Santa Teresa
Laboratory
San Jose, CA

TEE APL2 NAME ASSOCIATION FACILITY:
Understanding the APL-FORTRAN Connection

May 1986 TR 03.286
by Harlan Crowder

-

May 198¢
TR 03.286

The APL2 Name Association Facllity
Understanding the APL-FORTRAN Connection

by

Harlan Crowder

General Products Division

Santa Teresa Laboratory
San Jose, California

The lliustrations In this report were crested using the Graphical
Data Display Manager, Interactive Chart Utliity running with
APL2. Text and graphics were integrated using the Document
Composition Facliity. The report was set in Helvetica type and
produced on the IBM 4250 printer.

The APL2 Name Association Facliity

The APL2 Name Association Facility
Understanding the APL-FORTRAN Connection

The APL2 Name Association facility aliows APL2 application programs to call external functions
written in other programming languages, including $/370 Assembier Language, FORTRAN, and, in
the vimvcms environment, RExx. External functions aliow aApL2 applications to benefit trom
increased execution pertormance using components written in compiied code, use ot existing
compiled code subroutine libraries, and use of special hardware such as the 1Bm 3080 Vector
Facility.

This report describes the APL2 Name Association facility, and emphasizes the combined use of
APL2 and FORTRAN in application programs. We explain how the APL-FORTRAN connection is
established in the APL environment, and describe some programming techniques for fully
exploiting the external function concept. We describe in detail some exampies that iliustrate the
hybrid APL-FORTRAN programming technique.

Understanding the APL-FORTRAN Connection i

Reprints of this report may be obtained by writing the author at the following address:

1BM Corporation
Department M30
555 Bailey Avenue
San Jose. CA 95150
USA

v The APL2 Name Assoclation Facllity

Introduction

The APL2 Name Association facility aliows aArL2 application programs to call external functions
written in other programming languages. In previous implementations of APL, application
programs could use only subroutines coded in the apL language; this restriction limited the tiexi-
bility and range of many apL application systems. With the apL2 Name Association facility, apL
applications can use subroutines written in a variety of programming languages, including s/370
Assembler Language, FORTRAN, and, when operating APL2 in the vM/CMS environment, the REXX
programming language.

APL application designers and programmers can use the Name Association mechanism with
advantage in several ways:

@ Execution performance of computationally intensive APL subroutines may be improved by
recoding them in FORTRAN or Assembier Language.

| Existing FORTRAN subroutine library routines may be used, without modification, in ApL appli-
cations.

B APL applications can use the facilities of RExx in the vM/cMS environment for high-level
programming language capabilities, string processing, and access to host system informa-
tion.

@ Using vS FORTRAN Version 2, ApL. applications can take advantage of the high-performance
processing power of the 18m 3080 Vector Facility.

The APL-FORTRAN Advantage

In this report, we concentrate on the use of APL in conjunction with FORTRAN.! APL and FORTRAN
complement each other in several ways, and the Name Association facility allows application
designers and programmers to exploit the strengths of each language.

APL is both a concise language and a notation for describing computer aigorithms and proce-
dures at a high level. With aArL, you describe briefly, and without extraneous detail, the
operations that a program performs. With ApL, you describe what to do, not how to do it. From
the brief program description, the APL systemn decides the actual underlying computational aigo-
rithms and procedures to execute.

The ability to briefly describe procedures, while subordinating extraneous detail, is the main
strength of APL. Thus, APL becomes a very productive toof for implementing application
programs, allowing the building of solutions in a smali fraction of the time and effort required by
other programming tools.

FORTRAN is a high-level programming language with a long history as an efficient and effective
computational tool. For computationally intensive problems where efficiency is essential, it is
the language of choice. The wide-spread use of FORTRAN in scientific, engineering, academic,
and analytical business applications attests to its continued value as an essential programming
element. The recent support of the 1BM 3080 Vector Facility by the vS FORTRAN Version 2 Program
Product further establishes the supremacy of FORTRAN as the Programming Power Tool.

The main advantage of FORTRAN is aigorithmic fiexibility; with FORTRAN, you specify both what you
want to do and how you want to do it. This ability to code aigorithms and procedures ‘close to
the machine’, but yet still program in a high-level ianguage, gives FORTRAN its great power.

The ArL2 Name Association facility offers the high productivity of APL combined with the aigorith-
mic flexibility and high processing power of FORTRAN. The purpose of this report is to explain
various tfacets of the APL-FORTRAN connection so application designers and programmers can use
these concepts to maximum advantage.

1 Execution of FORTRAN routines by APL2 requires IBM VS FORTRAN Release 4 or later For more information, see [IBMB6A]

Underatanding the APL.-FORTRAN Connection 1

Organization of This Report

Part 1 is a description of the ApL2 Name Association facility, presented from a programmer's
point-of-view. We explain the concept of names and objects in APL and show how the Name .
Association facility extends and enhances this concept. We give a brief overview of the mechan-
ics involved in using the facility, and outline some programming tips and considerations for
effective use of the APL-FORTRAN connection.

Part 2 describes and demonstrates two sample applications that use APL and FORTRAN in combi-
nation for problem solving.

Part 3 shows how APL2 can be used to measure the computational efficiency of FORTRAN subrou-
tines.

The Appendix describes and lists the ApPL2 function CHARTX, an APL2 data interface to the Graph-
ical Data Display Manager/Interactive Chart Utility.

Acknowledgement

Special thanks to Betty C. Faith and John R. Ehrman; their critical reading and extensive
suggestions improved both the style and content of this report.

Note:

This report contains several performance comparisons of sample APL and FORTRAN
programs. These comparisons are intended to show the relative performance when
running simple routines and are not intended to be a general representation of APL2 .
or VS FORTRAN performance.

2 The APL2 Name Association Facility

Part 1: The APL2 Name Association Facility

APL Names and Objects

APL programs and applications operate in an environment called the APL workspace. A work-
space contains ali the AL components associated with and necessary for the proper operation of
an application; these components are called ApL objects. For purposes of our discussion, APL
workspaces conta:n three types of ApL objects: arrays, which are structured collections of aipha-
numeric data; functions, which are programs that manipulate and perform computations on
arrays, usuaily creating new arrays in the process. and operators, which process functions to
create new functions for application to arrays.

An APL Object in a workspace has a name, the referent that the object is given when it is created,
and by which it is referenced when used in an application program. For example, if the value of
the array 4 is the length-4 numeric list 3 § 7 9, then the value of A can be displayed by the
following expression in an APL interactive session:2

A
3579

The array 4 can also be referenced by name in a computational expression:

2 x A
6 10 14 18

Likewise, APL functions are invoked by using their names in expressions. Primitive functions in
APL are denoted by preassigned symbols, and using the symbol invokes the function. In the
previous example, the symbol ‘x' denoted the function multiply. ApL defined functions are
programs, defined as ordered sequences of array operations; defined functions use other func-
tions, both primitive and defined. For example, the defined function AVG computes the numeric
mean of a list of numbers; AVG has the following definition:

v
[0 2zZ«AVG X
[1] 2«(+/X)4pX

v
The tunction is invoked by writing its name, followed by its argument, a list of numbers:

AVG 3 9 7 11 14
8.8

2 x AVG 3 9 7 11 14
17.6

in an analogous manner, APL has both primitive and defined operators. For example, the primi-
tive operator reduction, denoted by the symbol '/, can be used to modify the action of primitive
functions such as add (+) and muitiply (x):

+/53 241
15

x/53 241
120

Detined operators, like defined functions, are constructed from ordered sequences of array oper-
ations using primitive and defined functions, and possibly primitive and defined operators. The
construction and use of defined operators will be addressed later in this report.

in summary, the names of defined objects in APL applications — arrays, functions. and
operators - are selected by the application designer, and reference data structures and
programs. Of particular interest in this report are names that reference defined functions. In

2 in thus report, the ususal convention is used for showing APL expressions and their resuits: the expression 1S indented six
spaces from the ieft page margin and the resull immediately follows displayed at the left margin

Understanding the APL-FORTRAN Connection 3

previous APL implementations, function names used in applications could only reference
programs written in the APL language. In APL2, function names can reference programs written in
other programming languages.

External Functions and Name Association

The Name Association tacility of APL2 allows APL2 application programs to access and use
subroutines written in other programming languages. The rules that govern how such routines
are used in APL expressions are the same as for routines coded in apt.. Of particular interest in
this report is the use by APL programs of subroutines written in FORTRAN, but the principles and
concepts are general to a wide range of programming ianguages.

in simple terms, the Name Association facility provides a mechanism for informing the ApL2
system that it is to take special action when it encounters the name of a particular function in an
APL expression. In particuiar, the facility allows the system to associate a function name in the
APL workspace with an externa/ function, a subroutine coded in FORTRAN. After the association
has been established, the external function is invoked when the function name is encountered in
an APL expression. The details of how the name association is established are explained below.
The remainder of this section demonstrates a simple exampie that shows the Name Association
facility in action.

Computing Standard Deviations

An elementary numerical procedure in descriptive statistics is the computation of the standard
deviation of a set of data points that usually resuit from some empirical process. A precise defi-
nition of the standard deviation algorithm is the apL function SDA:

v

Co] Z«SDA X

(1] 2+(+/X) 40X

[2] Z«((+/(X=-2)%2)4pX)2.5
v

SDA can be used to perform the standard deviation calculation in asL:

SDA 5 11 3 24 8
7.414

The subroutine SDF is the FORTRAN version of the standard deviation algorithm:

SUBROUTINE SDF(S,N,X)
COMPUTE STANDARD DEVIATION °'S' OF 'N' NUMBERS ‘X'
REAL*8 X(N),S,A
INTEGER*4 N
A=0.
DO 10 I=1,N
10 A=A+X(I)
A=a/N
S=0.
pO 20 I=]1,N
20 S=S+(X(I)=A)**2
S=DSQRT(S/N)
RETURN
END

. The following sequence shows how SDPF is invoked from APL2:
3 311 ON4 'SDF’ a statement 1

Ve5 11 3 24 8 an ostatement 2

NepV A statement 3

SDF (O N V) a gtatement u
7.418

Statement 1 uses the arL2 Name Association system function [J¥4 to make the FORTRAN subrou-
tine SDF known to APL2; the rules for using V4 will be described in the next section. Statement 2
is an APL assignment expression; it assigns a numeric list to the array named V. Statement 3
assigns the number of elements in V to the array &, in this example, N is assigned the value 5.
Statement 4 applies SDF to its argument structure to compute the standard deviation of the
elements of V; the computed vaiue is returned as the result of the expression.

4 ' The APL2 Name Assoclation Facility

The general array argument to SDF in statement 4 is a vector with three items, corresponding to
the three arguments expected by the FORTRAN program. The first item is a place holder for the
resuit to be computed by SDF; the second item is the iength of the list that follows; and the third
item is the list itself.

The computation using SDF could be simplified by using aill constants in the tunction's calling
structure; the following statement illustrates the simplified form and gives the same resulit:

SDF (0 5 (5 11 3 24 8))
7.814

Name Association: Mechanics

The ArL2 Name Association facility aliows access to FORTRAN subroutines; the tacility doee not
support access to FORTRAN function subprograms. Thus, when we use the term function, it is in
the ArL sense.

To establish the association of a FORTRAN subroutine with the name of an APL function in an appli-
cation workspace, the following questions must be addressed:

1. What is the ApL language construct that accomplishes the name-subroutine association?

2. Since the actual FORTRAN-derived executable code is outside the APt environment, how does
the system know where to find it?

3. How are the array-structured arguments to an APL associated external function mapped to the
argument list required by a FORTRAN subroutine?

4. How are the explicit results returned by an APt function derived from the FORTRAN
subroutine's argument list?

5. What happens if errors, such as program checks and exceptions, occur in externa! routines?

This section gives a brief overview of these and other aspects of the ArL2 Name Association
tacility. For a more comprehensive treatment of these topics, see [IBM85A).

Author's note: Some of the material presented in this section assumes some familiarity with
systems programming jargon, such as load modules and linkage conventions. If the reader finds
himself or herself in unfamiliar territory, please skip ahead to the next section. This material is
presented for readers that are interested in such matters, and is not required to understand the
following sections of this report.

The Name Association System Function

The Name Association system function O¥A is the apL2 language construct used to associate °
external subroutines with names in ApL application programs. In the previous section, the
external function SDF was made known to the ApL2 system by issuing the statement

3 11 ONA *SDF!
1

The left argument to ¥4, the numeric list 3 11, indicates that an external function is being asso-
ciated using associated processor 11, the compiled code external function interface.3 The right
argument to (NA, the character string 'SDF', is the name of the function to be associated. Note
that invoking 0ONA gives a numeric result. The value 1 indicates a successful association. A
vaiue of 0 would indicate an unsuccessful association; causes for unsuccessful association will
be addressed beliow.

After a successful association between an apL function name and an external routine, the associ-
ated name can be used in APL language expressions exactly as though the name referenced a
defined function coded in apL.

NICKNAME Files

A NICKNAME file is the mechanism used by (V4 to make the system-related connection between
the APL name.and the external routine code. The NMICKNAME file provides the following informa-
tion:

3 APL2 also provides associated processor 10, the REXX interface in the VM/CMS environment. this aliows APL2 programs 10
access and use routines coded in the REXX programming tanguage [IBM83A]. For more information on the use of REXX n
APL2. see [IBMBSAI

Understanding the APL-FORTRAN Connection]

B The load module library where the ArL2 system can find the actual FORTRAN-derived executa-
ble subroutine code.

® The name of the member in the library; this name can be different from the name used in the
APL workspace to invoke the routine.

® The linkage convention used to transfer and return control when the subroutine is calied. In
this report, only the FORTRAN convention is discussed, but the Name Association facility
allows other conventions; see [IBM85A].

® The name of a FORTRAN execution environment that is to gain control of execution shouid an
error occur in the calied subroutine.

® A description of the FORTRAN subroutine argument list structure that allows ApL2 to buiid a
proper argument sequence when the routine is invoked.

A NICKNAME file can contain entries for a coliection of routines to be associated with APL names.
Normally, one file will contain all external routine entries reiated to & specific ArL application.
Each entry in a tile will consist of a sequence of tag-operand statements of the form

stag.value

Recalling the FORTRAN subroutine SDF introduced in the previous section:

SUBROUTINE SDF(S,N,X)

COMPUTE STANDARD DEVIATION 'S' OF °N' NUMBERS 'X'
REAL*8 X(N),S,A
INTEGER*4 N

A=0.
DO 10 I=1,N
10 A=A+X(1)
A=A/N
S$=0,
DO 20 1I=)],N
20 S=S+(X(I)~A)**2
S=DSQRT (S/N)
RETURN
END
SDF might have the following NICKNAME entry:
:nick.SDF :load.APLDEMO
:memb.SDF
:link.FORTRAN
:init .FORTMAIN

trarg. (GO 1 3) (<E8 0) (114 *) (EB 1 *)

The tag-operand statements in NICKNAME file entries have the following interpretations:

‘nick.name - specifies the name of an external function. When making the association, this name
must be specified in the right argument of NA. This tag is used to create the link between
the name specified with (J¥4 and the descriptive information that follows.

A 4
sioad.library - the name of the load library into which the external function code has been link-
edited. In Cwms, the library is the name of the LOADLIB file; in TS0, it is the DD name.

:memb.name - the member name of the external function routine in the specified load library.

dink.FORTRAN - the linkage convention used when calling the external function. in this report,
we only consider FORTRAN linkage, but other conventions are available.

init.name - names a FORTRAN main program execution environment to be associated with this
routine; this tag is optional. An execution environment is required if the external function
uses FORTRAN services such as input/output. Also, execution environments invoke FORTRAN
error handling procedures if programming errors shouid occur in external function
routines.

:rarg.pattern - specifies a description for the FORTRAN argument list. (See below.)

The treatment given here to NICKNAME files is cursory and intended to give only a brief introduc-
tion. For a comprehensive treatment, see [IBM85A).

Argument Patterns

¢ . The APL2 Name Association Faellity

Argument patterns provide a mecnanism for describing the expected arguments for external
tunctions. When an external name is encountered during the execution of an APL expression, APL
compares the actual arguments against the pattern provided in the NICKNAME file entry. If possi-
ble, APL converts the actual arguments to match the pattern in order that the external routine
receives its argument data in the expected and predictable torm. If conversion is not possible,
APL issues appropriate error messages.

Argument patterns describe both the type and structure of array arguments. Type definitions
include GO for general arrays, I4 for fullword integers, C1 tor byte characters, and ES8 for
double-precision fioating point. The numbers following type specifications indicate the rank and
shape of array arguments.

The foliowing are exampies of how argument patterns describe the ApL array structures that can
be passed as argument lists to FORTRAN routines:

A matrix, S 6p130
srarg. 14 2 S 6

A nested array, (2 3p16) 'ABCD'
srarg. GO 1 2 (I4 2 2 3) (C1 1 4)

A vector of 3 character strings, any length,

'GREETINGS' 'FROM' 'CALIFORNIA'
srarg. GO 1 3 (C1 1 *) (C1 1 *) (C1l 1 *)

Fuliword integer matrix, any shape
srarg. 14 2 *

Fioating point matrix, any shape, containing 100 numbers
srarg. 100 E8 2 * *

A single fullword intoger any shnpe
srarg. 1 I4 *
For a more detailed treatment of argument patterns, see [{BM85SA].

When Errors Occur

Errors in using the Name Association facility can occur in three main areas:
1. Name Association failures

2. APL errors during external function execution

3. Internal errors in external routines

We briefly discuss these errors and their cause; for a more comprehensive treatment, see
(IBM8SA].

Name Association failures can occur for several reasons:

@ Incorrect arguments to ON4 - Malformed APL names in the right argument, or incorrect name
class or processor numbers in the left argument to Q¥4

B Errors in the NICKNAME file - invalid or illegal entries in the NICKNAME file.

@ Functions cannot be located - Either the function does not have an entry in the NICKNAME file,
or the member does not exist in the indicated load library.

8 System-related errors - These include insufficient freespace for proper operation of the Name
Association processor, or the unavailability of the processor itself.

APL errors during external function execution occur for several reasons.

8 APL errors like RANXK ERROR, LENGTH ERROR, or DOMAIN ERROR often indicate a mismatch
between the external function arguments and the corresponding argument patterns in the
NICKNAME file.

@ A VALENCE ERROR indicates that the external function is called with an incorrect number of
arguments or that the external function is unavailable. External functions are unavailable if
an error has previously occurred when trying to locate, load, associate, or use the function.

W A SYSTEM ERROR usually indicates that the external function has terminated abnormaliy.

Understanding the APL-FORTRAN Connection 7

8 A SYSTEM LIMIT usually means that an attempt has been made to activate an execution
environment that is aiready active.

Internal errors in external routines occur when a FORTRAN program causes an error; these
include program checks and ABENDS. If 8 FORTRAN execution environment is active when a
program check occurs, it will normally be handied by the FORTRAN error recovery procedures. If
an ABEND occurs, or if any internal error occurs and no execution environment is active, Process-
or 11 will handie the error and issue a SYSTEN ERROR.

Name Association: Programming Considerations

This section provides some programming tips and insights into using the ArL2 Name Association
facility in conjunction with FORTRAN subroutines.

Forming FORTRAN Argument Lists

The argument lists for FORTRAN subroutines are usually required to be more comprehensive than
argument lists for functionally equivailent APL routines. For example, FORTRAN routines require
the passing of extents for array arguments, and passing of pre-allocated storage for resuits and
work areas. Because APL routines can functionally determine the extents (i.e., the shapes) of
their array arguments, and can dynamically allocate space for array results and work areas,
such information is not normally passed from the calling routine to an apL function.

Consider again the functions for computing standard deviations introduced previously: SDA,
coded in APL, and SDF, coded in FORTRAN. SDA requires the list of numbers for which the stand-
ard deviation is to be computed:

SDA 5 11 3 2u 8
7.414

SDF requires a 3-item array argument, corresponding to the three parameters of the FORTRAN
subroutine: a place-hoider for the result, the extent of the list, and the list itself:

SDF 0 5 (5 11 3 24 8) °
7,414

There are severai ways to offer the simple APL2 argument structure to FORTRAN routines. One
way is to define a companion APL function for a FORTRAN routine that constructs the FORTRAN
routine's argument list from essential information. For example, consider the function SD_ARG
that, given a list for the standard deviation computation, constructs the argument list appropriate
for SDF. SD_ARG has the following definition and use:

v
[0] 2«SD_ARG V
(1] Z«0(pV)V
v

SD_ARG S 11 3 24 8
0 5 5113 24 8

SD_ARG can be used to simplify the use of SDF:

SDF SD_ARG S 11 3 24 8
7.414

Another way to simplify the argument construction process is to use an ApPL cover function that
constructs the appropriate FORTRAN argument structure and then invokes the FORTRAN routine.
For example, the function SD is such a cover function for SDF:

v

f0] 2+SDx

(1) Z«SDF 5(eX)X
v

SD 5 11 3 2u4 8
7.410

As explained below, the cover function technique leads naturally to the use of ApL programming
control structures with FORTRAN external functions.

L The APL2 Name Association Facility

Using APL Operators With FORTRAN Routines

A powertul control structure in APL is the primitive operator each, denoted by the symbol '™,
Each allows the application of a function to each item of an array. For example, each can be
used in conjunction with the shape function, denoted by the symbol ‘o’. One use of shape is to
compute the length of a numeric or character list:

p 10 4 17 8 13 9 11
9

o 'CATPAT'
6

Used with each, the shape function can be used to determine the length of sach item of a list of
lists:

p” (4 9 8) (22 u4) (75 6 7 "11)
a2

0" 'GREETINGS' 'FROM' ‘'CALIFORNIA'
9 4 10

Using each in conjunction with the function SD allows the standard deviation computation of each
item in a list of numeric lists; the control structure is APL, but the actual computation is done by
FORTRAN:

SDP” (5 11 3 24 8) (17 3 8 11) (3 4 3 6)
7.414 5.068 1.225

Another exampie is the FORTRAN program named GCDF that uses Euclid's algorithm for comput-
ing the greatest common divisor of two integer numbers:

SUBROUTINE GCDF(M,N,Z)
INTEGER*4 M,N,Z,IM,IN
IM=IABS(M)
IN=IABS (N)

10 Z=IM
IM=MOD(IN,IM)
IN=2Z
IF(IM.NE.O) GOTO 10
RETURN
END

GCDF would have the following NICKNAME file entry:

:nick .GCDF :load.APLDEMO
:memb .GCDF
:1ink . FORTRAN
srarg. (GO 1 3) (1 I4 *) (1 I4 *) (<I4 0)

GCDF can be imbedded in the APL function GCD to simplify the calling sequence:

v
(0] 2«M GCD ¥
(1] Z2«GCDF NN O

v
2u GCD 32
8
27 GCD uS
9
26 GCD 65
13

Using GCD in conjunction with the each operator allows the greatest common divisor computa-
tion of multipie pairs of numbers:

2u 27 26 GCD” 32 45 65
8 9 13

Another powertul APL operator is outer product, denoted by the combination of symbols ‘s . F’,
where F is the name of a function. Outer product applies the function F between items ot its

Understanding the APL-FORTRAN Connection L

array arguments, in all possible combinations. For example, <.+ is a function, derived from the
add function ¢+, that adds the items of two arrays pairwise in all possible combinations:

10 20 30 .+ 123 45
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

Outer product can be used in conjunction with GCD to compute the greatest common divisor of
all possible pairs of numbers from two arrays; again, the control structure is ApL, but the actual
computation is done by FORTRAN:

24 26 *.GCD 32 45 64
8 38
212
Later in this report we will take another 100k at using APL operators in conjunction with external
functions written in FORTRAN.

Global vs. Local External Functions

The process of name association is normally done outside of an application, much like defining
APL functions in the workspace. Once an ArL name has been associated with an external func-
tion by means of the ¥4 system function, the external function is treated as a locked APL
function in the workspace. If the workspace is saved and subsequently reloaded, the external
function exists in the loaded workspace; the name association task does not need to be
repeated. Such a function is called a global function; it is known to all programs in the work-
space, and any program can use it to perform computations.

In some cases, it may be desirable to have external functions defined only within some top-level
APL application program. Such an instance of a function is called a /ocal function because it is
only known locally within the top-level program and within any other program that the top-level
routine invokes. In general, local functions do not exist in the workspace except when the top-
level program is in operation.

Loca! functions are desirable when the operation they perform is applicable only within some
well-defined application environment. In such cases, it may be undesirable to have the function
defined outside the environment. For example, the function might perform some proprietary
operation that is only to be performed within the application environment; the integrity of the
application might be jeopardized if the function were made available to the user in stand-alone
mode outside the application. Aiso, using local functions can decrease the ‘name pollution’
problem in a workspace. The ArL system command)FNS is used to list the directory of globai
functions in a workspace, and workspaces that contain many giobal subfunctions have long
directory listings that tend to obscure the names of top-level routines that are the real interest of
the application user.

The following steps are required to make an external function local to a main calling routine:
1. Place the name of the externali routine in the local name list in the main function header.
2. Perform the name association task in the main routine using the ¥4 system function.

For example, if a top-level routine named MAIN uses an external function EXTFUN, then MAIN will
contain the following code fragments:

v
(0] 2«L MAIN R;EXTFUN; .

[..] R«3 11 ONA 'EXTFUN'
(..] OES (R=1)/'EXTERNAL FUNCTION ASSOCIATION FAILED'

v
EXTFUN will exist in the application workspace only while MAIN is in actual operation; when MAIN
finishes execution, EXTFUN will cease to exist in the workspace.

10 , The APL2 Name Association Facility

Usage Notes:

1. In this exampie, the return code from [NA is checked to ensure that the name association
has been accomplished. As a matter of good programming style, it is a good idea to check
this value. Recall that a result of 1 indicates a successful association; a 0 indicates failure to
associate.

2. The name association operation performed by [JVA requires extra computer execution time.
Theretore, if a routine that uses an external function is called frequently, the external function
should probably be giobal to the calling routine.

Array Element Ordering

The elements of APL arrays are stored in the computer’'s memory in row-major order. in
FORTRAN, slements of arrays are stored in column-major order. Therefore, when passing multi-
dimensional arrays from APL to FORTRAN subroutines, the programmer must be aware of this
difference in array ordering.

For example, consider the following 3-row, 4-column matrix:

11 12 13 1w
21 22 23 24
31 32 33 34

in APL, the slements would be stored in the following order:
11 12 13 14 21 22 23 24 31 32 33 34

FORTRAN would store this array in the following order:

11 21 31 12 22 32 13 23 33 14 24 34

Note that this ditference oniy applies to 2-dimensionat arrays (i.e., matrices) and arrays of high-
or dimension,; lists (i.e., vectors) are stored the same in both languages.

There are two ways to compensate for this difference in array ordering when cailing FORTRAN
programs from ApL. First, if the FORTRAN program is designed and written specifically to be used
in conjunction with a particular AL application, the easiest and most efficient method is to
design the FORTRAN program logic to use the ApL storage order. This means that, for a matrix,
the FORTRAN program does row operations in place of column operations, and column operations
in place of row operations.

As a very simple example, suppose we want an external function FROW to accept as inputa -
3-by-4 matrix and return a length-4 vector containing the first row of the matrix. A use of FROW
could be the following sequence:

A
11 12 13 14
21 22 23 24
31 32 33 3

FROW A (0 0 0 0)
11 12 13 14

FROW has the following listing:

SUBROUTINE FROW(M,V)
INTEGER*4 M(4,3),V(4)
DO10I =1, 4
V(I) = M(I,l)

10 CONTINUE

RETURN
END
The NICKNAME entry for FROW could be defined as
snick.FROW :load.APLDEMO
:memb . FROW
:1link . FORTRAN

strarg. (GO 1 2) (I4 2 3 4) (<I4 1 4)

For arrays of dimension greater than 2, this technique can become somewhat confusing to a
programmer; in fact, for matrices it takes some mental adjustments when thinking about the
design and writing of the code. The key idea to remember is that FORTRAN storage order cycles

the leftmost subscript most rapidly, while for ApL it is the rightmost subscript that cycles most

Understanding the APL-FORTRAN Connection "

rapidly. Thus simply reversing the order of subscripts in FORTRAN array references will usually
do the job.

The second method for compensating for difference in storage order is to transpose muiti-di-
mensional arrays in APL before passing them to FORTRAN routines, and, if appropriate, transpose
muiti-dimensional array resuits that are returned. The APL primitive function transpose, denoted
by the symbol ‘®’', accomplishes this operation. This is the preferred method when using pre-ex-
isting FORTRAN routines that may, for example, be part of a subroutine library. For large arrays,
this method can become computationaily expensive, especially if done frequently.

12 The APL2 Name Association Facility

Part 2: APL-FORTRAN Programming Examples

Data Analysis: Dice Simulation

This simple data analysis example iliustrates the functional programming style of apL. In this
mode of ArL application design, a series of computational steps are each performed by separate
functiona! units, with the resuit of one functional unit becoming the operand of the succeeding
functional unit. Because functional units are independent, they can be ‘unplugged’ and replaced
by functionally equivaient units; this allows experimentation with various impiementation strate-
gies and fine-tuning of the application.

This example uses the arL2 function CEARTX described in the Appendix. CHARTX is a versatile
APL2 interface to the Graphical Data Display Manager/interactive Chart Utility [IBM84A].

Simulating Dice Throws
The function DICE is used to simulate a prescribed number of rolls of a pair of dice.

v
[0} ZeDICE XN
[1) a SINULATES ROLLING DICE <N> TIMES

(2] 2Z«2(H,2)p6
v

DICE 5 DICE 8
41 , 26
14 S 2
24 33
$ 2 13
56 35
4 3
6 4
25

The argument ¥ is the number of rolis to simulate. The resuit of executing DICE is an ¥-by-2
matrix, each row of which represents a dice roll. DICE uses the APL function roll, denoted by
‘7', that produces random numbers; in this particular application, the elements of the result are
picked from the pseudo-random uniform distribution in the range 1to 6.

The tunction COUNT can be used with DICE to summarize the results of a series of dice rolls.

v
(o] 2«COURT A
(1] =& COURTS DICE THROWS IN <A>
[2) Ze+/4
(3] Ze+/(14112) e .22
v .

A<DICE 7
A

wmEELOOPOONON
NN PR WL E W

Understanding the APL-FORTRAN Connection 13

COURT A
10002301000

COURT DICE S0
212961096410

COUNT DICE 500
14 33 37 50 65 89 73 42 S8 22 17

The argument to COUNT is a dice-roil series produced by DICE. COUNT computes the sum of the
two dice values for each roll, and tabulates the totals of each sum in the series. The result Z is a
{ength-11 integer list; Z[1] contains the number of 2s rolled in the series, Z[2] contains the
number of 3s, etc. Note that by definition, the sum of Z equais the number of rolls.

The function EXPECT computes the expected number of dice-pair sums for a prescribed number
of rolls.

v
{0) Z<EXPECT N;T
(1) = EXPECTED NUMBER OF EACH SUM FOR <N> DICE THROWS

{2] ZeFx(T(¢T«111)336
v

EXPECT 36
12345654321

EXPECT 72
2 468 10 12 108 6 4 2

EXPECT 500
13.9 27.8 41.7 55.6 69.4 83.3 69.4 55.6 41.7 27.8 13.9

The argument to EXPECT is the numt;or of dice rolls. The result of 2 is a list of length 11; Z[1]
gives the number of expected occurrences of 2s in N rolls, Z[2] gives the number of expected
occurrences of 3s, etc.

Graphical Analysis of Dice Throws

The tunction DRAW is used to plot the actual and expected results of a dice roll series. The main
component of DRAW is the CHARTX function described in the Appendix.

DRAW accepts a two-item list. The first item is the actual resuits of dice roll simulations as gener-
ated by DICE and COUNRT, the second item is a list of expected dice roll results as computed by
EXPECT.

v
{0] DRAW D;FORMNAME
(1] & CBARTS ACTUAL AND EXPECTED DICE ROLLS
[2] FORMNAME«'DICE'

(3 (1+111)CHARTXSD
v

The following APL expression generates the plot in Figure 1.
DRAW (COUNT DICE 36) (EXPECT 36)

Resuits of the following expression are shown in Figure 2.
DRAW (COUNT DICE 100) (EXPECT 100)

1“4 ’ The APL2 Name Association Facility

=
N -
NHy-
S, -

NN
IIIIITIIHHIIITINIY- =
MMNN

NE

N -

ST T FT T F LT3
SOUBLINYY()

AN
.- § II__y-
|

MBMINIWS

(see Feller, [FEL50A]). The following expression simulates 1000 dice rolls; the result is shown in

Note that as the number of simuiated rolls increases, the actual occurrences come cioser to the
Figure 3.

expected occurrences, giving an empirical confirmation of the statistical law of large numbers

Figure 2: 100 dice throws

Figure 1: 36 dice throws

DRAW (COURT DICE 1000) (EXPECT 1000)

15

Understanding the APL-FORTRAN Connection

Figure 3: 1000 dice throws

Substituting FORTRAN for APL

So far, we have discussed computational components for analyzing dice rolis that are coded in
APL; now let us introduce some FORTRAN COMponents.

The external routine COUNTF, coded in FORTRAN, is functionally equivalent to the aApL function
COURT,; it computes the sum of individual dice rolls in a series, and tabulates the totals of each
sum. COURTF has the following definition:

SUBROUTINE COUNTF(N,D,Z)
INTEGER*4 N,D(2,N),Z(11)
DO 10 I =1, 11

10 2(I)=0
DO 20I = 1, N
J=D(1,I) + D(2,I)
2{(J-1)=Z(J-1)+1

20 CONTINUE
RETURN
END

COUNTF couid have the following NICKNAME file entry:

:nick.COUNTF :load.APLDEMO
:memb . COUNTF
:link . FORTRAN
crarg. (GO 1 3) (1 I4 *) (14 2 * 2) (< I4 1 11)

COUNTF can be imbedded in the AP function COUNTX that has the same calling sequence as the
AP function COUNT.

v
(0] 2«COUNTX 4

(1] 2+COUNTF(14pA)A(11p0)
v

A«DICE 10
A

NV EUOMEROANONNON
NEWONDOVRWOMFEWV

16 The APL2 Name Association Facliity

COUNTX A
10002421000

COURTX DICE 100
247 12 16 15 16 9 10 S5 &

Likewise, EXPECT can be replaced with a FORTRAN program XPECTF, used with a cover function
EXPECTX.

v

(0] Z«EXPECTX N

[1] 2«XPECTP N(1100)
v

EXPECTX 36
12345654321

EXPECTX 72
2468 1012 10 8 6 4 2

EXPECTX 500
13.89 27.78 41.67 55.56 69.44 83.33 69.44 55.56 41.67 27.78 13.89

XPECTF has the following definition:

SUBROUTINE XPECTF(N,E)
INTEGER*4 N
REAL*8 E(11),T
po10I =1, 5
T=DFLOAT(I*N)/36.D0
E(I)=T
E(12-1)=T

10 CONTINUE ;
E(6)=DFLOAT (6*N)/36.D0
RETURN
END

The NICKNAME file entry for XPECTF could take the foliowing form:

:nick . XPECTF :load.APLDEMO
smemb . XPECTF
:1ink . FORTRAN
srarg. (GO 1 2) (1 14 *) (< E8 1 11)

Finally, the following expression simulates, tabulates, and piots 10000 dice roll simulations; the
result is shown in Figure 4:

DRAW (COUNTX DICE 10000) (EXPECTX 10000)

Three of the functions in this expression perform their operations in APL; two perform their oper-
ations in FORTRAN. ’

Array Data Structures: Sparse Matrix Operations

in a ‘sparse matrix’ most elements have the same vaiue, usually zero. Large matrices that
contain a small percentage of nonzero elements can generally be stored and used more effi-
ciently in some format other than the normal 2-dimensional representation. The following
describes a format that is commonly used for storing large sparse matrices involved in computa-
tions on linear equations (computing inner products and inverses, solving linear equation
systems, solving linear programming problems, etc.) This representation assumes that ail
matrix columns contain at least one nonzeroc element.

If M is a matrix, then SM is & sparse representation of M.
SM « E JX IP

E is a list of the nonzero elements of M in row-major order. JX is a list of the corresponding
column indices of the nonzero elements of ¥. That is, the element E£[X] comes from column
JX(K] ot M. Lists E and JX have the same length. IP is a list of pointers into £ (and JX) that
indicate the position of the first nonzero element in each row of ¥. The length ot TP is one more
that the number of rows of M.

Understanding the APL-FORTRAN Connection 17

MBMTIaSS

MAN

»

Figure 4: 10000 dice throws

For example, the matrix 4 is represented in sparse form by the array S4:

A
1.1 0 1.3 1.4 0
0 2.2 0 2.4 0
0 23.23.30 3.5
pA
358

SA+~+(1.1 1.3 1.4 2,2 2.4 3.2 3.3 3.5)(1 3 424235)(14629)

p SA
3

o 54
.8 8 U

Useful apL functions for handling sparse matrices are the PACK and UNPACK routines. PACK

operates on matrices in a 2-dimensional format and produces sparse matrix data structures:
v

(0] 2«PACK N;E;JX;IP

{1] a PACKX MATRIX <M> AS ROW-WISE SPARSE MATRIX <Z>

[2] E«(,0=M)/ .M a COEFFICIENRTS
(3] JXe(NMN20)/,(pM)pr14pN a COLUNN INDICES
[4) IPe+\1,+/N a ROW POINTERS

(s 2« Jx IP
v

PACK A
1.1 1.3 1.4 2.2 2.4 3.23.33.5 134245235 146029

UNPACK operates on sparse matrix data structures to produce a 2-dimensional format:

1 ’ The APL2 Name Association Facility

v
[o] 2«UNPACK S;E;JX;IP;M;N
[1] =& UNPACK ROW-WISE SPARSE MATRIX <S> T0O CREATE MATRIX <2Z>
[2] (E JX IP)+S
3] M+~ 14poIP a NUNBER OF ROWS
(ul NeT/JX a NUMBER OF COLS
£s) Z«(NxNM)p0
[6] Z[JX+Ax("2-/IP)/ 1+\N]+E
7] 2«(M,N)pZ

UNPACK S4A
1.1 0 1.3 1.4 0
0 2.20 240
0 3.23.30 3.5
UNPACK PACK A
.10 1.3 1.4 0
2.2 0 2.40
3.23.30 3.5

Sparse Matrix Transpose

A common operation in many sparse matrix applications is matrix transpose. Transposing a
matrix switches the orientation of its rows and columns. (n ApL, the transpose function, denoted
by the symbol ‘®’, is used to transpose 2-dimensional matrices:

ES

.1 .3

4
o

O N s
w oo

1
0
0 .3

w N o
. .

N Qo SN]

wWwoM [N - Y

.2
.3

3.5
The function ST4 is used in an analogous manner to transpose matrices in sparse format:

v
(o] COL+STA ROW;AR;JC;IP;AC;IR:JP;T
{1) ~ SPARSE MATRIX TRANSPOSE IN APL
{23 (AR JC IP)«ROW)
[3) 7TebJC a REORDER SEQUENCE
4] AC+AR(T] a COEFFICIENTS
[5)] IR«(e("2-/IP)p " \"1+pIP)[T] ~n ROW INDICES FROM ROW POINTER
(6] JP«(1,(2#/JC[T)),1)/114pAC a COLUMN POINTER FROM COL INDICES
7] COL+AC IR JP .

OHrOR
£
o

W
oONONO

SA ’

1.1 1.3 1.4 2.2 2.4 3.,23.33.5 13424235 14609
UNPACK S4

1.1 0 1.31.40

0 2.2 0 2.4 0

0 3.23.30 3.5
STA SA

1.1 2.2 3.21.3 3.3 1.42,43.5 12313123 1246283

Understanding the APL-FORTRAN Connection 19

O r P OK

O NO NO

UNPACK STA 54

N
O W wo
(7O S

r3

3.5

While STA is a concise routine for performing sparse matrix transpose, it suffers an intrinsic
performance penalty. in particular, the grade function in line [3], denoted by ‘4’. makes the
execution time of STA proportional to n log n, where n is the number of nonzero elements in the
matrix argument.

A more efficient algorithm for sparse matrix transpose, due to Suhi [SUHB1A], is easily imple-
mented in FORTRAN. This routine, named STF, is functionally equivalent to STA; its execution time
is proportional to the number of nonzero elements in the matrix argument.

O0O00O0OOANON0O0O

0

10

20

30

40

50

SUBROUTINE STF(M,N,K,CA,IXA,IPA,CZ,IXZ,IP2)

SPARSE MATRIX TRANSPOSE
INPUTS:
M - NUMBER OF ROWS
N - NUMBER OF COLUMNS
K = NUMBER OF NONZERO COEFFICIENTS

CA - VECTOR OF COEFFICIENTS IN ROW-ORDER (LENGTH K)
IXA - VECTOR OF CORRESPONDING COLUMN INDICES (KX)

IPA - VECTOR OF ROW POINTERS (M+1)
OUTPUTS:

CZ - VECTOR OF COEFFICIENTS IN COLUMN-ORDER (K)
IXZ - VECTOR OF CORRESPONDING ROW INDICES (K)

IPZ - VECTOR OF COLUMN POINTERS (N+1)

INTEGER*4 M,N,K,IXA(K),IPA(M+1),IXZ(K),IPZ(N+1)

REAL*8 CA(K),CZ(K)

CLEAR IPZ...

DO 10 I = 2,N+1

IPZ(I)=0

COUNT ELEMENTS IN EACH COLUMN...
DO 201 = 1,K

J = 1+IXA(I)

IPZ{(J) = IPZ(J) + 1

COMPUTE INITIAL COLUMN OFFSETS...
IPZ(1) = 1

DO 30 I = 2,N

IPZ(I) = IPZ(I) + IPZ(1-1)

MOVE COEFFICIENTS AND ROW INDICES...
DO 40 I = 1,M

DO 40 J = IPA(I),IPA(I+l)-1

Ll = IXA(J)

L = IPZ(L1l)

CzZ(L) = CA(J)

IXZ(L) = I

IPZ(Ll) = IPZ(Ll) + 1

CONTINUE

RESET COLUMN POINTER...

J =N+ 2 ;

DO 50 I = 1,N

IPZ(J-1I) = IPZ(J-I-1)

IPZ(1l) = 1

RETURN

END

The APL2 Name Association Facility

STF has the following APL2 NICKNAME file entry:

inick.STF :memb.STF

:load.APLDEMO

: 1link . FORTRAN

:rarg. (GO 1 9)

(1 14 *)

(1 14 *)

(1 14 *)

(E8 1 *)

)

)

.-.
-
/'S
’.-l

M R RO

» N

)
)
)

The use of STF can be simplified using the cover function ST:

v

[0] 2¢ST SM;K;M:N:;E;JX;IP

(1] (E JX IP)«SM

{2] M+ 1+pIP an NUMBER OF ROWS

€3] NeT/JX an NUMBER OF COLS

[4) XepE m NUNBER OF COEFFICIERTS

[5) 2«5TF (M N X),5M,(Xp0) (Xp0) ((N+1)p0)
v

UNPACK SA
0 1.3 1.4 0
2.2 2.4 0
3.2 0 3.

OO
w o

.3 5

UNPACK ST SA

-

.2 3.2
3

F W
oONONO

A

OrmMOM
L) .
WO wwo

.5

The difference in execution times between the APL and FORTRAN versions is demonstrated by a
simple performance comparison. The execution times for transposing a series of 100-column
matrices with varying numbers of rows were recorded using the two routines. The test matrices
were all 80 percent sparse; that is, 80 percent of the matrix elements were zero. Figure 5 plots
the results of running these tests on a iIBM 438t processor.

Sparse Matrix Tronspose

" 100 column mairices
»
o © Fomw
— B
ts—
In—
B
»-

-
[
e
-~

Figure 5: Spare matrix transpose

Understanding the APL-FORTRAN Connection 21

Matrix-Yector inner Product

Another common array operation is the inner product, sometimes calied ‘dot product’, between
a vector and the rows of a matrix. For arrays in nonsparse format, this operation is built into apL
as the inner product operator, denoted as ‘F.G’, where F and G are functions:

A
.1

£ F
w oo

1
0
0

W o
on
WO r
w
epr

o Ww

23001
A +.x B
2.2 6.6 13.1 .

The ArL tunction SNMPA performs this operation for sparse matrix arguments:

v
[0] Ze«SM SMPA V;A;JX;IP
(1] (A JX IP)«SM
(2] ZeAxV[JX]
(3] IP+0, 2-/IP
(4] Ze+/"(14IP)47 (C144\IP)+ 2

SA

1.2 1.3 1.4 2.2 2.4 3.23.383.5 13424235 14629
SA SMPA B

2.2 6.6 13.1

A tunctionally equivalent FORTRAN program SMPF can be used to perform this operation. SMPF
has the following definition:

SUBROUTINE SMPF(M,N,X,A,JX,IP,V,Z)
C--- SPARSE MATRIX-VECTOR INNER PRODUCT
INPUTS:
M - NUMBER OF ROWS
N - NUMBER OF COLUMNS
K - NUMBER OF NONZERO COEFFICIENTS
A - VECTOR OF COEFFICIENTS IN ROW-ORDER (LENGTH K)
JX = VECTOR OF CORRESPONDING COLUMN INDICES (K)
IP - VECTOR OF ROW POINTERS (M+1)
V -~ FULL VECTOR OPERAND (N)
OUTPUTS:
Z - FULL VECTOR RESULT (M)
INTEGER*4 M,N,K,JX(K),IP(M+1)
REAL*8 A(K),V(N),2Z2(M)
DO 10 I = 1,M
Z{(I)=0.
DO 10 J = IP(I), I
Z(I)=Z(I)+V(IX(J))
10 CONTINUE
RETURN
END

The NICKNAME file entry for SMPF takes the following form:

anNnnNnanoaOnnOnn

P(I+1)-1
*A(J)

2 . The APL2 Name Association Facility

:nick.SMPF :memb . SMPF Co-
: load.APLDEMO -
: 1ink .FORTRAN
:rarg. (GO 1

(1 I4
(1 14
(1 14
(E8 1
(14 1
(14 1
(E8 1
(CE8 1 ¥)

% % % % %0

The cover function SNP simplifies the use of SMPF:

v
{0) Z«SM SMP V:K:N:;N;E:JX:;IP
[1] (E JX IP)«SM
[2] Me"14pIP a NUMBER OF ROWS
(3] NeT/JX a NUNBER OF COLS
[4] K«pFE a NUNBER OF COEFFICIENTS
{s) Z2+«SMPF(M N X),SM,V(Np0O)

SA SMP B
2.2 6.6 13.1

Again, execution efficiencies for this operation can be realized using the FORTRAN external func-
tion. Varying the numbers of matrix columns, a series of inner products between vectors and
100-row sparse matrices were performed. The matrices were 80-percent sparse. The execution
times for both the APL and FORTRAN routines were recorded. Figure 6 shows the resuits of
running these tests on & IBM 4381 Processor.

Sparse Moirix Product

" 100 row mairices
. s
- .
=i
1. ® R
i P am
N
»

Figure 8: Matrix-vector inner product

These sparse matrix processing examples are typical of the kinds of computations that elude
good APL solutions; the structure of the problem does not allow the efficient use of A array-or-
iented operations. For these kinds of problems, external functions coded in FORTRAN offer
increased processing power for AP applications.

Understanding the APL-FORTRAN Connection 23

Part 3: Performance Analysis using APL Defined Operators

Performance analysis tools are used to measure, tabulate and interpret the execution efficien-
cies of computer programs. Such analysis is used to answer questions such as: Given two
variations of an algorithm or program, what are their relative or absolute efficiencies when
executed in the same computing environment? Or, given two computing environments (e.g., two
different processors), what are their relative or absolute efficiencies executing the same
routine? Performance analysis also addresses issues such as how execution times change as a
function of problem size or complexity, the effect of variations in the computing environment
(e.9., compiler optimization leveils, computer memory size), and, for multiprogramming environ-
ments, the effect of machine load on execution performance.

In this section, we describe a simple performance analysis tool that is usetful for analyzing a
program’s execution efficiency for variations in problem size. It is impiemented in APL2 and
takes advantage of many ApPL2 concepts and facilities; it is, however, especially useful for meas-
uring, tabulating and reporting the execution performance of FORTRAN subroutines.

Note: While execution performance is an important consideration for determining the uséfuiness
and applicability of a computer algorithm or program, it is only one of many factors that should
be considered when selecting a software solution for a particular problem. For a general
discussion of evaluating aiternate software solutions, see Crowder, et. al. [CRO78A].

Test Problem Generators

if we have an APL function, say FN, to be performance-tested, then a test prob/em for FN is an
array that is an appropriate argument for FN¥. For example, recall the apt. function SDA for
computing standard deviations. A valid test problem for SDA is a numeric list.

To do performance analysis for a range of test probiem sizes, it is helpful to have an automatic
method for generating test problems. To accomplish this, we define for F¥N a related function,
FNG, called the F¥ test problem generator. The argument to FNG is a single integer ¥ that speci-
fies the s/ze of a desired test problem; the result is a test problem of size ¥ for FN. For example,
SDAG generates test problems for SDA:

v
(0] 2«SDAG N
1] Z«.1x?Np10
v

SDAG 3
0.2 0.3 0.5

SDAG S

0.2 0.7 0.7 0.5 0.4)

SDA and SDAG can be used in conjunction to generate and use test problems:
SDA SDAG 10

0.2416609195

SDA SDAG 100
0.2711899703

SDA SDAG 1000
0.2873239287

in an analogous manner, SDFG generates proper test probiem arrays for the FORTRAN version of
the standard deviation calculation SDF.

24 The APL2 Name Association Facility

v
fol Z+SDFG N
{1 Z+«0 N(.1x?Np10)
v
SDFG 3
03 0.4 0.20.3

SDFG S
0S5 0.70.10.80.60.8

To pertorm timing comparisons, the second element of the APL2 system variable (AT is refer-
enced to obtain elapsed processor time in millisecondas:

A+SDAG 10000

r~04r(2]

JUNK+SDA A

Oar[2)-1
156

A«SDFG 10000

T«0AT(2]

JUNX+SDF A

parfai-r
68
Thus the arL version required 156 milliseconds to compute the standard deviation of 10000 float-
ing point numbers on an iBM 4381 processor; the FORTRAN version required 68 milliseconds.

While the operational sequence described above is useful, it can become tedious. Fortunately,
APL2 offers an elegant method for packaging this sequence into a more useful format.

The FUNTIME Defined Operator
PURTIME is an APL2 defined operator; it takes two function operands and an array argument:

v
[0] 2«(FN FUNTIME FNG) N;T

(1] N~PNG N a CONSTRUCT FN ARG LIST
[2] 2«0aI(2] a TIME

[3] T«FRN N a INVOKE FN

(4] 2e04r(2)-z s TINE

v

FN is the function to be timed and FAG is a test problem generator appropriate for F¥. The single
integer N is the test problem size to be generated by FNG. The result 2 is the execution time in
milliseconds of applying FN to the test problem FNG X.

FUNTIME can be used to perform a single test:
(SDA FUNTIME SDAG) 10000

154
(SDF FUNTIME SDFG) 10000

70

Used in conjunction with the each primitive operator, PUNTINE can be used to perform a series
of tests:

18
12345678

2000x18
2000 4000 6000 8000 10000 12000 14000 16000

(SDF FURNTIME SDFG)” 2000x18
15 28 41 55 68 82 96 109

Understanding the APL-FORTRAN Connection a5

Because APL2 can distinguish the structure of arrays using the depth function, denoted by 's’,
handling nonsingle array arguments using each can be incorporated into the FUNTINE operator:

v
[0] Z«(FN FUNTIME FRG) N;T
[1] +(0<=N)/L1 BRANCH IF NOT INTEGER

»

[2] NeFNG N a CONSTRUCT PN ARG LIST
{3 2+04r(2] a TIME

(4] T«FN N a INVOKE FN

[s] z<«0AIr[2)-2 a TINE

(6] =0

71 r1:

(8] Z«(FN FURTIME FNG)" N
v

(SDF FURTIME SDFG) 2000x:8
14 28 42 S5 69 81 95 108

FURTINE can be used in conjunction with the CEARTX function to picture performance statistics.
The graphical result of the following sequence is shown in Figure 7.

T+2000x110
A+(SDF FURTIME SDFG) T
15 28 :2 $S 68 82 95 109 122 135
B+(SDA FURTINE SDAG) 2000x110
32 63 53 123 154 182 213 243 272 303

T CHARTX >A B

TRENEENE

Figure 7: Plotting performance data

Reporting the average of several similar performance experiments is often desirable, especially
on multiprogramming computer systems where transient user load can introduce slight vari-
ations in individuai execution times. Using the AVG function in conjunction with both FUNTIME
and the enc/ose function (denoted by ‘c') can be useful for this type of analysis:

2 ' The APL2 Name Association Facility

N+5 B8p2000x18

N
2000 4000 6000 8000 10000 12000 14000 16000
2000 «+CO0 6000 8GO0 10000 12000 14000 16000
2000 4000 6000 8000 10000 12000 14000 16000
2000 4000 6000 8000 10000 12000 14000 16000
2000 000 6000 8000 10000 12000 14000 16000

2+ (SDF FUNTIME SDFG) N
2

14 28 42 S5 68 82 95 109

15 28 41 S5 68 B1 9u 108

15 28 42 S5 68 82 95 110

15 28 41 55 68 82 94 109

iy 27 42 Su 68 B2 95 109

AVG” <[1] 2
14.6 27.8 41.6 54.8 68 81.8 94.6 109
More concisely, the three previous steps may be combined as

AVG” <[1] (SDF FUNTIME SDFG) 5 8p 2000x18
14.6 27.8 41.6 54.8 68 B1.8 94.6 109

Understanding the APL-FORTRAN Connection

References

[CRO79A] Crowder, H., R. Dembo, and J. Muivey, ‘On Reporting Computational Experiments
With Mathematical Software,” ACM Transactions on Mathematical Software 5
(1979) pp. 193-203.

[FELS0A] Feller, W., An iIntroduction to Probability and Its Applications: Volume I, Wiley
(1950).

[IBM83A]) VM/SP System Product Interpreter Reference, 1BM form number SC24-5239 (1983).
[IBM84A) GDDM interactive Chart Utility, IBM form number SC33-0111 (1984).

(IBMB5A] APL2 Programming: System Services Reference, IBM form number SH20-9218
(1985).

{ IBMBBA]) VS FORTRAN Version 2 Programming Guide, iBM torm number SC26-4222 (1986).

[SUHB1A] Suhl, U., personal communication.

2 The APL2 Name Association Facility

Appendix: CHARTX - An APL2 | ICU Data Interface

CHARTX is an apt2 function that offers a call interface to the Graphics Data Display Manager
interactive Chart Utility (icu). Data can be passed to icu in a variety of formats using apL2 gener-
al arrays. CHARTY also offers a facility for using predefined icu chart formats.

Free and Tied Data

1CU allows the simultaneous graphical display of several ‘groups’ of data. For example, a graph
with three line plots would have the data for each line piot represented as a data group. cu
makes the distinction between two types of data format modes for representing data groups --
free data and tied data. In free mode, each data group has its own set of X values or coordi-
nates; each group’'s X vaiues are independent of other groups. In tied mode, all data groups
have the same set of X vaiues.

CHARTX handies both iICU data format modes; the mode is determined from the structure of the
arguments to CHARTX.

Using CHARTX for Tied Data

For tied data, CHARTX has the following call sequence:
XT CHARTX XT

where

r

YT isthe array of Y values. YT is a simple numeric scalar, vector, or matrix. if YT is a scalar
or vector, it forms one data group containing the slement(s) of YT. if YT is a matrix with ¥
rows and N columns, it forms M data groups, each group consisting of ¥ elements from the
rows of YT.

XT is the simple numeric array of X values. If YT is a scalar or vector, then XT must be the
same shape as YT. If YT is a matrix, then XT must be a vector, the iength of which is the
same as the number of columns of Y7. That is, pXT «+ ~1¢pYT.

If XT is not specified, CHARTX uses a default X-coordinate vector consisting of consecutive
integers that is appropriate for Y7, starting with [1I0.

Examples
CHARTX 12 22 18 32 7 - (15) CHARTX 12 22 18 32 7
125 6 9 CHARTX 12 22 18 32 7
CHARTX 1 10 e.x 112 <« (112) CHARTX 1 10 e.x 112
(20112) CHARTX 1 10 e.x112
CHARTX 1 2 »,0 0.1x1120

The results of executing these expressions are shown in Figure 8.

Understanding the APL-FORTRAN Connection 29

L U JOU B BN O

]
&
s
&
&
&
s
§
g
-
-
-
-
-
-
-
-
-d

-
»
-
-
-
-
-
-
-
-
-
»
]
[]
s
[
]
[

» t 2 3 4 F ¢ 7 83 0 B u 8 B

Figure 8: ICU tied data exampies

Using CHARTX for Free Data

For free data, CEARTX has the following call sequence:

XF CHARTX YF

where

YF isthe array ot Y values. YF is a numeric vector of depth 2, each item of which is a simple
scalar or vector. Each item of YF forms an independent data group.

XF is the array of X values. XF must have the same structure as YF. ltems of XF form the
X-coordinates for corresponding items of YF. .
It XF is not specified, CHARTX uses a default X-coordinate array, each item of which
consists of consecutive integers, starting with 010, that is appropriate for the correspond-
ing item in YF.

30 The APL2 Name Association Facility

Examples

CHARTX (3 7 16) (10 14 8 3 0)
«— (13) (w4) CEARTX (3 7 16) (10 14 8 3 0)

(2 3 &) (15) CHARTX (3 7 16) (10 14 8 3 C)
CHARTX ?7175p10

The resuits of executing these expressions are shown in Figure 9.

rrrereeeeey

Figure 9: ICU tree data exampies

Usage Notes

1. The giobal variabie PORNNANE can be specified as the name of a predefined chart format.
It FORMNAME is undefined, or if FORNNANE has the value '+ ', then the default format is used.
The default format is a line graph with autoscaled axes, defauit line colors, default axis
markers and labels, etc. if FORMNANE is assigned the name of an unknown chart format,
then an error message is issued.

2. Some facilities available in the icu chart call are not used by CFARTX. These include spec-
itication of chart keys, labe!s, and heading. i you wish to use these facilities, you must
modify the CHARTX function.

3. The main purpose of CHARTYX is to allow the quick and easy generation of data in APL2, and
to provide a mechanism for transferring this data to icu. Once in the iCu environment, you
can modify the chart type and format to suit your needs by using the icu interactive facili-
ties. Data transferred to icu can be displayed using the following chart types:

Bar charts Polar charts Scatter plots
Histograms Surtace charts Venn diagrams
Line graphs Tower charts Pie charts

Understanding the APL-FORTRAN Connection 31

v
fo3 X CHARTX Y;IO;CHTCTL;;DAT;CTL;BIND;NG;NE;DC;C

{1 a Invoke ICU from APL2

[2) C+OFX 'Z«I0 N' '2+&0AF (40256)TN' = Local furn for integer-char. conv.

{3] +(1<s¥)/L1 a Branch if free data
[4) = TIED DATA...
[5)] Y«(T241 1,pY)0Y a Ensure Y i8 a matrix

[6] 2(0=0NC 'X')/'Xe1"1tpY"' s Set X if not specified

[7] DES((pX«,X)="14pY)/'LENGTH ERROR' a Ensure correct data lengths

{8] BIND+O a Set BIND parm of CEART call

[9] NG+1tpY e Num data groupe

(10) KNE«poX A Num elements in each group

{11] DCe,0 a Data control - ignored for tied data
(12] Ye,¥

[13] «L2

[14] o

(15) Z1i: » FREE DATA...

[16] DCeep”Y+,Y a Data control - length of each group
[17]) 2(0=0NC 'X')/'X«1"DC' A Set X if not specified

(18] OES(~DCzep X+, 'X)/'LENGTH ERROR' m Ensure ocorrect data lengths

{19]) BIAND«1 a Set BIND parm of CHART call

(201 ANGepY a Num data groups

{21] NE«[/DC a Nun elements — max group length
[22] Xxeex

(23] JYeey

[24] a

(28] L2:

[26] DES(v/2=126 OSVO™"'CTL' 'DAT')/'AP126 SHARE ERROR'
[27]) a Build CEART control parm...

(28] CHTCTL«''

(28] CHTCTL+CHTCTL,IO © a LEVEL 0=GDDM R2 format (simple form)
(30) CHTCTL«CHTCTL,IO 2 a DISPLAY 1=home panel, 2=graph display

[31) CETCTL<CHTCTL,IO O a HELP 0=no display pfkey info, 1zdisplay
[32]) CETCTL«CHTCTL,IO O m ISOLATE 0=all facilities

(33] 2(0=0ONC 'FORMNANE')/'FORMNAME«'‘'w''' n dcfault 1f PORMNANE undefined
{34) CHTCTL«CHTCTL ,84%€eFORMNAME m FORMNANE szdefault
(3s] CHBTCTL«CHTCTL,'s ' m DATANAME s=data supplied by CHART call
(36) CHTCTL<CETCTL,IO BIND BINDING oO=tied,1=free
[(37]) CETCTL<CETCTL,,IO NG NG - number of data groups
{38] CHTCTL<CETCTL,,.IO NE NE - number of elements
[39) CHTCTL+CHTCTL,IO O KEYL 0zno keys
{u0]) CETCTL+CHTCTL,IO O LABELL 0=no labels
(41} CHTCTL-CHTCTL,IO O HEADINGL O0=no heading
(42)] CHTCTL«CHTCTL,'* ! PRTNAME ==unknown printcr name
[43) CHETCTL<CHTCTL,IO © PRTDEP 0=DEFAULT
C44) CHTCTL«CHTCTL.IO © PRTWID 0=DEFAULT
(4S) CHTCTL-CHTCTL,IO © PRTCOPY Os=DEFAULT
[(46) DAT«CHTCTL n assign AP126 data variable
(47) CTL« 10,(pCHTCTL),(oDC) DC, (0X),X,(p,Y),(,Y),3p0 & assign control var.
(48] <(0 8=14C«CTL)/0,L3
(9] DOES 'AP126 OR GDDM ERROR. RC=',sC A unknoun error
[(s0) L3: » GDDM ERROR . . .
(1) CTL+107 96 s FSQERR
[52] [DES 88+84DAT
v

(e 2 B B B BB Bb B B NS J

32 The APL2 Name Association Facliity

