System Proérammer's Guide to Tailoring Your APL2/TSO System

18 February, 1988

- Ray Trimble

IBM Corporation M46/B25
P.O. Box 49023
San Jose CA 95161-8023

i18M . SJ . 167

1I8BM SJ. 167
System Programmer’s Guide to Tailoring Your APL2/TSO System

o

Preface

Instailation and customization of APL2 under TSO involves a large number of APL2/TSO instailation
options, installation exit points, PROCLIBs, PARMLIBs, LOGON procs and CLISTs. The goal of this
paper is to help you make the right decisions in installing, customizing, and maintaining APL2 so that:

* your users see a fast and smpoth APL system;

« they can get at what they need, but not what they shouldn‘t;
* you can maintain accountability of resource use; and

e the system runs itself for the most part.

Note: Those are goals, not promises, and this paper can at best provide help, not a panacea.

The topics to be covered include:

* “Workspace Library Choices™ on page 1. -
“CLISTs and Logon PROCs” on page 5.

» “Invocation Options and their Defauits” on page 7.

« "Changing Inslallation Options” on page 13.

* “Installation Exit Routines” on page 17.

18M SJ. 167
Preface il

18M SJ 167
iv System Programmer’s Guide to Tailoring Your APL2/TSO System

Workspace Library Choices

The Nature of SAM Library Support

When workspaces are. kept in SAM libraries, each workspace is stored as a separate MVS dataset,
written and read using the Basic Sequential Access Method (BSAM). Biocksize is instaflation select-
able, but is always forced to a multiple of 80 bytes. '

The grouping of workspaces into libraries is done by using a specific dataset naming scheme.! This
makes it possible to use the MVS system catalog as the directory through which all workspaces are
located. An implication of this is that a single APL library structure applies to all users of the computer
compiex.?

APL2 does its own dynamic ailocation, both to create new workspace datasels and to access existing
ones. There is a sizable list of installation options controlling where and how new datasets are
created. Once a dataset has been created, that same dataset is reused for all updates to the work-
space. This ensures that any RACF controls piaced on lhe dataset wiil be retained across)SAVE.
Since each)SAVE is a complete replacement, it also means, however. that the moment a)SAVE
has started, the previous version of the the workspace has been destroyed.

Three classes of workspace libraries exist, with somewhat confusing names.

PRIVATE libraries contain workspaces which are only known to a single TSO user, or a group of TSO
users who share the same 7SO PROFILE PREFIX.? Each user has one private library, which
is always his library 1001. This is the one exception {o the rule that all APL users see the
same set of libraries.

PUBLIC libraries contain workspaces that are ail owned by the installation. Ordinary users typically
cannot update any workspaces in these libraries. Prior to Release 3, libraries 1 through 999
were always public libraries. Beginning with Release 3 a new instaliation option can be
used to specify the upper limit of the public library range.

PROJECT libraries contain workspaces which are owned by individual users but may (RACF permit-
ting) be accessed by other users. Specifically, the owner’s PROFILE PREFIX is used as the
high levet qualifier for the workspace dataset name. All workspaces within a single project
library are owned by the same PROFILE PREFIX. All library numbers that are not public or
private, by the rules above, are treated as project libraries. The first user to save a work-
space in a particular library becomes the owner of that library from then on.¢

Note that a user’s default library (the one assumed if a library command omits the library number) is
always 40AI. That in turn is controiled by the ID invocation option, or in some cases an instailation
exit. If 1001=40AT then the default is a private library, and its workspaces cannot normaily be
accessed by any other users. I 1001<+0AT then the default is a project library, and the users
“private” workspaces (to use conflicting terminology from the past) can be accessed by others who
know his ID number and have the appropriate RACF authorization to his PROFILE PREFIX.

' APL2 Release 3 ailows an installation exit to replace this scheme.
? Unless muitiple copies of APL2 have been installed with carefully distinguished instaiiation options.
3 In most installations the PROFILE PREFIX is the same as the TSO user 1D.

Except that the LIBKEEP installation option can be used 1o indicate that emply libraries are to revert to an
unowned status.

18M SJ. 167
Workspace Library Choices 1

The Nature of VSAM Library Support

Ali of the workspaces in one VSAM library are stored within a single VSAM cluster (a KSDS to be
specific). The association between APL library numbers and VSAM cluster names is made by ALLO-
CATE (or DD) statements provided by the user or installation, typically in an APL2 invocation CLIST.
This user association means that there is no universal numbering scheme for workspaces in the
complex. One user’s library 7 can be the same physical data as another user’s library 1234. And a
third yser can have a library 1234 which is completely different.?

The DDNAME used is “Wnnnn," where nnnn is the library number with no leading zeros. “WOQ" can be
used as a special case representing the library whose number is +0AT. On ail workspace library
requests the system looks first for the Wnnnn DDname. The library is treated as a VSAM library if that
DDname exists, or as a SAM library if it does not.

VSAM libraries are not created automatically by APL2. Instead, users or system administrators must
create them with Access Method Services DEFINE statements or the equivalent TSO DEFINE com-
mands. The DEFINE command has a compiex syntax and an overwhelmmg number of parameters, but
its simplest form might be:

DEFINE CLUSTER(NAME(my.name) MODEL (existing.name))

Since VSAM controis space allocation within the cluster, there is no inherent reason why saving a new
version of a workspace wouid have o begin by destroying the previous one. Unfortunately, that is
exactly what happens in the current impiementation.

Three classes of workspace libraries exist, with names that are not only confusing, but have different
meanings than for SAM libraries.

PRIVATE libraries are kept open, once used, for the remainder of the APL2 session. This means they
cannot be dynamically unallocaled (TSO FREE), that only a single user can access a given
library as private, and that no one eise can depend on writing 1o that library. Private
libraries are efficient for ail library commands because there is no OPEN/CLOSE overhead
for individual requests. Only the WO library (or Wnnnn where nnnn=+0A4I) is treated as a
private VSAM library.

PUBLIC libraries that are only being read are kept open for the remainder of the APL2 session, but
they are closed if a)JSAVE is done into them. This means they cannot normally be unailo-
cated dynamically, but that muitiple users can write into the same library. Public libraries
are efficient for)LIB, JLOAD and)COPY, but less efficient for)SAVE. Library numbers
from 1 through 999 are always treated as public.®

PROJECT libraries are always opened and closed for each library command. This means they can be
unailocated at any time, that muitipie users can write into the same library, and that other
users will always be able to)LOAD or)COPY the latest version of a workspace. But
project libraries are less efficient than private or public libraries. All library numbers that
are not public or private, by the rules above, are treated as project libraries.

Note that for VSAM libraries it is not the library itself which is private, public, or project, but the way it
is being accessed in a particular APL2 session. It would be possible for three users to have concur-
rent access to a single VSAM cluster, one treating it as private, a second as public, and a third as
project. It would, in fact, be quite typical for one user to access another user’s private library as if lt
were a read-only public or project library.

3 This has both advantages and disadvantages. See the next section for a discussion.
¢ The new installation option for SAM public library upper limit has no effect on VSAM libraries.

I8M SJ.167
2 System Programmer’s Guide to Tailoring Your APL2/TSO System

When is SAM better, and when is VSAM better?

The first point to be made is that this is not an either/or issue. In many mstallatlons a combination of
some VSAM libraries with some SAM libraries may be the best approach. APL2 makes the choice
dynamically for each user at the time of each library command, based on whether a Wnnnn DDNAME
is allocated at that point in time.

For many instailations the most important criterion is the effect on their DASD space management
strategies.

« If HSM is used heavily, it is important to be able to migrate individual workspaces. Typically a
library will contain a number of workspaces that are rarely used. but others that are used fre-
quentiy. This is a strong argument for SAM libraries, which have separate datasets for each work-
space. :

*» SAM dataset creation depends on static UNIT and VOLSER parameters which must be specified
when the APL2 product is installed. Generic or esoteric units may be used, or the system may be
allowed to default to public volumes, but these do not provide for volume selection based on
userid, and often do not dovetail with installation rules for location of permanent datasets. Where
this is a problem, manually defined VSAM clusters may provide the simplest solution. It is also
possibie to write installation exit routines to circumvent the problem.

* Installations which want to control the total DASD space allocated to each user may find that VSAM
clusters are preferable. The system administrator can create a cluster of the proper size for each
— ..user, and dynamic dataset creation can be disabled. This is not feasible with SAM libraries. since

it would prevent all JSAVEs except for existing workspaces.

Performance may also be an important criterion.

* SAM libraries require ALLOC/OPEN/CLOSE/FREE operations for each system command. VSAM
libraries always avoid the ALLOC/FREE, and often the OPEN/CLOSE. (See the previous section for
details.)

* The actual read/write operations are faster for SAM libraries than for VSAM libraries. (This is
inherent in the DASD data structures currently used, but could change in the future.)

The net effect is that SAM is currently faster for large workspaces and for project libraries, while VSAM
is faster for small workspaces being read from private or public libraries.

A number of other factors may a!so be critical in particular cases.

* SAM datasets have a rigid three-level naming convention which may violate the rules of an instai-
lation. This can be modified (beginning next year) by writing installation exit routines to create
different dataset names. Or it can be avoided completely by using VSAM libraries.

* RACF protection for SAM libraries can be specified to the individual workspace level, with generic
profiles that operate at either a user or library level. VSAM libraries can be protected only at a
user or library level.

¢ Often an installation might want to maintain separate “test.” "production,” and "obsolescent™ ver-
sions of a set of workspaces. With SAM, these must be kept in separate libraries. Libraries are
normally copied as they mature, and programs or manual procedures must be modified to access
different versions.” With VSAM, only the allocation need be changed. The applications and oper-
ating procedures are identical no matter which version is being accessed.

7 The PUBOLFR instailation option does allow some versioning.

I1BM SJ. 167 . .
Workspace Library Choices 3

+ Some installations are so biased against VSAM that they will avoid it wherever possible. This
probably does not apply to you, since if you were that biased you would have laugned when you
saw the heading for this section, and skipped it completely. |

* New library creation is automatic with SAM, manual with VSAM. Installations which don’t want
their users randomly grabbing new libraries may prefer the manual approach. Overworked system
administrators would certainly prefer the automatic approach unless their users are sophisticated
enough to do their own library creation. Users would undoubtedly prefer the automatic approach
in all cases.

18BM SJ.1G7
4 System Programmer’s Guide to Tailoring Your APL2/TSO System

CLISTs and Logon PROCs

This section addresses only allocations, whether by ALLOC commands or DD statements. See aiso
“Invocation Options and their Defaults™ on page 7. '

There are other DDnames you will often need to allocate, in particuiar ADMSYMBOL, AP2TNO11, and
{as of Release 3) APL2LANG. For batch jobs and TERMCODE(-1) you also need APLIN and APLOUT.
These are handled by the installation process, and not discussed further here.

Providing for Trace and Dump Output

APL2 honors optional DDnames of APLTRACE and APLDUMP, but only when it is invoked. This is
somewhat unfortunate, since it is usually not until later that you discover you would like to use the
features. Sorry, but JHOST ALLOC will do you no good at all.

Trace output is controlled by the TRACE invocation option, but this is frequently modified dynamically
using YCHECKX SYSTEM TRACE (numbers). If no APLTRACE DDname existed when APL2 was
invoked ail trace output is directed to the user’s terminal. This is really what you want anyway for
interactive debugging. In general it is probably better to omit the APLTRACE DD unless you know
before invoking APL2 that you will want to record trace output.

APL dumps come in several flavors. One kind may appear on the user’s terminai along with a
SYSTEM ERROR message, and may be accompanied by a DUMPnnnn workspace being saved.
These "dumps” are associated with problems in the APL2 interpreter or the internal structure of the
active workspace. They always go where they will go, and are unaffecied by any DDnames that may
be ailocated.

If the APL2 system detects an error outside of the interpreter it usually attempts to produce an MVS
SNAP dump. It is this dump which uses the APLDUMP allocation. If there is no APLDUMP DD, the
dump is simply bypassed, APL2 recovers to the best of its ability, and the only diagnostic information
available will probably be a single cryptic message. If you want to have your problems fixed, we
strongly recommend that you include an APLDUMP allocation in all of your APL2 invocation proce-
dures.

There is a third class of errors, those that APL2 is unable to detect. These include errors in other
products called by APL2, as well as errors in critical parts of APL2 itself while responding to other
errors. This class of errors wiil normally result in an attempted MVS ABEND dump. Like all such
dumps. MVS wiil attempt to use SYSUDUMP, SYSABEND, or SYSMDUMP to record the dump, and will
also produce an indicative dump at the user terminai. Presumably standard installation procedures for
TSO sessions will cover this class appropriately. From an APL2 viewpoint problems in this class are
quite rare.

Spill Files for)COPY
While processing JCOPY, JMCOPY. or)PCOPY commands the system needs space to manipulate

the source workspace, the active workspace, and intermediate forms of the copied data, all concur-
rently. To the extent possible this is done in virtual storage wilhin the user’s address space. If that is

IBM SJ. 167
CLISTs and Logon PROCs §

PR

not adequate, spill files will be written to the user’s private APL file library if it exists.t If no file library
is allocated, or it is not large enough, spill files are written using the CPYSPILL and CPYSWAP
DDnames.

These are temporary files which are written and read in a strictly sequential order. Any direct access
(or even tape!) storage would work, but VIO is probably the most appropriate. In most installations the
two files should be allocated as a standard part of the APL2 invocation procedures. The maximum
size of the CPYSWAP file is the size of the active workspace. The theoretical limit on the size of the
CPYSPILL file is much higher, but in practice a similar size is normally adequate.

Accessing Modules in Private Libraries

In 'some installations, part or all of the APL2 code itseif may be in private libraries, not in LPA or the
LINKLIB concatenation. It is frequently true that user programs called from APL may be in private
libraries. APL2 provides a LOADLIB DD to help with such problems. But the behavior of this file is
somewhat confusing.

First, it is obvious that no filename passed to APL2 can help in locating the primary APL2 load module
itself. That must be in LPA or LINKLIB or a STEPLIB defined in the logon PROC.*

Once the APL2 moduie has been loaded and invoked, many other modules called by it can be located
through LOADLIB. This includes moduies brought in as a part of the APL2 invocation such as
AP2TACTL, AP2INTRP, AP2TN11, AP2TYSTX, AP2TMEXC, AP2T7127, AP2X104, and any other auxiliary
processors. It also includes programs loaded by Processor 11, if the NAMES file entry does not specify
the :load tag.

The situation becomes much more confusing for commands'and CLISTs invoked by AP 100. Whether
LOADLIB is searched depends on:

* whether APL2 is invoked under ISPF,

* whether you are running TSO or TSO/E, and if TSO/E, what release and modification level of it,
¢ what release of APL2 you are using and what PTFs have been applied,

* whether a command or a CLIST was specified to AP 100, and

* which variation of AP 100 command syntax was used.

It is probably not worth the troubie to try 1o fill in ail data points in that five dimensional array. Qur
general direction, however, is away from using LOADLIB unless explicitly requested in the syntax of
the AP 100 request. The "APL ATTACH command™” has always used LOADLIB and will continue to do
so. The "TSO command" has often used it in the past, and will do so consistently beginning with
Release 3.

Finally, a comment about aliocating LOADLIB versus the LOADLIB invocation option. The invocation
option is precisely equivaient to doing an ALLOC with the REUS oplion during APL2 invocation, and a
FREE during APL2 termination. Thus the invocation option overrides any earlier allocation | per-
sonally wish we did not support the the invocation option. We have an entire module devoted to it, and
the function seems to be complietely redundant. But compatibility arguments will probably force us to
continue our support forever.

¥ This is a VSAM library which is aiso used for the log files maintained by the APL2 session manager, but is
distinct from the private workspace library.

Y One other possibility is to invoke APL2 from another program which uses a private load library. 7SO TEST and
ISPF both have this capability. Some instailations also have a very nice little command which does nothing but
this. Ours is cailed #.

IBM . SJ 167
6 System Programmer’s Guide to Tailoring Your APL2/TSO System

Invocation Options and their Defaults

Invocation options can be sqpplied from a combination of three sources. I is ifnportant to understand
how they are merged. The three sources, in the order they are considered, are:

1. The DEFAULT parameter of the AP2TITOP macro in the installation options module, AP2TIOPT.
2. The options specified on the APL2 command.
3. The OVERIDE parameter of the AP2TITOP macro.

Each of these sources provides a character string. The three strings'are effectively catenated in the
order shown above. The result may, of course, include the same keyword more than once. It does not
matter whether the multipie references to a keyword came from different sources, or the same source.
The combined string is processed from left to right, and in general the last option encountered
replaces any earlier ones. (See “The Boolean Options: DEBUG, SYSDEBUG, and TRACE™ on page 10
for an exception to this.)

Who am I? The ID option

APL has a long tradition of depending on a user number. That tradition has has become a language
requirement in the first element of JA I, the left argument to OSVO. and the result of DSVQ.

TSO, of course, assigns a user name instead of user number. The ID option is an attempt to resolve
this incompatibility.

VS APL under TSO did not permit shared variables across the boundaries of each individual user’s
address space, so it was not important to have unique numbers for each user. Each user was arbi-
trarily assigned the number 1001. That is what applications saw in OAT, and what auxiliary processors
used when sharing variables with the APL session. '

APL2 still defauits to 1D(1001), but users taking that default cannot share variables with other users or
with global auxiliary processors.” Thus it is important in many installations to ensure that each user
invokes APL2 with a unique 1D value.

In most cases no security checking is done based on the ID number, so the only requirement is
uniqueness. An algorithm within the invoking CLIST, a CLIST parameter, or a a separate CLIST for
each user may provide_an adequate solution.

An alternative is for an instaiiation_exit to provide the number, as discussed in “Invocation and
Termination” on page 17. This alternative would be required if the installation is using global auxiliary
processors (including global servers written in APL) that do authorization checking based on partner
number.

Allocating Space: AISIZE, FREESIZE, SHRSIZE, SVMAX, WSSIZE, and XA
FREESIZE, SHRSIZE, and WSSIZE are the three primary values that you need to worry about.
FREESIZE is a very elusive quantity. It really means only “24-bit addressable space that wiil be

needed for anything else during the session.” This may include a great deal of code, depending oni
what programs have been installed in LPA and whether yours is an MVS/370 or MVS/XA system. in

' This kind of sharing is not permitted anyway if the optional GSVP has not been instailed.

18M - SJ. 167
Invocation Options and their Defauits 7

particular, it sometimes includes the APL2 interpreter (AP2INTRP). Access Method Services, and
GDDM programs. It will aiso include other programs that need o be loaded dynamically (below the
line) in the user’s address space. And it includes much of the dynamic storage needed during the
APL2 session. If a FREESIZE value is specified. it is only used as a check during APL2 invocation. The
system will verify that there is enough available storage 10 get, as three separate biocks, storage for
FREESIZE, SHRSIZE, and WSSIZE. If not, the APL2 session will be terminated immediately. There is
no actual FREESIZE block kept after initialization. Since there is rarely any way to make a reasonable
estlimate of the requirement, my normal recommendation is to omit this option.

SHRSIZE and WSSIZE represent biocks of storage that are aliocated statically for the duration of the
APL2 session. In an MVS/XA system they are normaily allocated in extended storage (above the
16Meg line}). SHRSIZE should be at least 10K larger than the size of the largest shared variable vaiue
that will be used during the session. WSSIZE should be large enough for the largest workspace that is
to be loaded as well as the dynamic storage that its functions will need during processing. The
symptom of WSSIZE being too small is WS FULL. The symptom of SHRSIZE being too small is
SYSTEM LIMIT with OET=1 7, or a shared memory space error code returned by an auxiliary
processor.

The IBM-supplied defaults of SHRSIZE(32K) WSSIZE(25%) may be reasonable for an MVS/370 system,
but they are probably too smali for an MVS/XA system. You should consider changing them in
AP2TIOPT. Note that the 25% is based on the TSO SIZE parameter, which defines oniy storage beiow
the 16Meg line. For MVS/XA systems, the IEFUSR system exit is used to set the limits for storage
above the line, with a default of 32Meg. The APL WSSIZE defauit in AP2TIOPT should be chosen based
on the rules used by IEFUSR. 'If, for example, IEFUSR makes the slorage above the line five times as
great as that below the line. you might set WSSIZE(400%) as the default Or, if the MVS defauit of
32Meg is retained, you might set WSSIZE(25M) SHRSIZE(5M).

One warning is in order here. Large workspaces do increase the paging load on the system, some-
times rather dramatically. If you are having paging problems, one early correction to try is to reduce
the defauit WSSIZE.

AISIZE and SVMAX are mere drops in the bucket in contrast to SHRSIZE and WSSIZE. The default 512
byte AISIZE is really too small, and likely to cause problems for applications that make much use of AP
101. You can increase this to 8K or more without much chance of causing storage probiems else-
where. SVMAX is expressed as number of variables, not space, but it does imply 12 bytes per vari-
able. The defauit of 88 is probably quite adequate.

- XA seems like a ringer in this group. It does not specify any storage at all. But, on an MVS/XA
system, il does determine where WSSIZE, SHRSIZE, and the storage used during JCOPY is all alio-
cated. Its default is 31-bit storage, but that is ignored on an MVS/370 system. In most cases this is
exactly what you want. The real reason for the option is that some FORTRAN programs called through
processor 14 may not be able to tolerate parameter data above the line. Any session that is going to
call such a program will have to specify XA(24). But the installation defauit should normally be left as
XA(31).

Terminal Options: DBCS, DSOPEN, PROFILE, SMAPL, and TERMCODE

For most situations these parameters should be left alone, at least as installation defaults. The defaulit
actions are to try to use the session manager, but revert o normal TSO terminal I/O il that fails. The
default is to let GDDM or VTAM determine the terminal type (depending on whether the APL session:
manager is being used). if you have non-iIBM terminals, or want lo fake one terminal type on another,
you may need to specify DSOPEN (for GDDM) or TERMCODE (for VTAM), DBCS to obtain the special
Asian-language character support available in Release 3.

18M . SJ . 167
8 system Programmer s Guide lo Tailoring Your APL2/TSO System

P

PROFILE could be changed to to provide, as a defauit. a session manager profiie different from that
supplied by iBM, while retaining the IBM profiie for optional use. The IBM default is stored as
“pubqifr. DEFAULT.VSAPLPR,” where “pubqlir” is specifiable in the AP2TITOP macro parameters in
AP2TIOPT. If, for example, PROFILE(LOCAL) was included in the defaull invocation options in
AP2TIOPT, then initial session manager setup would be controlled by “pubgqifr.LOCA: .VSAPLPR.™"

Of course some backward instailations may decide they don’t want their users to experience the joy of
working with the APL session manager.'? Such installations may want to specify SMAPL(OFF) in defauit
invocation options, or if they are truly fanatical, in the override options.

User Preference: CASE, DATEFORM, and HILIGHT

The term “user preference” probably says all the installation programmer needs to know for this group
of options, except that you may want to defauit DATEFORM to the format which is most common in
your country. For Americans, this means changing the DATEFORM(ISO) shipped with the product to be
DATEFORM(US).

Just because you are likely to get complaints from confused users, a word on CASE may also be in
order. Preferred character set case is really a workspace attribute, not a session attribute. Once it
has been set for a given workspace it cannot be changed, short of copying that workspace into another
one with a different attribute. Workspaces created prior to APL2 Release 2 have a CASE(0) attribute.
Every new workspace begins life as a CLEAR WS. The CASE invocation option is merely a means of
adding an implied parameter to the JCLEAR command, indicating what the case attribute of that new
workspace will be.

Running Applications: INPUT, QUIET, RUN, and TERMCODE(-1)

RUN is an option that you may not have seen yet, unless you are reading this paper retrospectively. it
provides a simple means of automatically starting an application which is located via ONA.

INPUT can also be used to start an application, either through ONA or by)LOADing a workspace. It
is a bit more complex, since each APL statement needed must be provided as a character string. This
becomes particularly messy when quote (") characters are involved. By the time you get through
CLIST processing and APL2 parsing it may take haif a dozen or so quotes to get ocne through to APL."®
Worst of all, a number of APL characters won’t make it at all through TSO PARSE, which has its own
ideas of what characters are valid, and what kind of folding is best for the user.

TERMCODE(-1) provides another way to drive an application, which avoids the pitfalls of INPUT. In this
case the input APL statements are in a file, allocated using the APLIN DDname. However it carries the
idea too far to please some application writers. The file is the terminal, at least so far as 00 or 0 input,
or standard APL prompling is concerned. Any application interaction with the user must be in
fullscreen mode, using GDDM or ISPF.

For anyone used to the CMS stack, it is not possible under TSO to stack APL input before invoking
APL2. It is possible within APL2 to use AP 101 to stack commands that will be processed after exit.

"' The PROFILE description in Chapter 3 of “System Services Reference” states that “VSAPLPR" is installation
modifiable. Tain't so for TSO.

'? There may be a slight bias to this statement. It shouid be read with an overiay of lighthearted self-deflation.
" 1t usually tikes me half a dozen or so lries, 0o, to get the right number of quotes.

1BM SJ. 167 ‘
invocation Options and their Defauits 9

——~

The QUIET option is a means of suppressing APL chatter (such as responses to YLOAD commands)
that the application writer does not want the user to see. Beginning with Release 3 there are two fairly
significant enhancements affecting this option:

1. It may be specified as QUIET(ON) or QUIET(OFF). QUIET is still acceyted wclhout parentheses, and
means, of course, QUIET(ON).

2. A new processor 11 function, OPTION, lets an application test and set the QUIET option (either ON
or OFF) dynamicaliy.*

None of these options should be specified as system defaults, unless your instaliation uses APL for
only a single application. But but they would frequently be provuded in CLISTs used to invoke applica-
tions.

The Boolean Options: DEBUG, SYSDEBUG, and TRACE

These options are mavericks. Although often expressed as single numbers, they really consist of a
sum of integers, each of which is a power of 2. APL2 (but not the CLIFT processor) will let you express
them either way, so that option(1 2) means exacily the same thing as option(3). You can even say
option(1 3) and it still means the same thing. (No. that is not the same as option{4).) All of the other
oplions replace any previous occurrences of themselves, but this group ors them together. So
option(1) option(2) also means the same thing as option(3).

But how can you reverse a previous flag setting? By using a negative number. (Either an APL ~ or an
ordinary - is acceptable.)' Negative numbers follow the same power-of-lwo decomposition rules as
unsigned numbers, but are applied by turning the corresponding flags off.

The DEBUG options are, in general, provided to assist in debugging user-written workspaces and auxil-
lary processors. Their use is as described in "APL2 Programming: System Services Reference.” None
of them wouid normally be set by default. In particular, DEBUG{32) is somewhat of a religious issue.
Traditional APL programmers become very upset if they see

AP2ISSS220 SYNTAX ERROR
when they were expecting to see SYNTAX ERROR.

I would also warn against the temptation to set DEBUG(4). This produces much bigger dumps, but in
our experience, somewhat less useful ones. Without DEBUG(4) APL2 chooses the areas it thinks are
important in solving the problem. With DEBUG(4) APL2 tells MVS o dump the areas that MVS con-
siders important. More specifically, withoul DEBUG(4) APL2 dumps the first and last 4K of the work-
space and shared memory, the installation options module, the area around the PSW and register 14,
SDATA(CB), and PDATA(SA,SPLS). DEBUG(4) adds SDATA(LSQA.Q.TRT), PDATA(ALLPA), the entire
workspace, and all of shared memory. But it omits specific dumps of the installation options module
and the areas around the PSW and register 14.

The SYSDEBUG options are intended to provide assistance in debugging the APL2 product itseif. Their
use is described in “APL2 Diagnosis Reference.” Paradoxically, you probably want one or two of these
options all the time.

* SYSDEBUG(1) degrades the system very slightly by activating an in-storage wraparound trace.
However that trace table is often worth its weight in gold when analyzing dumps. The system, as

" You might suspect that with a name as general as OPTION, the function could do more than QUIET. You might
be right.

' No, you can’t say DEBUG(+2).

18M SJ 167
10 System Programmer’s Guide to Tailoring Your APL2/TSO System

"

distributed, includes SYSDEBUG(1) in the default options in AP2TIOPT. and you should probably
leave it there.

» SYSDEBUG(16) Tells APL2 not to bother checking for..hardware features lhat are available only on
certain machines. If you have some of those features on your machine, their use can improve
APL2 performance. But if you do not have them, the tests can be costly. Each test causes a
program check and, depending on the level of APL2 you are running, they may be repeated on
every YLOAD or JCLEAR. The features tested currently (or in the near future) inciude Square
Root, E to the X, Natural Log, Base 10 Log, and Vector Facility. My recollection is that none of
these instructions are currently impiemented anywhere except on 4361, 4381, and 3080 processors.

in exceptional conditions you may need to use SYSDEBUG(64). Th|s will disable ail APL abend han-
dling. It would, for exampie, allow TSO TEST to gain controi on program checks within an auxiliary
processor. But you need to be aware that program checks may occur normally while APL2 is per-
forming calculations on data. Setting SYSDEBUG(64) is likely to expose apparent “bugs” in the APL2
interpreter or elsewhere which are in fact not errors at all. in Releases 1 and 2 of APL2 it is not pos-

sible to modify SYSDEBUG(64) dynamically using JCHECK SYSTEM.

The TRACE options do not affect the wraparound trace table described earlier. Instead they activale
trace output to the terminal or a trace file. Note, however, that SYSDEBUG(1} is a prerequisite to being
able to produce any trace output. The individual trace options are described in “APL2 Diagnosis Ref-
erence.”

TRACE(1) and TRACE(32) are special cases. TRACE(1) output is produced directly on the terminatl
using TPUT, independent of the session manager or any trace file. Most of the TRACE(32) output
(which is quite voluminous) goes to GTF. It can be prmted using AMDPRDMP, but only if USR=5A2 is
specified on that program’s EDIT command.

Here are some general tips in using {race options:

+ TRACE(1) is the first thing to try in analyzing auxiliary processor probiems.

* TRACE(2), TRACE(4), and TRACE(8) are much smaller if the APL session manager is not being
used.

* TRACE(16) can provide a good feel for the overall flow of the system.

* TRACE(64) and TRACE(256) are useful in understanding problems with processor 11 routines.

The APNAMES, EXCLUDE, and LOADLIB quandary

These three options are grouped because, like the preceding set, a keyword may have multiple values
associated with it, but unlike the preceding set, they still operate by complete replacement. Thus if
you specify a system-wide LOADLIB in the defauits, and a user specifies a private LOADLIB for his
session, the system-wide library will not be searched, even though the option supports concatenation
in general. Therein lies the quandary, and it applies to all three of these options.

| will not have anything more to say about LOADLIB here. See “Accessing Modules in Private
Libraries™ on page 6.

Because of the quandary, you will not want to use APNAMES and EXCLUDE in the override list.
Unless, that is, you want to force all of your users to run with exacily the same set of auxiliary
processors. But you will in aimost all cases want to include APNAMES in the default list. "Auxiliary
Processors: ATASKS. RESAPS" on page 15 does discuss an alternative 1o the APNAMES parameter,
but it involves linking the APs with APL2. For MVS/XA this means that the modules are moved from
above the 16Meg line to below that line. For all systems it means that exciuding the APs later wili not
recover the load module storage that they use.

IBM SJ. 167
bt srmm ot s Mmtimma and their Defauits 14

The default options provided with the product list AP2X104 and AP2T127 in the APNAMES parameter.
You will want to add to that list any locally written APs or APs provided wilh other products (such as
ISPAPAUX, AP 317 for ISPF) that are in generai use. If your installation does not have DB/2 installed,
you will probably want to remove AP2T127 from the list. This AP requires over 64K and is only used to
call DB/2. If only a few of your users need DB/2 you may want to remove it from the default list and
provide a special CLIST for those users.

Whatever else you do, you almost certainly do not want to remove AP2X104 from the default APNAMES
list. Without this AP the system cannot do)COPY,)PCOPY, or YMCOPY. (On the other hand, if you
run a shop where users are only supposed to YLOAD applications. and no one needs)COPY except
the system programmer, this is an easy way to disable it. Who would ever guess that specifying
APNAMES(AP2X104) wouid reenable it?)

For the most part, EXCLUDE would be used only on the APL2 command (o override individual
APNAMES in the default list. (This is one way out of the quandary.) APs which are not in the
APNAMES list are linked with APL2, so excluding them does not save much storage. But in excep-
tional cases you might want to provide an AP to replace one that is part of the product. It may be a
FIXTEST version from Service, or a superset that you have written.- If you assign a different entry point
name to the replacement (perhaps just at linkedit time) you can EXCLUDE the standard version so that
your version can use the standard AP number.

IBM SJ.1G7
12 Svstem Proarammer € Citicda ta Tailarinm Yeaur APLY/TCO Cuctarm

-
pouy.

Changing Installation Options

" This section discusses the AP2TITOP macro parameters that you can specify in’AP2TIOPT. The
DEFAULT and OVERIDE parameters were already discussed in "Invocation Options and their Defauits™
on page 7 and will not be-mentioned further here. Also not discussed here are the USERL macros
which appeared in AP2TIOPT up through APL2 1.2.0. Finally, the module inciudes a table whose entry
point is USERT. This table is used by the AP 100 APL USER command. It should be reviewed and
corrected to match your system, but its fields are self-explanatory.

SAM Library Paraphernalia

Half of the AP2TITOP parameters deal specifically with tailoring the SAM library support. If you have
decided to use VSAM libraries exclusively you need not worry about any of these except PUBQLFR.
That parameter also determines the dataset names used for system wide APL session manager pro-
files.

SAM library support uses three-level dataset names.' There are three variations on these names
depending on library type (private, public, or project), plus a fourth form that appears only as a catalog
entry. See "The Nature of SAM Library Support” on page 1 for an expianation of the library types.
The forms are:

Private prefix.aplid.wsname
Public pubqlfr.aplidlib.wsname
Project prefix.aplidlib.wsname
Catalog libqifr.aplidlib.prefix

The values used in each of these forms are:

prefix The TSO PROFILE PREFIX of the user who owns the library.

wsname The simple workspace name.

pubgqifr The vaiue of the PUBQLFR parameter of AP2TITOP.

libgifr The vaiue of the LIBQLFR parameter of AP2TITOP.

aplid The value of the APLID parameter of AP2TITOP.

aplidlib An eight character name beginning with aplid and ending with 3 library number. Zeroes
are inserted at the beginning of the library number to pad the name {o eight characters.

The special catalog entries are used as a project library index. As an example, if AP2TITOP
APLID=V LIBQLFR=APL2, and a user enters)LOAD 1234 STOCKS. APL2 wiil begin by doing a
catalog search for libqlfr.aplidiib which is APL2.V0O001234 in this case. It might find an entry
APL2.V0001234.JOHNNY, which would indicate that JOHNNY is the owner of that library. APL2 would
then know to read JOHNNY.V0001234.STOCKS to satisfy the Y)LOAD request.

You have probably aiready realized that APLID shouid be short, normally one or two characters at the
most. Providing a three character APLID would restrict users to five digit library numbers, and longer
APLID names would be progressively worse. In most cases the default of "V~ is fine, but you might
have a dataset naming convention that requires a different leading character in the second level name.

LIBQLFR requires some careful consideration, at least in a RACF shop In order to create a new
library, APL2 adds a catalog entry with libqlfr as its first qualifier. RACF will prohibit that catalog
update uniess the user has either CREATE authority for the libgifr group. or ALTER authority for the
libgifr generic prefix. If you want your users to te able to define new libraries on the fly, but don't

" Uniess overridden by the new installation exit support.

iIBM SJ.1G67
Changing lastallation Optiang 43

want them to be able to cicbber the public workspaces shipped with APL2. then you will have to make
LIBQLFR different from PUBQLFR. On the other hand, if you change LIBQLFR any time after the
system has been installed (even an earlier release), the change will make all project libraries seem to
disappear.V

PUBQLFR is both more sensitive and less sensitive than LIBQLFR. It is more sensitive in a security
sense, since RACF ALTER authority provides write access to system-controlied data. (No data is
stored under the J/ibqgifr prefix, only pointers to data which is controlied under other prefixes.) But
PUBQLFR is less sensitive in that only system-controlied data is located using it. An installation can
change PUBQLFR and at the same time recatalog the datasets stored under that prefix, and users will
never notice. Perhaps even more important, an installation can migrate from one public library level
to another by changing PUBQLFR, while still keeping the previous level online with its original names.

Future levels of the APL2 product will change the default PUBQLFR as a matter of course, while
retaining LIBQLFR=APL2.

BLKSIZE, LIBSER, and LIBUNIT are parameters that APL? uses when creating new workspace data-
sets. You can use your own judgement and knowiedge of DASD devices in choosing an appropriate
value for BLKSIZE. The value distributed with the system is 4240, which is somewhat on the low side
for today’s devices. Do remember that APL2 will reduce BLKSIZE to a muitiple of 80.

As the product is shipped, LIBUNIT and LIBSER are both blank. This is equivalent to using ALLOCATE
without a UNIT or VOLUME parameter, and {at least normally) means that APL workspaces are allo-
cated on volumes with a PUBLIC use attribute."

If your installation is one of those that routinely scratches private datasets on public volumes, you will
have 10 do something about the LIBUNIT or LIBSER option. Specifying a LIBSER will, of course, force
all APL workspaces to a singie volume. This is great if you have only a few APL users creating data-
sets, and you want to limit the total space they can use. It can even work reasonably weil if you have
more users but keep HSM busy nibbling away at that volume. But for a shop that writes a lot of APL

code, you will need to be able to spread the data out. The way to do this (and hang on to your public
volume procedures) is to define an “esoteric™ unit type using the UNITNAME macro in MVS SYSGEN.

Then you can use that name in the APL2 LIBUNIT option.

LIBKEEP is a simple YES or NO indicating whether empty project libraries are o revert to an unowned
status, or whether the system should hang on to the previcus owner. We make you decide because
we could never make up our minds which approach was more reasonable, so don‘t expect any sage
advice from me. One factor to consider is that the owner of an emply library (LIBKEEP=YES in effect)
can get rid of it manually by entering)DROP nnnn ONNERSHIP. Since all workspace names are one
to eight characters long we can treat “OWNERSHIP" as a special case.

PBLIBMX is a new option being introduced in Release 3 by popular demand. Its definition is a bit
confusing. It is actually the smaillest number which is not a public library number. So the defauit
PBLIBMX = 1000 is equivalent to the old rule that public libraries were 1-999. We expect a number of
installations to change this value quickly to PBLIBMX = 100, or perhaps even less. See "The Nature of
SAM Library Support” on page 1 for the reasons.

"7 Don't worry, it's only an Qllie-loss. Change LIBOLFR back and the libraries will magically reappear. Of course
if anyone has saved something new in the mean time, ...

W See SYS1.PARMLIB(VATLSTxx).

i18M . SJ - 167

T8 Cuetmmm Domme o et n e e st .-,

Session Variables: QNLT, QTZDEC, QTZINT

These are initial values during each APL2 session for the APL session variables ONLT and OTZ. (The
initial value for OPW. the remaining session variable, is based on terminal type.) The values to use
may seem obvious, based on where you live, but there are a coupie of surprises lurking here.

Most people don‘t live in fractional time zones, so you can probably leave QTZDEC =0 as it is. But the
shipped value of QTZINT =-13 is a bit unsettling. Unless they have changed things since the last time |
looked at a globe, no one lives 13 hours slower than GMT. Did we intentionaily choose an invalid
value to force you to change it? Not at all. The rule is that values outside the range of -12 to +12
mean APL2 should determine 0TZ based on the MVS clocks. In general this is better than specifying
the offset. Unless you live some place without Daylight Savings Time you would have to reassemble
AP2TIOPT twice a year if you gave a specific value."

Well, at least QNLT shouid be easy enough. Set it to ENGLISH, right? Wrong. Actually, we did set the
defauit to ENGLISH for the first two releases of APL2, more’s the pily. But if you look closely at the the
definition of ONLT, the correct value for English is ONZT+«!'!'. ! represenis the "built-in" lan-
guage. Any time an invalid language name is specified, the sysfem reverts to the built-in language.
So QNLT=ENGLISH is no better and no worse than QNLT =GRINGO.

But it works, doesn’t it, so isn’t this much ado about nothing? Not exactly, when you go to Release 3.
In the first place, there is a JMORE message to warn you that you set ONLT to an unknown language.
If you say QNLT =ENGLISH your users will see things like CLEAR NS+ when they invoke APL2. In
the second place, you or your users can actually create a language calied ENGLISH, and “install™ it
without changing anything more than a single ALLOCATE statement. You might, for example, want to
get all of your messages in lower case. You can do that, given the SAMPLE file shipped with the
product, and haif an hour or so of your own time.

Product Structure: CSVPID, INAME, OPTUSER

OPTUSER merely lets you have an installation exit routine that is not called AP2TIUSR. You might
want this if you had rewritten the module from scratch, and did not want it confused with the sample
we ship. No matter what you call it, the exit stili has to be linked with the APL2 load module.

CSVPID is not a module name, but a subsystem name. This has to match the value used in the SSID=
parameter used to start the Globai Shared Variable Processor.)

INAME is new for Release 3. It lets you have multiple ievels of the system available concurrently, by
matching the proper interpreter with the proper system support code.

Auxiliary Processors: ATASKS, RESAPS

Both of these parameters define auxiliary processors that are 1o be linked with the APL2 product. As
noted earlier, doing this forces the APs below the line in an MVS/XA system. APs defined here must
be distinguished as VS APL protocol (RESAPS) or APL2 protocot (ATASKS). For APs defined using the
APNAMES invocation option that distinction is made by linking the VS APL routines with a compatibility
stub, AP2TASVP.

" Installations that cheat by redefining GMT lwice a year are 100 contemptible lo be considered. Never trust a
workspace from such a place.

18M . SJ. 167 .
Changing Installation Options 15

-
el

I8M SJ . 167
16 System Programmer’s Guide to Tailoring Your APL2/T$O System

Installation Exit Routines

There are two very different types of exit routines:

1. The OPTUSER installation option points to an exit routine module (Defauit AP2TIUSR) which is
entered at APL2 invocation and termination, for all system commands, and for AP 100 commands.
This exit executes in problem state as a part of a user’s TSO session.

2. If the Global Shared Variable Processor is aclive, it also calls an instailation exit during APL2
initialization. That exit is identified in the GSVP startup parameters as the ISECNAME. in some
releases of APL2 the GSVP calls another exit whenever the APL2 session signs on to the GSVP.
That second exit is named in the GSVP startup parameters as the GSECNAME, but is not discussed
here since it is being removed from the product.

The OPTUSER exit has a new more formalized interface, together with full documentation, beginning
with Release 3. A compatibility mapping has been provided for custiomers who have aiready rewritten
the existing sample, or modified it heavily. The sampie provided in Reiease 3 has been completely
rewritten.

Invocation and Termination

There are two calls to the OPTUSER exit during invocation. The first occurs as early as possible,
before any option parsing has been done. The exit is given the invocation option string (converted to
EBCDIC) and can make limited changes to it. it can also set up an instailation debugging exit.
{Sample code is included, though disabled. to use a product called DBC which was deveioped by Yale
University.) ’

The second OPTUSER exit occurs after option parsing has been done. The ID number, TERMCCDE and
terminal type are passed to this exit. it may return a list of SAM libraries that the user is permitted to
save into.

Either exit may force termination of the APL2 session, and may return an error message to be dis-
played or queued.

The GSVP ISECNAME routine is entered after option parsing but before the second OPTUSER exit. it
executes in supervisor state, key 0, in the GSVP address space. (Obviously it has to be stored in an
authorized library.) The routine is given the TSO userid, the ASCB address for the TSO session
address space, and the iD number which the APL2 session is proposing to use. The routine may
approve or deny use of the GSVP by the APL2 session, and may change the ID number.

If a CONTINUE workspace is loaded automatically during invocation. the OPTUSER exits for)LOAD
will be called.

The OPTUSER exit is also entered twice during APL2 session termination.® At the first exit the terminai
support, SVP, and auxiliary processors are still active. The second exit occurs just before APL2
returns to its caller. These exits cannot exercise any control over the APL2 session. except that the
first one could display a message. But the exils may want to do logging. and clean up any storage
used used by the exit module.

® This is in addition to the)SAVE exits that will be entered if 3 CONTINUE workspace is saved.

18M . 8J - 167) .
Installation Exit Routines 17

Workspace Command Exits

OPTUSER exits are taken at the beginning and end of processing for all system commands dealing
with workspace libraries. The first exit is taker after the appropriate library system has been chosen
(SAM or VSAM) but before that subcomponent vegins its work. The exit can inspect or modify the
library number,?* workspace name, password, or workspace size. It can aiso reject the command,
specifying a return code which will trigger one of the standard system messages. Finally, like ali

- OPTUSER exits it can also provide its own message text to be displayed or queued.

The second exit can specify a return code that triggers one of the standard system messages, or
provide its own message text to be dispiayed or queued. It can also request processing to be
restarted.

For SAM libraries, a number of other parameters can be controlled by the installation exits. These
include prefix control, some dataset name control, and reclassification as private, public, or project.
For Relase 3 there are special exits taken while the system is generating dataset names and looking
up project library owners. These exits can be used to fine tune the standard processing or to repiace
it completely. -

OPTUSER exits are aiso taken at the beginning and end of processing for JCLEAR. The first exit can

prevent the operation or specify a size to be used for the CLEAR WS. Either exit may provide addi-
tional messages. '

AP 100 and System Command Exits

OPTUSER exits are taken at the beginning and end of AP 100 command processing. The)HOST
command also passes its text through AP 100, so the same exits are taken. The first exit can inspect
the command about to be issued, and can abort processing of it if it chooses. it can also provide
message text to be displayed or queued. The second exit can also provide a message.

Most of the OPTUSER exits previously described are entered for operations that originally arise as
system commands. But in addition to those exits, there is a special OPTUSER exit that is taken for all
system commands, even ones as innocent as)VARS. This exit is entered as soon as the command
name has been parsed. !f the command name is recognized, its command number is provided.? If the
command name is not recognized, a command number of ~ 1 is assigned and the exit is still called.

The exit can inspect the command and check its command number. On return it indicates that the
command is to be executed, rejected, or ignored. And it can queue or display a message.

The “ignore™ case is especially significant. The exit can in fact implement installation specific system
commands. The system will call the exit indicating that the command is unknown. But the exit will
actually execute the command and then return, indicating that it is to be “ignored.”

#! Changing the number (or FREEing a DDname) can be used to switch from a VSAM to SAM library, but not the
other direction.

21 ONLT=' "', the command name passed may be in another ianguage. but the command number will still be
the same.

18M . SJ 167
18 System Programmer’'s Guide to Tailaring Your APL2/TSO Svetlem

