neral Products Division,

Santa Teresa Laboratory,
San Jose, California

A SOFTWARE HIGH PERFORMANCE APL INTERPRETER
by Harry J. Saal and Zvi Weiss

March 1977 IBM Confidential
TR 03.026

IEM Confidential
March 1077

TR 03.026

A SOFTWARE ITTGH PERFORMANCE APL INTFRPRETER

by

Harry J. Saal and Zvi Weiss¥*

*¥*IBM Israsel Scientific Center, Haifa, Israel

International Business Machines Corporaticn
General Products Division
Santa Teresa Labhoratory

San Jose, California

IBM CONFIDENTIAL

ABSTRACT

The desion of a high performance API. system is presentec
aleng with an evaluation of the performance improvement
measured on a partial implementation. The system contains a
cormpiler which translates BAPL into the instructions of a
virtual APL machine. Numerous special techniques suitable
for optimized interpretation of this wvirtual machine
entirely in software on a System 370 are described. The
overhead for executing APL programs has been reduced by a
factor ranging between 5 and 10 when conmpared to
co~ventional interpretive systems. One realistic example is
anzlyzed in depth; there the compiled version runs € to 8
times faster than APLSV (Version 1.2).

IEM CONFIDENTIAL: This document contains information of a
proprietary nature. All information contained herein shall
be kept in confidence. None of this information shall be
divulged to persons other than IBM employees authorized by
the nature of their duties to receive such information or
irdividuals or organizations authorized by the General
Products Division in accordance with existing policy
regarding the release of company information.

ii

IBM CONFIDENTIAL

5~ EOFTWARE HIGH PERFORMANCE APL INTERPRETER

by

Harry J. Saal and Zvi Weiss

INMTRODUCTION

The rajor goal of this work was an attempt to provide,
within the framework of a purely software system, high
verformance execution for programs written in APL. 2 more
extensive report on this project is availabkle from [1].

The developers of the APL Assist [2], available on the
Systern 370 Models 135, 138, 145 and 148 have utilized the
ability to add a large amount of microcode to the existing
370 instruction set to provide substantial speedup for many
APL programs. This 1is done within the framewerk of an
interpretive APL system, and (essentially) full
compatibility with existing APL code is maintained. It
appears very difficult to see how the microcode techniques
used in the APL Assist can be extended to the high end of
the 370 1line. The same difficulty, perhaps even more
seriously, applies to future systems where performance is
even higher. Consequently, we have not assumed any special
hardware (or microcode) beyond the standard System 370
instruction set. Later on, we will return to this point ancd
make some concrete sucgestions for achieving further
substantial performance improvements but which would require
only relatively minor additions to the standard instruction
set.

PREVIQOUS WORK

Although the subject of translating APL programs has
received considerable attention in the past, little concrete
success has been reported. Several investigations have
centered around the embedding of APL within other high level
languages, either via some automatic preprocessing [3], or
by rroviding a library of subroutines which mimic the APL
primitives [4,5.. Others concentrate on a more direct
translation; in the case of [6] to ALGOL (the "machine
lancuage" of the B6700), in [7] to System 7 Assembler code,
and in [8] to UC.5 microcode.

IBM CONFIDENTIAL

Unfortunately, all the systems mentioned ebcve treat
languages which are very far from APL as we know it. In
general they demand explicit ceclarations foer all

identifiers (or else implicit ones by restricting certain
primitives such as dyadic rho to literal constants for left
hand arcuments), don't permit varying data types (or lenaths
or ranks), modify the APL scope rules for variables, and
don't do error checking as defined in APIL. Each system
suffers from different combinations of variants from this
list (and many others), and none even begin to approach the
objective of simply taking an existing workspace and
compiling it.

DESIG: OF THE TARGET LEVEL FCR APL COMPILATION

We can c¢et some feeling for the potential size of machine
code that would result from direct translation cf APL by
considering c¢ther high level languages in relation to APL.
One of the findings of the statistical studies on APL

programs [9,10,111 was the great disparity in size
(approximately 10 to 1) between typical FCRTRAN and APIL
programs. More specific comparisons between alternate

lancuage versions of the same algorithm also bear this out.
Mecreover, the APL code has higher semantic complexity since,
in general, it handles a wider range of possible argument
types or shapes than the corresponding FORTRAN version, in
addition to performing consistency and error checking,
dynamic space management, etc., which are implicit in APL.

We may conclude that if one could translate APL directly to
machine code for System 370, the expansion factor would be
tremendous. This in turn would introduce its own
complexities due to base register addressing limitaticons on
System 370. Combined with the problem of identifyinc loops
and side effects of APL's dynamic scoping rules and system
variables, it Dbecomes difficult to apply even simple
optirizations such as constant propagation. Without strict
bindings of internal representation one can't, for example,
do allocation of variables to registers across loops. Thus
the nature of the code generated by such a hypothetical
compiler would be large, highly stylized, and unoptimized.

A natural solution to the size problem is to use a large
run-time support system. One advantage is that these library
routines themselves are highly optimized and remove the
burden of optimization and storage from the compiler and
from the compiled code. Since the generality and power of a
typical APL primitive 1s on the average considerably higher

IBM CONFIDENTIAL

than that of FORTRAN or PL/I, we would expect such a svstem
to execute almost always in the run-time library, with only
small in-line bridges between subroutine calls. While this
ray be an acceptable solution, there are still two further
croblems which arise in an attempt at direct compilation.

First, if the run-time system checks for errors of lencth,
index, etc., as it should, one would like to prrovide an
error message facility which localizes errors as much as
rossible. This should be similar to current interpretive
systems, and not at the level of hexadecimal durps. In our

experience, 1t 1s guite difficult tc map run-tire errors
hack to source after FORTRAN E has reordered and optirized a
program. This further motivates sore internal code

representaticen which 1s far closer to APL than optimized
System 370 machine coce.

The second <cdifficulty arises from the areat difference
between integer and floating point resources and
instructions on System 370. Since we can’'t be sure if an
object, even if scalar, is fixed or floating, ancd since
sorething as simple as plus may on occaslon cause a
(legitimate) fixed point overflow, the compiled code would
have to be in several alternate forms. The run--time syster
would have tc intercept any interrupts and bhe able to
continue computing in an alternate representation. This
acain inhibits optimizations and increases obiect code size.

Considering these difficulties, the most natural desicn is
in fact an interpreter! We can then ask what ig the role of
a compiler for APL? There are indeed nmany aspects of APL
execution that need to be left to run-time. Nonetheless,
there still remain a large variety of translations and
optimizations (such as syntax analysis) that need not be
done repeatedly at run-time.

We therefore chose an intermediate level of representation
as the compiler target 1langquage, sufficiently far from APL
as to permit useful optimizations where possible, and fer
enough from the host System 370 as to regquire some forr of
interpretive support, i.e., a hierarchical system. This
representation is the tarcget machine for the APL compiler,
and must be supported on a given host (in our case Syster
370). We need not be very concerned with the layout and
encodings of the intermediate machine language until we
choose a particular host for implementation. (For example,
cn 370 each field 1is a 32 bit word for convenience; in &
microprogrammed environment one would vpack fields much
better than that.)

IBM CONFIDENTIAL

Generally virtual machine instructions are N+1 address
instructions, 1i.e., the dyadic function RESULT<ARG1 OF ARG?
is represented by a three address instruction of the forr
(0F,ARG1,ARG2 ,RESULT) - Monadic and dyadic primitive
functions are represented by two and three address
instructions respectively. The general cases of indexing,
subscripting, and mixed output are represented by variable
lencth instructions that hold the addresses of all the

arcuments.

This form of machine language is quite close to APL source,
and thus can be translated back to source form along with
prrecise error localization when required. It resembles the
intermediate code generated by many optinizing compilers:
hotvever since we do not have sufficiently ticht bindircs on
the data objects we cannot generate actual machine code frorm

this representation.

RESTRICTIONS ON APL

The restrictions imposed on APL in the adeptive systen
design presented here deal with the "static appearance" of
user programs in a workspace which is to be translated as a
unit. By "static appearance'” we mean that source statements
statically convey all the required syntactic information to
carry on with the different phases of the translation, thus
ruling out or weakening the following features of APL-

1. -FX¥ is not supported at all.
2. "EX is limited to apply only to variables.

3. Wo editing cf user defined functions is supported unless
immediately followed by a total retranslation of the

workspace.

4, ¢ is weakened so that the character string argument can
be statically parsed. In its modified version, execute is
not a very useful primitive function and may be
considered to ke not supported. It is, however, still
useful for converting numeric character vectors to
nurmeric values, or for simple shared variable referencing
(in which case the set of possible references must be

known at compile time).
5. ! input does not execute arbitrary APL expressions since

these expressions are unknown at translation time. Ve
restrict the input to be simple data, but which is

4

IBM CONFIDENTIAL

supplied via an interface to a remote terminal with an
APL interpreter as a front end.

6. 211 statements must be uniquely parsible by the compiler.

The user may supply the translator with a 1list of names of
all wvariables that are shared. (More precisely, they may
become shared during execution at some point.) In handling
ron-shared variables the translator and the host machine can
take some short-cuts and thus gain efficiency compared to
the handling of shared variables. If the user dces not wich
to supply the 1list of shared variable names then all
variables in the workspace can be assumed to be sharec.

» I-fetch

Decode

(E-unit)

FETCH arguments

ALLOC space for result
DO operation

FREE temporary args
STORE result

Update PC

Figure 1. Phases of I-cycles

IBM CONFIDENTIAL

COFTVARE INTERPRETER IMPLEMONTATICH

~fur software 1interpreter achieves speed throuch very
extensive special case handling, wherein the decision
rrocess for determining which case applies is both corplex
and not necessarily very symmetrical or consistent. The
cases are chosen because they are heavily used and nmay
constitute sore irregular set.

We assume that programs are well debucged wusing an
interpretive implementation before bteing compiled. Thus
rather than providing for rapid error traceback, or
acconodation te other rare events, we take the position that
execution should be as rapid as possible, leaving just
enougch of a trail to ‘'"pick up the pieces" whenever
necessary, even if it is somewhat expensive or clumsy to dc
SO.

Fiacure 1 shows the processing phases that every virtual
machine instruction undergoes. Fach routine FETCEes its
operands, using information 1in the descriptor. This may
involve special processing for shared or system variables
which must be gotten from outside the workspace or from the
system. Once the operands have been located, and any
consistency regquirements verified, storage can be allocated
for the result. This 1is done again using descriptor
information, to distincuish free space variables frorm the
two temporary stacks.

After computing the result of the function, the space
occuvied by any temporary arguments must be returnecd. This
must be done in reverse stack order (defined by the ccompiler
allocation scheme). The last step 1is STOREing the result.
This causes any necessary post processing to take place,
such as transmission to the shared wvariable processor, or
the user's terminal. TFor system variables the result is
examined for validity and marked accordingly. If wvalid,
system variables are then normalized in their internal
representation so that any later implicit uses by execution
routines do not have to worry about possible data typre
conversions.

Mnce we have recognized certain properties of operands, we
may then eliminate numerous extraneous tests and operations.
For example, we need not perform rank and length checking,
loop setup, and computation of the amount of space needed
for the result, if we are adéding two integer scalars. Cn the
other end of the spectrum, we would like to have the system
execute the tightest possible inner loops when computing con

IBM CONFIDENTIAL

larce data agcregates. We also wish to utilize the kinds of
machine 1level optimizations that an assembly prograrmer
would use, such as treating 32 bits at a time (in a word) or
even 2048 at a time using &8 instructions.

The decision to provide a particular sukcase of a ceneral

APL function rests on two points: 1) the frecuency with
which that case 1is wused, and 2) the ability *to cdo
significant optimizations relative to other subcases. 1In

practice, we have been unable to use the first of these
cuidelines due to lack of sufficient data. Thus the second
has been the more significant factor.

This tendency 1is also promoted by use of racros in the
actual generation of code. Cnce a general framewrrk h2s been
established it 1is simply convenient to wuse 1t, at the
rossible expense of wasted space in the hest interpreter for
rare cases. For example, the scalar dyadic primitives fall
naturally into 4 subcases, namely scalar- scalar, scalar-
nonscelar, nonscalar- scalar, and nonscalar nonscelar. In
addition, for the arithmetics there are integer and real
versions. Consequently we have 8 subcases for each of -, -,
<, + , [, L, etc.. For relationals, there are even more. For
lboolean relationals we provide separate code for each of the
six relationals, which is then repeated U4 tires acccrding to
rank as mentioned akove, i.e. 24 subcases. 21l the integer
and real relationals are performed by an additional 8
subcases (each of which covers all the six relationals, i.e.
=, #, >, 2z, <, < without further adaptaticn). Hence there
are in all 32 separate routines which cover all the
relationals.

Undoubtedly certain of these cases are rarely usecd. On the
other hand, the code for handling booleans is sc greatly
optimized (treating up to 2048 bits in a group wusing the
minimum number of instructions) that the payoff is immense,
thus the "expected value" of one of these subcases is the
vroduct of a very small probability times a very large
number; this is notoriously difficult to estimate!

CODE ADAPTATION

In order to improve either the scalar domain or large
acgregate domain we need to reduce the overhead of
recognizing and decoding into the appropriate subcases. For
scalar codes we wish to suppress redundant testing as much
as possible since this can easily become the dominant cost.

IBM CONFIDENTIAL

Ve adopted the following apprcach, which we call "code
adaptation”. The virtual machine instructions known to the
compiler are not, as a rule, the names of computational
routines, but refer to the appropriate decedirg scheme for
that operation. Once the particular applicable subcase 1is
recognized, its address is substituted in the operation code
field of the virtual instruction, prior to executino the
routine. 2s a result, on subsequent executions of the
instruction, the same special case will be selected, without
the decoding overhead. Since a decode micht not rerain valid
indefinitely, we must incorporate in each special case its
preconditions, i.e., the requirements on its operands for it
to be applicable. This preliminary checking is done every
time the operands are fetched, ensuring the consistency (and
correctness) of the computation.

Fvery routine accesses its operands via informaticon in the
data descriptor. When fetching operands, a BALR link is made
to the FETCH routine, providing a base register for the
fetch routine, and a return pointer in R14. Immediately
following the BALR appears the particular type of operand
expected by the calling routine. This information indicates:

1) a specific expected rank (i.e., either scalar or
vector or matrix etc.)
or 2) not a specific rank (only nct scalar actuelly is
used in the existing code)
or 3) don't care about rank

and

4) the expected type (bit, integer, real or character)
or 5) don't care about type.

Two further fields are specified, namely the addresses of
exception handlers for cases where the rank or type redquests
cannot be satisfied. (A rank problem takes precedence over a
type problem if both occur.)

FETCH validates the actual operands against the requirerents
of the calling routine. 1In the case of type exceptions, it
performs certain conversions automatically. An empty object
is always typeless, that 1is to say, althouah 1its actual
internal representation may indicate one of the four
possible types, it 1is acceptable as any other type.
Secondly, type conversions upwards are performed
automatically, from 1) bit to integer, 2) bit to real or 3)
integer to real. The converted forms are created on a
special internal stack, and a pointer to this area is

IBM CONFIDENTIAL

returned. The calling routines are totally unaware of thin
autonatic conversion (although it is detectable in the rrrec
case that this is necessary). This special stack is cleared
on exit from each computational routine prior to enter:: -
the next opcede.

The two address fields for exception handling introcd.:ce
further flexibility and transparency in the system. In scre
cases these fields pcint back to the general decoder of th: =
subcase, other times to the code that indicates RANK FEPRCF,
etc.. In addition there exists a handler called TORCE whi=h
attempts to convert data representations downward, i.c.,
from real to integer, etc.. Any routine which must heve =
varticular internal type (such as integer subscripts Zor
indexing) uses FORCE as its type exception handler. FO L
will either succeed in doing the appropriate conversion, -~~
(as with FETCH) simply return transparently to the subc se
that called it, or else result in a DOMAIN FRROR. (There i=
another form of FORCE which also attempts to convr~t
downward but returns with an error flag rather than caus r~
DOMAIN ERROR. This version is used, for example, in fetchinro
an axis indicator for dyadic comma, which may lecally be
either integer or non-integer. The special cases that handle
catenation (not lamination) expect to get an integer axis,
which might happen to be in real representation internally,
as in the case 4,70.5+0.5]B. On the other hand, they cannot
cause a DOMATIMN ILZRROR should the result not be intecer or

integerizable.)

ALLOC has many possible actions, depending on the nature of
the object in gquestion. For temporaries, space must be fourd
on the appropriate stack (or in the descriptor entry). Nar.d
variables require that previous freespace storage (if a:r7)
be returned to the system and new space allocated. ("ur
system in fact attempts to reuse the sare storage rat!i-r-
than returning and reallocating.) Furthermore, in sorme caces
data values in free space may be shared between severzl
different data descriptors, in which case a reference count
mechanism is invoked in ALLOC. Finally, based on the outcores
of the above actions, the various modifier bits may or ray
not require alteration.

Similar (although less complex) choices exist for STCRI and
FREE. Rather than describing them in depth, we menticn 1o
responsibilities of STORE. Firstly, shared variables are
forwarded to the Shared Variable Processor at STORE-tire,
once their computation has been completed. Secondly, in the
case of (assignabkle) cystem variables, STORE will cause an
appropriate validation routine to be entered. Each

IBM CONFIDENTIAL

validation routine checks that the system variable meets the
restrictions of the language (for implicit use), and if so,
normalizes the internal representation (i.e., [IJC will be
stored as intecer, [Jc7 as a floating point "fuzz", etc.) anc
sets a validity bit on. Otherwise the bit is set off, and
the wvalue is untouched, but is still accessable explicitly.
All execution routines which implicitly use syster variables
simply check the validity bit; if it is on, then they can
access the wvalue without going through the entire FFTCH

rechanism each time. (To insure that system variables are
accessable directly via the desriptor table, any
localization of them is always treated as a "push" by the

code generator.)

INTERNAL OBJECT TYPES

N1l addressable objects (including temporaries) are cgiven an
entry in a descriptor table. Fach entry occupies a total of
56 bytes, for reasons we socon outline. Objects fall into
several categories that require differing treatment. The
kinds of ohjects are:

1) non-shared identifier
2) shared identifier

3) system variable

4) left temporary

5) right temporary.

Several modifiers may apply in addition:

1) long or short data

2) unitialized variable

3) localizable system variable (or not)

Ly walidity bit for localizable system variable
5} internal system variable name

6) internal shared variable name.

It 1is clear that if we were to compactly encode the several
possible attributes and modifiers of each descriptor table
entry into a few bits, we would have to go through a fairly
complex software decode procedure for every FETCH, ALLOC,
STORE, and FREE. The scheme adopted in order to avoid this
expense resembles the code adaptation described above.

Figure 2 shows the layout of a descriptor table entry. We
allocate a full word to each of the four fields FETCH,
ALLOC, STORE, and FREE. These fields hold the address of the
appropriate routine which carries out the required action.
Thus the execution routines simply load this address into a

10

IBM CONFIDENTIAL

register and BALR directly to the correct handler with no
decode overhead. (In fact, we have a kind of 2*24 bit
decoder "free-of-charge" in the 370 hardware!)

For example, the code generator initializes the FETCE field
for an identifier so that it points to a routine wvhich
nroduces the VALUE ERROR message. When a variable receives a
value, this field 1is changed tc¢ a true FETCE routine
address. Sirilarly for a system variable the STORE Field
roints directly to the appropriate validation routine for
this system variable. The FREE routine for temporaries
roints to the routine that lowers either the left or ri~ht
hand stack as the case may be, and otherwise points tc a
BR 14 instruction.

LINK

VALID system var

FETCH

STORE

ALLOC

FREE

PsX

DESCP pointer

Ssufficient space for
any scalar or up to

a two element integer
vector

Figure 2. Descriptor table entry

11

IBM CONFIDENTIAL
PERFORMANCE

2rpendix A presents the instruction trace of the entire
interpretation for addition of two intecer scealars. 1In the
example we follow the shortest path through the cecde, i.e.,
we assume no type conversions are necessary, no overflows
occur, etc.. The instructions shown are complete; i.e., if
we were to execute several routines in sequence, the BNEP at
the end of one branches to the LM of the next.

Measuring (by timing or estimating) the scalar addition
routine shows that it is 5 to 10 times faster than the
comparable routines in VS APL or APLSV. There are two points
we can make here. To begin with, it is hard to envison a
further reduction by a factor of 2 in the numkber of
instructions without using direct compilation (or microcode
support, as will be discussed later). Also it is clear why
the addition of further overhead (such as space management
for small objects) can seriously impact the current
rerformance.

Before proceeding to discuss a comparison based on a
oractical workspace, we would like to present the flavor of
the performance differences we measured for "large™
aggregates. In principle, all these ratios should be near
one, and they demonstrate how far one can go by cptimizing
the inner loops. Table 1 shows the ratio of times measured
on a 370/168 between APLSV (Version 1.2) and our host when
the number of elements was non-trivial. (The exact nurber of
elements was selected based on observing the behavior cof the
ratio as we increased the size of the objects.)

Table 1. Comparison of 370 host to APLSV (V1.2) for large

acgrecates
Approximate
Ixpression Performance ratio
11Is 1
Ia+Ia 10
Ra+Ra 5
IvpBa 500
IvpCa 5
Iivpla 5
BveBv 200
RveRvV 3
Bv<Bv 1000
BvABv 10

Key: Is-integer scalar, Ia-integer array, Ra-real array,
Iv-integer vector, Ba-boolean array, Ca-character
array, Bv-boolean vector, Rv-real vector.

12

IBM CONFIDENTIAL

Jecause of the lirited nature of our irplementation cf the
370 host, it was not possible to evaluate our svster or a
large sample of 2PL workspaces or testcases. Fortunately,
there was a particular workspace which was compilable as is,
and represented an example of an application that is
convenient but expensive to run in API.. The procram was
written by one of the authors (F.J7.S.) and is a sirmulation
of a 32 multiprocessor system designed by Flynn, et al (13 .
Cne function (SIMULATE) actually describes the machine: the
remaining functions constitute a general packace for
time-driven simulations. The package was intended as an
example of how quickly and easily one can construct a
simulator in APL, and was used 1in a course on Computer
Architecture. The flexibility of the package was vreadily
shown, but the Flynn machine simulation is aguite costlyv to
run. The sample used takes about 70.7 seconds of 370/168 CPTI
time using APLSV Version 1.2.

The compiled version of SIMULATE was run on 370/168 and tcol
11.2 seconds of CPU time. The ratio of APLSV (V1.2) time to
the compiled version is 6.3; this is a reducticn of 84% of
the original CPU time.

A GPSS-V version roughly equivalent to the functicn SIMUIATD
was done by an experienced GPSS programmer. The GPES
solution took 3.6 seconds while the compiled APIL, version
took 11.2 seconds. The APL version was immensely easier +o
develop, modify and debug, and we believe that these two
Zires are reasonably close, considering the differences in
algorithm, programmers, etc.. Certainly the ratic of 70.7 to
3.6 seconds (i.e. about 20 to 1) 1is a most unfavorable

statistic for APL advocates; a factor of 3 is ruch more
attractive.

T'UTURE DEVELOPMENT ‘

As has been mentioned, our host implementation is

incomplete, to the point that it 1is extremely unlikely that
any civen workspace is currently executable. Some of the
omissions present no further problems other than sirmply
coding, e.g., the monadic scalar functions, gracde up and
arade down, format, etc.. The most significant catecory of
omissions are the API, operators: reduction, scan, inner and
outer products. The primary issue here is which cases (of
which primitives) are worth including in fully optimized
form. Producing the code for a particular one is
straightforward once the decision has been made. The
remaining question is how to treat all the unoptimized

IBM CONFIDENTIAL

cases, for instance, of inner products, where many hundreds
of cases exist, but are rarely, if ever, used. Here we
exrect to revert to a generalized execution scheme, as is
done in traditional APL interpreters.

snother possible extension to our work is substantial
further optimization by the compiler phase. There are
technical problems due to uncertainties about control flow
in the static APL programs but, assuming we can overcome
theri, the possibilities for a far better compiler are
exXciting. Ve also assume that the compiler is permitted to
reorder code where it is safe, i.e., only error situations
may have different behavior from the formal specification of
APL. We foresee incorporating constant propagation, common
sukexpression elimination and dead variable analysis as some
of +the reasonable optimizations to use. (In fact, some of
the Abrams-~like redundant computation elimination [12 could
be nmerformed at the source level.)

"le strongly recommend procedure integration (i.e. in-line
substitution of the procedure body) as advisable. For
example incorporating the function IF of workspace SIMULATE
in-line vyields a substantial gain in performance. This was
done manually, and the compiled version took 9.0 seconds to
execute, a saving of 20% over the version without procedure
integration. This faster version 1is 7.9 times faster than
APISV (V1.2) executing the original workspace.

Cur last suggestion is that the compiler recognize and
translate larger expressions (which the common subexpressicn
eliminator looks for in any case), such as 5, 15, 14p,
I« +1, etc., as primitives of the intermediate target
machine. We feel that a small number of special cases would
ceover the popular situations and provide still further
optimization. This technique could also capture (at compile
tire) expressions where the 1loop merging technigues of
Akrams could be used without run-time overhead.

The last avenue of further development we suggest concerns
ricrocoded (or hardwired) support for our system. In an
attempt to understand performance and find any candidates
for special optimization, we ran the host interpreter under
a (software) sampling monitor which produces a profile of
the interpreter execution. No subcase toock more than 1% of
the total execution time. The only peaking that was
sicnificant was in the common handlers, FETCH, ALLOC, etc..
Ir total these utilized somewhat over 20% of the CPU time,
and this does not include the overhead for calling and
setting up the relevant registers before entry. Perhaps

14

IBM CONFIDENTIAL

there is further optimization possible on the 370 code, but
it 1s surely small. The amount of effort required to
implement these few routines in microcode 1is quite small,
and they are easily cast as 370 machine level instructions.

For example, in the trace of Appendix A we see that the
first 32 instructions (of 45 in all) can be replaced by 6
instructions (FETCH, LOAD, FETCH, LOAD, LOAD ADDRESS, ALLOC)
which would operate at essentially machine cycle time plus
several memory fetches. This form of special support is
certainly more feasible across the line than the inclusion
of a very large package such as the APL Assist.

SUMMARY

We have presented a description of a translator and high
rerformance software interpreter for the APL lancuage. The
work described was a feasibility study for an APL compiler.
It focussed largely on the questions of expected performance
within the framework of as complete an APL language
implementation as possible and with no special machine
support. The resulting design seems directly adaptable to
future new versions of the APL language. There has been no
study made of the system aspects of integrating this system
with existing interpretive systems, nor on the efficiency of
the compiler phase itself.

The system 1is capable of supporting almost the full
language, with the exception of those parts which themselves
dynamically modify or construct programs. The system dces
not require the user to add declarations or otherwise
rewrite his workspace.

The system has been partially implemented in order to
estimate its performance. The implementation did not utilize
any microsupport or postulate any special instructions
beyond the standard 370 set; thus it can be utilized on the
fastest of the present machine 1line. The relative
improvement compared to existing interpreters varies from
one test case to another, and amnong different existing
implementations. The major observed savings were: 5 +to 10
times lower overhead for simple operations and varying
performance improvements (from 1 to 1000 times faster) when
dealing with large data aggregates.

The compiler has been written in APL, and it produces a

simple form of machine code for a virtual APL machine. By
relaxing somewhat the legal system behavior for erroneous

15

IBM CONFIDENTIAL

situations it appears possible to add a wealth of
optimizations analagous to those used in compilers such as
the PL/I optimizer, etc.. The compiler performs some
optimizations based on information provided by the user at
compile time. The primary information soucght from the user
are the names of variables which are shared with other
rrocessors, such as TSIO.

The run-time system 1is a high performance scftware
interpreter which achieves substantial performance gains
using adaptive techniques, both at the 1level of the
intermediate code, and in the manipulation of the descriptor
table entries. These techniques, as well as other features,
are applicable in part to existing APL interpreters.

The present version of the run-time interpreter needs
substantial further coding for its completion. There appear
to be no major new technical problems in doing so. We have
described several techniques by which still further
increased performance could be achieved. We believe that the
addition of a few new instructions which perform Lasic
operations for the run-time interpreter will substantially
improve performance. The modifications we envisage seem
implementable even on the highest performance processors
since the function of these instructions is not more complex
than other existing 370 instructions.

16

IBM CONFIDENTIAL

REFERFNCES

1.

2.

10.

11.

12.

13.

faal, E. 7. and Weiss, Z. An APL compiler. IBM Israel
Scientific Center, 1976. (IBM Confidential).

Hassitt, A. and Lyon, L. Z. The APL Assist (RPQ-S00256).
IEM Palo Alto fcientific Center Report ZZ20--6428. Feb.
1975 (IBM internal use only).

Compton, M. T. APL in PL/I. IBM Research Report RCHU4S],
IBM Corporation, Yorktown Eeights , N. Y. Auc. 1973.

Moruzzi, V. L. APL/FORTRAN translations. IBM Research
Report RC3644, IBM Corporation, Yorktown Heights, Dec.
1971.

o, R. L. Routines for translating APL into PL/I and
PL/S II. IBM Poughkeepsie Laboratory TR 00.2442, Mav
1973 (IBM Confidential).

Jenkins, M, A. Translating APL, An empirical study.
Proc. of APL 75, Assoc. of Comp. Mach., N. Y. 1975,
192~-200.

Alfonseca, M. An APL-written APL-subset to Systemr/7-MSP
translator. APL Congress 1973, North Holland, Amsterdar,
1973, 17-23.

Mc Nabb, D. private communication, IBM Los Angeles
Scientific Center, (IBM Confidential).

Bingham, E. ¥W. Content analysis of APL defined
functions. Proc. of APL 75, Assoc. of Comp. Mach., M. Y.
1975, 60-66.

€aal, H. J. and Weiss, Z. Some properties of IPL
programs. Proc. of APL 75, Assoc. of Comp. Mach., N. Y.
1975, 292-297.

Saal, H. J. and Weiss, Z. An empirical study o APL
programs. Int'l J. of Computer Languages, Vol. 2, No. 3,
47-59, Pergamon Press, Great Britain, 1977.

Abrams, P. An APL nachine. Stanford Linear Acceleratcr
Center Report 114, Feb. 1970.

Flynn, M. J., Podvin, A. and Shimizu, K. 2 multiple
instruction stream with shared resources. In Parallel
Systems, Technologies and Applications, editor L. C.
Hobbs, 251-258, Spartan Books, Washington, 1970.

17

APPENDIX A:

Instruction trace for PLUSISS
(scalar<scalar+scalar; integer)

from previous

IBM CONFIDENTIAL

BNER: » LM 3 regs
L
LR
BALR fetch » A
L LA
L L
LR X

MVC 8 chars L
LR LTR
AR BNE
ST ST
M 2 regs LA
L BR
LR

BALR store - BR
LR 4——————"—/

LA

CLT

BNER————»t0 next routine

18

