Writing Auxiliary Processors for APL2

February 18th, 1988

Ray Trimble

IBM Corporation M46/825
P.O. Box 48023
San Jose CA 95161-9023

Preface

APL2 has included, since Release 1, a rich set of system independent auxiliary processor services and
interfaces. Customer documentation for these facilities is only now becoming generally available.

This paper will provide a survey of those facilities and an exampie of their use. Inciuded are services
to provide data conversion, error handling, file system access. message formatting, muiti-tasking,
shared variable processing. terminal control, and dynamic virtual storage.

Most of these same services are also available to Processor 11 Function Routines, and the material
here shouid also be helpfui in writing those. But the focus of this paper will be auxiliary processors.

Familiarity with the concepts of APL shared variables and auxiliary processors is assumed. Compiete
details of these facilities are provided in SH20-9234 APL2 Programming: Processor Interface Reference.

Considerable reference is made to the term “CDR.” This is an acronym for Common Data Represen-

tation, and refers to an interchange data format which was formerly defined in Appendix A of
SH20-9215 APL2 Migration Guide, but is now presented in the Processor Interface Reference.

Preface i

Starting an Auxiliary Processor

APL2 supports two distinct types of auxiliary processors (APs) which are started in quite different ways.

e Global APs are system-wide servers. They share variables, often concurrently, with muitiple APL
sessions. These APs are typically started during operating system initialization. Under VM they
execute in separate disconnected virtual machines. Under MVS they each execute in their own

address space.

o Local APs are written to share with only one APL session. A separate instance is created for each
user that wants to use a given local AP. The APs are started by the APL2 executor, normailly
during user invocation of APL2. They execute under control of the user’s virtual machine or

address space.

Global APs are given control directly by the operating system, and obtain most of their services from it.
They wiil not be discussed further in this paper.

Local Auxiliary Processor Entry

When an auxiliary processor is started (by APL2), it is given control using a standard CALL linkage.
APL2 provides a parameter list, as follows:'

1. (Used only by VS APL compatibility support.)

2. A pointer to a service routine which may be called by the auxiliary processor. This service routine
supports the services described later.

3. The beginning of a mode! parameter list for the Virtual storage service (see the VP service

described later). This helps solve the bootstrapping problem for reentrant programs of needing

storage for the request that obtains storage.

The second parameter for the VP service call.

. The third parameter for the VP service call.

(Reserved)

. The length of any string being passed to the AP by APL invocation.

. The parameter string (if any) provided in the APNAMES invocation option.

NN WL N

Local Auxiliary Processor Exit

Auxiliary processors should terminate when they receive a CSVENA return code from an SVP service,
or cbserve the “sign ofl” signal sent by the SVP. This signal will always be posted in the processor
ECB. Processors shouid break their connection with the SVP before terminating.

On normal termination registers must be as at entry, and the processor must return to the address in
register 14.

An abnormal termination will occur if an unrecovered program check or ABEND occurs in the auxiliary
processor task. Processors may recover from all program checks and most abends by using the EX
service described later.

' Throughout this paper. numbered lists are used lo represent parameters, by number, in a parameter list.

Data Conversion Services

There are several services in this group:

DE Translate from VS APL Zcode to EBCDIC
DN Change the data format of numbers

DU Transiate with yser-supplied tabie

DX Convert Extended Character data

DZ Transiate from EBCDIC to VS APL Zcode

Of these, probably only the DN service is of general interest.

DN: Change Data Format of One or More Numbers

This service produces a list of numbers in the output area, in the format specified by the output type.
The input area is analyzed according to the input type. The caller specifies an origin-O index of the
first number to extract, and the number of elements required. The index is a single integer, applied to
a ravelied form of the input array.

The input and output types supported are:

A0
81
1]
12

14

E4
E8
EX
co

APL object

Booiean (1 bit, packed 8 per byte)
8-bit binary (unsigned)

halfword binary

fullword binary

1-word floating point

2-word floating point

4-word floating point

An item from a CDR (input only)

Here is a summary of the parameters for this service call. Like all services, the AP must provide a
standard CALL-type interface.

@ N

@~

DN The two-character service request code.

. A fullword service compietion code.
. A fullword containing the length of the output buffer.
. The numeric resuits. .

The data to be converted, except that for type A0 it is the COR or VS APL descriptor of the data.
Two two-byte fieids, each containing a two-character data type code. The first fieid determines the
format of the Sth parameter, while the second determines the format of the 4th parameter.

. A fullword containing an origin-O index into the input data.

A fullword containing the count of elements to be converted.
For type CO only, the simpie (never G-type) CDR descriptor of the input array.

Error Handling Services

There are three services in this group:

ED Produce a dump (but continue processing)
ET Terminate abnormaily
EX Set or clear an ABEND exit

All three services have very simple parameter lists. The ruies for exit routines defined by the EX
service are more complicated.

ED: Produce a Dump

1. ED The two-character service request code.

2. A four-character dump identifler.

3. An optional eight-byte Program Status Word associated with the problem.

4. An optional 16 word area containing register values associated with the problem.

ET: Terminate Abnormally

Note: If an EX exit currently exists for the process requesting the ABEND, that exit routine will gain
control. You may want to clear the exit using the EX service before issuing ET.

1. ET The two-character service request code.
2. A fullword containing an abend code number between 1 and 999.

EX: Set or Clear an ABEND Exit

This service specifies the address of an exit routine which will be given control if an ABEND or
program check occurs whiie the process is in control. Any previous exit for the same process is
cleared when an exit is set (that is, there is no facility for stacking exits).

The exit routine is not given control on attention signals uniess the process is terminated because of
repeated unacknowiedged signals. The abend exit will be given control even on nonretryabie abends
for which APL2 gains control. On an MVS system these include operator cancel, timeout, etc. In
general, VM does not give APL2 control in nonretryable situations.

1. EX The two-character service request code. .
2. A (ullword containing the address of the routine to be given control, or zero to remove the abend
exit for tl_\is process.

Entry/exit conditions for abend exits

The abend exit is entered uysing a normal CALL interface, and the foilowing parameter list:

1. A fullword containing the user or operating system abend code.

2. A fullword in which a retry address may optionaily be supplied. If it is not, the process will be
terminated on return from the exit.

3. A four character field in which a dump code may optionally be supplied to request a dump on exit.

On entry to the exit routine. the registers as of the last service call issued by the processor. On

exit. the registers that will be passed to the retry routine.

An abend type indicator: F (Force off). P (Program check), S (System abend). or U (User abend).

For type P only, the hardware Program Status Word (PSW) at the time of the error.

For type P only, registers that correspond to the PSW in the 3rd parameter.

&

~ oo

Prose ammdlimm ©cm. ' meas 1

File System Services

The file system provided through these services corresponds to that used by AP 121.

FC Create an APL File

FD Delete an APL File

FS Change the Size of an APL File
FA Open an APL File

FZ Close an APL File

FW Write an APL File Record

FR Read an AP\ File Record

FC: Create an APL Flle

. FC The two-character service request code.

. A fullword service completion code.

. A lullword library number within which the file is to be created. -

. An 8-character field containing the name of the fiie to be created.

An 8-character field containing an optional password for the library.

A fullword containing the maximum size of the file in bytes, or zero.

A 2-character field in which the second byte must contain an S or D to indicate a Sequential or
Direct file.

A fullword containing, for Direct files, the maximum length (in bytes) that any record in the file will
ever require.

NOW AN

FD: Delete an APL File

1. FD The two-character service request code.

2. A fullword service compietion code.

3. A fullword library number within which the file is to be deleted.

4. An 8-character fleld containing the name of the file being deleted.
5. An 8-character field containing an optional password for the library.

FS: Change the Size of an APL File

. F5 The two-character service request code.

. A fullword service compietion code.

. A fullword library number within which the file exists.

. An 8-character field containing the name of the file being changed.
. An 8-character field containing an optional password for the library.
. A fullword containing the new maximum size of the file in bytes.

AU HWN

FA: Open an APL File

. FA The two-character service request code.

. A fullword service compietion code.

. A fyllword library number within which the file exists.

. An 8-character field containing the name of the file 10 open.

An 8-character fieid containing an optional password for the library.

A fullword file token. This value must be provided on subsequent FR and FW requests for the file,
and must be “turned in" on the FZ request that closes the file.

A 2-character fieid in which the first character is R for read-only access or W for read/write access,
and the second one contains an S or D to indicate whether the file wili be processed sequentiaily
or by direct access.

- JET. 3 QX R

~

File Svetem Services 4

8. An optional fullword in which the service will return the maximum length (in bytes) that any record

9

in the file can ever use.
. An optional fullword in which the service will return the number of records that currently exist in

the file.

FZ: Close an APL File

1
2
3
4
]
6

. FZ The two-character service request code.

. A fullword service completion code.

. (reserved)

. (reserved)

. (reserved)

. A fullword containing the token provided when the file was opened.

FR: Read an APL File Record

1
2
3
4
S

. FR The two-character service request code.

. A luliword service compietion code.

A fullword containing the iength of the area pointed to by the 4th parameter.

. An area in which the record will be returned, beginning with a four byte length field.

. A fullword containing the reiative record number in the file if the file was opened for direct proc-
essing. For sequential processing this value is returned by the system.

A fullword containing the token provided when the file was opened.

FW: Write an APL Flle Record

1. FW The two-character service request code.

2. A fullword service completion code.
3)
4
S

(reserved) .

. An area which contains the record to be written, beginning with a four byte iength fieid.

. A fullword containing the relative record number in the file if the file was opened for direct. proc-
essing. For sequential processing this value is returned by the system.

A fullword containing the token provided when the file was opened.

File System Services

]

Message Services

These services gives processors access to the same message facilities used by the APL2 product. ‘
Messages may be dispiayed, queued, or returned to the caller. The current national language table is
used, substitution fields are supported, and a message |D is optionally supplied.

The two message services are:

MC Check for Message Existence
MF Format a Message

MC: Check for Message Existence

The message number “exists” if it can be found in either the standard English tabie provided as a part
of the product or the current national language definition as selected by DNLZT. Note that this service
provides a return code for an unknown message number, while the MF sarvice abends in that case.

1. MC The two-character service request code.
2. A fullword service completion code.
3. A fullword message number.

MF: Format a Message

This service formats a message, then either displays it, queues it, or returns it to the calier. The
service depends on a message number as defined in "APL2 Messages and Codes." In the future it will
also be possibie to define new message numbers in message fites selected by ONFLT.

A one-character code indicates what should be done with the message:

D Dispiay the message as a part of the APL session.
Q Queue the message for a subsequent)MORE request.
R Return the formatted message to the caller.

In each of these cases the message will begin with a message ID if DEBUG(32) is in effect.

This service has two different parameter structures, depending on the action code. For code D or Q
the parameters are:

1. MF The two-character seryvice request code.

2. A lullword service compietion code.

3. A fullword message number.

4. A singie character D or Q.

5. An optional string to be substituted into the message. Message substitution fields are numbered in
the message models.

6. A fullword containir.; the length of the preceding string.

Additional pairs of parameters like 5 and 6 may be provided to define additional substitution strings.

For code R the parameters are:

1. MF The two-character service request code.
2. A fullword service compietion code.
3. A fullword message number.

4. A single character R.

5. The output area for the message.

!essage Services 6

. A fullword containing the length of the output area. On return this will contain the length of the

message.
7. An optional string to be substituted into the message.

8. A fullword containing the length of the preceding string.
Additional pairs of parameters like 7 and 8 may be provided to define additional substitution strings.

>»

Message Services 7

S

Process Services

Process services yse one-word biocks called event control blocks (ECBs) to synchronize the operations
of two processes. The Shared Variable service and Terminal services aiso uses ECBs. The internal
format and content of an ECB is system dependent, but may be partiaily controlled by the POSTing
process.

There is no return code from any of the processor services. Information about the success of the oper-
ation is often available in an ECB. Invalid parameters cause an ABEND of the processor.

PW: Wait for an Event

If muitipie ECBs are specified, control may.be returned when any one of them has been posted.

1. PW The two-character service request code.

2. A fullword in which a pointer to a posted ECB will be returned.

3. A fullword ECB which is to be posted asynchronously by another task.

4. An optional additional ECB or ECBs. (This is a variable iength parameter list.)

PP: Post an ECB

Send a signal to another task in the same address space or virtual machine. This signai will terminate
an operaling system WAIT or a PW service that has suspended any task on that ECB. It will also set a
post hit in the ECB so that a later WAIT or PW will compiete immediately.

1. PP The two-character service request code.

2. A fullword ECB which is to be posted.

3. A fullword containing a nonnegative binary number which will be placed in the low order halfword
of the ECB.

PT: Start a Timer

This request sets an “alarm clock”™ which will send a signal after a specified at:nount of “wall clock”
time has elapsed. A timer that has not expired is cancelied by a subsequent timer request from the
same process, or by the process’s termination.

Control returns immediately, atthough normally the ECB will not yet have been posted. Use the PW
service to wait for the timer signal.

1. PT The two-character service request code.
2. A fuliword ECB which will be posted when (or soon after) the time interval has elapsed.
3. A fullword containing the length of time, in milliseconds.

Shared Variable Service

This service provides communication and data transfer between auxiliary processors and the SVP.

The parameter list itself is very simple, but the second parameter is 3 more compiex parameter biock.
One of three different parameter biocks must be provided there, depending on the type of request
being made. In all cases the first haifword of the parameter biock identifles the request, and hence the
format of the remainder of the block. The three parameter blocks are associated with three classes of

requests.

SC: Shared Variable Service

1. SC The two-character service request code.
2. A processor control vector (PCV) or share control vector (SCV) or SVP data format block (SDF).

PCV: Processor Requests

Processor requests are related to the state of the auxiliary processor itself, without reference to partic-
ular shared variables. The two processor requests are CSVON (signon) and CSVOFF (signoff).

The PCV contains the following fieids:

PCVREQ CSVON or CSVOFF.

PCVID Processor identification.

PCVECB Pointer to an event control block.

PCVSPQ Space quota.

PCVSHVQ Shared variable quota.

PCVRC Return code.

PCVOFFER Set if one or more incoming offers exist at the time of signon.

SOF: Data Format Request
This request permits data compatibility with other APL systems. It would be used to request data in a

vtsn APL format, or to return to the defauit APL2 format. The request applies to individua! shared vari-
ables.

The SOF contains the foilowing fieids:

SCVREQ CSVDFORM

SDFID Processor |D.

SOFPSX The vaiue returmnmed in SCVPSX.

SDFVERS Processor version, aiways 2.

SOFDFORM Data format to be used. 1 (VS APL) or 2 (APL2).

SDFRC Return code.

 Aticcedd \lamiakia Carvica Q

SCV: Shared Variable Requests
These are the "workhorse™ requests: they handie all shared variable connection, status, and data
transfer.

In all of the share requests. the SVP uses a value called the “pershare index™ to associate the request
with a specific shared variable. When a new variable is being offered, the SVP returns an internally
generated pershare index to the calier. It also returmns a pershare index for each variable reported in
response o CSVSCAN or CSVQUERY. For all other share requests the caller must provide a pershare
index previously returned by the SVP.

The SVC requests are:

CSVSCAN Scan for an offer

CSVSHARE Offer a variable, match an incoming offer, or obtain information about a share.
CSVSEEAC See (inspect) access information.

CSVSETAC Set the access control vector.

CSVREF Reference a shared variable.

CSVSPEC Specify a shared variable.

CSVCOPY Copy a value without signalling a reference, and optionally place a hold on the variable.
CSVREL Release a previous hold on the variable.

CSVRET Retract the share offer for a variable.

CSVQUERY Obtain a list of processors or variables which match a specified degree of coupling.
CSVSTATE Obtain information about the state of a list of variables.

-

The SCV contains the foilowing fields, but only a subset of them is used by each request:
SCVREQ One of the requests listed above.

SCVRC Return code.

SCVPART Partner identification.

SCVID . Processor identification.

SCVOSN Offer sequence number.

SCVPSX The pershare index.

SCVECB Pointer to an event control biock.

SCVVLEN Shared variable vaiue length, or fength of the area pointed to by SCVVALUE.

SCVVALUE Pointer to the shared variable value. For CSVSTATE or CSVQUERY this is a buffer where a
list of entries will be returned.

SCVACV Access control vector component.

SCVYNAMES On if any name is acceptable.

SCVHOLD The variable wiil remain under the control of the requestor.
SCVFISPC Ignore any unreferenced value set by the partner.
SCVFOFR1 Offered by this processor.

SCVFSHR Fuylly shared.

SCVFOFR2 Offered to this processor.

SCVFLGS2 The partner protocol (1=VSAPL, 2=APL2).

SCVNLEN Name length. '

SCVNAME Pointer to Shared Variabie Name field.

Shared Variable Service 10

Terminal Services

Two lerminal services are defined, TA which aillocates the session terminal, and TZ which reieases it.
Actual terminal IVQ must be accomplished with non-APL services such as GODM or specific operating
system interfaces. APL has no way of verifying that auxiliary processors bracket their terminal /O with
proper TA and TZ calls, but il they do not the results may be visually unpredictable, and asynchronous
interrupts may not be handled property.

APL2 will delete any terminal attention exits of its own before giving terminal control to the process.
The processor must delete any attention exits it establishes before returning terminal controi to APL2.

TA: Allocate the Terminal

This is a request for exciusive use of the terminal. The request returns immediately, whether or not
the terminal can be given to the requestor at the moment.

On retum, the requesting program shouid wait for a signal indicating tt.lat the request has been
granted. The PW service can be used for this purpose. A terminal state code will be provided when
the signal is sent. It will contain one of:

D Data dispiayed on the screen has been changed since the processor last controlled it, but field
definitions are still valid.
F Field definitions have been changed since the processor last controlied the screen.
N No screen changes have occurred since the processor last controlled the screen, or this is not a
_ full screen terminal, or the processor has never previousiy.controlied the terminai.

The requesting process will retain control of the terminal until it explicitly relinquishes that control with
a TZ request. it may receive a signal indicating that some other process is requesting control of the
terminal.

1. TA The two-character service request code.

2. A one-character fieid, indicating the state of the terminal. This value wiil be supplied when ter-
minai control has been granted.

3. A lulilword ECB which will be posted when the requestor is given control of the terminal.

4. A fullword ECB which will be posted if some other process requests controi of the terminal while
this process is holding it.

TZ: Release the Terminal

1. TZ The two-character service request code.
2. A one-character field indicating what changes have been made to the terminal while it was heid.
The values are as defined for TA above.

Terminal Services 11

Virtual Storage Services

Storage obtained by these services is always initialized to binary zero. There are no return codes
from the services, except that a returned storage address of zero means the requesied storage was
not available. Il invalid parameters are provided, an ABEND will be issued.

VP: Get Process Storage

Storage obtained through this service will be implicitly freed when the process terminates.

1. VP The two-character service request code.
2. A fullword containing the number of bytes of storage needed.
3. A fullword in which the address of the storage is returned.

VG: Get Global Storage

Storage obtained through this service will be retained until APL2 session termination, even if the
process terminates earlier.

1. VG The two-character service request code.
2. A fullword containing the number of bytes of storage needed.
3. A luliword in which the address of the storage is returned.

VF: Free Global Storage

1. VF The two-character service request code. -
2. A lullword containing the number of bytes of storage to free.
3. A fullword containing the address of the storage to be freed.

VQ: Free Proeeé_s Storage

1. VQ The iwo-character service request code.
2. A lullword containing the number of bytes of storage to free.
3. A fullword containing the address of the storage to be freed.

VV: Get Variable Length Process Storage

This request is identical to VP ‘except that a smaller amount of storage will be accepted if the amount
requested is not available.

1. VV The two-character service request code.)

2. A lullword containing the maximum number of bytes of storage wanted. On return it will contain
the number of bytes actuaily obtained.

3. A lullword in which the address of the storage is returned.

Example of an Auxiliary Processor

The code shown here is a usable auxiliary processor (though it may still have some bugs in it). The
processor provides a simple file system, with one arbitrarily compiex APL2 data array per flie. To use
the system, share one variable with AP 421. The variable name is a one to eight character file name.
Multipie concurrently shared variablies are not supported.
To write a file:

+ Assign a two item nested vector to the shared variable:

1. A library number expressed as a one siement vector.
2. The data to be stored, of arbitrary structure.

* The AP returns a one element vector numeric return code, using the return codes defined for AP
121.

» Sloring an array repiaces any previous data in the file.

To read a file:
* Assign a single element numeric vector o the shared variabie, representing a library number.

« If the operation is successful, the AP returmns a two item nested vector, exactly as as it was pro-
vided when the file was written. (The first item is the original library number.)

= If the operation fails, the AP returns a one element vector numeric return code, using the return
codes defined for AP 121.

Example of an Ausiliary Processor 13

Initialization of the AP

FTLESAMP CSECT
SAVE
LR
USING
LR
USING
LA
NOTE:

. wow

L
LA
ST
L
L

LR
LA
CALL
L -
t

(18,12), , --FILESAMP-CSEC-4SYSDATE
RBASE,R15

FILESAMP, RBASE

RPARM,R1

PARMS , RPARM

00PS, 1 SET UP TO FORCE 6C6
CHANGE ABOVE TO @ TO FORCE LOOPS INSTEAD

GET A WORK AREA FOR OURSELVES

R1S,PARM4 SET UP STORAGE REQUEST
R@, WORKLEN - LENGTH REQUIRED

R8,8(,R15)

R15,PARM2 FIND ADDRESS OF SERVICE ROUTINE
R15,6(,R15) - IT IS AN INDIRECT POINTER
RSERV,R15 (AND SAVE FOR THE FUTURE)
R1,PARM3 USE AS 'VP* PARM LIST

(15) GET WORK STORAGE

R1S, PARMS FIND ADDRESS OF STORAGE
RWORK, 8 (,R15)

USING WORK,RHORK

NOTE:

IF THERE IS NO STORAGE, WE WILL BLOW UP SHORTLY,
WHICH IS AS GOOD A WAY AS ANY FOR US TO COMPLAIN.

Set Up to Use the SVP

LA
ST
LA
ST

o

ST
ST

ST
SR
BCTR
SRL
ST

STH

STH
LR
CALL
LH
LTR
BNZ

RO, VNAME

RO, SCYNAME WHERE NAME SHOULD GO
RO,SECB SHARED VARIABLE ECB
R9,SCVECS

SIGN ON TO THE SVP

Re, 421
R9,PCVID OUR ID (2ND WORD ALREADY 6)
Re,SCVID - WILL WANT IT IN SVC, T0O

RO, PECB PROCESSOR ECB

RO,PCVECE

RO, RO .

R9,0 WE HANDLE VARIABLES OF ANY SIZE
R6,8 SO SAY 2°*24 - 1

RE,PCYSPQ

R6,1 BUT ONLY ONE VARIABLE AT A TIME
RG, PCVSHVO

RG, CSVON

R@, PCVREQ ASK FOR SIGNON

R1S,RSERV :

(15), (=C'SC* ,PCY) , VL ,MF= (€, 4ORKA)

R15,PCVRC

R1S,R15 CHECK RETURN CODE

SHUTY GET OUT [F CAN'T SIGN ON

4 A

Wait for an Offer, and Terminate when Required

PAIT 05 OH
LR R1S,RSERV
CALL (15),(=C*PN',DUMMY,PECB),VL,MF=(E,}ORKA)

SR RO,RO
ST Ro,PECB CLEAR ECB FOR THE NEXT POST
ST RB8,SCVOSN LOOK FOR ANY OFFER

MVI SCVFLGS1,SCVNAMES ANYTHING IS 0K
LA RO,L'VNAME :

STC RO,SCVNLEN MAX NAME LENGTH
LA R1,CSVSCAN
BAL RBACK,CALLSVP SCAN FOR AN OFFER
BZ MATCH - TRY TO MATCH IF OFFER
BNO PWAIT - 60 WAIT UNLESS SHUTTING DOWN
-
ove TERMINATE THE AUXILIARY PROCESSOR
*
ST oS oM
LA RO,CSVOFF .
STH R8,PCVREQ ASK FOR SIGNOFF
LR, RIS,RSERV
CALL (1S),(=C'SC’,PCV),VL,MF=(E,WORKA)
SWT9 05 oM
. MOTE: OUR WORKAREA IS FREED AUTOMATICALLY
RETURN (14,12)

Match an Incoming Offer

MATCH 0S &H
* NOTE: SCV ALREADY CONTAINS INFO ABOUT THE OFFER

. USE NAME AS A FILE NAME
A RI14,VNAME HERE IS WHERE THE NAME IS
W RIS,C' -(PAD WITH BLANKS)
SLL R15,24
IC R1S,SCYNLEN -GET ITS LENGTH
LA RO,FNAME
LA R1,L'FNAME MOVE IT INTO FILE FIELD
MVCL RO,R14
SR Re,RO
ST Re,SCVVLEN WE DON'T HAVE AN INITIAL VALUE
MVI SCVACY,B'0116° CONTROL HIS SET, MY USE
LA RI1,CSVSHARE
BAL RBACK,CALLSVP MATCH AN OFFER
B0 SWUT - GET OUT IF SHUTTING DOWN

BNZ PWAIT - IGNORE IF CAN'T MATCH

e Areil’ mumas Domnaseons

Get and Analyze a Request from the User

HANDLE DS 6H
LA R1,256
HAND2 0s 6H
BAL RBACK,GETBUFF

BZ EMSG
USING BUFFER,RBUFF
LA RI,CSVREF
BAL RBACK,CALLSVP
BZ HAND4
B0 SHUT
BM VWAIT
L RI,SCYVLEN
C R1,BUFLEN
BH HANDZ
B *(00PS)
HANDS 0S OH
CLI CORRT,RTG
BNE READ
8 WRITE

MINIMUM BUFFER SIZE

GO EXPLAIN IF NO SPACE

REFERENCE THE VARIABLE VALUE
- PROCESS IF WE HAVE A VALUE
- GET OUT IF NO SVP

- GO WAIT IF INTERLOCK

ELSE PROBABLY BUFFER PROBLEN

- SO IT IS, TRY AGAIN
- OUR PROBLEM IF NOT

IF NOT A GENERAL OBJECT
THEN GO HANOLE AS INPUT
ELSE GO HANDLE AS OUTPUT

Wait for Action on the Current Share

VHAIT DS oH

T SCYFLGS1,SCVFSHR

RETRACT IF PARTNER 0ID

-

CALL (15),(=C'PH' ,DUMMY,SECB,PECB), VL, HF=(E ,HORKA)

BZ REMR
LR R15,RSERV
SR R,Re
ST R9,SECB
B HANDLE
» .
oo RETRACT THE SHARE,
L 2
RETR 0S oM
LA R1,CSVRET
BAL RBACK,CALLSVP
80 SHUT
8 PWAIT

8 *(00PS)

CLEAR ECB FOR THE NEXT POST
AND SEE WHAT WE HAVE NOW

SINCE PARTNER ALREADY HAS

RETRACT THE VARIABLE

- GET OUT IF SHUTTING OOWN

- GO TO PRIMARY WAIT IF 0K
ELSE YE'VE GOT A PROBLEM HERE

Write a File

WRITE

PASS

os

NOTE:

CALL

LTR
BNZ

CALL

LTR
BNZ

ST

CALL

Cos

e

oc

oH
Re,2
R, CORXRHO
ENMSG
Re, 1

CHECK FOR A THWO ITEMS
NO? SLAP HIS HAND

RO, CORRANK+LIBDESC FIRST SHOULD BE A VECTOR

EMSG

RO, CORXRHO+LIBOESC WITH EXACTLY ONE ELEMENT

EMSG
RBACK, GETNUM
EMSG

GET LIBRARY NUMBER

IF NOT AN INTEGER, BLAME THE USER

DELETE, RECREATE, OPEN, WRITE, AND CLOSE FILE

R15,RSERV
(15}, (=C*FD',RC,

DELETE THE FILE IF IT EXISTS

LIBNO,FNAME ,PASS), -IDENTIFY THE FILE

VL,MF=(E,HORKA)

RETURN CODE IGNORED.

R15,RSERV

(15), (=C*FC*,RC,
LIBNO, FNAME, PASS,
"9. 'ﬁlusl) »
VL, MF=(E, WORKA)
R15,R15

EMSG

R15,RSERV

(15), (=C'FA*,RC,
LIBNO, FNAHE, PASS,
TOKEN,=C'¥S'),
VL, MFe(E,WORKA)
R1S,R15

ENSG

RG,SCVVLEN
R8,RECLEN
R15,RSERV

(15), (=C'Fu*,RC,
, (RBUFF),
DUMMY , TOKEN) ,
VL,MFe(E,90RXA)
RTEMP,R15
R15,RSERV
(15),(=C'FZ',RC,
22 TOKEN) ,

VL, MF=(E,%ORKA)
R1S,RTEMP

ENSG

cLe'

MAY BE NOT FOUND.
RECREATE THE FILE
-IDENTIFY THE FILE
-UNLIMITED SIZE, SEQUENTIAL
BE SURE THAT WORKED

OPEN THE FILE

-IDENTIFY THE FILE

-ASK FOR SEQUENTIAL WRITE
BE SURE THAT WORKED

PASS ALONG ARRAY SIZE
WRITE FIRST RECORD
~ADDRESS OF RECORD

-USE FILE JUST QPENED
SAVE RETURN CODE

CLOSE THE FILE
-IDENTIFY THE FILE

RETURN CODE (MAY BE ZERO)
G0 SAY WHAT HAPPENED

WE NEVER SUPPLY PASSHORD

+

+

+

Example of an Auxiliary Processor 17

Read a File

READ

READ2

READS

READA

DS
LA

c
BNE
NOTE:

BAL
8NZ
LR
CALL

TLHE

BAL
BZ
e
80
CH
BE
CH
8NE
0s

oH
RO, 1
RO, CDRXRHO
2156

CHECX FOR A SINGLE ITEM
NO? SLAP HIS HAND

GETNUM WILL CATCH ANY CHARACTER DATA
WE LET SINGLE NUMERIC ITEMS OF ANY RANK THROUGH

RBACX,GETNUM
EMSG

R15,RSERV

(15), (=C'FA',RC,

LIBNO,FNAME, PASS,

TOKEN,=C'RS '),
VL, MF=(E, WORKA)
R15,R15

EMSG

oH

R15,RSERV

(15), (=C'FR*,RC,
BUFLEN, (RBUFF) ,
DUMMY , TOKEN) ,
VL, MF~(E,HORKA)
RTEMP,R15

RO, ERLEN
R8,R15

READS
R1,BUFLEN

- R1,R1

RBACK, GETBUFF
READZ

EMSG

6H

R15,RSERV

GET LIBRARY NUMBER
IF IT DIDN'T WORK, BLAME THE USER

OPEN THE FILE

-IDENTIFY THE FILE
-ASK FOR SEQUENTIAL READ

READ FIRST RECORD
-LENGTH/ADDRESS TO READ TO
-USE FILE JUST OPENED

SAVE RETURN CODE

IF NOT RECORD LENGTH ERROR
THEN GO ON AND CLOSE

ELSE DOUBLE THE ANTE

TRY AGAIN IF THAT WORKED

" ELSE G0 EXPLAIN

CLOSE THE FILE

(15), (=C'FZ*,RC, , » , TOKEN) , VL, MF=(E,WORKA)

R15,RTEMP
EMSG

RETURN RESULT IN SHARED VARIABLE

R@,RECLEN

RO, SCVVLEN
R8,COR
RO,SCVVALUE -
SCVFLGS1,0
R1,CSVSPEC
RBACK, CALLSVP
VNAIT

READS

SHUT

R1S, =Y (CSVEVOS)
VWAIT
R1S, =Y (CSVEVTL)
*(00PS)

oH

R1S, ERSPC

EnsG

LENGTH OF THE COR

ADDRESS OF THE COR
DON'T IGNORE ANOTHER PARTNER SPEC

SPECIFY THE VARIABLE VALUE

- WAIT FOR NEXT REQUEST IF 0K

- EXPLAIN IF INTERLOCK OR SM FULL
- GET OUT IF NO SVP

IF PARTNER HAS SET VARIABLE AGAIN
THEN IGNORE THIS AND DO THAT

IF VALUE NOT TOO LARGE FOR SM
THEN WE GOOFED

STRANGE, BUT AP121 TREATS SM FULL
AS NO STORAGE FOR [/0 BUFFER

Example of an Auxiliary Processor 18

+

Teil the User What Happened

This routine attempts to send a vﬁessage to the terminal if the return code (currently in R15) is
nonzero. It aiso assigns the return code to the shared variable in ail cases.

EMSG DS €M

MVC WORKCDR,RCCDR SET UP RESULT CDR

ST R1S5,WORKCDR+RCDATA-RCCOR FILLING IN RETURN CODE
LTR RIS5,R15 IF SUCCESSFUL COMPLETION
BZ EMSGS THEN SKIP THE MESSAGE
CV0 R15,0W0RD

MVC STRING,EDMASK
EDMK STRING,ONORD*6 CONVERT RETCODE TO CHARACTER FORM

LR RTEMP,R1 WHERE FIRST NON-BLANK DIGIT IS
LA RO,STRING+L'STRING

SR RO,RTEMP LENGTH OF RESULY

ST RO,MLEN

LR R15,RSERV

CALL (15),(=C'NF’, CALL MESSAGE SERVICE +
RC,=F'22',=C'D', PROCESSOR ___ ERROR __ e
PROCNO , PROCLEN, .
(RTEMP) ,MLEN), +
VL, MF=(E,YORKA)
. NOTE: IF IT WORKED, FINE. [F NOT, QUE SERA, SERA.
ES65 0S oM)
LA R,WORKCOR

ST RO,SCYVALUE
LA Ro,L'NORKCOR
ST RO,SCVVLEN

LA R1,CSVSPEC
BAL RBACK,CALLSVP

BZ WWAIT - WAIT FOR NEXT REQUEST IF OK
B VMAIT - GIVE UP IF INTERLOCK OR SM FULL
80 SHUT - GET OUT IF NO SVP

CH R15,=Y(CSVEVOS) IF PARTNER HAS SET VARIABLE AGAIN
BE VWAIT THEN IGNORE THIS AND DO THAT

B *(00PS) OTHERWISE WE GOOFED

EDMASK OC X'40202120"
PROCNO OC C'421°
PROCLEN OC A(L'PROCNO)
. MODEL CDR FOR RETURN CODES
RCCOR OC AL1(CDRID),AL3(RCDATA-RCCOR) HEADER

oc Frye XRHO
oc AL1(RTI,RLY) TYPE AND LENGTH
0c H'1' RANK
bc Fry SHAPE
RCDATA OC F'o! - DATA

RCLEN EQU *-RCCDR

Exampie nf an Auxiliary Processor

19

Subroutine to Call the SVP for a Share Service

R1 must contain an SVP service code, and the SCV must be set up. This routine returns with the
machine condition code set to “overflow™ if the SVP is not active. In all other cases, it is set to the
sign of the SVP return code. The SVP returns zero on success, negative numbers on temporary prob-
lems (such as shared variable interiock), and positive numbers on permanent probliems.

CALLSVP DS 6H

STH R1,SCVREQ INDICATE DESIRED REQUEST
LR R15,RSERV

CALL (15),(=C'SC',SCV),VL,MF=(E,WORKA)

M R1S,SCVRC

LTR R15,R1S CHECK RETURN CODE

BNPR RBACK GET OUT IF CAN'T BE UNAVAILABLE
LA Re,CSVENA

CR RIS,RO CHECK FOR UNAVAILABLE

BHR RBACK LEAVE CC=P IF NOT UNAVAILABLE
™ *+1,X'FF A TEST THAT CAN'T FAIL

BR RBACK RETURN WITH CC=0

Subroutine to Extract a Library Number from a CDR

The LIBNO field is set to the first data item in the COR. This routine returns with the machine condition
code set to zero if the number was gotten successfully. Failure would normally occur because the first
item was in turn nested, or contained character data, or contained a number which could not be con-
verted to an integer.

GETHM DS oM
L RTEMP,CORDLEN DESCRIPTOR LENGTH -
LA RTEMP,COR(RTEMP) POINT AT DATA, CLEAR HIGH BIT
LA RTEMPZ,CDROES ASSUME SIMPLE COR

LLI CDRRT,RTG IF IT IS NOT NESTED

BNE GETN2 THEN USE THAT ITEM

LK R1,CDRRANK ELSE STEP PAST THAT ONE
SLL R1,2 (ALLOWING FOR SHAPE WORDS)

LA RTEMP2,CORRHO(R1)
GETH2 ' DS @M
LR R1S,RSERV

CALL (15),(=C'DN',RC, GET THE NUMBER +
=A(L'LIBNO),LIBNO, -OUTPUT AREA LENGTIi AND ADDRESS +
(RTBIP), -INPUT DATA ACORESS +
=C'Col4", - <CONVERT COR TO FULLMORD INTEGER +
oF19t =f'10, -ELEMENT © FOR 1 ELEMENT +
(RTENP2)), -DESCRIPTOR FOR COMPON NUMBER +
VL, HF=(E HORKA)

LTR RI15,RI1S INDICATE WHAT HAPPENED

BIR RBACX AND RETURN IF 0K

CH RIS, =H'13 DATA COULD NOT BE CONVERTED?

BHE *(00PS) ANYTHING ELSE IS OUR PROBLEM

LA RIS,ERSYN HOT CONVERTED IS SYNTAX ERROR

LTR RIS,RIS INDICATE WHAT HAPPENED

BR RBACX ARD RETURN

Exampie of an Auxiliary Processor 20

Subroutine to Get a Buffer

This routine is called with R1 containing the length required. It checks any existing buffer to see if it is
big enough. If not, it frees the old one (if any) and gets a new one. it then sets up ail the fieids that
expect to have buffer addresses or lengths. This routine retums with the machine condition code set
to zero if no storage could be gotten. R15 is set to the AP 121 error code for "no space” in that case.

GETBUFF 0OS
L
c
BNH
LR
L
LTR
8z
LR
CALL

GETB2 0S
ST
LR
CALL

L
LTR
BNZ
LA
8R
GETB8 0S
LA
ST
R
A
SR
ST
BR

oH

RBUFF ,BUFPTR SAY WMERE BUFFER IS

R1,BUFLEN

GETB8 SKIP MOST IF CURRENT BUFF IS OK
RTEMP,R1 ELSE REMEMBER SIZE NEEDED

RO, BUFLEN

R8, RO IF NO BUFFER AT PRESENT

GETB2 THEN GO GET ONE

R15,RSERV _
(15), (=C'VQ* ,BUFLEN,BUFPTR), FREE PRIOR BUFFER +
VL, MF=(E, HORKA)

oM

RTEMP,BUFLEN -
R15,RSERV

(15), (=C'VP* ,BUFLEN,BUFPTR), GET A NEW BUFFER +
VL, MF= (E,4ORKA)

RBUFF ,BUFPTR SAY WHERE BUFFER IS

RBUFF , RBUFF IF WE MANAGED TO GET ONE

GETBS8 THEN GO AHEAD

R1S,ERSPC ELSE SAY NO SPACE ..

RBACK AND RETURN (CC=8 FROM LTR)

oH -

R8,COR

RO, SCYVALUE SAY WHERE SVP DATA GOES

R1,RBUFF

R1,BUFLEN - - END OF BUFFER

R1,R6 - LENGTH OF COR AREA

R1,SCVVLEN SAY HOW BIG SHARED VARIABLE CAN BE
RBACK AND RETURN (CC>8 FROM SR)

Data Declarations

Hiding hack here at the end are all the extra things you have o teil the assemblier to convince it to
produce a working program. Incidentally, the fact that they are at the end probably means that the H
assembler is required for compilation.

First the definitions which do not use storage.

Example of an Auxiliary Processor 21

RO EqU
R1 (]
RTENP EQu
RTEMPZ EQU
00PS EQU
RBUFF EQu
RSERV EQU
RPARH EQU
RHORK EQU
RBACK EQU
RBASE EQU
R13 EQuU
R14 EQU
R1S €Qu
ERLEN EQU
ERSYN EQU
ERSPC EQU
AP2CSVPE

]
1
3 HANDY TEMPORARY WORK REG
4 AND AHOTHER ONE FOR GOOD MEASURE
5 TO FORCE AN 6C6: BRANCH TO ODD ADDR
6 BASE FOR BUFFER OSECT
7 POINTER TO SERVICE ROUTINE
8 POINTER TO INPUT PARAMETERS
9 BASE REGISTER FOR WORK AREA
11 SUBROUTINE RETURN REGISTER
12 BASE REGISTER FOR PROGRAM
13
14
15
FILE SERVICE RETURN CODES
7 RECORD LENGTH ERROR
12 SYNTAX ERROR
32 GETMAIN FOR I/0 BUFFER FAILED
’ SVP SERVICE CODE DEFINITIONS

The remaining definitions describe storage based on some pointer. Note, incidentally, that this AP is
compieiely reentrant.

-

BUFFER DSECT , FOR FILE 1/0 AND SHARED VARIABLE REF/SPEC
RECLEN 0S F LENGTH WORD FOR FILE SYSTEM
AP2COR TYPE=CSECT,DOC=NG SHARED VARIABLE VALUES
ORG CDRRHO
oS F LENGTH OF G ITEM
CDRDESC2 EQU START OF SECOND DESCRIPTOR .
LIBDESC EQU *-CDROES OFFSET TO LIBRARY NUMBER ITEM
| cvemccccnese cocnscssowameenw e
PARMS DSECT , PARMS PASSED TO EACH TASK
PARMI 0SS A - (UNUSED)
PARM2 DS A INDIRECT PTR TQO SERVICE ROUTINE
PARM3 DS A START OF 'VP' PARM LIST
FPARMA DS A - LENGTH FOR VP
PARMS 0S A - ADDRESS FROM VP
YORK DSECT , LOCAL WORK AREA
DHORD DS O DEZIMAL ARITHMETIC WORK AREA
STRING DS CL(L'EDMASK) DECIMAL DISPLAY YORK AREA
MLEN oS F - LENGTH OF DATA IN STRING
BUFPTR DS A POINTER TO BUFFER
BUFLEN 0S F LENGTH OF BUFFER
PECB oS F PROCESSOR EVENT CONTROL BLOCK
SECB S F SHARED VARIABLE EVENT CONTROL B8LOCK
VNAME 0S CL8 SHARED YARIABLE NAME
FHNME 0S CL8 FILE NAME
LIBRO DS F LIBRARY NUMBER
TOKEN DS F FILE SERVICES TOKEN
YORKA DS 9A SERVICE CALL PARM LIST AREA
ousty 0SS F UNUSED FIELD REQUIRED BY SOME CALLS
RC 0S F RETURN CODE PARAMETER
AP2PCV TYPEsDS PARM BLOCK FOR SVP SIGNON/SIGNOFF
AP2SCY TYPE=DS PARM 3LOCK FOR SVP SHARE SERVICES
HORKCDR DS CL(RCLEN) RETURN 7ODE COR
HORKLEN EQU ~-WORK LENGTH 9F HORK AREA

END

Evamnie of an Auxiliary Processor

22

