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ABSTRACT 

=his paper discusses search strategies and shows how they 
can be implemented in APL2 without reqard to the particular 

- problem being addressed. The three strategies d~mcnstr~ted 

are Depth First Search, Breadth First Search, and Best First 
Search. They will be exercised by applying them to an 8 
puzzle. The implementations take advantage of APL2 
functional style and the ab111 ty to pass functions as 
parameters to programs. 

Additional information about the use of APL2 for AI 
applications can be found in (Br1). 

INTRODUCTION TO SEARCH 

Complex logical problems. real life problems. and games all 
present you with similar s1tuations you are j n s orae 
starting pos:Lt1on, and you want to reach some goal. In a 
logic problem. you might be given a set of logic statements 
and the goal 1Il1qht be to generate a part1c\41ar new logic 
expression. In real life. you might have a set of facts 
about your financial 81tuat10n and the goal might be a 
decision to buy or not buy a car. In a game the goal might 
be to win against an opponent. In each case. from the 
starting position. there may be many first steps that you 
can take. From each of these, there may be many additional 
steps you can take. Eventually. you expect one of the steps 
to take you to the desired goal. There could be many paths 
that lead to the qoal, there could be one unique path that 
leads to the goa~. or there might be no path at all in which 
case the goal cannot be reached. 

Given a set of next steps that you could take in searching 
for a goal, the search strategies define organized ways to 
tell you which step to try next. 



SEARCH AND THE 8 PUZZLE 

The 8 puzzle is normally packaged in a flat tray partitioned 
into a nine squares. Eight of the nine positions have tiles 
numbered 1 through 8. One of the squares 1s. therefore, 
empty. The challenge 1s to take the puzzle with some given 
starting arrangement of tiles, and rearrange them into some 
required new 
spot. Here 
example goal: 

arrangement by 
is an example 

sliding tiles into the empty 
starting arrangement and an 

Start Goal 

283 
164 
7 5 

123 
8 4 
765 

In starting to solve this puzzle, there are exactly three 
~oss1ble first moves: 

Start 

283 
164 
7 5 

283 283 283 
164 164 1 4 
75 7S 765 

Fro. the first two of these positions, you can produce two 
more arrangements (two of which give the tn1 t1a.l 
arrangement). From the third position, you can produce four 
more arrangements. 

Proqraas that apply search strategies to the solution of 
this problem are presented later. 

SEARCH STRATEGIES 

Th~ search strategies determine the order in which possible 
next steps in a search are taken. Only three simple search 



met.hods are discussed here: Depth First Search, Breadth 
F1r·st Search, and Best First Search. 

** DEPTH FIRST SEARCH 

In a depth first search, if there are two paths to be tried. 
then every possible path arising after the first one is 
taken, is tried before any other path is tried. Here's a 
tree showing the order in which paths will be taken in 
trying to reach goal X from starting position P: 

p 

8 

x 

Because the leftmost path was taken first, every path from 
it is taken before the other path from P is tried. Notice 
that no knowledge of the problem influences the OrCi!r of the 
search. 

If you are trying to reach X, the order of paths makes a 
significant difference in the amount of work to be done. 
Also, 1f the path startinq with 1.2.3 went on infinitely 
~ong, a depth first search would not find the path to X even 
though 1 t existed. The 8 puzzle encounters this problem 
with a Depth First Search. 

Suppose you wanted to get from the airport to a hotel in the 
middle of a city to the west of the airport. A depth First 
Search may choose to go north one block first. Sines the 
hotel is not reached, the search proceeds by going another 
block north. Eventually. you can't go any further north so 
you back up and move in some other direction. You will 
eventually reach the hotel but only after taking a lot of 
unnecessary roads. Of course, if the search started to the 
west. the search would succeed much faster. Since no 
knowledge of the problem is used. this could happen onlL by 
accident. 

You can treat the paths waiting to be tried in a Depth First 
Search as a push down stack where the last paths put on the 
stack are the first ones taken out <FIFO). 



** BREADTH FIRST SEARCH 

If there are two paths to be tr1ed~ then the second is tried 
aft:9r the first but before any paths following from the 
fir$t. Here's a tree show1nq the order in which paths will 
be.. taken in trying to reach goal X from starting pos1 t10n 
P: 

1 

3 4 

x 

In this case. search stops because X was found. A breadth 
first search is guaranteed to find a path if one exists and 
if there is a finite number of possible paths at each step. 

Suppose you wanted to get from the airport to a hotel in the 
middle of a city to the west of the airport. A Breadth F1rs~ 

Search is at least bounded -- you'll spread out in a radius 
about the starting point and eventually find the hotel. You 
may aqa1n take a lot of unnecessary roads, but you will 
reach your destination. 

You can treat the paths wa1t1ng to be tried in a Breadth 
First Search as a push down stack where the first paths put 
on the stack are the first ones taken out (FIFO). 

** BES7 FIRST SEARCH 

~ch of the challenge in search programs is to find better 
search strategies that use some knowledge of the situation 
to .ake smarter choices of what to try next. By computing 
a "figure of merit" with each possible path, you can choose 
an apparent best next choice and significantly reduce the 
amount of work done. Even a very bad figure of merit can le~d 

to a vast improvement in efficiency. 

One such search strategy is called a Best First Search (in 
particular, this one is called A* (Po1». It me~sures the 
cost of a path by the amount of actual work done so far plus 
the estimate of how much more work there is to do. If the 
estimate 1s any good at all, the search will try many fewer 
paths. As the estimate gets more accurate, the number of 
paths tried shrinks. 



You can think of the set of paths tried so far as a push down 
stack as before accept. this time. the order in which paths 
are selected depends on knowledge about the problem. 

Here is a simplified outline of how Best First Search works: 

1~	 Begin with the start position as a zero length path 

2.	 Choose the path with smallest cost 

•	 If the stack is empty. no path exists 

•	 If more than one path with smallest cost, cheese one 

•	 If chosen path reaches goa1. stop 

3.	 Delete the path from the stack and add all new paths 
composed of one more step. 

4.	 Delete from the stack any path that reaches a spot 
reached cheaper by another path. 

5.	 Go to 2 

In the map example. a Best First Search would move out from 
tha airport in all possible directions but then choose the 
neAt step to take based on the position that is closer to 
the hotel. You might still run into a dead end and have to 
back up but, in general. you will visit very few unnecessary 
roads. 

IMPLEMENTING THE SEARCH STRATEGIES 

It is possible to write special search programs for special 
problems. Here. general search programs are written that do 
not have any knowledge of any particular prob~em built in. 

The search programs must be called wi th the following 
information: 

•	 A starting position 

•	 A program that can compute the next position and say if 
it is a goal 

•	 For BESTFIRST a function that estimates cost of 
reaching the goal. 

For the 8 puzzle, the starting pf'si tion can be a 3 by 3 
character matrix. Note that boxes are used to make the 



structure of the data apparent in these examples. Real APL2 
output would not include these boxes unless a function like 
DISPLAY were specifically coded: 

START+3 3p'2831647 5'
 
START
 

283 
164 
7 5 

The program that computes the set of next pos1tions is 
called MOVES. ~t takes a pos1tion as 1 ts argument and 
returns a list of new positions and identifies which if any 
are goals. It always computes the new positions by trying 
the four actions: 

• .ove a tile to the left 

• .ove a tile to the right 

• move a tile up 

• move a tile down 

MOVES START 

283 283 B 
164 1 4 

75 765 

Thls result is a two 1 tem vector where the first 1 tem is 
th:cee new pcs1tions and the second 1 tem is three zeros 
meaning none ofthe new positions is the goal. 

The estimator function takes a po.1 t10n as argument and 
returns a number that indicates its distance from the goal 
using some arbitrary measurement. The function EST1 counts 
the number of tiles out of place: 

EST1 START 
5 

The function EST2 measures the rectangular distance of each 
tile from its final position: 

EST1 START 
6 



This second measure is a more accurate measure of the amount 
of work to be done. The BESTFIRST search should be more 
efficient given the better estimator. 

The result of the search function is a path that leads from 
the starting position to the goal if one exists. 

Here is an example of each search program applied to the 8 
puzzle: 

(MOVES DEPTHFIRST) START 

Notice that the program DEPTHFIRST 1s q1ven the f -lnction 
MOVES and the initial data START as parameters. A program 
that can be given functions as parameters is called a 
defined operator in APL2. 

DEPTHFIRST first moves a tile to the left. On the next 
iteration. it will move a tile to the right giving the 
initial arrangement again. It will never get out of this 
loop. 

(MOVES BREADTHFIRST) START 

283 
164 
7 5 

283 
1 4 
765 

2 3 
184 
765 

23 
184 
765 

123 
84 

765 

123 
8 4 
765 

The program had to 1 terate through 278 paths in order to 
find this one. 

The value of an estimate is shown by using a function EST1 
tha": computes the number of tiles :)ut of place: 

(MOVE8 BESTFIRST EST1) START 

2 3 23 
184 184 
765 765 

123 
84 

765 

123 
8 4 
765 

Th~ program only iterated through 7 paths. 

A better estimate is the distance of a tile from it· s 
correct position. Since moves are only horizontal an 
vertical. this distance is an integer. Here's BESTFIRST 
using this estimate of cost: 



(MOVES BESTFIRST EST2) START
 

283
 
164
 
7 5
 

283 
1 Lf 
765 

2 3 
184 
765 

23 
184 
765 

123 
84 

765 

123 
8 4 
765 

This is. of course t the same answer but only required 6 
paths to be examined thus proving the value of a good 
estimator even in a trivial situation. 

Each of the search program internally uses a stack to keep 
track of paths that have been qenerated but not yet 
examined. Here is the essential logic of the search 
programs: 

1.	 Select a path to examine 

•	 If Depth or Breadth first - select top path on stack 

•	 If Best first - select lowest cost path 

2.	 QUit if path reaches the goal 

3.	 Compute next positions 

4.	 If Best First - compute cost estimate to goal 

s.	 Add new positions to the stack 

•	 If Depth First - new positions to top of stack 

•	 If Breadth First - new positions to bottom of stack 

•	 If Best First new pos1 t10ns to' top of stack 
(arbitrary) 

6.	 If Best first - delete any paths reached by other paths 
at lower cost 

7. Go to 1
 

The actual programs are in the Appendix.
 

The stack maintained internally is a nested matrix wi th 2 
columns (for Depth and Breadth First) or 4 columns (for Best 
First) • Here is what the stack looks like after two 
iterations of a Breadth First Search: 



o
 

o
 
283 283 
1 4 16Lf 
765 7 5 

283 
164 
7 5 

283 
16 
754 

283 
164 
75 

283 
164 
75 

283 
164 
7 5 

283 
164 
7 5 

o 

o 

This is a four by 2 matrix. Column 1 contains the paths 
generated but not yet examined. and column two is 0 meaning 
that the path does not reach a goal. The matrix for a Best 
First Search would have two additional columns giving the 
costs of producing the path and the estimate of the distance 
to the goal. 

Refer to the Appendix for the details of the prograQs. 

CONCLUSION 

This paper has introduced some relatively simple search 
techniques. They are useful as demonstrations of the power 
of APL2. A look at the programs shows that they are short 
and match closely the outline of the algorithms. They make 
significant use of nested arrays and defined operators. All 
three programs can be applied to any searc~ problem because 
no problem specific information is imbedded in the logic of 
the programs. 
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APPENDTX: APL2 PROGRAMS 

DEPTH FIRST SEARCH 

The Depth First search program follows the general search 
outline. 

v Z+(MOVE DEPTHFIRST)START:B:T:MAT;NEWP;GLS 
[1J MAT+1 2p(,cSTART)O 
[2J Z+1.0 
[3] LOOP:+(O=tpMAT)/O 
[4] +(2~B+MAT[1;])/DONE 

[5] (NENP GLS)+MOVE 1 1~B 

[6] T+«c··NEWP),··B[1]).C1.5]GLS 
[7J MAT+T,[1]1.[1]MAT 
[8] +LOOP 
[9] DONE:Z~tMAT[1;1J 

Line 1 in1 t1a11zes the stack matrix so 1 t has one row and 
two columns. The first 1 tem is a one 1 tem list containing 
the start position. The second item is a zero meaning that 
the start position is not a goal. Line 2 sets the program 
result variable to an empty vector. This becomes the result 
of the program on line 3 should the stack matrix ever become 



empty (meaning that no path to the goal exists). Line 4 
selects the top row of the s~ack and exits 1f it is a goal. 
Line 5 selects the current ending position of the selected 
path and produces all possible next positions by the 
apr.ropriate MOVE routine (passed as a parameter). Line 6 
bu~lds one new path for each new pos1 t10n reached by the 
mo"·.te routine. Line 7 deletes row 1 and adds the new paths 
to" the top of the stack. Thus, this program implements a 
de9th first search because on each iteration, one row is 
ta~en off the top of the matrix and zero or more new rows 
are put back on the top of the matrix. 

BREADTH FIRST SEARCH 

Breadth First 1s identical to Depth First except that 1 t 
puts new paths on the bottom of the stack matrix. 

V Z+(MOVE BREADTHFIRST)START:B;T;MAT:NEWP;GLS
 
(1] MAT + 1 2p(,cSTART)O
 
[2] Z+\O 
[3] LOOP:+(O=tpMAT)/O 
[4J +(2~B+MAT[1;])/DONE 

[5] (NEWP GLS)+MOVE 1 1~B 

[ 6 ] T + ( ( c ..NEliP) , ..B [ 1 ] ) , [1 • 5 ] GL S 
[7] MAT+(1~[1]MAT),C1]T 

[8] +LOOP 
[9] DONE:Z+~tMAT(1;1] 

Lines 6 and 7 delete the path just examined and adds the new 
paths discovered to the bottom of the stack so that any 
eXisting paths will be examined before the newly generated 
unes. 

BEST FIRST SEARCH 

The Best First Search program is similar to the other two 
search programs. A four column stack is kept. The path 
selected next is the one whose actual cost plus the 
estimated cost is the least. The new paths are put on the 
top but except for the case where more than one path has the 
minimum cost, the logic of the program is unaffected. 



v Z+(MOVE BESTFIRST EST)START;B:T;M;RAT;IX;NEWP:GLS 
[1) MAT+1 4p(,~START)O(,O)(EST START) 
[2] Z+\O
 
[3J LOOP:+(O=t~MAT)/O
 

[4J B+l'lAT[IX+IXl. L/ IX+MAT(; 4] +1' --MATe; 3]; J
 
(5] +B[2]/DONE
 

-[5] (NEWP GLS)+MOVE 1 1~B 

[7] T+«c--NEl/P),--B[1]),GLS,«1+31::)8),-·8(3]),[1.5J
 
EST-·NENP
 
[8] MAT+T,[1]MAT[(ttpMAT)~IX;J
 

(9] (T U)+MAT[;1] MAT[;3]
 
[10] MAT+(A/--A/-·(U- .s: ,/U)vNT- .=_.. ,/T)fMAT 
[11] "LOOP 
~12] DONE:Z+~+MAT[IX;1J 

Li:'le 1 defines a one row matrix as the in1t1al stack. The 
first two columns are defined as before. Column 3 is a list 
g1vinq the actual cost paid to reach each of the positions 
of the path in column 1. This program adds 1 to the cost for 
each more (on line 7) but a fancier program wou~d have the 
MOVE program return a value for the cost. Column 4 is the 
estimated cost for reaching the goal. Line q uses the most 
recent actual cost and the estimated cost to the goal to 
choose the most likely path to extend next. This is, in 
general, not at the top of the stack so this program is 
neither depth first nor breadth first. Line 7 build s the 
new positions into a four column matrix and line 8 adds them 
to the top of the matrix. Line 9 makes sophisticated use 
of nested arrays to see if any final path is reached on some 
other path at cheaper cost. You can learn a lot of APL2 by 
figuring out these lines. 

MOVE FUNCTION FOR THE 8 PUZZLE 

The move function for the 8 puzz1e attempts to move the 
blank space in each of the four possible d1rect~ons. Any 
move that would not end up on the board are discar~ed. The 
function returns the vector of new positions and a 1 if the 
new position is the goal. Notice that the definition of the 
goal is built into the move function itself. Strictly 
speaking 1 t could be a separate function. It is combined 
with the move function because its result is needed at the 
same time and because there is a l1m1 tat10n of at most 2 
functions as parameters to an APL2 defined operator. 



V Z+MOVE8 M:IB:MI:IN 
[1] A move generator for 8 puzzle
 
[2J IB+(,M£.' ')/,MI+(\3)·.,l3
 
[3] IN+(IN€MI)/IN.,(O 1)(0 -1)(1 0)(-1 O)·.+IB
 
[4J Z+IN RMOVES··e.M
 
(5] Z.Z (Z=_··e.3 3p'1238 L+76S')
 

v Z+1 RMOVE8 M
 
[1J A recursive replacer, subfunct10n of MOVES
 
[2] (IBjZ)+(cI)~Z+M 

[3J «cI)~Z)+" 

ESTIMATOR FUNCTIONS FOR THE 8 PUZZLE 

The first estimator just counts the number of tiles not in 
post t1on. The second counts the number of horizontal and 
vertical moves that each tile would have to m.ake if there 
was nothing in the way. 

V Z+EST1 P 
[1] A number out of position estimate for 8 puzzle 
[2] Z++/.P~3 3p'1238 4765' 

V Z+EST2 P;I 
[1J A Manhattan distance estimate for 8 puzzle 
C2] Z++/I€I-(I+,(t3)·.,t3)[('12384765')1,P] 
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ABSTRACT 

Logic problems are traditionally solved using recursive no
tations. These include LISP which was invented for the sol
ution of logic and AI related problems and more recently 
PROLOG. APL provides a different way to look at logic prob
lems. 

This paper explores array solutions to logic problems and shows 
how they can be solved, at least conceptually, in parallel us
ing APL2 .. Problems include puzzles from "Alice in Puzzleland" 
and symbolic mathematics. The solutions are contrasted with 
solutions to the same problems in PROLOG. Thus 9 it is shown 
that APL2 has logic programming capabilities in addition to its 
well known computational abilities. 

INTRODUCTION 

Logic programming has been with us for more than a decade. 
PROLOG-like languages are presented usuallY9 in the literature 
on artificial intelligence,. as the preferred way to solve 
problems that involve some reasoning on the part of the ma
chine 9 including all the set of what are generally known as 



logic problems ( see references sm1 and 9m2). PROLOG is, in 
fact, an elegant non-procedural language based on traditional 
loqic. 

Perhaps the most significant feature of PROLOG that makes it 
different to other, more traditional, programming languages is 
.that it is non-procedural. While traditional programming lan
guages execute in sequential order except as controlled by 
control structures, PROLOG instructions (see c11) are not given 
nor are they evaluated in any pre-established order. The system 
(the "inference processor") has access to all the instructions 
at the same time, and selects by itself~ depending on the ac
tual values of the data, the instruction that must be executed 
at a given instant (the rule or axiom to be applied, in the 
~ROLOG slang). 

Unfortunately in real PROLOG programs, it is usually necessary 
to define the order of certain operations or to change their 
order depending ~n certain conditions. The three basic elements 
of structured programming (Block, If-Then-Else 9 and Do-While) 
must therefore be included somehow in the PROLOG structure. 
This has been done as follows: 

1.	 A block is defined as a Horn clause where all the elements 
succeed always. 

block_name <- C1 6 C2 & ... & en. 

where Ci always succeeds, is equivalent to 

begin
 
C1
 
C2
 

en 
end 

2.	 If-Then-Else is emulated by m~ans of the "Cut" primitive: 

condition_name <- C1 & / & C2. 
condition_name <- C3. 

is equivalent to 

if C1 then C2 else C3 

3.	 Do-While is emulated by means of the 1tRepeat" and "cut" 
primitives: 



while_name <- REPEAT 6 body. 
body <- C1 & / & C2 S fail. 
body. 

is equivalent to 

while C1 do C2 

In this paper we make the statement that the PROLOG-like non
procedural structure is not the only way of solving artificial 
intelligence problems in a "natural" way, that is to say, with 
a program that is legible, compact 9 and represents the problem 
immediately. We believe that APL2 provides a different way of 
proqramminq, actually a parallel way of programming, that is 
at least as compatible with our way of thinking as PROLOG is, 
but may be even more appropriate to the structure of future 
computing machines. 

The following pages show some examples of logic programming 
an area where PROLOG is considered to be strong. 

BOOLEAN LOGIC 

Let P be a logical proposition. It has a truth value, i.e. it 
is either false or true. 

For example t 

• "All men are yellow" 

is false 

• "Some men are yellow" 

is true 

• "If all men are yellow then men are alive" 

is true. 

• "If all men are yellow then today is Monday" 

may be true or false depending on the day of the week we 
are in. 

In logic programming languages, you wri~e statements that are 
true and then draw conclusions from them. For example, in PRO



LOG you can say that "John likes Mary" with the following as
sertion: 

likes (John 9 Mary). 

meaning that "It is true that John likes Mary". 

On the other hand, APL2 uses a different computational approach 
to write logic statements. The truth values "false" and "true" 
are represented in APL2 as the numbers 0 and 1, respectively 
and you should write expressions that represent all the possi-, 
ble combinations of truth and falsi ty for the variables in
volved. The evaluation of the resulting expression then gives 
a set of "ones" and "zeros". Each "one" corresponds to a com
bination of the variables that make the expression true. The 
"zeros" represent combinations that make the expression false. 

Let P represent a 
possible truth va
for P is the two 

logical proposition and 
lues. The set of all p
item vector: 

let P1 
ossible 

represent its 
truth values 

P1~O 1 

The "negation" of P is defined as 'another proposition P' such 
that P' is true when P is false and P' is false when P is true. 
This means that the truth value of P' will be 0 when the truth 
value of P is 1, and vice versa. Therefore, the set of all 
possible truth values of pt can be represented as: 

-P1 
1 0 

Given this representation, trivial expressions about P can be 
computed. For example, a tautology is always true: 

P1 v (AlIp1) 
1 1 

A contradiction 'is never true: 

P1 1\ (~P1) 

o 0 

From this point on, no distinction between the "propositional 
variable" (what was called P) and its possible truth values 
(what was called P1) will be made. 

If you want to write logical expressions on two propositions, 
P2, and Q2, there are four possible combinations of truth val
ues: If Q2 is false, then P2 may be false or true. If Q2 is 



true, then P2 may be false or true. Thus, for two variables, 
complete sets of values can be represented as four i tern vec
tors: 

P2-+- 0 1 0 1
 
Q2.... 0 0 1 1
 

Now non-trivial expressions can be written. The expression 
P2AQ2 is true only when both P2 and Q2 are true (the conjunction 
of P2 and Q2): 

P2 1\ Q2 
000 1 

~he expression P2 v Q2 only fails to be true when both P2 and 
Q2 are false (the disjunction of P2 and Q2): 

P2 v Q2 
o 1 1 1 

De Morgan's law shows that the negation of a conjunction is a 
disjunction and vice versa. One formulation of this rule is: 

P2 v Q2 ~ - (~P2) A (-Q2) 

Computationally this is 

( - P2) 1\ ( -Q 2 ) 
100 0 

- (--.,P2) A (-Q2) 
o 1 1 1 

which is the "or" function. 

Logical implication is defined in propositional calculus as: 

·P2 implies Q2 is logically equivalent to the disjunction of 
Q2 and the negation of P2." The corresponding APL2 expression 
will thus be: . 

Q2 v (~P2)
 

1 0 1 1
 

This result has a 1 wherever Q2 is either greater or equal to 
P2 and so implication could also be written with a single APL2 
primitive: 

Q2 ?:. P2
 
1 0 1 1
 



Finally, the statement "P2 if and only if Q2" can be rephrased 
as np2 implies Q2 and Q2 implies P2." Th~ formula is as follows: 

(Q2v(~P2» A (P2v(~Q2»
 

1 0 0 1
 

~his expression is true precisely where both are false and both 
are true -- that is when the logic values match. Thus, this 
equivalence can be represented by the single APL2 function 
EQUAL (=): 

P2 = Q2 
1 0 0 1 

Applying this to the previous expression of De Morgan's law you 
see that 

(P2 v Q2) = ~ (~P2) A (~Q2) 

111 1 

is a tautology. Thus 9 De Morgan's law is always true. 

Expressions containing three variables have eight possible 
combinations of values: 

P3 ~ 0 1 0 1 0 1 0 1
 
Q3 ~ 0 0 1 1 0 0 1 1
 
R3 ~ 0 0 0 0 1 1 1 1
 

Here is the computation of three different implications: 

1. P3 implies Q3 

Q3 v (~P3) 

10111011 

2. Q3 implies R3 

R3 v (-"Q3) 
11001111 

3. P3 implies R3 

R3 v (~P3) 

10101111 

Suppose that you claim that "P3 implies Q3" and "P3" are si 
multaneously true (Modus Ponens): 



(Q3 v (~P3» A P3 
o 0 0 1 000 1 

You might expect to see the representation of Q3 from this 
computation (0 0 1 1 0011). The answer differs from Q3 where 
P3 is false but Q3 is true. Since it is claimed that P3 is 
true~ the boolean result is stronger than just Q3. It expresses 
the fact that both P3 and Q3 are true simultaneously. 

Next, look at the chaining rule: If "P3 implies Q3" and "Q3 
implies R3" then "P3 implies R3". The results of the individual 
implications are already listed above. The computation of the 
chaining rule is: 

(Q3 v (~P3)) A (R3 v (~Q3»
 

1 0 0 0 1 0 1 1
 

Again, you mi9ht expect the representation of "P3 implies R3" 
(1 0 1 0 1 1 1 1) but again the result produced is stronger. 

Suppose that, in addition to the chaining rule, you assert that 
P3 is actually true: 

(Q3 v (~P3» A (R3 v (~Q3» A P3 
o 0 000 0 0 1 

This shows that P3, Q3, and R3 are all simultaneously true. 
This is stronger than the result of ttp3" and "P3 implies R3": 

(R3 v (-P3» A P3
 
00000 1 0 1
 

which makes no claim about the truth of Q3. 

PARALLEL BOOLEAN LOGIC 

This section shows how you might go about using the application 
of the APL2 logical functions to solve logic problems for all 
solutions in parallel. 



THE	 MARCH HARE 

The following logic problem is adapted from Raymond Smullyan's 
book "Alice in puzzle-land" (sm2). It is solved by application 
of parallel boolean logic. 

"The jam had been stolen by either the March Hare t
 

the Mad Hatter, or the Dormouse. They were arrested
 
and each made one statement.
 
They were:
 

a.)	 The March Hare: I am not guilty. 

b.)	 The Mad Hatter: I am not guilty. 

e.)	 The Dormouse: At least one of the others
 
speaks the truth.
 

Further investigation produced the following conclusions: 

d.)	 The March Hare and the Dormouse didn't both
 
say the truth.
 

e.)	 Only one of them was guilty. 

Who	 was guilty?" 

The solution to this puzzle uses the concepts of parallel logic 
previously developed. There are three logic variables to deal 
with: 

o	 The Dormouse truth (D~), 

o	 the Mad Hatter truth (BT), 

o	 and the March-hare truth (NT). 

These can be represented by the following three vectors: 

DT~O 1 0 1 0 1 0 1
 
HT~O 0 1 1 0 0 1 1
 
MT~O 0 0 0 1 1· 1 1
 

These three variables represent all possible combinations of 
truth and falsity for the three entities. 

What the Dormouse said can be expressed logically as follows: 
MTvRT. The Dormouse told the truth if and only if one of the 
others spoke the truth. This equivalence is written in APL2 



using EQUAL. Therefore the complete expression of the 
Dormouse's statement is DT=(MTVHT). This relationship =~=~ ue 
true. 

Condition d. must be false if both NT and D~ are true. This is 
written: ~(MTADT) 

Condition e. says that only one is guilty. Since two said they 
were not quilty one of them is correct. This is expressed as 
MTvHT. 

Finally, we know that d. and e. are true. since the three 
preceding statements are simultaneously true, the individual 
expressions may be "anded" together giv~n9 one expression of 
truth: 

COND~(D~=MTVHT)A(~DTAMT)A(MTVRT) 

CORD 
000 1 000 0 

The result represents the case where what the Dormouse says is 
true. what the Mad Hatter says is true, but where the March Hare 
is lying. Thus the problem is solved. Here is the final program 
that solves this puzzle, which includes a print out of the re
sults: 

VJAM 
[1] A ALICE IN PUZZLE-LAND
 
[2J DT~O 1 0 1 0 1 0 1
 
[3] HT~O 0 1 1 0 0 1 1 
[4] MT~O 0 0 0 1 1 1 1
 
(5J COND~(D~=MTVHT)h(~DTAMT)A(MTVHT)
 

[6] 'HARE IS ',«COND/MT)!'NOT ').'GUILTY'
 
(7] 'HATTEE IS '.CCCONDjHTJ/'POT ')~'GUILXI'
 

(8 J 'DORMOUSE IS " (( IVe COND ///'1') A (COHD /81" JI' NO'1' ') t r CUILTr'
 
V 

Lines 6, 7 and 8.can be explained as follows: COND says which 
of the possible combinations of truth values is compatible with 
the data. Therefore, the expression COND/MT gives the truth 
value of the statement by the Hare (i.e. whether the Hare said 
the truth qr lied). Since the Hare actually stated its own 
innocence (statement a.) line 6 is immediate. So is' line 7 t 

which applies the same discussion to the Hatter. Finally, the 
Dormouse is quilty if and only if both the Hare and the Mad 
Hatter are not guil ty t that is to say t if both said the truth 
«COND/MT)h(COND/RT).) 

Here is the execution of the program: 



JAM
 
HARE IS GUILTY
 
HATTER IS NOT GUILTY
 
DORMOUSE IS NOT GUILTY
 

Here is the PROLOG solution of the same problem for comparison: 

guilty(hare)<-~true(hare). 

guilty(hatter)<-~true(hatter). 

guilty(dormouse)<-~9uilty(hare)&~guilty(hatter). 

true(dormouse)<-true(hare>ltrue(hatter). 
~(true(hare)&true(dormouse». 

true(hatter)ltrue(hare). 

Invocation is: 

<-guilty(*). 
(i.e. who is guilty)
 
SUCCE~S: guilty(hare).
 

ALICE 

The following problem, taken from (sm1) is a little different: 

"When Alice entered the forest of forgetfulness,
 
she did not forget everything, only certain things.
 
She often forgot her name, and the most likely
 
thing for her to forget was the day of the week.
 
Now, the lion and the unicorn were frequent visitors
 
to this forest. These two are strange creatures.
 
The lion lies on Mondays9 Tuesdays~ and Wednesdays~
 

and tells the truth on the other days of the week.
 
The unicorn~ on the other hand, lies on Thursdays~
 

Fridays, and Saturdays, but tells the truth on the
 
other days of the week.
 

One day Alice met the lion and the unicorn resting
 
under a tree. They made the following statements:
 

LION: Yesterday was one of my lying days
 
UNICORN: Yesterday was one of my lying days
 

From these statements, Alice, who was a bright girl,
 
was able to deduce the day of the week. What was it?"
 



First the data must be defined. Here the variable DAYS is de
fined as the seven days of the week and YEST is defined 
day before each day of the week: 

as the 

DAYS~'Sunt 
YEST~'Satt 

'Mon' 
'Sun' 

'Tue' 
'Non t 

'Wed' 
'Tue' 

tThu' 
'~ed' 

'Fri' 'Sat' 
'Thu' 'Fri' 

Next, two 
lion lies 

variables are set up that describe the days when 
(LL) and the days when the unicorn lies (UL): 

the 

LL 
UL 

~ 

~ 

'Mon' 
'Thu' 

'Tue t 
'Fri' 

'Wed' 
'Sat' 

Now you mus1: write expressions that are true. There are two 
conditions under which the lion statement is coherent. Either 
this is one of his truth telling days and yesterday was a lying 
day or this is one of his lying days and yesterday was a truth 
telling day. Here are the boolean expressions that compute both 
of these: 

('-DAIS£LL) A (YES'1!£LL) 
1 00011 1 1\ 0 o 1 1 1 o 0 

o 0 0 o 1 o 0 
( 1 o 0 0 '1 1 1 1\ 0 0 1 1 1 o O)/DAYS 

Thu 
(DAYS.:LL) 1\ (~YES'l'€LL) 

o 1 1 1 0001\1 1 o 0 0 1 1 
o 1 0 o 0 0 0 

(0 1 1 1 o 0 0/\1 1 o 0 0 1 1)/DAYS 
Mon 

This says that iZ the lion is telling the truth it could only 
be Thursday and if the Lion is lying then this could only be 
Monday. Thus, we may define a variable representing when the 
lion statement is coherent (LC): ' 

LC ~ «-DAIS€LL)A(YEST€LL» v «DAYS€LL)A(~YEST~LL» 

The same logic is true for the unicorn: 

(~DAYS€UL) A (YEST€UL) 
1 1 1 1 000 A 1 0 000 1 1 

100 0 0 0 0 
(1 1 1 1 0 0 0 A 1 000 0 1 1)/DAYS 

Sun 
(DAYSEUL) A (~YESTEUL) 

00001111\0111100 
a 0 001 0 a 

(0 0 0 0 1 1 1 A 0 1 1 1 1 0 O)!DAYS 
Thu 



Here's the expression for the coherence of the unicorn state
ment (UC): 

uc ~ «-DAYS€UL)A(YEST€UL» v «DAYS€UL)A(~YEST~UL» 

By inspection you can see that only Thursday is true in both 
~ases. Here, then is a summary of the solution in a more com
pact form: 

YEST ~ -1¢DAYS~'Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat' 
(LL UL) ~ ('Mon' 'Tue' 'Wed')('Thu' 'Fri' 'Sat') 

LC ~ «-DAYS€LL)A(YEST~LL» v «DAYS€LL)A(~YEST£LL» 

uc ~ «-DAYSEUL)A(YESTEUL» v «DAIS€UL)A(~YESTEUL» 

(LeAVe) / DAYS 
Thu 

This problem can therefore be solved using entirely boolean 
expressions in parallel written to describe precisely the 
problem as stated. 

Sullivan and Fordyce (f01) describe a clever scheme for imple
menting a production expert system in APL using Boolean logic. 

Here is the PROLOG solution of the same problem for comparison. 
The logic is close to the APL implementation: 

yest(sun,sat). 
yest(mon~sun)•
 
yest (tue ~mon) •
 
yest(wed,tue).
 
yest(thu,wed).
 
yest ( fri ~ thu) .
 
yest(sat~fri).
 

ll(mon) . 
11 (tue) • 

'll(wed) . 
ul (thu) • 
ul (fri) .
 
ul(sat) .
 
lc(*day) <- yest(*day,*yest) g ll(*day) & ~ 11(*yest).
 
lc(*day) <- yest(*day~*yest) & ll(*yest) S ~ ll(*day).
 
uc(*day) <- yest(*day,*yest) & ul(*day) S ~ ul(*yest).
 
uc(*day) <- yest(*day,*yest) 8 u!(*yest) S ~ ul(*day).
 
get(*day) <- lc(*day) & uc(*day).
 
<- get(*day). 



Here is a puzzle that can be solved by logic programming lan
guages but where APL2 can express a much more direct and effi
cient solution: 

"The sum of the ages of John and Mary is 40, 
and their difference is 6. 

What are their ages?" 

This kind of problem can be solved using the methods of logic 
programming but it can also be expressed as a set of linear 
equations as follows: 

40 = John + Mary 
6 = John - Mary 

This is easily solved in APL as follows: 

COEFF ~ 2 2p 1 1 1 -1 
COEFF 

40 6 fB COEFF 
23 17 

This kind of problem, that requires a certain number-crunching 
tcapacity is not amenable to an "effective" solution by a 

classical logic language such as PROLOG. 

Here is the PROLOG solution: 

is_integer(1). 

ages(*John,*Mary) <- is-integer(*John) 8 
sum(*John.*MarY,40) & 
diff(*John,*MarY9 6). 

<- aqes(*John,*Mary). 
ages(23,17). 

The problem with the PROLOG solution is the method of solution. 
First~ the system assigns variable John a value of 1. Then it 
tries to find a value of Mary that complies line 3. It cantt~ 

so it tries for John the value of 2. And so on~ until it tries 
value 23 for John, the condition holds, and the answer is 



given. (But what if the answer would have been 1E6? . This 
program would need a million trials to reach it). 

The following more direct PROLOG statement is rejected by all 
commercial PROLOG systems known to the Nriters. 

ages(*John~*Mary) <- sum(*Johns*MarYt40) 
& diff(*John,*MarY,6). 

SYMBOLIC pERIVATION 

Non-procedural languages~ such as PROLOG~ are well suit~d for 
symbol manipulation applications. APL2 is also well suited for 
symbol manipulation as shown by the following discussion of 
symbolic differentiation. 

The following set of functions computes the derivative of a 
symbolic expression with respect to a variable. Expressions 
including addition (+), subtraction (-), multiplication (X)9 
division (+), power (*) and natural logarithm (LOG( ... », but 
without parenthesis (apart from those in the call to LOG) are 
differentiated correctly, assuming the following function hi
erarchy: power~ division, multiplication, subtraction and ad
dition. Monadic negation (-) is also accepted~ and applies to 
everything on its right. 

Here are a few simple examples: 

tXt D t LOG (X) t 

The functions that implement this derivative are listed below 
for completeness. A few comments on implementation follow but 
the details are not important. What is important is that a few 
pages of relatively straightforward APL2 implements this oper
ation. . 



A DERIVATIVE 
V Z"-X D FX;U;V;C 

(1] ~(PLUS~MINUSt~IMEStDIV,PO~ER)IF'+-Xf*f€FX~,FX 

[2J ~LOG IF 'LOG('A.=4+FX 
[3] ~CONST IF IS_A_CONST FX 
[4] ~ERROR IF 1~pFX 

[5] Z<4-'fFX=X 
(6J -+0 
[7J CONST:Z~tO' 

[8] -+0 
(9] PLUS:Z~(X D '+t HEAD FX)SPLUS(X D '+' TAIL FX)
 
[10J 40
 
(11] MINUS:~NEG IF FX(1]='-' 
[12] Z~(X D 1_' HEAD FX)SMINUS(X D ,-, TAIL FX)
 
[13J ..0
 
(14] NEG:Z~'-',X D 1.FX 
(15] ...0 
[16] TIMES:V~'x' TAIL FX
 
[17J ~CTIMES IF IS_A_CONST U~'XI HEAD FX
 
(18J Z~(U STIMES(X D V»SPLUS(V STIMES(X D U»
 
(19J ...0
 
[20J CTIMES:Z~U STIMES X D V
 
[21] -+0 
[22] DIV:Z~X D(lf' HEAD FX)STIMES('+' TAIL FX)t'*-1 t 

[23J -+0 
[24J POWER:~ERROR IF~IS_A_CONST C~'*t TAIL FX 
[25] z~c STIMES(X D U)STIMES(U~'*' HEAD FX)SPOWER.-1+~C 
[26J 40 
[27] LOG:-+ERROR IF ')I~-1+FX 

[28] Z~(U SPOWER -1)STIMES X D U~4+-1.FX 

[29] ~O
 

(30] ERROR:Z~tERROR'
 

V 



A SIMPLIFIED ADDITION 
V Z+-A SPLUS B
 

(1J ~ACONS IF IS_A_CONST A
 
C2J ~BCONS IF IS_A_CONST B
 
C3J ~NORED IF~A=B
 

(4] z+-r2x',A
 
[5J ...0
 
[6] ACONS:-+ABCONS IF IS_A_CONST B 
(7] -+NORED IF O~~A 

[8] Z~B 

[9] ~O 

(10) BCONS:~NORED IF O~~B 

C11 J Z+-A 
[12J ~O
 

[13J ABCONS:Z~.(~A)+£B
 

Cf4] -+0
 
[15J NORED:Z~A,t+I,B
 

V 

A SIMPLIFIED SUBTRACTION 
V Z+-A SMINUS B
 

C1] -+ACONS IF IS_A_CONST A
 
(2J ~BCONS IF IS_A_CONST B
 
[3J -+NORED IF~A=B
 

[4] Z+-'O' 
[5J ~O 

[6J ACONS:~ABCONS IF IS_A_CONST B 
[1] ~NORED IF O=~A
 

[8) Z~'-t.B
 

(9] ..0 
[10] BCONS:-+-NOBED IF O~~B 

[11] Z+-A 
(12J -+0 
(13] ABCONS:Z+-.(~A)-~B 

(14J -+0 
(15J NORED:Z+-A~t_1 ,B
 

V
 



R SIMPLIFIED MULTIPLICATION 
V Z~A STIldES B 

(1] ~ACONS IF IS_A_CONST A 
(2] ~BCONS IF IS_A_CONST B 
[3] ~NORED IF~A=B 

[4] Z~A,'*2' 
[5] 40 
[6] ACONS:~AECONS IF 
[7] ~ZERO IF O=~A 

[8] ~NORED IF 1=~A 

[9] Z~B 

[10] -+0 

IS_A_CONST B
 

[11] BCONS:~ZERO IF 0=1B
 
[12J ~NORED IF 1~~B
 

(13] Z+-A 
[14] ~o
 

(15J ABCONS:Z~.(~A)x~B
 

[16J -+0 
(17) ZERO:Z+-'O' 
(18] ~o
 

(19J NORED:Z~AttxttB
 

V
 

A SIMPLIFIED POWER 
V Z-+-A SPOTtIER B 

[1) ~ACONS IF IS_A_CONST A 
[2] ~BCONS IF IS_A_CONST B 
[3] NORED:Z~A,'*',B 
[4] -+0 
[5] ACONS:~ABCONS IF IS_A_CONST B 
[6J ~ONE IF 1=~A 

[7] ~NORED IF O~~A 

[8] Z"-'O' 
[9] -+0 
[10] BCONS:~ONE IF O=~B 

[11] ~NORED IF 1~~B
 

(12J Z-f-A
 
[13 J ...0
 
[14] ABCONS:Z~Y(~A)*~B 

[15] -+0 
[16]	 ONE:Z~'1 t
 

v
 



A AUXILIARY FUNCTIONS 
A GET ALL OF X AT THE LEFT OF N 
V Z..-N HEAD X 

(1] Z~(-1+(X=N)\1)+X 

V 

A GET ALL OF X A.T THE RIGHT OF N 
V Z~N TAIL X 

[1 J Z04-«X=N)'l1)~X 

V 

v Z+-A IF B 
[1 J Z+-BIA 

tV 

A TEST WHETHER X IS A CONSTANT 
V Z+-IS_A_CONS'J! X 

[1 J ~O IF O=Z+-hIX~'-0123456189.' 
(2 ]. X+-'Z~O' DEA X 

V 

Here are some more examples of the use of the derivitive func
tion: 

'X'D '2AX*3-3xX*2xY+XxY*2-Y*3 ' 
2x3xX*2-3xYx2xX+Y*2 

ly' D '2xX*3-3xX*2xY+XxY*2-Y*3' 
-3xX*2+Xx2xY-3xY*2 

'X'D 'X+1+X' 
1+-1xX.-2 

tXt D 'X+LOG(X)+X' 
1+LOG(X)x-1xX.-2+X.-1xX*-1 

It can be easily ascertained that the derivatives are correct, 
although the final result is not simplified. The way in which 
the D function performs derivation is very legible and 
straightforward, and follows directly the rules for mathemat
ical derivation. Line 1 selec1:s the appropriate function to 
be differentiated, according to the indicated order of preced
ence. If this function is a plus sign, line 9 receives control. 
This line directly applies the rule that "the derivative of a 
sum is the sum of the derivatives of the terms of the sum. In 
fact, the expression used in line 9 

[9] PLUS:Z~(X D '+' HEAD FX)SPLUS(X D '+' TAIL FX) 



just tells that the derivative of the sum is the symbolic sum 
(performed by function SPLUS, that also adds a little simpli
fication~ such as eliminating zeros and addi~g constants) of 
the derivative with respect to the same variable of the head 
of the sum (function HEAD extracts from its right argument ev
erything to the left of its left argument) plus the derivative 
of the tail of the sum (function TAIL extracts the correspond
ing right part of its right argument). 

A simple inspection of the remainder of the D function will 
demonstrate that the other functions are derived precisely in 
the same way, with APL2 lines that immediately represent the 
corresponding derivation rules. 

This differentiation program is not presented here as a real 
application, and may contain errors or inconsistencies in cer
tain cases. The only reason why it has been done was to be an 
example and show the way in which APL2 can perform symbol ma
nipulation operations with as much ease and legibility as other 
languages theoretically designed only or mainly for that pur
pose. 

CONCLUSION 

We believe that the above examples show that the applicability 
of APL2 to Artificial Intelligence has probably been underes
timated, and should be redefined. This is not to say that APL2 
should be the language of choice for every possible problem in 
Artificial Intelligence. No language is good for everything, 
and all languages are specially suitable for something. A PRO
LOG solution may be a much better choice for a given applica
tion. What we are stating is that APL2 should be considered 
as one of the standard possibilities for the design of Artifi
cial Intelligence applications, to be selected or rejected on 
the basis of actual, practical considerations. 

Finally, APL2 itself could be extended in some way to make it 
more useful for those problems (if any) where it is not opti
mally applicable at the moment. 
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