
Writing Auxiliary Processors for APL2

February 18th, 1988

Ray Trimble

IBM Corporation M46/B25

P40. Box 49023

San Jose CA 95161-9023

Preface

APL2 has induded. since Release 1, a rich set of system independent auxiliary processor services and
interfaces. Customer documentation for these facilities is only now becoming generally avaifable.

This paper will provide a survey of those facilities and an example of their use. Included are services
to provide data conversion, error handling, ftle system access. message rormatting, multi-tasking,
shared vanabl. processing. terminal control. and dynamic virtual storage.

Most of these same services are also available to Processor 11 Fundlo" Routines. and the material
here should also be helpful in writing those. But the rocus of this paper will be auxiliary processors.

Familiarity with the concepts or APL shared variables and auxiliary processoB is assumed. Complete
details of these facilities are provided in SH20-9234 APL2 Programming: Processor Interface Reference.

Considerable reference is made to the term ·COR. W This Is an acronym for Common Data Represen­
tation. and refers to an interchange data format which was formerly defined in Appendix A of
SH20-9215 APL2 Migration Guide, but is now presented in the Processor Interface Reference.

Preface if

Starting an Auxiliary Processor

APL2 !lUpporti two distind types of auxiliary processors (APs) which are started in quite different ways.

•	 Global APs are systern-wide servers. They share variables. often concurrentty. with mUltiple APL
sessions. These APt are typically started during operating system initialization. Under VM they
execute In separate disconnected virtual machines. Under MVS they ••ch execute in their own
address space.

•	 Local APs are written to share with only one APL seslion. A separate Instance Is created for each
user that wants to use a given local AP. The API are started by the APL2 executor, nonnalty
during user Invocation or APl2. They execute under control 01 the user's virtual machine or
address space.

Global API are given control directly by the operating system. and obtain most 01their services rrom it
They will not be discussed further in this paper.

Local Auxiliary Processor Entry

When an auxiliary processor is started (by APL2), It is given control using a standard CALL linkage. .
APL2 provides a parameter list. as follows:'

1. (Used only by VS APL compatibility support.)
2. A pointer to a ••rvice routine which may be called by the aUXiliary processor. This service routine

supports the services described later.
3. The beginning of a model parameter list for the Virtual storage service (see the VP service

described latef). This helps solve the bootstrapping problem for reentrant programs of needing

storage for the request that obtains storage.

4. The second parameter for the VP service call.
S.	 The third parameter for the VP service call.
a.	 (Reserved)
7. The length of any string being passed to the AP by APL InvocaUon.
I.	 The parameter string (if any) provided in the APNAMES invocation option.

Local AUXiliary Processor exit

Auxilt;llry processors should terminate when they receive a CSVENA return code from an SVP service.
or observe the ·sign 0"- signal sent by the SVP. This signal will always be posted in the processor
ECB. Processors should break their connedlon with the SVP before terminating.

On normal termination registers must be as at entry, and the processor must return to the address in
register 14.

An abnormal termination will occur if an unrecovered program check or ABEND oceurs in the auxiliary
proce~sor task. Processors may recover from all program checks and most abends by using the EX
service described later.

, Throughout rhis p3per. numbered lists are used to represent parameters. by number. in 3 parameter list.

Data Conversion Services

There are severa' services in this group:

DE Translate from vs APl Zeade to EBCDIC
DN Change the data format of numbe,.
DU Transtate with user-supplied table
DX Convert Extended Otarader data
DZ Translate from EBCDIC to VS APL Zeode

Of these. probably only the DN service is of general Interest

DN: Change Data Format of One or More Numbers

This service produces a list of numbers In the output area. In the format specified by the output type.
The input area is analyzed according to the Input type. The caller specifies an origin-o index of the
nrst number to extract. and the number of elements required. The indft is a single integer. appfied to
a ravelled form of the input array.

The input and output types supported are:

AO APlobjed
81 Boolean (1 bit. packed 8 per byte)
BI a-bit binary (unsigned)
12 halfword binary
14 fullword binary
E4 1-word nOBtlng point
E8 2-word floating point
EX 4-word neatlng point
CO An item from a COR (Input only)

Here is a summary of the parameters for this service call. Uke all services. the AP must provide a
stand~rd CALL-type interface.

1. DN The two-charader service request code.
2. A rullword service completion code.
3. A rullword containing the length or the output buffer.
4. The numeric results.
5. The data to be converted. except that for type AO it is the COR or VS APl descriptor of the data.
8. Two twc>byte Relds. each containing a two-character data type code. The Rrst Reid determines the

format of the 5th parameter. while the second determines the format of the 4th parameter.
7. A futlword containing an origin-o index into the input data.
8. A rullword containing the count of elements to be converted.
9. For tYpe COonly. the simple (never G-type) CDR descriptor of the input array.

Error Handling Services

There are three services in this group:

ED Produce I dump (but continue processing)
ET Terminate abnormally
EX Set or dear an ABEND exit

All three services have very simpl. parameter lists. The ",'es for exit routines deftned by the EX
.ervice are more compUcated.

ED: Produce. Dump

1. ED The two-character service request code.
2. A four-charaeter dump identifier.
3. An optional eight-byte Program Status Word associated with the problem.
4. An optional 16 word area containing register values associated witb the problem.

ET: Terminate Abnonnally

Note: ., an EX exit currently exists for the process request.ing the ABEND, that exit routine will gain
con trot. You may want to dear the exit using the EX service before i.suing IT.

1. ET The two-character service request code.
2. A fuUword containing an abend code number between 1 and 999.

EX: Set or Clear an ABEND exit

This service specifies the address of an exit routine which will be given control if an ABEND or
program check occurs while the process is in control. Any previous exit for the same process· is
cleared when an exit is set (that is. there is no facility for stacking exits).

The exit routine is not given control on attention signals unless the process is tennlnated because of
repeated unacknowledged signals. The abend exit will be given control even on nonretryable abends
for which APL2 gains control. On an MVS system these indude operator cancel, timeout, etc. In
gener~1. VM does not give APL2 control in nonretryable situations.

1. EX The two-character service request code.
2. A rullword containing the address of the routine to be given control, or zero to remove the abend

exil for this process.

Entry/exit candlDon. for abend ••lts

The abend exit is entered using a norma' CALL interface, and the ronewing parameter list:

1. A rullword containing the user or operating system abend code.
2.	 A rullword in which a retry address may optionally be supplied. If it is not, the process will be

terminated on return frem the exit.

3. A four character nefdin which a dump code may optionally be suppUed to request a dump on exit .

. 4.	 On Mtry to the exit routine. the registers as of the last service caU issued by the processor. On
exit. the registers that will be passed to the retry routine.

s.	 An c:lbend type indicator: F (Force om. P (Program check), S (System abend), or U (User abend).
6.	 For type P only. the hardware Program Slatus Word (PSW) at the time of the error.
i.	 For type P only. regist~rs that correspond to the PSW in the 3rd parameter.

e __ '-'WI.......' -e.._.~....... ~

File System Services

The file system provided through these services corresponds to that used by AP 121.

Fe Create an APL File
FD Delete an APL File
FS Change the Size of an APL File
FA Open an APL File
FZ Close an APL File
FW Write an APl File Record
FIt Read an APl File Record

Fe: ereat. an APL FIle

1. FC The t\M>character service request code.
2.	 A fulfword service completion code.
3. A rullword library number within ¥/hich the file is to be created.
4. An 8-character field containing the name or the rile to be created.
5. An 8-chaTader field containing an optional password for the library.
8. A rullword containing the maximum size of thenl. in bytes. or zero.
7. A 2-charader field in which the second byte must contain an S or D to indicate a Sequential or

Direct file.

8. A fullworn containing. for Direct ftles, the maximum length (In bytes) that any record in the file will

ever require.

FD: Delete an APL File

1. FD The two-character service request code.

2.. A fullword service completion code ..

3. A fullword library number within which the file is to be deleted.
4. An 8-charader neld containing the name of the ftle being deleted.
5. An 8-charader field containing an opticnal pass'NOrd for the library.

FS: Change the SIz8 of an APL File

1. FS nle two-charader service request code.
2. A rullword service completion code.
3. A rullword library number within which the Rle exists.
4. An 8-charader field cOntaining the name of the file being changed..

· 5. An 8-charader field containing an optional ·password for the library.
8. A rullword containing the new maximum size of the file in bytes.

FA: Open an APL FlJ.

1. FA The two-character service request code.
2. A runword service completion code.
3. A 'ullword library number within which the file exists.
4. An 8-eharacter field containing the name of the file to open.
5. An 8...charader fietd containing an optlona' password ror the library.
6.	 A rutlword HIe token. This value must be provided on subsequent FA and FW requests for the file.

and must be "turned in" on the FZ request that closes the file ..
i.	 A 2-ch;trader field in Which the nrst character is R for read-only access or W for read/write access.

;too the second one contains an S or D to indicate whether the file will bit precessed sequentially
or by direct access.

Filf!! Sv~t@m Services 4

8. An optional rullword in which the service will return the maximum length (in bytes) that any record
in the file can ever use.

9. An optional runworn in which the service will return the number of records that currently exist in
the file.

FZ: Clo.. an APL FIle

1. FZ The two-dt8rader service request code.
2. A fullword service completion code.
3. (reserved)
4. (reserved)
5. (reserved)
8. A ruJlword containing the token provided when the file was opened.

FR: R••d an APL File Record

1. FA The two-ch8rader .ervice request code.
2. A rultword ,.rvlee completion code.
3. A rullword containing the length of the area pointed to by the 4th param~ter.

4. An area in which the record will be returned, beginning with a four byte length neld.
5. A 'ullword containing the relative record number In the til. If the nle was opened for direct proc­

essing. For sequential processing this value is returned by the system.
8. A (ullword containing the token provided when the fli. was opened.

FW: Writ. an APL File Record

1. FW The two-charader service request code.
2. A fullword service completion code. .•
3. (reserved)
4. An anta which contains the record to be written, beginning with a four byte length field.
S. A rultword containing the relative record number In the file if the file was opened ror dired. proc­

essing. For sequential processing this value is returned by the system.

8. A rullword containing the token provided when the ftle was opened.

File Svstem Service. 5

Message Services

These services gives processors access to the same message facilities used by the APL2 product.
Messages may be displayed. queued. or returned to the caller. The current national language table is
used. substitution fields are supported. and a message 10 is optionally supplied.

The twa mesaage service. are:

Me Check for Message Existence
MF Format a Mes.age

Me: Check for M....g. existence

The message number -exists" if it can be found in either the standard English tabl. provided as a part
or the product or the current national language definition as ••'ected by 011£7. Note that this service
provides a return code for an unknown message number. while the MF service .bends in that case.

1. Me The two-character service request code.
2. A rullword service completion code.
3. A rullwofd message number.

This !4ervice formats a message, then either displays it. queues it. or retums it to the caller. The

service depends on 8 message number as denned in • APL2 Messages and Codes.· In the future it will

also be possible to define new message numbers in message flies saleded by D8£1'.

A ene-enaraeter code indicates what should be done with the message:

D Display the message as a part of the APL session.

Q Qu"ue the message for a subsequent)NORE request.

R Return the formatted message to the caller.

In each of these cases the message will begin with a message 10 if DEBUG(32) is in effed.

This ~f!rvice has two different parameter structures. depending on the action code.. For code 0 or Q

the parameters are:

1. MF The two-character service request code.
2.	 A fullword service completion code.
3. A rullword message number.
4.	 A single character D or Q.

5..	 An optional stnng to be substituted into the message. Message substitution fields are numbered in
the message modets.

6.	 A fullword containir:;j the length of the preceding string.

Addition;:tl pairs of parameters like 5 and 6 may be provided to define additional substitution strings.

For code R the parameters are:

1. MF The two-character service request code.
2.	 A fullword service completion code.
3. A fUJlword message number.
4.	 A c;inqlf! character R.
S. The output area for the message.

PAessage Services 6

6. A fullword containing the length of the output area.. On return this will contain the length or the
message.

i. An optional string to be substituted into the message.
8. A fullword containing the length of the preceding string.

Additional pairs 01parameters like 7 and 8 may be provided to define additional substitution strings.

.•

Process Services

Proce!l;$ services use one-word blocks called event control blocks (EeBs) to synchronize the operations
of two processes. The Shared Variable service and Terminal services also uses ECBs. The internal
format and content of an ECB is system dependent. but may be partially controlled by the POSTing
process.

There is no retum code from any of the processor services. Information about the success of the oper­
ation is onen available in an ECB. Invatld parameters caus. an ABEND of the processor.

PW: Walt for an Event

I' multiple ECBs are specined. control may be returned when anyone of them has been posted.

1. PW The two-character service request code.
2. A fullword in which a pointer to a posted ECB will be returned.
3.	 A ruUword ECB which is to be posted asynchronously by another task.
4. An optional additional ECB or ECBs. (This Is a variable length parameter lisl)

PP: Post an Eea

Send a signal to another task in the same address space or virtual machine. This signal will terminate
an operating system WAIT or a PW service that has suspended any task on that ECB. It will also set a
post bit in the ECB so that a later WAIT or PW will complete immediately.

1. PP The two-eharacter service request code.
2. A fullword ECB which is to be posted.
3..	 A rullword containing a nonnegative binary number which will be placed in the low order halfword

of the ECB. .

PT: Start 8 Timer

This rftquest sets an •alarm clock" which will send a signa' after a specified amount of ·wall clock"
time hAS elapsed. A timer that has not expired Is cancelled by a subsequent timer request front the
same process. or by the process's termination.

Control retums immediately. afthough norma.fly the ECS will not yet have been posted. Use the PW
service to wait for the timer signal.

t.	 PT The two-eharader service request code..
2.	 A rullword ECB which will be posted when (or soon after) the time interval has elapsed.
3. A ruflword containing the length of time. in milliseconds.

Shared Variable Service

This sf!rvice provides cammunication and data transfer between auxiliary processors and the SVP.

The parameter list itself is very simple. but the second parameter is 8 more comp'ex parameter block..

One of three dirrerent parameter blocks must be provided there. depending on the type of request

being made. In all cases the first halfword of the parameter block IdenUne. the request. and hence the

format of the remainder of the block. The three parameter blocks are associated with three daises of

requests.

Ie: Shared V.rlabl. Service

1. SC The two-character service request code.
2. A procnaor control vIICtor (PCV) or share control vector (SCV) or SVP data format block (SDF).

pcv: Processor Requests

Proce5sor requests are related to the state or the auxiliary processor itself. without ref.rence to partic­
ular shared variables. The two processor requests are CSVON (1Ignon) and CSVOFF (Iignolr).

The PCV contains the following fields:

PCVREQ CSVON or CSVOFF.

PCVID Processor identiftcation.

PCVECB Pointer to an event control block.

PCVSPQ Space quota.

PCVSHVQ Shared variable quota.

PCVRC Return code.

PCVOFFER Set if one or more incoming offers exist at the time of signon.

SDF: Data Fonnat Request

This request permits data compatibility with other APL systems. It would be used to request data in a

VS APL format. or to return to the default APL2 format. The request applies to individua! illared vari ­

ables.

The SOF contains the rollewing n.lds:

SCVREQ CSVDFORM

SDFlD Processor 10.

SDFPSX The value returned in SCVPSX.

SDFVERS Processor version. always 2­

SDFDFORM Oata rermat to be used. 1 (VS APL) or 2 (APL2).

SDFRC Return code.

_ _ ,.,,_._~ \1._."'. c,..
 CI

scv: Shared Variable Requests
These are the ·workhorse" requests: they handle all shared variable connection. status. and data
transfer.

In all of the share requests, the SVP uses a value called the • pershare index" to associate the request
with a specific shared variable. When a new variable is being otrered. the SVP returns an intemaUy
generated pershare index to the caller. It also retums a pershare index for each variable reported in
response to CSVSCAN or CSVQUERY. For all other share requests the caller must provide a pershare
index previously retumed by the SVP.

The SVC requests are:

CSVSCAN Scan for an offer

CSVSHARE Offer a variable. match an incoming offer, or obtain information about a share.

CSVSEEAC See (Insped) access information.

CSVSETAC Set the access control vedar.

CSVREF Reference a shared variable.

CSVSPEC Specify a share~ variable.

CSVCOpy Copy a value without signalling a reference, and optlonally.place a hold on the variable.

CSVREL Release a previous hold on the variable.

CSVRET Retrad the share offer for a variable.

CSVQUERY Obtain a list of processors or variables which match a specified degree of coupling.

CSVSTATE Obtain information about the state of a list of variables.

The SCV contains the following ftelds. but only a subset of them is used by each request:

SCVREQ One or the requests listed above.

SCVRC Return code.

SCVPART Partner identification.

SCVID Processor identification.

SevOSN Otrer sequence number.

SCVPSX The pershare index.

SCVECS Pointer to an event control block.

SCVVLEN Shared variable value length. or length of the area pointed to by SevYALUE.

SCVVAlUE Pointer to the shared variable value. For CSVSTATE or CSVQUERY this is a buffer where a
list of entries will be returned.

SCVACV Access control vector component.

SCVNAMES On if any name is acceptable.

SCVHOLD The variable will remain under the control of the requestor.

SCVF1SPC Ignore any unrererenced value set by the partner.

SCVFOFR1 Offered by this processor.

SCVFSHR Fully shared.

SCVFOFR2 Offered to this processor.

SCVFlGS2 The partner protocol (1=VSAPL. 2=APl2l.

S~LEN Name length.

SCVNAME Pointer to Shared Variable Name fiefd.

Shared V~riable Service 10

Terminal Services

Two lerminal services are defined, TA which allocates the session tenn'"a', and TZ which re'eases it.
Actual terminal VO must be accomplished with non-APL service. such .s GOOM or specific operating
system interfaces. APL has no way of verifying that auxiliary processors bracket their term,inal 1/0 with
proper TA and TZ caUs, but if they do not the results may be visually unpredictable, and asynchronous
interrupts may not be handled properly.

APL2 will delete any terminal attention exits oIlls own before giving terminal control to the process.
The processor must delete any attention exits It estabUsh•• before return'ng terminal control to APL2.

TA: Allocate the Tennlnal

This Is a request for excJusive use of the terminal. The request returns immediately. whether or not
the terminal can be given to the requestor at the moment

-
On rerum, the requesting program should walt for a signal Indicating that the request has been
granted. The PW service can be used for this purpose. A terminal state code will be provided when
the signa' Is lent. It will contain one of:

D Data displayed on ttle screen has been changed since the processor last controlled it. but fteld
definitions are stili valid.

F Field definitions have been changed since the processor last controlled the screen.
N No screen changes have occurred since the processor last controfled the screen, or this is not a

full screen terminal, or the processor has never previously,.controlled the terminal.

The requesting process will retain control of the terminal until it explicitly relinquishes that control with
a 1% reqwest. It may receive a signal indicating that some other process Is requesting control or the
terminal. .

1. TA The two-character service request code.
2. A one-c:harlcter field. indicating the state	 of the terminal. This value will be supplied when ter­

minal controf has been granted.
3. A rul1word ECB which will be posted when the requestor Is given control of the terminal.
4. A rullword ECB which will be posted if some other process requests control of the terminal while

this process is holding it.

TZ: R.I•••• the Terminal

1. TZ The two-charader service request code.
2. A one-charader neld indicatjng what changes have been made to the	 tenninal while it was held ..

The val!JH are as defined for TA above.

Termin. Services 11

Virtual Storage Services

Storage obtained by these services is always initialized to binary zero. There are no return codes
from the seMe... except that a returned storage address of zero means the requested storage was
not available. Ir invalid parameters are provided. an ABEND will be issued.

VP: Get Proce.. Storage

Storage obtained through this service will be Implicitly freed when the process terminates.

1. VP The two-charader service request code.
2. A fullword containing the number of bytes of storage needed.
3. A fullword in which the address of the storage is returned.

VG: Get Global Storage

Storage obtained through this service will be retained until APL2 sessiOn termination. even if the
process terminates eartier.

1. VO The two-eharader service request code.
2. A fullword containing the number of bytes of storage needed.
3. A rullword in which the address of the storage is returned.

VF: F.... Global Storage

1. VF The two-character service request code.
2. A fullword containing the number of bytes of storage to free.
3. A rullword containing the address or the storage to be freed.

VQ: F.... Proce~ storage

1. VQ The two-charader service request code.
2. A rullword containing the number of bytes orstorage to free.
3. A fullword containing the address of the storage to be freed.

VV: Get Varlabl. Length Process Storage

This rf!quest is identical to VP -except that a smaller amount or storage will be accepted if the amount
requested is not available.

1. VV The two-charader service request code.
2. A rullword containing the maximum number of bytes of storage wanted. On retum it will contain

the number of bytes actually obtained.
3. A rullworu in which the address of the storage is retumed.

·	 .

Example of an Auxiliary Processor

n,e code shown here is a usable auxiliary processor (though it may still have some bugs in it). The
processor provides a simp'e Ole system. with one arbitrarily complex APL2 data array per file. To use
the system. share one variable with AP 421. The variable name is a one 10 eight charader fli. name.
Multiple concurrently shared variables are not supported.

To write • tile:

•	 Assign a two item nested vector to the sh8red variable:

1. A library number expressed as a one .fement vector.
2. The data to be stored. of arbitrary structure.

• The AP returns a one element vector numeric return code, using the return code. denned for AP
121.

•	 Storing an array replaces any previous data in the file.

To read a file:

•	 Assign a single element numeric vector to the shared variable. representing a library number.

•	 If the operation Is successful, the AP retums a two Item nested vector, ex.dly •• as it was pro­

vided when the nle was written. (The Drst item is the original library number.)

•	 If the operation rails, the AP returns a one element vedor numeric return code. using the return

codes defined for AP 121.

EX:1mpf- nf ~n AUlili:try PrOC8S!IIQr 13

Initialization of the AP

~IL£SAr·tP	 CSECT

SAVE (14.12).,--FILESAMP-CSEC-&SYSDATE

LR RBASE,R15

USING FILESAMP,RBASE

lR RPARM,Rl

USING PARMStRPARM

LA OOPS t 1 SET UP TO FORCE ecs

•	 NOTE: CHANGE ABOVE TO e TO FORCE LOOPS INSTEAD
•

. ... GET A WORK AREA FOR OURSElYES
•

l R15,PARM4 SET UP STORAGE REQUEST
LA R8 t VORKlEN • LENGTH REQUIRED
S1 Re,8(,R15)
L R15.PARM2 FINO ADDRESS OF SERVICE ROUTINE
L R15,8C,R15) • IT IS AN INDIRECT POINTER
LR RSERV,R15 (AND SAVE FOR THE FUTURE)
LA Rl,PARM3 USE AS 'VP' PARM LIST
CAU (15) GET WORK STORAGE
L· R15.PARM5 FINO ADDRESS OF STORAGE
L RWORK,8(,RLS)
USING WORK,RWORK

•	 NOTE: IF' THERE IS flO STORAGE t WE WILL· BLOW UP SHORTLY.
• WHICH IS AS GOOD A WAY AS ANY FOR US TO CCI4PlAIN.

Set Up to Us. the SVP

LA Re,VNAME
S1 Re,SCV~1E WHERE NAME SHOULD GO
LA Re,SEes SHARED VARIABLE ECB
-ST R8,SCVECB

•
••* SIGN ON TO THE SVP
•

LA Re,421
S1 R8,PCVID OUR 10 (2ND WORD ALREADY 8)
Sf Re,SCVID - WILL WAHT IT IN SVC, TOO
LA Re ,PEes PROCESSOR Eca
S1 .,PCYEC8
SR R8,R8
BeYR R8,9 WE HANDLE VARIABLES OF AN' SIZE
SRl Re,S so SAY 2-*24 - 1
ST R8,PCYSPQ
LA RB,l BUT ONlY ONE VARIABLE AT A TIME
STH R9,PCVSHVO
LA R9,CSVON
5TH R8,PCVREO ASK FOR SIGNa"
LR R15,RSERV
CALL (15),(eC 'SC',PCV),VL,MF-(E,WORKA)
LH R15,PCVRC
LTR RlS,R15 CHECK RETURN CODE
snz SHUT9 GET OUT IF CAN' T SIGN ON

_____• __ ~ __ " :1: __ • ft .. 14

Wait for an Offer, and Terminate when Required

~IT	 OS 8H
LA R15,RSERV
CALL (15),(-e'PW',O~4MYtPECB),VLtMF·(E,WORKA)

SR R8,R9
S1 RS,PECS CLEAR ECa FOR THE NEXT POST
51 AS,SCVOSH LOOK FOR ANY OF~ER

MYl SCVFLGS1,SCVNAMES ANYTHING IS OK
LA Re,L'VNAME
STC R8,SCVNLEN MAX NAME LENGTH
LA Rl,CSVSCAN
8Al RBACK,CALLSVP SCAN FOR AN OFFER
IZ MATCH - TRY TO MATCH IF OFFER
810 NAIT - GO WAIT UNLESS SHUTTING DOWN

•... TERMINATE THE AUXILIARY PROCESSOR
•
SHUT os 8H

LA RS t CSVOFF
5TH A8,PCVREO ASK FOR SIGNOFF
LR. R15, RSERV
CAlL (15),C-e'SC',PCV),VL,MF-(E,WORKA)

SHUT9 OS 8M
•	 IOTE: OUR WORKAREA IS FREED AUTOMATICALLY

RETURN (14,12)

Match an Incoming Offer
MYCH	 OS 8H
•	 NOTE: SCV ALREADY CONTAINS INFO ABOUT THE OfFER
•	 USE NAME AS A FILE NAr~E

·LA R14,VNAME HERE IS WHERE THE NAME IS
LA 115,e" -(PAD WITH BLANKS)
SLL 115,24
IC A15,SCVNLEN -GET ITS LENGTH
LA A8,FNAME
LA Rl,ltFNAME MOVE IT INTO FILE FIELD
MVCl A8,R14
SA Re,RS
51 A8,SCVVLEH WE DON'T HAVE AN INITIAL VALUE
nvl SCVACV,B '8119 1 CONTROL HIS SET, MY USE
LA Rl,CSVSHARE
8Al RBACK,CALLSVP MATCH AN OFFER
80 SHUT - GET OUT IF SHUTTING DOWN
Bill AlAIT' - IGNORE IF CAN'T MATCH

_ __~. __ ~ __ •••_~I! __ .. 8 .__ 41:

Get and Analyze a Request from the User

HANDLE OS 9H
LA Rt,256

HAND2 os 8H
SAL RBACX,GETBUFF
BZ EMSG
USING BUFFER,RSUFF
LA Rl,CSVREF
SAL RBACX,CAllSVP
IZ JWl)4

so SHUT
8M WAIT
L Rl, SCVYlEN
C Rl,8UFLEM
BH JWl)2

HAN04
B
es

• (OOPS)
8H

eLI .CDRRT,RTG
SHE READ
B WRITE

MINIMm4 BUFFER SIZE

GO EXPLAIN IF NO SPACE

REFERENCE THE VARIABLE VALUE
• PROCESS IF WE HAVE A VALUE
- GET OUT IF NO SVP
- GO WAIT IF INTERLOCK
ELSE PROBABLY BUFF£R PROBLEM

• SO IT IS, TRY AGAIN
• OUR PROBLEM IF NOT

IF HOT A GENERAL OBJECT
THEN GO HANDLE AS INPUT
ElSE GO HANDLE AS OUTPUT

Walt for Action on the Current Share

WAIT DS 8H
TM SCVFLGS1.SCVFSHR
BZ RETR RETRACT IF PARTNER DID
LR R15,RSERV
CALL (15),(-e·~',DUMMY,SECS,PECB)tVLtMF·(Et~ORKA)
SR RStRe
ST R8,SECB

•
B HANDLE

••• RETRACT THE SHARE,
*
RETR OS 8H

LA Rl,CSVRET
SAL RBACJC,CALLSVP
80 SHUT
8Z PWAIT
8 -(OOPS)

CLEAR Eca FOR THE NEXT POST
AND SEE WHAT WE HAVE NOW

SINCE PARTNER ALREADY HAS

RETRACT THE VARIABLE
- GET OUT IF SHUTTING DOWN
• GO TO PRIMARY WAIT IF OK
ElSE ~'VE GOT A PROBLEM HERE

Write a File

\MITE	 os eH
LA Ra ,2
C Re,CDRXRHO CHECK FOR A 1lIO I fEMS
SHE EMSG NO? SLAP HIS HAND
LA	 Retl
Of A8,CDRRANK+lIBOESC FIRST SHOULD IE A VECTOR
SHE EMSG
C R8, CDRXRHO+lIBOESC WITH EXACTlY ONE £I.91ENT
8NE EMSG
SAL ABACK, GETNIJt GET USRARY NlJ4BER
INI EMSG IF NOT AN INTEGER, BLAME THE USER

•... DELETE, RECREATE, OPEN, WRITE, All) CLOSE FILE
•

LR	 R15,RSERV
CALL	 (15) ,(-e'Fa' ,Re, DElETE THE FILE IF' IT EXISTS +

LIBNO,FNAME,PASS), ·IDENTIFY THE FILE +
YL,MF-(E,WORKA)

•	 NOTE: RETURN CODE IGNORm. MAY 8E NOT FOUND.
LR R15,RSERY
CAll (15).C-C'FC·,RC, RECREATE THE FILE +

LIBNO,FNAME,PASS, -IDENTIFY THE FILE +
-F'e' ,-e'\!IS I) t -UNLIMITED SIZE, SEQUEHTIAL +
YL,MF-(E,WORXA)

LTR R15,R15
8HZ EMSG BE SURE THAT WORKED
LR R15,RSERV
CALL (15), (-e •FA',RC, OPEN THE FILE +

lIBrW,FNAME,PASS, .IDENTIFY THE FILE +
TOKEN,-e'VS'), -ASK FOR SEQUENTIAL WRITE +
VL,MF-(E,WORKA)

LTR R15,R15
8HZ EMSG BE SURE THAT WORKED
L RS ,SCYVlElI
ST R8,RECLEN PASS AlONG ARRAY SIZE
LR R15,RSERV
CALL (15),(-e'r:w',RC, WRITE FIRST RECORD +

,(RBUFF), -ADDRESS OF RECORD +
DtJlCy, TOteEn) , -USE FILE JUST OPENED +
Yl,MF-(E,!!IORQ)

LA RTEl4P,R15 SAVE AETURJI CODE
LR R15,RSERY
CALL (15), «'Fl' ,Re, CLOSE THE FILE +

••• TOKEJl), -IDENTIFY THE FILE	 +
VL,MF-(E,WRD)

LR· R15,RTEMP RETURN CODE (MAY BE ZERO)
B EMSG GO SAY WHAT HAPPENED

•
PA~S DC CLS' I WE NEVER SUPPlY PASS\«JRD

Exam"'. of an Auxiliary Processor 17

Read.	 File

READ	 os eH
LA Re,l
C RS,CORXRHO CHECK FOR A SINGLE ITEM
SHE EJ4SG NO? SLAP HIS HAND

•	 NOTE: GETNUM WILL CATCH ANY CHARACTER DATA
• WE LET SINGLE NUMERIC ITEMS OF ANY RANK THROUGH

SAL RBACJC,GETNtJ4
8HZ EMSG
LA R15,RSERV
CALl (15), C-C'FA' ,Re,

lIBNO,FNAME.PASS,
TOKEN,-etRS'),
Vl,MF- (E,WORICA)

LTR RIS,RIS
BNI EMSG

REA02	 OS eN
LR R15.RSERV
CALL (15) t (-C'FR' ,Re,

BUFtEN,(RBUFF),
DlMIY, TOKEN) ,
VL,MF-(E,WORKA)

LR RTEMP,R15
LA Re,ERLEN
CR Re,R15
8"E READ5
L Rl,BUFLEN
AR . Rl,Rl
BAL RBACJC,GETBUFF
8HZ READ2
B EMSG

READ5 1)S 8M
LR R15,RSERV

GET LIBRARY NtJ48ER
IF IT DIDN'T WORK, BLAME THE USER

OPEN THE FIL£
-IDENTIFY THE FILE
-ASX FOR SEQUENTIAL READ

+
+
+

READ FIRST RECORD
-LENGTH/ADDRESS TO READ TO
-USE FILE JUST OPENED

+
+

+

SAVE RETURN CODE

IF NOT RECORD LENGTH
THEN GO ON AND ~LOSE

ERROR

ELSE DOUBLE THE ANTE

TRY AGAIN IF THAT
ElSE GO EXPLAIN

WORKED

CLOSE THE FILE
CALL (15).(-e'rz',RC,."TOKEN),VL,MF-CE,WORKA)
LTR R15,RTEMP
8HZ EMSG

• RETURN RESULT IN SHARED VARIABLE
l RG,REClEH
Sf RS,SCVVLEN
LA R8,CDR
ST Ae,SCVVALUE
Wit SCVFtGS1,e
LA Rl,CSVSPEC
BAL RSACK,CALLSVP
BZ WAIT
sr~ READS
90 SHUT

eH R15,·Y(CSVEVOS)

BE WAIT

CH A15,.Y(CSVEVTL)

BrIE -(OOPS)

READ"	 os eu
LA R15,ERSPC
B EP~SG

LENGTH OF T~E C~R

ADDRESS OF THE CDR
DON'T IGNORE ANOTHER PARTNER SPEC

SPECIFY THE VARIABLE VALUE
- WAIT FOR NEXT REQUEST IF OK
- EXPlAIN IF I"TERLOCK OR SM FULL
- GET OUT IF NO SVP
IF PARTNER HAS SET VARIABLE AGAIN
THEN IGNORE THIS AND 00 THAT
IF VALUE NOT TOO LARGE FOR g4
THEN WE GOOFED

STRANGE. BUT AP121 TREATS SM FULL
AS NO STORAGE FOR I/O BUFFER

Exam",... nf :tn AUJriliary Processor 18

..
Tell the User What Happened

This mutine attempts to send a message to the terminal if the return code (currently in R1Sl is
nonzero. It also assigns the return code to the shared variable in all cases.

EMSG OS 8H
NYC WORKCDR,RCCDR SET UP RESUlT CDR
Sf R15,WORKCDR+RCDATA-RCCDA FILLING IN RETURN CODE
LTR R15,R15 IF SUCCESSFUL COMPLETION
IZ EMSG5 THEN SKI P THE MESSAGE
CVO R15,DWORD
NYC STRING,EDMASK
ElICK STRING,DWORD+e CONVERT RETCOOE TO CHARACTER FORM
LR RTEMP,Rl WtERE FIRST NON-8LANIC DIGIT IS
LA Re,STRIN6+l'STRING
SR RS,RlEMP lEJIGTH OF RESUlT
51 Re,MLEH
LR R15,RSERV
CAlL (15) t (-('MF', CAlL MESSAGE SERVICE +

AC,-F'22I ,-e'O ',
PROeNO, PROClEN t

PROCESSOR ERROR +

+

(RT9tP) ,MLEN) , +

• NOTE:
Vl,MF-(E,!«IRICA)
IF IT WORKED, FINE. IF NOT, QUE SERA, SERA•

EMSGS OS 8M
LA R8,WORICCDR
51 Re,SCYVALUE
LA R8,L'VORKCDR
ST RS,SCVVLEN
LA Rl,CSVSPEC
SAL RSACIC,CALlSVP
BZ WAIT .. VA IT FOR NEXT REQUEST IF OK
"8M WAIT - GIVE UP IF INTERLOCK OR SM FULL
80 SHUT - GET OUT IF NO SVP
CH R15,.Y(CSVEVOS) IF PARTNER HAS SET VARIABLE AGAIN
BE WAIT THEN IGNORE THIS AND 00 THAT

•
8 -COOPS) OTHERWISE WE GOOFED

ElJ4ASK DC X'48282128 ,
PROCHO DC C1421'

PROClEH
•

DC A(L 'PROCllO)
MODEl CDR FOR RETURN CODES

RCCDR DC
DC

All(CDRID),AL3(RCDATA-RCCDR)
FII'

HEADER
XRHO

DC ALl(RTI,RL4) TYPE AND LENGTH
DC Hll' RANK
DC ~'1' SHAPE

RCDATA DC Fie' DATA
RCLEN EQU ··ACCDR

uttrn",e nf itn Auxiliary Pnx:essor 19

Subroutine to Call the SVP for a Share Service

R1 must contain an SVP service COde, and the SCV must be set up. This routine returns with the
maenine condition code set to "overflow" if the SVP is not active. In all other cases, it is set to the
sign of the SVP return code. The SVP returns zero on success. negative numbers on temporary prob­
lems (such as shared variable interlock). and positive numbers on permanent problems.

CALLSVP DS eH
5TH Rl,SCVREQ INDICATE DESIRED REQUEST
LR RlS,RSERV
CAll (15). (-e'SC' ,SCV).Vl,MF-(E,WORkA)
LH R15,SCYRC
LTR R15,R15 CHECK RETURN CODE
BNPR RBACr GET OUT IF CAN'T BE UNAVAIlABLE
LA R8 •CSVENA
CR R15,R8 CHECK FOR UNAVAIlABLE
BHR RBACK LEAVE CC-P IF NOT UNAVAIlABLE
1M *+l,X'FF' A TEST THAT CANIY FAIL
SR RBACK RETURN WITH CC-O

SUb~outln. to Extrad a Ubrary Number from a CDR

The LIBNO field is set to the first data item in the CDR. This routine returns with the machine condition
code set to zero If the number was gotten successfully. Failure would normally occur because the first
item was in tum nested. or containOed character data, or contained a number which could not be con­
verted to an integer.

GETNUM DS 8M
L RTEMP,CORDLEN
LA RTEMP,COR(RTa~p)

LA	 RTEMP2,CDROES
tll	 CDRRT,RTG
8HE GETN2
LH Rl,CDRRANIC
SlL Rl,2
LA RT94P2.CDRRHO(Rl)

GETH2 OS eH
LR	 R15,RSERV
CALL	 (15) t (-e'ON' .sc,

-A(L'LIBNO) .LIBNO,
(ATEMP).
-e'ceI4',
wF'e' ,-F '1 ••
(RTatP2) t

Vl,MF-(E,WORKA)
LTR R15,R15
SZR RBACK
CH	 RlS,-H 113'

BUE -COOPS)
LA R15,ERSYN
LTR R1S,R15
SR ABACK

DESCRIPTOR LENGTH
POINT AT DATA, CLEAR HIGH BIT
ASSlttE SIMPLE CDR
IF IT IS NOT NESTED
THEN USE THAT ITEM
ElSE STEP PAST THAT ONE
(ALLOWING FOR SHAPE WORDS)

GET THE Nlt1BER
-OUTPUT AREA LENGT:i AND
-INPUT DATA ACORESS
-CONVERT CDR TO FULLWORD
-aEMENT e FOR 1 ELEJ·tENT

+
ADDRESS +

+
INTEGER +

+
-DESCRIPTOR FOR COMPON HlItBER +

INDICATE WHAT HAPPENED
AND RETURN IF OK
DATA COULD NOT BE CONVERTED?
ANYTHING ELSE IS OUR PROBLEM
noT CONVERTED IS SYNTAX ERROR
IrmlCATE WHAT HAPPENED
Afm RETURN

EXAmpf.- of i1n Auxiliary Procftssor 20

•
Subroutine to Get a Buffer

This rnutine is called with R1 containing the length required. It cheeks any existing buffer to see if it is
big enough. If not, it frees the old one (ir any) and gets a new one. It then sets up aU the nelds that
expect to have buffer addresses or lengths. This routine returns with the machine condition code set
to zero if no storage could be gotten. R15 is set to the AP 121 error code for "ne space" in that case.

GmUFF OS eH
L RSUFF,BUFPTR SAY WHERE BUFFER IS
C Rl.BUF1.EH
BNH GETS8 SKIP MOST IF CURRENT BUFF IS OK
LA RTEMP,Rl ElSE REMEMBER SIZE NEEDED
L Re,BUFlEH
LTR Re,RS IF NO BUFFER AT PRESENT
BZ GETB2 THEN GO GET ONE
LR R15,RSERV
CALL (15).(-e'YQ'.BUFlEN,BUFPTR). FREE PRIOR BUFFER +

Vl,MF-(E.WORICA)
GETB2 os 8H

Sf RTEMP, BUFLEN
LR R15.RSERV
CAlL (15).(eC'VP',BUFlEN,BUFPTR), GET A NEW BUFFER +

VL,MF-(E,WORKA)
l RBUFF,BUFl'TR SAY WHERE BUFFER IS
lTR RSUFt,R8UFF IF WE MANAGED TO GET ONE
BNZ GETS8 THEN GO AHEAD
LA RlS,ERSPC ElSE SAY NO SPACE
BR RSACK AND RETURN (CC-e FRC14 LTR)

GETS8 OS 8H
LA R8,CDR
ST R8,SCVVALUE SAY WHERE SVP DATA GOES
LR Rl,RBUFF
A Rl,BUFlEH . - END OF BUFFER
SR AltRe - LENGTH OF COR AREA
Sf Rl,SCVVLEN SAY HOW BIG SHARED VARIABLE CAN 8E
BR RBACK AND RETURN (Ct>9 FROM SR)

Data Dedaratlons

Hidinq back here at the end are all the extra things you have to teU the alsembler to convince it to
produ~e ~ working program. Incidentally. the ract that they are at the end probably means that the H
assembler is required for compilation.

First the definitions which do not use storage.

Erilmpfe 01 ;In Auxiliary Processor 21

REJ E'JU e
Rl EOU 1
RTEl1P EQU 3
RTEnp2 EQU 4
OOPS EQU 5
RBUFr: EQU 6
RSERV EOU 7
RPARM EQU 8
INORK EOU 9
ABACK EOU 11
ABASE EOU 12
Rll EQU 13
R14 EQU 14
R15 EQU 15
•
ERLEN EOU 7
ERSYN EQU 12
ERSPC EQU 32

AP2CSVPE I

HArlDY TEl·tPORARY WORK REG
AND ANOTHER ONE FOR GOOD MEASURE
TO tORCE AN aC6: BRANCH TO 000 ADOR
BASE FOR BUFFER OSEeT
POINTER TO SERVICE ROUTINE
POINTER TO INPUT PARAMETERS
BASE REGISTER ~OR WORK AREA
SUBROUTINE RETURN REGISTER
BASE REGISTER FOR PROGRAM

FILE SERVICE RETURN CODES
RECORD LENGTH ERROR.
SYNTAX ERROR
G£]MAIN FOR I/O BUFFER FAILED

SVP SERVICE CODE DEFINITIONS

The remaining definitions describe storage based on some pointer. Note. Incidentally. that this AP is
completely reentrant.

BUFF'ER OSEeT t FOR FILE I/O AND SHARED VARIABLE REF/SPEC
REClEN OS

AP2CDR
ORG
OS

CDRDESC2 EQU
LIBOESC EQ~

F
TYPE-e5ECT ,DOC-NO
CDRRHO
F
•
-·CDRDES

LENGTH WORD FOR F1LE SYSTEM
SHARED VARIABLE VALUES

LENGTH OF -G ITEM
START OF SECOND DESCRIPTOR .
OFFSET TO LIBRARY NUMBER ITEM .._--_.---------­

---------------------------_.---.-----_.-.----------------------------

PARns OSEeT , PARr~S PASSED TO EACH TASK
PARMi
PARt42

"OS
OS

A
A

(UNUSED)
INDIRECT PTR TO SERVICE ROUTINE

PARMJ OS A START OF 'VP' PARM LIST
PAJU44 OS A • LEtIGTH FOR VP
PARt1S OS A - ADDRESS FROM VP
•
~RK OSEeT , LOCAL WORK AREA
D\'!ORD os 0
STRING OS Cl(L·DI·tAS~)

rtlEfi os F
BUFPTR OS A
RUFlE" OS F
PEeS OS F
SEes OS F
YW1E OS CLB
F'fW·tE OS el8
lIBNO os F
TOICEr~ OS F
~RKA OS 9A
OlllfY OS F
RC os r:
•

AP2PCV TYPE-oS
AP2SCV TYPE-DS

~ORKCDR OS CL(RCLElI)
~ORKLEU EQU ··\'lORK

Ef4D

DECI~L ARITHMETIC ~ORK AREA
DECIMAL DISPlAY WORK AREA
LENGTH OF DATA IN STRING
!'GINTER TO BUFFER
lENGTH OF BUFFER
PROCESSOR EVENT CONTROL BLOCK
SHARED VARIABLE EVEJIT CONTROL BlOCJC
SHARED VARIA8LE NAME
FILE NAME
LIBRARY nUMBER
FILE SERVICES TOKEN
SERVICE CALL PAAM LIST AREA
unUSED FIElD REQUIRED BY SOME CALLS
RETURN CODE PARN~ETER

PAAM BLOCK FOR SVP SIGNON/SIGNOFf
PAm1 SLOCK FOR SVP SHARE SERVICES
RET'JRfl ':ODE COR
LErlG TH OF =ORK AREA

Ex:tmntft nf =-n Auxiliarv Processor 22

