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The APL2 Name Association Facility 

Unde,sflJndlng the APL-FORTRAN Connection 

Thtt APL2 Name Auociatlon facility allows APL2 application programs to call extemal tunctl0n8 
written in other programming language., Including sma A••mbl.r Language, FORTRAN, and. In 
the YMlCMS environment, REXX. External functions allow APL2 applications to benefit from 
Incr...ed execution periormance using componenta written in complied code, use of exl.tlng 
compUttd code aubroutine libra"", and u•• of .pect.. hardware auch u the IBM aDIO Vector 
Facility. 

This report d••cribes the APL2 Name Anociation facility, and emphulzea the combined u.. of 
APL2 and FORTRAN in application programs. W. explain how the APL-FORTRAN connection ia 
..tabUshed In the API.. environment. and describe some programming techniques for fully 
exploiting the external function concept. We describe In detail 80me exampl.. that Illustrate the 
hybrid APL-FOATRAN programming technique. 
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Introduction
 

The APU Name Association facility allows APL2 application programs to call external functions 
written In other programming languages. In prevloua implementations of APL, application 
programs could UH only aubroutinea coded In the APL 'anguage; this restriction limited the flexi­
bility and range of many APL application aystems. With the APU Name Aaaoclation facility, API. 
applications can UN Iubroutines written In a variety of programming languages, including 81370 
Auembl.r Language, FORTRAN, and. when operating APUin the YM/CMS environment, the REXX 
programming language. 

APL application dealgnera anet programmers can u.. the Name Auociation mechanism with 
advantage In Mv.raJ ways: 

•	 Execution performance of computationally Intenalve API. subroutine. may be improved by
 
recoding them In FORTRAN or AaMmbl.r Language.
 

•	 Exl8tlnD FORTRAN aubroutine library routin.. may be used. without modification, In API. appli­

cations.
 

•	 APt. applications can us. the facllitie. of REXXln the YMlCMS environment tor high-level 
programming language capabilities. string procesaing. and access to host system informa­
tion. 

•	 Using VB FORTAAH Version 2. APL applications can take advantage of the high-performance 
procMSing power of theiSM 3010 Vector Facility. 

The APL·FORTRAN A~".ntaQe 

In this report. we concentrate on the us. of API.. in conjunction with FORTRAN.1 APL and FORTRAN 
complement e.ch other in Mveral way•• and the Name Association facility allows application 
d.sign.,.. and programme,.. to exploit the strengths of each language. 

APL II both. concise language and • notation for describing computer algorithm. and proce­
dur. at a high level. With APL. you describe briefly. and without extraneous detail. the 
operations that a program perlorms. With APL. you describe what to do, not how to do it From 
the brief program description, the APL system decides the actual underlying computational algo­
rithms and procedure. to execute. 

The ability to briefly describe procedures. while subordinating extraneous detail. is the main 
Itrength of APL. Thus. APL become. a very productive tool for implementing application 
programs, allowing the building of solutions in a amall fraction of the time and effort required by 
other programming tools. 

FORTRAN ia • high-level programming language with a long history as an efficient and effective 
computational tool. For computationally intensive problems where efficiency is e.sential, it is 
the language of choice. The wid..apread u•• of FORTRAN in scientific. engineering, academic, 
and analytical bUlines. applications attests to its continued value a. an es.ential programming 
.'ement. The recent support of the IBM3010Vector Facility by the vs FORTRAN Version 2 Program 
Product further establish•• the.upremacy of FORTRAN as the Programming Power Tool. 

The main advantage of FORTRAN is algorithmic flexibility; with FORTRAN, you specify both what you 
want to do end how you want to do it. This ability to code algorithms and procedures 'close to 
the machine'. but yet still program in a high-level language. give. FORTRAN itl gr••t power. 

The APU Name Association 'acility offers the high productivity of APL combined with the algorith­
mic flexibility and high processing power of FORTRAN. The purpose of this report ts to explain 
various facets of the APL-FORTAAN connection 80 application designers and programmers can use 
the•• concepts to maximum advantage. 

, ExeeUlion 01 FORTRAN routines by APL2 reqUIres tBM VS FORTRAN R••••se 4 or 'aler For mor.lnformatlon.... (IBM86A] 
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Organization of This Report 
Part 1 is a description of the APL2 Name Association facility, presented from a programmer', 
point-of-view. We explain the concept of names and objects in APL and show how the Name, 
Association facility extends and enhances this concept.. We give a brief overview of the mechan­
ics involved in using the facility, and outline some programming tips and considerations for 
effective use of the APL-FORTRAN connection. 

Part 2 describes and demonstrates two sample applications that us. APL and FORTRAN in combi­
nation for problem solving. 

Part 3 ahows how APL2 can be used to measure the computational efficiency of FORTRAN lubrou­
tines. 

The Appendix describes and lists the APL2 function CBARn, an APL2 data Interface to the Graph­
Ical Data Display Manager/Interactive Chart Utility.. 

Acknowledgement 
Special thanks to Betty C. Faith and John R.. Ehrman; their critical r••ding and extensive 
auggestions improved both the style and content of this report. 

Note: 

This report contains ••veral perlormance comparisons of .ample APL and FORTRAN 
programs.. The•• comparisons are intended to thow the relative performance when 
running simpl. routines and are not Intended to be a general repr••ntatlon of APL2 . 
or VSFORTRAN performance.. 

The APL2 Name ".ocl.llon F.cllity 2 



Part 1: The APL2 Name Association Facility
 

APL Name• • nd Objects 
API. programs and applications operate in an environment called the APL. work.pace. A work­
space contains all the APL components auociated with and necessary for the proper operation of 
an application; th... components are called APl objects. For purposes of our discussion, APl 
workapaces contatn three types of API.. objects: .rreys, Which are structured collections of alpha­
numeric data: functions, which are programs that manipulate and perform computations on 
arrays. usually cre.ting new .rrays in the process: and oper.torl, which proc... functions to 
cre.te new functions for application to arrays. 

An API.. object in a workspace ha. a name, the referent that the object •• given when it is cr.ated. 
and by which it il r.f.renced when used In an application program. For example. if the value of 
the .rray A is thel.ngth-4 numeric list 3 5 7 9. then the value of A can be displayed by the 
following expression in an APL interactive ....ion:2 

A 
357 9 

The .rray A can also be referenced by name in a computatlonalexpresaion: 

2 )( A 
6 10 1" 18 

likewise. APL function. ar. Invoked by using their names in expr...iona. Prlmiti.,. functions in 
API. are denoted by pr.....gned aymbols, and uaing the symbol invokes the function. In the 
previous example, the symbol 'x' denoted the function multiply. APL defined functions .re 
programs. defined .. ordered Mquenc.. of array operations: defined functions us. other func­
tions, both primitive and defined. For example, the defined function AVGcompute. the numeric 
me.n of • Ust of numbers; AVOhas the 'oIlowing definition: 

9 

[OJ Z..AVG Z 
[1) Z+(+/Z)+pl 

9 

The function tl invoked by writing its name, followed by ita .rgument•• list of numbers: 

AVG 3 9 7 11 1~ 

8.8 
2 x AVG 3 9 7 11 14 

17.6 

In an analogous manner, API.. has both primitive and defined operator.. For exampl•• the primi­
tive operator reduction. denoted by the 8Ymbol 'r', can be used to modify the action of primitive 
functions such as .dd (+) and multiply (x): 

+/5 3 2 .. 1 
15 

"/5 3 2 .. 1 
120 

Defined operators. like defined functions, are constructed from ordered sequence. of array oper­
ationa using primitive and defined functiona, and possibly primitive and defined operators. The 
construction and us. of defined operators will be addre..ed later in this report. 

In summary, the name. of defined objects in APL applications - arrays, functions. and 
operators - are ••'ected by the application de.igner. and reterence data structures and 
programs. Of particular inter..t in this report are name. that reterence defined functions. In 

2 In thiS report. tne usual convention is used for shOWingAPlexpresslons and the.r 'nults: the expresSion IS Indented SIX 
IPlces from thetift page mire'" Ind thl mutt Immediatety foUoWl displayed at the tI" margin 
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previous APL implementations, function names used in applications could only reference 
programs written in the APL language. In APL2, function names can ref.rence programs written in 
other programming languages. 

External Functlons and Name Association 
The Name Association facility of APL2 allows APL2 application programs to access and use 
aubroutines written in other programming languages. The rules that govern how such routines 
are used in APL expressions are the aame as for routin.. coded in APl. Of particular interest in 
this report ia the use by APL programs of subroutines written in FORTRAN, but the principle. and 
concepts ar. general to a wide range of programming languages. 

In .Imple terms, the Name Association facility provides a mechanism for informing the APL2 
ayatem that It ia to take special action when it encounte,. the name of a particular function in an 
API. expression. In particular, the facility allows the system to associate a function name in the 
API.. workspace with an externa' function, a subroutine coded In FORTRAN. After the association 
hal been established, the external function ia invoked when the function name is encountered in 
an APL expreuion. The details of how the name association Is established are explained below. 
The remainder of thi. section demonstrates a simple example that shows the Name Association 
facUlty In action. 

Computing Standard D.,,'.Uons 
An elementary numerical procedure in descriptive statistics II the computation of the .tandard 
deviation of •••t of data points that usually result from 110m. empirical process. A precise defi­
nition of the standard deviation algorithm il the APL function SDA: 

•
[oJ Z+SDA X 
[1] Z+(+/Z) +~ 

[2) Z+«+/(Z-Z)*2)+PX)*.S
• 

SDA can be used to perform the standard deviation calculation In A~L: 

SDA 5 11 3 2~ 8
 
7."1Jt
 

The lubroutine SDF ia the FORTRAN version of the standard deviation algorithm: 

SUBROUTINE SDF(S,N,X)
COMPUTE STANDARD DEVIATION'S' OF 'N' NUMBERS 'X' 

REAL*S X(N) ,S,A
INTEGER*4 N 
A-O. 
DO 10 I-1,N 

10 A-A+X(I)
A-A/N
S-O. 
DO 20 I-l,N

20 S-S+(X(I)-A)**2 
S-OSQRT(S/N) 
RETURN
 
END
 

•The following ••quence ShoWI how SDP is Invoked from APL2: 

3 11 DNA I SDF ' "atat."."nt 1 

V+S 11 3 24 B " etat.",,,nt 2
 
II+pV " stat.mBnt 3
 
SDF (0 N V) " BtatBment ~
 

7.-'1" 

Statement 1 us•• the APL2 Name A••ociation system function DNA to make the FORTRAN subrou­
tine SDF known to APL2: the rules for using DNA will be described in the next section. Statement 2 
II an APL assignment expression; it assigns a numeric list to the array named v. Statement 3 
auign. the number of .'ements in V to the array N; in this example, N is assigned the value 5. 
Statement 4 applies SDF to its argument structure to compute the standard deviation of the 
.'.ments of V; the computed value is returned as the result of the expression. 

• The APL2 Name Anoc"llon FM:llltr 
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1 

The general array argument to SDF in statement 4 is a vector with three items, corresponding to 
the three arguments expected by the FORTRAN program. The first item is • place holder for the 
result to be computed by SDF; the second item ia the I.ngth of the liat that follows; and the third 
Item is the list itself. 

Th. computation using SDF could be simplified by using .,1 constanta in the function's calling 
structure; the following atatement IIlustrat•• the simplified form and giv.. the .ame result: 

SOF (0 5 (5 11 3 2~ 8»
 
7.~14
 

Name A..oclaUon: Mechanics 
The APL2 Name AaIociation facility allows accea to FORTRAN sUbroutin_: the facility doee not 
aupport access to FORTRAN function aubprograms. Thul. when we UN the term function, it J. in 
theAPL ..... 

To establish the auoctatlon of • FORTRAN lubroutln. with the name of an API. function In an appli­
cation workspace, the following questions must be acklrMHd: 

1.	 What 'a the API. language construct that accompllahes the nam..ubroutlne aaaoclation? 

2.	 Since the actual FOATRAN-derived executable code ia out8lde the APt.. enVironment, how does 
the Iyatem know where to find It? 

3.	 How are the .rr8y-struetured arguments to an APL aaaociated external 'unction mapped to the 
.rgument list required by a FORTRAN subroutine? 

4.	 How ar. the explicit results returned by an API. function derived from the FORTRAN 
subroutine's .rgument Jist? 

5.	 What happens it errors, such as program checks and exceptions, occur In externa' routines? 

This section giv••• brief ov.,rview of th... and other aspects of the APL2 Name Aaaociation 
facUlty. For a more comprehensive trutment of th... topica, ... (IBMesA). 

Author'. note: Some of the met.r/al pr••ented In this section .Num•• 80m. familiarity with 
systems programming jargon, auch as load module. and IInkag_ conventions. 'f the r••der finds 
him••'f or he,••'f in unfamiliar 'erritory, pl•••••klp .hHd to the next aection. This mat.rial is 
pr••ented for r••de,. that are Interested In auch matte,., .nd I. not required 1ounderstand the 
following .ee1lona 0' this report. 

The Name A••ocl.Uon Sy.t.m FuncUon 
The Name Association lyatem function []lVA ia the APL2 'anguage conatruct UHcI to aasociate • 
external subroutines with name. in APL application programs. In the previous section, the 
external function SDF was made known to the APL2 system by '••ulng the atatement 

~ 11 ORA 'SDF t 

The lett argument to DNA, the numeric list 3 11. indicate. that an external function i. being asso­
ciated using associated processor 11, the compiled code external function intertace.3 The right 
.rgument to DNA, the character string 'SDF'. is the name of the function to be associated. Note 
that invoking ORA give•• numeric r••ult. The value 1 indicat.. a Iucceatul auociation. A 
value of 0 would indicate an unsuccessful association; cau... for unsuccessful ••sociation will 
be addressed below. 

After a successful association between an APL function name and an external routine, the associ­
ated name can be used in APL language expressions exactly as though the name r.ferenced a 
defined function coded in APL. 

NICKNAME File. 
A NICKNAME file is the mechanism used by DNA to make the system-related connection between 
the APL name.and the externa' routine code. The NICKNAME file provides the following informa­
tion: 

3 APL2 also prOVides aS50clated processor 10. the REXXInterface In the VM/CMS environment. thiS allows APl.2 programs 10 
access and use routines t;Oded In the REXX programmmg language [I8M83A). For more I"'ormation on the use of REXX In 

APl2. see (tBM85AJ 
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•	 The load module library where the APL2 Iystem can find the actual FORTAAN-derived executa­
ble subroutine code. 

•	 The name ot the member in the library; this name can be different from the name used in the 
APL workspace to invoke the routine. 

•	 The linkage convention used to transf.r and return control when the subroutine is called. In 
this report, only the FORTRAN convention is discussed, but the Name Association facility 
allows other conventions; S.8 [IBM85A]. 

•	 The name of • FORTRAN execution environment that i. to gain control of execution should an
 
.rror occur In the called subroutine.
 

•	 A description of the FORTRAN subroutine argument list structure that aliowl APL2 to build a 
proper argument sequence when the routine is Invoked. 

A NICKNAME ftl. can contain entries for a collection of routln.. to be auociated with APL names. 
Normally, one file will contain aU external routine entri.. related to. lpecific APL application. 
Each entry In a file will consist of a sequence of tag-operend etatements of the form 

:tag.value 

Recalling the FORTRAN subroutine SDP Introduced In the previous HCtlon: 

SUBROUTINE SDF(S,N,X)
COMPUTE STANDARD DEVIATION'S' OF 'N' NUMBERS 'X' 

DAL*S X(N) IS,A 
INTEGER*4 N
 
A-O.
 
DO 10 I-l,N
 

10	 A-A+X(I)

A-AIM
 
S-O.
 
DO 20 I-l,N
 

20	 S-S+(X(I)-A)**2

S-DSQRT(S/N)
 
RETURN 
END 

SDPmight have the following NICKNAME entry: 

:nick.SDF :load.APLDEMO 
:lIlemb.SDF 
:link.FORTRAN
 
:init.FORTMAIN
 
: rarg . (GO 1 3) ( < £8 0) (1 14 .) (E8 1 *)
 

The tag-operand statementa In NICKNAME file entrl.. have the following Interpretations: 

:ltlci.na",e • apecifie. the name of an external function. When making the a••ociatlon. thie name 
must be specified in the right argument of DRA. This tag is used to create the link between 
the name specified with DNA and the descriptive information that follows. 

:IoadJlbr." • the name of the load library into which the external function code hal been link­
edited. In CMS, the library i. the name of the LOADLI8 file; in TSO, it is the DOname. 

:......b....m.· the member name of the external function routine In the specified load library. 

:"nt.'OItTRAN • the linkage convention used when calling the external function. In this report, 
we only consider FORTRAN linkage, but other conventions are available. 

:'III1.ne",e • name. a FORTRAN main program execution environment to be associated with this 
routine; this tag is optional. An execution environment is required if the external function 
us.. FORTRAN ••rvices such as input/Output. Also, execution environments invoke FORTRAN 
.rror ....ndling procedure. if programming .rrors should occur in external function 
routines. 

:,.,,.".".," • epeclfie. a description for the FORTRAN argument list. (S.e below.) 

The treatment given here to NICKNAME flies is cursory and intended to give only a brief introduc­
tion. For a comprehensive treatment. see [IBMBSA]. 

Argument Patterns 
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Argument patterns provide a me,:nanism for describing the expected arguments for external 
functions. When an external name is encountered during the execution of an APL expression, APL 

compares the actual arguments against the pattern provided in the NICKNAME file entry. If possi­
ble, APL converts the actual arguments to match the pattern in order that the extemal routine 
receive. its argument data in the expected and predictable form. It conversion is not possible, 
APL issues appropriate error messages. 

Argument patterns describe bot" the type and structure of array arguments. Type definitions 
include GO for gener.' .rrayl, 14 for fullword integens, Cl tor byte characte,.., and £8 for 
doubl.preciaion floating point. The numbers following type specifications indicate the r8nk and 
shape of array arguments. 

The following are example. of how argument patterns describe the API. .rray structure. that can 
be pused ...rgument lists to FORTRAN routines: 

A matrix, S 6p\30 
:rarg. 14 2 5 6 

A nested .rray, (2 3~\6) 'ABCD' 
:rarg. GO 1 2 (14 2 2 ) (ell 4) 

A vector of 3 character strings. any length, 
'GREETINGS' 'FRON' 'CALIFORNIA' 

rrug. GO 1 3 (Cl 1 *) rei 1 *) (ell *) 

Fullword integer matrix, any shape 
:rarg. 14 2 • * 

Floating point matrix, any shape, containing 100 numbers 
:rarg. 100 £8 2 • * 

'J 

A aingle fullword integer, any shape 
:rarg. 1 14 * 

For a more detailed treatment of argument patterns, see [IBM85A]. 

Wh." E"o,. Occur 
Error8 in ualng the Name Association facility can occur in three main .r...: 
1. Name Auociation tailures 

2.	 API. .rrors during external function execution 

3. Internal .rrors In external routine. 

We briefly diacuuth••••rrors and their cause; for a more comprehensive tr••tment, ••• 
(IBM85A). 

Name Association failures can occur for ••veral r••sons: 

•	 Incorrect arguments to [)IrA - Malformed API. nam.. In the right .rgument. or incorrect name 
ea... or processor numbers In the lett .rgument to DNA 

•	 Errors In the NICKNAME fli. • Jnvalld or Illegal entries In the NICKNAME file. 

•	 Functions cannot be located - Either the function does not have an entry In the NICKNAME file, 
or the member does not exist in the indicateclload library. 

•	 System-related errors • These Include insufficient fr...pace for proper operation of the Name 
Auociation processor. or the unavailability of the processor itse'f. 

API. .rrors during external function execution occur for ••veral r.88Ona. 

•	 APL .rrors like RARK ERROR. LENGTH ERROR. or DONAIN ERROR otten Indicate a mismatch 
betwe.n the external function .rguments and the corresponding .rgument patterns in the 
NICKNAME file. 

•	 A VALERCE ERROR indicates that the external function is called with an incorrect number of 
arguments or that the external function is unavailable. External functions ar. unavailable if 
an .rror has previously occurred when trying to locate, load...sociate, or us. the function. 

•	 A SYSTEM ERROR usually indicate. that the external function ha. terminated abnormaUy. 

Under8Undlng the APL-FORTRAN ConnectIon 7 



•	 A SlSTEN LIMIT usually means that an attempt has been made to activate an execution 
environment that is already aetive. 

Internal errors in external routines occur when a FORTRAN program causes an .rror; these 
Include program checks and ABENDS. "a FORTRAN execution environment is active when a 
program check occurs. it will normally be handled by the FORTRAN error recovery procedures. If 
an ABEND occurs. or if any internal error occurs and no execution environment is active. Process­
or 11 will handle the error and issue • S~STEN ERROR. 

Name A••oc/at/on: Programming Cons/der.tlons 
This a.etion provides 80me programming tips and insights into using the APL2 Name Association 
facility in conjunction with FORTRAN subroutines. 

Forming FORTRAN Argumen' U.,. 
The argument lists tor FORTRAN subroutines are usually required to be more comprehensive than 
argument Usts for functionally equivalent API. routines. For exampl., FORTRAN routin.. require 
the paging of extents for array arguments, and pusing of pr••llocated storage for results and 
work areas. Because APL routin.. can functionally determine the extents (i.e., the .hap.B) of 
their array arguments, and can dynamically allocate apace for array results and work .reas. 
auch information is not normally passed from the calling routine to an API.. function. 

Consider again the function. for computing standard deviations introduced previously: SDA. 
coded in APL. and SDF, coded in FORTRAN. SDA require. the Iiat of number. for which the stand­
ard deviation is to be computed: 

SDA 5 11 3 24 8 
7.414 

SDF require. a 3-item array .rgument, corresponding to the three paramete,. of the FORTRAN 
subroutine: a place-holder for the r..ul~ the extent of the list, and the list i.elf: 

SDF 0 5 (S 11 3 24 8) ~ 

7.414 

Ther. are .everal ways to offer the simple APL2 .rgument structure to FORTRAN routines. One 
way i. to define a companion APL function for a FORTRAN routine that constructs the FORTRAN 

routine's argument list from ....ntlal information. For example. consider the function'SD_AHG 
that, given a lilt for the standard deviation computation, constructs the argument list appropriate 
for SDF. SD_ABG has the following definition and use: 

\' 

[oJ Z+SD_ARG V 
[1) Z+O(pV)V 

\' 

SD_ARG 5 11 3 24 B 
o 5 5 11 3 2~ 8 

SD_ARC can be used to simplify the uae of SOF: 

SDF SD_ARG 5 11 3 2~ 8 
7.414 

Another way to simplify the argument construction process is to us. an APL co".r function that 
constructs the appropriate FORTRAN argument structure and then invokes the FORTRAN routine. 
For example, the function SD ia such • cover function for SDF: 

'I 

[oJ Z.SD X 
(1) Z+SDF r;(gX)X 

\' 

SD 5 11 3 2~ 8 

As explained below, the cover function technique leads naturally to the use of APL programming 
control structures with FORTRAN external functions. 

•
 



•• 

Using APL Oper.tor. With FORTRAN Rouflne. 
A powerful control structure in APL is the primitive operator each. denoted by the symbol "". 
Each allows the application of 8 function to each item of an array. For example, each can be 
used in conjunction with the shape function, denoted by the symbol ·pt. One us. of shape is to 
compute the length of a numeric or character list: 

p 10 ~ 17 8 13 9 11 
7 

p 'CATPA'l' 
6 

Used with ••ch, the ah8pe function can be used to determine lhelength of .ach item of aUst of 
Iiate: 

p" (~ 9 8) (22 ~4) (-5 6 7 -11)
 
324
 

p •• 'GREETINGS' "ROIt' 'CALIFORNIA' 
9 ~ 10 

Uling ••ch In conjunction with the function SD allows the standard deviation computation of .ach 
Item in a lilt of numeric nata; the control structure ia APL. but the actual computation il done by 
FORTRAN: 

$D •• (S 11 3 2~ 8) (17 3 8 11) (3 .. 3 6) 
7.41~ 5.068 1.225 

Another example I. the FORTRAN program named GCDF that uaea Euclid'. algorithm for comput­
ing the gr••test common divisor of two integer numbers: 

SUBROUTINE GCDF(M,N,Z)
INTEGER*4 M,N,Z,IM,IN 
IM-IABS(M)
IN-lASS(N)

10 Z-IM 
IM-MOD(IN,IM)
IN-Z 
IF(IM.NE.O) GOTO 10 
RETURN 
END 

GCD, would have the following NICKNAME file entry: 

:nick.GCDF :load.APLDEMO 
:llemb.GCDF 
:link.FORTRAN 
:ruq. (GO 1 3) (1 14 *) (1 14 *) «14 0) 

GCDF can be imbedded in the APl function GCD to simplify the calling sequence: 

9 

[oJ Z+N GCD • 
(1) Z+GCDF " • 0

• 
214 OCD 32 

8 

27 GCD ..S 
9 

26 QCD 6S 
13 

Using GeD in conjunction with the .ach operator allows the gr.at••t common divisor computa­
tion of multiple pairs of numbers: 

24 27 26 OCD·· 32 4S 65 
8 9 13 

Another powerful API. operator is out.r product. denoted by the combination of symbols I F'. 
where F is the name of • function. Out., product applies the function F between items of its 
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array arguments. in all possible combinations. For example. • •+ is a function. derived from the 
add function +, that adds the items of two arrays pairwise in .,1 possible combinations: 

10 20 30 0.+ 1 2 3 ~ 5 
11 12 13 1~ 15 
21 22 23 24 25 
31 32 33 34 35 

Out.r product can be uled in conjunction with GC:J to compute the gr.ate.t common divisor of 
all possible pairs of numbers from two arrays; again, the control structure il APL, but the actual 
computation il done by FORTRAN: 

24 26 -.GCD 32 4S 64 
838 
212 

Later In this report we will take another look at using API.. operators In conjunction with external 
functions written in FORTRAN. 

Globa/ra.LGCaIExterna/FuncUona 
The process of name uaociation ia normally done outalde of an application, much like defining 
APL functions in the workspace. Once an APL name has been associated with an external func­
tion by means of the ORA system function, the external function is tre.ted as a locked APL 

function in the workspace. If the workspace '1 saved and aubsequently reloaded, the external 
function exists in the loaded workspace; the name uaociation task does not need to be 
repeated. Such a function i8 called a global function; It Ie known to .,1 programs In the work­
lpace, and any program can use it to perform computations. 

In some ca..., it may be d.sirable to have extema' functions defined only within som. top-level 
API.. application program. Such an instance of • function ia catled • local function because It Is 
only known locally within the top-level program and within any other program that the top-level 
routine Invokes. In general, local fu~ctiona do not extat In the workspace except when the top­
leve' program ia in operation. 

Local functions are de.irable when the operation they perform ia applicable only within some 
••II-defined application environment. In such cases, It may be undesirable to have the function 
defined outside the environment. For example, the function might perform some proprietary 
operation that il only to be performed within the application environment; the integrity of the 
application might be jeopardized if the function .ere made avanabl. to the user in atand-alone 
mode outside the application. Also, using local functions can decr.ase the I name pollution' 
problem in a workspace. The APL system command )1'118 Is uaect to nst the directory of global 
functions in a workspace, and workspaces that contain many global 8ubfunctions have long 
directory listings that tend to obscure the name. of top-level routine. that are the re.' interest of 
the application user. 

The following steps are required to make an external function local to a main calling routine: 

1. Place the name of the external routine in the local name lilt In the main function header. 

2. Perform the name association task in the main routine using the ORA system function. 

For example, if • top-level routine named NAIR uses an external function EX'1FUN, then NAIR will 
contain the following code fragments: 

9 

[0] Z+L NAIll R;EXTFUR; 

[ •• J R+-3 11 DNA 'EX'l'PU.t 
[ •• J OE'S (B-1) / t EXTERNAL FUNCTION ASSOCIATION FAILED' 

EX'1FUN will exist in the application workspace only while NAIN is in actual operation: when MAIN 
finishes execution, EXTFUN will cease to exist in the workspace. 
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Uu,eNof••: 

1. In this example, the return code from UNA is checked to ensure that the name association 
has been accomplished. As a matter of good programming style, it is a good idea to check 
this value. Recall that a result of 1 indicates a successful association; a 0 indicates failure to 
••sociate. 

2. The name .ssociation operation performed by []NA require. extra computer execution time. 
Theretor•• if • routine that uses an external function is called frequently. the external function 
should probably be global to the calling routine. 

A"., Element Ordering 
The .'ements of APL .rrays are stored in the computer'. memory in row-major order. In 
FORTRAN••'ements of arrays are stored in column-major order. Therefore, when passing multi­
dimensional arrays from APL to FORTRAN subroutines. the programmer must be aware of this 
dinerence in array ordering. 

For exampl., consider the following 3-row, 4-column matrix: 

11 12 13 14 
21 22 23 2~ 

31 32 33 34 

In APL. the elements would be stored in the following order: 

11 12 13 1~ 21 22 23 24 31 32 33 34 

FORTRAN would ator. this array in the following order: 

11 21 31 12 22 32 13 23 33 1~ 24 34 

Note that this difference only applies to 2-dimensional arrays (te., matrices) and arrays of high­
er dimension; lists (i.e., vectors) are stored the a.me in both languages. 

There ar. two waya to compensate for this difference in array ordering when calling FORTRAN 
programs from APL. First, if the FORTRAN program is designed and written specifically to be used 
In conjunction with a particular APL application. the easi ••t and most efficient method is to 
design the FORTRAN program logic to use the APL storage order. This means that, for a matrix. 
the FORTRAN program does row operations in place of column operations. and column operations 
in place of rowoperations. 

As • Yery .'mp'. example. suppose we want an external function FROJi to accept as input a • 
3-by-4 matrix and return a length-4 vector containing the first row of the matrix. A us. of FROW 
could be the following sequence: 

A 
11 12 13 14 
21 22 23 21i 
31 32 33 3.. 

PROW A (0 0 0 0) 
11 12 13 1.. 

PROII has the following listing: 
SUBROUTINE FROW(M,V)
INTEGER*4 M(4,3),V(4) 
DO 10 I • 1, 4 
V(I) • N(l,l)

10 CONTINUE 
RETURN 
END 

The NICKNAME entry for PROW could be defined as 

:nick.FROW :load.APLDEMO 
:memb.FROW 
: link. FORTRAN 
: r ar <1 • (GO 1 2) ( 14 2 3 4) « I 4 1 4) 

For arrays of dimension greater than 2, this technique can become somewhat confusing to a 
programmer; in fact, for matrices it takes some mental adjustments when thinking about the 
design and writing of the code. The key ide. to remember is that FORTRAN storage order cycles 
thel.hmosllubacript moat rap;dly. whil. for APt.. it is the rightmost subscript that cycles most 
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rapidly. Thus simply reversing the order of subscripts in FORTRAN array references will usually 
do the job. 

The second method for compensating for difference in storage order is to transpose multi-di­
mensianal arrays in APL before passing them to FORTRAN routines, and, if appropriate, transpose 
multi-dimensional array results that are returned. The APl primitive function transpose. denoted 
by the symbol .,,', accomplishes this operation. This is the preferred method when using pre-ex­
Isting FORTRAN routines that may. for example, be part of a subroutine library. For large arrays, 
this method can become computationally expensive. especially if done frequently. 
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Part 2: APL·FORTRAN Programming Examples
 

Data Anal,.ls: Dice Simulation 
Thil simple data analyale example Illuatrat.. the functional programming styl. of API... In this 
mode of API. application design, a ••ri•• of computational .tepa .r••ach performed by ••para'e 
functional unita, with the r..utt of one functional unit becoming the operand of the succeeding 
functional unit. Because functional unit8 ar. independent, they can be 'unplugged' and ·replaced 
by functionally equivalent untta; this "'owa experimentation with various implementation atrat. 
gi.. and fln.tuning of the appticatlon. 

This example u... the AfIL2 function CBARf7 described In the Appendix. CBARn il • versatile 
APL2Interface to the Graphical Data Display Manaoer/lnteractlve Chart Utility ( IBMMA]. 

Simulatln, Dice Throw. 
The function DICE I. uaed to .imulate a prescribed number of rolls of • pair of dice. 

•

[oJ Z+DICE R 
(1) "SIIIULAnS ROLLIIIG DICE <N> ~DlES 
(2] Z+?(R.2)~6 ..
 

DICE 5 DICE 8 
4 1 2 6 
1 ~ 5 2 
2 4 3 3 
5 2 1 3 
5 6 3 5 

~ 3 
6 ~ 

2 5 

The argument lila the number of rolla to simulate. The rnult of .xecuting DICE ia an R-by-2 
matrix, .ach row of which repres.nts a dice roll. DICE uses the API.. function roll, denoted by 
•1', that produces random numbers; in this particular application, the .Iements of the r.sult .r. 
picked from the pseudo-random uniform distribution in the range 1 to 6. 

Th. function COUNT can be used with DICE to summarize the results Of •••ries of dice rolls. 

\' 

(0J Z+COUliT A 
(1] .- COUNTS DICE f'llROflS IN <A> 
[2J Z++IA 
[3J Z++/(1+\11)-.aZ 

" 
A+DICE 7 
A 

2 S 
2 4 

2 5 
6 3 
1 1 
~ 2 
5 2 
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COUNT A 
1 0 002 3 0 1 0 0 0 

COURT DICE SO 
2 1 2 9 6 10 9 6 4 1 0 

COUNT DICE 500 
14 33 37 50 65 89 73 ~2 58 22 17 

The .rgument to COUNT i8 a dic.roll ••ri.. produced by DICE. COURT computes the sum of the 
two dice value. for each roll, and tabulat•• the totals of each sum In the ••ries. The r••ult Z ia a 
'ength-11 intege, lilt; Z[1] contains the number of 2s rolled In the .ertes, Z(2] contains the 
number of 3s, etc. Note that by definition, the sum of Z equals the number of rolls. 

The function EZPEC'1 compute. the expected number of dice-pair Bumsfor. prescribed number 
of rolls. 

• 
[OJ Z+EXPECT N;T 
(1) "EXPECf'ED NUNBEB OF BACH SUN POR <N> DICE 'rBROJIS 
[2] Z.Rx(~l.f+\11)+36 

• 
EXPECT 36 

1 2 3 ~ 5 6 543 2 1 

EXPECT 72 
2 ~ 6 8 10 12 10 8 6 4 2 

EZPEC'J' sao 
13.9 27.8 41.7 55.6 69.4 83.3 69.~ 55.6 41.7 27.8 13.9 

The argument to EXPECT is the number of dice rolls. The result of Z ia aUst of length 11; Z[l) 
glv•• the number of expected occurrences of 2s In R rolls, Z[2J gives the number of expected 
occurrences of 38. etc. 

Graphical Anal,.,. 01Dice Throws 
The function DRAW ia used to plot the actual and expected results of • dice roll ••ri... The main 
component of DRAW is the CBARTZ function described In the Appendix. 

DRAW accepts. two-item nst. The first Item ia the actual results of dice roll simulations as gener­
ated by DICE and COURT; the second item la a lilt of expected dice roll results as computed by 
ErPEC'1. 

" [0] DRAJI D ; FORNNANE 
[lJ "CHARTS ACTUAL AND EXPEC'1'ED DICE ROLLS 
[2J FORNlfANE.. ' DICE I 
[3] (1+\11)CBARTZ~D 

9 

The following APL expression generat.. the plot In Figure 1. 

DRAJI (COURT DICE 36) (EXPECT 36) 

Results of the follOWing expr.ssion are shown in Figure 2. 

DRAW (COUNT DICE 100) (EXPECT 100) 
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Z J .. 5 • 7 • • .. 11 12 

a.utts 

'IIUN1: 38 dice throws 

J 
2 J , 5 • 7 • • to t1 12 

RtsuIts 

"'re 2: 100 dice throwl 

Note that .. the number of .imulated rolla incr...... the actual occurrence8 com. closer to the 
expected occurrences. giving an empirical confirmation of the statistical law of large numbers 
(H. FeUer, [FEL50A)). The following expression .imulat.. 1000 dice roUs; the result is shown in 
Figur.3. 

DRAW (COURT DICE 1000) (EXPECT 1000) 
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Z I • I • 7 • • 11 12I' 
Results 

,..,. a: 1000 d.ce throws 

Substltullng FORTRAN lor APL 
So tar, we have diacuued computational components for analyzing dice rolls that are coded in 
APL; now let us introduce 80m. FORTRAN components. 

The external routine COUlITF, cocted in FORTRAN. Is functionally equivalent to the APL function 
COUIIT; It compute. the sum of Individual dice rolll in a ••rie•• and tabulat.. the total. of each 
aum. COUll'" has the following definition: 

SUBROUTINE COUNTF(N,D,Z)
INTEGER·4 N,D(2,N),Z(ll) 
DO 10 I • 1, 11 

10 Z(I)-O 
DO 20 I • 1, N 
J-D(l,I) + 0(2,I)
Z(J-l)-Z(J-l)+l 

20 CONTINUE 
RETURN 
END 

COUll" could have the following NICKNAME file entry: 

:nick.COUNTF :load.APLDEMO 
:lDemb.COUNTF 
:link.FORTRAN 
: r Arg • ( GO 1 3) (1 14 *) ( 14 2 * 2) « I 4 1 11) 

COUn1 can be Imbedded In the API.. function COUNTZ that has the same calling sequence as the 
AIIL function COU.~• 

• 
[0] Z+COUIIf'Z A 
[lJ Z+COUR~P(1+pA)A(11pO) 

9 

A."ICE 10 
A 

2 5 
2 .. 
2 5 
6 3 
1 1 
,. 2 
5 2 
5 3 
4 4 
5 2 
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COUNTX A 
10002 ~ 2 100 0 

COUR'l'X DICE 100 
2 ~ 7 12 16 lS 16 9 10 5 4 

Likewise, EXPECT can be replaced with. FORTRAN program XPECTF, used with. cover function 
ErPECTX. 

9 

[0] Z+KZPEcn N
 
[1) Z..ZPEC'1P B(11pO)


• 
BKncn 36
 

1 2 3 ... 5 6 5 If, 3 2 1
 

~Kncn 72
 
2 It 6 8 10 12 10 8 6 ... 2
 

'8KnC'l'X 500 
13.89 27.78 41.67 55.56 69."" 83.33 69 ...... 55.56 41.67 27.78 13.89 

DEC'n' has the following definition: 

SUBROUTINE XPECTF(N,E)
INTEGER*4 N 
REAL*8 E(ll),T 
DO 10 I - 1, 5 
T-OFLOAT(I*N)/36.DO
E(I)-T
E(12-I)-T

10 CONTINUE ~ 
E(6)-OFLOAT(6*N)/36.DO
RETURN 
END 

The NICKNAME fll. entry for XPECTF could take the following form: 

:nick.XPECTF :load.APLDEMO 
:memb.XPECTF 
:link.FORTRAN 
:rarq. (GO 1 2) (1 I4 *) « £8 1 11) 

Finally, the following expr.ssion simulates, tabu'at.., and plots 10000dice roll aimulationa; the 
r..ult Is shown In Figure 4: 

DRAW (COUNTX DICE 10000) <EZPECTZ 10000) 

Three of the functions in this expression perform their operations in APL; two perform their eper­
ationl in FORTRAN. . 

Ar,., D.,. Structure.: Spa,•• M.frlx Operations 
In a 'spa,... matrix' most elements have the same value, usually zero. Large matrices that 
contain a amall percentage of nonzero e'ementa can generally be stored and used more effi­
ciently in some format other than the normal 2-dimenaional repr•••ntatlon. The following 
describe•• format that is commonly used for atoring large sparae matrices involved in computa­
tions on line.r equations (computing inner prodUcts and inverses, solving lin••r equation 
systems, solving linear programming problems, etc.) This repre••ntation ...um.. that all 
matrix columns contain at least one nonzero .'ement. 

" II i•• matrix, then SM is • sparse repr••entation of II: 

SN .... E.TXIP 

E il • Ii.t of the nonzero elements of N in row-major order. n is • liat of the corresponding 
column indices of the nonzero elements of N. That ii, the .Iement E[K] come. from column 
tlX(X) of M. Lists E and JX have the same length. IP is a list of point.,.. into E (and JX) that 
indicate the position of the first nonzero .Iement in .ach row of N. The length of IP is one more 
that the number of rows of M. 
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Z J • 5 • 7 • • to 11 12 
IesuIIs 

....... t: 10000dice throws
 

For example, the matrix A il repr...nted In apa,... form by the .rray SA: 

A 
1.1	 0 1.3 1.~ 0 
o	 2.2 0 2.4 0 
o	 3.2 3.3 0 3.5 

p A 
3 5 

SA"(1.1 1.3 1.4 2.2 2.~ 3.2 3.3 3.5)(1 3 4 2 ~ 2 3 5)(1 4 6 9) 

f) SA 
3 

p•• SA 

.. 8 8 4 

Useful API.. functions for handling lpara. matrices ar. the PACKand UlIPACK routln.. ~ PACK 
operat•• on matrices in a 2-dimenalonal format and produc...pa.... matrix data Itructur..: 

•
[0] Z+PACK II;E;.TZ;IP 
[1] "PACK MATRIX eN> AS ROJ/-JlISE SPARSE IlArRIZ <Z> 
[2] E...( .0.,,) I ,N " COEFPICnnS
 
[3J Jr.(.~.O)/.(~)p\l.~ ~ COLUMN IIDIcrS
 
[~] IP++\1.+/N tit ROJ! POIIlf'ERS
 
(5)	 Z+E .rz IP
 

9
 

PACK A 
1.1	 1.3 1.4 2.2 2.~ 3.2 3.3 3.5 1 3 ~ 2 4 2 3 S 1 4 6 9 

UNPACK operat•• on spa,... matrix data Itruetur.. to produce a 2-dimensional format: 
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., 
[0] Z.URPACK S;E;JX;IP;N;N
 
[1) -- UNPACK ROW-WISE SPARSE MATRIX <5> TO CREA7'E MATRIX <Z>
 
[2] (E JX IP)+S 
[3] N+-l+pIP '" NUMBER OF ROWS 
[4] N+rItTX " NUMBER OF COLS
 
[5J Z...(NxN) pO
 
[6J Z[Jr+Rx(-2-/IP)/-1+\NJ+E 
[7J Z+(N.N)pZ

• 
UIIPACK SA 

1.1 0 1.3 1.~ 0 
o 2.2 0 2.4 0 
o 3.2 3.3 0 3.5 

UIIPACK PACK A 
1.1 0 1.3 1.~ 0 
o 2.2 0 2.4 0 
o 3.2 3.3 0 3.5 

Sp.,•• If.u,x Transpo•• 
A common operation In many epa,... matrix appllcatlona II m.trix tr.napo.e. Transposing a 
matrix ewitch•• the orientation of Ita row. and column.. In APL, the I,.napo•• function, denoted 
by the Iymbol ''', ie used to transpose 2-dimensional matrices: 

A 
1.1 0 1.3 1.4 0 
o 2.2 0 2.4 0 
o 3.2 3.3 0 3.5 

.A 
1.1 0 0 
o 2.2 3.2 
1.3 0 3.3 
1.4 2.4 O· 
o 0 3.5 

The function S'1A I. used In an analogous manner to transpose matrices in apa,.e format: 

•
[0] COL+S'.rA ROJi;AB •.TC;IP;AC;IR;tlP;'l' 
(1) "SPARSE MATRIX TRANSPOSE III APL 
[2] CAR sc IP)+ROJi 
r3J T+WC '" REORDER SEQUENCE 
[4J AC+AR(2'J " COEFFICIEIITS 
[5] IB+(c(-2-/IP)p··\-1+PIP)[T] ... BOJI IIIDICES PRON ROfi POIlff'ER 
[6] J'P+(1.(2-/.rC[2'J).1)/\1+pAC "COLlIIIlI POZNnB PRON COL IlIDICES 
[7] COL+-AC IR JP 

• 
SA 

1.1 1.3 1.4 2.2 2.4 3.2 3.3 3.5 1 3 4 2 4 2 3 5 1 4 6 9 

UlIPACK SA 
1.1 0 1.3 1.~ 0 
o 2.2 0 2.4 0 
o 3.2 3.3 0 3.5 

STA SA 
1.1 2.2 3.2 1.3 3.3 1.4 2.4 3.5 1 2 3 1 3 1 2 3 1 2 4 6 8 9 

Underetandlng ... APL-FORTRAN ConMctIon 11 



UNPACK STA SA 
1.1 0 0 
0 2.2 3.2 
1.3 0 3.3 
1.4 2.4 0 
0 0 3.5 

While STA il • concise routine for performing sparse matrix transpose, it sutters an intrinsic 
performance penalty. In particular, the grade function in line [3]. denoted by '~', make. the 
execution time of STA proportional to n log n, where n I. the number of nonzero .Iements in the 
matrix argument. 

A more efficient algorithm for sparse matrix transpose, due to Suhl (SUH81A), II easily imple­
mented in FORTRAN. This routine, named 5TF, ia functionally equivalent to STA; Ita execution time 
ia proportional to the number of nonzero .Iements in the matrix argument. 

SUBROUTINE STF(M,N,K,CA,IXA,IPA,CZ,IXZ,IPZ)
C SPARSE MATRIX TRANSPOSE 
C INPUTS: 
C M - NUMBER OF ROWS 
C N - NUMBER OF COLUMNS 
C K - NUMBER OF NONZERO COEFFICIENTS
 
C CA - VECTOR OF COEFFICIENTS IN ROW-ORDER (LENGTH K)
 
C lXA - ~CTOR OF CORRESPONDING COLUMN INDICES (K)

C IPA - VECTOR OF ROW POINTERS (M+l)
 
C OUTPUTS:
 
C CZ - VECTOR OF COEFFICIENTS IN COLUMN-ORDER (X)
 
C IXZ - VECTOR OF CORRESPONDING ROW INDICES (X)

C IPZ - VECTOR OF COLUMN POINTERS (N+l)


INTEGER*4 M,N,K,IXA(K),IPA(M+l),IXZ(K),IPZ(N+l)
REAL*8 CA(X),CZ(K)

C CLEAR IPZ •.• 
DO 10 I c 2,N+l 

10 IPZ(I)-O 
C	 COUNT ELEMENTS IN EACH COLUMN ... 

DO 20 I • 1,K 
J • l+IXA(I)

20 IPZ(J) • IPZ(J) + 1 
C COMPUTE INITIAL COLUMN OFFSETS••• 

IPZ(l) c 1 
DO 30 I • 2,N

30	 IPZ(I) • IPZ(I) + IPZ(I-l) 
C	 MOVE COEFFICIENTS AND ROW INDICES••• 

DO 40 I ;;: 1,M­
OO 40 J s IPA(I),IPA(I+l)-l 
Ll • IXA(J)
L • IPZ(Ll)
CZ(L) • CA(J) 
IXZ(L) • I 
IPZ(Ll) • IPZ(Ll) + 1 

40 CONTINUE 
C RESET COLUMN POINTER ••• 

J • N	 + 2 
DO SO	 I • 1,N

50	 IPZ(J-I) • IPZ(J-I-l)
 
IPZ(l) • 1
 
RETURN 
END 
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STF has the following APL2 NICKNAME file entry: 

:nick.STF :memb.STF 
:load.APLDEMO
 
: link. FORTRAN
 
: r ar9 • ( GO 1 9)


(1 14 *) 
(1 14 *) 
(1 14 *) 
(E8 1 *) 
(14 1 *) 
(14 1 *) 
« £8 1 *) 
« 14 1 *) 
« 14 1 *) 

The UN of S'/' can be simplified using the cover function S'Z: 

•
[0] Z.sr SW;K;N;RiE;Jr;LP
 
[1) (B J% IP)+SN
 
[2J "'-1+pIP "IIUlIBER OF ROWS
 
[3] II+rleTZ " .UllBER 0' COLS
 
[~J K+pE " IIUIIBER OF COBFFICnrrS
 
[5] Z+STF (N R K).SM.(KpO)(KpO)«R+1)pO)

• 
UNPACK SA 

1.1 0 1.3 1.4 0 
o 2.2 0 2.4 0 
o 3.2 3.3 0 3.5 

UlIPACK ST SA 
1.1 0 0 
o 2.2 3.2 
1.3 0 3.3 
1.~ 2.4 0 
o 0 3.5 

The dlffer.nce in execution tim•• between the APL and FORTRAN versions is demonstrated by a 
.'mple performance comparison. The execution time. for transposing •••rle. of 10D-c0lumn 
matrices with varying numbers of rows were recorded using the two routines. The test matrices 
were all 90 percent sparse; that I., 90 percent of the matrix .Iements were zero. Figure 5 plots 
the results of running the•• t.stl on a .8M., processor. 

Spar.. Wawlx Transpo••
100 cobnn __ 

I • S I 
MIl rwl(1001) 

Agur. 5: Spar. matrix transpose 
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",.t"x-Vector Inne, Product 
Another common array operation is the inner product, sometimes called 'dot product. between 
a vector and the rows of a matrix. For arrays in nonaparae format, this operation is built into APL 

as the inner product operator, denoted as 'F .G' t where F and G are functions: 

A 
1.1 0 1.3 1.4 0 
0 2.2 0 2.4 0 
0 3.2 3.3 0 3.5 

B 
2 3 o 0 1 

A +.x B 
2.2 6.6 13.1 . 

The API.. function SNPA performs this operation for sparae matrix arguments: 

•
[oJ Z.SM SNPA V;A;J7;IP 
[1) (A Jr IP}+SM 
[2) Z.AxV[JZ] 
[3) !P+O,-2-/IP 
[4J Z...../ ..(l+IP) +•• (-1++\IP)+ ··c:Z 

9 

SA 
1.1 1.3 1.4 2.2 2.~ 3.2 3.3 3.5 1 3 4 2 4 2 3 5 1 ~ 6 9 

J 

SA SNPA B 
2.2 6.6 13.1 

A functionally equivalent FORTRAN program SNPF can be used to perform thi. operation. SNPF 
hu the following definition: 

SUBROUTINE SMPF(M,N,K,A,JX,IP,V,Z) 
c--- SPARSE MATRIX-VECTOR INNER PRODUCT 
C INPUTS:
 
C M - NUMBER OF ROWS
 
C N - NUMBER OF COLUMNS
 
C X - NUMBER OF NONZERO COEFFICIENTS
 
C A - VECTOR OF COEFFICIENTS IN ROW-ORDER (LENGTH X)
 
C JX - VECTOR OF CORRESPONDING COLUMN INDICES (K)

C IP - VECTOR OF ROW POINTERS (M+l)
 
C v - FULL VECTOR OPERAND (N)

C OUTPUTS: 
C Z - FULL VECTOR RESULT (M)

INTEGER*4 M,N,K,JX(K),IP(M+l)
REAL*8 A(~),V(N),Z(M) 

DO 10 I • 1,M
Z(I)-O.

DO 10 J • IP(I), IP(I+l)-l

Z(I)-Z(I)+V(JX(J»*A(J)
 

10 CONTINUE
 
RETURN 
END 

The NICKNAMEfile entry for SNPF takes the following form: 
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:nick.SMPF	 memb.SMPF
 
load. APLDEMO
 
link.FORTRAN 
rarg.	 (GO 18)
 

(1 14 *)
 
(1 14 *)

(1 14 *)
 
lEe 1 *)

(14 1 *)
 
(14 1 *)

(E8 1 .)
 
« £8 1 *)
 

The cover function SlIP simplifies the u.. of SNPF: 

[0] Z+SN SlIP V;KiN;N;E;JZ;IP 
[1] (E.TX IP).SN 
[2] N+-l+pIP "IIUNBER OF ROllS 
[3] lI+r/tTx " IIUIIBER OF COLS 
[~] K"pE " IIUIIBER OF COEFFICIENTS 
[5) Z+SNPF(N N K).SW.V(NpO) 

9' 

SA SlIP	 B 
2.2 6.6 13.1 

Again, execution efficiencies for this operation can be r••lized using the FORTRAN external func­
tion. Varying the numbers of matrix columns, a ••rie. of inner products betwHn vectors and 
loa-row sparse matric.. were performed. The matrices were 9O-percent .parse. The execution 
times for both the APt. and FORTRAN routine. were recorded. Figure eshows the results ot 
running the•• t••ta on a IBM431' processor. 

Spa,... Matrix Product 
11),..- ­

~ 
~ 

.........
 
FIgure I: Matrix-vector inner product 

The•• sparae matrix processing examples are typical of the kinds of computations that .Iude 
good APL solutions: the structure of the problem ctoea not allow the efficient usa of APL .rray-or­
'anted operations. For these kinds of problems, external functions coded In FORTRAN offer 
incr.ased processing pow.r tor API.. applications. 

Uncle,..tandlng"'e APL-FORTRAN Cor.........
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Part 3: Performance Analysis using APL Defined Operators
 

Performance analysis tools are used to measure, tabulate and interpret the execution efficien­
cI.. of computer programs. Such analysis is used to answer Questions such as: Given two 
variations of an algorithm or program, what are their r.lative or absolute efficiencies when 
executed in the same computing environment? Or, given two computing environments (e.g., two 
different proceuora), what ar. their relative or absolute efflciencie. executing the same 
routine? Performance analYlis also .ddr..... i..ue. such as how execution time. change as • 
function of problem lize or complexity, the effect of variations in the computing environment 
(e.g.• compiler optimization I.vela, computer memory size), and, for mUltiprogramming environ­
ments, the effect of machine load on execution performance. 

In thle HCtlon, .e describe a simple performance analysl. tool that I. us.ful for analyzing a 
program'. execution efficiency for variation. In problem size. It ie implemented in APL2 and 
takes advantage of many APL2 concepts and facilities: It ia, however, especially useful for meas­
uring, tabulating and reporting the execution performance of FORTRAN subroutines. 

Note: While execution performance i. an Important consideration for determining the usefulness 
and applicability of • computer algorithm or program, It Is only one of many factors that should 
be considered when ••'ecting • aottwar. solution for a particular problem. For a general 
discussion of evaluating alternate software aolutions, .e. Crowder, .1. al. [CR079A]. 

TN' Problem Gene,.for. 
nwe have an AfIL function, say 'N, tb be per1ormance-tested, then a 'eat problem for F. la an 
array that I. an appropriate argument for I'll. For example, recall the APL function SDA for 
computing standard deviations. A valid teat problem for SDA la a numeric Ust. 

To do perlormance analysis for a range of t••t problem siz". it la helpful to have an automatic 
method for generating test problems. To accomplish this, we define for FR • related function, 
1'110. called the Pli te.t problem gener.tor. The argument to 'IIG I. a single integer 11 that speci­
fl.. the a/ze of • d.sired test problem; the result is • teat problem of .Ize If for PR. For example, 
SDAG generat.. teat problems for SDA: 

• 
[OJ Z...SDAG R
 
[1) Z•• 1.?~10
 

• 
.. SDAG 3 

0.2 0.3 0.5 

SDAG 5 
0.2 0.7 0.7 0.5 0.­

SDA and SDAG can be uaed In conjunction to generate and u.. te.t problems: 

SDA SDAG 10 
0.2416609195 

SDA SDAG 100 
0.2711899703 

SDA SOAG 1000 
0.2873239287 

In an analogous manner, SDFGgenerates proper test problem arrays for the FORTRAN version of 
the standard deviation calculation SDF: 
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[OJ Z..SDFG li 
[1] Z+O N(.1x?Npl0) 

v
 
SDFG 3
 

0 3 0.4 0.2 0.3 

SDFG 5 
o 5 0.7 0.1 0.8 0.6 0.8 

To perlorm timing comparisons. the HCOnd e'ement of the APL2 system vartabl. o.u I. r.fer­
enced to obtain elapsed processor time in m1l1lMCOnd8: 

A+SDAG 10000 
2\t{]U(2J 
.TUlIX+SDA A 
00[2)-7'
 

156
 

A+SDPG 10000 
2'+[).U[2] 
.nJRX+SDF A
 
[]U(2)-T
 

68 

Thus the APL. version required 166 milliseconds to compute the standard deviation of 10000 float­
ing point numbers on an IBM4381 proceaaor; the FORTRAN v.,..ion required 68 milliseconds. 

While the operationalaequence described above I. UMful. it can become tedious.. Fortunately, 
APL2 ottera an elegant method for packaging this aequence Into a more useful format. 

The FUNT/AfE Defined Oper.tor 
PUR'1INE il an APL2 defined operator: It tak•• two function operands and an .rray argument: 

• 
(0) Z.(FN FUlITIIIE PRO) li.'1' 
[1] ..FRG N " CONSmUCT I'll ARC LIST 
(2) Z~(2] ~ fINE 
[3] 'P+FR 11 .- InOJa I'R 
[~J Z~[2]-Z ~ rINE 

• 
PH i. the function to be timed and FNG is • t••t problem generator appropriate for FR. The singl. 
Integer R il the test problem size to be generated by PRO. The r.sult Z is the execution time in 
milliseconds of applying FN to the t.st problem PHG 11. 

FUNTIME can be used to perform a .ingle t..t: 

(SDA PUIiTINE SDAG) 10000 
154 

(SDF PUN'1INE SDFG.) 10000 
70 

Used in conjunction with the each primitive operator, FUN'l'ntE can be Uled to perform a ••ries 
of t.sts: 

\8 
1 23" 5 6 7 8 

2000)(\8 
2000 4000 6000 8000 10000 12000 14000 16000 

(SDF FUR'1IME SDFG)" 2000)(\8 
15, 28 41 S5 68 82 96 109 

Under.lllnding the APL-FORTRAN Connection 21 
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aecause APU can distinguish the structure of arrays using the depth function. denoted by '5', 

handling nonsingl. array arguments using each can be incorporated into the FUliTIItE operator: 

(0] Z+(FN FUNTINE FRG) lI;T 
(1] +(O<5N)/Ll " BRANCH IP 110'1' INTEGER 
(2] If+FNG N " CONSTRUCT PH ARG LIST 
[3J Z+OU(2) " TIllE 
(4J ,/+PR N " INVOKE PR 
[5] Z~[2]-Z ~ TINE 
(6J +0 
[7] L1:
 
[8J 11+(1'. rUII'1Il1E FRG)·· R
 

• 
(SDP PUB~IlIE SDFG) 2000-,8 

14 28 ~2 5S 69 81 95 108 

I'UIITIIIE can be used In conjunction with the CBABR function to picture performance statlatics. 
The graphical result of the following aequence 'e shown In Figure 7. 

2'+2000)(\10 

A+(SDP PON'ZIlIE SDFG) f 
A 

lS 28 42 55 68 82 95 109 122 ~35 

lJ+(SDA nJlI~DIE SDAG) 2000x\10 
B 

32 63 93 123 1S~ 182 213 243 272 303 

f' CllARft :.A B 

~ 

FIgure 7: Plotting performance data 

Reporting the average of ,.veral similar performance experiments is often d••irable, especially 
on mUltiprogramming computer systems where transient user load can introduce slight van­
ationa in individual execution times. Using the AVGfunction in conjunction with both FUN'lIME 
and the enc/os. function (denoted by I C ' ) can be useful for this type of analysis: 

The APL2 Name A••oclatlon Facility 21 



A'~5 8p200Qx\8 
.\" 

2000 ~OOO 6000 8000 10000 12000 114000 16000 
2000 ~coo 6000 8000 10000 12000 1&4000 16000 
2000 4000 6000 aooo 10000 12000 14000 16000 
2000 4000 6000 8000 10000 12000 14000 16000 
2000 4000 6000 8000 10000 12000 14000 16000 

Z+(SDF FUNTINE SDFG) N 
Z 

14- 28 'J2 55 68 82 95 tOC] 
15 28 -'1 55 68 81 94 108 
lS 28 42 55 68 82 9S 110 
IS 28 41 S5 68 82 94 109 
14 27 42 S4 68 82 9S 109 -

AVG-- C[l] Z 
14.6	 27.8 "1.6 54.8 68 81.8 9't.6 109 

Mor. concisely. the three previous steps may be combined as 

AVG
u 

c[l] (SDF FUNTIIIE SDFG) 5 8p 2000)( \8 
14.6 27.8 41.6 54.8 68 81.8 9~'06 109 
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Appendix: CHARTX • An APL2 IICU Dafa Interface
 

CBARTX is an APL2 function that otte,.. a call intertace to the Graphics Data Display Manager 
Interactive Chart Utility (leU). Data can be paned to ICU in a variety of formats using APL2gener­
., .rrays. CHARTZ also otters a facility tor using predefined ICU chart formats. 

Fre• • nd Tied Data 
ICU allows the simultaneous graphical di.play of Mver.' 'groups' of data. For example, a graph 
with three line plots would have the data for each line plot repr...nted ... data group. leu 
makes the distinction between two types of data format mod.. for repr..enting data groups ­
Ir•• d.t. and tied da'a. In fr.. mode, .ach data group h.. Ita own ••t of X vatu.. or coordi­
nat••; .ach group's X valu.. are Independent of other groups. In tied mode, aU data groups 
have the ..me set of X values. 

CHARTZ handl•• both ICU data format modes; the mode ia determined from the structure of the 
arguments to CBARTZ. 

Using CHARTX lor Tied Data 
For tied data, CBARTZ has the following call sequence: 

XT CBARTZ ~'r 

where 

1'1' I. the array of Y values. ~'l' is a simple numeric scalar, vector, or matrix. "7T ia • scalar 
or vector, It forms one data group containing the .'ement(s) of rT. "Y'l' is a matrix with II 
rows and N columns, it forma II data group., each group consisting of N .Iements from the 
row. of IT. 

XT il the simple numeric array of X values. If IT is • scalar or vector, then xr must be the 
same shape as rr. If rT is a matrix, then X'l' must be. vector, the length of which is the 
a.m. as the number of columna ot tr. That is, pXT ... -1 +pIT. 

If xr il not specified, CBAR'l'X us.s • default X-eoordinate vector consisting of consecutive 
Integer. that is appropriate for 7T. starting with orO. • 

Ex.mpl•• 
CHARTX 12 22 18 32 7 ... (\ 5) CBARTX 12 22 18 32 7 

1 2 5 6 9 CHARTX 12 22 18 32 7 

CBARTX 1 10 •• x ,12 ++ (\12) CBARTX 1 10 e.x 112 

(2.,12) CBARTX 1 10 0.M\12 

CBARTX 1 2 0.0 0.lx\120 

The results of executing these expr••sions are shown in Figure 8. 
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• • • • 

• • 

• • • • • • • • • 

• , I • • I • , • • • • • • 

,.... I: leutied data exampl. 

U.'ng CHARTX for Fre. Data 
For fr.. data, CBARTX has the following call sequence: 

XF CBAR'l'X YF 
where 

IF i. the array of Y values. IF II • numeric vector of depth 2, each item of which ia • simple 
acalar or vector. Each item of YF forms an independent data group. 

XF i. the array of X values. XF must have the same structure as IF. Items of XF form the 
X-coordinates for corresponding items of IF. 

"XF is not specified, CBAR'l'X uses a default X-coordinate array, each item of which 
consists of consecutive integers, starting with oro, that is appropriate for the correspond­
ing item in YF. 
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Examples 
CHAR~X (3 7 16) (10 1~ 8 3 0) 

.. (\3) (t~) CHARTX (3 7 16) (10 1~ 8 3 0) 

{: 3	 4) (\S) CHARTX (3 7 16) l10 14 B 3 C) 

The results of executing the•• expressions a,.. shown in Figure 9. 

• • • • • • • • • • • • • • • • • • 

• 

Fleur. I: leu tr.. data examples 

U••ge Not•• 

1.	 The global v.rtable PORliNAIIE can be speclfled-u the name of. predefined chart format. 
It FORIIIIAIIE I. undefined, or if FORJIIIAIIE ha. the value •*', then the default format is used. 
The default format ia • line graph with autoscaled axes, default line eeters, default axis 
markers and 'abels, etc. "PORJIIIAIIE i....igned the name of an unknown chart format, 
then an .rror m...ge I. iuued. 

2.	 Some faclliti.. available in thelcu chart call are not used by CBARTX. The•• include spec­
Ification of chart keys, labels, and h••dlng. "you wish to use these facilities, you must 
modify the CBARrX function. 

3.	 The main purpose of CBARTX is to allow the quick and easy generation of data in APL2. and 
to provide a mechanism for transferring this data to ICU. Once in the leu environment. you 
can modify the chart type and format to suit your needs by using the leu interactive facili ­
ties. Oata transferred to leu can be displayed using the following chart types: 

ear charts Polar charts Scatter plots 
Histograms Surface charts Venn diagrams 
Line graphs Tower charts Pie charts 
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[0] " X CBARTX I;IO;CBTCTL;DAT;CTL;BIND;NG;NE;DC;C 
(1] ,.. Invoke leu fltom APL2 
[2] c.oFX 'Z.IO Nt tZ~F (4p256)TNt ~ Local fun for integep-~har. con~. 

(3) +(1<e1)/Ll ~ Branch if free data 
[~J "TIED DATA ••• 
(5) 1.(-2+1 1.~I)pY • Ensure ~ is a matriz 
(6) a(O=QNC 'X')/'X+t-ltpI' " Set X if not specified 
[7) orS«pZ+.X).-l+pl)/'LENGTB ERROR' " Ensure correct data Zengths 
[8] BIND+O III Set BIliD ptD'I'fJ of CHART oal Z 
[9J liG+l+pl III Rum data gpDllfJ8 
[10J 1/E.pZ " Rum .z."",ent. in each group 
[11J DC., 0 " Data. control - ignozwd for tud data 
(12] 7+.1 
[13] +L2 
[14] .­
[15] L1: " FREE DATA • • • 
[16] DC+cp"r•• ··Y ... Data ODntpoZ - Z.ngth of eczch group 
[17] .. (O-ORC t Z' ) 1'1'+\ ··DC' " Set X if PlOt epecifi.d 
[18J [JI'S(..,DC.cp··X•• ··X)/'LENGTB ERROR' " EnaUZ'B oOrP.ct data Z~thB 
[19) BIND+l " Set BIlID paztm of CHART caZ~ 
[20J .0.,,7 II' 1Ium. data IJ'OUPB 
[21] lIE..rIDC " Rum .z,.."nts - maz IJ'OUP Zength 
[22] X+cX 
[23J I+E1 
[24J "
 
[25J L2:
 
[26J [lrS(v/2-126 OSVO·· 'CTL' 'DAT') I 'AP126 SHARE ERROR'
 
[27] ~ Build CBAR'.f control p~...
 
[28J CB'lCJ'L+"
 
[29J CB'lC'lL+CB'1CTL ,IO 0 " LEVEL O-GDDN R2 fol'fftat (.impZe foztm)
 
[30J CBTCTL+CHTCTL .ID 2 ... DISPLAY l=hom. p~Z, 2=fP"IPh dirpZay
 
[31] CBTC'rL+CHTCTL,IO 0 " IIELP O=no diBpZay pfkey info, 1.diaplay
 
[32J CB'1C'1L+CBTCTL.IO 0 "ISOLAf'E O=aZ,Z facilities
 
[33J • (a-ONe 'P01lJl1iANE')I 'P01lJl1iANE.. ' '*' •• III tI.fauZ t if PORNliANE 1DUi,efinsd
 
[31f] CB~C'l'L+CBTCTL,8+.d'ORNRANE" 'ORNRANE .-a..!auz,t
 
[35J CB'ZCTL+CBTC'lL. '* ' III DA'1Al1ANE .-data .upplifld bll CHART oaZZ
 
[36] CBf'CTL+CBTCTL ,IO BIRD III BIRDING O=tied.l-f,..e
 
[37J CB'l'CTL+CB'l'C'l'L, tID 1IG " BG - J'lUmbeJ' of datil groups
 
[38] CB'l'Cf'L+CBf'C'1L, ,ID BE III lIE - J'lUmber of el.",ents 
[39] CB'l'C'1L+CB'l'CTL ,IO 0 III KEIL Ozno k"Y8 
[40] CBTC'1L+CB'1'CTL.IO 0 "LABELL 0=110 tab.Z. 
rlf1J CB'1CTL+CB'1CTL .IO 0 III BEADINGL O-no n.tJdiPl(1 
[42J CBTC'1L+CH'l'CTL,' * ' "PRTIfANE *=unknown printer PIGm. 
["3] CBTC'lL+CftC'ZL ,IO 0 "PRf'DEP O-DEFAULT 
[ .....] CB'1C'lL+CBTCTL ,IO 0 "PRTJlID O-DEFAULT 
[ ..5] CftC'1L+CB'l'CTL .IO 0 "PR'1'COPI a-DEFAULT 
["6] DA~B'lCTL .- ueign AP126 data "tZPiabZ.. 
[4,J crL.-10t(~CB~crL),(~C)tDC.(~Z).X.(~,7).(.7).3pO" aasign DOfttroZ "ar. 
[~8] +(0 88 1+C+C'1L)/ O.L3 
[..9] ors 'AP126 OR GDDN ERROR. Re='.we 
[50] L3: " GDDN ERROR 
[51] C2'L+l07 96 " FSQERR 
[52J DrS 88+8+DAT 
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