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I II trodllCtion

The purpo!'>e of thi!'> hook i!'> to provide hack
ground material for teacher!'> amI !'>tudent!'> or
APL. In a cour!'>e on APL the focu!'> i~ nece!'>
!'>arily on the details of the language and its
use: it may not alway!'> he apparent what the
purpo!'>e of a particular rule might be. nor how
one piece of the language relate!'> to the 'Whole.
Thi. hook i!'> a collection of articles that Jeal
\\ Ith the more funJamental i". ue!'> of the lan
guage. They appeared in \\ idel) . catten:J
.ource . ll\ er a perioJ of man) ) ear~. and are
not alway!'> ea. y to finJ. They are anangeJ in
the order or their appearance. !'>o it i" po!'>!'>ihle
to get a ~en!'>e of the Jevelopment or the lan
guage from reaJing the artlcle~ in sequence.

The fir!'>t article. Formalism ill Program
millg Lallguages. appeareJ before there wa
an implementation The reaJer who kno\\ ...
only contemporary APL will have to master
~ome JilTerence!'> in notation in orJer to under
~tanJ it. The effort will be repaid. however.
becau!'>e it conJen!'>e!'> in a very !'>mall !'>pace
some information on the properties of the !'>ca
lar functions which appears nowhere else. 111
the Jiscu!'>sion follo'W ing the paper. R. A.
Brooker a!'>k!'> a key que ... tion. one v\ hid1 ha...
foll(meJ APL through it!'> development:

Why do yOIl il1\i.\t 011 IISIlI~ a l/otaTiol/

Irhich is 11 lIis.:hTlI/l1/"C fo/" "pisT alld com

pO.liTO/" alld ill/po.1 \'ih!(' to imp/ell/ellT \I'iTh

pllnching and p/"iIlTins.: (,(/lIiplI/C'nT Cll/"

/"eIlT/y ami/ah!,,? What proPOll1/S //(/1'('

yOIl gOt.!fl!" OI'('/"COIllillg Thi.\ di/liCII/ty?

The que~tion haLl no good answer at the
time. The he!'>t that haLl heen propo. cd In-

volved transliteration rules that would have
made it very dirficult to work 'Wilh the lan
guage. It wa!'> not until the advent of IBM's
Selectric typev. riter. with its replaceable print
ing element. that it became possible 10 think of
developing a !'>pecial APL printing element.
Jean Sammet Jismls!'>eLl the paper in her revie\\
of It two years later h) \\riting. "a... "oon as
Ithe author I ,tart to Llefend the work on the
grounJ~ that it i... cun'entl) practical. he I on
very weak grounJ...· B) the time the rev it;\\
appeareLl. howe\·er. the wr) impractical nota
tion had found it!'> implementer!'>. and I read the
n:vie\\ as I wa~ !'>itting al a terminal connected
to a 7090 !'»stem which wa!'> the time- ... haring
host for ...omething called IVSYS. the im
mediate precur!'>or of \\ hat would he callcJ
APL.

The !'>econJ paper i!'> connecteJ \\ ith the
tran!'>ition from a pun: notation 10 an im
plementeLl progral11mlJ1g language. When it
was \\ ritten. although implementation!'> had
hegun to appear. and the APL printing element
had been deVeloped. it wa!'> still not clear \vhat
\\a!'> the be!'>t \\ay to puhli!'>h the language, In
the hook. a... yOU can !'>ee from the. election.
u e \Uh stili made of boldface and italic Iype
tyle . rather Ihan the single font impo ed h)

the printing element. In the an \\er hook. hov.
ever. the function ... \\ere di played in hoth the
old sty Ie and the ne\\. !'>o Ihat the lL er cou Id
easily. ee hO\\ to Iran!'>late het\\'een the two.

In the third !'>ekction. A.lgebra as a Lan
guage, the case i!'> maJe for the superiority or
APL notation oyer tho!'>e of cOl1\ention,d arith
Oldic and algehra. It abo gives a di ... cu!'> ... ion of
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the analogie het\\ een teaching a mathematical
notation and teaching a n.ltural lan!!uage. a
note that will be heard a!!ain in the la. t . elec
tion. The papa make lear that there i. a
lar!!er purr 1 e to API. th.1I1 merel) to gi\e
peopl omething in \\ hich (( program. What
i intended i. a thorough reform of the \\ a)
m. thematil: L taught. ..!i\ en the e i. tence of
the computer.

The net two papers form a pair and can be
di ...cu ......ed together. In the fir. t. The Desigll of
,1PL, [-alkoIT and herson give the reasons for
man) of the design decision. that went into
APL. The occasion for the second paper. The
E~'oilltio" of APL, was a confl:rence on the
history of programming languages. Thl: criteria
for a language to be represented at thi ... confer
elll.:e \\ere that It I) \\as neatl:d and in u,e by
1%7; 2) that it till be in u e b) 1977: and 3)
that it h.ld con iderabl) influenced the field of
computing. In the introduction to the proceed-
ing PL \\ a de ribed a. f0110\\ :

Thi 11IIlOua~e lIa re'( eil ((I \I'it!elprl'at!

tll( ill IIII' pel II fell year , illerl'asill~ frUII/
a fI'll hi~hly Ipe( iali:ed //Ialhell/atical
U\('I 10 lI/allY people /I ill~ il for quill' t!iJ

'/('/'('111 appliwliolls, h,( !lulillg Ihose ill
hll.lill<'ls. 11.1 ullique characf('/" sef . ./i·e
(IUl'lIf ell/pl/(/si.1 Oil (ryplic "olle-lilla"

progJ'(/IJI.\. elllt! its (~/Tecli!'(' illifial ill/
pll'lI/elllafioll as all illfeJ'(/('fi!'e syslell/
II/(/ke if ill/porlallf. III addifioll, fhe 11I1

iquell<'ls (~r if.I' ()\'endl approach alld
philosoph,' II/akes if si~lIlicallf.

Thi quotation properl) note the uccess of
PI. in commercial area. and al 0 give ap

proprIate credit to the el kcti\cne. of the ini
tial implementation. One ha to ha e li\'ed
through the trauma of earl. time-.haring.) 
tern to be able to appreciate how !! od thi.
fir t PL reall) \ a.. I could tell dozen of
torie about hO\\ bad mo t earl time- haring
) tern \\ere. and for eal:h or the bad one.. I
ould tell a dozen. tories ahout the good qual-

itie of thi. fiN APL.

The la t three paper ha\ e In common that
tht) u e the direcl d(:!'illifioll form of function
definitIOn. It i. a bit earl) )et to a) hm\ im
portant thi concept \\ III be, hut there i begin
ning to he ome e\ idence to . ugge t that it \\ ill
ha\e applicabilit. in man) area of program
ming. t lir t glance. it might appear that it.
u e would be re tricted to imple mathematical
function. , and might not. perlldp . be emplo)
ed in large-. cale programming acti\ ities. Ht)\\
ever. I ha\e seen reasonabl) largt: report
generators -invol\ ing !'>c\ eral dozcn func
tions- built using this form. and ha\'e seen
othcr !'>),stem ... in which t\\O or three hundred of
thc!'>c functions interact.

As APL enters its third decade. it promises
to lind a signficantly larger numher or user!'>.
Those who truly wish to master it should kno\\
more than ju, t the meaning. of its primitive
lunction symbols. This book i. meant to help
thcm!

note on the origins of" PI."

remember quite well the day I tir t heard the
name PL. It was the ,ummer of 11.)66 and I
\\a \\orl\ing in the IB. 1 1uhan ic Laborator).
a small huilding in Yorl\to\\n Heights. NY.
The project I was working on was IBM's first
effort at developing a commercial time-sharing
system. one which was called TSS, The sys
tem was showing signs of becoming incom
prehensible as more and more bells and whis
tles were added to it. As an e 'periment in
documentation. r had hired threc summer stu
dent and given them the job 01 lransforming
the "dl:\e1opment workbook" t) pe of documen
tatlt n \\e had for certain parts of the y tem
into omething more formal. namel) I\er on
notatIOn. \\ hich the three tudent had learned
\\ hile taking a cour. e gi\ en b) Ken h erson at
Fo Lane High School in Mount Ki co, Y.
One 01 the tudent \\a Eric her on. Ken',
on.

I \\ alked b) the office the three tudents
shared. I could hear sounds of an argument
going on. r poked my head in thc door. and



Eric asked me, "Isn't it true that everyone
knows the notation we're using is called
APLT I was salT) to have to disappoint him
by confessing that I had never heard it called
that. Where had he got the idea it was well
known'! And who had decided to call it that'?
In facL why did it have to be called anything'?
Quite a while later I heard how it was named.
When the implementation effort started in June
of 1966, the documentation eff0l1 started. too
I suppose when they had to write ahout "it."
Falkoff and Iverson realized that they would
have to give "it" a name. There were probably
many suggestions made at that time, but I have
heard of only two. A group at SRA in Chicago
which was developing instructional materials
using the notation was in favor of the name
"Mathlab" This did not catch on. Another
suggestion was to call it "Iverson's Belter
Math" and then let people coin the appropriatc
acronym. This was deemed facetious.

Then one day Adin Falkoff walked into
Ken's office and wro!c "A Programming Lan
guage" on the board, and underneath it the ac
ronym ··APL." Thus it was born. It was just a
week or so after this that Eric Iverson asked
me his question, at a time when the name
hadn't yet found its way the thirteen mile' up
the Taconic Parkwa) from IBM Research to
IBM Mohansic.

There was a period of time, however, when
the name was in danger of having to bc
changed. IBM had just gotten over the experi
ence of having to withdraw the name NPL
which it had given to its "New Programming
Language:' because of a conllict with the use
of the same initials h) Britain's ational
Ph) sics Lahorator). The conn ict im 01\ ing
APL arose \\ hen a paper appeared in the 1966
AFIPS Fall Joint Computer Conference Pro

ceedil/g,\. It \hlS b) George Dodd, of General
10tors Research, and wa. entitled APL-{/

lal/gl/age jiJl' a,\,\oC'iarh'e dala hal/dlil/~ ill PUI.

(PL I was the name nO\\ gi ven to the fonner
PL.) In the review of this paper that ap

peared in C01l1Plllil/~ Rel'iell's 8, for Sep
tember-October 1967 (revie\\ 12,753). Saul
Rosen wrote:

This rel'ie\l'el' //(/,\ ol/e \I/~~eslioll Ihlll i\
,?[(ered (/Ilile \el'/ol/.\/\. thol/~h 'oll/e

readers I/li~ht COl/sider il/rimlolls, There

already exi\t\ al lea\1 ol/e 11I1I~lIa~e Ihlll

is reasollahl" I\'el/ kllOIl'1/ In il,\ acrOI/\'I1l

APL. I nler 10 Ihe lal/gl/{/~e del'£'!o/h'd

by hersol/ jor \I'hich II'£IJ/\/([(or.\ {/I/(I il/
lerpreler,\ ha\'e heel/ II'ril/el/ Oil a IIl1l1/her

'1 COII/plllel'\'. It 1I01i1d he help/iii !( Ihe

a II/h01',\ I~( Ihe pn'\elll {/rlicle co1i1d 1I1{/ke

sOll/e 1I1il/or ChClI1 ~e ill Ihe Ill/II/e c~/ Iheir

proce,\,\or /() rell/{/\'e Ihi.\ I'ery gllllJelI {/I/I

bigllily,

George Dodd replied in a letter to the editor
that appeared in CACM II. for May IlJ6X. p.
378:

I \I'(JIIld like 10 c~lf£'r a rehllllal III the 1(/\1

paragraph (II' Ihe olherll'i \(' ('\c dlell/ lIl/d

acc//rale rel'ie\\, cl r\PL-a language for
associative data hanJling in PI. r
In Ihe re"'iel\ if i\ poil/led oul fhal Iltere

already e.risfs olle olher lal/,(}ua~e knoll'lI

hy tlte aU'oll\lI/ API.; thaf heillg Ihe 1£11/

gua~e c!('I'e!O/Jl'c! h\' Kel/llellt !I'el'\oll I!f

IBM. The ri'l'ie\l'l'/' cOJ/eluc!e.\ thaI Ihe

IIllllle (!( our proce.\'\or \hould he chall~cc!

fo (/\'oid a ('(l/!/lill of I/all/C,\.

Before lillI/lin ~ lite IWlguagc Ill' c01/

ducled a Ihorouglt \earch 0/ Computing
Reviews, AHPS Re\ic\\s. alld olher

sources, w/(I al fltal lill/e (spril/g. /9(6)

ascer!ail/ed Ihal Ihe APL aCJ'OI/YII/ \1'(/.\

ul/il/I/e. Un/il/'II/I/alely. !I'ersol/' \ 1£11/

guage, II'hich i.\ (11/ illlerJlal IBM 'h'l'e!op

/IIeJ/f pJ'(~ie('1 al/d 1/01 01/ w/llOul/ced IJroc!

uel. hos olIO COlI/l' to he kl/owl/ In Ihe

wlI/e 11lI1/I£'. We /ee! our pllhlic referel/l e
10 API. precec!ed 1I'e/,\,01l' \' al/d Ihm 0

II/ore l"eo\'(lI/ahlc' re'(/uc,\1 .froll/ Ihe I"e

I'iell'cr 1\(Iuld he Ihat Ihe I/a/lle (If the

1I'ermll API. he ('I/(/I/~ec!.

There was a hort but fair!) IIlten e kirmi h
inside IBM follc)\\ ing the George Dodd teller.
I don't kno\\ all the details. hut I helie\ e the
IB, 1 branch office \\ hich handled the General

Introduction I:i



Motors account was SuppoJ1ing George Dodd,
and the case for IBM's right to use the initials
was being made by Al Rose. [ don't know
what became of George Dodd's processor. The
issue wasn't resolved until late in 1968. and
was one of the things preventing the release of
APL as a product. Rose eventually won the
day by making the case that Iverson had estab
lished his stake in the initials when his book A
Programming Language was published in
1962, long before Dodd's use of the letters in
1966. The story goes that, at the final meeting
to decide whether to release APL. the account
representative said. "The Detroit branch office
nonconcurs-" at which point the vice presi
dent sitting in judgment replied, "That settles
it! Branch offices don't nonconcur." And so
IBM retained the use of the letters.

Curiously, in view of the National Physics
Laboratory's objection to the programming lan
guage named NPL, the Applied Physics Labo
ratory of Johns Hopkins University never made
an issue, as far as I am aware. of IBM's joint
use with them of the initials APL.

There is at least one other claimant to the
initials. When the rEM Philadelphia Scientific
Center closed in 1974, many of the APL
people there moved across the continent to the
San Francisco area, to work at an rEM lan
guage development location in Palo Alto.
While this was going on, one of those moving
picked up a copy of the San Francisco Chroni
cle which had the headline, "APL LEAYES
SAN FRANCISCO." Since he had just pulleo
up stakes in the Philadelphia area. he was star
tled to see that the same thing was about to
happen again in San Francisco. On closer in
spection, however, it developed that the story
concerned the departure of the facilities of the
steamship company. American President Lines,
from the docks of San Francisco to the docks
across .the bay in Oaklano.

Eugene E. McDonnell

Se/J!ember /98/
Palo Al!o

11 El (;E F. F.. ~1.·nO~E1.L
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Formalism In Programming Languages*

Kenneth E. Iverson

International Business Machines Corporation, Yorktown Heights, New York

Introduction

Althou~h the question of equivalences hetween algo
rithms e.'pre:sed in the same or diff£>r£>nt languages has
received some attention in tl](' literature, the more practical
que:tion of formal id£>ntitie' among statement in a .'ingle
lan~uag£> has rec£>iwd virtually nonp. The importance of
such id£>ntitie, in theoretical work i: fairly ob,'iou . The
pre:ent pap£>r will he addre, ed primanly to th£> practical
implication for a compiler.

The formal identitie, can be incorporat£>d directly into a
compiler, or can alternatively he II, 'ed by a programmer to
derive a more' efficient £>quival£>nt of a program p£>cifi£>d
by an allaly.t. Ihe id£>ntitie. cited include (1) dualilies

which permit the inclll:ion of only one of a dual pair a. a
basic operator, (:2) parlilioning irhnltlies which permit th£>
automatic allocation of limited fa t acc£> 's torage in oper
ation: on arrays, (:3) permulalwn idr nlilies \, hich permit
the adoption of a proce.'sing sequence suited to the par
ticular representation used (e.g., row list or column list of
a matrix), (4) general associalil'ity and dislribulivity idenlz

ties for double operators (determined as a function of the
properties of the basic operator.) which permit efficient
reord£>ring of op£>ration:, (.'j) tTal/spa ilion identities, and
(6) the automatic extension of the appropriate identitie 0

to any ad hoc operatIOn. (i.e.,ubroutin£> or procedure .)
d£>nned by any II.W of til(' compiler.

The di cu: ion will b£> ba:ed upon a programm1'1g lan
guage which ha be£>n pr£> ented in full el e\\ Ill'r£> [1]. Ho\\
e,'er, tIl(' r£>levant a pert of thl' langllag£> will fir. t he
sumlllariz£>d for reference,

* Received July, 1963. Pre. ellted at a "orkmg Conference 011

Mechanical Larguage 'tructur£ PUllleton, .T. J., Augu t 1%3
spon,ored h) the A ociati n for (omputing lllchinl'f) the
In. titutl' for Defen (' n' he, and ttl' 811 inl' EqUIpment
:\lanufacturer A' ociation. ThIS work w donI' at IhrvarJ l DI

versity whi)p thc author \\~~ vIltrng leetur r, Fel)rJI' ry
through June, 1963

The problem1:i of transliteration and syntax which com
monly dominate discussions of language will here be sub
ordinated as follows. 'I'll(' symhols employed will permit
th imllH'diate determination of til(' class to which eaeh
belongs; thus literals ar£> denoted hy roman type', variable'.
ar£> (knotpd by italic 0 (Iow('fea'p, lowerca 'e hold, and
upperca e bold for :calar, vector and matri,', re, pecti, l'ly),
and operator' arc dpnot£>d by di tinct (u 'ually nonalpha
betic) :ymbo!.. The problem of tran:literation (i.p.. map
ping the :et of . ymhol l'mployed onto til(' . mailer et
provided in a computer and of mapping po itional infor
mation (:nch a: 'ub:eript and uper.'cript·) onto a linear
reprl' entation ther£>forp can, and will, h£> uhordinatl'd to
qu£>stion, of the :trncture of 1\1\ adequate langllagC'.

The Languap;c 1

1. The Il'ft ano\\"~ "<knot!' .. peeificatlOll," and eaeh
statl'lll('nt in the langua<rl' i-; of th£> form

t<- Cl

whpre X is a variahl£' and Cl i1:i SOI!lP fund iOIl.
2. The application of any lInary opNator 0 to a cl!ar

argul1\l'nt x IS denot£'d by (,:c, and thl' applieation of a
hinary operator 0 to th!' arguments x, y is dl'lloted In'
.1' 0 y. 'I'll<' set of ba:ie operatur and symbol: in 'ho\\ n i;\
Tabl£> 1 'I'hp USl' of the 'amp 'vmhol for a binary and a
ullary opprator (c.g., x L y for mine x, y) and Lr for
largp t integPr Ilot P. ('eeding.J: pl"Oduc£> no ambigUlt\
and doc conscrv£> ymbol '. .

\ ho\\ II in I able 1. any rplatlOlI I treated a an opel'
ator denoted hy the II ual ymhol for th£> relation I.a, .nl!;
the range zero and one logical, ariablC' 'I'hu 0, for intpf;er
i and j, the opemtor" "i erl'lh alent to til{' r-roned,£>r
delta.

I The language dp eribc d here differs from that III [1 J III mlIl r
del RI.>; de Igned to further S) stematizC' and simplify it truct urI'

Except for brll.nphing t lemPI,t , \\ hieh are not relevar t to
the pre pnt dlseusslOn



TABLE 3. CONSTANT VECTORS AND SQUARE MATRI(,E~ OF
DIMENSION n

Table 2 and include the dimension operators II and J..I. as
well as the transposition operators e, e, 0, 0, in which
the symbols indicate the axis of tran position of a matrix.

7. It is convenient to provide symbols for certain con
s.tant vectors and matrices as shown in Table 3. The
parenthetic expression indicating the dimension of each
may be elided when it is otherwise determined by conform
ability with some known vector.

TABLE l. SYMBOLS FOR BASIC OPERATORS
UNARY Bll\ARY

Operation Symbol Operation Symbols

Absolute value Arithmetic + - X
operators

Minus Arithmetic re- < ;:;; ~> ""lations
Floor (largest integer L Max, Min r L

contained)
Ceiling (smallest in- r Exponent ia- x n y

teger containing) tion (yz)

Logical negation Residue 111 I n
mod m

Reciprocation Logical AND, AV
(+x<->l+x) OR

TABLE 2. UNARY OPERATIONS DEFINED ON ARRAYS

vx Dimension of vector x

vA Row dimension of matrix A (dimension of row
vectors)

I-lA Column dimension of matrix A (dimension of
column vectors)

e CD 00 Transposition of matrix about axis indicated
by the straight line (0A is ordinary transposi
tion of A)

CD CDx denotes transposition of vector x (reversal
of order of components)

.1 Ba e-two value of vector

Symbol

£(n)
£i(n)
ai(n)

wi(n)

D(n)
lSI(n)

~(n)

1!1 (n)

[II (n)

Designated Conslanl

Full vector (all 1's) 1
jth unit vector (l in position j)

Prefix vector of weight j (j I
leading l's)

Suffix vector of weight j (j
trailing 1's)

Interval vectur (j, j+1,' . "
j+n-l)

Zero matrix
Identity matrix (l's on di

agonal)
Strict upper right triangle (l's

above diagonal)
Upper right triangle (l '8 abuve

and on diagonal)
Strict lower right triangle

Logical Vectors

Logical Matrices

3. The ith component of a vector x is denoted by Xi ,

the ith row vector of a matrix M by M
i

, the jth column
vector by M i , and the (i, j)th element by M/. A vector
may be represented by a list of its components separated
by commas. Thus, the statement

X+- 1,2,3,4

~ (n) Upper left triangle

8. If a( i) denotes one of a family of variables (e.g,
scalars Xi or Xi , vectors Xi or Xi or Xi , or matrices iX )
for i belonging to some index set i, and if 0 is a binary oper
ator, then for any set s 5;;:::; i,

specifies X as a vector of dimension 4 comprising the first
four positive integers. In particular, catenation of two
vectors x and y may be denoted by x, y.

4. Operators are extended component-by-component to
arrays. Thus if 0 is any operator (unary or binary as
appropriate) ,3

If

or if

a( i) Xi and s

,. +- x 0 y ~ 1', +- Xi 0 Yi

R +- OM ~ R/ +- OM/

R +- M 0 N ~ R/ +- M/ 0 N/.

5. The order of execution of operations is determined by
parentheses in the usual way and, except for intervening
parentheses, operations are executed in order from right to
left, with no priorities accorded to multiplication or other
operators.

6. Certain unary operators are defined upon vectors
and matrices rather than upon scalars. These appear in

3 The symbol <-> will be used to denote equivalence.
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a(i) = Xi and s = ,I(IIX),

then sand i may be elided. Thus,

+/X XI + X2 + ... + x,x ,

/\/x XI /\ X2 .•• /\ x'x,

+/X XI + X 2 + ... + X,x, etc.

If a(i) = Xi and s = ,I(J..I.X), then the sand i may be
elided provided that a second slash be added to distinguish
this case from the preceding one. Thus,

O//X= X I OX2 0 ... OX~x.

9. If a is any argument and 0 is any binary operator,
then 0 n / a denotes the nth power of a with respect to O.



11 [S1 is a matrix with olles on tIl(' !.th ;,;upel'-
o

Formally,

onI a ~ a 0 a 0 ... 0 a (to n terms).

Hence Ol/a = a, O-I/a is the inverse of a with respect
to 0, and OO/a is the identity element of the operator 0
(if they exist).

10. If 01 and 02 are binary operators, then the matrix
product A~~B is a matrix of dimension J.lA X vB defined by:

(A~~B)/ = Or!A'02Bj •

In particular, A ~ B denotes the ordinary matrix product.
Moreover, the pair (~~) behaves as a binary operator on
A and B and hence may be treated as a binary operator.
For example, applying the notation of part 9, (~)-IIA
denotes the ordinary inverse of A.

If the post-multiplier is a vector x (i.e., a matrix of one
column), the usual conventions of matrix algebra are
applied:

+ i+ .
(A X X)i = A x x = +1A' X x.

Similarly,

(x ~ B)j = x ~ B j , and x ~ Y = +Ix X y.

11. The outer product of two vectors x and y is denoted
by x 0 y and defined as the matrix M of dimension
vx X vy such that M j' = Xi 0 Yj .

12. Deletion from a vector x of those components corre
sponding to the zeros of a logical vector u of like dimension
is called compression and is denoted by u/x. Compression
is extended to matrices both row-by-row and column-by
column as follow :

Y f- u/X ~ y i = u/Xi

Yf-uIIX~ Yj = ulXj .

11. If p is any vector containing only indices of x, then
xp is defined as follows:

X pi , i E /(vp).

If p is a permutation vector (containing each of its OWI1

indices once) and if vp = vx, then X p is a permutation of x.
Permutation is extended to matrices by row and by

column as follows:

Yf-Xp~ yi = (X')p

)' f- xP ~ Yj = (Xj)p.

12. Left rotation is a special case of permutation denoted
by k i x and defined by

y f- k i x ~ Yi

Right rotation is denoted by k 1 x anq is defined anal
ogously.

A noncyclic left rotation (left shift) denoted by 0 is
defined as follows:

k ! x ~ ("-'w
k

) X k i x.

(The zero attached to the shaft of the arrow HUggt'st . that
zeros are drawn into the "evacuated" position::;). ~imilarly,

k 1 x ~ ("'-Il) X k 1 x.

Rotations are extended to matrices in the usual way, a
doubled symbol (e.g., 11) denoting rotation of colI/innIS.
For example,

(Ii ! xr = I.', ! Xi,

and (kE)

diagonal.4

13. Any new operator defined (e.g., by some algorithm,
usually referred to as a subroutine) is to be denoted in
accordance with Definition (2) and is extended to arrays
exactly as any of the basic operators defined in the lan
guage. For example, if x gcd y (or, better, x ~ y) is used to
denote the greatest common divisor of integers x and y,
then x ~ y, l I x, and X ~ yare automatically defined.
~Ioreover, if n is a vector of integers and F' represents
the prime factorization of ni with respect to the vector
of primes p (that is, n = F Ap), then clearly ~ I n =

( L/IF) Ap. Similarly, if x I y denotes the l.c.m. of x
and y, then I I n = ( I I F) Ap.

Array Opcrations in a COInpileI'

The systematic extension of the familiar vector and
matrLx operations to all operatm:>, and tilt' introduction
of the generalized matrix product, greatly increm,e the
utility and frequency of use of array operations in pro
grams, and therefore encourages their incln"ion in the
::-ource language of any compiler. Array opNutions can, of
course, be added to the repertoire of any Rource language
by providing library or ad hoc ::-ubroutincs for their exe
cution However, the general array operationi'; i'pawn a

host of useful identities, and these identities cannot be
mechanically employed by the compiler unle"s the array
operations are denoted in fiueh a way that they are easily
recognizable.

The following example illustrates thi" point. Considei'
the vector operation

Xf-X+Y

and the equivalent subroutine (expressed 1Il AU:OL and
using IIX as a known int('ger) :

for i = 1 stcp 1 until vx do

.r(i) := xU) + y(i)

• The £ may be elided.
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It would be difficult to mak<' a compil<'l' recognize all
le/!;itimate variants of this program (including, for example,
an arbitrary order of ~canning thc components), and to
mak<' it di'tingui"h the quite different and essentially
sequential pro~ram:

fOl' i = 1 step 1 untilllx - 1 do

.r(i+1) := .r(i) + y(i)

TABLE 4. OPERATIONS AND RELATIONS DEr'INED ON OPERATORS

Self-associativity 0'0 = 1 iff xO (yOz) <-+ (xOy) Oz
Commutativity 'YO = 1 iff xOy <-+ yOx
Distributivity 011102 = 1 iff X01(y02Z) <-+ (XOly)02(XO,Z)
Associativity 0'0'02 = 1 iff X01(y02Z) <-+ (XOly)02Z
Dual wrt T 110 is an operator such that

(IlO)x H TOTX if 0 is unary
x(IlO)y <-+ T((TX)O(Ty)) if 0 is binary .

Th<' foregoing proj.!;rams could perhap~ he analyzed by
a compiler, but they are merely simple examples of much
more complex ::;can proccdures which would occur in, say,
a matrix product suhroutine. A somewhat more complex
case is illustrated by the vector operation z +-- k i x,

and the equivalent ALGOL progrn.m:

for i = 1 step 1 until IIX do begin

jf i + k ~ IIX then j

else j := i + k - IIX;

z(j) := .«i); end

Finally, there is a distinct advantage in incorporating
array operations by providing a single j.!;eneral scan for
each type (e.g., vector, matrix, and matrix product) and
treating the operator (or operators) as a parameter. It
then matters not whether each operator is effected by a
one-line subroutine (i.e., a machine instruction) or a multi
line subroutine, or whether it is incorporated in the array
operation as an open or a closed subroutine. If several
types of representations are permitted for variables (e.g.,
double preci~ion, floating point, chained vectors), then a
scan routine may have to be provided for each type of
representation.

Table 4 (which summarizes these functions) and in Sub
section (a) belo\\".

All of the identities are based upon the fundamental
properties of the elementary operators summarized in
Tables 5-8. Table 5 shows the vector a of binary arith
metic operators and below it two logical matrices describ
ing its properties of distributivity and associativity. These
matrices show, for example, that aa (that is, X) dis
tributes over + and -, that rand L distribute over
themselves and each other, and that X associates with
itself and -7. The first four rows of the table show the
self-associativity of a (equal to the diagonal of the outer
product matrix a a a), the commutativity, and the dual
operators, wrt -7 and -, respectively.

Table 6 shows three alternative ways of denoting the
16 binary logical functions: as the vector of operat01:s I,
as the matrix T of characteristic vectors (T; is the
characteristic vector of operator l.), and as the vector 11 T
obtained as the base-two values (expressed in deeimal) of
the columns of T. The symbols employed in I include
the familiar symbols V and 1\ for 01' and and, V' and
.:l for their complements (i.e., the Pierce function and
the Sheffer stroke), 0 and I for tlw zero and identity
functions, the six numerical relations ~, <, =. ~, >,

TABLE 5. PROPERTIES OF THE BINARY ARITHMETIC OPERATORS

aa

"}a

Ila (wrt +-)
6a (wrt -)
a

aaa

r

o
o

1
1
r
r
L I
1 0

o
1o

o
1 0
1 0
o 0
I n

o 0
o 0
o 0
o 0
[) 0
1 ()
o 0
o 0

o
o
o
o
1
o
o
()

o
o
1
o
o
o
()

o

o
o
1
o
o
o
o
o

1 0 1
101
X L

L
X r
001
o 0
o 0 0
o 0 0
001
001
000
I I I

1
o
o
o
o
o
o
o

r

1 0
1 0

o 0
o 0
o 0
o 0

+
+
o 0
o 0
1 1

1
o
o
o
o
o
o
o

X

+

X

n

n

r
L

I

+

r
L
I

o 1
o Io
o l
() (
o
o
() )

t I and r denote left and right di~trihutivit)·.

The identities fall naturally into five mam classes:
duality, partitioning (selection), permutation, associativity
and distributivity, and transpo -ition. A few examples of
each cla~s will be pres<,nted together with a brief discussion
of their uses.

In dii'\cussing identities it will be cOIwenient to employ
the ::;ymbob 0, 01, 02, p, (J", and T to denote operators,
and to define certain functions and relations on operations
as follows. The (unary) logical functions a 0 and 'Y 0
are equal to unity iff 0 is associative and 0 is commuta
tive, rei'pectively. The relation 01002 holds iff 0 I dis
tributes over 02, and 0la02 holds iff 01 associates
with 02, that IS,

Identities

This latter is dearly a generalization of associativity, that
is, OlaOI ~ aOl . Finally, the unary operator 0 applied
to the operator 01 (denoted by 001) produces the
operator 02 which is dual to Olin the sense defined in



TABLE 6. PROPERTIES OF THE BINARY LOGICAL OPERATORS

* Duality with respect to ~.

...,7'" V V= w~ii ~ il 111
5 6 7 8 !) 10 11 12 13 14 15 lIlT

o 0 0 0 0 0 0 0 0 0 0 1
o 0 0 0 0 0 0 0 0 0 0
o 0 000 0 000 0 0
o 0 0 0 0 000 0 0 0 I

OOOOOOOOOOOi
11111111111
01()0100100()~1
o 0 1 0 0 0 1 0 0 0 1 ~l

o 0 () 0 0 0 0 0 0 0 0
010010010001
01001001000/
o 0 0 0 0 0 0 0 0 0 0 I
000 0 000 000 0 I° 0 1 000 1 000 1
o 0 0 0 0 0 0 0 0 0 0 I
00100010001)

=1 g

~l
1
o
o
o

1
1
o
o

/\ V 7'"

o I ~
7'" 0

o

and not distributive, namely, (rE-, rE-) (rE-, =), (=, 7""),
( =, =), (w, rE-) and ((;i, =).

(a) DUALITIE:-5
A unary operator T is said to be self-inveI'lie if H.C ~ .t'.

If p, er and T are unary operatorH, if T is self-inw'rse,
and if p:c ~ TerTI, then erX ~ TpT.r, and p and er are said to
be duals with respect to To The floor and ceiling operators
Land r are obviously dual with respect to the minus

operator. Duality clearly extends to arrays, C.g.,

rx ~ - L - x.

The duality of binary operators p and er also extends to
vectors and matrices. :\foreover, when they ar(' used in

reduction, the following identities hold:

Oli = l.J..(J)_T, .

TABLE 7. PROPERTIES OF THE NONTRIVIAL ASSOCIAT1\'E

COMMt:TATI\'E LOGICAl, OPERATORS

piIX ~ Terl/TX.

The duals of unary operators are shown III Table 8 as
the vector Bc.

If p and er are binary operators, if T is a self-iIwerse
unary operator, and if

then p and er are said to be dual with respect to To The max
and min operators ( rand L) arc dual with reHpcet to
minus, and 01' and and (V and 1\) ar(' dual with r('speet
to negation ("-'), as are the relations rE- and =.

Dual operators are displayed in the \'<'ctorH 0(1 and
01 of Tables j and 6. Each of the Hi logical op('rators has
a dual:

~ 1
o I

~ I
o I

~ j,gl

~ I
~ I
o I
1 J

o 1 I al
1 1 I -yl
V 0 ) 01*

r 1) T

o 0
o 0
ii <
1 1
1 1
o 0
o 1

o 1 0 0
1 1 0 0
Cl 7'" (;) >
1 1 1 1
o 0 0 0
o 0 1 1
o 101

V w~ii~t.l)1

8 9 10 11 12 13 14 15 lIlT
'" 7'" V
5 6 7
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1111111111
1 0 0 0 0 1 0 1 0 0
1 0 1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 0
1010000000
1 0 1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0

a <
3 4

1 0
1 0
1 0
1 0
1 0
1 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0

a <
3 4
1 1
1 1
1 0
1 0
1 1
1 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0

1010111
11000011
IV~ a~ "'=/\
o 0 0 0 0 0 0 0
0000111 1
001 100 1 1
01010101

o /\ >
o 1 2

o 0 1 1 1
/\1111
> 2 0 0 0
a 3 0 0 0
< 4 1 1 1

>,,,,5111
'S: 7'" 6 0 0 0

V 7 0 0 0
.~ \" 8 0 0 0
~ 9 0 0 0
<wlOOOO
~11000

a 12 0 0 0
~ 13 0 0 0
il14000
1 15 0 0 0

o /\ >
o 1 2

o 0 1 1 1
/\1111
> 2 0 0 0
a 3 0 1 0
< -l 1 1 1

$ '" 5 1 1 1
'S: 7'" 6 0 0 0
'~V7010

~V8000
.:;2 !) 0 0 0
"""'wlOOOO
~11000

ii 12 0 1 0
~ 13 0 1 0
~ 14 0 0 0
1 15 0 1 0

, Abbreviated as "dual wrt".

TABLE 8. PROPERTIES OF THE UNARY

/\ I ~1 -0 -0-01

~ 0 ~ ~ ~J gag

rE-, and the symbols a, w, a, and (;i for the four "unary"
functions, that is, xay = x, :cwy = y, xay = i and
xwy = jj.

The remaining portion of Table 6 is arranged like Table
5. Since «al) 1\ -yl)/l = (0,1\, rE-, V, =,1), it follows
that the only nontrivial associative commutative logical
operators are g = (1\, V, rE-, =). The properties of this
particularly useful subset (abstracted from Table 6) are
summarized in Table 7.

Certain functions of the matrices LCd and l~l are also of
interest-for example, the matrix (lal) > (l~l) shO\\'s that
there are only six operator pairs which are associati"e

L r 
r L-

~I c
I Dc (wrt -)
I Dc (wrt -:-)

~I Dc (wrt ~)

OPERATORS
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For pxample ,

L/x = - f/-x,
and

titioning effected by a logical partition matrix P (defined
hy £ = +IIP) as follows:

A~B H p:I(~P)/( p i
/ A) ~ (p i

/ /B),

j1lk i A~BH(j1lA)~(k B).

(OX)p +-+ 0 (xp),

and permutation therefore commutes with any unary
operator. Com;ider, for example, a vector x whose com
ponents are arran~ed in increa. ing order on orne func
tion g(x,) [e.g., lexical order so as to permit binary search]
but is represented by (i.e., stored as) the vector y in
arbitrary ordcr and the permntation vector p such that
x = YP . Then the operation z <-- Ox may be executed as
l.t· <- Oy, ,....here z = W p '

For any binary operators p and a,

(A~B)lHAP~Bq. (1)

This is the form most useful in allocating storage; if fast
access storage for :?n components of A and B were avail
able, P would normally be chosen such that pi =
(n X i) 1 w

n
.

(c) PERl'vIl'T\TIO",

In this ,cction, p, q and r will dpllotc permutation
\'ectors of appropriate dimensions.

If 0 is any binary opcrator, then

(xOY)p +-+ xpOyp,

i.e., permutation distributes ov('[' any binary operator.
For any unary operator 0,

(2)

~p = 1, then pix H plxp , and COIl-

Finally, then

(A~B)l f-+ A~~Bqr.

This single identity permits considerable freedom in trans
forming a matrix product operation to a form best suited
to the access I imitations imposed by the representation
(i.e., storage allocation) used for A and B (e.g., row-by
row and column-by-column lists).

For the special case q = t" A = ~,p = +, and U = X,
equation (1) reduces to the well-known method of per
muting the columns of a matrix by ordinary premul
tiplication by a permutation matrix ~P, that is,

BP H SP ~ B.

The fact that iSjP and 0 P arc inverse permutations
(i.e., (0 iSJP) ~ iSJP = N) is obtainahle rlircctly from
equation (2) and the fact that 0 < l = (0f'\:)p = P .

The rotation operators i, 1, 11 ,~ are spccial casps of
permutations; consequently,

::\loreo\'er, if ap

sequently

A/x = "'""Vl"'-'x (Dp:\[orp;an'~ Law).

and

where it is used as an altprnative notation for (.......,u).
Conspqupntly,

.1';BH «u/A)~(it 'B))p«u/A)~(u//B)).

Rincp the distributi\'ity of U and p is not involved, the
forpgoing identity (\\'hich is a simple generalization of
the familiar identity for the product of partitioned mat
rices) applies to most of the common arithmetic and
logical operators.

The identity for the two-way partitioning effected by
Ii and it can obviously be extended to a (Jl.P)-way par-

II//A~B+-+ (u//A)~B.

If p i~ any associati\'e commutative operator (i.e.,
ap = ~p = I), then

pix H (p/Ii/x)p(p/Il/X) ,

The basic reduction identity (namely, pIX +-+ TU TX)
Ipad~ immediately to the following family of idputities
for the matrix product:

. f~~B H r( rA) ~Ol (TB).
UO z

For the logical op<'rators, the family compri:'e:" :?;')G iden
tities, of which LH are nontrival.

Duality relation,' can he specified for a compiler by a
table incorporating I and Oi, and can be employed to
obviate the inclusion of a subroutine for one of the dual
pair or to transform a source ::;tatement to an eql1i\'alent
form more efficient in execution. For examplp, in a com
puter such as the nnr 7090 (which executes an nr be
tween registers (i.e., logical vector,,) much fastPl' than a
corresponding and, and which quickly pprforms an or
over a register (i.e., a test for non zero)), the operation
"'""( "'""x) 0 y is more efficiently executed a::; the equi\'alent
operation x ~ "'""y, obtained by duality.

(b) PAHTITIO '1:\(;

Partitioning identitie::;, which permit a Reg;ment of a
vector result to be expressed in term;; of :"egment-; of the
argument vector.;;, are of obviouR utility in the efficient
allocation of limited capacity high-spepd storage.

If z <-- xOy, then u/z <-- (u 'x)O(u y), where u is
an arbitrary (but confonnablp) logical vector. This simple
identity applies for any binary opprator 0 and permits
any vector operation to be partitioned or segmented at
will. A similar identity holds for unary operators.

From the definition of the matrix product it is clear
that for any binary operators p'and CT,

u/A~B +-+ A~u/B,
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and if

Moreover, this identity still holds when the cyclic rota
tion operators are replaced hy the corresponding non
cyclic operators 1, 1, n, and n:-In particular,

j nB = j n( ~ B) = (j n )~ H,

a well-known identity for the superdiagonal matrices

h nISland k n [Sl.

(d) ASSOCIATIVITY AND DISTRIBUTIVITY OF DOrJ-lLE

OPERATORS

If ap = I'P = (fOp = 1, then a(~) = 1; that is,

A<T(B~C) ~ (AgB)gC.

Moreover, (g)op = 1; that is

A~(BpC) ~ (A~B)p(AgC).

For example, if C is the connection matrix of a directed
graph, then B = C X C is the matri.x of connections of
length two; the operator (X) is associative and distributes
over V. Similarly, if D is a distance matrix (D; is the

distance from point i to point j), then E = D ~ D is

the matrix of minimum distance for trips of two legs;

(~) is associative and distributes over L.

The associativity of matrix product operators can be
very helpful in arranging an efficient sequence of cal
culations on matrices stored row-by-row or column-by
column. For the logical operators, the number of asso
ciative double operators is given by the expression

+/+/(al)/IBI
which (according to Table 6) has the value G6.

(e) TR.\XSPOSITIOXS

Of the unary tran.position operators, e and <D arE'
special cases of permutation, hut (9 and 0 arp not.
Tahle !) show~ the multiplication table for tIl(' group
j1;enerated hy these four tram;positions. The notat ion
chosen for the fom added operators is clear: 0 dpnotes
the idelltity, EB ~ <D 8 ~ 8 <D, e ~ 08 (!l0° axial
left rotation), and e <-> (98 (axial right rotationl.
:-lince EB <-> 0 (9 , it could as well ha\'{' h('pn dE'noted hy
®.

The following illu trate the many transposition idpn
tities:

B = h n

(.) )

(Il)

OCD800EBS8} t

OOCDS00EBSe
CDCDOEBeSe00
e8EBOSeCD00
00SeOEB0CD8
00S8EB00SCD
EBEB8CD000ee
ee00SCD8EBO
ee00CDSeOEB

,t~8<->(<D.1)d(8H) if ap=I'P=

(9(A~B) <-> ((9B)~((9A) if I'(f = I

EB(.1~B) ~ (08) ~(0A) if ap = I'P = /'CT = 1. (7)

TABLE 9. GROl:P OF TRAN;;posITJONS (rotations of t!l(' ~qllare)

Idcntities 0)-(.') arc special cases of th pprmlltation
identitie8 and pcrmit freedom in the order of SCUll, which
may bc important if a backward-chained rppres('ntatioll is
employpd for til(' wctor,.; involved. Idpntity (Ii) is the
generalization of tIl(' well-known transposition idplltity of
matrix algebra. Idcntity (7) is obtainl.'d dir('ctl:.' from (Ii)
by the application of (;~), (4) and (.')).

Conclu!iiioll

The use of a programming language in which e]pnwntary
operations are l.'xtended ,.;ystl.'matically to array,.; pro\'idc,.;
a wealth of mdul idcntities. If the array operations are
incorporated directly in a compiler for th(' Iangua~l.', the.'e
identities can he automatically applied in compilation,
using a small number of small tahles des('ribin~ tlw funda
mental propertiei:> of the elementary opPrators. :\loreO\"er,
the identities can be extendE'd to any ad hoc operators
specified by the source proj1;ram, pro\'idl.'d only that the
fundamE'ntal characteristics (associati\'ity, pte.) of thp ad
hoc operator::, are supplied.

Exploitation of the identitie8 within the compiler will,
of couri:>e, increase the complexity of the compiler, and one
would perhaps incorporate only a 8electl.'d subset of them.
However, the possibility of later extensions to exploit
further identities is of some value. FinaJly, til(' identities
are extremely useful to the programmer (as oppo,.;ed to the
analyst who specifies the o\'emll procedurp und who may
use the identities in theoretical work), since the trick.
used hy the programmer, as in allocatin/l; stol'ag;e (par
titioning) or modifying the sequence of a scan (pennu
tation), are almost invariably special case" of the more
general identities outlined Iwr('.

(:3)

(4)

) ~ (h n [SJ),= (j n

<DA~B ~ A~ <DB

8A~B ~ (8..1)~B

then

(h + j) n[SJ = j nh n

Formalism ill Program",ill~ l.Jall{(lwf{es 23



m,Fl;H.E. 'CE
1. In II 0 ,KE t. Til b I PrO!/rllTlllllllllj Lall!! W!Jl. "He), l!) .~,

))I~CC~SIO

G", II: 1Ill(' almo t UnCil'llt ,oun'" of gell£'I"dizl'd oppr It, h

afC WllIlt-hl'ad UniteI' III Ilyebrtl, and (,ra III II, j)/( .11 tldlll
lny,lduI, . 'orne llIore modern oun',', [lr : Hourh lki .1 J bll

1'ordpr /lIe d IS uf EXfeI/BlI.J/l, anJ Bodew Ig, J/flf I Cal I
[{lick I \\ hy thi comment?
(,0'1/: '1 hI' puper presI'nt" gl'nl'r .ltzed rC'latllJll h'p, 'mollg

operutor', 'I he l'itcd fefl'reW'es arl' directl~ colll'Nned wIth, ucll
questions,

Iil'lwl'<l': WilY do you insist on using .1 llotation \\ hi,'h is It

nightmare for typist ami ('OlllpO, ilor [nel i",pos,'iille to impll'lI\pnt
with pUJiI'hing and prInting ,'quil'lIlCllt pnrrenll) vuihble' Wh,lt
proposuL llllve "Ill gut fur '.ven'l·min ,thi dilhcul ty?

1 /III, 1'r n litl'r Ition i , "f !'our e e 'ntial, but I h've
Il\oid!'d it tnallllel,t hr t, berall 1'.1 uiluble 'chemE' I hi/!;hly
dPpPIlll,'nt (.n the p, rt il'ular equipnl('nt Ivail,tille, lIId sl'c •.Jnd.
h"l':lllse it is ,. tn'm"I) simple, If, for I',':lntpll', JOIl Il.Ive the
"t:llnina of ,\1.1.01, and .\I\n USN, (who tirI'Jp,"I) \Hit(> PUO
CLlJI'HE and WIII:. -Jo:\'I',HI, thl'n yoll e:m 11.'" ti,l' di-tinct
narne thaI I h' \e given (fol' ('onvpr atiollal pllrpo p,) t,) I'll h of
t lu' "Jlprator., \11\ on" wlto pref(>r: brief"r \ /Ilhol P,IIl .1 I h ve
e., il d -igll eltt/llc which arc bri 'f. imp)£' ,LI1d nil llIC niP.

(J" II' 'I hi Cl'lt""tiun of trnnslitpr,ltion: I m nut t Ikin!?; lIhout
thi- VI] rill plrtlpulur. In gpnpffll it is a prohkm tl. t i alw )'
witlt u:, There is a dangl'r thaI as tht' tr:III:litel'atioll rull's bpcome
111111'1' "IlIIlJlli,': tl'd J'('plaeplllt'1I1 Jll'oduet ions; Wt' rapidl . fall into a
rl'eognitio!l problt,IO, a tran latioll Jll'oblpm alld po" ibl)' 'II un
'uh ,Ihle \\C,rd Jlrohlem,

I ( Oil' 'II, onc' hould distin IIi I t It.. I cpognitlOn of identi·
fit'r frnm the ) ntl, \\ Illph i of flInre COIIl'f'T1l to tlj(' ultunate
II-pr,

IJ ouJ. . It I not ohvioll, to mt' that the t' two, Ylllbol f,r
FLOOH and ('LILI '(. Ii.'Vt a gn" t deal of 11Inl'monic v,1uc

bTl's"/I: ) e" but 011('1') ou have rt'ad it, YOII CUll rClIlpml,,'r it.
(;0111,' But thl' !I11ln' n'dnndallee . ou put ill til(> s mboli m of

II I mgua/!;e, tilt' 1II0re equi\lIlpncc pl'oblcm, you h lYe.
I f "II' .' ot problplII I ugg, t t hut t hp I' arc et. III thp

e tn lilt' we ce, dd go hUl'k to the Ign nd tJ" 'hl'lTc'r troke,
let' \, ,Ild th n we h VI" I 0 problem.

Ro,: I don't rememh"r who ked the origmal que tlOn
ahout n tation, but I uhmit that th,,) find them elves a ug r
dadlh or 80111pOI1l' \\ itlt a few thous.lIId hll~k' alld gl't tl1l'm 'elves
a displa) C'llllsolp sueh a we'rp gl'tt ing with programm ,hIe ehar
aclIT . Y"u call even publi h frVlIl it h ' takillg picture. I don't
" e \\ I \ we 'llIIllld let JllI'ehamcs int!uPIll'" our progre " at all,

1r ( or; •'ollleone who i 1I1tere ted in tandurdlzatioll w"uld
not 1Ikp th'lt comment a 4 churacter el I the thmg y u knr)\\
The 1m Itatioll on the tv liahle chllral'tpr ,C't I think. i more' of
a tr II iellt ph 'nomenon th II the 1l1l?;(>J'ithm \'e wdnt to de cribp,

RUBS: With our con ole the 48 churacter are available, and
then' iii another mode whcre you can program any bit patterns
you want in a matrix; we are doing tbis specifically for thi pur
po. e uecau, e w,' fe I that the notation that goe along with the
set of ideas hould be us ble.

Bauer: I would ~I1Y that compared with ome other e.·isting
propo als for matrix e ten'ion" uch a: that of Er hov this i a
much mor closed consi tent y tem, .'0 one can ay today how
far we will go in u ing ul'h )ungullge in the near future,

IverwlI: 1,l'1 me COllllllent thllt it i, useful to distinguish two
reasons for leaminv; a lall/!;ulIge; one is fol' description and unaly, i
and the other i for lIlItonultic execution. I submit that thi kind
of fnrmali,'m i C'xtremely hC'lpful in analyzing difficult problem

without 'orr 'lOg ubout whptlu r one \\ ant to e 'ccute the r ult mg
prograru. \, u mati r of f- pt, I \\ ould U., thl a prelinllllary
hefore glling into om/' 1.1IIgUllV;" th,lt i exccutuble,

GurlL.' s I hIve it, thp dl's('ripliv(' langlllLgp yuu have d"es
Im"p direl't trullsi lion propert ie illto command IlIngullg '.

IlIlt I would likC' to tr,m IltC tltat CIlIumellt of Krn : ahont
de !'fipt 1011 anal Sl , 1lI1d P "cution ill the followin~ u Pro
gr mmm/!; Inngua 'P, are 11 chine dl'pendent -0111' i, approprIate
for th( human procl' or UI d nother fl.r the COli puter,

I (r or•. Wpll I \\"uld dl ,'grep wllh th' t L ('au e I would u e
exactl tlle .'ame IlIltation for de c'rihlllg the cCllnputer. In fuct,
I\'e done it for thp iOHO or lIlost of tltl' iO!IO, lllld other maehinp~

liS wI'11. In faet, you ('all say thp inslru<'lioll lil'! of thp machine i,
anu( h r forlll of langullW" with a , lave to cxecull" it.

Hnlt: Then. '" h. t \ 'U - the me'allin/!; of 'our ('omment?
1 I Orl: At thi point, for lxamplt', thi.:- is not a SOurCI 1 n

gu ge 111 the ell, I' that ther' i a mt'ch,1I11 III availablC' for tr.LIl I t
inl?; It into ollle nth('r l.tngunge, Tlll'rl' i no conVI nil'nt way for
autom IttI' P ('C'ullon I.... tr 1\ latiun or ,bred e 'p 'utllln, " lIW I
ugp:l'st that the notat ion i wort In' hill' j list for analysis even

though l.tf er \\(' havl' t c, do: hand t rauslat ion into :onll' l','('cut:! hIe
Inngu Igc.

Gre /l' If I ma interrupt tllr n moment, I think wp huuld limit
thp discI. lIln on not t ion t . tIl(' nC' t live minute nd we hould
gd to thpr qu, tion

70mpk n ThpT(' e i, t Ilrohlem urounu here wluch werC' coded
fir t in e 'entl II) thi, langu' gl' and thIn wert' tr,Ul lated with
gn" t carl' into FOIl'I R \ ,for I' "Imple,

Perl sHow :hould this lallv;uage 1,(' u ed 0/1 computer"
For what 1'1. So' of pn,hl,'m, 1//1 or off "omplltcr ? Thus, it': not
quite cl ar t.) Ill!' that a 1I1.,t ltt'lIlalical proof of 1111 algorithm
\\rJttC'1l1l1 F'Jnrn tl.e LlI e llgonthm If) u \\111 IS any more
difficult thun 1Il'lth III til'l proof of oue of jour algorithm
Algorithm rl' writ! 11 for t\\O re on I I' cut ion b ('omputer:
Vi hich inC' Il that It i pointips to Yo ritt it if you cannot e ecute
it IJIl ('olliputer, lid 2 f·)r dp criptioll and naly i 'oYo if the
descripllOl1 i, difficult to f1·ad, thl'l1 it fails om wlllLt If, in
udditlOn, lUlal) is i, as difh('ult, I)', n ill ALGOL, then the vIrtue
of t he I ngunge I que t lOll bl,',

\ I t qlll'.'!i,m, '1ou It vpn't di u ('d at I II th Wi» you dl
cnbe d t' , It IS 11 t ('leur t h' t vou h ve notutioll for de cribing

dat ,tit ugh ou II Vl a grC' t Yoealth of 1I0t tlOIl for manipulating
datu nce It I de crIbI'd, _-ow LGOI WIll obviou Iy hC' extended to
II1plud matri and veetur opemtion 111 e pre ion ' . ol1n que 
tlon I" for Yo hnt classes of prohlplII,', T( mernlJ ring you h ve no
data dl'sl'riptioll. i your dt', ('riptioll hpU('r than "AIgolic" dp·
scripti II ?

iter. IL. I'm not sure if I t' n really, eparate all till e point. ,
The que lion of repre entation (dnta d,' cnpt ion i too length'
to tre t h reo To uve time, let Ine av that I discu it in Ch pter
3 of my book, 'I his di CU SI n i fairl) limited, but adequate

Concerning the virtue of the IUJ'gu I/:e for d criptlOn and
anal' I , I cun ollly suv th t I have found it VPry U eful in m ny
divf>rse urellS, including mHPhine de cription, search procedures,
symbohc lo/!;ic, Bortinl?: nnd linpar programming.• ' ow it is a

,C'par te problelll 11 to "h,th'r \oU W,l\t t illelrp r,ll' til('
COl lpllte g 'ner ht_ ,f tJw 1.1IIguag," III 11\ plrt! 'ul r c ,mpill'r
but I u 'p:e, t tlat I I tl Ir ,IJIC' t h 1\ m"rl' gener II \ t..m
lat ('U r tract from for 111\ p. rt Icui Ir con,pll r r. tht r th n

.lddlll' d 101' provl lOllS tc, lIIore IlIlutpd I IIgU gP ,
\ to thl' qu ti, n of pr ,.f \ (, I c' 11, of ,'our. , tr.lIlsl.tt, ...

proof III ,111\ I.LIJgua~,· t" 111\ "tl,,'r I:tllguag,. "lit I IlgJo(' t tllllt
the prt ,f I V;l\ e Ir thl' kind th.lt ,Ir,. Imllledlit 'Iy '''VIOII to 1.\1'\'

Ill' tl elll,ltl~i I 'I I, rE' I of e Ir e, tllf' ljlle l1ol! ·f to \\ hor \ ou

\ ,I t f t " oh\j" t I.II P\\I [. f ~ dillt ult of r(' dm
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})'JI; Irrt: I11l\\ wl)lIld ) 1111 r('(ln' pnt a more cllmpl,'.· 1l(lC'r:lt ion,
frll' eX:llllplp the .lllll of "II 1,lplII('lIts of " lIIatn,' 'I which ar
('(Illal to the . lUll ,·f tht {'urn' (lol"ltrI~ rllw ar.d clllllllln indict' -

h"SOll +-+- ('I - ,I -+- ,I) ,[

\\ h re S Is II logical matri" \\ ho"~ row,.; rt'pre~ent all partition, of
H'IKht + u, \\hl're p', = p{, ,I, 'I,l i, the' panty" of the
logical ,'pctor \C, filld pp i~ th" Jl<1I'1/'} of till' p"rmll!; lion vet'!or P,
defined a +1 or -1 uccording as the Jlarit~ of p is "YI'Il or odu,
t'inct'

Th,' .·pecial mat I'll". ,)"elllTing in t hp f'II'egull!;!: I' {II all he
p('('lfied formally in t .. rills of the IIl111 rio' T h, n d"fin" I u' joll"w,:

T J • h , ~T = b", vT = II ,lIId bJ.. T = ,0, \\hpn' bJ.·
denotes 'he ha'e b valu "f th( \",'etor 'J hu ..; ~

..... u = .. ,[ 1 :\1, wht)(, ~[ = T '2. v \. and P = (J\ <T 'I) 'I,
\\ 1,1')(' 'I = T (v \., v\. l, alld <T x is t ht.' Sf'/ s,l, dum "per'lt IOn
1, I' '2:1.

Moreover, the parity function pp may be defined formally as
pp = ii - 11, where 11 = 2 I +/[)/(p ). p)

" lore complp.' simult n'll\" call he expre ·,eu by II c"II"ction of
pr 'gr 1m' oppratlllg concurrpntly, all lIlutually indppr'nd"ut b.lt
for illtPral'liou throu~h eertain (interlock) vari:lhlt, comlllon to
. omp two or mort.' programs, E 'plieit dppPlIUPIH'P on rt'al timt.' pan
he illtroduccd hy in{'orporating, 11' IllIP of thi, collel'liou of pro
gram. :l program dl"eribing a elock (I .... , o,;('illltor) driven
C'Olllltpr.

(;urll. I )o('~ your !I:"Il{'r:llizl'd op"rator tlllta! ion for m'ltrieps
!pad to: implpr proof of tl1l' gpnPr:LlizPd Laplnee p. 'pan,lOn of
dC'l l'rII I in,IlI!s?

II. rSIII': For a givpn logieal veclor u, the Laplace expan~ion

of the dptprminant 0'\ can he expre,;,;ed as

,
p u,0\ = (+.I(ou ':'i·II\.) X (ou./~·/I\.) X p'~)) X

H = +'/«X/tSr/-.\) X pP')
(where P i.: the mat rix who,e (v \.)! row: exhau -t all permutations
of dimen 'ion vA, anu where (','mpre;.sion by a logical matrix U i
d"finp.d III the ohvions W:1\' a .. the caten tion of the vector. Vi \.'),
then thl' 11. ual proof of the Laplace cxp:.Ill,ion (i.c, .llCJ 'ing that n
t) pical tl'rm of eithpr e.·pan!<ionoccur· in the othel) can be carried
through directly with the aid of the following fact: if u i, any
logical vl'ctor and p i, a pl'rlllutatioll of like dimension, then
there cxi -t' a unil(Uf' triple \, <I. r, such that

ISI q = u ',/ISI P, and iSjr = u/~/IISIP

The vecturs , and u arc clearly relnteu by the e.·pre.. ions ,.
VIS PJ\ u, lind u 'J\ ISI P, and Illoreover, pp = (p'u) X (p',) X

(pfl) X (prJ]

th que tion I , "for whonl-" And 1 !<uggl'. t that :lllyhOlh \\Il.)
Ita' ever d :lit with matn opl'ration find tlli notation Y('n' P . \'
to re d.

/' rlis: But i~ it fair to SIl) then th:lt if one i!< goin!!; to ('fpate
or extend lL languajl;e that the dirp('tllJn of extl'n .. ioll r 'all.\ i. n't
critical-that th ccent, hould not hI' Pllt on opf'r Ition~ 0 milch
but on data repre. entation or . equ 'nce rule, J

ltcrson: • '0, I disagree.
Corn: ,ince you are. upport inl/; an infix notation for blll,lry

operator., would it not be u, dill to huye ,Ollle controloJH'r:ltl1rs
in the lungual/;e which would corre,pond to the comhillat"ry
logiciun', "Application" opl'ration? .\l~o operators for ins('J"tioll
and delet ion of parenthespo', and opprator.. to adju~t priorit i..s
in the scopes of othpr 0pl'rlltor!< e.g. tn con.. trud prpc ,It n"I'
ffiatricp, of the t 'pe di. Cll. cd by Flo) II'

Iter on' Let n e giYe a ort of genprul an 'wI'r to thi s )rt of
thinll: ..... ou're prohaLly talklllg about Inle peel diZt,d applic,ltion
for \\ hich you W /It .'peeial op rat or . 1 ,'uhrnlt that no on, (' In
de Ign ,I langu ge that i: I'qualIy u...fill for l'verdJ",ly. Inst e ,d,
what )011 \\ould likf' to havI' is 1\ !<in,,11' eort' whiph yOIl can I'xt,'nd
in u !<t raightfnrward mUI\Ill'r.

In '0 far a: pn'cedPIH'e , nd hil'rarcln an' pOIlPprnl'(1. I haY" not
found 1lIl\ grput nN'r! for them in illY \\<lrk Lilt I ,"m IIl1derst:lI"l
why;) ou might \\ant to lise thpm in C'ompdcr.. III fact, I t IlIlIk Ileh
hierarch\ hould be includpd 11\ u t hul.lr for n. 0 til tit i" 1'.1 II)
{'h,m pabl .

Holt· The pre.entation i a lllarw,llIus demlJn.·tration of thl'
power of nota ion 111 the hand of a vl'r.\' ell'vl'r Ill·ln. Conclllsiolb'
(1) Let U h'ar-h thi. skill to ('Il'v!'r pl'opll' 21 L"t us en"llr' Ill"

chine mechanism to re~polld to lIot·q iOllal invI'1I1101I .
Iursoll: On thl'C'ontr'ln tltl ha 1C' lIoti'JIISan Vl'r) ~lInpll'and

hould he introducpd:l high ..cltool I, n'! to provuJp 'l IIIl'an f,.r
dt> crihlllg ulgorithm e. pli"itl\. lor' umplc, tllP VI'ctor ,. {II h'
mtrodl1c d II a eonvenient Ille.m.' for II.Lllling" j","ily of vun',hlc-,
find C'lIn b. lI.eel by the studl'nt tOKpther with 'I fe\\ n'r) IInpll'
operator.) to \\ork out pxplieit algoritlllll lor wl'll knowlI opr,,.a
tiou. l1eh as dpeilllal lIddlt lon, polYllomial ('valuation, ('II' .•\

little lIo(lltion und Illuch ,':m' in n''1l1iring I 'pliC'it algo,.itlllll.
wnull, ill fuct cl rif\'and'"llplif\ the prt'. entatIon of plt'ml'lI! In'
mnth IIIltiC nud OhvllItf' th t(",ching of progr'lnl1l\ing 1I lH'h.

Co I,.: .Iun\ of the cl(ui\' <1('II<'e onl\' het'oIlH' u..dul ,1I"l
powerful \\" n tim d pendpnc) is IIIcluel d. For 1", mpl(', ('at'h
oper tion on any arra\, implH', pri d or puralll'l p ('pllt Illll I" "11

ponent by COlllpollPnt. How ,'nil you covl'r t III .. for s('rial or Jlaralll'l
stat(,IlH'n Is) Obviously, t hl'rr' a r(' Illany tricks t hat are t illlP (or
,l'rie ) dpppndent in arra~' 0TH'ratiolls How dll thl')' rplatl' to
dllalltlP nnd el(lIivalellcp.", pte.

her 011 Par 111'1 uper tlOll i implied by any vector op.'rntinn;
.erial oper tioll c n be m d, e.'plicit by a program sho nng the
pecifi d equence of operation Oil component. Di ·tinetion of

thi' t\l) emplo -jng the pr 'ellt notation) are made clear in
1'alkofT "Igonthm~ for Parallel, e rch .Ienwrie " [I, AC II,
Oct. 1'1 .2J.
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Conventions Governing Order of Evaluation

KENNETH E. IVERSON

The common conventions for the evaluation of unparenthesized ex
pressions include the rules that (I) in a multilevel expression such as

~: ~, each line is evaluated before the function connecting the lines

is evaluated; (2) subject to the first rule, multiplication and division
are performed before addition and subtraction; (3) subject to the first
two rules, evaluation proceeds from left to right; (4) division can be

represented by three distinct but synonymous symbols (0 -;- b, a / b,

and ~); and (5) multiplication can be represented by two distinct but

synonymous symbols (a x b and a • b), or the symbol can be elided.
The one convention used in this book is that (subject to parentheses)
evaluation proceeds from right to left. This appendix treats the major
reasons for this choice.

The common conventions are usually defended on the grounds
that they are simple and well known and that their use significantly
simplifies the reading and writing of expressions. Because of the
familiarity of certain common constructions, these conventions appear
simple, but this simplicity is illusory and vanishes on closer examina
tion. Inquiries among students and colleagues have shown such dis
agreement on the interpretation of the conventions as to dispel the
notion that they are well known. Finally, the much simpler conven
tion adopted in this text proves at least as effective in simplifying the
reading and writing of expressions.

Consider, for example, the expressions x -;- y x ~ and x -;- y~. Ac
cording to the rules, both are equi valent to the expression (x -'- y) x ~.

However, y;:: is frequently used as an expression for multiplication
which is performed first regardless of other rules. Furthermore, the
dot notation for multiplication yields the expression x -;- y .~, which
(according to the interpretations encountered) seems to fall midway
between the other cases. Proponents of the common convention pro
test that such expressions would be parenthesized anyway for clarity;
but then the convention seems to lose most of its value.

Matters are further complicated by the alternative notations for
division. For example, x -;- y -;- z and x -;- y / ~ should have the same

interpretation, but frequently they do not. Similarly, the formally
equivalent expressions x + (I -;- y + b and x + a / y + b frequently re-
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ceive different interpretations. It is interesting to consider the dif
ferent possible evaluations of the following expressions which,
according to rule 3, are equivalent:

x-;.-yx-;.
x I y x:::

X -;.- \"'::

xly·:::
x-;.- y-;.

x I y:::

30 KE . 'ETH E. rVER~O~

The common convention also appears to include a number of
tacit rules that writers obey automatically. For example, xy may be
written for x x y, and any variable should be replaceable by a numeri
cal value. However, while the expression 3y is commonplace, most
readers would find the expressions x3 and 34 jarring and perhaps
inadmissible as expressions for x x 3 and 3 x 4.

In spite of these defects, the common conventions are reasonably
convenient when applied to simple expressions involving only the
four basic arithmetic functions, but more serious difficulties arise in
their haphazard extension to other functions. For example, the expres
sion sin 1/ x cos In would be interpreted as (sin n) A (cos fII), whereas
sin n x 1T would be interpreted as sin (11 x 1T). Moreover, the expres-

sion abed is usually interpreted as )'J,erl')rather than as «ab()d (that is,
from right to left rather than from left to right according to rule 3),
apparently because the latter case can be expressed by the equivalent
expression ab xc x d. In the notation used in this book the first case
would be expressed as either a * h * (' * d or *1 a , b , (' , d and the
second as either {/ * b x (' x d or {/ * xl b , (' , d.

As further functions are introduced (for example, absolute value,
maximum, minimum, residue, the relations, logical functions, and the
circular functions), the complexity grows and the utility of any relative
priority of execution among the functions decreases. Mathematical
texts handle this problem either by liberal use of parentheses or by
ad hoc (and frequently unstated) conventions. Programming lan
guages, which must face the issue more formally, have usually treated
the problem by establishing a hierarchy of priorities among the func
tions such that any function is evaluated before all other having lower
priorities. Such a system is usually very complex (Algol, one of the
be t known, has nine priority levels) and can therefore be used effi
ciently only by a programmer who employs it frequently. The occa
sional (and the prudent) programmer avoids the whole issue by
including all the parentheses that would have been required with no
convention.

Further examples of the complexity and ambiguity of the com
mon conventions could be easily adduced. However, the skeptical
reader will find it more instructive to scan various textbooks trying to
formulate precisely the rules used (stated or implied) and applying
them rigorously.

The question of the efficacy of the common convention in re
ducing the need for parentheses will now be addressed. Any conven
tion will reduce the need for parentheses, but the important question
is how the common convention compares in this respect with other
conventions, and in particular with the notation used in this text.

The utility of the common convention stands forth well in the
expression for a polynomial. For example, in the expression



llXP + bx q + exr

it would be awkward to have to enclose each lam in parentheses.
However, in the present notation this would be written as

+/(a,b,c)xx*p,q,r

or, if the vectors of coefficients and exponents were denoted by c and e
respectively, then it would be written as

+Icxx*e

These forms make clear the structure of the polynomial while per
mitting suppression of detail by using vectors; the corresponding ex
pression in conventional notation is

where 11 is the magic variable that denotes the dimensions of all vectors.

The expression (derived in Chapter 4) for the efficient evaluation
of a polynomial such as (a, b , c , d , (' J) n x provides a further ex
ample. In the notation used in this text it appears (withollt parentheses)
as

(ll, b, c, d, (',f) n x == II + X x b + x'< (' + x x d + x x e + x xJ

whereas in the common convention it would appear as

(a,b,c,d,e,f) flx
==(/+xx (h+xx (c+x x (d+xx (('+xXf))))

Further examples could be adduced, but again the skeptical
reader will find it more instructive to formulate a set of precis~> rules
based on the common convention and to translate into the resulting
notation the expressions appearing in the pre~ent text.

There is one further argument against imposing a priority among
functions in the present notation. If F and G are dyadic functions,
then the expression FI x G y would have either of two interpretations
(that is, (FI x) G y or FI (x G y) ), depending upon the relative priori
ties of F and G. These two interpretations differ markedly in form
and would therefore lead to confusion. For example, +1 x x y would be
interpreted as +1 (x x ).) whereas the similar expression xl x + y
would be interpreted as (xl x) + y. Similar remarks apply to the matrix
product M F . G N (defined in Chapter 9).

The reason for choosing a right-to-Ieft instead of a left-to-right
convention are:

I. The usual mathematical convention of placing a monadic
function to the left of its argument leads to a right-to
left execution for monadic functions; for example, F G x
==F (G x).

2. The notation FI z for reduction (by any dyadic function F)
tends to require fewer parentheses with a right-to-Ieft con
vention. For example, expressions such as +1 (x x y) or
+1 (ulx) tend to occur more frequently than (+Ix) J<yand
(+1 u) Ix.

3. An expression ('mluated from right to left is the easiest to
read from left to right. For example, the expression
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a x b XX( X d+A eAr

(for the efficient evaluation of a polynomial) is read dS {/ plus
the entire expression following, or as a plus x time ... the fol
lowing expression, or as 1I plus x time ... h plus the following
expression, and so on.

4. In the definition

FI x = x. F x., F xa F . .. F x_ {IX

the right-to-left convention leads to a morc u. eful definition
for nona sociative functions F than doe'> the left-to-right
convention. For example, I x denotes the alternating sum
of the components of x, whereas in a left-to-light convention
it would denote the first component minus the sum of the
remaining components. Thus if d is the vector of decimal
digits representing the number 1/, then the value of the ex
pression 0 - 91 +1 d determines the divisibility of 1/ by 9;
in the right-to-Ieft convention, the similar expression
0= III -I d determines divisibility b~ II.
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Algebra as a Language

KENNETH E. IVERSON

A.I INTRODUCTION

Although few matnematicians would quarrel with the
proposition that the algebraic notatlon taught in high
school is a language (and indeed tne primary language of
mathematics), yet little attention has been paid to the
possible implications of SUCh a view of algeura. This paper
adopts this point of view to illuminate ble inconsistencies
and deficiencies of conventional notation and to explore the
implications of analogies between the teaching of natural
languages and the teaching of algebra. Based on this
analysis it presents a simple and consistent algebraic
notation, illustrates its power in Ule exposition of some
familiar topics in algebra, and proposes a oasis for an
introductory course in algeora. Moreover, it shows how a
computer can, if desired, be used in Ule teaching process,
since the language proposed is directly usable on a computer
terminal.

A.2 ARI'l'HMETIC NOTATI01~

We will first discuss the notation of arithmetic,
i.e., that part of algebraic notation wnicn does not involve
the use of variables. For example, the expressions 3-4 and
(3+4)-(5+6) are arithmetic expressions, but the expressions
3-X and (X+4)-(Y+6) are not. \Ve will now eXlJlore the
anomalies of arithmetic notation and the modifications
needed to remove them.

E~ngtiQD§_gDg_§YmQQ1§_fQ~_f~DgtiQD§. The importance of
introducing the concept of "function" ratiler early in the
mathematical curriculum is now widely recognized.
,Jevertheless, tnose functions wnich tHe student encounters
first are usually referred to not as "functions" but as
"operators". For example, absolute value (I -31) and
arithmetic negation (-3) are usually referred to as
operators. 1,1 fact, most of the functions which are so
fundamental and so widely used tnat they nave been assigned
some grapilic symbol are commonly called opera tors
(particularly blose functions sucn as pIus and times which
apply to two arguments), wnereas the less common functions
wnich are usually referred to oy writing out their names
(e.g., Sin, Cos, Factorial) are called functions-

This practice of referring to tne most common and most
elementary functions as operators is surely an unnecessary
obstacle to the understanding of functions when that term is



first applied to the more complex functions encountered.
For this reason the term "function" will oe used nere for
all functions regardless of the choice of symbols used to
represent them.

The functions of elementary algeora are of two types,
taking either one argument or two. Thus addition is a
function of two arguments (denoted vy X+Y) and negation is a
function of one argument (denoted oy -Y). It would seem
ooth easy and reasonable to adopt one form for each type of
function as suggested by the foregoing examples, that is,
tile symool for a function of two arguments occurs between
its arguments, and the symbol for a function of one argument
occurs before its argument. Conventional notation displays
considerable anarchy on this point:

1. Certain functions are denoted by anyone of
several symbols which are supposed to be synonomous
but which are, nowever, used in subtly different ways.
For example, in conventional algebra xxy and XY both
denote the product of X and Y. However, one would
write either 3xY or 3X or XX 3, or 3 x 4, but would not
likely accept X3 as an expression for XX 3, nor 3 4 as
an expression for 3x4. Similarly, X~Y and X/Yare
supposed to oe aynonomous, but in the sentence "Reduce
8/5 to lowest terms", the symbol/does not stand for
division.
2. The power function has no
by position only, as in XN.
often used to denote the Ntil
array X.

symuol, and is denoted
Tne same notation is
element of a family or

3. The remainder function (that is, the integer
remainder on dividing X into Y) is used very early in
arithmetic (e.g., in factoring) but is commonly not
recognized as a function on a par with addition,
division, etc., nor assigned a symbol. Because the
remainder function nas no symool and is commonly
evaluated by the method of long division, there is a
tendency to confuse it with division. This confusion
is compounded by the fact that the term "quotient"
itself is ambiguous, sometimes meaning the quotient
and sometimes the integer part of the quotient.

4. The symool for a function of one argument
sometimes occurs before the argument (as in -4) but
may also occur after it (as in 4! for factorial 4) or
on both sides (as in IXI for absolute value of X).

Table A.l shows a set of symbols which can be used in
a simple consistent manner to denote the functions mentioned
thus far, as well as a few other very useful basic functions
such as maximum, minimum, integer part, reciprocal, and
exponential. The table shows two uses for each symbol, one
to denote a monadic function (i.e., a function of one
argument), and--one--to denote a Qy~gig function (i.e., a
function of two arguments). This is simply a systematic
exploitation of the example set by the familiar use of the
minus sign, either as a dyadic function (i.e., subtraction
as in 4-3) or as a monadic function (i.e., negation as in
-3). No function symbol is permitted to be elided; for
example, Xxy may not be written as XY.

A.l
A little

will show
experimentation with

that it can be used
the notation of Table
to express clearly a
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Monadic form fB f Dyadic form AfB

Definition J.~ame Name Definition
or example or example

+3 ++ 0+3 Plus + Plus 2+3.2 ++ 5.2

Negative Minus 2-3.2 - 1.2-3 ++ 0-3 - ++

x3 ++ (3)0)-(3<0) Signum x Times 2x3.2 ++ 6.4

f3 ++ lf3 Reciprocal Divide 2f 3.2 ++0.625

B If B I LB Ceiling f Maximum 3f7 ++ 7
_3.141_4 1_ 3

Floor L Minimum 3L7 33.14 3 4 ++

*3 ++ (2.71828 00 )*3 Expon- * Power 2*3 ++ 8
.:ntial

11*5 ++ 5 ++ *~5 l~atural II Loga- 10~3++Log 3 base 10
logarithm rithm 10$3++($3)f$10

1-3.14 ++ 3.14 Magnitude I Remain- 318 ++ 2
der

Table A.I

number of matters which are awk~lard or impossible to express
in conventional notation. For example, XfY is the quotient
of X divided by Yi either L(XfY) or ((X-(YIX))fY yield the
integer part of the quotient of X divided by Yi and Xf(-X)
is equivalent to IX.

In conventional notation tne symbols <, $, =,~, >,
and ~ are used to state relations among quantitiesi for
example, tne expression 3<4 asserts that 3 !~ less than 4.
It is more useful to employ tnem as symbols for dyadic
functions defined to yield the value 1 if the indicated
relation actually nolds, and the value zero if it does not.
Thus 3$4 yields the value 1, and =+(3$4) yields the value 6.

~~rsy~. The ability to refer to collections or arrays of
items is an important element in any natural language and is
equally important in mathematics. The notation of vector
algebra embodies the use of arrays (vectors, matrices,
3-dimensional arrays, etc.) but in a manner which is
difficult to learn and limited primarily to the treatment of
linear functions. Arrays are not normally included in
elementary algeora, probably because they are thought to be
difficult to learn and not relevant to elementary topics.

A vector (tnat is, a I-dimensional array) can be
represented oy a list of its elements (e.g., 1 3 5 7) and
all functions can oe assumed to be applied
element-by-element. For example:

1 2 3 4 x 4

4 6 6 4

Similarly:

1 2 3 4 + 4
5 5 5 5

1 2 3 4
1 2 6 24

3 2 1 produces

3 2 1
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1
149

2
2 4 8

2 3
16
* 1
16

4 * 2

2 3 4

In addition to applying a function to each element of
an array, it is also necessary to be able to apply some
specified function to the collection itself. For example,
"Take the sum of all elements", or "Take the product of all
elements", or "Take the maximum of all elements". This can
be denoted as follows:

+/2 5 3 2
12

x/2 5 3 2
60

r/2 5 3 2
5

The rules for using
obvious from the foregoing
to elementary mathematics
example:

such vectors are simple and
examples. Vectors are relevant
in a variety of ways. For

1. They can be used (as in the foregoing examples) to
display the patterns produced by various functions when
applied to certain patterns of arguments.

2. They can be used to represent points in coordinate
geometry. Thus 5 7 19 and 2 3 7 represent two points,
5 7 19 - 2 3 7 yields 3 4 12, the displacement between
them, and (+/(57 19 - 2 3 7)*2)*.5 yields 13, the
distance between them.

3. They can be used to represent rational numbers. 'rhus if
3 4 represents the fraction three-fourths, then 3 4x5 6
yields 15 24, the product of the fractions represented
Dy 3 4 and 5 6. Moreover, 7/3 4 and 7/5 6 and 7/15 24
yield the actual numbers represented.

4.

558

A polynomial can be represented by its vector of
coefficients and vector of exponents. For example, the
polynomial with coefficients 3 1 2 4 and exponents
o 1 2 3 can be evaluated for the argument 5 by the
following expression:

+/3 1 2 4 x 5 * 0 1 2 3

CQD~tgnt§. Conventional notation provides means for writing
any positive constant (e.g., 17 or 3.14) but there is no
distinct notation for negative constants, since the symbol 
occurring in a number like -35 is indistinguishable from the
symbol for the negation function. Thus negative thirty-five
is written as an ~~E~~§§iQn, which is much as if we
neglected to have symbols for five and zero because
expressions for them could be written in a variety of ways
SUCh as 8-3 and 8-8.

It seems advisable to follow Beberman [lJ in using a
raised minus sign to denote negative numbers. For example:

3-54321
2 101 2

to
Conventional notation also

represent numbers which
provides no convenient way

are easily expressed in



9
or 3.265x10 A useful

languages is to replace the
E (for §~QQn§nt) as

8
expressions of the form 2.14x10
practice widely used in computer
symbols x10 by the symbol
follows: 2.14E8 and 3.265E-9.

Q~g§~_Qf_§~§QytiQn. The order of execution in an algebraic
expression is commonly specified by parentheses. The rules
for parentheses are very simple, but the rules which apply
in the absence of parentheses are complex and chaotic. Tney
are based primarily on a hierarchy of functions (e.g., the
power function is executed before multiplication, which is
executed before addition) wnich has apparently arisen
because of its convenience in writing polynomials.

Viewed as a matter of language, the only purpose of
such rules is the potential econ~my in the use of
parentheses and the consequent galn in readability of
complex expressions. Economy and simplicity can be achieved
oy the following rule: parentheses are obeyed as usual and
otherwise expressions are evaluated from right to left with
all functions being treated equally. The advantages of this
rule and the complexity and ambiguity of conventional rules
are discussed in Berry [2J, page 27 and in Iverson [3J,
Appendix A. Even polynomials can be conveniently written
without parentheses if use is made of vectors. For example,
the polynomial in X with coefficients 3 1 2 4 can be written
without parentheses as +/3 1 2 4 x X * 0 1 2 3. Moreover,
Horner's expression for the efficient evaluation of this
same polynomial can also be written without parentheses as
follows:

3+Xx1+Xx2+X x 4

4nglQgi§§_~ith_ngty~gl_lgngygg§. The arithmetic expression
3x4 can be viewed as an order to gQ something, that is,
multiply the arguments 3 and 4. Similarly, a more complex
expression can be viewed as an order to perform a number of
operations in a specified order. In this sense, an
arithmetic expression is an imperative sentence, and a
function corresponds to an imperative verb in natural
language. Indeed, the word "function" derives from the
latin verb "fungi" meaning "to perform".

This view of a function does not conflict with the
usual mathematical definition as a specified correspondence
oetween the elements of domain and range, but rather
supplements this static view with a dynamic view of a
function as that wnich Q~QgYQ§§ the corresponding value for
any specified element of the domain.

If functions correspond to imperative verbs, then
their arguments (tlle things upon which they act) correspond
to nouns. In fact, the word "argument" has (or at least
had) the meaning topic, theme, or subject. Moreover, the
positive integers, being the most concrete of arithmetical
objects, may be said to correspond to proper nouns.

What are the roles of negative numbers, rational
numbers, irrational numbers, and complex numbers? The
subtraction function, introduced as an inverse to addition,
yields positive integers in some cases but not in others,
and negative numbers are introduced to refer to the results
in these cases. In other words, a negative numoer refers to
a process or the result of a process, and is therefore
analogous to an abstract noun. For example, the abstract
noun "justice" refers not to some concrete object (examples
of which one may point to) out to a process or result of a
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process. Similarly, rational and complex numbers refer to
the results of processes; division, and finding the zeros
of polynomials, respectively.

A.3 ALGEBRAIC NOTATION

Name~. An expression such as 3xX can be evaluated only if
the variable X has been assigned an actual value. In one
sense, therefore, a variable corresponds to a g~QnQYn whose
referent must be made clear before any sentence including it
can be fully understood. In English the referent may be
made clear by an explicit statement, but is more often made
clear by indirection (e.g., "See the door. Close it."), or
by context.

In conventional algebra, the value assigned to a
variable name is usually made clear informally by some
statement such as "Let X have ble value 6" or "Let X=6".
Since the equal symbol (tnat is, '=') is also used in other
ways, it is better to avoid its use for this purpose and to
use a distinct symbol as follows:

X+6
Y+3x4
X+Y

18
(X-3)x(X-S)

3

A~~igDiDg_naIDe~_tQ_e~g~e~~iQn~. In tile foregoing example,
the expression (X-3)X(X-S) was written as an instruction to
evaluate the expression for a particular value already
assigned to X. One also writes the same expression for the
quite different notion "Consider the expression (X-3)x(X-S)
for any value which might later be assigned to the argument
X." This is a distinct notion which should be represented
by distinct notation. The idea is to be able to refer to
the expression and this can be done by assigning a name to
it. The following notation serves:

v Z + G X
Z+(X-3)x(X-S)V

The V's indicate that the symbols between them define
a function; the first line snows that the name of the
function is G. The names X and Z are dummy names standing
for the argument and result, and the second line shows how
they are related.

Following this definition, the name G may be used as a
function. For example:

G 6
3

G 1 2 3 4 567
8301038

Iterative functions can be defined with equal ease as
shown in Chapter 12.
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£Q~_Qf_namaa. If the variables occurring in algebraic
sentences are viewed simply as names, it seems reasonable to
employ names with some mnemonic significance as illustrated
by the following sequence:

LENGTH+-6
WIDTH+-5
AREA+-LENGTHxWIDTH
HEIGHT+-4
VOLUME+-AREAxHEIGHT

This is not done in conventional notation, apparently
because it is ruled out by the convention that the
multiplication sign may be elided; that is, AREA cannot be
used as a name because it would be interpreted as AxRxExA.

This same convention leads to otner anomalies as well,
some of which were discussed in the section on arithmetic
notation. The proposal made there (i.e., that the
multiplication sign cannot be elided) will permit variable
names of any length.

A.4 ANALOGIES WITH THE TEACHING OF NATURAL LANGUAGE

If one views the teaching of algebra as the teaching
of a language, it appears remarkable how little attention is
given to the reading and writing of algebraic sentences, and
now much attention is given to identities, that is, to the
analysis of sentences with a view to determining other
equivalent sentences; e.g., "Simplify the expression
(X-4) x (X+4)." It is possible that this emphasis accounts
for much of the difficulty in teaching algebra, and that the
teaching and learning processes in natural languages may
suggest a more effective approach.

In the learning of a native language
distinguish the following major phases:

one can

1. An informal phase, in which the child learns to
communicate in a combination of gestures, single words,
etc., but with no attempt to form grammatical sentences.

2. A formal phase, in which the child learns to communicate
in formal sentences. This phase is essential because it
is difficult or impossible to communicate complex
matters with precision without imposing some formal
structure on the language.

3. An analytic phase, in which one learns to analyze
sentences with a view to determining equivalent (and
perhaps "simpler" or "more effective") sentences. The
extreme case of such analysis is Aristotelian Logic,
which attempts a formal analysis of certain classes of
sentences. More practical everyday cases occur every
time one carefully reads a composition and suggests
alternative sentences which convey the same meaning in a
briefer or simpler form.

The same phases can be distinguished in the teaching
of algebraic notation:
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1. An informal phase in
add 2 and 3 in any
example:

which one issues an instruction to
way which will be understood. For

2+ 3

2
3

Add 2 and 3

2
+3

Add two and three

Add / / and / / /

The form of the expression is unimportant, provided that
the instruction is understood.

2. A formal phase in which one emphasizes proper sentence
structure and would not accept expressions such

2
as 6 x -2 or 6x (add two and three) in lieu of 6x (2+3).
Again, adherence to certain structural rules is
necessary to permit the precise communication of complex
matters.

3. An analytic phase in which one learns to analyze
sentences with a view to establishing certain relations
(usually identity) among them. Thus one learns not only
that 3+4 is equal to 4+3 but that the sentences X+Y and
Y+X are equivalent, that is, yield the same result
whatever the meanings assigned to the pronouns X and Y.

In learning a native language, a child spends many
years in the informal and formal phases (both in and out of
school) before facing the analytic phase. By this time she
has easy familiarity with the purposes of a language and the
meanings of sentences which might be analyzed and
transformed. The situation is quite different in most
conventional courses in algebra - very little time is spent
in the formal phase (reading, writing and "understanding"
formal algebraic sentences) before attacking identities
(such as commutativity, associativity, distributivity,
etc.). Indeed, students often do not realize that they
might quickly check their work in "simplification" by
substituting certain values for the variables occurring in
the original and derived expressions and comparing the
evaluated results to see if the expressions have the same
"meaning", at least for the chosen values of the variables.

It is interestlng to speculate on what would happen if
a native language were taught in an analogous way, that is,
if children were forced to analyze sentences at a stage in
their development when their grasp of the purpose and
meaning of sentences were as shaky as the algebra student's
grasp of the purpose and meaning of algebraic sentences.
Perhaps they would fail to learn to converse, just as many
students fail to learn the much simpler task of reading.

Another interesting aspect of learning the
non-analytic aspects of a native language is that much (if
not most) of the motivation comes not from an interest in
language, but from the intrinsic interest of the material
(in children's stories, everyday dialogue, etc.) for which
it is used. It is doubtful that the same is true in
algebra - rUling out statements of an analytic nature
(identities, etc.), how many "interesting" algebraic
sentences does a student encounter?
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The use of arrays can open up the possibility of much
more interesting algebraic sentences. This can apply both
to sentences to be read (that is, evaluated) and written by
students. For example, the statements:

2*1 2 3 4 5
2 xl 2 3 4 5
2+1 2 3 4 5
1 2 3 4 5+2
1 2 3 4 5*2
1 2 3 4 5x5 4 3 2 1

produce interesting patterns and therefore have more
intrinsic interest than similar expressions involving only
single quantities. For example, the last expression can be
construed as yielding a set of possible areas for a
rectangle having a fixed perimeter of 12.

More ~n~eresting possibilities are opened up by
certain simple extensions of the use of arrays. One example
of such extensions will be treated here. This extension
allows one to apply any dyadic function to two vectors A and
B so as to obtain not simply the element-by-element product
produced by the expression AxB, but a table of all products
produced by pairing each element of A with each element of
B. For example:

A+-l 2 3
B+-2 3 5 7

A o. xB A o. +B A o. *B

2 3 5 7 3 4 6 8 1 1 1 1
4 6 10 14 4 5 7 9 4 8 32 128
6 9 15 21 5 6 8 10 9 27 243 2187

If S+-l 2 3 4 5 6 7, then the following expressions
yield an addition table, a multiplication table, a
subtraction table, a maximum table, an "equal" table, and a
"greater than or equal" table:

So. +S So. rS
2 3 4 5 6 7 8 1 2 3 4 5 6 7
3 4 5 6 7 8 9 2 2 3 4 5 6 7
4 5 6 7 8 9 10 3 3 3 4 5 6 7
5 6 7 8 9 10 11 4 4 4 4 5 6 7
6 7 8 9 10 11 12 5 5 5 5 5 6 7
7 8 9 10 11 12 13 6 6 6 6 6 6 7
8 9 10 11 12 13 14 7 7 7 7 7 7 7

So. xX So. =S
1 2 3 4 5 6 7 1 0 0 0 0 0 0
2 4 6 8 10 12 14 0 1 0 0 0 0 0
3 6 9 12 15 18 21 0 0 1 0 0 0 0
4 8 12 16 20 24 28 0 0 0 1 0 0 0
5 10 15 20 25 30 35 0 0 0 0 1 0 0
6 12 18 24 30 36 42 0 0 0 0 0 1 0
7 14 21 28 35 42 49 0 0 0 0 0 0 1

So. -S So. :?S
0 1 2 3 4 5 6 1 0 0 0 0 0 0
1 0 1 2 3 4 5 1 1 0 0 0 0 0
2 1 0 1 2 3 4 1 1 1 0 0 0 0
3 2 1 0 1 2 3 1 1 1 1 0 0 0
4 3 2 1 0 1 2 1 1 1 1 1 0 0
5 4 3 2 1 0 1 1 1 1 1 1 1 0
6 5 4 3 2 1 0 1 1 1 1 1 1 1
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Moreover, the graph of a
an "equal" table as follows.
defined earlier:

\JZ+-G X
Z+-(X-3)x(X-5)\J

G S
8301038

function can be produced as
First recall the function G

The range of the function for this set of arguments is
from 8 down to -1, and the elements of this range are all
contained in tpe following vector:

R+-8 7 6 5 4 3 2 1 0 1

Consequently, the "equal" table Ro.=G S produces a rough
graph of the function (represented by l's) as follows:

R 0 • =G S
1000001
o 0 000 0 0
o 0 0 0 0 0 0
o 0 0 0 0 0 0
o 0 0 000 0
o 1 0 0 0 1 0
0000000
o 0 000 0 0
0010100
o 0 0 1 000

A.S A PROGRAM FOR ELEMENTARY ALGEBRA

The foregoing analysis suggests the development of an
algebra curriculum with the following characteristics:

1. The notation used is unambiguous, with simple and
consistent rules of syntax, and with provision for the
simple and direct use of arrays. Moreover, the
notation is not taught as a separate matter, but is
introduced as needed in conjunction with the concepts
represented.

2. Heavy use is made of arrays to display
mathematical properties of functions in terms of
patterns observed in vectors and matrices (tables),
and to make possible the reading, writing, and
evaluation of a host of interesting algebraic
sentences before approaching the analysis of sentences
and the concomitant development of identities.

Such an approach has been adopted in the present text,
where it has been carried through as far as the treatment of
polynomials and of linear functions and linear equations.
The extension to further work in polynomials, to slopes and
derivatives, and to the circular and hyperbolic functions is
carried forward in Iverson [91 and in Orth [101 .

It must be emphasized that the proposed notation,
though simple, is not limited in application to elementary
algebra. A glance at the bibliography of Rault and Demars
[4J will give some idea of the wide range of applicability.
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The role of the computer. Because the proposed notation is
SImpre--ana systematic it can be executed by automatic
computers and has been made available on a number of
time-shared terminal systems. The most widely used of these
1S described in Falkoff and Iverson (51. It is important to
note that the notation is executed directly, and the user
need learn nothing about the computer itself. In fact, each
of the examples in this appendix are shown exactly as they
would be typed on a computer terminal keyboard.

The computer can obviously be useful in cases where a
good deal of tedious computation is required, but it can be
useful in other ways as well. For example, it can be used
by a student to explore the behavior of functions and
discover their properties. To do this a student will simply
enter expressions which apply the functions to various
arguments. If the terminal is equipped with a display
device, then such exploration can even be done collectively
by an entire class. This and other ways of using the
computer are discussed in Berry et al [6J and in Appendix C.

REFERENCES

1. Beberman, M., and H. E. Vaughan, High School Mathematics
Course ~, Heath, 1964.

2. Berry, P. C., APL\360 Primer, IBM Corp., 1969.

3. Iverson, K. E., Elementary Functions: an algorithmic
treatment, Science Research Associates-,-1966.

4. Rault, J. C., and G. Demars,"Is APL Epidemic? Or a study
of its growth through an extended bibliography", Fourth
International APL User's Conference, Board of Education
of the City of Atlanta,-Georgia, 1972.

5. Falkoff, A. D., and K. E. Iverson, APL Language, Form
Number GC26-3847, IBM Corp.

6. Berry, P. C., A. D. Falkoff, and K. E. Iverson, "Using
the Computer to Compute: A Direct but Neglected Approach
to Teaching Mathematics", IFIP World Conference on
Computer Education, Amsteraam; August 24-28, 197~

7. Iverson, K. E. (APL Press, 1976):

Introducing APL to Teachers

APL in Exposition

An Introduction to APL for Scientists and Engineers

8. Berry, P. C., G. Bartoli, C. Dell'Aquila and V.
Spadavecchia, APL and Insi~ht: Using Functions to
Represent Concepts-rn Teac ing, IBM Ph1ladelphia
Scientific Center Technical Report No. 320-3009,
December, 1971.

9. Iverson, K. E., Elementary Analysis, APL Press, 1976.

10. Orth, D. L., Calculus in a new key, APL Press, 1976.

A[pP[Jrcl (IS (I L(lIIPlUlPP ,.1





4 The Design ofAPL





A. D. Falkoff
K. E. Iverson

The Design of APL

Abstract: This paper discusses the development of APL. emphasizing and illustrating the principles underlying its design. The principle
of simplicity appears most strongly in the minimization of rules governing the behavior of APt objects. while the principle of practicali
ty is served by the design proces itself. which relies heavily on experimentation. The paper gives the rationale for many specific de
sign choices. including the necessary adjuncts for system management.

Introduction
This paper attempts to identify the general principles
that guided the development of A PL and its computer
realizations, and to show the role these principles played
in the evolution of the language. The reader will be as
sumed to be familiar with the current definition of APL

[ I ]. A brief chronology of the development of A PL is
presented in an appendix.

Different people claiming to follow the same broad
principles may well arrive at radically different designs;
an appreciation of the actual role of the principles in de
sign can therefore be communicated only by illustrating
their application in a variety of specific instances. It
must be remembered. of course. that in the heat of battle
principles are not applied as consciously or systematical
ly as may appear in the telling. Some notion of the evo
lution of the ideas may be gained from consulting earlier
discussions, particularly Refs. 2 - 4.

The actual operative principles guiding the design of
any complex system must be few and broad. In the pres
ent instance we believe these principles to be simplicity
and practicality. Simplicity enters in four guises: uni
formity (rules are few and simple). genewlit\' (a small
number of general functions provide as special cases a
host of more specialized functions). familiarity (familiar
symbols and usages are adopted whenever pos ible).
and brevity (economy of expression is sought). Practi
cality is manifested in two re peets: concern with actual
application of the language. and concern with the practi
cal limitations imposed by existing equipment.

We believe that the design of APL was also affected in
important respects by a number of procedures and cir
cumstances. Firstly. from its inception A PL has been

developed by 1I.ling it in a succession oF' areas. This
emphasis on application clearly favors practicality and
simplicity. The treatment of many different areas fos
tered generalization; for example. the general inner
product was developed in attempting to obtain the ad
vantages of ordinary matrix algebra in the treatment of
symbolic logic.

Secondly. the lack of any machine realization of the
language during the first seven or eight years of its de
velopment allowed the designers the freedom to make
radical changes. a freedom not normally enjoyed by de
signers who must observe the needs of a large working
population dependent on the language for their daily
computing needs. This circumstance was due more
to the dearth of interest in the language than to foresight.

Thirdly, at every stage the design of the language was
controlled by a small group of not more than five people.
In particular. the men who designed (and coded) the
implementation were part of the language design group.
and all members of the design group were involved in
broad decisions affecting the implementation. On the
other hand. many ideas were received and accepted
from people outside the design group. particularly from
active users of some implementation of A PI..

Finally. design decisions were made by Quaker con
sensus; controversial innovations were deferred until
they could be revised or reevaluated so as to obtain
unanimous agreement. Unanimity was not achieved
without cost in time and effort. and many divergent
paths were explored and assessed. For example. many
different notations for the circular and hyperbolic func
tions were entertained over a period of more than a year
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before the pre ent scheme wa proposed, whereupon
it wa quickly adopted. As the language grows. more
effort is needed to explore the ramification of any major
innovation. Moreover, greater care i needed in intro
ducing new facilities, to avoid the possibility of later
retraction that would inconvenience thousands of users.
An example of the degree of preliminary exploration
that may be involved i furnished by the depth and di
versity of the investigations reported in the papers by
Ghandour and Mezei [5] and by More [6].

The character set
The typography of a language to be entered at a simple
keyboard is subject to two major practical re trictions: it
must be linear, rather than two-dimen ionaL and it must
be printable by a limited number of di tinct symbols.

When one is not concerned with an immediate ma
chine realization of a language. there is no strong reason
to 0 limit the typography and for this reason the lan
guage may develop in a freer puhlication forll/. Before
the design of a machine realization of A PL, the re tric
tions appropriate to a keyboard form were not observed.
In particular, different fonts were used to indicate the
rank of a variable. In the keyboard form, such distinc
tions can be made, if de ired, by adopting classes of
name for certain clas es of thing .

The practical objective of linearizing the typography
also led to increa ed uniformity and generality. It led to
the present bracketed form of indexing. which remove
the rank limitation on arrays imposed by u e of super
scripts and subscripts. It also led to the regularization of
the form of dyadic functions such as NaJ and NwJ (later
eliminated from the language). Finally, it led to writing
inner and outer products in the linear form + . x and 0 • x
and eventually to the recognition of such expressions as
instances of the use of operatol"\.

The use of arrays and of operators greatly reduced the
demand for distinct characters in A PL, but the limitations
imposed by the normal 88-symbol typewriter keyboard
1'0 tered two innovations which greatly increased the
utility of the 88ymbols: the systematic use of most
function symbols to represent both a dyadic and a mo
nadic function, auggested in conventional notation
by the double use of the minus sign to represent both
subtraction (a dw/(/ie function) and negation (a monadic
function): and the use of composite characters formed
by typing one symbol over another (through the u e of
a back pace), a in <P and! and e.

II wa necessary to restrict the alphabetic characters
to a ingle font and capital were cho en for readability.
Italics were initially favored becau e of their common
use for denoting variables in mathematics, but were
finally chosen primarily because they distinguished the
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letter 0 from the digit 0 and letters like Land T from the
graphic symbols Land T.

To allow the possibility of adding complete alphabetic
font by overstriking. the underscore (_). diaeresis
("). overbar (-). and quad (0) were provided. In the
APL\360 realization. only the under core is used in this
way. The inclusion of the overbar on the typeball fortu
nately filled a need we had not anticipated - a symbol for
negative constants. distinct from the symbol for the ne
gation function. The quad proved a useful symbol alone
and in combination (as in Iill. and the diaeresis still re
mains unassigned.

The SELECTRIC It- typewriter imposed certain practical
limitations on the placement of ymbols on the \..eyboard,
e.g., only narrow characters can appear in the upper
row of the typing element. Within these limitations we
attempted to make the keyboard easy to learn by group
ing related symbols (such as the relations) in a rational
order and by making mnemonic associations between
letter and the functions as ociated with them in the
shifted case (such a the II/a~nitude function I with M.
and the membership symbol E: with E).

Valence and order of execution
The \'(lIenee of a function is the number of argument it
takes: APL primitive have valence of 1 (monadic
functions) and 2 (dyadic functions), and user-defined
functions may have a valence of 0 as well. The form for
all A PL primitive follows the familiar model of arithme
tic. that is, the symbol for a dyadic function occurs be
tween its arguments (as in 3+4) and the symbol for a
monadic function occurs before its argument (as in -4).

A function f of valence greater than two is conven
tionally written in the form f(a,h.c,d). This can be
construed as a monadic function F applied to the vector
argument a,h.e,d, and this interpretation is used in
APl. In the APL\360 realization. the arguments a,h.c,
and d must share a common structure. The definition
and implementation of generalized arrays. whose ele
ments include enclosed arrays. will, of course. remove
thi restriction.

The result of any primitive APL function depends only
on its immediate arguments, and the interpretation of
each part of an A PL statement is therefore localized. Li\..e
wise. the interpretation of each statement is independent
of other statement in a program. This independence of
context contributes ignificantly to the readabIlity and
ease of implementation of the language.

The order of execution of an APL expres ion i con
trolled by parenthese in the familiar way, and parenthe
se are used for no other purpose. The order is other
wise determined by one imple rule: the right argument
of any function is the value of the entire expression fol
lowing it. In particular, there i no precedence among



functions: all functions. user-defined as well as primitive,
are treated alike.

This simple rule has several consequence of practical
advantage to the user:

a) An unparenthesized expression is easy to read from
left to right because the first function encountered is
the major function, the next is the major function in
its right argument. etc.

b) An unparenthe ized expression is also easy to read
from right to left because this is the order in which it
is executed.

c) If T is any vector of numerical terms. then the pres
ent rule makes the expressions -IT and fiT very
useful: the former is the alternating sum of T and the
latter is the alternating product. Moreover, a contin
ued fraction may be written without parentheses in
the form 3+f4+fS+f6, and the efficient evaluation
of a polynomial can be written without parentheses in
the form 3+Xx4+XxS+Xx6.

The rule that multiplication is executed before addi
tion and that the power function is executed before mul
tiplication has been long accepted in mathematics. In
discarding any established rule it is wise to speculate on
the reasons for its adoption and on whether they still
apply. This rule makes parentheses unnecessary in the
writing of polynomials, and this alone appears to be a
sufficient reason for its original adoption. However. in
APL a polynomial can be written more perspicuously in
the form +ICxX*E. which also requires no parentheses.
The question of the order of execution has been dis
cussed in several places: Falkoff et al. [2.3 J. Berry [7].
and Appendix A of Iverson [8].

The order in which isolated parts of a statement. such
as the parts (X+4) and (Y-2) in the statement (Y+4)

x(Y-2), are executed is normally immaterial, but does
matter when repeated specifications are permitted in a
statement as in (A+-2 )+A. Although the use of such ex
pressions is poor practice. it is desirable to make the in
terpretation unequivocal: the rule adopted (as given in
Lathwell and Mezei [9J) is that the rightmost function or
specification which can be performed is performed first.

It is interesting to note that the use of embedded as
signment was first suggested during the course of the
implementation when it was realized that special steps
were needed to prevent it. The order of executing iso
lated parts of a statement was at fir t left unspecified
(as stated in Falkoff and Iverson [I]) to allow freedom
in implementation, since isolated parts could then be
executed in parallel on any machine offering parallel
processing. However, embedded assignment found such
wide use that an unambiguous definition became es
sential to fix the behavior of programs moving from
system to system.

Another aspect of the order of execution is the order
among statements. which is normally taken as the order
of appearance, except as modified by explicit branches.
In the publication form of the language branches were
denoted by arrows drawn from a branch point to theet
of possible destinations. and the drawing of branch ar
rows is still to be recommended as an adjunct for clari
fying the structure of a program (Iverson [IOJ. page 3 I.

In formalizing branching it was necessary to introduce
only one new concept (denoted by +) and three simple
conventions: I) continuing with the statement indicated
by the first element of a vector argument of +. or with the
next statement in sequence if the argument is an empty
vector. 2) terminating the function if the indicated con
tinuation is not the index of a statement in the program.
and 3) the use of lahels, local names defined by the in
dices of juxtaposed statements. At first labels were
treated as local variables. but it was found to be more
convenient in both use and implementation to treat them
as local constants.

Since the branch arrow can be tollowed by any valid
expression it provides convenient multi-way conditional
branches. For example. if L is a Boolean vector and Sis
a corresponding set of statement numbers (often formed
as the catenation of a set of labels). then +LIS provides
a (1+pL )-way branch (to one of the elements of S or
falling through if every element of L is zero): if I is an
empty vector or an index to the vector S, then +S[IJ
provides a similar (1+pL )-way branch.

Programming languages commonly incorporate special
forms of sequence control. typified by the DO statement
of FORTRAN. These forms are excluded from API be
cause their co t in complication of the language out
weighs their utility. The array operations in API obviate
many instances of iteration. and those which remain can
be represented in a variety of ways. For example. group
ing the initialization. modification, and testing of the con
trol variable at the head of the iterated segment provides
a particularly perspicuous arrangement. Moreover.
specialized sequence control statements are usually
context dependent and necessarily introduce new rules.

Conditional statements of the IF THEN ELSE type are
not only context dependent. but their inherent limitation
to a sequence of binary choices often leads to awkward
constructions. These. and other. special sequence con
trol forms can usually be modeled readily in API and pro
vided as application packages if desired.

Scalar functions
The emphasis on generality is illustrated in the defini
tions of many of the scalar functions. For example. the
definition of the factorial is not limited to non-negative
integers but is extended in the manner of the gamma
function. Similarly. the residue is extended to all num-
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bers in a simple and useful way: M IN is defined as the
smallest (in magnitude) among the quantities N-MxI
(where I is an integer) which lie in the range from 0 to
M. If no such quantity exists (as in the ca e where M is
zero) then the restriction to the range 0 to M is discard
ed. that is. 0 IX is X. As another example. 0*0 is defined
as 1 becaue that is the limiting value of X*Y when the
point 0 0 is approached along any path other than the X
axis. and because this definition i needed to make the
common general form of writing a polynomial (in which
the constant term C is written a, CxX*O) applicable when

the value of the argument X is zero.

The urge to generality must be tempered to avoid set
ting traps for the unwary. and compromise is sometimes
necessary. For example. X+O could be defined as infinity
(i.e .. the largest representable number in an implementa
tion) so as to obviate special treatment of the case Y=O
when computing the arc tangent of X+ Y. but is instead
defined to yield a domain error. Nevertheless. 0+0 is
given the value 1. in spite of the fact that the mathe
matical argument for it is much weaker than that for 0*0.
becaue it was deemed desirable to avoid an error stop
in this ca 'e.

Eventually it will be desirable to be able to set sepa
rate limits on domains to suit variou, classes of users.
For example. an implementation that incorporates com
plex numbers must yield a re 'ult for the expression
-1*.5 but should admit of being set to yield a domain
error for a user studying elementary arithmetic. The
experienced user should be permitted to use an imple
mentation in a mode that gives him complete control of
domain and other errors. i.e .. an error should not stop
execution but should give necessary information about
the error in a form which can be used by the program in
which it occur. Such a facility has not yet been incorpo
rated in APt implementations.

A very general and useful set of functions was intro
duced by adopting the relation symbols < ~ = ~ > ;t to
represent functions (i.e.. propositions) rather than asser
tions. The result of any proposition was defined to be 0
or 1 (rather than. say. lr11e or jidlcl so that it would lie
in the domain of other arithmetic functions. Thus X=Y
and X;tY represent general comparisons. but if X and Y
are integers then X=Y is the Kronecker delta and X;tY is
its inverse: if X and Yare Boolean variables. then X;tY is
the l'Xc!II.I;,·e-O,. and X~ is material implication. This
definition also allows expression that incorporate
both relational and arithmetic functions (such as
(2=+/[lJO=So .IS) /S+-lN. which yields the primes up
to integer N). Moreover. identities among Boolean func
tion are more evident when expressed in these terms
than when expressed in more conventional symbols.

The adoption of the relation symbols as functions
does not preclude their use as {/.I,lerl;OIlS in informal sen-
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tences. For example. although one might feel compelled
to substitute "X~ is true" for "X~" in the sentence
"If X~ then (X<Y)v(X=Y)". there is no more reason
to do so than to substitute "Bob is there is true" for
"Bob is there" in the sentence which begin "If Bob i
there then ..."

Although we strove to adopt familiar symbols and
usage. any clash with the principle of uniformity wa
invariably re olved in favor of uniformity. For example.
familiar symbols (such as + - x f) are used where
possible. but anomalie such as IXI for magnitude and
N I for factorial are regularized to Ix and !N. Notation
such as X \ for power and (~) for the binomial coeffi
cient are replaced by regular dyadic forms X*N and M!N.
Elision of the times sign i not permitted; this allows the
use of multiple-character names and avoids confusion
between multiplication. as in X(X+3). and the applica
tion of a function. as in F (X+3 ).

Moreover. each of the primitive scalar functions in
APt is extended to arrays in exactly the same way. In
particular. if V and Ware vectors the expressions VxW
and 3+V are permitted as well as the expressions V+CV
and 3xV. although only the latter pair would be permit
ted (in the sense used in APL) in conventional vector
algebra.

One view of simplicity might exclude a redundant
those functions which are eaily expressed in terms of
others. For example. rX may be written as - L-X. and
r/X ma} be written as - L/ - X. and A/L may be written
as ~v/~L. From another viewpoint it is simpler to use a
more complete or symmetric set of primitives. since one
need not remember which of a pair is provided and how to
express the other in terms of it. In APL. completeness ha
been favored. For example. symbols are provided for all
of the nontrivial logical functions although all are easily
expressed in terms of a small subset of them.

The use of the circle to denote the whole family of
functions related to the circular functions is a practical
technique for conserving symbols as well as a u eful
generalization. It leads to many convenient expressions
involving reduction and inner and outer products (such
as 1 2 3 0 • OX for a table of sines. cosines and tan
gents). Moreover. anyone wishing to use the symbol
SIN for the sine function can define the function SIN as
either lOX (for radian arguments) or lOXx 180+01 (for
degree arguments). The notational scheme employed for
the circular functions must clearly be used with discre
tion; it could be used to replace all monadic functions by
a single dyadic function with an integer left argument to
encode each monadic function.

Operators
The -dot in the expression M+. xN is an example of an
operalor; it takes functions (in this case + and X) as



arguments and produces a new function called an inner
product. (In elementary mathematics the term operator
is also used as a synonym for junction, but in APL we
eschew this usage. ) The evolution of operators in A PL

furnishes an example of growing generality which has as
yet been neither fully exploited nor fully regularized.

The operators now in APL were introduced one by om:
(reduction, then inner product, then outer product, then
axis operators such as ¢[IJ ) without being recognized
as members of a class. When this class property was
recognized it was apparent that the operators had not
been given a consistent syntax and that the notation
should eventually be regularized to give operators the
same syntax as functions, i.e., an operator taking two
arguments occurs between its (function) arguments (as
in +. x) and an operator taking one argument appears in
front of it. It also became evident that our treatment of
operators had introduced a useful heirarchy into the
order of execution, operators being executed before
functions.

The recognition of operators as such has also made
clear the much broader role they might be expected to
play-derivative and integral operators are only two of
many useful operators that must be added to the lan
guage.

The use of the outer product operator furnishes a
clear example of a significant process in the evolution of
the language: when a new facility is introduced it takes
considerable time to recognize the many ways in which
it can be used and therefore to appreciate its role in the
further development of the language. The notation OI

i (II )

(later regularized to NaJ) had been introduced early to
represent a prefix vector, i.e., a Boolean vector of N ele
ments with J leading 1'so Some thought had been given
to extending the definition to a I'ector J (perhaps to
yield an N=column matrix whose rows were prefix vec
tors determined by the elements of J) but no decision
had been taken. When considering such an extension we
normally communicate by defining any proposed nota
tion in terms of existing primitives. After the outer prod
uct was introduced the proposed extension was written
simply as Jo. ?.IN, and it became clear that the function

01 was now redundant.
One should not conclude from this example that every

function or set of functions easily expressed in terms of
another is discarded as redundant: judgment must be
exercised. In the present instance the a was discarded
partly because it was too restrictive, i.e., the outer prod
uct form could be applied to yield a host of related func
tions (such as Jo. <1N and Jo. <¢IN) not all of which
were expressible in terms of the prefix and suffix func
tions a and w. As mentioned in the discussion of scalar
functions, the completeness of an obvious family of
functions is also a factor to be considered.

Operators are attractive from several points of view.
Because they provide a scheme for denoting whole
classes of related functions, they offer uniformity of
expression and great economy of symbols. The concise
ness of expression that they allow can also be directly
related to efficiency of implementation. Moreover.
they introduce a new level of generality which plays an
important role in the formal manipulability of the lan
guage.

Formal manipulation
A PL is rich in identities and is therefore amenable to a
great deal of fruitful formal manipulation. For example,
many of the familiar identities of ordinary matrix algebra
extend to inn~ products other than +. x, and de Mor
gan's law and other dualities extend to inner and outer
products on arrays. The emphasis on generality. unifor
mity. and simplicity is likely to lead to a language rich in
identities. but our emphasis on identities has been such
that it should perhaps be enunciated as a separate and
important guiding principle. Indeed. the preface to Iver
son [10] cites one chapter (on the logical calculus) as
illustration of "the formal manipulability of the language
and its utility in theoretical work". A variety of identi
ties is treated in [10] and [ I I ], and a schema for proofs
in A PL is presented in [1:2].

Two examples will be used to illustrate the role of
identities in the development of the language. The iden
tity

(+/X)=(+/U/X)++/(~U)/X

applies for any numerical vector X and logical vector U.
Maintaining this identity for the case where U is a vector
of zeros forces one to define the sum over an empty
vector as zero. A similar identity holds for reduction by
any associative and commutative function and leads one
to define the reduction of an empty array by any func
tion as the identity element of that function.

The dyadic transpose I~A performs a general permu
tation on the coordinates of A as specified by the argu
ment I. The monadic transpose is a special case which,
in order to yield ordinary matrix transpose for an array
of rank two. was initially defined to interchange the last
two coordinates. It was later realized that the identity

A/.(M+.xN)=~(~N)+.x~M

expected to hold for matrices would not hold for higher
rank arrays. To make the identity true in general. the
monadic transpose was defined to reverse the order of
the coordinates as follows:

A/.(~A)=(¢lppA)~A.

Moreover, the form chosen for the left argument of the
dyadic transpose led to the following important identity:

A/.(I~J~A)=I[JJ~A.
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Execute and format
In designing an executable language there is a funda
mental choice to be made: Is the statement of an expres
sion to be taken as an order to evaluate it. or must the
evaluation be indicated by an explicit function in the
language? Thi· decision was made very early in the de
velopment of APL, albeit with little deliberation. Never
theless, once the choice became manifest. early in the
development of the implementation. it was applied uni
formly in all situations.

There were some arguments against this. of cour e,
particularly in the application of a function to its argu
ments. where it is often useful to be able to "call by
name," which requires that the evaluation of the argu
ment be deferred. But if implemented literally (i.e., if
functions could be defined with this as an option) then
names per se would have to be known to the language
and would con titute an additional object type with its
own rules of behavior and specialized primitive func
tions. A deliberate effort had been made to eliminate
unnecessary type distinctions. as in the uniform lan
guage treatment of numbers regardless of their internal
representation, and thi. point of view prevailed. In the
intere t of keeping the semantic rules simple, the idea of
"call by name" was rejected as a primitive concept in APL.

everthele s. there are important cases where the
formal argument of a function ·hould not be evaluated at
the time of invocation - as in the application of a gen
eralized root finder to an arbitrary function. There are
also situations where it is useful to inhibit evaluation of
an expre sion. as in certain conditional forms. and the
need for some treatment of the problem wa clear. The
basis for a solution was at hand in the form of character
arrays. which were already objects of the language. Ef
fectively, putting quotes around a statement inhibits its
execution by making it a data item, a character array
subject to the normal language functions. To get the ef
fect of working with names. or with expressions to be
conditionally evaluated, it was only necessary to intro
duce the notion of "unquote," or more properly "exe
cute." as a function that would cause a character array
to be evaluated as if it were the same expression without
the inhibition.

The actual introduction of the execute function did
not come for some time after its recognition as the likely
solution. The development that preceded its final accep
tance into PL illustrates several design principles.

The concept of an execute function is a very powerful
one. In a ense, it makes the language" elf-conscious."
and introduce endless possibilities for ob eurity in pro
grams. Thi might have been a reason for not allowing it.
but we had long since realized that a general-purpose
language cannot be made foolproof and remain effective.
furthermore. \1'1 is easily partitioned. and beginning
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users, or users of application packages, need not know
about more sophisticated aspects of the language. The
real i sue were whether the function was of sufficiently
broad utility, whether it could be defined simply, and
whether it was perhaps a special case of a more general
capability that should be implemented instead. There
was also the need to establish a symbol for it.

The case for general utility was easily made. The exe
cute function does allow names to be used as arguments
to functions without the need for a new data type: it
provides the means for generating variables under pro
gram control, which can be useful, for example, in man
aging data that do not conveniently fit into rectangular
arrays; it allows the construction and execution of state
ments under program control; and in interpretive imple
mentations it provides conversion from characters to
numbers at machine speeds.

The behavior of the execute function is simply de
scribed: it treats a character array argument as a repre
sentation of an APL statement and attempts to evaluate or
execute the statement so represented. System commands
and attempts to enter function definition mode are not
valid A PL statements and are excluded from the domain
of execute. It can be said that, except for these exclu
sions, execute acts upon a character array as if the ele
ments of the array were entered at a terminal in the im
mediate execution mode.

Incidentally, there was pressure to arbitrarily include
system commands in the domain of execute as a means
of providing access to other work paces under program
control in order to facilitate work with large collections
of data. This was resisted on the basis that the execute
function should not allow by subterfuge what was other
wise disallowed. Indeed, consideration of this aspect of
the behavior of execute led to the removal of certain
anomalies in function definition and a clarification of the
role of the escape characters) and V.

The question of generality ha not been finally settled.
Certainly, the execute function could be considered a
member of a class that includes constructs like those of
the lambda calculus. But it is not necessary to have the
ultimate answer in order to proceed, and the simplicity
of the definition adopted gives some as urance that gen
eralization are not being foreclosed.

For some time during its experimental implementation
the symbol for execute was the epsilon. This was chosen
for obvious mnemonic reasons and becau e no other
monadic use was made of this symbol. A thought wa
being given to another new function - format - it was
observed that over some part of each of their domains
format and execute were inver es. Furthermore, over
these parts of their domains they were strongly related to
the functions encode and decode, and we therefore
adopted their symbols overstruck by the symbol o.



The format function furnishes another example of a
primitive whose behavior was first defined and long ex
perimented with by means of APL defined functions.
These defined functions were the DFT ( Decimal
Format) and EFT (Exponential Format) familiar to
most users of the APL system. The main advantage of
the primitive format function over these definitions is its
much more efficient use of computer time.

The format function has both a dyadic and a monadic
definition. but the execute function is monadic only.
This leaves the way open for a related dyadic function.
for which there has been no dearth of suggestions. but
none will be adopted until more experience has been
gained in the use of what we already have.

System commands and other environmental
facilities
The definition of APL is purely abstract: the objects of
the language. arrays of numbers and characters. are act
ed upon by the primitive functions in a manner indepen
dent of their representation and independent of any
practical interpretation placed upon them. The advan
tages of such an abstract definition are that it makes the
language truly machine independent. and avoids bias in
favor of particular application areas. But not everything
in a computing system is abstract. and provision must be
made to manage system resources and otherwise com
municate with the environment in which the language
functions operate.

Maintaining the abstract nature of the language in a
real computing system therefore seemed to imply a need
for language-like facilities in some sense outside of APL.
The need was first met by the use of system commands.
which are syntactically not part of APL. and are also ex
cluded from dynamic use within APL programs. They
provided a simple and. in some ways. convenient answer
to the problem of sy tem management. but proved insuf
ficient becau e the actions and information provided by
them are often required dynamically.

The exclusion of system commands from programs
was based more strongly on engineering considerations
than on a theoretic compulsion. since the syntactic dis
tinction alone sets them apart from the language. but
there remained a reluctance to allow such syntactic
anomalies in a program. The real issue. which was
whether the functions provided by the system com
mands were properly the province of APL, was tabled for
the time being, and defined functions that mimic the ac
tions of certain of them were introduced to allow dy
namic execution. The functions so provided were those
affecting only the environment within a workspace. uch
as width and origin, while those that would have affected
major physical resources of the system were still exclud
ed for engineering reasons.

These environmental defined functions were based on
the use of still another class' of functions-called "1
beams" because of the shape of the symbol used for
them - which provide a more general facility for commu
nication between APL programs and the less abstract
parts of the system. The I-beam functions were first in
troduced by the system programmers to allow them to
execute System/360 instructions from within APl pro
grams. and thus use APL as a direct aid in their program
ming activity. The obvious convenience of functions of
this kind. which appeared to be parl of the language. led
to the introduction of the monadic I-beam function for
direct use by anyone. Various arguments to this function
yielded information about the environment such as avail
able space and time of day.

Though clearly an ad hoc facility. the I-beam func
tions appear to be part of the language because they
obey APL. syntax and can be executed from within an
APL program. They were too useful to do without in the
absence of a more rational solution to the problem, and
so were graced with the designation "system-dependent
functions," while we continued to use the system and
think about the general problem of communication
among the subsystems I.:omposing it.

Shared variables
The logical basis for a generalized communication facil
ity in API.\360 was laid in 1964 with the publication of
the formal description of System/360 [2]. It was then
observed that the interaction between concurrent "asyn
chronous" processes (programs) could be completely
comprehended by an interface comprising variables that
were shared by the cooperating processes. (Another fa
cility was also used. where one program forced a branch
in another. but this can be regarded as a derivative rep
resentation based on variables shared between one
program and a processor that drives the other.) It was
not until six or seven years later, however, that the full
force of this observation was brought to bear on the
practical problem of controlling in an organic way the
environment in which APL programs run.

Three processors can be identified during the execu
tion of an APL program: APL. or the processor that ac
tually executes the program: the S\'stem, or host that
manages libraries and other environmental factors,
which in APL\360 is the System/360 processor; and the
user. who may be observing and processing output or
providing input to the program. The link between APL
and system is the set of I-beam functions, that between
user and system is the set of system commands. and
between user and APL, the quad and quote-quad. With
the exception of the quote-quad. which is a true variable.
all these links are constructs on the interfaces rather
than the interfaces themselves.
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It can be seen that the quote-quad is shared by the
user and API. Characteristically, a value assigned to it in
a program is pre ented to the user at the terminal. who
utilize this information as he ees fit. If later read by the
program, the value of the quote-quad then hal> no fixed
relationship to what was earlier specified by the pro
gram. The values written and read by the program are
l/ fortiori -\PL objects-ab tract arrays-but they may
have practical significance to the user-processor. sug
ge ting. for example. that an experimental ob ervation
be made and the results entered at the keyboard.

Using the quote-quad as the paradigm for their behav
ior, a general facility for shared variable was designed
and implemented starting in late 1969 (see Lathwell
[ 13] ). The underlying concept was to provide communi
cation across the boundary between independent proces
sors by explicitly e tablishing certain variables as being
shared between them. A shared variable is syntactically
indistinguishable from others and may be used normally
either on the right or left of an assignment arrow.

Although motivated most strongly at the time by a
need to provide a "file and I/O" capability for APL\360,

the shared variable facility satisfied other needs as well.
a significant criterion for the inclusion of a new feature
in the language. It provides for general communication.
not only between APL and the host system, but abo
between APL programs running concurrently at different
terminals. which is in a sense a more fundamental use of
the idea.

Perhap as important as the practical use of the facil
ity is the potency that an implementation lends to the
concept of shared variables as a basis for understanding
communication in any system. With re pect to APL\360,

for example. we had long u ed the term "distinguished
variable" in discussing the interface between APL and
system, meaning thereby variables, like trace and stop
vectors. which hold control or state information. It i
now clear that "di tinguished variables" are shared vari
ables, distinguished from ordinary variables by the fact
of their being shared, and further qualified by their
membership in a particular interface. In principle. the
environment and resources of APL\360 could be com
pletely controlled through the use of an appropriate set
of such distinguished variables.

System functions
In a given application area it is u ually easier to work
with API. augmented by defined functions, designed to
embody the ignificant concepts of the area, than with
the primitive functions of the language alone. Such de
fined functions, together with the relevant variables or
data objects. constitute an application language, or appli
cation extension. Managing the resources or environ
ment of an APt computing system is a particular applica-
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tion, in which the data objects are the distinguished vari
ables that define the interface between APt and system.

For convenience, the defined functions constituting an
application extension for sy tem management hould
behave differently from other defined functions, at least
to the extent of being available at all time ,like the prim
itives, without having to be copied from workspace to
workspace. Such ubiquity requires that the names of
these functions be distinguished from those a user might
invent. This distinction can only be made, if APL is to
remain essentially context independent, by the establi h
ment of a c1as of re erved names. Thi c1as ha been
defined as names starting with the quad character. and
functions having such names are called system functions.
A similar naming convention applies to distinguished
variables. or system variables. as they are now called.

In principle, system function' work with system vari
ables that are independently identifiable. In practice,
the system variables in a particular situation may not
be available explicitly. and the system functions may
be locked. This can come about because direct acce s to
the interface by the user is deemed undesirable for tech
nical reasons. or because of economic considerations
such as efficiency or protection of proprietary rights. In
such situations system functions are superficially distin
guil>hable from primitive functions only by virtue of the
naming convention.

The present I-beam functions behave like system
functions. Fortunately. there are only two of them: the
monadic function that is familiar to all users of APLo and
the dyadic function that is still known mostly to system
programmers. Despite their u efulness. these functions
are hardly to be taken as examples of good application
language design. depending as they do on arbitrary nu
merical arguments to give them meaning, and having no
meaningful relationships with each other. The monadic
I-beams are more like read-only variables -changeable
constants, as it were-than functions. Indeed, except for
their syntax, they behave precisely like shared variables
where the processor on the other sid.:: replaces the value
between each reference on the APL side.

The shared variable facility itself requires communica
tion between APL and system in order to establish a de
sired interface between APL and cooperating processors.
The prospect of inventing new system commands for
this. or otherwise providing an ad hoc facility, was most
distasteful. and consideration of this problem was a ma
jor factor in leading toward the ystem function concept.
It was taken a an indication of the validity of the shared
variable approach to communication when the solution
to the problem it engendered was found within the con
ceptual framework it provided. and this solution also
proved to be a basis for clarifying the role of facilitie
already present.



In due course a set of system functions must be de
signed to parallel the facilities now provided by system
commands and go beyond them. Aside from the obvi
ous advantage of being dynamically executable, such a
set of system functions will have other advantages and
some disadvantages. The major operational advantage
is that the system functions will be able to use the full
power of APL to generate their arguments and exploit
their results. Countering this, there is the fact that this
power has a price: the automatic name isolation provided
by the extralingual system commands will not be avail
able to the system functions. Names used as argument
will have to be presented as character arrays. which is not
a disadvantage in programs. although it is less convenient
for casual keyboard entry than i the use of unadorned
names in system commands.

A more profound advantage of system functions over
system commands lies in the possibility of designing the
former to work together constructively. System com
mand are foreclosed from this by the rudimentary na
ture of their syntax; they do constitute a language. but
one having no constructive potential.

Workspaces, files, and input-output
The workspace organization of APL\360 libraries serves
to group together functions and variables intended to
work together, and to render them active or inactive a a
group, preserving the tate of the computation during
periods of inactivity. Workspaces also implicitly qualify
the names of objects within them, so that the same name
may be used independently in a multiplicity of work
spaces in a given system. These are useful attributes; the
grouping feature, for example, contributes strongly to
the convenience of using APL by obviating the linkage
problems found in other library systems.

On the other hand, engineering decisions made early
in the development of APL\360 determined that the
workspaces be of fixed size. This limits the ize of ob
jects that can be managed within them and often be
comes an inconvenience. Consequently, as usage of
APL\360 developed, a demand aro e for a "file" facility,
at first to work with large volumes of data under pro
gram control, and later to utilize data generated by other
systems. There was also a demand to make use of high
speed input and output equipment. As noted in an earlier
section, these demands led in time to the development of
the shared variable facility. Three considerations were
paramount in arriving at this solution.

One consideration was the determination to maintain
the abstract nature of APL. In particular. the use of prim
itive functions whose definitions depend on the repre
sentation of their arguments was to be avoided. This
alone was sufficient to rule out the notion of a file as a

formal concept in the language. APL has primitive array
structures that either encompass the logical structure of
files or can be extended to do so by relatively simple
functions defined on them. The user of APL may regard
any array or collectIOn of arrays as a file, and in princi
ple should be able to use the data so organized without
regard to the medium on which the e arrays may be
stored.

The second consideration was the not uncommon
observation that files are used in two ways. as a medium
for exchange of information and as a dynamic exten
sion of working storage during computation (see Fal"off
[14]). In keeping with the principle just noted, the
proper solution to the second problem must ultimately
be the removal of work pace size limitation , and this
will probably be achieved in the course of general de
velopments in the industry. We saw no prospect of a at
isfactory direct olution being achieved locally in a
reasonable time. so attention was concentrated on the
first prohlem in the expectation that. with a good general
communication facility. on-line storage device could be
u ed for work pace extension at least as effectively as
they are so used in other systems.

The third consideration was one of generality. One
possible approach to the communication problem would
have been to increase the roster of system commands
and make them dynamically executable. or add varia
tions to the I-beam functions to manage specific torage
media and I/O equipment or access methods. But in ad
dition to being unpleasant because of its ad hoc nature.
this approach did not promise to be general enough. In
working interactively with large collections of data. for
example. the possible functional variations are almost
limitle s. Various classes of users may be allowed ac
ces' for different purposes under a variety of controls.
and unless it is intended to impose restrictive constraint
ahead of time. it is futile to try to anticipate the solutions
to particular problem . Thus. to provide a communica
tion facility by accretion appeared to be an endless task.

The shared variable approach is general enough be
cause, by making the interface explicitly available with
primitive controls on the behavior of the shared variable.
it provides only the ba ic communication mechanism. It
then remains for the specific problem to be managed by
bringing to bear on it the full power of APL on one side,
and that of the host system on the other. The only re
maining question is one of performance: does the hared
variable concept provide the basis for an effective imple
mentation? This question has been answered affirma
tively as a result of d'irect experimentation.

The net effect of thIS approach has been to provide for
APL an application extension compri ing the few system
functions necessary to manage hared variables. Actual
file or I/O application are managed, a' required. by
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user-defined functions. The system functions are used
only to establish sharing, and the shared variables are
then used for the actual transfer of information between
APL workspaces and file or I/O processors.

Appendix. Chronology of APL development
The development of APL was begun in 1957 as a neces
sary tool for writing clearly about various topics of inter
est in data processing. The early development is de
scribed in the preface of Iverson [10] and Brooks and
Iverson [15). Falkoff became interested in the work
shortly after Iverson joined I BM in 1960, and used the
language in his work on parallel search memories [16).
Inearly 1963 Falkoff began work on a formal descrip
tion of System/360 in APL and was later joined in this
work by Iverson and Su ssengu th [2).

Throughout this early period the language was used
by both Falkoff and Iverson in the teaching of various
topics at various universities and at the IBM Sy tems
Research Institute. Early in 1964 Iverson began using it
in a course in elementary functions at the Fox Lane
High School in Bedford, New York, and in 1966 pub
lished a text that grew out of this work [8). John L.
Lawrence (who, as editor of the IBM Systems J ollmul,

procured and assisted in the publication of the formal
description of System/36(») became interested in the use
of APt at high school and college level and invited the
authors to consult with him in the development of cur
riculum material based on the use of computers. This
work led to the preparation of curriculum material in a
number of areas and to the publication of an APt \360

Reference Manual by Sandra Pakin [17).
Although our work through 1964 had been focused on

the language as a tool for communication among people.

we never doubted that the same characteristics which
make the language good for this purpose would make it
good for communication with a machine. In 1963 Her
bert Hellerman implemented a portion of the language
on an IBM/1620 as reported in [18). Hellerman's sys
tem was used by stuLlent in the high school course with
encouraging results. This. together with our earlier work
in education, heightened our interest in a full-scale imple
mentation.

When the work on the formal description of Sys
tem/360 was finished in 1964 we turned our attention to
the problem of implementation. This work was brought
to rapid fruition in 1965 when Lawrence M. Breed
joined the project and, together with Philip S. Abrams,
produced an implementation on the 7090 by the end of
1965. Influenced by Hellerman's interest in time-sharing
we had already developed an APL typing element for the
IBM 1050 computer terminal. This was used in early
1966 when Breed adapted the 7090 system to an experi
mental time-sharing system developed under Andrew
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Kinslow. allowing us the first use of APL in the manner
familiar today. By November 1966. the system had been
reprogrammed for System/360 and APL service has been
available within IBM since that date. The system be
came available outside IBM in 1968.

A paper by Falkoff and Iverson [3) provided the first
published description of the APL\360 system, and a
companion paper by Breed and Lathwell [19] treated
the implementation. R. H. Lathwell joined the design
group in 1966 and has since been concerned primarily
with the implementations of APL and with the use of APL
itself in the design process. In 1971 he published. to
gether with Jorge Mezei, a formal definition of APL in
APL [9).

The APL \360 System benefited from the contributions
of many out ide of the central design group. The preface
to the U er's Manual [I) acknowledges many of these
contribution .
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This paper is a discussion of the
evolution of the APL language, and it
treats implementations and applications
only to the extent that they appear to have
exercised a major influence on that
evolution. Other sources of historical
information are cited in References 1-3; in
particular, The Design of APL [1J provides
supplementary-Qeta11 on the reasons behind
many of the design decisions made in the
development of the language. Readers
requiring background on the current
definition of the language should consult
APL Language [4J.

Although we have attempted to confirm
our recollections by reference to written
documents and to the memories of our
colleagues, this remains a personal view
which the reader should perhaps supplement
by consulting the references provided. In
particular, much information about
individual contributions will be found in
~he Appendix to The Design of APL [1J, and
1n the Acknowledgements in A Programming
Language [10J and in APL\360 User's Manual
[23J. Because Reference ~may no-longer
be readily available, the acknowledgements
from it are reprinted in Appendix A.

McDonnell's recent paper on the
development of the notation for the
circular functions [5J shows that the
detailed evolution of anyone facet of the
language can be both interesting and
illuminating. Too much detail in the
present paper would, however, tend to
obscure the main points, and we have
therefore limited ourselves to one such
example. We can only hope that other
contributors will publish their views on
the detailed developments of other facets
of the language, and on the development of
various applications of it.

The development of the language was
first begun by Iverson as a tool for
describing and analyzing various topics in
data processing, for use in teaching
classes, and in writing a book, Automatic

Data Processing [6J, undertaken together
with Frederick P. Brooks, Jr., then a
graduate student at Harvard. Because the
work began as incidental to other work, it
is difficult to pinpoint the beginning, but
it was probably early 1956; the first
explicit use of the language to provide
communication between the designers and
programmers of a complex system occurred
during a leave from Harvard spent with the
management consulting firm of McKinsey and
Company in 1957. Even after others were
drawn into the development of the language,
this development remained largely
incidental to the work in which it was
used. For example, Falkoff was first
attracted to it (shortly after Iverson
joined IBM in 1960) by its use as a tool in
his work in parallel search memories [7J,
and in 1964 we began to plan an
implementation of the language to enhance
its utility as a design tool, work which
came to fruition when we were joined by
Lawrence M. Breed in 1965.

The most important influences in the
early phase. appear to be Iverson's
background in mathematics, his thesis work
in the machine solutions of linear
differential equations [8J for an economic
input-output model proposed by Professor
Wassily Leontief (who, with Professor
Howard Aiken, served as thesis adviser),
and Professor Aiken's interest in the
newly-developing field of commercial
applications of computers. Falkoff brought
to the work a background in engineering and
technical development, with experience in a
number of disciplines, which had left him
convinced of the overriding importance of
simplicity, particularly in a field as
subject to complication as data processing.

Although the evolution has been
continuous, it will be helpful to
distinguish four phases according to the
major use or preoccupation of the period:
academic use (to 1960), machine description
(1961-1963), implementation (1964-1968),
and systems (after 1968).
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1. ACADEMIC USE

The machine programming required in
Iverson's thesis work was directed at the
development of a set of subroutines
designed to permit convenient
experimentation with a variety of
mathematical methods. This implementation
experience led to an emphasis on
implementable language constructs, and to
an understanding of the role of the
representation of data.

The mathematical background shows
itself in a variety of ways, notably:

1. In the use of functions with
explicit arguments and explicit results;
even the relations « s = ~ > ~) are
treated as such functions.

2. In the use of logical functions and
logical variables. For example, the
compression function (denoted by I) uses
as one argument a logical vector which
is, in effect, the characteristic vector
of the subset selected by compression.

3. In the use of concepts and
terminology from tensor analysis, as in
inner product and outer product and in
EneUse of rank fortne "d1mensionality"
of an array~d in the treatment of a
scalar as an array of rank zero.

4. In the emphasis on generality. For
example, the generalizations of
summation (by F/), of inner product (by
F.G), and of outer product (by o.F)
extended the utility of these functions
far beyond their original area of
application.

5. In the emphasis on identities
(already evident in [9J) which makes the
language more useful for analytic
purposes, and which leads to a uniform
treatment of special cases as, for
example, the definition of the reduction
of an empty vector, first given in A
Programming Language [10J.

In 1954 Harvard University published
an announcement [llJ of a new graduate
program in Automatic Data Processing
organized by Professor Aiken. (The program
was also reported in a conference on
computer education [12J). Iverson was one
of the new faculty appointed to prosecute
the program; working under the guidance of
Professor Aiken in the development of new
courses provided a stimulus to his interest
in developing notation, and the diversity
of interests embraced by the program
promoted a broad view of applications.

The state of the language at the end
of the academic period is best represented
by the presentation in A Programming
Language [10J, submittea for publication in
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early 1961. The evolution in the latter
part of the period is best seen by
comparing references 9 and 10. This
comparison shows that reduction and inner
and outer product were all 1ntroducea-rn
that period, although not then recognized
as a class later called operators. It also
shows that specification was originally (in
Reference 9) denoted by placing the
specified name at the right, as in P~Q~2.

The arguments (due in part to F.P. Brooks,
Jr.) which led to the present form (2 p~ )
were that it better conformed to the
mathematical form 2=P~Q, and that in
reading a program, any backward reference
to determine how a given variable was
specified would be facilitated if the
specified variables were aligned at the
left margin. What this comparison does not
show is the removal of a number of special
comparison functions (such as the
comparison of a vector with each row of a
matrix) which were seen to be unnecessary
when the power of the inner product began
to be appreciated, as in the expression
MA.=V. This removal provides one example
of the simplification of the language
produced by generalizations.

2. MACHINE DESCRIPTION

The machine description phase was
marked by the complete or partial
description of a number of computer
systems. The first use of the language to
describe a complete computing system was
begun in early 1962 when Falkoff discussed
with Dr. W.C. Carter his work in the
standardization of the instruction set for
the machines that were to become the IBM
System/360 family. Falkoff agreed to
undertake a formal description of the
machine language, largely as a vehicle for
demonstrating how parallel processes could
be rigorously represented. He was later
joined in this work by Iverson when he
returned from a short leave at Harvard, and
still later by E.H. Sussenguth. This work
was published as "A Formal Description of
System/360" [13J.

This phase was also marked by a
consolidation and regularization of many
aspects which had little to do with machine
description. For example, the cumbersome
definition of maximum and minimum (denoted
in Reference 10 by urv and UlV and
equivalent to what would now be written as
r/ulv and l/UIV) was replaced, at the
suggestion of Herbert Hellerman, by the
present simple scalar functions. This
simplification was deemed practical because
of our increased understanding of the
potential of reduction and inner and outer
product.

The best picture of the evolution in
this period is given by a comparison of A
Programming Language [10J on the one hand,



and "A Formal Description of System/360"
[13J and "Formalism in Programming
Languages" [14J on the other. Using
explicit page references to Reference 10,
we will now give some further examples of
regularization during this period:

1. The elimination of embracing symbols
(such as IXI for absolute value, LXJ for
floor, and rXl for ceiling) and
replacement by the leading symbol only,
thus unifying the syntax for monadic
functions.

2. The conscious use of a single
function symbol to represent both a
monadic and a dyadic function (still
referred to in Reference 10 as unary and
binary) . ---

3. The adoption of multi-character
names which, because of the failure
(page 11) to insist on no elision of the
times sign, had been permitted (page 10)
only with a special indicator.

4. The rigorous adoption of a
right-to-left order of execution which,
although stated (page 8) had been
violated by the unconscious application
of the familiar precedence rules of
mathematics. Reasons for this choice
are presented in Elementary Functions
[15J, in Berry's APL\360 Primer [16J,
and in The Design of APL [lJ.

5. The concomitant definition of
reduction based on a right-to-Ieft order
of execution as opposed to the opposite
convention defined on page 16.

6. Elimination of the requirement for
parentheses surrounding an expression
involving a relation (page 11). An
example of the use without parentheses
occurs near the bottom of page 241 of
Reference 13.

7. The elimination of implicit
specification of a variable (that is,
the specification of some function of
it, as in the expression LS~2 on page
81), and its replacement by an explicit
inverse function (T in the cited
example) .

Perhaps the most important
developments of this period were in the use
of a collection of concurrent autonomous
programs to describe a system, and the
formalization of shared variables as the
means of communication among the programs.
Again, comparisons may be made between the
system of programs of Reference 13, and the
more informal use of concurrent programs
introduced on page 88 of Reference 10.

It is interesting to note that the
need for a random function (denoted by the
question mark) was first felt in describing

the operation of the computer itself. The
architects of the IBM System/360 wished to
leave to the discretion of the designers of
the individual machines of the 360 family
the decision as to what was to be found in
certain registers after the occurrence of
certain errors, and this was done by
stating that the result was to be random.
Recognizing more general use for the
function than the generation of random
logical vectors, we subsequently defined
the monadic question mark function as a
scalar function whose argument specified
the population from which the random
elements were to be chosen.

3. IMPLEMENTATION

In 1964 a number of factors conspired
to turn our attention seriously to the
problem of implementation. One was the
fact that the language was by now
sufficiently well-defined to give us some
confidence in its suitability for
implementation. The second was the
interest of Mr. John L. Lawrence who, after
managing the publication of our description
of System/360, asked for our consultation
in utilizing the language as a tool in his
new responsibility (with Science Research
Associates) for developing the use of
computers in education. We quickly agreed
with Mr. Lawrence on the necessity for a
machine implementation in this work. The
third was the interest of our then manager,
Dr. Herbert Hellerman, who, after
initiating some implementation work which
did not see completion, himself undertook
an implementation of an array-based
language which he reported in the
Communications of the ACM [17J. Although
this work was lImited rn-certain important
respects, it did prove useful as a teaching
tool and tended to confirm the feasibility
of implementation.

Our first step was to define a
character set for APL. Influenced by Dr.
Hellerman's interest in time-sharing
systems, we decided to base the design on
an 88-character set for the IBM 1050
terminal, which utilized the
easily-interchanged SelectricC~typing
element. The design of this character-set
exercised a surprising degree of influence
on the development of the language.

As a practical matter it was clear
that we would have to accept a
linearization of the language (with no
superscripts or subscripts) as well as a
strict limit on the size of the primary
character set. Although we expected these
limitations to have a deleterious effect,
and at first found unpleasant some of the
linearity forced upon us, we now feel that
the changes were beneficial, and that many
led to important generalizations. For
example:
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1. On linearizing indexing we
realized that the sub- and
super-script form had inhibited the
use of arrays of rank greater than 2,
and had also inhibited the use of
several levels of indexing; both
inhibitions were relieved by the
linear form A[I;J;KJ.

2. The linearization of the inner
and outer product notation (from M~N
and M~N to M+.xN and Mo.xN) led
eventually to the recognition of the
operator (which was now represented
by an explicit symbol, the period) as
a separate and important component of
the language.

3. Linearization led to a
regularization of many functions ,of
two arguments (such as NaJ for aJ(n)
and A*B for a b ) and to the
redefinition of certain functions of
two or three arguments so as to
eliminate one of the arguments. For
example, IJ(n) was replaced by IN,
with the simple expression J+IN
replacing the original definition.
Moreover, the simple form IN led to
the recognition that J~IN could
replace NaJ (for J a scalar) and that
Jo.~IN could generalize NaJ in a
useful manner; as a result the
functions a and w were eventually
withdrawn.

4. The limitation of the character
set led to a more systematic
exploitation of the notion of
ambiguous valence, the representation
of both a monadic and a dyadic
function by the same symbol.

5. The limitation of the character
set led to the replacement of the two
functions for the number of rows and
the number of columns of an array, by
the single function (denoted by p)
which gave the dimension vector of
the array. This provided the
necessary extension to arrays of
arbitrary rank, and led to the simple
expression ppA for the rank of A.
The resulting notion of the dimension
vector also led to the definition of
the dyadic reshape function DpX.

6. The limitation to 88 primary
characters led to the important
notion of composite characters formed
by striking one of the basic
characters over another. This scheme
has provided a supply of easily-read
and easily-written symbols which were
needed as the language developed
further. For example, the quad,
overbar, and circle were included not
for specific purposes but because
they could be used to overstrike many
characters. The overbar by itself
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also proved valuable for the
representation of negative numbers,
and the circle proved convenient in
carrying out the idea, proposed by
E.E. McDonnell, of representing the
entire family of (monadic) circular
functions by a single dyadic
function.

7. The use of multiple fonts had to
be re-examined, and this led to the
realization that certain functions
were defined not in terms of the
value of the argument alone, but also
in terms of the form of the name of
the argument. Such dependence on the
forms of names was removed.

We did, however, include
characters which could print above
and below alphabetics to provide for
possible font distinctions. The
original typing element included both
the present flat underscore, and a
saw-tooth one (the pralltriller as
shown, for example, in Webster's
Second), and a hyphen. In practice,
we found the two underscores somewhat
difficult to distinguish, and the
hyphen very difficult to distinguish
from the minus, from which it
differed only in length. We
therefore made the rather costly
change of two characters,
substituting the present delta and
del (inverted delta) for the
pralltriller and the hyphen.

In the placement of the character set
on the keyboard we were subject to a number
of constraints imposed by the two forms of
the IBM 2741 terminal (which differed in
the encoding from keyboard-position to
element-position), but were able to devise
a grouping of symbols which most users find
easy to learn. One pleasant surprise has
been the discovery that numbers of people
who do not use APL have adopted the type
element for use in mathematical typing.
The first publication of the character set
appears to be in Elementary Functions [lSJ.

Implementation led to a new class of
questions, including the formal definition
of functions, the localization and scope of
names, and the use of tolerances in
comparisons and in printing output. It
also led to systems questions concerning
the environment and its management,
including tne matter of libraries and
certain parameters such as index origin,
printing precision, and printing width.

Two early decisions set the tone of
the implementation work: 1) The
implementation was to be experimental, with
primary emphasis on flexibility to permit
experimentation with language concepts, and
with questions of execution efficiency
subordinated, and 2) The language was to be



compromised as little as possible by
machine considerations.

These considerations led Breed and
P.S. Abrams (both of whom had been
attracted to our work by Reference 13) to
Propose and build an interpretive
implementation in the summer of 1965. This
was a batch system with punched card input,
using a multi-character encoding of the
primitive function symbols. It ran on the
IBM 7090 machine and we were later able to
experiment with it interactively, using the
typeball previously designed, by placing
the interpreter under an experimental time
sharing monitor (TSM) available on a
machine in a nearby IBM facility.

TSM was available to us for only a
very short time, and in early 1966 we began
to consider an implementation on
Systemj360, work that started in earnest in
July and culminated in a running system in
the fall. The fact that this interpretive
and experimental implementation also proved
to be remarkably practical and efficient is
a tribute to the skill of the implementers,
recognized in 1973 by the award to the
principals (L.M. Breed, R.H. Lathwell, and
R.D. Moore) of ACM's Grace Murray Hopper
Award. The fact that the many APL
implementations continue to be largely
interpretive may be attributed to the array
character of the language which makes
possible. efficient interpretive execution.

We chose to treat the occurrence of a
statement as an order to evaluate it, and
rejected the notion of an explicit function
to indicate evaluation. In order to avoid
the introduction of "names" as a distinct
object class, we also rejected the notion
of "call by name". The constraints imposed
by this decision were eventually removed in
a simple and general way by the
introduction of the execute function, which
served to execute its character string
argument as an APL expression. The
evolution of these notions is discussed at
length in the section on "Execute and
Format" in The Design of APL [lJ.

In earlier discussions with a number
of colleagues, the introduction of
declarations into the language was urged
upon us as a requisite for implementation.
We resisted this on the general basis of
simplicity, but also on the basis that
information in declarations would be
redundant, or perhaps conflicting, in a
language in which arrays are primitive.
The choice of an interpretive
implementation made the exclusion of
declarations feasible, and this, coupled
with the determinati~n to minimize the
influence of machine consiaerations such as
the internal representations of nur05ers on
the design of the language, led to an early
decisi~n to exclude them.

In provid~ng a mechanism by which a
user could define a new function, we wished
to provide six forms in all; functions with
0, 1, or 2 explicit arguments, and
functions with 0 or 1 explicit results.
This led to the adoption of a header for
the function definition which was, ~n

effect, a paradigm for the way in which a
function was used. For example, a function
F of two arguments having an explicit
result would typically be used in an
expression such as Z~A F B, and this was
the form used for the header.

The names for arguments and results
in the header were of course made local to
the function definition, but at the outset
no thought was given to the localization of
other names. Fortunately, the design of
the interpreter made it relatively easy to
localize the names by adding them to the
header (separated by semicolons), and this
was soon done. Names so localized were
strictly local to the defined function, and
their scope did not extend to any other
functions used within it. It was not until
the spring of 1968 when Breed returned from
a talk by Professor Alan Perlis on what he
called "dynamic localization" that the
present scheme was adopted, in which name
scopes extend to functions called within a
function.

We recognized that the finite limits
on the representation of numbers imposed by
an implementation would raise problems
which might require some compromise in the
definition of the language, and we tried to
keep these compromises to a minimum. For
example, it was clear that we would have to
provide both integer and floating point
representations of numbers and, because we
anticipated use of the system in logical
design, we wished to provide an efficient
(one bit per element) representation of
logical arrays as well. However, at the
cost of considerable effort and some loss
of efficiency, both well worthwhile, the
transitions between representations were
made to be imperceptible to the user,
except for secondary effects such as
storage requirements.

Problems such as overflow (i.e., a
result outside the range of the
representations available) were treated as
domain errors, the term domain being
understood as the domain of the machine
function provided, rather than as the
domain of the abstract mathematical
function on which it was based.

One difficulty we had not anticipated
was the provision of sensible results for
the comparison of quantities represented to
a limited precision. For example, if X and
Y were specified by Y~2f3 and X~3xy, then
we wished to have the comparison 2=X yield
1 (representing true) even though the
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representation of the quantity X would
differ slightly from 2.

This was solv~d by introducing a
comparison tolerance (christened fuzz by
L.M. Breed, who knew of its use in-tne Bell
Interpreter [18]) which was multiplied by
the larger in magnitude of the arguments to
give a tolerance to be applied in the
comparison. This tolerance was at first
fixed (at 1E-13) and was later made
specifiable by the user. The matter has
proven more difficult than we first
expected, and discussion of it still
continues [19. 20].

A related, but less serious, question
was what to do with the rational root of a
negative number, a question which arose
because the exponent (as in the expression
-8*2+3) would normally be presented as an
approximation to a rational. Since we
wished to make the mathematics behave "as
you thought it did in high school" we
wished to treat such cases properly at
least for rationals with denominators of
reasonable size. This was achieved by
determining the result sign by a continued
fraction expansion of the right argument
(but only for negative left arguments) and
worked for all denominators up to 80 and
"most" above.

Most of the mathematical functions
required were provided by programs taken
from the work of the late Hirondo Kuki in
the FORTRAN IV Subroutine Library. Certain
functions (such as the inverse hyperbolics)
were, however, not available and were
developed, during the summers of 1967 and
1968, by K. M. Brown, then on the faculty
of Cornell University.

The fundamental decision concerning
the systems environment was the adoption of
the concept of a workspace. As defined in
"The APL\360 Terminal System" [21]:

APL\360 is built around the idea of a
workspace, analogous to a notebook,
in which one keeps work ~n progress.
The workspace holds both defined
functions and variables (data), and
it may be stored into and retrieved
from a library holding many such
workspaces. When retrieved from a
library by an appropriate command
from a terminal, a copy of the stored
workspace becomes active at that
terminal, and the functions defined
in it, together with all the APL
primitives, become available to the
user.

The three commands required for
managing a library are "save",
"load", and "drop", which
respectively store a copy of an
active workspace into a library, make
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a copy of a stored workspace active,
and destroy the library copy of a
workspace. Each user of the system
has a private library into which only
he can store. However, he may load
a workspace from any of a number of
common libraries, or if he is privy
to the necessary information, from
another user's private library.
Functions or variables in different
works paces can be combined, either
item by item or all at once, by a
fourth command, called "copy". By
means of three cataloging commands, a
user may get the names of workspaces
in his own or a common library, or
get a listing of functions or
variables in his active workspace.

The language used to control the
system functions of loading and storing
workspaces was not APL, but comprised a set
of system commands. The first character of
each system command is a right parenthesis,
which cannot occur at the left of a valid
APL expression, and therefore acts as an
"escape character", freeing the syntax of
what follows. System commands were used
for other aspects such as sign-on and
sign-off, messages to other users, and for
the setting and sensing of various system
parameters such as the index origin, the
printing precision, the print width, and
the random link used in generating the
pseudo-random sequence for the random
function.

When it first became necessary to
name the implementation we chose the
acronym formed from the book title A
Programming Language [10] and, to allow a
clear distinction between the language and
any particular implementation of it,
initiated the use of the machine name as
part of the name of the implementation (as
in APL\1130 and APL\360). Within the
design group we had until that time simply
referred to "the language".

A brief working manual of the APL\360
system was first published in November 1966
[22], and a full manual appeared in 1968
[23]. The initial implementation (in
FORTRAN on an IBM 7090) was discussed by
Abrams [24], and the time-shared
implementation on System/360 was discussed
by Breed and Lathwell [25].

3. SYSTEMS

Use of the APL system by others in
IBM began long before it had been completed
to the point described in APL\360 User's
Manual [23]. We quickly learned tne-- 
difficulties associated with changing the
specific~tions of a system already in use,
and the ~mpact of changes on established
users and programs. As a result we learned



to appreciate the importance of the
relatively long period of development of
the language which preceded the
implementation; early implementation of
languages tends to stifle radical change,
limiting further development to the
addition of features and frills.

On the other hand, we also learned
the advantages of a running model of the
language in exposing anomalies and, in
particular, the advantage of input from a
large population of users concerned with a
broad range of applications. This use
quickly exposed the major deficiencies of
the system.

Some of these deficiencies were
rectified by the generalization of certain
functions and the addition of others in a
process of gradual evolution. Examples
include the extension of the catenation
function to apply to arrays other than
vectors and to permit lamination, and the
addition of a generalized matrix inverse
function discussed by M.A. Jenkins [26J.

Other deficiencies were of a systems
nature, concerning the need to communicate
between concurrent APL programs (as in our
description of System/360), to communicate
with the APL system itself within APL
rather than by the ad hoc device of system
commands, to communicate with alien systems
and devices (as in the use of file
devices), and the need to define functions
within the language in terms of their
representation by APL arrays. These
matters required more fundamental
innovations and led to what we have called
the system phase.

The most pressing practical need for
the application of APL systems to
commercial data processing was the
provision of file facilities. One of the
first commercial systems to provide this
was the File Subsystem reported by Sharp
[27J in 1970, and defined in a SHARE
presentation by L.M. Breed [28J, and in a
manual published by Scientific Time Sharing
Corporation [29J. As its name implies, it
was not an integral part of the language
but was, like the system commands, a
practical ad hoc solution to a pressing
problem.

In 1970 R.H. Lathwell proposed what
was to become the basis of a general
solution to many systems problems of
APL\360, a shared variable processor [30J
which implemented the shared variable
scheme of communication among processors.
This work culminated in the APLSV System
[31J which became generally available in
1973.

Falkoff's "Some Implications of
Shared Variables" [32J presents the

essential notion of the shared variable
system as follows:

A user of early APL systems
essentially had what appeared to be
an "APL machine" at his disposal, but
one which lacked access to the rest
of the world. In more recent
systems, such as APLSV and others,
this isolation is overcome and
communication with other users and
the host system is provided for by
shared variables.

Two classes of shared variables are
available in these systems. First,
there is a general shared variable
facility with which a user may
establish arbitrary, temporary,
interfaces with other users or with
auxiliary processors. Through the
latter, communication may be had with
other elements of the host system,
such as its file subsystem, or with
other systems altogether. Second
there is a set of system variable~
which define parts of the permanent
interface between an APL program and
the underlying processor. These are
used for interrogating and
controlling the computing
environment, such as the origin for
array indexing or the action to be
taken upon the occurrence of certain
exceptional conditions.

4. A DETAILED EXAMPLE

At the risk of placing undue emphasis
on one facet of the language, we will now
examine in detail the evolution of the
treatment of numeric constants in order to
illustrate how substantial cha~ges were
commonly arrived at by a sequence of small
steps.

Any numeric constant, including a
constant vector, can be written as an
expression involving APL primitive
functions applied to decimal numbers as,
for example, in 3.14x10*-S and -2.718 and
(3.14 x 10*-5),(-2.718),5. At the outset we
permitted only non-negative decimal
constants of the form 2.718, and all other
values had to be expressed as compound
statements.

Use of the monadic negation function
in producing negative values in vectors was
particularly cumbersome, as in
(-4),3,(-5),-7. We soon realized that the
adoption of a specific "negative" symbol
would solve the problem, and familiarity
with Beberman's work [33J led us to the
adoption of his "high minus" which we had,
rather fortuitously, included in our
character set. The constant vector used
above could now be written as -4,3,-5,-7.
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Solution of the problem of negative
numbers emphasized the remaining
awkwardness of factors of the form lO*N.
At a meeting of the principals in Chicago,
which included Donald Mitchell and Peter
Calingaert of Science Research Associates,
it was realized that the introduction of a
scaled form of constant in the manner used
in FORTRAN would not complicate the syntax,
and this was soon adopted.

These refinements left one function
in the writing of any vector constant,
namely, catenation. The straightforward
execution of an expression for a constant
vector of N elements involved N-l
catenations of scalars with vectors of
increasing length, the handling of roughly
.sxNxN+l elements in all. To avoid gross
inefficiencies in the input of a constant
vector from the keyboard, catenation was
therefore given special treatment in the
original implementation.

This system had been in use for
perhaps six months when it occurred to .
Falkoff that since commas were not requ1red
in the normal representation of a matrix,
vector constants might do without them as
well. This seemed outrageously simple, and
we looked for flaws. Finding none we
adopted and implemented the idea
immediately, but it took some time to
overcome the habit of writing expressions
such as (3.3)pX instead of 3 3pX.

5. CONCLUSIONS

Nearly all programming languages are
rooted in mathematical notation, employing
such fundamental notions as functions,
variables, and the decimal (or other radix)
representation of numbers, and a view of
programming languages as part of the
longer-range development of mathematical
notation can serve to illuminate their
development. '

Before the advent of the
general-purpose computer, mathematical
notation had, in a long and painful
evolution well-described in Cajori's
history of mathematical notations [34J,
embraced a number of important notions:

1. The notion of assigning an
alphabetic name to a variable or
unknown quantity (Cajori, Secs.
339-341) .

2. The notion of a function which
applies to an argument or arguments
to produce an explicit result which
can itself serve as argument to
another function, and the associated
adoption of specific symbols (such as
+ and x) to denote the more common
functions (Cajori, Secs. 200-233).
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3. Aggregation or grouping symbols
(such as the parentheses) which make
possible the use of composite
expressions with an unambiguous
specification of the order in which
the component functions are to be
executed (Cajori, Secs. 342-355).

4. Simple, uniform representations
for numeric quantities (Cajori, Secs.
276-289) .

5. The treatment of quantities
without concern for the particular
representation used.

6. The notion of treating vectors,
matrices, and higher-dimensional
arrays as entities, which had by this
time become fairly widespread in
mathematics, physics, and
engineering.

with the first computer languages
(machine languages) all of these notions
were, for good practical reasons, dropped;
variable names were represented by
"register numbers", application of a
function (as in A+B) was necessarily broken
into a sequence of operations (such as
"Load register 801 into the Addend
register, Load register 802 into the Augend
register, etc."), grouping of operations
was therefore non-existent, the various
functions provided were represented by
numbers rather than by familiar
mathematical symbols, results depended
sharply on the particular representation
used in the machine, and the use of arrays,
as such, disappeared.

Some of these limitations were soon
removed in early "automatic programming"
languages, and languages such as FORTRAN
introduced a limited treatment of arrays,
but many of the original limitations
remain. For example, in FORTRAN and
related languages the size of an array is
not a language concept, the asterisk is
used instead of any of the familiar
mathematical symbols for multiplication,
the power function is represented by two
occurrences of this symbol rather than by a
distinct symbol, and concern with
representation still survives in
declarations.

APL has, in its development, remained
much closer to mathematical notation,
retaining (or selecting one of) established
symbols where possible, and employing
mathematical terminology. Principles of
simplicity and uniformity have, however,
been given precedence, and these have led
to certain departures from conventional
mathematical notation as, for example, the
adoption of a single form (analogous to
3+4) for dyadic functions, a single form
(analogous to -4) for monadic functions,



and the adoption of a uniform rule ror the
application of all scalar functions to
arrays. This relationship to mathematical
notation has been discussed in The Design
of APL [1J and in "Algebra as a Language"
which occurs as Appendix A in Algebra: an
algorithmic treatment [35J.

The close ties with mathematical
notation are evident in such things as the
reduction operator (a generalization of
sigma notation), the inner product (a
generalization of matrix product), and the
outer product (a generalization of the
outer product used in tensor analysis). In
other aspects the relation to mathematical
notation is closer than might appear. For
example, the order of execution of the
conventional expression F G H (X) can be
expressed by saying that the right argument
of each function is the value of the entire
expression to its right; this rule,
extended to dyadic as well as monadic
functions, is the rule used in APL.
Moreover, the term operator is used in the
same sense as in "derivative operator" or
"convolution operator" in mathematics, and
to avoid conflict it is not used as a
synonym for function.

As a corollary we may remark that the
other major programming languages, although
known to the designers of APL, exerted
little or no influence, because of their
radical departures from the line of
development of mathematical notation which
APL continued. A concise view of the
current use of the language, together with
comments on matters such as writing style,
may be found in Falkoff's review of the
1975 and 1976 International APL Congresses
[36 J.

Although this is not the place to
discuss the future, it should be remarked
that the evolution of APL is far from
finished. In particular, there remain
large areas of mathematics, such as set
theory and vector calculus, which can
clearly be incorporated in APL through the
introduction of further operators.

There are also a number of important
features which are already in the abstract
language, in the sense that their
incorporation requires little or no new
definition, but are as yet absent from most
implementations. Examples include complex
numbers, the possibility of defining
functions of ambiguous valence (already
incorporated in at least two systems
[37, 38J), the use of user defined
functions in conjunction with operators,
and the use of selection functions other
than indexing to the left of the assignment
arrow.

We conclude with some general
comments, taken from Th~ Design of APL [1J,

on principles which guided, and
circumstances which shaped, the evolution
of APL:

The actual operative principles
guiding the design of any complex
system must be few and broad. In the
present instance we believe these
principles to be simplicity and
practicality. Simplicity enters in
four guises: uniformity (rules are
few and simple), generality (a small
number of general functions provide
as special cases a host of more
specialized functions), familiarity
(familiar symbols and usages are
adopted whenever possible), and
brevity (economy of expression is
sought). Practicality is manifested
in two respects: concern with actual
application of the language, and
concern with the practical
limitations imposed by existing
equipment.

We believe that the design of APL was
also affected in important respects
by a number of procedures and
circumstances. Firstly, from its
inception APL has been developed by
using it in a succession of areas.
This emphasis on application clearly
favors practicality and simplicity.
The treatment of many different areas
fostered generalization: for
example, the general inner product
was developed in attempting to obtain
the advantages of ordinary matrix
algebra in the treatment of symbolic
logic.

Secondly, the lack of any machine
realization of the language during
the first seven or eight years of its
development allowed the designers the
freedom to make radical changes, a
freedom not normally enjoyed by
designers who must observe the needs
of a large working population
dependent on the language for their
daily computing needs. This
circumstance was due more to the
dearth of interest in the language
than to foresight.

Thirdly, at every stage the design of
the language was controlled by a
small group of not more than five
people. In particular, the men who
designed (and coded) the
implementation were part of the
language design group, and all
members of the design group were
involved in broad decisions affecting
the implementation. On the other
hand, many ideas were received and
accepted from people outside the
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design group, particularly from
active users of some implementation
of APL.

Finally, design decisions were made
by Quaker consensus; controversial
innovations were deferred until they
could be revised or reevaluated so as
to obtain unanimous agreement.
Unanimity was not achieved without
cost in time and effort, and many
divergent paths were explored and
assessed. For example, many
different notations for the circular
and hyperbolic functions were
entertained over a period of more
than a year before the present scheme
was proposed, whereupon it was
quickly adopted. As the language
grows, more effort is needed to
explore the ramifications of any
major innovation. Moreover, greater
care is needed in introducing new
facilities, to avoid the possibility
of later retraction that would
inconvenience thousands of users.
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APL LANGUAGE SUMMARY

APL is a general-purpose programming language with the
following characteristics (reprinted from APL Language [4J):

Th€ primitive objects of the language are arrays (lists,
tables, lists of tables, etc.). For example, A+B is
meaningful for any arrays A and B, the size of an array
{pAl is a primitive function, and arrays may be indexed
by arrays as in A[3 1 4 2J.

The syntax is simple: there are only three statement
types (name assignment, branch, or neither), there is no
function precedence hierarchy, functions have either one,
two, or no arguments, and primitive functions and defined
functions (programs) are treated alike.

The semantic rules are few: the definitions of primitve
functions are independent of the representations of data
to which they apply, all scalar functions are extended to
other arrays in the same way (that is, item-by-item), and
primitive functions have no hidden effects (so-called
side-effects) .

The sequence control is simple: one statement type
embraces all types of branches (conditional,
unconditional, computed, etc.), and the termination of
the execution of any function always returns control to
the point of use.

External communication is established by means of
variables which are shared between APL and other systems
or subsystems. These shared variables are treated both
synta~tically and semantically like other variables. A
subclass of shared variables, system variables, provides
convenient communication between APL programs and their
environment.

The utility of the primitive functions is vastly enhanced
by operators which modify their behavior in a systematic
manner. For example, reduction (denoted by /) modifies a
function to apply over all elements of a list, as in +/L
for summation of the items of L. The remaining operators
are scan (running totals, running maxima, etc.), the axis
operator which, for example, allows reduction and scan to
be applied over a specified axis (rows or columns) of a
table, the outer ~roduct, which produces tables of values
as in RATEo7*YEAR for an interest table, and the inner
product, a simple generalization of matrix product wnrcn
is exceedingly useful in data processing and other
non-mathematical applications.

The number of primitive functions is small enough that
each is represented by a single easily-read and
easily-written symbol, yet the set of primitives embraces
operations from simple addition to grading (sorting) and
formatting. The complete set can be classified as
follows:

Arithmetic: + - x + * • 0 I L r ffi
Boolean and Relational: v A Y ~ - < ~ ~ > ~

Selection and Structural: / \ f , [;] t ~ p • ~ ~ e
General: € \ ? ~ T •• ~ •
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PROGRAMMING STYLE IN APL

Kenneth E. Iverson
IBM Thomas J. Watson Research Center

Yorktown Heights, New York

When all the techniques of program management and programming practice have been applied, there
remain vast differences in quality of code produced by different programmers. These differences turn
not so much upon the use of specific tricks or techniques as upon a general manner of expression,
which, by analogy with natural language, we will refer to as style. This paper addresses the question
of developing good programming style in APL.

Because it does not rest upon specific techniques, good style cannot be taught in a direct manner, but
it can be fostered by the acquisition of certain habits of thought. The following sections should
therefore be read more as examples of general habits to be identified and fostered, than as specific
prescriptions of good technique.

In programming, as in the use of natural languages, questions of style depend upon the purpose of
the writing. In the present paper, emphasis is placed upon clarity of expression rather than upon
efficiency in space and time in execution. However, clarity is often a major contributor to efficiency,
either directly, in providing a fuller understanding of the problem and leading to the choice of a better,
more flexible, and more easily documented solution, or indirectly, by providing a clear and complete
model which may then be adapted (perhaps by programmers other than the original designer) to the
characteristics of any particular implementation of APL.

All examples are expressed in a-origin. Examples chosen from fields unfamiliar to any reader should
perhaps be skimmed lightly on first reading.

1. Assimilation of Primitives and Phrases

Knowledge of the bare definition of a primitive can permit its use in situations where its applicability
is clearly recognizable. Effective use, however, must rest upon a more intimate knowledge, a feeling
of familiarity, an ability to view it from different vantage points, and an ability to recognize similar
uses in seemingly dissimilar applications.

One technique for developing intimate knowledge of a primitive or a phrase is to create at least one
clear and general example of its use, an example which can be retained as a graphic picture of its
behavior when attempting to apply it in complex situations. We will now give examples of creating
such pictures for three important cases, the outer product, the inner product, and the dyadic transpose.

Outer product. The formal definition of the result of the expression R+-Ao . fB for a specified primitive
f and arrays A and B of ranks 3 and 4 respectively, may be expressed as:

R[H;I;J;K;L;M;N]~A[H;I;J] f B[K;L;M;N]
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Although this definition is essentially complete, it may not be very helpful to the beginner in forming
a manageable picture of the outer product.

To this end it might be better to begin with the examples:

No. +N+-1 234
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

No .xN
1 2 3 4
246 8
3 6 9 12
4 8 12 16

and emphasize the fact that these outer products are the familiar addition and multiplication tables,
and that, more generally, Ao . fB yields a function table for the function f applied to the sets of
arguments A and B.

One might reinforce the idea by examples in which the outer product illuminates the definition,
properties, or applicability of the functions involved. For example, the expressions
So . xS+-- 3 - 2 -1 0 1 2 3, and xS 0 • xS yield an interesting picture of the rule of signs in multipli
cation, and the expressions Ro . =V and Ro . $V and ' *' [Ro . =V] (with V+-(X - 3) x (X+-1 + 1 7 ) - 5 and
with R specified as the range of V, that is, R+-8 7 6 5 4 3 2 1 0 -1) illustrate the applicability
of outer products in defining and producing graphs and bar charts. These and other uses of outer
products as function tables are treated in Iverson [1].

Useful pictures of outer products of higher rank may also be formed. For example,
Do. vDo . vD+-O 1 gives a rank three function table for the or function with three arguments, and if
A is a matrix of altitudes of points in a rectangular area of land and C is a vector of contour levels
to be indicated on a map of the area, then the expression Co.:s;A relates the points to the contour
levels and +fCo.:s;A gives the index of the contour level appropriate to each point.

Inner Product. Although the inner product is perhaps most used with at least one argument of rank
two or more, a picture of its behavior and wide applicability is perhaps best obtained (in the manner
employed in Chapter 13 of Reference 1) by first exploring its significance when applied to vector
arguments. For example:

P+-2 3 5 7 11
Q+-2 0 2 1 0

+/PxQ
21

L/P+Q
3

x/P*Q
700

+/PxQ
21

Total cost In terms of pnce and quantity.

Minimum trip of two legs with distances to and from
connecting point given by P and Q.

The number whose prime factorization IS specified by
the exponents Q.

Torque due to weights Q placed at positions P
relative to the axis.

The first and last examples above illustrate the fact that the same expression may be given different
interpretations in different fields of application.

The inner product is defined in terms of expressions of the form used above. Thus, P+. xQ +--+ +/ PxQ
and, more generally for any pair of scalar functions f and g, PLgQ +--+ flPgQ. The extension to arrays
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of higher rank is made in terms of (he definition for vectors; each element of the result is the inner
product of a pair of vectors from the two arguments. For the case of matrix arguments, this can be
represented by the following picture:

R+ CrJ .x
7 6 5 4

----T1,--------
3 2 1 0 181
-------- ----+--l

2 4 6 8 I I

4 3 2 1 0
+.x 7 1 0 4 6

2 3 2 8 4
1 2 1 0 3

R

C

The +. x inner product applied to two vectors V and W (as in V+. xW) can be construed as a
weighted sum of the vector V, whose elements are each "weighted" by multiplication by the cor
responding elements of W, and then summed. This notion can be extended to give a useful interpretation
of the expression M+. xW, for a matrix M, as a weighted sum of the column vectors of M. Thus:

W+-3 1 4
[}+-M+-1+3 3p 1 9

123
456
789

M+.xW
17 41 65

This result can be seen to be equivalent to WfitlOg the elements of W below the columns of M,
multiplying each column vector of M by the element below it, and adding.

If W is replaced by a boolean vector B (whose elements are zeros or ones), then M+. xB can still be
construed as a weighted sum, but can also be construed as sums over subsets of the rows of M, the
subsets being chosen by the l's in the boolean vector. For example:

B+-1 0 1
M+.xB

4 10 6
BIM

1 3
4 6
7 9

+IBIM
4 10 16

Finally, by using an expression of the form Mx. *B instead of M+ . xB, a boolean vector can be used
to apply multiplication over a specified subset of each of the rows of M. Thus:

Mx.*B
3 24 63

xlBIM
3 24 63

This use of boolean vectors to apply functions over specified subsets of arrays will be pursued further
in the section on generalization, using boolean matrices as well as vectors.
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Dyadic transpose. Although the transpositIOn of a matrix is easy to picture (as an interchange of
rows and columns), the dyadic transpose of an array of higher rank is not, as may be seen by trying
to compare the following arrays:

A 2 1 3~A 3 2 1~A

ABCD ABCD AM
EFGH MNOP EQ
IJKL IV

EFGH
MNOP QRST BN
QRST FR
VVWX IJKL JV

VVWX
CO
GS
KW

DP
HT
LX

The difficulty increases when we permit left arguments with repeated elements which produce "diago
nal sections" of the original array. This general transpose is, however, a very useful function and worth
considerable effort to assimilate. The following example of its use may help.

The associativity of a function f is normally expressed by the identity:

Xf(YfZ )+-+(XfY)f
Z

and a test of the assoCIatIvity of the function on some specified domain L*1 2 3 can be made by
comparing the two function tables Do. f(Do . fD) and (Do. f
D) 0 • fD corresponding to the left and right sides of the identity. For example:

L*1 2 3
I]+-L+-Do . - (Do. -D) I]+-R+-(Do . -D) 0 .-D L=R

1 2 3 1 2 3 0 0 0
0 1 2 2 3 4 0 0 0
1 0 1 3 4 5 0 0 0

2 3 4 0 1 2 0 0 0
1 2 3 1 2 3 0 0 0
0 1 2 2 3 4 0 0 0

3 4 5 1 0 1 0 0 0
2 3 4 0 1 2 0 0 0
1 2 3 1 2 3 0 0 0
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II/,L=R
0

[}+-L+-Do . + (Do . +D) [}+-R+-(Do.+D)o.+D L=R
3 4 5 3 4 5 1 1 1
4 5 6 4 5 6 1 1 1
5 6 7 5 6 7 1 1 1

4 5 6 4 5 6 1 1 1
5 6 7 5 6 7 1 1 1
6 7 8 6 7 8 1 1 1

5 6 7 5 6 7 1 1 1
6 7 8 6 7 8 1 1 1
7 8 9 7 8 9 1 1 1

For the case of logical functions, the test made by comparing the function tables can be made complete,
since the functions are defined on a finite domain D+-O 1. For example:

D+-o 1
1I/,(Do.v(Do.vD))=((Do.vD)o.vD)

1

1

o

Turning to the identity for the distribution of one function over another we have expressIOns such
as:

Xx(Y+Z)+-+(XxY)+(XxZ)
and

Attempting to write the function table companson for the latter case as:

L+-Do . II (Do. vD)
R+-(Do.IID)o.v(Do.IID)

we encounter a difficulty since the two sides Land R do not even agree In rank, being of ranks 3
and 4.

The difficulty clearly arises from the fact that the axes of the left and right function tables must agree
according to the names in the original identity; in particular, the X in position 0 on the left and in
positions 0 and 2 on the right implies that axes 0 and 2 on the right must be "run together" to form
a single axis in position o. The complete disposition of the four axes on the right can be seen to be
described by the vector 0 1 0 2, showing where in the result each of the original axes is to appear.
This is a paraphrase of the definition of the dyadic transpose, and we can therefore compare L with
o 1 0 21s(R. Thus:

1I/,(Do.II(Do.vD))=O 1 0 21s(((Do.IID)o.v(Do.IID))
1

The idea of thorough assimilation discussed thus far in terms of primitive expressions can be applied
equally to commonly used phrases and defined functions. For example:
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lpV
lppA
x/pA
V[4V]
M[4+fR<.-~R+M,O;]

~F~M

The indices of vector V
The axes of A
The number of elements In A
Sorting the vector V
Sorting the rows of M into lexical order
Applying to columns a function F defined on rows

Collections of commonly used phrases and functions may be found in Pedis and Rugaber [2] and
in Macklin [3].

2. Function Definition

A complex system should best be designed not as a single monolithic function, but as a structure built
from component functions which are meaningful in themselves and which may in turn be realized
from simpler components. In order to interact with other elements of a system, and therefore serve
as a "building block", a component must possess inputs and outputs. A defined function with an
explicit argument, or arguments, and an explicit result provides such a component.

If a component function produces side effects by setting global variables used by other components,
the interaction between components becomes much more difficult to analyze and comprehend than if
communication between components is limited to their explicit arguments and explicit results. Ideally,
systems should be designed with communication so constrained and, in practice, the number of global
variables employed should be severely limited.

Because the fundamental definition form in APL (produced by the use of r::; or by [JFX, and commonly
called the del form) is necessarily general, it permits the definition of functions which produce side
effects, which have no explicit arguments, and which have no explicit results. The direct form which
uses the symbols 0. and w (as defined in Iverson [4]) exercises a discipline more appropriate to good
design, allowing only the definition of functions with explicit results, and localizing all names which
are specified within the function, thereby eliminating side effects outside of it.

The direct form of definition may be either simple or conditional. The latter form will be discussed
in section 6. The simple form may be illustrated as follows. The expressIOn

F:w+4';-0.

may be read as "F is defined by the expression w+4';-0., where 0. represents the first argument of F
and w represents the second". Thus 8 F 3 yields 3.5.

If a direct definition is to produce a machine executable function, the definition must be translated by a suitable
function. For example, if this translation is called DEF, then:

DEF
F:o.+.;-w
F

3 F 4
3.25

DEF
P:+/o.XW*lpo.
P

1 3 3 1 P 4
125
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DEF
SORT:w[4wJ
SORT

SORT 3 1 4 3 6 2 7 6
123 346 6 7

DEF
POL:(wo.*lpo.)+.Xo.
POL

1 3 3 1 POL 0 1 2 3 4
1 8 27 64 125



The direct form of definition will be used in the examples which follow. The question of the
translation function DEF is discussed in Appendix A.

3. Generality

It is often possible to take a function defined for a specific purpose and modify it so that it applies
to a wider class of problems. For example, the function AV: (+ / w) .;- pw may be applied to a numeric
vector to produce its average. However, it fails to apply to average all rows in a matrix; the simple
modification AV2: (+ / w) .;- -1 t pw not only permits this, but applies to average the vectors along the
last axis of any array, including the case of a vector.

The problem might also be generalized to a weighted average, in which a vector left argument specifies
the weights to be applied in summation, the result being normalized by division by the total weight.
Again this function could be defined to apply to a vector right argument in the form
WAV: (+ / axw)';-+ / a, but, applying the inner product in the manner discussed in the preceding section,
we may define a function which applies to matrices:

WAV2:(w+.xa).;-+/a

Thus:

[}+-M+- 3 4 P 11 2
012 3
4 5 6 7
8 9 10 11

W+-2 1 3 4
W WAV2 M

1.9 5.9 9.9

The same function may be interpreted in different ways in different disciplines. For example, if column
I of M gives the coordinates of a mass of weight W[I], then W WAV2 M is the center of gravity of the
set of masses. Moreover, if the elements of Ware required to be non-negative, then the result
W WAV2 M is always a point in the convex space defined by the points of M, that is a point within
the body whose vertices are given by M. This can be more easily seen in the following equivalent
function:

WAV3:w+.x(w H /a)

m which the weights are normalized to sum to 1.

Striving to write functions in a general way not only leads to functions with wider applicability, but
often provides greater insight into the problem. We will attempt to illustrate this in three areas,
functions on subsets, indexing, and polynomials.

Functions on subsets. It is often necessary to apply some function (such as addition or maximum)
over all elements in some subset of a given list. For example, to sum all non-negative elements in
the list X+-3 -4 2 0 -3 7, we might first define the boolean vector which identifies the desired subset,
then select the set, and then sum it:

X
342 0 3 7

X~O

1 0 1 1 0 1
(X~O)/X

320 7 12
+/(X~O)/X
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In general, if B i a boolean vector which defines a subset, we may write +1 BI X. However, a seen
in the discussion of inner product, this may also be written in the form X+. xB, and in this form it
applies more generally to a boolean matrix (or higher rank array) in which the columns (or vectors
along the leading axis) determine the different ub ets. For example, if

[J+.B~-(4p 2) Tl2*4
a a a a a a a a 1 1 1 1 1 1 1 1
a a a a 1 1 1 1 a a a a 1 1 1 1
a a 1 100 1 100 1 1 a a 1 1
a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1

then the columns of B represent all possible
then:

sub et of a vector of four elements, and if X+-2 3 5 7

X+.xB
a 7 5 12 3 10 8 15 2 9 7 14 5 12 10 17

yields the sums over all subsets of X, including the empty set (0 0 a 0), and the complete . et
(1 1 1 1).

It is also easy to establish that

XX.*B
1 7 5 35 3 21 15 105 2 14 10 70 6 42 30 210

yields the products over all ubsets, and that (for non-negati\e vectors X) the expre slOn

xr.xB
o 7 5 7 3 7 5 7 2 7 5 7 3 7 5 7

yields the maxima over all subsets of X. This last expression holds only for non-negative values of
X, but could be replaced by the more general expre ion M+ (X -M+-L IX)f . xB. A more general approach
to this problem (in terms of a new operator) is discussed in Section 2 of Iverson [5].

If we have a list A with repeated elements, and if we need to evaluate some costly function F on each
element of A, then it may be efficient to evaluate F only on the nub of A (consisting of the distinct
elements of A) and then distribute the results to the appropriate positions to yield FA. Thus:

Function

ub

Distribution

Example

Definition

NUB:«lpw)=wlw)/w

DIS: (NUB) a . =w

Example

A+-3 2 3 5 2 3
NUB A

3 2 5
DIS A

1 0 100 1
0 1 o 0 1 0
0 0 o 100

F A
9 4 9 25 4 'J

F NUB A
9 4 25

(F NUB A)+.xDI A
g 4 g 25 4 9
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From the foregoing it may be seen that an inner product post-multiplication by the distribution matrix
DIS A distributes the results F NUB A appropriately. The distribution function may also be used to
perform aggregation or summarization. For example, if C is a vector of costs associated with the
account numbers recorded in A, then summarization of the costs for each account may be obtained
by pre-multiplication by DIS A. Thus:

C+-1 2 3 4 5 6
(DIS A)+.xC

10 7 4

Indexing. If M is a matrix of N+--HpM columns, and if I and J are scalars, then element M[I;J]
can be selected from the ravel R+-,M by the expression R[ (Nxl)+Jl More generally, if X is a
two-rowed matrix whose columns are indices to elements of M, then these elements may be selected
much more easily from R (by the expression R[(NxX[O;])+X[l;J]) than from M itself. Moreover,
the indexing expression can be simplified to R[ (N, 1) +. xX], or to R[ (pM) .LXl

The last form is interesting in that it applies to an array M of any rank P, provided that X has P
rows. More generally, it applies to an index array X of any rank (provided that (ppM)=HpX) to
produce a result of shape 1-1- pK. To summarize, we may define a general indexing function:

SUB:(,a)[(pa).Lw]

and use it as in the following examples:

[]+-M+-3 3p 1 9
012
345
678

M SUB X
2 372 3

M SUB 312 3 5P130
o 4 804
80480
48048

(4 4 4P14*3) SUB 413 2 6p2x136
o 42 0 42 0 42
o 42 0 42 0 42

[]+-X+-312 5p 110
o 1 201
2 0 1 2 0

This use of the base value function in the expression (pa).lw correctly suggests the possible use of
the inverse expre sion (pa) Tw to obtain the indices to an array a in terms of the index to its ravel
(that is, w).

Polynomials. If F: +/ axw* 1pa, then the expression C F X evaluates the polynomial with coefficients
C for the scalar argument X. The more general function:

P:(wo.*lpa)+.xa

applies to a vector right argument and (since wo . * 1pa is then a matrix M, and since M+ . xa is a linear
function of a) emphasizes the fact that the polynomial is a linear function of its coefficients. If
(pw)=pa, then M is square, and if the elements of ware all distinct (that is, (pw)=pNUB)), then
MIN is non-singular, and the function:

FIT: (ffiwo.*lpa)+.xa
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is inverse to P in the sense that:

C +-+ (C P X) FIT X and Y +-+ (Y FIT X)P X

In other words, if Y+-F X for some scalar function F, then Y FIT X yields the coefficients of the
polynomial which fits the function F at the points (arguments) X. For example:

3l"Y+-* X+-O .5 1 1.5
1.000 1.649 2.718 4.482

3l"C+-Y FIT X
1.000 1. 059 .296 .364

3l"C P X
1.000 1.649 2.718 4.482

The function F can be defined in a neater equivalent form, using the dyadic form of Iil, as
FIT: al±Jwo . * 1 pa. Moreover, the more general function:

LSF:alilwo.*lN

(which depends upon the global variable N) yields the N coefficients of the polynomial of order
N-l which best fits the function a+-Fw in the least squares sense. Thus:

N+-4
3l"Y LSF X

1. 000 1. 059 .296 .364
N+-3 N+-2
3l"C+-Y LSF X 3l"C+-YLSF X

1. 014 .631 1.115 .735 2.303
3l"C P X 3l"C P X

1. 014 1. 608 2.759 4.468 .735 1.886 3.038 4.189

The case N+-2 yields the best straight line fit. It can be used, for example, in estimating the "compound
interest" or "growth rate" of a function that is assumed to be approximately exponential. This is done
by fitting the logarithm of the values and then taking the exponential of the result. For example:

X+-O 1 2 3 4 5
3l"Y+-300xl.09*X

300.000 327.000 356.430 388.509 423.474 461.587
N+-2
3l"E+-(~Y) LSF X

5.704 .086
*E

300 1.09
3l"(*E[0])x(*E[1])*X

300.000 327.000 356.430 388.509 423.474 461.587
3l"Y+-Y+?6pORL+-50

300.000 355.000 395.430 434.509 454.474 508.587
3l"E+-(~Y) LSF X

5.749.099
*E

313.7594974 1.104368699
3l"(*E[0])x(*E[1])*X

313.759 346.506 382.671 422.609 466.717 515.427
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The growth rate is *E[ 1 J, and the estimated compound interest rate is therefore given by the function

ECl:100x l+*l~(~a) L5F w

For example:

Hl+-Y ECl X
10.4

3~(*E[oJ)x(1+.01xl)*X

313.759 346.506 382.671 422.609 466.717 515.427

General considerations can often lead to simple solutions of specific problems. Consider, for example,
the definition of a "times" function T for the multiplication of polynomials, that is:

(C p X)x(V P X) +-+ (C T V) P X

The function T is easily shown to be linear in both its left and right arguments, and can therefore
be expressed in the form C+. xB+. xV. The array B is a boolean array whose unit elements serve to
multiply together appropriate elements of C and V, and whose zeros suppress contributions from other
pairs of elements. The elements of B are determined by the exponents associated with C, with V, and
with the result vector, that is, lPC and lPV and lp1~C.V. For each element of the result, the
"deficiency" of each element of the exponents associated with V is given by the table
5+-( 1 PHC •V) 0 • - 1 pV, and the array B is obtained by comparing this deficiency with the contributions
from the exponents associated with C, that is, (l pC) 0 • =5. To summarize, the times function may
be defined as follows:

T:a+.x(o.Bw)+.xw
B:(lpo.)o.=(lp1~0..w)o.-lpw

For example:

[]+-E+-(C+-1 2 1) T (D+-1 3 3 1)
1 5 10 10 5 1

Since the expression 0.+. X (o.Bw) yields a matrix, it appears that the inverse problem of defining a
function VB (divided by) for polynomial division might be solved by inverting this matrix. To this
end we define a related function BQ expressed in terms of E and C, rather than in terms of C and
V:

BQ:(lpo.)o.=(lpw)o.-ll+(pw)-po.

and consider the matrix M+-C+. xC BQ E.

The expression (1iIM) +. xE fails to work properly because M is not square, and we recognize two cases,
the first being given by inverting the top part of M (that is, Ii] ( 2p L/ pM)tM) and yielding a quotient
with high-order remainder, and the second by inverting the bottom part and yielding a quotient with
low order remainder. Thus:

DBHO:(Vto.)Ii](2pD+- L/pM)tM+-w+.xwBQo.
VBLO:(Vto.)Ii](2pD+--L/pM)tM+-w+.xwBQo.
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For example:

E+-1 5 10 10 7 4 E+-47101051
C+-1 2 1 C+-1 2 1
[}-Q+-E DBHD C [}-Q+-E DBLD C

1 3 3 1 133 1
o",R+-E-C T Q o",R+-E-C T Q

0 0 0 0 2 3 3 2 0 0 0 0

The treatment of polynomials is a prolific source of examples of the insights provided by precise
general functions for various processes, insights which often lead to better ways of carrying out
commonly-needed hand calculations. For example, a function E for the expansion of a polynomial C
(defined more precisely by the relation (E C) p X +--+ C p X+1) can be defined as:

E:(BC pw)+.xw BC: ( 1 W ) 0 • ! 1 W

Working out an example shows that manual expansion of C can be carried out be jotting down the
table of binomial coefficients of order pC (that is, BC pw) and then taking a weighted sum of its
columns, the weights being the elements of C.

4. Identities

An identity is an equivalence between two different expressions. Although identities are commonly
thought of only as tools of mathematical analysis, they can be an important practical tool for simplfying
and otherwise modifying expressions used in defining functions.

Consider, for example, a function F which applied to a boolean vector suppresses all 1 's after the first.
It could be used, for example, in the expression (~F X=' D' ) I X to suppress the first D in a character
string X. The function could be defined as F: (w 11) =1 pw. However, the following identity holds:

(w11)=lpW+--+<\W

and we may therefore use one or other of the equivalent functions:

F: (w11)=lPW c: <\w

One may react to a putative identity in several ways: accept it on faith and use it as a practical tool,
work some examples to gain confidence and a feeling for why it works, or prove its validity in a general
way. The last two take more time, but often lead to further insights and further identities. Thus the
application of the functions F and C to a few examples might lead one to see that C applies in a
straightforward way to the rows of a matrix, but F does not, that both can be applied to locate the
first zero by the expressions ~F~B and ~C~B, and (perhaps) that the latter case (that is, ~<\~B)

can be replaced by the simpler expression 5,\B.

As a second example, consider the expression Y+-( (~B)/X) .BIX with B+-X5,2. The result is to classify
the elements of X by placing all those in a specified class (those less than or equal to 2) at the tail
end of Y. More generally, we may define a classification function C which classifies the elements of
its right argument according to its boolean left argument:

C : ( ( ~C1 ) I w) • cdw
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For example:

X+-3 1 4 7 2
[}-B+-X:<;;2

0 1 0 o 1
B C X

3 4 7 1 2

Since the result of C is a permutation of its right argument, it should be possible to define an equivalent
function in the form w[V], where V is some permutation vector. It can be shown that the appropriate
permutation vector is simply ,ia. For example:

,iB
o 2 314

Thus:

P:w[,ia] and C: «~a)/w) .a/w

X[,iB]
34712

are equivalent functions.

For any given function there are often related functions (such as an inverse) of practical interest. For
example, if V+-B C X, then there is some inverse function CI such that B CI V yields X. Moreover,
the definition of a related function may be much easier to derive from one of several different
equivalent definitions of the original function than from the others. Thus the definition of the inverse
CI may not be immediately evident from the definition C, but from the definition P it is clear that
what is needed is the inverse permutation. Thus:

CI:w[Ua]

[}-V+-B C X
3 4 7 1 2

B CI V
3 147 2

Finally, a given formulation of a function may suggest a simple formulation for a similar function.
For example, the application of the function P with a left argument containing a single 1 can be seen
to effect a rotation of that suffix of the right argument marked off by the location of the 1. This
suggests the following formulation for a function which rotates each of the segments marked off by
the 1's in the left argument:

RS:w[,ia++\a]

1 0 0 1 0 0 0 1 0 RS 'ABCDEFGHI'
BCAEFGDIH

Dualities. We will nQw consider one class of very useful identities in some detail. The most familiar
example of the class is known as deMorgan's law and is expressed as follows:

Useful related forms of deMorgan's law are:

A/V +-+ ~v/~V

A\V +-+ ~v\~V

MV.AN +-+ (~M)A.V(~N)
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DeMorgan's law concerns a relation between the functions and, or, and not (A V ~), and we say that
A is the dual of v with respect to ~. Each of the boolean functions of two arguments possess a dual
with respect to ~. For example, X5:Y +-+ ~(~X)«~Y), and from this the three related identities
5:/V +-+ ~</~V, etc.) follow in the manner shown above. The five dual pairs of boolean functions
are:

These dualities are frequently useful in simplifying expressions used in logical selections. For example,
we have already seen the use of the duality between 5: and < to replace the expression ~<\~w by
5:\w.

Useful dualities are not limited to boolean functions. For example, maximum and minimum (r and
L) are dual with respect to arithmetic negation (-) as follows:

XiY +-+ -(-X)L(-Y)

Again the related forms of duality follow.

More generally, duality is defined in terms of any monadic function M and its inverse MI as follows:
a function F is said to be the dual of a function G with respect to M if:

X F Y +-+ MI (M X)G(M Y)

In the preceding examples of duality, each of the monadic functions used (~ and -) happened to be
self-inverse and MI was therefore indistinguishable from M.

The general form includes the duality with respect to the natural logarithm function * which lies at
the root of the use of logarithm tables and addition to perform multiplication, namely:

x/x +-+ *+/*X

The use of base ten logarithms rests similarly on duality with respect to the monadic function
10*w and its inverse 10*w:

x/x +-+ 10*+/10*X

5. Proofs

A proof is a demonstration of the validity of an identity based upon other identities or facts already
proven or accepted. For example, deMorgan's law may be proved by simply evaluating the two
supposedly equivalent expressions (XAY and ~(~X)v (~Y) for all possible combinations of boolean
values of X and Y:

X Y XAY ~X ~Y (~X)v(~Y) ~(~X)v(~Y)

0 0 0 1 1 1 0
0 1 0 1 0 1 0
1 0 0 0 1 1 0
1 1 1 0 0 0 1

An identity which is useful and important enough to be used 10 the proofs of other identities IS

commonIy called a theorem. Thus:
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Theorem 1 (AxB)o.x(PxQ) ~ (Ao.xP)x(Bo.xQ)

We will prove theorem 1 itself for vectors A,B,P, and Q by calling the results of the left and right
expressions Land R and showing that for any indices I and J, the values of L[I ;J] and R[I ;J]
agree. We do this by writing a sequence of equivalent expressions, citing at the right of each expression
the basis for believing it to be equivalent to the preceding one. Thus:

L[I;J]
((AxB)o.x(PxQ»[I;J]
(AxB)[I]x(PxQ)[J]
(A[I]xB[I])x(P[J]xQ[J])

R[I;J]
((Ao.xP)x(Bo.xQ»[I;J]
(Ao.xP)[I;J]x(Bo.xQ)[I;J]
(A[I]xP[J])x(B[I]xQ[J])
(A[I]xB[I])x(P[J]xQ[J])

Def of L
Def of o. x
Def of vector x

Def of R
Def of matrix x
Def of o. x
x associates and commutes

Comparison of the expressions ending the two sequences completes the proof.

We will now state a second theorem (whose proof for vector variables is given in Iverson [6]), and
use it in a proof that the product of two polynomials C P X and D P X is equivalent to the expression
+/ , (Co. xD) xX* ( l pC) 0 • + l pD:

Theorem 2

Thus:

Theorem 3

+/,Vo.xW ~ (+/V)x(+/W)

(C P X)xCD P X)
(+/CxX*E~lpC)x(+/DxX*F~lpD)

+/,(CxX*E)o.x(DxX*F)
+/,(Co.xD)x((X*E)o.x(X*F»
+/,(Co.xD)xX*Eo.+F

Def of P
Theorem 2
Theorem 1

The final step is based on the fact that (X*A)x(X*B) ~ X*A+B.

A proof in which every step is fully justified is called a formal proof; a step which is justified less
formally by the observation of some general pattern is called an informal proof. We will now illustrate
an informal proof by assigning values to the arguments C and D and displaying the tables Co. xD and
Eo. +F occurring in the last line of theorem 3:

C~3 1 4 E~lpC

~2 0 3 1 F~lpD

Co. xD Eo .+F
6 0 9 3 0 1 2 3
2 0 3 1 1 2 3 4
8 0 12 4 2 3 4 5

Since the elements of Eo. +F are exponents of X, and since the Ith diagonal of Eo. +F (beginning with
the zeroth) has the values I, each element of the Ith diagonal of Co . xD is multiplied by X*I. We
may therefore conclude (informally) that the expression is equivalent to a polynomial whose coefficient
vector is formed by summing the diagonals of Co. xD. Using theorem 3 as well, we therefore conclude
that this polynomial is equivalent to the product of the polynomials C P wand D P w.
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Many useful identities concern what are called (in APL Language [7)) structural and selection
functions, such as reshape, transpose, indexing, and compression. For example, a succession of dyadic
transpositions can be reduced to a single equivalent transposition by the following identity:

IIs(JIs(A +-+ I[J]Is(A

The proof is given in Iverson [5). Further examples of proofs In APL may be found In Orth [8)
and in Iverson [1,4).

6. Recursive Definition

A function can sometimes be defined very neatly by using It In its own definition. For example, the
factorial function F: xl 1+ 1 w could be defined alternatively by saying that F w +-+ wxF w-1 and giving
the auxiliary information that in the case w=O the value of the function is 1. Such a definition which
utilizes the function being defined is called a recursive definition.

The direct definition form as defined in Iverson [4) permits a "conditional" definition such as:

G:w:w<O:-w

Such a definition includes three expressions separated by colons and i interpreted by executing the
middle one, then executing the first or the last, according to whether the value of the (first element
of the) middle one is zero or not. Thus G w is (for scalar arguments) equivalent to Iw.

This conditional form is convenient for making recursive definitions. For example, the factorial func
tion discussed above could be defined as F:wxFw-1 :w=O: 1, and a function to generate the binomial
coefficients of a given order could be defined recursively as:

BC:(Z,o)+o,Z+BCw-1:w=O:1

For example

BC 2
121

BC 3
1 331

BC 4
1 4 641

Recursive definition can be an extremely useful tool, but one that may require considerable effort to assimilate.
The study of existing recursive definitions (as in Chapters 7 and 8 of Orth [8) and Chapter 10 of Iverson
[4) ) may prove helpful. Perhaps the best way to grasp a particular definition is to execute it in detail for a
few simple cases, either manually or on the computer. The details of computer execution can usually be suitably
exhibited by inserting []+ at one or more points in the definition. We might, for example, modify and
execute the binomial coefficient function BC as follows:

BC:(Z,O)+O,Z+[]+BCw-1:w=O:1

Q+BC 3
1
1 1
121

Q
133 1

We will now give two less trivial recursive definitions for study. The first generates all permutations
of a specified order as follows:
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PER:(-L(l!w)7!X)¢X.((!w).X)pPERX~w-1:w=1:1 1pO

PER 3 Q'ABCD'[PER 4J
2 1 0 DDDDDDABBACCBACCABCCABBA
2 0 1 CCABBADDDDDDABBACCBACCAB
0 2 1 BACCABCCABBADDDDDDABBACC
1 2 0 ABBACCBACCABCCABBADDDDDD
1 0 2
0 1 2

The second is a solution of the "topological sort" problem discussed on pages 258-268 of Knuth [9].
Briefly stated, an N by N boolean matrix can specify "precedences" required in the ordering of N items
(which may represent the steps to be carried out in some production process). If the positions of the
1's in row I indicate which items must precede item I, then the function:

PR:a[4(-pa)tSJ PR SfS/w:A/S~v/w:(-1tpw)~a

provides a solution in the sense that it permutes its vector left argument to satisfy the constraints
imposed by the matrix right argument. For example:

C~'ATSFX'

M C PR M PROC PROC[(l5)PR M;J
0 1 o 1 1 TFXAS ADDRESS TEXT
0 0 o 0 0 TEXT FIGURES
0 1 o 1 1 STAMP XEROX
0 0 o 0 0 FIGURES ADDRESS
0 1 o 1 0 XEROX STAMP

If the required orderings among certain items are inconsistent and cannot be satisfied, they are
suppressed from the result.

7. Properties of Defined Functions

Defined functions used as building blocks in the development of a complex system play much the same
role as primitives, and the comments made on the assimilation of primitives apply equally to such
defined functions. Moreover, a clear understanding of the properties of functions under design may
contribute to their design.

Many of the general properties of primitives (such as their systematic extension to arrays and the
existence of primitive inverse functions) are also useful in defined functions and should be preserved
as much as possible. The section on generality addressed certain aspects of this, and we now briefly
address some others, including choice of names, application of operators, and the provision of inverse
functions.

The names of primitive functions are graphic symbols, and the ease of distinguishing them from the
names of arguments contributes to the readability of expressions. It is also possible to adopt naming
schemes which distinguish defined functions from arguments, or which even distinguish several sub
classes of defined functions. The choice of mnemonic names for functions can also contribute to clarity;
the use of the direct form of definition properly focusses attention on the choice of function names
rather than on the choice of argument names.

Present APL implementations limit the application of operators (such as reduction and inner product)
to primitive functions, and do not allow the use of defined functions in expressions such as F / and
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o . F. For any defined function F it is sometimes useful (although questions of efficiency may limit
the usefulness to experimentation rather than general use) to define a corresponding outer product
function OPF, and a corresponding reduction function RF. For example:

F:a+,"w
OPF:(ao.+Oxw) F (axO)o.+w
RF:(1tw) F RF 1~w:1=pw:w[oJ

A+-3 7 11
B+-2 5 10

A F B
3.57.2 11.1 3.5

7.5
11. 5

A OPF B
3.2 3.1
7.2 7.1

11.2 11.1

RF B
2.196078431

The importance of inverse functions in mathematics is indicated in part by the number of inverse pairs
of functions provided, such as the pair Kow and (-K)ow, the pair B~w and B*w, and the pair
w*N and w*,"N. Their importance in non-numeric applications is not so commonly recognized, and
it is well to keep the matter in mind in designing functions. For example, in designing functions
GET and PUT for accessing files, it is advantageous to design them as inverses in the sense that the
expression K PUT K GET 'FILENAME I will produce no change in the file.

Other examples of useful inverse pairs include the permutations w[PJ and w[4,PJ defined by a given
permutation vector P, the classification function C: w[ 4,a ] and its inverse (discussed in Section 4)
CI :w[ 4,4,a J, and the "cumulative sum" or "integration" function CS and its inverse, the "difference
function" DF defined as follows:

CS:+\w
DF:w-O. 1~w

A+-3 5 7 11 13 17
CS A

3 8 15 26 39 56
DF CS A

3 5 7 11 13 17

8. Efficiency

DF A
3 2 2 4 2 4

CS DF A
3 5 7 11 13 17

Emphasis on clarity of expression in designing a system may contribute greatly to its efficiency by
leading to the choice of a superior overall approach, but it may also lead to solutions which violate
the space constraints of a particular implementation or make ineffective use of the facilities which it
provides. It is therefore necessary at some point to consider the characteristics of the particular
implementation to be used. The speed and space characteristics of the various implementations of APL
are too varied to be considered here. There are, however, a number of identities which are of rather
general use.

Expressions involving inner and outer products often lead to space requirements which can be allevi
ated by partitioning the arguments. For example, if A and B are vectors and R+-Ao . f B, then the M
by N segment of the result represented by (M.N)tR can be computed as (MtA) o.f (NtB), and M and
N can be chosen to make the best use of available space. The resulting segments may be stored in
files or, if the subsequent expressions to be applied to the result permit it, they may be applied to
the segments. For example, if the complete expression is +/Ao . fB, then each of the segments may

96 KEN ETH E. IVERSON



be summed as they are produced. Expressions of the form (M,N)tR can also be generalized to apply
to higher rank arrays and to select any desired rectangular segment.

If X is a vector, the reduction +/ X can be partitioned by use of the identity:

+/X ~ (+/XtX)+(+/X+X)

and this identity applies more generally for reduction by any associative function F. Moreover, this
identity provides the basis for the partitioning of inner products, a generalization of the partitioning
used in matrix algebra which is discussed more fully in Iverson [6].

The direct use of the distribution function DIS of Section 3 for summarization (in the form
(DIS A)+. xC) may lead to excessive use of both time and space. Such problems can often be alleviated
in a general way by the use of sorting. For example, the expression R+-A[P+-4AJ produces an ordered
list of the account numbers in which all repetitions of anyone account number are adjacent. The points
of change in account numbers are therefore given by the boolean vector B+-R~-l¢R and if the costs
C are ordered similarly by S+-C[P], then the summarization may be performed by summing over the
intervals of S marked off by B.

The sorting process discussed above may itself be partitioned, and the subsequent summarization steps
may, for reasons of efficiency, be incorporated directly in the sorting process. Many of the uses of
sorting in data processing are in fact obvious or disguised realizations of some classification problem,
and a simpler statement of the essential process may lead simply to different efficient realizations
appropriate to different implementations of APL.

Like the inner and outer product, recursive definitions often make excessive demands on space. In
some cases, as in the function PER discussed in Section 6, the size of the arguments to which the
function is successively applied decreases so rapidly that the recursive definition does not greatly
increase the space requirements. In others, as in the function PR of Section 6, the space requirements
may be excessive, and the recursive definition can be translated (usually in a straightforward manner)
into a more space-efficient iterative program. For example, the following non-recursive definition is
such a translation of the function PR:

X+-A PRN W
L1:-+(/\/S+-V/W)/L2
A+-A[4( -pA)tSJ
W+-SfS/W
-+L1
L2: Z+-( -1 tpW) +A

9. Reading

Perhaps the most important habit in the development of good style in a language remains to be
mentioned, the habit of critical reading. Such reading should not be limited to collections of well-turned
and useful phrases, such as Bartlett's Quotations or the collections of References 2 and 3, nor should
it be limited to topics in a reader's particular speciality.

Manuals and other books about a language are, like grammars and dictionaries in natural language,
essential, but reading should not be confined to them. Emphasis should be placed rather on the reading
of books which use the language in the treatment of other topics, as in the references already cited,
in Berry et al [10,11], in Blaauw [12], and in Spence [13].
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The APL neophyte should not be dissuaded from reading by the occurrence of long expressions whose
meanings are not immediately clear; because the sequence of execution is clear and unambiguous, the
reader can always work through sample executions accurately, either with pencil and paper, with a
computer, or both. An example of this is discussed at length in Section 1.1 of Iverson [4].

Moreover, the neophyte need not be dissuaded from reading by the occurrence of some unfamiliar
primitives, since all primitives can be summarized (together with examples) in two brief tables (pages
32 and 44 of APL Language [7]), and since these tables are usable after the reading of two shon
sections: Fundamentals (pages 21-28) and Operators (pages 39-43).

Finally, one may benefit from the critical reading of mediocre writing as well as good; good wntmg
may present new turns of phrase, but mediocre writing may spur the reader to improve upon it.

10. Conclusions

This paper has addressed the question of style, the manner in which something is said as distinct
from the substance. The techniques suggested for fostering good style are analogous to techniques
appropriate to natural language: intimate knowledge of vocabulary (primitives) and commonly used
phrases (certain defined functions), facility in abstract expression (generality), mastery of a variety
of equivalent ways of expressing a matter (identities), a knowledge of techniques for examining and
establishing such equivalences (proofs), a precise general method for using an expression in its own
definition (recursion), and an emphasis on wide critical reading in rather than about the language.

If one accepts the importance of good style in APL, then one should consider the implications of these
techniques for the teaching of APL. Current courses and textbooks typically follow the inappropriate
model set by the teaching of earlier programming languages, which are not so simply structured and
not so easy to introduce (as one introduces mathematical notation) in the context of some reasonably
elaborate use of the language. Moreover, they place little or no emphasis on reading in APL and
little on the structure of the language, often confusing, for example, the crucial distinction between
operators and functions by using the same term for both. APL Language [7] does present this
structure, but, being designed for reference, is not itself a sufficient basis for a course.
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Appendix A

Translation from Direct to Del Form

The problem of translation from the direct to the del form of function definition is fully discussed
in Section 10.4 of Iverson [4], the discussion culminating in a set of translation functions usable (or
easily adapted for use) on most implementations of APL. Because it is aimed primarily at an
exposition of the translation problem, the functions developed in this presentation leave many secondary
problems (such as the avoidance of name conflicts) to the user, and the following translation functions
and associated variables may be found more convenient for experimentation with the use of direct
definition:

~F9 E;F;1;J;K;Q;010
~«21+/E=" I ')VA/ 1 3 ~+/':' 19 E)/p~(2p010~O)p"

F~'a X9 ' R9 'w Y9 I R9 E~. 1 1 +OCR OFX 'Q'.' '.[-O.5],E
F~Hp~(O.-6-+/I)+(-(3xI)++\1~':'19 F)¢~(7.pF)p(7xpF)tF

~3¢(C9[«2L2~v/'aw' 19 E),1+1).5;]),~D[;O.(1~2+1F-2).1]

J~«-l¢1)AJ~>f 0 -1 ¢,~, 19 E)/K~\1<O.-1+1~EEA9

K~V/«-K)¢1o.>11+r/K)[;J-1]

~D.(F.pE)t~ 0 -2 +(K+2xK<1¢K)¢' I,E.[O.5] I;'

Z~X R9 Y;N
Z~(.«ltX) 19 Y)o.~Nt1)/,Y,«pY),-1+N~pX)p1+X

Z~A 19 B
Z~(Ao.=B)A«pA),pB)p~21+\B=' I I I

Z9~DEF

Z9~X F9 [!J

C9
Z9~

Y9Z9~

Y9Z9~X9

) /3~( O=1t.
~O,OpZ9~

Z9~

•

A9
0123456789ABCDEFGH1JKLMNOPQRSTUVWXYZABCDEFGH1JKLMNOPQRSTUVWXYZO

The foregoing functions were designed more for brevity than clarity; nevertheless the reader who
wishes to study the translation process in detail may find it useful to compare them with those of
Reference 4.

For serious use of direct definition, one should augment the foregoing with functions which record
the definitions presented, display them on demand, and provide for convenient editing. For example,
execution of:

DEF
DEFR:Op.i'R' .Y. I~X' .OpY~X F9 X~

DEFR
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produces a function DEFR which, like DEF, fixes the definition of any function F presented to it in
direct form, but which also records the original definition (for later display or editing) in the associated
variable BF. The display of a desired function could then be produced by the following definition:

DEFR
DISPLAY: 1, (NA.=( ltpN)t'B',~)fN+ONL 2

For example:

DEFR
PLUS:o.+w

DISPLAY
PLUS
PLUS:o.+w
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Notation as a Tool of Thought
Kenneth E. Iverson
IBM Thomas J. Watson Research Center

The importance of nomenclature, notation, and
language as tools of thought has long been recog
nized. In chemistry and in botany, for example,
the establishment of systems of nomenclature by
Lavoisier and Linnaeus did much to stimulate and
to channel later investigation. Concerning lan
guage, George Boole in his Laws of Thought
[ 1, p.24J asserted "That language is an instru
ment of human reason, and not merely a medium
for the expression of thought, is a truth generally
admitted."

Mathematical notation provides perhaps the
best-known and best-developed example of lan
guage used consciously as a tool of thought. Recog
nition of the important role of notation in mathe
matics is clear from the quotations from mathema
ticians given in Cajori' s A History of Mathemat
ical Notations [2, pp.332,331 J. They are well
worth reading in full, but the following excerpts
suggest the tone:

By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems, and in effect increases
the mental power of the race.

A.N. Whitehead

The quantity of meaning compressed into small
space by algebraic signs, is another circum
stance that facilitates the reasonings we are
accustomed to carryon by their aid.

Charles Babbage

Nevertheless, mathematical notation has seri
ous deficiencies. In particular, it lacks universali
ty, and must be interpreted differently accord ing
to the topic, according to the author, and even
according to the immediate context. Programming
languages, because they were designed for the pur-

pose of directing computers, offer important ad
vantages as tools of thought. Not only are they
universal (general-purpose), but they are also exec
utable and unambiguous. Executability makes it
possible to use computers to perform extensive
experiments on ideas expressed in a programming
language and the lack of ambiguity makes possible
precise thought exper iments. In other respects,
however, most programming languages are decided
ly inferior to mathematical notation and are little
used as tools of thought in ways that would be
considered significant by, say, an applied mathe
matician.

The thesis of the present paper is that the ad
vantages of executability and universality found in
programming languages can be effectively com
bined, in a single coherent language, with the ad
vantages offered by mathematical notation. It is
developed in four stages:

(a )Section 1 identifies salient characteristics of
mathematical notation and uses simple prob
lems to illustrate how these characteristics may
be provided in an executable notation.

(b )Sections 2 and 3 continue this illustration by
deeper treatment of a set of topics chosen for
their general interest and utility. Section 2
concerns polynomials, and Section 3 concerns
transformations between representations of
functions relevant to a number of topics. includ
ing permutations and directed graphs. Al
though these topics might be characterized as
mathematical, they are directly relevant to
computer programming, and their relevance
will increase as programming continues to de
velop into a legitimate mathematical discipline.

(c )Section 4 provides examples of identities and
formal proofs. Many of these formal proofs
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concern identities established informally and
used in preceeding sections.

(d )The conclud ing section provides some general
comparisons with mathematical notation, refer
ences to treatments of other topics, and discus
sion of the problem of introducing notation in
context.
The executable language to be used is APL, a

general purpose language which originated in an
attempt to provide clear and precise expression in
writing and teaching, and which was implemented
as a programming language only after several years
of use and development [3].

Although many readers will be unfamiliar with
APL, I have chosen not to provide a separate intro
duction to it, but rather to introduce it in context
as needed. Mathematical notation is always intro
duced in this way rather than being taught, as pro
gramming languages commonly are, in a separate
course. Notation suited as a tool of thought in any
topic should permit easy introduction in the con
text of that topic; one advantage of introducing
APL in context here is that the reader may assess
the relative difficulty of such introduction.

However, introduction in context is incompati
ble with complete discussion of all nuances of each
bit of notation, and the reader must be prepared to
either extend the definitions in obvious and sys
tematic ways as required in later uses, or to con
sult a reference work. All of the notation used
here is summarized in Appendix A, and is covered
fully in pages 24-60 of APL Language [4].

Readers having access to some machine embodi
ment of APL may wish to translate the function
definitions given here in direct definition form
[5, p.lO] (using Q and", to represent the left and
right arguments) to the canonical form required
for execution. A function for performing this
translation automatically is given in Appendix B.

1. Important Characteristics of Notation

In addition to the executability and universali
ty emphasized in the introduction, a good notation
should embody characteristics familiar to any user
of mathematical notation:

.Ease ofexpressing constructs arising in problems.

.Suggestivity.

.Ability tosubordinate detail.

.Economy.

.Amenabil ity to formal proofs.
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The foregoing is not intended as an exhaustive list,
but will be used to shape the subsequent discus
sion.

Unambiguous executability of the notation in
troduced remains important, and will be emphasiz
ed by displaying below an expression the explicit
result produced by it. To maintain the distinction
between expressions and results, the expressions
will be indented as they automatically are on APL
computers. For example, the integer function de
noted by \ produces a vector of the first N integers

when applied to the argument N, and the sum
reduction denoted by +/ produces the sum of the
elements of its vector argument, and will be shown
as follows:

\ ~

t / \ "
1 ~

We will use one non-executable bit of notation:
the symbol +~ appearing between two expressions
asserts their equivalance.

1.1 Ease of Expressing Constructs Arising in
Problems

If it is to be effective as a tool of thought, a
notation must allow convenient expression not only
of notions arising directly from a problem, but also
of those arising in subsequent analysis, generaliza
tion, and specialization.

Consider, for example, the crystal structure
illustrated by Figure 1, in which successive layers
of atoms lie not directly on top of one another. but
lie "close-packed" between those below them. The
numbers of atoms in successive rows from the top
in Figure 1 are therefore given by I'. and the total
number is given by +/ '.

The three-dimensional structure of such a crys
tal is also close-packed; the atoms in the plane
lying above Figure 1 would lie between the atoms
in the plane below it, and would have a base row of
four atoms. The complete three-dimensional
structure corresponding to Figure 1 is therefore a
tetrahedron whose planes have bases of lengths 1, •

, ", and~. The numbers in successive planes are
therefore the partial sums of the vector 1~, that
is, the sum of the first element, the sum of the
first two elements, etc. Such partial sums of a
vector v are denoted by + \ v, the function + \ being
called sum scan. Thus:

T \ I t

1 3 b 10 l'
TIT \ I ..,



The final expression gives the total number of at
oms in the tetrahedron.

The sum +1 I 5 can be represented graphically in
other ways, such as shown on the left of Figure 2.
Combined with the inverted pattern on the right,
this representation suggests that the sum may be
simply related to the number of units in a rectan
gle, that is, to a product.

The lengths of the rows of the figure formed by
pushing together the two parts of Figure 2 are giv
en by adding the vector \ 5 to the same vector rev
ersed. Thus:

terms of plus may therefore be exhibited as fol
lows:

xlMpN N*M
+IMpN NxM

Similar expressions for partial sums and partial
products may be developed as follows:

x \Op 2
2 4 a Ib 32

'2 '" 1 ~

2 4 8 Ib 32

x\MpN ....... N*lM
+\MpN +--+ NXIM

Because they can be represented by a triangle as
in Figure 1, the sums + \ I 5 are called triangular
numbers. They are a special case of the figurate
numbers obtained by repeated applications of sum
scan, beginning either with +\ \N, or with +\Npl.

Thus:

Replacing sums over the successive integers by
products yields the factorials as follows:

15
1 2 3 4 5

<l> \ 5
5 4 3 2 I

( \ 5 ) +( <l> \ 5 )
066 6 b

Fig. 1. Fig. 2.

0 0 00000
o 0 DO DODD

000 DOD DOD
a 0 0 0 DODD DO

o 0 0 a 0 00000 0

This pattern of 5 repetitions of 0 may be expressed
as 5po, and we have:

5po
06600

+ I 5p 0
30

5pl
1 1 I I I

+\5pl
I 2 3 4 5

15
I 2 3 4 5

x /15
120

! 5
120

+\+\5pl
I 3 0 10 15

+\+\+\5pl
1 4 10 20 35

x \ 1 5
I :> 0 24 120

! 15
1 2 0 24 120

6x5
30

The fact that +/5po ~~ bx5 follows from the defini
tion of multiplication as repeated addition.

The foregoing suggests that +1\5 ~~ (ox5H2, and,
more generally, that:

•\ 1

1.2 Suggestivity
A notation will be said to be suggestive if the

forms of the expressions arising in one set of prob
lems suggest related expressions which find appli
cation in other problems. We will now consider
related uses of the functions introduced thus far.
namely:

The example:

5p 2
2 2 2 2 2

x/5p2
32

suggests that xlMpN ~~ N'M, where. represents the
power function. The similiarity between the defi
nitions of power in terms of times, and of times in

Part of the suggestive power of a language re
sides in the ability to represent identities in brief,
general. and easily remembered forms. We will
illustrate this by expressing dualities between
functions in a form which embraces DeMorgan IS

laws, multiplication by the use of logarithms, and
other less familiar identities.

If v is a vector of positive numbers, then the
product xiV may be obtained by taking the natural
logarithms of each element of V (denoted by ev),
summing them (+/eV), and applying the exponential
function «+Iev). Thus:

x/V +-+ *+/eV

Since the exponential function . is the inverse of
the natural logarithm e, the general form suggested
by the right side of the identity is:

IG FIG ~

where IG is the function inverse to r.

Using A and v to denote the functions and and
or, and - to denote the self-inverse function of
logical negation, we may express DeMorgan I slaws
for an arbitrary number of elements by:
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1\/8 -v/-B
"'/8 "1\/-8

The elements of B are, of course, restricted to the
boolean values and I. Using the relation symbols
to denote functions (for example, x Y yields, if x

is Ie than Y and 0 otherwi e) we can express fur
ther dualities, such as:

x/B ...... -z./-B
-IB ~~ -'I-B

Finally, using rand l to denote the maximum
and minimum functions, we can express dualities
which involve arithmetic negation:

r/v ~~ -[/-V
[ I V -~ - r I - V

are ad hoc, or variable names. Constant name for
vectors are also provided, as in L 3' 11 for a nu
meric vector of five elements. and in 'ABCOE' for a
character vector of five elements.

Analogous distinctions are made in the names
of functions. Constant names such as '. " and •
are assigned to so-called primitive functions of
general utility. The detailed definitions, such as
.IMpN for N.M and 'IMpN for NoM, are subordinated by
the constan t names • and '.

Less familiar examples of constant function
names are provided by the comma which catenates
its arguments as illustrated by:

( 1 ~ ). ($~) ~~ 1

It may also be noted that scan (F\) may replace
reduction (FI) in any of the foregoing dualities.

and by the base-representation function T, which
produces a representation of its right argument in
the radix specified by its left argument. For exam
ple:

, } , T 4 •• 1 0

BN.' 2 ? T 0 1 ] j 't ~ h

BN

1 I 1
1 0 0 I 0
o 1 0 0 I

1 1 1
1 1 1

o 1 I 1 u 1 0

BN.$BN
0000111
o 0 1 1 1
o 1 0 1 1 0

The symbol w represents the argument of the func
tion; in the case of two arguments the left is repre
sented by a. Following such a definition of the
function . the expres. ion l yield the boolean
matrix bN shown above.

Three expressions. separated by colons, are also
used to define a function as follows: the middle
expression is executed first; if its value is zero the
first expression is executed, if not, the last expres
sion is executed. Th is form is wnven ien t for re
cursive definitions, in which the function is u oed
in its own definition. For example. a function
which produces binomial coefficients of an order

The matrix BN is an important one. since it can be
viewed in several ways. In addition to representing
the binary numbers. the columns represent all sub
sets of a set of three elements, as well as the en-

tries in a truth table for three boolean arguments.
The general expression for N elements is easily seen
to be (Np 2) T ( 12' N) 1, and we may wish to assign an
ad hoc name to this function. Using the direct
definition form (Appendix B), the name '[ is as
signed to this function as follows:

CRATE ~ 144

LAYEr. ~ CRATEf8
ROW ~ LA YER> 3

1.3 Subordination of Detail
As Babbage remarked in the passage cited by

Cajori, brevity facilitates reasoning. Brevity is
achieved by subordinating detail, and we will here
consider three important ways of doing this: the
use of arrays, the assignment of names to functions
and variables, and the use of operators.

We have already seen examples of the brevity
provided by one-dimensional arrays (vectors) in
the treatment of duality, and further subordina
tion is provided by matrices and other arrays of
higher rank, since functions defined on vectors are
extended systematically to arrays of higher rank.

In particular, one may specify the axis to which
a function applies. For example, $( 1 1M acts along
the first axis of a matrix M to reverse each of the
columns, and $(21M reverses each row; M,(llN caten
ates columns (placing M above N), and M.(21N caten
ates rows; and ./( 1 1M sums columns and ./(21M

sums rows. If no axis is specified, the function
applies along the last axis. Thus .IM sums rows.
Finally, reduction and scan along the first axis
may be denoted by the symbols I and .

Two uses of names may be distinguished:
constant names which have fixed referents are
used for entities of very general utility, and ad hoc
names are assigned (by means of the symbol ~) to
quantities of interest in a narrower context. For
example, the constant (name) 1"" has a fixed refer
ent, but the names CRATE, LAYER, and ROW assigned by
the expressions
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specified by its argument may be defined recur
sively as follows:

.\ .1

Thus B' ~~ 1 and B' 1 -~ 1 1 and Be 4 -~ 1 " f, "

The term operator, used in the strict sen e
defined in mathematics rather than loosely as a
synonym for function, refers to an entity which
appl ies to functions to produce functions; an exam
ple is the derivative operator.

We have already met two operators, reduction.
and scan. denoted by I and ,and seen how they
contribute to brevity by applying to different func
tions to produce fam il ies of related functions such
as +1 and xl and AI. We will now illustrate the
notion further by introducing the inner product
operator denoted by a period. A function (such as
+ I) produced by an opera tor will be called a
derived function.

If F' and i< are two vectors, then the inner prod
uct +.' is defined by:

P+ . " --+ + / p.

and analogous definitions hold for function pair'
other than + and·. For example:

p • .•

Each of the foregoing expressions has at least
one useful interpretation: I'+.'Q is the total cost of
order quantities Q for items whose prices are given
by P; because P is a vector of primes, P'.'Q is the
number whose prime decomposition is given by the
exponents Q; and if P gives distances from a source

to transhipment points and Q gives distances from
the transhipment points to the destination, then
Pl. +Q gives the minimum distance possible.
The function +. x is equivalent to the inner product
or dot product of mathematics, and is extended to
matrices as in mathematics. Other cases such as
'.' are extended analogously. For example, if 'l. is
the function defined by A.2, then:

The phrase is a special use of the inner
product operator to produce a derived function
which yield products of each element of it left
argument with each element of its right. For ex
ample:

"} l l) •• ~ I)

'} ~ 8 1

3 9 1:"
1') .10 :?L,

The function .' is called outer product, a it
is in tensor analysi , and functions such as . + and
.' and '. < are defined analogously. producing

"function tables" for the particular functions. For
example:

{J-O 1 } j

D'. r D D·. D Do. : D
n 1 } J 0 0 0 1 1 1 1
1 1 } l 1 0 I 0 1 }

/ 2 } l 1 1 0 0 0 1
3 3 3 J 1 1 1 0 0 u 1

The symbol denotes the binomial coefficient
function, and the table .•. !c is seen to contain
Pascal's triangle with it. apex at the left; if ex
tended to negative arguments (as with 0-- J " 1

} l) it will be seen to contain the triangular and higher
order figurate numbers a well. This extension to
negative arguments is interesting for other func
tions as well. For example, the table 0' .• 0 consists
of four quadrant separated by a row and a column
of zeros. the quadrants showing clearly the rule of
signs for multiplication.

Patterns in these function tables exhibit other
properties of the functions, allowing brief state
ments of proofs by exhaustion. For example, com
mutativity appears as a symmetry about the diago
nal. More precisely, if the result of the transpose
function iii (which reverses the order of the axes of
its argument) applied to a table T-D'.IO agrees with
r. then the function 1 is commutative on the do
main. For example, T lilT-D'. r 0 produces a table of
1 's because is commutative.

Corresponding tests of associativity require
rank 3 tables of the form D'.f(u'.ID) and (O'.I£')'./f.

For example:

These example bring out an important point: if
B i boolean. then F' •• ' 8 produces sums over subsets
of ' specified by 1 's in B, and P'.· [I produces prod
uct over su bsets.

l
o 0 1 1 1

o 1 1 0 1
o 1 I 1

P'.' 'l. l
o ~ 2

P·.·X 1
1 ~ 1 ~ } I

D-'" ~

O•. A(D' .•D) (D' .• D) •. AD O'.s(O'.sD) (D'.SO) •. S£'

o 0 0 0
o 0

o 0 I 1
o I 1

1.4 Economy
The utility of a language as a tool of thought

increases with the range of topics it can treat. but
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< J 1: n 1 1 +~ 0 1 C ceo

Simplicity of the grammatical rules of a nota
tion is also important. Because the rules u ed thu
far have been those familiar in mathematical nota
tion, they have not been made explicit, but two
simplifications in the order of execution should be
remarked:

The second rule has certain useful consequences
in reduction and scan. ince r t is equivalent to
placing the function r between the elements of v,

the expression IV gives the alternating sum of the
elements of v, and t/V gives the alternating prod
uct. Moreover, if B is a boolean vector, then < B

"isolates" the first 1 in B, since all element follow-
ing it become For example:

(1 )AIl functions are treated al ike, and there are no
rules of precedence uch as . being executed
before •.

(2)The rule that the right argument of a monadic
function is the value of the entire expression to
its right, implicit in the order of execution of
an expression such as .U N LOG : N, is extended to
dyadic functions.

.X ,
o u 1 1 1I 1 II I

X 7
o 0 1 I
o 1 0 1

and natural logarithm, \ t y and t Y represent divi
sion and reciprocal, and X! Y and : Y represent the
binomial coefficient function and the factorial
(that is, X! Y~.( : Y) t< : X)· ( ! Y Xl). The symbol p used
for the dyadic function of replication also repre
sents a monadic function which gives the hape of
the argument (that is, x~.pXpY), the symbol used
for the monadic reversal function also represents
the dyadic rotate function exemplified by
2.\;~·3 4 ., 1 2, and by -74>1"~·4 ., 1 , 1, and finally.
the comma represents not only catenation, but also
the monadic ravel, which produces a vector of the
elements of its argument in "row-major" order.
For example:

Syntactic rules are further simplified by adopt
ing a single form for all dyadic functions, which
appear between their arguments, and for all mo
nadic functions, which appear before their argu
ments. This contrasts with the variety of rules in
mathematics. For example, the symbols for the
monadic functions of negation, factorial, and mag-

nitude precede, follow, and surround their argu
ments, respectively. Dyadic functions show even
more variety,

•

decreases with the amount of vocabulary and the
complexity of grammatical rules which the user
must keep in mind. Economy of notation is there
fore important.

Economy requires that a large number of ideas
be expressible in terms of a relatively small vocab
ulary. A fundamental scheme for achieving thi is
the introduction of grammatical rules by which
meaningful phrases and sentences can be construct
ed by combining elements of the vocabulary.

This scheme may be illustrated by the first
example treated -- the relatively simple and widely
useful notion of the sum of the first N integers was
not introduced as a primitive, but as a phrase con
structed from two more generally useful notions,
the function I for the production of a vector of
integers, and the function .1 for the summation of
the elements of a vector. Moreover, the derived
function .1 is itself a phrase, summation being a
derived function constructed from the more gener
al notion of the reduction operator applied to a
particular function.

Economy is also achieved by generality in the
functions introduced. For example, the definition
of the factorial function denoted by : is not re
stricted to integers, and the gamma function of x
may therefore be written as :X-1. Similiarly, the
relations defined on all real arguments provide
several important logical functions when applied to
boolean arguments: exclusive-or (.), material im
plication (s >, and equivalence ( ).

The economy achieved for the matters treated
thus far can be assessed by recalling the vocabulary
introduced:

't-x.·.:rL$
v .... -<s:~>.r

The five functions and three operators listed in the
first two rows are of primary interest, the remain
ing familiar functions having been introduced to
illustrate the versatility of the operators.

A significant economy of symbols, as opposed to
economy of functions, is attained by allowing any
symbol to represent both a monadic function (i.e.

a function of one argument) and a dyadic func
tion, in the ame manner that the minus sign is
commonly used for both subtraction and negation.
Because the two functions represented may, as in
the case of the minus sign, be related, the burden
of remembering symbols is eased.

For example, x· y and • Y represent power and
exponential, XeY and er represent base x logarithm
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+/BC N .... 2*N

Recursive definitions often provide convenient
bases for inductive proofs. As an example we will
use the recursive definition of the binomial coeffi
cient function BC given by A.3 in an inductive proof
showing that the sum of the binomial coefficients
of order N is 2 * N. As the induction hypothesis we
assume the identity:

1.5 Amenability to Formal Proofs
The importance of formal proofs and deriva

tions is clear from their role in mathematics. Sec
tion 4 is largely devoted to formal proofs, and we
will limit the discussion here to the introduction
of the forms used.

Proof by exhaustion consists of exhaustively
examining all of a finite number of special cases.
Such exhaustion can often be simply expressed by
applying some outer product to arguments which
include all elements of the relevant domain. For
example, if o~o 1, then 0'. AO gives all cases of appli
cation of the and function. Moreover,
DeMorgan 's law can be proved exhaustively by
comparing each element of the matrix 0 •. AO with
each element of -(-O)·.V(-O) as follows:

and proceed as follows:

+IBC N.l
+/(X,Oh(o.x~BC N)
(+IX,O)+(+IO,X)
(.,X)+(+,X)
2x+IX
2x.IBC N
2x2*N
'2*N+l

A.3
+ is 8'\SOClallve and commutative

0-+-1.... Y
Y+Y ...... 2)(Y

Definition of X
InduclIon hypothesis

Property of Power ( .. )

-(-O)·.v(-O)

It remains to show that the induction hypothesis
is true for some integer value of N. From the re
cursive definition A.3, the value of 12C. 0 is the value
of the rightmost expression, namely 1. Consequent
ly, +IBC 0 is 1, and therefore equals 2*0.

We will conclude with a proof that
DeMorgan I s law for scalar arguments, represented
by:

o 0
o 1

(O·.AO)=(-(-O)·.v(-O»

A/,(O·.AO)=(-(-O)·.v(-O)I

Questions of associativity can be addressed sim
ilarly, the following expressions showing the asso
ciativity of and and the non-associativity of
not-and: AAB ++ -(-A)v(-B) A.4

AI ,( (0' .AO)'. AO)=(O'. A( 0'. AO I)

A/,( (0 •. "01' ...0)=(0' ."(0' ...0»

A proof by a sequence of identities is presented
by listing a sequence of expressions, annotating
each expression with the supporting evidence for
its equivalence with its predecessor. For example,
a formal proof of the identity A.I suggested by the
first example treated would be presented as fol
lows:

The fourth annotation above concerns an identity
which, after observation of the pattern in the spe
cial case (15).(~15), might be considered obvious or
might be considered worthy of formal proof in a
separate lemma.

Inductive proofs proceed in two steps: I) some
identity (called the induction hypothesis) is as
sumed true for a fixed integer value of some par
ameter N and this assumption is used to prove that
the identity also holds for the value N+l, and 2)
the identity is shown to hold for some integer val
ue K. The conclusion is that the identity holds for
all integer values of N which equal or exceed K.

A.6

A.7

and proved by exhaustion, can indeed be extended
to vectors of arbitrary length as indicated earlier
by the putative identity:

A/V·.. -v/-v A.5

ANOREO:w[l]AANOREO ltw:O=pw:l
ORREO :w[l]v ORREO ltw:O=pw:O

As the induction hypothesis we will assume that
A.5 is true for vectors of length (p V) -1.

We will first give formal recursive definitions
of the derived functions and-reduction and
or-reduction (AI and v I), using two new primitives,
indexing, and drop. Indexing is denoted by an
expression of the form XlI], where J is a single in
dex or array of indices of the vector x. For exam
ple, if X+2 3 5 7, then X[21 is 3, and X[2 1] is 3 2.

Drop is denoted by KH and is defined to drop I K

(i.e., the magnitude of K) elements from x, from the
head if K>O and from the tail if K<O. For example,
2tX is 5 7 and -2H is 2 3. The take function (to be
used later) is denoted by t and is defined analo
gously. For example, 3tX is 2 3 5 and -3tX is 3 5 7.

The following functions provide formal defini
tions of and-reduction and or-reduction:

... IS associative and commutative
(X+X)t2++X

+ IS aSbOcialive and commulatlve

Lemma
Defmition of x

... /\N

.I."N
(./1Nh(+/~INllt2

(+/« lNh(~IN»)t2

(+/( (N.l )pN) )t2
«Ntl )xN)t2

Notation as a Tool of Thought III



The inductive proof of A.5 proceeds as follows:

A/V
(V[I»'(_/UV)
-(-V[I])v(-_/ltV)
-(-V[I])v(--v/-ltV)
-(-V[l])v(v/-ltV)
-v/(-V[I] ).(-UV)

-v /-( V[l ] • H V)

-v/-V

A.6
A4
AS

--x-x
A.7

v distrtbutes over •
DefinltlQn or • (catenahon)

X+2
8+3 1 2 3
C+2 0 3
E+(-1+lp8)·.+(-ltIPC)

8·. 'C E
6 0 9 012
203 123
406 234
6 0 9 345

t/.(8·.'C)'X·E
518

(8 f'. Xl'(C f'. X)
518

X·E
I 2 4
2 4 8
4 8 16
8 16 32

2. Polynomials

If C is a vector of coefficients and x is a scalar,
then the polynomial in x with coefficients C may be
written simply as +/C'X·-l+IPC. or t/(X.-l+lpC),C.

or (X.-l+tpClt.'C. However, to apply to a non
scalar array of arguments x, the power function •
should be replaced by the power table •. • as shown
in the following definition of the polynomial func
tion:

81

For example, 1 3 3 1 f'. 0 1 2 3 4 ++ 1 8 27 64 125. If pa

is replaced by 1 tpa, then the function applies also
to matrices and higher dimensional arrays of sets
of coefficients representing (along the leading axis
of a) collections of coefficients of different polyno
mials.

This definition shows clearly that the polyno
mial is a linear function of the coefficient vector.
Moreover, if a and .. are vectors of the same shape,
then the pre-multiplier ..... -1+lpa is the Vander
monde matrix of " and is therefore invertible if the
elements of .. are distinct. Hence if C and x are
vectors of the same shape, and if Y+C f'. x. then the
inverse (curve-fitting) problem is clearly solved by
applying the matrix inverse function III to the Van
dermonde matrix and using the identity:

2.1 Products of Polynomials
The "product of two polynomials 8 and c" is

commonly taken to mean the coefficient vector 0

such that:

o f'. x ++ (8 f'. X)x(C f'. X)

It is well-known that 0 can be computed by taking
products over all pairs of elements from 8 and C

and summing over subsets of these products associ
ated with the same exponent in the result. These
products occur in the function table 8·. xC, and it is
easy to show informally that the powers of x asso
ciated with the elements of 8 •. 'C are given by the
addition table E+(-I+lP8) •• +(-1+IPC>' For example:
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The foregoing suggests the following identity,
which will be established formally in Section 4:

Moreover, the pattern of the exponent table E

shows that elements of 8 •. 'c lying on diagonals are
associated with the same power, and that the coef
ficient vector of the product polynomial is there
fore given by sums over these diagonals. The table
8·. xC therefore provides an excellent organization
for the manual computation of products of polyno
mials. In the present example these sums give the
vector 0+6 2 13 9 6 g, and 0 f'. x may be seen to equal
(8f'.X)'(Cf'.Xl.

Sums over the required diagonals of 8uC can
also be obtained by bordering it by zeros, skewing
the result by rotating successive rows by successive
integers, and then summing the columns. We thus
obtain a definition for the polynomial product
function as follows:

We will now develop an alternative method
based upon the simple observation that if 8 PP C

produces the product of polynomials 8 and c, then
PP is linear in both of its arguments. Consequent
ly,

PP:a+.xA-t.xw

where A is an array to be determined. A must be of
rank 3, and must depend on the exponents of the
left argument (-I+IPa), of the result (-I+lpHa ... >.
and of the right argument. The "deficiencies" of
the right exponent are given by the difference ta
ble ( p I+a ... )·. - 1 p ... and comparison of these values
with the left exponents yields A. Thus

A+-(-lt\oo) •• =« tpl.a,W)O.-lpW)

and

PP: Q + . x ( ( -, 1" 1 P Q ) II • := ( \ pl. Q • Col ) 0 • - 1 P tal ) 't • It W

Since a+. xA is a matrix. this formulation sug
gests that if 0+8 PP c, then C might be obtained
from 0 by pre-multiplying it by the inverse matrix
(1il8+. xA), thus providing division of polynomials.



Since B•• xA is not square (having more rows than
columns), this will not work, but by replacing
M+B+.xA by either its leading square part (2pl/pMHM,

or by its trailing square part (-2pl/pMltM, one ob
tains two results, one corresponding to division
with low-order remainder terms, and the other to
division with high-order remainder terms.

2.2 Derivative of a Polynomial
Since the derivative of X*N is NxX*N-1. we may

use the rules for the derivative of a sum of func
tions and of a product of a function with a con
stant, to show that the derivative of the polynomi
al C E x is the polynomial (ltCx-1+1pC) E x. Using
this result it is clear that the integral is the polyn
omial (A.C'lpC) EX. where A is an arbitrary scalar
constant. The expression l~Cx -1+ t pC also yields the

coefficients of the derivative, but as a vector of the
same shape as C and having a final zero element.

2.3 Derivative of a Polynomial with Respect
to Its Roots

If R is a vector of three elements, then the de
rivatives of the polynomial xiX-/;' with respect to
each of its three roots are (X-Rl;>]lxlX H[3)1. and
·lX H1]).(X-h[ ), and P F(1)1'(X HU). More
generally, the derivative of -1.\ /;' with respect to
HlJ) is simply -( l H)'. 'JxlpR, and the vector of de
rivatives with respect to each of the roots is

(X H)~.·I .;t.j+-lpR.

The expression ·IX H for a polynomial with
roots f, applies only to a scalar x, the more general
expression being xiX. H. Consequently. the gener
al expression for the matrix of derivatives (of the
polynomial evaluated at H J, with respect to root
H(J) is given by:

H:J

2.4 Expansion of a Polynomial
Binomial expansion concerns the development

of an identity in the form of a polynomial in x for
the expression I X. Y) ·N. For the special case of Y 1

we have the well-known expression in terms of the
binomial coefficients of order N:

(t.l)·N ++ « .IN):,Vl{ l

By extension we speak of the expansion of a
polynomial as a matter of determining coefficients

such that:

coefficients of various orders, specifically on the
ma trix J 0 • ! J+ -1. I pC.

For example, if '+3 1 2 4, and C E X.1++D E x, then
D depends on the matrix:

0123 0 .:0123
1 1 1 1
o 1 2 3
o 0 1 1
I) f) r 1

and D must clearly be a weighted sum of the col
umns, the weights being the elements of r. Thus:

[.+-(Jo.!J"-l,.IPC)-t.-C

Jotting down the matrix of coefficients and per
forming the indicated matrix product provides a
quick and reliable way to organize the otherwise
messy manual calculation of expansions.

If B is the appropriate matrix of binomial coef
ficients, then D+B+. xC, and the expansion function is
clearly linear in the coefficients c. Moreover, ex
pansion for Y=-l must be given by the inverse ma
trix IIlB, which will be seen to contain the alternat
ing binomial coefficien ts. Finally, since:

~ E X+(K+1) ++ C E (X+K).l ++ (B+.xC) E (X+K)

it follows that the expansion for positive integer
values of Y must be given by products of the form:

where the B occurs y times.
Because +. x is associative, the foregoing can be

written as M•• xc, where M is the product of y occur
rences of B. It is interesting to examine the succes
sive powers of B, computed either manually or by
machine execution of the following inner product
power function:

IPP:a+.xa IPP w l:w=O:Jo.=J .. -l-tlltpa

Comparison of B IfP A with B for a few values of
A shows an obvious pattern which may be ex
pressed as:

B IFF K ...... B-.KAor -Jo. -J"'-l"t \ 1 tpB

The interesting thing is that the right side of this
identity is meaningful for non-integer values of K,

and, in fact, provides the desired expression for the
general expansion ex. Y:

The right side of 8.4 is of the form (/0/ •• -Cle x,
where M itself is of the form Bx Y*E and can be dis
played informally (for the case 4=p -) as follows:

The coefficients are, in general, functions of Y. If
yq they again depend only on binomial coeffi
cients. but in this case on the several binomial

1 1 1 1
1
o

I "

, Y'

II 1

u
o I

(} (l 0
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358

358
C e X+Y

P
1 J 5 7

ME
0 1 0 1 0 1 0 3 0 1
0 0 1 0 0 I 0 0 1 0
0 0 0 0 I 0 0 0 0 1
0 0 0 0 0 0 I 0 0 0

p •. -ME
I 1 3 " 5 I'> 7 8 9 10

complex entity which possesses several useful rep
resentations. For example. a simple directed graph
of N elements (usually called nodes) may be repre
sented by an N by N boolean matrix B (usually called
an adjacency matrix) such that 8[I;J)=1 if there is
a connection from node I to node J. Each connec
tion represented by a I in B is called an edge. and
the graph can also be represen ted by a + 1.8 by N

matrix in which each row shows the nodes con
nected by a particular edge.

Functions also admit different useful represent
ations. For example, a permutation function,
which yields a reordering of the elements of its
vector argument x, may be represented by a per
mutation vector p such that the permutation func
tion is simply X[PJ, by a cycle representation which
presents the structure of the function more direct
ly, by the boolean matrix B~P·=tpP such that the
permutation function is 8+. xx, or by a radix repre
sentation R which employs one of the columns of
the matrix 1+(~IN)T-I+\:N~pX, and has the property
that 11 + I R-I is the parity of the permutation repre
sented.

In order to use different representations con
veniently, it is important to be able to express the
transformations between representations clearly
and precisely. Conventional mathematical nota
tion is often deficient in this respect, and the pres
ent section is devoted to developing expressions for
the transformations between representations useful
in a variety of topics: number systems, polynomi
als, permutations, graphs, and boolean algebra.

3.1 Number Systems
We will begin the discussion of representations

with a familiar example, the use of different repre
sentations of positive integers and the transforma
tions between them. Instead of the positional or
base-value representations commonly treated, we
will use prime decomposition, a representation
whose interesting properties make it useful in in
troducing the idea of logarithms as well as that of
number representation [6, Ch.16].

If P is a vector of the first pP primes and E is a
vector of non-negative integers, then E can be used
to represent the number px. 'E, and all of the integ
ers I riP can be so represented. For example,
1 3 5 7 x.' 0 0 0 0 is 1 and 1 3 5 7 x.' I 1 0 0 is b

ar.d:

85DS: ( I' . - I )~ [ I ) ( I =I ~ 1 1 +p", ) •• x'"

DS K·. :K~-1+ 13
o
o
I

010
001
000

001
000
000

For example:

Since Y'K multiplies the single-diagonal matrix
Bx(K=El, the expression for M can also be written as
the inner product (Y·Jl+.·T, where T is a rank 3

array whose Kth plane is the matrix Bx( K=El. Such
a rank three array can be formed from an upper
triangular matrix M by making a rank 3 array
whose first plane is M (that is, (1=lltpM) •. xM) and
rotating it along the first axis by the matrix J. -J,

whose Kth superdiagonal has the value -K. Thus:

3. Representations

Substituting these results in B.4 and using the
associativity of +. x, we have the following identity
for the expansion of a polynomial, valid for non
integer as well as integer values of y:

The subjects of mathematical analysis and com
putation can be represented in a variety of ways,
and each representation may possess particular
advantages. For example, a positive integer N may
be represented simply by N check-marks; less sim
ply, but more compactly, in Roman numerals; even
less simply, but more conveniently for the per
formance of addition and multiplication, in the
decimal system; and less familiarly, but more con
veniently for the computation of the least common
multiple and the greatest common divisor, in the
prime decomposition scheme to be discussed here.

Graphs, which concern connections among a
collection of elements, are an example of a more

Y~3

C~3 1 " 1
101"'( Y-J)t.-OS Jo. !J+ l'ttpC

M
I 3 9 17
o 1 & 17
o 0 1 9
o 0 0 I

Hi-. )I.e
9& 79 11 1

(M •. xC)eX~1
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The similarity to logarithms can be seen In the
identity:

which may be used to effect multiplication by ad
dition.

Moreover, if we define cco and LCM to give the
greatest common divisor and least common multi
ple of elements of vector arguments, then:

cco p'X. "ME ++ pX"l/ME
LCM px. 'ME ++ px.·f/ME

/olE v.. p • . *ME
0 V
2 18900 7350 3087
0 cco V LC/ol V
3 21 926100

pX"l/ME px.·f//oIE
21 926100

sentation, and an inverse function RFC. The devel
opment will be informal; a formal derivation of CFR

appears in Section 4.
The expression for CFR will be based on

Newton's symmetric functions, which yield the
coefficients as sums over certain of the products
over all subsets of the arithmetic negation (that is,
-R) of the roots R. For example, the coefficient of
the constant term is given by ./-R, the product
over the entire set, and the coefficient of the next
term is a sum of the products over the elements of
-R taken (pR)-1 at a time.

The function defined by A.2 can be used to
give the products over all subsets as follows:

In defining the function cco, we will use the
operator / with a boolean argument 8 (as in 8/). It
produces the compression function which selects
elements from its right argument according to the
ones in 8. For example, I 0 I 0 1/15 is I 3 5. More
over, the function 8/ applied to a matrix argument
compresses rows (thus selecting certain columns),
and the function 8/ compresses columns to select
rows. Thus:

The elements of p summed to produce a given coef
ficient depend upon the number of elements of R

excluded from the particular product, that is, upon
,/-/01, the sum of the columns of the complement of
the boolean "subset" matrix 7'.pR.

The summation over p may therefore be ex
pressed as «O,lpR)'.=,/-M)+.xP, and the complete
expression for the coefficients C becomes:

For example, if R+2 3 5, then

+/-M
1 2 1 1 0
(O,lpR) •. =,/-/oI
o 0 0 0 1
1 0 1 1 0
o 1 0 0 0
00000
pR

30

/01
o 0 1 1 1
1 I 0 0 1
o 1 0 I 0

( -R)x.·M
3 15 -2 10 6

o
o
o 000

000
o I 1
I 0 0

«O,lpR)'.=,/-M)+.x(-R)x.'M+7'.
30 31 '10 I

The transformation to the value of a number
from its prime decomposition representation (VFR)

and the inverse transformation to the representa
tion from the value (RFv) are given by:

cco:cco M,(M+l/R)IR:I~pR+(w'O)/w:,/R

LCM:(x/X)+cco X+(I+w),LC/oI l'w:O=pw:1

VFR: o.x. "w
RFV:Dto. RFV wfax.*D:~/-D+O=alw:D

For example:

The function CFR which produces the coefficients
from the roots may therefore be defined and used
as follows:

CI

P VFR 2 1 3 1
10500

P RFV 10500
2 1 3 1

3.2 Polynomials
Section 2 introduced two representations of a

polynomial on a scalar argument x, the first in
terms of a vector of coefficients C (that is,
,/cXX'-I"PC), and the second in terms of its roots R

(that is, x/X-R). The coefficient representation is
convenient for adding polynomials (c,o) and for
obtaining derivatives (HCx'HIPC). The root repre
sentation is convenient for other purposes, includ
ing multiplication which is given by Rl.R2.

We will now develop a function CFR

(Coefficients from Roots) which transforms a roots
representation to an equivalent coefficient repre-

CFR 2 3 5
30 31 -10 1

(CFR 2 3 5) E X+I 2 3 4 5 6 7 8
8 0 0 '2 0 12 40 90

,/X·.-2 3 5
8 0 0 '2 0 12 40 90

The inverse transformation RFC IS more diffi
cult, but can be expressed as a successive approxi
mation scheme as follows:

RFC:('I+lpl'w)C w
C:(a-Z)C w:TOL~f/IZ+a STEP w:a-Z
STEP: (ffi< a 0 • - a »C • * I 0 • x 1 .... \ p a ) "t ... ( Q 0 .... -1 + \ pw ) + . Xw

O+C+CFR 2 3 5 7
210 247 101 '17 I

TOL+IE'8
RFC C

7 5 2 3

The order of the roots in the result is, of course,
immaterial. The final element of any argument of

Notation as (l Tool of Thought 1] 5



(X[D1)[D2) +. X[(D1 [D2))
B2 •• '(B1 ••• X) •• (B2t.xB1) ••• X

Because permutation is associative, the compos
ition of permutations satisfies the following rela
tions:

The permutation X[D) may also be expressed as
B •• xX, where B is the boolean matrix D'. =1 pD. The
matrix B will be called the boolean representation
of the permutation. The transformations between
direct and boolean representations are:

RFC must be 1, since any polynomial equivalent to
xIX-R must necessarily have a coefficient of 1 for
the high order term.

The foregoing definition of RFC applies only to
coefficients of polynomials whose roots are all real.
The left argument of C in RFC provides (usually
satisfactory) initial approximations to the roots,
but in the general case some at least must be com
plex. The following example, using the roots of
unity as the initial approximation, was executed on
an APL system which handles complex numbers:

BFD:w o .::; \PW DPB:wt.)(11tpw

O+C+CFR 1J\ 1J-\ 1J7 1J-7
10 14 11 -4 1

RFC C
1J-1 1J7 1J1 1J-7

This last is the elegant method of Kerner [7].
Using starting values given by the left argument
of C in C.2, it converges in seven steps (with a tol
erance TOL+1E-S) for the sixth-order example given
by Kerner.

3.3 Permu.tations
A vector P whose elements are some permuta

tion of its indices (that is, -/l=.IP·. =I pP) will be
called a permutation vector. If D is a permutation
vector such that (pX)=pD, then X[D) is a permutation
of x. and D will be said to be the direct representa
tion of this permutation.

R[S) IS X[31R[G) IS X[S)

R[4) IS X[l)

R(7) is X(7)
R(3) .s X[G)
R(2)isX[2)
R[ 1) is X[ 4)

The inverse of a boolean representation B is IsIB, and
the inverse of a direct representation is either 4D or
D11pD. (The grade function 4 grades its argument,
giving a vector of indices to its elements in ascend
ing order, maintaining existing order among equal
elements. Thus 43 7 1 4 is 3 1 4 2 and 43 7 3 4 is
1 3 4 2. The index-of function I determines the
smallest index in its left argument of each element
of its right argument. For example, 'ABCDE' I 'BABE'

iS21 2 s,and 'BABE'l'ABCDE' iS2 1 S S 4.)

The cycle representation also employs a permu
tation vector. Consider a permutation vector C and
the segments of C marked off by the vector c= l \C.

For example, if C+7 3 G 5 2 1 4, then C=l \C is
1 1 0 0 1 1 0, and the blocks are:

7
3 G S
2
1 4

If the leading element of C is the smallest (that is,
1), then C consists of a single cycle, arid the permuta
tion of a vector x which it represents is given by
X[C)·X[ l<1>C). For example:

Each block determines a "cycle" in the associated
permutation in the sense that if R is the result of
permuting x, then:

X+'ABCDEFC'
C+1 7 G S 2 4 3
X[C)+X[1<I>C)
X

CDACBEF

Since X[Q)+A is equivalent to X+A[4Q), it follows
that X[C)+X[l<1>C) is equivalent to X.X[(1<I>CH4Cll, and
the direct representation vector D equivalent to C is
therefore given (for the special case of a single
cycle) by D.(1<I>CH4C).

In the more general case, the rotation of the
complete vector (that is, 1<I>c) must be replaced by
rotations of the individual subcycles marked off by

('2

The monadic function 0 used above multiplies its
argument by pi.

In Newton's method for the root of a scalar
function F, the next approximation is given by
A+A-(F A).DF A, where DF is the derivative of F. The
function STEP is the generalization of Newton IS

method to the case where F is a vector function of
a vector. It is of the form (IilH) ••• B, where B is the
value of the polynomial with coefficients w, the
original argument of RFC, evaluated at a, the cur
rent approximation to the roots; analysis similar to
that used to derive B.3 shows that H is the matrix
of derivatives of a polynomial with roots a, the
derivatives being evaluated at a.

Examination of the expression for H shows that
its off-diagonal elements are all zero, and the ex
pression (IilH)+. xB may therefore be replaced by B'D,

where D is the vector of diagonal elements of H.

Since (I. J). H drops I rows and J columns from a
matrix H, the vector D may be expressed as
-10 H(-l+lpa)<I>a·. a; the definition of the function
STEP may therefore be replaced by the more effi
cient definition:
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OFR:w(1],Xtw(l]SX~OFR 1tw:0=pw:w
RFO:w(l],RFO X-w(1]SX~ltw:0=pw:w

Transformations between this representation and
the direct form are given by:

Some of the characteristics of this alternate
representation are perhaps best displayed by modi
fying OFR to apply to all columns of a matrix argu
ment, and applying the modified function MF to the
result of the function RR:

34 4444

3 2 2 3 3
2 1 2 1 2
1 1 1 1 1

3
1
1
1

2
2
2
1

RR 4
1 1 1
223
1 2 1
1 1 1

The !N column vectors of the matrix
(4) \ N) T -1 t \ ! N are all distinct, and therefore provide
a potential radix representation [8] for the ! N

permutations of order N. We will use instead a
related form obtained by increasing each element
by 1:

If one wishes to catenate a collection of disjoint
cycles to form a single vector C such that c= L \C

marks off the individual cycles, then each cycle CI

must first be brought to standard form by the
rotation (-1tCI\L/CIl4>CI, and the resulting vectors
must be catenated in descending order on their
leading elements.

The inverse transformation from direct to cycle
representation is more complex, but can be ap
proached by first producing the matrix of all pow
ers of 0 up to the poth, that is, the matrix whose
successive columns are 0 and 0 (0] and (0 (0] )[ 0],

etc. This is obtained by applying the function pow

to the one-column matrix D'. t, 0 formed from 0,

where pow is defined and used as follows:

OFC:(w('Xtt\X~w=L\w])('w]

C= L\C, as shown in the following definition of the
transformation to direct from cycle representation:

POW: pow 0, ( O~w ( ,1] )[ w] : Sip w : w

O~O~OFC C+7,3 6 5,2,1 4
4261357

POW 00'''',0
4141414
2222222
6536536
1414141
3653653
5365365
7777777

If M~POW D'. t, 0, then the cycle representation of
o may be obtained by selecting from M only
"standard" rows which begin with their smallest
elements (SSR), by arranging these remaining rows
in descending order on their leading elements
(DOL), and then catenating the cycles in these rows
(CIRl. Thus:

CFO:CIR DOL SSR POW w'.t,O

SSR:('IM=14>M~L\w)lw

OOL:w(fw(,I],]
CIR:(,1,'\0 1+w-L\w)/,w

MF:w(,l:],(l]Xtw(l pX)p1:]SX~MF 1 Otw:O:ltpw:w
MF RR 4

1 1 1 1 1 1 2 2 2 2 3 3 4 4 4 4
2 2 3 3 4 4 1 1 3 4 1 4 1 1 2 3
3 4 2 4 2 3 3 4 4 1 4 1 2 3 1 1
4 3 4 2 3 2 4 3 I 3 2 2 3 2 3 2

The direct permutations in the columns of this
result occur in lexical order (that is, in ascending
order on the first element in which two vectors
differ); this is true in general, and the alternate
representation therefore provides a convenient way
for producing direct representations in lexical or
der.

The alternate representation also has the useful
property that the parity of the direct permutation
o is given by 21 tr 1 tRFO 0, where MIN represents the
residue of N modulo M. The parity of a direct rep
resentation can also be determined by the func
tion:

OFC C~7,3 6 5,2,1 4
4261357

CFO OFC C
7365214

PAR: 21 +/ ,( [0. >!+\PW)A6J O .>w

In the definition of DOL, indexing is applied to
matrices. The indices for successive coordinates are
separated by semicolons, and a blank entry for any
axis indicates that all elements along it are select
ed. Thus M( : 1] selects column 1 of M.

The cycle representation is convenient for de
termining the number of cycles in the permutation
represented (NC: t/w=L \w), the cycle lengths
(CL:X-O,-1+X~(14>w=L\w)I\Pw),and the power of the
permutation (PP:LCM CL w). On the other hand, it is
awkward for composition and inversion.

3.4 Directed Graphs
A simple directed graph is defined by a set of K

nodes and a set of directed connections from one to
another of pairs of the nodes. The directed con
nections may be conveniently represented by a K by
K boolean connection matrix C in which C([:J]=l

denotes a connection from the Ith node to the Jth.
For example, if the four nodes of a graph are

represented by N~' QRST', and if there are connec
tions from node s to node Q, from R to T, and from T

to Q, then the corresponding connection matrix is
given by:
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000
001
000
000

covers T and if all nodes are reachable from the
root of T, that is,

where R is the (boolean representation of the) root
of T.

A depth-first spanning tree [9] of a graph G

is a spanning tree produced by proceeding from the
root through immediate descendants in G, always
choosing as the next node a descendant of the lat
est in the list of nodes visited which still possesses
a descendant not in the list. This is a relatively
complex process which can be used to illustrate the
utility of the connection matrix representation:

The function OFST establishes the left argument
of the recursion R as the one-row matrix represent
ing the root specified by the left argument of OFST,

and the right argument as the original graph with
the connections into the root x deleted. The first
line of the recursion R shows that it continues by
appending on the top of the list of nodes thus far
assembled in the left argument the next child c,
and by deleting from the right argument all con
nections into the chosen child C except the one
from its parent P. The child C is chosen from
among those reachable from the chosen parent
(PV.AW), but is limited to those as yet untouched
(UAPV.AW), and is taken, arbitrarily, as the first of
these «\UAPV. AW).

The determinations of P and U are shown in the
second line, P being chosen from among those nodes
which have children among the untouched nodes
(WV.AU). These are permuted to the order of the
nodes in the left argument (ClV.AWV.AU), bringing
them into an order so that the last visited appears
first, and P is finally chosen as the first of these.

The last line of R shows the final result to be
the resulting right argument w, that is, the original
graph with all connections into each node broken

c.•

R:(C.[l)Cl)RwAP·.v-C+<\UApv.AW
:-v/P+«\aV.AWV.AU+-V!a)V.AQ
:w

OFST:«.l)'.;X) R WAX·.v-K+Cl;,ltpw

Using as an example the graph G from [9]:

G 1 OPST G
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A connection from a node to itself (called a self
loop) is not permitted, and the diagonal of a con
nection matrix must therefore be zero.

If P is any permutation vector of order pH, then
N1+N[P) is a reordering of the nodes, and the corre
sponding connection matrix is given by C[P;P). We
may (and will) without loss of generality use the
numeric labels, pN for the nodes, because if N is any
arbitrary vector of names for the nodes and L is
any list of numeric labels, then the expression
Q+N[ L) gives the corresponding list of names and,
conversely, H,Q gives the list L of numeric labels.

The connection matrix C is convenient for ex
pressing many useful functions on a graph. For
example, >IC gives the out-degrees of the nodes,
>IC gives the in-degrees, >1 ,c gives the number of
connections or edges, tIC gives a related graph with
the directions of edges reversed, and Cv"C gives a
related "symmetric" or "undirected" graph.
Moreover, if we use the boolean vector B+v I ( ,1

pC) •• ;L to represent the list of nodes L, then BV.AC

gives the boolean vector which represents the set
of nodes directly reachable from the set 8. Conse
quently, Cv. AC gives the connections for paths of
length two in the graph c, and CvCv. AC gives connec
tions for paths of length one or two. This leads to
the following function for the transitive closure of
a graph, which gives all connections through paths
of any length:

Node J is said to be reachable from node I if
(TC C) [I; J); 1. A graph is strongly-connected if
every node is reachable from every node, that IS

A/.TCC.

If O+TC C and O[I;I);l for some I, then node I is
reachable from itself through a path of some
length; the path is called a circuit, and node I is
said to be contained in a circuit.

A graph T is called a tree if it has no circuits
and its in-degrees do not exceed 1, that is, A/1HIT.

Any node of a tree with an in-degree of 0 is called
a root, and if X+>IO;>/T, then T is called a x-rooted
tree. Since a tree is circuit-free, x must be at least
1. Unless otherwise stated, it is normally assumed
that a tree is singly-rooted (that is, X;l);

multiply-rooted trees are sometimes called forests.
A graph C covers a graph 0 if A/.OO. If G is a

strongly-connected graph and T is a (singly-rooted)
tree, then T is said to be a spanning tree of G if G
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except for its parent in the spanning tree. Since
the final value of 0 is a square matrix giving the
nodes of the tree in reverse order as visited, substi
tution of ... Hl]o (or, equivalently, ... eo) for ..
would yield a result of shape 1 2 x pC containing the
spanning tree followed by its "preordering" infor
mation.

Another representation of directed graphs often
used, at least implicitly, is the list of all node pairs
v. w such that there is a connection from v to w.
The transformation to this list form from the con
nection matrix may be defined and used as follows:

LFC:( ... )/l+DT-l+\x/D~p..
C LFC C

001 112334
00134 3 241
o 1 0
100

However, this representation is deficient since it
does not alone determine the number of nodes in
the graph, although in the present example this is
given by r / •LFC C because the highest numbered
node happens to have a connection. A related boo
lean representation is provided by the expression
(£FC C)'.: 'l+pC, the first plane showing the out- and the
second showing the in-connections.

An incidence matrix representation often used
in the treatment of electric circuits [10 J is given
by the difference of these planes as follows:

IFC:-f(LFC ")'.:'ltp ..

For example:

(LFC C)·.:l1tpC IFC C
1 0 0 0 1 0 - 1 0
1 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1

o 0 1 0
000 1
o 0 1 0
o 1 0 0
000 1
1 000

In dealing with non-directed graphs, one some
times uses a representation derived as the or over
these planes (Vf). This is equivalent to IIFC c.

The incidence matrix I has a number of useful
properties. For example, .II is zero, .fI gives the
difference between the in- and out-degrees of each
node, pI gives the number of edges followed by the
number of nodes, and x/pI gives their product.
However, all of these are also easily expressed in
terms of the connection matrix, and more signifi
cant properties of the incidence matrix are seen in
its use in electric circuits. For example, if the
edges represent components connected between the

nodes, and if v is the vector of node vol tages, then
the branch voltages are given by I •• xv; if BI is the
vector of branch currents, the vector of node cur
rents is given by BI •• xl.

The inverse transformation from incidence ma
trix to connection matrix is given by:

The set membership function • yields a boolean
array, of the same shape as its left argument,
which shows which of its elements belong to the
right argument.

3.5 Symbolic Logic
A boolean function of N arguments may be rep

resented by a boolean vector of 2 *N elements in a
variety of ways, including what are sometimes
called the disjunctive, conjunctive, equivalence,
and exclusive-disjunctive forms. The transforma
tion between any pair of these forms may be repre
sented concisely as some 2*N by 2*N matrix formed

by a related inner product, such as Tv. A_T, where T

t x N is the "truth table" formed by the function xde
fined by A.2. These matters are treated fully in
[11, Ch.7J.

4. Identities and Proofs

In this section we will introduce some widely
used identities and provide formal proofs for some
of them. including Newton's symmetric functions
and the associativity of inner product, which are
seldom proved formally.

4.1 Dualities in Inner Products

The dualities developed for reduction and scan
extend to inner products in an obvious way. If DF

is the dual of f and DC is the dual of C with respect
to a monadic function M with inverse MI. and if A

and B ~re matrices, then:
A f.G B ~. Ml (M A) Df.DC (M B)

For example:

AV.AB ~. -(-A)A.V(-B)
AA.:B t. -(-A)v.x(-B)
A l .• B ~. - ( - A H .• ( - B )

The dualities for inner product, reduction, and
scan can be used to eliminate many uses of boolean
negation from expressions, particularly when used
in conjunction with identities of the following
form:
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AA(-B) ++ A>B
(-A)AB ++A<B
(-A)A(-B) ++ A¥B

used to distribute results. For example, if F is a
function which is costly to evaluate and its argu
ment v has repeated elements, it may be more effi
cient to apply F only to the nub of v and distribute
the results in the manner suggested by the follow
ing identity:

The summarization function produces an inter
esting result when applied to the function 'I. defined
by A.2:

The order of the elements of fl v is the same as
their order in v, and it is sometimes more conven
ient to use an ordered nub and corresponding
ordered summarization given by:

4.2 Partitioning Identities

Partitioning of an array leads to a number of
obvious and useful identities. For example:

x/3 1 4 2 6 ++ (x/3 1) x (x/4 2 6)

More generally, for any associative function F:

F/V.+ (FlKtV) F (F/KtV)
FI V • W ++ (F / V) F (F / W )

If F is commutative as well as associative, the
partitioning need not be limited to prefixes and
suffixes, and the partitioning can be made by com
pression by a boolean vector u:

F / V ++ (FI U/ V) F (F / ( -u )/ V)

F V ++ (F fi V) •• x~ v

Qfi:fi.,[ • .,J
Q~:(Qfl")":"

The identity corresponding to D.5 is:

0.5

D.6
D7

08

If E is an empty vector (0: p E), the reduction FI E

yields the identity element of the function F, and
the identities therefore hold in the limiting cases
O:K and o:v/u.

Partitioning identities extend to matrices in an
obvious way. For example, if v. 14. and A are arrays
of ranks 1. 2. and 3. respect ively, then:

In words, the sums of the rows of the summariza
tion matrix of the column sums of the subset ma
trix of order N is the vector of binomial coefficients
of order N.

V,.xl4 ++ «K.V) •• x(K.l.pl4)tl4).(KtV) •• x(K.O)tl4 DI
(I.JltA •. xV ++ «I.J.OltAlt.xV D.2

4.3 Summarization and Distribution

Consider the definition and and use of the fol
lowing functions:

4.4 Distributivity

The distributivity of one function over another
is an important notion in mathematics, and we will
now raise the question of representing this in a
general way. Since multiplication distributes to
the right over addition we have .xlb.q)....b••q , and
since it distributes to the left we have (atp)xb.+.b'pb.

These lead to the more general cases:

The function fl selects from a vector argument
its nub, that is, the set of distinct elements it con
tains. The expression ~ A gives a boolean
"summarization matrix" which relates the ele
ments of A to the elements of its nub. If A is a vec
tor of account numbers and C is an associated vec
tor of costs, then the expression (~ A) •• xC evaluated
above sums or "summarizes" the charges to the
several account numbers occurring in A.

Used as postmultiplier, in expressions of the
form w•• x~ A, the summarization matrix can be

fl: (v/<\.".:., )/.,
~: (flO')·,:"

A+3 3 1 4 1
C+10 20 30 40 50

D9

W[OJ
W[l J
wDJ

W[OJ
W[ 1]

VDJ

W[OJ
VO J
WDJ

W[OJ
V[ 1 J
V[2J

V[ 0 J
W[lJ
W[2J

V[ 0 J
W[ 1]

V[2J

V[OJ
VO J
WDJ

V[OJ
V[ 1 J
V[2J

("p)x(b.q)." .bt.q.pb.pq
fa +p))l; (b+Q))C (Ci" rl ... abc+abr+aqc+8Qr+pbc+pbr+pqc+pqr
(8+p)JC(b+Q}x ••• x(ctr) +. ab ••• c+ • ••• +pq ••• r

Using the notion that V+A, Band w.p, Q or V·A, B. C

and W+P.Q,R, etc., the left side can be written sim
ply in terms of reduction as x/V.W. For this case of
three elements, the right side can be written as the
sum of the products over the columns of the fol
lowing matrix:

The pattern of V's and Wi S above is precisely
the pattern of zeros and ones in the matrix T+'I.p v,
and so the products down the columns are given by
(Vx.*-T)x(Wx.*T). Consequently:

D3
D.4

(~ A) •• xC

30 80 40
~ A

1 1 0 0 0
o 0 1 0 1
00010

fl A
3 1 4
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Note t If X IS a ,ficalor and B l!'l a boolean vector, then X x . "B
...... X*+/8.

Note 2: Since T is boolean and has p R rows, the sums of Its columns range from 0
to p R, and theIr ordered nub IS therefor£' 0 , \ P R

We will now present a formal inductive proof of
0.9, assuming as the induction hypothesis that 0.9
is true for all v and W of shape N (that is,
A/N=(pV),pw) and proving that it holds for shape Ntl,
that is, for x, v and Y. w, where x and yare arbitrary
scalars.

For use in the inductive proof we will first give
a recursive definition of the function x, equivalent
to A.2 and based on the following notion: if M"X 2 is
the result of order 2, then:

x/X-H
'/Xt( -H)
t/(Xx .• -T)x(-H)x.·T..X pH
(Xx.'-T)+.xP"( -H)x.'T
(X·S .. t/-T)t.xP
«X'Q« S)t.xQ~ S)t.xP
(X'Q« S)t.x«Q~ S)t.xP)
(X'O.lpH)t.x«Q~ S)t.xP)
( (Q~ S)+. x P) e X
«Q~ t/-T)+. x( (-H)'. 'T+X pH»e X

09
Def of t. x

Note I
0.8

1" • x l!I 8S8OClall\le

Note 2
B I lpolynomlal!

Def. of S
and P

Note2 Vt.xM +~ «ltV)t.x(I,ltpM)tM)t(ltV)t.xl 0'101
(partlt1oning identity on matrices and the definition1>f C, D. Z. and U)

( 0 • [ 1 ] 101 ) • ( 1 • ( 1 )101)
0001111
0110011
o 010101

X:(O,[l]T).( 1 ,[l]T+Xw-l ):O=w:O lpO

SF:( .w)[lt(pW)lO-l]

4.6 Dyadic Transpose

The dyadic transpose, denoted by ~, is a general
ization of monadic transpose which permutes axes
of the right argument, and (or) forms "sectors" of
the right argument by coalescing certain axes, all
as determined by the left argument. We introduce
it here as a convenient tool for treating properties
of the inner product.

The dyadic transpose will be defined formally
in terms of the selection function

which selects from its right argument the element
whose indices are given by its vector left argument,
the shape of which must clearly equal the rank of
the right argument. The rank of the result of K~A

is r / K, and if I is any suitable left argument of the
selection I SF K~A then:

0.10

0.10
Note 1
Note 2

1++1,1
Note 2
Note 3

InductIOn hypothesis
(XxS),(yxS)"~(X,y)xS

Definllion of x /
+ dIStributes over

(Mi'. xNJ .M+.)(P (partitioning idenlltyon matrices)

101
1 1
0 1

O. [1]101 1. [1]101
0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1

Note 1. M+. xN I P

t/(C..X.V)x.'-Q)xOx.·Q+Xp(O ..Y.W)
t/(Cx.'-Z,U)xOx .• (Z+O.[l] T),U"l.[l] T"XpW
t/«(Cx.,-Z),Cx.,-U)x(Ox.,Z).Ox.,U
t/«Cx.·-Z),Cx.·-U)x«Y,O)xWx .• T),(Y·ll xWx.'T
t/«Cx.'-Z),Cx .• -Ulx(Wx.'T),YxWx.'T y.o
+!«XxVx.*-TJ,Vx.--T)x(Wx.*T),YxWx.*T
t / (Xx ( Vx . '-T) xWx .• T l , ( yx ( Vx . •-T l xWx .• T)
t/(Xxx/VtW),( Yxx/VtW)
t/(X,Y)xx/VtW
x/(XtYl,(V.W)
x/( x, V)+( Y.W)

Thus:

Note 3: (V.W).P.Q .... (V.P).W.Q
I SPK~A". ([(K]) SFA 0.11

For example, if 101 is a matrix, then 2 1 ~M ... ~M and
1 1 ~M is the diagonal of 101; if T is a rank three array,
then 1 2 2 H is a matrix "diagonal section" of T

produced by running together the last two axes.
and the vector 1 1 1 H is the principal body diago
nal of T.

The following identity will be used in the se
quel:

To complete the inductive proof we must show
that the putative identity 0.9 holds for some value
of N. If N=0, the vectors A and B are empty, and
therefore x, A ..... x and Y. B ..~ • Y. Hence the left
side becomes ./XtY, or simply XtY. The right side
becomes t/(Xx.'-Q)xYx.'Q. where -Q is the one
rowed matrix 1 0 and Q is 0 1. The right side is
therefore equivalent to t/(X,l)x(l.Yl, or XtY. Simi
lar examination of the case N= 1 may be found in
structive.

J~K~A ..~ (J[K])~A

Proof:

0.12

4.7 Inner Products
The following proofs are stated only for matrix

arguments and for the particular inner product
t . '. They are easily extended to arrays of higher

4.5 Newton's Symmetric Functions
If x is a scalar and H is any vector, then x/ x -H is

a polynomial in X having the roots H. It is there
fore equivalent to some polynomial C e x, and as
sumption of this equivalence implies that C is a
function of H. We will now use 0.8 and 0.9 to de
rive this function, which is commonly based on
Newton's symmetric functions:

I SF J~K~A

([(JJ) SF K~A

«[(J])[K]) SF A
([(J[K])]) SP A
I SF( J[Kl )~A

Defmitlon of ~ (0.11)
DefiOltion of .,

Indexing I~ a.!I&O(;Jati ....e
Defin Ition of •
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Note 2 The equ Ivalence of ( P x V ) 0 • )( ( Q)( it') and ( po. )( Q ) J( ( V 0 JC W) an be
estabhshed by examining a typical element of each expression

Note 1. (T/V)x(+/W)+-++/t/Vo.xX because)( distributes over +and + IS

assoclallve and commulatille. or see [12.P21 ] for a proof

408 Product of Polynomials
The identity B.2 used for the multiplication of

polynomials will now be developed formally:

8.1
Note 1
Note 2
Not. 3

(B E X)x(C E Xl
(+IBxx*e+-l+\pB)x(+ICxX*F+-l+IPC)
+1+/(Bxx*e)o"(CxX*F)
+1+/(Bo.xC)x«x*e)o.x(XoF»
+1+/(Bo •• C)x(x*(eo.+F»

0.13

rank and to other inner products F. c, where F and C

need possess only the properties assumed in the
proofs for + and x.

The following identity (familiar in mathemat
ics as a sum over the matrices formed by (outer)
products of columns of the first argument with
corresponding rows of the second argument) will be
used in establishing the associativity and distrib
utivity of the inner product:

Proof: (J.J )SF /oI+.·N is defined as the sum over v,
where V[KJ ++ /oI[I;KJxN[K;J]. Similarly,

(J.J)SF +/1 3 3 2 ~ /oIo.xN

is the sum over the vector W such that

Not.3 (X*I)x(X*J)++X*(I+J)

The foregoing is the proof presented, in abbre
viated form, by Orth [13, p.52], who also defines
functions for the composition of polynomials.

W[K) ++ (!.J.KlSF 1 3 3 2 ~ /oIo.xN

Matrix product is associative as follows:

86
8.6

e. dlSt over 
1'.)( dlSt over 

Nole I
01
0.2

(Y-A )+Y+-+Y-A-l
Oor of J

0.15

«C E X+Yl-(C E X»+Y
«C E X+Y)-(C E X+O»+Y
«C E X+Y)-«O*Jl+.x(A+OS Jo.!J+-1+\pCl+ •• C) E X)+Y
««Y*J)+.x/ol) E X)-«OoJ)+.x/ol+A+.xC) E X)+Y
««YoJ)+../oI)-(OoJ)+.x/ol) E X)+Y
««YoJ)-O·J)+.x/ol) E X)+Y
«(O.YoHJl+.x/ol) E X)+Y
«(Y·1+Jl+.x 1 0 +/01) E X)+Y
«(Y·HJ)+.x(l 0 0 >Al+.xC) E X)+Y
«Y*HJ-l)+.X(l 0 0 +Al+.xC) EX
«Y*-l .. -1+pC)+.x(l 0 0 +A)+.xC) EX
«(Yo-l+t-l+PC)+.x 1 0 0 +A)+.xC) EX

Note I

4.9 Derivative of a Polynomial
Because of their ability to approximate a host

of useful functions, and because they are closed
under addition, multiplication, composition, differ
entiation, and integration, polynomial functions
are very attractive for use in introducing the study
of calculus. Their treatment in elementary calcu
lus is, however, normally delayed because the de
rivative of a polynomial is approached indirectly,
as indicated in Section 2, through a sequence of
more general results.

The following presents a derivation of the de
rivative of a polynomial directly from the expres
sion for the slope of the secant line through the
points x. F x and (X+Yl.F(X+Yl:

The derivative is the limiting value of the se
cant slope for Y at zero, and the last expression
above can be evaluated for this case because if
e+-l+'-l+PC is the vector of exponents of Y, then all
elements of e are non-negative. Moreover, ooe re
duces to a 1 followed by zeros, and the inner prod
uct with 1 0 O+A therefore reduces to the first plane
of 1 0 OtA or, equivalently, the second plane of A.

If B+Jo. !J+-l+tpC is the matrix of binomial coef
ficients, then A is os B and, from the definition of os

in B.5, the second plane of A is Bx 1 =-Jo. -J, that is,
the matrix B with all but the first super-diagonal
replaced by zeros. The final expression for the

0.14

DIS

012
0.12

)( dIStributes over +
Note 1
Note 2

0.12
x IS 8S5OClative

t is associative and
commutative

012
[)lef of mdexing

Del of Outer product

0.13
x dLStnbutes over l'

~ dIStributes over +
+ 15 8!BOC and romm

013

W[KJ
(J.J.K)SF 1 3 3 2 ~/oIo.xN

(!.J.K)[l 3 3 2JSF /oIo.xN
(J.K.K.J)SF /oIo.xN
/oI[J:K)xN[K;JJ
V[K)

Proof:

Thus:

Not. 2 J~+ I A ++ + I (J • 1 + f I J )~A

Notet +/Ho.xJ~A +-+-t/«\ppN),J-tppM>_No.l(A

/01+.'( N+. .P)
H+.X+/l 3 3 2~N·.Jf.P

+/1 3 3 2~/oIo.x+/l 3 3 2~No.xP

+/1 3 3 2~+I/oIo.x1 3 3 2~No.xP

+/1 3 3 2~+/l 2 3 5 5 4~/oIo.xNo.xP

+1+/1 3 3 2 4 ~1 2 3 5 5 4~/oIo.xNo.xP

+/+/1 3 J 4 4 2~Mo.Jf.No.xP

+1+/1 3 3 4 4 2~(/olo. xN)o. xp
+1+/1 " 4 3 3 2~(/oIo.xN)0.xP

Matrix product distributes over addition as
follows:

(/oI+.xN)+.oP
(+/1 3 3 2~/oIo.xN)+.xP

+11 3 3 2~(+/l 3 3 2~/oIo.xN)0.xP

+/1 3 3 2~+/l 5 5 2 3 "~(/oIo.xN)o.xP

+1+/1 3 3 2 4~1 5 5 2 3 4~(/oIo.xN)0.xP

+1+/1 4 4 3 3 2~(/oIo.xN)0.xP

/oI+.x(N+P)
+/(J+ 1 3 3 2)~/oIo.xN+P

+IJ~(/oIo.xN)+(/oIo.xP)

+/(J~/oIo.·N)+(J~/oIo.·P)

(+IJ~/oIo.xN)+(+IJ~/oIo.xP)

(/01+. xN)+(/oI+. xP)

Proof: We first reduce each of the sides to sums
over sections of an outer product, and then com
pare the sums. Annotation of the second reduction
is left to the reader:
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coefficients of the polynomial which is the deriva
tive of the polynomial C e. '" is therefore:

For example:
C + 5 7 11 13
(Jo. ~J )xl=-Jo. -J"-l'ttpC

1 0 0
020
003
000

«J •• lJ)x1=-J.-J+'lt,pC)t. x C
7 22 39 0

Since the superdiagonal of the binomial coeffi
cient matrix (,N) •• lIN is ('It,N-1)lIN-1, or simply
IN-I, the final result is 14>CX"ltlPC in agreement
with the earlier derivation.

In concluding the discussion of proofs, we will
re-emphasize the fact that all of the statements in
the foregoing proofs are executable, and that a
computer can therefore be used to identify errors.
For example, using the canonical function defini
tion mode [4 , p.81], one could define a function
F whose statements are the first four statements of
the preceding proof as follows:

VF
(1) «C E XtY)-(C e. X»tY
[2) «C e XtY)-(C e. XtO»tY
[3) «C e. XtY)-«OoJ)t.x(A+DS J·.lJ+-1tlpC)t. XC) e. X)tY
[4) ««Y°J)t.xM) e. X)-«OoJlt.xM+At.xC) e. X)tY

v

The statements of the proof may then be executed
by assigning values to the variables and executing F

as follows:

C+5 2 3 1
Y+5
X+3 X+\)O

F F
132 66 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 27b 336 402 474 552
132 6 96 132 174 222 276 336 402 474 552
132 66 96 132 174 222 276 336 402 474 552

The annotations may also be added as comments
between the lines without affecting the execution.

5. Conclusion

The preceding sections have attempted to devel
op the thesis that the properties of executability
and universality associated with programming lan
guages can be combined, in a single language, with
the well-known properties of mathematical nota
tion which make it such an effective tool of
thought. This is an important question which
should receive further attention, regardless of the
success or failure of this attempt to develop it in
terms of APL.

In particular, I would hope that others would
treat the same question using other programming

languages and conventional mathematical notation.
If these treatments addressed a common set of top
ics, such as those addressed here, some objective
comparisons of languages could be made. Treat
ments of some of the topics covered here are al
ready available for comparison. For example, Ker
ner [7] expresses the algorithm C.3 in both AL
GOL and conventional mathematical notation.

This concluding section is more general, con
cerning comparisons with mathematical notation,
the problems of introducing notation, extensions to
APL which would further enhance its utility, and
discussion of the mode of presentation of the earli
er sections.

5.1 Comparison with Conventional Mathe
matical Notation

Any deficiency remarked in mathematical nota
tion can probably be countered by an example of
its rectification in some particular branch of math
ematics or in some particular publication; compar
isons made here are meant to refer to the more
general and commonplace use of mathematical
notation.

APL is similar to conventional mathematical
notation in many important respects: in the use of
functions with explicit arguments and explicit re
sults, in the concomitant use of composite expres
sions which apply functions to the results of other
functions, in the provision of graphic symbols for
the more commonly used functions, in the use of
vectors, matrices, and higher-rank arrays, and in
the use of operators which, like the derivative and
the convolution operators of mathematics, apply to
functions to produce functions.

In the treatment of functions APL differs in
providing a precise formal mechanism for the defi
nition of new functions. The direct definition
form used in this paper is perhaps most appropriate
for purposes of exposition and analysis, but the
canonical form referred to in the introduction, and
defined in [4, p.81], is often more convenient for
other purposes.

In the interpretation of composite expressions
APL agrees in the use of parentheses, but differs in
eschewing hierarchy so as to treat all functions
(user-defined as well as primitive) alike, and in
adopting a single rule for the application of both
monadic and dyadic functions: the right argument
of a function is the value of the entire expression
to its right. An important consequence of this rule
is that any portion of an expression which is free of
parentheses may be read analytically from left to
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Fig. 3.

. n terms"'- .!,,(n + I) (" + 2) (n + 3)
4

'-2'3-4 + 2-3-4-5 + .. _n terms'" - .!n(n + I) (n + 2) (n + 3) (n + 4)
5

right (since the leading function at any stage is the
"outer" or overall function to be applied to the
result on its right), and constructively from right
to left (since the rule is easily seen to be equiva
lent to the rule that execution is carried out from
right to left).

Although Cajori does not even mention rules
for the order of execution in his two-volume histo
ry of mathematical notations, it seems reasonable
to assume that the motivation for the familiar
hierarchy (power before. and. before. or -) arose
from a desire to make polynomials expressible
without parentheses. The convenient use of vec

tors in expressing polynomials, as in .IC·X-E, does
much to remove this motivation. Moreover, the
rule adopted in APL also makes Horner's efficient
expression for a polynomial expressible without
parentheses:

In providing graphic symbols for commonly
used functions APL goes much farther, and pro
vides symbols for functions (such as the power
function) which are implicitly denied symbols in
mathematics. This becomes important when oper
ators are introduced; in the preceding sections the
inner product .. - (which must employ a symbol for
power) played an equal role with the ordinary in
ner product •. '. Prohibition of elision of function
symbols (such as .) makes possible the unambi
gious use of multi-character names for variables
and functions.

In the use of arrays APL is similar to mathe
matical notation, but more systematic. For exam
ple, v.w has the same meaning in both, and in APL
the definitions for other functions are extended in
the same element-by-element manner. In mathe
matics, however, expressions such as v·w and v·w
are defined differently or not at all.
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For example, v.w commonly denotes the vector
product [14, p.30B J. It can be expressed in vari
ous ways in APL. The definition

vP: « 14>a )'"l4>w)-( l¢>a )'l¢>w

provides a convenient basis for an obvious proof
that VP is "anticommutative" (that I,

v VP 10' ++ 10' VP v), and (using the fact that
14>X ++ HI for 3-element vectors) for a simple

proof that in 3-space v and 10' are both orthogonal to
their vector product, tha tis, '/0; V • •• v vP 10' and
'/0;10'•• · v VP w.

APL is also more systematic in the use of oper
ators to produce functions on arrays: reduction
provides the equivalent of the sigma and pi nota
tion (in ./ and '/) and a host of similar useful cas
es; outer product extends the outer product of ten
sor anaysis to functions other than " and inner
product extends ordinary matrix product (•. ,) to
many cases, such as v.' and L •• , for which ad hoc
definitions are often made.

The similarities between APL and conventional
notation become more apparent when one learns a
few rather mechanical substitutions, and the trans
lation of mathematical expressions is instructive.
For example, in an expression such as the first
shown in Figure 3, one simply substitutes IN for
each occurrence of j and replaces the sigma by • /.
Thus:

... /( ,N)-7 .. -tN , or -t/JIII}. J-\N

Collections such as Jolley I Summation of
Series [15] provide interesting expressions for
such an exercise, particularly if a computer is
available for execution of the results. For example.
on pages Band 9 we have the identities shown in
the second and third examples of Figure 3. These
would be written as:



Together these suggest the following identity:

(x/NtO.13)+4

(x/NtO.14)t,

characters. Moreover. it makes no demands such as
the inferior and superior lines and smaller type
fonts used in subscripts and superscripts.

t/x/(-ltIN)o.tIK +~ (x/NtO.IK)tKtl

The reader might attempt to restate this general
identity (or even the special case where K=O) in
Jolley I s notation.

The last expression of Figure 3 is taken from a
treatment of the fractional calculus [16, p.30 J,
and represents an approximation to the qth order
derivative of a function f. It would be written as:

(S'-Q)Xt/(J!J-ltQ)'F X-(J+-ltIN)xS+(X-A)tN

The translation to APL is a simple use of I N as
suggested above, combined with a straightforward
identity which collapses the several occurrences of
the gamma function into a single use of the bino
mial coefficient function :, whose domain is, of
course, not restricted to integers.

In the foregoing, the parameter Q specifies the
order of the derivative if positive, and the order of

the integral (from A to x) if negative. Fractional
values give fractional derivatives and integrals, and
the following function can, by first defining a func
tion F and assigning suitable values to N and A, be
used to experiment numerically with the deriva
tives discussed in [16]:

OS:(S'-a)Xt/(J!J-lta)xFw-(J+-ltIN)xS+(w-A)tN

Although much use is made of "formal" manip
ulation in mathematical notation, truly formal
manipulation by explicit algorithms is very diffi
cult. APL is much more tractable in this respect.
In Section 2 we saw, for example, that the deriva
tive of the polynomial expression (WO.'-ltlpal+.Xa

is given by (w o .·-ltlpal+. x l4>a X -ltlpa, and a set of
functions for the formal differentiation of APL
expressions given by Orth in his treatment of the
calculus [13] occupies less than a page. Other
examples of functions for formal manipulation
occur in [17, p.347 ] in the model ing operators for
the vector calculus.

Further discussion of the relationship with
mathematical notation may be found in [3] and
in the paper "Algebra as a Language" [6, p.325 J.

A final comment on printing, which has always
been a serious problem in conventional notation.
Although APL does employ certain symbols not
yet generally available to publishers, it employs
only 88 basic characters, plus some composite char
acters formed by superposition of pairs of basic

5.2 The Introduction of Notation
At the outset. the ease of introducing notation

in context was suggested as a measure of suitability
of the notation. and the reader was asked to ob
serve the process of introducing APL. The utility
of this measure may well be accepted as a truism.
but it is one which requires some clarification.

For one thing, an ad hoc notation which provid
ed exactly the functions needed for some particular
topic would be easy to introduce in context. It is
necessary to ask further questions concerning the
total bulk of notation required, the degree of struc
ture in the notation, and the degree to which nota
tion introduced for a specific purpose proves more
generally useful.

Secondly, it is important to distinguish the dif
ficulty of describing and of learning a piece of no
tation from the difficulty of mastering its implica
tions. For example, learning the rules for comput
ing a matr ix product is easy, but a mastery of its
implications (such as its associativity, its distrib
utivity over addition, and its ability to represent

linear functions and geometric operations) is a
different and much more difficult matter.

Indeed, the very suggestiveness of a notation
may make it seem harder to learn because of the
many properties it suggests for exploration. For
example, the notation t. x for matrix product can
not make the rules for its computatIOn more diffi
cult to learn, since it at least serves as a reminder
that the process is an addition of products, but any
discussion of the properties of matrix product in
terms of this notation cannot help but suggest a
host of questions such as: Is V. A associative? Over
what does it distribute? Is Bv.xC +~ !Il(!IlC)v.x!llB a
valid identity?

5.3 Extensions to APL
In order to ensure that the notation used in this

paper is well-defined and widely available on exist
ing computer systems, it has been restricted to
current APL as defined in [4] and in the more
formal standard published by STAPL. the ACM
SIGPLAN Technical Committee on APL
[17, p.409 J. We will now comment briefly on
potential extensions which would increase its con
venience for the topics treated here, and enhance
its suitability for the treatment of other topics
such as ordinary and vector calculus.
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One type of extension has already been suggest
ed by showing the execution of an example (roots
of a polynomial) on an APL system based on com
plex numbers_ This implies no change in function
symbols, although the domain of certain functions
will have to be extended. For example, I x will give
the magnitude of complex as well as real argu
ments, .x will give the conjugate of complex argu
ments as well as the trivial result it now gives for
real arguments, and the elementary functions will
be appropriately extended, as suggested by the use
of • in the cited example. It also implies the possi
bility of meaningful inclusion of primitive func
tions for zeros of polynomials and for eigenvalues
and eigenvectors of matrices.

A second type also suggested by the earlier sec
tions includes functions defined for particular pur
poses which show promise of general utility. Ex
amples include the nub function Ii, defined by D.3,
and the summarization function ~, defined by D.4.
These and other extensions are discussed in [18].
McDonnell [19, p.240] has proposed generaliza
tions of and and or to non-booleans so that AvB is
the OCD of A and B, and AAB is the LCM. The func
tions cco and LC,., defined in Section 3 could then be
defined simply by cco: vIOl and LC,.,: A/w.

A more general line of development concerns
operators, illustrated in the preceding sections by
the reduction, inner-product, and outer-product.
Discussions of operators now in APL may be found

in [20] and in [17, p.129], proposed new opera
tors for the vector calculus are discussed in
[17, p.47], and others are discussed in [18] and
in [17, p.129].

5.4 Mode of Presentation

The treatment in the preceding sections con
cerned a set of brief topics, with an emphasis on
clarity rather than efficiency in the resulting al
gorithms. Both of these points merit further com
ment.

The treatment of some more complet-e topic, of
an extent sufficient for, say, a one- or two-term
course, provides a somewhat different, and perhaps
more realistic, test of a notation. In particular, it
provides a better measure of the amount of nota
tion to be introduced in normal course work.

Such treatments of a number of topics in APL
are available, including: high school algebra [6],
elementary analysis [5], calculus, [13], design of
digital systems [21], resistive circuits [10], and
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crystallography [22]. All of these provide indica
tions of the ease of introducing the notation need
ed, and one provides comments on experience in its
use. Professor Blaauw, in discussing the design of
digital systems [21], says that "APL makes it
possible to describe what really occurs in a complex
system", that "APL is particularly suited to this
purpose, since it allows expression at the high ar
chitectural level, at the lowest implementation
level, and at all levels between", and that
" .... learning the language pays of (sic) in- and out
side the field of computer design".

Users of computers and programming languages
are often concerned primarily with the efficiency
of execution of algorithms, and might, therefore,
summarily dismiss many of the algorithms pres
ented here. Such dismissal would be short-sighted,
since a clear statement of an algorithm can usually
be used as a basis from which one may easily de
rive more efficient algorithms. For example, in
the function STEP of section 3.2, one may signifi
cantly increase efficiency by making substitutions
of the form Bill'" for (Ill,.,) .. 'B, and in expressions
using .IC'X'-l.,pC one may substitute X.L4>C or,
adopting an opposite convention for the order of
the coefficients, the expression x .LC.

More complex transformations may also be
made. For example, Kerner's method (C.3) re
sults from a rather obvious, though not formally
stated, identity. Similarly, the use of the matrix a

to represent permutations in the recursive function
R used in obtaining the depth first spanning tree
(C.4) can be replaced by the possibly more compact
use of a list of nodes, substituting indexing for in
ner products in a rather obvious, though not com
pletely formal, way. Moreover, such a recursive
definition can be transformed into more efficient
non-recursive forms.

Finally, any algorithm expressed clearly in
terms of arrays can be transformed by simple,
though tedious, modifications into perhaps more
efficient algorithms employing iteration on scalar
elements. For example, the evaluation of .IX de
pends upon every element of x and does not admit
of much improvement, but evaluation of vlB could
stop at the first element equal to 1, and might
therefore be improved by an iterative algorithm
expressed in terms of indexing.

The practice of first developing a clear and pre
cise definition of a process without regard to effi
ciency, and then using it as a guide and a test in
exploring equivalent processes possessing other
characteristics, such as greater efficiency, is very
common in mathematics. It is a very fruitful prac-
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tice which should not be blighted by premature
emphasis on efficiency in computer execution.

Measures of efficiency are often unrealistic be
cause they concern counts of "substantive" func
tions such as multiplication and addition, and ig
nore the housekeeping (indexing and other selec
tion processes) which is often greatly increased by
less straightforward algorithms. Moreover, realis
tic measures depend strongly on the current design
of computers and of language embodiments. For
example, because functions on booleans (such as '1 B

and v I B) are found to be heavily used in APL, im
plementers have provided efficient execution of
them. Finally, overemphasis of efficiency leads to
an unfortunate circularity in design: for reasons of
efficiency early programming languages reflected
the characteristics of the early computers, and
each generation of computers reflects the needs of
the programming languages of the preceding gener
ation.

Appendix B. Compiler from Direct to Can
onical Form
This compiler has been adapted from [22, p.222].
It will not handle definitions which include a or :
or w in quotes. It consists of the functions FJ x and
F9, and the character rna trices C9 and A 9:

FIX
OpDFX F9 I!J

D+F9 E:F;I:K
F+(,(E='w') •. x5tl)/.E.(4>4.pE)p' Y9'
F+(,(F='a' ) •• x5+1)I,F,(4)4.pF)p' X9 '
F+1+pD+(O,t/'6.I)+( -( 3xI)tt\I+': '=F)4>F,(4)6,pF)p'
0+ 3 4> C9 ( 1+ ( 1+ ' 0 ' • E ) • I • 0 ; ) , ill0 ( ; 1 , ( [+ 2 +\ F ) , 2 )
K+K+2xX<1$K+l~K£(>11 O,'+O·0.=E)/K++\-]+E£A9
F+(O,I+pE)rpD+D,(F,pE)+illO -2+K4>' ',E,(1.5)';'
D+(F+DJ,(I)F(2) '.',E

C9
Z9+

Y9Z9+
Y9Z9+X9

l/3+(0=lt,
..... O,OpZ9+

Example:

FIX
FIB:Z,+I-2+Z+FIBw-1 :w=l: 1

Acknowledgments. I am indebted to my col
league A.D. Falkoff for suggestions which greatly
improved the organization of the paper, and to
Professor Donald McIntyre for suggestions arising
from his reading of a draft.

FIB 15
1 1 2 3 5 8 13 21 34 55 ~9 144 233 377 &10

OCR'FIB'
Z9+FIB Y9;Z
+(O=1+,Y9=1 )/3
.... O.OpZ9+1
Z9+Z.t/'2tZ+FIB Y9-1
RFIB:Z,+/-2tZ~PIBw-l:w=1:1

Appendix A. Summary of Notation

Fw SCALAR FUNCTIONS oFw

I ,M++l 2 3 4 5 6
I V(3 1)+-+5 2 M(2;2)++5 M(2;)++4 5 6
3 1 0 IIV++2 5 0 lIM++4 6
1 2tV++2 3 -2tV+·l+V+·3
I 4>V++5 3 2
1 24>V++5 2 3 -24>V++3 5 2

I, 4 ~w revenes axes a~w permutes axes
3 &3 2 6 2++2 4 1 3 '3 2 6 2++3 1 2 4
1 10LV+·235 VLV++50
I 10 10 10T235++2 3 5 VT50++2 3 5
3 V£3+.0 1 0 V£5 2++1 0 1

2,5 leu I!') matrix inverse olllw++( IIIw ) + • )( a
I +/V++10 +/M++6 15 +IM+.5 7 9
I +\V++2 5 10 +\M++2 3pl 3 6 4 9 15
1 + • x IS matrix product
1 0 30.+1 2 3++M
1 PC I ] app"~ E' alonR aXIs I

Boolean: v
Relations: < s
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THE INDUCTIVE METHOD OF INTRODUCING APL

Kenneth E. Iverson
I.P. Sharp Associates

Toronto, Ontario

Because APL is a language, there are, in the teaching of it, many analogies with the
teaching of natural languages. Because APL is a formal language, there are also many
differences, yet the analogies prove useful in suggesting appropriate objectives and
techniques in teaching APL.

For example, adults learning a language already know a native language, and the
initial objective is to learn to translate a narrow range of thoughts (concerning
immediate needs such as the ordering of food) from the native language in which they
are conceived, into the target language being learned. Attention is therefore directed
to imparting effective use of a small number of words and constructs, and not to the
memorization of a large vocabulary. Similarly, a student of APL normally knows the
terminology and procedures of some area of potential application of computers, and
the inital objective should be to learn enough to translate these procedures into APL.
Obvious as this may seem, introductory courses in APL (and in other programming
languages as well) often lack such a focus, and concentrate instead on exposing the
student to as much of the vocabulary (i.e., the primitive functions) of APL as possible.

This paper treats some of the lessons to be drawn from analogies with the teaching
of natural languages (with emphasis on the inductive method of teaching), examines
details of their application in the development of a three-day introductory course in
APL, and reports some results of use of the course. Implications for more advanced
courses are also discussed briefly.

1. The Inductive Method

Grammars present general rules, such as for the conjugation of verbs, which the student
learns to apply (by deduction) to particular cases as the need arises. This form of
presentation contrasts sharply with the way the mother tongue is learned from repeated
use of particular instances, and from the more or less conscious formulation (by
induction) of rules which summarize the particular cases.

The inductive method is now widely used in the teaching of natural languages. One
of the better-known methods is that pioneered by Berlitz [1] and now known as the
"direct" method. A concise and readable presentation and analysis of the direct method
may be found in Diller [2].

A class in the purely inductive mode is conducted entirely in the target language, with
no use of the student's mother tongue. Expressions are first learned by imitation, and
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concepts are imparted by such devices as pointing, pictures, and pantomime; students
answer questions, learn to ask questions, and experiment with their own statements,
all with constant and immediate reaction from the teacher in the form of correction,
drill, and praise, expressed, of course, in the target language.

In the analogous conduct of an APL course, each student (or, preferably, each student
pair) is provided with an APL terminal, and with a series of printed sessions which
give explicit expressions to be "imitated" by entering them on the terminal, which
suggest ideas for experimentation, and which pose problems for which the student must
formulate and enter appropriate expressions. Part of such a session is shown as an
example in Figure 1.

SESSION 1: NAMES AND EXPRESSIONS

The left side of each page provides examples to be entered on the keyboard, and the
right side provides comments on them. Each expression entered must be followed by
striking the RETURN key to signal the APL system to execute the expression.

48

AREA+-8 x 2
HEIGHT+-3
VOLUME+-HEIGHTxAREA
HEIGHTxAREA

VOLUME

The name AREA is assigned to the result
of the multiplication, that is 16

If no name is assigned to the result, it
is printed

48
3x8x2

48

Yield of 12 percent for 3 year

Names may be assigned to lists

specify the order in which
expression are to be

Parentheses
parts of an
executed

Decimal numbers may be used

LENGTH+-8 7 6 5
WIDTH+-2 3 4 5
LENGTHxWIDTH

16 21 24 25
PERIMETER+-2 x (LENGTH+WIDTH)
PERIMETER

20 20 20 20
1.12x1.12x1.12

1.404928
1.12*3

1. 404928

SAMPLE PORTION OF SESSION

Figure 1

Because APL is a formal "imperative" language, the APL system can execute any
expression entered on the terminal, and therefore provides most of the reaction required
from a teacher. The role of the instructor is therefore reduced to that of tutor, prO\iding
explicit help in the event of severe difficulties (such as failure of the terminal), and
general discussion as required. A compared to the case of a natural language, the
student is expected, and is better able, to assess his own performance.
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Applied to natural languages, the inductive method offers a number of important
advantages:

1. Many dull but essential details (such as pronunciation) required at the outset are
acquired in the course of doing more interesting things, and without explicit drill
in them.

2. The fun of constantly looking for the patterns or rules into which examples can
be fitted provides a stimulation lacking in the explicit memorization of rules, and
the repeated examples provide, as always, the best mnemonic basis for
remembering general rules.

3. The experience of committing error after error, seeing that they produce no lasting
harm, and seeing them corrected through conversation, gives the student a
confidence and a willingness to try that is difficult to impart by more formal
methods.

4. The teacher need not be expert in two languages, but only in the target language.

Analogous advantages are found in the teaching of APL:

1. Details of the terminal keyboard are absorbed gradually while doing interesting
things from the very outset.

2. Most of the syntactic rules, and the extension of functions to arrays, can be quickly
gleaned from examples such as those presented in Figure 1.

3. The student soon sees that most errors are harmless, that the nature of most are
obvious from the simple error messages, and that any adverse effects (such as an
open quote) are easily rectified by consulting a manual or a tutor.

4. The tutor need only know APL, and does not need to be expert in areas such
as financial management or engineering to which students wish to apply APL,
and need not be experienced in lecturing.

2. The Use Of Reference Material

In the pure use of the inductive method, the use of reference material such as grammars
and dictionaries would be forbidden. Indeed, their use is sometimes discouraged because
the conscious application of grammatical rules and the conscious pronunciation of words
from visualization of their spellings promotes uneven delivery. However, if a student
is to become independent and capable of further study on his own, he must be
introduced to appropriate reference material.

Effective use of reference material requires some practice, and the student should
therefore be introduced to it early. Moreover, he should not be confined to ;) single
reference; at the outset, a comprehensive dictionary is too awkward and confusing, but
a concise dictionary will soon be found to be too limited.

In the analogous case of APL, the role of both grammar and dictionary i played by
the reference manual. A concise manual limited to the core language [3] should be
supplemented by a more conprehensive manual (such as Berry [4]) which covers all
aspects of the particular system in use. Moreover, the student should bc led immediately
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to locate the two or three main summary tables in the manual, and should be prodded
into constant use of the manual by explicit questions (such as "what i the name of
the function denoted by the comma"), and by glimpses of interesting functions.

3. Order Of Presentation

Because the student is constantly stnvmg to impose a structure upon the examples
presented to him, the order of presentation of concepts is crucial, and must be carefully
planned. For example, use of the present tense should be well established before other
tenses and moods are introduced. The care taken with the order of presentation should,
however, be unobtrusive, and the student may become aware of it only after gaining
experience beyond the course, if at all.

We will address two particular difficulties with the order of presentation, and exemplify
their solutions in the context of APL. The first is that certain expre sions are too
complex to be treated properly in detail at the point where they are first useful. These
can be handled as "useful expressions" and will be discussed in a separate section.

The second difficulty is that certain important notions are rendered complex by the
many guises in which they appear. The general approach to such problems is to present
the essential notion early, and return to it again and again at intervals to reinforce
it and to add the treatment of further aspects.

For example, because students often find difficulty with the notion of literals (i.e.,
character arrays), its treatment in APL is often deferred, even though this deferral also
makes it necessary to defer important practical notions such as the production of
reports. In the present approach, the essential notion is introduced early, in the manner
shown in Figure 2. Literals are then returned to in several contexts: in the
representation of function definitions; in discussion of literal digits and the functions
(1l' and ~) which are used to transform between them and numbers in the production
of reports; and in their use with indexing to produce barcharts.

Function definition is another important idea whose treatment is often deferred because
of its seeming complexity. However, this complexity inheres not in the notion itself,
but in the mechanics of the general del form of definition usually employed. This
complexity includes a new mode of keyboard entry with its own set of error messages,
a set of rules for function headers, confusion due to side-effects resulting from failure
to localize names used or to definitions which print results but have no explicit results,
and the matter of suspended functions.

All of this is avoided by representing each function definition by a character vector in
the direct form of definition [5 6]. For example, a student first uses the function
ROUND provided in a workspace, then shows its definition, and then defines an
equivalent function called R as follows:

ROUND 24.78 31.15 28.59
25 31 29

SHOW 'ROUND'
ROUND: L .5+W
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SESSION 4: LITERALS

JANET+-5
MARY+-8

MARYr JANET
8

MARYLJANET
5

MARY >JANET
1

MARY =JANET

Janet received .5 letters today

The maximum received by one of them

The mimmum

l\lary received more than Janet

They did not receive an equal number
o

What sense can you make of the following sentences:

JANET has .5 letter. and MARY has 8

JANET has .5 letters and MARY has 4

,JANET' has .5 letters and 'MARY' has 4

The last sentence above use' quotation mark in the usual way to make a literal
reference to the (letter in the) name itself a' opposed to what it denotes. The second
points up the potential ambiguity which is resolved by quote marks.

LIST+-24.6 3 17
pLIST

3
WORD+-'LIST'
pWORD

4
SENTENCE+-'LIST THE NET GAINS'

INTRODUCTION OF LITERALS

Figure 2

DEFINE 'R:L.5+W'

R 24.78 31.15

25 31

The function DEFINE compiles the definition provided by it argument into an
appropriate del form, localizes any name which appear to the left of a 19nment arrows
in the definition, provide a "trap" or "lock" appropriate to the particular APL system
so that the function defined behaves like a primitive and cannot be suspended. and
appends the original argument in a comment line for use by the function SHOW.
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This approach makes it possible to introduce simple function definition very early and
to use it in a variety of interesting contexts before introducing conditional and recursive
definitions (also in the direct form), and the more difficult del form.

4. Teaching Reading

It is usually much ea ier to read and comprehend a sentence than it is to write a
sentence expressing the same thought. Inductive teaching makes much use of such
reading, and the student is encouraged to scan an entil e pas age, using pictures, context,
and other dues, to grasp the overall theme before invoking the use of a dictionary to
clarify details.

Becau e the entry of an APL expre sion on a terminal immediately yields the overall
result for examination by the student, thi approach is particularly effective in teaching
APL. For example. if the tudent' workspace ha a table of names of countries. and
a table of oil imports by year by country by month, then the sequence

N+-25
B+-+/[1J+/[3J OIL

COUNTRIES,' .D'[l+Bo.~(r/B)x(lN)fNJ

produces the following result. which has the ob\ ious interpret<ltion a.•1 barchart of
oil imports:

ARABIA 00000000000000000000 .
NIGERIA DDDDDDDDDDDDDDDDDD .
CANADA 000000000000000 .
INDONESIADDDDDDDDD .
IRAN DDDDDDDD .
LIBYA DDDDDDDD .
ALGERIA DDDDDDDD .
OTHER DDDDDDDDDDDDDDDDDOOOOOODD

1\loreover, becau e the simple syntax make' it ea ) to determine the exact sequence
in which the parts of the sentence are executed. a detailed understandmg of the
expression can be gained by executing it piece-by-plece. as illu,trated in Figure 3.
Finally, such critical reading of an expression can lead the student to formulate his
own definition of a useful related function as follows:

DEFINE (!J

BARCHART:' .O'[l+Wo.~«la)fa)Xr/wJ

5. Useful Expressions

As remarked in Section 3, some expressions are too u 'eful and impoI tant to be deferred
to the point that would be dictated by the lOmplexit) of their. tructure. In APL such
expressions can be handled by introducing them as defined functions whose use may
be grasped immediately. but whose internal definition may be left for later ·tudy.

For example, files can be introduced in terms of the functions GET, TO, RANGE, and
REMOVE, illustrated in Figure 4. These can be grasped and used effectively by the
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N 'I he width of the barchart
25

Q+-( IN) ~N • 'umber from 0 to 1 in 25 ('qu,1l .'t('p.
(dl.·pla) if dC'ired)

fiB The large t \alue to be (harttd
C+-(r/B)xQ . 'umber from 0 to the I,ll' e. t \aluc to be

charted

8+-Bo .?C Compari.on of each \ al ue of \\ Ilh
5 each \alue in the rdnge to be ( hartecl

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 o 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 000 o 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 000 000 000 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 o 0 0 0 0 0 000
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 o 0 0 0 o 0 000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 21t1+S Examine a piece of 1+,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
2 2 2 2 2 222 2 2 2 2 2 2 2 2 2 2 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

DETAILED EXECUTI01' OF AN EXPRESSIO .

Figure 3

tudent at an earlier stage and with much greater ea e th,m (,,10 the underlying
language elements from which the' must be constructed in mo. t APL .} ·tem .

.\ further example i provided by the function needed to lOmpite displ, y. and edl! the
character \. ctors used in direct definition of functiow. For example, an editing function
which delete each po ition indicated by a ·Iash. and inser!.' ahead of the position 01
the first comma any text which 1'0110\\' it (in the manner prO\ ided for del editing 111

many APL sy terns) is illustrated in Figure S.

Deferral of the internal detail of the definition at th("e essenti,1l functions (an, in fact,
be turned to advantage, becau.e the" pro\ide interesting exerci.e in n,Hiing (using the
techniques of Section 4) the defimtions of function whose purpo 'es are "tread" dear
from repeated u. e. For example, critical reading of the following clefil1ltion of the
function EDIT is very helpful in grtlsping the important iclea nf r('cursi\e definition'

DELETE:(~(pw)t'/'= )/w

nalysi of the complet set of function pto\'ided for the (ompiJ.ltlnn from direlt
definition form £11:0 provide an intere ·ting exerci e in reading, I ut nnc \\ hie h \\ould
not be completed, or perhaps even attempted. until alter completion of tin introducton
cour e. Exten ·i\'(' lead to other intere ting I eading. of both work pare and publi hed
material, should be given the ,tudent to encourage further ~rowth after the condu'ion
of formal caul' e work.
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If the first dimension of an array (list, table, or list of tables) has the value N, (for
example, 1t pOIL is 7), then it may bt' distributed to N items of a file by a single
operation. For example:

OIL TO 'IMPORTS 72 73 74 75 76 77 78'

*Cse tht' function GET to retrieve individual items from the IMPORTS file to verify tht'
effect of the preceding expression.

COUNTRIES TO 'IMPORTS l' Non-numeric data may be entered

The functions RANGE and REMOVE are useful in managing files:

RANGE 'IMPORTS'
1 72 73 74 75 76 77 78'

Gives range of indices

REMOVE 'IMPORTS 73 75 77' Removes odd years

RANGE 'IMPORTS'
1 72 74 76 78

FUNCTIONS FOR USING FILES

Figure 4

TEXT~'DDELLLETN AND
Z+-EDIT TEXT

DDELLLETN AND INSRTION
I I I ,10
DELETION AND INSRTION

,E
DELETION AND INSERTION

INSRTION'
Apply EDIT to erroneous text

Line printed by the function
Line entered on keyboard

Line printed by the function
Line entered on keyboard

Line printed by the function
Empty line entered on keyboard (carriage
return alone) ends execution of EDIT

DEFINE 'REVISE: DEFINE EDIT SHOW w' Define a function for revision

REVISE 'SUM'
SUM:+/[a]w
III ,MAX
MAX:+/[a]w

1,1
MAX:r/[a]w

FUNCTIONS FOR EDITING AND REVISION

Figure 5
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Advanced Courses

Advanced language courses can also employ the inductive method, but the greater the
student's mastery of a language, the greater the potential benefits of the ded ucti\ e
approach and of explicit analysis of the structure of the language. A point sometimes
made in the advanced treatment of natural languages is that grammar and related
matters can now be discussed in the target language, avoiding distractions and
distortions which might be introduced by use of the mother tongue.

Similar remarks apply to advanced APL courses. In particular, the use of APL m its
own discussion and in the introduction of the more complex functions is quite
productive. For example, reduction is very useful in discussing the inner product, and
inner product and grade are helpful in analyzing dyadic transpose.

Conduct Of The Course

The introductory course on which these remarks are based evolved through four
versions offered over a period of several month. The resulting course covers three
contiguous days, and has been offered a number of times in the final form.

Most students appear to work better in pairs than when assigned individually to
terminals. Because there are no lectures, each pair can work at their own pace.
Observations and student comments show that they find it more stimulating than a
lecture course, and tend to come early and work late. Moreover, they learn to consult
manuals much more than in a lecture course, and exhibit a good deal of independence
by the end of the three days.
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