr 1+pV P\E «+ 3 5 4 5§
4 Y14 e+ 1 $ 5 5 5
Take VA Take or drop |V(I] first 2 34X ++ ABC
(V[ I}20) oxr last (VI{I]<0) EFG
Drop VA elements of coordinate I “24P ++ 5 17
Grade upS¥ The permutation which T3 5 32 «+ 4 13 2
rwould order A (ascend-
Grade - down®8|y4 ing or descending) §3 5 3 2 «+ 2 1 3 4
1 3
Compress® |y/4 1010/P«+25 101 0/F «+5 7
) 9 11
10 1/{1J8 v+ 1 2 3 4 ++ 1 0 1/F
9 10 11 12
4 BCD
Expand® AV} 1 0 1\12 ++ 1 0 2 1011 1\X «+ E FPGH
I JKL
DCBA IJKL
Reverse® bA ¢X ++ HGFE ¢(11X «+ @X «+ EFGH
LKJI 6P «+ 7 5 3 2 ABCD
. BCDA
Rotate® lAdA 3GP «+ 7 2 3 5 «+ T16P 1 0 "16X +~ EFGH
LIJK
AEI
[L7] Coordinate I of 4 2 18X «~+ BFJ
becomes coordinate CGK
Transpose VLI] of result 1 19E +«+ 1 6 11 DHL
RA Transpose last two coordinates QE «+ 2 1QE
00110
Membership |ded pNeY «+ oW EeP «+ 1 0 1 0
: Peid «» 1 1 0 0 g 000
Decode Viv 1011 7 7 6 +«+ 1776 24 60 6011 2 3 ++ 3723
Encode Vis 24 60 60713723 ++ 1 2 3 60 6073723 ++ 2 3
Deal’ S?S W?Y «+ Random deal of # elements from 1Y

Primitive Mixed Functions

1, Restrictions on argument ranks _are indicated by: S for
scalar, v for vector, M for matrix, A for Any. Except as
the first argument of Si:4 or S[A], a scalar may be used
instead of a vector. A one-element array may replace any

scalar.
2, Arrays used 1 2 3 u ABCD
in examples: P ++ 2 357 E«+ 5 6 7 8 X «+ EFGH
9 10 11 12 IJKL

3. Function depends on index origin,
4. Elision of any index selects all along that coordinate.

5. The function is applied along the last coordinate; the
symbols ¢, %X, and @ are equivalent to /, \, and ¢,
respectively, except that the function is applied along the
first coordinate. 1If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

‘e
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Type of Array| oA ppAlpppA

Scalar 0 1
Vector N| 1 1
Matrix M N 2 1
3-Dimensional |L M N| 3 1

Dimension and RanK Vectors

Conformability Definition
pA joB |pAf.gB|requirements Z+Af.gB
2+£/AqgB
14 2+£/AgB
U z+£/AgB
uviv u=v Z+«f/AqB
VWl W Z[I1+£/AgB[;I]
TU T Z[I]+«£/A0(I;]1gB
Ulv wiy W U=v ZLI)«£f/AgBL;I]
T UV T u=v z[I)«£/A0I;1gB
TU|VW|TW U=v Z[I;J]«£/ALI;1gBl;J]

Inner Products for Primitive Scalar Dyadic Functions f and g

Definition

pA |pB |pAec.gB Z+Ao . gB

Z+«AgB
Z[I]«AgBLI]
z{1)«A[I1gB

Z[I;J]1«AlI1gBLJ]

Z2[(I;J]+AgBLI;J]

Z{I;J)+«A[I;J]gB
ZLI;J;K)«AlT1gB[J;:K]
2{I;J;K)«ALT;J]gB[K]
W{Z0T;J:K;L]1«ALI;J1gB[KX;L]

Qo
- =< <

x ¥ x

]
oo
I <
HHoNMRQaw
oo ¥YEw
|S<X

Outer Products for Primitive Scalar Dyadic Function g

Reprinted by permission from APL\ 360: User's Manual &) 1968 by

Case pR Definition

R+1§V oV R+V

R+1 24M oM R«M

R+2 1§QM (oM)[2 1] RLI;J1+M[J;I]
R+1 18M L/oM RLIJ+«MII;I]
R+«1 2 38T |pT . R+T

R+1 3 28T|(p?)[1 3 2] RII;J;K1«TII;K;J]
R«2 3 187|(pT)(3 1 2] RII;J;K1«T[J:K;T]
R+3 1 28T|(pT){2 3 1] RII;J:K1«T(K;I;J)
R«1 1 28T {(L/(pT)[1 21),(pT)[3] RLUI;J)«P(I;I;J]
R+1 2 1QT|(L/(pT)[1 31),(pT)[2] RII;JI«TLI;J;I]
R+«2 1 19T|{(L/(eT)[(2 31),(pT)[1] R{I;J1«T{J3I;:T]
R+1 1 18T|L/pT RLIJ«TLI;I;I]

Transposition
- 41 -

onal Busi Mach Po)




APPENDIX B

This appendix contains proofs for the transformations and theorems which
were deferred from the main part of Chapter II. They were omitted from the
text because they do not substantially contribute to the exposition of the material,
and are included here for completeness.

The various proofs are trying to establish the identity of two expressions &
and &, This is generally done in two steps: in step 1, p& <+ o is shown and
in step 2, it is shown that the expressions are identical element-hy-element,

Lemmas L1 through L9 state results used in the rest of this appendix. Since
they are all intuitively obvious, and since their proofs follow from the definitions,

these proofs will be onﬁtted.

L1, If ¥is any array and Vis a vector, then

(MLLK] vDLLK] U] <> MLLK] vIU]]

1.2, If Mis any array, I<J , and U and V are vectors or scalars, then

(MLLJY VIDLLI] U) « (MCLI] U1 LI-0=ppU] V]

L3. Let M be any array and 51,52,...,5%k be subscript vectors. Then
foreach I ELT1pM[51;52;...;5K],
(MLS135825 ... 3SKI3/0] < M 5/T]

where T is a vector with T[I] <> SICLLI]]

for each JeippM.

14, For any integral 4 (scalar or array) satisfying A>TOrG and (A-I0RG)<LEN,
a. (J LEN,0RG,0)[A] <> ORG+A-IQRG

b. (J LEN,0RG,1)[A] <> ORG+LEN+IQRG+ 1-4
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c. (J LEN,0RG,S)LA] ++ ORG+((~S)x(A-IORG))+(Sx(LEN+IORG+ 1-4)) ?
d. -J LEN,ORG,S <> J LEN,(-(ORG+LEN-1)),~S
e, K+J LEN,0RG,S <+ J LEN,(ORG+K),S if X is an integer

f. &J LEN,ORG,S <> J LEN,ORG,~S

L. If FAM is defined, then
(a) oFAM < F[;1]
(b) for each L ELT 1pFAM,

(FAMYC5 /L] <> MU /FU523+((~F[331)x(L-I0RG) )+(FL 3 1x(FL ;11+I0RG+ 1-L))]

L6, a, U/X(S81 < Xx[U/S]
b. U\U/X > UxX (if X is numeric)
co U/UNX > X
d. U/V/X <= (N\U)/X
e. (UAVY/X < (U/V)/(U/X)
f. U/(X DY)« (U/X)D(U/Y) f{forD a dyadic scalar operator
g. If Dis a dyadic scalar operator with 0 D 0 <> 0,

then U\(X D Y) <> (U\X) D (U\Y)

L7. I 0<ORG1-IORG and (ORG1+LEN1-IORG)<LEN then !
a. (J LEN,ORG,0)[J LEN1,0RG1,S1 <> J LEN1,(ORG+ORG1-IORG).S

b. (J LEN,0RG,1)[J LEN1,0RG1,S] <+ J LEN1,(ORG+LEN+IORG-(ORG1+LEN1)),~S.

L8, If Uand V are logical vectors with pV <> +/~U

then ~(UV(~UI\V) <= (~U)\~V.

L9, a. If Bis a vector and if for any 4,4¢B is all ones, thenB[B14] + A.
b. If P is a permutation of 1pP then if # <> Pv1pP, PLR] <> R[P] +» 1pPand
P <> RiipR. In other words, for permutation vectors, the ranking

operator is its own inverse,
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Proof of TR5:

1. pFAGAM <+ pF[;1] <> pHAM (by L5)
2. For each L[ ELT 1pFAGAMM, (FAGAM)L;/L1 > (GaM)L;/S]
where SLI] < (J FLI;1)ILLI]]
and (GMM)[ /8] > M[;/T]
where TLI1 < (J GLI;1)LSCI]]
<~ (g GLI; DI FLI;NILLTII]
<~ (( GLI; DHIJ FLI;1DILLII]
But (HAM)[;/L] <> M[;/U]
where ULI] < (4 HLI;1)LLLI]]
<~ ((L GLI; I FLI;INDILLII]
<> T[I]
Thus, T <> U and (FAGAM)L /L1 < (HaM)[;/L]1. QED,
We can give explicit formulas for # in TR5. First, H[;1] <> F[;1] and
H[ ;3] <> F[;31%G[;3]. Finally, for each IeippM, H[I;2] <> IF 0=G[I;3]

THEN FLI;31+GLI;31-I0RG ELSE (IORG++/GLI31,21)-+/F(I;1.,2].

Proof of TR6:

1. pFAGMM <~ (~F[;11)/pGAM
<~ (~FL51 D) /6051]
< G'[31] <> pG'AF'AM,
2, For each L ELT 1pFAGAM,
(FAGMM)L : /L) > (GAM)[ 5/L'] where L' <> (x/F)+(~F[;11\L (by D14)

— ML;/S]
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where (by L5),
§ > GL;21+((~GL;3)%L' -I0RG)+(GL 331x(GL ;1 1+I0RG+ 1-L")
> GL32]+((~GL531)x(x/F)+((~F[ ;1 1)\L)-10RG)
+(GL;3Ix(GL ;1 I+I0RG+ 1-C (x/F)+(~F[ ;11)\L))
(G'AF'AM /L] > (FramM)(; /7]
where T <> G'[;21+((~G"[;31)xL-IORG)+(G' [ ;31x(G'[ ;1 1+I0RG+ 1-L))
Thus, (G'AF'AM)[ /L] <> ML; /U]
where U <> (x/F")+(~F'[;11\T
— (x/F")+(~F'[;1 NG [521+((~G'[33]1)xL-IORG)
+(@'[331x(G'[;11+I0RG+ 1-L)))
To complete the proof, we need to show that 5 < . By lemma L6g,
X\A+B <> (X\4)+(X\B),
and  X\AxB <« (X\4)x(X\B).
Thus, writing £ < ~F'[;1] <> ~F[;1], and substituting for 7',

U <> (PL;1Ix(FL313xGL521+((~GL 331)%F[;21-I0RG)
+(GL331x(GL311+I0RG+ 1-F[321))))
+(ENG'[;21)+((E\~G'[;31)x(E\L)-IORG)
+(ENG'[331)x(E\G'[;11)+I0RG+ 1-E\L

But ENG'[ K] «» ExGL;K] < (~FL311)%0L K] for Ke1,2,3.
Making this substitution and commuting terms,
U ((FL5104~FT311)%(CL323+( (~GT 531)x-I0RG)+GL 3 1xGL 31 1+I0RG-1)
+((~GL331)x(FL31IxFL32 1)+ (~FL31 1) x(~FL311\D)
+GL 33 Ix(FL s Ix-FL;2 ) +(~FL311)x-(~F[51D\L «

But F[;11+~F[;1] < (pF[;11)p1 and does not contribute to the product in the
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first term. Also,
(~FLADX(~FL2 N\ > (~FL31DNL.
U <> GL3;214((~GL ;3 1)x(x/F)+((~FL;11\L)+I0RG)
+GL 331xGL 31 1+I0RG+ 1-((x/F)+(~F[311)\L)
~— S5 QED.
Proof of TR7:
1. oFAGMM <> (~F[;1])/pGAM > (~F[;11)/(~GL;11)/pM
— ((~GL;2D\~FL;11) /oM (by L6d)
pHAM <> (~H[311)/pM > (~(GL;1IV(~GL ;1 D\FL311)) /oM
— ((~GL;1D\~FL;1]1) /M (by L8)
<> pFAGAM
2. Foreach L ELT 1pFAGAM,
(FAGAM)[ /L] <> (GAM)YL ;5 /(x/F)+(~FL;1I\L] + M[;/S]
where S <> (x/G)+(~GL;1)\(x/F)+(~F[;11)\L
(HAMYL 3 /LT <> MUs /(x/H)+(~H[310)\L] < ML /T]
where 7 <> ((GL;1Iv(~GL;1DN\FL;11)x(GLs21+(~CL 31 \F[52]))
+(~(GL;DIV(~GL ;1 DANFL31 1))\
Expanding the products, and noting that
GLs1Iv(~GL1DNFL31] < GLs11+(~GL;1INFL51 ],
we get .
T > (x/G)+(GL31Ix(~GL ;1 INFL;21)+(GL;23x(~GL 31 D\FL311)

+(((~GL31DNFL 1 Dx(~GL 1 DNFL: 2 D)+ ((~GLs1 IDN~FL1 DN\
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So we must show that S <= T, In simplifying T, we use the following, in
order: If Uand V are logical vectors,
Ux(~UI\X <> (pU)p0
(N\X)X(U\Y) > U\XxY (L6g)
U\NV\X > (U\V)\X
Also recall from the deﬁﬁﬁon of 4 that GL ;2] contains zeros wherever
GL ;1] does. Thus, we rewrite T: |
T (X/G)+(G[;2]X(~G[;1])\F[;1])+((~G[;1])\(X/F))+((~G[;1])\~F[;1])\L
But the second term goes away because of G[;2]'s zeros.
T > (x/G)+((~GL3 1 IDN(x/F))+(~GL;1 D\ (~F[ ;1 1)\L
> (x/G)+(~GL; 1 DN((x/F)+(~F[311)\L)
<~ S QED.

Proof of TRS:

Clearly the ranks of both expressions are identical.
1, pFASM <+ F[;1] (by L5)
Now, for each Ie1ppARFLA;]1AM
(pARFLA;JMM)LI] > L/(A=I)/pFLA; 1M < |/(A=I)/F[4A;1]
> L/FL(4=I)/4:1] (by Lé6a)
> L/(+/A=I)pF(I;1] <> F[I;1] <> (pFAA&M)[I]
2. For each L ELT 1pFAASM,
(FAARM)[ /L] <> (AQM)[;/Q]1 + ML;/QLA]]
where QLI] < (L FLI;1ILLT]]
(AQFLA; I3 /L] +> (FLA;1aM)[ 5 /LLAL] < M[5/5]
where SI] «— (4 (FLA; DII; DHIELIADLIT]
> (J FLALI1; DILLALTII]
< QLALI]] «— (RLADLI]

Thus Q[4A] < S, QED.
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Proof of TR9: The case of (pAgM) <« 1 is trivial and will be omitted. Otherwise,
1. pp(AMI[JIIR] «> (ppAQM)-1 < ([/A)-1 (in 1l-origin)
ppA'QBMM <= [ /A" <= [/ (A=) /A-d<A <> [ /((A=J)/A-A<J)[L,E,G] (%)
where L,E,G exhausts 1p4 and such that A/A[L1<J and
A/ALE]=J and A/ALG1>J . (This is possible by commutativity of [ .)
(x) <> [/(J#ALL,E,G])/ALL,E,G]-J<A[L,E,G]
— [/(((pALL1)p1),((pALE1)p0),(pALG))p1)/(ALLI,ALE],ALGT)
-((pALL,E1)p0),(pALG)p1
> [/ALL],(ALGI-1) < (T/ALLDI(T/ALG])-1
If J <> [/Athen A[G] <> 10and the result is [/A[L] <> ([ /A)-1, Otherwise,
A[G] is non-empty and [ /A[G] <+ [/4, so the result is still([/4)-1, since A
exhausts 1p4, by definition. Thus the ranks of both expressions are identical,
We now show the dimensions to be indentical.
For each Iei1([/4)-1,
(pA'®BAM)LI] <> L/(I=A")/pBMM > L/(I=(A=J)/A-J<A)/(A=])/pM
> L/((A2J)/T=A-d<A)/(A=J ) /oM <> L/((A=J)AI=A-J<A)/oM (by Lée)
By case analysis, we find that
(A2 )AI=A-J<A <> IF I<J THEN T=A ELSE (I+1)=A
> A=T+Iz2J
Thus, (pA'®RBAMM)LI] < L/(A=I+I2J)7/pM <> (pASM)[I+I2J] (by D18)
and  (p(AWNILIIQNIIT < ((J#1pA)/pASM)[I] |
— (pASM)[((Jz1pA)/1ppARM)[I]]
> (pARM)[I+I2J] > (pA'QBAM)LT]

Therefore both expressions have the same dimension,
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2. For each L ELT 1p(AQM)[[J1Q],
((AM)[LJ1Q1;5/0] > (AQM)[3/((J-1)4L),Q,(J-1)+L]
< ML /(((J-1)4L0),Q,(J-1)¥L)[A 1]
Call this subscript vector S.
(A'QBMM)L5/L] <> (BAM)L5/LLA' 1] <> ML/ (x/B)+(~BL;11)\LLA']]
Call this subscript vector I'. It remains to show that S ++ T. First,
pS <> pT. For each Ic1pS,
SLI] < (((J-1)4L),Q,(J-1)¥L)[ALT]]
«> IF ALI1<J THEN L[ALI]] ELSE IF ALIl=J THEN @ ELSE ((J-1)+L)[A[I-J]1]
So, S > (@xJ=4)+(J=A)xLLA-J<A].
T > (@xJ=A)+(J=AINLL (A=) JA-J<A] > (@xJ=A)+(J2AI\(J#A)/LLA-J<A]
<> (@xJ=A)+(J2A)XLLA-J<A]
«~ 5 QED.

Proof of TR10: As in the proof of TR9, the hard part of this proof is to show that

the two expressions BRA® and B[4 1@ have the same dimension.

1. Clearly BLAI&M is well-defined since A exhausts 10B and pB[A] <> poM.
Also, ppBlAJOM <« [/BLA] <> [/B <> ppBRA®M. By definition of transpose,
for each Ie1ppBRAM,

(pBRASM)ILI] > L/(I=B)/pASM < L/(pASM)[(I=B)/1ppA8M].
Let us write # > A® and T <> (I=B)/1ppR. The remainder of this part
depends primarily on the associativity and commutativity of minimum (L).
(pBRASM)[I] <> L/(pR)IT] < L/(pR)LTT1]1], (pRLTC2]1],...,(pR)LTLppT]]
<~ L/(L/(A=TC11)/pM),(L/(A=TC2])/pM) ..., (L/(A=TLppT1)/oM)
— L/((A=TT11)/eM) ,((A=T[2]1)/pM), ..., ( (A=T[ppT])/§M)
— L/((A=TC11)Vv(A=TC2])v...V(A=TLppT]) )/ oM

«— L/(AeT) /oM (by D25)
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Now I=B[A] < (I=B)[A] since is scalar. Also note that ((7=B)[4]1)[K] <> 1
if and only if ALKJeT. Thus,I=B[A] <> AeT and
(pBLAJOM)LI] <> L/(I=BLA])/pM
<> | /(AeT)/pM — (pBRAGM)[I].
2. For each L ELT 1pBRA%M,
(BRARM)(; /L] <> (AQM)L[;/LIB]]
<~ M[;/(LIB1)[A]]
<~ M[;/L{B{A]]]
«— (BlAlsM)[;/L]
QED.

Proof of Theorem T2:

The only if part is easiest, as it depends only on the dimensions of the expressions
involved. Only if part:
By hypothesis, D/[X] M < D/[P[K]] P&M.
Thus, the dimensions of both expressions are identical, Specifically,
oD/LK] M <> ((K-1)tpM), KipM <> (Kz1ppM)/oM
and oD/(PLK]] M <> (PLK1z1ppP8QM)/pP8M
But, sinceP is a permutation of 1ppM thenpP < ppM
and pPOM < (pM)[PrippM] <+ (pM)[Pr1pP]
Also, ppP®M <> ppM. Hence, .
pD/LPLK]] M <> (PLK]1z1ppM)/(pM)[P11pP]
<~ (pM)L(P[KI21ppM)/Pr1pP] (%) (by L6a)
and pD/LKIM « (M) (Kz1ppM)/1ppM]  (%%)
But (*) <> (**) by hypotheses. Thus, the subscripts of (p¥) are indentical
for each expression, i.e.,

(PLK]#1ppM)/P11pP <> (Kz1ppM)/1ppM.
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We now proceed with the difficult part of the proof:

If part:

1.

We must show that oD/LK] M < pD/[PLK]] P8M,
pD/LK1 M > ((K-1)tpM), KipM <> (Kz1ppM)/oM <= (oM)[ (Kz1ppM)/1ppM]
But ppPQM > [ /P <> ppM. So for each Ie1ippM,
(pPRM)LI] > L/(P=I)/pM <> L/(pM)[(P=I)/1ppM] ~> (pM)[(P=I)/1ppM]

since P has exactly one element equal to I.

<> (pM)[P1I] (by D26)
Hence, oP&M +> (pM)[P11pP]. Now,
pD/[PLK]]) P8M < (PLK1z1ppP8M)/pP8M <> (P[KI21ppM)/(pM)[P11pP]

<~ (pM)L(PLKI21ppM)/P11pP] <> (pM)[(Kz1ppM)/1ppM]
by hypothesis

<~ pD/LK]1 M.
Thus, the dimensions are identical.
The two expressions are identical element-by-element.
For each L ELT 1pD/[K]1 M, (D/LKX] M)[;/L] <> D/FAM
where FL[:;1] <> KzippM
and FL;2] < F[;10\L

(D/CPLK]] P@M)[ /L] <> D/GAPRM

where GL;11 <> P[K]zippM
and G[;2] < GL;1\L
Let us examine these two reducees element-by-element. First note that
they have the same rank, For, oFAM <« (K=1ppM)/pM <> (pM)[K]
and pGAPSM <« (PLK]1=1ppM)/pP8M

~ (pPOM)[PLK]]

<~ L/(P[K]1=P) /oM

> (pM)[K].
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For each Iei1(pM)[K],
(FAM)[I]Y «> M[;/R]
where R > (x/F)+(~F[;1]IN\I
<> ((K21ppM)\L)+(K=1ppM)\I
<« (L,I1)L(1K-1),(ppM),(K-1)+1(ppM)-K ]
(GAPRM)[I] > (PQM)L3/(x/G)+(~GL ;1 I\I ]
— (POM) L3/ ((PLKI#1ppMIN\L)+(PLK]I=1ppM)\I]
<> M[ /5]
where S <> ((L,I)L(1P[K]1-1),(1+pL),(PLK1-1)+1(pL)-(P[KI-1)1)IP]
(L, DYL(WPLE]I-1), (ppM) , (PLK]I-1)+1(ppM)-PLK]])[P]
To complete the proof, we must show that & «— 5.
In order to look more closely at S, we must find out more about 7. Let
T <+ Pi1pP.
Then by hypothesis,
(PLK1z1ppM) /T «> (Kz1ppM)/1ppM <> (1K-1),K+1(ppM)-K.
Since Pis a permutation, A/(1pP)eP and we would expect to have A/(1pT)eT.
The above equation gives all of Texcept for the element which equals X.
There are pT places in T that X could occur, falling into three cases. By
examining each of these cases, we can deduce the structure of P,and thus the
value of S.
(@) P[K] <> K. Then T «> (1K-1),K,K+1(ppM)-K <> 1ppM.
Thus, P <> 1ppM and S < R.

(b) PLKI<K. Then, T <> (1PLKI1-1),K,((PLK]-1)+1(K-1)-(P[K1-1)),K+1(ppM)-K
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(c)

and by lemma L9
P <> Tv1pT
< (WPLKT-1),(1+(PLKI-1)+1(X-P[K]) ) ,P[K],K+1(ppM)-K
<> (1P[K]-1),(P[K]+1K-P[K]),PLK],K+1(ppoM)-K
and then
S <> (L, DI PLK]-1) ,((P[K]-1)+1K-P[K]) ,(ppM) ,K+1(ppM)-K]
> (L,1)0(1K-1),(ppM) ,K+1(ppM)-K] <> R
P[K]>K. In this case, T > (1K-1),(K+1P{K]-K) ,K,P[K]+1(ppM)-PLK]
and P <> TvipT <« (1X-1),PLK], ((K-1)+1P[K]1-K) ,PLK]+1(ppM)-PLK].
Then, S <> (L,I)[(1K-1),(ppM),((K-1)+1P[K]-K),(PLK]-1)+1(ppM)-PLK]]
> (L,I)L(1K-1),(ppM) s (K-1)+1(ppM)-K] <> R.
Hence, in all cases S <> R and therefore FAM <> GAPQM
for each L ELT 10D/[X] M,

and thus D/[X] M <> D/[P[K]] PM. QED.,

Proof of TR12:

1,

The ranks of both expressions are clearly equal. Then, for each Ie1ppARD/M,
(pARD/M)LI] > L/(A=I)/oD/M <> L/(A=I)/ 14pM

But also, for each Icipp(4,1+[/4)8M,

(p(4,1+[ /ASMILI] > L/(I=4,14[/A)/oM < L/((I=4)/"14oM) ,(I=1+[/A)/ 1toM

SO oD/ (A, 14T /A)&M > "14p(A,1+[/A)SM <> pARD/M

For each L ELT 10ARD/M,
(A9D/M)[3/L] <> (D/M)[;/LLA]] < D/FAM

where FL31] <> (I/1p00M)%1p0M <> (("1+ppM)p1),0

and  F[;2] < FL;10\L[A] <> L[A],0

(D/CA, 1+ /7AYM)L 3 /L] <> D/GA(A,1+[/A)8M
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where  GL;1] < ([/1pp(A,1+[/4)8M )% 1pp(4,1+4[ /4)QM
— ((T1+pp(4,1+[ /A)8®M)p1),0
> ((ppARD/M)p1),0
GL;2) < GL;1N\L < L,0
A typical element of this reducee is
(GO(A, 14T /AYRM)LTY < ((A,147/4)QM) L5/ (x/G)+(~GL ;1 1\I]
— ((4,1+/A)aM)[5/(L,0)+((pL)p0),I]
— MU /(L,I)[A,14T/A] <> MU;/LLAT,I] + (FAaM)[T]
Thus, the two reducees are equal. QED.

Proof of Theorem T3:

1. pGAD/TKI M < G[;1]
pD/LK] G'AM <> (Kz1ppM)/pG'AM
<> (K#1ppM)/G'[31] <= G[ 311 <> pGAD/[K]1 M
2, For each L ELT 10GAD/LK] M,
(GAD/UK] MYL3/L) <> (D/LKY M)L3/8]1 <> D/FAM

where S > G[321+((~G[ ;31)xL-IO0RG)Y+G[ ;31xGL ;1 1+I0RG+ 1-L

and FL;1] <> K#ipoM

and FL;2] <> FL;1N\S

(D/LK] G'AM)[ /L] > D/F'AG'AM

where F'[3;1] <> Kz1ppGAM <> Kz1ppM and F'[;2] <> F'[;1\L

But by TR6, F'AG'AM <+ GVAF'AM

where G" «—> (~F'[;11)/0[11G" «— (AM)[K;]

and F"[;1] < F'[;1] < F[;1],

F'[520 <= P02 0xG 0521+ ((~G' 053 1)xF [ 32]-I0RGY+G'[331xG'[311]

+IORG+ 1-F'[ ;2]
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But F'[;11xF'[;2] < F'[;2]

and for Je1,2,3.
F'[;21xG'[3J] < FL3;1N\GL ]

Thus, distributing the F'[;1] term and substituting,

FU[32] < (FL;AINGL:2 D) +((FPL31IN(~GL530) )x(FL 51 I\L) -IORG)
+(FL;1NGL331)x(FL31 NGl 1 1) +I0RG+ 1-FL31I\L

— FL3;1IN\GL 323+ ((~6[331)xL-I0RG)+GL 33 IxGL ;1 1+I0RG+ 1-L
<> FL;1\S « F[;2]

Hence F' +> F

and  GUAFVAM <> GUAFAM <> FAM QED.

Proof of Theorem T4:

1. pGAD/M <> (~G[311)/pD/M <> (~GL311)/ 14pM
pD/G'AM <> “14pG'AM > 14 (~G'[;1])/pM > T14((~G[;1]),1) /oM
< (~GL311)/ 14pM <> pGAD/M
2. For each L[ ELT 1pGAD/M,
(GAD/MYL L] <> (D/MYL3/(x/G)+(~GL311\L] <> D/FAM
where F[;1] <> ([/1ppM)#1ppM
F[;2] < FLAIN(</G)+(~GL31\L > (x/G')+ FL;1IN(~GL;11)\L
Further, (D/G'AMYT3/L] <> D/F'AG'AM <> D/HAM
where F'[;1] < ([ /1ppG'AM)=21ppG'AM
and F'(;2] < F'[;11\L
and, by TR7, H[;1] < G'[;1Iv(~G'[:1\F'[;1]

HL;21 > G'[;2]1+(~G'[;1DO\F'[;2]
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Now for each IecippFAM,
(FAM)UI] <> MU/ (x/F)+(~FL;I\I]
— ML/ ((/GMHFL AN (~GL1 DL+ (~F[311)\T ]
> ML 3/ ((x/G)+(~G[;11\L),I]
since F[31] < (("1+ppM)p1),0
and (~G'LAINF'[31] < ((~GL31 1), a0NF'[51]
> ((~GL1 D), AINC P (51D, 14F' 051
> ((~GL;1 DN 1+ppG'AM)p1),0 > (~G[511),0
So H( ;1] <= G'[;1Iv(~G[;11),0 <> (G[;11,0)v(~GL;11),0 < ([ /r1ppM)Z100M
H[;2] <> (G[;523,0)+((~G[;21,20F'[;2]
— (GL32,0)+((~GL;1 )\ 1+F'[521),0 <> (GL;2]+(~GL511\L),0
and thus (HAMILI] <> ML/ (x/H)+(~H[;11)\I]
— ML;/(GL323+(~GL31N\L) ,I] <> (FAM)[T]
and so HAM <> FAM,
Therefore GAD/M <+ D/G'AM. QED.

Proof of Theorem T5: There are two main cases.

a. One of Aor B is a scalar and is extended to the size of the other operand.
Suppose 4 is scalar. Then, 4 °.D B <> A D B, by definition, and
(1ppA),1ppB <> (10),1ppB «> 1ppB, which ié the identity transpose, and
similarly if Bis a scalar.

b. A and B are arrays of identical dimension. Then

1. pp((1ppd),1ppB)84A ©o.D B <> ([/(1ppAd),1ppB)+1-I0RG
> ([ /1ppA)+1-I0RG <> ppA
and for each Tevpp4,
(p((1ppAd) ,1ppB)&RA o.D BYI1 <= L/(I=(1ppA),10pB)/(pA),0B
— L/ (I=10p4)/pA > (pA)LI]

Thus, p4A D B «> p((1pp4),1ppB)RA °.D B.
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2. Foreach L ELT 104 D B,

((C1ppA) s 1ppB)®A .0 B)[;/L] <> (4 o.D B)[3/L,L] <> A[3/L] D B /L]

Proof of Theorem T6:

<> (4 D B)[;/L] QED.

1. ppA®M o .F N <> ([ /A)+1-IORG <> [/1(ppM)+(pplN)-1 <> 1+poM D.E N

For each Te1pAQM o.F N,

(pA®M o.F N)LI] <> L/(I=A)/oM o.E N <> L/(I=4)/(pM),oN

<> IF Iev 1+ppM THEN (pM)[I] ELSE IF Ie( 1+ppM)+1 1+pphN

THEN (pN)(2+I-poM] ELSE L/("1+pM),14pN.

So, PARM o.F N <> (T14pM),(1¥pN), 14pM

and therefore pD/ARM o.F N <> “14pAQM o.F N

2., For each L ELT 1pM

<~ (T4vpM),14pN <> pM D.F N

I

.F N,

(M D.F N)(5/L) «= D/(GAM) F HAN

where G and # are as in D28. Also, (D/ASM o.F N)(;/L] <> D/EAM&M o.F N

where E[;1] <> ((1+ppA®M o.F N)p1),0 <> ((ppM D.F N)p1),0

and E[;2] <> E[;1\L - L,0

To complete the proof, we must show that the two reducees above are identical.

Clearly both have the same dimension, namely ~1+pM.

Then for each ITeip 14pM,

((GAM) F HAN)LI] + (GAM)TIT F (HAN)(I]

(EAASM o F N)LI]

<«

>

MU;/C(C1+ppM)4L) ,I1 F N[5/I,(- 1+ppN)4L]
(A®M o . F N)[;/L,I1 > (M o.F N)[;/(L,I)A]]
(M o.F N)L3/((1+ppM)4L) ,I,T,(~"1+ppN)+L]
MCs/((T1+ppM)4L) ,I1 F NL;/I,(-"1+ppN)4L]

((GAM) E HAN)[I]
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Thus, (GAM) F HAN <= EMA®M o.F N, and so the D reductions of each are
identical. QED.

Proof of TR15:

1. The ranks of both expressions are the same since the subarray operator
does not affect ranks. So for each Ie1ppW,
(pAQU ©.D V)[I] <> L/(I=4)/pU ©.D V.
But pU o.D V <> (HLF;]AR') o.D H[G;1AS'-
<> (pH[F;]AR") ,pHLG;1AS!
<~ H[F;11,H[G;1] <> HIF,G31] <> H[4;1]
Thus, (pARU °.D V)[I] <> L/(I=4)/HLA;1] <> L/H{(I=4)/A31] < H[I;1]
and therefore pARU °.D V <+ H( ;1] <> pHAW.
2. For each I ELT 1pHAW,
(HAWYL 3/L] <> (AQR' o.D §'")[;/P] « (R' o.D S'")[;/P[A1]
< R'[;/P[F]] D S'[;/PLG]]
where P <> H[;2)+((~H[;3])xL~I0RG)+H[ ;3]xH[ ;11+I0RG+ 1-L
(AQU o.D V)L;/L) <> (R" o.D ™[ ;/L[A]]
<~ (HLF;JAR')L3/LLF1] D (HLG;I8S8')[;/LLG]T]
~— R'[;/T1 D S'[;/T"]
where T < H[F;2]+((~H[F;3])><L[F]—IQBQ)+H[F;3]><H[F;1]+L@@Q+“1—L[F]
<> DP[F] and similarly,
7' «— P[(G]
Then ARV °.D V)[3/L) <> R'[;/PLF1] D 8'[;/PLG]] ~ (HAW)[;/L].
Finally, the result is in GDF sinceU and Vare in SF and the value of 4 still

éatisfies the required conditions. QED.
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Proof of TR16:

1, oWllJ] Q1 <« (Jzr1ppW)/pW. To determine pBRU <.D V we must first find
pU ».D V.
oU <> pRMW <> IF JeF THEN pR'[[F\J] Q] ELSE oR'
There are two cases:
a, JeF. Then,
pR" <> pR'[[F1J] Q] <> ((F1J)=1ppR')/oR"
— ((F1d)=1ppR" )/ (pW)LF] (by D29)
> (pW)L((F\J)=1pF)/F]
— (pW)[(F=J)/F]
— (((J-1)4pW) , (pWILJI 1, TvoW)L(F=J)/F]
— (((J-1)1pW) ,JypW)[(F=J }/F-J<F]
since J does not occur in (FzJ)/F
<~ (pWLLJ] @D (F=J)/F~J<F]
b. If ~JeFthen (FzJ) <> (pF)pl. So in this case,
PR «> pR' > (pW)LF] +> (pW[LJ] Q1) (F=J)/F-J<F]
So U <> (pWL[J]1 @[ (F=J)/F-J<F] and similarly,
oV > (pWlLJ] @1I(G=J)/G-J<G].
Therefore, pU o.D V «> (oW [J] QDI((F=J)/F-J<F),(GzJ)/G-J<G]
— (pW[[J] @1 (J=F,G)/(F,G)-J<F,G]
~ (pWLLJ] @DI(J2A)/A-J<A]
Then for each Ie1ppBRU o.D V,
(pB&U . D V)LI] «> L/(I=B)/pU °.D V
> L/(I=(J=24)/A-d<A)/(CoWLLJ] Q1 (J=A)/A-J<A
< L/(pWLLJ] QII(I=(J=A)/A-J<A)/(J=4)/A-T<A]
— (pW[[J] @ILI]
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and thus pBRU o.D V <> pW[[J] QJ.
2. TForeach L ELT 1oWLLJ] @I,
(WLCTI @1)Ls5/LY <> Wi/ ((J-1)40),@,(J-1)4L]
< (R'" o.D S")[;/(((J-1)4L),Q,(J-1)¥L)I[A]]
<~ R'[;/TLF1]1 D 8'[;/TLG]]
where T « ((J-1)4L),Q,(J-1)+L.
(B&Y o.p V)[;/L1 <= (RY" o.D S™[;/L[B]]
<> R"[3/(ppR™MALLBI] D S"[5/(ppR")VLLB]]
Consider the R' term above. There are two cases, as before:
a, ~JeF. Then,
R/ (opR"MALIBIY <> R[5/ (poR" )+LL(J2A)/A-T<A]]
<~ R'[;/LL(ppR" )4 (J=A)/A-J<A]]
<« R'[3/LL(J2F)/F-J<F1] <> R'[;/LUF~J<F]]
— R'[;/(((J-1)4L),Q,(J-1)+L)[F1] < R'[;/T[F]]
b, JeF.
R[5/ (ppR™4LIBI] <> (R'ILFJ] Q1)L3/LL(  14poR" )4 (J2A)/A-J<A]]
— (R'[IFWJ] @DL;/LU(J7F)/F-J<F]]
< (R'IIFWJ] @)L /L0 (C1+F I )AF ], LI(FAJT )4F-111]
because F is in ascending order and +/J=F <> 1
< R'[/LLC 1+F W I4F],Q, LI 1+ (F1J) +F]]
< R'[/(((J-1)4L),Q,(J-1)+L)L((TL+FAJ )4F) ,FLJ 1, (F1J )4F1 ]
because of ' 's order
«— R'(;/TLF]1]
And similarly, S'[;/(ppR"YLIB]1]) < S'[;/T(G]]
Thus (WL[J] @1 /L] <= (BRU o.D V)[;/L].
Finally, it is clear that the result is in GDF since U and vV are in SF and B

satisfies the necessary conditions. QED.
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Proof of TR17:

1, pp(F',G")RU ©.D V <= ([/F',G")+1-I0RG
<> ([/((MeB(F1)/M),(MeB(G1)/M)+1-I0RG < ([/(MeB(F,G1)/M)+1-I0RG
« (I/M)+1-I0RG + (I /(I /B)+1-I0RG)+1-IORG
«» ((([/B)+1-IQRG)+IORG-1)+1-IORG +> ({/B)+1-IQRG <> poBYW
For each Ie1ppBaW,
(pBRW)LI]) <> L/(I=B)/pW
and  (p(F',G')& o.D V)[I]1 <> L/(I=F",G")/pU o.D V
<> L/(I=F',G")/(pR!) ,pS"
So we must findpR" and oS,
PR <> o(F'"1BLF1)Q(pBQW)LBLFII4R!
ppR" <> ([/F'"\BIF1)+1-I0RG <> ([ /1pF')+1-I0RG <> pF'
Then, for each Je1ppR",
(pR™MI[J] > L/(J=F"1BLF1)/p(pBRW)[BLFIItR"
<> L/(J=F"1\BLF1)/(pB8W)[BLF]1]
<> |/(pB&W)[(J=F'"\BLF])/BLF]]
<~ L/(pBQW)L(F'[J]1=BlF1)/BLF]1]
— (pBRW)LF'[J]]
Hence pR" <> (pBSW)LF']
and similarly, pS'" < (pBRW)LG'],
‘and thus (p(F',G")QU o.D V)LI] <> L/(I=F',G")/(pBRW)[F',G"']
<~ L/ (pBRW)[(I=F',G')/F',G']
<~ (pBRW)LI]

and therefore p(F',G')QU o.D V <« pBYW.
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2, For each L ELT 1pBYW,
(BQW)[ /L] + (R' o.D S')[;/LIBL4]]]
<+ R'[;/CppR")+LLBLAJ]I] D S'[;/(ppR")+LIBLA]]]
<~ R'[;/L{BIFI1] D S'(;/LIBL[G1]]
((F'",G"QU o.Dp VI[;/L] «> (R o.D S ;/LLF',G']]

<~ R"[;/LLF'1] D S"(;/LLG']]

So we must calculate the R'" and S terms ahove.

RUL;/LLF'1] <> ((F'\BLF1)®(pB&W)[BLF114R" ) 3/LIF' 1]
<> ((pBRW)LBLFII4R' )L ;/LIF [F*1BLF]11]]
<> ((pBRW){BLF11+R' )[;/LIBL(F]]
<~ R'(;/L{BIF]1]1]

since [ ELT 10B8W

Similarly, S"(;/L(G*]] ~ S'[;/LIBI[G]]]
Thus, ((F',G')8QU o.D V)[3/L] <> R'[;/L[BIF11] D S'[;/LIBLIG1]]
<~ (BeW)L:/L]
Finally, observe that the result is in GDF since U and V are in SF and F' and
@' are in order and contain no duplications by construction. QED.

Proof of TR18:

Immediate from T6.
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APPENDIX C

IDENTITY ELEMENTS

Dyadic Identity Left~
Function | Element Right

Times x
Plus
Divide o
Minus -
Power *
Logarithm °
Maximum r
Minimum L
Residue |
Circle o
Out of 1
Or vi]o
And Afl
»
»~
x
>
2
<
<

+
P OROR
e

]
e
™o ™MnDiod

~7.237...E75
7.237...E75
0

zvr*r*gr*r«t*z
o
o™ 0

Nor

Nand

Equal

Not equal
Greater

Not less
Less

Not greater

00
o 2=
o0

Apply
for

, logical
arguments
only

ol o4

oo™

il

jror oo,

Identity Elements of Primitive Scalar Dyadic Functions
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CHAPTER Il

STEPS TOWARD A MACHINE DESIGN

Never do today what you can
Put off till tomorrow.

William Brighty Rands
procrastinatibn is the

art of keeping
up with yesterday

Don Marquis, archy and mehitabel

As demonstrated in Chapter II, there is a high degree of power and internal
consistency in the APL operators and data structures. This makes it possible to
write simple expressions which have the same semantic content as several state-
ments in comparable programming languages. This chapter discusses how to
exploit these features in the design of an APL machine.

In general, APL programs contain less detail than corresponding programs
in languages like ALGOL 60, FORTRAN, or PL/I. For instance, the maximum

value in a vector, V, of data can be expressed as [/V in APL while ALGOL requires

the following:

MAX:=smallestnumberinmachine;

for:=1 step 1 until N do

if V[I}>MAX then MAX:=V[I]:
While this aspect of APL often makes programs shorter and less intricate than,
say, ALGOL programs, it also requires that an evaluator of APL be more complex
than one for ALGOL, especially if such expressions are to be evaluated efficiently.
On the other hand, a machine doing APL has greater freedom since its behavior is
specified less explicitly. In effect, APL programs can be considered as descriptions

of their results rather than as recipes for obtaining them. Further, the language
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renders many of these descriptions obvious, both to the human reader and to a
machine, as in the case of [ /V, while other languages encode them so intricately
that the original intention of the programmer is hidden. In the example above,
an APL machine can choose any method it pleases to find the maximum value
while an ALGOL machine doesn't know what result is expected.

This feature of APL also has some drawbacks in that some expressions for
results require unnecessary computations if calculated literally as written, For
instance, the expression 34(2x-V)specifies a result which is the first 3 elements
of twice the negative of V. Presumably the programmer is only interested in these
three elements. However, the literal interpretation of this expression proceeds
as follows:

1. NegateV (and store it somewhere).

2, Multiply the previous result by 2 (and store if).

3. Take the first 3 elements of the last result.

In case V is large, this process is grossly inefficient. The negation requires (pV)
fetches and stores as well as (pV) spaces for the value to be stored. The multi-
plication requires another(pV) fetches, stores, and multiplies. In fact, the
desired result could have been found simply by negating the first three elements
of V and multiplying by 2. Clearly, we would like the APL machine to be able to

evaluate such programs efficiently!

A, Drag-Along and Beating

One approach to efficient and natural evaluation of APL expressions is to
exploit the mathematical properties of the language to simplify calculations. In
the machine, this approach is embodied in two fundamental new processes: drag-

along and beating.
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Drag-along is the process of deferring evaluation of operands and operators
as long as possible., By examining a deferred expression it may be possible to
simplify it in ways which are impossible when only small parts of the expression
are available, In effect, drag-along makes the machine context-sensitive, while
most machines are context-free.

Consider the drag-along evaluation of the example in the last section. If we
assume a stack machine, the machine code for this expression might be

1, LOAD V
2, NEGATE
3., LOAD 2
4, MULTIPLY
5., TAKE 3
The immediate execution of this sequence was already shown. Suppose now that
we temporarily defer instructions in a buffer instead of executing them as they
appear. After the first instruction, the buffer contains
LOAD V
After instruction 2, we have
LOAD V
NEGATE ‘3
where the pointer connects the negation with its deferred operand, V. After
instruction 4, the buffer contains
LOAD V
NEGATE ) }
LOAD 2 >
MULTIPLY

The evaluation of the TAKE is different from the previous operators since it is a

selection operator. TAKE can examine the contents of the buffer and change them,
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as below. Note that the deferred expression is equivalent to the original expression.
The process of making the changes in the buffer is called beating.

LOAD 3tV (Note change in this instruction)

NEGATE )

LOAD 2

MULTIPLY )
When values must finally be computed, only the desired elements will be accessed
and used. Thus, drag-along facilitates beating.

The other aspect of drag-along is that it eliminates intermediate array-shaped
results with consequent savings of stores, fetches, and space., In an expression
such as A+B+C+D the literal execution proceeds in three steps:

T1<C+D

T2+B+T1

T3+A+T2
If the variables 4,B,C,D are vectors, each step above requires a vector-sized
temporary store and the last two steps require fetches to get the previous results
as operands. With drag-along, the entire expression is deferred finally to be
evaluated element-by-element as:

for 7«1  stepl until o4 do
T3[IJ«ALII+BLI1+CLI1+DLI]

This requires no extra fetches, stores, lor temporary space to obtain the desired
result.

In the machine, drag-along will be applied to all array operands ¢ and % and
to all monadic and dyadic operators Y0P and DOP for which

(MOP &) 3 /L] <> MOP'(F1 &) 3/L]

and

(& DOPF)IL; /L] <> (FLE)[3/L] DOP' (F2F ) 3/L]
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where F1 and F2 are simple functions of arrays and MOP' and DOP! are similar to

MOP andDOP . An example of a function which is not dragged-along by the machine
is grade-up which is essentially a sort of its operand. Grade-up obviously does
not fit into the above scheme since F1 also becomes a sorting function which is

not simple as required.

B. Beating and Array Representation

Beating is the machine equivalent of calculating standard forms of select ex-
pressions., If the effort to do beating followed by an evaluation of a standard form
is less than that to evaluate an expression directly, then the process is worthwhile,
We will see in the following chapters that this is in fact the case.

In order to apply beating we must specify a representation of the standard
form. One possibility is to maintain the A,F, and G values for each array in an
expression to allow calculation of the standard form

ASFAGAM
as defined in Chapter II. However, these arrays contain redundant information
“and it is desirable to find a more compact representation,

If we choose to represent arrays in row-major order we can utilize the rep-
resentation of the storage access function as the representation of standard forms.
In this way, beating will consist of applying _the ransformations of Chapter O to
the mapping functions for arrays.

In the following discussion we can assume without loss of generality that the
index origin is zero. Situations where it is different reduce to the zero case by
subtracting IORG from all subscripts. Let4 be a rank-¥ array. Then, assuming
that each element in4 is to occupy one word in memory, the elementAl ;/L] will be
located at

VBASE+(pA)LL (%)

- 68 -



where VBASE is the address of A[0;0;...;0]. Thus, subscripts of arrays stored
in row-major order are representations of numbers in a mixed-radix number
system (Knuth [1968] p. 297). This representation is especially suitable for arrays
in APL because APL arrays are rectangular, dense, and homogeneous. Further,
this representation does not favor any array coordinate over another which is
essential in APL,
We can generalize the access function slightly by writing it in the form:
VBASE+ABASE++/DELXL (%)
where ABASE is an additive constant, in this case zero, andDEL is the weighting
vector used to calculate the base value in (*) above. DEL is computed by
DEL[N]«1

DELLI1«DELLI+11x(p4)LI+1] for each Ie1l-1.

Example: Letd be a matrix with dimension 2,3. ThenDEL«>3,1 and we set ABASE«<>0.
The layout of ¥ in memory is

VBASE

v +1 +2 +3 +4 +5

MCO;0] | MLO;2] | MCO3;2] | MI1;0] | M{1;1] | ML1;2]

Given this formulation of the storage access function, it is only necessary to
transform ABASE and DEL in order to obtain the effect of evaluating selection opera-
tions on an array.

Example: I¥ is the matrix in the previous example, then the mapping function

for (2,1)8M has the same VBASE. For the transpose we use ABASE'<+0and DEL'+1,3.
Note that the change in DEL corresponds to permuting it by 2,1, This new function
uses the same values that were stored for¥, but accesses them as if they were

the transpose (2,1)8Y. To verify this, note that the address for ((2,1)8)[I;J]
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is
VBASE+ABASE ' ++/DEL'»xI,J <= VBASE+ABASE'+(1xI)+(3xJ)
<> VBASE+ABASE+(3xJ)+(1xI)
<> VBASE+ABASE++/DELxXJ ,I
which is the location of M[J;I) «» ((2,1)@M)LI;J].

This can be done for any selection operator by using transformations analogous
to those in Chapter II. Appendix A shows the beating transformations on access
functions for arrays. In the machine, beating is also applied to expressions con-
taining reductions, scalar operators, and inner and outer products, based on the

results in Chapter Il

C. Summary

At this point we have outlined the framework of a machine for APL. It is
pleasing to know that it will work since it is justified by theoretical results
developed earlier, The remainder of this dissertation discusses the structural
details of a machine based on the beating and drag-along processes and gives an
evaluation of its effectiveness. Let us outline some goals that such a design should
satisfy:

1, The machine language should be close to APL, That is, it should contain
all primitives in the language and in a similar form. While it is well-known how
to design a machine to accept APL directly there is no particular advantage to
doing so. We are primarily concerned with processing the semantics of the
language, not its syntax, Thus there is no loss of generality in letting the machine
language be a Polish string version of APL, This has the further advantage of

freeing the machine from the particular external syntax of APL.
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2, The machine should be general and flexible, In particular, it should
not be so deeply committed to evaluating APL as to be useless for other purposes.

3. The machine should do as much as possible automatically. This includes
storage management, control, and simplification of expressions. The programmer
should not have to be aware of the structure and internal functioning of the machine
at a level much beyond that specified in an APL program,

4. The machine should do simple things simply and complex tasks in pro-
portion to their complexity. In other words, the work required for the machine
to execute a program or expression should be related in some straightforward
way to the program's complexity.

5. The machine should be efficient. This is perhaps the most important
focus of this work., Of course, the question of efficiency is related to the current
technology; at present, a major bottleneck in evaluating array-valued expressions
is use of memory. Thus we concentrate on reducing memory accessing and tem~
porary storage space in the evaluation of APL programs.

6. The machine design should be elegant, clean, and perspicuous.
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APPENDIX A
TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY

SELECTION OPERATORS

1. The storage access function for an array M contains the following information:

RANK <> ppM

RVEC «~ pM

VBASE location of first élement of .M

ABASE constant term of access polynomial

DEL vector of coefficients of access polynomial

Then, the element M :/L] is located at

VBASE+ABASE++/DELXL

2, This section lists the transformations on storage access functions which are
used to effect beating of selection operators. These transformations are given

as program segments written in index origin zero. It is assumed that the parameters
to the various selection operators are conformable and in the proper domain.

a. QM

ABASE < ABASE+DEL+.x(Q<0)xRVEC-1|Q
RVEC « |@Q

b. @M

ABASE < ABASE+DEL+.x(Q>0)x|@Q
RVEC <« RVEC-1Q

c. ¢LJIM

ABASE <« ABASE+DELLJIx(RVEC[J1-1)
DEL{J] < -DELLJ]
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d. .AxM

R <« RVEC

D <« DEL

RANK <« 1+(1/4)

I <0

DEL <« RANKADEL

RVEC <« RANKARVEC

RANK  REPEAT

BEGIN

RVECLI] <« L/(I=A)/R
DELLI] « +/(I=A)/D
I « I+1

END

e. M[[JISCALAR]
ABASE < ABASE+DEL[ JIxSCALAR
DEL < (J=\RANK)/DEL
RVEC < (J#1RANK)/RVEC
RANK <« RANK-1

f. ML[X]J LEN,ORG,S]

ABASE <« ABASE+DEL[K1xORG+(LEN-1)
RVEC[K] « LEN
IF S=1 THEN DEL[X] + -DEL[K]
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CHAPTER IV

THE MACHINE

This chapter contains a functional description of a machine designed to process
the semantic content of APL programs.

In general, the description will be given in English, although algorithmic
descriptions will be used as necessary to provide clarifications. The section will
be written in the style of a programming manual, with the addition of explanations
and rationales as required,

The APL machine (APLM) is conceptually composed of two separate machines,
each with its own language, sharing the same registers and data structures. The
D-machine (DM) accepts APL-like machine code and does all the necessary analysis
on expressions. The DM produces code for the E-machine (EM), and in the process
does some simplification of incoming expressions using drag-along and beating.

The E-machine does all the actual computations of values in the system, By using
a stacking location counter based on the organization of machine ccde into segments,
the overall control scheme for the machine is quite simple,

The current chapter consists of five sections which present the APLM in a
logical sequence. Section A discusses the data structures and other manipulable
objects in the machine, and explains how they are managed in the machine's
memory. Section B continues by explaining the stacks and other registers in the
machine, followed by a discussion of the overall machine control, in Section C.
Finally, the details of the D-machine and the E-machine are set forth in Sections
D and E, respectively. Exé.mples are used liberally throughout, to clarify opera-

tional details of the APL machine.
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A. Data Structures and Other Objects

The manipulable objects in the machine fall into three main classes: data
values, descriptors and program segments. This section will describe these
three kinds of objects and how they are represented in the machine,

Scalars are the simplest kind of data. In APL, a scalar is an array of
rank- 0., In practice, a scalar is a different kind of object than an array, and is
so treated in the machine, Although arrays are stored in the memory, M, of the
machine, scalars are not, They appear only in the machine registers, in particular
the value stack, and as immediate operands in a code string. In a real machine,
scalars would have an attribute of type, determining the kind of representation to
use for encoding and decoding them. In this work, we will assume that this is
handled automatically, and that all scalar data are the size of a single machine
word.

The most important data structure in the APLM is the array. The represen-
tation of an array is divided into two parts. The first is the value array which is
a row-major order linearization of the elements of the array. The second part

is a descriptor array (DA) for an array, which contains the rank, dimension, and

storage mapping function for the array. This separation makes it possible to have
multiple DA's, not necessarily identical, referring to the same value array, which

makes beating possible. In this chapter, descriptor arrays will be shown in the

form:
@ARR RC=2 LEN=05
+01 VB=VARR AB=000
+02 RANK=2 v
+03 R(1)=003 D(1)=02
+04 R(2)=002 D(2)=01

@ARR is the address in memory of the first word of the descriptor array for the

array named ARR, which is shown above. The first word contains a reference
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count (RC) and a length (LEN) field, as explained in the discussion on memory
in the APLM. The rank of the array is recorded in the third word of the DA;
words after that contain the elements of the dimension vector, labeled R(I). Thus
in this case, pARR is 3, 2. The second word in the DA encodes the base address
of the value part of the array (labelled VB for VBASE) and the constant term in
the storage mapping function (here labelled AB for ABASE). Finally, the DA
contains the coefficients of the storage mapping polynomial, DEL (labelled-D(I)
here). Recall that for an array ARR, the element ARR[;/L] is located at

VBASE + ABASE + +/DEL X (L - IORG);
This formula is the storage mapping function for any array.

In addition to array descriptors, the machine contains descriptors for
J-vectors, Recall from Chapter II that a J-vector is a vector of consecutive
integers which can be specified by a length, an origin, and a direction bit. We
assume that these three quantities can be encoded into a descriptor by the
function JCODE(length, origin, direction) and that there are appropriate decoding
functions. (See Appendix A.)

Finally, programs in the machine are represented internally as program
segments., A program segment is any sequence of machine commands and operands,

and is referenced by a segment descriptor. Segment descriptors contain an

encoding of the beginning address of a segment (relative to the beginning of the
function they are a part of) and the length of the segment. There is also a bit
which indicates the execution mode for the segment (see Section C).

Each defined function (program) is a segment, and logical subparts of the
function may also be represented as segments. As will be seen later, it is easy
to activate and de-activate segments in the APL machine. Briefly, the advantages

of organizing programs in segments is that these are the logical units of a program,
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while other organizations, such as paging, do not allow this kind of natural cor-
respondence of form and function (pardon the pun!). An important property of
APLM instructions is that they contain no absolute addresses except for references
to NT, which remain constant in any compilation. All internal references to

other parts of a program are relative. Thus, all programs are relocatable.

Each function has a corresponding function descriptor, which is similar to

a DA. A function descriptor contains the following information:

FVBASE location in M of beginning of function segment
FLEN length of function segment

FIORG index origin for this function

FISR logical variable =1 if function has a result
FPARS number of parameters

FLCL total number of local names

In addition, the rest of the function descriptor contains a list of all local names
in the function, in the order: result (if any), parameters (if any), local variables
(if any). The function descriptor for a function is used in calling and returning

from functions, as will be discussed in Section D.

Main memory in the machine is a linear ari‘ay of words named M. The only
objects which reside in M are arrays, DA's, and program segments., All other
objects are stored in the machine's registers. In addition to M, there is an array
NT, the Nametable, which is an abbreviated symbol table. Every identifier in the
active workspace has an entry in NT, which contains descriptive information and
either an actual value or a pointer to where it can be found in M. Scalars and
J-vector descriptors are stored directly in NT. Thus, all references to variables
and functions in the machine go through the NT, This organization allows for

dynamic allocation and relocation of space in M, without having to alter any
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program references. The operation of NT is described more fully in the next
section under machine registers. Constant array values within a function are
stored as part of the program segment; they are addressed relative to the beginning
of the function, and so, too, remain relocatable,

Within M, two different allocation mechanisms are used, one for functions
and array values, and one for descriptor arrays. The reasons for this are that,
because of drag-along and beating, DA's are expected to have a shorter lifetime
than functions or array values., Further, in a given function, locally at least, it
is likely that DA's will be of similar sizes. Thus, it is feasible to keep an
available space list for DA's, with the hope that erased spaces can be reused
intact. We would therefore expect more efficient use of M by DA's than by array
values.

The free memory space (M) is arranged as follows: functions and array
values are allocated from the lowest address (BOTM) towards the top of M and
DA's are allocated from the top (TOPM)down. The space in the middle is the POOL,
with boundaries BOTP and TOPP. Each entry in M has a header word containing
an encoding of a reference count (see Collins [1965]), the length of the entry, and
a filler count. The latter field is used when space slightly larger than necessary
is allocated. Each time a reference to an entry is added or deleted, the reference
count field is adjusted, When a reference count goes to zero, meaning that there
are no uses of the entry anywhere in the system, the entry is made available in
one of two ways. If it is adjacent to the POOL, it is merged with POOL. Other-
wise, it is added to the appropriate availability list, of which there are two, one
for DA's and one for functions and array values.

The availability lists are doubly linked, and each entry contains a header

similar to those for active entries, When space is needed, the appropriate
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availability list is searched using the first-fit method (Knuth [1968] 436, ff), If

a fit is found, the space is allocated and the avéilability list adjusted. Otherwise,
space is taken from the POOL. If a request for M-space is made which cannot

be honored because there is not enough contiguous space available, a garbage
collection is made. The two halves of M are garbage-collected separately. In
collecting array space, all the DA's are scanned and a linked list is set up which
ties together all DA's pointing to the same entry. Then arrays are compacted
towards BOTM, with the links used to adjust the VBASE fields in the referent DA's.
If enough space is still not available, the DA's are also compacted, using a

similar algorithm. Some coalescing of available space is also done by the al-

location algorithm, GETSPACE. Figure 1 illustrates how M is structured.

B. Machine Registers

This section describes the registers and register-like structures in the APL
machine, The present description covers only the logical functions performed by
these registers and does not make any demands on how they are actually to be
implemented. Although most of the registers are not directly accessible to the
programmer, thorough knowledge of their use is important to understanding the
functioning of the machine.

There are several registers related to memory accessing and allocation.
The most important of these is the Na.métable, NT. NT is an associatively ad-
dressed stack, each entry of which contains a name field, a tag, and a value.
The name field of an entry contains an index for the identifier associated with the
entry. Permissible tags in NT are ST, for scalar quantities, JT, for encoded
Jd-vectors, UT, for undefined identifiers, DT, for arrays, and FT for functions.
ST and JT entries contain the actual value in their value field, while DT and FT

entries have descriptor addresses in their value fields,
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When a function is called, an entry is pushed to NT for each of the function's
local variables and parameters, as listed in the function descriptor. Similarly,
when a function is de-activated, the reverse process occurs. Each time a variable
is accessed, NT is searched associatively from the top (latest entry). If a hit is
not found, then the desired variable must be global, and it is entered into NT.

This mode of maintaining the NT makes identifier behavior correspond to APL's
"dynamic block structure' and facilitates recursive function calls,

The most important registers in the APL machine are four stacks. The use
of stacks permits elimination of addresses from most instructions and simplifies
the evaluation of recursive and nested programs.

1, Value Stack (VS)

VS is the main stack in the machine and is used in the evaluation of expressions
and in function calls. Each VS entry consists of a tag and a value part, as in NT
entries, In addition to scalars and function or DA pointers, VS can contain segment
descriptors, partially-evaluated addresses, function marks, and names.

2, Location Counter Stack (LS)

Recall that machine code is organized into segments, characterized by a
starting address and a length. Each LS entry contains the starting address of a
segment (ORQG), its length (LEN), a relative count, pointing to the next instruction
to be executed (REL), and control information. Each time a segment is activated,
its beginning address and length are pushed to LS, and the REL field is set to zero.
The address of the next instruction is then determined from the REL and ORG fields
on the top of LS, After each instruction fetch, the REL field at the top of LS is
incremented, When this value is equal to the length of the segment, the segment
is terminated by popping the top of LS, thereby reactivating the next entry. The

control information in LS is used to coordinate it with the other stacks in the machine.
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3. Iteration Control Stack (IS)

Array-valued APL expressions implicitly specify an index set for the expres-
sions. In this machine, IS is used to control (nested) iterations over this index
set in the element-by-element evaluation of array-valued expressions. The
operation of IS is coupled with LS as follows: when a set of iterations is begun,
the limits of the iteration are pushed into the iteration stack, and a segment is
activated containing the range of the iterations. Then, for each instruction in
the code segment, the necessary index values are taken from IS, When the segment
is completed, the entries in IS are stepped and if the required iterations are not
exhausted, the segment is re-initialized and repeated with the new IS values.
Eventually, the iterations are completed and the segment in the range also is
completed, in which case IS and LS are both popped, returning the machine to the
place it was to resume after the iterated code was completed. (See Section D.)

The IS behaves essentially like a nest of FORTRAN DO's. Each entry contains
a counter (CTR) (to origin zero), the maximum value of the counter (MAX),
direction bit (i.e., count up or down) (DIR) and control information., Although
the IS is partially accessible to the machine code, it is for the most part main-
tained automatically, Like LS, IS could probably be incorporated into the value
stack, since these three stacks generally work in parallel, However, by separating
these stacks by their functions, the machine design becomes cleaner and more
perspicuous.
4, Instruction Buffer (QS)

Unlike LS and IS, the instruction buffer QS is logically separate from the
value stack. QS is not strictly a stack, since it is possible to access and alter
information at places other than its top. In the D-machine, instructions are

fetched from M, some of which are executed immediately, and others of which
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are either evaluated by beating or are deferred in QS by drag-along. In entering
instructions in QS, the DM may change other related QS entries. When the
E-machine is activated, instructions are fetched from QS and executed directly,
generally in conjunction with VS and IS, QS contains operation and value fields,
similar to VS, a LINK field used to reference other deferred instructions, and
an AUX field, which is a logical vector acting as an access mask for array entries
(see Section E).

A final four registers in the machine are mentioned primarily for completeness.
These are:

IORG Index origin of current active function

FBASE Base address in M of current active function

FREG VS index of function mark for current active function

ISMK IS index of topmost IS entry containing 1 in its MARK field.

The use of these registers is shown in the examples in following sections.

C. Machine Control

The purpose of the APL machine is to transform a set of data (the input) into
a second set (the output) according to encoded transformation rules (the program)
which are interpreted according to a predetermined scheme (the machine). This
entire process is called the evaluation of the program and input.

In the APL machine, programs are evaluated in two separate but related sub-
machines., The D-machine takes its instructions from main memory, M, in the
form of Polish APL code, and does all the necessary domain testing and storage
allocation for the various operands. In addition, the DM does simplification of
incoming expressions by drag-along and beating. The output of the D-machine is
values in VS and transformed code in the QS, in the form of instruction segments

for the E-machine. At critical points, determined either by the programmer and
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the DM, control is passed to the E-machine, which executes the simplified
instructions in QS, producing values in VS and M. When done, the EM passes
control back to the DM, which resumes where it left off,

The division of labor between the two submachines is logically similar to that
between a compiler and its target machine. The DM plays the role of the algebraically
simplifying compiler, whose source language is essentially APL, and whose
target language is E-machine code. The E-machine as the target of the DM's
transformations is a conceptually simple computer which does nothing but compute
values. Given this scheme, a question which naturally arises is, Why bother with
the D-machine at all? Why not use a separate compiler in software and let it
produce code for a mé.chine similar to our E-machine? Unfortunately, this is
impossible, since the behavior of the D-machine is dependent not only on the
source code (program), but is also dyﬁamically dependent on the data. For instance,
consider a simple APL expression such as A + B, We would like the source code
for this expression to be something conceptually like

LOAD B (i.e., "load" B to the value stack)

LOAD A

ADD (i.e., add the values on top of the value stack and leave the

result there,)
The problem here is that we would like the machine to do different things depending
on the data. In particular, if both A and B are scalars at the time the above code
is executed, it would be desirable to have the LOAD instructions push the actual
scalar values to the stack, and to have the ADD do the actual addition. But if A
and B are conformable arrays, the desired action is to defer the entire operation

(both LOADs and the ADD) in the instruction buffer, to be performed later by the

E-machine.
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No compiler would be able to make these decisions a priori unless it knew
what data was to be used in running the program, or unless variables were suf-
ficiently restricted by declarations. Further, much of the work done by the D-
machine is domain testing, including rank and dimension checking, on dynamically-
specified variables. Since this process is data-dependent, it must be performed
dynamically.

Both the D-machine and the E~-machine share all the registers and the memory
of the entire APL machine. Further, both are controlled by a central cycle
routine, shown in Fig. 2. The key to the overall control of the APLM is the
location counter stack, LS, which contains active segments for both the DM and
the EM. In Fig. 2 we see that a major machine cycle takes the form:

a, Check to see if the current active segment has been completed. If not,
proceed to step b, otherwise see if this segment is under control of the
iteration stack, If it is, then step the iteration stack; in case IS does not
overflow, then reset the REL field to the beginning of the segment and
repeat this step. If the segment is not under control of IS or if it is and
the iteration stack overflowed, then de-activate the segment and repeat
this step.

b. Calculate the effective address of the current instruction and update the
location counter stack.

c. Select the appropriate machine, determined by the D/E bit in the current
active segment. If the DM is selected, then defer any arrays referenced
on the top of the value stack to the instruction buffer; also, fetch the
instruction and (if necessary) the second word of the instruction from
memory. Finally, decode and interpret the instruction and return to

step a.
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D. The D-Machine

The D-machine evaluates programs written in ""machine language'" by generating
instructions in QS to be executed later by the E-machine. As discussed in Chapter
III, the use of a Polish string for the machine language rather than "raw' APL fre_es
the APLM from the particular concrete syntax of APL without sacrificing any of the
semantic content,

Most of the instructions in the APLM correspond directly to the APL primitives;
those which do not are the control instructions, which comprise a more powerful
set in the machine than are provided in the source language. All operands in DM
instructions are either relative addresses within the program segment or are NT
references or are immediate values. As a result, all programs in the machine
are relocatable, Since only constant data is contained in function segments,
programs are likewise re-entrant.

The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The
instructions are divided into three classes: storage management instructions,
control instructions, and operator instructions. It is clear from Table 1 that no
systems functions are included in the D-machine's repertoire. In a real imple-
mentation of an APL machine, these instructions would have to be provided,
although for the current work, they are irrelevant. The remainder of this section
discusses the instructions of the D-machine, with examples to clarify the details.

0. A Guide to the Examples

The examples used in this chapter include program listings, register dumps,
and memory dumps. In showing program excerpts, we generally also show the
APL source expression, and give values, or at least attributes, for the operands.
Programs are shown in assembly language format, except that absolute addresses

are given, Althoughnothinghas been said of the manner in which D-machine instructions
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TABLE 1-1

Storage Management and Control Instructions

Operand

Description

LDIS
LDCON
LDN
LDNF
ASGN

ASGNV

JMP

JMPO

JMP1

LEAVE

RETURN

ITM

DO

DOI

Storage Management Instructions

scalar
seg~-descr
jcode 1,0, s

K

K
N
N

Control Instructions

K

K

Load scalar

Load segment descriptor

Load J-vector

Load iteration stack counter, K from top of IS
Load constant array, starting at FBASE +K
Load name N |

Load name N and fetch value

Assign (and discard value)

Assign and leave value

Jump by K (signed) in current segment
Jump by K in current segment only if top
of VS is 0

Pop VS in either case

Same as JMPO except test for 1
De-activate this segment

(i.e., pop LS and also IS if necessary.)
Return from current function

Iterate and mark

Call E-machine to work on top of VS

Same as DO except that temporary space is
allocated for the result, if any, and the result

is left on top of VS

- 88 -



TABLE 1-2

Scalar Arithmetic Operators

Operator _________ APL Definition
A, Dyadic
ADD + Add
SUB - Subtract
MUL x Multiply
DIV + Divide
MOD | Modulus
MIN L Minimum
MAX [ Maximum
PWR * Power
LOG ® Logarithm
CIR 0 Circular functions
DEAL ? Random deal
COMB ! Binomial coefficient or beta function
AND A Logical and
OR v Logical or
NAND i Logical nand
NOR ¥ Logical nor
LT < Less than
LE < Less than or equal
EQ = Egual
GE 2 Greater than or equal
GT > Greater than
NE 2 Not equal
B. Monadic
PLUS + Plus
MINUS - Minus
SGN x Signum
RECIP * Reciprocal
ABS 1 Absolute value
FLOOR L ‘Floor
CEIL r Ceiling
EXP * Exponential (base e)
LOGE ® Logarithm (base e)
PI o Pi times
RAND ? Random number
FAC ! Factorial or gamma function
NOT ~ Logical not
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TABLE 1-3

Remaining Operators in D-Machine

Operator APL_ _____
A. Selection

TAKE 4

DROP ¥

REV K oL X]

TRANS ®

INX K [[K]

B. Evaluated Immediately

BASE i
REP
GDU
GDD
CAT K
RAV
URHO
DRHO
UIOTA 1

<< &

T ©

C. Deferrable

ROT K S K]
EPS €
DIOTA 1
CMPRS K /LK)
EXPND K \LX]
SUBS K [
D. Comgound
RED K OP OP/[K]
GDF OP -

Definition

et it . s s o e g S e it S P i S B e o e P g U o R ke S o B i S ot S P S ke S R

Take

Drop

Reverse along K—‘-:-I-l- coordinate
Generalized transpose

Index on K—t—13 coordinate

Base value (Decode)
Representation (Encode)
Grade up

Grade down

Catenate (top K on VS)
Ravel

Dimension

Restructure

Interval

Rotate on KLll coordinate
Membership

Rank

Compress on K-@- coordinate

Expand on K—IEI—I- coordinate

Subscript with K expressions in VS

Reduce along Kﬂ-l- coordinate by OP

General dyadic form with OP
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are encoded, we have chosen, for purposes of .illustration, to show them as oneor
two word quantities, depending on whether or not they have operands. All operand
addresses are shown symbolically and comments are used to explain the program <
structure. In the register dumps, most of the material is self-explanatory. Field
headings are summarized in Appendix A. The top of each stack is indicated by an
arrow, Descriptor array addresses, which are pointers to the memory, are in the
form @A, for variable A, and value addresses in M are of the form VA, Again, in
the real machine, these would in fact be numerical addresses, but the symbolic

form is much clearer for examples. Fields in DA's are labelled mnemonically.
Segment descriptors in VS or QS are shown in the form SCODE(SEG. X, m), where

m is 0 or 1 depending on whether the segment is a DM or an EM segment, and X

is the segment symbolic name (arbitrary). EM segments are delimited by '"brackets’
along the right side of the QS display, in the format XY, meaning that segment X
starts here and segment Y ends here. The LINK field of @S contains relative pointers !
and is interpreted according fo the opcode. The contents of the AUX field is to be

interpreted as a logical vector, although in fact it may be encoded differently in an

actual APLM.
1. Storage Management Instructions

This class includes all instructions concerned primarily with the storing and
fetching of data. Each of the load instructions pushes a value to the value stack.
Of these, four have immediate operands; LDS, LDSEG, LDJ, and LDN push their |
operands to VS with tags ST, SGT, JT, a.nd“NPT fespectiv‘ely. LDIé’ K loads as a i
scalar the current value of the CNT field of the iteration stack element K entries :
from the top of IS. LDNF N refers to variable N in the nametable, and enters the ’
current value of the vériéble (from NT) into VS, 1In the case of NT entries with tag

DT (i.e., arrays), the reference count of the DA is increased by 1 when it is
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entered into VS, and the VS tag is set to FDT. The LDCON K instruction is used
to access a constant array stored in a function segment, Its operand K is a pointer
relative to the function origin pointing to the beginning of the DA for the constant
value, This DA is copied to the DA area of M, its VBASE is set to the beginning
of the functioﬁ (FBASE), and its ABASE is set to K. The DA pointer is pushed to
VS with tag FDT. |

Although all the load instructions just described push a value to VS, such
values do not always remain there. At the beginning of each D-machine cycle, the
top of VS is examined for tags ¥FDT, DT, and JT (see Fig. 2). I one of these is
present, then the entry is deferréd in ‘QS', because it is array-valued. This is
done by pushing an E-machine instruction to QS of the form

OP @ARR 0 MASK.

OP is IFA, 1A, or 1J, depending on whether the VS tag was FDT, DT, or JT;
@ARR is the DA pointer that was in the VS value field, and MASK is an access
mask., The access mask in this case is a logical vector whose last K bits are 1
when ARR is a rank-K array. It will be used by the DM in beating and by the EM
in accessing this array. The LINK field in E-machine instructions of this type is
unused, and thus is shown as 0 above. The VS entry is then replaced by a segment
descriptor with tag SGT pointing to the one-word QS segment containing the deferred
operand. In general, this entire process is invisible in the examples below, and
the load instructions which generate array values can be thought of as doing the
deferral themselves,

Although ASGN and ASGNV are operators, they are included as storage
management instructions because they have the side-effect of causing values to
be stored. These instructions expect the top of VS to contain a destination, either

as a name (tag NPT) or as a QS descriptor pointing to a segment containing only
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TABLE 2

Interpretation of ASGN and ASGNV in the D-Machine

Top of VS (Top-1) of VS Action
a., tag=NPT or tag= ST Do immediate assignment. That is, store
tag= SGT and the scalar value in NT or in M, as appro-
deferred ex- priate.
pression has
one element
b. tag=NPT tag=SGT and Do immediate assignment.
deferred segment
is a J-vector
c. tag=NPT tag=SGT and Do immediate assignment.
deferred segment
is a single DA
with reference
count of 1 and
value also has
reference count
of 1
d. tag=NPT tag= SGT and Allocate space for a DA and value of the
deferred segment  size necessary to store the result. Defer
is any arbitrary the assignment in QS, as for scalar arith-
array expression metic operators.,
e. tag=SGT and tag=SGT and Check ranks and dimensions for conformability.

deferred seg-
ment consists
of a QS entry

with opcode IA

deferred segment
is any arbitrary
array expression

If the lhs variable is a J-vector, it must first
be explicitly evaluated. If the rhs expression
contains instances of the lhs variable with dif-
ferent permutations, then the rhs expression
is evaluated to temporary space. Finally,

the assignment is deferred as above,
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an IA instruction; the second entry in VS is the right-hand side of the assignment.
There are several possible actions taken by the DM in interpreting assignments,
depending on the VS contents. These cases are éxplained in Table 2, We have
assumed that "evil" side effects do not appear in the code; their treatment is
straightforward, but uninteresting., Also, it should be noted that although the
strategies outlined in Table 2 could be modified to alter the machine's performance,
the case analysis remains the same,

The final storage management instructions are INPUT and OUTPUT, which
are left further unspecified. These could be conceived of as read-only and write-
only (serial) strings, which are used as primitives for writing functions such as
0 and[l .

2, Control Instructions

The control instructions of the APLM are all concerned with directing the
flow of control among statements at the source-language level, and are all evaluated
by the D-machine.

The three jump instructions, JMP, JMPO0O, and JMP1 are used to alter the
flow of control among statements in a function. Since no jumps are allowed out-
side of a function, there is little difficulty in specifying this operation. All that
is necessary is to change the value of the relative pointer in the current segment
on LS. CYCLE is a special case of JMP, which sets the relétive pointer to 0,
causing the current (D-mode) segment to be repeated. LEAVE pops LS and also
1S, if the segment is involved in an iteration, RETURN performs similarly
in returning from a call on a function. In addition, it automatically erases the
locals for the current function from NT.

The interpretation of the DO instruction depends on the top value on VS. If

the top of VS is a scalar then tile DO acts as a no-op. If the tag is SGT, then the
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segment described on VS is activated by pushing the segment descriptor to LS,

with VS being popped. In case thetagis NPT, the corresponding NT tag is examined,
and if the tag is FT, then the named function is activated, as described in the next
paragraph; all other cases are no-ops. The DOI instruction is similar to DO

except that if the top is VS and has tag NPT, the value referenced is copied to new
space, while if the tag is SGT, temporary space is allocated for the result and

the segment is evaluated, Thus, after execuﬁng a DOI, the top of VS contains an
entry with tag ST, JT, or FDT.

When a DO instruction encounters a function name on top of VS, the following
actions take place:

1. The function descriptor, referenced by the NT entry for the function, is
fetched. 1t is expected that all parameters to the function have been evaluated
and placed on top of VS, so that the topmost value is the leftmost parameter., The
parameter count, FPAR, in the function descriptor is fetched, and the top of VS
checked to see that there are that many values already there. If not, an error is
signaled. Otherwise, the machine goes through the list of local variables in the
function descriptor, making an entry in NT for each one. Each new tag in NT is
set to UT, for undefined, unless it corresponds to a parameter. Parameter values
are placed in NT and popped from the value stack in order.

2. A function mark entry is pushed to VS, with tag FMT containing an
encoding of the current values of FREG, IORG, and the name of the function being
activated.

3. IORG is set to the value in the function descriptor, and FREG is set to
the VS index of the function mark. -

4., An entry is pushed into LS for the segment described by FVBASE and
FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process

is completed,
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The segment just activated contains all the code for the function. When a RETURN
- is executed within this function, the following occurs:

1. LS is popped, thereby de-activating the function.

2, The function name, encoded in the function mark onVS, is used to access
the function descriptor and then popped. If there is a result, the value is pushed
to VS, and its NT entry erased. All other NT entries for locals in the function,
together with their values, are also erased.

3. FREG and IORG are restored from the values in the function mark on VS,
The function mark is deleted and the result, if any, is moved into its place.

4. Finally, FBASE is set to point to the current active function (if any) by
accessing its function descriptor through its name in the newly-exposed function
mark.

3. Operator Instructions

The operator instructions correspond to the primitive operators in APL.
They can be considered in four groupings, and are so discussed in the rest of this
section. Part a discusses the scalar arithmetic operators (Table 1-2); part b
contains a description of the selection operators which are evaluated by beating
(Table 1-3A); part ¢ describes those operators which are generally executed
immediately (Table 1-3B); and part d covers remaining deferrable operators as
well as the compound operators (Table 1-3C, D).

2. Scalar arithmetic operators

If the top of VS contains two scalar values (or one if the operator is monadic)
then the operation is done immediately, leaving a result in VS and popping the
operand(s). This process is illustrated in Example 1. In fact, the operation is
pushed to QS and the E-machine is activated to perform the actual evaluation, but

this micro-process is invisible to the user.
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The other possible cases occur when the top two elements of VS are segment
descriptors for deferred code in QS or when one is a segment descriptor and the
other is a scalar. If one of the operands is a scalar, it is entered into QS and its
VS entry is replaced by an appropriate segment descriptor, reducing it to the
case of two segment descriptors in VS,

The D-machine compares the ranks and dimensions of the two operands for
conformability and signals an error if they don't match. Otherwise, the operation
is deferred by drag-along in QS and the top of VS adjusted so that it contains a
segment descriptor pointing to the entire deferred expression in QS. Because of
the stack discipline in the machine, the deferred code for both operands will
always be contiguous in QS. The link field of the QS entry for the operator (with
opcode OP) is a relative backwards pointer to the earliest deferred operand in
the deferred subexpression. The AUX field is the same as the AUX field of the
two operands (see Example 2),

b. Selection Operators

The selection operators are evaluated in the D-machine by beating, the process
of performing a selection operation on an array-valued expression by changing
the storage mapping functions of its constituent array operands. The mathematical
analysis of Chapter II legitimizes this approach, and guarantees that the trans-
formations used in beating produce the correct results. Before proceeding, let
us define what it means for an array-valued expression to be beatable,

An array-valued expression deferred in QS is beatable if any of the following
conditions apply:

(i) It is a single QS entry with opcode IFA or 1J,
(ii) It is a consecutive pair of QS entrieé of the ‘form
S scalar 0 0

IRD ptr 0 R,
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EXAMPLE 1 - SCALAR OPERATUR, SCALAR OPERANDS

REGISTER DuMmP
NEWIT = O {ORG = C FREG = 00GCO F3ASE = 20200

REL ORG LEN D/E IS FN NWT QP

LS: .
| o010 tooo ltoc i 6 ot o ool
-=> |
EFFECTIVE ADDR = 0210 IN M
TAG  VALUE op VALUE LINK  AUX
¥S24emmmm o mmmeomeeooooomanep  QS3e - -— .
oo ase | ==>1
1 sT 1 256 i
1 sT | 32 t
=-->1

EXAMPLE 1-1: BEFORE EXECUTING ADD AT M(210}

REGISTER Dump
NEWIT = O 10RG = O FREG = 00CQ0 FBASE = 0020¢C

REL ORG LEN O/E IS FN NwT QP
LS: #—— —tmm—pm———

l1o11 b coo 1001l 0fodlrlolco
joc0ol coo ool Lt balbolo) ol
-——) '
EFFECTIVE ADDR = 0Q00 IN QS
TAG VALUE oP VALUE LINK  AUX
v§: ¢ QS5ce +*
e | eee | o0 | op | ADD { i i
t ST | 256 P =-->1
§sT | 32 [
-->1

THE ADD INSTRUCTIUN AT K(210) HAS BEEN FETCHEDL, DECGDEO,
AND DEFERRED IN QS. SINCE BOTH UPERANDS ARE SCALARS,
THE DEFERRED SEGMENT IS ACTIVATED IMMEDIATELY. (NOTE LS)

EXAMPLE 1~2: AFTER DECODING ADD; UPERATION UEFERRED IN QS

REGISTEK DUMP
NEWIT = 0 IORG = O FREG = 0000C FBASE = 002C0
REL ORG LEN D/7€ IS FN AaT QP
LS: #=---em + +
f ot yoooj1cotol ctitiol ool
1 o0 { o001 021110101 O] 00|
-->
EFFECTIVE ADDR = Q001 IN QS
TAG VALUE ue VALUE LINK  AUX
¥S:# - 4ss: + *
Foe ces t oo | gp | ADD [ !
s | 288 1 -->
-=>i
EXAMPLE 1-~3: AFTER E-MACHINE EXECUTION GF ADD; Q5 SEGMENT EXHAUSTED
RFGISTER DuMp
NEWIT = 9 IURG = O FREG = 00000 FBASE = 0020C
REL ORG LEN D/ IS FN NWT QP
LSs: +

-->

t oyt loos {100 )01l Q0titlaolcool
{

EFFECTIVE ADDR = 0211 IN M

TAG

VALUE

LINK  AUKX

EXAMPLE 1-43 AFTER RETURN TC D-PACHINE,

PR PP

RESULT UF ADD IS DN vS




EXAMPLE 2 - SCALAR OPERATUR, ARRAY OPERANDS

REGISTER DUMP
NEWIT = © IORG = 0 FREG = 00000 FBASE = 00200

REL ORG LEN D/E IS FN NWT QP

LS: bommmwcm o cm e pmm rempmm b e b emm pm e

j oto tcool1coft ol ol o ool
-—> |

EFFECTIVE ADDR = 0210 IN M

TAG VALUE op VALUE LINK AUX
VSitomman e —————— + QStpem——-- b v ———————————— b — e ———— +
O | N i 00 | IFA | aA { | 0111 | AA
] SGT | SCODE(SEG.A,1) { 01 | IFA | aB { ) o1l1L | 88
| SGT | SCODE{SEG.B,1) f --> |
-->|

ARRAYS WITH DA'S AT 1000 AND 1010 ARt GF RANK 3 (NOTE 4GS AUX FIELDS).
NEXT INSTRUCTION IS ADC AT M(210)

EXAMPLE 2-1: BEFORE EXECUTING ADD

- ————— -  ——— e 1 = o = e T T — . . >~ - - — -

REGISTER DUMP
NEWEIT = O IORG = 0 FREG = 00C00 FHBASE = 0020C

REL ORG LEN D/E IS FN NwT QP
LS: #mmmmm o mm b = ¢

| ott 1000 J 100 1 O Ul L 1 O} 0O |
- |

EFFECTIVE ADDR = 0211 INM

TAG  VALUE ap VALUE LINK  AUX
VS ¢—m—mm L e L L e D e e e el T e 4
I | oo { o0 | IFA | aa | f o1l | C_
I SGT | SCODE(SEG.Cs1) | oL ] IFA | aB i | o111 |
-=>| 02 | oP | ADD f 02 1 2111 } _C
{

-->

EXAMPLE 2-2: AFTER DEFERRING ADD
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(iii) It is a QS segment consisting of a scalar monadic operator operating

on a beatable sub-segment. That is, it is of form:

code for operand

OP optype 1 R

(iv) It is a QS segment consisting of a pair of beatable operands combined
by a dyadic scalar operator. Onme of these operands can optionally

be a scalar value. The form is:

code for right opnd

code for left opnd

L IO ]

OP  optype k R

(v) It is a pair of beatable operands combined by GDF. The form is
similar to case (iv) above.
(vi) It is a reduction of a beatable operand, in the form:

BRED 0 k 0

code .for reducee A

OP reduce-op A
SGV SEG.A
S -length

ITM
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(vii) Inadditionto(i) through (vi) above, a single QS entry with opcode IA
is beatable, although it does not enter into the recursive definition.
When a selection operation is interpreted by the D-machine, the array-valued
operand is first checked for conformability. If the operand is beatable, then it
is beaten, according to the transformations shown in Chapter III, Appendix A. In
this process, if a DA to be transformed has a reference count of 1, indicating that
it is a local tempofary result, then the DA can be modified directly. If the reference
count is greater than 1, then a copy must be made, and the copy is beaten. If the
result of a beating operation is a scalar value, then the segment is turned over to
the E-machine, which evaluates it and leaves the scalar result on the top of VS,
When the operand of a selection operation is not beatable, there are two
possible strategies to follow: In the case of the TRANS operation, there is no
choice: the operand must be evaluated by the E-machine and a temporary value
stored, which is then beaten as above. Otherwise, the selection operation can
be treated as a special case of subscripting, in which case an appropriate set of
E-machine instructions is dragged-along in QS. (See Section d. for an explanation
of subscripting.) The choice of strategies is a second-order design decision,
and need not be made at this time, since either approach is viable, Example 3
illustrates both beating of selection operators and drag-along of scalar operators.
The DM code shown for the statement is a straightforward translation of the
APL statement into Polish, Note that the vector 2, 2 is a constant and is
"compiled" into the function segment. This approach avoids having to keep array-
valued constants in the memory with other array quantities; to do so would require
having an entry in NT for each such constant, and would complicate the storage
management functions, In Examples 3-1 and 3-2, the state of the machine before

executing the sample code is shown; the values of the variables M and N are not
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EXAMPLE 3: DRAG-ALONG AND BEATING IN THE D-MACHINE

Consider the APL expression

R<(2,1)Q(¢[1IM)+(2,72)4N
At the time this is to be evaluated, pM<>2,2 and pN<«>3,u4 . Assume that R
has no current value. The machine code for this statement is shown as follows,

starting at location 250 in memory.

Addr Op Operand Comments

250 LDNF N

252 LDCON 90 Refers to constant 2, 2with DA at 290

254 TAKE

255 LDNF M

257 REV' 0 (Recall 0-base in all machine code)

259 ADD

260 LDJ JCODE(2,1,1) This is the vector 2,1

262 TRANS

263 LDN R

265 ASGN Assign (and discard value)

266 coe

290 RC=1 LEN=4 DA header

291 VB=0 AB=94 DA for constant vector?2 ,—? .
292 RANK=1 : . ggtzosrerz:zn A for description
293 R(1)=2 D(1)=1

294 RC=1 LEN=3 Header for value array

295 2 Value

296 -2
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given, as they are irrelevant for this example. LS contains a descriptor for a
D-machine segment of length 100, which is the main segment of the function F,
The effective address is the sum of the REL field of L.S and FBASE, the beginning
of the value part of function F. VS contains a function mark fbr F which was
placed there when F was called.

In 3-3 and 3—4; the LDNF and LDCON insti‘uctions have been executed. Note
that each caused the deferral of an IFA instruction (fetch array element in the E-machine)
in QS. Also, for each deferred instruction, a QS segment descriptor was pushed
to VS. The LDCON instruction allocated space and made a copy of the descriptor
array for the constant which was in the function segment; the new DA is named T1.
The VBASE for the constant is 200, the same as the FBASE of the function.

The TAKE operation (3-5, 6) is evaluated by the DM using beating. The
descriptor arraiy T2 was created for the result, and was derived from the DA for
N by the transformations listed in Chapter I, Appendix A. It is easy to see that
this DA is in fact the correct one. Also note that T1 is no longer needed, and has
been erased. At this point, VS contains a segment descriptor which points to the
QS segment describing the result of the computation to data, which is the evaluation
of the subexpression (2, 2)4V .

Examples 3~7 through 3-9 show the next LDNF instruction and the evaluation
of the reversal operation by beating. The process in this case is similar to that
for the TAKE. The ADD operation is deferred in 3-10 because both of its operands
were array values. The LINK field of the ADD in QS is 2, referring to the operand
2 elements earlier in QS. The top of VS now contains a descriptor for the entire
subexpression in QS which has been evaluated at this point. The LDJ instruction

(3-11) is executed similarly to LDNF and LDCON in that it defers a value in QS.
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The TRANS instruction takes the transpose of the entire expression which
has been dragged along so far. In this case, since its operand is a sum, the
transpose is applied to both terms. Notice that although the deferred code in QS
has not been altered (3-12), the DA's which it references have been (3-13), The
LDN R instruction pushes a value with tag NPT to VS (3-14) as the next instruction
is an ASGN (3-15). This instruction notes that R was undefined (see NT, in
Example 3-1) and allocates space for its DA and its value array. The space is
allocated based on the knowledge of the siie of the result deferred in QS. In
3-15, we see the deferral of the assignment. The POP instruction in QS disposes
of the value after it has been assigned (in deferring ASGNV, no POPS are used).
In 3-16, the state of memory shows the new DA for R; also note that the address
of the DA for R (@R) has been entered in NT by the ASGN evaluation,

c. Other Operators (Executed Directly)

The "other operators' include all those APL primitives which cannot be
deferred conveniently, or which are evaluated immediately in the D-machine,
BASE is in this class because it has a scalar result, while REP, GDU, GDD are
included because they require rather complex calculations involving their entire
operands simultaneously, which are impossible or difficult to do element-by-element,
URHO is easily done by the D-machine, and so is not deferred, as is UIOTA,
which produces a J-vector as result. The ca.tenation operator, with operand K,
is a direction to catenate the top K elements of VS to form a vector, This is
done immediately (with the result being put in temporary space). The remainder
of the operators in this class are dealt with differently, depending on the values

of their operands.,
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EXAMPLE 3 - DRAG-ALGMG AND BEATING

FEMURY DUMP

ADDR CONTENTS ADDR CUNTENTS NT: TAG CONTENTS

———— e m s —-—— ——— +

an RC=1 LEN=CS -N RC=1 LEN=OS F Er of
401 vB8=VvM AB=0CO +01  vB=VN Ag=000 M or an
+02 RANK=2 02 RANK=2 N [ 4 Ll
403 RI1)=0C2 DE11=202 403 R(11>003 D(1}=04 R ur o
+04 R(2)=002 D{2)=0L +C4 RU21=004 D(2)=01

EXAMPLE 3-1: MEMURY BEFORE EXECUTING EXAMPLE CODE

REG ISTER DUMP

NEWIT = O 10RG = | FREG = 00000 FBASt = C0200

REL ORG LEN D/E IS FN NaT P

LS: temmcr b nprmcam o e e m
} 650 fooco b 1co b ol otbtl joldweol
-—> |

EFFECTIVE ADOR = 0250 IN M

TAG VALUE oe VALUE LINK  AUX
VS i4mm e rpr e e rme e b Q55 b mmmp = rm—— *
| FMT | ®FN MARK FOR F* | --> |

-->1

EXAMPLE 3-2: REGISTERS BEFORE EXECUTING EXAMPLE CODE

REGISTER DuMP

NEWIT = O {ORG = 1 FREG = 00000 FBASE = 00200

REL ORG LEN D/E IS EN NaT @GP
LS: #m—-ae R el e D R L Eat? T S et S T 3

1 056  €COO § luC b O} 21 to 1ol
-=> )

EFFECTIVE ADDR = 0254 IN M

TAG  VALUE oP VALUE LINK  AUX
vs: P LR St —-——— *
§ FMI | ®FN MARK FOR F* | 00 | IFA | aN I § 0011 | AA
I SGT | SCUDECSEG.A,1) | 01 1 tFA | aT1 ) § 0001 | B3
I SGT | SCODE{SEG.8,1) b -=>
-—>1

LONF  PUSHED QS5(0i} AND VSI

13)
LOCON PUSHED QS5€13) AND V5(23)

EXAMPLE 3-3: AFTER LONF AND LOCON

EXAMPLE 3 - DRAG-ALUNG AND BEATING

MEFORY DUMP

ADDR CONTENTS ADDR CCNTENTS ADDR CONTENTS

an RC=1 LEN=0Y N RC=2 LEN=Q5 all RC=) LEN=O&
+01 Vi=vM AB=000 +01  vB=VN A8=000 +«01 vB=200 AB=094
+02 RANK=2 +02 RANK=1 +02 RANK=1

+03 RI1}=C02 DIl1)=02 403 R{11=GG3 DU1)=04& ¢03 R{1)=002 D(1)=0)
+04 R{2}=002 pt2)=01 +04 R(2)=004 012)=01

DA FOR N NDwW HAS REFCO OF 2. Tl IS A CUPY UF THE DA FUR THE VECTOR 2,~2

EXAMPLE 3-4: MEMOKRY AFTER LOCGN

REGISTER OUMP

NEWLT 2 0O I0RG = 1 FREG = 00000 FBASE = 00200
REL  ORG  LEN O/E IS FN NWT P
[ R T e e R R S aanteid S et 4
| 05 ) 0CO J 10O 00 O) 1 1O )OCH
-=> 1

EFFECTIVE ADDR = 0254 IN M

TAG  YALUE uP VALUE LINK  AUX
D R et N+ 1 3 R e T it el LU bl DRl
| FMT | *FN MARK FUR F®& | 00 | [FA | &T2 i 1 0011 | AA

{ SGT | SCODE{SEG.As1} P>
-=>I

THE TAKE HAS ALTERED THE UA FOR N, CREATING A NEW COPY,

EXAMPLE 3-5: REGISTERS AFTER VAKE DPERATUR

MNEMORY DuMP
ADDR CONTENTS ADDR CONTENFS ADDR CONTENTS

B e rr  cmmmpemmcmem e a—— - Smmm—  Smerfemem—ccmcmam—am~——

am RC=1 LEN=05 N RC=] LEN=05 a2 RC=1 LEN=05
+01  vH=vM AB=000 +01 vB=VN AB=090 +01 V8=VN AB=002
+Q2 RANK=2 +0¢Z RANK=2 +02 RANK=2
+03  R(1)}=002 LC1)=02 403 kt1)=003 D(11=04 +03  R{1)=002 DI1})=0s
+0& R(2)=002 D0(2)=01 +04 RU2)=004 Di12)=01 *04 R{2)=2002 D(2)=01

THE NEw UA AT 372 COMNTAINS THE STORAGE ACCESS FUNCTYION FOR TME

TAKE QPERATIUN ON N, WrfCH WAS PRCGDUCED BY BEATING. NUTE IN PARTICULAR
THAT THE VBASE OF T2Z IS VN, WHICH PQINTS TU THE VALUE ARRAY OF N, AND
THAT THE DIMENSION OF T2 IS 2,2 » AS SPECIFLED BY THE TAKE OPERATOR,
THE ABASE HAS CHANGED FROM O TGO 2, TO ACCOUNT FUR THE -2 ELEMENT IN THE
PARAMETER ([.E. TAKE FRCM THE END). FINALLY, NOTE THAT THE VALUE UF OEL
IN T2 1S THE SAME AS THAY FOR N,

EXAMPLE 3-6: MEMORY AFTER TAKE OPERATOR
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EXAMPLE

DKAG-~ALONG ANU BEATING

REGISTER DuymMp
NEWIT = O I0RG = 1 FRELG = 00OCCC FBASE = 00200
REL ORG LEN D/E IS FN NwT QP
LS: #-vmcnpemcmcpecmna R L R et e DT T
1 056 1000 ) 1000 0011 101 cCcOoy
--> 1

EFFECTIVE ADDR = 0256 INM

TAG  vALUE uP VALUE LINK  AUX
VSt R e e D et b +
| FMT | ®FN MARK FOR F®¢ | 00 | IFA | aT2 | I 0611 | Aa
| SGT | SCODE(SEG.A, 1! 01 ) IFA | amM | i 00lL | 88
] SGT § SCODE(SEG.B,1) P-4
~=>|
EXAMPLE 3-7: AFTER LONF M
REGISTER DUMP
NEWIT = 0 TURG = 1 FREG = 0GCOC FBASE = 00zC0
REL  URG  LEN U/E IS FN NnT Qe
[ I e e e et Ty e et S 3
} 058 J 000 1 300 ) O} 0Ok 1 bC OO
~-=> 1
EFFECTIVE ADDR = G258 IN M
TAG  vALUE ce VALUE LINK  AUX
¥S: b e e - ——— - ¢ YSie—-—- e ——— - e +
| FEMT | #FN MARK FUR F® | GO | IFA | aT2 | 1 00LL | Aa
1 SGT | SCUDE(SEG.A.L} 1 01 ) tFA | &T3 i | 0011 | BB
b SG1 | SCCOE(SEG,B,1} F--> 1

EXAMPLE 3-8: AFTER HEV

EXAMPLE 3 - ORAG-ALONG AND BEATING

MEMDRY QUMP

ADDR CUNTENTS ADDR CGNTENTS ADUR CUNTENTS

e ettt ———t——e -—— ———— -———
aM RC=1 LEN=05 a RC=1 LEN=0S atf2 RC=1 LEN=0Q5
+01  vbxyM A82007 +01  VvB=VN AB=000 QL VB=YN AB=002
02 RANK=2 +C2 RANR=2 02 RANK=2
403 R{11=002 0(1)=02 +03 R{1)=003 Dill=04 +03  R{11=002 O(1})=04
+06 R(2)=002 D(2)=01 +06 R{212004 O(2)=01 +C4 R{21=002 D(2)=01
413 RC=1 LEN=0S
+01  VB=vM An=002
402 RANK=2

403 Ril11=002 DE1)=~2
+Ce R{2)=0C2 D(2}=01

NOTICE THE NEw DA, &T3 ¢ WHICH CUNTAINS THE ACLESS FUNCTION FOR THE
REVERSAL UN M . THE PARTY wHiICh nAVE CHANGED FRUM THE DA AT QM ARE
ABASE. WHICK 1S NUW 2» AND DEL(L). wHICH IS -2 INSTEAD CF 2., TFHESE
CHANGES ACCOUNY FOR THE REVERSAL GF M , ANALOGOUSLY TU THE WAY THE DA
AT 412 ACCOUNTS #OR THE TAKE OPEFATIUN ON N .

EXAMPLE 3-9: AFTER REV

REGISTER DUMP

NEWIT = O tORG = 1 FREG = OCCLCO FBASE = 0020C

REL URG LEN D/E IS FN  NWT P
LS: #--~—- R it e e e L e et 3

1 05+ L 000 t 1CC L ¢t ot 104 oC |
i

e d
EFFECTIVE ADDR = 0259 N ™
TAG VALUE ueP VALUE LINK  AUX
VS emm e e e ————— + USte——--- R iaidd Rt Attt Dbt +
| FMT | ®FN MARK FOk k* | 00 1| IFA | 72 i i ooll | €_
§ SGT ] SCULUE(SEG.C,1) I 0L ) 1Fa | 4713 | i co1t
-=>1 02 } 0P | ADD i 02 1 o011 } _C
-=>

EXAMPLE 3-10: AFTER ADUL
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EXAMPLE 3 <~ DRAG-ALUNG ANC BEATING

REGISYER DUMP

NEWIT = O (ORG = 1 FREG = 00COO FBASE = 00200
REL ORG LEN D/E (S FN Nul 4P
LS: + .
1061 1000 ) dcc ) 0 041 1o o0i
-=> |
EFFECTIVE ADDR = 0261 INM
TAG  VALUE oP VALVE LINK  AUX
¥+ + + QS3e— .
| FNT | #FN MARK FOR F®* | 00 | IFA | T2 | i ooll § C
| SGT | SCODEISEG.C,1? | ot | IFA | @73 1} | o011
) SGT | SCUDE(SEG.D.1} i 021 or | ADO { 02 § o011 | _C
—>| 03 | 13 | JCODE(2+141) § | 000t | DO
~=> |
EXAMPLE 3-112 AFTER LDJ
REGISTER DumP
AEWIT = O 10RG = 1 FREG = 00600 FBASE = 00200
REL ORG LEN O/E S FN NaT wP
LS: * .
| 062 1 000 4 10104 d11t)1oiool
-~> |
EFFECTIVE ADDR = 0262 IN M
TAG  VALUE [s14 VALUE LINK  AUX
v§3s Qs
)} FMT | oFN MARX FOR F® } 00 | [FA } aT2 | t ootl | C_
} SGY | SCODEISEG.C»1) } o1 | IFA | at3 | 1 oottt
-~>4 02 | op | ADD I 02 | ool 1 _C
--> |

EXAMPLE 3~123 REGISTERS AFTER TRANS

EXAMPLE 3 ~ DRAG-ALCNG AND BEATING

MEMORY DUMP

ADDR CONTENTS ADDR CONTENTS ADDR CCNIENTS
au RC=1 LEN=OS iﬁ RC= ) LEN=OS ol2 RC=} LEN=0S
+01  VBx=vM AB=000 +01  vB=vN AB=000 +01  VB=¥N AB=002
+02 RANK=2 402 RANK=2 +02 RANK=2
+03 R{11=002 D(1)=02 +03 R(1)=003 D(1}=04 +03 Ri{1)=002 D(1)=0]
+04 Ri2)=002 DI2)=01 +06 R(21=004 D{2)=01 +04 R12)=002 DL2)=04
813 RC=1 LEN=05
401 VB=vNM AB=002
+02 RANK=2

+03  R(1)=002 DLAI=0L
+04 R(2)2002 D(2)=-2

THE EFFECT OF THE TRANSPUSE WAS TO ALTER THe DA®S AT Q@12 AND av3.
THE CHANGE IN BOTH CASES #AS TO INTERCHANGE RUL) wITH R(2)s AND

Ot1) wiTH Ut2), IT SHOULD BE INTUITIVELY CLEAR THAT THESE DA*'S MWill
NOW ACCESS THE TRANSPOSES UF THEIR PREVIDUS VALUES.

EXAMPLE 3-132 MEMORY AFTER TRANS (NOTE ALTERED DA°*S)

REGISTER OUMP

NEWLT = O 10RG = ) FREG = 00000 FBASE = 00200

REL ORG LEN U/E IS FN Nwl QP

LS: + -t 3
}) Cos J 000} 10C O} C )L O OO
-1

EFFECTIVE AUDR = 0264 IN M

TAG VALUE [+14 VALVE LINK  AUuX
V53 e—- + QS:ze
| FMT | SFN MARK FOR F& | 00 | IFA | 3T2 i | o011 | C_
1 SGT |} SCUODE(SEG.Cy1) I 91 ] IFA | a&T1)3 I | 601l
I NPT | R I 02 | uP | ADD 102 | o011} _¢
-->1 >

EXAMPLE 3-14: AFTER LON R



EXAMPLE 3 ~ DRAG-ALGNG AND BEATING

RFGEISTER DUMP

- 801 -

AEWIT = O [0RG = 1 FREG = 00000 FBASE = 00200
REL ORG LEN DJ/E IS FN NaT QP
[ I T e R R e Sttt Skt bt il St 3
| 665 1 00 | 1cCO | 31 3 41 1 o0 10O |
-=> |
EFFECTIVE ADDR = 0265 IN M
TAG  VALUE oP VALUE LINK  AUX
VSi¢mmmmu + - -+ QSttrmmretrrc e e pem e p e ——n$
| FMT | #FN MARK FOR F* | 00 | IFA | aT2 i | oo11 | E_
I SGT | SCODE(SEG.Esl) | 0L 1 IFA | &T3 | 1 0011 |
-->1 02 ) 0P | ADD I 02 | oo11 |
03 | IFA | aR | I ooit )
04 | OP | ASGN I 02 } o011 |
2% | POP | 0 | I oottt | _t
-=> |
EXAMPLE 3-15: REGISTERS AFTER ASGN
MEMORY DUMP
ADDR CONTENTS ADUR CUNTENTS NT: TAG CUNTENTS
B e et e e L R e e ittt
aM RC=1 LEN=05 ar2  Rre=1 LEN=05 FF1 aF
+01  vB=VM AB=000 +01 VB=VN A3=002 M DT aM
+02 RANK=2 +02 RANK=2 N DT aN
+03 R(1)=002 D(1)=02 +03 R(1)=002 LD(L)=01 K DT @R
+04 R(2)=002 D(2)=01 +04 R(2)=002 D(2)=04
&N RC=1 LEN=CS a3 RC=1 LEN=05
+01 VvB=VN AB=000 +01 vB=VM AB=002
+02 RANK=2 +02 RANK=2
+03 R(1)=003 D(1)=04 +03 R(1)=002 D(1)=01
+04 R{2)=004 D(2)=01 +04 R(2)=002 D(2)=-2
1 RC=1 LEN=0S
+01 VB=VR AB=000
+02 RANK=2

+03 RI{1)=002 D(1)=02
+04 R(2)=002 D(2}=01

EXAMPLE 3-162 MEMORY AFTER ASGN



RAV and DRHO are difficult to defer in general because of the complex
calculations nécessary to access an arbitrary element of the result. However,
there are special cases which are easy to defer, as follows:

(i) The right operand is a scalar or single-element quantity. The RAV
of such a value is a J-vector if it is an integer, or at worst is an
explicit one-element vector. Similarly, the DRHO of such a value
is deferred in QS as follows:

S value 0 0 -
IRD T1 0 R
where @T1 is a DA for the result and R is the encoding of the rank,
The IRD instruction is essentially a note to the D-machine that the
result has dimension described in T1,
(ii) The right operand B is an expression deferred in the form of (i) above.
In this case, all that has to be done is change the descriptor array
@ T1.
(iii) The right operand is of the form
IFA @W 0 R
and @W points to a DA which has not been altered by any select
operations which upset the ordering of the value part. That is, if
W is the array specified by @W and D is the vector containing the
value part, then W[ ;/L1«<>D[(pC)1L] for all appropriate values of L.
In this case, RAV is evaluated by providing a new DA with rank 1 and
dimension x /o « DRHO can be deferred if */p4A , where 4 is the
left operand of the IjRHO, is less than or equal to x/pC also by
providing a new DA with dimension 4.
If none of the above apply,_ then RAV and DRHO are evaluated immediately by

creating temporary values in M,
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d. Other Operators and Compound Operators (Deferrable)

The D-machine evaluates this subclass of operator instructions by deferring
E-machine code in QS. The expansions are detailed in Appendix C and should be
easy to understand with a knowledge of the way the E~-machine works, We will
here discuss only the SUBS instruction and the compound operators, as their
behavior is somewhat more complex.

The SUBS K operation corresponds to the symbol [ in an APL program,
When decoded, it expects the top of VS to contain a QS segment descriptor for a
rank-K quantity and the next K entries on VS to be either scalars or QS segment
descriptors for the subscript expressions. An empty subscript position is created
by the LDSEG instruction with its operand a segment descriptor SCODE(0, 0, 0) of
length 0,

There are two important cases to consider:

(i) If the subscriptee is beatable, then the subscript expressions are
examined in turn, starting from the rightmost (deepest in VS) to
find scalars or J-vectors. If found for, say, the I‘Z-}E coordinate,
the equivalent of INX I with that operand is performed on the sub-
scriptee by beating, causing new DA's to be created for it. The VS
entry for this subscript is then deleted if it was a scalar. If it was
a J-vector, then the VS entry is changed to the empty segment and
the QS entry is deleted by moving all of QS down 1 to fill in the space
(with appropriate adjustments to descriptors). I, after all subscripts
have been examined it is found that the remaining stacked subscripts
are either empty or non-existent, then the result already exists, in
standard form, in QS. In this case, the remaining empty segment

descriptors are removed from VS and the result is the QS descriptor
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at the top of VS. Otherwise, the remaining subscripts are treated
as in the second case, described in the next paragraph.

(ii) If there are explicit non-scalar or non-J-vector subscript expressions
and/or the subscriptee is not beatable, then the subscripts must be
dragged along in QS. This is done by creating temporary index ac-
cumulators (opcode XT) in QS and generating E-machine code to
activate the necessary subscript evaluations at the right times, If
the subscriptee is a reduction, QS is transformed according to the
transformation (OP/A) (# ] —> OP/A[Z j] and evaluation continues
as above, The details of the subscript expansion are shown in
Appendix C. Example 4 illustrates the process which has just been
described.

In evaluating a GDF, the machine first examines the operands, If they contain
deferred operators, then they are evaluated to temporary space first. This is
done to avoid unnecessary recalculation of subexpressions necessary to compute
a GDF. It also guarantees the possibility of applying SF transforms to GDF ex-
pressions by beating. Then all that is necessary is to alter the access masks in
the AUX fields of the deferred left operand in QS to provide the proper access
method for the E-machine. This is illustrated in Example 5 below. If the GDF
reduces to a simple case, e.g., if one of the operands is a scalar, then the ex-
pression is treated as a normal scalar operator expression (see part a above).

Efficient evaluation of reductions along coordinate K of the reducee R (in the
E-machine) depend on transformation TR11 (see Chapter II) which allows permu-
tation of the reduction coordinate by transposing the reducee. In evaluating a

REDUCE along coordinate K the reducee is first checked to see if it fits into one
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of the special cases of reduction:

(i) Empty reduction coordinate. The result is then an array with value
((K21ppR)/pR)pIDENT where R is the reducee and IDENT is the
identity element for the reduction operator.

(i) Reduction coordinate of length 1, The result is then r[[ X] I0RG]
If reducee is a scalar, the result is R.
(iif) Reducee is a vector. In this case, the reduction is activated im-
mediately in the E-machine, since the result is a scalar.
If none of the special cases is satisfied, the reduction is deferred by first doing
the transpose of TR11 if necessary, and generating the deferred code in QS as

shown in Appendix C.
EXAMPLE 4: SUBSCRIPTING IN D-MACHINE

Consider the APL expression A[ 14;;2;V] where A is a rank-4 array with

pA<>5,4,6,3 and V<»3,2,1,2 , with the index origin IORG «» 1. The D-machine

for evaluating this expression is

250 LDNF \' Vector V

252 LDS 2 Scalar 2

254 LDSEG SCODE(0,0,0) Empty subscript

256 LDS 4 Scalar 4

258 UIOTA Gives t4

259 LDNF A Array A

261 SU BS 4 Do the subscript, expected operand rank is 4
263 e |

The following memory and register dumps show the steps the D-machine goes through

to evaluate this expression.
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EXAMPLE 4 - SUBSCRIPTING IN D-MACHINE

EXAMPLE 4 - SUBSCRIPTING IN D-MACHINE
MEMORY DUMP

NT: TAG CUNTFENTS

ADDR CONTENTS ADGR CONTENTS

L RC=1 LEN=OT av RC=1 LEN=04 A oT A
+01  ve=v] AB=0C 0 ¢Cl vB=vv AB=000 v or av
+02 RANK=4 +02 RANK=]
+03 R(1)=005 Oll}=72 +33 R{1)=004 O(1)=01

+04 RU2)=004.0(2}=18
+05 R(3)1=006 0(31=03
+36 Ri14)=003 D(4)=21

EXAMPLE 4-1: MEMURY BEFORE EXECUTING EXAMPLE CODE

REGISTER DUMP

AEWIT = 0 10RG = } FREG = 00COQ FBASE = 0020C
REL ORG LEN D/E IS FEN  NWT oP
L5 ¢mmmempemm=- b ——— pmmmpmmn e pmm -}
] o6l 1 cO0 f10c i 01 0btlc ool
-=> |
EFFECTIVE AUDR = 0261 INM '
TAS VALVE oP VALVE LINK- AUX
VS e-~ QS 4= D it -+ *
[P | en t 00 | IFA | av l | 0001 | AA
1 SGT | SCODE(SEG.Asl} P01 | 1J | JCUDE(4s140) | | 0001 | BB
| sY | 2 | 02 | IFA | 24 i {11kl 1 CC
} SGT | SCODE(SEG.NIL,O} | —=> |
| SGT | SCUDE(SEG.B.1l) ]
{ SGT | SCODE(SEG.Csl} |
-->1

VS CONTENTS ARE THE SUBSCRIPTS AND SUBSCRIPTEE. NUTE THE ACCESS MASKS

REGISTER OUMP

NEWET = O IORG = 1 FREG = 00000 FBASE = 00200
REL OKRG LEN O/E IS FN Nwi QP
LS: ¢ m——— -t -+
063 L 000 ) 10C £ O 011 b U ijoOCH
-->
EFFECTIVE ADDR = 0263 (U
TAG  VALUE uP VALUE LINK  AUX
Vi1 em—amc +  QS:
b oee | ves I 00 | JMP | O 1 06 | ! o_
I SGT | SCOUE{SEG.D,1} 1 01 ) IFA ) av | | o001 | EE
-=>1 C2 1 1FA | eofl H 1 0111 | FF
03 | XT | XCODEiQ.3,1) 103 |
36 | XT | XCODE(0,3,1) ] i t
05 § XT | XCODELO,2.1) | i !
o6 § 1xt |9 i | 0to0 |
07 1 x8 |t O | 06 | |
o8 | 1xt | 0© 1 t 0010 |
09 I xs | 0 1 ost i
10 | 1SC § SCUDE(SEG.EeL) | 1 o001 |
1t I xs o t 06 | i
12 } S6 | SCODEUSEG.Fel) 109 ¢
13 1 18D | @72 i L ol ) O
-=> |
¥vS AND @S HAVE BEEN TRANSFURMED BY THE SUBS UOPERATIUN. THE SCALAR

SUBSCHIPT REDUCED FHE RANK OF

A BY |,

AND THE 1

SHORTENED THE FIRST COURCINATE (SEE DA AT aTl1l,
CCOE GENERATED IN US IS FOR CALCULATING EXPLICIT SU3SCRIPT VALUES,
THESE ENTRIES CONSTITUTE A

WHICH ARE KEPT IN THE XT ENVKEES.
PSEUDU-ITERATION STACK.

EXAMPLE 4-3: REGISTEKS AFTER SUBS

{SEE SECTIUN E)

NTERVAL VECTDR
THE REST OF THE

IN THE AUX FIELD OF Q5. THEY INDICATE THAT Vv AND THE J~VECTUK ARE -
VECTURSy AND A IS A RANK-& ARRAY,

EXAMPLE 4~2: AFTER ALL BUT THE SUBS OUPLRAFOR

MEMORY DumMp

ADDR

———————

A
*0}
+02
+03
404
+05
+06

EXAMPLE 4-4: MEMURY AFTER

CONTENTS ADDR CONTENTS ADOR
RC=1 LEN=CT av RC=2 LEN=O4 at2
vi=v}] AB=0( O +01 vB=vy AB=00C +01

RANK=& +02 RANK=1 +02
R{LI=005 Otl)=72 «03 RE1)2004& O(1}=01 +03
R(2)=004 Di2)=18 *04
R(312006 0(31=03 all RC=} LEN=06 *05
Ri4)=003 D(4)=01 +01 VvB=vA A8=003

+02 RANK=3

+03 R{1)=004 D(1)=T72
+04 RU2)=004 D(2)=1B
+CS RIU3}1=003 U{3I=0]

SuBs

CONTENTS
PO ——
RC=1 LEN=06
Vv8s A82(00

RANK=1

R{1)=004 DiLil=16
R{2)=004 Di2)=04
R13)=004 0(3)=01)




EXAMPLE 5: GDF IN D-MACHINE

In the example expression, Mo.xN, both ¥ and N are matrices with pM—4,3

and N<—»p3,2, D-machine code for this expression is

250  LDNF N

252  LDNF M

254  GDF MUL Do GDF
256 e |

Examples 5-1,2 show the machine state before evaluating this code. In 5-3, the
GDF operation has been deferred in QS. Notice that the access mask of M
in the AUX field of QS has been changed. The IRD entry, whose operand DA gives
the dimension of the result, contains 1111 in its AUX field, which instructs the
EMto use a 4-level iteration stack to evaluate the expression. The 1100 AUX for
M says that M-indices come from the two highest iterations, while the 0011 AUX
for N indicates that N is to use the two lowest,

An equivalent formulation of the contents of QS at this point is that it represents
the GDF in the form:

for I := 0 step 1 until 3 do

for J := 0 step 1 until 2 do
for K = 0 step 1 until 2 do
for L = 0 step 1 until 1 do .

RESULT [LJ;K;L] = M([;3] xN(K;L];
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EXAMPLE 5 - GOF IN D-MACHINE

EXANPLE 5 - GDF IN D-MACHINE

REGISTER OumP

NEWIT = O 10RG = 1 FREG = 00C00 FBASE = 00200
REL  ORG LEN D/E IS FN NNT QP
LS: ¢+ -+ * + *
f 05¢ 00O | lcC J ot o 1§ O (OO0
-—>
EFFECTIVE ADDR = 0254 In M
TAG VALUE 14 VALUE LINK  AUX
\ 231 * + WSt *
I ea | cue I 00 | IFA | &N ] 1 0011 | AA
| SGT | SCODEUSEG.A.1} I oL 1 IFA ) am [} } ooll | BA
| SGT | SCODE(SEG.8,1} t-->1
-3

EXAMPLE S-13 REGISTERS BEFORE

GOF .

MEMORY DUNP

ADDR CONTENTS

ADOR CONTENTS

an
+01
+*02
+03
*04

RC=1 LEN=05
Vi=VM AB=000
RANK=2

RELI=004 OL2)=03
R{2)=003 D12)=0}

+01
+02
+03
+Cs

RC=1 LEN=05
vB=V¥N Ab=000
RANK=2

RE{1)=003 DL1)=02
R(2)=002 D(2}=01

EXANPLE 5-21 MEMOAY BEFORE GOF

REGISTER DUMP

NEWIT = O

1URG = ) FREG = 000CO FBASE = 00200

REL ORG LEN D/E IS FN NuT QP

LS$2 #mccmebocrrcctomccr et rragancbrantnn et

1 056 | 000 § 100 fOf O (1§04 00I
-=> |

EFFECTIVE ADDR = 0256 N n

TAG  VALUE op VALUE LINK  AUX
¥s: ¢ QSte— * >
beo |} ces b 00 | IFA | an [ § 0011 | C_
| SGT | SCODE(SEG.Co1) | OL | 1FA | am | 1 1100 |
-1 02 | GoP | muL t RIS IN]
03 ) IRD | aTd ] g ¢
--> 1
EXANPLE 5-3: AFTER GOF - MUTE CHANGED AUX FIELDS IN @S
MEMORY OUNP
ADDR CONTENTS ADDR CONTENTS ADDR CONTENTS
an RC=2 LEN=0S E ] RC=2 LEN=03 Tl AC=) LEN=OT7
401  vB=vyM AB=000 *0L  ve=vN A8=000 *0L  vim AB=000
+02 RANK=2 +02 RANKS2 02 RANK =4
03 R{1)=004 D(L)=03 +03 R(1)=003 0(11=02 +03  R(1)=004 O(l)=i8

+*04

R{21=003 D(2)=01 +04 R(2)=002 D{2)=0} +04 R(2)=003 Di{2)=06
+05 R(3)1=003 0(3)=02
+06 R14)=002 D(4)=0OL

971  WAS CREATED SIMPLY TU RECORD THME RANK AND DIMENSIGN VECTOR OF
THE RESWLT OF OOING THE QUTER PRODUCT. THE OPCOOE IRD (iIN QS(33))
SIGNIFIES YHAT ITS OPERAND DA IS DESCRIPTIVE, AND S NOT TO BE
EXECUTED. IN THE E-MACHINE, IRD IS IGNORED.

EXARPLE 5-4: MEMORY AFTER GOF



E. The E-Machine

The E-machine is a simple stack-oriented computer which evaluates array-
valued expressions by iterating element-by-element over their index sets, The
EM takes its instructions from the instruction buffer (QS), where they were put
by the D-machine. Other machine registers are used in the same way as in the DM,

The central task of the EM is to access individual array elements in computing
array-valued expressions. As most of the complexity of the E-machine is related
to this task, we first discuss the accessing mechanisms in the EM. Given this,
it is a simple matter to explain the instruction set of the machine.
1. Array Accessing

a. Indexing Environment

Array reference instructions are entered in QS in the form

IFA @VAR 0 MASK

where @VAR is the address of a DA in M, and MASK is a logical access mask.
When such an instruction is first entered in QS by the D-machine, it is done without
regard to its context in the input expression. The E-machine must, in order to

evaluate it, determine its context, which takes the form of an indexing environment

for an array reference. The indexing environment of an instruction in QS is
determined by how the segment containing the instruction was activated, which in
turn relates to the form of the original expressiori input to the D-machine.

(i) I the QP field of the top of LS is zero, then the environment is simple,
and array references within this segment are based directly on the
iteration stack. A simple environment arises in variables not affected by
explicit subscripting or which are not operands in expressions which cause
expansions to be made by the DM. For example, in the statement A«B+C,

all variables have simple environment.
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(ii) If the QP field of LS is non-zero, then the environment is complex, and

b‘

array references in this segment are controlled by a pseudo-iteration
stack. In the statement A<B+C{V;#¥], A and B will have simple environ-
ments, but C will be complex as the reference fo C is embedded in a
segment resulting from the expansion of the subscript operator. Note
that this concept is recursive. For example, we can also say that the
environment of the subexpressioh CLViW] is simple., This recursiveness
allows arbitrary levels of subscript nesting to be handled by the drag-
along scheme of the D-machine.
The segment containing the IFA @C instruction is activated in the

EM by an SG instruction referring to a sequence of entries in QS of the
form:

XT XCODE(a, ml, cl)

XT XCODE(b, m2, c2).
Here, a and b are indices for C calculated from the subscripts V and W
by the expanded subscript code in QS. These quantities are, in turn,
computed from the current values in IS, ml a.nd‘m2 are the maximum
permissible values of a and b derived from pC, and cl and c2 are change
flags. Thus, these XT entries correspond to the CNT, MAX, and CH

fields of the iteration stack, and are therefore called a pseudo-iteration

stack (pseudo-IS).

Tnitialization of Access Instructions

Each array accessing instruction must be bound to its indexing environment

when first executed. This process is described below for IFA instructions and

is analogous for IA and IJ.
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(1)

(ii)

Determine index sources

The encoded access mask in the AUX field of an instruction is used
to determine its indexing environment. For example, if the environment
is simple and the bit pattern in AUX is 0101 and the IS is four deep, then
the index sources are determined by (0,1,0,1)/0, 1,2, 3 which is the vector
1,3. Call this vector INX. Had the QP field of LS indicated a complex
indexing environment, then INX would have been based on the length of the
pseudo-IS rather than on the length of IS.
Set up iteration control block

An iteration control block (ICB) is established at the top of QS,

containing the coefficients of the stora,ge mapping function from the DA
for the array (DEL) and the INX vector, calculated above. An ICB contains
one word for each coordinate of the array being accessed, as shown below,

The fields marked Q1 and Q2 are both encoded into the VALUE field of

QS using the function QCODE (see Appendix A). The contents of the Iﬂl
ICB entry are:

field contents

OoP if simple environment then NT else QT

LINK INX (1]

AUX 0

Q2 DEL (1]

Q1 if simple environment then DEL (I} x (MAX field of IS

entry selected by LINK field) else 0
In addition, the last entry in an ICB is given opcode NLT or QLT, depending

on its environment.

- 118 -



(iii) Initialize QS entry
The Q1 fields of the ICB just established are added to the ABASE
found in the array's describtor array to produce the sum S. VBASE is
also fetched from the DA, and the DA is "erased' from QS by subtracting
1 from its reference count. The original IFA entry is then replaced by
FA QCODE(VBASE, 8S) IPTR 0
where IPTR is a pointer to the beginning of the ICB for this array.

This completes the initialization of array references. In effect, what has
been done is to replace the cohtext—independent reference created by the D-machine,
by information which binds the reference to its indexing environment, and which
contains all information necessary to access the array (in the ICB).

¢. The Index Unit

The index unit (IU) is invoked by the E-machine every time it executes an
array-access instruction that has been initialized as above (i.e., FA, A, J).
Using the information in the instruction, its ICB,and IS or a pseudo-IS, the IU
accesses the appropriate array element and pushes it to VS. The IU functions
differently, depending on the indexing environment:

(i) Simple environment

In this case, we know a priori that the elements of the array will
be accessed in a simple order, determined by the way IS is cycled, and this
information can be used to minimize the re-computation of the storage
mapping function for each element of the array. The IU looks at the
iteration stack entries for this array (specified in the ICB), starting at
the right-most coordinate. If the IS entry has changed (hoted by CH bit)
but not recycled, then the IS adds the DEL component from the ICB to S;

if there was a change and a recycle, the Q1 field is subtracted from S.
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The new S value is stored back in the instruction. This process continues
until an IS entry with no changes is found, in which case none of the
higher IS entries contain changes either. If the iteration is going backwards,
as in a reduce, then addition and subtraction are interchanged.
Complex environment

In the complex case, there is no way of predicting in advance how the
indices will proceed and each change requires an explicit evaluation of
part of the mapping function. This is done similarly to the simple case,
by examining the pseudo-IS for each coordinate of the array. If a change
is recorded (in the X3 part of the XT entry) then the new index (X1 part) is
multiplied by DEL. This result is added to S and the Q1 field of the ICB is
subtracted from S with the new S stored back in QS, Finally, the product
just found is stored in the Q1 part of the ICB. This field thus records

partial values of the mapping polynomial,

The behavior of the machine in array accessing, as described above, is

illustrated in Example 6.

2,

Instruction Set

Instructions in the E-machine can be considered in three groups:

a.
b.

cD

Simple instructions
Control instructions

Micro-instructions, used primarily for maintaining pseudo-iteration stacks.

In addition, as seen in the previous section, the instructions buffer contains entries

for pseudo-iteration stacks (opcode XT) and iteration control blocks (NT,QT, NLT,QLT).

Table 3 summarizes the E-machine repertoire, and Appendix B contains a detailed

algorithmic description of the E-machine's behavior. The remainder of this section

discusses these instructions in both functional and "programming’ terms.
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a. Simple instructions

The S instruction, Load Scalar, pushes its value to VS with tag ST. IFA
fetches an array element according to its operand DA and the indexing environment,
and pushes it to VS with tag ST; similarly, IJ pushes an element of a J-vector to
VS, while IA pushes an address of an array element (tag AT). These instructions
can be considered simply at the programming level, as just described, although
the mechanism which they invoke is much more complex, as was seen in the previous
section,

The instructions OP and GOP have as operands the names of arithmetic
functions in the EM (monadic or dyadic)., Executing an OP or GOP invokes the
named function, which operates on the top of VS, deleting the operands and pushing
the result, with tag ST. (This process is illustrated in Example 1,) NIL is a
No-op, and does nothing. Recall from Section D and Appendix C that IRD and IRP
are generated by the D-machine to keep track of intermediate results in ‘doing
drag-along. As they have no use in the E-machine, they are changed to NIL when
first executed.

b. Control instructions

The main control instructions are SGV and SG, whose operands are QS
segment descriptors. SGV pushes this descriptor to VS (with tag SGT) and is thus
analogous to LDSEG in the DM. SG activates the named segment by pushing an
entry to LS; in this instruction, the LINK field is significant, in that it can change
the indexing environment, JMP, JO, J1, JNO, and JN1 are simply relative jumps
within QS; RED is also a relative jump, but in addition, it pushes to VS an entry
with tag RT, to be used as an accumulator for a reduction. (RED is generated by

the DM only in conjunction with reductions. )
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MIT is used primarily to activate reduction segments, It takes ST entries
from the top of VS and uses them to push new iterations to IS, When the MIT
execution reaches an SGT entry on the top of VS, the referenced segment is activated
by pushing the descriptor information to LS. (See Appendix C for a description
of how reduction segments are deferred in QS.)

c. Micro-instructions

The set of micro-instructions are used by the E-machine to maintain pseudo-
iteration stacks in QS. They result from D-machine expansions of subscripting
and related operations. The micro-instructions are fully explained in Table 3-C,

and the DM expansions in Appendix C illustrate their use.

TABLE 3

E-Machine Instruction Set

Notes:
a2, Each instruction is in the form
orP VALUE LINK AUX .
In the discussion, K is the address of the instruction in QS.
b. Instructions starting with the letter "I'" are "uninitialized.' That is, they
have not yet been bound to their indexing environments. They are changed to

similar instructions without the leading "I"" when first executed.
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TABLE 3-A

E-Machine — Simple Instructions

Operation Name Definition

S Load Scalar Push VALUE to VS, with tag ST,

IFA Load Array IFA causes initialization, as described in

FA Element
Section E. 1. B., and the instruction becomes
FA. FA fetches an array element determined
by the indexing environment and pushes the
value to VS with tag ST.

IA Load Array IA causes initialization and the instruction

A Address
becomes A. A is similar to FA except that
the (encoded) address of the selected element
is pushed to VS with tag AT,

1J Load IJ is similar to IFA, and becomes J after

J J-Vector

Element initialization. The VALUE field is an encoded

descriptor of a J-vector, the correct element
of which is computed and pushed to VS with
tag ST.

oP Scalar The VALUE field is the name of a scalar

GOP Operator
arithmetic operator. This is invoked and
-takes its operands from the top of VS, leaving
a result there after deleting the operands.

NIL No Operation No operation.

IRD Result These instructions are used by the D-machine

IRP Dimension

and are left in QS when a segment is turned
over to the E-machine. Since they are of no
use to the EM, they are changed to NIL the

first time encountered.
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TABLE 3-B |

E-Machine — Controi Instructions

Operation Name Definition
SGV Load Segment The VALUE field is a QS segment descriptor, with
Descriptor
addresses relative to K. Make these addresses ab-
solute and push the descriptor to VS with tag SGT.
SG Activate The VALUE field is as in SGV, and LINK, if non~
Segment
zero, points to a pseudo-iteration stack in QS.
Activate the segment by pushing an entry to LS,
using the LINK information to alter the QP field of
LS if necessary.
JMP Jump Potential jump destination is K+LINK, where LINK
Jo Jump if 0 ;
Jl Jump if 1 is considered as a signed number. JMP is uncondi- |
JNO Jump if 0
nondestructive  tional. %
JN1 Jump if 1
nondestructive  The others are conditional on the value on top of
VS. J0 and J1 also pop VS.
RED Begin Push an element with tag RT to VS to act as a re-
Reduction
duction accumulator, and jump to K+LINK.
MiT Mark and Scalar values on top of VS are used to start a new
Iterate

iteration nest in IS, The absolute value of the VS
value, less 1, is the MAX field in IS; the iteration
direction (DIR) is forward (0)if VS is positive,
otherwise backward (1), The CNT field of IS is
initialized to 0 or MAX, depending on whether DIR
is 0 or 1, Moreover, the first entry in IS has its
MRK bit set to 1; all others are 0. Each VS value
is popped. Finally, when an SGT entry is found itis

popped and the named segment is activated in LS,
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TABLE 3-C

E-Machine — Micro-Instructions

Operation Name Definition

POP Pop Pop top element of VS,

DUP Duplicate Fetch the VS entry, LINK elements from top of VS, and

. push it to VS. (Does not disturb original copy.)

ORG Load IORG Push current value of IORG register to VS (tag ST).

CY Cycle Step IS and repeat the current segment if IS hasn't
overflowed.

LVE Leave De-activate the current segment, erasing any associated
IS entries.

RPT Repeat Repeat current segment from beginning. (Does not affectIS.)

CAS Case If top of VS is not an integer scalar, then error else if the

value is N, then pop VS and execute the instruction at K+N
and resume execution at K+LINK.

VXC Exchange . Interchange top two entries on VS,

LX1 Load from LINK fields are relative pointers to XT entries. Push X1

1.X2 Pseudo-IS  (or X2) field of referenced entry to VS, tag ST.

SX1 Store in Store top (ST) entry on VS in X1 (or X2) field of referenced

SX2 Pseudo-IS  XT entry. Pop VS.

XL Index load IXL is initialized to give XL, in which the LINK field points

XL to IS or a pseudo-IS element. XL gets the current iteration
value, adds IORG, and pushes the result to VS with tag ST.

XS Index Store Subtract IORG from ST entry on top of VS; store in X1 field

of XT entry at K-LINK in QS; if the value just stored is
negative or greater than the X2 field of the same word,
signal an error. Set the X3 field (change bit) to 1, and

pop VS.
XC Index Change Set the change bit (X3 field) of the referenced XT entry to 1,
ISC Activate ISC is initialized to SC in same way as IXL. The VALUE
SC Segment field of the instruction is a QS segment descriptor. If the

Conditional  change bit in the referenced IS or pseudo-IS entry is 1,
then the segment is activated. Otherwise, the change bit
of the XT entry referenced by the following instruction is
set to 0, and this instruction is skipped.
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EXAMPLE 6:

This example illustrates typical behavior of the E-machine. Consider the
APL statement
ELI;1«EP>| 14(+/(1 2 2 §PTe.-PT[I;1)%2)%0.5
and suppose it is encountered by the machine when the variables are as below:

EP is 0,0001

Iis2

PTis 0 0 Eis 0 1 1 0
0 1 1 0 o0 1
1 0 0o 0 0 o0
1 1 o 0 o0 o

The D-machine code for this statement is as follows:
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D-Machine Code for Statement in Example 6:

Addr Op Operand Comments

200 LDS 0.5

202 LDS 2

204 LDSEG SCODE(0, 0, 0) Empty subscript

206 LDNF I '

208 LDNF PT

210 SUBS 2 Result is PT[ I; ]

212 LDNF PT

214 GDF SUB PTeo.-PT(I;]

216 LDCON 50 Constant vector 1,2,2

218 TRANS 1 2 2 ®PTo.-PT[I;]

219 PWR (1 2 2 QPTo.-PT[I;])*2
220 RED 1 ADD +/(1 2 2 QPTo.-PT[I;1)%2
223 PWR (+/(1 2 2 §PTo.-PI[I;1)*2)%0.5 (Call thisR )
224 LDS -1

226 ADD T14R

2217 MOD |"1+R

228 LDNF EP '

230 GT EP>| 14R

231 LDSEG SCODE(0, 0, 0) Empty subscript

233 LDNF I

235 LDN E

237 SUBS 2 ELT;]

239 ASGN ELI;)«EP>|"14R

240 coe

250 RC=1 LEN=4 Header for DA of constant
251 VB=0 AB=54 Rest of DA -

252 RANK=1

253 R(1)=3  D(l)=1

254 RC=1 LEN=4 Header for value of constant 1,2,2
255 1

256 2 Value array

257 3

- 127 -




Example 6~1 shows the instruction buffer containing the deferred code to
evaluate the sample statement. The transpose operation was evaluated in the D-
machine using beating, and its results are manifested in the access masks (AUX
field) in the instructions at locations 3 and 4.

Four temporary descriptor arrays were created by the DM as follows:

@T1 DA for PT(2;1 . (Recall that I is 2 in this example.)
@T2 DA containing dimension of the result of the GOP operation,
in this case 4,2,
@T3 DA containing dimension of the reduction result, in this case 4,
@t4 DA for E[2;]
The deferred code is equivalent to the following:
for J = 0 step 1 until 3 do
begin
REDUCE = 0;
for K = 1 step -1 until 0 do
REDUCE := REDUCE + (PT[J;K]-PT[2 ;K])*2;
E[2;J] = 0.0001>|"1+(REDUCE*0.5);
end

The remainder of the example shows the D-machine's progress through the code

in QS, and contains comments which explain the machine's actions at each step.
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EXAMPLE 6 -~ E-MACHINE

EXAMPLE 6 -- E-MACHINE

REGISTER DUMP MEMORY DuUMP

NEWET = 1 IURG = O FREG = 0CLOO FBASE = 00200  ISMK = 00
ADDR CCNTENT ADCR CUNTENTS NT: TAG CONTENTS
REL ORG LEN O/E IS FN Nwl QP CTR  MAX DIR CH MRK —— e e L e T ————— e R S
LS: #mmmembmenec e e~ 1s: vl RC=2 LEN=09 aPT  RC=2 LENSOS ¢ FT  &F
1 C&C L COO ) OPS 10 F 01} 3 oo 1000 } 003 J O} 1)L 01 0 +01  VBxVPT  AB=2000 I st 2
1000 1 odo t 022 1 11 1 F o0l 31001 -->1 +02 0 +02 RANK=2 PT oOT arT
-=> | +33 4 03 R(L}=004 Dt1I=02 € OT @QE
+0s 1 +04 R(2)2002 L{2)201 EP ST 0.0001
EFFECTIVE ADDR = 0000 IN QS +05 1
06 3 € RC=1 LEN=05
TAG  VALut oP VALUE LINK  AuX 07 +01  vB=vE AB=000
[ R e e el S A S8 St ot - + +08 1 +02 RANK=2
| EMT | FCUDE(~1,0,F) i o0 1S Q.3 | \ 1 4C2 R{L)=004 UL1)=04
-~>1 cl | RED | 9 1 08§ | 113 RC=2 LEN=17 +G4  R{21=004 D(2)=01
02 1 s 12 ] i | AL +0l O
93 [ {FA | «&F1 I { ovot +02 1 aTL  RC=l LEN=04
Oe | LFA | wPT ] 1 001t | +03 | «C1  vBaveT AB=004
0% | GUP | suB 1 02 1 0011 ¢} +04 O +02 RANK= 1
06 | IRD | T2 | i o011 | *05 1 +03 R(1)=002 O(1)=01
CT | uP | PuR t 05 | oort | +C6 0
08 | up | QO P 07 ) 0011 | _A +c7 0 ate RC=1 LEN=U5
09 | SGV | SCODE(SEG.AsD) 1 I 1 +08 1 01 V8= AB2000
10is i -2 i i i +09 O *32 RANK=2
[S IR TE A I | ] ) +10 © +03 R{L)=004 DU1I=02
12 | RO | &T3 | 1 0001 | 11 0 +C4  R(2)2002 DE2)=01
13 ] oP | PR i 13§ o001 | +l2 0
is s i -1 ] {- i +13 0 CIE ] RCx1 LEN=Q4
15 | OGP | a0D 1 02 | ovol | 14 9 +0L vB= AB=000
16 | OP | MLD 1 | %001 | +15 0 +02 RANK=]
1718 i 0.0001 I 1 1 +t6 ¢ +03  KU1)=C04 O(1)=+01
18 1 P | GT I 02 1 oool |
19 1 1A | ave i I o001 | aT4 RC=1 LEN=04
2C | OP | ASGN I 02 | oocl i +01  vB=VE AB=008
21 1 pOP | O ! 1 ] +02 RANK=1
-=> 1 03 R(1)=CO& DLL}=0L
THE D-MACHINE HAS JUST PASSED CONTRUL TU THE E-MACHINE. NO EXECUTION NOYE THAT [N THE NAMETABLE, FHE ENTRY FOR THE IUENTIFIER F POINTS
HAS TAKEN PLACE YET. THE FUNCTION MARK UN VS WAS PLACED THERE BY TG aF. THE TAG OF THE ENTRY IDENTIF{ES [T AS A FUNCTION NAME.
ACTIVATING FUNCTIUN £, THE CONTENTS OF THE MARK ARE THE PREVIOUS @F IS THE ADDRESS OF YHE FUNCTION DESCRIPTOR FOR F, WHICH IS NOT SHOWN.
VALUES OF FREG (-1) AND IOKG {0), AND THE NAME OF THE FUNCTION (F).
SEGMENT A WITHIN QS5 EVALUATES THE REDUCTIUN FOUND IN THE SOURCE EXAMPLE 6-2: STATE GF MEMCRY BEFORE EXECUTIUN

CODE., THE ETERATION STACK IS SET uUP TO DU THE EQUIVALENT OF THE
®FOR J 3= 0 STEP 1 UNTIL 3" [ITERATIUN.

EXAMPLE 6-1: STATE GF THE REGISTERS BEFURE EXECUTION
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EXAMPLE 6 ~- E-MACHINE

REGISTER OumP

AEWIT = | {0RG = O FREG = 00C00 FBASE = 00200 Isax = CG
REL ORG LEN D/E IS FN NaT @P CTR MAX OIR CH MRK
LS: -—— 1§ ¢eccrctmcccctrantranponey

-
| 040 Jooo J O¥S | O o1 {314 00I 1000 { 003 L O 11}
1001 000 Ko022 ) 1 4 10131001 -=>1

EFFECTIVE ADDR = 0001 IN QS

TAG  VALUE op VALUE LINK  AUX
Vst -+ Qs3 ———te—e
FNT | FCODE{-1,04F} I *84QS UNCHANGED#ee
ST 1 0.5 |

>

THE S INSTRUCTICN (LOAD SCALAR) PUSHED [TS UPERANL (0.5) TU vS.

EXAMPLE 6-3: AFTER §

REGISTER DUMP

NEWIT = 1 10RG = 9 FREG = 0CCOO FBASE = 00200 isHK = 00
REL ORG LEN OU/E IS FN  NaT QP CIR MAX DIR CH MRK
L£535 - ——tm——t - tommpemnmt [§ pocmcepecncapecnpmnp o=y
1 0e0 t 000 L OFS 4 O4 0} L I3 400 fovo i 03 1Loctiili
Lttot3jpool -1

| 011 1 000§ 222 t 1
--> |

EFFECTIVE ADDR = (Ol IN uS

TAG  VALUE op VALUE LENK  AUK

vS: ——tt  yS: - ———p———t +

| FMT | FCODEL=-1,0,F) | #0425 UNCHANGEDS®#e

1 8T | C.5 |

1R 10 1

| SGT | SCODE(SEG.A,L) [}

1 ST O -2 '

I

-=>

THE REU UPERATGR PUSHEC THE RT ENTRY, TO db USED AS AN ACCUMULATOR
FOR THE RECUCT ION, AND JUMPED TO QSU193). THE SGY  INSTRUCTIUN (AT 9)
PUSHED LITS UPERAND (THE OESCRIPTOR FOR SEGMENT A) TU VS,

THE § INSTRUCTION (AT 10} PUSHMED THE -2 VALUE TG vS.

THESE TWO ENTRIES wllL B€ USED BY THE MIT INSTRUCTEON TO ACTIVATE
THE REDUCT ION SEGMENT,

EXAMPLE 6-4: AFTER REDy SGV, AND S

REGISFER DumP

NEWLT = 1 IORG = 9 FREG = 00000 FBASE = 002(C ISMK = O
REL ORG LEN OU/F IS FN Nwl QP CTR  MAX DIR CH MRK
LS: 183 e R S e )
1 040 } COD | 05 | 04 311 |3 400 1000 003101 L1t 1)
jorzlo00to221tittol3])ootl {oor boor k1L Lk
002 10021007 1 11 L IO 11100 =-=>1|
-->
EFFECTIVE ADDR = 0002 IN ¢S
TAG  VALUE op VALUE LINK  AUX
11 ¢ 35 ———t——-
| FMT | FCODE(-1,0.F} ] €205 UNCHANGEDS#s
i st | 0.5 |
I RT | O |
-=>1

MIT USED THE SCALAR -2 GN TOP OF VS TO START A NEw ITERATION.

THE LENGTH OF THE 1TERATION IS 2, AND THUS THE MAX FIELD IN THE ITERATION
STACK [S SET FO L. THE NEGATIVE SIGN OF THE VS ENTRY SIGNIFIED THAT THE
ITERATION IS TO RUN BACKWARDS (DIR=1); HENCE CTR STARTS AT 1 INSTEAD UF O,

THE NEXT VS ENTRY wAS A SEGMENT DESCRIPTUR FOR SEGMENT A IN QS.
MIT USEU THIS TO ACTIVATE THE SEGMENT, BY PUSHING A NEw ENTRY TO LS.

NUTE THAT IN THE NEW LS ENTRY, THE NauT 31T IS 1§ THIS WAS THE PREVIOUS
VALUE OF NEwlIT, NEWIT IS NOw | SBECAUSE A NEw ITERAFIUN HAS BEEN STARTED.

EXAMPLE 6-5: AFTER MIV

REGISTER DUmMP

NEw(T = 1 10RG = 0 FREG = 00000 FOASE = 00200 ISHK = O1
REL OKRG LEN D/E IS FN Nwl (P (21 mAK OIR LH MRK
LS: éme=e- $ormmmnpmm - tomepmmapmmmpencponcet [§I boccmetememc e mepmnnpm—y
| 040 fooo l 0?75 t ot 01 8 |31 00| 1600 i Co3 L o 4oL
1 0t2 4000 1 %9221 411 }0 ) 300l lLoor i corl i b v iy}
1001 boc2 ooz t1t Ll o110l =-=>1
-=> 1

EFFECTIVE ADDR = C003 in CS

TAG VALUE [e] 4 VALUE LINK  AUX
¥Sie-mmm b —mm - Somcmmmaa ¢ QSté-m--ee~
| FRT | FCODE(-1,+0.F) 1 $58Q5 UNCHANGEDSSS
I ST | 05 i
tRY | C i
: sT 12 i

THE FEIRST INSTRUCTION GF THE NEWLY-ACTIVAVED SEGMENT (SEG.A) IS S »
AT QS(2;). THIS INSTRUCTION PUSHED LTS UPERAND (2) TQ vS.

EXAMPLE 6-62 AFTER S (AT QS(2:) )
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EXAMPLE &6 -- E-MACHINE

EXAMPLE 6 -~ E-MACHINE

REGISTER OUMP

NEWIT = 1 IORG = © FREG = 00000 FBASE = 002CC ISKK = 01
REL ORG LEN O/E IS FN NnT 0QF CTR MAX  DIR CH MRK
LS o~ - * . T L I e e S e
1040 f 000 I 0751 01 21 4§31cCO| jooo co3 ol
fo121o000 0022 (1411013 4§00i{ toct f oot t 1ttt
: 001 002 4 OCT I 2 1 L 1O 11§00t -->|
-->
EFFECTIVE ADDR = G003 IN oS
TAG VALUE oe VALUE LIMK  AUX
¥S3e - B I ¥ e e T L e e R R et
1 FMT | FCODE(=1,04F) I o0 s | 3.5 i ]
| ST § 0.5 i1 oL} RED | O 1 o8|
1RT | C i1 o021 s b2 1 ! 1 AL
isr ¢ 2 1 03 1 FA | JCOUECYPT 4} 19
Ed 04 | tFA | aPT | 1 o0l 1}
05 | GOP | Sus l oz 1 0011 |
06 | IRD | a12 | 1 o011 |
0T | OGP | PwR {05 | 0011 |
o8 | o | ADD | oT | ootl | _a
39 | SGV | SCODE(SEG.A.L) i [} 1
1018 } -2 l} ) )
1y mv o i ! |
12 | tRD ) @73 [ t ocol |
13 1 0P | PuR I 13 | ogot |
i“«fls t -1 i i |
1S 1 uP | ADD 1 €2 1 3001 |
16 1 op | MO i 1 ooot |
tr | s { %.0001 | | |
18 1 or | GT 1 02 1 o001 |
19 1 IA | <74 | | 9001 |
20 | 0P | ASGN § 02 1 0001 |
20 L PUP } C ] } }
22 : NLT | QCODES§L,.1) 1011 |
-->

LOCATIGN 3 [& USe WHICH PREVIOUSLY C
BEEN INITIALIZED TU FA. THE VALUE
AQORESS REFERENCED IN THE DA AT aTl
IN ADDITION, THE LINK FIELD OF QS5(33
QS(22:), oHEICH 1S VYHE JTERAVION CONT
ELEMENT OF THE ICB ENYRY (l.E. THE
TAKEN FRUM 8T1. (SEE EXARMPLE 6-2 FOR
1Q1 FIELD) IS DEL TIMES THE MAX

LS HAS NOT CHANGED YET BECAUSE TH
NCV YET BEEN EXECUTED. THE INITIALY

ONTAINEYD AN IFA  INSTRUCTIGN, HAS
FIELD NOW CONTAINS VvPT , THE BASE
+ ANU THE ABASE (=4} FROM THAT DA,
) IS NUw A RELATIVE POINTER TO

RUL BLUCK FOR THIS AMRAY. THE SECOND
G2 FIELD) JS THE DEL FOR THIS AWRAY,

CONTENTS OF T1}. THE FIRST ELEMENT
YALUE IN THE TOP ENIRY ON 15,
E NEwLY~CREATED FA& INSTRULTION HAS
ZATIGN PRUCESS ALSU ERASED THE DA

STARTING AT @71, WHICH [S NO LONGER REFERENCED ANVYNHERE EN THE MACHINE.

EXAMPLE 6-7: AFTER IFA

REGISTER DumpP

NEWIT = 1 IORG = 0 FREG = 00000 FBASE » 00200 ISMK = 01
REL DORG LEN O/E IS FN NmT QP CTR  MAX DIR CH MRK
[§1) . - . 183 .
§ 0960 f 000 Jo75s 04 0t b |3 | 00 1000 003 1010 LI
tot2t1oo00toezittiiol3dlool ftoor toor 2ttt
: 002 1 002 t 007 F L 1 L 1O 4 A} OO ~=>)
-
EFFECTIVE ADDR = CCO4 N US
TAG  VALUE op VALUE LINK  AUK
¥S3 + QS: -— + *
| ¥MT | FCODE(~1,04F) I oo b's .5 ) | [
I ST | 0.5 ! ot L ReD | O { 08 | i
1RY t o 1 o021 s V2 1 | I A_
tst 42 t 03 | FA | QCOOELVPT,5) [T [
| sY to I 04 | IFA | 4PT i | o0t §
-=>1 0S5 | GoP | sus 1 02 | o011 §
06 | IRD | 412 | I oorl |
QT | GP | PuR 1 05 ) 0011 |
G8 1 0P | ADD | o7 | o011 | _A
09 | SGV | SCODE(SEG.A,L) I |
101s ) -2 | 1 ]
11§ WY Lo 1 | §
12 | 1R0 | @73 | | 0001 |
13 4 0F | PwhR { 13 | o001 |
14 | s i -t i i i
15 L aP | AvD f 02 4 2001 ¢
16 | oP | mOD I | o001 |
I7T1S ) 0.,0001 ! | .
18 1 v? | GY i 02 1 oo0t |
19 | ta | avTe | I 2001 |
20 | 0P | ASGN i 02 | oool |
21 Y pOP | O ) } }
22 : NLT | QCODE(L,1) ot
=-=>

THE AODRESS IN Q5{3;1 HAS BEEN UPDATED 8BY THE INDEX UNIT ANO THE VALUE

I7 REFERS TO HAS BEEN PLSHED T

vs.

THUS THE YALUE (0) UN TUP OF v$

AT THIS POINT IS PTI2;1). (RECALL THAT THe E£FFECTIVE ADODRESS OF AN

ARRAY ELEMENT REFERENCEC IN AN

FA

INSTRUCTION IS THE Sum OF 1TS CODED

PARTSy PLUS 1 (TD COMPENSATE FOR THE ARRAY HEADER WCRD) ).

EXAMPLE 6-8: AFTER FA



EXAMPLE & -- E-MACHINE EXAMPLE & -- E~MACHINE

- 28T -

REGISTER DUMP REGISTER DumpP

NEWLT = IORG = O FREG = 00C00 FoASE = 002C0 ISk = 0l NEWIT = | 10RG = 0 FREG = 00000 FBASE = 00200 ISk = 01
REL ORG LEN D/E IS FN Nl QP CTR MAX DIR CH MRK REL ORG LEN D/E IS FN Nl gP CTR MAX  DIR CH MRK
LSt + [$%] LSt #-—- *- tomepom=ce [S3
1 040 {000 J O7S O 01 113 ] o0 fooc b 003 1 O L)L) 1 040 | 000 F OTS L O4 0 L &3} 00l 1000 | ¢o3 1 o1 1)
fol2 1000 0221 ti1 1101431400} toot b ool b1 i1t | 0k2 1000 1 022 A 1 1 L O 3 |00 oo 1 ool t 11 Lo
| 003 foc2 4 oo 1 1LiO LGOIl -->1 : 005 1 0021 007 {11 11011} o000 =-=>1
-=> | -=>
EFFECTIVE ADODR = 0005 IN QS EFFECTIVE ADOR = 0007 IN 4
TAG VALUE oe VALUE LINK  AUX TAG VALUE oP VALUE LINK  AUX
21 Qs: vss: ——-¢ QS1e¢ ———tee-
| FAT | FCODE(-1,0,F} 1 o0 1s I 0.5 i | [} | FMT | FCODE(~-1,0,F) { 001 S i 0.5 1 t |
I ST | 0.5 | 01 1RED | O t o8 | | | ST | Q.5 i oL ) RED | O | o8 § |
| RYT j O I 021 s 12 I [} 1 A_ I RY | 0O i 021 s [ | ] [
I st 12 1 03 | FA | QCODELVPT,S) L 194 [} | st | 2 i 93 ) FA | QCODE(YPT,5) 1 19}
P ST Lo I 04 ] FA | QCODE(VPT,1) {19 ) 1 | sT 10 | 04 | FA4 | QCUOE(VPT, 1} 119 ) |
I sT o I o5 { Gor | Sus I 021 oot | -=> 05 | GoP | sus i 021 o011 |
-2 06 | IRD | 4¥2 i { 00l | 06 | NIL | O [ | !
oT | OGP | PR §} 05t ooll |} 0T 1 oP | Pun | 05 1 ootl |
a8 | OP | aDD | 07 | 0011 | _a 08 | oFr | ADD { o1 | 0011 | _aA
09 | SGV | SCOUE(SEG.ALL) | { | 09 | SGV | SCODE(SEG.A,1) 1 | |
1ols | -2 | ] | 101s -2 | ! I
11 | MIT | O ] [} | 1| miv | o | [} ]
12 | IRD | @73 i i o001 | 12 1 1RD | 473 i i o001 |
13 | oP | Pur 1 13 ] o001 | 13 1 0P | Pwe f 13 | ooot |
14 1S 1 -1 | t 1 e 1 S | -1 i | |
1s | o | AUD 1021 o001 | 15 | 0 | aDo 1 02 | do001 |
16 | OP | mOV 1 | oool | 16 { 0P | mOD t | ooo1 |
171s 1 0.0001 | 1} | 1795 | 0.0001 | | |
18 | 0P | GV I 02 | oool | 18 | o | &T t 02 | ooot {
19 | 1A | aTe [ 1 0001 | 19 | 1A | 474 | 1 0001}
20 | OF | ASGN § 02 | o001 | 20 | QP | ASGN | 02 § ooot |
21 rOP | O 1 i | 21 |1 po0P | O i ! i
22 | NLT | QCODE(L.L) ot I 22 § NLT | QCODE(L,1) | ot | |
23 | NT | QCODEL6,2) | | | 23 | NT | QCUDEL6.2) [} ] [
26 | NLT | QCODE(L.1) -1 W I 26 | NLT | JCODELL,s1L) 10114 [}
-=> | ~-=> 1
THE IFA AT QS(63) MAS BEEN CHANGED TO FA o AS IN EXAMPLE 6~T, AND THE THE SUB HAS BEEN DUNE. (IN THE E-MACHINE, GOP 1S TREATED SAME AS OP,.)
FA MAS BEEN EXECUTED, AS [N 6-8. THE TOP Tw0 ELEMENTS ON VS ARE NOW THE IRD OPERATION DECREASES THE REFCO UF [TS OPERAND BY | AND REPLACES
PTE2310 AND PT(O:l). ALSC NOTE THE TwO NEW ENTRIES ON THE TOP OF S o ITSELF BY NIL, THE NO-OP, BECAUSE [RD IS USED BY THE D-MACHINE BUT
WHICH ARE THE ICB FOR THE FA AT QStis;). NOT BY FTHE E-MACHINE.

EXAMPLE 6-91 AFTER QS(43) ({INITIALIZATION AND EXECUTION) EXAMPLE 6-~103 AFTER SUB,IRO
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EXAMPLE 6 ~- E-NMACHINE

REGISTER DUMP

NEWLY = 1 10RG = O FREG = 00000 FBASE = 00200 ISWK = O1
REL ORG LEN D/E IS FN NuT WP CTR  MAX DIR CH MRK
[§ 3] 1s2 et St
1 040 J 000 f 075 J O L Ok §3 00| 1000 1 003 10 ) L {1}
1 0121¢c00 0221 2 8 K 4013 )col boci boor b L1
| 006 § 002 1067 1 1 3 2 O 1L |00} -->1I
~=>
EFFECTIVE ADDR = 0008  IN QS
TAG  VALUE op VALUE LINK  AUX
1303 + QS ——
| FMT | FCODE(~-1,0,F) [} *94Q5 UNCHANGED¢8®
t ST | 0.5 |
| RY | O |
I sT Jo 1
~=>}

PWR (AT QS(T73)) WAS APPLIED TC THE TOP 2 ELEMENTS UN THE YALUE STACK,
0 AND 2 ¢ THESE OPERANDS wEHE DELEVED AND THE RESULT OF THE UPERATIUN
VS, (0 ¢ 2 = 0}

HAS BEEN PUSHED TO

EXAMPLE 6-112 AFTER PWR

REGISTER DUMP

NEWLT = 1 10RG = 0 FREG = 00G00 FBASE » 0020C ISMK = 01
REL ORG LEN O/E IS FN NwT 4P CTR  MAX DIR CH Max
LS: ¢ tomn [£1] . et e
| 040 | 000 § 075 4 O F O} 1 | 3§00} 1000 L 003601 1411
101210001022+ 111i01}3}col Loor booy it vl
100740621007t 1id1riood-->1
-=> 1
EFFECTIVE ADOR = C009  IN QS
TAG  VALUE op VALUE LINK  AUX
VSie-- ¢+ QSte e
| FMT | FCODE(~1,0,F) 1 #8805 UNCHANGED®s®
I ST 1 0.5 |
i s¥ 1o |
-=>

THE ADO OPERAVION, SEEING THAT (TS SECUND OPERANU HAS TAG RT,
GIVES AS ITS RESULT THE FIRST UPERAND, WITH TAG ST. THIS IS
ACCORDING TQO THE DEF INITION OF REVUCTION.

EXAMPLE 5-123 AFTER AOD

EXAMPLE & —- E-MACHINE

REGISTER DuMNP

NEWIT = 0

LSs: ¢

--> |

IORG = 0 FREG = 00000 FBASE = 00200 IsHK = 01
REL URG LEN D/E 1S FN Nl Qr cIm MAX DIR CH MRK
+ * IS: » .
040 1 000 1 075 J 0ot 0 & |3} 00| 1000 1 0031014 11} 1
b 012 1000} 0221 1) 11013001 booo 1 oo b 1 ¥ b2
I 000 1 002 0007 1 £ 1L O 11} 00 =~>}|

EFFECTIVE ADDR = 0002 IN ¢S

Tag VALUE oe VALUE LINK  aux

L ATRS

-=>1

QS: ¢-mmmme —
*43QS UNCHANGEDS®s
ST | 0.5

*
FMT | FCODE(=1,04F) ]
|
st | o I

IN THE LAST FRAME, THE SEGMENT wAS COMPLETED, SINCE ITS RELATIVE
ADDRESS WAS THE SAME AS ITS LENGTH. HUWEVER, SINCE THE is [13]
WAS SEY FOR THAT SEGMENT, THE is WAS STEPPED BUT UION'T UVERFLOW.
THUS, LS WAS RE-INITIALIZED TO THE JEGINNING UF THE SEGMENT, TO

BE REPEATED WITH THE NEM s VALUES. NOTE THAT NEwIT NOw IS O,

AT THIS POINF, THE EQUIVALENT OF THE ALGOLIC ®“REDUCE := REDUCE + ..."
HAS BEEN DONE FOR J=0 AND K=l.

THE SECCND PASS THROUGH THE REDUCTFIUN SEGMENT PROCEEDS SIMILARLY

TG THE FIRST, EXCEPT TMAT NO FURTHER I{NITEALIZATIUNS NEED BE DONE.
AT THE END OF THIS ITVERATIUN, REL=LEN IN LS ANOy AS BEFORE, THE
ITERATION STACK will BE SVEPPED. HOWEVER, VTHIS TIME iT OVERFLOWS,
SO BUTH LS AND IS ARE POPPED, RETURNING THE MACHINE TO THE

RAIN SEGMENT. (SEE NEXY FIGURE)

EXAMPLE 6-131 BEGINNING OF SEGMENT wiTH STEPPED IS
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EXAMPLE 6 -- E-MACHINE

EXAMPLE 6 —— E-MACHINE

REGISTER OUMP

REGISTER DUMP

NEWIT = ] 10RG = 0 FREG = 00000 FBASE = 00200 ISMK = 00 NEWIT = | I10RG = 0 FREG = 00000 FBASE = 00200 ISMX = 00
REL ORG LEN D/E IS FN NwT QP CTR  MAX DIR CH MRK REL ORG LEN D/E IS FN NwT QP CTR  MAX DIR CH MRK
[ R I e e e e e 2 T T D I e e S T Y R ST ] LS2 == + + ¢ 182 [z
{040 t 000 J OTS 1 6L O 1 )3 1|o00) 1000 L 00310} L1 f 0s0 1000 J OT5 1 O O] L |3 {coll 1000 £ 003 O 0 43}
1012100010221 11141013100 §-—>1| : 020 1 000 | 022 1} L1 O} 3} 0ot =-=>|
~> -->
EFFECTIVE ADOR = 0012 [N QS EFFECTIVE ADDR = 0020 IN QS
TAG  VALUE aP VALUE LINK  Aux TAG  VALUE op VALUE LINK  AUX
Vs + -+ QS: —_— vS§2 + ¢ Qs: *
1 FAT | FCODE(=1+0,F) I o0t s | 0.5 ] ] | | FMT | FCODE(~1¢0,F) I o048 | 0.5 ] | |
§ ST | 0.5 I oL {reED | 0O 1 o8 | i I ST 11 | oL | meD | O | o8 | ]
1st o1 } o21s 12 1 I ) oA | AT ) QCODE{VE,S) I o218 12 | | I A
-—>1 03 | FA | QCODEIVPT,s) 1191 ] -->1 03 | FA | WCODE(VPT,4) [ 19 1
04 | FA | QCODE(VPY,0) 1191 | o¢ | FA | QCOOECVPT,0) 119 1
05 | GOP | sus {02 1 ooll | 05 | GOP | Su® | 02 | ooll |
06 | NIL | 0 1 ! | 06 | NIL 1 O | 1 1
orT [ OP | PuRk | 05-1 oo1t | 07 { oP | PuR | 05 | o011 |
o8 | OF | ADD 1 07 | 0011 | _A 08 { OP | ADD o7 | 0011 1 _A
09 | SGV | SCOOELSEG.A,L) ] i I 09 | SGV | SCODE(SEG.A1) | i ]
104§ I -2 | | i 10 | § t -2 i i i
1L | mIT § o i i | Lt Nri o ¢ t i
12 | IRD | 473 1 1 0001 | 12 b NiL L O | | |
13 ) 0P | PR 1 13 | o001 | 13 oF | PWR 1 13 1 o001l |
14| S [ ] [} I 16 4 S i -l 3 1 |
15 | 0P | aDO t 02 | o001 | 1S { oF | ADOD | 02 1 o001 |}
18 | oFr | moD i 1 o001 | ie | or | mud t } o001 |
171S | 0.0001 1 i | 1748 | 0.0001 | i |
18 1 OP | 6T 1 02 | o001 1| 18 yor | GV | 02 | o001
19 1 16 [ a1s | t 0001 { 19 1 &} QCODELVE,$) 1061 }
20 | OF | ASGM 1 021 o001 | 20 | OP | ASGN | 02 | 0001 |
210 1 POP | O i ] { 2L L por | O | | |
22 | NLT | QCODE(L.1) [ 19 | 22 § NLT | QCODELL,L) jord |
23 | NY | QCODE(6.2) | ] | 23 | NT | QCODEL6,2) | ] §
26 | NLT | QCUDE(1,1) [ 10 | 24 § NLY | QCODELL,1) | ot} |
-=> | 25 | NLT | QCOOE(3,1) 1 | [
--> |
REDUCE SEGMENT IS OONE, 1TSS RESULT (1} IS ON TOP OF Vs,
NOTE THAT NEWIT WAS RESTORED TU 1 WHEN LS WAS POPPED. QS41230) THROUGH QS(193) HAVE BEEN EXECUTED. NOTE THAT THE 1A AT GS(193)
WAS TRANSFORMED YO A AND THAT [TS RESULT IS5 THE CODED ADDRESS wWITH
THIS STAGE CORRESPONDS TO THE COMPLETION OF THE ®FOR K® LOOP WITH J=0. TAG *AT* ON TOP OF VS,

EXAMPLE 6-142 AFTER RETURN FROM REDUCTRION

EXAMPLE 6-15t BEFORE ASGN
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EXAMPLE & -— E-MACHINE

REGISVER DUMP

NEWIT = 1 10RG = 0 FREG = 00000 FBASE = 00200 ISHK = 00
REL ORG LEN D/E IS FN NWT QP TR MAX DIR CH MRK
[ I e i Sadadutt Sedadl T : L e L ettt SO L

{ o040 J 000 | 075 § O | O

i
[ 00 | 1 000 1 003 1 04 141
o022 t000 1022111110 ]
[

~=>
EFFECTIVE ADDR = 0022 IN QS
TAG VALUE oP VALUE LINK  AUX
vSs: -——  US: —— *
| FAT | FCODE(=1,0,F) ] €$205 UNCHANGEDe»s
~=>

AFTER ASGN AND VPUOP. THE YALUE CN V5 HAS BEEN STURED AT VE*1+8 IN MEMURY,
SINCE THE SEGMENT HAS BEEN CUMPLETEU, THE Is witt Bt STEPPED AND

LS witt BE RESET TQO THE BEGINNING SINCE VYHERE IS NOQ QVERFLOW.

THLS STAGE CORRESPONDS TG CNE PASS THROUGH THE ®FOR J® RANGE., WiTH J=0.

EXAMPLE 6-16: AT END OF MAIN SEGMENT, FiRST TIME THROUGH

MEMORY DUMP
ADDR CCNTENTS

ADDR CONTENTS ADOR CONTENTS

ary RC=1 LEN=05 vPT RC=1 LEN=09 VE RC=1 LEN=1T7
401  ve=vyPT AB=0CO +Cl O +01 ©
+02 RANK=2 +02 0O +02 1
+03 R(L1)=0C& D(1}202 +C3 9 +03 1
+04 R(2})=002 0(2)=01 +04 1 +04 ¢
+05 1 +05 1
aE RC=1 LEN=0S +C6 0 +06 ¢
+01 vBsVE AB=000 07 1 +07 0
+02 RANK=2 +08 1 +08 1
+03  RUL)=004 D{L1)=04 +09 1
+04  R(2)=004 01(2)=01 +10 o0
+i1 0
+12 ¢
+13 0
+ls O
s o
*ls 0

ENTRIES FOR @TlyocsoaT4 NOW HAVE REFCOS OF O, AND HAYE BEEN ADDED TO THE
LINKED AVAILABILITY LJS¥, ALTHOUGH THIS IS NGT SHOWN HERE.

THE ENTRY IN THE VALUE ARRAY FOR € , AT VvEe9 [N MEMORY, HAS BEEN
CHANGED TG | BY THE ASGN OPERATION. THIS ENTRY IS  E(2:0).

EXAMPLE 6-17: STATE OF M AFTER FUIRST TIME THROUGH THE SEGMENY

EXAMPLE 6 ~-- E-MACHINE

REGISTER DumP

e e e - o e o o = ———

NEWIT = 0 {URG = 0 FREG = 00000 FBASE = 0020C  ISMK = 00
REL  ORG LEN UD/E IS #N NwT QP CTR  MAX DIR CH MRK
LS: #mcmcecpmmmcc o mm - S L T Els g 4
| 040 { 000 | 075 1 0 ) 9 ) 1} 3] 00 1003 ) 003 41010 L ¥ 1
] 0622 yoco J 0224 14t io0o i3 bcol-->
-=> 1
EFFECTIVE ADOR = 0022 IN GS
TAG VALUE or VALUE LINK  AUX
vS§: ———t QSite=mc—-p- '3
| FMT | FCODE(~L40,F) i 00 1sS | 0.5 | |
-->1 0L | RED | © 1 o8 |
021 s 12 i I
03 } FA | QCODE(VPT,4} I 191
04 | FA | QCODELVPT,6) I 19
05 | GUP | sus I 02 | o011
06 I NIL )} O I |
07 | QP | PwR } 05 | o0i1
08 | P | ADU I o7 | 201l
09 ) SGY } SCUDEISEG.A,1) | )
1C1s 1 -2 i |
1| MIT j o | |
12 I NIL | O i [
13 ) 0P | Puk {13 | 92001
. 14 1S t -1 f |
15 | GP | AOD } o2 1 o001
16 | OP | MOD ] | 2001
17 4 S | 0.0001 | t
18 { o | GF I 02 | oool
19 1 A | QCODEUVE,LL) I 06 |
20 | OP | ASGN | 02 | o001l
21 f POP | O | |
22 { NLT | JCUDE(L, L) 1 014
23 | NT | 9COUEtb,+2) t i
24 | NLT | QCUDE(L1,s1) 1 o1
25 | NLT | QCUDE{3,1) t
-=> 1

THE MAIN SEGMENT wAS REPEATED 3 MORE TIMES IN THE SAME wAY A5 SHOWN

FUR THE FIRST PASS.
AND THE 1s
THIS POINT CORRESPCNDS TQO THE COMPLETIUN OF ®FOR J".

EXAMPLE 6~18: REGISTERS AFTER NEXT THREF PASSES THROUGH SEGMENT

AT THIS PCINT, 3 MURE VALUES HAVE BEEN STURED
ENTRY CORRESPONDING TO THIS SEGMENT HAS BEEN EXHAUSIED.
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EXAMPLE 6 -- E-MACMINE

REGI
NEWIL

LS:

-->

|
-->1

EXAM

STER DUMP
T =3 10RG = C FREG = 0CCO0 FBASE = 00200

REL URG LEN D/E IS FN NwT Q°P
$m——— ————— t————- L LY ST ey SR
| i | |

| c40 ) coo | 075 | C
|

EFFECTIVE ADODR = 0240 IN M

TAG VALUE oe VALUE LINK  AUX

..... - -— - [ e et e Sttt St ST PP 3

FMT | FCODE(-1,0,F) I =-=> 1

THE LAST FIGURE WAS THE END OF THE SEGMENT. THUS, IS WAS

STEPPED. SINCE IT OVERFLUWED, s AND LS WERE POPPED.
DE-ACTVIVATING THAT SEGMENT CHANGED CONTROL FROM THE €- TQO THE D-~MACHINE
AND THEREFURE Ul WAS RESET TO THE BEGINNING OF THE SEGMENT

JUST COMPLETED.

MEMO

ADDR

sPT

PLE 6-~19: REGISTERS AT CCMPLETICN UF E-MACHINE EVALUATION,
RY DUMP
CONIENTS ADDR CONTENTS AUDR CUNTENTS
B R ettt e e ————— mmapmrc e c e ce e ———
RC=1 LEN=05 vPT RC=1 LEN=09 VE RC=1 LEN=17
VB=VPT AB=000 +01 ©C +01 O
RANK=2 +02 0 +02 1
R{1)=004 D{(1)=02 +023 0 +03 1
R{2}=0G2 D(2)=01 +04 1 +04 O
+05 1 +05 1
RC=1 LEN=05 +06 O «06 O
VB=VE AB=000 +07 1 +07 O
RANK =2 +C8 1 +08 1
R{1)=004 D{(1)=04 +09 1
R{2)=004 D(2)=01 +10 0
+11 O
+12 1
+13 0
+14 0
+15 C
+16 0O

EXAM

NOTICE THAT THE VALUES AT VE+9,10,11,12 HAVE CHANGED FROM EXAMPLE 6-2.
THESE CORRESPOND TO €E(23), THE ENTIRE ROW OF E TO 8t CALCULATED.

PLE 6-20: MEMORY AT COMPLETION CF E-MACHINE EVALUATION



APPENDIX A

SUMMARY OF REGISTERS, ENCODINGS AND TAGS

This appendix summarizes the uses of all machine registers and details the

fields in the various stacks. In addition, the several encodings used as parametric

functions in the design description are outlined. Because of the parametric nature

of the design, not much will be said about field sizes except to indicate the range

of the contents of a particular field or register. We assume that in any particular

incarnation of such a machine, all the fields are "big enough' to contain their

contents.

In the detailed algorithms of Appendix B, the registers are construed

as arrays of scalars with some kind of encoding imposed upon the contents, if

necessary.

While not completely rigorous, this approach serves to show how the

machine works without having to explicitly encode and decode all references to

registers at each step.

A, Registers

1. LS (Location Counter Stack)

Field Column
Name Index

Contents

REL

ORG

LEN

D/E

IS

0

Relative location in segment. Generally points to the next
instruction to be fetched.

Segment origin, For D-machine segments, this is relative to
FBASE. In the E-machine, the effective address is +/LS[LI-1;0,1]
and in the D-machine it is FBASE++/LS[(LI-1;0,1].

Length of segment. For D-machine segments, this is in words,
and for the E~-machine, this is the number of QS entries for the
segment,

Segment mode. This field is 0 for the D-machine and 1 for E-
machine segments.

Iteration mark. Has value 1 if this segment is associated with
an iteration in IS; otherwise it is 0.
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FN 5 Function mark. Has value 1 (else 0) if this is the main segment
of an active function,

NWT 6 NEWIT value, stacked when a new iteration is activated.

QP v QS pointer. Used by index unit for expression indexed from
QS rather than IS. (See Section E.)

2, IS (Iteration Control Stack)

Field Column
Name Index Contents

CTR 0 Current iteration count. This value is always non-negative and
varies between 0 and the value in the MAX field, in the direction
indicated by the DIR field.

MAX 1 Maximum iteration count.

DIR 2 Direction of count. (0 for positive, 1 for negative.) If positive,
then CTR is initialized to 0;otherwise it is initialized to MAX.,

CH 3 Change. Used by STEPIS routine in main control cycle to mark
all IS entries which have changed since the last cycle.

MRK 4 Mark. Has value 1 for the outermost iteration of each nest.
Otherwise, it is 0. (See ISMK register, below.)

3. VS (Value Stack)

Field Column

Name Index Contents
TAG 0 Tag field. Identifies kind of entry in value field.
VALUE 1 Value,

4. QS (Instruction Buffer)

Field Column
Name Index Contents

oP 0 E-machine operation code. The QS contains instructions deferred

by the D-machine for later execution by the E-machine. Occas-
sionally this field will contain a tag, such as XT, for an entry
which is a temporary value for the EM rather than an executable
instruction.

VALUE 1 Value, Contains the value in immediate instructions and the
operand for others.
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LINK 2 Link. This is a signed integer used to reference other instructions
and entries in QS. It is taken relative to the QS index of the entry
in which it is found. By keeping links and segment origins relative
in QS, all deferred code is relocatable,

AUX 3 Access mask, Contains an encoding (MCODE) of the iteration
indices to use in accessing an array expression,

5. NT (Nametable)

Field Column
Name Index Contents

INX 0 Symbol index. Since NT is content-addressable, the value of
INX must be carried with each entry. These indices (or names)
may be assigned in any arbitrary way. There is no built-in
restriction on their use.

TAG 1 Tag. Same as tag field in VS,

CONTENTS 2 Value. Same as in VS,

6. M(Memory)

In the APL machine, M is considered to be a vector of length MLENGTH of words
which can be addressed between BOTM and TOPM, The particular encodings used
in M are not specified except as necessary, e.g., in instructions such as LDSEG,
the M-entry containing the operand is in SCODE encoding. Otherwise, each scalar
value is assumed to take up one machine word, as is each instruction. This is
clearly inefficient in space utilization, a.nd it would be expected that any real
implementation would specify more reasonable and detailed encodings for various
kinds of values, Nothing in the machine design is based on the word as the primary
unit of memory in the machine, so there should be no problem in making such

modifications.,
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7. Other Scalar-Valued Registers

Register

Name Contents

LI LS index. (All stack indices point to the next available entry
in the stack.)

II IS index,

V1 VS index.

QI QS index.

NI NT index.

BOTP

TOPP POOL pointers for M allocation.

ARRAVAIL

DAAVAIL Pointers to beginning of availability chains for M allocation.

FREG | VS index of innermost active function mark. When a function
is activated, the previous values of FREG and IORG are stacked
in VS in the function mark, and restored on return,

IORG Index origin for innermost active function,

FBASE Function origin in M. Points to beginning of the segment
containing the innermost active function. Upon exit from a
function, FBASE is restored to point to the correct base from
information in the stacked function mark.

NEWIT Iteration tag., Set to 1 at the beginning of a new nest of iterations,
and used by the index unit to keep indexing straight. NEWIT is
stacked in LS and restored from there each time a new iteration
nest is activated.

ISMK IS index of the marked entry closest to the top of the iteration

stack. Used by IU.

B. Encodir_xgs

The APL machine makes use of a few specific encoding functions. These are
used for encvodings which could be expected to fit within a single machine word.
Although this bias is built into the design, it is inessential to the basic ideas used

in the design, and could be changed if necessary.
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1. SCODE org, len, m . This is the encoding of a segment descriptor.

m is 0 or 1 depending on whether this segment is for the D-machine or the E-machine,
org is the beginning address and len is the length of the ségment. The inverse
(decoding) functions are SORG, SLEN, and SMODE, respectively. In the EM, if

a segment descriptor is in QS, org is relative to its QS-index.

2. JCODE len, org, s . This is the encoding for a J-vector descriptor.
The inverse f{mctions are JLEN, JORG, JS.

3. XCODE a, b,c . Encoding used for various purposes in the E-machine,
Generally, a and b are an index and its limit, respectively. c is always a single
bit quantity. It is conceivable that the functions SCODE, JCODE, and XCODE
might be identical in a particular implementation of the APL nriachine, as might
their inverses. The inverse functions for XCODE are X1, X2, and X3, respectively.

4, QCODE a,b . This encoding is used in constructing ICB's during EM
executions, Each field is potentially as large as the machine's merriory and might
be signed. The decoding functions are Q1 and Q2.

5. MCODE mask . This is the encoding function which takes a logical
vector which is an access mask for an array and encodes it for storage in the AUX
field of QS. The inverse function is MX1,

6. FCODE freg, iorg, name . This is the encoding used in function marks

on VS, The inverses are Fl, ¥2, F3.
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C. Tags

This section summarizes the tags which can be used in VS and NT entries,

Tag VS NT Meaning

UT 1 1 Undefined value.

ST 1 1 Scalar value,

JT 1 1 J-vector. Such enfries are moved to QS from VS almost
immediately.

DT 1 1 Descriptor array pointer. In VS means this is a result
to be assigned to, while in NT, all array values have this
tag. As with JT, DT entries will be deferred to QS as soon
as they are noticed,

FDT 1 0 Similar to DT, except the array is to be fetched. Same
note applies.

FT 0 1 Function descriptor pointer.

SGT 1 0 Segment descriptor.

NPT 1 0 Name pointer., This is an NT index.

FMT 1 0 Function mark,

RT 1 0 Unused (so far) reduction accumulator.

AT 1 0 Encoded M-address,
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APPENDIX B

A FUNCTIONAL DESCRIPTION OF THE E-MACHINE

The functional description of the E-machine which follows is written in an

informal dialect of APL, It differs from "'standard" APL only in its sequence-

controlling statements. Instead of using branches, more sophisticated, and more

easily understood, constructions are utilized, These are summarized briefly below:

1.

2,

BEGIN . . . END delimits a compound statement, as in ALGOL.
Likewise, conditional statements and expressions of the form
IF condition THEN . . . §L§E_ .

are as in ALGOL., However, 'in this description, the condition part
evaluates to 1 or 0, corresponding to TRUE or FALSE in ALGOL.
The case construction,
CASE n OF
BEGIN

St

S2

Sk

END

chooses and executes the nf—;l—1 statement in the sequence. This description
has omitted some BEGIN's and END's in compound statements within the

CASE statement ahd substituted typbgraphical grouping, Although this is

not syntactically rigorous, it renders the description more readable.

The REPEAT statement repeats its range indefinitely., Within a repeated
statement, the CYCLE statement is used to resume the main (compound)

statement from the beginning, and LEAVE aborts the innermost REPEAT.,
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] THE E-MACHINE -- A FUNCTIONAL DESCRIPTION

a MAIN CYCLE ROUTINE
BEPEAT
BECIN
n THIS IS THE CONTROL ROUTINE IN FIGURE 2, HOWEVER,
a ONLY THOSE PARTS RELATED TO THE E-MACHINE ARFE SFHOWN,
IF ~CASTOG THEN
BEGIN
IF LSCLI-1;0)2LS[LI-1;2] THEN
BEGIN a TOP SEGMENT ON LS HAS OVERFLOWED

Sl e i TR e

BEGIN e ITERATION MAY RECYCLE
LSTLI-1;01+0
STEPIS
NEWIT < 0
IF STEPTOG THEN CYCLE
END
m DEACTIVATE TOP SEGMENT AND TRY AGAIN
LPOP
CYCLE
END
K « +/LS[LI-1;0,1]
IF ~QS[K;0)elA,IFA,IJ,ISC,IXL THEN
LS[LI-13;0] « LS[LI-1;0]1+1
END
CASTOG « 0
a IF ACTIVE SEGMENT IS FOR D-MACHINE THEN ACTIVATE DM
IF LS[(LI-13;31=0 THEN DMACHINE ELSE

CASE DECODE QS[K;0]1 QF a GOES TO LABELS BELOW

BEGIN & DELIMITS RANGE OF (CASE STATEMENT
an 'LABELS' BELOW NAME E-MACHINE INTERPRETATION RULES

S) VPUSH ST,QS[K;11]

TA ) D <« @S[K;1]
IFA) INX <« GINX K
QS[K;2,01 < QI, IF QS[K;01=IA THEN A ELSE FA

A + GETDEL D,I n A
S « S+R+IF T[O]=NT T
QPUSH TL[I= 1+pINX],(
I « I+1

END
QSCK;1] « QCODE (GETVBASE D),S+GETABASE D
ERASE D

= DELLI] FOR THIS ARRAY
EN AxISCINX[I);1] ELSE ©
0

ik
QCODE R,A),INX[I],0

A) IV K
FA) VPUSH IF QS[K;01=A THEN AT,QS[K;1]

ELSE ST,FETCH QS[K;1]
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J) Iv1 X
OP) EXECUTE QS[K;1] =~ QS[K;1] ENCODES A SCALAR OP

RED) VPUSH RT,O
LS[LI-1;0]1 « K+@S[K;2]

DUP) IF K>VI THEN ERROR ELSE VPUSH VS[VI-X;]
VXC) IF VI<2 THEN ERROR ELSE VS[VI-1,2;1«VS[VI-2,1;]
POP) VPOP
IJ) INX « GINX K
S « (JORG @S[K;11) + IF 0=J5 QS[K;11 THEN -IORG ELSE
ITORG + ~1 + JLEN QS[K;1]
QS[K;1 « J,(XCODE 0,5,J8 D),INX,0
ITXL) @S(K;0,2] « XL,GINX K

XL) VPUSH ST, IF LSCLI-13;71=0 THEN IS[QS[K;21;01 ELSE
IORG + X1 @S[@slk;2];]

IRP) QS[K;] « NIL,0,0,0

IRD) FERASE QS[K;1]
@S[{K;] « N¥IL,0,0,0

MIT) ISMK « IT

IF VSLVI;01=SGT THEN LEAVE

IPUSH VS[VI31],II=ISMK

END
LPUSH 0,(SORG VS[Vvr-1;11),(SLEN VS[VI-1311),1,1,0,0
NEWIT « 1

SGV)Y T « @Q5[K;11] n RECALL THAT SEG DESCRS ARE RELATIVE

VPUSH SGT,SCODE (K-SORG T),(SLEN T),SMODE T
SG) LPUSHS K
ISC) QSCk;0,2] « SC,GINX K

SC) T « ISLQS[K;21;31ANEWITVQS{K;2]12ISMK
IF T THEN LPUSHS K
ELSE IF QS[K+1;01eXS,XC THEN

LS{LI-1;0]) « LSULI-1;01+1

S « K+1-0S[K+1;2]

n SET CHANGE BIT TO 0

QS[S31] « XCODE (X1 @S[S8;11),(X2 @s(s;11),0

=g
=
e
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JMP) IF (QS[K;01=JMP)V((QSTK;0]eJO,JNO)AVS[VI-1;1]=0)

JO ) v(QS[K;0]eJ1,JN1)IAVSI[VI-1;1]=1
J1 ) THEN LSTLI-1;0] « K+QS[K;2]
JNO) IF QS[K;0]ed0,J1 THEN VPOP

JN1)

CY) LS[LI-1;0]) « LS[LI-1;2]
CCY) T « K+QS[K;2]
@S[T3;1]1 « XCODE(1+X1 @QS[T3;11),(Xx2 @s[T;11),1
LS5(LI-1;0] « O
RPT) LSLLI-1;0] <« O
LVE) LPOP
CAS) IF ~(VS[VI-1;01=ST)AVSIVI-1;1]e1QS[K;2] THEN ERROR
LSCLI-1;0] « K+QS[K;2]
K « K+VS[VI-1;1]
VPOP
CASTOG + 1
XS8) J <« K-QS8[K;2]
I « VS[VI-1;11-I0RG

VPOP
IF (I<0)vI>X2 @S[J;1] THEN ERROR

ELSE QS[J311 « XCODE I,(X2 QS[J311),1

XC) J « K-QS[kK;2]
QS[J 311 « XCODE (X1 @S[J311),(X2 @slJ;11),1

LX1) VPUSH ST,X1 QS[K-QS5[K;2]1:1]
LX2) VPUSH ST,X2 QS[K-QS[K;2]1;1]

S5X1) T « K-@S[K;2]
QS[T3;1] « XCODE VS[VI-1;1],(X2 @S[T;11),1

SX2) T « K-QS[K;2]
QS[T:1] « XCODE (X1 @S[T;11),vs(Vvr-1;1],1

ORG) VPUSH ST,IORG
END a END CASE STATEMENT RANGE

END a E-MACHINE INTERPRETATION RULES
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AUXILIARY FUNCTIONS FOR E-MACHINE

INX « GINX K;R

A INX IS A VECTOR OF QS OR IS INDICES TO ACCESS ARRAY,

a HIGHEST COORDINATE NUMBER (I.E. FASTEST VARYING) FIRST
R <« IF LS[LI-13;71=0 THEN II ELSE @S[LS[LI-1;71];2]

INX « $((Rp2)T21QS[K;31)/\R

LPOP

IF LI=0 THEN ERROR ELSE LI <« LI-1
IF LS[LI;41=1 THEN POPIS

IF LS[LI;5)=1 THEN FNRET

NEWIT <« LS[LI;6]

a IF THIS CHANGES MODES THEN CLEAN OFF QS
IF LSULI;31>LS[LI-1;3] THEN
REPEAT :
BEGIN

IF QS[QI;0) ¢ IFA,TA,RDT THEN ERASE @QS[QI;1]

IF QI = LS[LI;1] THEN LEAVE ELSE QI < QI-1

-1
IF ISMK="1 THEN LEAVE ELSE IF ISCISMK;4l=1 THEN LEAVE

LPUSH V
IF LI=LIMAX THEN ERROR

LSCLI;\7] « (64V),NEWIT,IF O= 14V THEN 14V ELSE LS[LI-1;7]
LT « LI+1

LPUSHS K _
IF 0=SMODE QS[X;1] THEN ERROR
LPUSH 0,(K-SORG QS[K;11),(SLEN @5[K3;11),1,0,0,CORR K
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vV TUl1 K;T;8:FR
A CALCULATE J-VECTOR ELEMENT IN FORM XCODE(CURR,INCR,SN)
T « LS[LI-1:;7]
S « (X1 @sfk;11),0
IF T=0 THEN =w IF THERE IS A CHANGE, USE NEW ITER VALUE
IF IS[QS[K;21331ANEWITVQSLK;212ISMK THEN
S « IS8[@S[K;2];01],1

QS[T+QS[K32131] THEN S <« (X1 @S[T+K;11),1

T « X3 QS[K;1)
S[0] « IF T=0 THEN S[0] ELSE -S[01
QS[K3;1] « XCODE S[01,(X2 QS[X;11),T
END
VPUSH ST,S[01+X2 QS[K;11

V TU K3IP;IQ;537;D
a INDEX UNIT
S « 0
TQ <« K+QS[K;2]1 = BEGINNING OF ICB FOR THIS ARRAY
T « LS[LI-137]
REPEAT

IP « QS[IQ;21+T
IF T=0 THEN
BEGIN a THIS ARRAY INDEXED BY IS

o S —

IF (IS[IP;0)=0)AIS(IP;21=0 THEN
S « 5-91 QS[IQ;1]

(IS(IP;01=IS[IP;11)AIS[IP;2)=1 THEN
S « S5+Q1 @S[IQ;11]
T8 « S+Q2 QS[I0;1]
ELSE S + 5-Q2 QS[IQ;1]

151
=
]

BEGIN n THIS ARRAY INDEXED FROM QS

IF 0=X3 QS{IP;1) THEN LEAVE ELSE
D « (Q2 @S[IQ;11)xX1 @5{IP;1]
S « S+D-Q1 QSTIQ;11]
QS[IQ;1] « QCODE D,Q2 QS[IQ;1]
END
iD
F QS[IQ;01eILT,QLT THEN LEAVE ELSE IQ«TIQ+1

E
I
1 « QCODE (Q1 @S[K;11),5+Q2 QS[K;1]
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v

v

v

R « FETCH X
A X IS A Q-CODED ADDRESS OF FORM QCODE(VBASE,INCR)
R « M[1+(Q1 X)+Q2 X;1

EXECUTE CODOP

A CODOP IS A DYADIC OR MONADIC SCALAR OPERATOR(ENCODED)
n EXECUTE DECODES CODOP ON THE ELEMENTS OF VS:

A

a IF ISDYADIC CODOP THEN

A BEGIN

n VS[VI-1;11 « VS[VI-1;1] (DECODE CODOP) VS[VI-2;1]
) VPOP

f END

n ELSE

A VS[VI-1;1] « (DECODE CODOP) VS[VI-1;1]

STEPIS ; I;INCR

a STEP THE ITERATION NEST IN IS

a SET STEPTOG « I[F DONE THEN 0 ELSE 1
STEPTOG < 0

I « IT
REPEAT
BEGIN
I « I-1
IF (IS[r;01=0)AIS(I;2]=1 THEHN
BEGIN
IF ISCI;u4) THEN LEAVFE ELSE
IS[r;0,3]1 « I150r;11],1
END
LSE IF (IS[I;01=IS[I;11)AIS[T;21=0 THEN
BEGIN
IF ISTLI;4] THEN LEAVE ELSE IS[I;0,3] « 0,1
END
ELSE
BEGIN
STEPTOG +« 1
IS[I;3,0] « 1,18[r1;0]
+ IF I501321=0 THEN 1 ELSE "1
LEAVE -
END
END
R « CORR K
R « IE QS[K;21=0 THEN 0 ELSE K - @5[K;2]
IPUSH V;MX

a V[0] IS COUNT (SIGNED); VI[1] IS MARK

an CASE OF COUNT=0 CANNOT OCCUR (HANDLED BY D-MACHINE)
MX « “1+|V[O]
IF II=IIMAX THEN ERROR
IS[IT;] « (IF V[0]<0 THEN MX ELSE 0),MX,(V[01<0),1,V[2]
IT « IT+1
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APPENDIX C

EXPANSION OF D-MACHINE OPERATORS FOR E-MACHINE

This appendix shows how the D-machine expands complex primitives into
deferred sequences of E~machine instructions. It is assumed that the constraints
noted for each operator are met, and that all operands have been tested for domain,
conformability, and so forth before being submitted for expansion. This is not
an important constraint since, for example, the requirement that an operand be
beatable can always be satisfied by explicitly evaluating an unbeatable operand to
temporary space.

Before the expansion of any of the dyadic operations, the value stack and the
instruction buffer are as follows:

LS QS

OP VALUE LINK AUX

LI o a o * o o 8 o ® o ° e

SGT e >{ Code for right operand m2

SGT e >{ Code for left operand ml

where ml and m2 are the access masks for the deferred expressions, found in the
AUX field of QS. In the sequel, segments in QS are delimited graphically by braces
and pointer or Greek letters are used to avoid confusion with explicit relative ad-
dressing.
1. GDF

Thé operands deferred in QS must be simple array values. The operand of

a GDF instruction is a dyadic scalar operator, OPR. Expansion produces the
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following:
Vs QS

OP VALUE LINK AUX

° o s e 0 e o e o o e o LI

(
SGT Code for right operand m2
._—L' <) Code for left operand ml!
’ GOP OPR ’ m3
\ IRD T1 m3

In the above, T1I1 points to a DA containing the result rank and dimension for the
GDF. ml' is m2 shifted left bjr the rank of the right operand. m3 is the logical
or of ml' and m2 (i.e., m3 ml' m2). Because of the requirement that the

operands be simple array values, the segments in boxes each consist of a single

" IJ or IFA instruction,

2, RED

By the time an expansion is to be done, any necessary transposes on the
reducee have been performed. The variable B has value 1 if the reducee is

beatable and is 0 otherwise. The "before' picture is:

\& QS

o e s o o o o © 5 o o o s o

SGT L *{ Code for reducee ml

The reduce operator is OPR, giving rise to the expansion below:

VS opP QS
OP VALUE LINK AUX

. o e o o . e s o .. . 0

SGT RED .
‘ Code for reducee ml

o1

‘ l 0)> OPR T ml
SGV o1
S -len
MIT
IRD @T1 - B -1m
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where len is the length of the reduction coordinate and T1 is a DA with the rank
and dimensions of the result.
3. DIOTA

The ranking operation, corresponding to dyadic i, requires that the left
argument be a simple vector array value, This is because this operand is evaluated
repeatedly during the E-machine execution of the following expansion.

VS QS
OP VALUE LINK AUX

o & o o @ L] o o e o

SGT
Code for right operand ma2 -

JMP .-
W

Code for left operand ml

DUP 2
opP NE

014 JN1 3

POP

LVE

\. OP ADD

ORG <«

SGV o1l

S len

MIT

VXC

POP

<

\_ IRP .- J

len is the length of the left operand. It should be clear from working through the
above expansion that it is simply a literal interpretation in E-machine code of the
definition of the ranking operator. It is assumed that the D-machine will have

checked for the case of an empty vector as either operand, producing the correct

result automatically., If the rank of the result is 0, that is if the right operand is
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a scalar, the above expansion is executed immediately by the E-machine. The
IRP instruction is similar to IRD, except that it points to an instruction in QS
which contains dimension information instead of referring to an explicitly-created
DA,
4. EPS

Before expanding the membership operator, a check is made for the special
cases of right-operand scalar or 1-element quantity. In these cases the operation
done is A=B or A=(, B)[l], respectively, Similarly, if the left operand is scalar
then A=B is done. Otherwise, the expansion is made in QS as below:

VS QS
OP VALUE LINK AUX

SGT ’ f' JMP .
01{ Code for right operand m2
Code for left operand mi |
I
RED 7 L G
7~ DUP 2
sG o1
o9 < oP EQ
OoP OR
> < JNO 2
- \o LVE
SGV o2 -«
lenl
S len2
S lenK
MIT
VXC
POP
_J
\_ IRP -
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where lenl, len2,...,lenK dimension of right operand. As in the expansion for
DIOTA, the expansion of EPS is a straightforward E-machine translation of the
definition of the membership operator.
5. SUBS

Before the SUBS expansion takes place, the subscripts have been examined
to see if they can be beaten into the subscriptee. If an expansion is needed, then

there must be some subscripts left. Before expansion, the registers contain:

VS QS
Code for rightmost
8GT —> { subscript mr
- o Code for leftmost
SGT i { subscript ml
SGT e —> { Code for subscriptee mo0

The rank r of the subscriptee must be the same as the number of subscript
expressions, The rank of the result is the sum of the ranks of the subscripts
(counting empty subscripts as rank-1). Some of the SGT entries on the VS may

be empty, that is of the form SCODE(SEG, NIL, 0). After expansion, the picture
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has changed to:

VS QS
OP VALUE LINK AUX

SGT 1 g JMP

¢ » o o o o e

Code for rightmost
non-empty subscript

e o e o @ e o

Code for leftmost
non-empty subscript

01{ Code for subscriptee

k___,< B XT XCODE(0,11,1)

XT XCODE(0,1r,1)

Calc subs 1
XS
Calc subs r
XS —
SG ol B
IRD @T1 0 mr

(.

Where 11, 12,,..,1r is the dimension of the subscriptee, minus 1. This field of
the XT entries is used for checking purposes in the IU (see Section E). S is the
QS index of the beginning of the XT back and @T1 is a DA with the rank and

dimensions of the result. mr is the access mask of the result, The link field of
P contains r, the rank of the subscriptee, which is used in the initialization of IA,

IFA, 1J instructions. The lines in QS marked ""Calc subs k'' are one of the

- 155 -




following:

OP _ VALUE LINK  AUX
ISC SCODE(SEG.K';1) 0 m'
IXL o 0 m'

In the first case, the k-t—-Il subscript is to be computed explicitly, which is done by
activating SEG K', one of the non-empty subscript segments on QS. In the second
case, the segment that was stacked on VS for this subscript was empty, so the
actual subscript used is the same as that which was controlling this coordinate
from the outside. The mask m' in the AUX field specifies the index environment.
Example 4 in this chapter shows a speéific instance of an expansion caused by the
SUBS operator.

The remaining operator expansions are similar to SUBS, in that they are all
special cases of it.
6. CMPRS

The compressor (left operand) has been evaluated to a temporary space, if
it was not there already, and checked to see if it contains only 0 and 1 elements.
In addition, the number of 1's,call it DIM1, has been counted and Vil, the index
in V of the first non-0 value is known;‘ call it XA, This process is unfortunately
necessary since we must know the rank and dimension of the result before deferral.
The same process must be applied to the expax}sion operator, Unless the com-

pressor falls into a special case which can be done immediately (i.e., scalar 1

- 156 -



or 0 or vector of all 1's or all 0's) then the following expansion is made:

SGT

\LS

OoP

QS
VALUE

LINK  AUX

ol

o2

e i, e,

™ >

O'3<

O
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JMP

e o »

Code for compressee

Code for compressor

XT
XT

DUP

RPT
DUP
SX1
LX2
XS
POP

\. LVE

XL
XS
ISC
XC
XL
XS

IRD

xcode(0,XA, 0)
xcode(0, 11, 1)
xcode(0, Ik, 1)

xcode(0,1r,1)

SUB
SGN

SUB

03

ol

@r1

ml!

mk!'




where li,...lr are as in the SUBS expansion; ml' through mr' are the masks for
the individual subscripts with mk' being the mask for the compressed coordinate,
The first XT entry is used to hold XA and XL where XL is the last value of the
external index for the compressed coordinate. The algorithm used is as follows:
Algorithm for compression: We wish to find XT such that
(U/KIX) oo iTseee]=— X[0o o ;XT50 0 ]

Let XL be the last value of I from which the last XT was calculated. XA is the
index of the first 1 in U, Then, the QS expansion for compression calculates the
new value of XT as a function of the new I and old XT and XL as follows:

if 0 then

XL-0
XT-XA
end

else

repeat
T-—xXL~I
if T=0 then leave
repeat
begin
XT-XT-T
if U[XT]=1 then leave
end .
XL-XL-T

end

7. EXPND
The EXPND operator is treated similarly to CMPRS. In particular, the
expandor (left operand) is checked to see that it is a logical quantity and the number

of 1's is compared to the length of the expansion coordinate. If the expandor falls
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into one of the special cases (all ones, all zeros) the result is calculated immediately.
Otherwise, the QS expansion that follows is made to implement the expansion
algorithm below:

Let R be (U/[KJX)[s++:I;.++]. Then we want to find LX such that Rif Ul{]}=0
then 0 else X[...;LX;...]. LU is the index of the last found 1 in U and LX is the
corresponding ‘X index (on the KQ coordinate),

if U[1}=0 then R~0 else

begin
repeat
begin
T-XI-LU

if T=0 then leave

repeat
begin
LU--LU+T
if U[L.U]=1 then leave
end .
LX-LX+T
end comment main repeat;
R-X[...;LX;.. ]

end
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VS

k_.._,<

ol

NT 3P

-

QS
OP VALUE LINK AUX
JMP N\
Code for expandee m2
Code for expandor mk'
XT xcode(LU,lu, 1) 1
XT  xcode(0,11,1) T
XT xcode(0,1k, 1)
XT  xcode(0,1r, 1)
LX1 )
XL mk'
OP SUB
OP SGN
JNO )
DUP 1
LX1 )
OP ADD
XS 0
SG o2 o)
Jo
LX1 v
OP ADD
XS v
RPT
POP ""J
IXL ml’
XS B
- XL mr'
- XS A
SG ol B
SG o2 -
CAS 2
S 0
SG g3
IRD o mr

Note that the sequence of IXL and XS instructiofls starting at € does not contain a

reference to the kﬂl subsc ript position as this has already been computed at the

beginning of the segment activated by the CAS instruction. Also, in the above, the

quantity fu in the X2 field of the pseudo-iteration stack at is the length of vector

UJ less 1,
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8. ROT
Rotation is a special case of subscripting defined as follows:
If N is a scalar, then R«N¢LK1¥ means for each L ELT 1pM
RL;/L3eM 3/ ((K-1)4L) ,(ZORG+(pM)LK]1 | (N-IORG)+1(pM)LK]) ,K¥L]
I N is an integer array with pN<>(X#1ppM)/pM then
RL 3 /L1+>ML 5 /((K-1)4L) ,(TORG+(pM)LKT | (NL 5 /L' 1-IORG) +1(pM)LK]) , KL ]
where L'<«—>(Kz1ppM)/L.
Thus the expansion for ROT in QS is the same as for a general subscript with all
but the Kﬂ coordinate being IXL, XS pairs and the K—ﬂ-1 coordinate being computed

according to the above deﬁnitidn. The explicit expansion will be omitted since it

is similar to what has already been shown.
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00PN

36

73
147
295
590

1 180
2 361
4 722

AN -

17

70
140
281
562
125
251
503
007
014
028
057
115
230
460
921
843
686
372
744
488
976
952
905
810
€20
241
482

@ AN -

17

137
274
549
099
199
398
796
592
184
368
737
474
949
899
799
599
199
398
797
594
188
376
752
504
009
018
036
073
147
294
589
179
358
717
434
869

o
Db N

32
65
131
262
524
048
097
194
388
777
554
108
217
435
870
741
483
967
934
869
738
476
953
906
813
627
255
511
022
044
088
177
355
710
421
842
685
370
740
481

927
855
711
423
846
693
387
775
551
103
206
412
825
651
303
606
213

w
gN;th’-‘ N:

128
256
512
024
048

192
384
768
536
072
144
288
576
152
304
608
216
432

728
456
912
824
648

592
184
368
736
472
944

776
552
104
208
416
832
664
328
656
312
624
248
496
992
984

936
872
744
488
976
952

808
616
232
464
928
856
712
424
848
6396

VwONOTVMHABWN~O T

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007
0.003
0.001
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

25

625
812
906
953
976
488
244
122
061
030
018
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000

000

000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

APPENDIX D

POWERS OF 2

25

125
562
281
140
070
035
517
258
629
814
907
953
476
238
119
089
029
014
007
003
001
000
000
000

000

000
000
000
000
000
000
000

25
625
312
156
578
789
394
697
348
674
837
418
209
604
802
901
450
725
862
931
465
232
116
058
029
014
007
003
001
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
090
000

25

125
062
531
265
632
316
158
579
289

322
161

580
290
645
322
661

830
415
207
103
551

275
637
818
909
454
227
113
056
ozs
o014
007
003
001

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

25

625
812
406
203
101
550
775
387
193
596

149
574
287
643
321
660
830
915
957
978
989
494
747
373
686
843
421
210
105
552
776
888
444
222
111
055
027
013
006
003
001
000
000
000
000
000
000
000

000
ols ¢}
000
000
000

25
125
562
781
390
695
847
923
461
230
615
307
653
826
913
456
228
614
807
403
701
350
675
837
418
709
854
427
713
356
178
089
044
022
511
755
877
938
469
734
867
433
216
108
054
027
013
006
003
001
000
000
000

25

625
312
656
828
914
957
478
739
869
934
467
733
366
183
091

772
886
443
721
860
430
715
357
678
839
419
209
604
302
151
576
787
893
446
723
361
680
840
420
210
105
552
776
388
694
847
423
211

25
125
062
031
515
257
628
814
407
703
851
425
712
856
928
464
232
616
808
404
202
601
800
400
700
850
925
462
231
615
807
903
951
475
737
868
434
217
108
054
527
263
131
065
032
516
758
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812
906
453
226
613
806
903
951
475
237
118
059
029
014
007
003
001
500
250
125
062
031
515
257
628
814
907
953
976
988
994
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248
624
312
156
578
789
894
947
473
236

25
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562
281
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320
660
830
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434
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464
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034
017
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25
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689
844
422
m
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042
021
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755
377
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094
547
773
886
443
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610
805
402
201
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300
150
575

25
125
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531
765
882
941
970
485
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726
363
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647
823
411
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850
425
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356
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084

25
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924
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745
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534
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25
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890
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851
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290
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25
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312
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541
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567
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391
695
347
173
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021
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001
500
250
625

25

125
062
031
015
5u7
253
626
813
906
953
976
988
954
497
748
874
437
718
359
679
339
169

25
625
812
906
953
476
738
369
684
342
171
085

271
135
567
283
641
820
910

25

125
562
281
140
570
285
142
571
785
392
696
848
924
962
981
490

25
625
312
156
578
289
644
822
411
205
102
051
025
512

5
25
125
062
531
265
132
566
783
391
695
847

5

25

625

812 5

406 25

203 125
601 562 5
800 781 25
900 390 625




CHAPTER V

EVALUATION

In this chapter we examine the design for an APL machine proposed in
Chapter IV and compare its performance to more conventional architectures.
This is done by showing that the APLM is more efficient in its use of memory
than a less sophisticated computer doing the same task.

A. Rationale

In Chapter IO, a number of design goals for the APLM were stated:

1. Machine language should be 'close' to APL.

2. Machine should be general, flexible.

3. Machine should do as much as possible automatically.

4. Machine should expend effort proportional to the complexity of its task.

5. Design should be elegant, clean, perspicuous,

6. Machine should be efficient. In particular, it should be parsimonious of

memory allocation and accessing,
We can dispose of some of these in short order, To begin with, goals 1, 3, and
4 have obviously been satisfied. Since the machine designed implements AP, to
goal 2 we can reply that the machine is general and flexible at least to the extent
that APL as a language is general and flexible. For example, even though the
APLM does not include all of the LISP primitiveé, if it is easy to write a LISP
interpreter in APL, then the machine should be able to handle them with ease.

Although 1 believe that the goal of elegance has been satisfied, this is not the
place to make such judgements, nor am I the one to make them. This particular
aspect will have to be decided by less prejudiced readers. A seventh, unstated
goal is that the design should indeed work. It should be clear to the reader who
has reached this point that the basic machine structure proposed is in fact sound

and that an APL machine as described will produce correct answers.
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This leaves the question of efficiency to be considered. Because we have not
detailed a complete machine, traditional measures such as encoding efficiencies
of comparisons of cycle times cannot be used, A major emphasis throughout this
work has been to minimize the necessity for temporary storage in expression
evaluation and simultaneously to minimize memory accessing. While these prob-
lems are often of marginal importance in a conventional design, they are quite
significant in an APL machine, since operands are generally arrays. Thus a
temporary store is no longer a single word, but is potentially an array of indefinite
size. Similarly, the conventional problem of saving a single fetch where a quantity
might be in a register, becomes the problem of saving 1000 fetches for an array
operand.,

The remainder of this chapter is dedicated to the evaluation of machine ef-
ficiency. We take an analytic approach here, but cannot hope to have a simple
analytic model of the machine per se which would give clean, closed-form quanti-
tative data about the APLM. Instead, the analysis compares the performance of
the APLM to a fictitious ""naive machine, ' which is simply a straightforward
interpreter of the semantics of APL.

The next section discusses the naive machine (NM) and outlines the assumptions
upon which the comparisons will be based. In the sequel, we will compare the two
machines by looking at the number of individual fetches, stores, operations, and
temporary stores needed to do a particular tasii. Different tasks will be examined
with this in mind. At the end of the chapter, these results will be summarized

together with some conclusions.

B. The Naive Machine

Although the APL machine proposed in Chapter IV has never been implemented,

there exist concrete examples of the naive machine. These include APL\7090
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(Abrams [1966]), APL\1130 (Berry [1968]), and API\360 (Falkoff and Iverson
[1968]; Pakin [1968]). The main feature which distinguishes the NM from the
APLM is that the APLM defers many computations while the naive machine
evaluates each subexpression immediately after its operands have been evaluated.
The APLM, by contrast, does some of its evaluations immediately (e.g., scalar
results), defers some indefinitely (by drag-along), and does still others in a non-
direct way (e.g., beating).

The following list of assumptions clarifies in more detail the differences
between the APLM designed in this work and our "standard' naive machine as
used in the rest of this chapter.

1. The naive machine uses the same representation for arrays as does
the APL machine. If the naive machine is APL\360, then this is approximately
true, In fact, APL\360 does not separate DA's from value parts in array rep-
resentations. On the other hand, APL\360 represents scalars as rank-0 arrays,
and is thus more inefficient in its handling of scalar values. We assume here
that the NM keeps scalar values in a value stack as does the APLM. We have
also (generously) assumed that the NM uses the J-vector representation for
interval vectors. In general, these assumptions cast the naive machine in a
better light than any current implementation of APL.

2. The naive machine generates a result value whenever an operator is
found and its operands are evaluated. (This is exactly the way APL\360 works. )
Further, we assume that the NM will use temporary space allocated to one of
its operands for the result, if possible; e.g., if the expression A+B is to be
evaluated, a new temporary space must be found to accommodate the result,
However, if the expression is A+B+C; the subexpression B+C will be evaluated
first causing the creation of a temporary t which can then be used as the result

destination for the value of A+t.
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3. In an assignment to a variable, as in A-~—expression, the naive machine
performs the assignment simply by storing a pointer to the temporary for the
evaluated expression in the nametable entry for A. Again, this is consistent with
the functioning of APL\360.

4, Each operation in either the NM or the APLM requires a fixed amount
of overhead (e.g., rank checking, domain checking, space allocation, setup,
drag-along, etc.). An analysis of the instructions for both machines shows that
these processes take approximately the same effort in both machines. Since
there is no way to compare this effort with the memory usage measures discussed
here, it will be omitted. For a single statement, this overhead appears as a
linear additive term.

5, Since scalars are kept in the value stack in both machines and since the
VS mechanism is not specified (e.g., it could be a hard-wired stack, or a fast
scratchpad memory, or it could be kept in memory with other array values), all
scalar fetches and stores will be ignored. The effort to evaluate array expressions
always dominates the effort for scalar expressions.

6. There are no distinctions made between data types in the APL machine.
We thus assume that both the APLM and the NM use the same representation for
individual data elements.

7. All scalar operations take the same amount of time to perform. That is,
an add or a multiply will each be counted as a single operation.

8. Finally, it is assumed that both the naive machine and the APL machine
are implémented in similar technologies so that the cost of memory accesses,

storage allocations, and operations are the same for both machines,
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C. Analysis of Drag-Along And Beating

To begin the 'analysis, let us look at a subset of the operations of APL and
derive some analytic results comparing the APLM and the NM. The set to be
considered is

1. Selection operations

2, Monadic and dyadic scalar arithmetic operations

3. Inner products

4, Reductions of the above (this includes outer products)

5. Assignments of above to unconditioned variables or to variables conditioned

by selection operators.
We consider only those expressions which are array-valued, as scalar expressions
are done similarly in both machines. Each operation requires the machine evalu-
ating it to do a certain amount of work, summarized in Table 1 below. Tables
2A and 2B summarize the "effort" required to do these manipulations.

In Table 2, some of the entries contain conditional terms or factors. These
account for the different possible initial conditions when a subexpression is evalu-
ated. Also, notice that in Table 2B, some of the entries contain references to the
functions DOF, DOS, and DOO. These are functions which, given a deferred
expressioﬁ as argument, return as values the number of fetches, stores, and
operations, respectively, necessary to evaluate the expression, Thus, for the
APL machine, Table 2B does not tell the whole story; we must also take into
account the efforts to eifa.luate the final deferred expression (by the E-machine),
Hence, it is necessary to give detailed definitions of the DOF, DOS, and DOO

functions.

- 167 -




TABLE 1

Steps in Evaluation of APL Operators

NAIVE MACHINE APL MACHINE

A, Selection Operators "

1. Check rank, domain of operands. | 1. Check rank, domain of operands.

2. Get space for result DA, value, 2, Get space for result DA (if operand
. is a variable),

3. Set up DA, M-headers. 3. Set up DA,

4. Set up copy operation. 4, Adjust VS, QS.

5. Do copy operation,

6. Adjust VS,

B. Monadic Scalar Operators

1. Get space for result DA, value 1. Defer operation to QS.
(only if operand is a variable).

2, Setup DA, M-headers if space 2. Adjust VS, QS.
was gotten in step 1,

3. Do the operation.

4, Adjust VS.

C. Dyadic Scalar Operators

1. Check rank, dimensions of 1. Check rank, dimensions of operands.
operands. .

2. Get space for result DA, value 2, H one operand is a scalar, move it
(only if both operands are to QS.
variables).

3. Set up DA, M-headers if space 3. Defer operation to QS.

was gotten in step 2.
4, Do the operation, 4, Adjust VS, QS.
5. Adjust VS,

D. Outer Product

1. Get space for result DA, value. 1, TIf operands are deferred subexpres-
sions, then evaluate them to temp space.
Get space for result DA.

Set up DA.

Defer operation to QS.

Adjust VS, QS.

2. Setup DA, M-headers.
3. Do the operation,
4, Adjust VS,

G o N
o o o
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Table 1 (cont, ),

NAIVE MACHINE APL MACHINE

E. Reduction

1, Get space for result DA, value. 1. Get space for result DA.
2. Set up DA, M-headers. 2, - If reduction coordinate is other
) ' than the last, then do appropriate
transpose.
3. Do the reduction. 3. Set up DA,
4, Adjust VS, 4, Defer operation to QS.

5, Adjust VS, QS.

F. Assignment to Simple Variable

1. If right-hand side is a temp then 1, If right-hand side is a temp then

go to step 6, otherwise do steps go to step 6, else proceed.
2 through 7,
2, Get space for DA, value. 2. If the LHS* variable is already

defined and is of the correct size
and does not appear permuted as
an operand in the deferred RHS
then go to step 5.

Get space for DA, value of LHS,
Set up DA and M-headers.

Defer operation in QS.

Adjust VS, QS.

Adjust Nametable.

Set up DA, M-headers.
Set up copy operation,
Do copy operation.

. Adjust VS.

Adjust Nametable.

-QG)QU‘I&#OO
~1 U W
o

G. Assignment to a Selected Variable

1. Check dimensions of LHS, RHS, 1. Check dimensions of LHS, RHS.

2, Set up copy operation. 2. If RHS contains deferred instances
of LHS variable which are permuted
differently than LHS, then proceed
else go to step 6.

Get space for DA, value of RHS.

Set up DA, M-headers.

Evaluate RHS to this temp.,

Defer selected assignment to QS.

. Adjust VS, QS.

3. Do copy operation,
4, Adjust V8.

°

1Ok W
°

*
LHS and RHS refer to the left-hand side
and right-hand side of an assignment
arrow, respectively,
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TABLE 2A

Summary of Effort to Evaluate Operators - NAIVE MACHINE

OPERATOR FETCHES STORES TEMPS OPERATIONS
SELECTION

(R IS: sel &) x/oR 4+(ppR)+x/oR P1x(4+(ppR)+x/pR) 0
SCALAR MONADIC

(R IS: 0P &) x/pR (P1x(b4+ppR ) +x/pR Pix(4+(ppR)+x/pR) x/pR
SCALAR DYADIC

(R IS: &O0PF) Nixx/pR (P2x(4+ppR) )+x/pR P2x(4+(ppR)+x/pR) x/oR
OUTER PRODUCT

(R IS: &o°.0PF) (x/p &)+x/pR 4+(ppR)+x/pR b+{ppR)+x/pR x/pR
REDUCTION

(R IS: OP/[K1&) x/p & U+(ppR)+x/pR Y+(ppR)+x/pR x/p&
ASSIGNMENT

A<& Pixx/p& Pix(u+(pp &)+x/p &) Pix(4+(pp &)tx/p &) 0
ASSIGNMENT

(sel A)«¢& x/p sel 4 x/psel 4 0 0

Notes: Pl-— if &is a variable then 1 else 0,

P2 ~——if & and Fare both variables then 1 else 0 ,

N1-— if &and & are both arrays then 2 else 1,
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TABLE 2B

Summary of Effort to Evaluate Operators ~ APL MACHINE

OPERATOR FETCHES STORES TEMPS OPERATIONS

SELECTION

(R IS: 8el &) 0 N1x(3+ppR) N2x(3+ppR) 0

SCALAR MONADIC

(R IS: 0P &) 0 0 0 0

SCALAR DYADIC

(R IS: &0P%F) 0 0 0 0

OUTER PRODUCT

(R IS: € .0PF) (P1xDOF(&) )+(P2xDOF(F) ) | 3+(ppR)+(P1xDOS(&)) 3+ppR (P1xDOO(&))
+(P2xDOS(F) ) +( P2xDOOEF) )

REDUCTION

(R IS: OP/[KI&) 0 3+(ppR)+P3xN1x( h+ppR) 3+(ppR ) +P3xN1x( 3+ppR) 0

ASSIGNMENT

A+& 0 Pux(4+ pp&) Pux(4+(pp&)+x/p&) 0

ASSIGNMENT

(sel A)«& P5xDOF(&) P5x(DOS(EYtu+(pp&) +x/p&) | PEx(4+(pp&) +x/p&) P5xDO0(&E)

NOTES: N1<+— Number of array opnds in &

P1-—if & contains deferred operators then 1 else 0

P3-— if K#[/tpp& then 1 else 0

P5— 1f & must be evaluated first then 1 else 0

N2 -— Number of opnds with reference count > 1

P2 +— if ¥ contains deferred operators then 1 else 0

P4+—r ].f & is a temp or A is defined and of correct

then 0 else 1

'size and there are no indexing conflicts



For the set of expressions containing only selection operations, scalar
arithmetic operations, outer products, reductions, and assignment, it is relatively
simple to specify the DOF, DOS, and DOO functions. Recall that in the APL
machine, expressions aré deferred in 'QS, which contains an operation code and
an access mask for each entry. Let the function OP(I) be the operation code for
QS[I;]) and MASK(I) have as its value the access mask in the AUX field of QS[L;].
Finally, for a given expression in QS, let RR be the dimension of the final result.
For each QS entry whose opcode is IFA, 1A, OP, or GOP define the function
D(I) whose value is a dimension vector as follows: if the entry is not within a
reduce segment then D(I) is RR. Otherwise catenate an element with the length
of each reduction coordinate; the innermost reduction corresponds to the last
element of D(I). Thus, D(I) is the vector of limits of the iteration stack which
are active when instruction QS[i;] is executed by the E-machine. The idea here is
that D(I) represents the indexing environment of QS[I;]. If N(I) is the index of the
rightinost 1 in MASK(I) (that is, N(I)——[/(MASK(I))/tpMASK(I)), then the following
algorithm calculates the desired functions:

RF-RS-RO-0

I+——starting addr of deferred expression in QS

repeat
if OP(I) = IFA then RF - RF +x/N(I) { D(I)
else if OP(I)=IA then RS~ RS+x/N(I) {I(T)
else if OP(I)€OP, GOP then RO-— RS+x/N(I){ D(T)
I—T+1 ‘
if I >segment ending addr then leave
end

Then DOF(&)~—RF; DOS(&)—RS; DOOE)-—RO.
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D. Example — A Simple Subclass of Expressions

Since the input to either the naive machine or the APL Machine may be any
arbitrary expression,it is difficult to produce a closed-form comparison of the
performance of the two. However, we can look in detail at a simple subset of
expressions and obtain some estimates on how the two machines compare.

Consider the set of expressions of the form 4«¢&, where £ is an expression con-~

taining only array-shaped operands combined by scalar arithmetic operators and
selection operators. As an aid to the analysis, construct the tree corresponding

to the expression &, and number all the nodes corresponding to operators. Then,

construct vectors RR, RD, TY, TV, N1 and N2 as follows:

For each node I, representing RESULT T<«&', where &' is the subexpression
rooted at node I,

RDLI3«x/pRESULT (Result Dimension of node I)

RR[ I3«ppRESULT (Result Rank of node I)

TY[I1+« if operator is a select then "1 else if monadic then 1 else 2

TVLI1« if all sons of node I are variable names then 1 else 0

NA[ I1« number of leaves in the subtree of node I

N2[ I1+ number of leaves in the subtree of node I accessible through a path

not including a select operation,

Finally, let ? be the number of array operands in &

M be the number of monadic scalar operators in& (i.e., +/1=TY)

N be the number of dyadic scalar operators in&  (i.e., +/2=TY)

S be the number of selection operators in & (.e., +/ 1=T7)
Z be the number of elements in & (i.e., x/p&)
Y be the rank of & (i.€e, 00 &)

P be:if APLM must get space for 4 then 1 else 0.

Note that in a well-formed expression ¥=g-1.
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Then, from Tables 2A and 2B, and the definitions of DOO, DOS, and DOF,
we see that the effort for each machine to evaluate & is as follows:

NAIVE MACHINE

fetches: +/RDx |TY
stores: (+/BD)Y++/((T1=TY)VTVA(1<TY))/(4+RR)
temps: +/TV/(4+RER+RD)

operations: +/(1<7Y)/RD

APL MACHINE

fetches: RxZ
stores: Z+(Px(4+Y))++/( 1=TY)/N1x(3+RR)
temps: (Px(4+Y+2))++/("1=TY)/N2x(3+RR)

operations: +/(1<77)/Z

In general, each formula above is the sum of the relevant entries in Tables 2A
or 2B, As the fetch formulas are obvious, we show the derivation of the store
count for the NM, First, each operator in & calculates a result which must be
stored immediately which gives the term +/ED, Also, temporary space must be
allocated for selection operations and those cases of scalar operators in which
one of the operands is not itself a temporary. In such a case, another
4+ (result-rank) words mustbestored. (All but one of these ié for the new DA;

the other is for the header word for the value array.) The result ranks of the
operations in & are in the vector AR, Thus, the compression selects those
elements of 4+RR which correspond to the conditions just stated. In particular,
(71=TY) is a vector having a one for each selection operator and TVA(1<TY) has
a one for each monadic or dyadic scalar operator whose evaluation requires
temporary space to be allocated. The sum of these terms gives the formula

shown; the other formulas are derived similarly,
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We can form the ratios of the corresponding quantities for each machine and

attempt to get some estimate of their values, RF, the ratio of fetches in the naive

machine to fetches in the APL machine,is given by:
+/BDx|TY = +/2xTY

RF <> o7 % g Since Z<RD.
- Zx+/{TY o ZX(MiS+2xH) | M+S+( 2xR)-2 because N=R-1
RxZ bxZ R
M+5-2

Thus >
s RF 2 2+ 7

Hence, for fetches, the APLM does at least twice as well as the NM if there are
at least two monadic or select operators. The worst case is when ¥ or S or¥

is 1 and the rest are 0, in which case the ratio is 1. The above also shows that
the ratio increases (without bound) in proportion to the number of monadic and
select operators in the expression &.

The ratio of stores for the two machines, RS, is:

RS <> (+/BD)++/((“1=TY)VIVA(ISTY) ) /(4+RR)
Z+(Px(u+Y))++/( 1=TY)/N1x(3+RR)

o (ZxpRD)++/((T1=TYIVIVA(I<TY))/(4+RR)
= Z+(Px(4+Y) )Y++/( 1=TY)/N1x( 3+RR)

(M+N+S)++/(( 1=TY)V§VA(1STY))/(‘+.+BR)

1+ (Px(4+Y))++/("1=TY)/N1x(3+RR)
2

<>

(SINCE pRD <> MtN+S)
But the numerators of the two fractions with denominator Z are bounded,
whileZ can increase without bounds. Thus for large Z,
RS=xM+N+S
That is, in expressions in which the size of the operand arrays is large (i.e., at
least as many elements as there are operators) the NM requires more stores

than the APLM, approximately in proportion to the number of operators in the

expression,
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In the case of temporary storage allocated,‘ the ratio, RT, is:

+/TV/(4+RD+RR)
(Px(4+Y+Z2))++/( 1=TY) /N2x( 3+RR)

RT <«

+/TV/(oRD)p(4+Y+Z)
(L+Y+Z)++/( 1=TY)/N2x( 3+RR)

- +/TV
1++/('1=TY)/N2x(3+RB)
4+Y+Z

Again, the lower bound is greater than 1, since (+/7V)>1. In this case, the

ratio is of the order of +/7TV,for large Z, which is a function of the tree structure

of & rather than an explicit function of its operator count, Note that in the case
where & contains no select operations and pis 0,the ratio is infinite, since the
APLM requires no temporary storage,

For the case of operations the ratio, R0, is:

+/(1<TY)/RD
RO = /) /e

But Z<RDand the compression in both numerator and denominator select the

same terms., Thus,R021 ,

E. Example — An APL One-Liner

APL makes it easy to produce simple one-line programs to do
sorﬁe interesting task, One such is the program (expression) for find-
ing all the prime numbers less than or .equal to N, as shown below.
(Index origin is 1)

PRIMES <« (2=+/01]0=(1N)o.|[\N)/\N

Although the algorithm used is clearly inefficient, such expressions are not

uncommon, Since the APLM purports to be an efficient evaluator of expressions,

it is worthwhile to look at this example in more detail. The machine code for
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this expression is:

OoP OPERAND COMMENTS

LDNF N

IOTA This gives the compressee, WV

LDNF N

IOTA

LDNF N

I0TA These are the 1/ operands of outer product

GDF MOD (WN)e.|1N — Matrix of remainders of all
possible divisions

LDS 0

EQ 0=(1N)o.|1N — Has 1 for each 0 remainder,
else 0

LDS 1

RED ADD +/[110=(1N)o.|N — Add rows of this
matrix

LDS 2

EQ 2=+/[110=(1N)o. | 1N — Find which columns
have two 1 entries

LDS 1

CMPRS Do compression. These are the primes

LDN PRIMES Assign result to PRIMES

ASGN

Since the number of scalar operations performed is the same for both

machines, this will not be measured. At the point before executing the LDS 1

instruction which precedes the CMPRS, the state of the APL machine is as

shown in Fig. 1.
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') Qs
oP VALUE LINK AUX
SGT e »>{ 1J (LN) 01
SGT  e—— ~ RED 8 ————
s (LN) 10
1J (LN) 01
GOP MOD 2 11
IRD @T1 11
S 0
—» < OP EQ 11
\_ OP ADD 11
SGV <«
S (-N)
MIT
IRD @T2 01 !
S 2
N oP EQ 2 01

FIGURE 1--State of the registers before compress operator.

Up to this point, the NM used memory as follows:

Instruction Fetches Stores Temps

GDF N2+N N2+2N+16 N2+2N+16
EQ N2 N2 0

RED N2 N+5 N+5

EQ N N 0

2

The count for the APLM at this point is 0 fetches, 9 stoi'es, and 9 temps for the
descriptors T1 and T2, However, when the CMPRS operator is found, the left ‘

operand must be evaluated as explained in Chapter IV. Thus, the long QS segment
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must be handed over to the E-machine. This requires N2+N fetches, N+b stores,
and N+5 temps. In order to do the CMPRS in the NM, the right operand (¢N)

must be evaluated, requiring N+5 each of stores and temps. The CMPRS itself
takes another N+P fetches, P+5 stores, P+5 temps in the NM,where P is the
length of the result. In the APLM, the CMPRS is expanded and deferred,as is

the ASGN which follows. The NM requires no work to do the ASGN. The APLM,
after this instruction, has its QS full of deferred code for the CMPRS and ASGN.
It had to allocate P+5 temps for the result of ASGN (assuming PRIMES was not

the correct size already). Passing the QS to the EM requires another N+P fetches

and P stores for the APLM. Thus the grand totals are:

FETCHES STORES TEMPS
NAIVE MACHINE INZ+3N+P IN?+5N+P+31  NP+4N+P+31
APL MACHINE N2+2N+P N+P+23 N+P+23

Recall that P is really a function of N, the number of primes less than N,
which is asymptotic to -TSS——N—- . Thus, we can evaluate the performance ratios
between the two machines in some specific cases. These ratios are RF, RS,
and RT, the ratios of NM fetches to APLM fetches, stores, and temporaries,
respertively. Also of interest is RM, which counts all memory access (fetches
+ stores), and is the ratio of these two quantities. Table 3 below tabulates these

quantities for a few values of N,

TABLE 3
Performance Ratios for Primes Problem as a Function of N

N P RF RS RM RT
10 4 2,69 7.7 3.84 4.7
100 25 2.97 138.9 4,91 70.6
500 95 2.99 813.3 4.98 408.0
1000 168 2,997 1683.6 4,99 843.2
5000 669 2,999 8788.8 4,998 4395.8
10000 1229 2.9997 17779.2 4,9992 8891.0
50000 511\?3 2.99994 90656, 6 4,9998 45329,7

lim Tor N 3 2N 5 N

N~+e0 g
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TABLE 4

Operation Count for One Pass Through Main Loop, Program REC

NAIVE MACHINE APL MACHINE
STATEMENT FETCHES STORES TEMPS FETCHES STORES TEMPS
6 S 25+5 S+5 0 St+4 4
7 2K 2K+5 K+5 K K+9 K+9
8 1.5K 0 0 1.5K 0 0
9 8 23 21 8 31 29
10 45+4 45+20 25+20 45+4 45+38 25+38
11 352+3S 282+28+5 S248+5 52+ 4 4
12 ss+3 35+8 S+6 S+1 S+9 8
13 352+95+1 252+65+22 S2+4s+22 252+48 S2+28+24 S2425+24
14 252+28 252+25+12 252+25+12 s2+8 S2+5+16 S2+5¢16
15 S S+5 S+5 S $+9 $+9
TOTAL: 85%+235+16 652+205+105 452+125+101 452+125+13 252+105+144 25%+65+141
+3.5K +2K +K +2,.5K +K +K




The above table indicates that the APLM does significantly better than the
NM on this program. The RS figures may be deceptive since in terms of total
memory accesses the ratio approaches a limit of 5. This is still significant, as

is the RT ratio, which increases linearly with N (for large N).

F. Example — Matrix Inversion Programs

As a final example, we analyze the performance of both machines on a
standard example, a program which does matrix inversion by elimination with
pivoting. To avoid charges of bias, the particular program used was taken from
the literature rather than written by the author (Falkoff and Iverson [1968a], p. 19).
The program REC is shown in Fig. 2 and has been changed only by altering the
syntax of the conditional branch statements. This does not affect the measure-
ments made here and is done purely for esthetic ‘reasons.

Table 4 counts the memory accesses and temporary stores statement-by-
statement for one pass through the main loop in program REC. This loop is
executed S times. All but the terms involving the variable K are independent of
the iteration count., K varies from S to 1 from the first pass to the last. Thus,
we can obtain the totals for all passes through the loop by multiplying non-K terms
by S and by summing the K terms. This gives the counts in Table 5 below:

TABL_E 5

Total Operation Count For Main Loop, Program REC

FETCHES STORES TEMPS
Naive

Machine 8424, 75 +17. 758 6554215241068 45°+12. 59 +101. 58
APL

Machine 45°+13, 2555414, 258 25%+10.58%+144.58 25546, 55 +141.58
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VB« REC A ; P ;I 3 dJ 3 K S
A MATRIX INVERSION BY EFLIMINATION WITH PIVOTING

1 IF (2=ppA)A=/pA THEN ~L1
A ERROR EXIT

2 L2: O « 'NO INVERSE FOUND'

3 RETURN

S IS DIMENSION OF A

P RECORDS PERMUTATIONS OF ROWS OF A

K SELECTS SUBARRAY OF A FOR ELIMINATION
1K <« 5 « 14p4

ADJOIN NEW COL TO A FOR RESULTS
((Sp1),0)\4

r
™~
[N
o

4 4D2D®D

n *xxx«MATN LOOPxxx (REPEATED § TIMES)

n INITTALIZFE LAST COLUMN
6 L3: A[;S5+1] <« 1=18

A FIND PIVOT ELEMENT, WITH ROW INDEX I
7 J <« |A[1K;1]
8 I «dJ v T/d

A INTERCHANGFE ROWS 1 AND T

n RECORD THE INTERCHANGE IN P

9 pf1,7]1 « P[I,1]
10 AT1,I;18] <« A[I 13151
A CHECK FOR SINGULARITY
11 IF 1E730 > |A[13;1] + [/)|,A THEN ~L2
‘ n NORMALIZE PIVOT ROW
12 Al1;] « AT1;:;]1 + A[1:1]
A ELIMINATION STEP
13 A« A-((1=18) x A[1:]) o.,x A[1;]
a ROTATE A TO PREPARE FOR NEXT STEP
A THIS BRINGS ‘'ACTIVE' SUBARRAY TO UPPER LEFT
1y A « 16011104
15 P + 16¢P
a ITERATE ON K
16 IF 0<K<«K-1 THEN ~L3

n DO COLUMN PFRMUTATIONS TO0 PRODUCE RESULT
17 B « A[ ;P11 5]
v

FIGURE _2: EXAMPLE PROGRAM: REC

o ——
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In order to compare the performance of the APL machine to the naive machine,
let us form the ratios of the corresponding counts and see how they behave for
different values of S, (Recall that S is the dimension of the matrix being inverted
by the program under consideration.) The first derivatives of all three ratios are
positive for $>0, so that all ratios are increasing as S increases. Table 6 sum~
marizes the properties of the ratios as a function of S,

Let RF(S) by the ratio of fetches in the NM to those in the APLM, RS(S) be
the ratio of stores, RT(S) be the ratio of temporary storage allocéted, and RM(S)
the ratio of all memory accesses (fetches + stores). Then,

882424, 758+17. 75
45°+13,255+14. 25

RF(S)

6P+215+106

RS(S)
25°4+10,55+144.5

i

1452445, 755+123. 5

RM(S) =
65423, 758+158.75

45%412.58+101. 5
28%+6.55+141.5

RT(S) =

TABLE 6

Machine Comparison Ratios For Main Loop of REC

s RF(S) RS(S) RM(S) RT(S)
1 1.6 0.847 0.97 0,787
2 1,75 0,99 1.18 0,878
3 1,82 1.15 1.36 0.978
5 1.89 1,46 1.64 1,18
10 1,95 2,04 1.99 1,54
100 1,996 2.94 2,31 1,99
1000 1.9996 2,995 2,332 1,9997
limit 2 3 2 1/3 2
S—eo
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An examination of Table 6 shows that for input arrays A of dimension greater
than or equal to 3,3 the APL machine does better than the naive machine by using
fewer fetches and stores. If pA is 4,4 or more, fewer temporaries are allocated
by the APLM. Finally, the entries for S=10 and S=100 show that these improve-
ments rapidly reach the theoretical limits. In the region Ss4 the size of descriptor
arrays is approximately the same as the size of the value part of vectors of length
S and not much less than the size of arrays of dimension S, S. Thus for small S,
the extra overhead in the APLM for creating descriptor arrays in drag-along
predominates. However, as S increases, the APL machine improves significantly
compared to the naive machine in its economy of memory usage and access.

The program REC used in the previous discussion was taken straight from
the literature and was changed only by altering the branch commands and by
replacing the operator o by an equivalent construction (because o is no longer a
defined operator in APL). Primarily, it is important to emphasize that this is
not a specially prepared example designed to tout the virtues of the APL machine., In
some sense, this is a "'typical' program. By looking more closely at Table 4
we can get a clearer idea of where the APLM does better than the NM and where
it lags behind.

The APL machine does better (that is, uses fewer fetches, stores, and/or
temporaries) than the naive machine on statements 6,7, 11,12,13,14 does the
same as the NM on statement 8, and worse on statements 9, 10, and 15. The
places where the NM does better than the APLM are precisely those statements
or expressions in which the more successful strategy is to do an immediate
evaluation rather than defer the operation. All three are, in this example, state-
ments of the form variable «T variable, where T is an arbitrary permutation of

the subscripts of variable. In all three of these cases, the APLM does worse
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only by an additive constant, which is the space (and stores) required for a DA

to describe the deferred right-hand side of the expression. The NM avoids this

by evaluating directly. The same number of fetches are done by both machines
for these statements. Of more interest are the cases where the APLM improves
on the NM. In all situations these are statements involving more than one operation
on the right-hand side of the assignment arrow. By using drag-along and beating,
the APLM requires fewer temporaries for intermediate results, which in turn
requires fewer stores and consequently fewer fetches when the intermediate results
are used later in the expression. The most dramatic demonstration of the efficacy
of drag-along is shown in the use of temps in statements 6,11, and 12 and the
stores in statement 11. In all these cases the APL machine uses storage in

proportion to the number of array operands while the naive machine requires

storage proportional to the size of the array operands. Also, with the exception

of statement 10, the number of stores for each statement is proportional to the
size of the result for the APLM while in the NM it is generally proportional to
both the size of the result and the number of array operations.

As an interesting experiment to see how much these measures of the machine's
operation are a function of the actual machine design and how much they depend
on the sample program, the author rewrote the function REC in the form shown
in Fig. 3, where it is renamed REC1. RECI is the same algorithm used in REC
except that the actual permutations of array A in lines 10 and 14 of REC have been
eliminated by using appropriate indexing instead. Also, statement 13 in REC
(which corresponds to statement 14 in REC1) is recast to eliminate unnecessary
operations and to minimize temporaries in both machines., An analysis of the

main loop similar to that for program REC is summarized in Table 7.
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VB« RFC1 A ;I 3 J 3 N ;R 3 8 ;7 : W
A MATRIX INVERSION BY ELIMINATION WITH PIVOTING
A '"OPTIMIZED' VERSION
A THIS PROGRAM DIFFERS FROM REC IN THAT ARRAY
n PERMUTATIONS ARE DONE BY CHANGING THE
a PERMUTATION VECTOR, R, RATHER THAN ACTUALLY
A PERMUTING THE MAIN ARRAY., A IS THEN ACCESSED
n BY INDEXING WITH R,
1 IF (2=ppA)n=/pA THEN -L1
2 L2: [0« 'NO INVERSE FOUND'
3 RETURN
4 Li1: R « 158 « (pA)[1]
n S IS DIMENSION OF A
AR R RECORDS PERMUTATIONS AND IS USED TO ACCESS A
R N COUNTS ITERATIONS
5 N « 0
a ADD NEW COL TO A; BUILD RESULT IN LEFT COL
6 A <« (0,5p1)\4
n xxxMAIN LOOPxx% (REPEATED S TIMES)
@ FIND PIVOT ELEMENT
7 L3: J « |A[L(-N)+R;N+2]
8 I «dJ v [/d
A INTERCHANGE BY ALTERING PERMUTATION VECTOR
9 R[1,I] « R[I,1]
n INITIALIZE RESULT COLUMN
10 AL3N+1] « R[I] = S
11 IF 1E730 > [A[RC13;] = T/!|,A THEN ~L2
np NORMALIZE PIVOT ROW, AND SAVE IN W
12 W « ACR[11;1 « ATRC11;] + ACR[11;N+2]
p T IS ACTIVE COLUMN
13 T « AC3N+2]
n ELIMINATION STEP
1y AC14R;] « A[L1+R;] - TL1+R] o,.x W
m 'ROTATE' A BY ROTATING R
15 R « 1¢R
a ITERATE ON N
16 IF S > N«N+1 THEN -L3
17 B + A[;R115]

v

FIGURE_3: 'OPTIMIZED' EXAMPLE PROGRAM: REC1
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TABLE 7

Operation Count for One Pass Through Main Loop, Program REC1

= L8T -

NAIVE MACHINE APL MACHINE
STATEMENT FETCHES STORES TEMPS FETCHES STORES TEMPS
7 45-4N 3S-3N+10 25~2N+10 25-2N S-N+17 S-N+17
8 1.58-1.5N 0 0 1.58-1.5N 0 0
9 8 23 21 8 31 29
10 s 25+5 S+5 0 S+d 4
11 35%+3S - 25%+25+5 S245+5 S2+8 4 4
12 35+3 35+8 S+6 S+1 25+10 * 8 *x
13 S S+5 St+5 S S+4  * 4 Rxx
14 552+55-10 452+45+19 252+45+26 252+45-6 52430 31
15 S 5+5 S+5 S S+9 S+9
TOTAL: 852+19.55+1 | 682+16S+80 352+115+83 352+11,55+3 | S2+65+109 25+106
-5.5N -3N -2N ~3.5N -N -N
(+10 once) (+25+11 once)

* 45 once for entire loop
**  +S+6 once for entire loop
*** 1845 once for entire loop




In this algorithm, as in REC, the inner loop is performed S times. The
counts shown in Table 7 are independent of the iteration number except for terms
involving variable N. Examination of the program shows that N goes from 0 to
S-1, increasing by 1 with each pass through the loop. Thus, as in the case of
REC, we can obtain total counts for the main loop by summing the N terms and
multiplying the others by S. The results are summarized in Table 8.

TABLE 8

Total Operation Counts For Main Loop, Program RECL1

FETCHES STORES TEMPS
Naive
Machine 85°+16. 755°+3. 758 65°+14. 55%481. 58 35°+1052+848
APL
Machine 38°+9. 75554, 758 £45.55%+109. 55+10 1.55%+108. 55+11

An immediate, rather startling observation from this table is that all of its
entries are strictly less than the corresponding entries in Table 5 which summarizes
the operations of REC. This is somewhat surprising because although the rewriting
of the program was done in order to optimize it for the APL machine, it unexpectedly
improved performance of the naive machine, as well, In any case, this simply
lends more weight to the data summarized in Table 9, where the performance
ratios are computed for the two machines operating on this program.

For program REC1, based on the data in Table 8, the ratios are:

88%+16. 7T55+3. 75

RF(S) =
3Sz+9.75S+4;.75
653+14.5S2+81.5S
RY(S) = 3
S +5.582+109.5S+10
3 2
RM(S)= ;.48 +31.258 +85,258
45 +15.25SZ+114.25S+10
3
RT(S) = 35 +1082+84S
1.5S2+108.5S+11

- 188 -



TABLE 9

Machine Comparison Ratios For Main Loop of REC1

S RF(S) RS(S) RM(S) RT(S)
1 1.63 0.81 0.91 0.8
2 1,91 1. 04 1.23 0. 99
3 2,07 1.29 1.53 1.21
5 2.24 1.85 2. 02 1,77
10 2.41 3.11 2.69 3.88
100 2.64 5.77 3.44 120.2
1000 2,66 5.98 3.49 1871.3
limit 22/3 6 3.5 28
S—o0

G. Discussion

In the preceding sections we look at a number of typical inputs to the APL
machine and find that in all but a few singular cases, it evaluates them more
efficiently than a corresponding naive machine. This is a fair kind of comparison
because although the naive machine mentioned here is hypothetical, .it is based
on the design of existing APL implementations, at least one of which is commercially
available. The important question, of course, is what kinds of conclusions may
we draw from these particular cases? I offer the following:

1. Section D derives lower bounds, all greater than 1, for the ratio between
memory accesses and temporary use on the two machines on a simple class of
expressions. From this and the previous section it appears that the APLM
evaluates expressions of the type analyzed in Chapter IT more efficiently than
the NM.

2. Operations involving scalar operands are done equally well on both machines.
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3. Sections E and F contain more realistic program examples which were
analyzed in detail. In both cases, the APLM improves significantly on the NM
in its use of memory.

4. The only cases where the APLM does worse are those expressions
containing a single operator which does not fit into the beating scheme, and for
which the best evaluation strategy is to evaluate immediately, rather than to
defer. In these cases, the NM does slightly better than the APLM but only by
a small additive constant. (This being the space and stores for the APLM to
construct a deferred descriptor. )

In view of the above, it is clear that in most cases, the APL machine design
proposed here is more efficient than a naive machine in the sense that for any
given program, the APLM uses fewer fetches, stores, and allocates fewer

temporaries than the naive machine. *

)
A corollary worth noting is that there exist inputs (i.e., programs) for which
the APLM always performs worse than the NM according to the measures derived
here. However, this should be neither startling nor alarming and does not detract
from the general conclusion above.
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CHAPTER V1

CONCLUSIONS

In this chapter, we will summarize all that has gone before and indicate some
directions for future research on this subject.
A. Summary

Although the original goal of this investigation was to produce a machine
architecture appropriate to the language APL, some of the work done in pursuit
of this goal is intrinsically interesting in itself. In particular, we call attention
to the mathematical analysis discussed in Chapter II. In Chapter I, we find that
there is a subset of APL operators (the selection operators) whose compositions
are also selection operators. Further, compositions of these operators can be
represented compactly in a standard form. Moreover, there is a set of trans-
formations sufficient to transform any expression consisting solely of selection
operators acting on a single array into an equivalent expression in standard form.,
By extension, similar results are described that apply to select expressions which
include scalar arithmetic operators, reductions, and inner and outer products.

One result, of at least theoretical interest, is that all inner products can be
represented as a reduction of a transpose of an outer product (Theorem Tb ).

The general dyadic form is introduced in Chapter II as a vehicle for extending
the results about selection operators on single arrays or scalar products to
analogous results on inner and outer products.

In Chapter ITI, we show that if arrays are represented in row-major order
and if the representation of the storage access function for an array is kept separate
from the array value, thé'n the result of applying a selection operator to an array
can be obtained simply by transforming the mapping function. This approach is

the basis for beating, one of the novel features of the APL machine. In mathematical

- 191 -




terms, beating is equivalent to the following: if an array is construed as a function
(the storage access function S) applied to an ordered set of values A, and if F1,
F2, ..., FN are selection operators then the sequence
FL(F2(...(FN(S(A))
is equivalent to some new function T(A) where T is a functional composition with o:
T+—=(Flo(F20(... (FN0S)))) .

Chapter IV describes a machine based on the beating process and the drag-
along principle. The latter says that all a;'ray calculations should be deferred as
long as possible in order to gain a wider context of information about the expression
being calculated. This is done because of the possibility that extra information
might allow the simplification of the expression to be evaluated. This is particularly
important when, as in APL, operands are array-shaped. In effect, a language
like APL which allows sophisticated operations on structured data to be encoded
very compactly, makes it possible to write expressions which, though innocent-
looking, require much calculation. In fact, one major goal of the machine design
is to minimize any unnecessary calculations in evaluating APL programs. Thus,
drag-along becomes an important way of doing so. Drag-along combines all
element-by-element operations in an incoming expression into a single, more
complex, element-by-element operation which need only be done once for each
element of the result array. This is based on the fact that for most APL operators, 7,

A F B means for all [ ELTp(4 F B)
(A F B);/L]1 <+ (F1L A)s/L]1 F (F2 BY)(s/L7,
where F1 and F2 depend on F and are normally the identity function. Simply
stated, this says that a singlé element of an array-valued expression can be com-

puted by evaluating a similar expression of single elements.
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The APL Machine is divided into two submachines, the Deferral Machine
and the Execution Machine, in order to facilitate drag-along and beating. Con-
ceptually, the DM is a dynamic, data-dependent compiler which examines incoming
expressions (niachine code) and their operand values (data) and produces instructions
to be executed by the EM. This code is deferred in an instruction buffer and can
also be operated upon by the DM. At appropriate times, control is passed to the
EM which executes the deferi'ed instructions, Since EM code must compute an
array-valued result, a stack of iteration counters are used by the E-machine to
produce all elements of the result one at a time., A feature of the APLM which
makes it easy for the DM to manipulate its own deferred code is that programs
(and deferred code) aré organized into segments which contain only relative ad-
dresses. Thus pieces of program can be referenced by descriptors, and these
pieces can be relocated at will simply by ¢hanging the descriptors and not the code,
This scheme leads to the use of a stack of instruction counters, each one of which
refers to a currently active segment in either the EM or the DM. Thus it is easy
for the machine to change state and recover previous states, thereby simplifying
the entire control process.

Chapter V contains a discussion of the machine design in which it is shown
that at worst, the APL Machine performs the same as a naive machine executing
the same program and at best shows a significant improvement. The primary
parameters used in the evaluation are measures of memory utilization. Other
measures, such as encoding densities, are not appropriate,as this aspect of the
machine design has not been specified, Such measures should be taken into account,
however, if it is desired to implement a machine such as this. The evaluation of
a subset of APL containing only scalar arithmetic operators and select operators

shows that the APLM approaches the theoretical minimum of memory accesses
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and temporary storage utilization for this class., Further, the ratio of accessing
operations between the NM and the APLM are significant since the NM expends
effort for fetching and storing in proportion to the number of operators in an
expression while the APLM does fetches in proportion to the number of operands
and stores only once. Similarly, it is noted that for this class of expressions,
the APLM needs to allocate space only for the result of an expression while the
NM requires temporary storage which is a function of the tree structure of the
expression being evaluated.

In the same chapter, ananalysis of an APL "one~liner" and a matrix inversion
program containing a more general mix of operators, shows that the APLM does
better than the NM by at least a factor of 2 on these measures. A final observation
is that the APLM described here is not significantly different in complexity from
a naive machine. Thus, it could presumably be implemented with approximately
the same resources. Hence, it appears that this design is an improvement and
could profitably be used in future incarnations of machines for APL,

Although the APL machine is an improvement over the naive approach, it
would be absurd to claim that it is the "final solution' to the problem. Clearly,
it is not. There are still some functions, such as compression or catenation,
which it handles awkwardly. Similarly, it is distasteful (and inefficient) to evaluate
operands of a GDF explicitly if they are other than simple select expressions.
Ideally, there should be no temporary storage used for the evaluation of expressions
without side effects (such as embedded assignment)., Thus, there is still work

to be done on this problem.
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B. Future Research

The ideas summarized here tend to fall into two classes — extensions or
refinements of the work already reported, and new problems suggested by the
current research.

In the second category is the area of mathematical analysis of APL operators.
The work in Chapter II of this dissertation barely skims the surface of this topic.
The general problem, of course, is at the heart of ""Computer Science, ' namely
the study of data-structures and operations upon them, However, APL and its
extensions are rich in mathematical interest and this field deserves further,
more concentrated investigation. Similarly, the results found in Chapter II as
well as the structure of the machine have implications for language design. An
important next step is to take some of the ideas which appear in the machine or
the analysis and attempt to map them back into the programming language. As a
trivial example, the ease with which the machine evaluates select expressions
suggests that there ought to be the possibility of more general select expressions
allowed to the left of an assignment arrow, e.g., it should be possible to say
(1 18M)«A, meaning assign 4 to the main diagonal of M. Again, the ease with which
the APLM does segment activation suggests that there should be some parallel
facility in a programming language, At the very least, APL should contain some
more sophisticated sequence~controlling operations such as case, conditional,
and repeat constructs, A final possibility along these lines is suggested by the
similarity among the various selection operations, Simply that there exists such
a compact standard form suggests that there might be a different, perhaps more
general, set of selection primitives which would be desirable in a language like APL.

In the direction of refinements there are several areas of interest. One is

to try to add more parallelism to the machine. In this work, we have used the
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implied parallelism of APL in drag-along and beating, but it appears not to be
fully exploited. For instance, there is the interesting possibility of making
the DM and the EM more independent, thus gaining an amount of parallelism,
There is no reason, for example, why there could not be multiple copies of both,
working simultaneously on different parts of an expression or program. Another
place where parallelism could be exploited is in the E-machine. Instead of doing
everything in serial, much could possibly be done on a grander scale.

It appears possible to extend the formulation of the standard form to include
more operators such as catenation, restructuring, rotation, compression,
expansion, and explicit indexing. If such a general form could be found, the operation
of the machine could be simplified and perhaps made more efficient.

In order to have any real implementation of the machine, it will have to be
extended to include instructions for input and output and other systems-type
functions., Also, as soon as an implementation is attempted, problems such as
encoding of data and instructions will have to be broached. Similarly, it will
probably be necessary to consider the question of data types in a real incarnation
of the APL machine. Other machine extensions which might be considered is the
addition of a set of registers (possibly stacks) for eliminating some of the problems
of temporary storage in EM code which does not follow the stacking discipline of
VS. This, in turn, entails the addition of instructions to the machine's repertoire,
although these might not have to be visible to the programmer.

Although on the one hand it is counter to the idea of a language-oriented
machine, it might be desirable to give the (systems) programmer more direct
control over the E-machine., In particular, this would make it possible to ""pre-
compile’ particular segments for the EM when enough information is available in

advance, An interesting extension of this is to allow the EM to call upon the DM
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in the same way that the DM uses the EM, This would make the overall system
more symmetric and might increase its power and versatility.

A further area of investigation combines language and machine design. This
is the problem of extending APL to include more general kinds of data structures,
such as lists or records, and then attempting to fit these into the structure of the
machine. This problem, in turn, makes further demands on the mathematical
analysis of the language and its operators,

Finally, it is important to investigate the possibility of extending some of

the methods and results of this work to other languages and data structures.

C. Concluding Remarks

This chapter has summarized the mathematical analysis and machine design
reported in this dissertation and has indicated some directions for fruitful investi-
gations in the future. It is pleasing to be able to end this work with a feeling of
accomplishment, yet it is perhaps more satisfying to know that this is not really

an ending, but a beginning.

The Road goes ever on and on,

Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,

Pursuing it with weary feet,

Until it meets some larger way,
Where many paths and errands meet,
And whither then?...

I can not say.

J. R. R. Tolkien
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