




MAY 1986 
REVISED Nov­ 1986 
TR 03·281 

ALGORITHMS FOR ARTIFICIAL INTELLIGENCE IN APl2 
By 

DR­ JAMES A· BROWN 

ED EUSEBI 

JANICE COOK 

lEO H­ GRONER 

INTERNATIONAL BUSINESS MACHINES CORPORATION
 

GENERAL PRODUCTS DIVISION
 

SANTA TERESA LABORATORY
 

SAN JOSE~ CALIFORNIA
 





ABSTRACT
 

Many great advances in science and mathematics were preceded 
by notational improvements. While a g1yen algori thm can be 
implemented in any general purpose programming language, 
discovery of algorithms is heavily influenced by the notation 
used to Lnve s t Lq a t.e them. APL2 c o nc e p t.u a Ll y applies f unc t Lons 
in parallel to arrays of data and so is a natural notation in 
which to investigate' parallel algori thins. No c LaLm is made 
that APL2 1s an advance in notation that will precede a 
breakthrough in Artificial Intelligence but it 1s a new 
notation that allows a new view of the pr-obl.ems in AI and 
their solutions. APL2 can be used ill problems tracti tionally 
programmed in LISP, and is a possible implementation language 
for PROLOG-like languages. This paper introduces a subset of 
the APL2 notation and explores how it can be applied to 
Artificial Intelligence. 

111 





CONTENTS 

Introduction. . . . . . . . . . . • • • • • • • • • • 1
 

Part 1: Artificial Intelligence. • • • 2
 

Part 2: Logic... · • 8
 

Part 3: APL2 .....
 · 22
 

Part 4: The Implementations . · .40
 

Part 5: Going Beyond the Fundamentals .. • 61
 

Summary. .74
 

Concl us i on s , . · .75
 

Acknowledgements. . • • 76
 

References. · 77
 

Appendix 1 : Implementations of the Algorithms .. 79
 

Appendix 2 : Glossary. • • • • • • • • • • • • • • • • 89
 

Appendix 3 : A Summary of Predicate Calculus.
 · 95
 

Appendix 4 : Tautologies. .
 · 97 

Appendix 5 : The DPY Function.
 · .98
 

Appendix 6 : Test Cases. .99
 

v 





Introduction 

This paper discusses many of the fundamental ideas of 
Artificial Intelligence and their implementation in APL2. 
Emphasis is on predicate logic but discussions of other topics 
are included. 

This paper is divided into 5 parts. Part 1 introduces 
Artificial Intelligence (AI) and discusses the type of problem 
to be solved. The features of APL2 that make it suitable for 
AI applications are discussed. 

Part 2 discusses logic and chained inference and includes a 
brief discussion of search strategies. 

Part 3 introduces the APL2 language concentrating on the 
features actually used in the algori t.hm.s , It Lnc Lude s a 
comparison of APL2 and LISP and an example program written in 
e a ch 1 anguage • 

Part 4 presents the APL2 algorithms beginning with the 
representations of logic with nested arrays an~ proceeds 
through development of algorithms for Unification, Resolution, 
and searching. It concludes with an implementation of PROLOG 
in APL2. 

Part 5 goes beyond the f undamerrt.a Ls to Lo o Ic at such topics as 
frames, boolean logic, and fuzzy logic. 



Part 1: Artificial Intelligence 

AI algor! thms tend to deal wi th mixing and matching a set of 
tokens rather than doing mathematical computations on numbers. 
They tend to operate on nested lists of these tokens rather 
than on rectangular patterns of thell\ and this means t.ha t; tlley 
are often recursive. 

Tradi tionally, these algori thms h ave been wr f tten in LISP, a 
list processing language, and more recently in PROLOG a logic 
programming language. 

This part will discuss AI in general and point out the 
features of APL2 that make it a candidate for implementation 
of AI programs. 

1.1: What is Artificial Intelligence 

There is no agreed on defini tion of Artificial Intelligence. 
The field tends to be defined both by tile problems it 
addresses and the tools ~pplied in the solutions. 

Artificial Intelligence (AI) algorithms are an attempt to 
model wi th a computer the mental faci!i ties of h uman beings 
wh o are assumed to have real intelligence. TIley often involve 
drawing conclusions and making decisions and include 
recognition of written natural language, speech recognition, 
computer vision, robotics, arid expert s y s t.ems , 

An AI program is one which exhibi ts b e h avd o r- wh I c h would be 
considered intelligent if 1 t were done by a h uma n it 
accepts and responds in a natural language; it knows rules and 
applies them against the given data; an advanced s y s t em can 
alter the data and tile rules (i.e. learn from experience) 
(Fr1). 

Tradi tional programs tend to do the t.h t no s t.h a t; Ne a nd e r t.h a L 
ma n could not do payrolls, computation, 't.e x t; processing, 
etc , 'I'hLs is because man had to figllre out h o w to d o t.h e s e 
t.h i nqs (after Ln v e n t.Lrrq the lleed for t.h em ) and, therefore, is 
good at s p e c t f y Lnq how to do theine Tile Ne arid e r t ha L did ma ke 
noise to c ommun I c a t e , could recognize faces, could move his 
arm to a desired location. No one ever h a d to consciously 
figure out the mechanism to do tllese t.h t nqs and so it is h a r d 
to specify how they work. AI programs often attack these 
problems. 

2 



In some sense, every computer program applies rules to data. 
This is, almost by defini tion, wh a t; an algor.! thm does. TIle 
difference is that an ordinary p:t"ogram contains the rules 
imbedded in the logic of the program. There is no separately 
definable piece that represents the knowledge being applied. 
An AI program contains a knowledge base (a database for rules 
and facts) and general algorithms for combining the rules and 
facts. If the knowledge changes, the program does not change, 
only the database c h ariqe s , 

In building practical systems, the AI programming task is not 
particularly difficult (although getting good performance 1s a 
challenge) . The real problem is constructing and validating 
the rules. This has given rise to a new field of study called 
Knowledge Engineering. A knowledge engineer is essentially a 
systems analyst / application programmer. His task is to 
recognize important aspects of a problem and present a 
forlnalizatlon that can be implemented on a computer. 'I'h Ls 
topic will not be discussed further in this paper. 

1.2: The Problem to be Solved 

Given a set of facts and relationships between them, people 
routinely draw conclusions from them. The challenge i.rj to 
develop computational procedures which can draw the same 
conclusions. 

Real world situations tend to be complex and sometimes 
imprecise. This is why most early AI investigations deal t 
wi t.h gaInes Ld k e c h e c k e r s and chess wh e r e rules are simple and 
precise. Of course, even simple and precise rules can lead to 
combinatorial complexities and this is the case with chess. 

In specifying a logic program, one of t.h e most difficult jobs 
is making sure your facts are indeed 't r ue t t.ha t; you h a v e 
stated all the relevant facts, t.ha t; your words mean t.h e sante 
thing everywhere. 

Facts are t.h Lnos that you assert to be true. If tlley are n o t; 

true, that's your problem. A logic p.r o q r am will a t t emp t; to 
draw a conclusion. You may have h e a r d t.h e f o Ll.o wi.rrq puzzle: 

3
 



Question:	 If you call the tail of a cow a leg, 
how many legs does a cow have? 

Answer in the AI world: Five. 

Answer in the real world: 
Four because saying it's so doesn't make it so. 

In the artificially intelligent world, however, saying it's so 
does make it so. Thus if we assert: 

Nothing 1s better than complete happiness in life 

and assert 

A ham sandwich is better than nothing 

we can conclude 

A ham sandwich is better than complete happiness in life. 

While this might be debatable, most people would disagree. 
This 1s an example of word sense ambiguity. While the above 
example is a little ridiculous, exactly this kind of 
misunderstanding doomed the computer language translation 
efforts in the 1950' s • One such effort translated "out of 
sight, out of mind" into Russian as "blind and insane" (Gr1). 

Great care must be exercised in choosing the facts and 
avoiding the ambigui ties of natural language. Most people 
agree on logic and the rules of deduction but not on 
knowledge. Different people call the same thing by different 
names. Real world concepts tend to be fuzzy, not exact. For 
example, membership in the set of all green objects is subject 
to human judgement. 

This paper will ignore the real problems of language and the 
human decision on representation of knowledge and concentrate 
on the algorithms that solve logic problems. 

Thus, the problem to be solved is: Given a set of statements 
assumed to be true, draw conclusions which are true. 

1.3: APL2 as an AI Language 

4 



APL2 1s a candidate for writing AI applications. The 
following is a discussion of the features of APL2 that make 
this true. If you are already convinced of this, or don't wish 
to be, you may skip this section. 

Machine Independence APL2 avoids machine specific 
features and, in general, the mac h Lne archi tecture is 
irrelevant except for precision of numeric computations 
and performance. 

Data is typed, not variables - A name may contain at 
different times any kind of data. APL2 has only two 
types of data characters and numbers. Internal 
conversion between various formats of numbers and 
characters is transparent to an algori thm. A name may 
contain differently shaped data at different times. The 
Expert System Environment product contains a set of 
individual get/set c ommarids rather t.ha n generic ones 
precisely because it is Lmp l.emerrt.ed in PASCAL which has 
strong data typing (Hi1). It is unlikely that an expert 
system shell written in APL2 would do this. 

- Nested arrays - APL2 arrays contain other arrays in any 
combination and to any depth. These a r r ays ~ 111 

themselves, may be used to represent the necessary data 
models -- graphs, Frames (Ke1), etc •• Vectors of vectors 
1s a subset of arrays of arrays which 1s useful in 
representing trees and Ii sts - - the tradi tional LojLc 
programming structures. In addition, APL2 can represent 
data arranged along more than one independent axis 
malrLnq 1 t ideal for representing non-linear data like 
relational tables. 

- Dynamic data - nested data s t r uc t ur e s are not declared. 
They may be created, modified, rearranged, and deleted 
as part of program execution. Utilization of space for 
data and programs is dynamically managed. 

- Dynamic name scope - non-local names bind to the most 
recent value. Scope depends on the calling order of 
functions. 

Symbolic ompu a t.t.o n arrays c o n t.a Ln Lriqc t nested 
character strings provide a means for computing on 
arbitrary symbols. APL2 can dynamically treat a 
character string as thougll it were all expressiOll in a 
program. Thus, parts of programs can be constructed 
during execution. 

- Recursion - Given arrays of arrays as recursive data 
structures, recursive algorithms are easily wr1 tten to 
process the data. 

5
 



- Parallelism - APL2 operations apply to wllole arrays at 
once. There is often no need to wri te a loop or o t h e r­
structured p r-o q r amm Lriq c o n s t r-uc t s to achieve repeated 
applications of programs. Use of parallelism reduces the 
use of recursion and leads to more compact and more 
understandable algori t.hms , In particular, CAR CDR 
recursion is almost always replaced with a parallel 
operation. APL2 algorithms would not need to be 
rewritten to take advantage of parallel hardware. 

- Function modifiers - APL2 operators are used to modify 
the behavior of functions and ma k e t.h em do special 
things. "Each" ( .. ) is the parallel analog of iteration; 
outer product (o.f), is used whenever a program is to be 
applied in all combinations wi th a set of arguments. 
User written operators give the pr-oqr-amme r t.he ability 
to create his own control structures. This gi yes an 
effective blend of recursive and parallel p r o qr-ammd nq 
styles. 

Functional programming style - APL2 programs tend to be 
wri ttell in a modular style almost like extensions of the 
language itself and then connected in expressions. 
Functions may be passed to programs along wi th data. 
Defined operators can be used to create applicative sets 
of controls and filters (Eu1) (Eu2). Tilis gives an 
effective blend of procedural and functional styles. 

In addi tion to facili ties especially sui ted to logic 
pr-oqr ammd nq , APL2 has facilities t.ha t; make it a ppLd c ab Le in 
the other fields of computation: business data processing, 
graphics, Engineering Scientific, financial, etc •• 

Powerful general purpose computational primitives 
Mathematics and computation are available to write 
precise and c oric Ls e algorithms for b u s f.n e s s arid s c Lenc e , 
'I'h i s is useful in producing a c o mb Ln a t.Lo n application 
that uses logic p r-o q r ammd rrq at tIle user interface to 
give inputs to a computational pha s e . TllUS, you can 
write expert systems that have a significant traditional 
computational c o rnpon e n t; , TIle computational ability is 
also useful in computing fuzzy logics. 

- Programmable error handling an APL2 program call be 
written so th.at i t is never out of c o n t r-o L, Uricxp e ct ed 
data or even pr-oqr am errors can be captured arid h aridLed 
under program control. 

- Full graphics access - APL2 has access to a complete set 
of graphics facilities including GDDM and the 
Interactive chart utility (TeU). 

6 



- Full panel management - APL2 can use ISPF to interact 
wi th a user giving a standard interface lilte tl1at used 
by other products. A Prototyping Environment (APE) 
provides panel management along wi th many other 
productivity enhancements. 

- Full relational database support - APL2 provides access 
to SQL/DS and Data Base 2 for r e La t Lona L data. 'I'h I s 
could well be the repository for a }tnowledge base or any 
other data of an application. 

Full access to other languages programs in o t her 
languages can be called from APL2 programs using APL2 
syntax. All the APL2 control structures apply to these 
programs wi thout ohanq e and wi thout exception. APL2 
applications tend to be modular -- collections of small 
programs combined in a functional style. You could write 
each little program in a different language if you want. 
You can use existing subroutine libraries. 

Interact!ve - You interact wi th APL2 in real time. You 
can experiment with different data structures and 
alternate algorithms. You can debug programs by running 
them, fixing errors when found, and continu~ng from 
where the program left off. 

- Full Program Product support APL2 is one of tlle key 
IBM languages and receives full IBf1 Program Pro dv.c t. 
Support. 

- Under active development - APL2 is an evolutionary step 
from VS APL and the evolution is continuing. 

Thus, in summary~ APL2 can be used in the implementation of an 
AI system and it offers advantages not found in t11e o t.h e r 
languages of choice. The style of programming can be the same 
as the traditional AI languages or can be changed to reflect a 
parallel orientation. 

7
 



Part 2: Logic 

The purpose of logic programming is to do computation on the 
truth of statements. It deals wi th facts wh Lc h are kriown to 
be true, methods for combining facts, and rules for producing 
new facts from the existing ones. Appendix 3 contains a 
summary of predicate logic. 

2.1: Logic Statements 

A proposition 1s a statement that is true or false. The truth 
of the proposi tion "Sten 1s mortal" may not be known at s o me 
po Lnt; in time but when it is kriown , the value '-lill be either 
true or false. A predicate is a generalization of a 
proposition which allows variables. For example, "X is a ma n " 
is t.rue wh errever- X is given some particular man as a value. 
Predicates may be more formally stated by r emovLnq t.he 
non-essential English and writing the relationship like a 
function applied to arguments as in "mortal t s t.en ) rI or 
"P (f (X) , y) " • The intent 1s that when you are told hO"T to 
evaluate a predicate, it will yield true or false. 'I'h e s e 
predicates are linked together by zero or more connectives 
yielding logic s~atements or formulas. 

In the following, let the single capitol letters P Q R STU 
and V represent arbitrary predicates. Thus P might represent 
"Sten is mortal" and Q "Spot is a dog". 

The intention is to write statements that are true. Therefore, 
if P is true, write: 

p 

If P is false, write 

rvp 

(t'V means not). 

The connectives for statements are "alld" (;\) arid "o r " t v ) . 

IJvQ 
means at least one of P or Q is true 

PAQ
 
means both P and Q are true
 

(The symbol v is from the Latill "vel" meaning ei ther or bo t h , ) 

8 



A set of simple expressions written with connectives is called 
a clause. 

PVQA(~T) is a clause 

A clause wi th only "or" ( v ) connectives 1s called a 
disjunctive clause. 

PvQvT is a disjunctive clause 

The clause PV (~P) is always true and the clause PA (~P) is 
always false. The clause resulting from PA t r-P) is an empty 
clause (no terms) and represents a contradiction. A 
contradiction would seem like a useless resul t but, in fact, 
1s one of the key ways of solving logic programs as is seen in 
part 4. A clause wi th only "and" (A ) connectives is called a 
conjunctive clause. 

PAQAT is a conjunctive clause 

Negating a conjunctive clause gives a disjunction: 

Implication is a condl tional statement - "1f P 1s true then Q 
1s true". This does not claim that P is true only that if P 
is true, then so 1s Q. Implication is represented by the 
following logic statement: 

The intent is that QV(-P) is a true statement. It is true if 
either of Q or ~P 1s true. P is either true or false. If P is 
false, then -P is true and so is QV(-P). If P is true, then 
since P implies Q, Q is true and so is Qv(-P). Therefore the 
Lmpl.dc a t Lon "if P then Q" wr1 tten QV (""P) 1s true regardless of 
the truth of P. 

The following notations are also used for implication: 

Q <= P
 
P ==> Q
 
P :J Q 
p ~ Q (~ is less or equal in the APL2 sense) 

In this paper, any of the equivalent expressions (-P)vQ, 
Qv(-P), or Q<=P will be used. They are read "P implies Q" or 
"Q if pIt. 

- 9 ­



2.2: Rules of Inference 

Rules of inference are rules for producing new true statements 
from given ones. These rules imply a reasoning process without 
reference to the me anLnq of s t a t emerrt s . For example, the 
"Nodus Ponens" Inference rule says: "If P Lmp l.d e s Q, arrd P is 
true, then Q is true. " (Modus Ponens me ans "Hethod of 
detachment". In s om e sense, t.he conclusion is detached from 
the p r emd e e s , ) 

Here is a summary of some rules of inference: 

stmt 1 stmt 2 infers name 

p QY(l'oJP) Q mo d u s ponens 
PvQ (f'JP)YQ Q merge 
p tvp empty a contradiction 
PvQ (l'oJP)v(tvQ) (tvQ)vQ tautology 
QV(f'JP) RV(tvQ) RY(rvP) c h a t n f.riq 

Merge is sometimes called "existential elimination" • TIle 
chaining rule may be read "If P implies Q and Q Lmp l.d e s R, 
then P implies R" 

** A General Rule of Inference 

Resolution is a rule of inference wh t c h Lnc Lude s all of the 
above rul es • In words, resol ution says "if one di s j u n c t Lve 
clause contains a n eqat.ed term, and ano t.h e r dis j unc t Lve cl ause 
contains the same term non-negated, 'th en you may infer the 
disjunction of the other terms 4" ITl o n e sense, you mLqht; say 
that the two terms differ in sign and cancel. For example: 

from the two clauses 

PvQV(tvR)
 
(r-JP)v(rvS)vT
 

you may infer 

This is easy to picture. The two input clauses are true. One 
of P or -P is false and wh e r e it is false, the other terms of 
that clause must provide the truth. Yo u should be able to 
apply 'th e r e s o Lu t f.o n rule to the table of r u Le s of Ln f e r eric e 
and see how resolution contains t.h em all. In the first four 
cases, delete P from stmt 1 and <P from s t.m t; 2 and "or" ( v ) 
together wh a t ' s left. In 'th e chaining rule, delete Q from 
stmt 1 and tvQ from s t.mt; 2. 

10
 



When two statements like 

PvQv(-R) 
(-P)v(-S)vT 

are written. it 1s a claim that they are both true 
simultaneously. Thus they are really connected by the logical 
"and" (A) and could be written: 

(PvQv(-R» A «-P)v(-S)vT) 

This is called a conjunctive normal form and is the form used 
to represent a knowledge base which is just a collection of 
statements asserted to be true. 

Remember that the letters used in the above clauses stand for 
predicates. Here's a real example of Resolution (Gr1): 

clause 1: (The sun is shining) or (I will take my umbrella) 
clause 2: (The sun 1s not shining) 

inference: I will take by umbrella 

The predicate "The sun is shining" is positive in c~ause 1 and 
negative in clause 2 and so can be cancelled. 

Unlike mathematics, if two positive terms of one clause appear 
in the second clause negated, you cannot cancel them both. For 
example from the two clauses: 

PvQvRv(tvS) 
(~P)v(-Q)vTvU 

you may NOT infer 

Rv(,..,S)vTvU 

If P is true and Q is false. then both input clauses are true 
without regard to the other terms in the clauses. 

2.3: Incorrect Rules of Inference 

AppLy Lriq rules of Ln f e r errc e to s t a t emerrt s c La Lme d to be true 
(and actually true) can only lead to true c o nc LUSiOI1S. 'I'Iru s ~ 

if something known to be false is inferred, one of t.he known 
facts is actually false. 

Most human reasoning is less formal tl1an thi 5 and involves 
methods than can be proven incorrect. In practice, they are 
correct often enough to be valuable tools. Here are some 
incorrect rules of inference: 

11 



1. Abduction 

If P implies Q and Q is true, then P is true. 

From a logic point of view, this is nonsense because, 
from something false, you can infer anything at all 
including something that is true. "If 2 is an odd 
numbe r , then the pope is Catb.olic" is a correct 
implication. The conclusion is true (let's a s s umo ) but 
that does not make 2 an odd number. No n e t.h e Les s , 
Abduction is the basis of medical diagnosis. For 
example: 

Patient has cancer implies symptom 1 

If the patient exhibits symptom 1, the doctor may deduce 
that he has cancer. Of course. he may be vrr onq , If in 
addition: 

Patient has cancer implies symptom 2 
Patient has cancer implies symptom 3 

and the patient has all three symptoms. the doctor can 
diagnose with greater confidence. He Jnight still be 
wrong. Abduction might be called "inference by best 
explanation". Of course, if cancer has a unique set of 
symptoms and the patient has them all, a correct 
c o nc Lus Lo n can be reached. Complete knowledge is the 
exception not the rule. 

2. Induction 

If Q is true for every instance of Q kriown , ·tlle11 Q is 
true for all instances. 

If you lived in an isolated village in Africa, you 
might notice that Q is human arid Q h a s a black face. 
Also R is human and R has a black face. The conclusion 
is that "all h uman s have black faces". This is, of 
course, not true. When a wh i t.e man s h o ws up, the first 
conclusion mLqh t; be "This person is not h uma n - - he's a 
great whi te god" or "he's an an Lina L to be eaten". 
Eve n t u a Ll. y , however. it becomes clear t.ha t; the original 
inductive conclusion is not true. 

Nonetheless, induction is the basis of learning. A child 
qUickly learns that touching a hot stove burns h Lm, He 
will conclude that this is a Lwa y s tr1.Je rather t.han k e e p 
c hec k i nq t.h e h y po t h e s d s , When adults apply Lridu c t.Lo n , 
the resul t is often called a law: "\"lllat goes up must 
come down" (a paraphrase of Issac Newton). The builders 
of the Voyager space craft might disagree. 

12
 



3. Default reasoning 

If	 you can't infer Q, infer ~Q 

This is like saying you are innocent if you can't be 
proven guilty. This 1s incorrect unless you have 
complete knowledge. Of course, if you k.now everytIling 
and reason perfectly and can't infer Q, then ~Q must be 
true. If Q is not true, then the attempt to infer i-t 
might not terminate. 

2.4: Variables in Logic 

The logic statements seen so far gi ve you ways to express 
relations about particular objects. For example, you can say: 

If 32 1s divisible by 4 then 32 1s divisible by 2 
If 34 1s divisible by 4 then 34 is divisible by 2 
If 36 1s divisible by ~ then 36 is divisible by 2 
etc. for infinitely many statements 

Writing these as implications using the notation of logic each 
reads: 

or 

again with an infinite number of similar statements. 

**	 Universal Quantification 

Universal Quantification gives a way to write a more geI1eral 
statement: 

if	 N is divisible by 4, then 
N is divisible by 2 

wher e ~J is called a logic variable and replaces \.1111 versal 
quantification. 

This 1s wri tten as an implicatioll as follows: 

13 



or 

A logic variable is essentially a place l101de1'" for a value. It 
is unlike a variable in a programming language because it need 
not have a value to be used. III a particular instance, you 
may stick in any value for N everywhere it occurs and if it is 
divisible by 4, then it 1s divisible by 2. This one statement 
replaces a countably infini te set of sta t emerrt s , This paper 
from this point on follows PROLOG conventions where any name 
starting in uppercase is taken to be a logic variable. This 
convention is not standard so the APL2 algorithms presented 
later on use a leading "ts ' to me a n a logic variable. 
Therefore, there are two c orrverrt a ons for logic v ar Lab Lo s in 
this paper -- upper case when looking at logic statements and 
'6' when looking at APL programs. Appendix 1 shows the 
function ENCODE which is used to implement the logic variable 
name scheme. 

** Existential Quantification 

Existential Quantification gives a way to say that at least 
one substitution for a logic variable yields a true statement. 
For example you say: 

There exists an X such that 
X is president of the United States. 

In this case, since there is a p e r s o n X, it's OK to give 111m 
(or her) an arbi trary constant n ame (say "wdj x" or "reagan"). 
This, then, becomes an assertion of fact: 

It doesn't matter what name you give it. A!1 arbitrary 
character s t.r Lrrq will do so Lorio as it is u n Lqu e and used 
wherever you intend to refer to the intended object. 

** Inference witll Logic Variables 

'I'h e rules of inference need to be e x t e n d e d to allow st a t.emerrt s 
that c o rrt a Ln variables. For example, "Hodus Ponens" says 
"given P implies Q and P, t.h e n Q". Suppose that yo u t ve b e o n 
given the two statements: 

14 



P1 
P2 implies Q 

where P2 and P1 contain variables. You cannot, it would seem, 
infer anything because P2 and P1 are not the same so 110dus 
Ponens does not apply. Modus Ponens is extended to include 
variables as follows: 

Given "p1" and "P2 implies Q", if you can 
find substitutions for variables in P1 and P2 
that make them the same, then infer Q' which is Q 
with the same values for variables. 

This matching process 1s called unification 
and is discussed in part q. P1 and P2 unify 1f they can be 
made to match by giving values to variables. 

For e xampl, e , 

clause 1: divisible_by_4 (32) 
clause 2: divlsible_by_2 eN) v~ divisible_by_4 (N) 

The only predicate in clause 1 matches the right hand 
predicate of clause 2 if you substitute for N t.h-; value 32. 
~hus you may infer: 

which is the other predicate in clause 2 uLing the same value 
for the logic variable. 

2.5: General Resolution 

Resolution is the more general inference rule and its 
application is extended to clauses with logic variables in the 
same way. 

given P1 v Q v (~R) 

and ( ......P2) y ( ...... S) v T 

and values for variables so
 
P1 and P2 unify,
 

infer 
Q' y (~Rt) v ( ......s') v T' 

where Q', R', S', and T' come from Q J R, S, and T wi th t.ne 
same values substituted for variables. 



This more geIleral resolution rule is the basis for the logic 
programming search programs discussed in part 4. 

A vro r d of caution is needed on t:he use of variables. A 
v a rLab Le is meaningful only 1J1Side o n e logic e t a t emerrt , If a 
s e c o nd s t.a t em eri t; c orrt a Ln.s a variable , it is a different 
variable even if It; h a s the s ame n ame , The algori t.hms avoid 
thir:; possible c on t u s Lon by renaming all variables wi t.h un.ique 
names. (see VRENAME in Appendix 1). 

2.6: Chaining. 

A c h a I n , in logic, is a set of LmpLt c at.Lo n s t.h a t; conn e c t, t.wo 
clauses together. 

I f you are gi v e n a set of facts arid wish to pr o v e the goal 
S, there are two ways to discover the chain: starting from the 
facts, or starting from the conclusion: 

** Forward Cha.l n t riq 

The most o bvLo..t~ i<'Z.Y to arrive at some goal given a set of 
facts is to ma k e :":ri.I'J~cd.tions and watch for the goal to 
appea.r. For example, given "P" arid the LmpLd c a t t o n up e s LinpLd 

Q" you call d e d u c e "Q". TIle [0110\..,il1g 5}10\-15 the a ppLt c a t Lo n of 
two more Lmp Ld c a t Lo n s leading to S ( r emembe r that P implies Q 
is written QV(~P)): 

P and QV(~P) gives Q
 
Q and RV(~Q) gives R
 

I? arid Sv(,....R) gives S
 

This chain shows that P implies S. 

In general, ma ny t.hLno s can be Ln f e r r e d f r o m ·tIle J{110\1l1 f a c t c 
t h a t; won' t lead. to t.h e goal. Thus, tIle s e a r c h for the goal 
mt qh t; look Lf.k e t.h Ls where t.h e a r r o ws mo a n im.plica tions: 

16
 



p 

Q 

/1\ I 
s/1~ 

This leads to identification of the desired chain along with a 
lot of unwanted implications. All implications are true and 
could be permanently added to the database. See (Fo1) for an 
excellent application of forward chaining in a expert system. 

The Expert System Environment (ESE) command DISCOVER requests 
forward chaining. 

** Backwards Chaining 

Given a goal J a chain connecting to it can be d Ls c o ve r e d by 
d e nyLnq t.h e goal ("'-'goal) and looking fer a c orrt r adLct.Lon , 
Thus, if you want to prove S, you start with (~S) (the denial 
of the goal). If you know that R implies S, then clearly R 
must be denied also. (~R) is the denial of a sUb-goal. 

~S and Sv(~R) gives ~R
 

~R and RV(~Q) gives ~Q
 

~Q and QV(t'VP) gives ",-,p
 
~P and P gives a contradiction
 

therefore ~S is false and S is true
 

This, again, leads to a tree of implication because, in 
geIleral, more than one implication may lead to the desired 
conclusion: 

17
 



Note that the final chain 1s the same (in this case) but 
different extra work is done. 110st d e duc t.Lve sys·tems use 
backwards chaining. Only implications along the final chain 
are true and can be added to the rule database. The others are 
not known to be true. But, at least, only implications 'th a t; 
potentially lead to the desired conclusion are used. 

The Expert System Environment (ESE) command DETERMINE requests 
backward chaining. 

** Summary of Chaining 

Chaining is like finding a route on a downtown map of a large 
ci ty. To p Lall a route from A to B, you could start a t A and 
find some intersections reachable from A. Then find some 
intersections reachable f r o m those. You eventually r e a ch the 
destination and have d e t.e r mLne d a route. 'I'h Ls 1s forward 
chaining. 

Instead, you cot-LId start from B, the d e s t.Lna t Lo n , a n d identify 
some intersec·tions which lead to B. 'I'h e n find some 
intersections leading to those until A, the starting point, is 
reached. Thi s is b a c kwa r d s c h a Ln Ln q , 

Whetller you use forward chaining or backward chaining can 
depend on the kind of rules in tIle k n o wLed q e base. If f r o m 
each spot in the search tree, only a few places call be r e a c h od 
(small fan out) but many rul es can r e a ch t.h e saIne p Lace (large 
fan in), then forward c h a LnLriq is probably more e f f Lc Le n t; , If 
the opposi te is true, then b a c kwa r d c h a Ln Lnq is probably more 
efficient. 

Here's a summary of the chaining rules: 

1 • Forward: P and QV(~P) gives Q 

18 



2. Backward: (~Q) and QV(~P) gives ~P 

Surprisingly~ these can be written as one rule by making some 
sUbstitutions: 

1. Forward: substitute ~A for P and B for Q 

(~A) and Bv(~~A) gives B 

2. Backward: substitute A for Q and ~B for P 

(~A) and Av(~~B) gives ~~B 

These each simplify to: 

and AvB gives B 

2.7: Search strategies 

In either forward or backward chaining ~ a practical decis ion 
must be made concerning which implications to try bGfore which 
others. Two simple strategies are called depth first search 
and breadth first search. They can be contrasted by lo~~ing 

at forward chaining. 

** Depth First Search 

If there are two implications to be tried, then every possible 
chain arising from the application of one of them is tried 
before any application of the other. Here's a tree showing the 
order in which implications will be tried: 

p 

/'Z
/\ 7/~
 

3/\;
 X 

If you are trying to reach X, the order of implications makes 
a significant difference in the amoun t; of work to be don e , 
Also~ if the path starting with 1~2,3 went on infinitely long, 
a depth first search would not find the chain to X even though 
it existed. 

19
 



** Breadth First Search 

If there are two implications to be tried, then the second is 
tried after the first but before any ilnplications follovling 
from the first. Here's a tree s howLnq the order in which 
implications will be tried: 

In this case, search stops because X was found. In general, no 
one search 1s better than the other except that given a finite 
number of rules, breadth search will always find a chain if 
one exists. 

** Refined search strategies 

Much of the challenge in logic programming is to find better 
search strategies that use some knowledge of tIle s Ltuation -to 
make smarter choices of what to try n e x t; , Und e r s t.arid I nq 
search strategies and having control of the strategy is vital. 
If, in followillg a map, you start a depth first search mo v i nq 
east but your destination is west, you'll waste a lot of time 
and effort before trying the next deep search which will also 
probably be wrong. 

The breadth first search is at least bounded -- you'll spread 
out in a radius about the starting point (forward chaining) or 
the destination (backwards chaining) arrd eventually find the 
other point. 

In this example, a better search strategy could be "move first 
in a direction 't.ha t gets you closer in d Ls t a nc e to the o t.h e r' 

point". By computing a "flgure of me r t tit wLth each po s s Lb l.e 
LmpLt c a t Lo n , you can choose an a ppa r e n t; best n e x t; c h o Lc e a rid 
significantly reduce the amount of work d ori e , Even a very bad 
figure of merit can lead to a vast improvement in efficiency. 

This would be neither a d apt h first nor a breath first s e a r c h 
but rather a combination of them. 

Thus, the amount of work to be done can be reduced by applying 
some knowledge specific to the problem to be solved. SUCll 

strategies influence the efficiency of the algori thJUS but; not 
their correctness. Other tecllniques, like a r-t Lf Lc LaI Ly 

20 



stopping wha t, appears to be a frut tless s e ar-ch , could affect 
the correctness and cause you to fail to prove a provable 
conclusion. The improvement in efficiency~ however~ can be 
dramatic enough to account for the difference between a 
practical algorithm and an impractical one. 

21
 



Part 3: APL2 

This part introduces the main features of APL2 wi th emphasis 
on the facilities that are actually used in the AI algorithms. 
No attempt is made to present a tutorial covering the whole 
language. The expressiveness of APL2 as compared to LISP is 
investigated with an example. 

APL2 has three kinds of obj ects arrays, functions, and 
operators. Arrays are the data, f unc t.Lo n s are what you do to 
data, and operators are what you do to functions. Each will 
be discussed briefly by example. 

3.1: APL2 Data Structures 

This section will describe how APL2 represents individual 
pieces of data and collections of data. There are only two 
kinds of daca in APL2 -- numbers and characters. A number may 
be logical (0 or 1), integer (1234), scaled (1E10), or complex 
(2J3) but these are not separate data types. The logical 
numbers 1 and 0 are used to represent "true" and "false" 
respectively. A character may be an ordinary character ('a') 
or an extended character like a Japanese character. 

A collection of data in APL2 1s called an array. An array in 
APL2 is a rectangular collection of numbers and characters 
where at each point in the rectangle is a single number, a 
single character, or another array. 

Here's a 3 by 3 array of numbers (a matrix): 

3 3p 23 1 123E20 1 0 124E15 -1 1 1E11 
23 1 1.23E22 

1 0 1.24E17 
-1 1 1. OOE11 

The symbol p is the "reshape" function. It means rearrange the 
i terns on the right into a collection having three r ows and 
three columns. 

Here's a 3 by 4 array with numbers and characters: 

3 4p'INIT' 'B' 'TITLE' I , 'C' 'D' 55 0 'E' 'F' 66 1 
INIT B TITLE 
C D 55 0 
E F 66 1 

- 22 ­



Here's	 a 3 by 3 array with a matrix at each spot: 

3 3p c2 2p1 o 0 1
 
1 0 1 0 1 0
 
0 1 o 1 o 1
 

1 0 1 0 1 0
 
0 1 0 1 0 1
 

1 0 1 0 1 0
 
0 1 0 1 0 1
 

TIle symbol c: is the "enclose" function. It means package tIle 2 
by 2 array into a scalar - an array wi'th no s h a p e wh i.ch can be 
thought of as an atom. The scalar is then repeated nine times 
to get the three by three array. 

In general, at any spot in an APL2 array, it is OK to have any 
other array. 

Here's	 a vector of characters: 

'sten' 

Since	 this 1s an array, it may be an item of another array: 

'sten' lisa' 'm::l~' 

This is a three 1 tern vector of c na r ac t e r vectors and is a
 
possible representation of a predicate in logic.
 

Names are associated with arrays by u s e of 't.he a s s Lqruue.nt;
 

arrow (+) : 

A+'sten' lisa' 'man' 

Such a name is called a variable (not to be confused wi t.h a 
logic variable which may not have a value). 

Hen t Lo n of the name of an array produces the c o r r-e s poridLrrq 
value: 

A 
'sten' 'isa' 'man' 

23
 



3.2: APL2 Functions 

APL2 functions take an array (monadic function) or two arrays 
(dyadic function) and produce a new array as a result. You've 
already seen the Inonadic function "enclose" (c) and tIle dyadic 
function "resha.pe" (p). 

** Monadic Functions 

The "shape" function Co ) returns the number of i terns along 
each axis of an array: 

p'sten' lisa' 'man' A count items 
3 

The "first" function (t) returns the leading i t.em from an 
array. It is like CAR in LISP: 

t'sten' lisa' 'man' A select first item 
sten 

pt'sten' lisa' 'man' A length of first i t.em 
4 

The "depth" function (=) returns an integer that indicates the 
level of nesting of an array. A single n umb e r' or a single 
scalar (a simple scalar) has depth 0; an array of single 
numbers or characters has depth 1; all array containing at 
least one depth 1 array (and none deeper) has depth 2. 

s ' s' A depth of a single cha r 
0 

::'sten' 'isa' 'man' A d e p t h of vect of c h a r' s t r Lnq s 
2 

::t'sten' lisa' 'man' A depth of first item 
1 

** Dyadic Functions 

Tlle "drop" function (+) deletes the requested number of 
leading items. With a left argument of 1 ~ it is like CDR in 
LISP. 

1~'sten' 'isa' 'man' A select all but first item 
isa man 

24
 



The "index of" function (1) searches in the left argument for 
occurrences of items from the right argument and reports the 
index position at which each is found or 1+pleft if an item 1s 
not found: 

•'sten' lisa' 'man' I sten t other' A find index position 
1 4 

The "match" function (::) returns 1 1f and only if its t.wo 
arguments have the same value and structure: 

'stene lisa' 'man' 'sten' 'man' 'mortal' 
o 

Note that "match" and "depth" share the same s ymbo L, TIle 
presence or absence of the left argument determines which is 
intended. 

** The Execute Function 

APL2 has one somewhat unusual function called "exrcute" (~). 

Here is a character string containing three characters: 

'2+3' A character string 
2+3 

The "execute" function causes a character striIlg to be tr .ea t.ed 
as an expression to be evaluated: 

1Jl'2+3' A evaluate char string 
5 

Given a character constant, it's not so exciting to see it 
executed as an expression. Any program in any language starts 
out as character strings which get compiled or Ln t.e r-p'r e t ed , 
More interesting is the case where the character argument to 
"execute" is the result of a c o mpu t a t Lo n , Here, t.he character 
'3' is joined to the end of the variable E: 

E+'2+' A char string 
E, , 3 ' A create new char string 

2+3 
sE» , 3 ' A evaluate new char string 

5 

Thus, using execute you can construct, under program control, 
new APL2 expressions and cause them to be evaluated. 'I'hLs is 
especially significant when doing symbolic computations. For 
example, if you have a variable A having some array as value, 

25
 



a mention of the name is equivalent to a merrtLon of that 
value: 

A+2 2p'APL' 'TWO' A matrix of two char strings 
A A mention name gives values 

APL TWO 
APL TWO 

If you want to deal with the name A rather than its value, you 
just use the character string 'A' instead. 

B+'A' A B is string with name of A 

Now the variable B contains the name of the variable A. 

B A mention of B gives value 
A 

If at some time you want to know the value instead of the 
name, "execute" is used: 

fJ!B A same as sQ'A'
 
APL TWO
 
APL ruo
 

If you have a variable whose value is a character string, you 
can determine if the character string is the name of a 
variable by requesting i ts "riame class" (ONC). Interesting 
values that ONe can return are: 

-1 - not a name 
o - no value 
2 - variable 
3 - function 
4 - operator 

A+2 2p'APL' 'TWO'
 
ONe 'A' A A is a variable
 

2 
B+'A' 
ONe B A A is a variable 

2 

In this last example, B is a variable but it's value (which is 
'A') is 't.he argument to DIVe 

In the following, a s s unie that the n am e IV h a s n o t; been q I ven a 
value: 

26
 



ONe 'W' A W has no value 
o 

ONe 'XYZ' 'SA' A argument is not a name 

The algorithm for Unification will use this scheme for 
variables in logic. Ea.ch will be r epr-es errted as real APL2 
variable (name class 2) wh eri the logic variable h a s a value 
and as a name wi th no value (name class 0) when t.he logic 
variable does not have a value. To see how they are used, see 
the EVAL operator in the next section. 

3.3: APL2 Operators 

Operators modify the behavior of functions. They apply to all 
functions, even user defined programs and programs written in 
other languages (FORTRAN, ASSEMBLER, etc.>. 

** The Each Operator 

The "each" operator ( .. ) applies an arbi trary function to e a c h 
item of its argumentCs) and returns one item of its result per 
application. 

Here are some pictures that demonstrate the application of 
"each": 

A+I J K
 
B+P Q R
 

monadic function "fn" 

I J K I 

++ in I lin J lin K I 

27
 



dyadic function "fn" 

A fn" B +-+ I I I J I K fn" p 

I I fn P I J fn Q I K fn R 

Thus, in some s e n s e , dyadic "each" taltes a func·tion and 
distributes it inside the argument arrays. The function 
operand of t.h e operator t.Ire r e f o r e sees arrays of one less 
d ep t h than it would wi thout "each". The function is paired 
with corresponding items one from each argument. The number of 
results is the same as the number of arguments. 

'sten' lisa' 'man' =.. 'stene 'man' 'mortal' 
100 

p··'s·ten' 'isa' 'man' 
433 

An important special case of dyadic "each" occurs where one 
argument is a scalar. For example, let S be a scalar t.ha t; 

contains I as its only item: 

S+cI A construct scalar containing I 

S fn .. B + .... I I I fn .. P QI I I I I R 

fn P ; I fn Q fn RI I I I 

Thus, "each" applies a functton b e t we e n c o r r e s p o n d Lricr at.ems 
one from each argument. To apply a function with a given left 
argument X to each item of the right argument Y, just enclose 
the left argument: 

(eX) f n " Y 

A scalar as a right argument yields a similar expression: 

X fn·· (cY) 

The "each" operator ( .. ) is one of two Lmpo r t.an t primi tive 
operators that will be used in the AI algorithms that follow. 
Recursion that is not replaced by parallel operations will 
normally be done in sOlne f urrc t Lon "fn" wh Lch after f Lrrd Lrrq t.h e 
data A more complicated tllan it wishes to handle, will, 

28
 



instead, do a recursive simplification by applying itself to 
each item of t.he data fn··A. 

** The Outer Product Operator 

"Each" is only one of many useful ways to combine t.wo argument 
lists. TIle primitive o per-ato r "outer product" is La k e "each,tI 
except that it applies a function to all combinations of items 
one from the left and one from the right. It can be p Lctur ed 
like this: 

A+ I J K
 
C+X Y
 

C o.fn A ++ [T]o.fn~ 

X fn I X fn J X fn K 

y fn I Y fn J Y fn K 

Much like "each", "outer product" takes a function and 
distributes 1 t inside the argument arrays and t.he function 
sees arrays of one less depth than if "outer product" h au not 
been used. The only difference 1s that "each" applies the 
function to corresponding i t.ems f r om t.he a r qument arid "outer 
product" applies the function between all possible pairs. 

For example: 

, sten' • isa' 'man' o. - 'sten' • man' 'mortal' 
100 
000 
010 

Each i tern of the left argument is "ma t c h ed " against e a ch item 
of the right argument. The row index of the result says which 
1 tern of tIle left argument was used and the c o l.umn Lrid e x says 
which item of the right argument was used. 

Whenever an algori t.hm calls for d o Lrrq s om e t.h Lriq in all 
combinations, "outer product" is probably the s o Lut Lo n , 

29
 



3.4: User Defined Control Structures 

The APL2 operators allow writing expressions in a f urrc t Lo n a L 
style. There are, however , o n I y a few p r Lmd t.Lve APL2 
operators. Ldent.Lf y Lnq new p r LmLtive operat.ors is a possible 
area for future extension of t.he Larrqu a o e , 

AfJL2User defined operators prev.ide a "ray for t.h e p r-o q r amme r' 

to add h L.s own c o n t r-o L structures to 't.h e Lariquaq e arid 
therefore extend the possibilities for functional programming. 
TIle d e f Lned o p e r a t o r s t.hems e Lv ee are often wri ttell in a 
procedural style. 

** TRUE and UNTIL operators 

As an example, suppose you want to determine the truth of some 
goal s t.a t em e n t; arid there are one h uridr e d facts to c h e c k 
against. ASSUlne you have a f unc t.Lo n called CliEC]( wh i c h give11 
the goal and a fact from tIle database returns a 1 or 0 
depending on whether the given fact proves 'th e goal s t a t emerrt 
or not. You could enter a set of s t a t emen t s Li k e this to 
prove t.h e goal: 

STMT CHECK R[ILE1 
ST~JT C!!FCT( R[]LE'2 

However J if the rules are Jrept in a vector called D.ll11 A lJJ1S g , 
you could just enter: 

(cSTMZ') CIIE;CK" DA1'/tDilSEJ 

000 1 0 a 1 1 0 a 0 

'I'h i s will do the expected opera t.Lo n re s u I t.d n q ill a riurid r o d 
i telu vector of zeros a nd ones. No t Lc e tlle use of a s c a La r' 

left argument so "eacll" applies C[1E~CK b e t.we e n S'l1iViT and each 
rule in tIle d a t.aba s e , If y o u wa n t; to know every way i:1.1 vrh Lc h 
t r-u t h can be p r o v e n , then this e x pr e s s Lo n is all e Lcq a n t; 
solution. 011 t.he o t.he r hand, if you only wa n t; to ]tJ10W if t.he 
s t.a t.oruerrt; C811 be proven, t.h e n tIlt? e x p ross Lo n is s t.I l.L correct 
b u t c o mp u t e s a lot of u rm e e d e d r e s u I, ts beCZ1.11Se it c ontLrrue s to 
apply CliEC:I<. even after a proof has b e e n fOU11d. 

What is needed is all "each" t.h a t. wI l.L q u I L after a proof is 
discovered. APL2 does not have such all operator b ut; you carl 
write one. Here's one possible definition: 

30 



VZ+LCF TRUE)R;I A "each" that quits on true 
[1] +CO~ppL)/L1 A branch L not scalar 
[2J L+(pR)pL A extend scalar left 
[3J L1:+(O~ppR)/L2 A branch R not scalar 
[4] R+(pL)pR A extend scalar right 
[5J L2:Z+I+O A initialize result and counter 
[6J LP:+(I~pR)/O A exit when counter exceeds length 
[7J +(1=Z+(tI~L)F(tIo/R)/O A exit when result 1s 1 
[8] +LP I+I+1 A continue 

[1] through [4] only check for a scalar argument and, if 
found, extend it to be the same length as the other argument. 
The real logic starts on [5] where the result is set to false. 
This result 1s only returned if the arguments are empty. [6] 
through [8J implement a loop which applies the argument 
function F between corresponding items of the arguments. The 
branch on line [7J causes an exit if a 1 (true) is ever 
returned. If the loop counter ever exceeds the argument 
length, line [6] exists returning a result of 0 (false). 

The TRUE operator 1s defined in a procedural style but is used 
in a functional style: 

(cSTMT) CHECK TRUE DATABASE 
1 

This expression terminates as soon as any way to plove STMT is 
discovered. 

If you want to terminate as soon as a false is discovered, you 
could wri te a FALSE operator. It would be exactly like TRUE 
except the one in [7J would be a zero. This suggests a more 
general operator which takes as an argument the value that 
causes termination: 

VZ+L(F UNTIL THIS)RjI A EACH THAT QUITS ON TRUE 
[1] ~(O~ppL)/L1 A branch L not scalar 
[2] L+(pR)pL A extend scalar left 
[3J L1:~(O~ppR)/L2 A branch R not scalar 
[4] R~(pL)pR A extend scalar right 
[5J £2:Z+7+0 A initialize result and counter 
[6] LP:~(I~pR)/O A exit when counter exceeds length 
[7] -'('1JHI S =Z+(tI-}L)F(tI4-R) )/0 A exit when result THIS 
[8J -.LP I+I+1 A continue 

Now TRUE can be written: 

(cSTMT) CHECK UNTIL 1 DATABASE 
1 

and FALSE can be written: 

- 31 ­



(cSTMT) CHECK UNTIL 0 DATABASE 
o 

** PARALLEL Operator 

If you have a truly parallel machine available, you might want 
an "each" like operator that passes e a ch c o mpu t.at Lo n to a 
different computing engine. l1PL2 does not c ur r-e n t Ly run on 
such machines but you could pass sets of computations to 
different real machines. Given a set of personal computers, 
this might even be practical. 

Because APL2 ma k e s you think ill a parallel array f a s h I ori , it 
is likely that you will discover situations where p&rallelism 
can be exploited. 

** DEPTH Operator 

The operators "each", "outer product", TRUE, and UNTIL all 
operate on the i terns of nested arrays or, in some sense, one 
level down in the structure. Suppose you have the following 
two item nested vector: 

V+'relate ll ('parent' ( '~X' 'sue') 'sue') 

The first item is a six item character vector and the second 
is a three i tern vector of vectors. This mayor may not 
represent a statement in logic. Just t.hLrilc of it as nested 
data. 

Suppose you want to kriow t.h e length of e a c h wo r d in 't.h e 
structure. No operator you've seen so far could c o mpu t e it. 
"Shape" Cp ) will tell you i-tis a tyro item vector and say 
nothing about the shape of the words. "Shape each" does a 
little better: 

p"V+'relate' ('parent' ('~X' 'sue' ) 'sue') 
6 3 

At least you get the shape of one of the words. What is needed 
is an t1 e a c }l " Ld k e operator that d o e s n ' t s top after o n e level 
into t.he array but continues un t I L i t gets to a word. A wo r d 
(i. e. a c ha r ac t e r vector) is a depth 1 array so you can wri te 
an operator that looks for a depth 1 array a n d if f.h e data is 
deeper than that , it applies "each" u n t L'l, a depth 1 array is 
found. Here is one way to write such an operator: 

32 



VZ+(F DEPTH1) R A apply F at depth 1 
[1J -'(1<::R)/BECUR A recur if depth > 1 
[2] Z+F R A apply F to depth 1 R 
[3] .... 0 A exit 
[4] RECUR:Z+(F DEPTH1) ··R A apply F to items of R 

[1 ] branches 1f the depth of the argument is greater t.han one. 
[2] applies the function to an array kriown to be d ept.h 1 or 
less. [4] uses "eacll tl to dig one level deeper Ln t o the array 
eventually reaching a level which is depth 1 or less array. 

p DEPTH1 V
 
6 6 233
 

and this result has the same tree structure as V. The words 
are replaced by their shapes. If you want a simple vector of 
shapes, the function "enlist" always returns a simple vector. 

E:p DEPTH1 V 
6 6 233 

** EVAL Function 

Given the vector V from above, suppose that any vector 
starting with the character '~' represents a logic vari~ble. 

One of the tasks of a logic program is to take s i.ch a 
statement and produce a new one that represents the stat2ment 
with values substituted for variables. Here is a function that 
will do the substitution on one logic variable. Remember that 
a logic variable wi thout a value is represented by an APL2 
name without a value (name class 0) and a logic variable with 
a value 1s represented by an APL name with a value (name class 
2) : 

fJZ+EVAL1 R A evaluate logic variables in R 
[1] Z+R A initialize result 
[2J +(N'~'=tR)/O A exit if not a logic var 
[3] +(2~DNC 11)/0 A exit if no value in APL variable 
[4] Z+~R A replace variable with its value 

[1J sets the result to the argument. 

[2J exits if the name is not a logic variable. 

[3J exits if the name is an APL variable with no value. 

[4J returns the value of the variable 

Here are some applications of the EVAL1 function: 

33 



I:lX+'mother' 
EVAL1 'sten' 

sten 
EVAL1 'I1X' 

mother 

EVAL1 doesn't do what is required if there 1s more than one 
name: 

V+'relate' ('parent' ('~X' 'sue') 'sue') 
EVAL1 V 

relate parent AX sue sue 

V is a structure that contains many names at various different 
depths. You need to apply EVAL1 to each name in V. The 
operator DEPTH1 will do that: 

~X+'mother'
 

V+'relate' ('parent' ('~X' 'sue') 'sue')
 
EVAL1 DEPTH1 V 

relate parent mother sue sue 

This form of substitution is not powerful enough to handle the 
general case because the value of a variable ~X may contain a 
complicated structure which itself contains a variable. In 
the following, the variable 6X contains a reference to logic 
variables ~y and 62: 

6X+'abc' '~Y' '~Z' 

t:l."::l"+ ' def ' 
V+'relate' ('parent' ('6X' 'sue') 'sue') 

Now EVAL1 will not complete the substitution. 

EVAL1 DEPTH1 V 
relate parent abc ~y 62 sue sue 

A more general function will do substitutions in any 
substituted values as well. Here is a more general function: 

"VZ+EVAL R A evaluate logic 'variables in R 
[ 1 ] Z+R A initialize result 
[2J ~(rv'6.'=tR)/O A exit if not a logic variable 
[3] -+(2~ONC R)/O A exit if no value in variable 
[4] Z+EVAL DEPTH1 ~R A replace variables with values 

EVAL DEPTH1 V 
relate parent abc def 6.2 sue sue 

- 34 ­



Now 6Y is given the correct value. liZ does not have a value 
and so is not altered. 

This function will be used for doing s ubs t f, tutions in the 
algorithms that follow. 

You could avoid using real APL2 variables to represent logic 
variables by storing the names of variables and tihe Lr values 
in an array -- a vector of pairs of a two column matrix: 

VSUBS+ ( • 6X' (. abc • • liY t ) ) ( liY' • def • ) • 

or
 
MSUBS+=-VSUBS
 

(The function "disclose" (::» turns a vector of vectors into a 
matrix. ) The EVAL function could then search one of these 
arrays instead of doing an "execute" (~). For example, lines 2 
and 3 of EVAL could be written using MSUBS as: 

+(~(cR)€MSUBS[1;])/O 

3.5: The Rosetta stone: LISP and APL2 

The history of AI has been significantly influenced b y the 
language LISP, wh I cn was designed to express 1 ts algori chm s , 
LISP is an extremely elegant language for st a t t no t.h e 
recursive kinds of procedures often required in the solution 
of AI problems. 

To compare APL2 and LISP, a b enchma r Jr program from "The 
Handbook of AI" (Ba1) will be shown in both LISP and APL2. The 
program implements a deductive search routine of the following 
sort: 

given facts: 

There is a man named Stene
 
Tllere is a dog named Spot.
 

and given the general statements: 

All men are mortal.
 
All dogs have a tail.
 

deduce the conclusion 

Sten is mortal. 

35
 



The first four statements are called the database of the 
problem. It is an open database in that not all true 
statements about the sUbject at hand are included. Thus, even 
though you can conclude that "Sten is mortal" and cannot 
conclude "spot is mo r-tia L? , you should not conclude that it is 
better to be a dog than to be Stene An example of a closed 
database is an airline reservation system. If you don't have a 
reservation that is included in the database, you don't have a 
reservation. 

** The LISP program 

The database for the LISP program is a four item list -- one 
item per statement. The facts are each two item lists, and the 
general statements are three item lists starting with the word 
, ALL I • 

(SETQ DBASE '«ALL MAN MORTAL) (ALL DOG HAVETAILS») 
(SETQ DBASE '( (MA~l STEN) (DOG SPOT») 

The goal (the statement to be proved) is a two item list: 

(SETQ STMT '(MORTAL STEN» 

Here is a LISP program to solve this kind of problem: 

1 • 1 (DEF' PROVE 
1 • 2 (LA!'IBDA (STMT DB)t 

1.3 (FINDA DB») 

2.1 (DEF 'FINDA 
2.2 '(LAMBDA (RESTDB) 
2.3 (COND 
2.4 «NULL RESTDB) NIL) 
2.5 (T (OR 
2.6 (PROVESIT (CAR RESTDB» 
2.7 (FINDA (CDR RESTDB»)))) 

3.1 (DEF 'PROVESIT 
3.2 '(LAMBDA (AS) 
3.3 (OR (EQUAL STMT AS) 
3.4 (AND 
3.5 (EQUAL (CAR AS) 'ALL) 
3.6 (EQUAL (CADDR AS) (CAR STMT» 
3.7 (PROVE (CONS (CADR AS) (CDR STMT» DB»»)) 

Note that the dialect of LISP used in this program has dynamic 
name scope so in the function PROVESIT, the name STMT has the 

- 36 ­



same value that it had in the call of PROVE. This is not the 
case ill all LISP implementations. 

Here is the execution of the program: 

(PROVE STMT DBASE) 
T 

lIere 1s an explanation of the e vaLua t.Lon of the LISP p r-o q r am 
in reverse order: 

Description of PROVESIT 

Given a fact (AS) (3.2), statement (STMT) is true 
if either of the following is true: 

1.	 STMT is the same as the fact (3.3) 

2.	 each of the following is true: 

a.	 t.h e first word of the fact is "ALL" (3.5) 

b.	 the third word of the fact is the same as
 
the first word of the s t.a t emerrt; (3.6)
 

c.	 you can prove the constructed statement from 
thf'l s~conn '·7ord of the fact and th3 
seconci w~rd of the statement (3.7~ 

Here's examples where each of the possibilities achieve truth 
(in reverse order): 

2.	 If fact is "ALL fvIAN f>10RTAL" arid staternent is
 
"MORTAL STEN" then
 

a.	 first word of fact is "ALL" 

b.	 t h t r d word of fact matches first word of
 
st a t em errt;
 

c.	 constructed s ta t emen t; "Ml\l1 STEI~" can be proven 

1.	 If fact is '111A.~1 STEN and sta ternent is
 
"111\N STEI~" (as COIlS tructed a bo\te ), t.li ell
 

fact is t.h e s ame as "the s t a t em eri L
 

37
 



Description of FINDA 

Given a set of facts (RESTDB), find the first of 
the following which is true (2.3): 

1.	 the set of facts 1s empty in which case return 
false, the statement cannot be proved (2.4) 

2.	 T is always true (2.5) so evaluate the following 
s t.opp f riq as soon as one is true: 

a.	 prove the statement using the first fact 
in the database (2.6) 

b.	 recursively repeat the FINDA function 
on the database with the first fact left 
out 

FINDA has the effect of iterating through the facts until 
either the statement is proved or it runs out of facts. 

**	 The APL2 program 

The LISP program can be translated into APL2 directly using 
the following correspondence: 

LISP APL2 

empty list NULL R Q=pR 
first item CAR R tR 
rest of items CDR R 1i-R 
first of the rest CADR R t1-}R 
first rest rest CADDR R t2~R 

identically equal EQUAL L R L=.R 
join two items CONS L R ( «t. ) , R 

The connective logic of the LISP program 1s handled by the 
ordinary sequencing of the APL2 statements. 

The database is again a vector of statements with each item a 
vector of character strings: 

DBASE+('ALL' 'MAN' 'MORTAL') ('ALL' 'DOG' 'HAVETAILS') 
DBASE+DBASE, ( 'MAN' 'STEN') ('DOG' 'SPOT') 

The goal 1s a vector of vectors: 

- 38 ­



1 

STMT+'MORTAL' 'STEN' 

Here's the program written in APL2 syntax: 

[OJ Z+DB PROVE ST A SIMPLE DEDUCTION 
[2J A DB + FACTS, IMPLICATIONS 
[3] A PROVE + ST IS A FACT 
[4] Z+f~INDA DB 

[0] Z+FINDA DBS 
[1J Z+O A ASSUfrJE FALSE 

1ABASE[2] -+(O=pDBS)/O A EXIT IF DA'1 EMPTY 
[3] +(Z+PROVESITtDBS)/O A ATTEMPT TO PROVE WITH FIRST AXIOM 
[4] Z+FINDA 1..,DBS A ATTEMPT TO PROVE WITH REST OF AXIOMS 

[0] Z+PROVESIT AS 
[1] +(Z+ST~AS)/O A TRUE IF FACTS MATCH 
[2J +(~Z+'ALL'~tAS)/O A ELSE SEARCH FOR IMPL1CATION 
[3J +(~Z+(tST)=t2"'AS)/O A AND MATCH ITS CONSEQUENT 
[4] Z+DB PROVE(ct1~AS)J(1~ST) A AND ATTEMPT TO PROVE NEW GOAL 

Here is the execution of the program: 

DBASE PROVE STMT 

The execution of this program is precisely the same as t.he 
LISP program and so is not analyzed in detail. 

Neither the LISP nor the APL2 program is particularly elegant. 
Both can be improved. The purpose of the exercise is only to 
show that a standard documented LISP program can be trivially 
converted to APL2. 

39 



Part 4: The Implementations 

In this part, alternative representations for logic statements 
are presented. APL2 programs that describe tlle important AI 
algori thms are developed. Tlle programs are designed to 
describe the algori thms and efficiency of ex e cut.Lo n is not 
considered. Onc e the algorithms are understood, a I)rograllllner 
may apply his ingenuity to develop more efficient procedures. 
Some directions for improvement are discussed. 

4.1: Representations 

AI algori t.hm s operate on facts and rules. Therefore, the 
r-epr-e s en t a t.Lo n of facts and rules becomes the first order of 
business. 

The choice of representation heavily influences the structure 
of the algori thms and vice versa. The representatioll 
ultimately chosen for logic statements in this paper is 
influenced by the properties of the Resolution algorithm. 

By far the s Lmpl.e s t; representation of a predicate would be 
simply to represent it as a long character string. 

'sten is a man' 

This representation 1s not sui table for lise wi th an algori t.hm 
because it does not distinguish the relevant parts of the 
predicate (the relationship and the objects) from the 
irrelevant parts (the letters making up the words). It is not 
apparent that 'sten' is an indivisible subset of the vector. 

A more reasonable representation is achieved by using nesting 
to hide the irrelevant structure of a statement. The predicate 
at hand expresses a relationship between two things 'sten' 
a nd 'man'. This may be represented as a three i t.em vec·tor of 
the three enti ties the r e Lat.Lo n s h Lp and 'th e two obj ects 
related: 

'sten' lisa' 'man' 

TIlis array is a three i tern vee·tor of vectors and only people 
and the programs they write interpret this as an assertion of 
some relationship ('isa') between two ideas ('sten' and 
'man'). Any arrangement of these three items is suitable as a 
representation of the statement. The one above is called infix 

40 



because the relationship is in the middle. Since in general a 
relationship could apply to more than two things, most logic 
systems use prefix notation putting the relationship first. 
Ei ther of the following two representations is a reasonable 
prefix representation: 

'isa' 'sten' 'man' 
lisa' ('sten' •man' ) 

The first is an N item vector containing the relationship and 
N-1 arguments. The second is a two item vector wi th the 
relationship as the first item and the vector of arguments as 
the second 1 tem. The algori thms presented in this paper will 
work for ei ther choice of representation. The first is 
simpler and so is probably more efficient computationally. 

You can choose any representation that is convenient for you. 
APL2 does not impose a representation on you. Once you have 
chosen a representation, however, you must use it 
consistently. 

An argument of a predicate is called a term. A term may be a 
constant.. a variable.. or the application of a function that 
returns a constant term. For example, • sten' is a c ons t.an t; 
term in the predicate: 

mortal(sten) 

In an effort to mimic the rules of PROLOG, any word begj.nning 
with a capitol letter is taken to be a lo~ic variable. X is a 
logic variable term in the following predicate: 

mortalCX) 

Terms may be computed by functions. f(a,b) is a function in 
the predicate: 

mortalCfCa,b» 

This last predicate can be represented in APL2 as 

, mortal f C• f ( , a ' t b' ) ) f 

Thus nesting of arrays is used to represent the structure of a 
predicate. 

Here is a stylized picture of the structure of a predicate: 

- 41 ­



Predicate Predicate 
-+2 
Relation Arguments 

en [+n 
-J-rl 

Relation terln 1 term2 t 
or en c c [ 

The algor i t.hms to be discussed operate on dis j u.nctive clauses 
-- predicates connected by "or" r v i , Therefore, t.h e presence 
of "or" may be assumed and a clause represented as a vector of 
predicates. This does not, however, allow for a representation 
of the sign (rv) that negates some predicates. Therefore, a 
clause is broken into two groups: those pred1ca-tes not negated 
in the first group and those negated in the second group. Each 
group is called a clause list. Therefore, each clause list is 
a vector of predicates: 

Clause list 
.....n-----------------­
Predicate predicate

_J [_-+2_I c: 
A clause is, then, represented as a vector of 2 clause lists 

t.he vector of the 110n-negated predicates and the vector of 
the negated predicates: 

Clause 
-+2-----------------------

Pos clause list Neg clause list 

When a clause is Lo o ked at as an Lnf erence J t.h e pas i ti ve 
clause Lf st is called tIle consequent, arid the n e q a t.Lv e clause 
list is called the antecedent. TI1US, tlle s Lqn of a predicate 
is encoded in the structure of t.h e array, not ill t.h e d at a , If 
a predicate is negated, it appears in the second list. 

Finally, a knowledge base or a database is a vector of clauses 
each representing one fact or one rule. Sillce each s t a t.ernen t; 
is claimed to be true, the database may be considered all "alld" 
(A) of the clauses: 

42
 



Data base 
+n-------------- ­

Clause Clause 

__I [_+2_I L 
Facts are included in the database by writing t.hem as 
inferences with an empty clause as antecedent (because 
anything infers something that is true). 

Here is a summary of the resulting data structure: 

Database - an n item vector of inferences 
Clause - a 2 item vector of clause lists 
Clause list - an N item vector of predicates 
Predicate - an N item vector of relation and 
Relation - a depth 1 vector 
Term - depth 1 or more 

terms 

Thus a database is arbitrarily deep (depending 
any functions) but is at least depth 5. 

on tte depth of 

Here is a picture of part of a database 

Database 
-+n-------------------------------- ­

Clause 
-+2-------------------------------- ­

Clause list 
+n----------------------------- ­

Predicate Pr edLcate 
r"'-+n------------------, -fo-n--------­

Relation 

c c [ 
Terrn1 Terln2 Te Relation Terln 

This is one of many possible data structures for the database. 
Even this a r-r-arrqemen t; of data could be stored using s ome 

43
 



higher rank arrays rather than vectors at each level. For 
e xampl.e , a data base could be stored as all ;V }JY 2 ma·trix wh e r e 
e a c h row represented a clause and c o Lumn 1 was tIle posi tive 
list and c o l.umn 2 the n eqa t.Lve list. TIle algorithms wh i ch 
follow work together with the depth 5 structure so that during 
execution, the structure 15 d.e c o mpo s ed by the normal 
application of APL2 operators. 

Here is an example logic problem and its representation with a 
depth 5 array: 

The table is by the window 
The box is on the table 
if X is by Y and Z is on X, then Z is by Y 

This problem is more formally stated as follows: 

by table window +
 

on box table ..
 
by Z Y + (by X Y) A (on Z Xl
 

Here is the picture of the database: 

44
 



~-+3-----------------------------------­

~+2---------,...-+2------------------------.. 
+1-----------------........
 
""'-+3---------------. o 
[::~ 

f 

,..+1--------, 
+3------­

r:~:::l[::nJ ~ 

+2 

0 +1 -+2 
"",+3 r+ 3 - ­

aby ~Z 6.y aby[:~~ [;] @ B l§l 

r~~:::l
r:~l r:~l r:~l
~ LSeJ ~ 

1__-----.1 

'a' is prefixed on non-variables and .~t is prefixed on 
variables as part of conversion to internal form. 

Now you might ask a question like "Is the box by the window". 
If this is a fact, it is represented formally as follows: 

by box window +­

Here is the representation of the goal as an APL2 array: 

- 45 ­



...+2------------------------. 
-..1-------------------, 

-+-3-------------·-, o
r:~=:l[:~~ ~ 

4.2: The Unification Algorithm 

Unification is the process of comparing two or more predicates 
to see if t.hey are the same predicate. It is like the APL2 
primitive "ma t c h " (=) except that predicates containing 
variables ma t ch other predicates if values for the "variables 
can be discovered that make the predicates the same. 

** Examples of Unification 

In principle, Unification may be applied to any number of 
predicates. If the predicates are 'th e s ame , or call be ma d e t.h e 
same by supplying values for variables, t.h en VIlification 
succeeds. The APL2 UNIFY function that is described h e r e 
applies to two predicates. It could be generalized to apply to 
more than two pred.icates but t h e generali ty 1s not needed in 
this paper. The f unc t.Lo n UNIFY produces two resul ts returned 
as a two i tern nested vector 1 or 0 depending 011 if t.h e 
s t.a t.emen t s do or do not unify and t.h e values for variables 
that permitted unification. 

Unification looks at t.wo predicates arid returns -1 if they 
match. For example: 

lisa' 'sten' 'man' ViVIFY lisa' 'sten' "man ' 

lisa' 'sten' "man ' UNIFY , isa' 'stell' mortal'I 

o 
'isa' ( 'sten' 'man') UNIFY lisa' ('sten' 'man') 

46
 

1 



This last example shows that UNIFY is insensitive to t.h e 
representation of a predicate. The extra s t r uc t ur-e causes an 
extra recursion but the answer is still correct. 

With such constant formulas, UNIFY is, in fact, identical to 
the APL2 function "match" (=). If a formula contains a 
variable, you may substi tute for that variable to make the 
formulas match. In this case, UNIFY returns a 1 and the 
substi tutions n e e d ed to ma k e 'the formulas match are 
r-ememb e r ed e 

lisa' '6X' 'man' UNIFY 'isa' 'sten' 'man' 
1 6X+'sten' 

These two formulas match if 'sten' is substituted for 1~X'. 

'fn' '6X' 'bY' 'man' UNIFY 'fn' 'fiX' 's"ten l '6Z' 
1 tiY+'sten' 

l1Z+'man' 

These match if two substi t.ut Lons are made: 'sten' for 'l:J.Y' 
and 'man' for '62' 

The variables in these formulas are just place h o Lde r s , 
Rewriting then wi t.h different variable n am e s does no t change 
the meaning. 

, is a' '~X ' , man' unify lisa' '~Y' 'man' 
1 ~X+'6Y' 

A variable can be replaced by an entire f o r mu La in order to 
make two formulas match: 

, fn I '6X ' 'liX ' UNIFY 'fn' ('a' '6.¥' 'e') ('a' 'b' 'LiZ') 
1	 6.Y+'b ' 

6.Z+'c' 
6X+'a' 'b' 'e' 

The following two formulas do not unify: 

'~XI '~Y' 'a' UNIFY '~X' 'b' '~Y' 

o	 I::iY+'b' 

An atteutpt to s ubstLt.ut.e 'b' for '~"i' or 'all for '6Y' gives 
formulas that don't match. 

In summary, a constant unifies only with the same constant. A 
variable unifies with anything not containing that variable. 
Otherwise, an expression unifies wi th an expression of t.h e 
same length if corresponding items unify. 

47
 



** The APL2 Unificatioll algor! t.hm 

The actual unification process is represented by the f unc t.Lo n 
UNIFYA described next. A cover f unc t.Lon named UN1FTY (ill 

Appendix 1) returns the result of unification (0 or 1) and the 
substitutions that are implied. 

Unification is applied between predicates e a c h of which h a s a 
structure like this: 

Predicate 
-+n----------------- ­
Relation Term1 Term2 Te 

CC[ 
Here is a description of the algori thm in vror d s ~li t.h th.e key 
piece of APL2 notation identified. The actual APL2 code and a 
more complete description of the code appears in Appendix 1. 
"Failure" in the following description means return a 0 
(false) and "success" means return a 1 (true). Substi tutions 
are done using real APL2 variables. 

48
 



\JZ+	 X UNIFYA Y 

[1]	 fail if both predicates are empty. 
In fact they do unify but they are useless. 

[2]	 substitute for any variables that have values. 
EVAL DEPTH1 

[3J	 if X and Yare the same, succeed. 
X :: y 

[4]	 if neither X nor Y is a single name, 
branch to RECUR 
....,1E: =OOX Y 

[5J	 if neither X nor Y is a variable, fail 
'l\.'t:.:t 

[6J make sure substitution is allowed (Occurs check) 
(see Appendix 1) 
X€.€. 

[7]	 do substitution and succeed (value of Y as value cf x.) 
~X,'+Y' 

[8J	 RECUR: fail if X and Y not same length 

[9J	 unify corresponding items of X and Y 
X UNIFYA o Y• 

X UNIFYA FALSE Y 

While descriptive, this is not an efficient algorithm in 
complicated cases. A linear algori t.hm is discussed in ( Pa 1 ) • 

4.3: The Resolution Algorithm 

Resolution is a rule of inference and simple cases have been 
discussed before. Here's an e x amp Le s Lmt La r to t.he o n e 5]\0\'111 

before. Given: 

PvQvRv(r-vS)v(.-vV)
 
( rv p ) V 1" v Uv ( ""' ~J )
 

you	 may infer 

l.I9 



The idea is to identify terms negated in one s t.a t emerrt; and 
non-negated in the other a.nd eliminate them one at a t.Lme , 
This operation is facil! tated by representing each s t.at emerrt; 
as two groups of terms -- those non-negated and those negated. 
Using parentheses to indicate the groupings, you may write the 
above statements as follows with the disjunctions (v) 

implicit: 

(P Q l?) (S V) and (T U) (P W) 

you may infer 

(Q R T U) (5 V W) 

which is called the resolvant. Thus, the first group in each 
statement is the non-negated terms and the second group is the 
negated terms. These two groups are called the clause lists. 

This form for representing clauses is particularly nice for 
representing an implication. Recall that the Lmpl.f.c a t.t on "P 
implies Q" may be wri tten ei ther of t.h e following two ways: 

Q+P 
Qv(,.."P) 

When the truth of the statement 

PvQvRv(""'S)v(""'l') 

is claimed, it may be separated into two groups c onta f n Lrrq 
positive terms and negated terms: 

The form for implication requires a single negation. Factoring 
out the negation gives: 

(PvQvR) v rv(SAll) 

Now it looks like an implication and may be wri tten in tIle 
other form: 

(PvQvR) .. (SAV) 

All this Sl10WS that tIle two groups of terms c o n t.a i n t.h e 
posi tive arid the negative terms respecti v e l.y , If y o u "tllill]{ in 
terms of Qv("",P), the second grotlp is a d Ls j unc t.Lon of negated 
terms. If you think in terms of Q+P. then the second group is 
a c o n j urrc t Lo n of pasi tive "terms. 'This one grouped 
representation covers both written representations. 

In concept, the simplest way to do Resolution is to select the 
non-negated terms of one statement, the n e q atLve 't c r-ms f r o m 
the other statement~ and then match items from one group with 

50
 



i terns of the o t h er- group in all combinations" For the mouierrt , 
let e a c h term be r e p r e ss e n t.ed by a s Lnq l.e c h a r a c t e r- lt e e p t nq f.n 
mt nd that, in practice each term ma y be arbi trarilyt 

complicated. Her e are t.h e statements from the above example 
written as APL2 arrays: 

ST1 -+- ( 'p' 'Q' I R' ) ( 'S t 
S112+('T' 'U' ) ( , P' , Iv' ) 

(Note that t.h e Ln t e n t is that each of t.he letters in q uo t e s is 
a predicate so don't illterpret them as variables) TIle data 
struct.ure for e a c h statement looks La k e t.hLs r 

Clause 
-+2--------- ---­

Clause list 
~n·------------·---------------------

Preclicate Predicate 
-J-n---­-~n-----------'-'--~----..., 

Relation Term1 Term2 Tel" Relation 

r~n-
l _ 

r~n-

j c C .. L 
----------

If the s t a t em en t s were really this s Lmp l.e , y o u could ma t c h "the 
appropriate groups u s Lriq the "outer p r o d u c t." opera-tor: 

( 1 ::>ST1 ) = (2::>FJT2)
o • 

1 0 
0 0 
0 0 

( 1 =>~;T2 ) o • :: (2=,ST1) 
o 0 
o 0 

In practice, s t a t e men t s may c o n t.a Ln v a r t a b Le s . so "ruat.ch " is 
n o t; e riouqh to c ompa r e predica tes -~ - you mu st; U/v'I FY : 

51
 



1 0 
o 0 
o 0 

o 0 
o 0 

Each 1 in these resul ts implies that a successful resolution 
can be done. 

Knowing that a resolvant exists is not normally enough 
information. You want to know just what the neH clause is and 
t.he values of the variables that permi tted it to be formed. 
Thus, the actual RESOLVE algori 'thm must compute these 
resolvants and the values of variables. One way to do this is 
to have a procedure which given one positive predicate from 
one statement and one negative predicate from another 
s t a t emerrt , computes a resolvant if one can be f c r me d , This 
procedure can then be applied in all combinations u s Lnq two 
"outer products" as done wi th UNIFY above. Suppose that you 
have such a function called RESOLVANT. Here is one way to 
write a resolution program. The arguments are the two clauses 
to be resol ved and so each argument is a two i tern vector of 
clause lists: 

\JZ+	 A RESOLVE B 

[1 ] apply RESc)LVANT between posi tive predicates from A and 
negative predicates from B in all c omb i nat Loris ( 1~A) 

o.RESOLVANT (2~B) 

[2]	 apply RESOLVANT between pos i ti ve predicates from B a.nd 
negative predicates from A in all c o mb Lna t.Lori s (1~B) 

o.RESOLVANT (2~A) 

[3J	 delete non-resolutions 

The description of t.h e program is longer t.h a n the actual 
p r-o q r am which is shown ill AppendiX 1. 

The logic of the HESOLVANT program is also straightforward. It 
is given OI1e positive predicate f r o m o n e s t.a t.ement arid 0]1e 

negative predicate from t.h e other statement. If these 
predicates unify, a resol v an t can be f o r me d , 

Here is the logic in words: 

52 



VZ+	 AR HESOLVANT BE 

[1J	 if argument predicates do not unify, fail and return o. 

[2J	 form new inference by building its two clause lists. The 
positive clause list comes from joining the two positive 
clause lists of the input clauses and deleting the 
predicate that unified. TIle negative clause list c om e s 
f om Lrrpur joining the two negative clause lists of t.h e c 

clauses and deleting the predicate that unified. 

[3]	 substitute for any variables that received values during 
unification. 

If the predicates urid f y , this function r e t ur-n s the new 
clause and the substitutions for variables that permitted 
unification. 

** Speeding up resolution 

The functions RESOLVE and RESOLVANT describe c ~ way of 
implementing resolution on the gi v e n d at a structure. t·lore 

algori t.hm, could be d e Lo d . 'I'h y L ~ trade t.hefficiellt	 ve pe e vro u e 

descriptive elegance of 't.h e algori thms presented for b e c t.e r 
performance. Often me t.h o d s for speed tIp ~.n.volve p r e pr-o c e. s Lnq 
t.he knowledge base to make ResolutioIl a ~ UnLf Lc a t Lo n more 
efftcient. (See Fo1 for a d e s c r Lp t Lo n of 'th e RETE a l.qo..:ithm 
for speeding up pattern matching.) Preprocessing is an 
advantage only if the knowledge base is searched more often 
than updated. 

Here are some ways to speed up Resolution and its application: 

1.	 Avoid t.h e outer product in HE_SOLVE by a r r a nq I n q tIle 
predicates in a clause in lexical order by the relation. 
Then resolution can make a linear pass tllrougll each 
clause and only attempt to unify predicates '\"1i th t.h e 
same relation. 

2.	 WIle}l resol ution produces a new clause, a t t.empt; to get 
a more general clause by resolving agaiIl a q a t n s t; the 
input clauses. TIlis gives s Lmp Le p a Lr wt s e r e s o Lut Lo n the 
effect of more general resolution. See Appendix 6 
resolutioIl example 4 for an e x ampLe of tIlis. 

3.	 When trying to find a contradiction (as in the PROLOG 
application of resolution), apply resolution to clauses 
which could resolve wi th one of the predicates in the 
goal on the theory that the contradiction being sought 
must involve the goal to be proved. 

53
 



4.	 Resolve clauses with a single predicate first (called 
a uni t preference strategy). Since both the s Lnq Le 
predicate and 1 ts negation will be deleted, tIle resul t 
will be more general and possibly empty (a 
COlltradiction) • 

4.4: Solving Logic Problems 

Resolution is enough to solve logic problems. Here is tIle 
database and the goal for the example discussed earlier: 

ST1: by table window + 

ST2: on box table + 

ST3: by Z Y + (by X Y) and (on Z X) 

The question (initial goal) 

GO: by box window? 

Yo u could wri te a brute force forward chaining algori thin by 
resolving everything with everything and watching for the 
conclusion to show up: 

DATABASE o.RESOLVE DATABASE 

If the conclusion is not reached and there are no new clauses 
inferred, then you have failed to prove the desired goal. If 
the goal is among the n ew things inferred, t.h e n you have 
succeeded. Otherwise add the new truths to the database and 
repeat the o u t.e r product until i-t ei tIler succeeds or fails. 
TIlis is essentially a breadth first f o r-wa r d chaining and will 
eventually generate the result if it is true. 

The function FORI1/ARD1 in Appendix 1 is an LmpLemen t a t Lon of 
this algorithm. It is, however, extremely inefficient since at 
e a c h s·tage it repeats all the wo r k of the previous stao e , n 
more efficient algorithm does the first outer product but from 
then on only tries resolutioI1S b etwe e n tIle n ew c La u s e s and the 
database. This algorithm is r-epr e s e n t.ed by tile f unc t Lo n 
FORWARD in Appendix 1. 

Both of these programs produce t.h e s ame result 011 the e x a mp Le 
problem. The first outer product generates t.h e s e new clauses: 

by(Z,window) + on(Z,table)
 
by(box,Y) + by(table,Y)
 

54 



Since the goal does not SllOW up, these clauses are resolved 
again wi th the clauses in the database generating these new 
clauses: 

byCbox,window) ....
 
by(X,window) onCy,table) on(X,Y)
 

byCZ,y) .... by(table,¥) on(Z,box)
 
by(box,Y) + by(X,Y) onCtable,X)
 

This time, the desired goal 1s generated and the program 
stops. This particular example is not so Lne f f Lc Lerrt; but an 
even slightly more complicated example leads to the generation 
of many unwanted clauses. 

Here is another solution to the same problem that takes 
advantage of the fact that you want to prove that two things 
are by each other and sees 'by' in the conclusion of ST3 with 
two variables. If you can use r e s o Lu t Lon to delete the 
predicates on the right of ST3 and get th.e right values for 
the variables~ you can get a solution very fast. 

A solution is achieved in two steps by forward chainjI.9: 

1.	 Post ti ve predicate "by" in ST1 unifies w'i t.h 
negati ve predicate "by" in ST3 wi th t.h e 
substitutions: 

X+table 
Y+windo~~ 

2.	 Resolve ST1 and ST3 on the "by" predicate giving: 

G1: by Z window + on Z table 

3.	 Positive predicate "on" in ST2 unifies with 
negative predicate "on" in G1 with t.he 
sUbstitution: 

Z+box 

4.	 Resolve ST2 and G1 on the "on" predicate giving: 

G2: by box window + 

Thus proving the desired goal. 

In this case it was easy to see what to do. In ge11eral, .it; is 
not so easy to know which resolutions to make. What is needed 
is a general organized procedure that uses resolution to prove 
logic problems. A general s oheme is not krro wn but if t.h e 
knOWledge base is restricted to Horn clauses (those wi th one 

55
 



or fewer positive predicates), a general scheme is known. This 
scheme is the basis of PROLOG. 

4.5: PROLOG-like search strategy 

PROLOG-like languages approach the solution of logic problems 
by denying the desired goal and searching backwards for a 
contradiction (an empty clause). This helps to limi t 'th e 
amount of wo r k done because, at least, only clauses that 
potentially lead to the conclusion are generated. 

The proof proceeds by using the goal (the denial of the real 
goal) to locate another goal (called the sub-goal) and 
continuing this process until a contradiction is reached. 

While Resolution is a completely general rule of Lnf e r eric e , 
there is no guarantee that a statement which is a resolvant of 
two other statements is simpler than the given statements. 

Most logic programming languages control this s I tuation by 
lint1 ting the clauses of a p r o b Lem to those tllat contain at 
most one conclusion (non-negated predicate or one predicate on 
the left of the left arrow). Such a clause is called a Ho r-n 
clause. Given this restriction and a goal that is the denial 
of what you want to prove, you can locate a sub-goal by d o Lriq 
a resolution between the given goal (which is negated) and any 
clause with a predicate (noll-negated) that will u n Lfy with 
that goal. Since there is at most one non-negated predicate in 
a Horn c Laus e J it gets deleted in t.he process of resolution 
giving as a resul t another clause c o n t a Ln Lriq only n e q a t.ed 
predicates -- i.e., another goal. 

Some t Lme s the su,b-goal will have more than o n e predicate. 'I'h I s 
is called a conjunctive goal (since both must be true to imply 
the contradiction). Since both must be true, you can try to 
prove them one at a time making sure that a n y s ubs t.L tutions 
made in proving one are made in the other predicates as well. 
PROLOG a Lway s attentpts to prove tll.e first of a c o n j uric t Lori 
first. 

Here is an example problem solved in this manner. 

56
 



The Problem: 

ST1: by table window + 

ST2: on box table + 

ST3: by Z Y + (by X Y) and (on Z X) 

The question (denial of initial goal) 

GO: + by box Wi11dow 

1.	 Goal GO unifies with positive predicate in ST3 
with the substitutions: 

Z+box 
l+window 

2 •	 Resolve 8'1'3 and GO 011 t.h e "by" predicat.e giving 
the sUb-goal 

G1: ... (by X window) and (on box X) 

3.	 G1 is a conjunctive goal. PROLOG attempts to 
prove the first of the two statements first. 
The first predica Le ill G'l unifies with ST1 
with the substitution: 

X+table 

4.	 Resolve ST1 and G1 giving: 

G2: ... on box table 

5.	 G2 unifies wi th ST2 wLt.h no substi t.u t Lon s , 

6.	 Resolve ST2 and G2 giving an empty clause 
which is a c orrt r ad Lc t Lon , 

Thus proving the desired goal. 

Given the desire to search for goals wh Lc h are krio \'111 to have 
no non-negated predicatesf a more efficient Resolution program 
can be written. If there are no non-negated predicates in the 
goal there is 110 point in tryillg to unify thern w Lth negated 
predicates of a statement. 

Here is a resolution program that assumes that the rigllt 
argument is a goal: 



VZ+ A RESOLVEGOAL B
 

[ 1 ] apply RESOLVANT between posi tive predicates f r orn A and 
negative predicates from B in all c ombLna t.Lon s 
(o.RE'SOLVA!vT) 

[2J clelete no.n-i r e s o Lut.Lons 

The actual program is in Appendix 1 and is the same as RESOLVE 
except it only makes one call of RESOLVANT. 

Now all h e are available to write a r am 't.h a't tools p oo r t; 

essentially implements the logic of PROLOG (minus a user 
f r LeridLy front end). A oomp Le t;e description of t.h e PROLOG 
algori tllm can be found in (C11). It is n o t; p r a ctLc a L to repeat 
it but here is a brief description wh I c h explains t.h e p r e v Lous 
example again and points out some other considerations. 

Given a vector of clauses as a d a t a b a s e and a possibly 
conjunctive goal (all of wh f c h are IIor11 clauses), attempt to 
derive a contradiction. As stated before, PROLOG attempts to 
prove the Le f t.mo s t; goal of the conjunction ill a depth first 
fashion before Lo o k t n q at t.he n e x t, goal. T11e p r o q r am is not 
s t.r a Lqht.r o r war d because in s a t.Ls f y Lriq one goal other possibly 
conj uncti v e sub-goals may be generated requir illg a recursive 
call. Fur t.he r , when a goal c a nrro t; be satisfied it may be 
b e c a u s e an e a r Li e r goal has more t.h a n one s o Lut Lo n and t.h e 
wrong one was found. In this case, the algor i thIn must back up 
and Lo o k for a no t.h e r s o Lu t Lo n of t.h e earlier goal. This is 
called b ackt r a c ltLnq and involves f o r-qet t Ln q values d Ls c o ver cd 
for variables in the earlier c l aus e , Fillally, 't.he r e may be 
more t.han o n e way to satisfy all the goals a n d you ma y wan t to 
know them all -- not just the first o n e discovered. 

He r e is a high level f10\01 c h a r t; of PROLOG: 

58
 



Next rule 

Prove sub-goal 

no next rule no next goal 

SUCCEED 

previous goal 

FAIL 

Here's an example problem whose solution r e qu Lr e s 
backtracking: 

ST1: john loves food 
ST2: jane 1s fem31e 
ST3: john loves jane 

The question to be answered is "Is there something that John 
loves which is female?" This is a conjunctive goal more 
formally stated: 

GO and G1: (john loves X) and (X is female) 

PROLOG immediately satisfies GO u s Lriq ST1 gtving the value 
"food" tc variable X. Now it tries to satisfy G1 u s Lriq t.h e 
given value of X. TIlis goal is "Food is female" wh Lc h is not 
in the database. Now PROLOG must backtrack and attempt to find 
anoth.er way to satisfy GO and this Lrnp Ld e s forgetting t.h e 
value of X. 

Now using ST3, GO is satisfied and X gets the v a Lu e "Jane". 
G1 b ecome s "Jane is female" wh t c h is trivially satisfied. 

The actual program that implements this logic (DFS in Appendix 
1) is mo r e c o mp Ld c a t e d that tIle others p r-e s e n t e d and does not 
illustrate any Lmpo r t ant; new concept and so is not discussed 
in detail here. It basically uses RESOLVEGOAL to a t.t.ernpt; to 
satisfy each goal in t.ur n keeping traclt. of substitutions in 
case backtracking is required. Even though it has less of a 
functional style than the o t.h e r programs, it is, n o n e t.Ii e Le s s , 

59
 



interesting that the logic of PROLOG can be captured in an 
APL2 program of a few dozen lines. 

60
 



Part 5: Going Beyond the Fundamentals 

This section briefly discusses some other areas in AI where 
APL2 can be applied wi tIl ease. The first section presents all 

alternate representation of knowledge that tends to be compact 
because it keeps togethGr the information about a given 
subject. Other sections discuss how the ordinary computational 
ability of APL2 can be used for reasoning in exact and inexact 
environments. 

5.1: Frames 

You've seen one traditional way to represent knowledge. Frames 
(Mi1) are an attempt to represent knowledge that may be closer 
to the way people store krio w.Ledqe , 'I'h e basic idea is t.ha t; 
there is a data structure that represents a generalization of 
some concept, describes the c o mmon case, gJves ini tia -, values 
or assumptions, etc. Ac t ua L instances are repr s crrted as 
exceptions or refinements of the general case. People learn by 
induction extracting a general case from a set of 
particular instances t) A frame stores t.h t s inducea krio wLodqe 
while still allowing differences Ln detail f r o m the gel' .er a L 
case to be stored in sub-frames. 

No attempt is made in t.h t s brief s e c t Lo n to Lnt.r oduc e all the 
terminology or details about frames. For that, refer to t.h e 
literature (Ke1) (Mi1). Rather, only t.h e representatiol1S of 
frame data with nested arrays is discussed. 

Basically a frame is a set of pairs called slots. Each slot is 
a unI qu e name and indicates a v a Lu.e , a s et; of values, or a 
procedure to invoke (called a demon). A set of pairs is easy 
to represent in an APL2 data structure. 

Here is an example of a frame for Cha b.l.d s wine borrowed f r o m 
Keppel (Ke1). Here is the knowledge about Chablis to be stored 
in the frame array: 

The color is white 
There are 215 bottles 
TIle v Lntaqe is 1981 and 1982 
The price is computed by the procedure GETPRICE 
Chablis is a kind of wine and it is also a village. 

These statements can be represented ill APL2 vectors by the 
following pairs of values: 

61 



P1""COLOR' ('VALUE' 'WHITE')
 
P2+'QUANTITY' ('VAL[JE' 215)
 
P3+'YEAR' ('VALUE' (1981 1982»
 
P4+'PRICE f ('PROCEDURE' 'GETPRICE')
 
P5+'AKO' ('FRAME' ('WINE' 'VILLAGE'»
 

Each of these variables is a pa.ir representing a frame slot. 
The first i t.em is the n am e of t.h e slot. AKO s t arids for "A Kd rid 
Of". In this case 1 t means ·that ChabLa s is a Itind of wine and 
it is also the name of a village. The s e cond i teln of each 
variable is also a pair (although it doesn't have to be). The 
first 1 tern of the pai'r says what kind of information is stored 
in the second item. The first three variables contain values 
related to the slot name. The fourth one contains the name of 
a procedure to call should the price of the '''ine ever be 
needed. The last variable is a reference to two more general 
frames. The AKO slots tie the frames together into a network. 

These five pairs can be represented in a single APL2 array 
either of two obvious ways. Keppel stored them as a vector of 
pairs: 

CHABLIS1+ P1 P2 P3 P4 P5 

Here's a picture of this array: 

62
 



DPY CHABLIS1 
~5-----------------------------­

~+2------------------. +2----------­
.0+02---------, -+8 -+2---­

[ QUANTITY I[~~LOR I 
[;~LUEI[;~LUEI [;~ITE I 

-+2--­+2-------------------. 
-+2----------­

[;~ICE[;~ARI 
[;~LUEI 

-+2---------­

] 
+2----­+2------------­

8~r;;OCEDURE! r;;TPRICEI [;~ANEl r" 
L 

2 

!vINE r;;LLAGEj8 

Since everything is a pair, this same data can also be stored 
in a two column matrix: 

- 63 ­



CHABLIS2+~CHABLIS1 

Here's a picture of this array: 

DPY CHABLIS2 
r-+5 2------------------------­
~ -:;£0£/ 

CS 

UANTITYII 

r:;~ 
~ 

r:~~ 
~ 

r:;:Ja 

...-+-2-----------, 

r~~~ r:~-;;;l 
~~ 

...-+2------.... 

r~~-;;;:l 
~ 

215 

~2-----------...... 
r;;£UE! 

-+2-------------.. 

;ZOCEDUEE. [ E
 

~+2-----------------

~2----------r;~:;;;l
 
~
 [;;lJE ;
 

Here is how you might use this matrix to find out information 
about a wine. Selecting column 1 of the matrix gives you all 
the slot names: 

CHABLIS2[;1]
 
COLOR QUANTITY YEAR PRICE AKO
 

If you want to know what years are available, you can search 
to find out what row has that slot: 

CHABLIS2[;1]lC'YEAR' 

Knowing that row three has the information about YEAR, you can 
select the corresponding value: 

- 64 ­

3 



CHABL1S2[3;2]
 
VALUE 1981 1982
 

If the slot name does not exist, you c o u Ld then search for t.h e 
AKO slot and go search more general frames to get that 
Ln f o r-mat Lon , 

'I'hLs is a simple e x amp I.e a n d leaves out ma ny Lmpo r t an t ideas 
a bou t; f r ame s , None t.h e Le s s , you call see that t.he frame for 
Chablis contains information specific to that wine while 
inform.ation about wines ill general is kept in t.he f r a rue n ame d 
WINEr r e f e r enc ed by the AKO slot. 

5.2: Boolean Logic 

AlJL2This section explores the c o mp u t a t Lo n a l. abili ties of arid 
how they might be used to represent and operate on logical 
expressions. 

A given proposition P is either false or tru,e. TIle values 
false and true are rcp r e s e nte d ill AI)[,2 as t.h e n umb e r s 0 arid 1 
respectively. Therefore, the possible set of truth values for 
P can be represented ac a two item vector~ 

P1+0 1 

TIle possible values for the negation. of Pare 1 when P is 
false and 0 when P is true. 

I'VP1 
1 0 

Given t.h f s representation, trivial expressions about P can be 
COlltputed. For example a tau.tology is always true: 

P1 y (fVp1) 
1 1 

A contradiction is never true: 

P1 1\ (r-vp1) 
o 0 

If you want 'to wri te expressions wi t.h t.wo variables, t.h e r e are 
four possible c ornbLna t.Lo n s of true a rrd false. If Ci2 is f a Ls e . 
t.hen P2 may be false or true. If Q2 is true, tllen P2 may be 

65 



false or true. Thus for two variables, c o mp Le t e sets of 
values can be represented as four item vectors: 

P2+ 0 1 0 1
 
Q2+ 0 0 1 1
 

Now non-trivial expressions can be written. The expression 
P2AQ2 is true only when both P2 and Q2 are true: 

P2 A Q2 
000 1 

The expression P2 v Q2 only fails to be true when both P2 and 
Q2 are false: 

P2 v Q2 
011 1 

De Morgan's law shows that the negation of a conjunction 1s a 
disjunction and vice versa. One formulation of this rule is: 

P2 v Q2 +~ ~ (~P2) A (~Q2) 

Computationally this is 

(tvP2) " (tvQ2) 

100 0 
fV (tVP2) 1\ (fVQ2) 

o 1 1 1 

which is the "or" function. 

Implication is merely an application of the f o r mul.a for 
implication. P2 implies Q2 is written: 

Q2 v (tvp2) 

1 0 1 1 

This result has a 1 wherever Q2 is either greater or equal to 
P2 and so implication could also be written with a single APL2 
primitive: 

Q2 ;:: P2 
1 0 1 1 

Expressions containing three variables have eight possible 
combinations of values: 

66
 



P3 ~ 0 1 0 1 0 1 0 1 
Q3 + 0 0 1 1 0 0 1 1 
R3 + 0 0 0 0 1 1 1 1 

Here 1s the computation of three different implications: 

1. P3 implies Q3 

Q3 v (,-vP3) 
10111011 

2. Q3 implies R3 

R3 v (I'VQ3) 

1 1 0 0 1 1 1 1 

'3 .. P3 implies R3 

R3 v (""P3) 

1 0 1 0 1 1 1 1 

Suppose that you ~laim that "P3 implies Q3" an i "P3 11 are 
simultaneously true (Modus Ponens): 

( Q3 v (rVP3 )) 1\ P3 
000 1 000 1 

You might expect to see the representation of Q3 f r o m t.h a s 
c ompu t a t t on (0 0 1 1 0 0 1 1). The answer differs from Q3 
whe r e P3 is false but Q3 is true. Since it is c La Liued t.h a t; P3 
is true, the boolean resul t is stroIlger than j list, Q3. It 
expresses the fact that b o t.h P3 and Q3 are true 
s Lmultane ous Ly , 

Next, look at the chaining rule: If "P3 1m.plies Q3" and "Q3 
implies R3" t.hen "P3 I mp Lt e s R3". The r e s u L ts of t.h e 
individual implications are already Ii sted above. 'I'he 
computation of the chaining rule is: 

(Q3 v (~P3)) A (R3 v (~Q3» 

10001011 

Again, you mI qh t; expect the representatiol1 of "[.)3 im.plies 1?3" 
(1 a 1 0 1 1 1 1) but again "the r e s u Lt; produced is stronger. 
Suppose in addition to the chaining rule you assert that P3 is 
actually true: 

67 



(Q3 v (~P3» A (R3 v (~Q3» A P3 
000 0 000 1 

This shows that P3, Q3, and R3 are all s Lmu Ltaneously true. 
This is stronger than the result of "P" and "P3 implies R3 11 

: 

(R3 v (Np3» A P3 
o 0 000 1 0 1 

which makes no claim about the truth of Q3. 

5.3: Parallel Boolean Logic 

This section shows how you might go about using tlle 
application of the APL2 logical functions to solve a logic 
problem for all solutions in parallel. 

The following problem is taken from (Sm1): 

"When Alice entered the forest of forgetfulness, 
she did not forget e ver y t hd nq , Ol11y certain thiIlgS. 
She often forgot her name, and the most likely 
thing for her to forget was the day of the week. 
Now, the lion and the unicorn were frequent visitors 
to this forest. These two are strange creatures. 
TIle lion lies on Ho nday s , Tuesdays, and Wednesdays, 
and tells the truth on the o t.h e r days of t.h e week. 
The unicorn, on the other hand, lies on Thursdays, 
Fridays, and Saturdays, but tells tIle t.r-ut.n 011 t.h e 
other days of the week. 

One day Alice met the lion and the unicorn resting 
under a tree. They made the following statements: 

LION: Yesterday was one of my lying days 
UttICORN: Yesterday was one of my lying days 

From these statements, Alice, who was a bright girl, 
was able to deduce the day of the we e k , ~'lhat wa s i·t?" 

The following APL2 solution is based on. one produced by Malluel 
Al.f ons ec a , 

68
 



First the data must be defined. Here tIle variable DAYS is 
d e f Lne d as the seven days of the wee], and YES'll is defined as 
the day before each day of the week: 

DAYS+'Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat' 
YEST+'Sat' 'Sun' , I/ion t 'Tue' 'Wed' 'Thu' 'Fri' 

Next, two variables are set up that describe the days wherl the 
lion lies (LL) and t.h e days wh e n the unicorn lies (UL): 

LL + 'Mon' 'Tue' 'Wed' 
UL + 'Thu' 'Fri' 'Sat' 

Now you must wr t te expressions that are true. 'I'h e r e are two 
conditions under which the lion is telling the truth. This is 
one of his truth telling days and yesterday was a lying day or 
this is one of his lying days and yesterday wa s a truth 
telling days. Here are the boolean expressions that compute 
both of t.h e s e e 

(~DAYSELL) ~ (YEST€LL) 
10001 1 1 A 001 1 100 

0000100 
(1 0 0 0 1 1 1 A 0 0 1 1 1 0 O)/DAYS 

Thu 
(DAYS~LL) A (~YESTELL) 

o 1 1 1 0 0 0 f\. 1 1 0 0 0 1 1 
o 1 000 0 0 

(0 1 1 1 000 ~ 1 1 000 1 1)/DAY 

"Jon 

This says that if the lion is telling the truth it could only 
be Thursday and if the Lion is lying then this could only be 
Monday. 'I'bu s , we may define a variable representing wheri the 
lion tells the truth: 

LT + « ~ DAYS ELL ) /\ ( YES '17 E: L L ») v « DAYS E: L L ) 1\ ( rv YES '11 ELL ) ) 

The same logic 1s true for t h e un f c o r n s 

("-JDAYS€UL) 1\ (YESTEUL) 
1 1 1 1 o 0 0 1\ 1 0 0 0 0 1 1 

1 0 0 000 a 
( 1 1 1 1 0 0 o A 1 000 0 1 1)/DAYS 

Sun 
(DAYSEUL) /\ (~YEST€UL) 

o 0 001 1 1 A 0 1 1 1 100 
o 0 001 0 0 

(0 0 0 0 1 1 1 A 0 1 1 1 1 0 OJ/DAYS 
Thu 

Here's the expression for when the unicorn tells the truth: 

69
 



VT + «~DAYS€UL)A(YEST£VL» v «DAYS€UL)A(~YEST€UL» 

By iIlspection you can see that only 'I'hu r s d ay is true in both 
cases. Here, then is a summary of th.e solution in a more 
compact f o r m r 

YEST + -1¢DAYS+'Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat' 
( L L UL) + (I IV]0 n ' • T u e ' , Wed' ) ( '7Th u ' , F r i' 'Sat' ) 

LT + «-DAYSELL)A(YESTELL» y «DAYSELL)A(-YESTELL» 
UT + «-DAYSEUL)A(YESTEUL» y «DAYS€UL)A(-YEST€UL» 
(LTAUT)/DAYS 

Thu 

This problem can therefore be solved using entirely boolean 
e xpr e s s Lo n s in parallel wri tten to describe precisely the 
problem as stated. 

Sullivan and Fordyce (Fo1) describe a clever scheme for 
implementing a production expert system in APL using Boolean 
logic. 

5.4: Fuzzy Logic 

In discussing the truth of statements in APL2 notation, the 
number 1 is used to mean "certainly true" and the number 0 is 
used to mean "certainly false". Gi v en such Lrrput; , o n e can 
produce resul ts about wh Lc h t.h e r-e is no doubt. Some t Lme s , 
however, statements and rules cannot be stated with certainty. 
statements may be strongly believed. An inference can be made 
wi th a reasonable degree of confidence. Statelnellts t.ha t; are 
not known exactly are called fuzzy sta"telneIl·ts arid the logic to 
combine them is called fUzzy logic. It is based on fuzzy sets 
which are sets where membership is not certain. 

This section explores how the c ompu't.e t Lona L ability of J1PL2 
might be used to deal wi th uncertainty. It is, at best, all 

introduction to the concepts and the Ii terature should be 
studied for more information (Be1). 

If 1 means true and 0 means false. 1 t makes sense to u s e 
numbers between 0 and 1 to express various levels of certainty 
-- a number near zero to mean very Ld k e Ly false and a rrumbc r 
near one to me an very Ld k e Ly true. The Lnt.en t t on is 110t 

necessarily to treat t.h e s e fractions as probabili ties 
(although that's one possibility) but rather just 
uncertainties. Use of the word "probability" is 'th e r e f o r-e 
avoided even though it would be convenient. 

70 



The desire is to use computational analogs t.o "negatioIl", 
"and", and "or" which like ',....,', '1\', and, 'v' work 011 0 and 1 
without change and do something useful on numbers in between. 

As a start, consider negation. If P is very likely true then 
you mLqh t; a s s Lqri ita "value .9. The negation of e omet.hLriq very 
likely true 1s something' very likely false perhaps. 1 • 
Therefore, a good choice for the computational analog of 
negation (.....,P) is 1-P. It wo r k.s correctly for certain-ty: 

P1 + 0 1 
1-P1 

1 0 

and it gives the expected answer on uncertainty: 

1-.9 
• 1 

(Remenlber that any function you chose is OK so long as it 
returns 0 when applied to 1 arid 1 when applied to 0.) 

In choosing the c omput a t Lo o a L analogs of "alld" and "01-"', l.t is 
reasonable to require t-hat t.hey obey De Ho r q a n ' c; law vl.i th 
respect to the negation function. Therefore the c onput a t Lona L 
"and" arid "or" f unc t.Lo n s (call them ilNDF a:nd ORF') '")}-lO'llld obey 
the identity: 

(P QRF Q) ++ 1-(1-P) ANDF (1-Q) 

Again the only other requirement is t.h a t; the f unc t.Lo n s wo r k 
unchanged on 0 and 1. APL2 has the funct.ions "max t mum" (r) and 
"md n i mum " (L) defined in the obvious way: 

13 
10L13 

10 

Applied to zero and 1 they work just like "and" and "or": 

P2 + 0 1 0 1
 
Q2 .. 0 0 1 1
 

"Maximum" is the same as "or": 

P2 v Q2 
o 1 1 1 

]:)2 r Q2 
o 1 1 1 

"Minimum" is the same as "and": 

71
 



P2 1\ Q2 
000 1 

P2 L Q2 
000 1 

Thus, you may replace "and" by "rnd n t mum" arid "or" by 
"maximum" . ~"lllell you "an.d" two uncertain val u e s , you get 'th e 
least likely: 

• 1 L • 9 
• 1 

When you "or" two uncertain values you get the mo s t; likely 

• 1 I . 9
 
.9
 

Tllese f urrc tions do f o L'l ow De Morgan's rule: 

ArB +~ 1-(1-A)L(1-B) 

This is just a modification of the well }rnown APL2 identity on 
"maximum" arid "mLnt mumv r 

ArB ~+ -(-A)L(-B) 

Using "max t mum" and "m.l n Lmum" may n o t; ma t c h y o u r' Lnt u.ltLon 
about how uncertain values should work. You may feel that when 
you Hand" two uncertain values, you s ho u Ld get a v a Lue less 
t.han he r values. In t.h case, c o u Lde t t given at you use 
"multiply" (x) for "and". Again, it wo r k s like "and" on. 0 and 
1 : 

P2 1\ Q2 
000 1 

[J2 x Q2 
000 1 

WIlen applied between Lne x a c t; values, it p r-o duc e s rrumb e r s less 
or equal to the given values: 

• 1 x • 9 
.09
 

.2 x • 9
 

It is less o bvLo u s wh a t; t.h e c o r r e s p o ud Lrrq "or" f u n c t Lo n s h o u Ld 
be. You might at first try "adcli tion" (+) but that fails 011 

zero and 1 (stnce 1 +1 is 2 not 1). Since De Morgan.' s Law is to 
hold, you can just use t.h a t; to solve for t.he "or" function. 

72
 



P ORF Q	 +~ 1 - (1-P) x (1-Q) 
+~ 1 - (1-P-Q+(PxQ» 
++ P + Q - (PxQ) 

Therefore, you can define ORF to be this function: 

DFX 'Z+A ORF Bt 'Z+A+B-(AxB)t 
ORF 

This function works correctly on 0 and 1 and g1yes arrs wer s 
that match the second intui tion 011 riumbe r s in between 0 arid 1: 

• 1 ORF .9 
.91 

.2 ORF ~9 

.92 

Again, any function that does t.h e r Lqh t; thing on 0 and 1 is a 
candidate for "and" and "or" whcn applied to inexact 
.~tatemellts• 

Given these f o r mu La e for fuzzy logic $ you may now apply' t.iiem 
to the other formulae of logic. For example, precise 
implication applied to imprecise statements is ;:1'~~hieve<j by 
using these functions in Q v (~P). For "ma x Lmum" and 
"minimum", imp11cati~n is written: 

Q r (1-P) 

For "times" and "ORF", implication is writ.::.en: 

Q ORF (1-P) 

This section has introduced the concepts of fuzzy logic. The 
situation can be more complicated when uncertainty is 
described vIi th d Ls t r t bu t.Lo n f urrc t Lon s or worse w}lell t.h e rules 
<such as implication) are also imprecise. These topics are not 
discussed in this paper. Writing systems that implement these 
more difficult areas are likely to exploi t even mo r e t.h e 
computational abilities of APL2. 

73
 



Summary 

This paper attempted to cover a wide variety of topics related 
to APL2 and Artificial Intelligence. 

Part 1 introduced the concept of Artificial Intelligence and 
discussed in general terms how APL2 is a useful Lmp Lement.a t.Lo n 
language for solutions. 

Part 2 discussed the main ideas of logic as background to the 
implementation. 

Part 3 introduced a subset of the APL2 notation concentrating 
on the data structures and the operators. 

Part 4 showed one way to represent logic arid s h o wed a way to 
Lmp Leme n t; t.h e algori t.hms using that structure. Because t.h e 
APL2 operators apply functions to i t.erns , the ma Ln data 
structure (depth 5 or more) is never e x p Ld c Ltly t.aken apart. 
Given a database (depth 5 or more), the search functions apply 
Resolution with an operator. Since the items of a database are 
clauses, RESOLVE sees clauses (depth 4). RESOLVE selects the 
positive and negative clause lists (depth 3) and uses out~r 

product to apply RESOLVANT ( arid therefore UNl"FY) b et.we e n all 
combinations of predicates (depth 2). 

Part 5 showed another representation of data and investigated 
boolean logic and fuzzy logic. 

74
 



Conclusions 

Algorithms for Artificial Intelligence have traditionally been 
expressed using LISl>-liJ{e languages. APL2 provides an 
opportunity to express t h ern in a d Lf f e r errt, style. Par a Ll.e L 

constructions give an alt~r~ative to recursive ones. 

The data structures and algorithms presented here are examples 
of how APL2 can be used to solve logic problems ~ They a r e no t; 
recommended as the only or best implementations. The purpose 
is, rather, to e Ld c I t an. 'understanding of the issues and 
approaches to s o LvI nq t.hem , APL2 provides a different way to 
explore s o Lu t Lor,s to l\I problems. In t.he hands of a creative 
person, it may be a tool w11i ch can be used to f ur t.her- the 
study and practice of logic programming. 

75 



Acknowledgements 

The following people contributed to the production of this 
paper with suggestions, reviews, or significant publications 
or presentations: Manuel Alfonseca, Everett Allen, Claudia 
Baker, Langdon Beeck, Bill Burr, Ken Fordyce, Garth Foster, 
Chuck Haspel, Denny Jizba, Dieter Lattermann, Dave Mac]'~lin, 

John McInturff, Lenore t1ullin, Dave Selby, Darryl Smith, John 
Sowa, Gary Sullivan, Trung Tran, Sheryl vlinton and the APL 
DeveLopmerrt; group at the Santa Teresa Laboratory in their 
"Lunch and Learn" sessions. 

In particular, referenced book (Ch2) by Charniak and McDermott 
was key in that it attempts to present many of the underlying 
ideas of AI in clear English descriptions rather that LISP 
implementations. 

- 76 ­



References 

CAb1)	 Abelson, Harold, Sussman, Gerald, and Sussman, Julie, 
"Structure and Interpretation of Computer Programs", I'IIT 
Press, Cambridge, Mass" 1985. 

(Ba1) Barr, A., and Feigenbaum, E. "Handbook of AI", Vol. 2, 
William Kaufman, 1982. 

(Be1) Bellman, R.E. and Zadeh, L.A., "Decision-maleing in a 
Fuzzy Environment", National Aeronautics arid Space 
Admf.n f s t.r-a t.Lon , contractor report # NASA CR-1594, l1ay 
1970. 

(Ch1) Charniak, Eugene, Riesbeck, Christopller K., and 
McDermott, Drew, "Artificial Intelligence Proqr ammt.nq?' , 
Lawrence Erlbaum Assoc. PubLf s h e r s , llillsdale, New 
Jersey, 1980. 

(Ch2)	 Charniak, Eugene and McDermott, Dr ew , "Introductioll to 
Artificial Intelligence", Addison-~"lesley PubLd s h Lriq Co ; , 
1985. 

(C11)	 Clocks1n, W.F., Mellish, C.S., "Proqr amm Lnq Ln Prolog", 
Springer-Verl~g, New York, 1981. 

(Da 1 ) Davis, Ruth E., "Logic Pr-oqr amma nq and Prolo A 
Tutorial", IEEE Software, Sept. 1985, pp. 53-62. 

(Eu1) Eusebi, E.V., "Operators for Program Control", APL'85 
Conference proceedings, APL Quote Quad Vol. 15 #4, p.181 
ff 

(Eu2) Eusebi, E.V., "Operators for Recursion", APL'8S 
Conference proceedings, APL Quote Quad Vol. 15 #4, p.190 
ff 

(Fo1) Fordyce, K., Sullivan, G. , "Artlficial Intelligence 
Development Aids (AIDA)", Proceedings of APL85, APE 
Quote Quad, Vol 15, No.4, 1985, pp.106-113. 

(Fr1 ) Frank, vlerner L., "AI: Wllat' s d Lf f e r e n t; b e t.we e n old and 
new?", Software news, Sept. 1985, pp. 38-40. 

(Gr1) Gr atram , Neill, "Artificial	 TAB bo o k s ,In'telligellce",
 
Blue Ridge Summit, Fa., 1979.
 

(Hi 1 ) Hirsch, P. et al , 11 Interfaces for KriowLed q e vba s e 
Builders' Control Knowledge and Application-specific 
Procedures", IBM Journal of Research and Deve Lopmerrt , 
Vol. 30, No.1, Jan., 1986, pp 29-38. 

77
 



(Ke1 ) Keppel, E., Kropp, D., "APL2 or LISP? Implementing 
Frames, a Knowledge representation scheme", Vector, the 
Journal of the British APL Association, Vol. 2, No.2, 
Oct. 1985. 

(L11) Lloyd, J.W.. "Foundations of Logic Programming lJ 
, 

Springer-Verlag, New York, 1984. 

(Mi1)	 Minsky, M.,"A Fr-amewor-k for Representing Knowledge", The 
Psychology of Computer Vision, McGraw Hill, New Yo r k , 
1975, pp.211-277. 

(Ni1) Nilsson, Nils J. , "Principles of Artificial 
Intelligence", Tioga Publislling Co , , Palo Alto, Calif. 
1980. 

(Pa1) Paterson, M.S. and Wegman, M.N. "Linear Un f f Lc a t Lorr'", 
Journal of Computer and Systems Science, No 16, 1978 

(Ri 1) Rich, Elaine, "Artificial Intelligence", McGraw Hill, 
Ne1-J' York, 1983. 

CRo1)	 Robinson, J. A., "A Machine-oriented logic based on the 
Resolution Principle", Journal of the ACM 12 (1) pg 23, 
1965. 

(Sm1) Smullyan, "What is the Name of this Book?", 
Prentice-Hall, 1978. 

(W11) Winston, Patrick Henry, "Artificial Intelligence", 
Addison-Wesley, Reding, Mass. July 1984. 

- 78 ­



Appendix 1: Implementations of the Algori t.hms 

** The APL2 Unification Algorithm 

TIle APL2 algori tll1n is s·traightforward. If the a r q umen t s don't 
already match, then if one 1s a variable, the other is 
s ubstd t u t e d for it as the value. (Substitution is discussed 
separately. ) If nei·ther formula is an atom, then Unification 
is recursively applied to each item. 

\1Z.·X Ul'IIFY~4 y 
[ -1 ] A un I f y X ljli th Y 
[2J ·+-(O=PEX Y)/FAIL A fail if bo t.n clauses e mpt.y 
[3J (X Y) +E·VAL DEPTli1·· (X Y) A d o s ubs t Ltutions in X 
[4J -+-(X::.Y)/GOOD 
[5J (X Y)+(1==Y)¢X Y A put atom first if any 
[6J +(1'¢.=.X)/RECUR A if 110t an atom, aIJply to cac h 
[7J A here is an atom 
[8J (X y)+(' 6.' =1'Y)(f)X Y A p u t; variable first if a n y 
[9J -+-(rv'6'::1'X)/FJL7[ A if no variable, iterns ar e d I f f e r en t 
[10] +(XfE.Y)/FAIL A fail if var e x Lst s in substitute 
[ 11 ] ~X, '+1' A do s ubs t Lt.u t Lon 
[12J -+GOOD 
[13] RECUR:+(-(pX)~pY)/FAIL 

[14 ] +(1=/\/X UNIFYAo'Y)/GOOD 
[15J FAIL:-+Z+O 
[16J GOOD:Z+1 

[2J causes failure t,o uni.f y if b o t h a r q um e n t s are empty 
formulas. Strictly s p e a k Lriq , two e mpt.y clauses do un i f y 
since t.h ey ma t.ch . III pra.ctice, }10\>1eVer, wh e n t"10 etupt.Le s 
arise (as t.h e y do ill resolution, saying that they unify 
leads to redundant implications. 

[3]	 ma k e s sure t.hat; any previous ly de termined substi t.u t.Lo n s 
are made in the arguments. 

[4J the a s t.h am u n Lfif st t.emerrt are e s e , t.h e y y , 

[5J	 and [6J wo r k together to deterlllirle if b ot.h a r o uruon t s are 
non-trivial (i.e. mo r e than o n e t e r m i , [5J puts all at.o m 
first if there is one. [6J b r anche s to REC[TR if tllere Ls 
no a t o m , 

[8J	 and [9J work together to determine if there is a variable. 
[8J pvrt s the variable (if any) Ln t o x . [9] fails if X is 
not a variable (since it is already known t.h a t; X arid Yare 
different. 

79 



[10]	 makes sure that the value substituted for a variable does 
not contain the same variable. That is not a legal 
substi tution. This is sometimes call ed all "occurs check". 
It is often not done in logic programs for reasons of 
efficiency. It is requiredt however, to ensure 
correctness. The check used h e r e wo r k s because of tIle 
convention used for names of logic variables (see the 
description of ENCODE in Appendix 1). 

[11]	 records the substitution by setting the variable <which 
is a real variable in the APL2 workspace) to be the value. 
See the following section for a discussion of this 
substitution. 

In the case that both arguments are non-trivial formulas 
(label RECUR), then if the f o r muLa s are the s ame length, 
UNIFYA is applied between corresponding items. 

The UNIFYA program is a description of the unification 
algorithm. It is not the most efficient implementation. 
There are many things that could be done to improve 
computational efficiency but they would not add to the 
understanding of the algorithm. For example, instead of 
UNIFYA 

u 

, you could use the defined operator FilLSE or [INTIL to 
make the expression quit as soon as a failure case was 
discovered. This would avoid a ppLyLriq []/)'I FY A after fail ure is 
discovered and would avoid the 1 =/\/ on t.he resul t. TIle 
algor! t.hm as 1 t stands, however, is d e s c r Lpt Lve of tIle 
process. 

** Unification Cover Function 

Each call of unification should be independent of the other 
calls. Furthermore , it is desirable to know not only that 
unification succeeded, but also the substitutions that made it 
work. Therefore, a second function is used to Ln Ltiate and 
terminate UNIFYA 

v Z+X UNIFY Y;T;USUBS 
[1 J A Unification algori t.hm - main f unc t Lo n 
[2J A Z is a two item vector 
[3J A 0 or 1 for failure or success 
[4J A the substitutions 
[5J T+DEX '6' DNL 2 
[6J Z+X UNIFYA Y 
[7J USUBS+2 O~J.7F··c[2]'f:J.' ONL 2 
[8J Z+Z USUBS 

80 



[5]	 makes sure that no logic variables (represented by names
 
starting with '6') have any values.
 

[6]	 calls the unification algori thm and produces the resul t
 
true (1) or false (0),.
 

[7J	 records substitutions made for any variables. 

[8J	 r e t urn s the two resul-ts of uriLf Lc a t Lon , 

** The APL2 Resolution Algorithm 

Here is the function that produces the resolvant from a single 
unification. The arguments are each a single predicate: 

VZ+AR RESOLVANT BR;T 
[1 ] A UtVI FY AI? wi th BE, Z is 0 or t.he LmpLd e d resolution 
[2J A A and B are global 
[3J Z+O A assume failure 
[4J ~(1'T+AR UNIFY BR).J-C A return witll 0 OIl fail"'re to (1NIFY 
[5J Z+(1~A)~cAR),1~B)((2~A),(2~B)~cBR) 

[6J Z+(EVAL DEPTH1 Z)(t1t~) 

[3]	 sets resul t to zero in case uriLf Lc a t Lo n fails. 

[Lf] attempts to unify the glven p r e d Lcac e s and r e t ur-r..s if 
unification fails. 

[5]	 builds the inferred clause by constructing the pasi tive 
and negative clause Ld s t s , T11e positive c Lau s e list is 
c ons t r uc t ed by joining together all tIle posi tive 
predicates from the original two clauses, then using 
"vrI t ho u t;" (~) to delete the one canceled by resolution. 
The negative clause list is constructed the same way. 

[6]	 applies the substitutions implied by the unification and 
returns a two item vector containing the resolvant and the 
substitutions that permitted resolution. 

The function returns ei ther 0 or tIle implied st.a t emen t s and 
the substi tutiOllS that permi toted theine 

The resolut:ion program RESOLt'E only needs to call RESOLVAN''l7 
for all combinations of of predicates SUitably chosen. Here is 
the program: 

81
 



VZ+A RESOLVE B 
[1J Z+,(1~A)o. RESOLVANT(2~B) 

[2] (8 A)+(A B) 
[3] Z+Z,,(1~A)o. RESOLVANT(2~B) 

[4J 2+Z"'0 

[1J gets statements inferred by positive terms of A and 
negative terms of B. 

[2J swaps A and B. 

[3J gets statements inferred by positive terms of B and 
negative terms of A. 

[4] deletes any non-resolutions 

It is possible that a tautology may be implied. See Appendix 4 
for a description of the test for a tautology. 

Each outer product in RESOLVE might return several implied 
clauses. T11us, the resul t of RESOLVE is not a vector of the 
implies statements but rather a vector of vectors of them. For 
this reason, you will see that the callers of RESOLVE often do 
at, / which will turn the vector of vector of clauses into a 
vector of clauses. 

** The APL2 Resolution Algorithm for Goals 

This function is essentially the same 
right argument is assumed to be a goal 
has an empty post tive clause list. 
either 0 or the implied clauses. 

VZ+A RESOLVEGOAL B 
[1J Z+,(1~A)o. RESOLVANT(2~B) 

[2J 2 +Z...... 0 

as RESOLVE except the 
clause wh Lc h therefore 
The function returns 

[1J gets statements inferred by positive terms of A and 
negative terms of B. 

[2J deletes any non-resolutions 

** The Forward Search Algorithms 

82 



The following two forward chaining search functions apply 
resolution to everything kriown in the database and c he cJc to 
see if the desired goal shows up. The first function adds 
anything implied to the database and loops until the goal is 
found or nothing new is implied. This is formally correct and 
descr iptive but; terrible in p er-fo r manc e , TIle s e cond function 
only does resolutions between what is in the database and the 
newly inferred statements adding new clauses to the database 
each iteration. 

They will not be discussed in detail -- the comments on each 
line describe the purpose of t.he line. 

~PZ+GOAL FORWARD1 DB;NEW 
[ 1 ] PZ+1 A assume goal will be found 
[2] L1:+(GOAL€DB)/O A done if goal is found 
[3J NEW~DBo. RESOLVE DB A resolve everything 
[4J NEW+t·· t , / , NElv A s elect new inf erences 
[5J NEW+NEW~DB A it's not new if already in DB 
[6J NEW+«NEWtNEW)=tpNEW)/NEW A delete duplicate inferences 
[7J -.(O=pNElv)/FAIL A fail if 110 new Ln f e r e nc e s 
[8J DB+DB, VRENAME"" NEW A rename variables 6 add to DB 
[9J +£1 A go do resolutions a~~in 

[10] FAIL:PZ+O A goal not found 

VPZ+GOAL FORWARD DB;NEW;NEW2 
[ 1 ] PZ+1 A assume goal will be f o urd 
[2J NEW+DB A DB against itself first time 
[3J L1:+(GOAL€.NEW)/O A done if ~oal is found 
[Lf] NEW2+NEWo. RESOLVE DB A resolve everything 
[5J DB+DB,NElv A add last ones to DB 
[6J DB+«DBtDB)=tpDB)/DB A discard duplicates 
[7J NEW+t .. t , / , NEIJ2 A select new Ln f e r errc e s 
[8J NEW+«NENtNEW)=tpNEW)/NEW A discard duplicates 
[9J NEl';~VRENAME" IIEIJ A rename variables 
[10J -+-(O=pNElv)/FAIL A fail if no t h t no n ew 

[ 11 ] -+£1 A go do resolutions again 
[12J FAIL:PZ+O A goal not found 

** PROLOG 

The function that implements the logic of PROLOG uses 
RESOLVEGOAL and recursion to s a t Ls f y each part of a possibly 
conjunctive goal in order from left to right. It is possible 
that an infinite recursion may cause the program to loop. This 
can happen in real PROLOG also. 

83 



V Z+CGS DFS DB;DBI:GI;ASUBS;GSUBS;SG;T 
[ 1 J (GOAL ASUBS)+2tCGS A divide argument 
[2J SG+SPLITGOALtGOAL A get simple goals 
[3] START:GI+1 A start with first goal 
[4J GSUBS+(pSGlp'O' A initial substitutions 
[5J DBI+(pSG)p1 A current DB item per goal 
[6J NEXT:'l7+DEX '6.' DNL 2 A erase all variables 
[7J T+~DEPTH1 ASUBS GSUBS A define known variables 
[8J T+EVAL DEPTH1(DBI[GIJ~DB) A select next rule 
[9] NEW+T RESOLVEGOAL EVAL DEPTH1 Gl~SG A resolve 
[10J +(O~pNEW)/RES A branch something found 
[ 11 ] NEXTDB:+«(pDB)~DBI[GIJ+DBI[GIJ+1)/NEXT A try next rule 
[12J DBI[GIJ+1 A initial index again 
[13J BACK:~(O=GI+GI-1)/Z+O A back up to previous goal 
[14 ] (GI~GSUBS)+'O' A forget old substitutions 
[15J +NEXTDB A find another proof 
[16J RES:(GI~GSUBS)+2~tNEW A record substitutions 
[17J +(O=p1 1 2~NEW)/NEXTG A branch if proved 
[18J T+«VRENAMEtNEW)[1J) (ASUBS GSUBSJDFS DB A do sub-goal 
[19J +(tT)/SGOK A branch sub-goal OK 
[20J GSUBS[GI]+'O' A forget substitutions 
[21J +NEXTDB A to next clause in DB 
[22J SGOK:(GI~GSUBS)+(GI~GSUBS),2~T A record new subs 
[23J NEXTG:GI+GI+1 A on to next goal 
[24J +(GISpSG)/NEXT A branch more goals 
[25J DONE:Z+1 GSUBS A done 

The left a r q um en t; to DFS is a two 1 tern vector. The first i tern 
is the goal to be satisfied and the second item is the current 
list of substitutions. The initial substitution is 'a· meaning 
t.he r e are no variables. The right argument is the vector of 
clauses representing the database. 

[ 1 ]	 separa tes the left argument into two names for 
convenience. 

[2]	 separates a conj unctive clause of N predicates into a 
vector of N separate goals which can be satisfied 
independently. 

[3]	 sets tIle goal index to indicate that the first goal will 
be satisfied first. 

[4J defines t.h e variable t.ha t; will hold t.lre substitutions 
related to each goal. By keeping t.h e s u b s t.a t.u t.Lon s for 
each goal separate, they can be independently forgotten in 
case of backtracking. 

[ 5]	 def ines an index to the databas e for e a c h goal 

8.4 



[6 -9] makes the currently defined substi tutions in both the 
current goal and the current item from the database and 
calls RESOLVEGOAL. 

[10J branches if any resolvant was produced. 

[11 ] selects the next clause from the database to see if it 
leads to satisfaction of the goal. 

[12]	 is reached if no clause from the database satisfied the 
current goal. The database index 1s set to 1 for th~ next 
time this goal is tried. 

[13-15]	 backtrack to the previous goal forgetting the 
substitutions for that goal. If there is no previous goal 
then the attempt to satisfy the goals has failed. 

[16]	 is reached if a resalvant is f o urid , The subs ti t.u t.Lo n s 
that permitted the resolution are recorded. 

[17]	 checks for a contradiction in wh Lc h case this goal is 
satisfied and the program can proceed with the next goal. 

[18 ] recursively c a Ll.s this program to satisfy th r generated 
sub-goal. 

[19] determines if the sub-goal was satisfied. 

[20-21 ] goes back to try another clause f". om the d a t a ba s e ill. 

the case the sub-goal was not satisfie~. 

[22J remembers the substitutions that allowed the sub-goal to 
be satisfied. 

[23-24J moves on to the next goal if any 

[25]	 returns a 1 me a n i nq success and the record of t.h e 
substitutions that led to success 

A slightly fancier program DF perm! ts t.h e user to call tIle 
function again and pick up the search from where it left off 
to f I nd another proof of the same goal. 

85
 



V Z+CGS DF DB;DBI;GI;ASUBS;GSUBS;SG;T 
[ 1 ] (GOAL ASU13S) +21·CGAg A di vi-de a r crumon t 
[2J SG+SPLITGOALtGOAL A get simple goals 
[3J -+(3)pCGS)/STAJiT A b r aric h f Lr st; call 
[4J (CI GSUBS DBI)+3~CGSA redefine controls 
[5] «GI-1)+DB1)+1 A reset db indexes 
[6J +BACK A backtrack 

S7.7IlRl1[7] : Gl + 1 A sta r t; witll first goal 
[8J GS[JB S'~ ( p /3G ) p , 0 ' A ini ti a 1 subs ·ti t.ucL o n s 
[9J DB1-+ ( pSG) p 1 A current DB i t.em per goal 
[10J NEXT:T+OEX '6' ONE 2 A erase all variable 
[ 11 ] T+~DEP'17H1 ASUBS GSUBS A d e f Lne known variables 
[12] T+EVAL DEPTli1 (DEI [Gl- ] ~DB) A s e Lec t; next rule 
[13J NEW~T RESOLVEGOAL EVAL DEPTH1 GI~SG A resolve 
[14J +(O~pNEW)/RES A branch something found 
[15J NEX'lJDB:-+( (pDB)~DBI[GIJ+DBI[GIJ+1)/NEX'17 A try n e xt; rule 
[16J DBICGIJ+1 A initial index aq a I,n 
[17J BACK:-+(O=G.T+GI-1 )/2+-0 A b a c k up to pr ev t ous goal 
[18J (GI~GSUBS)+'O' A forget old substitutions 
[19J -+-NEX.'TDB A find ano t.h e r proof 
[20J RES:(GI~GSUBS)+2~tNEW A record substitutions 
[21J +(O=p1 1 2-::JNEW)/NEXTG A br-arich if proved 
[22J T+«(VRENAMEtNEW)[1]) (ASUBS GSUBSlDF DB A do sub-goal 
[23J +(tT)/SGOK A branch sub-goal OK 
[24J GSUBS[GI]+'Ot A forget substitutions 
[25J +NEXTDB A to next clause in DB 
[26J SGOK:(GI~GSUBS)+(GI~GSUBS),2~T A record new subs 
[27J NE>~T(;:GI"'~GI+1 A 011 to n ex t; goal 
[28J +(GISpSG)/NEXT A branch more goals 
[29J DONE:Z+1 GSUBS(GI GSUBS DEI) A done 

DF is identical to DFS except for t~10 thiIlgS. On exi t, D.L.17 

returns a t h r e e i tent 'lector Lns t.e a d of a two i 't em vector wit.h 
the t.h I r d i tern betng t.h e informatton. needed to restart tIle 
search from where it left off. 011 e n t.r y , if t.h e left argument 
is a three i t.em v e ct.o r , t.h e c o n t r o L variables are reset to the 
saved val u e s arid t.h e program entered as t.houqh the goal just 
failed. The b ac k t r aok i.no mechanism '4111 t.h e n cause a s e a r ch 
for another s o Lut.Lo n , 

'I'h e function Pl?OLOG a.u t.omat.Lc a Ll y does t.he re-call of DF if 
t.h e user responds '''i t.h a s emd c o Lon af-ter all a.n s we r is 
reported. Hariy real pr~OLOG systents use t.h i s c o n v eri t.Lo n , 

\J Z+L PROLOG R;T 
[ 1 ] Z+ 1 A ass tune e u c c e s s 
[2J -+(tT+(L 'O')DF R)/GOOD A b r an c h s uc c e s s 

[3 J -+Z"~O A r c t.u r n "'i th failure 
[4J GOOD:'tIALUE'.CJ '(2=,T) A report answer 
[5J +(';'tt~)/O A end unless 
[6J +(tT+(L 'O'(3~T»DF Rl/GOOD Are-call 

86 



** Support Functions 

The ENCODE function is used to simplify the handling of 
variables in logic statements. Different versions of PROLOG 
use different conventions to identify variables in clauses. 
Some PROLOGs use a leading * or to indicate a logic 
variable. In this paper, a leading upper case character 
indicates a logic variable. The ENCODE function locates words 
with a leading uppercase letter (using the global variable Ve) 
and appends a ' ~' on the f r orrt , Any word wh t ch is not a 
variable is prefixed with a lowercase 'a'. Changing VC to the 
value '*' would implement another PROLOG convention. 

Doing this append has two less obvious benefi ts. First, it 
means that all character strings are vectors. If any were one 
character and therefore possibly represented as a scalar, it 
would become a vector. This means the algori thms may a s s um e 
vectors of v e c t.o r s at all stages. Secondly if '!::J.' is n o t; 
permitted anywhere but as the first letter of a variable, then 
the occurs check needed in UNIFYA is trivial. 

UC+'ABCDEFGHIJK£MNOPQRSTUVWXYZ' 

\J Z+E"'CODE R 
[1J A put R in internal form 
[2J A constants prefixed with ATOM 
[3J A variables prefixed with !::J.VAR 
[4J +(O=pZ+R)/O A empties stay emp~y 

[5J Z+((1+(tR)£UC)~'a' '6'),R 
[6J R+DEX Z A ensure name has no value 

TIle functions VRENA~]E arid VRENilME1 take a clause and give the 
variables in the clause unLque names. Doing t.hI s before e a c h 
clause is added to the database means that none of the 
programs have to worry abou·t two clauses h a v Lrrq t.n e s am e 
variable name. It is not wrong for two clauses to have t.h e 
same variable name so long as it is understood t.hat; t.hey are 
not t.h e same variable. 'I'h e f unc t.Lo n s presented h e r e a s s um e 
that each clause has unique variable names. 

orv Z+T1RENAl',]E R 
[ 1 ] VCOUNT+VCOUNT+1 
[2J Z -+-IlREN ANiE 1 DEPTl11 B 

\J Z+VRENAME1 R 
[ 1 ] Z+R 
[2J -..( '6'~tR)/O 

[3J Z+R,(~VCOUNT) 

87 



The SPLITGOAL function is given a single conjunctive goal 
clause and produces a vector of simple clauses with no 
conjunctions. 

V Z+SPLITGOAL G 
[1J A G is a single possibly conjunctive goal 
[2J A Z is a vector of simple goals (one deeper) 
[3] Z+Et;:PTYCLAUSE, ··c··c··2::>G 

EMPTYCLAUSE returns a 1 if the clause X is empty. 

V Z+EMPTYCLAUSE X 
[1] Z+(O€pX)v' '''.=X+E:X 
[2] A1 IF X CONTAINS ONLY EMPTY STUFF OR BLANKS 

- 88 ­



Appendix 2: Glossary 

- Abduction - an illegal but useful rule of inference - If 
A implies B, and B is true, then A is true. This is the 
basis of medical diagnosis. 

- AKO - means A Kind Of a to]reIl relating a class of 
objects to a more general class of objects. The class of 
"private homes" is a kind of "building". 

Ambigui ty something that could have two (or mor e ) 
conflicting meanings. ("Ambi" means "both") 

- Antecedent - In the implication "If P then Q", P is 
called the antecedent and Q the consequent. 

- Argument - a value to which some relation is applied. It 
has nothing to do with a dispute. 

- Assertion - a formula believed to be true and therefore 
in some factbase and represented in some knowledge 
database. 

- Atom - a number or symbol (like an APL constructed name) 
whose structure is not of interest. A proposition that 
cannot be broken down into other propositions. 

Atomic formula a predicate and a proper number of 
arguments (terms). 

Axiom ini tial facts a s s um e d to be true. Unlike 
mathematics~ where axioms are usually given at t.he 
start, axioms will usually be added as t.Lme goes on 
(because of new information received). 

- Backward chaining - mak Lriq an inference at the time a 
query is made ( d , e. wai t until an answer is needed 
before trying to infer itl. Thus given a desired 
c o n c Lus Lo n , deny it and work b a c kwa r d s until a krio wn 
fact is reached giving a contradiction. 

- Breadth-first search - if two places are to be looked at 
in the order 'place l' t.h e n 'place 2', thell 'place 2' is 
looked at before arrypLac e r e a chab Le f r om 'place l' is 
looked at. This is like looking at every node in a tree 
of path length N f r o m the root before looking at any 
node of length N+1 from the root. 

- Clause - A dis j unction of predicates (Q1 v Q2 v (.-vQ3 ) 
••• ). The s t a t emerrt s of PROLOG are clauses wi tIl o n e 
conclusion (positive predicate) called the head of t.h e 
clause (called a Horn clause or a program clause). 

89 



Closed know.l.edq e base one t.ha t; contains e ver yt.hLnq 
that is true (like an airline reservation system). 
Anything not in the database is not true. 

Closed world assumption Logic programs cannot in 
general prove negative statelnents like "'P( a). If the 
knowledge base is closed, then if you can't prove pea) 
you may infer ~P(a). 

- Conflict set - the set of rules wh f.c h could be applied 
next 

- Conjunctioll - "and" - the conjunction of two formulas is 
true if both formulas are true. 

- Conjunctive normal form - A conjunction of disjunctions 
(i.e. and "and" of clauses) (Q1 v Q2 v Q3 ••• ) 1\ ( ••• ) A 
( ••• ) 1\ ••• Since a fact or a rule is represented as a 
disjunction, a conjunctive no r ma L f o r-m is the formal 
representation of a knowledge base. 

Consequent In the implication "If P then Q, P 1s 
called the antecedent and Q the consequent. 

Database data structures that represent what 1s 
currently known (i.e., represents the factbase). In 
PROLOG, the database is the set of all clauses. 

- Deduction - discovering new facts from existing facts. 

Default reasoning an illegal but useful rule of 
Ln f e r e n c e - If there is no proof 'th a t; A is not B, t.h e n A 
is B. t f, , e ; , if you cannot infer not B t.heri infer B. 

Demon a procedure invoked a u t o ma t Lc a Ll.y to compute 
values when values are needed. 

- Depth first search If two places are to be Lo o k ed at 
in t.he order place 1 I then 'place 2', t.heri every placeI 

reachable from 'place l' is looked at before 'place 2' 
is Lo o k e d at. This is like s e a r c h Lrrq a tree in left 
list order. 

- Disjunction - "or" - t.h e d Ls j unc t.Lo n of two f o r mu La s is 
true if either formula is true. 

- Existential quantifier - something is true for at least 
one value of a variable. 

- Expert system - a program that gives expert a s s Lstarrc e 
to a non-expert. 

90
 



- Factbase - what is currently known (as opposed to the 
database used to represent it). 

Facts statements assumed to be true without 
conditions. Because anything infers something that is 
true, a fact is often represented as an implication with 
empty antecedent. 

- False - nil or () ill LISP, 0 in APL. 

- Forward chaining - malting an inference at the tiln~ an 
assertion is made. Gi ven facts, ma ke inferences unt.f l, 
the desired conclusion is reached. 

- Frame a single data structure that include all of the 
information of Ln t e r e s t; for a particular conc ep t , A 
frame usually holds information about a general case 
wi th a specific case represented as exceptions to tIle 
general case. 

Gatekeeper a program which performs inferences and 
adds or deletes them from the set of statements believed 
to be true (also called an inference engine). 

- Goal - A clause which is to be proven. A proof often 
proceeds by denying the result and pr~v1ng a 
contradiction. The denial of a positive goal is a 
negative goal and is therefore a Horn clause wi th oL10 

positive term at all. 

- Ground clause - a clause with no variables 

- Herbrand base - all possible applications of predicates 
with terms from the Herbrand universe. 

- Herbrand universe - set of all ground terms which can be 
constructed out of functions and a given set of 
constants. Gi yen a set of c ons t an t s and some functions, 
the Herbrand universe represents everything that can be 
talked about. 

Horn clause A clause that c orrt a Lns at most one 
conclusion. A conclusion is often proved by postulating 
i ts negative and p r o v Lrrq a contradiction. The modi f i ed 
s t a t emerrt; is phrased as the "or" of tIle negations of the 

tIlea s s umpt Lons • or' ed wi th conclusion. Thus, a Horn 
clause h a s at most one non-negated term. 

Lmp Ld c a t Lo n - I f A t.h eri B. A is called the arrt c ederrt.,e 

and B is called the c ori s e q u e n't., Equivalent to B or (not 
A). / 

Induction - an illegal but useful rule of inference. If 
A is true for every instance of A that we know about, 

91 



then A is true for all instances. This 1s the basis of 
learning. 

- Inference - the process of arriving at new facts from 
the given facts. 

Inference Engine - a program which performs inferences 
and adds or deletes them from the set of statements 
believed to be true. (also called a gatekeeper) 

Instance a single unambiguous value or occurrence of 
something that could have many values or occurrences. 2 
is an instance of an even number. A term h avLnq no 
variables (a ground term) 1s its only instance. Given a 
term with variables, substituting something for a 
variable gives a new instance 

ISA a t.o keri representing that one object is an 
instance of a class of objects. For example sten is a 
man. 

- Knowledge base - the data base for logic programs 

Knowledge Engineering bUilding a set of rules that 
represents the knowledge and skill of a human expert. 

- Lambda notation - a way of defining a function wi thout 
giving it a name. 

LISP - A list processing programming language (LISP = 
LISt Processing) 

List struc·ture - In LISP - a list of lists whLch may 
contain self-references (circularities) 

Li teral an atom ( po s L tive 11teral) or a negated atom 
(negative literal) 

- Modus Ponens - a rule of inference - if A implies Band 
A is true, then B is true (i.e if Bv t ......A) arid A, then 
infer B. 

- Most general unifier - A substi tut.ion Lea v Lrrq t.he mo s t; 
variables uribourid t L , e. it subsumes every other 
unifier). It has the property that it is unique except 
for naming variations. 

- Nil - The unique LISP construction that is both an atom 
and a (empty) list. 

Non-procedural a program is non-procedural if the 
order of its s t a t emen t s is not relevant. Logic 
statements in their purest form are non-procedural. 

92 



- Occurs check - In unification, this check p r everrt s a 
s ubs t L t.u t Lo n for a v a r Lab l.e by an expression c orrta i n Lrvj 

that variable. (i.e., an attempt to substitute f(X) for 
X.) PROLOG often leaves this c h ec lc out and so call get 
incorrect results. 

Open knowledge base one t.h a t; doesn't c orrt a Ln 
e ve r nq a is trtle. e r e o r e , s omo qy t.h t t.h t; 'I'h f if t h Ln is not, 
in the database, you c a nno t; c o nc Lude t.ha t; it is false. 

- Predicate - a functioJ1 tllat returns true or false. A 
predicate states a relation amonq obj e c t s , 

Predicate Calculus a s y s t em for computing 011 

proposi tions t.h a t; c o n t a t n variables. If variables 
represent obj ects only, tllen tIle s y s t em is first order 
predicate c a Lcu l.u s , If variables r cpr e s en t. objects and 
p r e d Lc a t e s , t h en t.h e system is secanel order predicate 
calculus. 

- Program clause - aI-lorn clau.se one with one or zero 
positive predicate. 

PROLOG a logic programming language (PROLOG = 
"pnOgrammation en Logique") for solving p r o b Lems 
involVing objects and relationships between obj~cts. It 
is a resolution based theorem prover using Horn clauses. 
FROLOG wo r k s b a c kwa rds f r orn des i r e(l c o n c L us Lon s to ].(11(', ..111 

facts by 2t.tem.ptillg "to r e s o L ve tile ] :~ftmost predicate 
with a depth first search. 

Pr-opo s ttLon A s t.a t emeri t; that evaluates to true or 
false and contains no logic variables. 

Proposi tio11al logic a s y s t.em for c oruput.Lriq all 
proposi t.Lon s , 

- Referential ambI qu I ty - a 51 t.ua t.Lori wh e r e lllore t.h a n 011e 

Lrrt.e r pr-e t.a t Lo n of a phr a s e is possible. For e x amp Le , vzho 
is he in HI-Ie is a good student". 

Resolution - a general rule of inference. If one clause 
c o n t.a I n s a negated literal and t.h o o t.h c r o o nt.a Ln s t110 
sa m e n o nega ted, u .i.n er t.h e c 1 u s1 t teral t; tl'lell y o In a y f a C 

wh I ch is t.h e d I s j unc t Lo n of t.h e otb.er terlus. If AvJ-3vCvD 
arid (NA) v Ev F". t.he n you ma y Ln f er BvCvDvEvF. 

- Rule - statement that is true under s om e c orrd Lt.Lo n s (as 
opposed to a fact t.h a t; is u nc o n d t t.Lo n a L'l.y true). 

S-expression in LISP a list of lists with no 
circulari-ties. 

93 



- Search - an organized method for guessing a good path to 
a conclusion. 

- Skolemlzation - the process of eliminating universal and 
existential quantifiers from a formula. 

- Subsume - formula P subsumes formula Q if a substitution 
for variables in P produces Q. 

Term argument of a predicate a constant, a 
variable, or an application of an n-ary function to n 
terms. 

- Theorems facts deduced from the giyen ini tial facts 
(the axioms) 

Token a unique ph r a s e or encoding whose structure is 
not considered relevant. 

- True - anything except nil in LISP, 1 in APL. 

Unification the process of finding tlle values of 
variables that make two expressions Loo k t.h e s ame , Also 
called finding a common instance. 

- Unifier - a substitution that makes two expressions look 
the same. 

- Uni t Clause - one non-negated predicate and no negated 
predicates (P+). 

Universal instantiation a rule of Ln f e r-enc e if 
s om e t.hLnq is true of everything, the!l 1 t is true for any 
particular thing. 

- Universal quantifier - something is true for all values 
of a variable. 

- Variable - a to]ren which replaces unLver s a L quan t t.f i e r s , 
Instead of writing 'for all ( x i , (x<3)' write 'X<3' 
where X is a logic variable. 

- Variallt f o r mu La s - P and Q are variants if each call be 
produced from the other by some substitution. 

- Word sense ambiguity situation of a wo r d h a v i.rrq mo r e 
than one meaning. 

94
 



Appendix 3: A Summary of First Order Predicate Calculus 

Predicate calculus is a notation useful in expressing 
propositions, calculating the truth of propositions. and 
inferring new propositions from the known ones. 

The following summary is meant to be independent of the syntax 
used to write the notation. 

There are two aspects to the notation: 

- The objects being talked about 

- Mappings between the objects 

The objects of the language are: 

- constants - a particular number or a particular
 
character string.
 

- variables - names which represent sets of possible
 
constant values.
 

- computed - an object resulting from a computation (see 
functions below). 

The above set of objects are called terms. 

In addition. the language contains two distinguished objects 
called "true" and "false". These are merely two 
distinguishable objects not related to actual truth or falsity 
except by the intention of the writer. 

The mappings are: 

- Functions - mappings of terms to a term 

- Predicates - mappings of terms to true or false 

- Formulas - predicates and combinations of predicates and 
formulas 

The applications and combinations are: 

- Atomic formula - a predicate applied to the proper
 
number of terms
 

- Formula - an atomic formula or the result of any of the 
following combinations of formulas. If F and G are 

- 95 ­



formulas and x is a variable, then the f o Ll.o wd n q are 
formulas: 

Implication: "If F then G" - t.hLs is true if F is 
true or G is false 

- Conjunction: "F and Gil - this is true 1f both F and 
G are true 

- Disjunction: "F or G" - this 1s true if either F or 
G is true or both are true 

- Negation: "not F" - This is true if F is false 

- Existential quantification: "exists (x) F" - This is 
true if there is an x that makes F true 

- Universal quantification: "For all t x ) F" - This is 
true if F is true for every possible value of x 

Predicate Calculus 1s not concerned wi th the actual truth of 
proposi ttons, only the relationships between them. The actual 
truth of the input formulas is unimportant in the application 
of the formal rules. If a false conclusion is reached, it can 
only be because one of the input assumptions is wrong. 

96
 



Appendix 4: Tautologies 

A tautology 1s a statement of the fornl P v (~P). Thus ~ the 
characteristic of a tautology is that one term appears in both 
the non-negated list and the negated list. SUCll s t a t emerrt s 
are not wrong (in fact t.hey are tr i vially true) but, rather ~ 

are not useful in ma k f nq a ny new inferences. 

Here is an APL expression that checks a clause for a tautology 

v.E/Z 

The reduction puts the V.E between the positive and the 
negative clause parts. If any predicate in one appears in the 
other~ the member ship will give a 1 and so the vi part of the 
inner product will give a 1. 

97
 



Appendix 5: The DPY Function 

The DPY function is like the DISPLAY function distributed as 
part of the APL2 program product except it labels the top edge 
of boxes with the shape of the array. 

V D+S DPY A;OIO;R;C;HL;HC;HT;HB;VL;VB;V;W;NjB 
[1J A A MODIFIED DISPLAY FUNCTION 
[2] A NORMAL CALL IS MONADIC. DYADIC CALL USED ONLY IN 
[3J A RECURSION TO SPECIFY DISPLAY RANK, SHAPE, AND DEPTH. 
[4] DIO+O 
[5] ~(O=DNC 'S')/'S~pA' 

[6] R+tp,S A PSEUDO RANK. 
[7 ] C~' •• ' • • , • A UR, UL, EL, AND LR CORNERS. 
[8J HL+'-' R HORIZONTAL LINE. 
[9J HC+HL,te+',HL,'~+E' A HORIZONTAL BORDERS. 
[10] HT+HC[(O<R)x1+0<t-1t,S] 
[11J W+,O::"tOpc(1rpA)tA 
[12J HB+HC[3+3Lev/W)+(A/O 1€W)+3x1<ppSJ 
[13] VL+' I' A VERTICAL LINE. 
[14] VB~VL,'~~' A VERTICAL BORDER. 
[15J V+VB[(1<R)x1+0<-1t-1~,SJ 

[16J ~(O€pA)/'A+(1rpA)pctA' A SHOW PROTOTYPE OF EMPTIES. 
[17J ~(1<=A)/GEN 

[18] +(2<ppA)/D3 
[19J D+~A A SIMPLE ARRAYS. 
[20J W+1tpD+e-2t1 1,pD)pD 
[21J N+-1+1~pD 

[22J +(O=ppA)/SS 
[23J D+(C[1J,V,(W-1)pVL),C[2]),«HT,Np(~,S),NpHL),[O]D,[O]HB,NpHL), 

ceoJ, (WpVL) ,C[3J 
[24J +0
 
[25J SS:HB~«O ' ')=tOpc:A)/' -'
 
[26J D+(B,B,«W-1)pB),B),««pHT)pB),NpB),[O]D,[OJHB,NpB),B,(WpB),B+'
 
[27J -+0 
[28J GEN:D+~DPY··A A ENCLOSED ••• 
[29 J N+Dv • ;t t I 

[30J D+eNv~1~N)fD 

[31J D~(vf~' f~D)/D 

[32J D+«1,pS)pS)DPY D 
[33J +(2~p,S)~D3E,O 

[34J D3:D+O -1~O 1~~cA A MULT-DIMENSIONAL ••. 
[35J 1-1+1 tpD 
[36J N+-1+1.J..pD 
[37J D+(C[1],V,(W-1)pVL),C[2]),«HT,NpHL),[OJD,[OJHB,NpHL) , C[ O] , 
(WpVL),C[3] 
[38J D3E:N+-2+p,S 
[39J V+C[Np1J,[OJVB[1+0<-2~,SJ,[OJ«(-3+tpD),N)pVL),[O]C[Np2 J 

[40J D+-V,D 
V 

- 98 ­



Appendix 6: Test Cases 

In the following: 

variables - X y Z 
predicates - p q r s t
 
functions - f g h
 
constants - abc
 

** Unification Tests 

These examples show unification of two predicates and the 
resul tiIlg common predicate if one exists along wi tho t.h.e 
s ubs t t tutions for variables that lead to t.he unification. If 
the predicates don't unify, the reason is given: 

1. a. p(X,f(X),Y) 
b. p(a,Z,g(Z» 

c. p(a,f(a),g(f(a» 
with	 substitutions X+a
 

Z+fCa)
 
Y+g(f(a»
 

2. a. p(a,X,X) 
b. p t a s Ys f t Y) 

failure -- sU.bsti tution X+Y
 
but then Y and fey) don't unify
 
because of the "occurs" check.
 

3. a. pCf(X),gCa,Y»,g(a,Y» 
b. p(f(X,Z),Z) 

c.	 p(g(X,g(a,Y»,g(a,Y»)
 
with substitutions X+a
 

~. a. pCf(a),geX» 
b. p(Y,Y) 

c.	 failure -- substitute ¥+f(a)
 
but then g(X) and f(a) don't unify.
 

99 



5.	 a. p(a,X,h(g(Z») 
b. p(Z,}1(Y) ,}l(Y» 

c.	 p(a,h(g<a»,h(g(a»)
 
with substitutionsZ+a
 

Y-4'g(a) 
X-E-hCg(a» 

** Resolution Tests 

These examples do resolution of two clauses. In gerleral, it is 
possible to infer mo r-e than one resolvant. In these cases, 
several resolvants are shown along wi th tIle unification t.ha t; 
permitted them. 

1.	 a. p v q v r v (~s) 

b. (~p) v q v (~t) 

c. q	 y r v (~s) v q v (~t) 

c. from matching p 

d. q	 v r Y (~s) v (~t) 

d. from removing redundant term 

2 •	 a . ( "'p ( a » v r 
b. p(X) v pea) v q 

c. pea) v r v q 
c. from un I f y Lnq on first p in b 

d. p<X) v r v q 
d. f r otn from un I f y Lriq on. s e c ond p in b 
d. contains c. as a sub-case 

e. r	 v q v r 
e. from f r o m a. and c. or f r orn a. a n d d. 

f. r	 v g 
f. from removing redundant term 

100
 



3. a. pea) v pCb) v q 
b. (rvp(X) V reX) 

............ --~~ .... -111111111111'-­

c. pCb) v q v rea) 
c. from unifying on first p in a 

d. pea) v q v reb) 
d. from unifyi.ng on second p in a 

4. a. p(f(X» v p(Y) v q 
b • ( ""'p ( f ( Z) » v r 

c. p t Y) v q v r 
c. from unifying on first p in a 

d. p(f(X» v q v r 
d. from from unifying on s e c o nd p in a 
c. contains d. as a sub-case 

e. q v r 
e. from unifying on both p of a. 
e. also from b. and c. or b. and d. 

after removing redundant r. 

5. a. 
b. 

pea)
(f"Jpex» v p( r cx i 

c. p t f t a ) 
c. from unifying on first p in b 

d. p(f(f(a») 
d. from unifying c. with b. 

e. p(f(f(f(a»» 
e. front uri I f y Lnq d. wi th b. 

and this continues forever 

6. a. p v q v r 
b • ( I'Vp) V (""q) 

c. q v r v (rvq) 

c. by unifying on p 
c. is a tautology 

because q v (lVq) is always true 

101 



7. a. pCX,fCa» v peX,fCY» v qCY) 
b.	 (~p(Z,f(a» v (Nq(Z» 

c.	 p(X,fCY» v (~q(X) v q(Y) 
c.	 from unifying on first p in a 

d.	 p(X,f(a» v (~q(X» v q(a) 
d. from from unifying on second p in a
 

e • ( ~q (X» v q ( a)
 
e.	 from from unifying on both p of a. 
e.	 also from b. and c. or b. and d. 

f.	 peX,f(a» v p(X,f(Y» v (~p(y),f(a» 

f.	 from unifying on q 

**	 Example Logic Program 

1.	 input clauses: 

a.	 pea,b) + 

b.	 p t c s b ) + 
c.	 p(X,Z) + p(X,¥) pC¥,Z) 
d. p(X,Y) + pC¥,X)
 

denial of goal:
 

e. + p(a,e)
 

proof:
 

f.	 + pCa,¥) pC¥,c)
 
by resolving e. and c.
 

g ..... p Cb s c )
 
by resolving a. and first clause of f.
 

h.	 + p Cc s b )
 
by resolving g. and d
 

1.	 empty clause
 
by resolving h. and b.
 

This program has the property that any depth first search that 
uses the input clauses in any fixed order will fail to find a 
solution. 

- 102 ­








