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ABSTRACT

This dissertation proposes a design for a machine structure which is ap­

propriate for APL and which evaluates programs in this language efficiently.

The approach taken is to study the semantics of APL operators and data

structures rigorously and analytically. We exhibit a compactly representable

standard form for select expressions, which are composed of operators which

alter the size and ordering of array structures. In addition, we present a set

of transformations sufficient to derive the equivalent standard form for any

select expression. The standard form and transformations are then extended

to include expressions containing other APL operators.

By applying the standard form transformations to storage access functions

for arrays, select expressions in the machine can be evaluated without having

to manipulate array values; this process is called beating. Drag-along is a

second fundamental process which defers operations on array expressions,

making possible simplifications of entire expressions through beating and also

leading to more efficient evaluations of array expressions containing several

operations.

The APL machine consists of two separate sub-machines sharing the same

memory and registers. The D-machine applies beating and drag-along to defer

simplified programs which the E-machine then evaluates. The major machine

registers are stacks, and programs are 'organized into logical segments.

The performance of the entire APL machine is evaluated analytically by

comparing it to a hypothetical naive machine based upon presently-available

implementations for the language. For a variety of problems examined, the

APL machine is the more efficient of the two in that it uses fewer memory

accesses, arithmetic operations, and temporary stores; for some examples,

the factor of improvement is proportional to the size of array operands.
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CHAPTER I

INTRODU CTION

an optimist is a guy that has never
had much experience

Don Marquis, archy and mehitabel

The electronic digital computer has progressed from being a dream, to an

esoteric curiosity, to its present pervasive and indispensable role in modern

society. Over the years, man's uses of computers have become increasingly

sophisticated. Of particular importance is the use of high-level programming

languages which have made machines more accessible to problem- solvers.

In general, the use of problem-oriented programmi.ng languages requires a

relatively complex translation process in order to present them to machines.

Although this can be done automatically by comp.ilers, there is a wide gap to

bridge between the highly-structured concepts in a programming language such

as ALGOL, PL/I, or APL and the relatively atomic regime of today's computers.

In effect, there exists a mismatch between the kinds of tasks we want to present

to machines and the machines themselves. One possible way to eliminate this

difference is to investigate ways of structuring machines to bring them closer

to the kinds of problems people wish to solve with them.

A. A Programming Language

A particular programming language in which this mismatch with contemporary

machines is especially obvious is APL, based on the work of K. E. Iverson

(Iverson [1962J). APL is a concise, highly mathematical programming language

designed to deal with array-structured data. APL programs generally contain

expressions with arrays as operands and which evaluate to arrays, while most
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other languages require that array manipulations be expressed element-by-element.

To complement its use of arrays as operands, APL is rich in operators which

facilitate array calculations. Also, it is highly consistent internally both syntac­

tically and semantically, and hence could be called "mathematical". Because of

.its use of structured data and its set of primitives which are quite different from

those of a classical digital computer, APL does not fit well onto ordinary machines.

It is possible to do so, and interpreters have been written for at least three dif­

ferent machines (Abrams [1966]; Berry [1968]; Pakin [1968]). Finally, because

of its mathematical properties, it is possible to discuss the semantics of the

language rigorously and to derive significant formal results about expressions in

the language.

B. The Problem

The problem considered in this dissertation is to design a machine structure

which is appropriate to APL. "Machine structure" here means a general func­

tional scheme and not a detailed logical design. The expected result is not a set

of spec.ifications from which a circuit designer could produce a working device,

but rather a superstructure into which the features of the language fit cleanly.

Thus, this design must in some sense be natural for the language. For example,

the primitive operations and data structures should include those of APL. In

addition, the machine should take advantage of all available information in order

to execute programs as efficiently as possible. We use the word "machine" in

a very broad sense: what it really means here is "algorithm" and not necessarily

any particular physical device. Such a machine could be implemented as a con­

ventional program or as a hardwired device or as a microprogram in an appropriate

system. For the purposes of this work, it doesn't really matter.
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"APL" means any programming language which includes the semantics of

APL\360 (Pakin [1968J). We shall not be concerned with the particular syntax

of APL, although this currently appears to be the best way to represent the

semantic ideas of the language. In short, the machine should be able to handle

array-structured data with ease and should be able to evaluate functions on such

data using the operators of APL as basic primitives.

The approach taken is to invest a considerable amount of effort in the analysis

of the mathematical properties of the operators and data structures of APL and

to exploit these results in the design of the machine. Thus, a major part of this

work will be dedicated to a rigorous, mathematical investigation of APL expres­

sions. This study is contained in Chapter II. In Chapter III, the work of Chapter

II is related to the design of a machine, and the design goals are set forth in

detail. Chapter IV discusses the proposed machine design, and Chapter V is an

evaluation of the machine with respect to the goals of Chapter III.

It should be emphasized that the goal of designing an APL machine is a rather

broad one. Although there are clearly practical applications of such a design,

that is not the major focus of this work. Rather, we hope that by investigating

this language and machine in detail, it will be possible to learn something about

the basic processes in computing and find ways of reflecting these processes in

a machine structure. The results summarized in Chapter VI and the new research

problems suggested by this work indicate that this goal has been fulfilled.

C. Historical Perspective

For the purposes of this dissertation, we are primarily interested in previous

work in the area of language-directed machine design (McKeemanQ..967J; Barton [1965J).

To some extent, all machine design can be considered to be language-directed, in

that one wishes to implement some particular (machine) language in a piece of
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hardware. However, let us consider only the class of machines which might

better be called "higher language inspired"; that is, machines which are based

in some way on languages capable of expressing concepts at a higher level than

are normally associated with assembly code.

The first such machine was reported in 1954, and was a relay device capable

of directly evaluating logical expressions (Burks, Warren, and Wright (1954).

In addition, this machine used input in parenthesis-free (Polish) notation, thus

doubling its historical interest. The logic machine typifies one major class of

language-inspired machine designs in that its machine language is identical to the

high-level source language. The other major class of language-inspired designs

is more concerned with the processing of the semantics of the source language,

rather than direct acceptance of the exact language by the machine. In fact, most

designs fall between the two extremes, as even those which accept the source

language directly do some preliminary transformations on it to produce a simpler

intermediate language.

Other language-inspired machines accepting source language directly include

an ALGOL 60 machine (Anderson [1961J), two FORTRAN machines (Bashkow,

Sasson and Kronfeld [1967J; Melbourne and Pugmire [1965J), the ADAM machine,

based on a special symbol-oriented language (Mullery, Schauer and Rice [1963J;

Meggitt [1964J), and a machine for EULER, a generalization of ALGOL (Weber

[1967J). Of these devices, some were to be implemented in hardware (e.g.,

Bashkow et al.; Mullery et al.) while others were implemented in microprogram

(Meggitt; Weber).

Machines which are more concerned with semantic processing to the extent

that their machine languages are significantly different from a higher-level

language include the Burroughs BSOOO (Barton [1961]; Burroughs [1963J) which is

-4-
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essentially an ALGOL machine, a PL/I machine (Sugimoto [1969) and the Rice

University computer (lliffe and Jadeit [1962). Current work in this area includes

a PL/I machine (Wortman (1970) and a micro-computer capable of emulating

high-level processes easily (Lesser [1969).

Most of these efforts are not directly relevant to the work in this dissertation

and are thus reported here only for completeness. The common aspect of all these

designs is that they are concerned with the processing of more highly organized

information and programs than are found in the conventional von Neumann

type architectures. Most of them include generalized addressing schemes using

some modification of descriptors, as well as at least one stack.

Although the Burks, Warren, and Wright machine was the first to use Polish

notation as a machine language, the first commercially produced devices to do so

apparently were the English Electric KDF9 (Davis [1960) and the Burroughs B5000.

Both of these machines included stacks. Other related efforts not yet mentioned

are two machines based on lower-level machine languages, but intended to deal

with high-level primitives. One of these (Iliffe [1968) is based on extensive use

of descriptor logic for both programs and data, while the other (Myamlin and

Smirnov [1968) is somewhat more clQsely oriented toward higher-level languages.

The latter, in particular, does run-time evaluation of infix arithmetic expressions.

Aside from the work of Burks et al: , none of the designs in the literature seem

to be derived from explicit mathematical analysis of their input languages. Further,

except for simulations or actual performance, none of the papers in the literature

present satisfactory evaluations of their designs. This is not to say that the

designs are not satisfactory: to the contrary, the success of the Burroughs family

of computers and the KDF9 show that language-inspired designs are a viable ap­

proach to the development of new machines. On the other hand, nobody seems to

have established exactly how viable such designs really are.
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D. Conclusion

Having briefly reviewed the developments of language-inspired machine design

to date, they can now be left in the background. The present approach is different

from those in the past in that it is based on a mathematical analysis of the seman-

tics of the source language. Also, the evaluation of the resulting design is analytic,

and gives a clear comparison of this APL machine to other similar devices. There

are, of course, similarities to the designs of the past. In particular, the use of

program segments, data descriptors, and stacks is not novel in itself, although

the machine developed here is substantially different from those mentioned in the

last section.

"The thing can be done, " said the Butcher, ''1 think.
The thing must be done, I am sure.

The thing shall be donel Bring me paper and ink,
The best there is time to procure. 1I

L. Carroll, The Hunting of the Snark
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CHAPTER II

MATHEMATICAL ANALYSIS OF APL OPERATORS

This chapter examines the mathematical properties of some of the APL

operators. Mathematical definitions of the operators are given from which it is

possible to deduce their properties. We show that there is a standard form for

expressions containing selection operators, and that there is a complete set of

transformations to obtain it. A similar form which generalizes inner and outer

products is introduced with transformations appropriate to obtain it. Finally,

the relation between these operators and others in APL is discussed.

This kind of analysis is important for several reasons. First, in its own

right it contributes to the understanding of the operators and data-structures in

APL. Second, and most important for this work, it provides a strong mathematical

basis for the design of the machine to be discussed later. In particular, the ideas

discussed here are reflected in the drag-along and beating processes, which are

fundamental in the proposed machine design.

A. On Meta-Notation

APL is a programming language, and as such is best suited for describing

processes, while mathematics is primarily concerned with discussing relations

rather than processes. Thus, in order to do mathematics with APL, it is neces­

sary to use some notations that are not available in the language itself. Some of

these meta-notations are actually extensions of the language which might well be

included in APL to make it more powerful, while others are necessitated by the

analytic approach, and do not reflect shortcomings in APL. In the next section,

definitions of objects not in APL are clearly noted as such.
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B. Preliminary Definitions

The definitions to follow are given partly in APL and partly in meta-notation.

Hence this and the remaining sections in this chapter assume a minimal "reading

knowledge" of APL. The APL summary in Appendix A will be helpful to the reader

not fluent in this language. Also recommended are the APL\360 Primer (Berry

l1969J) and APL\360 Reference Manual (Pakin [1968J). At first, it might appear

that defining APL operators in terms of other (intuitively but not formally defined)

APL operators is elliptical. In fact, there is no circularity since the definitions

could be given in more primitive forms, but at the cost of less perspicuity. Since

the goal here is not the development of a coherent theory of APL expressions but

rather the illumination of the behavior of these expressions, the current mode of

explication was chosen. The use of "undefined" APL operators is made advisedly

and no special or esoteric applications of them are made in the following definitions.

The basic problem here is that of using a formalism to describe a formalism.

At some point it is necessary to assume a previous knowledge of something in

order to avoid an infinite regress. l'Nothing can be explained to a stone; the

reader must understand something beforehand." (McCarthy [1964J, p. 7)

The definitions will be numbered Dn for easier reference. Theorems and

transformations will be numbered Tn and TRn, respectively. In APL expressions

to follow, the convention that unparenthesized subexpressions associate to the

right will be used wherever this does not lead to confusion. Material which can

be skipped in the first reading is enclosed in heavy brackets. For the most part,

this includes formal statements in definitions which are necessary for proving

theorems and correctness of transformations, but which are not essential to

understanding the content of this chapter.
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DO. Identity: (Meta) If ,Y'$ and f!lJ are expressions, then

.A +-+gj

means they have identical values.

The sign ~, is used for identity because the more traditional equality

sign '= , is reserved for use as a dyadic scalar operator in APL.

Dl. Conditional Expression: (Meta) The conditonal expression

IE. B 'l..HEN A ELSE C

has as its value the value of A if B +-+ 1, the value of C if B +-+ 0, and is

undefined otherwise.

McCarthy [1963J discusses formal properties of conditional expressions,

some of which are used in the proofs in this chapter.

D2. Index Origin: (Meta) The index origin is the lower bound on subscripts in

APL expressions. It will be referred to as IORG.

In general, this work attempts to show explicit dependencies on index origin.

However, to do so throughout simply complicates many expressions without adding

insight. Whenever it is unstated we use I-origin indexing.

D3. Interval Function: If N is a non-negative integer scalar, the interval

function of N,denoted by 1N, is a vector of length N whose first element is

IORG, and whose successive elements increase by 1.

[Formally, 1N +-+ IE. N=O 'l'JiEN EMPTY VECTOR fdLSE (IN-l) ,N+IORQ-l.]

Thus, one representation for the empty vector is 10.

D4. Odometer Function: (Meta) If R is a vector of non-negative integers, the

odometer function of R, denoted by lR, is a matrix with dimension (x/R),pR
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whose rows are the mixed-radix representation to base R, of the (x/pR)

consecutive integers, starting with IORG. This extension is not a part

of APL, but is useful for discussing individual subscripts of an array.

[FormallY, for each In x/R, (lR)[I;] ~ IORQ+RTI-IORG]

Example: 13,2 ~ 1 1
1 2
2 1
2 2
3 1
3 2

D5. Row Membership: ELf. is a function whose left operand is a vector and

whose right operand is a matrix, defined as follows:

L ELT R ~ IF (pL)=(pR)[2] THEN V/RA.=L ELSE O.

That is, the relation is true (has value 1) if and only if the left operand

vector is identical to one of the rows in the right operand matrix.

Example: (1,3) ELf 13,2 ~ 0

(2,2) ELT 13,2 ~ 1

D6. List:(Meta) If L is a vector, then the list of L, denoted by ;/L, is a

subscript list made up of the elements of L. That is,

;/L ~ LC1];L[2];-••• ;L[pL].

Example: M[;/15] ~ M[1;2;3;4;5]

D7. Ravel: The ravel ofM, denoted by,M, is a vector containing the elements

of M in row-major order. The dimension is

p,M ~ x/pM

If Mis a scalar, then ,M is a one-element vector.

- 10-



Example:

[Otherwise for each IE1X/pM, (,M)[I] ~ M;/(lPM)[I;]]]

,1 3
5 7 ~ 1,3,5,7,9,11
9 11

,1,3,5 ~ 1,3,5

D8. Reshape: Let R be a vector of non-negative integers. Then the R reshape

of M , denoted by RpM, is an array with dimension R, whose elements are

taken from M(possibly with repetition) in row-major order.

[

Formally, for each L ELT lR, ]

(RpM)[;/L] ~ (,M)[IORG+(x/pM) !RlL-IORG]

Example: (3,2)p1.6 ~ 1 2
3 4
5 6

4p1,2,3,4,5 ~ 1,2,3,4

(2,4)p1.3 ++ 1 2 3 1
231 2

00. Partial Subscri.Jting: (Meta) M[[K] S] denotes the partial subscripting

of array M along the K th coordinate. In other words,

M[[K] S] +-+M[; ••. ;S; ••• ;]
t t t
1 K ppM

Formally,

pM[[K] S] ~ ((K-1)tpM),(pS),(KfpM)

and for each L fl.LT lpM[[K] S],

if S is a vector, then

(M[[K] S])[;/L] +-+ M[;/((K-1)tL),S[L[K]],KfL]

and if S is a scalar, then

(M[[K] S])[ ;/L] ++ Me ;/((K-1)tL),S,(K-1)+L]

-11-



DI0. Subscripting: If M is a rank-K array, then for any S1,S2, ••• ,SKM1 ,SK

M[S1; .•• ;SKM1;SKJ ++ ( .•• ((M[[ppMJ SKJ)[[(ppM)-1J SKM1J) • •• )[[1J S1J

The above simply gives a formal definition for array subscripting. It looks

more complex than it really is because APL uses a different syntax for subscripting

than for other operators. If we write SK K[KJ Minstead of M[[KJ SJ, then the

value of the above expression can be rewritten as:

S1 K[1J ... SKM1 K[(ppM)-~ SK K[ppMJ M

Dll. J-Function: Let LEN be a non-negative integer, ORG an integer, andSEO,1.

Then ,z LEN, ORG,S is an interval vector of length LEN whose least element

is ORG; if S ++ 0 then successive elements increase by 1, else they decrease

by 1. Formally,

,z LEN,ORG,S

++ l.f. s=o TJ1E1Y. ORG+( lLEN)-IOR(i ELSE (LEN+ORG-1 )-( (lLEN)-IOR(i).

J-vectors are a generalization of the interval function. In particular, J-vectors

can have any origin, are invariant under changes of IORG, and can run forward

or backward.

Example: ,z 4,2,0 ++ 2,3,4,5

i 4,2,1 ++ 5,4,3,2 and these relations are true for any IORG.

D12. Subarray: (Meta) LetM be any array and F an array with dimension

( ppM) , 3. Then the subarray selected byF , denoted FbM, is

FbM ++ M[i F[1;J;i F[2;J; ... ;iF[ppM;JJ

where the elements of F are assumed to be in the domain of the above

expression.
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A subarray selected by this function is compact. The subarray function will be

used to provide a standard representation for all the various ways of selecting

compact subarrays.

Example: Let pM +-+ 10 ,15

and f. +-+ 4 3 0
351

then F!::M +-+ M[ -l. 4, 3 , 0 -l. 3, 5, 1 J

+-+ M[3,4,5,6 7,6,5J

D13. Whole Array: (Meta) For any array M, the whole array of M, denoted

by NJ, produces as a result the F such that F!::M +-+ M.

[FormallY, NJ +-+ 1s{(3,ppM)p(pM),((ppM)pIORG), (PPM)PO]

and IORQ. +-+ 1

Example: If pM +-+ 6,10, 32, then NJ +-+ 6 1 0
10 1 0
32 1 0

D14. Cross Section: (Meta) Let M be any array, F an array with dimension

(ppM),2 such that

(i) F[;1JEO,1

(ii) (~F[;1J)/F[;2J +-+ (+/~F[;1J)pO

(iii) (F[ ;1J/F[ ;2J) ELT tF[ ;1J/pM

Then the F cross section of M, denoted by FNJ, is: pFt;}1 +-+ (~F[; 1 J )/ pM

and for each L ELT tpFt;}1, (FAM)[;/LJ +-+ M[;/(x/F)+(~F[;1J)\LJ

Cross section is used to formalize the subscripting of arrays by scalars. The

first column of F contains zeros for coordinates to be left intact. Condition (ii)

requires that if F[J; 1 J +-+ 0 then F[J; 2J +-+ o. This is primarily to make some

of the theorems easier to prove. Entries of 1 in F[ ; 1 J correspond to coordinates

indexed by scalars in the corresponding element of F[ ; 2 J •
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Example: Let pM ++ 4,7,13

F++ 1 2
0 0
1 10

then F/;;:M ++ M[ 2 ; ;10J

D15. Take: If Mis any array and A is an integer vector with pA ++ ppM and

( IA ) ~M, then AtM is an array of the same rank. of M, as follow s: for each

IE lppM, if A[I]~O then include the first A[IJ elements along the I th coordinate

of M; otherwise if A[I]<othen take the last IA[IJ elements.

[

Formally, AtM ++ Ft:J.1 ]

where F +--+ Q(3,ppM)p( !A),(IORG+(A<O)x(pM)-IA),(ppM)pO

D16. Drop: If M and A are as above, thenA+M is similar to the take except that

for each coordinate, the first (or last) IA[IJ elements are ignored.

[

Formally, A+M +--+ Gt:J.1 ]

where G +--+ QC3, ppM)p( (pM)-IA), (IORG+orA) , (ppM)pO

D17. Reversal: If M is any array then ¢[KJM is the reversal of M along the K
th

coordinate.

[

Formally ¢[KJM +--+ H6M ]

where H +--+ Q(3,ppM)p(t:J.1)[ ;1J;(t:J.1)[;2],K=lppM

If the subscript on the operator is elided, it is taken to be ppM.

Example: Let M ++ 1 2 3
456
789
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then, ( 2, 2)tM +-r 1 2 (2,-2)tM +-+ 2 3
4 5 5 6

( 2 ,1)+M +-r 8 9 Cl,l HM +-r 2 3
5 6

Q[1JM +-r 7 8 9
4 5 6
1 2 3

DIS. Transpose: If M is any array and A is an integral vector satisfying

(i) pA +-r ppM

(ii) A/AE 1ppM i. e.,A contains only coordinate numbers of M

(iii) A/ ( 11 / A )EA i. e. , A is dense

then the transpose AQM of MbyA is defined as follows:

1. ppAQM +-r 1+( I/A)-IORG

2. For each IElppAQM,

(pAQM)[IJ +-r L/(A=I)/pM

3. For each L ELT 1P AQM,

(AQM)[;/LJ +-r M[;/L[AJJ

In other words, A permutes the coordinates of M. Transpose can also

specify an arbitrary diagonal slice.

Example: Suppose M is a matrix with pM +-r 5,6. Then if R +-r (2,1 )QM , and

IORQ.+-r 1 we have ppR +-r 1+2-1 +-r 2 • Further, (pR)[1J +-r L/(1=2,1)/5.6 +-r 6

(pR)[2J +-r L/(2 +-r 2,1)/5,6 +-r 5 andforeachL ELT 16,5, R[;/LJ +-r M[;/(,L)[2,lJJ

or R[L[lJ; L[2JJ +-r M[L[2J; L[lJJ.

Thus, R is the ordinary matrix transpose of M •

Now supposeM is same as above and R +-r (l,l)QM.Then, ppR +-r 1+1-1 +-r 1.

So the result is a vector. Then (pR)[ 1 J +-r LI( 1=1,1) /5,6 +-r 5.
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Then for each LE 15, we have R[LJ ~ M[ ;/( .L)[1.1J J

++ M[L ; LJ

So R is the main diagonal of M.

D19. Compression: If X is any vector and U is a logical vector of the same

length, then U/ X is the result of suppressing from X all elements whose

corresponding entry in U is O. For an arbitrary array X, U/[I] X compresses

X along the I th coordinate.

FormallY,forvectorX. pU/X ++ +/U and for eachIElpU,

IF U[I]=1 THEN(U/X)[+/ItU] ~ X[IJ

This is not a constructive formula for (U/X)[I]; however, such a

formula is too complex to be useful here. For any arrayX ,

U/[IJ X ~ X[[IJ U/1(pX)[IJJ.

D20. Expansion: If X is any vector and Uis a logical vector with +/U ~ pX,

then U\X is a vector with 0 elements wherever U has, and whose other

elements are taken from X in order.

The definition of expansion is extended to higher-dimensional arrays in

the same way as for compression.

[

Formally, pU\X ++ pU and for each IE 1PU. 0]
(U\X)[IJ ++ IF U[I] THEN X[+/ItUJ ELSE

Example: (1.1,0.1.0)/1.2.3.4.5 ++ 1,2.4

(1.1.0,1.0)\1.2,3 ++ 1.2,0,3,0
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C. The Standard Form for Select Expressions

In this section the selection operators considered are take, drop, reversal,

transpose, and subscripting by scalars or ~-vectors. Because of the similarity

among the selection operators, we might expect that an expression consisting only

of selection operators applied to a single array could be expressed equivalently in

terms of some simpler set of operators. This expectation is fulfilled in the

standard form for select expressions, to be discussed below.

If the existence of a standard form is to be at all useful, there must be a way

to decide whether a particular expression has a standard form representation and

if so, there must be an effective method to obtain it. In the sequel we show that

every select expression has an equivalent standard form, and exhib.it a set of

formal transformations which are sufficient to derive the standard form from an

arbitrary expression.

It may at first seem strange to include subscripting in the set of selection

operators, since its parameters are of a different kind than those for the other

select operators. In the other select operators such as take or drop, the left

operand is a count, which is independent of ways of accessing the argument array.

On the other hand, in subscripting the arguments act like maps rather than counts.

For example, an expression likeAtM has meaning out of context, as long as the

values of A andM are known. Contrariwise the expression M[ 1 ; 3 ] cannot be

evaluated without knowledge of the index origin. In the theorems and proofs to

follow, the major complications often come from this dichotomy in the way of

specifying select operations, rather than from the actual content of the material.

Subscripting is included because its effect is similar to the other selection

operators, all of which change only the dimensions and orderings of their operands.
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D21. Select Expression: Let ~ be any (well-formed) array-valued expression.

Then g;'is as a select expression on ~ if it is a well-formed expression

consisting of an arbitrary number (including 0) of the following operators

applied to ~:

(i) Take

(ii) Drop

(iii) Reversal

(iv) Transpose

(v) Subscripting by scalars of ~-vectors

By extension, we will also include the subarray and cross section operators

in this class.

Example: Let M be a rank-3 array. Then by D21,

(2,1,3)~(~[2J(4,-6,3)+M)[; ; i6,2,1J

is a select expression on M, but

-M[; ; 5,7,3,1 J

is not because it contains the scalar operator' -' and the subscripting is not by

a scalar or J-vector. The definition also admits M as a select expression on M.

D22. Equivalence Transformation: An equivalence transformation on expressions

is a rille of the form:

if set of assertions then ~ =>9'

where 3 and g are expressions. If the set of assertions is true, then expression

cff may be replaced by expression.~ and the truth of the assertions guarantees

that ~=>$:

For example ill X is any vector then ~~X=>X ) is an equivalence transformation,

since it is always true that if X is any vector, ~~X +-+ X.
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For any given transformation, .it is necessary to prove that it is indeed

equivalence-preserving. If this is the case the transformation is said to be

correct. Note that the notions of expression and transformation and standard

form used here are informal ones. It is possible to make therp. rigorous, so as

to be acceptable to a logician, but that is irrelevant to the current aims and would

only serve to obfuscate the important mathematical relationships we are trying

to explicate. The correctness proof for each transformation will be called

"Proof of TRn".

D23. Standard Form: A select expression on an array M is in standard form

(SF) if it is represented as AI:!¥F6GflMwhereA,F,G are all of the correct

size and domain.

In the remainder of this section, we introduce a set of equivalence transfor­

mations sufficient to transform most select expressions into standard form. In

the process we prove the correctness of each transformation. The effect of this

process is a proof of the following important theorem:

COMPLETENESS THEOREM 1: If G" is any select expression on an arrayM,

then G" can be transformed into an equivalent expression $in standard form.

In order to obtain an SF representation of an arbitrary select expression, we

must first be able to eliminate the operators take, drop, reversal and subscripting.

The first four transformations below do this.

TRl. If M is any array and A is conformable to M for take, then AtM => F6M

whereF +-+ 1:!¥(3,ppM)p(!A),(IORQ+(A<O)x(pM)-IA),(ppM)pO.
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TR2. If M is any array and A is conformable to Mfor drop, thenMM => F/:,M

where F +-+ ~(3,ppM)p«pM)-IA),(IORG+orA),(ppM)pO.

TR3. If M is any array then <!>[KJM => F/:,M

where F +->- ~(3,ppM)p(/:,M)[;1J,(/:,M)[;2J,K=lppM.

These three transformations are obviously correct, as they follow directly from

the definitions of the operators take, drop, and reversal. Their proofs will thus

be omitted.

TR4. If M is any array then M[ [KJ -l. LEN ,ORG,SJ => F/:,M

where F[K; ] +->- LEN ,ORG,S and (K~lppM)/[1 JF +->- (K~lppM)/[1 J/:,M

That the above is an equivalence transformation requires a small proof:

Proof of TR4:

We must prove that for any array M,

M[[KJ -l. LEN,ORG,SJ +->- F/:,M

where F is as given in TR4. In order to prove the identity, we show first that both

quantities have the same dimensions. Then we show that corresponding elements

of each are identical.

Let R +->- Me [KJ -l. LEN ,ORG ,SJ.

1. By definition, pR +->- «K-1HpM),(p -l. LEN,ORG,S),K+pM

+->- «K-l)tpM),LEN,K+pM

and pF/:,M +->- F[;lJ

+->- «K-1 H( /:,M) [ ;1]) ,LEN ,K+( /:,M)[ ; 1]

+->- «K-1)tpM),LEN,K+pM

+->- pR
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2. For each L §.LT 1 pR,

R[;/L] ++ M[;/((K-l)tL),(~LEN,ORG,S)[L[K]],K~L]

and (F~)[;/L] ++ (M[~ F[l;] ; ~ F[2;] ; ••• ; ~ F[ppM;]][;/L]

++ Me(~ F[l;])[LC1]]; ; (~ F[ppM;])[L[M]]]

(by L3 in Appendix B).

But for each I~K, (~F[I;])[L[I]] ++ (~ (pM)[I],IORQ,O)[L[IJ]

++ L[I] (by L4, Appendix B)

and(~ F[K;])[L[K]] ++ (~LEN,ORG,S)[L[K]]. Therefore,

(FI::.M) [ ;/L] ++ MeLC1] ; LC2] ; ••• ; L[K-1J ; (sl. LEN,ORG,S)[L[KJJ;

L[K+l]; .•. ;L[ppM]]

++ Me ;/( (K-l)tL),(~ LEN,ORG,S)[L[K]J,K+L]

++ R[; /LJ QED.

The preceding proof of TR4 is reasonably simple, and is representative of

the kind of proof required. Although similar in style, the proofs of the remaining

transformations are more complex. Since they add little to the exposition, they

are given in Appendix B.

The following transformation makes it possible to reduce the number of

occurrances of adjacent subarray operators in an expression.

TR5. If Mis any array and F and G are conformable for subarrays, then

FI::.GI::.M => H!::.M

where pH ++ pF and for each IElppM, H[I;] ++ L,OR,S

where ~ L,OR,S ++ (~ G[I;])[~ FCI;]]

Transformations TR1 through TR4 are used to eliminate instances of the

operators take, drop, reversal, and indexing from select expressions by trans­

forming them into equivalent expressions involving subarray and cross section

operators. TR5 shows how to coalesce two adjacent occurrances of subarray into
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one. The remaining transformations, TR6 through TRIO are similar in spirit

and are used to permute the remaining operations into the order required by the

standard form.

TR6. If Mis any array and Fand G are conformable, then FI'!.GtW => G'I'!.F'I'!.M- - ,

where G' +-t- (~F[;1J)/[1]G

and F'[;1] +-t- F[;1]

and F'[;2] +-t-

F[;1]x(G[;2J+((~G[;3J)xF[;2J-IORG)+(G[;3JX(G[;1J+IORG+-1-F[;2J)))

TR7. If M is any array and F and G are conformable toM for cross section,

then FflGfd'1 => Hfd'1

where H[;1J +-t- G[;1Jv(~G[;1J)\F[;1J

and H[;2J +-t- G[;2J+(~G[;1J)\F[;2J

TR8. If M is any array and F ,A are conformable to M for subarray and transpose,

respectively, then

FMQM => AQF[A; JtW.

TR9. If M is any array, Q a scalar, JElppAQM then

(AQM)[[JJQJ => IF 1=ppAQM THEN B/lM ELSE A 'QB/lM

where A' +-t- (A~J)/A-J<A

and B[ ;1J +-t- J = A

and B[;2J +-t- QxB[;lJ.

TRIO. If M is any array and B and A are conformable for transpose, then

BQAQM => CQM

where C +-t- B[A J.
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Now that we have transformations TR1 through TR10 which are proved correct

in Appendix B, we can outline a proof of Completeness Theorem 1. First

note that for any array M, M +-+ (lppM)Q(6M)L.((ppM),2)pO)!d'1.

1. Let 8 be any select expression on M which satisfies the hypotheses of the

theorem. Apply TR1, TR2, and TR3 to 8 enough times to eliminate all instances

of the operators take, drop, and reversal. (In order to be absolutely rigorous,

we would have to prove a replacement theorem which says that if in an expression

A, an occurrance of a subexpression $ is replaced by an equivalent subexpression

$' (i. e., $ +-+:!iJ '), then the resulting expressionA' is equivalent to Jt, only

..4' +-+ A. Call the result of this operation 8'. Note that 8' contains only

subscript, 6. and Q operations. Clearly &"+-+ &' because we have applied

only equivalence transformations.

2. Now for each instance of an indexed quantity, substitute the equivalent

expression using partial indexing, as per definition D10. Write this using the

IX notation mentioned there and apply TR4 to eliminate all instances of J-vector

subscripts and call the resulting expression 8". It should be obvious that 8"

has the form 51 81 52 82 ... SN 8N M, where the S quantities are left operands

for the operators 8 and the 8 's are 6, Q and IX in arbitrary order. Finally

subst.itute the expression (1 ppM)Q( 6M)L.( ( (ppM) ,2) pO)!d'1 for M, and note that this

subexpression, call it 9'N' is in standard form. Call the resulting expression 3"N'

and again note that ;?IN+-+ 8.

3. Consider the following algorithm: at each step, the input is

.:1K +-+ Sl 81 S2 82 .,. SK 8K 9'K' where 9'K is in standard form, i. e. ,

9'K +-+ AKQFK6GK/lM •

(a) If K +-+ 0 then the algorithm is terminated. Otherwise, look at the operator

8K. Do step 1, 2, or 3 below depending on whether 8K is Q, 6 or IX , respectively,

and return to step (a).
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L 8K is transpose, ~. Apply TRIO to the expression SK~0( +-+ SK~AK~FKt:.GKfj4,

to get the equivalent QK~FKt:.GKfj4, where QK +-+ SK[AKJ and call this.9K-1 .

2. 8K is subarray, t:.. Apply transformations TR8 and TR5 toSKt:.0( to

get SKt:.9f<. +-+ SKMK~FKt:.GKfj4 => AK~SKeAK; Jt:.FKt:.GKfj4 => AK~FK' /:'GKfj4, where FK'

is obtained by TR5.

3. 8K is indexing by a scalar, IXeJJ. Apply transformations TR9, TR6,

and TR7 to SK IXeJJ9k' getting

SK IX[JJ AK~FK/:'GKfj4 => AK' ~BKtlFKt:.GKfj4

=> AK'~FK'/:'BK'tlGKfj4

=> AK'~FK'/:'GK'fj4.

In each of steps 1, 2, 3 above, a set of transformations was applied to the

subexpression SK 8K97
K

of ,C!lK. Call the resulting subexpression 9K_1• Since all

transformations were equivalence transforms, it is clear that SK 8K~ +-+ 97
K

_1•

Let ~-1 be the resulting expression from plugging 97K_1 into ,'YK • Clearly

.9T
K

_1+-+ .9TK • Finally observe that each 9K is in standard form. Hence, in N steps,

the algorithm will terminate with result 3Q +-+ 8J.+-+ ••• +-+ ffN +-+ g, and.:1Q +-+ 97
0

,

which is in standard form. This is the desired result. QED.

SO far, we have defined a standard form for a subset of select expressions

and exhibited a complete set of transformations for obtaining the standard form

representation of an arbitrary expression in this class. Moreover, the proof of

the completeness theorem gives an algorithm for obtaining the SF of an expression.

Note that there are alternate ways of formulating the standard form. For instance,

an equivalent formulation says that an expression is in standard form if it is

represented as A~BtC+¢[KJ Dfj4 with B,C non-negative and K a vector of indices

so that the definition of ¢[KJ extends in the obvious way. The choice of using

the meta-notation formulations was made for two major reasons. First, fewer
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transformations and therefore fewer proofs are needed to establish completeness.

Second, this formulation is closer to the way these results will be used in the

design of the machine.

Another point to note is that the standard form could be made more general,

by allowing more operators to be included in the set of selection operators. In

particular, compression and expansion might be included, as well as reshape

and catenation. The general rotation operator at first seems to be a possible

candidate for inclusion, but in fact does not fit in cleanly. This is primarily

because rotations involve taking residues of subscripts, which do not compose in

a simple way. A further extension would allow arbitrary indexing of select

expressions and perhaps extend operations on select expressions to operations

on their subscripts, as in the case <W[B] +-+ V[ ¢B] •

A final point concerns the significance of the SF and completeness results.

These results are important in that they establish formally some of the relation­

ships between APL-like operators which informally may appear obvious. This

not only provides a useful tool for the programmer, who may make formal trans­

formations on his programs without a second thought, but it also provides a formal

basis for automatic transformation of programs and expressions. This second

property is heavily used in the design of the APL machine. Also important is

that results such as we have described.aid in the understanding of array operators,

which might be used in generalizing them further or in strengthening the theoretical

foundation for operations on array data.

D. The Relation Between Select Operators and Reduction

Obviously there is more to APL than just selection operators. If the results

of the previous section are to be generally applicable, we must look into the

relationships between select operators and some of the other kinds of operators
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in an array language. One result that has been used implicitly in some of the

proofs in Section C is that selection operators are distributive with respect to

scalar arithmetic operators. For instance, (A+B)[S] -+-+ A[S]+B[S] and

-¢v -+-+ ¢-V. This property follows immediately from the definition of scalar

arithmetic operators and the definitions of the select operators, and is stated

formally in the theorem Tl below:

Tl. Let A and B be arrays with the sa"me dimensions and 1:1 and Q be monadic

and dyadic scalar arithmetic operators and 'l a selection operator; then

(i) if A 12 B is defined,

f (A ~ B) -+-+ (f A) ~ (f B)

(ii) if M A is defined

fMA-+-+MfA

Tl contains the restriction thatA ~ Band M A be defined, in order to deal

with cases like (( 1 .1 .1 ) +1.1 .0) [1.2] in which the result is undefined as written

but is defined after distributing the indexing operator. This result is in fact more

general than as stated. It should be clear that the operator 'l can also be rotation,

compression, expansion (for some scalar operators) or operators such as ravel

or reshape. A similar result holds if one of A or B is a scalar.

One of the most important constructions in APL is reduction which applies a

dyadic scalar operator between all elements ofa vector. Reduction is not an

operator in the sense we have been using, but is more like a functional. As will

be shown below, it is possible to change the order of select operators and reductions

as well as to permute the coordinates of the reducee. As in the previous section,

these facts will have direct use in the APL machine. The remainder of this section

defines reduction formally, and presents a set of equivalence transformations

for expressions involving reductions.
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D24. Reduction: Ifl? is a dyadic scalar operator and V is a vector, then theD

reduction of V, written l}/V, is a scalar defined as follows:

l}/V ~ IF (pV»l THEN V[l] 12 V[2] 12 '" 12 V[ppV]

ELSE IF (p V) = 1 'l.HElJ.. V[1] ELS~ (IDENTITY OF 12)

In the expression above, the operators 72 associate to the right, as usual.

The identities of the scalar dyadic operators are listed in Appendix C.

If M is any array and 72 is as above then the 72 reduction over theK th

coordinate of M is defined as follows:

p12/[K] M ~ ((K-l)tpM),K+pM

and for each L ELT 1 p12/[K] M

(12/[K] M)[;/L] ~ 12/F~

where F[;l] ~ K~lppM AND F[;2] ~ F[;l]\L

If the subscript K is elided in the expression 12/[K] M, it is taken to be

the last coordinate of M, which is p pM in I-origin and r/1 PpM in general.

In order to do some of the proofs required by this section, we will need to use the

membership and ranking operators, so these operators are defined formally first.

D25. Membership: If A is a scalar and B is any array, then the membership

relation AEB has value 1 if at least one of the elements of B is identical to

A , otherwise the value is o. _The dimension of the result is the same as

that of A, and the definition is extended element-by-element on A.

[
That is AEB ~ ~/Ao.=B]

ppB TIMES

D26. Ranking: If B is a vector and A is a scalar, thenB1A denotes the index

of A in B, namely the least subscript I of B such thatA ~ B[I].

[Formally, B1A ~ L/(A=B,A)/ 11+pB.]
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From the expression above, it is clear that if ~AEB then the result is

1+f /tpB. The operation is extended to arbitrary arrays A element-by-

element.

if Ais any array, then for each L gLT l pA , ]

(BlA)[;/LJ ++ L/(A[;/LJ = B,A[;/LJ)/l1+pB.

An interesting question about reductions is under what circumstances can the

coordinates of the reducee be permuted, with reduction carried out on a different

coordinate, and still have the result remain the same? It is intuitively obvious,

for example, that +/ [ 1J M ++ +/ [ 2J (2,1)~M , when Mis a matrix, since adding

the rows is the same as adding the columns of the transpose. Theorem T2 shows

that this kind of permuting can be carried out as long as the coordinates that are

left after reduction are in the same order.

T2. Let Mbe any array, 12 any scalar dyadic operator, K a scalar, and P any

permutation of l PpM. Then,

12/[KJ M++ 12/[P[KJJ P~M

if and only if

Proof: See Appendix B.

The complicated condition in T2 is a formal statement of the requirement

that permutation by P does not disturb the ordering of the coordinates in Mother

than K.

Example: Let Mbe a rank-4 array. Then, by theorem T2, all of the following

are true:

+/[2JM ++ +/[1J (2,1,3,4)~M

++ +/[3J (1,3,2,4)QM

++ +/[4J (1,4,2,3)~M
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No other values of P satisfy the condition in T2. For instance if P +-+ 4,2,1,3,

P[2] +-+ 2 and PllPP +-+ 3,2,4,1. So(U1.2.3.4)/3.2,4.1 +-+ 3,4,1 which is

not (2 ~1 , 2, 3•4 ) /1 , 2 , 3 ,4 +-+ 1, 3 ,4. This theorem suggests the following trans­

formation:

TRll. If Mis any array and llis a dyadic scalar operator, then

ll/[K] M +-+ ll/[LAST] A~M.

where LASTis the index of the last coordinate of M (ppM for I-origin and

I /1 ppM in general) and A +-+ (lK -1 ).LAST, ( (K-1)+ 1 (ppM) -K)

TRll above and TRI2, TR13, and TR14 to follow can be used to transform a

select expression on a reduction to a reduction along the last coordinate of a

select expression.

TR12 0 If M is any array and II a dyadic scalar operator then

A~ll/M => ll/(A,1+I/A)~M.

TR13. If Mis any array, II a dyadic scalar operator, then

G6ll/M => ll/G'6M

where G' +-+ (p6M)p(,G),CitpM),IORG,O.

TR14. If Mis any array, 12 a dyadic scalar operator, and Q a scalar,

then (ll/M)[[J]Q] => ll/M[[J]Q].

Proofs of TRll, TRI3, TRI4: Immediate from theorems T2, T3, T4.

Proof of TRI2: See Appendix B.

Transformation TRll forces all reductions to be along the last coordinate of

their operand array. TRI2, TRI3, and TRI4 permit reduction to be "factored

out" of select expressions.
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Given these transformations, we can extend the completeness result of the previous

section as follows:

COMPLETENESS THEOREM 2: If & is an expression on an array M containing

only selection operators and reductions, then it can be transformed into an

equivalent expression.~of the forml\/Rl ..QK1:¥' I where the J2
I

are the reduction

operators in the order they appeared in & and where:¥" is in standard form.

Since the proof of this theorem is similar to that for the first completeness theorem,

it will be omitted. Such a proof depends on the correctness of transformations

TRll through TR14, which follow from the theorems below:

T3. If Mis any array, Q a dyadic scalar operator then

G~Q/[K]M ++ Q/[K]G'~

where (K~lppM)/[1]G' ++ G AND G'[K;] ++ (~)[K;]

Proof: See Appendix B.

T4. For any array M and D a dyadic scalar operator,

GIJ.QIM ++ QIG'/dM

where G' ++ ((ppM),2)p(,G),O,O

Proof: See Appendix B.

The following example takes an expression and derives the standard form of

Completeness Theorem 2.

Example: Let pM ++ 6,10,12,19 and consider the select expression with

reductions:

8++ (2,1)~+/[1](3,7,-4)tx/[4]M

In each step, we note the transformations applied.
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1. 8+-+( 2,1 )~+/[3J(3,1,2 )~F6x/[4JM

where F +-+ 3 1 0
710
490

(TRll, TRl)

2. 8+-+ +/[3J(2,1,3)~(3,1,2)~x/[4JG6M (TRI2, TRI3)

where G +-+ 3 1 0
710
490

19 1 0

3. 8+-+ +/[3J(3,2,1)~x/[4JG6M

4. 8+-+ +/[3Jx/[4J(3,2,1,4)~G6M

5. 8+-+ +/[3Jx/[4J(3,2,1,4)~G6HQM

where H +-+ 0 0
o 0
o 0
o 0

The above expression is in SF.

(TRIO)

(TRI2)

by definition of !l

E. The General Dyadic Form - A Generalization of Inner and Outer Products

In APL there are three ways of applying dyadic scalar operators to a pair of

operands. The simplest, the scalar product, is the element-by-element application

of a scalar operator to corresponding elements of conformable arrays. The next

simplest is the outer product, in which the result is obtained by applying the

operator to all possible pairs of elements, one from each operand array, in a

specified order. Finally, the inner product is a generalization of ordinary matrix

product in linear algebra, except that arbitrary (conformable) arrays may partici-

pate as operands and any pair of operators may be used. Before proceeding, let

us present the formal definitions of inner and outer products.
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D27. Outer Product: If Mand N are arbitrary arrays and J2 is any dyadic scalar

operator, then the J2 outer product of M and N, written M 0.[2 N, is defined

as follows: pM 0 -12 N +-+ (pM), pN. Then for each L ELT lpM 0 -[2 N,

(M 0.[2 N)[;/L] +-+ M[;/(ppM)tL] 12 N[;/(ppM)+L].

D28. Inner Product: If M and N are any arrays such that -itpM +-+ itpN and if

12 and Eare two dyadic scalar operators, then theJ2-E inner product of

M and N written M Q.E. N, is defined as follows: pM [2-E. N +-+ CHpM), HpN

and for each L ELT lpM [2.E. N, (M [2.E N)[;/L] +-+ Q/(GflM) E HflN,

where G[;1J +-+ (C1+ppM)p1),0 G[;2] +-+ (C1+ppM)tL),O

H[;1] +-+ O,(-1+ppN)p1

H[;2] +-+ O,(1-ppN)tL

If one of MorN is a scalar, it is extended to a vector of the same length as

the reduction coordinate. In the sequel, we assume that all operands of inner

product are array-shaped (or have already been extended).

Example: (1,2,3) o.x 4,5 +-+ 4 5
8 10

12 15

(1,2,3) r.+ 4,5,6 +-+ r/(1,2,3)+4,5,6

+-+9

If M and N are conformable matrices, then

M +.x N

is the ordinary matrix product of linear algebra.

Although these three product forms appear to be different syntactically and

also in their effect, they are in fact intimately related, and can be considered

as aspects of the same thing. This section shows the close relationship between

scalar, inner, and outer products, and introduces a new (meta) form which
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includes these as special cases. We also investigate the effect of select operations

on this new construction called the general dyadic form (GDF), and show that it,

like the standard form on select expressions, is closed under application of select

operations.

The key to the relationship between these apparently diverse constructions

is the generalized transpose operation. By applying a transpose to an outer product,

it is possible to write an expression which specifies a diagonal slice of the original

outer product. For example, if V is a vector, M a matrix, then the expression

1 1 2~Vo .+M describes the result of adding V to each of the columns of M. It

would be desirable to understand this expression to mean the result it describes,

namely the result of adding the vector V to the columns of M, rather than the process,

that is the transpose of the outer product of V and M. The difference is important

for two reasons. Using the first interpretation in a situation where the expression

must actually be evaluated, as in a program, requires only the pertinent elements

of the result to be computed. This is especially important when the operands are

large arrays. Second, some information is lost by ignoring the partial results.

For example, the expression « 1 •2 ) +( 1 .0) ) [1] is undefined in the literal sense

but the apparent intended interpretation gives the value 1. Both in the case of

select expressions and in transposes of outer products this is a serious problem,

as it is in direct conflict with the semantics of APL. Formally, the definition of

the language renders expressions such as the one just mentioned undefined, yet

this is really a matter of taste and style. My contention is that at worst this

kind of situation should be an ambiguous one, since it is essentially an instance

of a side effect. That is, the programmer writing such an expression should not

depend on the processor of his program to indicate that a domain error occurred

in the evaluation of an irrelevant partial result. If that is what he wants, there
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are direct ways of expressing it, such as writing A+( 1,2 ).;- (1,0) , followed by A[ 1] .

In any case, I have taken the view that what should be evaluated is the intent of

an expression, if this is perceivable, rather than the literal expression itself.

Except in cases which produce side effects, both approaches compute identical

values.

Theorems T5 and T6 which follow, establish the essential connections among

the product forms and the transpose.

T5. If A and B are conformable for scalar product, and if Q is a dyadic scalar

operator then A 12 B +-+ ((lppA),lppB)/s1A 0.12 B.

Proof: See Appendix B.

T6. If M and N are two arrays conformable for inner product and 12 and f. are

dyadic scalar operators, then M 12. f. N +-+ 121A/'s;M o. f. N,

where A +-+ (1-1+ppM),(2p LAST1),(-1+ppM)+1-1+ppN

and LASTl is the index of second-to-last coordinates inM o.f. N

(in l-origin this is (ppM)+(ppN)-l and r11(ppM)+(ppN)-1 in general).

Proof: See Appendix B.

Example: (T6) If A andB are matrices then

A +.x B +-+ +/(1,3,3,2)/'s;A o.x B.

We can see this as follows:

( +1(1 , 3 , 3 , 2 ) /'s;A o. x B) [I ;J]

+-+ +1( (1 , 3 , 3 , 2 ) /'s;A o. x B)[ I ;J ; ]

+-+ +IA[I;]xB[;JJ

+-+ (A +.x B)[I;JJ
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In previous sections we have looked into the effect of select operators on

single arrays and scalar products. A natural question then iS t what is the effect

of the select operators on inner and outer products. In order to approach an

answer t it was necessary to discover an alternate formulation of these constructions t

which facilitates this kind of analysis. Such an alternative is the general dyadic

form t defined below.

D29. General Dyadic Form: An expression on two array operands Rand S,

with dyadic scalar operator 12 is in general dyadic form (GDF) if .it is

expressed in the form:

AI\?R' 0.12 S'

and the folloWing conditions are satisfied;

(i) R' and S' are the standard forms of select expressions on RandS.

(U) A is a conformable transpose vector for which each of (ppR' )fA

and (p pR' H Aare in ascending order t and each contains no duplicate

values.

(iii) (pAI\?R'o.12 S')[AJ +-+ (pR'), pS'

The last condition guarantees that if A takes a diagonal slice of the outer product

R' 0.12 S' t then the length of corresponding coordinates in R' and S' are the same.

This can always be done by performing a. take operation affecting these coordinates

(see TR17).

Example: If V is a vector t M and N matrices t then the following are in GDF:

(1,1,2)I\?V 0.12 M,

(1,3,2,3)I\?M 0.12 (2,1)I\?N,

(l,l)I\?((l,l)I\?M) 0.12 V
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but the following are not in GDF because the conditions on A are not satisfied:

(l,3,3,2)QM o.Q N

( 1 ,1.1 )QM 0.12 V

From definitions D27, D29 and Theorem T5, it is clear that the scalar product

and outer product of Rand 5 by 12 are special cases of the GDF, obtained by taking

A ++ (lppR), lpp5and A ++ l(ppR)+ppS, respectively; D28 and T6 indicate that

an inner product can be expressed as a reduction of a GDF.

In discussing the effect of select operators on GDF's, we will present a series

of transformations, with proofs of their correctness in Appendix B. In the following

transformations, let

F++(ppRI)tA and G++(ppR'HA.

TR15. If W ++ AQRI 0.12 SI is in GDF then HI::.W => AQU 0.12 V where

U is the SF of R" ++ H[F; JMI

V is the SF of 5" ++ R[G; JI::.SI

TR16. If Wis as above and Q is a scalar, then W[[JJQJ => BQU 0.12 V

where B ++ (J~A)/A-J<A and

U is the SF of IF JEF THEN R I [ [F1JJ QJ ELSE R I

V.is the SF of IF JEG THEN SI [[G1JJ QJ ELSE SI

TR17. If Wis as above then BQW => (F I .G I ) QU 0.12 V

where F I ++ (MEB[F]) /M

G' ++ (MEB[G])/M M ++ l(i/B)+l-IORG

U is the SF of Rrr ++ (F'lB[F])Q(pBQW)[B[F]]tR'

V is the SF of S" ++ (GI lB[G] )Q(pBQW)[B[GJJt5'
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T RI8. If Mand N are conformable for inner product and 12 and E. are dyadic scalar

operators, then M 12.E. N => 12IA~M' o.E. N'

where A +-+ (l-1+ppM). LAST1.C1+ppM)+lppN

M' is the SF of M

N' is the SF of (LASTN.l-1+ppN)~N

LAST1 is the index of the second-to-last coordinate of Mo. E. N.

«(ppM)+(ppN)-1 in I-origin; r/l(ppM)+(ppN)-1 in general)

LASTN is the index of the last coordinate of N.

( ppN in I-origin; r /l ppN in general) 0

These transformations are sufficient to establish:

COMPLETENESS THEOREM 3: Let 8 be an expression consisting only of

reductions and select operators applied to a scalar product, inner product, or

outer product of expressions A and :!lJ, where A and :!lJ are select expressions

on arrays A and B respectively. Then &can be transformed into an equivalent

expression $ of the form Q.1I Q.
2
I ...Q.

K
1$' , where $' is in GDF and the Q.I 's are

the reduction operators appearing in 8, in the same order. If the original

expression 8 contained an inner product, 12K is the first operator of the inner

product.

Proof: Similar to Completeness Theorem 1.

F. Conclusion

This chapter has discussed some of the formal mathematical properties of

the operators found in APL. Of particular interest are the completeness theorems,

which give conditions under which a subset of APL expressions can be put into

standard form. The general idea of the standard form is that sequences of selection
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operators on an expression can be transformed into a shorter sequence of opera­

tions on the same expression. In other words, if 8 is an expression and §:1 •... ,§:K

are selection operators, then there is a process for finding A, F. and G such that

§:1 §:2 ••• §:K8 +-+ A~Fb.G!l8.

Completeness Theorem 3 further shows that, in essence, selection operations on

inner, outer, or scalar products can be absorbed into the individual operands.

Also by Completeness Theorems 2 and 3, reductions can be factored out of select

expressions.

Clearly, the whole story has not been told at this point; indeed, the contents

of this chapter barely scratCh the surface of the general problem of analysis of

APL semantics. Even so, the results discussed are a sufficient base for the

design of the APL machine discussed in the next chapters. In particular, the

analysis here provides a formal basis for the beating and drag-along processes,

which are the two foundations upon which the APL machine design rests.
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APPENDIX A

SUMMARY OF APL

Monadic form fB f Dyadic form AfB

Definition
or example

Name Name Definition
or example

+B .... -+ O+B Plus + Plus 2+3.2 .... -+ 5.2

-B .... -+ O-B

xB ....-+ (B>O)-(B<O)

Negative

Signum

Minus

x Times

-2-3.2""-+ 1.2

2x3.2 ....-+ 6.4

+B ....-+ 1fB Reciprocal f Divide 2+3.2 ........ 0.625

B rB LB
3.14 4 3- --3.14 3 4

Ceiling

Floor

r Maximum

L Minimum

H7 ........ 7

3L7 ........ 3

*B ....-+ (2.71828 . . )*B Exponential * Power

Natural
logarithm

e Logarithm AeB -+ Log B base A
AeB -+ (eB) teA

Magnitude Residue Case
A~O

A=O.B~O

A=O.B<O

AlB
B-( IA)xLBfIA
B
Domain error

! 0 -+ 1 Factorial
!B BX!B-1
or !B +-+ Gamma(B+1)

! Binomial A!B (!B)f(!A)x!B-A
coefficient 2!5 -+ 10 3!5 ........ 10

?B ........ Random choice Roll
from lB

? Deal A Mixed Function (See
Table 3.8)

oB ....-+ BX3.14159 ... Pi times o Circular See Table at left

-1 .... -+ 0 -0 ""-+1 Not

Table of Dyadic 0 Functions

Relations
Result is 1 if the
relation holds, 0
if it does not:

3$7 -+ 1
7$3 -+ 0

1
o
o
o

1
1
1
o

o
1
1
1

AvB
o
o
o
1

o 0
o 1
1 0
1 1

A B

Less
Not greater
Equal
Not less
Greater
Not Equal

And
Or
Nand
Nor

=

<
s

AoB
(1-B*2)*.5
Sine B
Cosine B
Tangent B
(1+B*2)*.5
Sinh B
Cosh B
Tanh B

(-A)oB A
(1-B*2)*.5 0

Arcsin B 1
Arccos B 2
Arctan B 3

(-1+B*2)*.5 4
Arcsinh B 5
Arccosh B 6
Arctanh B 7

Primitive Scalar Functions
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Name Signl Definition or example!

Size pA pP ..... It pE ..... 3 It p5 ...... 10

Reshape VpA Reshape A to dimension V 3 Itpl12 ..... E
12pE ...... 112 Op E ..... ,0

Ravel ,A ,A ..... ("/pA)pA ,E "''''112 p,5 ...... 1

Catenate V V P 12 ...... 2 3 5 7 1 2 'T' 'HIS' ...... 'THIS'
V(A] P(2] "''''3 P(It 3 2 1] ...... 7 5 3 2

Index'4 M[A .A] E[l 3;3 2 1] ...... 3 2 1
11 10 9

A[A ••• E[l.] ...... 1 2 3 It ABCD
•• •A] E(.l] ...... 1 5 9 'ABCDEFGHIJXL'(E] ...... EFGH

IJKL
Index ,S First S integers ,It ...... 1 2 3 It
generator' ,0 ...... an empty vector

Index of' V,A Least index of A PI3 ......2 5 1 2 5
in V, or HpV P,E ...... 3 5 It 5

It 1t,1t ...... 1 5 5 5 5
Take VtA Take or drop I vcr] first 2 3tX ...... ABC

(V(I]"O) or last (V(I] <0) EFG
Drop V+A elements of coordinate I -2+P ...... 5 7
Grade upllll 'u TIle pe%1llutat10n WD1CD .3 5 3 2 ...... It 1 3 2

would order A (ascend-
Grade· down" "A inq or descendinq) "3 5 3 2 ...... 2 1 3 It

1 3
compressO VIA 1 0 1 O/P ...... 2 5 1 0 1 OlE ...... 5 ..,

9 11
1 0 1/(1 ]E ...... 1 2 3 It ...... 1 0 liE

9 10 11 12
A BCD

ExpandO V\A 1 0 1\,2 ...... 1 0 2 1 0 1 1 l\X ...... E FGH
I JKL

DCBA IJKL
ReverseD • A • X ....... HGFE .( 11X ....... eX ...... EFGH

LKJI • p ...... 7 5 3 2 ABCD
BCDA

RotateD It.A 3.P ...... 7 2 3 5 ...... -l.P 1 0 -l.X ...... EFGH
LIJK

AEI
VillA Coordinate I of A 2 1 III X ....... BFJ

becomes coordinate CGK
Transpose V[I] of result 1 ll11E ...... 1 6 11 DHL

lilA Transpose last two coordinates IIIE ....... 2 1111E
U 1 1 0

Membership Ad plhY ....... pll E£P ..... 1 0 1 0
P£14 ..... 1 1 0 0 0 o 0 0

Decode V.l.V 10.1.1 7 7 6 ....... 1776 21t 60 60.1.1 2 3 ....... 3723

Encode VTS 2 It 60 60T3723 ...... 1 2 3 60 60T3723 ...... 2 3
Deal~ IS?S II? Y ...... Random deal of W elements from ,I

Primitive Mixed Functions

1. Restrictions on argument ranks .are
scalar, V for vector, M for matrix,
the first argument of SIA or SeA],
instead of a vector. A one-element
scalar.

indicated by: S for
A for Any. Except as
a scalar may be used
array may replace any

2. Arrays used 1 2 3 If ABCD
in examples: p ....... 2 3 5 7 E ...... 5 6 7 B X ....... EFGH

9 10 11 12 IJKL
3. Function depends on index origin.

... Elision of any index selects all along that coordinate.

S. The function is applied along the last coordinate I the
symbols I, ~, and e are equivalent to /, \, and .. ,
respectively, except that the function is applied along the
first coordinate. If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.
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Type of Array pA ppA pppA

Scalar 0 1
Vector N 1 1
Matrix M N 2 1
3-0imensional L M N 3 1

Dimension and RanK Vectors

Conformability Definition
pA DB pAf.gB requirements Z+A f. gB

Z+f/AqB
V Z+f/AgB

U Z+f/AgB
U V u=v Z+f/AqB

V W w Z[I]+f/AgB[ iI]
T u T Z[ I]+f/A [Ii ]gB

U V W W U=V Z[I]+f/AqB[ iI]
T u V T U=V Z[I]+f/A[I; ]qB
T U V W T W U=V Z[I;J]+f/A[I;]qB[;J]

Inner Products for Primitive Scalar Dyadic Functions f and g

Definition
pA pB pAo. qB Z+Ao .qB

Z+AqB
V V Z[I]+AqB [I]

U U Z[ I]+A [I]qB
U V U V Z[I;J]+A[I]qB[J]

V W V W Z[I;J]+AqB[I;J]
T U T U Z[I;J]+A[I;J]qB

U V W U V W Z[I;J;K]+A[I]qB[Ji K ]
T U V T U V Z[I;J;K]+A[IiJ]qB[K]
T U V W T U V W Z[I;J;K;L]+A[I;J]qB[K;L]

Outer Products for Primitive Scalar Dyadic Function g

case pR Definition

R+1IllV pV R+V
R+1 21llM pM R+M
R+2 11llM ( pM)[ 2 1] R[I;J]+M[J;I]
R+1 l~M LIpM R[I]+M[I ;I]
R+1 2 31llT pT R+T
R+1 3 21llT (pT)[l 3 2] R[I;J;K]+T[I;K;J]
R+2 3 11llT (pT)[3 1 2] R[I;J;K]+T[J;K;I]
R+3 1 21llT (pT)[2 3 1] R[I;J;K]+T[K;IiJ]
R+1 1 21llT (L!(pT)[l 2]).(pT)[3] R[I;J]+T[I;I;J]
R+1 2 11llT (L/(pT)[l 3]).(pT)[2] R[I;J]+T[I;J;I]
R+2 1 11llT (L/(pT)[2 3]).(pT)[1] R[I ;J]+T[J;I ;I]
R+l 1 l~T LlpT R[I]+T[IiI;I]

Transposition
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APPENDIX B

This appendix contains proofs for the transformations and theorems which

were deferred from the main part of Chapter II. They were omitted from the

text because they do not substantially contribute to the exposition of the material,

and are included here for completeness.

The various proofs are trying to establish the identity of two expressions ~

and:J7. This is generally done in two steps: in step 1, pfff ++ p$is shown and

in step 2, it is shown that the expressions are identical element-by-element.

Lemmas L1 through L9 state results used in the rest of this appendix. Since

they are all intuitively obvious, and since their proofs follow from the definitions,

these proofs will be omitted.

Ll. If M is any array and V is a vector, then

(M[[K] V])[[K] U] ++ M[[K] V[U]]

L2. If M is any array, I<J, and U and V are vectors or scalars, then

(M[[J] V])[[I] U] ++ (M[[I] U])[[J-o=ppU] V]

L3. Let M be any array and S1 ,S2, ••• ,SK be subscript vectors. Then

for each L ELTlpM[Sl ;S2; • .• ;SK],

(M[S1;S2; ••. ;SK])[;/L] ++ M[;/TJ

where T is a vector with T[IJ ++ SI[L[ IJ J

for each IoppM.

L4. For any integral A (scalar or array) satisfying A?IORG and (A-IORQ)<LEN,

a. (.z. LEN, ORG, 0 ) [A] ++ ORG+A - IORQ.

b. (rl. LEN,ORG,1)[AJ ++ ORG+LEN+l.ORG+ 1-A
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c. (~LEN,ORG,S)[AJ ++ ORG+((~S)x(A-IORQ»+(Sx(LEN+IORG+-1-A»

d. -~ LEN,ORG,S ++ ~ LEN,(-(ORG+LEN-1»,~S

e. K+~ LEN,ORG,S ++ ~ LEN,(ORG+K),S

f. ¢~ LEN ,ORG,S ++ ~ LEN ,ORG,~S

if K is an integer

L5. If F6M is defined, then

(a) pF6M++F[;1J

(b) for each L ELT lpF!:Y.M,

(F!:Y.M)[;/LJ ++ M[;/F[;2J+((~F[;3J)x(L-IOflQ»+(F[;3Jx(F[;1J+IOflQ+-1-L»J

(if X is numeric)

for ~ a dyadic scalar operator

g. If ~ is a dyadic scalar operator with 0 ~ 0 ++ 0,

then U\(X ~ y) ++ (U\X) ~ (U\Y)

L6. a. U/X[SJ ++ X[U/SJ

b. U\U/X ++ UxX

c. U/U\X ++ X

d. U/V/X ++ (V\U)/X

e. (UAV)/X ++ (U/V)/(U/X)

f. U/(X ~ y) ++ (U/X) ~ (U/Y)

L7. If Os,ORG1-IORG and (ORG1+LEN1-IORG)<LEN then

a. (~LEN,ORG,O)[~ LEN1,ORG1,SJ ++ ~ LEN1,(ORG+ORG1-IORG),S

b. (~LEN,ORG,1)[~ LEN1,ORG1,SJ ++ ~ LEN1,(ORG+LEN+IORQ-(ORG1+LEN1»,~S.

L8. If Uand V are logical vectors with pV ++ +/ ~U

then ~(Uv(~U)\V) ++ (~U)\~V.

L9. a. If B is a vector and if for any A,AEB is all ones, thenB[BlAJ ++ A.

b. If P is a permutation of lPP then if R ++ Pll pP, P[RJ ++ R[PJ ++ l pP and

P ++ R l l pR . In other words, for permutation vectors, the ranking

operator is its own inverse.
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Proof of TR5:

1. pFb.Gl:J1 +-r pF[; 1 J +-r pHl:J1 (by L5)

2. For each L fl.LT lpFtJ.Gl:J1. (Fb.Gl:J1)[;/LJ +-r (Gl:J1)[;/SJ

where S[I] +-r (rl. F[I;])[LCI]]

and (Gl:J1)[ ;/SJ +-r M[ ;/TJ

where T[IJ +-r (rl. G[I;J)[S[I]J

+-r (rl. G[I;J)[(rl. F[I;J)[L[IJJJ

+-r «(rl. G[I;J)[rl. F[I;JJ)[L[IJJ

But (Hl:J1)[;/LJ +-r M[;/VJ

where V[lJ +-r (rl. H[I;J)[L[IJJ

+-r «rl. G[I;J)[rl. F[I;J])[L[IJJ

+-r T[I]

Thus, T +-r V and (FtJ.Gl:J1) [ ;/LJ +-r (Hl:J1) [ ;/LJ. QED.

We can give explicit formulas for H in TR5. First, H[ ; 1 J +-r F[; 1 J and

H[ ;3J +-r F[;3J~G[ ;3J. Finally, for each IElppM. H[I;2J +-r IF O=G[I;3J

THEN FCI;3J+GCI;3J-lORG ELSE (IORG++/GCI;1.2J)-+/F[I;1,2J.

Proof of TR6:

I. pFbGl:J1 +-r (~FC;1J)/pGl:J1

+-r (~F[;lJ)/G[;1J

+-r G'[;1J +-r pG'b.F'bM.

2. For each L ELT lpFbGl:J1,

(FflGl:J1)[ : /LJ +-r (Gb.M)[; /L' J where L' +-r (x/F)+( .....F[; 1] )\L (by D14)

+-r MC; /SJ
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where (by L5),

S ++ G[;2]+((~G[;3])xL'-IORG)+(G[;3]x(G[;1]+IORG+-1-L')

++ G[;2]+((~G[;3J)x(x/F)+((~F[;1J)\L)-IORG)

+(G[;3JX(G[;1]+IORG+-1-((x/F)+(~F[;1J)\L»

(G'~F'bM)[;/L] ++ (F'bM)[;/T]

where T ++ G'[;2J+((~G'[;3J)xL-IORQ)+(G'[;3Jx(G'[;1J+IORG+-1-L»

Thus, (G'~F'bM)[;/L] ++M[;/UJ

where U ++ (x/F' )+(~F'[;1J)\T

++ (x/F')+(~F'[;1J)\(G'[;2]+((~G'[;3])xL-IORG)

+(G'[;3Jx(G'[;1J+IORG+-1-L»)

To complete the proof, we need to show that S ++ U. By lemma L6g,

X\A+B ++ (X\A)+(X\B).

and X\AxB ++ (X\A)x(X\B).

Thus, writing E ++ ~F' [;1] ++ ~F[;1]. and substituting for Ft.

U ++ (F[;1]x(F[;1]xG[;2]+((~G[;3])xF[;2J-IORG)

+(G[;3Jx(G[;1J+IORG+-1-F[;2J»»

+(E\G'[;2J)+((E\~G'[;3])x(E\L)-IORG)

+(E\G'[;3J)x(E\G'[;1])+IORG+-1-E\L

But E\G'[;KJ ++ ExG[;KJ ++ (~F[;1])xG[;KJforKE:1.2.3.

Making this substitution and commuting .terms,

U ++ ((F[;1]+~F[;1J)x(G[;2]+((~G[;3])x-IORG)+G[;3]xG[;1]+IORG-1)

+( (~G[ ;3] )x(F[ ;1JxF[ ; 2J h(~F[;1] )x( ~F[ ;1] )\L)

+G[ ;3] x(F[ ;1] x - F[ ; 2] ) +( ~F[ ; 1] ) x - ( ~F[ ; 1] ) \L •

But F[ ;1]+~F[; 1] ++ (pF[; 1] )p1 and does not contribute to the product in the
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first term. Also,

(~F[;l])x(~F[;l])\L++ (~F[;l])\L.

U ++ G[; 2 J+ ( (~G[ ; 3] ) x (x / F) +( ("'F[ ;1] ) \L )+IORG)

+G[;3]xG[;1]+IORG+-l-«x/F)+("'F[;1])\L)

++ S QED.

Proof of TR7:

1. pF&G~ ++ ("'F[;lJ)/pG~ ++ (~F[;lJ)/(~G[;lJ)/pM

++ «"'G[ ;l])\~F[ ;1J)/pM (by L6d)

pH~ ++ (~H[;l])/pM ++ (~(G[;lJv(~G[;l])\F[;l])/pM

++ «~G[;l])\~F[;l])/pM (by L8)

++ pF&GIJjVJ

2. For each L 1!l.LT lpF&G~,

(F&G~)[;/L] ++ (G~)[;/(x/F)+(~F[;lJ)\L]++ M[;/S]

where S ++ (x/G)+(~G[;l])\(x/F)+(~F[;l])\L

(H~)[;/LJ ++ M[;/(x/H)+(~H[;l])\L]++ M[;/TJ

where T ++ «G[;1]v(~G[;lJ)\F[;1])x(G[;2]+(~G[;1])\F[;2J»)

+(~(G[;l)V(~G[;l])\F[;lJ»)\L

Expanding the products, and noting that

G[;l]v(~G[;lJ)\F[;lJ++ G[;lJ+(~G[;lJ)\F[;l],

we get

T ++ (x/G)+(G[;lJx(~G[;lJ)\F[;2J)+(G[;2Jx(~G[;lJ)\F[;lJ)

+«(~G[;lJ)\F[;lJ)x(~G[;1])\F[;2J)+«~G[;lJ)\~F[;lJ)\L.
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So we must show that S +-+ T. In simplifying T, we use the following, in

order: If Uand V are logical vectors,

Ux(~U)\X +-+ (pU)po

(U\X)x(U\Y) +-+ U\XxY (L6g)

U\V\X +-+ (U\ V) \X

Also recall from the definition of tl that G[ ; 2] contains zeros wherever

G[ ; 1] does. Thus, we rewrite T:

T +-+ (x/G)+(G[;2]x(~G[;1])\F[;1])+«~G[;1])\(x/F))+«~G[;1])\~F[;1])\L

But the second term goes away because of G[; 2] 's zeros.

T +-+ (x/G)+«~G[;1])\(x/F))+(~G[;1])\(~F[;1])\L

+-+ (x/G)+(~G[;1])\«x/F)+(~F[;1])\L)

+-+ S QED.

Proof of TR8:

Clearly the ranks of both expressions are identical.

1. pFM~M +-+ F[; 1] (by L5)

Now, for each IElppA~F[A;]LW

(pA~F[A;]LW)[I] +-+ L/(A=I)/pF[A;]LW +-+ L/(A=I)/F[A;1]

+-+ L/F[(A=I)/A;1] (by L6a)

+-+' L/(+/A=I)pF[I;1] +-+ F[I;1] +-+ (pFM~M)[I]

2. For each L ELT lpFM~M,

(FM~M)[;/L] +-+ (A~M)[;/Q] +-+ M[;/Q[A]]

where Q[I] +-+ (rl.. F[I;]) [UI]]

(A~F[A;]LW)[;/L] +-+ (F[A;]LW)[;/L[A]] +-+ M[;/S]

where S[I] +-+ (rl.. (F[A;] HI;] H (L[A]) [I]]

+-+ (rl.. F[A[I];])[L[A[I]]]

+-+ Q[A[I]] +-+ (Q[A])[I]

Thus Q[A] +-+ S. QED.
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Proof of TR9: The case of (pA~M) +-+ 1 is trivial and will be omitted. Otherwise,

1. pp(A~M)[[J]Q] +-+ (ppA/s?M)-1 +-+ (f IA)-1 (in I-origin)

ppA'~BbM +-+ flA' +-+ f/(A~J)IA-J<A +-+ f/«A~J)IA-A<J)[L,E,G] (*)

where L,E,G exhausts lpA and such that IIIA[L]<J and

IIIA[E]=J andIlIA[G]>J. (This is possible by commutativity of f.)

C*) +-+ f/CJ~A[L,E,G])IA[L,E,G]-J<A[L,E,G]

+-+ f/(CCpA[L])p1),CCpA[E])pO),CpA[G])p1)/CA[L],A[E],A[G])

-C(pA[L,E])pO),CpA[G])p1

+-+ fIA[L],CA[G]-1) +-+ CfIA[L])fCfIA[G])-1

If J +-+ flAthen A[G] +-+ lOandthe result is fIA[L] +-+ CfIA)-1. Otherwise,

A[G] is non-empty and f IA[G] +-+ f lA, so the result is stillCf IA)-1 , since A

exhausts 1 pA, by definition. Thus the ranks of both expressions are identical.

We now show the dimensions to be indentical.

For each IE 1 Cf I A) -1,

(pA'~BbM)[I] +-+ L/CI=A')/pBbM +-+ L/CI=(A~)IA-J<A)/(A~J)/pM

+-+ L/CCA~J)II=A-J<A)/CA~J)/pM+-+ L/«A~J)III=A-J<A)/pM (byL6e)

By case analysis, we find that

(A~J)III=A-J<A +-+ IF I<J THEN I=A ELSE (I+1)=A

+-+ A=I+I?J

Thus, CpA'/s?BAM)[I] +-+ L/CA=I+I?J)lpM +-+ (pA~M)[I+I?J] (by D18)

and (pCA/s?M)[[J]Q])[I] +-+ C(J;t'lpA)/pA~M)[I]

+-+ (pA/s?M)[CCJ~lpA)/lppA~M)[I]]

+-+ (pA~M)[I+I?J] +-+ CpA'~B£W)[I]

Therefore both expressions have the same dimension.
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2. For each L ELT tp(A~M)[[J]Q],

«A~M) [[J]Q])[ ;/L] +-+ (A~M) [; / «J-1)tL),Q. (J -1 HL]

+-+ M[ ; / ( ( (J -1 )tL ) , Q, (J -1 HL ) [A JJ

Call this subscript vector S.

(A'~BbM)[;/L] +-+ (BAM)[;/L[A']] +-+ M[;/(x/B)+(~B[;1])\L[A']]

Call this subscript vector T. It remains to show that S +-+ T. First,

pS +-+ pT. For each IE tpS,

S[I] +-+ «(J-1)tL),Q,(J-1HL)[A[I]]

+-+ IF A[I]<J THEN L[A[I]] ELSE IF A[I]=J THEN Q ELSE «J-1HL)[A[I-J]]

So S +-+ (QxJ=A)+(J~A)xL[A-J<A].,

T +-+ (QxJ=A)+(J~A)\L[(A~J)/A-J<A] +-+ (QxJ=A)+(J~A)\(J~A)/L[A-J<A]

+-+ (QxJ=A)+(J~A)xL[A-J<A]

+-+ S QED.

Proof of TRIO: As in the proof of TR9, the hard part of this proof is to show that

the two expressions B~A~M and B[A]~Mhave the same dimension.

1. Clearly B[A]~M is well-defined since A exhausts tpB and pB[A] +-+ ppM.

Also, ppB[A]~M +-+ r/B[A] +-+ r /B +-+ ppB~A~M. By definition of transpose,

for each IEtppB~A~M,

(pB~A~M)[I] +-+ L/(I=B)/pA~M +-+ L/(pA~M)[(I=B)/tppA~M].

Let us write R +-+ A~M and T +-+- (I=B) / tppR. The remainder of this part

depends primarily on the associativity and commutativity of minimum (L).

(pB~A~M)[I] +-+ L/(pR)[T] +-+ L/(pR)[T[1]]. (pR[T[2]], ... ,(pR)[T[ppT]]

+-+ L/(L/(A=T[1])/pM),(L/(A=T[2])/pM), ...• (L/(A=T[ppT])/pM)

+-+ L/«A=T[1])/pM),«A=T[2])/pM), ... ,«A=T[ppT])/pM)

+-+ L/«A=T[1])V(A=T[2])v ... v(A=T[ppT]))/pM

+-+ L/(AET)/pM (by D25)
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NowI=B[A] +-+ (I=B)[A] sinceI is scalar. Alsonotethat«I=B)[A])[K] +-+ 1

if and only if A[K]ET. Thus, I=B[A] +-+ AET and

(pB[A]~M)[I] +-+ L/(I=B[A])/pM

+-+ L/(AET)/pM +-+ (pB~A~M)[I].

2. For each L ELT lpB~A~M.

(B~A~M)[;/L] +-+ (A~M)[;/L[B]]

+-+ M[;/(L[B])[A]]

+-+ M[;/L[B[A]]]

+-+ (B[A]~M)[;/LJ

QED.

Proof of Theorem T2:

The only if part is easiest, as it depends only on the dimensions of the expressions

involved. Only if part:

By hypothesis, l2/[K] M +-+ Q./[P[K]J PQM.

Thus, the dimensions of both expressions are identical. Specifically.

pR/[K] M +-+ «(K-l)tpM), K+pM +-+ (K~lppM)/pM

and pR/[P[K]] M +-+ (P[K]~lPPPQM)/pPQM

But, since P is a permutation of lppM then pP +-+ ppM

and pP~M +-+ (pM)[PllppM] +-+ (pM)[PllpP]

Also, ppP~M +-+ ppM. Hence,

pQ/[P[K]] M +-+ (P[K]~lppM)/(pM)[PllpP]

+-+ (pM)[(P[K]~lppM)/PllpP] (*) (by L6a)

and pQ/[K]M +-+ (pM)[(K~lppM)/lppM] (**)

But (*) +-+ (**) by hypotheses. ThUS, the subscripts of (pM) are indentical

for each expression, i. e. ,

(P[K]~lppM)/PllpP +-+ (K~lppM)/lppM.
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(by D26)

We now proceed with the difficult part of the proof:

If part:

1. We must show that pRI [KJ M ++ pRI [P[KJ J PsiM,

pR/[KJ M ++ ((K-1)+pM), K+pM ++ (K~lppM)/pM ++ (pM)[(K~lppM)/1PpMJ

But ppPQM ++ r/P ++ ppM. So for each IElppM.

(pPQM)[IJ ++ L/(P=I)/pM ++ L/(pM)[(P=I)/lppMJ ++ (pM)[(P=I)/lppMJ

since P has exactly one element equal to I.

++ (pM)[P1I]

Hence, pPQM ++ (pM)[PllpPJ. Now,

pR/[P[KJJ PQM ++ (P[KJ~lppPQM)/pPQM++ (P[KJ~lppM)/(pM)[PllPPJ

++ (pM)[(P[KJ~lppM)/PllPPJ++ (pM)[(K~lppM)/1PpMJ

by hypothesis

++ pR/[KJ M.

Thus, the dimensions are identical.

2. The two expressions are identical element-by-element.

For each L ELT lpR/[KJ M. (R/[KJ M)[ ;/LJ ++ R/FYt

where F[ ;1J ++ K~lppM

and F[;2J ++ F[;1J\L

(R/[P[KJJ PQM)[;/LJ ++ R/G~PQM

where G[;1J ++ P[KJ~lppM

and G[ ;2J ++ G[ ;1]\L

Let us examine these two reducees element-by-element. First note that

they have the same rank. For, pFYt ++ (K=lppM)/pM ++ (pM)[KJ

and pG~PQM ++ (P[KJ=lppM)/pPQM

++ (pPQM) [P[KJ J

++ L/(P[KJ=P)/pM

++ (pM)[KJ.
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For each IEl(pM)[K],

(F~)[I] ~ M[;IR]

where R ~ (xIF)+(~F[;1])\I

~ ((K~lppM)\L)+(K=lppM)\I

~ (L,I)[(lK-1),(ppM),(K-1)+tCppM)-KJ

(G~P~M)[I] ~ (P~M)[;/(xIG)+(~G[;1])\IJ

~ (P~M)[;/((P[K]~lppM)\L)+(P[K]=lppM)\I]

~ M[;IS]

where S ~ ((L,I)[(lP[K]-1),C1+pL),(P[K]-1)+l(pL)-(P[K]-1)])[P]

((L,I)[(lP[K]-1),(ppM),(P[K]-1)+l(ppM)-P[K]])[P]

To complete the proof, we must show that R ~ S.

In order to look more closely at S, we must find out more about P. Let

T~PllpP.

Then by hypothesis,

(P[K]~lppM)/T~ (K~lppM)/lppM~ (lK-1),K+l(ppM)-K.

Since Pis a permutation, A/( lpP)EP and we would expect to have A/( lpT)ET.

The above equation gives all of T except for the element which equals K.

There are pT places in T that K could occur, falling into three cases. By

examining each of these cases, we can deduce the structure of P, and thus the

value of S.

(a) P[K] ~ K. Then T ~ (lK-1),K,K+l(ppM)-K ~ lppM.

Thus, P ~ lppM and S ~ R.

(b) P[K]<K. Then, T ~ (lP[K]-1),K,((P[K]-1)+tCK-1)-(P[K]-1)),K+tCppM)-K
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and by lemma L9

P +-+ TllpT

+-+ (lP[KJ-1),(1+(P[K]-1)+1(K-P[K])),P[K],K+l(ppM)-K

+-+ (lP[KJ -1) , (P[KJ+ lK-P[KJ ) ,P[K] ,K+ 1 (ppM)-K

and then

S +-+ (L,I)[(lP[K]-1),((P[K]-1)+lK-P[K]),(ppM),K+l(ppM)-KJ

+-+ (L,I)[(lK-1),(ppM),K+l(ppM)-K] +-+ R

(c) P[KJ>K. In this case, T +-+ (lK-1), (K+1P[KJ -K),K ,P[KJ+d ppM) -P[K]

and P +-+ TllpT +-+ (lK-l) ,P[KJ, CCK-1 )+lP[K] -K) ,P[KJ+lCppM) -P[KJ.

Then, S +-+ (L,I)[(lK-l),(ppM),((K-1)+lP[K]-K),(P[K]-1)+1(ppM)-P[K]]

+-+ (L,I)[(lK-1),(ppM),(K-1)+dppM)-KJ +-+ R.

Hence, in all cases S +-+ R and therefore F(;id +-+ Gtl~M

for each L ELf 1 p12/[K] M,

and thus 12/ [K] M +-+ 12/ [P[KJ] P~M. QED.

Proof of TR12:

1. The ranks of both expressions are clearly equal. Then, for each IElppA~12/M,

(pA~12/M)[I] +-+ L/(A=I)/p12/M +-+ L/(A=I)/-1+pM

But also, for each I EO 1 pp (A, 1+r /A )~M,

(p(A,1+r/A)~M)[I] +-+ L/(I=A,1+r/A)/pM +-+ L/((I=A)/-1+pM),(I=1+r/A)/-1tpM

SO p12/(A,1+r/A)~M +-+ -1+p(A,1+r/A)~M +-+ pA~12/M

2. For each L ELT lpA~12jM,

(A~12/M)[;/LJ +-+ (12/M)[;/L[AJJ +-+ 12/F(;id

where F[ ;1J +-+ (r /lppM)~lppM +-+ (C1+ppM)p1),0

and F[;2] +-+ F[;lJ\L[AJ +-+ L[A],O

(12/(A,1+r/A)~M)[;/LJ +-+ 12/Gtl(A,l+r/A)~M
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where G[;1J ~ (f/lpp(A,1+fIA)~M)~lpp(A,1+fIA)~M

~ ((-1+pp(A,1+fIA)~M)p1),O

~ ((ppA~~/M)p1),O

G[;2J ~ G[;1J\L ~ L,O

A typical element of this reducee is

(GA(A,1+fIA)~M)[IJ~ ((A,1+fIA)~M)[;/(xIG)+(~G[;1J)\IJ

~ ((A ,1+f IA )~M) [;/(L,O )+( (pL )pO),n

~ M[;/(L.I)[A.1+fIAJ ~ M[;IL[AJ,IJ ~ (FQM)[IJ

Thus, the two reducees are equal. QED.

Proof of Theorem T3:

1. pGt;~/[KJ M~ G[ ;1J

p~/[KJ G't"M ~ (K~lppM)/pG't"M

~ (K~lppM)/GI[;1J ~ G[;1J ~ pG~~/[KJ M

2. For each L ELT 1 pGt;~1 [KJ M.

(G~~/[KJ M)[;ILJ ~ (~/[KJ M)[;15J ~ ~/F~

where 5 ~ G[;2J+((~G[;3J)xL-IORG)+G[;3JxG[;1J+IORG+-1-L

and F[;1] ~ K~lppM

and F[; 2 J ~ F[; 1 J\5

(~/[KJ G't"M)[;ILJ ++ ~/F'AG't"M

where F'[;1J ~ K~lppGt"M ~ K~lppM and F'[;2J ~ F'[;1J\L

But by TR6, F'AG'~M ~ G"~F"AM

where Gil ~ (~F'[;1J)/[1JG' ~ (t"M)[K;J

and F"[ ;1J ~ F ' [;1J ~ F[ ;1J.

F"[ ;2 J ~ F' [ ;1 J xG' [ ;2 J+ ( (~G I [ ; 3 J ) xF I [ ; 2 J - IORG) +G' [ ; 3 J xG' [ ;1 J

+IORG+-1-F'[;2J
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But F'[;1]xF'[;2] ++ F'[;2]

and for JEi,2,3.

F'[;l]xG'[;J] ++ F[;l]\G[;J]

Thus, distributing the F' [;1] term and substituting,

F"[;2] ++ (F[;1]\G[;2])+«F[;1]\(~G[;3]))x(F[;1]\L)-IORG)

+(F[;1]\G[;3])x(F[;1]\G[;1])+IORG+-l-F[;1]\L

++ F[;1]\G[;2]+«~G[;3])xL-IORG)+G[;3]XG[;1]+IORG+-l-L

++ F[;l]\S ++ F[;2]

Hence FI! ++ F

and QED.

Proof of Theorem T4:

1. pG6D/M ++ (~G[;l])/p~/M ++ (~G[;l])/-l+pM

p~/G'~++ -l+pG'~ ++ -l+(~G'[;l])/pM++ -l+«~G[;l]).l)/pM

++ (~G[;l])/-l+pM++ pG6D/M

2. For each L ELT lpG6D/M.

(G6D/M)[;L] ++ (~/M)[;/(x/G)+(~G[;l])\L]++ ~/F~

where F[;l] ++ (l/lppM)~lppM

F[;2] ++ F[;l]\(x/G)+(~G[;l])\L++ (x/G ' )+ F[;l]\(~G[;l])\L

Further, (~/G'bM)[;/L] ++ ~/F'&G'~ ++ ~/H~

where F'[;l] ++ (l/lppG'~)~lppG'~

and F' [ ; 2] ++ F' [ ;1 ] \L

and, byTR7, H[;1J ++ G'[;1]v(~G'[;l])\F'[;l]

H[;2] ++ G'[;2]+(~G'[;1])\F'[;2]
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Now for each IoppF[;}1.

(F[;}1)[IJ ++ M[;/(x/F)+(~F[;J)\IJ

++ M[;/«x/G')+F[;lJ\(~G[;lJ)\L)+(~F[;lJ)\IJ

++ M[;/«x/G)+(~G[;lJ)\L).IJ

since F[;1] ++ (C1+ppM)pl).O

and (~G' [;1] )\F' [;1J ++ «~G[;1J) ,U\F' [;1]

++ «~G[;1J).1 )\CHF' [;1]), -ifF' [;1J

++ «~G[;lJ)\(-l+ppG'~M)pl),O++ (~G[;l]).O

So H[;l] ++ G'[;lJV(~G[;l]).O++ (G[;lJ.O)V(~G[;lJ),O++ (r/1ppM)~lppM

H[;2J ++ (G[;2J.0)+«~G[;1],1)\F'[;2]

++ (G[;2J,O)+«~G[;lJ)\-1+F'[;2J),O++ (G[;2J+(~G[;1J)\L),O

and thus (H~M)[I] ++ M[;/(x/H)+(~H[;1])\I]

++ M[;/(G[;2J+(~G[;lJ)\L),IJ++ (F[;}1)[I]

and so H~M ++ F[;}1.

Therefore Gf::.D/M ++ 12/G'~M. QED.

Proof of Theorem T5: There are two main cases.

a. One of A or B is a scalar and is extended to the size of the other operand.

Suppose A is scalar. Then. A 0.12 B ++ A 12 B, by definition, and

(lppA).lPpB ++ (lO).lPpB ++ 1ppB. which is the identity transpose, and

similarly if B is a scalar.

b. A and B are arrays of identical dimension. Then

1. pp«lppA),lppB)~A 0.12 B ++ (r/(lPpA),lppB)+1-IORG

++ (r/1ppA)+1-IORG ++ ppA

and for each IE 1 PpA ,

(p«lppA),lppB)QA 0.12 B)[IJ ++ L!(I=(lppA),lppB)/(pA),pB

++ L/(I=lppA)/pA ++ (pA)[IJ

Thus, pA J2. B ++ p«lppA),lppB)QA 0.12 B.
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2. For each L ELT lpA 12 B,

«(lppA),lppB)~A 0.12 B)[;/L] ++ (A 0.12 B)[;/L,L] ++ A[;/L] 12 B[;/L]

++ (A 12 B)[ ;/L] QED.

Proof of Theorem T6:

1. ppA~M 0.£ N ++ (f/A)+1-IORQ ++ f/l(ppM)+(ppN)-1 ++ 1+ppM 12.£ N

For each IE lpA~M 0.£ N,

(pA~M 0.£ N)[I] ++ L/(I=A)/pM 0.£ N ++ L/(I=A)/(pM),pN

++ IF IEl-1+ppM THEN (pM)[I] ELSE IF IE(-1+ppM)+1 1+ppN

THEN (pN)[2+I-ppM] ELSE L/(-1+pM),1tpN.

So, pA~M 0.£ N ++ CHpM),(HpN),-1tpM

and therefore p12/A~M 0.£ N ++ HpA~M 0.£ N

++ (-1+pM),1+pN ++ pM 12.£ N

2. For each L ELT lpM 12.£ N,

(M 12.£ N)[;/L] ++ 12/(G~) £ H&N

whereG andH areas inD28. Also, (J2/A~M 0.£ N)[;/L] ++ 12/EtlA!S?M 0.£ N

where E[;1] +-+ (C1+ppA~M 0.£ N)p1),0 ++ «ppM 12.£ N)p1),0

and E[;2] ++ E[;1]\L +-+ L,O

To complete the proof, we must show that the two reducees above are identical.

Clearly both have the same dimension, namely -1tpM.

Then for each IE lP-1 tpM,

«G~) £ H&N)[I] ++ (G~)[I] £ (H&N)[I]

+-+ M[; / ( C1+ppM)tL),I] £ N[; / I, (--1 +ppN)-l L]

(EtlA~M 0.£ N)[I] +-+ (A~M 0.£ N)[;/L,I] ++ (M 0.£ N)[;/(L,I)[A]]

+-+ (M 0.£ N)[;/(C1+ppM)tL),I,I,(--1+ppN)tL]

++ M[;/«-1+ppM)tL),I] £ N[;/I,(--l+ppN)tL]

+-+ «G&M) £ H&N)[I]
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Thus, (Gf}f1) F:. HbN +-+ EbAQM o.F:. N, and so the p reductions of each are

identical. QED.

Proof of TRI5:

1. The ranks of both expressions are the same since the subarray operator

does not affect ranks. So for each IE 1 PPW,

(pAQU o.Q V)[I] +-+ L/(I=A)/pU o.Q V.

But pU o.Q V +-+ (H[F;]tJ?') o.Q H[G;]6S'·

+-+ (pH[F;]tJ?'),pH[G;]~S'

+-+ H[F;1],H[G;1] +-+ H[F,G;1] +-+ H[A;1]

Thus, (pAQU o.Q V)[I] +-+ L/(I=A)/H[A;1] +-+ L/H[(I=A)/A;1] +-+ H[I;1J

and therefore pAQU o.Q V +-+ H[; 1] +-+ pH~W.

2. For each L ELT lpH~W,

(Hb.W)[ ;/LJ +-+ (A~R' o.Q S' )[;/PJ +-+ (R' o.Q S')[ ;/P[AJJ

+-+ R'C;/P[F]] Q S'C;/P[G]J

where P +-+ H[;2]+((~H[;3J)xL-lQHQ)+HC;3JxH[;1]+IORQ+-1-L

(AQU o.Q V)[;/L] +-+ (R" o.Q S")[;/LCA]]

+-+ (HCF;]tJ?' )[;/LCFJJ Q (H[G;]~S')C;/LCGJ]

+-+ R'[;/T] Q S'[;/T'J

where T +-+ H[F;2]+((~HCF;3])xLCF]-IORG)+H[F;3]xH[F;1J+IORG+-1-L[F]

+-+ PCF] and sinularly,

T' +-+ PCG]

Then (A~U o.Q V)[;/LJ +-+ R'C;/P[F]J Q S'[;/P[G]] +-+ (H~W)[;/L].

Finally, the result is in GDF since U and Vare in SF and the value of A still

satisfies the required conditions. QED.
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Proof of TRI6:

1. pW[[J] Q] ++ (J;qppW)!pW. To determine pE~U o.12. V we must first find

pU o.12. V.

pU ++ pR"++ IF JEF THEN pR'[[F1J] QJ ELSE pR'

There are two cases:

a. J EF. Then,

pR" ++ pR'[[F1J] QJ ++ «F1J)~lppR')/pR'

++ «F1J)~lppR' )/(pW)[F] (by D29)

++ (pW)[«F1J)~lpF)/F]

++ (pW)[(F~J)/F]

++ «(J-1)tpW).(pW)[JJ.J~pW)[(F~J)/F]

++ «(J-1)tpW).J~pW)[(F~J)/F-J<F]

since J does not occur in (F~J)!F

++ (pW[[J] Q])[(F~J)/F-J<F]

b. If ~JEFthen (F~J) ++ (pF)p1. So in this case,

pR" ++ pR' ++ (pW)[F] ++ (pW[[J] Q])[(F~J)/F-J<F]

So pU ++ (pW[[J] Q])[(F~J)!F-J<F] a.nd similarly,

pV ++ (pW[[J] Q])[(G~J)/G-J<G].

Therefore, pU 0.[2 V++ (pW[[J] Q])[«F~J)/F-J<F).(G~J)/G-J<G]

++ (pW[[J] Q])[(J~F.G)/(F.G)-J<F.G]

++ (pW[[J] Q])[(J~A)/A-J<A]

Then for each IE 1ppB~U o.12. V.

(pB~U o.12. V)[I] ++ L!(I=E)!pU o.12. V

++ L!(I=(J~A)/A-J<A)/(pW[[J]Q])[(J~A)/A-J<~

++ L/(pW[[J] Q])[(I=(J~A)/A-J<A)/(J~A)/A-J<A]

++. (pW[ [J] Q]) [I]
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and thus pB~U 0.12. V +-+ pW[ [JJ QJ.

2. For each L ELT lpW[ [JJ QJ,

(W[[JJ QJ)[;/LJ +-+ W[;/«J-1)tL),Q,(J-1)+LJ

+-+ (R' 0.12. S')[;/«(J-1)tL),Q,(J-1)+L)[AJJ

+-+ R'[;/T[FJJ 12. S'[;/T[GJJ

where T +-+ «J -1)tL) ,Q, (J -1)+L.

(B~U 0.12. V)[ ;/LJ +-+ (R" 0.12. S")[ ;/L[B]]

+-+ R"[ ;/(ppR")tL[BJJ 12 S"[ ;/(ppR")+L[BJJ

Consider the R" term above. There are two cases, as before:

a. ~JEF . Then,

RII[; / (ppR "HL[B]] +-+ R' [; / (ppR' )tL[ (J~A) /A-J<A J J

++ R'[;/L[(ppR')t(J~A)/A-J<AJJ

++ R'[;/L[(J~F)/F-J<FJJ+-+ R'[;/L[F-J<FJJ

++ R'[;/«(J-1)tL),Q,(J-1)+L)[FJJ +-+ R'[;/T[FJJ

b. JEF.

R"[;/(ppR")tL[BJJ +-+ (R'[[FlJJ QJ)[;/L[C1+ppR')t(J~A)/A-J<AJJ

+-+ (R'[[FlJJ QJ)[;/L[(J~F)/F-J<FJJ

+-+ (R'[[FlJJ QJ)[;/L[(-l+FlJ)tF],L[(FlJ)+F-l]J

becauseF is in ascending order and +/J=F ++ 1

++ R'[;/L[(-1+FlJ)tFJ,Q,L[-1+(FlJ)+FJJ

+-+ R'[;/«(J-l)tL),Q,(J-1)+L)[(Cl+FlJ)tF),F[JJ,(FlJ)+FJJ

because of F 's order

++ R'[;!T[FJJ

And similarly, S"[;/(ppR")+L[BJJ ++ S'[ ;/T[GJJ

Thus (W[[JJ Q])[;/LJ +-+ (B~U 0.12. V)[;/L].

Finally, it is clear that the result is in GDF since U and V are in SF and B

satisfies the necessary conditions. QED.
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Proof of TR17:

1. ppCF',G')~U 0.[2 V +-+ (UF',G')+l-IORG

+-+ Cf/CCMEBCP])/M),CMEB[G])/M)+l-IORG +-+ Cf/CMEB[P,G])IM)+l-IORG

+-+ Cf/M)+l-IORG +-+ Cf/lCf/B)+l-IORG)+l-IORG

+-+ CCCfIB)+l-IORG)+IORG-l)+l-IORG +-+ CfIB)+l-IORG +-+ ppB~W

For each IE lppB~W,

CpB~W)[I] +-+ L/CI=B)/pW

and CpCF' , G' )~U o. [2 V) [I] +-+ L!(I=F' , G' ) / pU o. [2 V

+-+ L!(I=P' ,G ' )/(pRff) ,pS"

So we must findpR" and pSff.

pR" +-+ p(F' lB[F])~(pB~W)[B[F]]tR'

ppR" +-+ Cf IP' lB[P])+l-IORG +-+ (f 11PP' )+l-IORG +-+ pP'

Then, for each JE lppR",

(pR")[J] +-+ L!(J=FllBCF])/p(pB~W)[BCF]JtR'

+-+ L/(J=F'lB[PJ)/(pB~W)[BCP]]

+-+ L/CpB~W)CCJ=F'1B[FJ)/B[FJ]

+-+ L/(pB~W)[(F'[JJ=B[FJ)/B[PJJ

+-+ CpB~W)[P'[JJJ

Hence pR" +-+ (pB~W)[F' ]

and similarly, pS II +-+ (pB~W) [G' ] ,

andthus CpCF',G')~U 0.[2 V)CI] +-+ L/CI=FI,G')/CpB~W)[F',G'J

+-+ L! CpB~W) [CI=F' ,G' )/F' ,G' ]

+-+ (pB~W)[IJ

and therefore p(F' ,G' )~U o.Q V +-+ pB~W.
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2. For each L ELT lpBI:¥W,

(BI:¥W)[;/LJ ++ (R ' o.Q S')[;/L[B[A]]]

++ R'[;/(ppR')tL[B[A]]] Q S'[;/(ppR')~L[B[AJJJ

++ R'[;/L[B[FJJJ Q S'[;/L[B[GJJJ

((F' ,CI )I:¥u o.Q V)[ ;/LJ ++ (R" o.Q S1I)[ ;/L[F' ,GI JJ

++ RlI[ ;/L[F' JJ Q Stl[ ;/L[C' JJ

So we must calculate the RlI and S II terms above.

R"[;/L[F']J ++ ((FI1B[FJ)I:¥(pBI:¥W)[B[FJJtRI)[;/L[F I ]]

++ ((pBI:¥W)[B[F]JtR')[ ;/L[F' [F' lB[FJJJJ

++ ((pBI:¥W)[B[FJJtR' )[;/L[B[FJ]

++ R'[;/L[B[FJJJ

since L ELT 1 pBI:¥W

implies L[B[FJ J ELT 1 (pBI:¥W)[B[F]J

Similarly, S"[;/L[CIJJ ++ S'[;/L[B[CJJJ

Thus, ((F ' ,CI )I:¥U o.Q V)[;/LJ ++ R'[;/L[B[FJJJ 12 S'[;/L[B[CJJJ

++ (BI:¥W) [ ;/LJ

Finally, observe that the result is in GDF since U and V are in SF and F' and

G I are in order and contain no duplications by construction. QED.

Proof of TRIg:

Immediate from T6.
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APPENDIX C

IDENTITY ELEMENTS

Dyadic Identity Left-
Function Element Right

Times x 1 L R
Plus + 0 L R
Divide t 1 . R
Minus - 0 R
Power * 1 R
Logarithm • None-Maximum r 7.237 •• • E75 L R
Minimum L 7.237 ••• E75 L R
Residue I 0 L
Circle 0 None
Out of ,

1 L.
Or v 0 L R
And A 1 L R
Nor ... None
Nand fot None
Equal = 1 Apply L R
Not equal ;It 0 for L R
Greater > o~ logical R
Not less ~ 1 argmnents R
Less < 0 only L
Not greater s 1 L

Identity Elements of Primitive Scalar Dyadic Functions
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CHAPTER III

STEPS TOWARD A MACHINE DEffiGN

Never do today what you can
Put off till tomorrow.

William Brighty Rands

procrastination is the
art of keeping
up with yesterday

Don Marquis, archy and mehitabel

As demonstrated in Chapter II, there is a high degree of power and internal

consistency in the APL operators and data structures. This makes it possible to

write simple expressions which have the same semantic content as several state-

ments in comparable programming languages. This chapter discusses how to

exploit these features in the design of an APL machine.

In general, APL programs contain less detail than corresponding programs

in languages like ALGOL 60, FORTRAN, or PL/I. For instance, the maximum

value in a vector, V , of data can be expressed as I IV in APL while ALGOL requires

the folloWing:

MAX :=smallestnumberinmachine;

for: = 1 step 1 until N do

if V[I]>MAX thenMAX:=V[I]:

While this aspect of APL often makes programs shorter and less intricate than,

say, ALGOL programs, it also requires that an evaluator of APL be more complex

than one for ALGOL, especially if such expressions are to be evaluated efficiently.

On the other hand, a machine doing APL has greater freedom since its behavior is

specified less explicitly. In effect, APL programs can be considered as descriptions

of their results rather than as recipes for obtaining them. Further, the language
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renders many of these descriptions obvious, both to the human reader and to a

machine, as in the case of rIV, while other languages encode them so intricately

that the original intention of the programmer is hidden. In the example above,

an APL machine can choose any method it pleases to find the maximum value

while an ALGOL machine doesn't know what result is expected.

This feature of APL also has some drawbacks in that some expressions for

results require unnecessary computations if calculated literally as written. For

instance, the expression 3t( 2x-V) specifies a result which is the first 3 elements

of twice the negative of V. Presumably the programmer is only interested in these

three elements. However, the literal interpretation of this expression proceeds

as follows:

1. Negate V (and store it somewhere).

2. Multiply the previous result by 2 (and store it).

3. Take the first 3 elements of the last result.

In case V is large, this process is grossly inefficient. The negation requires ( pV)

fetches and stores as well as (pV) spaces for the value to be stored. The multi­

plication requires another ( pV) fetches, stores, and multiplies. In fact, the

desired result could have been found simply by negating the first three elements

of V and multiplying by 2. Clearly, we would like the APL machine to be able to

evaluate such programs efficiently!

A. Drag-Along and Beating

One approach to efficient and natural evaluation of APL expressions is to

exploit the mathematical properties of the language to simplify calculations. In

the machine, this approach is embodied in two fundamental new processes: ~­

along and beating.
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Drag-along is the process of deferring evaluation of operands and operators

as long as possible. By examining a deferred expression it may be possible to

simplify it in ways which are impossible when only small parts of the expression

are available. In effect, drag-along makes the machine context-sensitive, while

most machines are context-free.

Consider the drag-along evaluation of the example in the last section. If we

assume a stack machine,

1. LOAD V

2. NEGATE

3. LOAD 2

4. MULTIPLY

5. TAKE 3

the machine code for this expression might be

The immediate execution of this sequence was already shown. Suppose now that

we temporarily defer instructions in a buffer instead of executing them as they

appear. After the first instruction, the buffer contains

LOAD V

After instruction 2, we have

LOAD V"

NEGATE J
where the pointer connects the negation with it.s deferred operand, V. After

instruction 4, the buffer contains

LOAD V''}

NEGATE J )
LOAD 2 ~

MULTIPLY J
The evaluation of the TAKE is different from the previous operators since it is a

selection operator. TAKE can examine the contents of the buffer and change them,
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as below. Note that the deferred expression is equivalent to the original expression.

The process of making the changes in the buffer is called beating.

LOAD 3tV,

NEGATE J

LOAD 2,
MULTIPLY j

(Note change in this instruction)

When values must finally be computed, only the desired elements will be accessed

and used. Thus, drag-along facilitates beating.

The other aspect of drag-along is that it eliminates intermediate array-shaped

results with consequent savings of stores, fetches, and space. In an expression

such as A+B+C+D the literal execution proceeds in three steps:

T1+-C+D

T2+-B+T1

T3+-A+T2

If the variables A.B.C.D are vectors, each step above requires a vector-sized

temporary store and the last two steps require fetches to get the previous results

as operands. With drag-along, the entire expression is deferred finally to be

evaluated element-by-element as:

for I+-1 step 1 until pA do

T3[I]+-A[IJ+B[I]+C[I]+D[I]

This requires no extra fetches, stores, or temporary space to obtain the desired

result.

In the machine, drag-along will be applied to all array operands g and $and

to all monadic and dyadic operators MOP and DOP for which

(MOPg)[;/LJ +-+ MOP'(F1g)[;/LJ

and

(g DOP $) [ ; / L ] +-+ (F1 g )[ ; / L] DOP' (F2 $) [ ; / L]
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where Fi and F2 are simple functions of arrays and MOP': and DOP' are similar to

MOP and120P. An example of a function Which is not dragged-along by the machine

is grade-up which is essentially a sort of its operand. Grade-up obviously does

not fit into the above scheme since Fi also becomes a sorting function which is

not simple as required.

B. Beating and Array Representation

Beating is the machine equivalent of calculating standard forms of select ex­

pressions. If the effort to do beating followed by an evaluation of a standard form

is less than that to evaluate an expression directly, then the process is worthwhile.

We will see in the following chapters that this is in fact the case.

In order to apply beating we must specify a representation of the standard

form. One possibility is to maintain the A,F, and G values for each array in an

expression to allow calculation of the standard form

AtsIFI'1GfjY1

as defined in Chapter II. However, these arrays contain redundant information

-- and it is deSirable to find a more compact representation.

If we choose to represent arrays in row-major order we can utilize the rep­

resentation of the storage access function as the representation of standard forms.

In this way, beating will consist of applying the ~ransformationsof Chapter II to

the mapping functions for arrays.

In the following discussion we can assume without loss of generality that the

index origin is zero. Situations where it is different reduce to the zero case by

subtracting IORG from all subscripts. Let A be a rank~ array. Then, assuming

that each element inA is to occupy one word in memory, the elementA[ ;IL] will be

located at

VBASE+( pA ).lL
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where VBASE is the address of A[ 0 ; 0; ... ; 0J. Thus, subscripts of arrays stored

in row-major order are representations of numbers in a mixed-radix number

system (Knuth [1968] p. 297). This representation is especially suitable for arrays

in APL because APL arrays are rectangular, dense, and homogeneous. Further,

this representation does not favor any array coordinate over another which is

essential in APL.

We can generalize the access function slightly by writing it in the form:

VBASE+ABASE++/DELxL

where ABASE is an additive constant, in this case zero, andDEL is the weighting

vector used to calculate the base value in (*) above. DEL is computed by

DEL[NJ+1

DEL[I]+DEL[I+1]x(pA)[I+1J for each IE1N-1.

Example: Let M be a matrix with dimension 2,3. ThenDEL+-+3, 1 and we set ABASE+-+O.

The layout of M in memory is

VBASE
+ +1 +2 +3 +4 +5

MCo;oJ M[1;1J M[1;2J

Given this formulation of the storage access function, it is only necessary to

transform ABASE and DEL in order to obtain the effect of evaluating selection opera-

tions on an array.

Example: IfM is the matrix in the previous example, then the mapping function

for (2,1) /siM has the same VBASE. For the transpose we use ABASE' +-+0 and DEL' +-+1, 3 .

Note that the change in DEL corresponds to permuting it by 2,1. This new function

uses the same values that were stored for M, but accesses them as if they were

the transpose (2,1)/siM. To verify this, note that the address for ((2,1)!S:IM)[I;JJ
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is

VBASE+ABASE'++/DEL'xI,J ~ VBASE+ABASE'+(l xI)+(3xJ)

~ VBASE+ABASE+(3xJ)+(lxI)

~ VBASE+ABASE++/DELxJ,I

which is the location of M[J;I] ~ ((2,1)IS?M)[I;J].

This can be done for any selection operator by using transformations analogous

to those in Chapter II. Appendix A shows the beating transformations on access

functions for arrays. In the machine, beating is also applied to expressions con­

taining reductions, scalar operators, and inner and outer products, based on the

results in Chapter II.

C. Summary

At this point we have ouUined the framework of a machine for APL. It is

pleasing to know that it will work since it is justified by theoretical results

developed earlier. The remainder of this dissertation discusses the structural

details of a machine based on the beating and drag-along processes and gives an

evaluation of its effectiveness. Let us outline some goals that such a design should

satisfy:

1. The machine language should be close to APL. That is, it should contain

all primitives in the language and in a similar form. While it is well-known how

to design a machine to accept APL directly there is no particular advantage to

doing so. We are primarily concerned with processing the semantics of the

language, not its syntax. Thus there is no loss of generality in letting the machine

language be a Polish string version of APL. This has the further advantage of

freeing the machine from the particular external syntax of APL.
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2 0 The machine should be general and flexible. In particular, it should

not be so deeply committed to evaluating APL as to be useless for other purposes.

3. The machine should do as much as possible automatically. This includes

storage management, control, and simplification of expressions. The programmer

should not have to be aware of the structure and internal functioning of the machine

at a level much beyond that specified in an APL program.

4. The machine should do simple things simply and complex tasks in pro­

portion to their complexity. In other words, the work required for the machine

to execute a program or expression should be related in some straightforward

way to the program's complexity.

50 The machine should be efficient. This is perhaps the most important

focus of this work. Of course, the question of efficiency is related to the current

technology; at present, a major bottleneck in evaluating array-valued expressions

is use of memory. Thus we concentrate on reducing memory accessing and tem­

porary storage space in the evaluation of APL programs.

6. The machine design should be elegant, clean, and perspicuous.
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APPENDIX A

TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY

SELECTION OPERATORS

1. The storage access function for an array M contains the following information:

RANK

RVEC

VBASE

ABASE

DEL

~ ppM

~ pM

location of first element of ,M

constant term of access polynomial

vector of coefficients of access polynomial

Then, the element Me; jL] is located at

VBASETABASETTjDELxL

2. This section lists the transformations on storage access functions which are

used to effect beating of selection operators. These transformations are given

as program segments written in index origin zero. It is assumed that the parameters

to the various selection operators are conformable and in the proper domain.

ABASE + ABASETDELT.x(Q<O)xRVEC-\Q
RVEC + IQ

b. Q+M

ABASE + ABASETDEL+.x(Q>o)xIQ
RVEC + RVEC-I Q

c. lliJM

ABASE + ABASE+DEL[J]x(RVEC[J]-l)
DEL[J] + -DEL[J]
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d. ,AQM

R +- RVEC
D +- DEL
RANK +- 1+( r /A)
I+-O
DEL +- RANKtDEL
RVEC +- RANKtRVEC
RANK REPEAT

BEGIN
RVEC[I] +- l/(I=A)/R
DEL[I] +- +/(I=A)/D
I +- I+1

ABASE +- ABASE+DEL[J]xSCALAR
DEL +- (J~lRANK) /DEL
RVEC +- (J~lRANK)/RVEC

RANK +- RANK-1

f. M[[K]J LEN,ORG,S]

ABASE +- ABASE+DEL[K]xORG+(LEN-1)
RVEC[K] +- LEN
IF S=1 THEN DEL[K] +- -DEL[K]
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CHAPTER IV

THE MACHINE

This chapter contains a functional description of a machine designed to process

the semantic content of APL programs.

In general, the description will be given in English, although algorithmic

descriptions will be used as necessary to provide clarifications. The section will

be written in the style of a programming manual, with the addition of explanations

and rationales as required.

The APL machine (APLM) is conceptually composed of two separate machines,

each with its own language, sharing the same registers and data structures. The

D-machine (DM) accepts APL-like machine code and does all the necessary analysis

on expressions. The DM produces code for the E-machine (EM), and in the process

does some simplification of incoming expressions using drag-along and beating.

The E-machine does all the actual computations of values in the system. By using

a stacking location counter based on the organization of machine code into segments,

the overall control scheme for the machine is quite simple.

The current chapter consists of five sections which present the APLM in a

logical sequence. Section A discusses the data structures and other manipulable

objects in the machine, and explains how they_ are managed in the machine's

memory. Section B continues by explaining the stacks and other registers in the

machine, followed by a discussion of the overall machine control, in Section C.

Finally, the details of the D-machine and the E-machine are set forth in Sections

D and E, respectively. Examples are used liberally throughout, to clarify opera­

tional details of the APL machine.
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A. Data Structures and Other Objects

The manipulable objects in the machine fall into three main classes: data

va1ues~ descriptors and program segments. This section will describe these

three kinds of objects and how they are represented in the machine.

Scalars are the simplest kind of data. In APL~ a scalar is an array of

rank- O. In practice~ a scalar is a different kind of object than an array, and is

so treated in the machine. Although arrays are stored in the memory, M, of the

machine, scalars are not. They appear only in the machine registers, in particular

the value stack, and as immediate operands in a code string. In a real machine,

scalars would have an attribute of~, determining the kind of representation to

use for encoding and decoding them. In this work, we will assume that this is

handled automatically, and that all scalar data are the size of a single machine

word.

The most important data structure in the APLM is the array. The represen-

tation of an array is divided into two parts. The first is the value array which is

a row-major order linearization of the elements of the array. The second part

is a descriptor array (DA) for an array, which contains the rank, dimension, and

storage mapping function for the array. This separation makes it possible to have

multiple DAIs, not necessarily identical~ referring to the same value array~ which

makes beating possible. In this chapter ~ descriptor arrays will be shown in the

form:

@ARR RC=2 LEN=05
+01 VB=VARR AB=OOO
+02 RANK=2
+03 R(1)=003 D(1)=02
+04 R(2)=002 D(2)=01

@ARR is the address in memory of the first word of the descriptor array for the

array named ARR, which is shown above. The first word contains a reference
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count (RC) and a length (LEN) field, as explained in the discussion on memory

in the APLM. The rank of the array is recorded in the third word of the DA;

words after that contain the elements of the dimension vector, labeled R(I). Thus

in this case, pARR is 3, 2. The second word in the DA encodes the base address

of the value part of the array (labelled VB for VBASE) and the constant term in

the storage mapping function (here labelled AB for ABASE). Finally, the DA

contains the coefficients of the storage mapping polynomial, DEL (labelled D(I)

here). Recall that for an array ARR, the element ARR [;/L] is located at

VBASE + ABASE + +/DEL x (L - IORG);

This formula is the storage mapping function for any array.

In addition to array descriptors, the machine contains descriptors for

J-vectors. Recall from Chapter II that a J-vector is a vector of consecutive

integers which can be specified by a length, an origin, and a direction bit. We

assume that these three quantities can be encoded into a descriptor by the

function JCODE(length, origin, direction) and that there are appropriate decoding

functions. (See Appendix A. )

Finally, programs in the machine are represented internally as program

segments. A program segment is any sequence of machine commands and operands,

and is referenced by a segment descriptor. Segment descriptors contain an

encoding of the beginning address of a segmenf(relative to the beginning of the

function they are a part of) and the length of the segment. There is also a bit

which indicates the execution mode for the segment (see Section C).

Each defined function (program) is a segment, and logical subparts of the

function may also be represented as segments. As will be seen later, it is easy

to activate and de-activate segments in the APL machine. Briefly, the advantages

of organiZing programs in segments is that these are the logical units of a program,
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while other organizations, such as paging, do not allow this kind of natural cor­

respondence of form and function (pardon the pun~). An important property of

APLM instructions is that they contain no absolute addresses except for references

to NT, which remain constant in any compilation. All internal references to

other parts of a program are relative. ThUS, all programs are relocatable.

Each function has a corresponding function descriptor, which is similar to

a DA. A function descriptor contains the following information:

FVBASE location in M of beginning of function segment

FLEN length of function segment

FIORG index origin for this function

FISR logical variable -1 if function has a result

FPARS number of parameters

FLCL total number of local names

In addition, the rest of the function descriptor contains a list of all local names

in the function, in the order: result (if any), parameters (if any), local variables

(if any). The function descriptor for a function is used in calling and returning

from functions, as will be discussed in Section D.

Main memory in the machine is a linear array of words named M. The only

objects which reside in M are arrays, DArs, and program segments. All other

objects are stored in the machine's registers. In addition to M, there is an array

NT, the Nametable, which is an abbreviated symbol table. Every identifier in the

active workspace has an entry in NT, which contains descriptive information and

either an actual value or a pointer to where it can be found in M. Scalars and

J-vector descriptors are stored directly in NT. ThUS, all references to variables

and functions in the machine go through the NT. This organization allows for

dynamic allocation and relocation of space in M, without having to alter any
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program references. The operation of NT is described more fully in the next

section under machine registers. Constant array values within a function are

stored as part of the program segment; they are addressed relative to the beginning

of the function, and so, too, remain relocatable.

Within M, two different allocation mechanisms are used, one for functions

and array values, and one for descriptor arrays. The reasons for this are that,

because of drag-along and beating,DA's are expected to have a shorter lifetime

than functions or array valueso Further, in a given function, locally at least, it

is likely that DA's will be of similar sizes. ThUS, it is feasible to keep an

available space list for DA's, with the hope that erased spaces can be reused

intact. We would therefore expect more efficient use of M by DArs than by array

values.

The free memory space (M) is arranged as follows: functions and array

values are allocated from the lowest address (BOTM) towards the top of M and

DA's are allocated from the top (TOPM) down. The space in the middle is the POOL,

with boundaries BOTP and TOPP. Each entry in M has a header word containing

an encoding of a reference count (see Collins [1965), the length of the entry, and

a filler count. The latter field is used when space slightly larger than necessary

is allocated. Each time a reference to an entry is added or deleted, the reference

count field is adjusted. Wnen a reference count goes to zero, meaning that there

are no uses of the entry anywhere in the system, the entry is made available in

one of two ways. If it is adjacent to the POOL, it is merged with POOL. Other­

wise, it is added to the appropriate availability list, of which there are two, one

for DA rs and one for functions and array values.

The availability lists are doubly linked, and each entry contains a header

similar to those for active entries. Wnen space is needed, the appropriate
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availability list is searched using the first-fit method (Knuth [1968J 436, ff). If

a fit is found, the space is allocated and the availability list adjusted. Otherwise,

space is taken from the POOL. If a request for M-space is made which cannot

be honored because there is not enough contiguous space available, a garbage

collection is made. The two halves of M are garbage-collected separately. In

collecting array space, all the DA's are scanned and a linked list is set up which

t.ies together all DA' s pointing to the same entry. Then arrays are compacted

towards BOTM, with the links used to adjust the VBASE fields in the referent DA' s.

If enough space is still not available, the DA' s are also compacted, using a

similar algorithm. Some coalescing of available space is also done by the al­

location algorithm, GETSPACE. Figure 1 illustrates how M is structured.

B. Machine Registers

This section describes the registers and register-like structures in the APL

machine. The present description covers only the logical functions performed by

these registers and does not make any demands on how they are actually to be

implemented. Although most of the registers are not directly accessible to the

programmer, thorough knowledge of their use is important to understanding the

functioning of the machine.

There are several registers related to memory accessing and allocation.

The most important of these is the Nametable, NT. NT is an associatively ad­

dressed stack, each entry of which contains a name field, a tag, and a value.

The name field of an entry contains an index for the identifier associated with the

entry. Permi.ssible tags in NT are ST, for scalar quantities, JT, for encoded

J-vectors, UT, for undefined identifiers, DT, for arrays, and FT for functions.

ST and JT entries contain the actual value in their value field, while DT and FT

entries have descriptor addresses in their value fields.
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FIGURE 1-Structure of M.
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When a function is called, an entry is pushed to NT for each of the function's

local variables and parameters, as listed in the function descriptor. Similarly,

when a function is de-activated, the reverse process occurs. Each time a variable

is accessed, NT is searched associatively from the top (latest entry). If a hit is

not found, then the desired variable must be global, and it is entered into NT.

This mode of maintaining the NT makes identifier behavior correspond to APL's

lldynamic block structure ll and facilitates recursive function calls.

The most important registers in the APL machine are four stacks. The use

of stacks permits elimination of addresses from most instructions and simplifies

the evaluation of recursive and nested programs.

1. Value Stack (VS)

VS is the main stack in the machine and is used in the evaluation of expressions

and in function calls. Each VS entry consists of a tag and a value part, as in NT

entries. In addition to scalars and function or DA pointers, VS can conta.in segment

descriptors, partially-evaluated addresses, function marks, and names.

2. Location Counter Stack (LS)

Recall that machine code is organized into segments, characterized by a

starting address and a length. Each LS entry contains the starting address of a

segment (ORG), its length (LEN), a relative count, pointing to the next instruction

to be executed (REL), and control information. Each time a segment is activated,

its beginning address and length are pushed to LS, and the REL field is set to zero.

The address of the next instruction is then determined from the REL and ORG fields

on the top of LS. After each instruction fetch, the REL field at the top of LS is

incremented. When this value is equal to the length of the segment, the segment

is terminated by popping the top of LS, thereby reactivating the next entry. The

control information in LS is used to coordinate it with the other stacks in the machine.

- 81 -



3. Iteration Control Stack (IS)

Array-valued APL expressions implicitly specify an index set for the expres­

sions. In this machine, IS is used to control (nested) iterations over this index

set in the element-by-element evaluation of array-valued expressions. The

operation of IS is coupled with LS as follows: when a set of iterations is begun,

the limits of the iteration are pushed into the iteration stack, and a segment is

activated containing the range of the iterations. Then, for each instruction in

the code segment, the necessary index values are taken from IS. When the segment

.is completed, the entries in IS are stepped and if the required iterations are not

exhausted, the segment is re-initialized and repeated with the new IS values.

Eventually, the iterations are completed and the segment in the range also is

completed, in which case IS and LS are both popped, returning the machine to the

place it was to resume after the iterated code was completed. (See Section D.)

The IS behaves essentially like a nest of FORTRAN DO's. Each entry contains

a counter (CTR) (to origin zero), the maximum value of the counter (MAX),

direction bit (i. e., count up or down) (Dill) and control information. Although

the IS is partially accessible to the machine code, it is for the most part main­

tained automatically. Like LS, IS could probably be incorporated into the value

stack, since these three stacks generally work in parallel. However, by separating

these stacks by their functions, the machine design becomes cleaner and more

perspicuous.

4. Instruction Buffer (QS)

Unlike LS and IS, the instruction buffer QS is logically separate from the

value stack. QS is not strictly a stack, since it is possible to access and alter

information at places other than its top. In the D-machine, instructions are

fetched from M, some of which are executed immediately, and others of which
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are either evaluated by beating or are deferred in QS by drag-along. In entering

instructions in QS, the DM may change other related QS entries. When the

E-machine is activated, instructions are fetched from QS and executed directly,

generally in conjunction with VS and IS. QS contains operation and value fields,

similar to VS, a LINK field used to reference other deferred instructions, and

an AUX field, which is a logical vector acting as an access mask for array entries

(see Section E).

A final four registers in the machine are mentioned primarily for completeness.

These are:

IORG Index origin of current active function

FBASE Base address in M of current active function

FREG VS index of function mark for current active function

ISlVJK IS index of topmost IS entry containing 1 in its MARK field.

The use of these registers is shown in the examples in following sections.

C. Machine Control

The purpose of the APL machine is to transform a set of data (the input) into

a second set (the output) according to encoded transformation rules (the program)

which are interpreted according to a predetermined scheme (the machine). This

entire process is called the evaluation of the program and input.

In the APL machine, programs are evaluated in two separate but related sub­

machines. The D-machine takes its instructions from main memory, M, in the

form of Polish APL code, and does all the necessary domain testing and storage

allocation for the various operands. In addition, the DM does simplification of

incoming expressions by drag-along and beating. The output of the D-machine is

values in VS and transformed code in the QS, in the form of instruction segments

for the E-machine. At critical points, determined either by the programmer and
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the DM, control is passed to the E-machine, which executes the simplified

instructions in QS, producing values in VS and M. When done, the EM passes

control back to the DM, which resumes where it left off.

The division of labor between the two submachines is logically similar to that

between a compiler and its target machine. The DM plays the role of the algebraically

simplifying compiler, whose source language is essentially APL, and whose

target language is E-machine code. The E-machine as the target of theDM's

transformations is a conceptually simple computer which does nothing but compute

values. Given this scheme, a question which naturally arises is, Why bother with

the D-machine at all? Why not use a separate compiler in software and let it

produce code for a machine similar to our E-machine? Unfortunately, this is

impossible, since the behavior of the D-machine is dependent not only on the

source code (program), but is also dynamically dependent on the data. For instance.

consider a simple APL expression such as A + B. We would like the source code

for this expression to be something conceptually like

LOAD B (i. e., "load" B to the value stack)

LOAD A

ADD (i. e., add the values on top of the value stack and leave the

result there. )

The problem here is that we would like the machine to do different things depending

on the data. In particular, if both A and B are scalars at the time the above code

is executed, it would be desirable to have the LOAD instructions push the actual

scalar values to the stack, and to have the ADD do the actual addition. But if A

and B are conformable arrays, the desired action is to defer the entire operation

(both LOADs and the ADD) in the instruction buffer, to be performed later by the

E-machine.
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No compiler would be able to make these decisions ~ priori unless it knew

what data was to be used in running the program, or unless variables were suf­

ficiently restricted by declarations. Further, much of the work done by the D­

machine is domain testing, including rank and dimension checking, on dynamically­

specified variables. Since this process is data-dependent, it must be performed

dynamically.

Both the D-machine and the E-machine share all the registers and the memory

of the entire APL machine. Further, both are controlled by a central cycle

routine, shown in Fig. 2. The key to the overall control of the APLM is the

location counter stack, LS, which conta.ins active segments for both the DM and

the EM. In Fig. 2 we see that a major machine cycle takes the form:

a. Check to see if the current active segment has been completed. If not,

proceed to step b, otherwise see if this segment is under control of the

iteration stack. If it is, then step the iteration stack; in case IS does not

overflow, then reset the REL field to the beginning of the segment and

repeat this step. If the segment is not under control of IS or if it .is and

the iteration stack overflowed, then de-activate the segment and repeat

this step.

b. Calculate the effective address of the current instruction and update the

location counter stack.

c. Select the appropriate machine, determined by the DIE bit in the current

active segment. If the DM is selected, then defer any arrays referenced

on the top of the value stack to the instruction buffer; also, fetch the

instruction and (if necessary) the second word of the instruction from

memory. Finally, decode and interpret the instruction and return to

step a.
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FIGURE 2--Maincycle routine.
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D. The D-Machine

The D-machine evaluates programs written in "machine language" by generating

instructions in QS to be executed later by the E-machine. As discussed in Chapter

III, the use of a Polish string for the machine language rather than "raw" APL frees

the APLM from the particular concrete syntax of APL without sacrificing any of the

semantic content.

Most of the instructions in the APLM correspond directly to the APL primitives;

those which do not are the control instructions, which comprise a more powerful

set in the machine than are provided in the source language. All operands in DM

instructions are either relative addresses within the program segment or are NT

references or are immediate values. As a result, all programs in the machine

are relocatable. Since only constant data is contained in function segments,

programs are likewise re-entrant.

The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The

instructions are divided into three classes: storage management instructions,

control instructions, and operator instructions. It is clear from Table 1 that no

systems functions are included in the D-machine's repertoire. In a real imple­

mentation of an APL machine, these instructions would have to be provided,

although for the current work, they are irrelevant. The remainder of this section

discusses the instructions of the D-macliine, with examples to clarify the details.

O. A Guide to the Examples

The examples used in this chapter include program listings, register dumps,

and memory dumps. In shoWing program excerpts, we generally also show the

APL source expression, and give values, or at least attributes, for the operands.

Programs are shown in assembly language format, except that absolute addresses

are given. Although nothing has been said of the manner in which D-machine instructions
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TABLE 1-1

Storage Management and Control Instructions

Jump by K (signed) in current segment

Jump by K in current segment only if top

of VS is 0

Pop VS in either case

same as JMPO except test for 1

De-activate this segment

(i. e., pop LS and also IS if necessary. )

Return from current function

Iterate and mark

Call E-machine to work on top of VS

same as DO except that temporary space is

allocated for the result, if any, and the result

is left on top of VS

K

RETURN

ITM

DO

DOl

JMP1

LEAVE

LDS scalar

LDSEG seg-descr

LDJ jcode 1,0, s

LDIS K

LDCON K

LDN N

LDNF N

AOON

ASGNV

B. Control Instructions

JMP K

JMPO K

922~~~ ~~~~~~~ P~~~!!~~~~ _

A. Storage Management Instructions

Load scalar

Load segment descriptor

Load J-vector

Load iteration stack counter, K from top of IS

Load'constant array, starting at FBASE +K

Load name N

Load name N and fetch value

Assign (and discard value)

Assign and leave value

- 88-



TABLE 1-2

Scalar Arithmetic Operators

Operator APL Definition----------------------------------------------------------------------------
A. Dyadic

ADD
SUB
MUL
DIY
MOD
1VlIN
MAX
PWR
LOG
CIR
DEAL
COMB
AND
OR
NAND
NOR
LT
LE
EQ
GE
GT
NE

B. Monadic

PLUS
MINUS
SGN
RECIP
ABS
FLOOR
CEIL
EXP
LOGE
PI
RAND
FAC
NOT

+

x

I
L
I

*
~

o
?

A

V

1'<

¥

<
:;:

=

+

x

I
L
I
*
~

o
?

Add
Subtract
Multiply
Divide
Modulus
Minimum
Maximum
Power
Logarithm
Circular functions
Random deal
Binomial coefficient or beta function
Logical and
Logical or
Logical nand
Logical nor
Less than
Less than or equal
Equal
Greater than or equal
Greater than
Not equal

Plus
Minus
Signum
Reciprocal
Absolute value
-Floor
Ceiling
Exponential (base e)
Logarithm (base e)
Pi times
Random number
Factorial or gamma function
Logical not
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TABLE 1-3

Remaining Operators in D- Machine

Operator APL Definition-----------------------------------------------------------------------------
A. Selection

TAKE

DROP

REV K
TRANS

INX K

t

4-

Q>[X]

Q

[[X]

Take

Drop

Reverse along K;th coordinate

Generalized transpose

Index on K
th coordinate

B. Evaluated Immediately

BASE

REP

GDU

GDD

CAT K

RAV

URHO

DRHO

mOTA

C. Deferrable

ROT K

EPS

DIOTA

CMPRS K

EXPND K

SUBS K

D. Compound

RED K OP

GDF OP

1.

T

p

p

1

Q>[X]

E

1

/[K]

\[K]

[

OP/[X]

Base value (Decode)

Representation (Encode)

Grade up

Grade down

Catenate (top K on VS)

Ravel

Dimension

Restructure

Interval

Rotate on Kth coordinate

Membership

Rank

Compress on Kth coordinate

Expand on Kth coordinate

Subscript with K expressions in VS

Reduce along Kth coordinate by OP

General dyadic form with OP
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are encoded, we have chosen, for purposes of illustration, to show them as one or

two word quantities, depending on whether or not they have operands. All operand

addresses are shown symbolically and comments are used to explain the program.

structure. In the register dumps, most of the material is self-explanatory. Field

headings are summarized in Appendix A. The top of each stack is indicated by an

arrow. Descriptor array addresses, which are pointers to the memory, are in the

form @A, for variable A, and value addresses in M are of the form VA. Again, in

the real machine, these would in fact be numerical addresses, but the symbolic

form is much clearer for examples. Fields in DA f S are labelled mnemonically.

Segment descriptors in VS or Q~ are shown in the form SCODE(SEG.X, m), where

m is 0 or 1 depending on whether the segment is a DM or an EM segment, and X

.is the segment symbolic name (arbitrary). EM segments are delimited by "brackets"

along the right side of the QS display, in the format XY, meaning that segment X

starts here and segment Y ends here. The LINK field of QS contains relative pointers

and is interpreted according to the opcode. The contents of the AUX field is to be

interpreted as a logical vector, although in fact it may be encoded differently in an

actual APLM.

1. Storage Management Instructions

This class includes all instructions concerned primarily with the storing and

fetching of data. Each of the load instructions pushes a value to the value stack.

Of these, four have immediate operands; LDS, LDSEG, LDJ, and LDN push their

operands to VS with tags ST, EDT, JT, and NPT respectively. LDIS K loads as a

scalar the current value of the CNT field of the iteration stack element K entries

from the top of IS. LDNF N refers to variable N in the nametable, and enters the

current value of the variable (from NT) into VS. In the case of NT entries with tag

DT (i. e., arrays), the reference count of the DA is increased by 1 when it is
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entered into VS, and the VS tag is set to FDT. The LDCON K instruction is used

to access a constant array stored in a function segment. Its operand K is a pointer

relative to the function origin pointing to the beginning of the DA for the constant

value. This DA is copied to the DA area of M, its VBASE is set to the beginning

of the function (FBASE), and its ABASE is set to K. The DA pointer is pushed to

VS with tag FDT.

Although all the load instructions just described push a value to VS, such

values do not always remain there. At the beginning of each D-machine cycle, the

top of VS is examined for tags FDT, DT, and JT (see Fig. 2). If one of these is

present, then the entry is deferred in QS, because it is array-valued. This is

done by pushing an E-machine instruction to QS of the form

OP @ARR o MASK.

OP is IFA, lA, or IJ, depending on whether the VS tag was FDT, DT, or JT;

@ARR is the DA pointer that was in the VS value field, and MASK is an access

mask. The access mask in this case is a logical vector whose last K bits are 1

when ARR is a rank-K array. It will be used by the DM in beating and by the EM

in accessing this array. The LINK field in E- machine instructions of this type is

unused, and thus is shown as 0 above. The VS entry is then replaced by a segment

descriptor with tag SGT pointing to the one-word QS segment containing the deferred

operand. In general, this entire process is invisible in the examples below, and

the load instructions which generate array values can be thought of as doing the

deferral themselves.

Although ASGN and ASGNV are operators, they are included as storage

management instructions because they have the side-effect of causing values to

be stored. These instructions expect the top of VS to contain a destination, either

as a name (tag NPT) or as a QS descriptor pointing to a segment containing only
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TABLE 2

Interpretation of ASGN and ASGNV in the D- Machine

Top of VS

a. tag = NPT or
tag = SGT and
deferred ex­
pression has
one element

b. tag=NPT

c. tag = NPT

d. tag=NPT

e. tag= SGT and
deferred seg­
ment consists
of a QS entry
with opcode IA

(Top-l) of VS

tag = ST

tag = SGT and
deferred segment
is a J-vector

tag = SGT and
deferred segment
is a single DA
with reference
count of 1 and
value also has
reference count
of 1

tag= SGT and
deferred segment
is any arbitrary
array expression

tag = SGT and
deferred segment
is any arbitrary
array expression

Action

Do immediate assignment. That is, store
the scalar value in NT or in M, as appro­
priate.

Do immediate assignment.

Do immediate assignment.

Allocate space for a DA and value of the
size necessary to store the result. Defer
the assignment in QS, as for scalar arith­
metic operators.

Check ranks and dimensions for conformability.
If the lhs variable is a J-vector, it must first
be explicitly evaluated. If the rhs expression
contains instances of the lhs variable with dif­
ferent permutations, then the rhs expression
is evaluated to temporary space. Finally,
the assignment is deferred as above.
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an IA instruction; the second entry in VS is the right-hand side of the assignment.

There are several possible actions taken by the DM in interpreting assignments,

depending on the VS contents. These cases are explained in Table 2. We have

assumed that "evil" side effects do not appear in the code; their treatment is

straightforward, but uninteresting. Also, it should be noted that although the

strategies outlined in Table 2 couldbe modified to alter the machine's performance,

the case analysis remains the same.

The final storage management instructions are INPUT and OUTPUT, which

are left further unspecified. These could be conceived of as read-only and write­

only (serial) strings, which are used as primitives for writing functions such as

o and~

2. Control Instructions

The control instructions of the APLM are all concerned with directing the

flow of control among statements at the source-language level, and are all evaluated

by the D-machine.

The three jump instructions, JMP, JMPO, and JMPl are used to alter the

flow of control among statements in a function. Since no jumps are allowed out­

side of a function, there is little difficulty in specifying this operation. All that

is necessary is to change the value of the relative pointer in the current segment

on LS. CYCLE is a special case of JMP, which sets the relative pointer to 0,

causing the current (D-mode) segment to be repeated. LEAVE pops LS and also

IS, if the segment is involved in an iteration. RETURN performs similarly

in returning from a call on a function. In addition, it automatically erases the

locals for the current function from NT.

The interpretation of the DO instruction depends on the top value on VS. If

the top of VS is a scalar then the DO acts as a no-ope If the tag is SGT, then the
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segment described on VS is activated by pushing the segment descriptor to LS,

with VS being popped. In case the tag is NPT, the corresponding NT tag is examined,

and if the tag is FT, then the named function is activated, as described in the next

paragraph; all other cases are no-ops. The DOl instruction is similar to DO

except that if the top is VS and has tag NPT, the value referenced is copied to new

space, while if the tag is SOT, temporary space is allocated for the result and

the segment is evaluated. Thus, after executing a DOl, the top of VS contains an

entry with tag sr, JT, or FDT.

When a DO instruction encounters a function name on top of VS, the follOWing

actions take place:

1. The function descriptor, referenced by the NT entry for the function, is

fetched. It is expected that all parameters to the function have been evaluated

and placed on top of VS, so that the topmost value is the leftmost parameter. The

parameter count, FPAR, in the function descriptor is fetched, and the top of VS

checked to see that there are that many values already there. If not, an error is

signaled. Otherwise, the machine goes through the list of local variables in the

function descriptor, making an entry in NT for each one. Each new tag in NT is

set to UT, for undefined, unless it corresponds to a parameter. Parameter values

are placed in NT and popped from the value stack in order.

2. A function mark entry is pushed to VS, with tag FMT containing an

encoding of the current values of FREG, IORG, and the name of the function being

activated.

3. IORG is set to the value in the function descriptor, and FREG is set to

the VS index of the function mark.

4. An entry is pushed into LS for the segment described by FVBASE and

FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process

is completed.
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The segment just activated contains all the code for the function. When a RETURN

is executed within this function, the following occurs:

1. LS is popped, thereby de-activating the function.

2. The function name, encoded in the function mark onVS, is used to access

the function descriptor and then popped. If there is a result, the value is pushed

to VS, and its NT entry erased. All other NT entries for locals in the function,

together with their values, are also erased.

3. FREG and IORG are restored from the values in the function mark on VS.

The function mark is deleted and the result, if any, is moved into its place.

4. Finally, FBASE is set to point to the current active function (if any) by

accessing its function descriptor through its name in the newly-exposed function

mark.

3. Operator Instructions

The operator instructions correspond to the primitive operators in APL.

They can be considered in four groupings, and are so discussed in the rest of this

section. Part a discusses the scalar arithmetic operators (Table 1-2); part b

contains a description of the selection operators which are evaluated by beating

(Table 1-3A); part c describes those operators which are generally executed

immediately (Table 1-3B); and part d covers remaining deferrable operators as

well as the compound operators (Table 1-3C, D).

a. Scalar arithmetic operators

If the top of VS contains two scalar values (or one if the operator is monadic)

then the operation is done immediately, leaving a result in VS and popping the

operand( s). This process is illustrated in Example 1. In fact, the operation is

pushed to QS and the E-machine is activated to perform the actual evaluation, but

this micro-process is invisible to the user.
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The other possible cases occur when the top two elements of VS are segment

descriptors for deferred code in QS or when one is a segment descriptor and the

other is a scalar. If one of the operands is a scalar, it is entered into QS and its

VEl entry is replaced by an appropriate segment descriptor, reducing it to the

case of two segment descriptors in VS.

The D-machine compares the ranks and dimensions of the two operands for

conformability and signals an error if they don't match. Otherwise, the operation

is deferred by drag-along in QS and the top of VEl adjusted so that it contains a

segment descriptor pointing to the entire deferred expression in QS. Because of

the stack discipline in the machine, the deferred code for both operands will

always be contiguous in QS. The link field of the QS entry for the operator (with

opcode OP) is a relative backwards pointer to the earliest deferred operand in

the deferred subexpression. The AUX field is the same as the AUX field of the

two operands (see Example 2).

b. Selection Operators

The selection operators are evaluated in the D-machine by beating, the process

of performing a selection operation on an array-valued expression by changing

the storage mapping functions of its constituent array operands. The mathematical

analysis of Chapter II legitimizes this approach, and guarantees that the trans­

formations used in beating produce the c~rrect results. Before proceeding, let

us define what it means for an array-valued expression to be heatable.

An array-valued expression deferred in QS is beatable if any of the follOWing

conditions apply:

(i) It is a single QS entry with opcode IFA or IJ.

(ii) It is a consecutive pair of QS entries of the form

S scalar 0 0

IRD ptr 0 R •
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EXAMPLE I - SCALAR OPERATUR. SCALAR OPERANDS------------------------------------------------------------------------------------
REGISTER DUMP
NEWIT • 0 IURG • 0 FREG • OOC.OO FaAS< • 00200

RE~IHER DUMP
~EWIT • 0 10RG. 0 FREG • 00000

REL ORG LEN DIE IS FN ~'T QP
+-----+-----+-- ---+-- -+- ..._+ ---+---+----+

REL ORG LEN DIE IS FN NWT QP
L S: +-----.-----+--- ---+---+---+---+---+----+

1 DID I ODD 1 100 1 0 I a 1 I 1 a 1 00 I
--> 1

LS:

-->

I 0 II I 000 1 ICOl 0
I 00 I I 000 1 0 J I I I
I

o I I I 0 1 00 I
o 1 0 I 0 1 00 I

EFFECTIVE AOOR • 0210 IN M
l~ US

TAG VALUE
.. S: +-----+-------------------.

1 I I
I Sf f 2~6 I
1 S T I 32 I

-->1

OP VALUE LIN~ AUX
QS: +-----+ -------- ------- ---+----+------+

--> 1
fAG VAlUE

"S: +-----+------------------+
I I I
I SI I 288 I

-->1

OP VALUE LI N~ AUX
us: +----+----------------+----+------+
00 I OP 'ADO I I I

--> I

EXAHPLE I-I: BEFORE EXECUIING ADO AI HI2101 EKAHPU I-T: AHEH E-HAlHI",E EXECUIION OF At>O; QS SE/iHENI EXHAUSTEDI

~
00

I
REGISTER DUHP
NEWIT • 0 10RG • 0 rKEG • OOCOO FBASE • 00200

RrGISTER t>UHP
NEWIT • 0 10RG • 0 FREG • 00000 F8ASE s 0020 C

REL ORG LEN DIE IS fN N.T OP
LS: +-----.-----+----+---+--+---+---.----.

1 all I coo I 100 I 0 I a I I I a I co I
I %0 I COO I 001 I I I 0 1 a I a I 00 I

--> I

REL ORG LEN DIE IS FN NOoT OP
LS: +-----+-----+-----+--+---+---+---+----+

I all 1 000 I LOa I a 1 a I I I a I 00 I
--> I

EFFECTIVE AOOR • 0211 IN H
I~ US

EXAHPLE 1-'" AFTER RHUHN TC D-~ACHI~E. RESULT t>F ADD IS UN VS

EFfEC T I VE ADOR • 0000

TAG VALUE
VS:.-----+------------------.

I 1 I
1ST 1 256 I
1ST 1 32 I

--> 1

OP VALUE lIN~ AUX
QS: ..----+---------------+----+-----+
00 I OP I ADO I I I

--> I

TAG VALUE
vs:+-----+------------------+
'I I
1ST 1 2&8 I

-->1

OP VALUE LINK AUX
QS: +----+ --------------- ---+--- -+ - ... ----+

--> I

THE ADO I~STRUCrILN AT ~C2101 HAS 8EEN FtTCHEO. DECeOEO,
A~t> OEHRUO I NOS. SINCE 80TH OPERANOS ARE SCALAR S.
THE DEFERRED SEGHEhT IS ACTIVATED IMMEDIATELY. CNOTE LSI

EXAHPLE 1-2: AFTER UECOOING ADO; UPEIlAIION DEfeRRED IN OS



EXAMPLE 2 - SCALAR OPERATUR, ARRAY OPFRANDS

REGISTER DUMP
NEWIT ~ 0 IORG '" 0 FHEG '" 00000 FBASt: '" OOZOO

REL ORG LEN DIE IS FN NWT QP
LS: +-----+-----+-----+---+---+---+---+----+

I 010 I 000 I lCO I a a I 1 I c I 00 I
--> I

EfFECTIVE ADDK = 0210 IN M

TAG VALUE
VS:+-----+------------------+

I I I
I SGT I SCODEISEG.A,l1 I
I SGT I SCODE(SEG.B,l1 I

-->1

OP VAlUE LINK AUX
~S:+-----+------------------+----+------+
00 I I F A I alA I I 0 III I AA
01 I IFA I JlB I I 0111 I Btl

--> I

AKKAYS wiTH DA'S AT 1000 AND 1010 ARt OF RANK 3 (NOTE ~S AUX FIELDSI.
NEXT INSTRUCTION IS ADe AT MI2101

EXAMPLE 2-1: ~EfORE EXECUTING ADD

REGISTER UUMP
~EwIT '" 0 IORG ~ 0 FKEG ~ OOCOO F~ASE ~ 0020e

REL ORG LEN DIE IS FN NWT ~p

LS: +-----+-----+-----+---+---+---+---+----+
I 011 I 000 I 100 1 a 0 1 1 I 0 I 00 I

--> 1

EFFECTiVE ADDR = 0211 IN M

TAG VALUE
vS:+-----+------------------+

I I I
I S6T I SCOOEISEG.C,II I

-->1

OP VAlUE LINK AUX
QS:+-----+------------------+----+------+
00 I I F A I JA I I 0111 I t_
o1 I I FA I a1~ I I 0 III I
02 I OP I AUD I 02 I ') III I c

--> I

EXAMPLE 2-Z: AFTER DEFERRING ADD
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(iii) It is a QS segment consisting of a scalar monadic operator operating

on a beatable sub-segment. That is, it is of form:

code for operand

·..
• ••

OF optype 1 R

(iv) It is a QS segment consisting of a pair of heatable operands combined

by a dyadic scalar operator. One of these operands can optionally

be a scalar value. The form is:

code for right opnd

·..
·..
code for left opnd

·..
• • •
OP optype ~ Rl-- ~

(v) It is a pair of beatable operands combined by GDF. The form is

similar to case (iv) above.

(vi) It is a reduction of a beatable operand, in the form:

BRED 0 k 0

code for reducee A

·..
·..

k:

OP reduce-op

SGV SEG.A

S -length

ITM
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(vii) In addition to (i) through (vi) above, a single QS entry with opcode IA

is beatable, although it does not enter into the recursive definition.

When a selection operation is interpreted by the D-machine, the array-valued

operand is first checked for conformability. If the operand is beatable, then it

is beaten, according to the transformations shown in Chapter III, Appendix A. In

this process, if a DA to be transformed has a reference count of 1, indicating that

it is a local temporary result, then the DA can be modified directly. If the reference

count is greater than 1, then a copy must be made, and the copy is beaten. If the

result of a beating operation is a scalar value, then the segment is turned over to

the E-machine, which evaluates it and leaves the scalar result on the top of VS.

When the operand of a selection operation is not beatable, there are two

possible strategies to follow: In the case of the TRANS operation, there is no

choice: the operand must be evaluated by the E-machine and a temporary value

stored, which is then beaten as above. Otherwise, the selection operation can

be treated as a special case of subscripting, in which case an appropriate set of

E-machine instructions is dragged-along in QS. (See Section d. for an explanation

of subscripting.) The choice of strategies is a second-order design decision,

and need not be made at this time, since either approach is viable. Example 3

illustrates both beating of selection operators and drag-along of scalar operators.

The DM code shown for the statement is a straightforward translation of the

APL statement into Polish. Note that the vector 2, -2 is a constant and is

"compiled" into the function segment. This approach avoids having to keep array­

valued constants in the memory with other array quantities; to do so would require

having an entry in NT for each such constant, and would complicate the storage

management functions. In Examples 3-1 and 3-2, the state of the machine before

executing the sample code is shown; the values of the variables M and N are not
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EXAMPLE 3: DRAG-ALONG AND BEATING IN THE D-MACHINE

Consider the APL expression

At the time this is to be evaluated, pM+-+2, 2 and pN+-+3 ,4 • Assume that R

has no current value. The machine code for this statement is shown as follows,

starting at location 250 in memory.

Addr Op

250 LDNF

252 LDCON

254 TAKE

255 LDNF

257 REV

259 ADD

260 LDJ

262 TRANS

263 LDN

265 ASGN

266 ...
...

Operand

N

90

M

o

JCODE(2, 1, 1)

R

Comments

Refers to constant 2,-2 with DA at 290

(Recall O-base in all machine code)

This is the vector 2 ,1

Assign (and discard value)

290

291

292

293

294

295

296

RC=l

VB=O

RANK=1

R(1)=2

RC=1

2

-2

LEN=4

AB=94

D(I)=1

LEN=3

DA header

DA for constant vector 2 , -2.
See Section A for description
of format.

Header for value array

JValue
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given, as they are irrelevant for this example. LS contains a descriptor for a

D-machine segment of length 100, which is the main segment of the function F.

The effective address is the sum of the REL field of LS and FBASE, the beginning

of the value part of function F. VS contains a function mark for F which was

placed there when F was called.

In 3-3 and 3-4, the LDNF and LDCON instructions have been executed. Note

that each caused the deferral of an IFA instruction (fetch array element in the E-machine)

in QS. Also, for each deferred instruction, a QS segment descriptor was pushed

to VS. The LDCON instruction allocated space and made a copy of the descriptor

array for the constant which was in the function segment; the new DA is named Tl.

The VBASE for the constant is 200, the same as the FBASE of the function.

The TAKE operation (3-5,6) is evaluated by the DM using beating. The

descriptor array T2 was created for the result, and was derived from the DA for

N by the transformations listed in Chapter III, Appendix A. It is easy to see that

this DA is in fact the correct one. Also note that T1 is no longer needed, and has

been erased. At this point, VS contains a segment descriptor which points to the

QS segment describing the result of the computation to data, which is the evaluation

of the subexpression ( 2,- 2 ) tN •

Examples 3-7 through 3-9 show the next LDNF instruction and the evaluation

of the reversal operation by beating. The process in this case is similar to that

for the TAKE. The ADD operation is deferred in 3-10 because both of its operands

were array values. The LINK field of the ADD in QS is 2, referring to the operand

2 elements earlier in QS. The top of VS now contains a descriptor for the entire

subexpression in QS which has been evaluated at this point. The LDJ instruction

(3-11) is executed similarly to LDNF and LDCON in that it defers a value in QS.
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The TRANS instruction takes the transpose of the entire expression which

has been dragged along so far. In this case, since its operand is a sum, the

transpose is applied to both terms. Notice that although the deferred code in QS

has not been altered (3-12), the DA's which it references have been (3-13). The

LDN R instruction pushes a value with tag NPT to VS (3-14) as the next instruction

is an AfGN (3-15). This instruction notes that R was undefined (see NT,. in

Example 3-1) and allocates space for its DA and its value array. The space is

allocated based on the knowledge of the size of the result deferred in QS. In

3-15, we see the deferral of the assignment. The POP instruction in QS disposes

of the value after it has been assigned (in deferring ASGNV, no POPS are used).

In 3-16, the state of memory shows the new DA for R; also note that the address

of the DA for R (@ R) has been entered in NT by the AfGN evaluation.

c. Other Operators (Executed Directly)

The "other operators" include all those APL primitives which cannot be

deferred conveniently, or which are evaluated immediately in the D-machine.

BASE is in this class because it has a scalar result, while REP, GDU, GDD are

included because they require rather complex calculations involving their entire

operands simultaneously, which are impossible or difficult to do element-by-element.

URHO is easily done by the D-machine, and so is not deferred, as is UlOTA,

which produces a J-vector as result. The catenation operator, with operand K,

is a direction to catenate the top K elements of VS to form a vector. This is

done immediately (With the result being put in temporary space). The remainder

of the operators in this class are dealt with differently, depending on the values

of their operands.
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EXAKPlE 3 - ORAG-AlGhG ANO BEATING

'EMUIlY DUMP
------~~~~~~~-~_:-~~~~:~~~~-~~~~~~!!~~--------------------------------------------

fIIEp.QRY OUMP

ADOR CONTENTS
----+------------------
.H He"l lfl~"C5

+01 va-v,", A8~OC. 0
..02 RA"l( z 2
+03 R(l)-OGl 0(11.02
+04 RlllsOOl OlllsOI

ADOR CUNTENTS
---+---------- ------
~ RoC--l l EN"O~

+01 V8=VN Ad-OOO
+02 RANKs,l
+OJ RIII-0030111-04
.CIt RIlJzOOIt t)( 2)"01

NT: lAG COMENTS
---+---+-----------------
F 1-1 .F
M DT ilM
N UT .h
R OT 0

AOOR CONHNTS
--- -+-----------------
.,.. RC-l lEN.aO)

+01 VtS::oVM .48·000
..02 :'tANK:s:l
+03 RIIlsCOl Oill-OZ
+O~ R(Z.",002012)zI')1

AOOR CCNTEhTS
----+------------------
.,. RC." 2 l HW-OS

+0 I VBsVh U-OOO
+02 MANK"" 1
+01 Rel.aoe} Olll.OIt
+04 RIZIs004 OIZlsOI

AODR CONTENTS
----+------------------
~'1 ~C"l l~N·O.

+01 Y8=200 48::1"094
.02 RANK-.
+03 RIII-OOZ 0111-01

DA FOR h ~ON HAS R~fCO Of Z. II IS A LUPY U~ THE OA fuR THE VECTOR Z.-I

REGISTER DUMP
~ENIT - 0 10RG - 1 "RE~ :II: 0000C! F&AS. - COlOO REG I Sf ek DUMP

t\E"'U s 0 IORG • 1 FREG - <JOQOO fUSE' OOZOO

REI ORG Uh DIE IS Fh hWI ,jP
LS: +----+-----+-----.---+ ---+---+----+----+

I OS4 lOCO I IQO I 0 0 I I I 0 I GC I
--> I

I

.....
oen
I

REL ORG LEN DIE IS FN hoT "p
LS: +-----+-----t---- +---+--- .---t---t---- ..

lOS,) I 000 I ICO I 0 0 I I I 0 I vO I
--> I

EffECTIVE AOOR - OZSO IN M

TAG VALUE UP VALUE LINK AUX
liS: +---- -+----------------.. QS: + .. -..1---------------+----+------+

I fill I 'FN MAkl( fOR f' I --> I
-->1

~XAMPLE 3-l: REGISTERS BEfOkE ~XECUIINC [XAMPLE LODE

rAG VAlUI::
V5: .-- ---+-----------------.

I fMT I 'fN MARK FuR fO I
I SGI I SCOOEISEG.A.lI I

--> I

UP VAlUE lUtK AUX
os: +----+-----------------+----.------+
00 I I fA I iI II I I 0011 I AA

--> I

THE TAK~ HAS ALTERED THE QA fOR h. CREATING A h~W COPV.

RECISTER DUMP
hE.IT • 0 luRe· I FREe· 00000 FBA Sf '" 00200

EXAMPLE 3-S: REGISTERS AfTER TAKE OPERATUR

EXAMPLE 3-3: AFTER LOhf AhO LOCON

LS: +-----+-----+--- ---+---+---+---+---t-----+
I 0,4 I coo I 10C I 0 a I I I 0 I LO I

--> I

LONf PUSHED oseo;1 AhO VSII;'
LOCON PUSHED ~SII;I AhO VSll:1

AOOR CO~TEhTS

----+------------------
ilTl RCsl LEN-OS

.. 01 Y8sVN A8-002
+02 M'''''-2
+03 RI11-0020111-04
..O~ R(2. a C02 0(2 ••01

AOOR CONTENTS
----.------------------
iIIN RCal L[/'i::t05

+01 Y8-VN A8 z 010
"Ol RAhlilal
+OJ k\II-0030(11-04
+04 RIZI-004 Oill-Ol

THE NEN UA AT ill CO~TAINS THE STORAGE ACCESS fUNCTION fOM THE
TAKE oJ'HATIUN ON N. 'HILH OAS PRGOUCEI) BY 8EATlhG. NOTE I~ PARTICULAII
THU THE VUH Of TZ IS VN. WHICH POINTS TO THE vow. ARUr C,F N. MO
THAT THE DIKENS ION Of T2 IS l.l • AS SPHlflED BY THE TAKE OPERATOR.
TH~ ABASE HAS CHA~eeO fROM 0 TO l. TO ACCOUhT fUR THe -l ELEMEhT I~ THE
PARAMETER II.E. lAKE fReM THE ENOl. FINALLY. hOTE THAT THE VALUE Of DtL
IN rz IS IHE SAM~ AS THAT fOR h.

MEMORY DUMP

AU OR COhTEhTS
----+------------------
ilK RC=I L~N=OS

+01 \ltI-v,", A8-000
+02 I1ANK=2
+03 R(l)tOOZ U(lt=02
+04 RIZlsOOl oell-Ol

UP VALUE LlhK AUX
\.IS: +-----ot------------·------ +----+------+
00 I I fA I "N I I 0011 I AA
01 I I fA I "U I I 0001 I Bd

--> I

OkG LEN o/~ IS EN NoT ~PREL

TAG VALU~

~s:+-----+------------------.
I fMT I 'fN ~ARK fOR f' I
I SGT I ScuOEI SEG.A.II I
I SGT I SCODEISEG.B.lI I

-->1

EXAMPLE 3-6: KEMORY AfTER TAKE OPERATOR



EXAMPLE 3 - OkAG-AlOhb ANU 8EATlfrfG ExAMPLE 3 - DRAG-ALONG AND ~EATING

REGISTER ~UMP

NEon - 0 10RG • I fRE~ 2. oocec fUSE - 00200
MEMORY L>UflllP

LS:

-->

REL O_G LEN DIE IS fN NoT QP
+--- --.- - -- ... +- - - -- t - -- t - -- .. ---+---t-- --.
I 05. I O~O J 100 J 0 0 I I I 0 I CO I
I

EfHCIl vE AOOR - 0256 IN M

AOOR CONTENTS
----+---------- --- -----
_M RC-I LEN-05

+01 VBaVM AH~OO~

+02 RA"tK=2
-03 Rl1l-~02 01 \)-02
_04 R121-0eZ Oe21-01

AOOR CONT ENT S
-- --+------------------
iN RC- 1 L <N- 05

+01 V6=YI\I AH=OOO
+C 1 KA,.. ... =2
-03 _I I 1-003 0111-04
+04 R{ZJ*004 D(21=vl

ADUR CLNTENTS

----+------------------
;,T2 RC-I LEN-05

-01 V~-VN A8-002
+02 RAI\IK=2
-03 RIII-OOZ 01 \)-04
+C4t RtZ)z:002 0(2)>''01

~OTICf tHE ~~~ CA, .T3 ,~HICH CUNIAINS fH~ ALLlSS FUNClluN FOR THE
R{:vI::RSAl UN M. THE PARt~ wHIC.., NAV!: C.HANuEO fRuH Hit: OA AT ill'" ARE
AB4St:. wHICH IS NUll. 2, ,AND OtLIlI. "HltH ts -2 IN~TEAU CF 2.. THEH.
C.HANGtS ACCOUNt FOR tHE REVERSAL uf M, ANALOGOUSLY tu THE wAy THE DA
AT .T1 ACCOUNtS ~OR T~~ fAKE OP~PAtlUN UN N.

tAG yALUE\IS: +-----t +

I FMT I .FfII MARl<. FOR F. I
I SGT I SCODEI SEG.A. II 1
I SGT I SCODE( SEG.~.I I I

--> I

REGISleR DUMP
~EoIT - 0 (URG = 1

UP VALUE llN~ AUX
US: +----+--------------- ---+----+------+
00 I I ~ A I _T? I oe 11 I AA
OIIIFAI.M 1001l1d"

--> ,

F8A~E = OOlC 0 tXAJI1Pl~ 3-9: AfT(:f.l: REV

tilT 3
-01
-OZ
-03
-o~

RC-' LEN-OS
V8~'VM AHaOOl

RANK"'l
R(lt"002 Dt U"-2
RIZI-OU U121-01

REl URG LEN OlE IS FN N. T uP
l~: +-----+-----+-----+---+---+---+---+----+

I 058 J 000 J )00 J 0 0 I ) , 0 I 00
--> I

t<fG1STfR DUMP
~E.IT - 0 IURG - I __ EG - 00C00 F"ASE - 002~0

EFfECTJVE AUOR ~ C2~ij IN M
Rt:l ORG lEr.. 011:: I~ fN, N"-T 'JP

l~: .-----+-----+-----+---.---+---+---+----+

EFfECl IVt: AOOP. = 02'>9 I~ M

o I 1 lot OC I
tAG VALUE:

~5:+-----+------------------+

I FMf I .Ff\ ""ARK FU~ F. I
I SGI I SCUOEISE~.A.lI I
, SGI I SCCOE(SEG.~"1 I

-->1

EXAMPLE 3-~: AFTER HEV

OP VAluE LINK lUX
us: +-----+--------------- ---+ --- -+------+
00 I (FA I .T 2 I 00 II I AA
01 I I FA I .n I 0011 I ""

--> I

lOS' I 000 I lC C I 0
--> I

fAG VALUE
vs:+-----+------------------+

I F~T I .F~ MA~I<. FOk~. I
I SGr I ~Cu~EISEG.C.11 I

--> I

I::-'AMPLE j-10: AFTER AOU

UP VALU~ llN~ AUX
QS: +-----+ ------ --------- --- .. ----+------+
00 I IF A I .n I I 00 II I C_
o1 I I ~A I .13 I I 0011 I
OZ I OP I ADD I 02 1 00 I) I _C

--> I



HAMPLE 3 - OllAG-ALONG ANe BEATING-----------------------------------------------------------------------------------

EFfeCTIVE AOOR - 0261 IN"

REL ORG LEN DIE IS FN NoT .P
LSI +-----+-----+-----+---+--+--+--+----+

I 061 I 000 1 ICC I 0 I 0 I I I 0 I 00 I
--> I

AODR ceNIENTS
----+-----------------
~'2 RC~l LEN-O~

+01 ya-VN AS-002
.OZ RANK-l
+03 RIlI-002 0111-01
.04 AI1J-002 OCZ)-04

ADDR CDNreNTS
~--.-----------------

~ ft.C-! LEftt.O~

+01 Va-YN AS-aDO
+02 R~K-2

+OJ Rll.-0030111-04
+04 R121-004 0121-01

ADOR CONTENIS---- ..------------------
iN RCal lEN-05
.0 1 VS" VIII 48-000
+02 RAN"'-Z
.03 Reu-aDZ OIU-02
+04 R121-002 0121-01

EXAMPLE 3 - DRAG-ALCNG AND beATING
------------------------------------------------------------------------

FUSE - 00200FREG - OOCOO
REGISTER DUMP
hE~1T - 0 1000G - I

-------------------------------------------------------------------------------------

EFFECTIVE AOOll - OZ62 III"

REl ORG LEN DIE IS FN lIoT IlP
L $: +-----+-----+----+---+---+---+---+----+

I 06Z I 000 I IDe I 0 0 I I I 0 1 00 I
--> I

FUSE - 00200FREG - 00000
REGlSrEk OUHP
hE_IT - 0 IORG - I

EXAMPLE 3-13' MEMORY AHEk TRANS INoTE AL TtREO DA' $I

iln RC-I Uh-05
+01 VB-V. Aa-Doz
.02 RANK-l
+03 RIII-OOZ 0111-01
+04 R121-00Z UI ZI--2

THE EfFECT OF rHE TRANSPUSE ~AS TO ALrER T~ DA'S AT ilT2 AND ~T3.

THE CHAN~E IN 80TH CASES _AS TO .NTEkCHANGE ~lll .. ITH RI21, A~U

Dill WITH lilZI. IT SHOULU BE INTUITIVELY CLEAR THAT THESE OA'S ~ILL

NO~ ACCESS THE rRANSPOSES llf THE IR PREV IOUS VAlUES.

REL ORG LEN UIE IS FN N.T OP
LSa +-----.-----+-----+---+--.---+---+----.

I 064 I 000 I 10C I 0 I ell I 0 I 00 I
--> I

FUSE - 00200

OP VALUE LINk AUX
QS:+-----+------------------+----+------+
00 I IFA I ..T2 I I 00 II I C_
Ol I I FA I in I I 0011 I
02 I OP I ADO I 02 I DOli I _C
03 I IJ I JCOOEI2,l.ll I I 0001 I 00

--> I

FREG - 00(;00

TAG VAlUE
¥s:+-----+------------------+

I FNT I .FN MARk FOR F. 1
I SlOT I stOOEISEG.C,lI I
I SGr I SCUOEISEG.O,lI I

->1

REGISTER DUMP
hE~IT - 0 10RG - I

I

~

o
-::J

I

EFFECTIVE AUDR - 0264 IN"TAG VALUE
v$:+----+---------------+

I FliT I .FN MARk FOR F. I
I SGr I SCODEISEG.C.l1 I

-->1

OP VALUE lIliK .lUX
QS: +-----+----------------+----+------+
00 I IFA I iTZ I I 0011 I C_
Ol I IFA I ilT3 I 1 0011 I
OZ I OP I ADD I DZ I 00 II I _C

--> I

Toll> VALUE
VSJ.-----+------------------+

I F"T I .FN ~ARk FOR F. I
1 SGr I SCUOEISEG.C.lI I
I NPT I R I

-->1

OP VALUE LINk .lUX
US: +-----+-------- ----------+----.-----+
00 I I FA I ilT 2 I I 0011 I C_
~I I IFA 1 i13 I I 0011 I
02 I UP I ADD I 02 I 0011 I _C

--> I
EXANPU 3-IZ' REGISrERS AFTER TRANS

EXA"PLE )-14' AfTER LON K



eXAMPLE 3 - ORAG-AlGNG AND BEATING

RFGISTER DUMP
~EW(T : a (ORG = 1 FREG - 00000 f8ASE = 00200

RbL ORG LEN DIE (S FN hRT QP
LS: +-----+-----+-----+---+---+---+---+----+

I 065 I 000 I leo I v I J I 1 I 0 I 00 I
--) I

EFFECTIVE AOUR = 0265 IN M

TAG VALUE
~S:+-----+------------------+

I FMT I .fN MARK FOR F. I
I SGT I SCOUEISEG.E.ll I

-->1

OP ~AlUE LINK AUX
QS:+-----+------------------+----+------+
0(\ I If A I .H2 I I 0011 I E_
01 I If A I Gill I I 0011 I
02 I OP I ADD I 02 I 0011 I
03 I IFA I _R I I 0011 I
04 I OP I ASGN I 02 I 0011 I
05 I POP I v I I 0011 I _t

--> I

I

....
~
I

EXAMPLE 3-15: REGISTERS AFTER ASGN

MEMORY DUMP

AD OR CONTENTS
----+------------------
iM ~C=~ LEN=05

+01 ~~=VM A8=000
+02 RANK=2
+03 RI11=002 0111=02
+04 R121=002 0121=01

AOOR CUNTENTS
----+------------------
iT2 RC-l LEN=05

+01 V8-VN AB=002
+02 RANK=2
+03 Itlll=002 UI 11=01
+04 R121-002 0121-04

NT: TAG CONTENTS
---+---+-----------------
f FT ciF
M oT .M
N UT ilN
R DT .It

ih
+01
+02
+03
+04

RC=l LEN-C5
~8=VN A8=000

RANK-2
RIlI=0030(11=04
R121=004 0121=01

tin
+01
+02
+03
+04

RC=l LEN-05
VB=VM A8=002

RANK=2
RIII=002 0111=01
R121=002 0121--2

iR RC=l LEN=05
+01 V8=VR AB=OOO
+02 RANK=2
+03 RI11=002DIII=02
+04 R121-002 0121=01

EXAMPLb 3-16: MEMORY AFTER ASGN



RAV and DRHO are difficult to defer in general because of the complex

calculations necessary to access an arbitrary element of the result. However,

there are special cases which are easy to defer, as follows:

(i) The right operand is a scalar or single-element quantity. The RAV

of such a value is a J-vector if it is an integer, or at worst is an

explicit one-element vector. Similarly, the DRHO of such a value

is deferred .in QS as follows:

S value

IRD Tl

o

o

o

R

where @TI is a DA for the result and R is the encoding of the rank.

The IRD instruction is essentially a note to the D-machine that the

result has dimension described in TI.

(ii) The right operand B is an expression deferred in the form of (i) above.

In this case, all that has to be done is change the descriptor array

@Tl.

(iii) The right operand is of the form

IFA @W o R

and @W points to a DA which has not been altered by any select

operations which upset the ordering of the value part. That is, if

W is the array specified by @W and D is the vector containing the

value part, then we ; j L J+-+D[ ( pC) .lL J for all appropriate values of L •

In this case, RAV is evaluated by providing a new DA with rank I and

dimension x jpW. DRHO can be deferred if x jpA , where A is the

left operand of the DRHO, is less than or equal to x jpC also by

providing a new DA with dimension A.
-

If none of the above apply, then RAV and DRHO are evaluated immediately by

creating temporary values in M.
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d. Other Operators and Compound Operators (Deferrable)

The D-machine evaluates this subclass of operator instructions by deferring

E-machine code in QS. The expansions are detailed in Appendix C and should he

easy to understand with a knowledge of the way the E-machine works. We will

here discuss only the SUBS instruction and the compound operators, as their

behavior is somewhat more complex.

The SUBS K operation corresponds to the symbol [ in an APL program.

When decoded, it expects the top of VS to contain a QS segment descriptor for a

rank-K quantity and the next K entries on VS to be either scalars or QS segment

descriptors for the subscript expressions. An empty subscript position is created

by the LDSEG instruction with its operand a segment descriptor SCODE(O, 0, 0) of

length O.

There are two important cases to consider:

(i) If the subscriptee is heatable, then the subscript expressions are

examined in turn, starting from the rightmost (deepest in VS) to

find scalars or J-vectors. If found for, say, the I
th

coordinate,

the equivalent of INX I with that operand is performed on the sub-

scriptee by heating, causing new DA f s to be created for it. The VS

entry for this subscript is then deleted .if it was a scalar. If it was

a J-vector, then the VS entry is changed to the empty segment and

the QS entry is deleted by moving all of QS down 1 to fill in the space

(With appropriate adjustments to descriptors). If, after all subscripts

have been exami.ned it is found that the remai.ning stacked subscripts

are either empty or non-existent, then the result already exists, in

standard form, in QS. In this case, the remaining empty segment

descriptors are removed from VS and the result is the QS descriptor
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at the top of VS. Otherwise, the remaining subscripts are treated

as in the second case, described in the next paragraph.

(ii) If there are explicit non-scalar or non-J-vector subscript expressions

and/or the subscriptee is not beatable, then the subscripts must be

dragged along in QS. This is done by creating temporary index ac­

cumulators (opcode XT) in QS and generating E-machine code to

activate the necessary subscript evaluations at the right times. If

the subscriptee is a reduction, QS is transformed according to the

transformation (OP/ A) [2] - OP/ AQl' ~ and evaluation continues

as above. The details of the subscript expansion are shown in

Appendix C. Example 4 illustrates the process which has just been

described.

In evaluating a GDF, the machine first examines the operands. If they contain

deferred operators, then they are evaluated to temporary space first. This is

done to avoid unnecessary recalculation of subexpressions necessary to compute

a GDF. It also guarantees the possibility of applying SF transforms to GDF ex­

pressions by beating. Then all that is necessary is to alter the access masks in

the AUX fields of the deferred left operand in QS to provide the proper access

method for the E-machine. This is illustrated in Example 5 below. If the GDF

reduces to a simple case, e. g., if one of the operands is a scalar, then the ex­

pression is treated as a normal scalar operator expression (see part a above).

Efficient evaluation of reductions along coordinate K of the reducee R (in the

E-machine) depend on transformation TR11 (see Chapter In which allows permu­

tation of the reduction coordinate by transposing the reducee. In evaluating a

REDUCE along coordinate K the reducee is first checked to see if it fits into one
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of the special cases of reduction:

(i) Empty reduction coordinate. The result is then an array with value

((K~lppR)/pR)pIDENTwhere R is the reducee andIDENT is the

identity element for the reduction operator.

(ii) Reduction coordinate of length 1. The result is thenR[[K] TORG]

If reducee is a scalar, the result is R.

(iii) Reducee is a vector. In this case, the reduction is activated im-

mediately in the E-machine, since the result is a scalar.

If none of the special cases is satisfied, the reduction is deferred by first doing

the transpose of TRll if necessary, and generating the deferred code in QS as

shown in Appendix C.

EXAMPLE 4: SUBSCRIPTING IN D-MACHINE

Consider the APL expression A[ 14;; 2; V] where A is a rank-4 array with

pA-+-+5» 4 , 6,3 and V-+-+3, 2,1,2 , with the index origin IORG -+-+ 1. The D- machine

for evaluating this expression is

250 LDNF V Vector V

252 LDS 2 Scalar 2

254 LDSEG SCODE(O, 0, 0) Empty subscript

256 LDS 4 Scalar 4

258 UlOTA Gives L.4

259 LDNF A Array A

261 SUBS 4 Do the subscript, expected operand rank is 4

263

The following memory and register dumps show the steps the D- machine goes through

to evaluate this expression.
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-----------------------------------------------------------------------------------
EXAMPLE 4 - SUBSCRIPJlNO I" O-MACHINE

EXANPLE 4 - SU8SCRIPIING IN O-NACHINE----------------------------------------------------------------------------- ... --
NE~ORY OUNP

REGISIEN DUMP
~e"lT .. 0 IORGo a I fREG - OOCOO fUSE - 00200

...---_ ----- -_ -- -_ ----- -_ -_ -_ -----_ -------_ ---------_ ---_ ------- -_ ...
EXANPLE 4-1: NENURY 8EFORE ExeCUIING EXANPLE toOE

EffECTI~E OUOR - 02bl I~ N

REL URG LEN OfE IS fN N_T wPlS: + t t t t t + t +

lObi I COO I IDe I 0 0 I I I 0 I 00 I
--> I

EffECII~E AOOR - 02b3 IN M

REL ONG LEN DIE IS FN N~I UP
•-----+-----+--- - +---+- --+---+---+----+
1 0f>3 I 000 I 10C I 0 0 I 1 I ~ I OC I
I

~S AND uS HA~E ~EEN IRO"SfURNEO 8Y IHE SU8S OPERA IIUN. IHE SCALAR
SUBSCRIPI REDUCED IHE RANk OF A ~y I. AND IHE INTER~AL ~ECTUR

SHORIENEO IHE fiRST COORDINOIE ISEE UA AI illi. THE NEST OF IHE
CCOE GENERAl EO IN uS IS fO~ CALCULAIING EXPllCII SU.SCRIPI ~ALUES.

WHICH ARE kEPI IN IHE XT ENIRIES. THESE ENTNIES CO~SIIIUTE A
PSEUO~-ITERAIION STACk. ISEE SECIlUN EI

E'A~PLE 4-3' REGISIEkS AFIER SUBS

LS:

-->

JAG ~ALUE OP ~ALUE LINk OUX
~S:+-----+------------------+ QS: +-----+-----------------+----+------+

I I I 00 I JNP I a I Of> 0_

I SGI 1 SCOUEI SEG.O,lI I 01 I IfA I .~ I 0001 U
--) I 02 I IfA I ell I 0111 ff

03 I Xl I ltCOOE CO,3, 1) I 03
,,4 I Xl I ltCOOE to, 1, 11 I
05 I Xl I XCOUEI0.2.11 I
06 I I XL I 0 I 0100
01 I ~S I a I 04
08 I IXL I C I 0010
09 I XS I a I 05
10 I I SC I SCUOEI :iEO.e.lI I 0001
II I u I a I Of>
12 I SO I SCUOEl SEG.h II I 09
13 I IRO I .T2 I 0111 _0

--) I

NI. UG WNIENIS
___ +__ -t-----------------
A OT .A
y OJ .v

f~ASE = 0020e

OP ~ALUE LINK AUX
QS: +--- --+ ... ------- ------- ---+--- -+ ------ +
00 I I fa I .~ I I 0001 I ..
01 I IJ I JCUOEI4,J.01 I 1 0001 I B8
02 I I FA I ... I I 1111 I cc

--> I

fNEG - OOCOO

ADOM CONTENI S
-- --+------------------
~y Rtal lf~·04

tC 1 ve.VY AB"'JOO
.02 RANK.-I
+~3 RIII-0040111-01

NEG I S TEN OUNP
~EW1T s 0 IORG • 1

'Au VALUE
\/S: +-----+------------------+

I I I
I SGI 1 SCOOEISEG.O.lI I
I SI 1 2 I
I SGI I SCOOEISEG.NIL.OI I
I SOT I SCUOEISEG.B,l1 1
I SGI I SCOOEISEG.C,l1 I

-->1

ADOR CONTENTS
----+------------------
.A RC-I LEN-01

+01 ~~-~I A8-0ro
+02 RANK-'"
.0$ RIl).OOS 01U-12
+0" R.2JzOO~ 0(2)-18
+05 R131.00b 0131 a 03
tOb RloCtJ-=003DCCd-:H

J

........
e,.,

I

~S CONTE"TS A~E THE SU8SCRIPIS ONU SU~SCRIPIEE. "uTE IHE ACCtSS NAS~S
IN IHE AUX flELU Of uS. IHEY INOICAIE IHAI v 0"0 THE J-~Ecru~ ANE
YECTUKS, AND A IS A M'~K-~ ARkA¥.

--------------------------------------------- -----------------------------------
E'A~PLE .-2' AfTEN ALL ~UI IHE WBS OPHAJUR OUOR CONHNTS

--- -+--- ----------- ----
iA RCal lf~·Ol

+01 Vd-V1 AS-O(O
+02' RAf\!l(-~

+03 RClt-OOS 0(1)·'2
+04 RI21-00.0121-18
+05 RI31-00f> 0131-01
+Ob RI~J.003 OC~I-Ol

AOOR CONIENI S
----+------------------
ay Re-2 lE""aO~

+0.1 VS-YV 'BaOOC
+02 R't-.K-l
+03 RCII-001t DIU-Ol

_'I ~Ctl lE,..,·06
+01 V8.YA 40-003
+1J2 RANk")
'03 RI 11-004 011l-T2
+04 RI21-~04 0121-18
'CS R131-003 UI11-01

AOOR CeMENIS

----+------------------
.12 RC-l LEN-Of>

+01 1/8- 'I-COO
.02 RANk-!
+0) RC1 ••OO~ OC1'-16
+04 "121-004 0121-04
+05 RI31-00' 013'-01

exONPLE 4-4: NENlJRY AHEN ~lJ8S



EXAMPLE 5: GDF IN D-MACHINE

In the example expression, Mo. xN, both M and N are matrices with pM+--+4,3

and N+-+p3,2. D-machine code for this expression is

DoGDF

N

M

MUL

LDNF

LDNF

GDF

250

252

254

256

Examples 5-1,2 show the machine state before evaluating this code. In 5-3, the

GDF operation has been deferred in QS. Notice that the access mask of M

in the AUX field of QS has been changed. The IRD entry, whose operand DA gives

the dimension of the result, contains 1111 in its AUX field, which instructs the

EMto use a 4-level iteration stack to evaluate the expression. The 1100 AUX for

M says that M-indices come from the two highest iterations, while the 0011 AUX

.for N indicates that N is to use the two lowest.

An equivalent formulation of the contents of QS at this point is that it represents

the GDF in the form:

for I := 0 step 1 until 3 do

for J := 0 step 1 until 2 do

for K := 0 step 1 until 2 do

for L := 0 step 1 until 1 do

RESULT [I;J;K;L] := M[I;J] XN[K;L];
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EXA""LE 5 - GOf IN D-"A'HINE
-----------------------------------------------------------------------------------

EKA"",-E , - GOF IN D-"&CHINE

~EGISrU DUll"
NEWIT - 0 10Rli - I fRtli - OOtoo f.ASt - OOZOO

REG/Sru OU""
NEWlr - 0 lUAu - I fRtG - 00000 FItUE - DOlO 0

REL ORG LEII DIE IS fll liNT Q"
LS1 +-----+-----+----+---+--+--+---+----+

I OH I 000 I IDe I 0 I 0 I I 1 0 I 00 I
--> I

REL ORG LEII DIE IS fll liNT QP
l51 +-----+-----+-----+---+---. ---+---+-- --+

I 05. I 000 1 100 I 0 1 0 1 I 1 0 I 00 1
--> I

EHEtT I YE AOOlt - OZ54 I~ " EffEtTlVE AOOlt - 025& III II

EU"f'LE 5-11 REGISTERS Il£fO~E GOF

EXA"I'LE ~-Z' "E"OR' .ffORE GOf

------------------------------------------------------------------------------------

01' YALUE LINK AUX
QS: +---+---------------+---+-----+
00 I IfA I ~ I I 0011 1 t_
01 I If A I ill I I 1100 I
02 IGOplIIUL 1111111
0) I IRO I .U I I 1111 I _,

--> 1

AOO~ tllNTEhTS

----+------------------iN Rt-Z LEN-OS
_01 'Il-YII AI-OOO
-OZ ~&Nl(-2

-0) Rill-DO) Olil-OZ
+04 RIZI-002 OIZI-OI

AOllA tONlENTS

----+------------------IlTl ~t-I UNaOr
-01 Wa- "-000
.01 ItA....4
+OJ RIII-004 0111-'1
-04 ~IZI-OO) 01ZI-06
+O~ RUI-OO) OUI-OZ
-06 R141-ooz 0141-01

iTI NAS 'REA'EO SI"'L' TO ~EtOAD THE R&IlK AND olllt~Slah YEt'O~ Of
THE RES~r Of OOIIlG 'HE OUlE~ "OOutT. ,HE OI'tOO£ IRO liN QSIlIII
SIGNifiES 'HAT ITS O'U&IlD OA IS OES'RI"IYt. AND IS NOT '0 &E
EUtUJEO. IN ,HE E-"'tHINE. UII IS IGNORED.

TAG YALUE
VS: +---... -+------------------+

I I I
I Slir I StOOEISEG.t.1I I

->1

fU""LE 5-)' AHER liOf - fl&JrE 'HANGED AUX fiELDS III liS

AOOR tOIlJENTS---+--..._------------
iM RC-Z LEN-a,

-01 YI-Y" _.-000
-OZ UNIl-Z
-0) ~11l-004 011'-0)
_04 RIlI-OO) OIZ'-OI

01' VALUE LIIIK AUX
us :+-----+----------------.----+------+
00 I If A I .,. I I 0011 I AA
01 I IFA I .11 I I 0011 I ..

--> I

&DoR tONTEIITS---+-----------------
iN Rt-I LEII- 05

-01 YI-YII 0-000
-02 ~ANK_2

-0) RII/-OO) Olll-OZ
_04 RIZI-OOZ OIZI-OI

JAG YALUE
VS:.-----.------------------+

I I I
I SGf I ~OOEISEli.A.1I I
I SGT I S'00EI5EG ••• 1I I

-->1

IIE"O~Y DU'"

.lOoR t IINTEN IS

----+------------------ill Rt-I LEN-OS
-01 ya-YII U-OOO
.OZ A"'-Z
-0) Rlll-004 Oll/-~)

-04 ~IZ'-OO) OIZI-OI

I

I-'
I-'
en
I

EUII'LE 5-4' IIEIlORY AfTE~ GOF



E. The E-Machine

The E-machine is a simple stack-oriented computer which evaluates array­

valued expressions by iterating element-by-element over their index sets. The

EM takes its instructions from the instruction buffer (QS), where they were put

by the D-machine. Other machine registers are used in the same way as in the DM.

The central task of the EM is to access individual array elements in computing

array-valued expressions. As most of the complexity of the E-machine is related

to this task, we first discuss the accessing mechanisms in the EM. Given this,

it is a simple matter to explain the instruction set of the machine.

1. Array Accessing

a. Indexing Environment

Array reference instructions are entered in QS in the form

IFA @VAR o MASK

where @VAR is the address of a DA in M, and MASK is a logical access mask.

When such an instruction is first entered in QS by the D-machine, it is done without

regard to its context in the input expression. The E-machine must, in order to

evaluate it, determine its context, which takes the form of an indexing environment

for an array reference. The indexing environment of an instruction in QS is

determined by how the segment containing the instruction was activated, which in

turn relates to the form of the original expression input to the D-machine.

(i) If the QP field of the top of LS is zero, then the environment is simple,

and array references within this segment are based directly on the

iteration stack. A simple environment arises in variables not affected by

explicit subscripting or which are not operands in expressions which cause

expansions to be made by the DM. For example, in the statement A+B+C.

all variables have simple environment.

- 116-



(it) If the QP field of LS is non-zero, then the environment is complex, and

array references in this segment are controlled by a pseudo-iteration

stack. In the statement A+-B-tC[ V; W] , A and B will have simple environ-

ments, but C will be complex as the reference to C is embedded in a

segment resulting from the expansion of the subscript operator. Note

that this concept is recursive. For example, we can also say that the

environment of the subexpression C[ V; W] is simple. This recursiveness

allows arbitrary levels of subscript nesting to be handled by the drag-

along scheme of the D-mach.ine.

The segment containing the IFA @C instruction is activated in the

EM by an SG instruction referring to a sequence of entries in QS of the

form:

XT XCODE(a, ml, cl)

XT XCODE(b, m.2, c2} •

Here, a and b are indices for C calculated from the subscripts V and W

by the expanded subscript code in QS. These quantities are, in turn,

computed from the current values in IS. ml and m.2 are the maximum

permissible values of a and b derived frompC, and cl and c2 are change

flags. Thus, these XT entries correspond to the CNT, MAX, and CH.

fields of the iteration stack, and are therefore called a pseudo-iteration

stack (pseudo-IS).

b. Initialization of Access Instructions

Each array accessing instruction must be bound to its indexing environment

when first executed. Tills process is described below for IFA instructions and

is analogous for IA and IJ.
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(i) Determine index sources

The encoded access mask in the AUX field of an instruction is used

to determine its indexing environment. For example, if the environment

is simple and the bit pattern in AUX is 0101 and the IS is four deep, then

the index sources are determined by (0,1,0,1)/0,1,2,3 which is the vector

1,3. Call this vector INX. Had the QP field of LS indicated a complex

indexing environment, then INX would have been based on the length of the

pseudO-IS rather than on the length of IS.

(ii) Set up iteration control block

An iteration control block (ICB) is established at the top of QS,

containing the coefficients of the storage mapping function from the DA

for the array (DEL) and the INX vector, calculated above. An ICB contains

one word for each coordinate of the array being accessed, as shown below.

The fields marked Q1 and Q2 are both encoded into the VALUE field of

QS using the function QCODE (see Appendix A). The contents of the Ith

ICB entry are:

field contents

if simple environment then NT else QT

INX[I]

o

DEL [I]

if simple environment then DEL [I] x (MAX field of IS

entry selected by LINK field) else 0

In addition, the last entry in an ICB is given opcode NLT or QLT, depending

OP

LINK

AUX

Q2

Ql

on its environment.
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(iii) Initialize QS entry

The Ql fields of the ICB just established are added to the ABASE

found in the array's descriptor array to produce the sum S. VBASE is

also fetched from the DA, and the DA is "erased" from QS by subtracting

1 from its reference count. The original IFA entry is then replaced by

FA QCODE(VBASE, S) IPTR o

where IPTR is a pointer to the beginning of the ICB for this array.

This completes the initialization of array references. In effect, what has

been done is to replace the context-independent reference created by the D-machine,

by information which binds the reference to its indexing environment, and which

contains all information necessary to access the array (in the ICB).

c. The Index Unit

The index unit (IU) is invoked by the E-machine every time it executes an

array-access instruction that has been initialized as above (i. e., FA, A, J).

Using the information in the instruction, its ICB,and IS or a pseudo-IS, the IU

accesses the appropriate array element and pushes it to VS. The IU functions

differently, depending on the indexing environment:

(i) Simple environment

In this case, we know ~ priori that the elements of the array will

be accessed in a simple order, determined by the way IS is cycled, and this

information can be used to minimize the re-computation of the storage

mapping function for each element of the array. The IU looks at the

iteration stack entries for this array (specified in the ICB), start.ing at

the right-most coordinate. If the IS entry has changed (noted by CH bit)

but not recycled, then the IS adds the DEL component from the ICB to S;

if there was a change and a recycle, the Ql field is subtracted from S.
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The new S value is stored back in the instruction. This process continues

until an IS entry with no changes is found, in which case none of the

higher IS entries contain changes either. If the iteration is going backwards,

as in a reduce, then addition and subtraction are interchanged.

(ii) Complex environment

In the complex case, there is no way of predicting in advance how the

indices will proceed and each change requires an explicit evaluation of

part of the mapping function. This is done similarly to the simple case,

by examining the pseudo-IS for each coordinate of the array. If a change

is recorded (in the X3 part of the XT entry) then the new index (Xl part) is

multiplied by DEL. This result is added to S and the Q1 field of the ICB is

subtracted from S with the new S stored back in QS. Finally, the product

just found is stored in the Q1 part of the IC B. This .field thus records

partial values of the mapping polynomial.

The behavior of the machine in array accessing, as described above, is

illustrated in Example 6.

2. Instruction Set

Instructions in the E-macnine can be considered in three groups:

a. Simple instructions

b. Control instructions

c. Micro-instructions, used primarily for maintaining pseudo-iteration stacks.

In addition, as seen in the previous section, the instructions buffer contains entries

for pseudo-iteration stacks (opcode XT) and iteration control blocks (NT, QT, NLT , QLT).

Table 3 summarizes the E-machine repertoire, and Appendix B contains a detailed

algorithmic description of the E-machine's behavior. The remainder of this section

discusses these instructions in both functional and "programming" terms.
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a. Simple instructions

The S instruction, Load Scalar, pushes its value to VS with tag ST. IFA

fetches an array element according to its operand DA and the indexing environment,

and pushes it to VS with tag ST; similarly, IJ pushes an element of a J-vector to

VS, while IA pushes an address of an array element (tag AT). These instructions

can be considered simply at the programming level, as just described, although

the mechanism which they invoke is much more complex, as was seen in the previous

section.

The instructions OP and GOP have as operands the names of arithmetic

functions in the EM (monadic or dyadic). Executing an OP or GOP invokes the

named function, which operates on the top of VS, deleting the operands and pushing

the result, with tag ST. (This process is illustrated in Example 1.) NIL is a

No-op, and does nothing. Recall from Section D and Appendix C that IRD and IRP

are generated by the D-machine to keep track of intermediate results in doing

drag-along. As they have no use in the E-machine, they are changed to NIL when

first executed.

b. Control instructions

The main control instructions are ~v and 00, whose operands are QS

segment descriptors. OOV pushes this descriptor to VS (with tag EGT) and is thus

analogous to LDSEG in the DM. EG activates the named segment by pushing an

entry to LS; in this instruction, the LINK field is significant, in that it can change

the indexing environment. JMP, JO, J1, JNO, and JN1 are simply relative jumps

within QS; RED is also a relative jump, but in addition, it pushes to VS an entry

with tag RT, to be used as an accumulator for a reduction. (RED is generated by

the DM only in conjunction with reductions. )
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MIT is used primarily to activate reduction segments. It takes ST entries

from the top of VS and uses them to push new iterations to IS. When the MIT

execution reaches an OOT entry on the top of VS, the referenced segment is activated

by pushing the descriptor information to LS. (See Appendix C for a description

of how reduction segments are deferred in QS.)

c. Micro-instructions

The set of micro-instructions are used by the E-machine to maintai.n pseudo­

iteration stacks in QS. They result from D-machine expansions of subscripting

and related operations. The micro-instructions are fully explained in Table 3-C,

and the DM expansions in Appendix C illustrate their use.

TABLE 3

E-Machine Instruction Set

Notes:

a. Each instruction is in the form

OP VALUE LINK AUX.

In the discussion, K is the address of the instruction in QS.

b. Instructions starting with the letter "Iff are l1uninitialized." That is, they

have not yet been bound to their indexing environments. They are changed to

similar instructions without the leading "1" when first executed.
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TABLE 3-A

E-Machine - Simple Instructions

Operation

S

IFA
FA

IA
A

IJ
J

OP
GOP

NIL

IRD
IRP

Name

Load SJalar

Load Array
Element

Load Array
Address

Load
J-Vector
Element

SJalar
Operator

No Operation

Result
Dimension

Definition

Push VALUE to VS, with tag sr.

IFA causes initialization, as described in

Section E.1. B., and the instruction becomes

FA. FA fetches an array element determined

by the indexing environment and pushes the

value to VS with tag sr.

IA causes initialization and the instruction

becomes A. A is similar to FA except that

the (encoded) address of the selected element

is pushed to VS with tag AT.

IJ is similar to IFA, and becomes J after

initialization. The VALUE field is an encoded

descriptor of a J-vector, the correct element

of which is computed and pushed to VS with

tag sr.

The VALUE field is the name of a scalar

arithmetic operator. This is invoked and

-takes its operands from the top of VS, leaving

a result there after deleting the operands.

No operation.

These instructions are used by the D-machine

and are left in QS when a segment is turned

over to the E-machine. Since they are of no

use to the EM, they are changed to NIL the

first time encountered.
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TABLE 3-B

E- Machine - Control Instructions

Operation

SGV

SG

Name

Load Segment
Descriptor

Activate
Segment

Definition

The VALUE field is a QS segment descriptor, with

a.ddresses relative to K. Make these addresses ab-

solute and push the descriptor to VS with tag SGT.

The VALUE field is as in SGV, and LINK, if non-

zero, points to a pseudo-iteration stack in QS.

Activate the segment by pushing an entry to LS,

using the LINK information to alter the QP field of

LS if necessary.

JMP Jump Potential jump destination is K+LINK, where LINK
JO Jump il 0
J1 Jump il 1 is considered as a signed number. JMP is uncondi-
JNO Jump il 0

nondestructive tional.
JN1 Jump ill

nondestructive The others are conditional on the value on top of

VS. JO and J1 also pop VS.

RED

MIT

Begin
Reduction

Mark and
Iterate

Push an element with tag RT to VS to act as a re-

duction accumulator, and jump to K+LINK.

Scalar values on top of VS are used to start a new

iteration nest in IS. The absolute value of the VS

value, less 1, is the MAX field in IS; the iteration

direction (DIR) is forward (0) ifVS is positive,

otherwise backward (1). The CNT field of IS is

initialized to 0 or MAX, depending on whether DIR

is 0 or 1. Moreover, the first entry in IS has its

MRK bit set to 1; all others are O. Each VS value

is popped. Finally, when an SJT entry is found it is

popped and the named segment is activated in LS.
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TABLE 3-C

E-Machine - Micro-Instructions

Operation Name Definition

ORG Load IORG

CY Cycle

LVE Leave

RPT Repeat

CAS Case

POP

DUP

VXC
LXI
LX2

SXl
SX2

IXL
XL

XS

XC

ISC
SC

Pop

Duplicate

Exchange

Load from
Pseudo-IS

Store in
Pseudo-IS

Index load

Index store

Index Change

Activate
Segment
Conditional

Pop top element of VS.

Fetch the VS entry, LINK elements from top of VS, and
push it to VS. (Does not disturb original copy.)

Push current value of IORG register to VS (tag Sf).

Step IS and repeat the current segment if IS hasn't
overflowed.

De-activate the current segment, erasing any associated
IS entries.

Repeat current segment from beginning. (Does not affect IS. )

If top of VS is not an integer scalar, then error else if the
value is N, then pop VS and execute the instruction at K+N
and resume execution at K+LINK.

Interchange top two entries on VS.

LINK fields are relative pointers to XT entries. Push Xl
(or X2) field of referenced entry to VS, tag ST.

Store top (ST) entry on VS in Xl (or X2) field of referenced
XT entry. Pop VS.

!XL is initialized to give XL, in which the LINK field points
to IS or a pseudo-IS element. XL gets the current iteration
value, adds IORG, and pushes the result to VS with tag ST.

SubtractIORGfrom Sf entry on top of VS; store in Xl field
of XT entry at K-LINK in QS; if the value just stored is
negative or greater than the X2 field of the same word,
signal an error. Set the X3 field (change bit) to 1, and
pop VS.

Set the change bit (X3 field) of the referenced XT entry to 1.

ISC is initialized to SC in same way as IXL. The VALDE
field of the instruction is a QS segment descriptor. If the
change bit in the referenced IS or pseudo-IS entry is 1,
then the segment is activated. Otherwise, the change bit
of the XT entry referenced by the followIng instruction is
set to 0, and this instruction is skipped.
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E is 0 1 1 0

100 1

o 0 0 0

o 0 0 0

EXAMPLE 6:

This example illustrates typical behavior of the E-machine. Consider the

APL statement

E[I;]+EP>\-1+(+/(1 2 2 QPTo.-PT[I;])*2)*O.5

and suppose it is encountered by the machine when the variables are as below:

EP is 0.0001

I is 2

PT is 0 0

o 1

1 0

1 1

The D-machine code for this statement is as follows:

- 126-



D-Machine Code for Statement in Example 6:

Addr Op Operand Comments

200 LDS 0.5

202 LDS 2

204 LDSEG SCODE(O, 0, 0) Empty subscript

206 LDNF I

208 LDNF PT

210 SUBS 2 Result is PTe I; J

212 LDNF PT

214 GDF SUB PTo. -PT[I; ]

216 LDCON 50 Constant vector 1,2 ,2

218 TRANS 1 2 2 ~PTo.-PT[I;J

219 PWR (1 2 2 ~PTo.-PT[I;J)*2

220 RED 1 ADD +/(1 2 2 ~PTo.-PT[I;J)*2

223 PWR (+/(1 2 2 ~PTo.-PT[I;J)*2)*O.5 (Call thisR )

224 LDS -1

226 ADD 1+R

227 MOD \-1+R

228 LDNF EP

230 GT EP>I-1+R

231 LDSEG SCODE(O, 0, 0) Empty subscript

233 LDNF I

235 LDN E

237 SUBS 2 E[I; J

239 ASGN .E[ I; J+-EP:> 1-1+R

240 ...
250 RC=1 LEN=4 Header for DA of constant 1,2,2

251 VB=O AB=54 Rest of DA .

252 RANK=1

253 R(1)=3 D(1)=1

254 RG=1 LEN=4 Header for value of constant 1,2,2

255 1

256 2 Value array

257 3
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Example 6-1 shows the instruction buffer containing the deferred code to

evaluate the sample statement. The transpose operation was evaluated in the D­

machine using beating, and its results are manifested in the access masks (AUX

field) in the instructions at locations 3 and 4.

Four temporary descriptor arrays were created by the DM as follows:

@T1 DA for PTe 2; ] • (Recall that I is 2 in this example.)

@T2 DA containing dimension of the result of the GOP operation,

in this case 4,2.

@T3 DA containing dimension of the reduction result, in this case 4.

@T4 DA for E[ 2 ; J

The deferred code is equivalent to the folloWing:

for J := 0 step 1 until 3 do

begin

REDUCE := 0;

for K := 1 step -1 until 0 do

REDUCE := REDUCE + (PT[J;K] -PT[2 ;KJ)*2;

E[2;J] := 0.OOOl>\-1+(REDUCE*O.5);

end

The remainder of the example shows the D-machine's progress through the code

in QS, and contains comments which explain "the machine's actions at each step.
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HAMPLE 6 -- E-MACHINE

TAG VALU~ UP VALUE lI"K AUK

~s:+-----+------------------+ QS: +-- ---+-------- ---------+--- -+------+
I fMT I FCUOE(-l ,O.f J I 00 I S o.~

--) I CI I RED .J 08
02 I S 2
.J) I IfA .HI 0001
04 I IfA .PI 0011
O~ I GUP )U8 02 0011, 06 I IRO .T2 0011
CT I OP P"R 05 0011

~ 08 I UP .00 01 0011
~ 09 I SliV SCOUEI SEG.A,II
CO 10 I S -2

I II I Mil <)

12 I IRO .n 0001
Il I OP P"R Il 0001
14 I S -I
15 I OP ADD 02 0001
16 I OP M(;D 0001
11 I S 0.0001
18 I OP GI 02 0001
19 I IA il4 0001
20 I OP ASGN 02 0001
21 I POP 0

--) I

+-----+-----+-----+---+---+---+---+----+ IS:

REGISTEM DUMP
HEwll • 1 lURG :II 0

LEN D/~ IS fN N.I ~P

NT. TAG CONIENTS
---+---+-----------------
f- FJ .f

'5T 2
PI 01 iPT
E OT iE
EP ST 0.0001

iE RC-l le,..s:05
+01 V6~V~ Atl=OOO
.02 JUNK.:a2
+C3 R(l).OO~ UIIJ:aO~

-0 .. R121-004 0111-01

AOCR CChI ~N1 S
-- -+----------------
.PT RC.Z LE:N-05

+01 v!S-VPT A!S~OOO

+02 ItANK-2
-OJ RI II-DO" Olil-Ol
+O~ 10\(2)=001 UCl):aOI

.12 RC-l lEN=u5
+01 V82&" A6"'000
+11 ~A,..«:aZ

-03 .111-004 0111-02
+04 M121-002 0121-01

_11 RC-l lE~-O~

+01 vBot 48=O~O

+02 RANK"'l
+03 MIII-C04011l-0l

.fl RCal lEN.O~

+01 V8.V~1 A8a 004
.02 RAN"-l
_03 MIII-0020111-01

.T~ KC~l L~N=04

+01 YIj-V[ AIj=Q08
+02 RANK-I
+03 RC 1I-C04 U( l)*01

LEN= 11RC=2
o
I
I
o
I
o
o
I
a
o
o
o
o
o
a
C

MEMORY DUMP

AOOR ceNtENTS
----+-------.--- --------
VPf MeaZ lE~.Oq

+OJ 0
+02 0
+J3 tj

+C~ I
+OS 1
+06 J
+07 1
+08 1

vE
_01
-02
-03
_04
-os
+C6
-0 T
_08
-09
+I~

-II
+Il
+13
_14
_15
+16

ISf1K ~ 00

C IR MAX DIM CH MIlK
+-----+-----+---+---+---+

DOD I 003 I 0 I I I I I

fl:SASI:: ,. 00200

o I I I 3 I 00 I
I I 0 I 3 I 00 I --)

Ih os

flotE:G ... 00(00

ORGREL

I 04e I COO I on I 0
I ODD I 000 I on I I
I

EffEctiVE AOOll • 0000

LS:

--)

IHE a-"ACHI"E' HAS JUST PASSED COM"UL TU TtlE E-HACtll~E. NO EUCUllON
HAS rAKE" PLACE YET. T~E FU"CTIO" MARK UN VS .AS PLACED lHERE 8Y
ACllVAIING FUNeIIU" F. THE COhTENIS OF THE HARK ARE ThE PREVIOUS
VALUES OF fREG I-II AND 10MG 101. AND THE NAME OF IHE FUNCTION IFI.

SEGMENT A .ITHlh OS EVALUAIES THE REDUCTION FOU"O IN THE SOURCE
CODE. ThE ITERATiON STACK IS SET uP 10 au IHE EWIVAUhI OF THE
"FOR J :- 0 STEP I UNTIL 3" I TERATI UN.

NOTE THAT '" THE NAMETAeLE. THE E"TRY fOR IHE IUE"r/FIER F I'O/NTS
10 if. 'HE HG Of THE ENTRV IDENllflES 11 AS A fU"CTIOfj NAME.
iF IS IHE AOO.ESS OF THE fUNCIION OESCRIPIOR FOM f ••HICh IS NOl 5HO.N.

EKAMPLE 6-2: STAlE OF "EMCRV 8EFORE EKECUIION

EKAMPLE &-1: STATE Of ThE REGISTERS 8EfORE EKECUI/ON



EXAMPLE 6 -- E-MACHINE EXAMPLE 6 -- E-MACHI~E
----------------------------------------------------------------------------------

_EGI STU DUMP
"EW I T * I 10RG * a FIEG • OOC.OO FUSE· 00200 ISMK • CC

REGISrER DUMP
~ENIT • 1 (ORG • , FREG • 00000 FUSE • 002~0 ISM" • 01

REL ORG LEN DIE IS FN NwT QP CTR MAX OIR CH MRK
LS; +-----+-----+-----+---+---+---to---+----+ IS: +-----+-----+---+---.---+

I 0..0 I 000 I 0 T5 I 0 a I I I ] I 00 I I 000 I CO] I a I I I I I
I 001 I 000 I 022 I I I I 0 I ] I 00 I --> I

--> I

REL ORG LEN DIE IS FN NwT DP
+-----+-----+-----+---+---+---+---+----+

0"0 (Ory 015 0 I I I I 00
I 012 I 000 I 022 I I I I I a I ] I 00 1
I OO~ I 002 I 001 I I I 1 I 0 I I I 00 I
I

EFFECTIVE ADDR • 0001 IN OS

LS'

-->

EFFECT IVE AODR • 0002 IN QS

IS.

-->

CTR MAX OIR CH MKK
+-----+ -----+--+--- .---+
I 000 I 00] I a I I I 1 I
I 001 I 001 I I I 1 I 1 I
I

IHE INSTRUCTION CLOAD SCALARI PUStlED ITS UPEUND CO.SI ro VS.

TAG VALUE
Y51 +-----+----------------+

I FMT I FCDDEI-I.~.FI ,
1ST I 0.5 I

--> I

OP VALUE LINK AUX
'IS; +-----+--------------- --- +--- -+------+

••• QS U"'CHANGEO •••
TAG VALUE

'Y S Z+----+-----------------.
, FMT I FCOD~I-I.O.F1 I
I ST I 0.5 I
I RT I a I

-->1

OP VALU~ 11 NI< AUX
~S: +-----+------------------ +----+-----+

••• ~s UNCHA"-GED*••

REL ORG LEN OlE IS FN NwT DP
lS: +-----+-----+-----+---+ ---+---+---+----+ IS:

I 0.0 I 000 I 015 I a a I I I ] I 00
I 011 I 003 I J22 I I I' a I ] I aD -->

--> I

CTK MAX DIR CH 14_K
+-----+-----+---+---+---+

Ouo I 00] I 0 1 1 I 1 I

I

....
e,.,
o
I

REGISTER OU14P
~Ewl' .. 1 IOkG a 0 f-~eG a OCOOO FBASE • 00200 ISMK • DO

HI I USED 1HE SCALAR -2 CN TOP OF VS TO START A N~w ITEkATlON.
THE LENGTH JF THE ITERATION IS 2. AND lHUS IHE 14AX FIELD IN THE ITERAIIU"
SIAC. IS ~fT 10 1. THE N~GATIVE SIGN Of THE VS E~TKY ~IGNIFIEO 1HAI THE
IlE'.TION IS 10 RUN HACKWAROS 10IR*II; ~NCE CTR STARTS AT I INSTEAD UF O.
THE NEXT VS ENTRY wAS A SEG14ENT Q~SCRIPTUR FOR SEGMENT A IN QS.
1411 USED THli TO ACTIVAIE THE SEGMENT. By PUSHlhG A hEw ~NTKY 10 LS.
'IDlE ItlU IN THE /'ofw LS ENIRY. THE NoT ~II IS I; IHIS wAS THE PREVIOUS
UlUE Of NEwIT. NEwll IS NUw 1 dECA\JSE A NEw IIERUIUN HAS BEEN STARIEO.

EUIIPLE 6-5. AfTER MIT

IN OS

REl OKG LE~ DIE IS FN NwT QP
LS' +----- .. --- -- +-- --- +---+ - --+---+---+-- --+

0"0 000 015 I 0 I I 00
I 012 I 000 I ell I 1 I I 0 , ] I DO I
I 001 I OC2 I DOl I I 1 I 0 I I , 00 I

--> I
-->

CTR "AX OIR Ctl HIlI<
(5: +-----+-----+---+---+---+

GOD I CO] I 0 I I I I I
001 I CO I I 1 I I I I I

ISMK • 04FdASE • 00200

I~ QS

FREG * 00000

EFFEC T IVE ADDR * COO]

REG I SI EK DUMP
Nt.. (J .a 1 I Uft" • 0

OP VALUE LINK AUX
"Is: +----.:--------------- --+----+------+

••• WS UNCHANGEO•••

EFHCTlV~ AOOR * "'all

lAG VALUE
vs: +-----+-----------------+

I FMT I FCOOEI-I.O,FI I
1ST I C.5 I
I R T I ~ I
I SGT I SWOEI SEG.A,l1 I
I 51 I -2 I

--> I

THE RED UPEUTCK P,",SHEG THE RT ~NTRY. TO d~ USEO AS AN ACCVIIULATOR
FO' THE RECOCTION. AND JU14PED 10 QSI9;1. THE SGV INSIRUCIIU" CAl 91
PUSHED ITS OPERAND (THE OESCRIPTOR FOR SEG14~NT AI TU VS.
THE S INSTRUCTION IAI 131 PUSHED THE -Z VALUE TO VS.
THESE TwO ENTRIES WiLL HE USED BY IHE lilT INSTRUCTIJN TO ACIIVATE
THe itEDUCT (Otol SEGI1ENT.

EIAMPLE b-~: AFTER ttED, SGY. AND S

lAG VALUE
Ys: +-----+--------- --------- ..

I F14T 'FCOO~C-I.O.FI ,
1ST I O. ~ ,
I R T I 0 I
I ST I 7 ,

-->1

OP VAlUE Llfrrfll AUX
"'5:+-----.------------------·----.------.

• •• QS UNCHANGEO•••

THE FIRST INSTROCT!ON CF THE hEwL.-ACTlVUED SEGMENT ISEG.AI IS S.
AT QSIZ;I. THIS INSTRUCTION PUSHED ITS UPERAND 121 TO VS.

EU"PLE 6-6' AHEM S CU QSCZ;I I



EIA~~LE b -- E-"ALHl~E

----~-----------------------------------------------------------------------------.

EIAMPLE b -- E-MACHI~E

REG I STER DUMP
~EWIT • I 10RG • a fREG • 00000 feASE • OOlCC IS"''' • 01

REG ISlER DU"P
HE".f .. I IORG" 0 fREG • 00000 nA>E • 00200

REL ORG LE~ DIE IS fN ~aT QP
lS: +-----+-----+-----+---+--+---+---+----+ IS;

040 000 01S loa I \ I ] I cal
I 012 I 000 I au I I I I a I ] , 00 I
1 001 I 002 lOCI 1 \ \ I 0 I \ 1 00 I -->

--) I

CTR "AI DIR CH Ml\K
+-----+-----+---+---+---+

000 I CO] 1 0 I \ I \ I
00\ I 00\ , I I I I 1 I

REL DRG LEN OlE IS f~ NaT QP
lSI +-----+-----+----+---+---+---+---+----+ lSI

1 J40 1 000 01~ a 0 I ) 00
I 012 I 000 I OU I I I' 0 I J I 00 I
1 002 I 002 lOOT I I I I a I 1 I 00 I --)

--> 1

CTR "AI OIR CH ""K
+-----+-----+--..---+---+

000 I 00] 1 0 1 I 1 I I
001 I 001 I I , 1 I I I

EFfECTIVE ADDR • 000) I~ QS EFfECTIVE ADI)ll • ce04 IN QS

TAC VALUE OP VALUE L1"K AUI
VSI +----- ..-------- - -------- -. 05.+-----+------------------+----+------+

I FMT 1 fCOOEI-I.O.F) I 00 S I a.s
1 ST I 0.5 1 01 RED 1 0 01
I RT I 0 I 02 S I 2 A_
I Sf I 2 I 0] f. I QCOOElVPI.41 1.

-->1 04 If A I ~PT 0011
os GOP 1 SUB 02 0011
06 IRO I ~T2 0011
aT QP I Poll os 0011

I
08 OP I ADD aT 0011 _A
a. SCV I ~CODE I SEC.A.II

~ 10 S ) -1

CA:l II "IT I a
~ 11 IRO I ~Tl 0001

J] OP I PWR J] 0001
I 14 S I -I

IS uP I ADD C1 JOOI
16 OP I 14U0 0001
11 S I ~.aool

18 OP I CT 01 000\
19 Il I ..14 0001
10 OP I lSC~ 01 0001
11 PUP ) C
21 ~LT 1 OCooEII,I' 01

--)

lAC VALUE
\5.+-----+------------------+

1 FMT I FCOOEI-I.O.FI I
I ST I 0.5 I
I RT I a I
I ST I 2 I
I ST I 0 I

--)1

UP ~ALUE LINK AUI
QSI+----+---------- ...-----+----+------+
or I S I J.S
01 I RED I 0 08
02 I S I 2
0] I F' I acoofIVn.u 19
04 I IfA I ~Pf 0011
os I GOP 1 Su8 01 0011
0" I IRO I ~T1 0011
01 I 0' I PoR 05 0011
08 I 0' I ADO 01 0011
a9 I SCV I SCOOEISEG.A.IJ
10 I S I -1
II "IT 1 0
11 IRO I ~I] 0001
I] 0' I PitR U 0001
14 S I -1
IS OP I lOO 02 0001
16 0' I 0lIl0 0001
11 S I o.oaOI
18 OP I CI 01 0001
I. Il I ~T4 0001
20 OP I lSCN 01 0001
11 PDP ) 0
22 NLT I OCIlDEII. IJ 01

--)

LOCAlIo~ ] If. QS. WHICH 'REVIOUSLY Co"UINE'" A~ IfA INsr~ucllaN. HAS
BEEN 1~1T"L1lEO TO fA. IHE VALUE FIELD NOW CONUI~S VPT. THE BAS<
AOORESS MEFEIIENtEO IN THE OA AI iTt. AND THE ABASE I'~I HOM THU OA.
I~ ADDITION. THE ll~K FIELD aF OSI]II IS ~u. A RELAIIVE 'OINTEM TO
QS12Z;I. WHICH IS THE ITE..TlON CONfRUl BLOCK fOk THIS AMRlY. THE ~ECOM

fLfME~T UF THE \C~ ENUV II.E. THE 02 fl£LOI IS THE OEL fOM THIS A..UY.
T'Kf~ FRUM iTI. ISEE E<AMPLE 6-1 FOR CONlfNIS OF III. THE FIRST ELE"ENT
101 FIELDI IS DEL TI"es THE MAX VALUE I~ THE TOP E~IRY ON IS.

LS HAS ~OT CHANGEO YET BECAUSE THE ~hLY-CREATEO FA INSTRUCTlO~ HAS
lIeT VET ~EtN EXECUTED. THE' NIT "LIlAT ION PROCEH USU EUSEO THE DA
STOOTING AT ~TI. WHICH IS NO LONGEM ROFfRENCED A~YWHERE I~ THE MACHINE.

EIA"'LE .-1. AfTER IFA

THE AOaRESS I~ (lSIJ:, HAS BEE" UPDATED tiY IHE IIClEl U~11 A~ THE VAlliE
II MEFERS TO HAS BEEN P~SHEO T~ VS. THUS IHE VALUE 101 U~ IU' OF VS
U THIS POINT IS PTlZ;IJ. IREeALL THAT lH1: EFFECTIVE ADDRESS Of' A~

U ..Y ELE"ENT REHRENCEC IN A~ FA I~STRUCTION IS THE SU" OF I1S COOEIJ
PAM IS. PLUS I I TO CO~f~SATE Fllll THE .....Y HEAIJER weRDI I.

EIA"PLE 6-8: AFTER FA



EXAIIPlE 4 -- E-IIACHINE

REGISTER OUIIP
~EWIT • I 10RG • 0 FREG • ooeoo FoASE • DOleD ISAA • 01

HANPLE 4 -- E-NACHINE

REG I S TER OU"P
NfwlT • I 10RG • 0 FREG • 00000 FUSE· 00200 ISN•• 01

REl ORG lEN DIE IS FN NWT OP
lSl .-----+-----+-----+---+--+---+---+----+ lSI

040 ODD 0 T5 0 0 I I 3 00
I 012 I 000 I 022 1 I I I 0 I 3 I 00 I
1 003 I 002 I 001 I I I I 0 I I I 00 1 -->

--> 1

CU IIAX OIR CH "'K
+-----+-----.---+---+---+

000 I 003 1 0 1 I I I I
001 I 001 I I I I I I I

Rfl ORG LEN DIE IS FN NoT ~P

lSI +-----+-----+-----+---.--+---+---.----+ I S I
040 000 015 0 I 00

I 012 I 000 I 022 I I I 1 0 I 3 1 00 I
I 005 I 002 I 001 I I I I 0 I I 1 00 I -->

--> I

"R NAX OIR CH HRK
+----+----+--+---+--+

000 1 COl I 0 I I I I I
001 1 001 I I 1 I I I I

EFFE" IVE AOOR • 0005 IN OS EFFECTIYf AOOR • 0001 IN ~S

rA" VAlUE OP VAlUE LINK AUX rAG VAlUE OP VAluE LINK AUX
YSI+-----+------------------+ Q$l+-----+-----------------+---+------+ "50:+-----+-----------------+ QS1+-----+------------------+----+------+

1 FNT 1 KOOEI-I,O,F' I 00 S 0.5 1 FliT 1 FCUOH-I,O,F I I 00 1 S I 0.5 I
I ST I 0.5 I 01 REO a 01 1 Sf I 0.5 I 01 I RED I 0 OB
IU I 0 I 02 S 2 A- I III I 0 I 02 I S I 2 A-

I I SI I 2 I 03 FA \leOOE I VPT, 51 19 1 ST I 2 I 03 I fA QCODE! VPI, 5 I 19
I Sf 1 a I 04 FA QCUOE 1VPl ,II 19 1 S T 1 a I 04 I FA QCOOE I VPT ,II IV

...... I ST I 0 I 05 GOP SUB 02 0011 --)1 05 I lOOP SUB 02 0011
(.I:l -->1 04 IRO .n 0011 04 I Nil 0
I.'V 01 OP PWR 05 0011 01 I OP PWlI 05 0011

01 OP ADO 01 0011 _A 01 I UP AOO 01 0011 _4
I 09 SGV stouE I StG .A,II 09 I SGV SCUOEIStG.A,1I

10 S -2 10 I S -2
II NIT 0 11 I IIIl 0
12 1110 .13 0001 12 I IRO .13 0001
13 OP PWR U 0001 13 I OP PWlI 13 0001
14 S -I 14 I S -I
IS OP AUO 02 0001 IS I OP ADD 02 0001
14 DP NOD 0001 14 I OP NOD 0001
IT S 0.0001 IT I S 0.0001
II OP GT 02 0001 II I OP GT 02 0001 I
19 U il14 0001 19 1 .. .14 0001 I
20 OP ASliN 02 0001 20 I OP ASliN 02 0001 I
21 POP 0 21 1 PDP a I
12 NlI OCooElI,1I 01 12 I NLT QCoot 11,11 01 I
23 "I IlCDOEI4,2' 2l 1 NT OC:OOH4,21 I
2' NLT oc:outU.l, 01 2' 1 NLT olCDOE I I,ll 01 I

--) --) I

THt IFA AI OSI4" HAS BEEN HRNGEll 10 FA, AS IN UANPLE 6-1, AND THt
FA HAS lEEN EXECUTED, AS IN 6-8. THE lOP TNO EltNENIS ON VS ARE NOw
P112111 AND PlIOll,. ALSO NOIE THE TWO NEo tNIRIES 0" Tt* TOP Of \is,
~HICH ARt THE ICB FOA THE FA AT llse4; ••

EXANPLE 4-9. AFTER OSI~II IINITIAlIUJlON AND EXECUTlUN,

THE SUB HAS BEEN DONE. liN THE E-NACHINE, GOP IS TREATED SANk AS OP.I
THE lAD OPUAIION DECREASES THE RHto Uf ITS OPElIAIIO BY I AND REPLACES
ITSElF BY NIL, THE NO-OP, BECAUSE IRa IS USED BV THE O-NRCHINE BUT
HOT BY THE E-'UCHINE.

E.ANPlE 6-10' AFTER SUB,IRO



EaAHPLE 6 -- E-HAC~INE

------------------------------------------------------------------------------------
EXAIlPLE 6 -- E-IlA'H I NE

------------------------------------------------------------------------------------
~EGISTER DUIlP
~E~U • I IORG • 0 fREG • 00000 fUSE • 00200 ISM· 01

REGISTER DU""
NEWIT • 0 lORe; • 0 fREe; • 00000 F"ASE • 00200 ISIlIt • 01

REL ORG LEN DIE IS fN N~T ijP
L 51 +-----+-----+----+---+--+---+---+----+ 1$1

040 000 075 1 0 0 I 00 I
1 012 I COO I Oll I I I I 0 I 3 1 CO I
I 006 I 002 1 00 Til 1 I 0 1 I I 00 I -->

--> I

CTR "" Dill CH Mit.-----.-----+--t---+---+
000 I 00) I 0 I 1 I I I
OC1 I COL I 1 I 1 I I I

REL URG LEN DIE IS fN Il ..T OP
lSI: +-----+-----+----+---.--+---+---+----+ 15a

I 040 I 000 I 015 I 0 I 0 I 1 I ) I 00
1 012 I 000 I 022 I I I I I 0 I ) I 00 I
I 000 I 002 I 001 I 1 I I I 0 I I I 00 I -->

--) I

'TR "" DIR CH Mit
+----+-----+--+--+--+
I 000 I 00) I 0 I 1 I 1 I
I DOD I 001 I I I I I I I
I

EffEC T1 VE AOOR • 0008 IN OS EffEC T I VE ADDR • 0002 IN ~S

PWR IAI oSIII" WAS APPLI~O 10 T~E lOP 2 ELEIlENIS ON THE VALUE SIACIt,
o AND 2: I~ESE OPERANDS wERE OEiEIEO AHD THE RESULT Of I~E OPERAJI.JN
HAS BEEN PUSHED 10 VS. IJ. 2 • d'

IN T~E USf fRAIlE. THE SEGMEN' wAS C:U"PIEfED. SIIotE ITS REUIIVE
ADDRESS WAS THE SAllE AS I1S LENGTH. HlIWEVER. SiNCE 'HE IS BIT
WAS SET fOR THAI SEGotENI. 'HE IS .AS S'EPPED BUT DIDN'T OVERfLOW.
'HUS, LS WAS RE-INITIALllED TO THE 8EGINNINe; Uf THE SEGMENT. 10
8E REPUTED WITH THE NEw IS VALUES. NOTE THAI ~EwI1 N~ IS O.
AI IHIS POIN', THE EQUIVALENT Of THE ALGOlIC ·REDUCE ,. REDOCE + ••••
HAS BEEN DONE fOR J.O A~D 1t.1.

I

.....
C.:l
C.:l

I

TAG VALUE
V5: +----.----------------.

I fliT I fCDDEI-I.O.fl I
I SI I 0.5 I
I RT I 0 I
I SI I 0 I

--)1

OP VALUE LI Nit AUa

QS.t-----.------------------.----.------+
••• QS U~HA ....EO•••

'AG VALUE
VS I: +-----+------------------+

I fll' I fCDOEI-l,O.fl I
I ST 1 O.~ I
I S, I 0 I

--)1

UP VALUE L1NIt AUX

QS:+-----+------------------+----+------+
••• "5 ","CHANGEO•••

REI DRG LEN OlE IS fN ... , ijP
LS: +----+-----+-----+---+--+---+---.----+

040 I 000 I H5 I 0 I a I I I ) I 00 I
lOll I 000 I 022 , I 1 I I 0 1 ) 1 ~O I
I 00 I I 002 I 001 I I I 1 I 0 I I I 00 I

--) I

CIR HAlt OIR CH IlRIt

IS: +-----.-----.---+---+---t
I 000 , 003 I 0 I I I I I
I DOL I 001 I I I I I I I

--) I

~EGISTER OUIlP
~E~II • I 10~G - 0

Ef fEC T1 VE AUOR - C009

f~EG • 00000

IN OS

fUSE • 0020e ISMIt • 01
THE SEC:C:ND PASS THllOUGH THE REDUt' ION SEGIlENT PROCEED~ SIIlILARLY
IG THE fiRST. EXCEPT THAT NO fURIHER INI1IAL ItAlIUNS NEED 8E DOllE.
A' IHE END Of 'HIS I TEUIIUN. RU-LEN IN LS AND. AS BEfORE. THE
IJEUIIDN STACIt WiLL BE STEPPED. HOWEVER. IHIS TIllE If OVERfIO~S.

SU BUIH LS AND IS ARE POPPED. REfURNIl'Ui IHE IlACHINE '0 lHE
"AIN SEGIlENT. ISEE NEXf flGUREI

EXAIlPLE 6-13' BEGINNING Uf SEGIlENT wII~ SIEPPEO IS

JAG VALUE

vs:+-----+------------------+
I fliT I fCOOEI-I,O.fl I
I ST I 0.5 1
I ST I 0 I

--)1

OP VALUE L1NIt Aua

QS:t-----t------------------.----t------+
••• gS UNCHANGEO•••

THE ADO OPE~ATION. SEEING THAT ITS SECOND OPERANU HAS lAG RT,
GIVES AS ITS RESULI IHE flRSI UPE~AND, WII~ lAG ST. THIS IS
ACCORDING TO IHE DEf I~I I ION Of REOut T ION.

EXAHPLE 6-12' AfTER ADD



EX.MPLE 6 -- E-M.tHINE ExAMPLE 6 -- E-MACHINE

aEG I STEa DUMP
NhlT - I 10aG - 0 FAEG - 00000 F8A SE - 00200 ISMII - 00

REG I STER DUMP
NE~IT - I IORG - 0 FAEG - 00000 FIASE _ 00200 ISM. 00

aEL OllG LEN DIE IS fN N~T liP
LSI +-----+-----+-----+---+--+---+---+----+

I 0.0 I 000 I 015 I 0 I 0 I I I 3 I 00 I
I 012 I 000 I 022 I I I I I 0 I 3 I 00 I

--> I

tTR M'X OIR tH MIl"
IS: +-----+-----+---.---+---+

I 000 I 003 I 0 I I I I 1
-> I

REL ORG LEN DIE IS fN N~T liP
lSI +-----+-----+-----.---+---+---.---+----+

I 0.0 I 000 lOTS I 0 I 0 I I I ) t co I
I 020 I 000 I 022 I I I I I 0 I 3 I 00 I

--> I

t TR MAl OIl. tH Mil
IS: +-----+-----+---+---+---.

I 000 I DO) I 0 1 I I I I
--> I

EFfEtHVE .001. - 0012 IN liS EFFEtTiVE .OOR - 0020 IN os

THIS STAGE CORaESPONDS TO THE tOMPLEtION lW THE -FDa ..- LOOP WITH J-O.

REDUCE SE~Nr IS DUNE. Irs RESULT III IS ON rop Of VS.
NOTE TH'T NENIT N'S aESTOREO TO I NHEN LS w.s POPPED.

OP VAlOE LIN" .UX
gS I +-----+--------------- ---....---.-----.
00 I S 0.5 I I I
01 I RED 0 I 01 I I
02 I S 2 I I I ._
03 I f. lltOOElVPT,.1 I 19 I I
O. I F' lItOOEI VPT .01 I 19 I I
05 I GOP SUI I 02 I 0011 1
06 I NIL I) I 1 I
or I OP PWR I 05 I 0011 I
01 OP '00 I OT I 0011 I _A
09 SOV StooEl SEG. ',11 I I I
10 S -2 I I I
II MIT 0 I I I
12 NIL 0 I I 1
13 OP PMR I 13 0001 I
I. S -I I I
15 OP ADD I 02 0001 1
16 OP ....O I 0001 1
IT S 0.0001 1 I
II OP GT I 02 0001 1
19. lICOOfIVE,lI' I 06 I
20 OP ASGN I 02 0001 I
21 POP 0 I I
22 NLT otOl>EII,l1 I 01 1
2) NT lIt00E16,21 1 1
2. NLT IltWHI'" I 01 1
25 NLT Q<;OOE 13 ,II I I

-->

OSII2101 THROUGH lISll91 I H'VE IEEN EXECUTED. NOTE THAT THE U AT OS1l9l1
w.s TaANSfORMEO TO • 'NO TH.T ITS aESULT IS THE tOOEO AooaESS wiTH
TAG 'Af- ON TOP Of vs.

TAG V'LUE
V51+-----+------------------+

1 fMT 1 FtllOE I-I,O,F 1 I
I ST I I I
I AT I 1lt00EIVE,II I

-->1

0001
0001

0001
0001

0001
0001
0001

u

01

02

02

01

02

OP V'LUE LI Nil 'UX
~s;.-----.------------------+----.------.
00 S 1 0.5 I I
01 REO 1 0 01 I I
02 S 1 2 I 1 ._
03 F' 1 Q<;OOElVPT,.1 19 I I
O. f' I IltOOEIVPT,Ol 19 I I
liS GOP I SUI 02 I 0011 I
06 NIL I 0 I I
OT OP I P.. 05·1 0011 I
01 OP I ADD OT I 0011 I _A
09 SOV I SCOOEISEG •• ,l1 I I
10 S I -2 I
11 MIT I 0
12 IRO I ..73
U OP 1 PWR
I. S 1-1
15 OP I ADD
16 OP I MOD
IT S I 0.0001
II OP \ GT
19 U I ..14
20 OP I ASGH
21 ,OP I 0
22 NLT I lICOOE 11,11
23 NT I QtOOE16,21
2. NLT I lICUDEll,ll

-->

TAG VALUE
~Sl +-----+-----------------+

I FMT I ftODEI-I,O,FI I
I ST I D,S I
I Sf 'I I

->1

exAMPLE 6-1.' AfTEa RETURII FROM .EOUCHON EXAMPLE 6-15' IEFOIlE ASGH



,---~~~~~~~-~_::_~:~~~~~~~-------------------------------------------------- ------~~~~~:~-~_::..!:~~~~~~~------------------------------------------------
REG IS TER DUMP
hEwIT z I 10RG - 0 FREG - 00000 F~ASE z 00200 IS"K - 00

REGISTER oU"P
~EWIT .. 0 JURG .. 0 FREG z 00000 F~ASE - 00200 ISM" - 00

RfL ORG LEN DIE IS FN NWT QP

.-----+-----.-~---+---.---.---.---.----+LS:

--)

I 0.0 I 000 I 015 I 0
I 022 I 000 I 022 I I
I

o I I I 3 I 00 I
I I 0 I 3 I 00 I

IS:

--)

C TIL MAX DIR CH 1lIl"
+-----+-----+---+---+---+

000 I 003 I 0 I I I I I

RU ORG LEN 01 E IS Fh NwT QP
l S: +-----+-----+-----+---+ ---+---+---+----+

I 0.0 I 000 I 015 I 0 0 I I I 3 I 00 I
I 02Z I 000 I D22 I I I I D I 3 I CO I

--) I

IS:

--)

CTR MAX OIK CH IIIlK
+-----+-----+---+---+---+
I 003 I 003 I 0 I I I I I

EFfEC T IVE AUOR - 0022 IN QS EFF~C TlVE AOOR - 0022 Ih QS

AHER ASGN AND VPOP. THE VALUE CN VS HA~ BEEN SlUREO AT VE+I+& IN NENUH.
SINCE THE SEG"ENT HAS BEEN CUMPLETEU. THt IS WILL BE STEPPED AND
lS WiLL BE RESET TO THE BEGINNING SINCE THERE IS NO OVERFLOW.
THIS STAGE CORRESPONDS TO ONE PASS THROUGH THE "FOR J" RANGE, wITH J-O.

EU"PLE b-Ib: AT ENU Of "AIN SEGMEhT. fiRST TIME THROUGH

OP VALUE LIN" AUX
"S: +----+-----------------+----+------+

••• gS UNCHANGEO •••

fAG VALUE

~S:.-----+------------------+
I FliT I FCOOEI-I.O,FI I

--) I

OP VALUE II N" AUX

ijS:.-----.------------------.----.---~-.
00 I SID. 5 I I
01 I REO I 0 I 08 I
OZ I S I 2 I I A_
OJ I fA I gCOOEIVpr •• , I 19 I
04 FA I QCOOEIVPT.bl I 19 I
05 GOP 1 SUB I 02 0011 I
Db NIL I 0 I I
01 OP I P.R I O~ 0011 I
08 UP I AOO I 01 a011 I _
09 SGV J SCUUEISEG.A.ll I ,
10 S I -2 I I
11 MIT I 0 I I
IZ Nil I 0 I I
13 OP I PwK I 13 aool I
I. S I -I I I
I ~ OP I ADD I 02 000 I I
Ib UP I MOO I JOO I I
11 S I 0.0001 I I
18 OP I GT I 02 0001 I
19 A I QCOOEIVE,III I Db I
20 OP I ASGN I 02 0001 I
21 POP I D I I
22 NLT I "";UOEII,I' I 01 I
23 NT I gCOUElb.21 I I
2. NLf I ;jC UOE II ,I I I 0 I I
2 ~ Nl T I gCUDE 1J.1I I I

--)

fAG VALUE

~S:+-----+------------------+
I FMT I FcnDEI-I,O.FI I

--) I

THE MAIN SEGME"'T "'S HPEAlEO 3 MORE TIllES IN rHE HIlE kAY A5 SHOo/N
FUR THE FIRSr PASS, AI THIS PGINT. 3 MORE VALUES HAVE BEEN STOKED
AND THE IS ENTRV CORRESPONDING TO THIS SEullEhT HAS BEEN EXHAUsrEO.
THIS POINT CORRESPGNDS TO THE COMPLETIUN UF "FOi J",

LEN-11RC-I
o
I
I
o
I
o
o
I
I
o
o
o
o
o
o
o

AODR CCNTENTS

VE
+01
+02
+03
+0.
+05
+Ob
+01
+08
+09
+10
+11
+12
+13...
+15
+Ib

AOOR CDNTEM S
----+------------------
'VPT A.C-l LEN-OCJ

+01 0
+02 0
.Cl ")
.-0<\ 1
+05 I
.C6 0
+01 1
.08 1

ME"ORV DUMP

AD DR CONTENTS
----+-----------------
i1PT RC-I LENz05

+01 Y6-YPT 48-0CO
+OZ RANK-Z
+03 RIlI-OC .. 01 U.a02
+0. RI21-0020121-01

iE RCzl LEN-OS
+01 VB-VI: AS-OOO
+02 RAN"-2
+03 Rilt-OO" 011'-04
+0. RI21=00. 0121-01

ENTRIES FOR i1TI ••••• i1T. NOw HAVE REF COS OF O. ANU HAVE 8EEh AUOEO TO THE
L1NKEO AVAILABILITY LIST. ALTHOUGH THIS IS NI'T SHOWN HERE.
THE ENTRY IN THE VALUE AR"V fOIl E. AT VE+9 IN ME"ORV. HAS BEEN
CHANGED TO I BV THE ASGN OPERATION, THIS ENfRV IS EI210'.

EUMPLE b-l1: STUE OF M AfTER FIRST TIME THROU(,H THE SEGMENT

EXAMPLE b-18: REGI S lERS AFT ER NEXT THRH PASSES THROUliH SEGMENT



~XAMPLE 6 -- E-MACHI~E

REGISTER DUMP
~EwIT = 3 IORG : 0 FREG = OOCOO FaASE " 00200

REL ORG LEN DIE I) FN NhT UP
LS: +-----+-----+-----+---+---+---+---+----+

I 040 1 COO I 015 leo I 1 I 3 I 00 I
--> I

EFFtCTIVE ADDR - 0240 IN M

TAb VALUE
vS:+-----+------------------+

1 FMT I FCODEI-l,O,f. I
-->1

OP VALUE LINK AUX
QS:+-----+------------------+----+------+

--> I

THE LAST fiGURE WAS THE END OF THE SEGMENT. THUS, IS ~AS

STEPPED. SINCE IT OVERFLUWED, IS AND LS ~ERE POPPED.
DE-ACTIVATING THAT SEGMENT CHANGED CONTROL FROM THE E- TO THE D-MACHINE
AND THEREfORE UI "AS RESET TO THE BEGINNIN~ Of THE SEGME~T

JlJST COMPLETED.

EXAMPLE 6-19: REGISTERS AT CCMPLETICN OF E-MACHINE EVALUATION.

AODR CONTENTS
----+------------------

I

.....
t.:l
0)

I

MEMORY DUMP

ADOR CONTENTS
----+----~-------------
iPT RC-l LEN-05

+01 VB=VPT AB=OOO
+02 RANK=2
+03 Rll'-004011'-02
+04 R121=002 0121-01

.E RC-l LEN-05
+01 VR-VE A8=000
+02 RANK"Z
+03 RIII-004D(11-04
+04 R12'=004 0121-01

ADDR CONTENTS
----+------------------VPT RC=1 LEN-09

+01 0
+02 0
+()3 0
+04 I
+05 1
+06 0
+01 1
+C 8 1

VE
+01
+02
+03
+04
+05
+06
+07
+08
+09
+10
+11
+12
+13
+14
+15
+16

RC-l
o
1
1
o
1
o
o
1
1
o
o
1
o
o
c
o

LEN-II

NOTICE THAT THE VALUES AT VE+9,10,11,12 HAVE CHANGED FROM EXAMPLE 6-2.
THESE CORRESPOND TO EI2;', THE ENTIRE ROW OF E TO BE CALCULATED.

EXAMPLE 6-20: MEMORY AT COMPLETION OF E-MACHINE EVALUATION



APPENDIX A

SUMMARY OF REGISTERS, ENCODINGS AND TAGS

This appendix summarizes the uses of all machine registers and details the

fields in the various stacks. In addition, the several encodings used as parametric

functions in the design description are outlined. Because of the parametric nature

of the design, not much will be said about field sizes except to indicate the range

of the contents of a particular field or register. We assume that in any particular

incarnation of such a machine, all the fields are "big enough" to conta.in their

contents. In the deta.iled algorithms of Appendix B, the registers are construed

as arrays of scalars with some kind of encoding imposed upon the contents, if

necessary. While not completely rigorous, this approach serves to show how the

machine works without having to explicitly encode and decode all references to

regi sters at each step.

A. Registers

I. LS (Location Counter Stack)

Yield
Name

REL

ORG

LEN

DIE

IS

Column
Index

o

1

2

3

4

Contents

Relative location in segment. Generally points to the next
instruction to be fetched.

Segment origin. For D-machine segments, this is relative to
FBASE. In the E--machine, the effective address is +/LS[LI -1;0,1 J
and in the D-machine it is FBASE++/LS[LI-1;O,1J.

Length of segment. For D-machine segments, this is in words,
and for the E-machine, this is the number of QS entries for the
segment.

Segment mode. This field is 0 for the D-machine and 1 for E­
machine segments.

Iteration mark. Has value 1 if this segment is associated with
an iteration in IS; otherwise it is O.
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FN 5 Function mark. Has value 1 (else 0) if this is the main segment
of an active function.

NWT 6 NEWIT value, stacked when a new iteration is activated.

7 QS pointer. Used by index unit for expression indexed from
QS rather than IS. (See Section E.)

2. IS (Iteration Control Stack)

QP

Field
Name

Column
Index Contents

CTR o Current iteration count. This value is always non-negative and
varies between 0 and the value in the MAX field, in the direction
indicated by the DIR field.

MAX 1 Maximum iteration count.

DIH 2 Direction of count. (0 for positive, 1 for negative.) If positive,
then CTR is initialized to O;otherwise it is initialized to MAX.

CH 3 Change. Used by STEPIS routine in main control cycle to mark
all IS entries which have changed since the last cycle.

MRK 4 Mark. Has value 1 for the outermost iteration of each nest.
Otherwise, it is O. (See ISMK register, below.)

3. VS (Value Stack)

Field
Name

Column
Index Contents

TAG o Tag field. Identifies kind of entry in value field.

VALUE 1 Value.

4. QS (Instruction Buffer)

Field
Name

Column
Index Contents

OP o E-machine operation code. The QS contains instructions deferred
by the D-machine for later execution by the E-machine. Occas­
sionally this field will contain a tag, such as XT, for an entry
which is a temporary value for the EM rather than an executable
instruction.

VALUE 1 Value. Contains the value in immediate instructions and the
operand for others.
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LINK

AUX

2

3

Link. This is a signed integer used to reference other instructions
and entries in QS. It is taken relative to the QS index of the entry
in which it is found. By keeping links and segment origins relative
in QS, all deferred code is relocatable.

Access mask. Contains an encoding (MCODE) of the iteration
indices to use in accessing an array expression.

5. NT (Nametable)

Field
Name

INX

TAG

Column
Index

o

1

Contents

Symbol index. Since NT is content-addressable, the value of
INX must be carried with each entry. These indices (or names)
may be assigned in any arbitrary way. There is no built-in
restriction on their use.

Tag. Same as tag field in VS.

CONTENTS 2

6. M(Memory)

Value. Same as in VS.

In the APL machine, M is considered to be a vector of length MLENGTH of words

which can be addressed between BOTM and TOPM. The particular encodings used

in M are not specified except as necessary, e.g., in instructions such as LDSEG,

the M-entry containing the operand is in SCODE encoding. Otherwise, each scalar

value is assumed to take up one machine word, as is each instruction. This is

clearly inefficient in space utilization, and it would be expected that any real

implementation would specify more reasonable and detailed encodings for various

kinds of values. Nothing in the machine design is based on the word as the primary

unit of memory in the machi.ne, so there should be no problem in making such

modifications.
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7. Other Scalar-Valued Registers

Register
Name

LI

II

VI

QI

NI

BOTP
TOPP

ARRAVAIL
DAAVAIL

FREG

IORG

FBASE

NEWlT

ISMK

Contents

LS index. (All stack indices point to the next available entry
in the stack.)

IS index.

VS index.

QS index.

NT index.

POOL pointers for M allocation.

Pointers to beginning of aVailability chains for M allocation.

VS index of innermost active function mark. When a function
is activated, the previous values of FREG and IORG are stacked
in VS in the function mark, and restored on return.

Index origin for innermost active function.

Function origin in M. Points to beginning of the segment
containing the innermost active function. Upon exit from a
function, FBASE is restored to point to the correct base from
information in the stacked function mark.

Iteration tag. Set to 1 at the beginning of a new nest of iterations,
and used by the index unit to keep indexing straight. NEWIT is
stacked in LS and restored from there each time a new iteration
nest is activated.

IS index of the marked entry closest to the top of the iteration
stack. Used by ID.

B. Encodings

The APL machine makes use of a few specific encoding functions. These are

used for encodings which could be expected to fit within a single machine word.

Although this bias is built into the design, it is inessential to the basic ideas used

in the design, and could be changed if necessary.
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1. SCODE org, len, m • This is the encoding of a segment descriptor.

m is 0 or 1 depending on whether this segment is for the D-machine or the E-machine.

org is the beginning address and len is the length of the segment. The inverse

(decoding) functions are SORG, SLEN, and SMODE, respectively. In the EM, if

a segment descriptor is in Q8, org is relative to its Q8-index.

2. JCODE len, org, s • This is the encoding for a J-vector descriptor.

The inverse functions are JLEN, JORG, JS.

3. XCODE a, b, c • Encoding used for various purposes in the E-machine.

Generally, a and b are an index and its limit, respectively. c is always a single

bit quantity. It is conceivable that the functions SCODE, JCODE, and XCODE

might be identical in a particular implementation of the APL machine, as might

their inverses. The inverse functions for XCODE are Xl, X2, and X3, respectively.

4. QCODE a, b • This encoding is used in constructing ICB's during EM

executions. Each field is potentially as large as the machine's memory and might

be signed. The decoding functions are Q1 and Q2.

5. MCODE mask • This is the encoding function which takes a logical

vector which is an access mask for an array and encodes it for storage in the AUX

field of QS. The inverse function is MXl.

6. FCODE freg, iorg, name • This is the encoding used in function marks

on VS. The inverses are Fl, F2, F3.
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c. ~

This section summarizes the tags which can be used in VS and NT entries.

Tag

UT

ST

JT

DT

FDT

FT

SGT

NPT

FMT

RT

AT

VS

1

1

1

1

1

o

1

1

1

1

1

NT

1

1

1

1

o

1

o

o

o

o

o

Meaning

Undefined value.

Scalar value.

J-vector. Such entries are moved to QS from VS almost
immediately.

Descriptor array pointer. In VS means this is a result
to be assigned to, while in NT, all array values have this
tag. As with JT, DT entries will be deferred to QS as soon
as they are noticed.

Similar to DT, except the array is to be fetched. Same
note applies.

Function descriptor pointer.

Segment descriptor.

Name pointer. This is an NT index.

Function mark.

Unused (so far) reduction accumulator.

Encoded M-address.
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APPENDIX B

A FUNCTIONAL DESCRIPTION OF THE E-MACHINE

The functional description of the E-machine which follows is written in an

informal dialect of APL. It differs from " s tandard" APL only in its sequence-

controlling statements. Instead of using branches, more sophisticated, and more

easily understood, constructions are utilized. These are summarized briefly below:

1. BEGIN ••• END delimits a compound statement, as in ALGOL.

2. Likewise, conditional statements and expressions of the form

IF condition THEN ••• ELSE •••- ---
are as in ALGOL. However, in this description, the condition part

evaluates to 1 or 0, corresponding to TRUE or FALSE in ALGOL.

3. The case construction,

CASE n OF

BEGIN

SI

S2

•••

Sk

END

chooses and executes the~ statement in the sequence. This description

has omitted some BEGIN's and END's in compound statements within the

CASE statement and substituted typographical grouping. Although this is

not syntactically rigorous, it renders the description more readable.

4. The REPEAT statement repeats its range indefinitely. Within a repeated

statement, the CYCLE statement is used to resume the main (compound)

statement from the beginning, and LEAVE aborts the innermost REPEAT.
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A THE E-MACHINE -- A FUNCTIONAL DESCRIPTION

A MAIN CYCLE ROUTINE
Btl.Eft.t1l

~ft.ri.Itl.
A THIS IS THE CONTROL ROUTINE IN FIGURE 2. HOWEVER.
A ONLY THOSE PARTS RELATED TO THE E-MACHINE ARE SHOWN.

IE -CASTOG l!J.ft.tl.
liEQ.I!i.

IE LS[LI-l;0]~LS[LI-1;2] l!J.g!i.
ligri.I.N. A TOP SEGMENT ON LS HAS OVERFLOWED

I.E LS[LI-1;4]=1 1!J.E.tl.
lift.ri.Itl. A ITERATION MAY RECYCLE

LS[LI-1;0]+0
STEPIS
NEWIT + °
IE STEPTOG l!J.gtl. CYCLE

gtl.Q.
A DEACTIVATE TOP SEGMENT AND TRY AGAIN
LPOP
CYCLE

E.tl.Q.
K + +/LS[LI-1;O,l]
IE -QS[K;O]eIA.IFA.IJ.ISC.IXL l!J.E.!i.

LS[£I-1;0] + LS[LI-1.0]+1
E.tl.Q.

CASTOG + °
A IF ACTIVE SEGMENT IS FOR D-MACHINE l!J.g!i. ACTIVATE DM
IE LS[LI-1;3]=0 1!J.ft.tl. DMACHINE gf£g
Q~Qg DECODE QS[K.O] QE A GOES TO LABELS BELOW
~E.r;,I!i. A DELIMITS RANGE OF Q1eg STATEMENT
A 'LABELS' BELOW NAME E-MACHINE INTERPRETATION RULES

S) VPUSH ST.QS[K;l]

IA ) D + QS[K.1J
IFA) INX + GINX K

QS[K;2,O] + QI, IE QS[K;O]=IA l!J.E.!i. A E.~eE FA
I + S + 0
T + IE £S[LI-1;7J=0 lUgE NT,NLT EfeE. QT.QLT
(pINX) BgI:gd.l

li Eri. IN.
A + GETDEL D,I A A = DEL[IJ FOR THIS ARRAY
S + S+R+IE T[O]=NT l!J.E.N. AxIS[INX[I];l] ELSE 0
QPUSH T[I=-l+pINX],(QCODE R.A),INX[I],O
I + 1+1

f1!i.Q.
QS[K;l] + QCODE (GETVBASE D).S+GETABASE D
ERASE D

A) IU K
FA) VPUSH I.E QS[K;O]=A l!J.g!i. AT.QS[K;l]

E.feE. ST.FETCH QS[K;l]
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J) IUl K

OP) EXECUTE QS[K;l] A QS[Kil] ENCODES A SCALAR OP

RED) VPUSH RT,O
LS[LI-li O] + K+QS[Ki2]

DUP) IE K>VI X!iE.li. ERROR E.k§.!i VPUSH VS[VI-Ki]

VXC) IE VI<2 Xfl.E.!Y. ERROR E.k§'"§' VS[VI-l.2i]+VS[VI-2,l;]

POP) VPOP

IJ) INX + GINX K
S + (JORG QS[K;l]) + IE O=JS QS[K;l] X!iE.!Y. -IORG E.k§'E.

IORG + -1 + JLEN QS[Kil]
QS[K;] + J,(XCODE O,S,JS D).INX,O

IXL) QS[KiO,2] + XL,GINX K

XL) VPUSH ST, IE LS[LI-li7]=O f!iE.!Y. IS[QS[K;2];O] E.k§'E.
IORG + Xl QS[QS[K;2];]

IRP) QS[Ki] + NIL,O,O,O

IRD) ERASE QS[K;l]
QS[Ki] + NIL.O.O.O

MIT) ISMK + II
liE.E."§.4.X

§'E.QI!Y.
VI+VI-l
IE VS[VIiO]=SGT ffl.E.li. LEAVE

E.k§'~ IE VS[VI;O]~ST X!iE.li. ERROR
IPUSH VS[VIil],II=ISMK

g.!J.!2.
LPUSH O.(SORG VS[VI-l;l]),(SLEN VS[VI-l;l]),l,l,O,O
NEWIT + 1

SGV) T + QS[Kil] A RECALL THAT SEG DESCRS ARE RELATIVE
VPUSH SGT,SCODE (K-SORG T),(SLEN T).SMODE T

SG) LPUSHS K

ISC) QS[K;O,2] .... SC,GINX K

SC) T + IS[QS[Ki2];3]ANEWITvQS[K;2]~ISMK

IE T ffl.E.!Y. LPUSHS K
E.k§'E. IE QS[K+l;O]€XS,xc f!iE.li.

BEGIN
---LS[LI-l;O] .... LS[LI-l;O]+l

S + K+l-QS[K+l;2]
A SET CHANGE BIT TO 0
QS[Si1] + XCODE (Xl QS[S;1]),(X2 QS[S;l]),O

E.fi.Q.
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JMP) IE (QS[K;O]=JMP)v«QS[K;O]€JO,JNO)AVS[VI-l;lJ=O)
JO ) v(QS[K;OJ€Jl,JN1)AVS[VI-l;lJ=1
Jl) XgE~ LS[LI-l;OJ + K+QS[K;2]
JNO) IE QS[K;OJ€JO.Jl Xli~~ VPOP
JN1)

Cy) £S[£I-1;OJ + £S[£I-l;2]

CCY) T + K+QS[K;2J
QS[T;lJ + XCODE(l+Xl QS[T;lJ),(X2 QS[T;lJ).l
£S[LI-l;oJ + 0

RPT) £S[£I-1;OJ + 0

£VE) £POP

CAS) IE -(VS[VI-1;OJ=ST)AVS[VI-l;lJ€lQS[K;2J Xlig~ ERROR
£S[LI-1;0] + K+QS[K;2J
K + K+VS[VI-l;l]
VPOP
CASTOG + 1

XS) J + K-QS[K;2J
I + VS[VI-1;lJ-IORG
VPOP
IE (I<0)VI>X2 QS[J;l] THEN ERROR

g1~g QS[J;lJ + XCODE I,(X2 QS[J;lJ).l

XC) J + K-QS[K;2]
QS[J;l] + XCODE (Xl QS[J;1]).(X2 QS[J;l]).l

£Xl) VPUSH ST.X1 QS[K-QS[K;2];1]

£X2) VPUSH ST,X2 QS[K-QS[K;2];lJ

SX1) T + K-QS[K;2]
QS[T;l] + XCODE VS[VI-l;1],(X2 QS[T;l]).l

SX2) T + K-QS[K;2]
QS[T;l] + XCODE (Xl QS[T;l]),VS[VI-l;l],l

ORG) VPUSH ST,IORG

g~Q A END Qa~g STATEMENT RANGE

g~Q A E-MACHINE INTERPRETATION RULES
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A AUXILIARY FUNCTIONS FOR E-MACHINE

'iJ INX + GINX K;R
A INX IS A VECTOR OF QS OR IS INDICES TO ACCESS ARRAY,
A HIGHEST COORDINATE NUMBER (I.E. FASTEST VARYING) FIRST
R + IE LS[LI-l;7]=O Xli~~ II ~~g~ QS[LS[LI-l;7];2]
INX + ~«Rp2)T2~QS[K;3])/tR

'iJ LPOP
IE LI=O THEN ERROR E.~gE. LI + LI-l
IE LS[LI;4]=1 XHE.~ POPIS
IE LS[LI;5]=1 XHE.N FNRET
NEWIT + LS[LI;6]
A IE THIS CHANGES MODES XHE!:l. CLEAN OFF QS
IE LS[LI;3]>LS[LI-l;3] XHE.!:l.

liE.P.Ed.X
"O.EQI!:l.

IE QI = LS[LI;l] XHE~ LEAVE EkgE. QI + QI-l
IE QS[QI;O] € IFA,IA,RDT XaE~ ERASE QS[QI;l]

E~Q
'iJ

'iJ POPIS
II + ISMK
liEP.Ed.X

g,gQDl.
ISMK + ISMK-l
IE ISMK=-l XH~!:l. LEAVE ~~gE IE IS[ISMK;4]=1 XHE!:l. LEAVE

~~Q
'iJ

'iJ LPUSH V
IE LI=LIMAX XHg~ ERROR
LS[LI;t7] + (6tV),NEWIT,IE O~-ltV XaE.!:l. ltV E.kgE. LS[LI-l;7]
LI + LI+l

'iJ

'iJ LPUSHS K
IE O=SMODE QS[K;l] Xag~ ERROR
LPUSH O,(K-SORG QS[K;l]),(SLEN QS[K;l]).l,O,O,CORR K

'iJ
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'V IU1 K;T;S;R
A CALCULATE J-VECTOR ELEMENT IN FORM XCODE(CURR,INCR,SN)
T -+- LS[LI-l;7J
S -+- (K1 QS[K;lJ),O
IE T=O XHEN A IF THERE IS A CHANGE, USE NEW ITER VALUE

llE.QI.!i.
IF IS[QS[K;2J;3JANEWITvQS[K;2J~ISMKIliEll
-- S -+- IS[QS[K;2J;OJ,l

EtiJ2
E~§E IE 1=X3 QS[T+QS[K;2J;lJ IHE.!i. S -+- (Xl QS[T+K;lJ),l
IE S[lJ=l IHE.!i.

§'~Ji.I.li.
T -+- X3 QS[K;lJ
S[oJ -+- I.E T=O IHEli. S[oJ E~§E -S[OJ
QS[K;lJ -+- XCODE S[OJ,(X2 QS[K;lJ),T

Eli.12
VPUSH ST,S[OJ+X2 QS[K;lJ

'V

'V IU K;IP;IQ;S;T;D
A INDEX UNIT
S-+-O
IQ -+- K+QS[K;2J A BEGINNING OF ICB FOR THIS ARRAY
T -+- LS[LI-l;7J
l1.EE.E.~I

§'E.QI.li.
IP -+- QS[IQ;2J+T
I.E T=O XHE.!i.

§'EQI.!i. A THIS ARRAY INDEXED BY IS
I.E IS[IP;3JANEWITVIP~ISMK XHE!i.

§'EQI.!1
I.E (IS[IP;oJ=0)AIS[IP;2J=0 XHE.!i.

S -+- S-Ql QS[IQ;lJ
EI!§E.

I.E (IS[IP;OJ=IS[IP;lJ)AIS[IP;2J=1 fliE.!i.
S -+- S+Ql QS[IQ;lJ

E.I!§E I.E IS[IP;2J=0 fliE.R
S -+- S+Q2 QS[IQ;lJ

EI!§E. S -+- S-Q2 QS[IQ;lJ
Eti.12

A THIS ARRAY INDEXED FROM QS
O=X3 QS[IP;l] XHE.!i. LEAVE E.I!£E.
"ftE.QI.!i.

D -+- (Q2 QS[IQ;l])xXl QSrIP;lJ
S -+- S+D-Ql QS(IQ;lJ
QS[IQ;lJ -+- QCODE D,Q2 QS[IQ;l]

E1i.12
END
IE-QS[IQ;O]eILT,QLT IHE.R LEAVE E.I!§E. IQ-+-IQ+l

fl.!i.12
QS[K;lJ -+- QCODE (Ql QS[K;lJ),S+Q2 QS[K;l]

v
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'i/ R +- FETCH X
A X IS A Q-CODED ADDRESS OF FORM QCODE(VBASE,INCR)
R +- M[l+(Ql X)+Q2 X;]

+- VS[VI-l;l] (DECODE CODOP) VS[VI-2;1]

IE ISDYADIC CODOP Xli~~

'ftE,QI.li.
VS[VI-l;l]
VPOP

l£!l.~
E,lt.§.E,

VS[VI-l;l] +- (DECODE CODOP) VS[VI-l;l]

'i/ EXECUTE CODOP
A CODOP IS A DYADIC OR MONADIC SCALAR OPERATOB(ENCODED)
A EXECUTE DECODES CODOP ON THE ELEMENTS OF VS:
A

A

A

A

A

A

A

A

'i/ STEPIS ; I;INCR
A STEP THE ITERATION NEST IN IS
A SET STEPTOG +- IE DONE XaE.li. ° glt.£g 1
STEPTOG +- 0
I +- II
B.gE.g4.X

'ftE.QI.li.
I +- I-l
I.E (IS[I;O]=O)AIS[I;2]=1 Xli~!i.

BEGIN---IE IS[I;4] XliE.li. LEAVE ~lt.§.g
IS[I;O,3] +- IS[I;l],l

g!i.~

E,lt.§.E. I.E (IS[I;O]=IS[I;1])AIS[I;2]=O XaE.li.
§'E,Q!.fl

I.E IS[I;4] XliE.!i. LEAVE glt.£E IS[I;O,3] +- 0,1
E,~~

E.lt.§.E,
?,E,QI!i.

STEPTOG +- 1
IS[I;3.0] +- l,IS[I;O]

+ IE IS[I;2]=O XliE.!i. 1 E,lt.§.E, 1
LEAVE

E!i.~

'i/ R +- CORR K
R +- I.E QS[K;2]=O XaE,li. 0 Elt.£E K - QS[K;2]

'i/ IPUSH V;MX
A V[O] IS COUNT (SIGNED); Vel] IS MARK

A CASE OF COUNT=O CANNOT OCCUR (HANDLED BY D-MACHINE)
MX +- -l+IV[O]
I.E II=IIMAX XgE,li. ERROR
IS[II;] +- (IE V[o]<o XliE.!i. MX E,lt.§.E. O),MX,(V[O]<O).1.V[2]
II +- II+l
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APPENDIX C

EXPANSION OF D-MACHINE OPERATORS FOR E-MACHINE

This appendix shows how the D-machine expands complex primitives into

deferred sequences of E-machine instructions. It is assumed that the constraints

noted for each operator are met, and that all operands have been tested for domain,

conformability, and so forth before being submitted for expansion. This is not

an important constraint since, for example, the requirement that an operand be

beatable can always be satisfied by explicitly evaluating an unbeatable operand to

temporary space.

Before the expansion of any of the dyadic operations, the value stack and the

instruction buffer are as follows:

VS QS

OP VALUE LINK AUX

o • • • 0 • 0

SGT • -{I Code for right operand

SGT • • {I Code for left operand

m2

m1

where m1 and m2 are the access masks for the deferred expressions, found in the

AUX field of QS. In the sequel, segments in QS are delimited graphically by braces

and pointer or Greek letters are used to avoid confusion with explicit relative ad-

dressing.

1. GDF

The operands deferred in QS must be simple array values. The operand of

a GDF instruction is a dyadic scalar operator, OPR. Expansion produces the
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following:

QS

OP VALUE LINK AUX

o • •

l
Code for right operand m2

.. Code for left operand m1 1

GOP OPR m3

IRD T1 m3

SGT ••----..

VS

In the above, T1 points to a DA containing the result rank and dimension for the

GDF. m1 I is m2 shifted left by the rank of the right operand. m3 is the logical

.2!. of m1 I and m.2 (i. e., m3 m11m2). Because of the requirement that the

operands be simple array values, the segments in boxes each consist of a single

IJ or IFA instruction.

2. RED

By the time an expansion is to be done, any necessary transposes on the

reducee have heen performed. The variable B has value 1 if the reducee is

heatable and is 0 otherwise. The "before" picture is:

..
VS

..
QS

o •• ..
SGT ••-------t... { I Code for reducee

The reduce operator is OPR, giving rise to the expansion below:

m1

VS

..

OP QS

OP VALUE LINK AUX

...
SGT RED

{I Code for reducee
0"1't OP OPR

SGV 0"1

S -len
MIT
IRD @T1 B

m1

m1

-1 m
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where len is the length of the reduction coordinate and T1 is a DA with the rank

and dimensions of the result.

3. DIOTA

The ranking operation, corresponding to dyadic i, requires that the left

argument be a simple vector array value. This is because this operand is evaluated

repeatedly during the E-machine execution of the follOWing expansion.

QS

OP VALUE LINK AUX

VS

SGT
... .. ...

m2

len is the length of the left operand. It should be clear from working through the

above expansion that it is simply a literal interpretation in E-machine code of the

definition of the ranking operator. It is assumed that the D-machine will have

checked for the case of an empty vector as either operand, producing the correct

result automatically. If the rank of the result is 0, that is if the right operand is
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a scalar, the above expansion is executed immediately by the E-machine. The

lRP instruction is similar to IRD, except that it points to an instruction in QS

which contains dimension information instead of referring to an explicitly-created

DA.

4. EPS

Before expanding the membership operator, a check is made for the special

cases of right-operand scalar or I-element quantity. In these cases the operation

done is A=B or A=(, B)[1] , respectively. Similarly, if the left operand is scalar

then A=B is done. Otherwise, the expansion is made in QS as below:

QS

OP VALUE LINK AUX

.. ...
JMP

eTl { 1 Code for right operand m2

Code for left operand ml

RED 7

DUP 2

&} al

a2 OP EQ

OP OR

JNO 2

LVE

SGV a2

S lenl

S len2

.. ...
S lenK

MIT

VXC

POP

IRP
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where lenl, len2, ••• , lenK dimension of right operand. As in the expansion for

1/

DIOTA, the expansion of EPS is a straightforward E-machine translation of the

definition of the membership operator.

5. SUBS

Before the SUBS expansion takes place, the subscripts have been examined

to see if they can be beaten into the subscriptee. If an expansion is needed, then

there must be some subscripts left. Before expansion, the registers contain:

VS

SGT ...-----~~

..
SGT ...------.

SGT ••------~

The rank r of the subscriptee must be the same as the number of subscript

expressions. The rank of the result is the sum of the ranks of the subscripts

(counting empty subscripts as rank-I). Some of the SGT entries on the VS may

be empty, that is of the form SCODE(SEG, NIL, 0). After expansion, the picture
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has changed to:

vs

SGT

QS

OP VALUE LINK AUX

JMP

Code for rightmost
non-empty subscript

.. ... .... ...
Code for leftmost

non-empty subscript

al{ I Code for subscriptee

(3 XT XCODE(O, 11,1)

XT XCODE(O, lr, 1)

Calc subs 1

XS

..
Calc subs r

XS

SG al (3

IRD @Tl 0 mr

Where 11, 12, ••• , lr is the dimension of the subscriptee, minus 1. This field of

the XT entries is used for checking purposes in the IU (see Section E). (3 is the

QS index of the beginning of the XT back and @Tl is a DA with the rank and

dimensions of the result. mr is the access mask of the result. The link field of

(3 contains r, the rank of the subscriptee, which is used in the initialization of lA,

IFA, IJ instructions. The lines in QS marked "Calc subs kif are one of the

- 155 -



following:

OP VALUE LINK AUX

ISC SCODE(SEG. K', 1) 0 m'

!XL 0- 0 m'

In the first case, the k:th subscript is to be computed explicitly, which is done by

activating SEG K', one of the non-empty subscript segments on QS. In the second

case, the segment that was stacked on VS for this subscript was empty, so the

actual subscript used is the same as that which was controlling this coordinate

from the outside. The mask m' in the AUX field specifies the index environment.

Example 4 in this chapter shows a specific instance of an expansion caused by the

SUBS operator.

The remaining operator expansions are similar to SUBS, in that they are all

special cases of it.

6. CMPRS

The compressor (left operand) has been evaluated to a temporary space, if

it was not there already, and checked to see if it contains only 0 and 1 elements.

In addition, the number of 1 l s,call it DIM1, has been counted and Vil, the index

in V of the first non-O value is known; call it XA. This process is unfortunately

necessary since we must know the rank and dimension of the result before deferral.

The same process must be applied to the expansion operator. Unless the com­

pressor falls into a special case which can be done immediately (i. e., scalar 1
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or 0 or vector of all1's or all O's) then the following expansion is made:

JMP

QS

OP VALUE

a1{ ICode for compressee

a2 {I Code for compressor

A: XT xcode( 0, XA, 0)
f3: XT xcode(O, 11,1)

mr

r -

-
rnk'

1 -
l'

m1'

rnk'

mr'

l'
l'

A

1
2
A
1"

[3

LINK AUX

0

1112 1

roll
1

a3

...

2

a1
@T1

...

SUB
SGN

SUB

SUB

xcode(O, lk, 1)

xcode(O, lr, 1)

·.
')I: XT

XT
!XL
JNO
LX1
OP
OP
JNO
DUP
LX1
OP
XS

a3 SG
JO
LX1
OP
SX1
RPT
DUP
SX1
LX2
XS
POP
LVE

0: !XL
XS

• •
ISC
XC

·.
IXL
XS
sa
IRD

VS

SGT
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where li, ••• lr are as in the SUBS expansion; ml' through mr' are the masks for

the individual subscripts with mk' being the mask for the compressed coordinate.

The first XT entry is used to hold XA and XL where XL is the last value of the

external index for the compressed coordinate. The algorithm used is as follows:

Algorithm for compression: We wish to find XT such that

(U/[KJX)[ ••• ;1; •••J-- X[••• ;XT; •••J

Let XL be the last value of I from which the last XT was calculated. XA is the

index of the first 1 in U. Then, the QS expansion for compression calculates the

new value of XT as a function of the new I and old XT and XL as follows:

if 1=0 then

begin

XL-O

XT-XA

end

else

repeat

begin

T-xXL-I

if T=O then leave

repeat

begin

XT-XT-T

if U[XTJ=1 then leave

end

XL-XL-T

end

7. EXPND

The EXPND operator is treated similarly to GMPRS. In particular, the

expandor (left operand) is checked to see that it is a logical quantity and the number

of l's is compared to the length of the expansion coordinate. If the expandor falls
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into one of the special cases (all ones, all zeros) the result is calculated immediately.

Otherwise, the QS expansion that follows is made to implement the expansion

algorithm below:

Let R be (U/[KJX)[••• ;1; •••J. Then we want to find LX such that R-if ufr]=O

then 0 else XG •• ;LX;•••J. LU is the index of the last found 1 in U and LX is the

correspondingX index (on the K th coordinate).

if U[IJ=O~ R-O else

begin

repeat

begin

T-X1-LU

if T=O then leave

repeat

LU-LU+T

if u~ttl=1 then leave

end

LX-LX+T

end comment main repeat;

R-X[••• ;LX; •••J
end
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VS QS

OP VALUE LINK AUX

• 0 • ... • 0

EDT JMP

al {ICode for expandee m2 I
a2 {ICode for expandor mk'i
6: XT xcode(LU, lu, 1) 1
(3: XT xcode(O, 11, 1) r

o • •

y: XT xcode(O, lk, 1)

;\. XT xcode(O, lr, 1)
LXI
!XL mk'
OP SUB
OP EDN
JNO
DUP 1
LXI 6
OP ADD
XS 6
SG a2 6
JO
LXI Y

a3: OP ADD
XS Y
RPT
POP
!XL ml'
XS (3

E: !XL mr'
XS ;\

SG al (3
SG a2
cAs 2
S °SG a3
IRD a mr

Note that the sequence of !XL and XS instructions starting at E does not contain a

reference to the k:th subscript position as this has already been computed at the

beginning of the segment activated by the CAS instruction. Also, in the above, the

quantity £u in the X2 field of the pseudo-iteration stack at is the length of vector

UJ less 1.
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8. ROT

Rotation is a special case of subscripting defined as follows:

If N is a scalar, then R+-Nct>[KJM means for each L ELT tpM

R[ ;ILJ++MC. ;/( (K-1)tL), (IORG+( pM)[KJ I(N-IORG)+t(pM)[KJ) ,K+LJ

If N is an integer array withpN++(K~tppM)/pM then

R[ ; ILJ++MC. ; I( (K-1)tL) , (IORG+( pM)[KJ I(N[ ; IL' J -IORG)+t (pM)[KJ) ,K+L J

where L'++(K~tppM)IL.

Thus the expansion for ROT in QS is the same as for a general subscript with all

but the K:th coordinate being IXL, XS pairs and the K:th coordinate being computed

according to the above defi.nition. The explicit expansion will be omitted since it

is similar to what has already been shown.
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n
2 n

1 0
2 1
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9
024 10

2 048 11
4 096 12
8 192 13

16 384 14
32 768 15
65 536 16

131 072 17
262 144 18
524 288 19

1 048 576 20
2 097 152 21
4 194 304 22
8 388 608 23

16 777 216 24
33 554 432 25
67 lOS 864 26

134 217 728 27
268 435 456 28
536 870 912 29

1 073 741 824 30
2 147 483 648 31
4 294 967 296 32
8 589 934 592 33

17 179 869 184 34
34 359 738 368 35
68 719 476 736 36

137 438 953 472 37
274 877 906 944 38
549 755 813 888 39

1 099 511 627 776 40
2 199 023 255 552 41
4 398 046 511 104 42
8 796 093 022 208 43

17 592 186 044 416 44
35 184 372 088 832 45
70 368 744 177 664 46

140 737 488 355 328 47
281 474 976 710 656 48
562 949 953 421 312 49
125 899 906 842 624 50
251 799 813 685 248 51

4 503 599 627 370 496 52
9 007 199 254 740 992 53

18 014 398 509 481 984 54
36 028 797 018 963 968 55
72 057 594 037 927 936 56

144 115 188 075 855 872 57
288 230 376 151 711 744 58
576 460 752 303 423 488 59
152 921 504 606 846 976 60

2 305 843 009 213 693 952 61
4 611 686 018 427 387 904 62
9 223 372 036 854 775 808 63

18 446 744 073 709 551 616 64
36 893 488 147 419 103 232 65
73 786 976 294 838 206 464 66

147 573 952 589 676 412 928 67
295 147 905 179 352 825 856 68
590 295 810 358 705 651 712 69

I 180591 620717 411 303 424 70
2 361 183 241 434 822 606 848 71
4 722 366 482 869 645 213 696 72

APPENDIX D

POWERS OF 2

-n
2
1.0
0.5
0.25
0.125
0.062 5
0.031 25
0.015 625
0.007 812 5
0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25
0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125
0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125
0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562
0.000 000 000 000 007 lOS 427 357 601 001 858 711 242 675 781 25
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0.000 000 000 000 000 III 022 302 462 515 654 042 363 166 809 OS2 031 25
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 5u7 812 5
0000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
0.000 000 000 000 000 006 938 893 903. 907 228 377 647 697 925 567 626 953 125
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 OS6 994 171 142 578 125
0.000 000 000 000 000 000 054 210 lOS 624 275 221 700 372 640 043 497 085 571 289 062
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25
0.000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5
0.000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
0.000 000 000 000 000 000 000 211 758 236 81J 575 084 767 OSO 625 169 910 490 512 847 900 390 625
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CHAPTER V

EVALUATION

In this chapter we examine the design for an APL machine proposed in

Chapter IV and compare its performance to more conventional architectures.

This is done by showing that the APLM is more efficient in its use of memory

than a less sophisticated computer doing the same task.

A. Rationale

In Chapter In, a number of design goals for the APLM were stated:

1. Machine language should be "close" to APL.

2. Machine should be general, flexible.

3. Machine should do as much as possible automatically.

4. Machine should expend effort proportional to the complexity of its task.

5. Design should be elegant, clean, perspicuous.

6. Machine should be efficient. In particular, it should be parsimonious of

memory allocation and accessing.

We can dispose of some of these in short order. To begin with, goals 1, 3, and

4 have obviously been satisfied. Since the machine designed implements API., to

goal 2 we can reply that the machine is general and flexible at least to the extent

that APL as a language is general and flexible. For example, even though the

APLM does not include all of the LISP primitives, if it is easy to write a LISP

interpreter in APL, then the machine should be able to handle them with ease.

Although I believe that the goal of elegance has been satisfied, this is not the

place to make such judgements, nor am I the one to make them. This particular

aspect will have to be decided by less prejudiced readers. A seventh, unstated

goal is that the design should indeed work. It should be clear to the reader who

has reached this point that the basic machine structure proposed is in fact sound

and that an APL machine as described will produce correct answers.
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This leaves the question of efficiency to be considered. Because we have not

detailed a complete machine, traditional measures such as encoding efficiencies

of comparisons of cycle times cannot be used. A major emphasis throughout this

work has been to minimize the necessity for temporary storage in expression

evaluation and simultaneously to minimize memory accessing. While these prob­

lems are often of marginal importance in a conventional design, they are quite

significant in an APL machine, since operands are generally arrays. Thus a

temporary store is no longer a single word, but is potentially an array of indefinite

size. Similarly, the conventional problem of saving a single fetch where a quantity

might be in a register, becomes the problem of saving 1000 fetches for an array

operand.

The remainder of this chapter is dedicated to the evaluation of machine ef­

ficiency. We take an analytic approach here, but cannot hope to have a simple

analytic model of the machine per se which would give clean, closed-form quanti­

tative data about the APLM. Instead, the analysis compares the performance of

the APLM to a fictitious lInaive machine, 1I which is simply a straightforward

interpreter of the semantics of APL.

The next section discusses the naive machine (NM) and outlines the assumptions

upon which the comparisons will be based. In the sequel, we will compare the two

machines by looking at the number of individual fetches, stores, operations, and

temporary stores needed to do a particular task. Different tasks will be examined

with this in mind. At the end of the chapter, these results will be summarized

together with some conclusions.

B. The Naive Machine

Although the APL machine proposed in Chapter IV has never been implemented,

there exist concrete examples of the naive machine. These include APL \ 7090
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(Abrams [1966J), APL \1130 (Berry [1968J), and APL\360 (Falkoff and Iverson

[1968]; Pakin [1968]). The main feature which distinguishes the NM from the

APLM is that the APLM defers many computations while the naive machine

evaluates each subexpression immediately after its operands have been evaluated.

The APLM, by contrast, does some of its evaluations immediately (e. g., scalar

results), defers some indefinitely (by drag-along), and does still others in a non­

direct way (e. g., beating).

The following list of assumptions clarifies in more detail the differences

between the APLM designed in this work and our "standard" naive machine as

used in the rest of this chapter.

1. The naive machine uses the same representation for arrays as does

the APL machine. If the naive machine is APL\360, then this is approximately

true. In fact, APL\360 does not separate DNs from value parts in array rep­

resentations. On the other hand, APL\360 represents scalars as rank-O arrays,

and is thus more inefficient in its handling of scalar values. We assume here

that the NM keeps scalar values in a value stack as does the APLM. We have

also (generously) assumed that the NM uses the J-vector representation for

interval vectors. In general, these assumptions cast the naive machine in a

better light than any current implementation of APL.

2. The naive machine generates a.result value whenever an operator is

found and its operands are evaluated. (This is exactly the way APL\360 works.)

Further, we assume that the NM will use temporary space allocated to one of

its operands for the result, if possible; e. g., if the expression A+B is to be

evaluated, a new temporary space must be found to accommodate the result.

However, if the expression is A+B+C; the subexpression B+C will be evaluated

first causing the creation of a temporary t which can then be used as the result

destination for the value of A+t.
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3. In an assignment to a variable, as in A-expression, the naive machine

performs the assignment simply by storing a pointer to the temporary for the

evaluated expression in the nametable entry for A. Again, this is consistent with

the functioning of APL\360.

4. Each operation in either the NM or the APLM requires a fixed amount

of overhead (e. g., rank checking, domain checking, space allocation, setup,

drag-along, etc.). An analysis of the instructions for both machines shows that

these processes take approximately the same effort in both machines. Since

there is no way to compare this effort with the memory usage measures discussed

here, it will be omitted. For a single statement, this overhead appears as a

linear additive term.

5. Since scalars are kept in the value stack in both machines and since the

VS mechanism is not specified (e.g., it could be a hard-wired stack, or a fast

scratchpad memory, or it could be kept in memory with other array values), all

scalar fetches and stores will be ignored. The effort to evaluate array expressions

always dominates the effort for scalar expressions.

6. There are no distinctions made between data types in the APL machine.

We thus assume that both the APLM and the NM use the same representation for

individual data elements.

7. All scalar operations take the same -amount of time to perform. That is,

an add or a multiply will each be counted as a single operation.

8. Finally, it is assumed that both the naive machine and the APL machine

are implemented in similar technologies so that the cost of memory accesses,

storage allocations, and operations are the same for both machines.
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c. Analysis of Drag-Along And Beating

To begin the analysis, let us look at a subset of the operations of APL and

derive some analytic results comparing the APLM and the NM. The set to be

considered is

1. Selection operations

2. Monadic and dyadic scalar arithmetic operations

3. Inner products

4. Reductions of the above (this includes outer products)

5. Assignments of above to unconditioned variables or to variables conditioned

by selection operators.

We consider only those expressions which are array-valued, as scalar expressions

are done similarly in both machines. Each operation requires the machine evalu­

ating it to do a certain amount of work, summarized in Table 1 below. Tables

2A and 2B summarize the "effort" reqUired to do these manipulations.

In Table 2, some of the entries contain conditional terms or factors. These

account for the different possible initial conditions when a subexpression is evalu­

ated. Also, notice that in Table 2B, some of the entries contain references to the

functions DOF, DOS, and 000. These are functions which, given a deferred

expression as argument, return as values the number of fetches, stores, and

operations, respectively, necessary to evaluate the expression. Thus, for the

APL machine, Table 2B does not tell the whole story; we must also take into

account the efforts to evaluate the final deferred expression (by the E-machine).

Hence, it is necessary to give detailed definitions of the DOF, OOS, and 000

functions.
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TABLE 1

Steps in Evaluation of APL Operators

NANE MACHINE APL MACHINE

A. Selection Operators

1. Check rank, domain of operands. 1. Check rank, domain of operands.
2. Get space for result DA, value. 2. Get space for result DA (if operand

is a variable).
3. Set up DA, M-headers. 3. Set up DA.
4. Set up copy operation. 4. Adjust VS, QS.
5. Do copy operation.
6. Adjust VS.

B. Monadic Scalar Operators

1. Get space for result DA, value 1. Defer operation to QS.
(only .if operand is a variable).

2. Set up DA, M-headers if space 2. Adjust VS, QS.
was gotten in step 1.

3. Do the operation.
4. Adjust VS.

C. Dyadic Scalar Operators

1. Check rank, dimensions of 1. Check rank, dimensions of operands.
operands.

2. Get space for result DA, value 2. If one operand is a scalar, move it
(only if both operands are to QS.
variables).

3. Set up DA, M-headers .if space 3. Defer operation to QS.
was gotten in step 2.

4. Do the operation. 4. Adjust VS, QS.
5. Adjust VS.

D. Outer Product

1- Get space for result DA, value. 1. If operands are deferred subexpres-
sions, then evaluate them to temp space.

2. Set up DA, M-headers. 2. Get space for result DA.
3. Do the operation. 3. Set up DA.
4. Adjust VS. 4. Defer operation to QS.

5. Adjust VS, QS.

- 168 -



Table 1 (cont. ).

NAIVE MACHINE APL MACHINE

E. Reduction

l. Get space for result DA, value. l. Get space for result DA.
2. Set up DA, M-headers. 2. If reduction coordinate is other

than the last, then do appropriate
transpose.

3. Do the reduction. 3. Set up DA.
4. Adjust VS. 4. Defer operation to QS.

5. Adjust VS, QS.

F. Assignment to Simple Variable

1. If right-hand side is a temp then 1. If right-hand side is a temp then
go to step 6, otherwise do steps go to step 6, else proceed.
2 through 7.

2. Get space for DA, value. 2. If the LHS* variable is already
defined and is of the correct size
and does not appear permuted as
an operand in the deferred RHS
then go to step 5.

3. Set up DA, M-headers. 3. Get space for DA, value of LHS.
4. Set up copy operation. 4. Set up DA and M-headers.
5. Do copy operation. 5. Defer operation in QS.
6. Adjust VS. 6. Adjust VS, QS.
7. Adjust Nametable. 7. Adjust Nametable.

G. Assignment to a Selected Variable

1. Check dimensions of LHS, RHS. 1. Check dimensions of LHS, RHS.
2. Set up copy operation. 2. If RHS contains deferred instances

of LHS variable which are permuted
differently than LHS, then proceed
else go to step 6.

3. Do copy operation. 3. Get space for DA, value of RHS.
4. Adjust VS. 4. Set up DA, M-headers.

5. Evaluate RHS to this temp.
6. Defer selected assignment to QS.
7. Adjust VS, QS.

*LHS and RHS refer to the left-hand side
and right-hand side of an assignment
arrow, respectively.
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TABLE 2A

Summary of Effort to Evaluate Operators - NAIVE MACHINE

OPERATOR FETCHES STORES TEMPS OPERATIONS

I

.....
-::J
o
I

SELECTION
(R IS: sel ~) x/pR 4+(ppR)+x/pR P1x(4+(ppR)+x/p~ 0

SCALAR MONADIC
(R IS: OP~) x/pR (P1x( 4+ppR»+x/pR P1 x(4+(ppR)+x/pR) x/pR

SCALAR DYADIC
(R IS: ~ OP/¥') N1 xx /pR (P2 x(4+ppR»+x/pR P2 x(4+(ppR)+x/pR) x/pR

OUTER PRODUCT
(R IS: ~ 0 .OP .'!7) (x/p ~)+x/pR 4+(ppR)+x/pR 4+(ppR)+x/pR x/pR

REDUCTION
(R IS: OP/[KJ~) x/p ~ 4+( ppR)+x/pR 4+( ppR)+x/pR x/p~

ASSIGNMENT
A+-~ P1xx/p~ P1x(4+(pp ~)+x/p &') P1x( 4+( pp ~ )+x/p ~) 0

ASSIGNMENT
(sel A)+-~ x/p sel A x/p sel A 0 0

Notes: Pl-- if ~ is a variable then 1 else O. P2 --- if ~ and ;¥are both variables then 1 else 0 •

Nl-- if ~ and .'!7 are both arrays then 2 else 1.



TABLE 2B

Summary of Effort to Evaluate Operators - APL MACHINE

OPERATOR FETCHES STORES TEMPS OPERATIONS

I

.....
-:J.....
I

SELECTION
(R IS: sel cS') 0 Nl x(3+ppR) N2 x(3+ppR) 0

SCALAR MONADIC
(R IS: OP 8) 0 0 0 0

SCALAR DYADIC
(R IS: 80Pf¥) 0 0 0 0

OUTER PRODUCT
(R IS: tEo .OP:.¥) (Pl'xDOF(~) )+(P2xDOFW) 3+( ppR)+(Pl xDOS(8» 3+ppR (Pl xDOO(8) )

+(P2xDOS<9J ) +(P2 xDOO(§) )

REDUCTION
(R IS: OP/[K]cS') 0 3+(ppR)+P3 xNl x(4+ppR) 3+(ppR)+P3 xNl x(3+ppR) a

ASSIGNMENT
A+8 0 P4x( 4+ pp~) P4x( 4+( ppcS')+x/p~) 0

ASSIGNMENT
(sel A)+8 P5xDOF(~) P5 x(DOS(8)+4+(pp8)+x/pcS') P5 x(4+(pp8)+x/p8) P5 xDOO(Q)

NOTES: NI-Number of array opnds in ~
Pl- if ~ contains deferred operators then 1 else 0
P3 --- if KI r/ Lpp~ then 1 else 0 ----
P5-- if 8 must be evaluated first then 1 else 0

N2 - Number of opnds with reference count > 1
P2-- if f¥contains deferred operators then 1 else 0
P4- if ~ is a temp or A is defined and of correct

size and there are no indeXing conflicts
then 0 else 1



For the set of expressions containing only selection operations, scalar

arithmetic operations, outer products, reductions, and assignment, .it is relatively

simple to specify the DOF, DOS, and DOO functions. Recall that in the APL

machine, expressions are deferred in QS, which contains an operation code and

an access mask for each entry. Let the function OP(l) be the operation code for

QS[l;] and MASK(l) have as its value the access mask in the AUX field of QS[l;].

Finally, for a given expression in QS, let RR be the dimension of the final result.

For each QS entry whose opcode is lFA, lA, OP, or GOP define the function

D(l) whose value is a dimension vector as follows: if the entry is not within a

reduce segment then D(l) is RR. Otherwise catenate an element with the length

of each reduction coordinate; the innermost reduction corresponds to the last

element of D(I). Thus, D(I) is the vector of limits of the iteration stack which

are active when instruction QS ~;J is executed by the E-machine. The idea here is

that D(I) represents the indexing environment of QS[I;]. If N(I) is the index of the

rightmost 1 in MASK(I) (that is, N(I) --r/(MASK(I»/ t.pMASK(I» , then the following

algorithm calculates the desired functions:

RF-RS-RO-O

I.-starting addr of deferred expression in QS

repeat

begin

if OP(I) = IFA then RF- RF +X/N(I) tD(I)

else if OP(I)=IA then RS- RS+x/N(I) tD(I)

else if OP(I) € OP, GOP then RO - RS+ x/N(I) ID(I)

1-1+1

if I > segment ending addr then leave

end

Then DOF(8)--RF; DOS(<:f)-RS; DOO(8)--RO.
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D. Example - A Simple Subclass of Expressions

Since the input to either the naive machine or the APL Machine may be any

arbitrary expression,it is difficult to produce a closed-form comparison of the

performance of the two. However, we can look in detail at a simple subset of

expressions and obtain some estimates on how the two machines compare.

Consider the set of expressions of the form A+&', where &' is an expression con-

taining only array- shaped operands combined by scalar arithmetic operators and

selection operators. As an aid to the analysis, construct the tree corresponding

to the expression 0", and number all the nodes corresponding to operators. Then,

construct vectors RR. RD. TY. TV. N1 and N2 as follows:

For each node I, representing RESULT T+(ff', where 0"' is the subexpression

rooted at node I,

RD[ n+x / pRESULT

RR[n+ppRESULT

<Besult 1?imension of node I)

(Besult Bank of node I)

TY[ I]+ if operator is a select then -1 else if monadic then 1 else 2

TV[ n+ if all sons of node I are variable names then 1 else 0

NHI]+ number of leaves in the subtree of node I

N2[I]+ number of leaves in the subtree of node I accessible through a path

not including a select operation.

Finally, let R be the number of array operands in &'

M be the number of monadic scalar operators in &' (i. e. , +/1=TY)

N be the number of dyadic scalar operators in &' (i. e. , +/2=TY)

S be the number of selection operators in &' (i. e. , +;-1=T'y)

Z be the number of elements in 8 (i. e. , x/p&,)

Y be the rank of g (i. e. , pp &' )

P be: if APLM must get space for A then 1 else o.- -- --
Note that in a well-formed expression N=R-1 •
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Then, from Tables 2A and 2B, and the definitions of DOO, DOS, and DOF,

we see that the effort for each machine to evaluate ~ is as follows:

NAIVE MACHINE

fetches: t/RDx ITY

stores: (t/RD)tt/«-1=TY)VTVA(1~TY»/(4tRR)

temps: +/TV/(4+RRtRD)

operations: t/(1~TY)/RD

APL MACHINE

fetches: RxZ

stores: Zt(px(4tY»t+/(-1=TY)/Nlx(3tRR)

temps: (Px(4tYtZ»t+/(-1=TY)/N2x(3tRR)

operations: t/(l~TY)/Z

In general, each formula above is the sum of the relevant entries in Tables 2A

or 2B. As the fetch formulas are obvious, we show the derivation of the store

count for the NM. First, each operator in {t calculates a result which must be

stored immediately which gives the term +/RD. Also, temporary space must be

allocated for selection operations and those cases of scalar operators in which

one of the operands is not itself a temporary. In such a case, another

4+ (result-rank) words mustbe stored. (All but one of these is for the new DA;

the other is for the header word for the value array0) The result ranks of the

operations in ~ are in the vector RR. Thus, .the compression selects those

elements of 4tRR which correspond to the conditions just stated. In particular,

(-l=TY) is a vector having a one for each selection operator and TVA(1::;TY) has

a one for each monadic or dyadic scalar operator whose evaluation requires

temporary space to be allocated. The sum of these terms gives the formula

shown; the other formulas are derived similarly.
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We can form the ratios of the corresponding quantities for each machine and

attempt to get some estimate of their values. RF, the ratio of fetches in the naive

machine to fetches in the APL machine,is given by:

RF +-+ ±LHDx!TY ~ +/ZxTY since Z$RD.
RxZ RxZ

+-+ Zx+/ITY +-+ ZX(M+S+.2 xli)+-+ M+S+( 2xR2::.1. because
RxZ RxZ R

Thus RF > 2 M+S-2, - + R

N=R-l

Hence, for fetches, the APLM does at least twice as well as the NM if there are

at least two monadic or select operators. The worst case is when M or S or N

is 1 and the rest are 0, in which case the ratio is 1. The above also shows that

the ratio increases (Without bound) in proportion to the number of monadic and

select operators in the expression 8.

The ratio of stores for the two machines, RS , is:

RS +-+ ~±LRD)+±Lii-l=TllvTVA(1<TY»/(4+RRJ
Z+(px(4+Y»++/( 1=TY)/Nlx(3+RR)

~ ~RD)++/«-1=Ty)vTVA(1$TY»/(4+RR)

Z+(px(4+Y»++/( 1=TY)/N1x(3+RR)

(M+N+S)++/«-1=TY)V~VA(1<TY»)!(~

1 ~4+Y»++/( 1-TY)/N1 x(3+RBl
+ Z

(SINCE pRD +-+ M+N+S)

But the numerators of the two fractions with denominator Z are bounded,

while Z can increase without bounds. Thus for large Z.

RS-;:;:M+N+S

That is, in expressions in which the size of the operand arrays is large (i. e., at

least as many elements as there are operators) the NM requires more stores

than the APLM, approximately in proportion to the number of operators in the

expression.
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In the case of temporary storage allocated, the ratio, RT, is:

RT ~ -:J:.i..TV'-:-I....( 4..:...t~R:.::D~tR~,R~):--_~__
(px(4tYtZ»tt/( 1=TY)IN2x(3tRR)

> _ tITVI(pRD)p(4tYtZ)
- (4tYtZ)tt/( 1=TY)IN2x(3tRR)

~ ...:t.il:L _
1t!Li:1=TY)/N2 X(3tRR)

4tYtZ

Again, the lower bound is greater than 1, since (tITV)~1. In this case, the

ratio is of the order of tlTV,for large Z, which is a function of the tree structure

of 8 rather than an explicit function of its operator count. Note that in the case

where 8 contains no select operations and pis O,the ratio is infinite, since the

APLM requires no temporary storage.

For the case of operations the ratio, RO, is:

RO ~ tJ...(15,TY) IRD
+/(1TY) 12

But Z5,RD and the compression in both numerator and denominator select the

same terms. Thus, RO~1 •

E. Example - An APL One-Liner

APL makes it easy to produce simple one-line programs to do

some interesting task. One such is the program (expression) for find-

ing all the prime numbers less than or equal to N, as shown below.

(Index origin is 1)

PRIMES + (2=t/[1]O=(lN)o. 11N)/1N

Although the algorithm used is clearly inefficient, such expressions are not

uncommon. Since the APLM purports to be an efficient evaluator of expressions,

it is worthwhile to look at this example in more detail. The machine code for
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this expression is:

OP OPERAND COMMENTS

LDNF N

IOTA This gives the compressee, IN

LDNF N

IOTA

LDNF N

IOTA These are the IN operands of outer product

GDF MOD ( IN) 0 • IlN - Matrix of remainders of all

possible divisions

LDS 0

EQ 0::( IN)o .llN - Has 1 for each 0 remainder,

else 0

LDS 1

RED ADD +/[lJO=(lN)o.llN - Add rows of this

matrix

LDS 2

EQ 2=+/[1JO=( IN)o .llN - Find which columns

have two 1 entries

LDS 1

CMPRS Do compression. These are the primes

LDN PRIMES Assign result to PRIMES

ASGN

Since the number of scalar operations performed is the same for both

machines, this will not be measured. At the point before executing the LDS 1

instruction which precedes the CMPRS, the state of the APL machine is as

shown in Fig. 1..
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VS QS

OP VALUE LINK AUX

SGT • ~l IJ (LN) 01

SGT ~.

RED 8

IJ (LN) 10

IJ ( LN) 01

GOP MOD 2 11

IRD @T1 11

S 0

OP EQ 2 11

OP ADD 7 11

SGV

S (-N)

MIT

IRD @T2 01

S 2

"- OP EQ 2 01

FIGURE 1--State of the registers before compress operator.

Up to this point, the NM used memory as follows:

Instruction Fetches Stores Temps

~+N N
2

+2N+16
2

(N+5 stores and tempsGDF N +2N+16
necessary to evaluate
each LN before GDF +
the space for result)

EQ N
2

N
2

0

RED N
2

N+5 N+5

EQ N N 0

TOTAL 3N
2

+2N 2N
2

+4N+21 N
2

+3N+21

The count for the APLM at this point is 0 fetches, 9 stores, and 9 temps for the

descriptors T1 and T2. However, when the CMPRS operator is found, the left

operand must be evaluated as explained in Chapter IV. Thus, the long QS segment
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must be handed over to the E-machine. This requires N
2

+N fetches, N+5 stores,

and N+5 temps. In order to do the CMPRS in the NM, the right operand (iN)

must be evaluated,requiring N+5 each of stores and temps. The CMPRS itself

takes another N+P fetches, P+5 stores, P+5 temps in the NM, where P is the

length of the result. In the APLM, the CMPRS is expanded and deferred,as is

the ASGN which follows. The NM requires no work to do the ASGN. The APLM,

after this instruction, has its QS full of deferred code for the CMPRS and ASGN.

It had to allocate P+5 temps for the result of ASGN (assuming PRIMES was not

the correct size already). Passing the QS to the EM requires another N+P fetches

and P stores for the APLM. Thus the grand totals are:

NAIVE MACHINE

APL MACHINE

FETCHES

3N
2
+3N+P

N
2

+2N+P

STORES

2N2+5N+P+31

N+P+23

TEMPS

if+4N+P+31

N+P+23

Recall that P is really a function of N, the number of primes less than N,

which is asymptotic to 10; N • Thus, we can evaluate the performance ratios

between the two machines in some specific cases. These ratios are RF, RS,

and RT, the ratios of NM fetches to APLM fetches, stores, and temporaries,

respw tively. Also of interest is RM, which counts all memory access (fetches

+ stores), and is the ratio of these two quantities. Table 3 below tabulates these

quantities for a few values of N.

TABLE 3

Performance Ratios for Primes Problem as a Function of N

N P RF RS RM RT

10 4 2.69 7.7 3.84 4.7
100 25 2.97 138.9 4.91 70.6
500 95 2.99 813.3 4.98 408.0

1000 168 2.997 1683.6 4.99 843.2
5000 669 2.999 8788.8 4.998 4395.8

10000 1229 2.9997 17779.2 4.9992 8891.0
50000 5lJ3 2.99994 90656.6 4.9998 45329.7
lim logN

3 2N 5 N
N-oo
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TABLE 4

Operation Count for One Pass Through Main Loop, Program REC

NAIVE MACillNE APL MACHINE

8TATEMENT FETCHE8 8TORE8 TEMP8 FETCHE8 8TORE8 TEMP8

6 8 28+5 8+5 0 8+4 4

7 2K 2K+5 K+5 K K+9 K+9

8 1.5K 0 0 1.5K 0 0

9 8 23 21 8 31 29

10 48+4 48+20 28+20 48+4 48+38 28+38

11 382+38 282+28+5 82+8+5 82+8 4 4

12 38+3 38+8 8+6 8+1 8+9 8

13 382+98+1 282+68+22 82+48+22 282+48 82+28+24 82+28+24

14 282+28 282+28+12 282+28+12 82+8 82+8+16 82+8+16

15 8 8+5 8+5 8 8+9 8+9

TOTAL: 882+238+16 682+208+105 482+128+101 482+128+13 282+108+144 282+68+141
+3.5K +2K +K +2.5K +K +K



The above table indicates that the APLM does significantly better than the

NM on this program. The RS figures may be deceptive since in terms of total

memory accesses the ratio approaches a limit of 5. This is still significant, as

is the RT ratio, which increases linearly with N (for large N).

F. Example - Matrix Inversion Programs

As a final example, we analyze the performance of both machines on a

standard example, a program which does matrix inversion by elimination with

pivoting. To avoid charges of bias, the particular program used was taken from

the literature rather than written by the author (Falkoff and Iverson [1968a], p. 19).

The program REC is shown in Fig. 2 and has been changed only by altering the

syntax of the conditional branch statements. This does not affect the measure-

ments made here and is done purely for esthetic reasons.

Table 4 counts the memory accesses and temporary stores statement-by-

statement for one pass through the main loop in program REC. This loop is

executed S times. All but the terms involving the variable K are independent of

the iteration count. K varies from S to 1 from the first pass to the last. Thus,

we can obtain the totals for all passes through the loop by multiplying non-K terms

by S and by summing the K terms. This gives the counts in Table 5 below:

TABLE 5

Total Operation Count For Main Loop, Program REC

Naive
Machine

APL
Machine

FETCHES srORES

6s3+21~+106S

3 2
28 +10.58 +144.58
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V B + REC A ; P ; I ; J ; K ; S
~ MATRIX INVERSION BY ELIMINATION WITH PIVOTING

1 IE (2=ppA)A=/pA 'l.!i.E.t:l. -+Ll
~ ERROR EXIT

2 L2: o + 'NO INVERSE FOUND'
3 RETURN

A S IS DIMENSION OF A
A P RECORDS PERMUTATIONS OF ROWS OF A
~ K SELECTS SUBARRAY OF A FOR ELIMINATION

4 Ll: P + ,K + S + ltpA
~ ADJOIN NEW COL TO A FOR RESULTS

5 A + «Sp1),O)\A

6 L3 :

7
8

9
10

11

12

13

14
15

16

17

~ ***MAIN LOOP*** (REPEATED S TIMES)
~ INITIALIZE LAST COLUMN

A[;S+l] + l=,S
A FIND PIVOT ELEMENT, WITH ROW INDEX I

J + IA[,K;l]
I+J, r/J

~ INTERCHANGE ROWS 1 AND I
~ RECORD THE INTERCHANGE IN P

P[l,I] + P[I,l]
A[l,I;,S] + A[I,l;\S]

~ CHECK FOR SINGULARITY
IF lE-3D > IA[l;l] f r/I,A 'l.!i.E.t:l. -+L2

~ NORMALIZE PIVOT ROW
A[l;] + A[l;] f A[l;l]

~ ELIMINATION STEP
A + A-«l~,S) x A[l;]) O.X A[l;]

A ROTATE A TO PREPARE FOR NEXT STEP
A THIS BRINGS 'ACTIVE' SUBARRAY TO UPPER LEFT

A + l<l>[l]l<M
P + l¢P

A ITERATE ON K
IE D<K+K-1 'l.!i.E.t:l. -+L3

A DO COLUMN PERMUTATIONS TO PRODUCE RESULT
B + A[;P"S]
'V

EIQQEE._l: EXAMPLE PROGRAM: REC
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In order to compare the performance of the APL machine to the naive machine,

let us form the ratios of the corresponding counts and see how they behave for

different values of S. (Recall that S is the dimension of the matrix being inverted

by the program under consideration.) The first derivatives of all three ratios are

positive for 8>0, so that all ratios are increasing as S increases. Table 6 sum-

marizes the properties of the ratios as a function of S.

Let RF(S) by the ratio of fetches in the NM to those in the APLM, RS(S) be

the ratio of stores, RT(S) be the ratio of temporary storage allocated, and RM(S)

the ratio of all memory accesses (fetches + stores). Then,

RF(S) = 8g2+24. 75St17. 75

4SZ+13.258+14.25

_ 6SZ+218+106RS(S) - ---;:;---~--

2SZ+10.58+144.5

RM(S) = 14g2+45.758+123.5

6g2+23.75St158.75

RT(S) = 4SZ+12. 5St101. 5
282+6.58+141.5

TABLE 6

Machine Comparison Ratios For Main Loop of REC

S RF(S) RS(S) RM(S) RT(S)

1 1.6 0.847 0.97 0.787

2 1.75 0.99 1.18 0.878

3 1.82 1.15 1.36 0.978

5 1.89 1.46 1.64 1.18

10 1.95 2.04 1.99 1.54

100 1.996 2.94 2.31 1.99

1000 1.9996 2.995 2.332 1.9997

limit 2 3 2 1/3 2
S-oo
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An examination of Table 6 shows that for input arrays A of dimension greater

than or equal to 3,3 the APL machine does better than the naive machine by using

fewer fetches and stores. If pA is 4,4 or more, fewer temporaries are allocated

by the APLM. Finally, the entries for S= 10 and S= 100 show that these improve­

ments rapidly reach the theoretical limits. In the region &.:>4 the size of descriptor

arrays is approximately the same as the size of the value part of vectors of length

S and not much less than the size of arrays of dimension S, S. Thus for small S,

the extra overhead in the APLM for creating descriptor arrays in drag-along

predominates. However, as S increases, the APL machine improves significantly

compared to the naive machine in its economy of memory usage and access.

The program REC used in the previous discussion was taken straight from

the literature and was changed only by altering the branch commands and by

replacing the operator a by an equivalent construction (because a is no longer a

defined operator in APL). Primarily, it is important to emphasize that this is

not a specially prepared example designed to tout the virtues ofthe APL machine. In

some sense, this is a "typical" program. By looking more closely at Table 4

we can get a clearer idea of where the APLM does better than the NM and where

it lags behind.

The APL machine does better (that is, uses fewer fetches, stores, and/or

temporaries) than the naive machine on statements 6,7,11,12,13,14 does the

same as the NM on statement 8, and worse on statements 9, 10, and 15. The

places where the NM does better than the APLM are precisely those statements

or expressions in which the more successful strategy is to do an immediate

evaluation rather than defer the operation. All three are, in this example, state­

ments ofthe form variable -T variable, where T is an arbitrary permutation of

the subscripts of variable. In all three of these cases, the APLM does worse
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only by an additive constant, which is the space (and stores) required for a DA

to describe the deferred right-hand side of the expression. The NM avoids this

by evaluating directly. The same number of fetches are done by both machines

for these statements. Of more interest are the cases where the APLM improves

on the NM. In all situations these are statements involving more than one operation

on the right-hand side of the assignment arrow. By using drag-along and beating,

the APLM requires fewer temporaries for intermediate results, which in turn

requires fewer stores and consequently fewer fetches when the intermediate results

are used later in the expression. The most dramatic demonstration of the efficacy

of drag-along is shown in the use of temps in statements 6,11, and 12 and the

stores in statement 11. In all these cases the APL machine uses storage in

proportion to the number of array operands while the naive machine requires

storage proportional to the size of the array operands. Also, with the exception

of statement 10, the number of stores for each statement is proportional to the

size of the result for the APLM while in the NM it is generally proportional to

both the size of the result and the number of array operations.

As an interesting experiment to see how much these measures of the machine's

operation are a function of the actual machine design and how much they depend

on the sample program, the author rewrote the function REC in the form shown

in Fig. 3, where it is renamed RECI. REC1 is the same algorithm used in REC

except that the actual permutations of array A in lines 10 and 14 ofREC have been

eliminated by using appropriate indexing instead. Also, statement 13 in REC

(which corresponds to statement 14 in REC1) is recast to eliminate unnecessary

operations and to minimize temporaries in both machines. An analysis of the

main loop similar to that for program REC is summarized in Table 70
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V B + RECl A ; I ; J ; N ; R ; S ; T ; W
A MATRIX INVERSION BY ELIMINATION WITH PIVOTING
A 'OPTIMIZED' VERSION
A THIS PROGRAM DIFFERS FROM REC IN THAT ARRAY
A PERMUTATIONS ARE DONE BY CHANGING THE
A PERMUTATION VECTOR. R. RATHER THAN ACTUALLY
A PERMUTING THE MAIN ARRAY. A IS THEN ACCESSED
A BY INDEXING WITH R.

1 IE (2=ppA)A=/pA XHg~ +Ll
2 L2: 0 + 'NO INVERSE FOUND'
3 RETURN
4 Ll: R + lS + (pA)[l]

A S IS DIMENSION OF A
A R RECORDS PERMUTATIONS AND IS USED TO ACCESS A
A N COUNTS ITERATIONS

5 N + 0
A ADD NEW COL TO A; BUILD RESULT IN LEFT COL

6 A + (O.Spl)\A

A ***MAIN LOOP*** (REPEATED S TIMES)
A FIND PIVOT ELEMENT

7 L3: J + IA[(-N)+R;N+2]
8 I + J 1 r/J

A INTERCHANGE BY ALTERING PERMUTATION VECTOR
9 R[l.I] + R[I.l]

A INITIALIZE RESULT COLUMN
10 A[;N+l] + R[I] = \S
11 I.E lE 30> IA[R[l];] . r/I.A Xfifd.li. +L2

A NORMALIZE PIVOT ROW. AND SAVE IN W
12 W + A[R[l];] + A[R[l];] t A[R[1];N+2]

A T IS ACTIVE COLUMN
13 T + A[;N+2]

A ELIMINATION STEP
14 A[l+R;] + A[l+R;] - T[l+R] O.X W

A 'ROTATE' A BY ROTATING R
15 R + l<pR

A ITERATE ON N
16 I.E S > N+N+l Xfifd.li. +L3
17 B + A[;Rl\S]

V

EI.QQR~_~: 'OPTIMIZED' EXAMPLE PROGRAM: RECl
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TABLE 7

Operation Count for One Pass Through Main Loop, Program REC 1

NAIVE MACIDNE APL MACHINE

8TATE ME NT FETCHE8 8TORE8 TEMP8 FETCHE8 8TORE8 TEMP8

7 48-4N 38-3N+I0 28-2N+I0 28-2N 8-N+17 8-N+17

8 1. 58-1. 5N 0 0 1. 58-1. 5N 0 0

9 8 23 21 8 31 29

10 8 28+5 8+5 0 8+4 4

11 382+38 . 282+28+5 82+8+5 82+8 4 4

12 38+3 38+8 8+6 8+1 28+10 * 8 **
13 8 8+5 8+5 8 8+4 * 4 ***
14 582+58-10 482+48+19 282+48+26 282+48-6 8 2+30 31

15 8 8+5 8+5 8 8+9 8+9

TOTAL: 882+19.58+1 682+168+80 382+118+83 382+11. 58+3 82+68+109 28+106
-5.5N -3N -2N -3.5N -N -N

(+10 once) (+28+11 once)

* +5 once for entire loop
** +8+6 once for entire loop
*** +8+5 once for entire loop



In this algorithm, as in REC, the inner loop is performed S times. The

counts shown in Table 7 are independent of the iteration number except for terms

involving variable N. Examination of the program shows that N goes from 0 to

8-1, increasing by 1 with each pass through the loop. Thus, as in the case of

REC, we can obtain total counts for the main loop by summing the N terms and

multiplying the others by S. The results are summarized in Table 8.

TABLE 8

Total Operation Counts For Main Loop, Program REC1

Naive
Machine

APL
Machine

FETCHES

3S3+9. 75ff+4. 75S

STORES

sr+5. 5ff+109. 58+10

TEMPS

An immediate, rather startling observation from this table is that all of its

entries are strictly less than the corresponding entries in Table 5 which summarizes

the operations of REC. This is somewhat surprising because although the rewriting

of the program was done in order to optimize it for the APL machine, it unexpectedly

improved performance of the naive machine, as well. In any case, this simply

lends more weight to the data summarized in Table 9, where the performance

ratios are computed for the two machines operating on this program.

For program REC1, based on the data .in Table 8, the ratios are:

2
RF(S) = 8S +16.758+3.75

3~+9. 75S+4. 75

RS(S) = ~sr+14. 5S
2

+81. 5S

S +5.5~+109.5S+10

3 2
RM(S) = ~4S +31. 25S +85.25S

4S +15.25~+114.25S+10

RT(S) = 3S3+10ff+84S

1. 5ff+108. 5S+11
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TABLE 9

Machine Comparison Ratios For Main Loop of REC1

S RF(S) RS(S) RM(S) RT(S)

1 1. 63 0.81 0.91 0.8

2 1. 91 1. 04 1.23 0.99

3 2.07 1.29 1.53 1.21

5 2.24 1. 85 2.02 1. 77

10 2.41 3.11 2.69 3.88

100 2.64 5.77 3.44 120.2

1000 2.66 5.98 3.49 1871. 3

limit 22/3 6 3.5 2S
S-oo

G. Discussion

In the preceding sections we look at a number of typical inputs to the APL

machine and find that in all but a few singular cases, it evaluates them more

efficiently than a corresponding naive machine. This is a fair kind of comparison

because although the naive machine mentioned here is hypothetical, it is based

on the design of existing APL implementations, at least one of which is commercially

available. The important question, of course, is what kinds of conclusions may

we draw from these particular cases? I offer the following:

1. Section D derives lower bounds, all greater than 1, for the ratio between

memory accesses and temporary use on the two machines on a simple class of

expressions. From this and the previous section .it appears that the APLM

evaluates expressions of the type analyzed in Chapter II more efficiently than

the NM.

2. Operations involving scalar operands are done equally well on both machines.
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3. Sections E and F contain more realistic program examples which were

analyzed in detail. In both cases, the APLM improves significantly on the NM

in its use of memory.

4. The only cases where the APLM does worse are those expressions

containing a single operator which does not fit into the beating scheme, and for

which the best evaluation strategy is to evaluate immediately, rather than to

defer. In these cases, the NM does slightly better than the APLM but only by

a small additive constant. (This being the space and stores for the APLM to

construct a deferred descriptor.)

In view of the above, it is clear that in most cases, the APL machine design

proposed here is more efficient than a naive machine in the sense that for any

given program, the APLM uses fewer fetches, stores, and allocates fewer

temporaries than the naive machine. *

*A corollary worth noting is that there exist inputs (i. e., programs) for which
the APLM always performs worse than the NM according to the measures derived
here. However, this should be neither startling nor alarming and does not detract
from the general conclusion above.
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CHAPTER VI

CONCLUSIONS

In this chapter, we will summarize all that has gone before and indicate some

directions for future research on this subject.

A. Summary

Although the original goal of this investigation was to produce a machine

architecture appropriate to the language APL, some of the work done in pursuit

of this goal is intrinsically interesting in itself. In particular, we call attention

to the mathematical analysis discussed in Chapter II. In Chapter IT, we find that

there is a subset of APL operators (the selection operators) whose compositions

are also selection operators. Further, compositions of these operators can be

represented compactly in a standard form. Moreover, there is a set of trans­

formations sufficient to transform any expression consisting solely of selection

operators acting on a single array into an equivalent expression in standard form.

By extension, similar results are described that apply to select expressions which

include scalar arithmetic operators, reductions, and inner and outer products.

One result, of at least theoretical interest, is that all inner products can be

represented as a reduction of a transpose of an outer product (Theorem Tb ).

The general dyadic form is introduced in Chapter IT as a vehicle for extending

the results about selection operators on single arrays or scalar products to

analogous results on inner and outer products.

In Chapter III, we show that if arrays are represented in row-major order

and if the representation of the storage access function for an array is kept separate

from the array value, then the result of applying a selection operator to an array

can be obtained simply by transforming the mapping function. This approach is

the basis for beating, one of the novel features of the APL machine. In mathematical
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terms, beating is equivalent to the following: if an array is construed as a function

(the storage access function S) applied to an ordered set of values A, and if F1,

F2, ••• , FN are selection operators then the sequence

F1(F2( ••• (FN(S(A»)))

is equivalent to some new function T(A) where T is a functional composition with 0:

T-(F1 0(F2 0(••• o(FN 0 8»»

Chapter IV describes a machine based on the beating process and the drag-

along principle. The latter says that all array calculations should be deferred as

long as possible in order to gain a wider context of information about the expression

being calculated. This is done because of the possibility that extra information

might allow the simplification of the expression to be evaluated. This is particularly

important when, as in APL, operands are array-shaped. In effect, a language

like APL which allows sophisticated operations on structured data to be encoded

very compactly, makes it possible to write expressions which, though innocent­

looking, require much calculation. In fact, one major goal of the machine design

is to minimize any unnecessary calculations in evaluating APL programs. Thus,

drag-along becomes an important way of doing so. Drag-along combines all

element-by-element operations in an incoming expression into a single, more

complex, element- by-element operation which need only be done once for each

element of the result array. This is based on the fact that for most APL operators, E.,

A f. B means for all L EL1'1 p( A f. B)

(A f. B)[;/L] ++ (Fi A)[;/LJ f. (F2 B)[;/LJ,

where Fi and F2 depend on f. and are normally the identity function. Simply

stated, this says that a single element of an array-valued expression can be com­

puted by evaluating a similar expression of single elements.
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The APL Machine is divided into two submachines, the Deferral Machine

and the Execution Machine, in order to facilitate drag-along and beating. Con­

ceptually, the DM is a dynamic, data-dependent compiler which examines incoming

expressions (machine code) and their operand values (data) and produces instructions

to be executed by the EM. This code is deferred in an instruction buffer and can

also be operated upon by the DM. At appropriate times, control is passed to the

EM which executes the deferred instructions. Since EM code must compute an

array-valued result, a stack of iteration counters are used by the E-machine to

produce all elements of the result one at a time. A feature of the APLM which

makes it easy for the DM to manipulate its own deferred code is that programs

(and deferred code) are organized into segments which contain only relative ad­

dresses. Thus pieces of program can be referenced by descriptors, and these

pieces can be relocated at will simply by changing the descriptors and not the code.

This scheme leads to the use of a stack of instruction counters, each one of which

refers to a currently active segment in either the EM or the DM. Thus it is easy

for the machine to change state and recover previous states, thereby simplifying

the entire control process.

Chapter V contains a discussion of the machine design in which it is shown

that at worst, the APL Machine performs the same as a naive machine executing

the same program and at best shows a significant improvement. The primary

parameters used in the evaluation are measures of memory utilization. Other

measures, such as encoding densities, are not appropriate, as this aspect of the

machine design has not been specified. Such measures should be taken into account,

however, if it is desired to implement a machine such as this. The evaluation of

a subset of APL containing only scalar arithmetic operators and select operators

shows that the APLM approaches the theoretical minimum of memory accesses
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and temporary storage utilization for this class. Further, the ratio of accessing

operations between the NM and the APLM are significant since the NM expends

effort for fetching and storing in proportion to the number of operators in an

expression while the APLM does fetches in proportion to the number of operands

and stores only once. Similarly, it is noted that for this class of expressions,

the APLM needs to allocate space only for the result of an expression while the

NM requires temporary storage which is a function of the tree structure of the

expression being evaluated.

In the same chapter, an analysis of an APL !lone-liner" and a matrix inversion

program containing a more general mix of operators, shows that the APLM does

better than the NM by at least a factor of 2 on these measures. A final observation

is that the APLM described here is not significantly different in complexity from

a naive machine. Thus, it could presumably be implemented with approximately

the same resources. Hence, it appears that this design is an improvement and

could profitably be used in future incarnations of machines for APL.

Although the APL machine is an improvement over the naive approach, it

would be absurd to claim that it is the "final solution" to the problem. Clearly,

it is not. There are still some functions, such as compression or catenation,

which it handles awkwardly. Similarly, it is distasteful (and inefficient) to evaluate

operands of a GDF explicitly if they are other than simple select expressions.

Ideally, there should be no temporary storage used for the evaluation of expressions

without side effects (such as embedded assignment). Thus, there is still work

to be done on this problem.
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B. Future Research

The ideas summarized here tend to fall into two classes - extensions or

refinements of the work already reported, and new problems suggested by the

current research.

In the second category is the area of mathematical analysis of APL operators.

The work in Chapter IT of this dissertation barely skims the surface of this topic.

The general problem, of course, is at the heart of f1Computer Science, 11 namely

the study of data-structures and operations upon them. However, APL and its

extensions are rich in mathematical interest and this field deserves further,

more concentrated investigation. Similarly, the results found in Chapter II as

well as the structure of the machine have implications for language design. An

important next step is to take some of the ideas which appear in the machine or

the analysis and attempt to map them back into the programming language. As a

trivial example, the ease with which the machine evaluates select expressions

suggests that there ought to be the possibility of more general select expressions

allowed to the left of an assignment arrow, e. g., it should be possible to say

(1 lQM)+-A, meaning assign A to the main diagonal of M. Again, the ease with which

the APLM does segment activation suggests that there should be some parallel

facility in a programming language. At the very least, APL should contain some

more sophisticated sequence-controlling ?perations such as case, conditional,

and repeat constructs. A final possibility along these lines is suggested by the

similarity among the various selection operations. Simply that there exists such

a compact standard form suggests that there might be a different, perhaps more

general, set of selection primitives which would be desirable in a language like APL.

In the direction of refinements there are several areas of interest. One is

to try to add more parallelism to the machine. In this work, we have used the
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implied parallelism of APL in drag-along and beating, but it appears not to be

fully exploited. For instance, there is the interesting possibility of making

the DM and the EM more independent, thus gaining an amount of parallelism.

There is no reason, for example, why there could not be multiple copies of both,

working simultaneously on different parts of an expression or program. Another

place where parallelism could be exploited is in the E-machine. Instead of doing

everything in serial, much could possibly be done on a grander scale.

It appears possible to extend the formulation of the standard form to include

more operators such as catenation, restructuring, rotation, compression,

expansion, and explicit indexing. If such a general form could be found, the operation

of the machine could be simplified and perhaps made more efficient.

In order to have any real implementation of the machine, it will have to be

extended to include instructions for input and output and other systems-type

functions. Also, as soon as an implementation is attempted, problems such as

encoding of data and instructions will have to be broached. S.imilarly, .it will

probably be necessary to consider the question of data types in a real incarnation

of the APL machine. Other machine extensions which might be eonsidered is the

addition of a set of registers (possibly stacks) for eliminating some of the problems

of temporary storage in EM code which does not follow the stacking discipline of

VS. This, in turn, entails the addition of in~tructions to the machine's repertoire,

although these might not have to be visible to the programmer.

Although on the one hand it is counter to the idea of a language-oriented

machine, it might be desirable to give the (systems) programmer more direct

control over the E-machine. In particular, this would make it possible to "pre­

compile" particular segments for the EM when enough information is available in

advance. An interesting extension of this is to allow the EM to call upon the DM
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in the same way that the DM uses the EM. This would make the overall system

more symmetric and might increase its power and versatility.

A further area of investigation combines language and machine design. This

is the problem of extending APL to include more general kinds of data structures,

such as lists or records, and then attempting to fit these into the structure of the

machine. This problem, in turn, makes further demands on the mathematical

analysis of the language and its operators.

Finally, it is important to .investigate the possibility of extending some of

the methods and results of this work to other languages and data structures.

c. Concluding Remarks

This chapter has summarized the mathematical analysis and machine design

reported in this dissertation and has indicated some directions for fruitful investi-

gations in the future. It is pleasing to be able to end this work with a feeling of

accomplishment, yet.it is perhaps more satisfying to know that this is not really

an ending, but a beginning.

The Road goes ever on and on,
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with weary feet,
Until it meets some larger way,
Where many paths and errands meet.
And whither then? ••
I can not say.

J. R. R. Tolkien
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