

MAay 1986
Revisep Nov. 1986
TR 03. 281

ALGORITHMS FOR ARTIFICIAL INTELLIGENCE IN APL2
By
Dr- JAMES A- BRrowNn
Ep EuseBI
JAnIcE Cook

Leo H- GRONER

INTERNATIONAL BusSINESS MACHINES CORPORATION
GENERAL Propucts Division
SANTA TERESA LABORATORY

SAN Jose, CALIFORNIA

ABSTRACT

Many great advances 1in science and mathematics were preceded
by notational improvements. While a given algorithm can be
implemented 1in any general purpose programming language,
discovery of algorithms 1s heavily influenced by the notation
used to investigate them. AFL2 conceptually applies functions
in parallel to arrays of data and so is a natural notation in
which to investigate parallel algorithms. No c¢laim 1is made
that APL2 1is an advance in notation that will precede a
breakthrough 1in Artificial Intelligence but it 1s a new
notation that allows a new view of the problems 1in AI and

their solutions, APL2 can be used in problems traditionally
programmed in LISP, and is a possible implementation language
for PROLOG-1like languages. This paper introduces a subset of

the A4PL2 notation and explores how 1t can be applied to
Artificial Intelligence.

iii

CONTENTS

Introduction. ¢ o ¢ . e 4 e e
Part 1: Artificial Intelligence.
Part 2: Logic.« « « 4 4 4 e e e ..
Part 3: APL2. . . © ¢ v v o v o o o o o o o
Part 4: The Implementations.
Part 5: Going Beyond the Fundamentals.
SUMMAry. .« .+ o ¢ o« ¢ o« o o o o o o o o o o« «
ConclusSionS. « « o ¢« ¢ ¢ 4 e e e e e e e e e
Acknowledgements. . .« . ¢ ¢ & 4 . 4 e e e e

References. . . v v v v v v v e e e e v e e .

Appendix 1: Implementations of the Algorithms.

Appendix 2: GlOSSATY. « « « o o o + o o o o .

Appendix 3: A Summary of Predicate Calculus.

Appendix 4: Tautologies.
Appendix 5: The DPY Function.
Appendix 6: Test Cases.« . . .

22
.40
.61
.74
.75

76

77

79

.89

95
97
.98

.99

Introduction

This paper discusses many of the fundamental 1deas of
Artificial 1Intelligence and their implementation in APL2.
Emphasis 1is on predicate logic but discussions of other topics
are included.

This paper is divided 1nto 5 parts., Part 1 introduces
Artificial Intelligence (AI) and discusses the type of problem
to be solved. The features of APL2 that make it suitable for
Al applications are discussed.

Part 2 discusses logic and chailned inference and includes a
brief discussion of search strategies,

Part 3 introduces the APL2 1language concentrating on the
features actually wused in the algorithms. It includes a
comparison of APL2 and LISP and an example program written in
each language.

Part 4 presents the APL2 algorithms beginning with the
representations of 1logic with nested arrays an® proceeds
through development of algorithms for Unification, Resolution,
and searching. It concludes with an implementation of PROLOG
in APL2.

Part 5 goes beyond the fundamentals to look at such topics as
frames, boolean logic, and fuzzy logic.

Part 1: Artificial Intelligence

AI algorithms tend to deal with mixing and matching a set of
tokens rather than doing mathematical computations on numbers.
They tend to operate on nested lists of these tokens rather
than on rectangular patterns of them and this means that tihey
are often recursive.

Traditionally, these algorithms have been written in LISP, a
list processing language, and more recently in PROLOG a logic
programming language.

This part will discuss AI in general and point out the
features of APL2 that make it a candidate for implementation
of AI programs.

1.1: What is Artificial Intelligence

There is no agreed on definition of Artificial Intelligence.
The field tends to be defined both by the problems it
addresses and itiane tools applied in the solutions.

Artificial Intelligence (AI) algorithms are an attempt to
model with a computer the mental facilities of human beilngs
who are assumed to have real intelligence. They often involve
drawing conclusions and making decisions and include
recognition of written natural language, speech recognition,
computer vision, robotics, and expert systems.

An AI program is one which exhibilits behavior which would be
considered intelligent 1if 1t were done by a human -- it
accepts and responds in a natural language; it knows rules and
applies them against the given data; an advanced system can
alter the data and the rules (i.e. learn from experience)
(Fr1).

Traditional programs tend to do the things that Neanderthal
man could not do -- payrolls, computation, text processing,
etc. This 1s because man had to figure out how to do these
things (after inventing the need for them) and, therefore, 1is
good at specifying how to do them. The Neanderthal did make
noise to communicate, could recognize faces, could move his
arm to a desired location. No one ever had to consciously
figure out the mechanism to do these things and so 1t is hard
to specify how they work. AI programs often attack these
problems.

In some sense, every computer program applies rules to data.
This 1s, almost by definition, what an algorithm does. The
difference 1is that an ordinary program contains the rules
imbedded in the logic of the program. There is no separately
definable piece that represents the knowledge being applied.
An Al program contains a knowledge base (a database for rules
and facts) and general algorithms for combining the rules and
facts. If the knowledge changes, the program does not change,
only the database changes.

In building practical systems, the AI programming task 1is not
particularly difficult (although getting good performance is a

challenge). The real problem 1is constructing and validating
the rules. This has given rise to a new field of study called
Knowledge Engineering. A knowledge engineer is essentially a

systems analyst / application programmer. His task 1is to
recognize important aspects of a problem and present a
formalization that can be implemented on a computer. This
topic will not be discussed further in this paper.

1.2: The Problem to be Solved

Given a set of facts and relationships between them, people
routinely draw conclusions from them. The challenge is to
develop computational procedures which c¢an draw the same
conclusions.

Real world situations tend to be complex and sometimes
imprecise. This 41is why most early AI investigations dealt
with games like checkers and chess where rules are simple and
precise. Of course, even simple and precise rules can lead to
combinatorial complexities and this 1s the case with chess.

In specifying a logic program, one of the most difficult 3Jjobs
is making sure your facts are 1indeed trues; that you have
stated all the relevant facts, that your words mean the same
thing everywhere.

Facts are things that you assert to be true. If they are not
true, that's your problem. A logic program will attempt to
draw a conclusion. You may have heard the following puzzle:

Question: If you call the tail of a cow a leg,
how many legs does a cow have?

Answer in the AI world: Five.

Answer in the real world:
Four because saying it's so doesn't make it so.

In the artificially intelligent world, however, saying it's so
does make it so. Thus 1f we assert:

Nothing is better than complete happiness in life
and assert

A ham sandwich is better than nothing
we can conclude

A ham sandwich 1is better than complete happiness in life.

While this might be debatable, most people would disagree,
This is an example of word sense ambiguity. While the above
example is a little ridiculous, exactly this kind of
misunderstanding doomed the computer 1language translation
efforts 1in the 1950's. One such effort translated "out of
sight, out of mind" into Russian as "blind and insane" (Gr1).

Great care must be exercised 1in choosing the facts and
avoiding the ambiguities of natural 1language. Most people
agree on logic and the rules of deduction but not on
knowledge., Different people call the same thing by different
names., Real world concepts tend to be fuzzy, not exact. For
example, membership in the set of all green objects is subject
to human judgement.

This paper will ignore the real problems of language and the
human decision on representation of knowledge and concentrate
on the algorithms that solve logic problems.

Thus, the problem to be solved 1s: Given a set of statements
assumed to be true, draw conclusions which are true.

1.3: APL2 as an AI Language

APL2 1s a candidate for writing AI applications. The
following 1is a discussion of the features of APL2 that make
this true., If you are already convinced of this, or don't wish
to be, you may skip this section,.

- Machine Independence - APL2 avoids machine specific
features and, 1in general, the machine architecture is
irrelevant except for precision of numeric computations
and performance,

- Data 1s typed, not variables - A name may contain at
different times any kind of data. AFPL2 has only two
types of data -- <characters and numbers. Internal

conversion between various formats of numbers and
characters 1is transparent to an algorithm. A name may
contaln differently shaped data at different times. The
Expert System Environment product contains a set of
individual get/set commands rather than generic ones
precisely because it is implemented in PASCAL which has
strong data typing (Hi1}), It is unlikely that an expert
system shell written in APL2 would do this,

- Nested arrays - APL2 arrays contain other arrays in any
combination and to any depth. These arrays, in
themselves, may be used to represent the necessary data
models -- graphs, Frames (Ke1l), etc.. Vectors of vectors
is a subset of arrays of arrays which 1is useful in
representing trees and lists -- the traditional 1lowyic
programming structures. In addition, A4APL2 can repres=ant
data arranged along more than one independent axis
making it ideal for representing non-linear data 1like
relational tables.

- Dynamic data - nested data structures are not declared.
They may be created, modified, rearranged, and deleted
as part of program execution., Utilization of space for
data and programs 1s dynamically managed.

- Dynamic name scope - non-local names bind to the most
recent value. Scope depends on the calling order of
functions.

- Symbolic computation - nested arrays containing
character strings provide a means for computing on
arbitrary symbols. APL2 c¢an dynamically treat a

character string as though 1t were an expression in a
program. Thus, parts of programs can be constructed
during execution.

- Recursion - Given arrays of arrays as recursive data
structures, recursive algorithms are easily written to
process the data.

- Parallelism - APL2 operations apply to whole arrays at
once, There is often no need to write a loop or other
structured programming constructs to achieve repeated
applications of programs. Use of parallelism reduces the
use of recursion and 1leads to more compact and more
understandable algorithms. In particular, CAR CDR
recursion 1is almost always replaced with a parallel
operation. APL2 algorithms would not need to be
rewritten to take advantage of parallel hardware.

- Function modifiers - APL2 operators are used to modify
the behavior of functions and make them do special
things. "Each" (") is the parallel analog of iteration:
outer product (°,.f), is used whenever a program 1is to be
applied in all combinations with a set of arguments.
User written operators give the programmer the ability

to create his own control structures. This gives an
effective blend of recursive and parallel programming
styles.

- Functional programming style - APL2 programs tend to be
written in a modular style almost like extensions of the
language ditself and then connected 1in expressions.
Functions may be passed to programs along with data.
Defined operators can be used to create applicative sets
of controls and filters (Eu1) (Eu2). This gives an
effective blend of procedural and functional styles.

In addition to facilities especially suited to logic
programming, APL2 has facilities that make it applicable in
the other fields of computation: business data processing,
graphics, Engineering Scientific, financial, etc..

- Powerful general purpose computational primitives -
Mathematics and computation are available to write
precise and concilse algorithms for business and science.
This is useful in producing a combination application
that uses logic programming at the user interface to
give inputs to a computational phase. Thus, you can
write expert systems that have a significant traditional
computational component, The computational ability is
also useful in computing fuzzy logics.

- Programmable error handling - an AFPL2 program can be
written so that it 1is never out of control. Unexpected
data or even program errors can be captured and handled
under program control.

- Full graphics access - APL2 has access to a complete set
of graphics facilities including GDDM and the
Interactive chart utility (ICU).

- Full panel management - APL2 can use ISPF to interact
with a user giving a standard interface like that used
by other products. A Prototyping Environment (APE)
provides panel management along with many other
productivity enhancements.

- Full relational database support - APL2 provides access
to SQL/DS and Data Base 2 for relational data. This
could well be the repository for a knowledge base or any
other data of an application.

- Full access to other languages - programs 1in other
languages can be called from APL2 programs using APL2
syntax. All the APL2 control structures apply to these
programs without change and without exception. APL2
applications tend to be modular -- collections of small
programs combined in a functional style. You could write
each little program in a different language 1if you want.
You can use existing subroutine libraries.

- Interactive - You interact with A4FPL2 in real time. You
can experiment with different data structures and
alternate algorithms. You can debug programs by running

them, fixing errors when found, and continuing from
where the program left off.

- Full Program Product support - APL2 is one of the Xkey
IBM languages and receives full IBM Program Product
Support.

~ Under active development - APL2 is an evolutionary step
from VS APL and the evolution is continuing.

Thus, in summary, APL2 can be used in the implementation of an
Al system and it offers advantages not found in the other
languages of choice. The style of programming can be the same
as the traditional AI languages or can be changed to reflect a
parallel orientation.

Part 2: Logic

The purpose of logic programming 1is to do computation on the
truth of statements. It deals with facts which are known to
be true, methods for combining facts, and rules for producing
new facts from the existing ones. Appendix 3 contains a
summary of predicate logic.

2.1: Loglc Statements

A proposition is a statement that is true or false. The truth
of the proposition "Sten 1s mortal™ may not be known at some
peint in time but when it is known, the value will be either
true or false. A predicate 1s a generalization of a
proposition which allows variables. For example, "X is a man"
is true whenever X is given some particular man as a value.
Predicates may be more formally stated by removing the
non-essential English and writing the relationship 1like a

function applied to arguments as in "mortal(sten)" or
"P(£(X),Y)". The intent is that when you are told how to
evaluate a predicate, it will yield true or false. These

predicates are 1linked together by 2zero or more connectives
yielding logic statements or formulas.

In the following, let the single capitol letters P @ R S T U
and V represent arbitrary predicates. Thus P might represent
"Sten 1s mortal" and ¢ '"Spot is a dog".

The intention is to write statements that are true. Therefore,
if P is true, write:

P

If P is false, write
~P
(~ means not).
The connectives for statements are "and" (A) and "or" (v).

Pv@
means at least one of P or ¢ is true

PAQ
means both P and @ are true

(The symbol Vv is from the Latin "vel"” meaning either or both.)
8

A set of simple expressions written with connectives is called
a clause.

Pv@Aa(~T) is a clause

A clause with only "or" (v) connectives 1s called a
disjunctive clause.

PvavT is a disjunctive clause

The clause Pv(~P) 1is always true and the clause PA(~P) 1is
always false. The clause resulting from PA(~P) 1is an enmpty
clause (no terms) and represents a contradiction. A
contradiction would seem like a useless result but, in fact,
is one of the key ways of solving logic programs as is seen in
part 4, A clause with only "and”™ (A) connectives is called a
conjunctive clause.

PAQAT is a conjunctive clause

Negating a conjunctive clause gives a disjunction:

~(PAQAR) is (~P)V(~@IV(~R)

Implication i1s a conditional statement - "if P 1s true then @
is true". This does not claim that P is true only that if P
is true, then so 1s . Implication 1is represented bv the

following logic statement:
Qv (~P)

The intent is that @v(~P) is a true statement. It is true if
either of @ or ~P is true. P 1is either true or false. If P is
false, then ~P is true and so 1is @v(~P),., If P is true, then
since P implies ¢, & is true and so is @v(~P). Therefore the
implication "if P then @' written @Qv(~P) is true regardless of
the truth of P.

The following notations are also used for implication:

Q <= P

P ==> @

P o @

P £ @ (£ is less or equal in the APL2 sense)

In this paper, any of the egquivalent expressions (~P)vQ@,
@v(~P), or @<=P will be used. They are read "P implies @" or
"Q if Pll.

2.2: Rules of Inference

Rules of inference are rules for producing new true statements
from given ones, These rules imply a reasoning process without

reference to the meaning of statements. For example, the
"Modus Ponens" Inference rule says: "If P implies @, and P is
true, then ¢ 1s true." (Modus FPonens means '"Method of
detachment”. In some sense, the conclusion is detached from

the premises.)

Here 1s a summary of some rules of inference:

stmt 1 stmt 2 infers name
P Qv (~P) Q modus ponens
Pvg (~PIvQ Q merge
P ~P enpty a contradiction
Pv@ (~PYv(~@g) (~@)vQ tautology
Qv (~P) Rv(~Q) BEv(~P) chaining
Merge 1s sometimes called ‘"existential elimination®. The

chaining rule may be read "If P implies ¢ and ¢ 4implies 7,
then P implies R"

%% A General Rule of Inference

Resolution 1s a rule of inference which includes all of the
above rules. In words, resolution says "if one disjunctive
clause contains a negated term, and another disjunctive clause
contains the same term non-negated, then you may infer the
disjunction of the other terms." In one sense, you might say
that the two terms differ in sign and cancel. For example:

from the two clauses

Pv@v(~R)
(~PIVv(~S)VT

you may infer

QV(~RIV(~SIVT

This 1s easy to picture. The two input clauses are true. One
of P or ~P 1s false and where it is false, the other terms of
that c¢lause must provide the truth. You should be able to
apply the resolution rule to the table of rules of inference
and see how resolution contains them all. In the first four
cases, delete P from stmt 1 and ~FP from stmt 2 and Yor" (V)
together what's left. In the chaining rule, delete ¢ from
stmt 1 and ~¢ from stmt 2.

10

When two statements like

Pv@gv(~R)
(~PI)V(~S)VT

are written, it is a <claim that they are both true
simultaneously. Thus they are really connected by the logical
"and” (A) and could be written:

(Pv@Vv(~R)) A ((~P)Vv(~S)VT)

This 1is called a conjunctive normal form and is the form used
to represent a knowledge base which 1is just a collection of
statements asserted to be true.

Remember that the letters used in the above clauses stand for
predicates. Here's a real example of Resolution (Gr1):

clause 1: (The sun is shining) or (I will take my umbrella)
clause 2: (The sun 1is not shining)

inference: I will take by umbrella

The predicate "The sun is shining" is positive in clause 1 and
negative in clause 2 and so can be cancelled.

Unlike mathematics, if two positive terms of one clause appear
in the second clause negated, you c¢annot cancel them both. For
example from the two clauses:

Pv@vRv(~S)
(~PIV(~Q)VTVU

you may NOT infer
Rv(~S)VvTvU

If P is true and @ is false, then both input clauses are true
without regard to the other terms in the clauses.

2.3: Incorrect Rules of Inference

Applying rules of inference to statements claimed to be true
(and actually true) can only lead to true conclusions. Thus.,
if something known to be false 1s inferred, one of the known
facts is actually false.

Most human reasoning 1is less formal than this and involves
methods than can be proven incorrect. In practice, they are
correct often enough to be wvaluable tools. Here are some
incorrect rules of inference:

11

1.

Abduction
If P implies @ and @ is true, then P is true.

From a logic point of view, this 1is nonsense because,
from something false, you can 1infer anything at all
including something that is true. "If 2 1is an odd
number, then the pope 1is Catholic" dis a correct
implication. The conclusion is true (let's assume) but
that does not make 2 an odd number. HNonetheless,
Abduction 1is the basis of medical diagnosis., For
example:

Patient has cancer implies symptom 1

If the patient exhibits symptom 1, the doctor may deduce
that he has cancer. Of courses; he may be wrong. If in
addition:

Patient has cancer implies symptom 2
Patient has cancer implies symptom 3

and the patient has all three symptoms, the doctor can
diagnose with greater confidence. He might still be
wrong. Abduction might be c¢alled "inference by best
explanation”,. Of course, 1f cancer has a unique set of
symptoms and the patient has them all, a correct
conclusion can be reached. Complete knowledge 1s the
exception not the rule.

Induction

If @ 1s true for every instance of ¢ known, then @ 1is
true for all instances.

If you 1lived in an isolated wvillage in Africa, you
might notice that @ 1is human and ¢ has a black face.
Also R is human and R has a black face. The conclusion

is that "all humans have black faces". This 1is, of
course, not true, When a white man shows up, the first
conclusion might be '"This person is not human -- he's a

great white god"” or "he's an animal to be eaten".
Eventually, however, it becomes clear that the original
inductive conclusion is not true.

Nonetheless, induction 1s the basis of learning. A child
quickly learns that touching a hot stove burns him. He
will conclude that this is always true rather than keep
checking the hypothesis. When adults apply induction,
the result is often called a law: "What goes up must
come down'" (a paraphrase of Issac Newton). The builders
of the Voyager space craft might disagree.

12

3. Default reasoning
If you can't infer @, infer ~@
This 1s 1like saying you are innocent if you can't be
proven guilty. This 1s incorrect wunless you have
complete knowledge. Of course, if you know everything
and reason perfectly and can't infer €, then ~@ must be

true. If @ 1s not true, then the attempt to infer it
might not terminate.

2.4s Variables in Logic
The logic statements seen so far give you ways to express
relations about particular objects. For example, you can say:
If 32 is divisible by 4 then 32 is divisible by 2
If 34 is divisible by 4 then 34 is divisible by 2
If 36 is divisible by 4 then 36 1is divisible by 2

etc, for infinitely many statements

Writing these as implications using the notation of logic each
reads:

divisible_by 2 (32) < divisible_by_ 4 (32)
or
divisible_by_2 (32) v ~divisible_by_ 4 (32)

again with an infinite number of similar statements.

x*x*x Universal Quantification

Universal Quantification gives a way to write a more general
statement:

if N is divisible by 4, then
N is divisible by 2

where N 1is called a 1loglic variable and replaces universal
gquantification.

This 1s written as an implication as follows:

13

divisible_by_2 (N) <« divisible_by_4 (N)
or
divisible_by 2 (N) v ~divisible_by_ 4 (N)

A logic variable is essentlially a place holder for a value. It
is unlike a varialble in a programming language because it need
not have a value to be used. In a particular instance, you
may stick in any value for N everywhere it occurs and if it is
divisible by 4, then it 1s divisible by 2. This one statement
replaces a countably infinite set of statements. This paper
from this point on follows PROLOG conventions where any name
starting in uppercase is taken to be a logic variable. This
convention is not standard so the APL2 algorithms presented

later on wuse a 1leading 'A' to mean a logic variable.
Therefore, there are two conventions for logic variables in
this paper -- upper case when looking at logic statements and

'A' when looking at AFPL programs. Appendix 1 shows the
function ENCODE which is used to implement the logic variable
name scheme,

**% Existential Quantification

Existential Quantification gives a way to say that at least
one substitution for a loglc variable yields a true statement.
For example you say:

There exists an X such that
X 1is president of the United States.

In this case, since there 1s a person X, it's OK to give him
(or her) an arbitrary constant name (say "wdjx'" or "reagan').
This, then, becomes an assertion of fact:

president_of_USA (reagan)
It doesn't matter what name you give 4it. An arbitrary
character string will do so long as it 1is unigue and used
wherever you intend to refer to the intended object.
** Inference with Logic Variables
The rules of inference need to be extended to allow statements
that c¢ontain wvariables. For example, "Modus Ponens" says

"given P dimplies @ and P, then @'". Suppose that you've becn
given the two statements:

14

P1
P2 implies @

where P2 and P1 contain variables., You cannot, it would seen,
infer anything because P2 and FP1 are not the same so Modus
Ponens does not apply. Modus Ponens 1s extended to include
variables as follows:

Given "P1" and "P2 implies Q", 1if you can

find substitutlons for wvariables in P1 and P2
that make them the same, then infer @' which is @
with the same values for variables.

This matching process 1s called unification

and 1is discussed in part 4. P1 and P2 unify if they can be
made to match by giving values to variables.

For example,

clause 1: divisible_by_4 (32)
clause 2: divisible_by_2 (N) v~ divisible_by_u4 (N)

The only predicate 1in clause 1 matches the rigit hand
predicate of clause 2 if you substitute for N th. value 32,
Thus you may infer:

divisible_by_2 (32)

which is the other predicate in clause 2 ucting the same value
for the logic wvariable.

2.5: General Resolution

Resolution 1is the more general inference rule and its
application is extended to clauses with logic variables in the
same way.

given P1 v @ v (~R)
and (~P2) v (~8) v T

and values for variables so
P1 and P2 unify,

infer
Q' VvV (~R') v (~S') v T°

where @', R's S', and 7' come from ¢, H, S, and T with the
same values substituted for variables.

15

This more general resoclution rule is the basis for the logic
programming search programs discussed in part 4.

A word of caution 1s needed on the use of variables. A
variable 1is meaningful only inside one logic statement. If a
second statement contalins a wvariable, it 1is a different
variable even 1f it has the same name. The algorithms avoid
this possible confusion by renaming all variables with unigue
names. (see VIRENANE in Appendix 1).

2.6: Chaining.

A chain, in logic, is a set of implications that connect two
clauses together.

If you are given a set of facts and wish to prove the ¢goal
S, there are two ways to discover the chain: starting from the
facts, or starting from the conclusion:

**% Forward Chaining

The most obkvious way to arrive at some goal given a set of
facts 1s to make Implications and watch for the goal to
appear. For exanple, given "P" and the implication "P implies
Q" you can deduce "@Q". The following shows the application of
two more implications leading to S (remember that 2 implies @
is written @v(~F)):

P and @v(~P) gives @
¢ and Av(~Q) gives A
R and Sv(~RF) gives S
This chain shows that P implies S.
In general, many things can be inferred from the known facts

that won't lead to the goal. Thus, the search for the goal
might look like this where the arrows mean implications:

16

/
AN

This leads to l1dentification of the desired chain along with a
lot of unwanted implications. All implications are true and
could be permanently added to the database. See (Fo1) for an
excellent application of forward chaining in a expert system.

The Expert System Environment (ESE) command DISCOVER requests
forward chaining.

x%x Backwards Chaining

Given a goal, a chain connecting to it c¢an be discovered by
denying the goal (~goal) and looking fcr a contradiction.
Thus, if you want to prove S, you start with (~S) (the denial
of the goal), If you know that K implies S, then clearly R
must be denied also. (~R) is the denial of a sub-goal.

~S and Sv(~K) gives ~R
~R and RARv(~Q) gives ~@
~g and @v(~P) gives ~P
~P and P gives a contradiction
therefore ~S is false and S 1s true

This, again, 1leads to a tree of implication because, in

general, more than one implication may lead to the desired
conclusion:

17

P\Q
L/ T /

Note that the final chain 1s the same (in +this case) but
different extra work 1is done., Most deductive systems use
backwards chaining. Only implications along the final chain
are true and can be added to the rule database. The others are
not known to be true, But, at least, only implications that
potentially lead to the desired conclusion are used.

The Expert System Environment (ESE) command DETERMINE requests
backward chaining.

*%x Summary of Chaining

Chaining is like finding a route on a downtown map of a large
city. To plan a route from A to B, you could start at A and
find some intersections reachable from A, Then find some
intersections reachable from those., You eventually reach the
destination and have determined a route, This 1s forward
chaining.

Instead, you could start from B, the destination, and identify
some intersections which lead to B. Then find some
intersections leading to those until A, the starting point, is
reached. This is backwards chaining.

Whether you use forward chaining or backward chaining can
depend on the kind of rules in the knowledge base. If from
each spot in the search tree, only a few places can be reached
(small fan out) but many rules can reach the same place (large
fan in), then forward chaining is probably more efficient. If
the opposite 1is true, then backward chaining is probably more
efficient.

Here's a summary of the chaining rules:

1. Forward: P and @v(~P) gives @

18

2. Backward: (~¢) and @v(~P) gives ~P

Surprisingly, these can be written as one rule by making some
substitutions:

1. Forward: substitute ~A4 for P and B for @
(~4) and Bv(~~4) gives B
2. Backward: substitute 4 for ¢ and ~B for P
(~4) and Av(~~B) gives ~~B
These each simplify to:

(~4) and AvB gives B

2.7: Search strategies

In either forward or backward chaining, a practical decision
must be made concerning which implications to try before which
others. Two simple strategies are called depth first search
and breadth first search. They can be contrasted by lociing
at forward chaining.

**% Depth First Search

If there are two implications to be tried, then every possible
chain arising from the application of one of them 1is tried
before any application of the other. Here's a tree showing the
order in which implications will be tried:

P
/\6
N\ YN
3/\L: X
If you are trying to reach X, the order of implications makes
a significant difference in the amount of work to be done.

Also, if the path starting with 1,2,3 went on infinitely 1long,
a depth first search would not find the chain to X even though

it existed.

19

**x Breadth First Search

If there are two implications to be tried, then the second is
tried after the first but before any implications following
from the first. Here's a tree showing the order in which
implications will be tried:

N
N Y

In this case, search stops because X was found. In general, no
one search 1s better than the other except that given a finite
number of rules, breadth search will always find a chain if
one exists.

*% Refined search strategies

Much of the challenge in loglc programming is to find bketter
search strategies that use some knowledge of the situation to
make smarter choices of what to try next. Understanding
search strategies and having control of the strategy is wvital.
If, in following a map, you start a depth first search moving
east but your destination is west, you'll waste a lot of time
and effort before trying the next deep search which will also
probably be wrong.

The breadth first search is at least bounded -- you'll spread
out in a radius about the starting point (forward chaining) or
the destination (backwards chaining) and eventually find the
other point.

In this example, a better search strategy could be '"move first
in a direction that gets you closer in distance to the other
point". By computing a "figure of mnmerit" with each possible
implication, you can choose an apparent best next choice and
significantly reduce the amount of work done. Even a very bad
figure of merit can lead to a vast improvement in efficiency.

This would be neither a depth first nor a breath first search
but rather a combination of them.

Thus, the amount of work to be done can be reduced by applying

some knowledge specific to the problem to be solved. Such
strategies influence the efficiency of the algorithms but not
their correctness. Other techniques, like artificially

20

stopping what appears to be a fruitless search, could affect
the correctness and cause you to fail to prove a provable
conclusion, The improvement 1in efficiency, however, can be
dramatic enough to account for the difference between a
practical algorithm and an impractical one.

21

Part 3: APL2

This part introduces the main features of APL2 with emphasis
on the facilities that are actually used in the AI algorithms.
No attempt is made to present a tutorial covering the whole
language. The expressiveness of APL2 as compared to LISP 1is
investigated with an example.

APL2 has three kinds of objects - arrays, functions, and
operators, Arrays are the data, functions are what you do to
data, and operators are what you do to functions. Each will

be discussed briefly by example.

3.1: APL2 Data Structures

This section will describe how APL2 represents individual
pieces of data and collections of data. There are only two
kinds of data in 4PL2 -- numbers and characters. A number may
be logical (0 or 1), integer (1234), scaled (1£10), or complex
(2J3) but these are not separate data types. The logical
numbers 1 and O are used to represent '"true" and '"false"
respectively. A character may be an ordinary character ('a')
or an extended character like a Japanese character.

A collection of data in APL2 is called an array. An array in
APL2 1is a rectangular collection of numbers and characters
where at each point in the rectangle is a single number, a
single character, or another array.

Here's a 3 by 3 array of numbers (a matrix):

3 3p 23 1 123£20 1 O 124F£15 71 1 1E11

23 1 1.23F22
1 0 1.24FE17
1 1 1.00E11

The symbol p is the "reshape'" function. It means rearrange the
items on the right into a collection having three rows and
three columns.

Here's a 3 by 4 array with numbers and characters:

3 L4p'INIT® 'B' TITLE' '' *'C' 'D' 55 0 '"E' 'F' 66 1
INIT B TITLE
o4 D 55 0
E F 66 1

Here's a 3 by 3 array with a matrix at each spot:
3 3p €2 2p1 O O 1
10 10 10
1 01 0o 1

10 10 1 0
0 1 o1 0 1

10 10 10
01 01 01

The symbol < is the "enclose" function. It means package the 2
by 2 array into a scalar - an array with no shape which can be
thought of as an atom. The scalar is then repeated nine times
to get the three by three array.

In general, at any spot in an APL2 array, it is OK to have any
other array.

Here's a vector of characters:

'sten!'

Since this is an array, it may be an item of another array:
'sten' *'isa' ‘'‘man’

This is a three item vector of character vectors and is a
possible representation of a predicate in logic.

Names are associated with arrays by use of +the assignment
arrow (<):

A€«'sten' 'lsa' 'man'

Such a name 1s called a variable (not to be confused with a
logic variable which may not have a value),

Mention of the name of an array produces the corresponding
value:

A
*sten' 'isa’' "man'

23

3.2: APL2 Functions

APL2 functions take an array (monadic function) or two arrays
(dyadic function) and produce a new array as a result. You've
already seen the monadic function "enclose'(c) and the dyadic
function "reshape" (p).

**% Monadic Functions

The '"shape'" function (p) returns the number of items along
each axis of an array:

p'sten' 'isa' 'man’ A count items

The "first" function (4) returns the 1leading item from an
array. It is like CAR in LISP:

+'sten' 'isa' "man’' A select first item
sten

pt'sten' 'isa' "man' A length of first item
I

The "depth" function (=) returns an integer that indicates the
level of nesting of an array. A single number or a single
scalar (a simple scalar) has depth 0; an array of single
numbers or characters has depth 13 an array containing at
least one depth 1 array (and none deeper) has depth 2.

='s' A depth of a single char
0

='sten' 'isa' 'man' A depth of vect of char strings
2

=t+'sten' 'isa' 'man' ~a depth of first item

*%x Dyadic Functions

The "drop" function (}) deletes the requested number of
leading items. With a left argument of 1, it is like CDR in
LISP.

14'sten' '"isa' "'man' a select all but first item
isa man

24

The "index of" function (1) searches in the left argument for
occurrences of items from the right argument and reports the
index position at which each is found or 1+pleft if an item is
not found:

'sten' 'isa' 'man' 1 'sten' 'other' p find index position

The "match" function (=) returns 1 1if and only if 1its two
arguments have the same value and structure:

'sten' 'isa' 'man' = ‘*‘sten' 'man' 'mortal'
0

Note that "match" and "depth" share the same symbol. The
presence or absence of the left argument determines which is
intended.

**%* The Execute Function

APL2 has one somewhat unusual function called "exrcute" (g2).
Here 1s a character string containing three characters:

r2+3" A character string
2+3

The "execute" function causes a character string to be tr:ated
as an expression to be evaluated:

e'2+3" A evaluate char string

Given a character constant, it's not so exciting to see it
executed as an expression. Any program in any language starts
out as character strings which get compiled or interpreted.
More interesting 1is the case where the character argument to
"execute" 1is the result of a computation. Here, the character
'3' is joined to the end of the variable £:

Ee'2+" A char string

E,*3" A create new char string
2+3

eF,"'3" A evaluate new char string
5

Thus, using execute you can construct, under program control,
new APL2 expressions and cause them to be evaluated. This 1is
especially significant when doing symbolic computations. For
example, if you have a variable A4 having some array as value,

25

a mention of the name 1s equivalent to a mention of that
value:

A€2 2p0'APL' 'TWO' A matrix of two char strings
A A mention name glves values
APL THWO
APL TWO

If you want to deal with the name A rather than its value, you
just use the character string 'A' instead.

B«'A! a B is string with name of A
Now the variable B contains the name of the wvariable A4.

B A mention of B gives wvalue
A

If at some time you want to know the wvalue 1instead of the
name, "execute" 1is used:

e B A same as ¢'A"
APL TWO
APL TWO

If you have a variable whose value is a character string, you
can determine 1f the character string is the name of a
variable by requesting 4its '"name class' ([JNC). Interesting
values that ONC can return are:

1 - not a name
- no value
variable

- function

- operator

FWNO -
!

A«2 2p'APL' 'TWO*
anNc 'A? n A is a variable

B‘_IAI
ONC B n A is a variable
2

In this last example, B is a variable but it's value (which is
'A') 1s the argunment to [ONC

In the following, assume that the name ¥ has not been given a
value:

26

gnc ‘we A W has no value
0

ONC 'XYZ' 'SA' a argument is not a name
-1

The algorithm for Unification will use this scheme for
variables in logic. Each will be represented as real AFL2
variable (name class 2) when the logic wvariable has a value
and as a name with no wvalue (name class 0) when the logic
variable does not have a value. To see how they are used, see
the EVAL operator in the next section.

3.3: APL2 Operators

Operators modify the behavior of functions. They apply to all
functions, even user defined programs and programs written in
other languages (FORTRAN, ASSEMBLER, etc.).

** The Each Operator

The "each" operator (7) applies an arbitrary function to =zach
item of its argument(s) and returns one item of its result per
application.

Here are some pictures that demonstrate the application of
"each":

A<l J K
B«P @ R

monadic function "fn"

fn"A «» fn” I J K

27

dyadic function "fn"

A fn" B <~ I J K fn" p Q R

I fn P J fn @ K fn R

Thus, in some sense, dyadic '"each" takes a function and
distributes it 1inside the argument arrays. The function
operand of the operator therefore sees arrays of one less
depth than it would without "each". The function is paired
with corresponding items one from each argument. The number of
results 1s the same as the number of arguments.

'sten' 'isa' 'man' =" 'sten' "'man' 'mortal’
100

p’“'sten' 'isa' 'man'
4 3 3

An important special case of dyadic "each occurs where one
argument 1is a scalar. For example, let S be a scalar that
contains 7 as its only item:

SecT A construct scalar containing 7

S fn" B <> I I I fn” P) R

I fn P I fn € I fn R

Thus, "each" applies a function between corresponding itens
one from each argument. To apply a function with a given left
argument X to each item of the right argument Y, just enclose
the left argument:

(cX) fn™" Y
A scalar as a right argument yields a similar expression:

X fn” (<Y}

The "each" operator (7)) 4is one of two important primitive
operators that will be used in the AT algorithms that follow.
Recursion that 1s not replaced by parallel operations will
normally be done in some function "fn" which after finding the
data A4 more complicated than it wishes to handle, will,

28

instead, do a recursive simplification by applying itself to
each ltem of the data fn"A.

** The Outer Product Operator

"Each" 1is only one of many useful ways to combine two argument
lists., The primitive operator "outer product" 1is like "each
except that it applies a function to all combinations of items
one from the left and one from the right. It can be pictured
like this:

A« I J K
CeX Y

C °o.fn A > X Y |e.fn| I J K

X fn T X fn J X fn K

Y £fn T Y £n J Y £fn K

Much like '"each', "outer product" takes a function and
distributes it inside the argument arrays and the function
sees arrays of one iess depth than if "outer product'" had not
been used, The only difference 1is that "each" applies the
function to corresponding items from the argument and "outer
product" applies the function between all possible pairs.

For example:
'sten' 'isa' 'man' ¢, = 'sten' 'man' 'mortal'

10
00
o1

[eNeNe]

Each item of the left argument is "matched" against each i1tem
of the right argument. The row index of the result says which
item of the left argument was used and the column index says
which item of the right argument was used.

Whenever an algorithm calls for doing something in all
combinations, "outer product" is probably the solution.

29

3.4; User Defined Control Structures

The APL2 operators allow writing expressions in a functional
style. There are, however, only a few primitive APL2
operators. Identifying new primitive operators is a possible
area for future extension of the language.

User defined operators provide a way for the APL2 programmer
to add his own control structures to the language and
therefore extend the possibilities for functional programming.
The defined operators themselves are often written i1in a
procedural style.

** TRUE and UNTIL operators

As an example, suppose you want to determine the truth of some
goal statement and there are one hundred facts to check
against. Assume you have a function called CHECK which given
the goal and a fact from the database returns a 1 or 0
depending on whether the given fact proves the ¢goal statement
or not. You could enter a set of statements 1like this to
prove the goal:

STNT CHECK RULEA1
STNT CHFCK RULE2

However, 1f the rules are kept in a vector called DATABASE,
you could just enter:

(cSTMNT) CHECK™ DATADASE
00010011 «. +»+ «+ 0O0O0

This will do the expected operation resulting in a hundred

item vector of zeros and ones. Hotice the use of a scalar
left argument so "each" applies CHECK between ST7MT and each
rule in the database. If you want to know every way in which

truth can be proven, then this expression is an elegant
solution. On the other hand, if you only want to know if the
statement can be proven, then the expression is still correct
but computes a lot of unneeded results because it continues to
apply CHECK even after a proof has been found.

What is needed is an "each" that will guit after a proof is

discovered., APL2 does not have such an operator but you can
write one. Here's one possible definition:

30

VZ<«L(F TRUE)R:; I A "each" that gquits on true
[11] +(O0zpplL) /L1 A branch L not scalar
[2] L<«(pR)pL A extend scalar left
[31] L1:>(0z2ppRY/L2 A branch R not scalar
[al Re(pL)pR A extend scalar right
[5] L2:Z<«I<0 A initialize result and counter
(el LP:+»(I2pR)/O0O A exit when counter exceeds length
{71 >(1=Z<«(4IVLIF(+I¢R))/0 n exit when result is 1
[81] +LP I«I+1 A continue

[1] through [4] only check for a scalar argument and, 1if
found, extend it to be the same length as the other argument.
The real logic starts on [5] where the result is set to false.
This result is only returned 1f the arguments are empty. [6]
through [8] implement a loop which applies the argument
function F between corresponding items of the arguments. The
branch on 1line [7] causes an exit if a 1 (true) is ever
returned. If the loop counter ever exceeds the argument
length, line [6] exists returning a result of 0 (false).

The TRUE operator is defined in a procedural style but is used
in a functional style:

(cSTNT) CHECK TRUE DATABASE
1

This expression terminates as soon as any way to prove STMNT is
discovered.

If you want to terminate as soon as a false is discovered, you
could write a FALSE operator. It would be exactly like TRUE
except the one in [7] would be a zero, This suggests a more
general operator which takes as an argument the value that
causes termination:

VZ«L(F UNTIL THIS)R3I a EACH THAT QUITS ON TRUE
[1] +>(O%pplL) /L1 A branch 7 not scalar
[2] L<(pR)pL A extend scalar left
[31] L1:>(0#ppR)/L2 A branch R not scalar
4] R<(pL)pR A extend scalar right
[5] L[2:Z«I<«0 A initialize result and counter
{61 LP:+(I2pR>/0 A exit when counter exceeds length
L7131 >(THIS =Z<«(+IVLIF(4IVvR))/0 A exit when result THIS
[8] +>LP I<Il+1 a continue

Now TRUE can be written:

(cSTNT) CHECK UNTIL 1 DATABASE
1

and FALSFE can be written:

(eSTMT) CHECK UNTIL O DATABASE

** PARALLEL Operator

If you have a truly parallel machine available, you might want
an "each" 1like operator that passes each computation to a
different computing engine. APL2 does not currently run on
such machines but you could pass sets of computations to
different real machines. Given a set of personal computers,
this might even be practical.

Because APL2 makes you think in a parallel array fashion, it
is likely that you will discover situations where parallelism
can be exploited.

** DEPTH Operator

The operators "each", "outer product", 7TRUE, and UNTIL all
operate on the items of nested arrays or, in some sense, one
level down in the structure. Suppose you have the following
two item nested vector:

Ve'relate! ('parent' ('AX' 'sue') 'sue')

The first item 1s a six item character vector and the second
is a three item vector of vectors. This may or may not
represent a statement in 1logic. Just think of it as nested
data.

Suppose you want to know the 1length of each word in the
structure. No operator you've seen so far could compute it.
"Shape" (p) will tell you 1it's a two item wvector and say
nothing about the shape of the words. "Shape each" does a
little better:

p"Ve'relate!' ('parent' ('AX' 'sue') 'sue')
6 3

At least you get the shape of one of the werds. What is needed
1s an "each" like operator that doesn't stop after one level
into the array but continues until it gets to a word. A word
(i.e. a character vector) is a depth 1 array so you can write
an operator that looks for a depth 1 array and if the data is
deeper than that, it applies "each" until a depth 1 array is
found. Here is one way to write such an operator:

32

VZ<«(F DEPTH1) R A apply F at depth 1
[1] +(1<=R)/RECUR A recur if depth > 1
[2] Z<«F R a apply F to depth 1 R
[3] +0 A exit
[L4] RECUR:Z«(F DEPTHA)"R A apply F to items of &

[1] branches if the depth of the argument is greater than one.
[2] applies the function to an array known to be depth 1 or
less. [4] uses "each" to dig one level deeper into the array
eventually reaching a level which is depth 1 or less array.

p DEPTH1 V
6 6 23 3

and this result has the same tree structure as V. The words
are replaced by their shapes. If you want a simple vector of
shapes, the function "“enlist" always returns a simple vector.

€p DEPTH1 V
6 6 2 3 3

*% EVAL Function

Given the vector IV from above, suppose that any vector
starting with the character '4A' represents a logic wvarisble.
One of the tasks of a 1logic¢ program is to take such a
statement and produce a new one that represents the statcment
with values substituted for variables. Here is a function that
will do the substitution on one logic variable. Remember that
a logic variable without a value 1s represented by an APL2
name without a wvalue (name class 0) and a logic variable with
a value is represented by an AP name wilith a value (name class
2):

VZ<«EVAL1 R
[1] Z<R
[2] +>(~*'A'=+R)/0
[3] »(220NC R)/0
[4] Ze€oR

evaluate logic variables in R
initialize result

exit if not a logic wvar

exit if no value in AP[wvariable
replace variable with 1its wvalue

>>®» 213D

[1] sets the result to the argument.

[2] exits if the name is not a logic variable.

[3] exits if the name is an APl variable with no value.
4] returns the value of the variable

Here are some applications of the EVAL1 function:

33

AX<«*'mother’

EVAL1 *'sten'
sten

EVAL1 'AX!
mother

EVAL1 doesn't do what 1is required if there is more than one
name:

V«'relate®' ('parent' ('aAX' 'sue') 'sue')
EVAL1 V
relate parent AX sue sue

V i1s a structure that contains many names at various different
depths. You need to apply EVAL1 to each name in V. The
operator DEPTH1 will do that:

AX€«'mother'

Ve«'relate' ('parent' ('AX' 'sue'}) 'sue')
EVAL1 DEPTH1 V
relate parent mother sue sue

This form of substitution is not powerful enough to handle the
general case because the value of a variable AX may contain a
complicated structure which itself contains a wvariable. In
the following, the variable AX contains a reference to logic
variables AY and AZ:

AX<'abc' 'AY' 'AZ°
AY«'def'
Ve'relate' ('parent' ('AX' 'sue') 'sue')

Now EVAL1 will not complete the substitution.

EVALY1 DEPTH1 V
relate parent abc AY AZ sue sue

A more general function will do substitutions in any
substituted values as well. Here is a more general function:

VZ<«EVAL R A evaluate logic wvariables in R
[13 Z<«R A initialize result
£L2] >(~"A'=4R)/0 A exit if not a logic variable
£33] +(2%[ONC R)/O A exit if no wvalue in variable
C4] Z<«EVAL DEPTH1 ¢R ~a replace variables with values
EVAL DEPTH1 V
relate parent abc def AZ sue sue

Now AY is given the correct value. AZ does not have a value
and so is not altered.

This function will be used for doing substitutions in the
algorithms that follow.

You could avoid using real APL2 variables to represent logic
variables by storing the names of variables and their values
in an array -- a vector of pairs of a two column matrix:

VSUBS«('AX' ('abc' '"AY'"))('AY' 'def')
or
MSUBS<«>VSUBS

(The function "disclose'" (2) turns a vector of vectors into a
matrix.) The EVAL function could then search one of these
arrays instead of doing an '"execute" (2)., For example, lines 2
and 3 of EVAL could be written using MSUBS as:

+(~(cR)eMSUBS[131>/0

3.5: The Rosetta Stone: LISP and APL2

The history of AI has been significantly influenced by the
language LISP, which was designed to express its algoric hms.
LISP 1s an extremely elegant language for stating the
recursive kinds of procedures often required in the solution
of AI problens.

To compare APL2 and LISP, a benchmark program from "The
Handbook of AI"™ (Ba1) will be shown in both LISP and APL2. The
program implements a deductive search routine of the following
sort:

given facts:

There is a man named Sten.
There is a dog named Spot.

and given the general statements:

All men are mortal.
All dogs have a tail.

deduce the conclusion

Sten is mortal.

35

The first four statements are called the database of the
problem, It is an open database 1in +that not all true
statements about the subject at hand are included. Thus, even
though you can conclude that "Sten is mortal™ and cannot
conclude "Spot is mortal'™, you should not conclude that it is
better to be a dog than to be Sten. An example of a closed
database is an airline reservation system. If you don't have a
reservation that is included in the database, you don't have a
reservation,

*% The LISP program

The database for the LISP program is a four item 1list -- one
item per statement. The facts are each two item lists, and the
general statements are three item lists starting with the word
'ALL"'.

(SETQ DBASE ' ((ALL MAN MORTAL) (ALL DOG HAVETAILS)))
(SETQ DBASE '((MAN STEN) (DOG SPOT)))
The goal (the statement to be proved) is a two item list:

(SETQ STMT ' (MORTAL STEN))

Here is a LISP program to solve this kind of problem:

(DEF ‘'PROVE
'(LAMBDA (STMT DB)
(FINDA DB)))

e
.
W N =

(DEF 'FINDA
' (LAMBDA (RESTDB)
(COND
((NULL RESTDB) NIL)
(T (OR
(PROVESIT (CAR RESTDR))
(FINDA (CDR RESTDB))>)))))

NNNNNDNN
-
NOwuUniFEwNn =

(DEF 'PROVESIT
'(LAMBDA (AS)
(CR (EQUAL STMT AS)
(AND
(EQUAL (CAR AS) 'ALL)
(EQUAL (CADDR AS) (CAR STMT))
(PRCVE (CONS (CADR AS) (CDR STMT)) DB))))J)

.

Wwwwwww
NON W

Note that the dialect of LISP used in this program has dynamic
name scope s0 in the function PROVESIT, the name STMT has the

- 236 -

same value that it had in the call of PROVE. This is not the
case in all LISP implementations.

Here is the execution of the program:
(PROVE STMT DBASE)
T
Here is an explanation of the evaluation of the LISP program
in reverse order:

Description of PROVESIT

Given a fact (AS) (3.2), statement (STMT) is true
if either of the following is true:

1. STMT is the same as the fact (3.3)
2. each of the following is true:
a. the first word of the fact is "ALL"™ (3.5)

b. the third word of the fact is the same as
the first word of the statement (3.,6)

c. you can prove the constructed statement from

the second word of the fact and the
secona word of the statement (3.7:

Here's examples where each of the possibilities achleve truth
(in reverse order):

2. If fact is "ALL MAN MORTAL" and statement is
"MORTAL STEN" then

a. first word of fact is "ALL"

b. third word of fact matches first word of
statement

c. constructed statement "MAN STEN" can be proven
1. If fact is "MAN STEN and statement is

"MAN STEN" (as constructed above), then
fact is the same as the statement

37

Description of FINDA

Given a set of facts (RESTDB), find the first of
the following which is true (2.3):

1. the set of facts is empty in which case return
false, the statement cannot be proved (2.4)

2, T is always true (2.5) so evaluate the following
stopping as soon as one is true:

a. prove the statement using the first fact
in the database (2.6)

b. recursively repeat the FINDA function

on the database with the first fact left
out

FINDA has +the effect of iterating through the facts wuntil
either the statement is proved or it runs out of facts.

%% The APL2 program

The LISP program can be translated into APL2 directly using
the following correspondence:

LISP APL2
empty list NULL R O=pFR
first item CAR R +R
rest of items CDR R 1VvE
first of the rest CADR R ArVE
first rest rest CADDR R +2¢R
identically equal EQUAL L R L=R
join two items CONS L R (el),R

The connective logic of the LISP program is handled by the
ordinary sequencing of the APL2 statements.

The database 1s again a vector of statements with each item a
vector of character strings:

DBASE«("ALL' 'MAN' 'NMORTAL') ('ALL' 'DOG' 'HAVETAILS')
DBASE<«DBASE, ('MAN' 'STEN') ('DOG' 'SPOT')

The goal is a vector of vectors:

STNT«*MNMORTAL® 'STEN'

Here's the program written in APL2 syntax:

[0] Z<DB PROVE ST A SIMPLE DEDUCTION
2] ~w DB <« FACTS, IMPLICATIONS

[31 a PROVE » ST IS A FACT

[4] Z+«FINDA DB

ol Z+«FINDA DBS

£11] Z<0

[2] +(0=pDBS) /0

£3] +(Z<«PROVESIT+DBS) /0O
(4] Z«FINDA 14DBS

ASSUME FALSE

EXIT IF DATABASE ENPTY

ATTEMPT TO PROVE WITH FIRST AXIOoN
ATTENPT TO PROVE WITH REST OF AXIOMNS

22 2@ 2

(o1l Z<PROVESIT AS

£1] +»>(Z«ST=48)/0 A TRUE IF FACTS MNATCH
[2] +(~Z«"ALL'=4AS) /0 A ELSE SEARCH FOR INPLICATION
£3] *(~Z«(+ST)=42VAS) /0 A AND MATCH ITS CONSEQUENT

[4] Z«DB PROVE(c4+1VvAS)Y, (14ST) m AND ATTENPT TO PROVE NEW GOAL

Here 1s the execution of the program:

DBASE PROVE STHNT

The execution of this program 1is precisely the same as the
LISP program and so is not analyzed in detail.

Neither the LISP nor the APL2 program is particularly elegant.
Both can be improved. The purpose of the exercise is only to
show that a standard documented LISP program can be trivially
converted to APL2.

39

Part 4: The Implementations

In this part, alternative representations for logic statements
are presented., APL2 programs that describe the important AI
algorithms are developed. The programs are designed to
describe the algorithms and efficiency of execution is not
considered. Once the algorithms are understood, a programmer
may apply his ingenuity to develop more efficient procedures.
Some directions for improvement are discussed.

4,1: Representations

AI algorithms operate on facts and rules. Therefore, the
representation of facts and rules becomes the first order of
business.

The choice of representation heavily influences the structure
of the algorithms and vice versa. The representation
ultimately chosen for logic statements in this paper is
influenced by the properties of the Resolution algorithm.

By far the simplest representation of a predicate would be
simply to represent it as a long character string.

'sten is a man'

This representation is not suitable for use with an algorithm
because it does not distinguish the relevant parts of the
predicate (the relationship and the objects) from the
irrelevant parts (the letters making up the words). It is not
apparent that 'sten' is an indivisible subset of the vector.

A more reasonable representation 1s achieved by using nesting
to hide the irrelevant structure of a statement. The predicate

at hand expresses a relationship between two things -- 'sten®
and 'man'. This may be represented as a three item vector of
the three entities -- the relationship and the two objects

related:

'sten' 'isa' 'man'

This array 1is a three item vector of vectors and only people
and the programs they write interpret this as an assertion of
some relationship ('isa') between two ideas ('sten' and
'man'). Any arrangement of these three items is suitable as a
representation of the statement. The one above 1is called infix

4o

because the relationship is in the middle. Since in general a
relationship could apply to more than two things, most logic
systems use prefix notation putting the relationship first.
Either of the following two representations is a reasonable
prefix representation:

*isa' 'sten' 'man'
tisa' ('sten' 'man')

The first is an N item vector containing the relatlionship and
N-1 arguments. The second 1s a two item vector with the
relationship as the first item and the vector of arguments as
the second item. The algorithms presented in this paper will
work for either choice of representation. The first is
simpler and so is probably more efficient computationally.

You can choose any representation that 1s convenient for you.
APL2 does not 1impose a representation on you. Once you have

chosen a representation, however, you must use it
consistently.

An argument of a predicate is called a term. A term may be a
constant, a variable, or the application of a functicn that
returns a constant term. For example, 'sten' 1is a constant
term in the predicate:

mortal(sten)
In an effort to mimic the rules of PROLOG, any word beginning
with a capitol letter is taken to be a logic wvariable. X is a
logic variable term in the following predicate:

mortal (X)

Terms may be computed by functions. f(a,b) is a function in
the predicate:

mortal(f(a,b))
This last predicate can be represented in APL2 as
'mortal'('f£'('a’' 'b'))

Thus nesting of arrays is used to represent the structure of a
predicate.

Here is a stylized picture of the structure of a predicate:

Predicate Predicate
»>2 -1
Relation Arguments Relation termt term2 t

I (SR I AN A

The algorithms to be discussed operate on disjunctive clauses
-- predicates connected by "or" (v), Therefore, the presence
of "or" may be assumed and a clause represented as a vector of
predicates. This does not, however, allow for a representation
of the sign (~) that negates some predicates. Therefore, a
clause is broken into two groups: those predicates not negated
in the first group and those negated in the second group. Each
group 1is called a clause list. Therefore, each clause list is
a vector of predicates:

Clause list
*n
Predicate predicate coe

” N [~

A clause is, then, represented as a vector of 2 clause 1lists
~-- the vector of the non-negated predicates and the vector of
the negated predicates:

Clause
+2
Pos clause list Neg clause list

e &

When a clause is looked at as an inference, the positive
clause list 1is called the consequent, and the negative clause
list is called the antecedent. Thus, the sign of a predicate
is encoded in the structure of the array, not in the data. If
a predicate is negated, it appears in the second list.

Finally, a knowledge base or a database is a vector of clauses
each representing one fact or one rule. Since each statement
is claimed to be true, the database may be considered an "and"
(A) of the clauses:

Data base
+n
Clause Clause . oe

O

Facts are 1ncluded in the database by writing

inferences with an empty c¢lause as antecedent
anything infers something that is true).

Here 1is a summary of the resulting data structure:
Database - an n item vector of inferences

Clause - a 2 item vector of clause lists
Clause list - an N item vector of predicates

them as
(because

Predicate - an N item vector of relation and terms

Relation - a depth 1 vector
Term - depth 1 or more

Thus a database is arbitrarily deep (depending on tle depth of

any functions) but is at least depth 5.

Here 1is a picture of part of a database

Database
>N

Clause
r>2

Clause list

o
Predicate Predicate
>N N
Relation Term1 Term2 Te Relation Term

I I I O N

This is one of many possible data structures for the database.

Even this arrangement of data c¢ould be stored wusing

43

some

higher rank arrays rather than vectors at each level. For
example, a data base could be stored as an ¥ by 2 matrix where
each row represented a clause and column 1 was the positive
list and column 2 the negative 1list. The algorithms which
follow work together with the depth 5 structure so that during
execution, the structure is decomposed by the normal
application of APL2 operators.

Here is an example logic problem and its representation with a
depth 5 array:

The table is by the window

The box is on the table

if X is by Y and Z is on X, then Z is by Y
This problem is more formally stated as follows:

by table window <«

on box table <«
by Z2 XY « (by X ¥Y) A (on Z X)

Here 1s the picture of the database:

4y

>3
2

> >1
>3 E] +3

»3 ->6 > 7 e +3 g

[ab;] [atable [awindow laonl labox

-2

>4 >2
Ej +3 r+3
+>6 +3 > 2 >2 ~3
[atable I-ab;] I—AZ] [AY] |aby'

+3

> 2 »>2 [>3 >2 >2
lAX' IAYI l |aonl |AZ, laxl

'a' is prefixed on non-variables and 'A' 1is prefixed on
variables as part of conversion to internal form.

Now yvou might ask a guestion like "Is the box by the window".
If this is a fact, it is represented formally as follows:

by box window =<

Here is the representation of the goal as an APL2 array:

1 e

>3 U
+>3 3 £} e > 7 ey

[ab;] [abox [awindow

4,2: The Unification Algorithm

Unification 1s the process of comparing two or more predicates
to see 1if they are the same predicate. It 1is 1like the APL2
primitive '"match" (=) except that predicates containing
variables match other predicates 1f values for the wvariables
can be discovered that make the predicates the same,.

** Examples of Unification

In principle, Unification may be applied to any number of
predicates. If the predicates are the same, or can be made the
same by supplying values for variables, then Unification
succeeds. The APL2 UNIFY function that is described here
applies to two predicates. It could be generalized to apply to
more than two predicates but the generality 1s not needed in
this paper. The function UNIFY produces two results returned
as a two item nested vector -- 1 or O depending on 1if the
statements do or do not unify and the wvalues for wvariables
that permitted unification.

Unification 1looks at two predicates and returns 1 if they
match. For example:

'isa' 'sten' 'man’ UNIFY 'isa' 'sten’' ‘'man’'
1

*isa' 'sten' 'man' UNIFY 'isa' 'sten' 'mortal’
0]

'isa' ('sten' 'man') UNIFY *isa' ('sten' '"man')

46

This last example shows that UNIFY 1is insensitive to the
representation of a predicate. The extra structure causes an
extra recursion but the answer 1s still correct.

With such constant formulas, UNIFY is, 1in fact, identical to
the APL2 function '"match™ =), If a formula contains a
variable, you may substitute for that wvariable to make the
formulas match. In this case, UNIFY returns a 1 and the
substitutions needed to make the formulas match are
remembered:

'isa' 'AX' 'man’' UNIFY 'isa' 'sten' '"man'
1 AX+'sten'

These two formulas match if 'sten' 1is substituted for *aAX'.

'fn' 'AX' 'AY' 'man® UNIFY 'f£n' 'AX' 'sten' '402°
1 AY«'sten'
AZ€«'man'

These match 1if two substitutions are made: 'sten' for 'aY'
and "man' for 'AZ'

The variables 1in these formulas are Jjust place holders.
Rewriting then with different wvariable names does not change
the meaning.

fisa' 'AX' 'man' unify 'isa' 'AY' ‘man’'
1 AXe'pAY!

A variable can be replaced by an entire formula in order to
make two formulas match:

*fn' 'AX' 'AX! UNIFY *fn' ('a' 'AY' 'c')('a' 'b' 'AZ')
1 AY<«'Db?
AZ<'C!
AXe'a' 'bh' !

The following two formulas do not unify:

YAX' 'AY' 'a' UNIFY 'AX' 'b' 'aY?
0 AY«'Db!'

An attempt to substitute 'b' for 'AY' or 'a' for 'AY' gives
formulas that don't match.

In summary, a constant unifies only with the same constant. A
variable unifies with anything not containing that wvariable.
Otherwise, an expression unifies with an expression of the
same length if corresponding items unify.

47

** The APL2 Unification algorithm

The actual unification process 1is represented by the function
UNIFYA described next. A cover function named UNIFY (in
Appendix 1) returns the result of unification (0 or 1) and the
substitutions that are implied.

Unification is appllied between predicates each of which has a
structure like this:

Predicate
»n
Relation Term1 Term2 Te

I N R

Here is a description of the algorithm in words with the key
piece of AFPL2 notation identified. The actual AFPL2 code and a
more complete description of the code appears in Appendix 1.
"Failure" 1in the following description means return a O
(false) and "success" means return a 1 (true). Substitutions
are done using real A4APL2 variables.

48

VZe« X UNIFYA Y

[1] fall 1f both predicates are empty.
In fact they do unify but they are useless.

[2] substitute for any variables that have values.
EVAL DEPTHA1

[3] 1f X and Y are the same, succeed,.
X =Y

{4] if neither X nor Y is a single name,
branch to RECUR
~1le =X Y

[5] if neither X nor Y is a variable, fail
*Ated

[6] make sure substitution is allowed (Occurs check)
(see Appendix 1)
Xee

[7] do substitution and succeed (value of Y as value «f X.)
X, 'Y’

[8] RECUER: fail if X and Y not same length
[9] unify corresponding items of X and Y

X UNIFYA™ Y
X UNIFYA FALSE Y

While descriptive, this 1is not an efficient algorithm 1in
complicated cases. A linear algorithm 1s discussed in (Pa1l).

4,3: The Resolution Algorithm

Resolution 1s a rule of 1inference and simple cases have been
discussed before. Here's an example similar to the one showun
before. Given:

PVRVREV(~S)V(~TV)
(~PYVIVUV (~H)

you may infer

QVRV(~S)V(~V)IVTVUV(~HW)

4o

The 1idea 1is to identify terms negated in one statement and
non-negated in the other and eliminate them one at a tine,
This operation is facilitated by representing each statement
as two groups of terms -- those non-negated and those negated.
Using parentheses to indicate the groupings, you may write the
above statements as follows with the disjunctions (v)
implicit:

(P @ R) (S V) and (7 U) (P W)
you may infer
(@ R T U (85 V W
which 1is called the resolvant, Thus, the first group in each

statement is the non-negated terms and the second group is the
negated terms. These two groups are called the clause lists.

This form for representing clauses 1s particularly nice for
representing an implication. Recall that the implication "P
implies @" may be written either of the following two ways:

Q<P
Qv (~P)

When the truth of the statement
Pv@vRv(~3)Vv(~V)

i1s claimed, i1t may be separated into two groups containing
positive terms and negated terms:

(PVv@QVRE) v ((~S)v(~F))

The form for implication requires a single negation. Factoring
out the negation gives:

(PVQVE) v ~(SAV)

Now it 1looks 1like an implication and may be written in the
other form:

(PVv@QVE) « (SAV)

All this shows that +the two groups of terms contain the
positive and the negative terms respectively. If you think in
terms of @v(~P), the second group is a disjunction cof negated
terms., If you think in terms of @<«P. then the second group is
a conjunction of positive terms. This one grouped
representation covers both written representations.

In concept, the simplest way to do Resolution is to select the
non-negated terms of one statement, the negative terms fromnm
the other statement, and then match items from one group with

50

items of the other group in all combinations, For the monent,
let each term be represented by a single character keeping in
mind that, in practice, each term nmay be arbitrarily
complicated. Here are the statements from the above example
written as APLZ arrays:

STA«('P' Q' 'R') ('S' V')
ST2«('T* 'U') ('P' 'KN*')

(Note that the intent is that each of the letters in quotes is
a predicate so don't interpret them as variables) The data
structure for each statement looks like this:

Clause
~>2

Clause list
rrn

Predicate Predicate
>N +n

Relation Termf Term2 Ter Relation fermi

IS N S B N

If the statements were really this simple, you could match the
appropriate groups using the "outer product" operator:

(128713 o,.= (2>5587T2)

10

00

00

(1587T2) .= (22871)

00

00

In practice, statements may contain vaviables. so "match" is
not enough to compare predicates -- you must UNIIY:

51

(128T1) « , UNIFY (2>5872)

(el eoRr
[eNeoNe]

(15872) - UNIFY (225T1)
00
00

Each 1 in these results implies that a successful resolution
can be done,.

Knowing that a resolvant exists 1s not normally enough
information. You want to know just what the new clause is and
the values of the wvariables that permitted it to be formed.
Thus, the actual RESOLVE algorithm must compute these
resolvants and the values of variables. One way to do this is
to have a procedure which given one positive predicate from
one statement and one negative predicate from another
statement, computes a resolvant 1if one can be formed. This
procedure can then be applied in all combinations using two
"outer products" as done with UNIFY above. Suppose that you
have such a function called RESOLVANT. Here 1s one way to
write a resolution program., The arguments are the two clauses
to be resolved and so each argument is a two item wvector of
clause lists:

vz« A RESOLVE B

[L1] apply RESOLVANT between positive predicates from A and
negative predicates from B in all combinations (124)
o RESOLVANT (2oB)

[2] apply RESOLVANT between positive predicates from B and
negative predicates from A4 in all combinations (1>B8)
° JRESOLVANT (224)

[3] delete non-resolutions

The description of the program 1is longer than the actual

program which is shown in Appendix 1.

The logic of the RFESOLVANT program is also straightforward. It

is given one positive predicate from one statement and one

negative predicate from the other statement. If these

predicates unify, a resolvant can be formed.

Here is the logic in words:

52

VZ+ AR RESOLVANT BR

[1] if argument predicates do not unify, fail and return O.

[2] form new inference by building its two clause 1lists. The
positive clause list comes from joining the twoc positive
clause 1lists of the input c¢lauses and deleting the
predicate that unified. The negative clause list comes
from Joining the two negative clause lists of the input
clauses and deleting the predicate that unified.

[3] substitute for any variables that received values during
unification,.

If the predicates unify, this function returns the new
clause and the substitutions for wvariables that permitted
unification,

% Speeding up resolution

The functions RESOLVE and RESOLVANT describe ¢ 2 way of
implementing resolution on the given data structure. More
efficient algorithme could be developed. They woull trade the
descriptive elegance o¢f the algorithms presented for beiter
performance. Often methods for speed up nvolve preproce: 3ing
the knowledge base t©o make Resolution a 4 Unification more
efficient., (See Fo1 for a description of the RETE algo.ithm
for speeding up pattern matching.) Preprocessing 1is an
advantage only 1f the knowledge base 1is searched mcre often
than updated.

Here are some ways to speed up Resolution and its application:

1. Avoid the outer product in FESOLVE by arranging the
predicates in a clause in lexical order by the relation.
Then resolution can make a linear pass through each
clause and only attempt to unify predicates with the
same relation.

2. When resolution produces a new clause, attempt to get
a more general c¢lause by resolving again against the
input clauses. This gives simple pairwise resolution the
effect of more general resolution. See MAppendix 6
resclution example 4 for an example of this,

3. When trying to find a contradiction (as in the PROLOG
application of resolution), apply resolution to clauses
which could resolve with one of the predicates in the
goal on the theory that the contradiction being sought
must involve the goal to be proved.

53

4, Resolve clauses with a single predicate first (called
a unit preference strategy). Since both the single
predicate and its negation will be deleted, the result
will be more general and prossibly empty (a
contradiction).

4.4: Solving Logic Problems

Resolution 1s enough to solve logic problems., Here 1is the
database and the goal for the example discussed earlier:

ST1: by table window <«
ST2: on box table <+
ST3: by Z ¥ « (by X ¥Y) and (on Z X)

The question (initial goal)

GO: by box window?

You could write a brute force forward chaining algorithm by
resolving everything with everything and watching for the
conclusion to show up:

DATABASE - .RESOLVE DATABASE

If the conclusion 1is not reached and there are no new clauses
inferred, then you have failed to prove the desired goal. If
the goal is among the new things inferred, then you have
succeeded. Otherwise add the new truths to the database and
repeat the outer product until it either succeeds or fails.
This is essentially a breadth first forward chaining and will
eventually generate the result 1if it is true.

The function FORWARD1 in Appendix 1 1s an implementation of
this algorithm. It is, however, extremely inefficient since at
each stage it repeats all the work of the previous stage. N
more efficient algorithm does the first outer product but from
then on only tries resolutions between the new clauses and the
database. This algorithm 1s represented by the function
FORWARD in Appendix 1.

Both of these programs produce the same result on the example
problem. The first outer product generates these new clauses:

by(Z,window) <« on(Z,table)
by(box,Y) <« by(table,Y)

54

Since the gocal does not show up, these clauses are resolved
again with the clauses 1n the database generating these new
clauses:

by(box,window) <«
by(X,window) <« on(Y,table) on(X,Y)
by(Z,Y) <« by(table,Y) on(Z,box)
by(box,Y) + by(X,Y) on(table,X)

This time, the desired gocal 1is generated and the program
stops. This particular example is not so inefficient but an
even slightly more complicated example leads to the generation
of many unwanted clauses.

Here 1is another solution to the same problem that takes
advantage of the fact that you want to prove that two things
are by each other and sees 'by' in the conclusion of ST3 with
two wvariables. If you can use resolution to delete the
predicates on the right of ST3 and get the right values for
the variables, you can get a solution very fast.

A solution is achieved in two steps by forward chainirg:

1. Positive predicate "by"™ in ST1 unifies with
negative predicate "by" in ST3 with the
substitutions:

X<«table
Yewindow

2. Resolve ST1 and ST3 on the "by" predicate giving:

G1: by Z window <« on Z table
3, Positive predicate "on" in ST2 unifies with

negative predicate "on" in G1 with the

substitution:

Z<box

4, Resolve ST2 and G1 on the "on'" predicate giving:

G2: by box window <«
Thus proving the desired goal.
In this case it was easy to see what to do. In general, it is
not so easy to know which resolutions to make. What is needed
is a general organized procedure that uses resolution to prove

logic problems. A general scheme 1is not known but if the
knowledge base 1s restricted to Horn clauses (those with one

55

or fewer positive predicates), a general scheme is known. This
scheme 1is the basis of PROLOG.

4,5: PROLOG-1like search strategy

PROLOG-like languages approach the solution of logic problems
by denying the desired goal and searching backwards for a
contradiction (an empty clause). This helps to 1limit the
amount of work done because, at 1least, only c¢lauses that
potentially lead to the conclusion are generated.

The proof proceeds by using the goal (the denial of the real
goal) to 1locate another goal (called the sub-goal) and
continuing this process until a contradiction is reached.

While Resolution 1is a completely general rule of inference,
there is no guarantee that a statement which is a resolvant of
two other statements 1s simpler than the given statements.

Most logic programming languages control this situation by
limiting the c¢lauses of a problem to those that contain at
most one conclusion (non-negated predicate or one predicate on
the left of the left arrow). Such a clause is called a Horn
clause, Given this restriction and a goal that is the denial
of what you want to prove, you can locate a sub-gcal by doing
a resolution between the given goal (which is negated) and any
clause with a predicate (non-negated) that will unify with
that goal. Since there is at most one non-negated predicate in
a Horn c¢lause, it gets deleted in the process of resolution
giving as a result another c¢lause contalning only negated
predicates -- i.e., another goal.

Sometimes the sub-goal will have more than one predicate. This
is called a conjunctive goal (since both must be true to imply
the contradiction). Since both must be true, you can try to
prove them one at a time making sure that any substitutions
made in proving one are made in the other predicates as well.
PROLOG always attempts to prove the first of a conjunction
first.

Here is an example problem solved in this manner.

56

The Problem:

STt: by table window =«
ST2: on box table <«
ST3: by Z Y « (by X ¥) and (on Z X)

The question (denial of initial goal)

GO: < by box window

1. Goal GO unifies with positive predicate in ST3
with the substitutions:
Z+«box
Yewindow

2. Resolve ST3 and GO on the "by" predicate giving
the sub-gocal

Gi: <« (by X window) and (on Dbox X)

3. G1 is a conjunctive goal. PROLOG attempts to
prove the first of the two statements first.
The first predicaie in G1 unifies with ST1
with the substitution:

X<«table

4, Resolve STt and G1 giving:

G2: <« on box table
5. G2 unifies with ST2 with no substitutions.
6. Resolve ST2 and G2 giving an empty clause

which 1s a contradiction.
Thus proving the desired goal.
Given the desire to search for goals which are known to have
no non-negated predicates, a more efficient Resolution program
can be written. If there are no non-negated predicates in the

goal there is no point in trying to unify them with negated
predicates of a statement.

Here 1is a resolution program that assumes that the right
argument 1is a goal:

57

VZ« A KESOLVEGOAL B

1] apply RESOLVANT between positive predicates from A and
negative predicates from B in all combinations
(e RESOLVANT)

[2] delete non-resolutions

The actual program is in Appendix 1 and is the same as RESOLVE
except 1t only makes one call of RESOLVANT.

Now all the tools are available to write a program that
essentially implements the 1logic of FROLOG (minus a wuser
friendly front end). A complete description of the PROLOG
algorithm can be found in (Cl1). It is not practical to repeat
it but here is a brief description which explains the previous
example again and points out some other considerations.

Given a wvector of <c¢lauses as a database and a possibly
conjunctive goal (all of which are Horn clauses), attempt to
derive a contradiction. As stated before, PROLOG attempts to
prove the leftmost goal of the conjunction in a depth first
fashion before looking at the next goal. The program is not
straightforward because in satisfying one goal other possibly
conjunctive sub-goals may be generated requiring a recursive
call. Further, when a goal cannot be satisfied 1t may be
because an eatrlier agoal has more than one solution and the
wrong one was found. In this case, the algorithm must back up
and look for another soclution of the earlier goal. This is
called backtracking and involves forgetting values discovered
for variables in the earlier clause. Finally, there may be
more than one way to satisfy all the goals and you may want to
know them all -- not just the first one discovered.

Here is a high level flow chart of PROLOG:

58

Resolve goal sub-goal | Prove sub-goal
I d
fail roof
7 N
Next rule Next goal
no next rule no next goal
WV
Backtrack SUCCEED
no previous goal
~/
FAIL
Here's an example problem whose solution requires
backtracking:

ST1: john loves food
ST2: jane 1s female
ST3: john loves jane

The question to be answered is "Is there something that John
loves which 1s female?" This 1s a conjunctive goal more
formally stated:

GO and G1: (john loves X) and (X 1is female)

PROLOG immediately satisfies GO wusing ST1 giving the value
"food" tc variable X. Now it tries to satisfy G171 using the
given value of X. This goal 1is "Food is female'" which is not
in the database. Now PROLOG must backtrack and attempt to find
another way to satisfy GO and this implies forgetting the
value of X.

Now using ST3, GO is satisfied and X gets the value "Jane'.
G1 becomes "Jane is female" which is trivially satisfied.

The actual program that implements this logic (DFS in Appendix
1) 1s more complicated that the others presented and does not
illustrate any dimportant new concept and so is not discussed
in detail here., It basically uses RESOLVEGOAL to attempt to
satisfy each goal in turn keeping track of substitutions in
case backtracking is required. Even though it has less of a
functional style than the other programs, it is, nonetheless,

59

interesting that the logic of PROLOG can be captured in an
APL2 program of a few dozen lines.

60

Part 5: Going Beyond the Fundamentals

This sectlon briefly discusses some other areas in AI where
APL2 can be applied with ease. The first section presents an
alternate representation of knowledge that tends to be compact
because 1t keeps tcogeth2r the information about a given
subject. Other sections discuss how the ordinary computational
ability of APL2 can be used for reasoning in exact and inexact
environments.

5.1: Frames

You've seen one traditional way to represent knowledge. Frames
(Mi1) are an attempt to represent knowledge that may be closer
to the way people store knowledge. The basic 1dea 4is that
there 1is a data structure that represents a generalization of
some concept, describes the common case, gives initia” values

or assumptions, etc. Actual d4instances are repr sented as
exceptions or refinements of the general case. People learn by
induction -- extracting a general case from a set of

particular instances. A frame stores this inducea knowledge
while still allowing differences in detall from the ger 2ral
case to be stored in sub-frames.

No attempt 1s made in this brlef section to introduce all the
terminology or details about frames. For that, refer to the
literature (Ke1) (Mi1). Rather, only the representations of
frame data with nested arrays is discussed.

Basically a frame 1is a set of pairs called slots. Each slot i1s
a unigque name and indicates a value, a set of values, or a
procedure to invoke (called a demon). A set of pairs is easy
to represent in an APL2 data structure.

Here is an example of a frame for Chablis wine borrowed from
Keppel (Ke1)., Here is the knowledge about Chablis to be stored
in the frame array:

The color is white

There are 215 bottles

The vintage is 1981 and 1982

The price is computed by the procedure GETPRICE
Chablis is a kind of wine and it is also a village.

These statements can be represented in APL2 vectors by the
following pairs of values:

61

P1«'COLOR’ ('"VALUE' ‘'WHITE')
P2«'QUANTITY' ('VALUE' 215)

P3<«'YEAR" ('VALUE® (1981 1982))
Py<«'PRICE" (*PROCEDURE' 'GETPRICE')
P5«' AKO! (*FRANE' ('WINE' 'VILLAGE'))

Each of these variables is a pair representing a frame slot.
The first item is the name of the slot. 4K0 stands for "A Kind
Of"., In this case it means that Chablis is a kind of wine and
it is also the name of a wvillage. The second item of each
variable 1is also a pair (although it doesn't have to be)., The
first 1tem of the pair says what kind of information is stored
in the second item. The first three wvarlables contain values
related to the slot name. The fourth one contains the name of
a procedure to call should the price of the wine ever be
needed. The last variable is a reference to two more general
frames. The AKO slots tie the frames together into a network.

These five pairs can be represented in a single APL2 array
either of two obvicus ways. Keppel stored them as a vector of
pairs:

CHABLIS1« P1 P2 P3 P4 P5

Here's a picture of this array:

62

DPY CHABLISH

->5

>2 +2

+5 > 2 s £ — A
ICOLOR +5 +5 lQUANTITY > 5 e
[VALUE [WHITE IVALUE

-»>2 >2

—_ Sl 32 R
’ YEAR R T S mm— i PRICE
215 [VALUE [1981 1982

..-)2

-+ 2 +3 A
| [g | || B3 [1
[PROCEDURE [GETPRICE FRAMNE [

3 Loy >7 .
{NINE [VILLAGE

Since everything is a pair, this same data can also be stored
in a two column matrix:

CHABLIS2«>CHABLIS1
Here's a picture of this array:

DPY CHABLISZ2

r+5 2
v r*5 r>2
[COLOR +5 +5
o [VALUE [NHITE
»> 8 2
IQUANTITY +5]
IVALUE 215
> [—— -2
YEAR +5 »> 22—
[VALUE [1981 1982
> 55— r>2
PRICE > G —— +>8
PROCEDURE [GETPRICE
+3 +2
AKO (——»5-——— >2
FRANE e S > 7 ey
[NINE [VILLAGE

Here is how you might use this matrix to find out information
about a wine. Selecting column 1 of the matrix gives you all
the slot names:

CHABLIS2[;1]
COLOR QUANTITY YEAR PRICE AKO

If you want to know what years are available, you can search
to find out what row has that slot:

CHABLIS2[3111 YEAR"
3

Knowing that row three has the information about YFAR, you can
select the corresponding value:

CHABL1S2[3;2]
VALUE 1981 1982

If the slot name does not exist, you could then search for the
AKO slot and go search more general frames to get that
information,

This 1s a simple example and leaves out many important ideas
about frames. HNonetheless, you can see that the frame for
Chablis contains information specific to that wine while
information about wines in general is kept in the frame named
WINE referenced by the AKO slot.

5.2: Boolean Logic

This section explores the computational abilities of AZPL2 and
how they might be used to represent and operate on 1logical
expressions.

A gilven proposition P is either false or true,. The wvalues
false and true are recopresented in AFL2 as the numbe-~s 0 and 1

respectively. Therefore, the possible set of truth values for
P can be represented as a two item vector:

P1<0 1

The possible values for the negation of P are 1 when P is
false and O when P is true.

~P1

Given this representation, trivial expressions about P can be
computed. For example a tautology 1s always true:

P1 v (~P1)
11

A contradiction is never true:

P1T A (~P1)

If you want to write expressions with two wvariables, there are
four possible combinations of true and false. If @2 is false.
then P2 may be false or true. If @2 is true, then P2 may be

65

false or true, Thus for two variables, complete sets of
values can be represented as four item vectors:

Now non-trivial expressions can be written., The expression
P2AQ2 1is true only when both P2 and ¢2 are true:

P2 A @2
0 00 1

The expression P2 v @2 only fails to be true when both P2 and
@2 are false:

P2 v Q2
o111

De Morgan's law shows that the negation of a conjunction is a
disjunction and vice versa. One formulation of this rule is:

P2 v Q2 €+ ~ (~P2) A (~g2)
Computationally this 1s
(~P2) A (~Q2)
1000
~ (~P2) A (~Q2)
o1 11

which 1s the "or" function.

Implication 1s merely an application of the formula for
implication. P2 implies @2 is written:

@2 v (~P2)
1011

This result has a 1 wherever {2 1s either greater or equal to
P2 and so implication could also be written with a single APL2
primitive:

Q2 2 P2
170 1 1

Expressions containing three variables have eight possible
combinations of values:

66

P3 « 01010101
@3 « 001100 11
R3 « 00001 1T 11

Here 1s the computation of three different implications:
1. P3 implies @3

g3 v (~P3)
170111011

2. @3 implies FE3

E3 v (~@3)
171001111

3. P3 implies K3

R3 v (~P3)
10101111

Suppose that you c<laim that "P3 implies 3" anil "F3" are
simultaneously true (Modus Ponens):

(@3 v (~P3)) A P3
00010001

You might expect to see the representation of @3 from this
computation (0 0 1 1 O 0 71 1), The answer differs from g3
where P3 is false but ¢3 1is true, Since it is c¢laimed that P3
1s true, the boolean result 1is stronger than just 3. It
expresses the fact that both F3 and @3 are true
simultaneously.

Next, look at the chaining rule: If "FP3 implies 3" and "@3
implies H#3" then "P3 implies FR3". The results of the
individual implications are already listed above. The
computation of the chaining rule is:

(@3 v (~P3)) A (RF3 v (~@3))
10001011

Again, you might expect the representation of "F3 inplies R3"
(101 01 1 1 1) but again the result produced is stronger.
Suppose in addition to the chaining rule you assert that FP3 is
actually true:

67

(@3 v (~P3)) A (R3 Vv (~Q3)) A P3
O 00O0O0OOO01

This shows that P3, @3, and K3 are all simultaneously true.
This is stronger than the result of "P" and "P3 implies R3":

(3 v (~P3)) A P3
000O0O0T1TO1

which makes no claim about the truth of ¢3.

5.3: Parallel Boolean Logic

This section shows how you might go about using the
application of the APL2 1logical functions to solve a 1logic
problem for all solutions in parallel.

The following problem is taken from (Sm1):

"When Alice entered the forest of forgetfulness,
she did not forget everything, only certain things.
She often forgot her name, and the most 1likely
thing for her to forget was the day of the week.
Now, the lion and the unicorn were frequent wvisitors
to this forest. These two are strange creatures.
The lion lies on Mondays, Tuesdays, and Wednesdays,
and tells the truth on the other days of the week.
The unicorn, on the other hand, lies on Thursdays,
Fridays, and Saturdays, but tells the truth on the
other days of the week.

One day Alice met the lion and the unicorn resting
under a tree. They made the following statements:

LION: Yesterday was one of my lying days

UNICORN: Yesterday was one of my lying days

From these statements, Alice, who was a bright girl,
was able to deduce the day of the week. What was it?"

The following APL2 solution 1s based on one produced by Manuel
Alfonseca.

68

First the data must be defined. Here the variable DAYS is
defined as the seven days of the week and YEST is defined as
the day before each day of the week:

DAYS<'Sun' *Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat’
YEST<«'Sat' 'Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri?

Next, two variables are set up that describe the days when the
lion lies (LL) and the days when the unicorn lies (UL):

LL <« 'Mon' 'Tue' 'Wed'
UL « '"Thu' 'Fri' 'Sat’

Now you must write expressions that are true. There are two
conditions under which the lion is telling the truth. This is
one of his truth telling days and yesterday was a lying day or
this 1is one o¢of his lying days and yesterday was a truth
telling days. Here are the boolean expressions that compute
both of these:

(~DAYSeLL) A (YESTeLL)

17000111 A0011100
0000100

(1T 00011 1A0G601T 110 0)/DAYS
Thu

(DAYSeLL) A (~YESTeLL)

0111000A1T1000 11
01 000O00O0

(0111 000GA1T1 000 1 1)/DAY
Mon

This says that if the lion is telling the truth it could only
be Thursday and 1if the Lion is lying then this could only be

Morday. Thus, we may define a variable representing when the
lion tells the truth:

LT « ((~DAYSeLLIAN(YESTeLL)Y) Vv ((DAYSeLL)IA(~YESTeLL))

The same logic 1is true for the unicorn:

(~DAYSeUL) A (YESTeUL)

1111 000A1T00O0O0 1T 1
100 00O00O0

(1711 1000A1T0O0O0O0 1T 1)/DAYS
Sun

(DAYSeUL) A (~YESTeUL)

00001T1T1A01711100
0000100

(0000111 A01T 1110 0)/DAYS
Thu

Here's the expression for when the unicorn tells the truth:

69

UT « ((~DAYSeULIAN(CYESTeUL)Y) v ((DAYSeUL)IAN(~YESTeUL))

By inspection you can see that only Thursday is true in both
cases. Here, then is a summary of the solution in a more
compact form:

YEST <« “10DAYS<«'Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat'
(LL UL) <« ('Mon' 'Tue' '"Wed*')('Thu' 'Fri' 'Sat"')
LT « ((~DAYSeLILIAN(YESTeLL)Y) Vv ((DAYSeLLIAN(~YESTeLL))
UT <« ((~DAYSeULIA(YESTeUL)) Vv ((DAYSeUL)IA(~YESTeUL))
(LTAUT)Y/DAYS
Thu

This problem can therefore be solved using entirely boolean
expressions in parallel written to describe precisely the
problem as stated.

Sullivan and Fordyce (Fo1) describe a clever scheme for
implementing a production expert system in APL using Boolean
logic.

5.4: Fuzzy Logic

In discussing the truth of statements 1in AFL2 notation, the
number 1 is used to mean 'certainly true'" and the number O is
used to mean "certainly false". Given such input, one can
produce results about which there is no doubt, Sometimes,
however, statements and rules cannot be stated with certainty.
Statements may be strongly believed. An inference can be made
with a reasonable degree of confidence. Statements that are
not known exactly are called fuzzy statements and the logic to
combine them is called fuzzy logic. It is based on fuzzy sets
which are sets where membership is not certain.

This section explores how the computational ability of APL2
might be wused to deal with uncertainty. It is, at best, an
introduction to the concepts and the 1literature should be
studied for more information (Be1l).

If 1 means true and O means false, it makes sense to use
numbers between 0 and 1 to express various levels of certainty
~-- a number near 2zero to mean very 1likely false and a number
near one to mean very 1likely true. The intenticn 1is not
necessarily to treat these fractions as probabilities
(although that's one possibility) but rather just
uncertainties. Use of the word "probability" is therefore
avoided even though it would be convenient.

70

The desire 1is to wuse computational analogs to '"negation",
"and”, and "or" which l1ike *'~', 'A', and, 'v' work on 0 and 1
without change and do something useful on numbers in between.

As a start, consider negation. If P is very likely true then
you might assign it a value ,9. The negation of something very
likely true 1is something very 1likely false -- perhaps .1.
Therefore, a good <choice for the computational analog of
negation (~P) is 1-P. It works correctly for certainty:

P1 « 0 1
1-P1
10

and it glives the expected answer on uncertainty:

1-.9
.1

fRemember that any function vyou chose is OK s0 long as it
returns O when applied to 1 and 1 when applied to 0.)

In choosing the computaticmnal analogs of "and" and "or", 1t is
reasonable to require that they obey De Morgan's law with
respect to the negation function. Therefore the corputational
"and" and "or" func*tions (c:all them ANDF and ORF) ~hould obey
the identity:

(P ORF Q) <> 1-(1-P) ANDF (1-@)

Again the only other requirement is that the functions work
unchanged on 0 and 1. AFPL2 has the functions "maximum" ([) and
"minimum" () defined in the obvious way:

1013
13

10013
10

Applied to zero and 1 they work just 1like "and" and "or':

P2 « O 1 0 1
@2 « 0 0 1 1
"Maximum" is the same as '"or'":

P2 v @2
o111

P2 [@2
o1 11

"Minimum" is the same as '"and':

71

P2 A @2

0 001
P2 | Q2
0O 00 1
Thus, you may vreplace "and" Dby "minimum" and 'or" by
"maximum'. When you "and" two uncertain values, you get the

least likely:

.1
When you "or" two uncertain values you get the most likely

AT .9
.9

These functions do follow De Morgan's rule:
ATB <> 1-(1-A)_L(1-B)

This is just a modification of the well known AFPL2 identity on
"maximum" and "minimum'':

AlB <> -(-A)L(-B)

Using "wmaximum” and "minimum” may not match your intuition
about how uncertain values should work. You may feel that when
you "and" two uncertain wvalues, you should get a wvalue less
than either given values. In that case, you could use
"multiply" (x) for "and". Again, it works like "and" on 0O and
13

P2 AN @2
0 0 01

P2 x Q2
0O 0 0 1

When applied between inexact values, it produces nuwbers less

or equal to the given values:

.09

It i1s less obvious what the corresponding "or"™ function should
be. You might at first try "addition”™ (+) but that fails on
zero and 1 (since 1+1 is 2 not 1). Since De Morgan's law is to
hold, you can just use that to solve for the "or" function.

72

P QRF @ <> 1 - (1-P) x (1-@)
«> 1 ~ (1-P-@Q+(Px@))
«> P + @ - (Px@Q)

Therefore, you can define ORF to be this function:

OFX 'Z«A ORF B' 'Z+«A+B-(AxB)"
ORF

This function works correctly on O and 1 and gilves answers
that match the second intuition on numbers i1n between ¢ and 1:

.1 ORF .9
<91

.2 ORF .9
.92

Again, any function that does the right thing on 0 and 1 is a
candidate for "and'" and ‘or" when applied to inexact
statements.

Given these formulae for fuzzy logilc; you may now apply tihen
to the other formulae of logic. For example, precise
implication applied to imprecise statements is =-:hieved by
using these functions in @ v (~P), For '""maximum' and
"minimum”, implication is written:

Q@I (1-P)
For "times" and "ORF", implication is writcen:

Q ORF (1-P)

This section has introduced the concepts of fuzzy logic. The
situation <c¢an Dbe more complicated when uncertainty is
described with distribution functions or worse when the rules
(such as implication) are also imprecise. These topics are not
discussed in this paper. Writing systems that implement these
more difficult areas are 1likely to exploit even more the
computational abilities of APLZ2.

73

Summary

This paper attempted to cover a wide variety of topics related
to APL2 and Artificial Intelligence.

Part 1 introduced the concept of Artificial Intelligence and
discussed 1in general terms how APL2 is a useful implementation
language for solutions.

Part 2 discussed the main ideas of logic as background to the
implementation.

Part 3 introduced a subset of the APL2 notation concentrating
on the data structures and the operators.

Part 4 showed one way to represent logic and showed a way to
implement the algorithms using that structure. Because the
APL2 operators apply functions to items, the main data
structure (depth 5 or more) 1is never explicitly taken apart.
Given a database (depth 5 or more), the search functions apply
Resolution with an operator. Since the items of a database are
clauses, FRESOLVE sees clauses (depth 4). RESOLVE selects the
positive and negative clause lists (depth 3) and uses outer
product to apply RESOLVANT (and therefore UNIFY) between all
combinations of predicates (depth 2).,

Part 5 showed another representation of data and investigated
boolean logic and fuzzy logic.

74

Conclusions

Algorithms for Artificial Intelligence have traditionally been
expressed using LiIzP-1like languages., APL2 provides an
opportunity to express them in a different style. Parallel
constructions give an alternative to recursive ones.

The data structures and algorithms presented here are examples
of how APL2 can be used to solve logic problems, They are not
recommended as the oniy or best implementations. The purpose
is, rather, to elicit an understanding of the i1issues and
approaches to solving them. APL2 provides a different way to
explore solutions to AI problems. In the hands of a creative
person, it may ke a tool which can be used to further the
study and practice of logilc programming.

75

Acknowledgements

The following people contributed to the production of this
paper with suggestions, reviews, or significant publications
or presentations: Manuel Alfonseca, Everett Allen, Claudia
Baker, Langdon Beeck, Bill Burr, Ken Fordyce, Garth Foster,
Chuck Haspel, Denny Jizba, Dieter Lattermann, Dave Macklin,
John McInturff, Lenore lMullin, Dave Selby, Darryl Smith, John
Sowa, Gary Sullivan, Trung Tran, Sheryl Winton and the APL
Development group at the Santa Teresa Laboratory in their
"Lunch and Learn'" sessions.

In particular, referenced book (Ch2) by Charniak and McDermott
was key in that it attempts to present many of the underlying
ideas of AI in c¢lear English descriptions rather that LISP
implementations.

References

(Ab1)

(Ba1)

(Be1)

(Ch1)

(Ch2)

(C11)

(Da1)

(Eut)

(Eu2)

(Fo1)

(Fr1)

(Gr1)

(Hi1)

Abelson, Harold, Sussman, Gerald, and Sussman, Julie,
"Structure and Interpretation of Computer Programs', MIT
Press, Cambridge, Mass., 1985,

Barr, A., and Feigenbaum, E. "Handbook of AI", Vol. 2,
William Kaufman, 1982.

Bellman, R.E. and Zadeh, L.A., "Decision-making in a
Fuzzy Environment', National Aeronautics and Space
Administration, contractor report # NASA CR-15%4, May
1970,

Charniak, Eugene, Riesbeck, Christopher K., and
McDermott, Drew, "Artificial Intelligence Programming”,
Lawrence Erlbaum Assoc. Publishers, Hillsdale, New
Jersey, 1980.

Charniak, Eugene and McDermott, Drew, "Introduction to
Artificial Intelligence", Addison-Wesley Publishing Co.,
1985.

Clocksin, W.F., Mellish, C.S., "Programming in Prolog'",
Springer-Verl:jy, New York, 1981,

Davis, Ruth E., "Logic¢ Programming and Prolo.: A
Tutorial™, IEEYX Software, Sept. 1985. pp. 53-62.

Eusebi, E.V., "Operators for Program Control'", APL'85
Conference proceedings, APL Quote Quad Vol. 15 #4, p.181
ff

Eusebi, E.V., "Operators for Recursion’, APL'85
Conference proceedings, APL Quote Quad Vol. 15 #4, p.190
ff

Fordyce, K., Sullivan, G. s"Artificial Intelligence
Development Aids (AIDA)", Proceedings of AP[L85, AP[
Quote Quad, Vol 15, No. 4, 1985, pp.106-113,

Frank, Werner L., "AIl: What's different between old and
new?", Software news, Sept. 1985, pp. 38-40,

Graham, Neill, "Artificial Intelligence", TAB books,
Blue Ridge Summit, Pa., 1979,

Hirsch, P. et al, "Interfaces for Knowledge-base
Builders®' Control Knowledge and Application-specific
Procedures", IBM Journal of Research and Development,
Vol. 30, No. 1, Jan., 1986, pp 29-38.

77

(Ke1)

(L11)

(Mi1)

(N1i1)

(Pa1)

(Ri1)

(Ro1)

(Sm1)

(Wi1)

Keppel, E., Kropps D., "APL2 or LISP? Implementing
Frames, a Knowledge representation scheme', Vector, the
Journal of the British APL Association, Vol. 2, No. 2,
Oct. 1985.

Lloyd, J.W., "Foundations of Logic Programming",
Springer-Verlag, New York, 1984.

Minsky, M.,"A Framework for Representing Knowledge'", The
Psychology of Computer Vision, McGraw Hill, New York,
1975, pp.211-277.

Nilsson, Nils Jes "Principles of Artificial
Intelligence", Tioga Publishing Co., Palo Alto, Calif.
1980.

Paterson, M.S. and Wegman, M.N. "Linear Unification",
Journal of Computer and Systems Science, No 16, 1978

Rich, Elaine, "Artificial Intelligence', McGraw Hill,
New York, 1383,

Robinson, J. A., "A Machine-oriented logic based on the
Resolution Principle™, Journal of the ACM 12(1) pg 23,
1965,

Smullyan, "What is the Name of this Book?",
Prentice-Hall, 1978.

Winston, Patrick Henry, "Artificial Intelligence",
ARddison-Wesley, Reding, Mass. July 1984,

Appendix 1: Implementations of the Algorithms

*% The APL2 Unification ARlcgorithm

The APL2 algorithm 1is straightforward. If the arguments don't
already match, then 1f one 1is a variable, the other 1is
substituted for it as the value. (Substitution is discussed
separately.) If neither formula is an atom, then Unification
is recursively applied to each item.

vVZe«X UNIFYA Y
(13 A unify X with Y
£21] +(0=peX Y)/FAITL an fail if both clauses empty
r3] (X Y)<«FVAL DEPTH1 (X ¥) A do substitutions in X
L4 +(X=Y)/GOOD
(5] (X ¥Y)«(1==Y)dX ¥ na put atom first if any
[6] +(1#=X)/RECUR A if not an atom, apply to cach
(713 A here 1s an atom
£8] (X Y)«('A'"=47)0X ¥
[9] (A=t X)) /FATL
[10] »(XeeY)/FAIL
[11] eX,'<e?!
{121 ~»GooD
[13] RECUR:»(~(pX)=pY)/FAIL
C14] »(1=A/X UNIFYA"Y)/GOOD
[15] FAIL:%Z+<0
[16] GOOD:Z<1

put variable first if aany

if no variable, items are different
fall if var exists in substitute

do substitution

» 2 D> 3

[2] causes failure to wunify 1if both arguments are enmnpty
formulas. Strictly speaking, two empty clauses do unify
since they match. In practice, however, when two empties
arise (as they do in resolution, saying that they unify
leads to redundant implications.

[3] makes sure that any previously determined substitutions
are made in the arguments.

(4] if the statements are the same, they unify.

[5] and (6] work together to determirie 1f both arguments are
non-trivial (i.e. more than one term). [5] puts an atom
first if there is one. [6] branches to RECUR if there is
no atom.

[8] and [9] work together to determine if there is a variable.
[8] puts the variable (if any) idinto X. [9] fails if X is
not a variable (since it is already known that X and Y are
different.

79

[10] makes sure that the value substituted for a wvariable does
not contain the same variable, That 1is not a 1legal
substitution. This is sometimes called an "occurs check".
It is often not done in logic programs for reasons of
efficiency. It is required, however, to ensure
correctness. The check used here works because of the
convention used for names of logic wvariables (see the
description of ENCODE in Appendix 1),

[11] records the substitution by setting the variable (which
i1s a real variable in the APL2 workspace) to be the value,
See the following section for a discussion of this
substitution.

In the case that both arguments are non-trivial formulas
(label RECUR), then 1f the formulas are the same length,
UNIFYA is applied between corresponding items.

The UNIFYA program 1s a description of +the unification
algorithm. It is not the most efficient implementation.
There are many things that could be done to improve
computational efficiency but they would not add to the
understanding of the algorithm. For example, instead of
UNIFYA”, you could use the defined operator FALSE or UNTIL to
make the expression quit as soon as a fallure case was
discovered. This would avoid applying UNIFYA after failure is
discovered and would avoid the 1=A/ on the result. The
algorithm as it stands, however, is descriptive of the
process.

**% Unification Cover Function

Each call of unification should be independent of the other
calls. Furthermore, it 1s desirable to know not only that
unification succeeded, but also the substitutions that made it
work. Therefore, a second function is used to initiate and
terminate UNIFYA

V Z<«X UNIFY YsT3USUBS
[1] A Unification algorithm - main function
[2] A Z is a two item vector
[3] =n 0 or 1 for failure or success
[4] A the substitutions
{5] T<[OEX 'aA' ONL 2
(63l Z<«X UNIFYA Y
[71] USUBS<«2 OTF"<[2]'a' ONL 2
[81] Z<«Z7Z USUBS

80

(51

6]

£71
£8]

makes sure that no logic variables (represented by names
starting with 'A') have any values,

calls the unification algorithm and produces the result
true (1) or false (0),.

records substitutions made for any variables.

returns the two results of unification.

** The APLZ Resolution Algorithm

Here is the function that produces the resolvant from a single
unification. The arguments are each a single predicate:

£11
£2]
{31
{47
51
[6]

£31
4]

£51

(el

The
the

The
for
the

VZ«AR RESOLVANT BR;T

A UNIFY AR with BR, Z 1s 0O or the implied resoclution

a A and B are global

Z<0 A assume failure

+(+T<«AR UNIFY BR)VC A return with O on fail're to UNIFY
Z«(((124)~<cA4R),12B)((224),(2>oB)~cBR)

Z<(EVAL DEPTH1T Z)Y(4147)

sets result to zaro in case unification fails.

attempts to unify the given predicates and returns if
unification fails.

builds the inferred clause by constructing the positive
and negative c¢lause 1lists, The positive clause list 1is
constructed by joining together all the positive
predicates from the original two clauses, then using
"without” (~) to delete the one canceled by resolution.
The negative clause list is constructed the same way.

applies the substitutions implied by the unification and
returns a two item vector containing the resolvant and the
substitutions that permitted resolution.

function returns either O or the implied statements and
substitutions that permitted themn.

resolution program KRESOLVE only needs to call KESOLVANT

all combinations of of predicates suitably chosen. Here is
program:

81

vZ+«A RESOLVE B
[13 Z€,(15A)s, RESOLVANT(25B)
[21] (B A)<«(A B)
£31] Z€Z,,(12A)°. RESOLVANT(2>B)
£4] 2+«7Z~0

[1] gets statements inferred by positive terms of 4 and
negative terms of B.

[2] swaps A and B.

[3]1] gets statements inferred by positive terms of B and
negative terms of A4.

[4] deletes any non-resolutions

It 1s possible that a tautology may be implied. See Appendix 4
for a description of the test for a tautology.

Each outer product in RESOLVE might return several implied
clauses., Thus, the result of RESOLVE 4is not a vector of the
implies statements but rather a vector of vectors of them. For
this reason, you will see that the callers of RESOLVE often do
a t+,/ which will turn the vector of vector of clauses into a
vector of clauses.

**%* The APL2 Resolution Algorithm for Goals

This function 1is essentially the same as RESOLVE except the
right argument is assumed to be a goal clause which therefore
has an empty positive c¢lause 1list. The function returns
either O or the implied clauses.

VZ«A RESOLVEGOAL B
£1] Z+,(124)°., RESOLVANT(2>B)
(2] 2<«Z~0

[1] gets statements inferred by positive terms of A4 and
negative terms of B.

[2] deletes any non-resolutions

** The Forward Search Algorithms

82

The following two forward chaining search functions apply
resolution to everything known in the database and check to
see 1f the desired goal shows up. The first function adds
anything implied to the database and loops until the goal is
found or nothing new is implied. This is formally correct and
descriptive but terrible in performance, The second function
only does resolutions between what is in the database and the
newly inferred statements adding new clauses to the database
each iteration.

They will not be discussed in detail -- the comments on each
line describe the purpose of the line.

VPZ«GOAL FORWARDA1 DB;3;NEW
£13] PZ<1
[2] L1:>(GOALeDB)Y/O
[33] NEW<«DBe, RESOLVE DB
[43 NEN"TNG"/’NEI\/
[51 NEW«NEW~DB
6] NEW« ((NEWNANEW)=1pNEW) /NEW
£71] +>(0=pNEWN)/FAIL
{8l DB<«DB,VRHENANE™ NEW
[9]1 L1
[10] FAIL:PZ+«0O

assume goal will be found
done if goal is found

resolve everything

select new inferences

it's not new if already in DB
delete duplicate inferences
fail if no new inferences
rename variables § add to DB
go do resolutions acain

goal not found

2P »®» P D2®DYTDDDIDTD

VPZ<«GOAL FORWARD DB3;NEW3;NEW?2
(11 PZe1
(2] NEW<DB
[31 L1:+(GOALENEW)/O
[4] NEW2¢NEWe. RESOLVE DB
(5] DB<DB,NEW
(61 DB«((DB1DB)=1pDB)/DB
(7] NEW<t+"t,/,NEW2
[8] NEW«((NEW\NEW)=1poNEW)/NEW
[9] NEW<VRENAME™ NEW
(101 ~>(0=pNEW)/FAIL
111 ~»L1
[(12] FAIL:PZ+0

assume goal will be fourd
DB againcst itself first time
done if goal is found
resolve everything

add last ones to DB
discard duplicates

select new inferences
discard duplicates

rename variables

fail if nothing new

go do resolutions again
goal not found

» 2222?21 DID®TDTDDTD

*% PROLOG

The function that 1implements the 1logic of PROLOG wuses
RESOLVEGOAL and recursion to satisfy each part of a possibly
conjunctive goal in order from left to right. It i1s possible
that an infinite recursion may cause the program to loop. This
can happen in real PROLOG also.

83

V Z«CGS DFS DB3DBI3;GI3ASUBS3sGSUBS3SGsT
£13 (GOAL ASUBS)<«2+CGS A divide argument
[2] SG«SPLITGOALYGOAL A get simple goals
[3]1 START:GI<1 A start with first goal
(4] GSUBS«(pSG)p'0" A initial substitutions
[5] DBI<«(pSGlp1 A current DB item per goal
[6] NEXT:T<QFEX 'A' ONL 2 A erase all variables
[71] T«eDEPTH1 ASUBS GSUBS a define known variables
[8] T<EVAL DEPTH1(DBI[GI1]>DB) A select next rule
£9] NEW«T RESOLVEGOAL EVAL DEPTH1 GI>SG na resolve

[10] +(O#pNEW)/RES An branch something found
[11] NEXTDB:+((pDB)2DBILGI1«DBILGI]+1)/NEXT ~n try next rule
[12] DBI[GIJ]+1 A initial index again

[13] BACK:»(0=GI+«GI-1)/2+0 A back up to previous goal
£14] (GI>GSUBS)+«'0" A forget old substitutions
[15] ~NEXTDB A find another proof

[16] RES:(GI>GSUBS)«2>4+NEW A record substitutions

[17] +»(0=p1 1 2oNEW)/NEXTG A branch 1f proved

[18] T<«((VREENANEANEW)[1])(ASUBS GSUBS)DFS DB A do sub-goal

[19] +(*T)/SGOK A branch sub-goal 0K
[20] GSUBS[GI]<«'0" A forget substitutions
[21] »NEXTDB A to next clause in DB
[22] SGOK:(GI>GSUBS)<«(GI>GSUBS),2>T a record new subs
[23] NEXTG:GI<GI+1 A on to next goal

[24] +(GI<pSG)/NEXT A branch more goals
[25] DONE:Z<«1 GSUBS a done

The left argument to DFS is a two item vector. The first item
is the goal to be satisfied and the second item is the current
list of substitutions. The initial substitution is '0' meaning
there are no variables, The right argument is the vector of
clauses representing the database.

L1] separates the left argument into two names for
convenience,

[2] separates a conjunctive clause of N predicates into a
vector of N separate goals which can be satisfied
independently.

[3] sets the goal index to indicate that the first goal will
be satisfied first.

[4] defines the wvariable that will hold the substitutions
related to each goal. By keeping the substitutions for
each goal separate, they can be independently forgotten in
case of backtracking.

[5]) defines an index to the database for each goal

84

[6-9] makes the currently defined substitutions in both the
current goal and the current item from the database and
calls RESOLVEGOAL.

[10] branches if any resolvant was produced.

[11] selects the next c¢lause from the database to see if it
leads to satisfaction of the goal.

[12] is reached if no clause from the database satisfied the
current goal. The database index is set to 1 for the next
time this goal is tried.

[13-15] backtrack to the previous goal forgetting the
substitutions for that goal. If there is no previous goal
then the attempt to satisfy the goals has failed.

[16] is reached if a resolvant 1is found. The substitutions
that permitted the resoluticn are recorded.

[17] checks for a contradiction in which case this goal is
satisfied and the program can prcceed with the next goal.

[18] recursively calls this program to satisfy th- generated
sub-goal.

[12] determines if the sub-goal was satisfied.

[20-21] goes back to try another clause f-om the database in
the case the sub-goal was not satisfied.

[22] remembers the substitutions that allowed the sub-goal to
be satisfied.

[23-24] moves on to the next goal if any
[25] returns a 1 meaning success and the record of the

substitutions that led to success

A slightly fancier program DF permits the user to call the
function again and pick up the search from where it left off
to find another proof of the same goal.

85

V Z«CGS DF DB3DBI3GI3ASUBS;GSUBS3SGsT
£11 (GOAL ASUBS)<«24CGS n divide argument
£21] SCG«SPLITGOAL4YGOAL A get simple goals

£3] +>(3>pCGS) /START A branch first call
4] (GI GSUBS DBI)+*3>CGSn redefine controls
(5] ((GI-1)$DBI)+<1 n reset db indexes

(6] +BACK n backtrack

[7] START :GI<1 p start with first goal

{8l GSUBS«(pSG)p'0! A initial substitutions

o] DBI+(pSGlp1 A current DB item per goal
[10] NEXT:T<[OEX *A' ONL 2 A erase all variable
[(11] T<«e¢DEPTH1 ASUBS GSUBS A define known variables

[12] T<EVAL DEPTHA(DBI[GI]>DB) A select next rule
[13] NEW«T RESOLVEGOAL EVAL DEPTH1 GI>SG m resolve

{14] ~»(OzpNEW)/RES A branch something found
£15] NEXTDB:+((pDB)Y2DBILGIJ«DBI[GI1+1}/NEXT na try next rule
{161 DBI[GI]+1 A initial index again

[17] BACK:>(0=GI+«GI-1)/2+<0
18] (GI>GSUBS)<«'0’
{121 ~»NEXTDB

back up to previous goal
forget old substitutions
find another proof

[20] RES:(GI=>GSUBS)<«224¢NEN record substitutions
[21] ~+(O0=p1 1 25NEW)/NEXTG branch if proved

[22] 7T+«((VRENANEANEW)[11)(ASUBS GSUBS)DF DB A do sub-goal

222 D2 12>

[23] -+(47)/SGOK A branch sub-goal 0K
[24] GSUBS[GIJ<«'0O" n forget substitutions
[25] »NEXTDB A to next clause in DB
[26] SGOK:(GI>GSUBS)«(GI>GSUBS),2>T A record new subs
[27] NEXTG:GI<«GI+1 A on to next goal

28] +(GILplSCY/NEXT A branch more goals

{29] DONE:Z+<1 GSUBS(GI GSUBS DBI) a done

DF 1is identical to DFS except for two things. On exit, DF
returns a three item vector instead of a two item vector with
the third item being the information needed to restart the
search from where it left off. On entry, if the left argument
is a three item vector, the control variables are reset to the
saved values and the program entered as though the gocal just
failed. The backtracking mechanism will then cause a search
for another solution.

The function PROLCG automatically does the re-call of DF if
the wuser responds with a semicolon after an answver is
reported. Many real PROLOG systems use this convention.

vV Z<, PROLOG R;T
£1] ze1
[2] > (+7«(L 'O')DF R)/GOOD
(3] >740 return with failure
(4] GOOD:s'VALUES ' (2>27) report answer
[5] >('s;'2+M /0 r end unless 3
[6] >(+T«(L '0'(327))DF R)Y/GOOD n re-call

assume success
branch success

hu < T < T « B <]

86

**% Support Functions

The ENCODE function 1s used +to simplify the handling of
variables in logic statements, Different versions of PROLOG
use different conventiocns to identify wvariables 1in clauses.
Some PROLOGs use a leading * or _ to indicate a logic
variable,. In this paper, a leadling upper case character
indicates a logic variable., The ENCODFE function locates words
with a leading uppercase letter (using the global variable UC)
and appends a 'A' on the front. Any word which is not a
variable is prefixed with a lowercase 'a', Changing UC to the
value 'x' would implement another PROLOG convention.

Doing this append has two less obvicus benefits. First, it
means that all character strings are vectors. If any were one
character and therefore possibly represented as a scalar, it
would become a vector. This means the algorithms may assume
vectors of wvectors at all stages. Secondly 1f 'A' 4is not
nermitted anywhere but as the first letter of a variable, then
the occurs check needed in UNIFYA is trivial.

UC«'ABCDEFGHIJKLNNOFPQRSTUVWNXYZ"

V Z<«ENCODE R
(1] A put B in internal form
£2] a constants prefixed with ATON
[3] =~ variables prefixed with AVAR

L4) +(0=pZ<«R) /0 A empties stay emp’y
[5] Z«((1+(+R)eUC)>'a* '"A'),R
[6] R<(EX Z A ensure name has no value

The functions VKENAME and VRENAME1 take a clause and give the
variables in the clause unique names. Doing this before each
clause 1s added to the database means that none of the
programs have to worry about two clauses having the sane
variable name. It is not wrong for two c¢lauses to have the
same variable name so long as it is understood that they are
not the same variable. The functions presented here assume
that each clause has unique variable names,.

V Z<VRENAME R
£1] VCOUNT<«VCOUNT +1
(2] Z<VRENANE1 DEPTH1 R

V Z<«VRENAME1 R
(11 Z<R
L2] >('A'#4R)/0
£3] Z<R, (8VCOUNT)

87

The SPLITGOAL function 1is given a single conjunctive goal
clause and produces a vector of simple clauses with no
conjunctions.

vV Z<«SPLITGOAL G
(1] A G is a single possibly conjunctive goal
[2] A Z is a vector of simple goals (one deeper)
[£3] Z<«ENPTYCLAUSE, "c”c” 202G

ENPTYCLAUSE returns a 1 if the clause X is empty.
vV Z<«ENPTYCLAUSE X

£1] Z«(0epXIV"' '"A,=X<eeX
[2] a1 IF X CONTAINS ONLY ENPTY STUFF OR BLANKS

Appendix 2: Glossary

- Abduction - an illegal but useful rule of inference - If
A implies B, and B is true, then A is true. This is the
basis of medical dilagnosis.

~ AKO - means A Kind Of - a token relating a class of
objects to a more general class of objects. The class of
"private homes" 1s a kind of "building".

- BAmbiguity - something that could have two (or more)
conflicting meanings. ("Ambi" means "both")

- Antecedent - In the implication "If P then @', P 1is
called the antecedent and ¢ the consequent.

- Argument - a value to which some relation is applied. It
has nothing to do with a dispute.

~ Assertion -~ a formula believed to be true and therefore
in some factbase and represented in some knowledge
database.,

- Atom - a number or symbol (like an AFPL constructed name)
whose structure 1is not of interest. A proposition that
cannot be broken down into other propositions.

- Atomic formula - a predicate and a proper number of
arguments (terms).,.

- Axiom -~ 4initial facts - assumed to be true. Unlike
mathematics, where axioms are usually given at the
start, axioms will wusually be added as time goes on
{(because of new information received).

- Backward chaining - making an inference at the time a
query 1is made (i.e. wait until an answer 1s needed
before trying to infer it). Thus given a desired

conclusion, deny it and work backwards until a known
fact is reached giving a contradiction.

-~ Breadth-first search - if two places are to be looked at
in the order 'place 1' then 'place 2', then 'place 2' 1is
looked at before anyplace reachable from 'place 1' 1is
looked at., This is 1like looking at every node in a tree
of path length N from the root before looking at any
node of length N+1 from the root.

- Clause - A disjunction of predicates (Q1 v Q2 v (~Q3)
.es)e The statements of PROLOG are <clauses with one
conclusion (positive predicate) called the head of the
clause (called a Horn clause or a program clause).

89

Closed knowledge base - one that contains everything
that 1is true (like an airline reservation system).
Anything not in the database is not true.

Closed world assumption - Logic programs cannot in
general prove negative statements 1like ~P(a). If the
knowledge base 1is closed, then if you can't prove P(a)
you may infer ~P(a).

Conflict set - the set of rules which could be applied
next

Conjunction - "and" - the conjunction of two formulas is
true if both formulas are true,

Conjunctive normal form - A conjunction of disjunctions
(i.e. and "and" of clauses) (Q1 v Q2 VvV Q3 ...) A (.e.) A
(ceed A e Since a fact or a rule is represented as a
disjunction, a conjunctive normal form is the formal
representation of a knowledge base.

Consequent - In the implication "If P then ¢, FP 1is
called the antecedent and @ the consequent.

Database - data structures that represent what is
currently known (i.e., represents the factbasel). In
PROLOG, the database is the set of all clauses.

Deduction - discovering new facts from existing facts.
Default reasoning - an 1illegal but wuseful rule of
inference - If there 1s no proof that A is not B, then A

is B. (i.e., if you cannot infer not B then infer B.

Demon - a procedure invoked automatically to compute
values when values are needed.

Depth first search - If two places are to be looked at
in the order 'place 1' then 'place 2', then every place
reachable from 'place 1' is looked at before ‘'place 2°'
is looked at. This 4is like searching a tree in left
list order.

Disjunction - "or" - the disjunction of two formulas is
true if either formula is true,.

Existential quantifier - something is true for at least
one value of a variable.

Expert system - a program that gilves expert assistance
to a non-expert.

90

Factbase - what 1is currently known (as opposed to the
database used to represent 1it).

Facts - Statements assumed to Dbe true without
conditions. Because anything infers something that is
true, a fact is often represented as an implication with
empty antecedent.

False - nil or () in LISP, O in APL.

Forward chaining - making an inference at the time an
assertion 1s made. Given facts, make inferences until
the desired conclusion is reached.

Frame - a single data structure that include all of the
information of 1interest for a particular concept. A
frame wusually holds information about a general case
with a specific case represented as exceptions to the
general case,

Gatekeeper - a program which performs inferences and
adds or deletes them from the set of statements believed
to be true (also called an inference engine).

Goal - A clause which 1is to be proven. A proof often
proceeds by denying the result and proving a
contradiction. The denial of a positive goal 1is a
negative goal and is therefore a Horn clause with .o
positive term at all.

Ground clause - a clause with no wvariables

Herbrand base - all possible applications of predicates
with terms from the Herbrand universe,

Herbrand universe - set of all ground terms which can be
constructed out of functions and a given set of
constants. Given a set of constants and some functions,
the Herbrand universe represents everything that can be
talked about,

Horn clause - A clause that contains at most one
conclusion. A conclusion is often proved by postulating
its negative and proving a contradiction. The modified
statement is phrased as the "or" of the negations of the
assumptions 'or'ed with the conclusion. Thus, a Horn
clause has at most one non-negated term.

Implication - If A then B. A is called the antecedent,
and B is called the consequent. Equivalent to B or (not
A)., /

Induction - an illegal but useful rule of inference. If
A is true for every instance of A that we know about,

91

then A 1is true for all instances,. This 1is the basis of
learning.

Inference - the process of arriving at new facts from
the given facts.

Inference Engine - a program which performs inferences
and adds or deletes them from the set of statements
believed to be true. (also called a gatekeeper)

Instance - a single unambiguous value or occurrence of
something that could have many values or occurrences. 2
is an instance of an even number, A term having no

variables (a ground term) is its only instance. Given a
term with wvariables, substituting something for a
variable gives a new instance

ISA - a token representing that one object 1is an
instance of a class of objects. For example Sten is a
man.

Knowledge base - the data base for logic programs

Knowledge Engineering - building a set of rules that
represents the knowledge and skill of a human expert.

Lambda notation - a way of defining a function without
giving it a name.

LISP - A 1list processing programming language (LISP =
LISt Processing)

List structure - In LISP - a list of 1lists which may
contain self-references (circularities)

Literal - an atom (positive literal) or a negated atom
(negative literal)

Modus Ponens - a rule of inference - if A implies B and
A is true, then B is true (i.e 1if Bv(~A) and A, then
infer B.

Most general unifier - A substitution leaving the most
variables unbound (1.e. it subsumes every other
unifier). It has the property that it i1s wunigque except
for naming variations.

Nil - The unique LISP construction that is both an atom
and a (empty) list.

Non-procedural - a program 1is non-procedural if the
order of its statements is not relevant. Logic

statements in their purest form are non-procedural.

52

Occurs check - In wunification, this check prevents a
substitution for a variable by an expression containing
that wvariable. (i.e., an attempt to substitute £(X) for
¥X.) PROLOG often leaves this check out and so can get
incorrect results.

Open knowledge bhase - one that doesn't contain
everything that is *true. Therefore, 1f something is not
in the database, you cannot conclude that it is false.

Predicate - a function that returns true or false. A
predicate states a relation among objects.

Predicate Calculus - a system for computing on
propositions that contain wvariables. 1f variables
represent objects only, then the system 1is first order
predicate calculus. If wvariables represent objects and
predicates, then the system 1is second order predicate
calculus,

Program clause - a Horn clause - one with one or =zero
positive predicate.

PROLOG - a logic programming language (FVROLCG =
"PROgrammation en Logique™) for solving problems
involving objects and relationships retween objects. It
is a resolution based theorem prover using Horn clauses.
FROLOG works backwards from desired conclusions to kncun
facts by eaottempting to resolve the l=2ftmost predicate
with a depth first search.

Proposition - A statement that evaluates to true or
false and contains no logic variables.

Propositional logic - a system for computing on
propositions.

Referential ambiguity - a situation where more than one
interpretation of a phrase is possible. For example, who
is he in "He 1s a good student".

Resolution - a general rule of inference. If one clause
contains a negated literal and the other contains the
same literal not negated, then you may infer the clause
which is the disjunction of the other terms. If AvBvCvD
and (~A)VEVF, then you may infer BvCVvDVEVF,

Rule - statement that is true under some conditions (as
opposed to a fact that is unconditionally true).

S-expression - 1in LISP - a 1list of 1lists with no
circularities.

93

Search - an organized method for guessing a good path to
a conclusion,

Skolemization - the process of eliminating universal and
existential quantifiers from a formula.

Subsume - formula P subsumes formula @ if a substitution
for variables in P produces .

Term - argument of a predicate -- a constant, a
variable, or an application of an n-ary function to n
terms.

Theorems - facts deduced from the given initial facts
(the axiloms)

Token - a unique phrase or encoding whose structure is
not considered relevant.

True - anything except nil in LISP, 1 in APL.

Unification - +the process of finding the wvalues of
variables that make two expressions look the same. Also
called finding a common instance.

Unifier - a substitution that makes two expressions look
the same.

Unit Clause - one non-negated predicate and no negated
predicates (Pe<),

Universal 1instantiation - a rule of inference - if
something is true of everything, then it is true for any
particular thing.

Universal quantifier - something is true for all values
of a variable.

Variable - a token which replaces universal quantifiers.
Instead of writing 'for all (x), (x<3)' write 'X<3°'
where X is a loglc variable.

Variant formulas - P and ¢ are variants 1if each can be
produced from the other by some substitution.

Word sense ambiguity - situation of a word having more
than one meaning.

94

Appendix 3: A Summary of First Order Predicate Calculus

Predicate calculus 1is a notation useful in expressing
propositions, calculating the +truth of propositions, and
inferring new propositions from the known ones.

The following summary is meant to be independent of the syntax
used to write the notation.

There are two aspects to the notation:
- The objects being talked about

- Mappings between the objects

The objects of the language are:

- constants - a particular number or a particular
character string.

- variables - names which represent sets of possible
constant values.

- computed - an object resulting from a computation (see
functions below).
The above set of objects are called terms.
In addition, the language contains two distinguished objects
called "true" and "false',. These are merely two
distinguishable objects not related to actual truth or falsity
except by the intention of the writer.

The mappings are:

- Functions - mappings of terms to a term

- Predicates - mappings of terms to true or false

- Formulas - predicates and combinations of predicates and
formulas

The applications and combinations are:

- Atomic formula - a predicate applied to the proper
number of terms

- Formula - an atomic formula or the result of any of the
following combinations of formulas. If F and G are

- 95 -

formulas and x 1is a variable, then the following are
formulas:

-~ Implication: "If F then G" - this is true if F 1is
true or G is false

- Conjunction: "F and G" - this is true if both F and
G are true

- Disjunction: "F or G" - this is true if either F or
G is true or both are true

- Negation: "not F" - This 1s true if F is false

- Existential quantification: "exists (x) F" - This is

true 1f there 1s an x that makes F true

- Universal quantification: "For all (x) F" - This is
true if F is true for every possible value of x

Predicate Calculus is not concerned with the actual truth of
propositions, only the relationships between them. The actual
truth of the input formulas is unimportant in the application
of the formal rules. If a false conclusion is reached, it can
only be because one of the input assumptions is wrong.

96

Appendix 4: Tautologies

A tautology is a statement of the form P v (~P), Thus, the
characteristic of a tautology 1s that one term appears in both
the non-negated list and the negated 1list. Such statements
are not wrong (in fact they are trivially true) but, rather,
are not useful in making any new inferences.

Here is an AFPL expression that checks a clause for a tautology
V.€/Z

The reduction puts the v.e between the positive and the

negative clause parts. If any predicate in one appears in the

other, the member ship will give a 1 and so the v/ part of the
inner product will give a 1.

97

Appendix 5: The DPY Function

The DPY function is 1like the DISPLAY function distributed as
part of the APL2 program product except it labels the top edge
of boxes with the shape of the array.

V D+«S DPY A3QIO:;R3;CsHLsHC3sHTsHB3;VL3;VBsVsWiN;:B
£11] A A NODIFIED DISPLAY FUNCTION
[21] an NORMNAL CALL IS MNONADIC. DYADIC CALL USED ONLY IN
[3] A RECURSION TO SPECIFY DISPLAY RANK, SHAPE, AND DEPTH.
[4] 010<«0
(5] 2 (O=ONC 'S')/'S<pd"®
[6] R<4p,S
[7] C(_l..lllll
£8] HL<«"'-"
[9] HC<«HL,'©+>"' ,HL,"'~+¢"'
[10] HT<«HCL[(O<R)IX1+0<4+714,8]
[11] W<,0="40pc(1lpA)+4A
[12]3 HB<«HC[3+3L(V/HW)+(A/0O 1eN)+3x1<ppS]
[13] VLi<']|"* A VERTICAL LINE.
L14] VB<VL,'04? A VERTICAL BORDFER.
[15] V<«VBL(1<RI)x1+0<"1471¢,85]
{161 2(0cpAl)/ 'A<« (1[pA)pct+A? A SHOW PROTOTYPE OF ENPTIES.
(171 =+(1<=4)/GEN
[18] =+(2<ppA)/D3
[19] D3 A a SIMPLE ARRAYS.
[20] WHeltpDs (7241 1,pD)pD
[21] Ne 1+1¥pD
[2Z2Z] +(0=ppA)/SS
[23] D<«(CL11,V((WN-1)pVL),C[2]),((HT 3Np(&,S),NpHL),[0lD,[O]HB,NpHL),
CLOJ,(WpVL),C[3]
[24] =0
(25] SS:HB<«((QO ' ')=40pcAh)/* -!
[261] D<«(B,B, ((W-1)pB),B),((((pHT)pB),NpB),[O]lD,[0]HB,NpoB),B, (WpB) ,B<«"
[27] =0
[28] GEN:D«3SDPY" A A ENCLOSED ...
[29] N<Dv.z' '
£301] D« (Nv~10N) £D
[31] D«(V#~* 'eD)/D
[32] D<«((1,pS)pS)YDPY D
{33] =+(22p,S)¥D3E,OQO
[34] D3:D<«0 7140 1434 n MULT-DIMENSIONAL ...
[35] WeltpD
[36]1 N« 1+14pD
[37] D<«(CL11,V,((W-1)pVL),CL2]),((HT,NoHL),[01D,L[0OJHB,NpoHL),C[O],
(WpVL),C[3]
[38] D3F:N« 2+p,S
[39] V<«C[Np1],[0]VBL1+40<72¥,S8],L[0]J(((73+4pD),N)pVL),[O0]JC[Np2]
[40] D<V,D
v

PSEUDO RANK.

UR, UL, LL, AND LR CORNERS.
HORIZONTAL LINE.

HORIZONTAL BORDERS.

> D®» D2

Appendix 6: Test Cases

In the following:
variables ~ X Y 2
predicates - pgr s t
functions - £ g h
constants - a b c

** Unification Tests

These examples show unification of two predicates and the
resulting common predicate 1f one exists along with the
substitutions for variables that lead to the unification. If
the predicates don't unify, the reason is given:

1. a. pX,£(X),Y)
b. pla,Z,g(2))
c. pla,f(a),gtf(a))
with substitutions Xea

z2<f(a)
Yeg(£f(al)
2. a. p(a,X,X)
b. p(a,¥Y,£f(Y))
failure -- substitution X«Y

but then ¥ and £(Y) don't unify
because of the "occurs'" check.

3. a. p(f(X),g(a,Y)),g(a,Y))
b. p(f(X,2),2)
c, plg(X,glta,¥Y)),gla,Y))
with substitutions X<«a

4, a. p(fa),g(X))
b, p(Y,Y)
c. failure -- substitute Ye«f(a)

but then g(X) and f(a) don't unify.

99

5. a. p(a,X,h(g(Z)))
b. p(Z,h(Y),h(Y)) =
c. ptah(g(a)),h(g(a)))
with substitutionsZea
Yeg(a)
X<h(g(a))

** Resolution Tests

These examples do resolution of two clauses. In general, it is
possible to infer more than one resolvant. In these cases,
several resolvants are shown along with the unification that
permitted them.

1. a. pvgvryVv (~s)
b, (~p) v g v (~t)
c. gV ryvi(~s) vgyVv (~t)
c. from matching p

d. g VvVrv (~s) v (~t)
d. from removing redundant term

2. a. (~p(a)) v r
b. p(X) v p(a) v q
c. pta) vr vaag
c. from unifying on first p in b

d. p(X) v r vag
d. from from unifying on second p in b

d. contains c¢. as a sub-case

e. rvgqgyvere
e. from from a. and c¢. or from a. and d.

£f. r vg
f. from removing redundant term

100

a. pta) v p(b) v g
b, (~p(X)) v r(X)

¢, p(b) v g v r(a)
c, from unifying on first p in a

d. p(a) v g v r(b)
d, from unifying on second p in a

a. p(f(X)) v p(¥Y) v g
b, (~p(£f(Z))) v r

c., p(¥YJ vgyvrer
c. from unifying on first p in a

d. p(f£(X)) vgvVvr
d. from from unifying on second p in a
c¢. contains d. as a sub-case

e. gvVvery
e. from unifying on both p of a.
e. also from b, and c. or b. and d.
after removing redundant r.

a., p(a)
b, (~p(X)) v p(£(X))

c. plf(al))
c. from unifying on first p in b

d. p(£(£f(a)))
d. from unifying c. with b.

e. p(f(f(f(al)))
e, from unifying d. with b.
and this continues forever

a. pvgyVverer
b, (~p) v (~q)
c. g Vv r v (~q)
¢. by unifying on p
c. is a tautology
because g v (~gq) 1is always true

101

7. a. p(X,f(a)) v p(X,£f(Y)) v g(¥Y)
b, (~p(Z,f(a)) v (~gl(2))
c. P(X,£(Y)) v (~g(X) v g(Y)
c. from unifying on first p in a
d. p(X,f(a)) v (~g(X)) v gta)
d. from from unifying on second p in a
e. (~g(X)) v g(a)
e. from from unifying on both p of a,.
e. also from b. and c¢c. or b. and d.
f. p(X,f(a)) v p(X,£f(Y)) v (~p(Y),£f(al)

f. from unifying on g

*%x Example Logic Program

1. input clauses:
p(a,b)
p(C’b)
p(X,Y)

a.
b.
c.
d.

p(X,Y)

p(Y,Z)

4 4 4 4

denial of goal:
e, « pla,c)
proof:

f. « p(a,yY) p(¥,c)

by resolving e.

<« p(b,c)
by resolving a.

gn

h. < p(C’b)

by resolving g.
i. empty clause
by resolving h.

This program has the property that any depth first search that
uses the 1input clauses in any fixed order will fail to find a

solution.

and c.

and first clause of

and d

and b.

- 102 -

f.

