Santa Teresa
Laboratory
San Jose, CA

CALLS TO APL2 by Michael T. Wheatley

January 1991 TR 03.390

Calls to APL2

Document Number TR 03.390

January 2, 1991.

Michael T. Wheatley

International Business Machines Corporation
Programming Systems

Santa Teresa Laboratory

San Jose. California, USA

ii Calls to APL2

Abstract

This document describes facilities which have been added to APL2 to allow applications written in languages
other than APL to issue calls to APL2 -- to execute APL expressions, invoke API functions, reference or
specify APL variables, or to enter the APL?2 interactive environment. Such applications can be invoked
independently of APL2, or thev can be invoked, using facilities provided, from an active AP1.2 environment.

Abstract ii

iv Calls to APL2

Contents

Calls to APL2 1
Introduction 1
Overview 2
APL2PI Interface Calls 4
Initialization Call 5
Termination Call 7
Execute an APL Function 8
Execute an APL. Expression 10
Return Control to APL 11
Execute an APL Function 12
Reference or Specify an APL Varable 13
Enter or Exit a Packaged Workspace Namescope 14
Return Codes 15
Using CDR Results 16
Pattem CDR’s 16
External Functions ATP and PTA 16
External Functions APL2PI and APL2PIE 18
APL2PI and APL2 Calls to Other Languages 21
System Related Considerations 22
Using APL2PI in a VM/CMS Environment 22
Using APL2PI in an MVS/TSO Environment 25
Language Related Considerations 28
Using the APL2PI Interface from FORTRAN 28
Using the APL2PI Interface from C = 34
Using the APL2PI Interface from COBOL 39
Using the APL2PI Interface from PL/I 43
Concluding Remarks 45

Appendix A. Implementation Details 47
Invoking APL from a non-APL Application 48
Invoking a non-APL Application from APL 49
Environment Isolation 50
Termination Processing 51

Contents V

vi Calls to APL2

Calis to APL2

Introduction

This document describes facilities which have been added to APL2 to allow applications written in languages
other than APL to issue calls to APL2. Such applications can be invoked independently of APL2, or the)
can be invoked, using facilities provided, from an active APL environment.

An interface routine, called APL2PI (APL.2 Program Interface), provides capabilities through which:
* APL2 can be imtialized;
* APL2 can be terminated,;
* APL functions can be executed;
¢ APL variables can be referenced or specified;
¢ APL expressions can be executed;

* control can be passed to the interactive APL session.

A companion APL external function, called APL2PIE, is provided through which:

* non-APL applications can be invoked from an active APL2 environment. Applications so invoked can
subsequently make calls to APL2 using the APL2P] interface;

» arequest to terminate can be passed to non-APL. applications from the active APL.2 environment;

* control can be returned to a non-APL application (that previously invoked APL2 or returned control to
the active APL environment);

« service requests can be passed from executing APL functions to any of the currently active non-APL
applications.

The APL2PI routine provides a relatively high level of interface designed to be imbedded as a callable service
in programs written in high level languages such as FORTRAN, PL’l, C, or COBOL. APL2PI is a reen-
trant routine that can be link edited with application programs or packaged as a separate load module which
is dynamically loaded before being called. In the VM/CMS environment, APL2PI may also be loaded as a

CMS nucleus extension.

The facilities described in this document are available in current levels of the APL2 and APL2/AE program
products (5668-899, 5688-003) Version 1 Release 3.0, with the following PTF’s and their prerequisites

installed:

APAR VM/CMS PTF MVS/TSO PTF
PL54185 uL69734 uL69735
PL57346 UL68736 -

PL57347 UL69737 UL69738,UL.69739
PL58236 - uL69740
PL53174 uL71031 UL71032,UL71033
PL63437 UL74734 UL74735,UL74736
PL68969 uL79882 UL79883
PL68I6S UL79924

Calls to APL2 1

These facilities are not described in the documentation provided with the APL2 Release 3.0 or APL2 AL
Release 3.0 program products. The information contained in this document has not been submitted to any
formal IBM test and is presented on an “as is” basis without any warranty either expressed or implied. The
use of this information is a customer responsibility and depends on the customer’s ability to evaluate and
integrate 1t into the customer’s operational environment.

Overview

The APL2PI interface routine is designed so that it can easily be called from languages such as FORTRAN,
COBOL, C, Pascal, PL/1, and Assembler. The form of such calls (using Assembler or FORTRAN syntax)
begins with three consistent arguments:

CALL APL2PI(REQUEST,TOKEN,RC,....)
where:
REQUEST is a 4 character request identifier. The following requests are supported:

INIT initialize APL2.

TERM terminate APL2.

APLE request execution of an APL expression.

APLS request execution of an APL function.

APLF request execution of an APL function. This request is more fully functioned than
the APLS request, but it is not as simple to use.

APLV reference or specify an APL variable.

APLX return control to the APL environment.

APLP enter or exit the namescope of an APL packaged workspace. Subsequent requests
will be made in that namescope unless specifically directed elsewhere.

TOKEN is a token used by the APL2PI interface for correct and efficient operation. It is returned by
an INIT call and should be provided on all subsequent calls.

RC is a 2 element return code returned by the APL2PI interface as the result of any call. A return
code of 0 0 indicates success.

Most calls to APL2PI require additional arguments specific to the request. These will be described in subse-
quent sections.

The INIT, TERM, APLE, APLS, APLX, and APLP requests take relatively straightforward arguments that
can be easily provided in most high level languages. The APLF and APLY requests, however, are designed
to pass arguments to APL and receive results from APL in CDR format. CDR format is a data represen-
tation which allows efficient representation of APL arrays including general arrays. While CDR objects can
be constructed in many languages that support data structures (e.g.: Assembler, C, PL/], Pascal), it is a more
difficult format to use than that used in the simpler service requests. The CDR format is described in detail
in the APL2 Processor Interface Reference manual (SH20-9234).

In the remainder of this section, a simple example will be presented to illustrate the use of this interface.
The example will be presented using FORTRAN because of its simpie syntax and understandability. The
program:

defines the necessary data items,

causes APL2 to be initialized by means of an INIT service request to APL2P]I,

prompts the user to enter a set of 3 numbers,

computes their average by calling the APL function AVG in packaged workspace STATS,

displays the result returned by the APL function,

causes APL2 to be shutdown by means of a TERM service request to APL2PI.

IS

2 Calls to APL2

This example provides overly simplistic error handling facilities (at statement labelled 99), that may not be
desirable in an operational environment. More complete examples are shown later in the paper.

INTEGER*4 TOKEN,RC,LENGTH
REAL*8 NUMBERS(3),RESULT
TOKEN=0
LENGTH=0
CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',0,0,0)
IF (RC .NE. 0) GOTO 99
WRITE (6,*) 'Enter 3 numbers'
READ (5,*) (NUMBERS(I),I=1,3)
CALL APL2PI('APLS',TOKEN,RC,'STATS ','AVG ',LENGTH,' *',NUMBERS,RESULT)
IF (RC .NE. ©) GOTO 99
WRITE (6,*) 'The average is: ',RESULT
CALL APL2PI('TERM' TOKEN,RC)
If (RC .NE. B8) GOTO 99
RETURN
99 WRITE (6,*) ‘'Unexpected error ',RC,' was returned from APL2PI'
END

L

Figure 1. Sample FORTRAN Program

The AV G function invoked by this sample program differs from what a APL user might expect:

VAVG ARGS;NUMBERS;RESULT
[1] =»(Ov.=3 11 {ONA 2 3p'PTAATP')/ERROR
[2] NUMBERS<'E8 1 3' PTA +ARGS
(3] RESULT«(+/NUMBERS)+pNUMBERS
(41 'E8 1 1' ATP RESULT (1VARGS)
(51 =0
[6] ERROR:'UNEXPECTED ERROR' [ES 9 9

v

Figure 2. Sample APL Function

Lines 2 and 4 of this function use the APL external functions PTA and ATP to retrieve the argument

NUMBERS passed by the FORTRAN program and to return RESULT to that program. These functions
will be described in the section entitled “External Functions ATP and PTA” on page 16. Their use is
required to accommodate the argument passing mechanisms and data types used in non-APL programs.

Calls to APL2

3

APL2PI Interface Calls

All calls 10 the APL2P1 interface assume that the caller provides the necessary arguments “by reference”
using standard OS linkage conventions. That is to say, it is assumed that the calling program passes control
to APL2P! with the following general purpose 1egisters set:

R1 contains the address of a standard OS parameter list, that is, a list of the addresses of the arguments
passed on the call. The list is terminated by setting the high order bit in the last address in the list.
Elided arguments imbedded in the list are specified as 0.

R13 contains the address of a standard 18-word OS save arca which will be used by the API.2PI interface.
R4 contans the return address in the calling program

R15 contains the address of APL2P].

Assembler (using the CALL macro), FORTRAN, COBOL., and P11l use these conventions as the default
on most calls. C and Pascal, however, often use an extension to these conventions in which a mixture of
addresses and values may appear in the parameter list. From C programs, users must ensure that pointers to
the arguments, rather than the values of the arguments, are passed. From Pascal programs, users should
declare the arguments so that they will be passed by reference rather than by value. Additional information
on this subject can normally be found in the Programmer’s Guide manual for the language being used.
Some additional information will be provided in later language specific sections of this document.

Many of the arguments required by APL2PI must be specified as character strings, sometimes terminated
with a blank. Users should note that many languages, such as PL/] and Pascal, allow definition of variable
length character strings which are prefixed with a length field. Such arguments are unacceptable to APL2PI
because of the length prefix. Such languages typically provide alternate representations, such as fixed length
strings, without the length prefix, that arc acceptable to APL2P1. C null terminated character strings are
acceptable to APL2PIL. If an APL2PI argument must be terminated with a blank, a C nul! terminated string
is acceptable if the character preceding the null is a blank. Again, additional information on this subject can
typically be found in the language’s Programmer’s Guide manual.

Certain APL2PI arguments (such as SERVICE on the 'INIT’ call and PATTERN on the "APLV” call) arc
fullword fields containing addresses. Note that in these situations, the caller’s parameter list must contain an
address that points to the fullword containing the necessary address. All such arguments and result fields will
be identified in the following descriptions with a phrase hike “...a fullword ficld containing the address of...”.

Each APL2PI call provides as its third argument a fullword field into which APL2PI will place a return code
on completion of the call. All such return codes should be interpreted as a pair of halfwords. 0 0 indicates
success; 0 x indicates an error originating in APL2PI, or an alternate successful result; x x indicates an error

detected by APL2 (rather than in the APL2PI interface) and can be interpreted as an APL OFET value. A

return code of 1 2 indicates an unexpected SYSTEM ERROR that may have been detected by either
APL2PI or APL2.

4 Calls to APL2

Initialization Call

CALL APL2PI (INIT TOKEN, RC,NAME, TYPE, ANCHOR ,SERVICE,LENGTH,PARMS)

This call provides an explicit mechanism by which APL2 can be invoked. If this call i1s not issued explicitly
by the calling program, and if APL2 is not active, it will be issued implicitly by other calls to APL2PI
(except 'TERM’). Since invocation of APL2 1s often a lengthy process, the calling program may wish to
issue this call explicitly some time before making use of other APL2PI services.

This call also provides the mechanism by which a non-APL application identifies itself to the APL2PI inter-
face and optionally specifies service routine and anchor addresses. Thus it 1s recommended that this call be
issued by all non-APL applications whether or not APL2 was previously activated.

The arguments to this call are:

INTTY
TOKEN

RC

NAME

TYPE

ANCHOR

SERVICE

LENGTH

PARMS

a required argument identifying this request.

a fullword integer field into which the interface routine will place a token on successful
completion of this call. This token should be retained and used on subsequent calls to
provide optimal performance. This field should be zero when the 'INIT call is issued, or
the call will end with an error.

a fullword integer field into which the interface routine will place the return code on com-
pletion of the call. Return code of 0 0 indicates success. Other return codes are described
below.

a name used to identify the calling application program to APL2PI. This name may be
subsequently used by the APL2PIE external function to direct requests to this application
program. NAME must be 1 to 8 characters in length, and must be terminated with a
blank. If this argument is elided or specified as a null or blank, the name * ’ (i.e., a blank
name) will be assigned to the calling application program. This poses no problem if only
one non-APL application uses the APL.2P] interface, but may result in errors or unex-
pected results if more than one non-APL application is activated. A non-blank name is
recommended.

a fullword integer identifying the type of service routine indicated by the SERVICE argu-
ment. A value of 0 means that no service routine is provided: the ANCHOR and
SERVICE parameters will be ignored. A value of 1 indicates that the service routine
expects its argument and produces its result in non-CDR form. A value of 2 indicates that
the service routine expects its argument and produces its result in CDR form. Additional
details on service routine arguments and results are presented in section “External Func-
tions APL2PI and APL2PIE” on page 18.

a fullword token passed from the non-APL application. This token will be returned to the
non-APL application on every service routine call. Note that updates to this token made
during a call to the service routine will not be retained -- the original value of this token
will be passed on all service routine calls.

a fullword containing the address of a routine in the calling application to which service
requests can be directed with an APL2PIE 3 call from the APL2 environment. If this
argument 1s elided or specified as 0, or if TYPE 1is specified as 0, APL2PIE 3 requests
will be denied for this application.

a fullword integer field specifying the length in bytes of the PARMS argument. If this
arguments is elided or specified with a value of 0, the PARMS argument is ignored.

a character string specifying APL2 invocation parameters. This argument is optional, but it
must be provided if the LENGTH argument is specified as non-zero.

Calls to APL2 S

When an "INIT call is 1ssued. if APL2 is not alrcady active, APL2PI will append any invocation parameters
provided on the call to the AP1.2 invocation command provided in AP2XAPIC CSECT (if AP2XAPIC i~
link edited with APL2PI) or to the default APL.2 invocation command:

APL2 QUIET RUK(APL2PI)

If the resulting invocation options cause an APL function other than APL2PT to be invoked, that function
is expected to invoke the APL2PI external function to cause control to be returned to the APL.2PI inter-
face routine on completion of APL2 initialization.

If the 'INTT call is issued when APL2 is already active (i.¢.: from a non-APL application invoked via the
APL2PIF external function), a return code 0 1 ("API. already 1nitialized’) will be returned.

6 Calls to APL2

Termination Call

CALL APL2PI ('TERM’ TOKEN,RC)

This call requests termination of APL2. It is effective only when issued by the non-APL application from
which APL2 was invoked. If issued from a non-APL application which did not cause APL2 invocation (i.e.:
one which was invoked by APL2 using the APL2PIE external function), it is nilpotent and returns a return
code of 0 10 (invalid request).

If APL2 was invoked by a non-APL application, that application must issuc the TERM call before its own
termination. Failure to do so may cause abnormal termination of APL2, thc APL2PI interface and possibly
the non-APL application (and possibly even CMS in a VM/CMS environment).

The arguments to this call are:

"TERM’ a required argument indicating that APL2 is to be terminated.

TOKEN a fullword integer containing the token returned on the 'INIT” call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute. On com-
pletion of the "TER M’ call, this field will be set to zero.

RC a fullword integer field into which the interface routine will place the return code on com-
pletion of the call. Return code of 0 0 indicates success. Other return codes are described
below.

Calls to APL2 7

Execute an APL Function

CALL APL2PI (APLS TOKEN.RC,PKGWS FN,RLENGTH RESULT ARG1,ARG2...)

This is one of two calls provided to request execution of an APL function. Thus call is designed to be easily
used in high level language programs (such as FORTRAN or COBOL).

The function specified may reside in a packaged workspace and is called monadically if arguments (ARG,
ARG2, ...) are specified, or niladically if they are not. Arguments, if any, are passed to the function as a
vector of fullword integers which represent the addresses of the argument data. The APL function is
expected to use PT'A to access the argument data, and ATP to update it. PTA and ATP are APL. external
functions provided with APL2. They are described in detail in the section entitled “External Functions ATP
and PTA” on page 16.

The arguments to this call are:
"APLS’ a required argument indicating that an APL function is to be called.

TOKEN a fullword integer containing the token returned on the ‘INIT" call. If this token is not
provided (1.e.: specified as zero), the call will require more CPU time to execute.

RC a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below.

PKGWS the name of the packaged workspace in which the specified function is to be found and
optionally a surrogate name for the function. If this argument is provided,

'PKGWS' 11 [ONA 'FN'
or
'PKGWS' 11 [ONA 'FN SURROGATE®

will be executed before the specified function is called. If this argument 1s not provided or
is coded with an initial blank, no ONA& will be issued before calling the function. Thus, if
the function exists in a packaged workspace, the first call to it must provide the PKGWS
argument, but subsequent calls do not. The PKGWS argument is a character string which
is expected to be terminated with a blank, ¢.g.: *MYLIB .MYWS '. If the surrogate
name is specified it must be prefixed with a colon, viz:

'MYLIB.MYWS:SURROGATE *.

FN the name of the function to be called. This argument is a character string which is

expected to be terminated with a blank. It is used as the right argument to (N4 if the
PKGWS argument is coded and is then used as the name of the function to be called.

RLENGTH a fullword integer field specifying the length of the result field. On completion of this call.
this field will be updated to contain the actual length of the result or error message
produced (which may be shorter, the same size, or longer than the result field). If no
explicit result or error message is produced, this field will be set to -1.

Note that this field is normally updated as a result of this call. It therefore should not be
coded as a constant on calls from high level languages for to do so could result in the con-
stant being modified, which in turn could result in subsequent errors in the calling program.

RESULT a field into which the explicit result of the function (if any) will be placed. If the result
produced is larger than the length of this field (as specified by RLENGTH), only the first
RLENGTH bytes of the result will be placed into the RESULT field and RLENGTH will
be updated to reflect the actual total result length. The result is placed in this field as an
unmodified byte string in left list order, i.e., as if it had been produced by the expression:

8 Callsto APL2

ARGI,ARG2,..

RESULT<«(PFA RESULT) ATR RESULT

If an error results from the execution of the specified expression, the error message (e JEM)
will be placed in the RESULT field and its length in the RLENGTH field. An error
message is not produced 1n all situations. In general, a message will not be produced if the
error is detected before execution of the specified function has begun. In such situations.

the RESULT field will not be updated.

the arguments to the function. The specified function will be passed a vector of integers

representing the addresses of these arguments and is expected to use PTA to access them
and ATP to update them. If no arguments are coded in the call, the specified function will

be called niladically. A maximum of 64 arguments are supported.

Note that this call allows an explicit result produced by the APL function to be passed back to the calling
routine. The calling routine, however, must anticipate the size of this field in advance, allocate storage for 1t
and pass it to APL2PI as the RESULT argument. The calling routine cannot control the type, structure, or
shape of the data returned, nor can it contro] whether an explicit result or error is returned. In many situ-
ations it may be simpler to pass output or input/output arguments to the APL function and structure that
function to return its results by updating one or more of the arguments using the APL external function

ATP. This approach allows the RESULT field to be used for the return of error information only.

If it 1s deemed desirable to produce an explicit result in the APL function called, that function can control
the data type of the explicit result returned through the use of the external function ATR, viz:

(1]
[2]
[3]
[4]
{51
[6]

LENGTH=8

RESULT=0.0
CALL APL2PI('APLS',TOKEN,RC,'STATS ', 'AVG ',LENGTH,RESULT,NUMBERS)

VRESULT<«AVG ARG;NUMBERS

+(0v.=3 11 ONA 2 3p'ATRPTA')/ERROR
NUMBERS<«'E8 1 3' PTA ARG
RESULT<«(+/NUMBERS) +pNUMBERS
RESULT<«'E8 1 1' ATR RESULT

+0

ERROR:'UNEXPECTED ERROR' [ES 9 9

v

Figure 3. Sample ‘APLS’ Call

Callsto APL2 9

Execute an APL Expression

CALL APL2PI (APLE TOKEN,RCSLENGTH.STRING RLENGTILRESULT)

This call requests execution of an APL expression. The expression to be executed is specified as a character
string - effectively the right argument of an ¢ primitive. The result is returned as a byte string derived from
the ‘enlist” (€) of the result of the executed expression. If an crror occurred during the execution of the
expression, the error message (€ JEM; will be returned in the result field.

The arguments to this call are:

‘APLE’
TOKEN

RC

SLENGTH

STRING
RLENGTIH

RESULT

a required argument indicating that an APL. expression 1s to be executed.

a fullword integer containing the token returned on the ‘INIT’ call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute.

a fullword integer field into which APL2PI will place the return code on completion of thic
call. Return code of 0 0 indicates success. Other return codes are described below:.

a fullword integer specifying the length of the string to be executed.
the character string to be executed.

a fullword integer field specifying the length of the result field. On completion of this call.
this field will be updated to contain the actual length of the result or error message
produced (which may be shorter, the same size. or longer than the result field). If no result
or error message 1s produced, this field will be set to -1.

Note that this field is normally updated as a result of this call. It thercfore should not be
coded as a constant on calls from high level languages for to do so could result in the con-
stant being modified, which in turn could result in subsequent errors in the calling program.

a field into which the result of the executed expression (if any) will be placed. If the result
produced is larger than the length of this field (as specified by RLENGTH), only the first
RLENGTH bytes of the result will be placed into the RESULT field. RLENGTH will be
updated to reflect the actual total result length. The result is placed in this field as an
unmodified byte stnng in left list order, i.e., as if it had been produced by the expression:

RESULT<«(PFA RESULT) ATE RESULT

If an error results from the execution of the specified expression, the error message (¢ JEM)
will be placed in the result field and its length in the RLENGTH field. An error message is
not produced in all situations. In general, a message will not be produced if the error is
detected before execution of the specified expression has begun. In such situations, the
RESULT field will not be updated.

10 Calls to APL2

Return Control to APL

CALL APL2PI] (’APLX',TOKEN.RC,VALLIE,RESL’LT)

This call is used to return control to APL2, either to an interactive APL session, or to the APL application
that invoked or transferred control to the non-APL application.

Control may be subsequently returned to the non-APL application by calling one of the APL external func-
tions APL2PI or AFPL2PIE.

The arguments to this call are:

‘APLX’
TOKEN

RC

VALUE

RESULT

a required argument indicating that control is to be returned to APL2.

a fullword integer containing the token returned on the 'INIT’ call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute.

a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below.

this optional parameter, if specified, must be a fullword field containing 0 or the address of
a CDR to be returned as an explicit result to the APL environment. This CDR must
contain 0 O as its first two items of data. If this parameter is specified as 0 or is not
specified an explicit result of 0 0 MSG is returned, where the value of MSG is defined in
the AP2PAPIW packaged workspace which is supplied with APL2.

this optional parameter, if specified, must be a fullword field which will be updated to
contain the address of a result CDR when and if control is returned to the non-APL appli-
cation. If control is returned with a call to the APL2PI external function, no result CDR
1s returned, and this field will be set to 0. If control is returned with a call to the
APL2PIF external function, the left argument to APL2PIE will be returned as the
result. If no left argument is provided, the field will be set to 0.

If the RESULT parameter is not provided, no result will be returned, even if one is pro-
vided in the left argument to APL2PIE.

When the "APLX"’ called is issued by the non-APL application, the RESULT field may
contain a fullword zero, in which case any result CDR will be returned without conversion,
or it may contain the address of a pattern CDR (see “Pattern CDR’s” on page 16), in
which case the pattern CDR will be used to convert any result CDR returned.

Execution of an "APLX" call is not permitted while a namescope entered with the "APLP’ call is the active
namescope, and will be rejected with a 0 10 (‘invalid request’) return code.

Calls to APL2 11

Execute an APL Function

CALL APL2PI (‘'APLI" " TOKEN RC PKGWS,FN,RSLT,LARG,RARG)

This 1s the second of two calls provided to request execution of an APL function. This call is designed for
use from languages such as C and Assembler, and it provides greater access to and control over the argu-
ments and result of the specified tunction. Unlike the "APLS’ call, this call passes arguments and expects
results in APLL2 CDR format.

The specified function may be in a packaged workspace and may have any valid valence. The arguments to
this call are:

‘APLEF’ a required argument indicating that an APL function is to be called.

TOKEN a fullword integer containing the token retumed on the ‘INIT’ call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute.

RC a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below.

PKGWS the name of the packaged workspace in which the specified function is to be found and
optionally a surrogate name for the function. If this argument is provided,

'PKGWS' 11 [ONA 'FN'
or
*PKGWS' 11 ONA 'FN SURROGATE®

will be executed before the specified function is called. If this argument is not provided or
is coded with an initial blank, no ONA will be issued before calling the function. Thus, if
the function exists in a packaged workspace, the first call to it must provide the PRGWS
argument, but subsequent calls do not. The PKGWS argument is a character string which
is expected to be terminated with a blank, e.g.: *MYLIB.MYWS *. If the surrogate
name is specified it must be prefixed with a colon, viz:

'MYLIB.MYWS :SURROGATE °'.

FN the name of the function to be called. This argument is a character string which is

expected to be terminated with a blank. It 1s used as the right argument to ONA if the
PKGWS argument is coded, and it is then used as the name of the function to be callcd.

RSLT when APL2PI is called, this fullword field may be set to 0 or to the address of a ‘pattern
CDR’ (see “Pattern CDR’s” on page 16) to be used to convert the result of the APL func-
tion. Hf 0 is specified on the call, the result will be produced as a CDR without conversion.
On completion of the APL2PI call, this field will contain 0, if no explicit result or error
message was produced, or the address of a CDR representing the result or error message
(e OFEM) produced by the function. If the function completed with an APL. error, the error
message will be returned as a default CDR, without any reference to the pattern CDR pro-
vided on input. An error message is not produced in all situations. In general, a message
will not be produced if the error is detected before execution of the specified function has
begun. In such situations, the RSLT field will be set to 0.

LARG a fullword field containing the address of the CDR representing the left argument to the
function or containing 0 if no left argument is provided.

RARG a fullword field containing the address of the CDR representing the right argument to the
function or containing 0 if no right argument is provided.

12 Calls to APL2

Reference or Specify an APL Variable

CALL APL2PI CAPLV TOKEN,RC,PKGWS VARIABLE . VALULE .PATTERY)

This call may be used to obtain or specify the value of an APL vanable. If a packaged workspace is speci-
fied, the specified variable must already exist in the packaged workspace - it cannot be created with this call.
To create a new variable in a packaged workspace, use the '"APLP’ call to enter the packaged workspace
namescope, then this call (with no PKGWS argument) to create the variable and an "APLP’ call to exit the

packaged workspace namescope.

The arguments to this call are:

"APLV’
TOKEN

RC

PKGWS

VARIABLE

VALUE

PATTERN

a required argument indicating that an APL variable 1s to be accessed.

a fullword integer containing the token returned on the ‘'INIT” call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute.

a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are descrnibed below.

the name of the packaged workspace in which the specified variable is to be found and
optionally a surrogate name for the variable. If this argument is provided,

'PKGWS' 11 [ONA 'VARIABLE®

or
'PKGWS' 11 ONA ‘'VARIABLE SURROGATE®

will be executed before the specified variable 1s accessed. If this argument is not provided
or is coded with an initial blank, no ONA will be issued before accessing the variable.
Thus, if the variable exists in a packaged workspace, the first access to it must provide the
PKGWS argument, but subsequent accesses do not. The PKGWS argument is a character
string which 1s expected to be terminated with a blank, e.g.: *MYLIB.MYWS '. If the
surrogate name is specified it must be prefixed with a colon, viz:

'MYLIB.MYWS :SURROGATE °*.

the name of the variable to be accessed. This argument is a character string which is

expected to be terminated with a blank. It is used as the nght argument to ONA if the
PKGWS argument is coded, and it is then used as the name of the variable to be accessed.

a fullword field containing the address of the CDR representing the value to be assigned to
the variable, or containing 0 if the variable is to be referenced. On completion of the call
the address of the CDR representing the value of the variable is placed in this field.

This is an optional argument and may be specified when a variable is referenced
(VALUE =0 on input). If specified, it is a fullword field which may contain the address of
a ‘pattern CDR’ (see “Pattern CDR’s” on page 16) used to convert the value of the varni-
able. If unspecified, or if the field contains zero, default conversion will be used to produce

the VALUE CDR.

Calls to APL2 13

Enter or Exit a Packaged Workspace Namescope

CALL APL2PI CAPLP . TOKEXN RC.PKGWS)

This call may be exccuted to enter or exit a specified packaged workspace namescope. Until a packaged
workspace namescope is entered, calls to APL2PI will be executed from the namescope established when
APL?2 was invoked (typically the active workspace namescope). When a packaged workspace namescope 1s
entered via an "APLP’ call, subsequent calls to APL2PI will be executed in that namescope until another
"APLP call is issued to exit the namescope or enter another.

The arguments to this call are:

‘APLP a required argument indicating that an APL packaged workspace namescope is to be
entered or exited

TOKEN a fullword integer containing the token returned on the ‘INIT” call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute.

RC a fullword integer field into which APL2P1 will place the return code on completion of the
call. Return code of O (indicates success. Other return codes are described below.

PKGWS if specified, this argument identifies the packaged workspace whose namescope is to be
entered. If not specified, the request is to exit the current namescope.

If specified, this argument must be terminated with a blank, and must take one of the fol-
lowing forms:

LIBRARY .MEMBER or MENBER

where LIBRARY is the DDNAME (TSO) or file name (CMS) of the load library in
which the packaged workspace resides, and MEMBER 1s the member name of the packaged
workspace. The same rules apply to locating the packaged workspace as when such infor-
mation 1s provided in the left argument to ONA.

Note that execution of the "APLX" call is not permitted while a namescope entered with an "APLP call is
the active namescope.

Note also that the uses of "APLP’ are designed to be paired: an "AP1.P’ call to enter a packaged workspace.
followed sometime later by an ‘APLP’ call (without the packaged workspace specified) to return to the pre-
vious environment. Paired "APLP’ calls can be nested - in other words, one packaged workspace can be
entered from another, but care must be taken in unwinding the nesting. An attempt to issue an "API P’ call
to exit a packaged workspace that was not paired with a previous "APLP’ call 1o enter a packaged workspace
will result in a 0 10 error return code (“invalid request”).

The "APLP’ call operates by accessing JEA in the specified packaged workspace. If, when the packaged

workspace was created, a list of accessible objects was specified, and if OFA was not included in that hst.
requests to enter that packaged workspace namescope will fail.

14 Calls 1o APL2

Return Codes

Each of the calls described above returns a return code in the RC argument field. These return codes are
returned as integer fullwords. but are best interpreted as pairs of halfwords. If the first halfword is non-zero,
the return code is a OET value that resulted from APL execution. In addition to the OET values. the fol-
lowing return codes are defined:

00
01

02

03

04

05

010

011

SUCCEsS

APL is already initialized. This return code may result from an 'INIT’ call and is the expected
return code when the ‘INIT” call is issued from a non-APL application which was invoked from

APL2 using APL2PIFE.

Unexpected shutdown. APL has terminated unexpectedly (perhaps as a result of an) OFF
command or as a result of an unsuccessful 'INIT’ call). This return code may result from any call
other than "TERM’, in situations where a non-APL. application is running independently of APL2.
If this return code is received by a non-APL application invoked from APL, or during processing in
a routine nominated as a service routine on an 'INIT’ call, processing should be terminated in an
orderly fashion and control returned to the routine’s caller.

Expected shutdown. This return code can result from any call to APL2PI and indicates a request
from APL for the non-APL application to terminate. In response to the request, the non-APL
application should terminate and return control to its caller.

Insufficient space. There is insufficient free memory for the correct operation of the APL2PI
routine. A larger region or virtual machine should be used to run the application.

(TSO only) Not executing under the TSO TMP. The program which issues calls to APL2PI must
be invoked under TSO or a TSO TMP, (typically 'IKJEFT01").

Invalid request, or invalid parameter list. Among other things, this return code may result from an
"APLX’ call while a namescope, entered with an "APLP’ call was active, or from an ‘APLP’ request
to exit a packaged workspace when no packaged workspace namescope was active.

Unexpected internal error in the APL2PI routine.

Normally, return codes in which the first halfword is non-zero originate from APL and should be interpreted
as OET values. The following, however, can originate from the APL2PI routine:

12
1S

31

(System Error) - an unexpected error in the APL2PI routine.

(No Shares) - the specified packaged workspace cannot be accessed on a "APL.P" call. This error
may occur because the specified packaged workspace could not be located or loaded, or because it
was already the active namescope.

(Value Error) - the variable named on an "APLV’ call could not be accessed in the specified pack-
aged workspace.

Calls to APL2 15

Using CDR Results

The "APLX". "APLY and "APLYV’ calls which return results, return those results in CDR format. These
results are always pointer form CDR’s and are built as temporary objects in the APL2 workspace. On the
next call to APL2PI, these temporary objects are erased before the call is executed. Thus, CDR resulis
returned by APL2PI may not be used as arguments on subsequent calls, and all processing of such results
must be performed before any subsequent call to APL2PL

Pomter form CDR’s returned by APL2PI have addresses in the CDR pointer section. That 1s to sav. the
CDRPTR fields in that section contain addresses with the high order bit on, and never zeros or tokens.

Pattern CDR’s

Pattern CDR’s can be specified on "APLX’, "APLF’ or "APLV’ calls to control the creation of the CDR
representing the result of an APL function or expression or the value of an API. vanable. If specified. API
will attempt to convert the result or value to the data types specitied in the pattern CDR. Further, during
this conversion, APL will check that the ranks and shapes of the result or value and its items correspond to
those specified in the pattern CDR. If the result or value cannot be converted as specified, or if a rank or
shape mismatch is detected, an appropriate APL error will be generated.

The format of CDR’s is discussed in the APL2 Processor Interface Reference manual (SH20-9234). The
format of a pattern CDR matches that of the CDR header and descriptor sections. That is to say that it is
just like a CDR without the pointer or data sections. It consists of the CDRFLAGS, CDRDIEXN,
CDRXRHO, CDRRT, CDRRL, CDRRANK, and CDRRHO fields only. The contents of the
CDRFLAGS field must be valid, but they do not influence the type of CDR produced. A pointer form
CDR result or value is always produced.

Unlike a CDR, a pattern CDR may have CDRXRHO or one or more elements of CDRRHOQO specified as
X’80000000" or CDRRANK specified as X’8000". These values indicate that the corresponding fields are
unspecified and are not to be used in rank or shape checking. If CDRRANK is so specified for a particular
item of the array, CDRRHO fields may not follow it.

The Pattern CDRs used on this interface are similar to the argument patterns used to describe the arguments
of an external routine called by APL (see APL Programming - System Service Reference, chapter 23.
SH20-9218). Pattern CDRs, however, conform to the true CDR header format (as defined by the AP2CDR
macro), while argument patterns are an EBCDIC representation of it.

External Functions ATP and PTA

When an "APLS’ call is issued to execute an APL function, the arguments provided in the call are passed to
the APL function as a vector of addresses - one address for each argument. To the APL function this

appears as a vector of integer values. The external function PTA ('Pointers to Array”’) is provided to allow

access to these arguments. PTA expects a vector of addresses as its right argument and a pattern (similar to
the pattern used with the external function RTA) as its left argument, and it will produce an API, array as a
result. For example:

ARRAY«' (GO 1 3)(I4 O0)(E8 1 2)(C1 1 10)' PTA POINTERS
will convert a set of three arguments -- a scalar fullword integer, a pair of double precision real numbers, and
a 10 byte character string, respectively -- to an APL vector of three items.
The external function ATP (’Array to Pointer’) is provided to allow pointer arguments to be replaced (ie.:
updated) with an APL array. The syntax for use of this function is:

PATTERN ATP ARRAY POINTERS

16 cCalls to APL2

where PATTERN is a pattern (similar to the pattern used with ATR) which describes the data in the desired
format, POINTERS is the address of the data to be updated, and ARRAY 1is the source array. Note that
this function does not produce an explicit result. Further, it makes no check to ensure that the result fields
are large enough to hold the source values.

The PTA function assumes a one-to-one correspondence between the data descriptors in the left argument,
the data items in the array specified in the night argument, and the set of data areas specified by the pointers
in the right argument. Thus, to update a set of three data areas, three pointers must be provided, an array
containing three items must be provided, and the pattern must specify either a three element simple array or
a general array containing three simple arrays, viz:

'‘C1 1 3* ATP 'ABC' (P1,P2,P3)
or:

ARRAY<'ABCD' (4 2p18) 1.234

PATTERN«' (GO 1 3)(C1 1 4)(I4 2 4 2)(E8 0)'

PATTERN ATP ARRAY (P1,P2,P3)

If it is necessary to update a data area with a non-simple APL array (i.e.: put a data structure into a single
data area), the non-simple array must be converted to a record using ATR, and then ATP can be used to
move it to the data area, viz:

ARRAY<«'ABCD' (4 2p18) 1.234

PATTERN«' (GO 1 3)(C1 1 4)(I4 2 4 2)(E8 0)°
RECORD<«PATTERN ATR ARRAY

'Cl1 1 x' ATP RECORD FOINTER

Using PTA and ATP

Assume that the function AVERAGE in packaged workspace COMPUTE is called with the following three
arguments:

1. a vector of double precision numbers,
2. a fullword integer indicating the number of items in the first argument,
3. a double precision real field in which the function is to place its result.

The APL function might be coded as shown in figure 4.

VAVERAGE ARGS3V3N:R
[1] +0p3 11 ONA 2 3p'PTAATP'
[2] Ne'I4 O0' PTA 25ARGS
[3]1] V«('E8 1 ',3N) PTA +ARGS
[4] Re«(+/V)#N
[5]1 'E8 0' ATP R (32ARGS)

v

Access PTA and ATP

Get N from 2nd argument

Get V from 1st argument
Compute the average

Update 3rd argument (result)

22 > 2

Figure 4. Using PTA and ATP

For additional information on the patterns used in the left arguments of PTA and ATP, see the description

of RTA and ATR in the APL2 Programming: Using the Supplied Routines manual (SH20-9233), and the
description of argument patterns for Processor 11 in the APL2 Programming: System Services Reference

manual (SH20-9218).

Calls to APL2 17

External Functions APL2PI and APL2PIE

Two APL external functions, APL2PI and APL2PIE, are provided to facilitate communication from
APL2 to non-APL applications. APL2PI and APL2PIE can be accessed by means of ONA. viz:

0 11 ONA 'APL2FPI'
0 11 (ONA ‘'APL2PIE’

Note that the first item of the left argument of ONA must be 0 (and not 3) for proper operation of the rest of
the APL2P] interface.

APL2PI is a niladic function used to return control to the non-APL application after APL2 initialization or
after an "APLX’ call from the non-APL application. 1t is equivalent to APL2PIE 0O '' as described
below.

APL2PIF is an ambivalent function which serves a number of different purposes:

» return control from the APL2 environment to the currently active non-APL application,
* invoke a non-APL application from the APL2 environment,

* request termination of the currently active non-APL application,

* issue a service request to a non-APL application.

Calls to APL2PIE can be imbedded in APL applications which run independently or are invoked through
APL2PI from non-APL applications. Use of APL2PIE takes the following forms:

RESULT APL2PIE G ''

Return control to the currently active non-APL application. This request can be 1ssued imme-
diately after APL2 is invoked from a non-APL application or after a non-APL applicausn has
returned control to APL with an "APLX" call. Attempting to return control in any other situation
will result in a 1 0 return code. If issued monadically, no result will be returned to the non-APL
application. If issued dvadically, the left argument will be returned to the non-APL application in
CDR format if the RESULT parameter was provided on the "APLX" call.

Note that this APL2PIE request (or an APL2PI request which 1s equivalent to

APL2PIE O '') causes control to be transferred from the APL environment at the point at
which the request is made. Thus, if a request of this type is imbedded in an APL function. the
function 1s suspended at that point and control is transferred to the non-APL application. Subse-
quent requests from the non-APL application are executed in the context of this suspended func-
tion. In particular, a subsequent "APLX’ request will return control to the suspended function.
Users should avoid imbedding APL2PIE O "' calls in APL applications unless their use is
clearly understood and planned for.

COMMAND AFPL2PIE 1 NAME

Invoke a non-APL application using the specified COMMAND. COMMAND is a character string
containing the name of the module to be invoked, optionally followed by one or more arguments
to be passed to the module when it is invoked. In the MVS/TSO environment, the specified
module must reside in a load library in the user’s normal search order. In the VM/CMS environ-
ment, the specified module may be the name of an existing CMS nucleus extension, or the name of
a relocatable load module residing on an accessible minidisk.

The non-APL application is assigned the specified NAME. That name must match the NAME in
any ‘INIT’ call issued by the non-APL application and in subsequent APL2PIE 3 calls to the
non-APL application.

18 Calls to APL2

When the specified module terminates. control will be returned to APL and APL2PIL will return a
result of 0 1 RC where RC is the return code resulting from the module. Control may also be
returned to APL if the non-APL application issues an "APLX" call. In this case, the result returned

by APL2PIE will have the form 0 0 MSG and is provided by the VALUEL parameter of the
"APLX’ call or a default message provided in the APL2PAPIW packaged workspace.

Note that for successful use of this service, APL2PI must be link edited as a separate module and
loaded as a nucleus extension in CMS or placed in the APL2 load Library in MVS. Additional

information on this subject can be found in the sections entitled “Invoking a non-APL Application
through APL2PIE” in the “System Related Considerations” section of this document.

AFPL2FPIE 2 ''

Request termination of the currently active non-APL application. This request simply sends return
code 0 3 back to the non-APL application in response to its last call to APL2PI. The non-APL
application is expected to honor this request and terminate. Note that NAME may not be specified
in the right argument; only the currently active non-APL application can be terminated.

If the non-APL application terminates as expected, a result of 0 1 RC will be returned from
APL2PIE, where RC is the termination return code resulting from the non-APL application.

VALUE AFL2PIFE 3 NAME

Make a service request to the NAME’'d non-APL application. This request is possible only if the
non-APL application specified a SERVICE routine address and a TYPE other than 0 on its ‘'INIT”
call. If these requirements are met, this request will cause a subroutine call to that service routine.

If APL2PIE is called dyadically, the left argument is passed to the service routine in CDR or
non-CDR format depending upon the specification of the TYPE parameter on the 'INIT’ call from

the non-APL application. In non-CDR format, the VALUE will be passed as a byte string result
of the expression:

(PFA VALUE) ATR VALUE
On entry to the service routine of the named non-APL application,
R1 => A(VALUE) in CDR or non-COR format or A(0) if called monadically

A(Return Code) => F'9!
A(Result Pointer) => A(0)
A(APL2PI)
A(ANCHOR)

R13 => 18 word save area
R14 = return address
R15 address of service routine

The return code field is a fullword which can be updated by the service routine. It is initialized to
zero. If set to a non-zero value, a three element vector (0,1,return code) will be returned as the
result of the APL2PIE function call when control is returned from the service routine. The result
pointer field is a fullword, initialized to zero, into which the service routine can place the address of
a value which will be used as the explicit result of the APL2PIFE function call when control is
returned from the service routine. If the return code is zero, the result pointer field will be exam-
ined. If the result pointer is zero, a result of 0 1 0 will be returned. If it is non-zero, the specified
result, pointed to by the address in the result pointer field, will be returned.

The result pointer field must contain zero or the address of a result value in CDR or non-CDR
form, depending on the specification of the TYPE parameter on the non-APL application’s ‘INIT”
call. If TYPE was specified as 1 (non-CDR), the result will be interpreted as a byte string prefixed
with a fullword length field. If desired, it can be converted to a different form using the APL

external function RTA4.

Calls to APL2 19

If TYPL was specified as 2 (CDR). the result will be interpreted as an API array in CDR form.
The array may have any value; however, if its first item is zero, it must have the form:

N M VALUE

where N M may be 0 0, 0 1. or any defined OFT value and VALUE may be any valid APL array.
or may be elided

A service request can also result in the following unsuccessful return codes:

0 0 MSG the service routine issued an "APLX’ request to APL2PI resulting in control being
returned to APL2 Such a request may result in unexpected behavior and is not recom-
mended.

0 1 RC the non-APL application terminated with return code RC

10 an attempt was made to call the APL2PI or APL2PIE external function when the
APL2PI routinc was not active or when no non-APL application was active on the
APL2PI interface.

04 insufficient free space for correct execution

010 invalid arguments (typically NAME too long)

12 unexpected error
15 invalid NAME or no service routine for the named non-APL application
16 this return code results from an attempt to invoke a non-APL application

(COMMAND APL2FIE 1 °'NAME') when the named application is already active
on the APL2PI interface.

Note that the service routine entered as a result of this call to APL2PIE can issue requests to APL2 using
the APL2PI interface. Since such requests can theoretically result in a recursive call to the same service
routine, provisions for such an event should be incorporated into the design of the non-APL application.

All of the different calls to APL2PI are supported from executing service routines. It is recommended,
however, that the TERM" and "APLX"’ calls be avoided as they may lead to unexpected and undesired
results. The "TERM’ may result in termination of APL.2 when the call is made or later at some unexpected
time. The "APLX" call will return control to the APL application that invoked the service routine. and it
will appear to that application as if the service routine had terminated. If control i1s subsequently returned to
the non-APL application (with an APL2PI or APL2PIE 0O '°* call), control will be returned to the
executing service routine which will presumably eventually terminate and return control to APL2.

Note that in many circumstances where the non-APL application and/or the service routine is written in a
high level language (such as C or PL/I), APL2PIE 3 calls to service routines will not operate correctly.
Typically, two problems prevent correct operation:

1. While high level languages provide mechanisms by which a subroutine address can be passed as an argu-
ment on a call, the form in which that subroutine address is passed may not be acceptable to APL2PI.
The APL2PI INIT call expects the SERVICE parameter to be provided as a fullword which contains
the address of the of the SERVICE subroutine.

2. The linkage conventions expected by a high level language subroutine may not match those provided by
APL2PI (as descnibed above) when the service routine is called. Subroutines written in C and PL/I. for
example, may require register 12 to be set on entry, and register 13 to point to a save area within a save
area stack maintained by the C or PL/l run time environment. These requirements are not fulfilled 1n
the linkage conventions used by APL2PIL.

20 Calls to APL2

Service routines designed to be used with APL.2PI will most typically be wntten in Assembler language.
With some limitations, they can be written in FORTRAN (using the IBM VS FORTRAN program
product) if the service routine is structured as a FORTRAN subroutine and the non-APL application is a
FORTRAN mainline routine. An example of such a service routine is contained in the section entitled
“Using the APL2PI Interface from FORTRAN".

APL2PI and APL2 Calls to Other Languages

Through the use of ONA, APL users can invoke applications written in languages other than APL2. Sup-
ported languages include FORTRAN and Assembler language, but users have reported success with
COBOL, PL/1, C, and Pascal as well. The APL2PI interface also provides facilities through which APL can
be invoked by or can invoke a non-APL application.

When using the APL2P] interface, some care must be taken not to interfere with the operation of the
non-APL application by calling other non-APL routines through ONA which are written in the same high
level language as the non-APL application interacting with APL2PI.

This situation is of concern because certain high level languages, such as FORTRAN, require access to a
“programming environment” for any non-trivial program. Typically. only one instance of the necessary pro-
gramming environment 1s supported in a user’s address space or virtual machine at any given time.
Non-APL applications written in such high level languages that invoke or are invoked by APL.2 via the
APL2PI interface will typically establish their necessary programming environment as part of their own invo-
cation.

When a non-APL routine is accessed through the use of ONA, the :INIT tag in the NAMES file entry for
that non-APL routine specifies whether a programming environment is required for correct execution of that
routine. If required, Processor 11 will attempt to initialize the environment when the non-APL routine is
first called, or as a result of a specific request from the APL caller. This instance of the environment is not
the same as the instance of the environment established in conjunction with the APL2PI interface, and it
may not operate correctly or worse, it may cause unexpected or erroneous results.

It is therefore recommended that when an application written in a high level language like FORTRAN
invokes or is invoked by APL2 via the APL2PI interface, no other routines written in the same language be
invoked via APL2PI or ONA. Note that ESSL and OSL routines also have a dependency on the
FORTRAN programming environment and should therefore not be invoked when a non-APL application
written in FORTRAN is active on the APL2PI interface.

Additional information on routines accessed through ONA and their requirements in terms of programming
environments can be found in the APL2 Programming: System Services Reference manual (SH20-9218) in
the chapter entitled “Processor 11 - Calling Compiled Routines”.

Calls to APL2 21

System Related Considerations

Using APL2PI in a VM/CMS Environment

in the VM, CMS environment, the APL2PI interface is provided with the following components:

AP2VAPI TXTI130 - the object module which contains the APL.2PI entry point that is called from
non-APL applications. This object module can be combined with the non-APL application or
generated as a separate module that can be dynamically loaded by the non-APL application. or
accessed as a CMS nucleus extension. Each of these alternatives are described below.

This object module can be found in file S on the APL.2 and APL2 AL basic machine-rcadable
materials tape, or may be provided as a TEXT file supplied with the PTF’s listed at the begin-
ning of this document.

AP2XAPIC AP2MSAMP - an Assembler language source file which can be modified by users to alter the
command and parameters used to invoke APL2 from a non-APL application. If an invocation
command other than the default:

APL2 QUIET RUN{APL2PI)

is desired, this source file can be modified, reassembled, and combined with the AP2VAPI object
module. If AP2XAPIC is combined with AP2VAPI, the invocation command assembled 1nto
AP2XAPIC will be used; otherwise, the default invocation command will be used. Note that in
either of these cases, the invocation parameters can be supplemented or overnidden by means of
the PARMS parameter in the 'INIT" call from the non-APL application.

The AP2XAPIC source file can be found in file 3 on the APL2 and APL2 AE basic machine-
readable materials tape.

Modifying the APL2 Invocation Command and Options

To change the command or options used to invoke APL2 from a non-APL application:
1. Copy the AP2XAPIC AP2MSAMP file to AP2XAPIC ASSEMBLE
2. Edit AP2XAPIC ASSEMBLE

Modify the statement labeled APL2CMDN to change the name of the APL2 modulc invoked. For
example, to cause APL2/AE to be invoked, change the statement to:

APL2CMDN DC CL9'APL2AE! COMMAND

Modify the statement labeled APL2CMDO to change the invocation options. It is recommended that
the QUIET and RUN(APL2PI) options be left unchanged.

3. After making the necessary changes to AP2XAPIC ASSEMBLE, reassembile it using the following CMS
commands:

GLOBAL MACLIB AP2MAC
ASSEMBLE AP2XAPIC

4. Combine the TEXT file resulting from this assembly with the AP2VAPI object module. This can be
done without destroying the original object module with the following CMS commands:

COPY AP2VAPI TXT130 A AP2VAPI TEXT A
COPY AP2XAPIC TEXT A AP2VAPI TEXT A (APPEND

The resulting AP2VAPI TEXT file should then be used in place of AP2VAPI TXT130 in the proce-
dures described below.

22 Calls to APL2

Accessing APL2PI from a non-APL Application

AP2VAPI contains the APL2PI entry point that is called from a non-APL application to request services
from APL2. It can be made accessible to the non-APL application in a number of ways:

 If the non-APL application is invoked with CMS LOAD and START commands, the AP2VAPI object
module can be made available as a TEXT file on an accessible CMS minidisk, and it will be loaded by
CMS when the non-APL application is loaded. To make AP2VAPI accessible as a TEXT file, use the
following CMS command:

COPY AP2VAPI TXT130 A APL2PI TEXT A

Note that it is necessary to change its name to APL2PI TEXT since it is referred to by that name in the
non-APL application.

e If the non-APL application is generated as a CMS MODULE using the GENMOD command, APL2PI
can be simply incorporated in that module when it is built, viz:

COPY AP2VAPI TXT130 A APL2PI TEXT A
LOAD ... non-APL application ..
GENMOD ... non-APL application ...

APL2PI TEXT will be combined with the non-APL application as a result of the LOAD command.

* In a number of situations, it is may be desirable to structure APL2PI as a CMS nucleus extension and
cause it to be loaded and accessed dynamically from the non-APL application. This approach has the
advantage that APL2PI is placed in CMS protected storage as an entity separate from the non-APL
application. To prepare APL2PI to be loaded as a CMS nucleus extenston, it can be converted to a
module using the commands:

COPY AP2VAPI TXT130 A APL2PI TEXT A
LOAD APL2PI (CLEAR RLDSAVE

GENMOD APL2PI

ERASE APLZ2PI TEXT A

The APL2PI module can be subsequently accessed by the non-APL application using the CMS
NUCXLOAD and NUCXDROP commands and NUCEXT functions. For additional information on
this subject, see the CMS Macros and Functions Reference (SC24-5280) and CMS Command Reference
(SC19-6209) manuals.

Invoking a non-APL Application through APL2PIE

The APL2PIE external function can be used to invoke a non-APL application which can subsequently
make use of the APL2PI interface, viz.:

0 11 ONA 'APL2PIE’
'COMMAND*' APL2PIE 1 ‘'NAME®

The user must ensure that when such a request is made, that APL2PI is established as a CMS nucleus
extension; otherwise, an error message will be issued by the APL2PIE function and the request will be
denied. If APL2 was invoked via APL2PI from a non-APL application, APL2PI will already be established
as a CMS nucleus extension, and no other action is necessary. If APL2 was not invoked via APL2PI, then
the user must take explicit action to cause it to be established as a nucleus extension.

To explicitly cause APL2PI to be established as a CMS nucleus extension, it must be first created as a CMS
module. This can be accomplished with the following CMS commands:

COPY AP2VAPI TXT130 A APL2PI TEXT A
LOAD APLZPI (CLEAR RLDSAVE
GENMOD APL2PI

ERASE APL2PT TEXT A

Calls to APL2 23

The resulting APL.2P1I MODUT E can be established as a CMS nucleus extension with the CMS command:
NUCXLOAD APLZ2P]

Parameters may be passed to the non-APL application by specifying them in the * COMMAND* left argu-
ment of APL2PIE. viz:

0 11 ONA *APL2PIE'
*COMMAND PARMS' APL2PIE 1 'NANE'

The specified non-APL application (COMMAND) 1s entered with register 0 pointing to a CMS extended
parameter list and register 1 pointing to a CMS tokenized parameter list, viz:

RE => A(command verb} => C'COMMAND *
A(parameters) => C!'PARMS!
A(end of commard)

ALO)

R1 => CLB'COMMAND
CL8'PARMS
XUFFFFFFFF!

VM/XA Considerations

{in the VM XA environment, API.2 normally runs in 31-bit mode. In that mode. the APL2 workspace is
placed above the 16 megabyte line. In order to obtain results from APL2, the APL2PI routine must there-
fore run in 31-bit mode. This should pose no problem if the non-APL application runs in 31-bit mode
when it calis APL2PI. when its service routine is called by APL2PI, and when it 15 accessing data in CDR
form returned by APIL.2PI

If the non-APL application must run in 24-bit mode when calling or being called by APL.2PI, the APL2
workspace must be forced below the line. This can be done by invoking APL2 with the invocation option
XA(24).

Note that if APL2PI 1s generated as a separate module (so that it can be NUCXI OADed as described
above), the correct addressing and residency modes must be specified. If the non-API, application operates
in 31-bit mode,

GENMOD APL2PI (AMODE 31 RMODE 24
1s suggested. If the non-APL application operates in 24-bit mode.
GENMOD APL2PI (AMODE 24 RMODE 24

will be required.

24 Calis to APL2

Using APL2PI in an MVS/TSO Environment

In the MVS TSO environment, the APL2PI interface 1s provided with the following components:

AP2TAPI the object module which contains the APL2PI entry point that is called from non-APIL. applica-
tions. This object module can be link edited with the non-APL application or as a separate load
module accessed by the non-APL application.

This object module can be found in file 3 (JLG1310.F1) on the APL2 and APL2 AE basic
machine-readable materials tape and is placed in the APL2.AP2MODS DLIB by the installation
process, or may be provided as an object module supplied with the PTF’s listed at the beginning
of this document.

AP2XAPIC an Assembler language source file which can be modified by users to alter the command and
parameters used to invoke APL2 from a non-APL application. If any invocation command
other than the default:

APL2 QUIET RUN(APL2PI)

is desired, this source file can be modified, reassembled and link edited with the AP2TAPI object
module. If AP2XAPIC is link edited with AP2TAPIC, the invocation command assembled into
AP2XAPIC will be used: otherwise, the default invocation command will be used. Note that in

either of these cases, the invocation parameters can be supplemented or overridden by means of

the PARMS parameter in the 'INIT’ call from the non-APL application.

The AP2XAPIC source file can be found 1n file 5 (JL.G1310.F3) on the APL2 and APL2 AL
basic machine-readable matenals tape and 1s placed in the APL2.AP2SOURC DLIB by the
mnstallation process.

Modifying the APL2 Invocation Command and Options

To change the command or options used to invoke APL.2 from a non-APL application:
1. Make a copy of the AP2XAPIC source file from the APL.2 distribution data set.
2. Edit your copy of the AP2XAPIC source file.

Modify the statement labeled AP2CMDN to change the name of the APL2 module invoked. For
example, to cause APL2'AE to be invoked, change the statement to:

APL2CMDN DC CLY 'APL2AE! COMMAND

Modify the statement labeled APL2CMDO to change the invocation options. It is recommended that
the QUIET and RUN(APL2PI) options be left unchanged.

3. After making the necessary changes to AP2XAPIC, reassemble it, specifying APL2. AP2MACS as the
macro library.

4. When link editing AP2TAPI in the procedures described below, specify an INCLUDE statement for the
object module produced by this assembly.

Steps 1-3 in this procedure can typically be performed in a straightforward fashion using ISPF (options 3, 2,
and 4). If you are unfamiliar with the use of ISPF, consult your system administrator for assistance. Step 4
1s typically accomplished by executing a batch job such as the one shown in the next section.

Calls to APL2 25

Accessing APL2PI from a non-APL Application

AP2TAPI contains the APL2PI entry point that 1s called from a non-API application to request services
from APL2. It can be made accessible to the non-API. application by link editing it with that application.
or by hnk editing it as a separate module and dynamically loading 1t from the non-APL application.

To link edit it with the non-APL appilication, simply INCLUDE AP2TAPI (and optionally AP2XAPIC) in
the link edit of the non-APL application.

The following job van be used to link edit AP2TAPI (and optionally AP2XAPIC) as a separate louad
module:

//LINK JOB (ACCOUNT),PROGAHER,CLASS=A,TIME=(1),

// NOTIFY=USERID,MSGCLASS=A,MSGLEVEL=(1,1)
//LINK EXEC PGM=IEWL,REGION=512K,
// PARH="'NCAL ,RENT,REUS ,MAP,LIST,LET,SIZE=(512K, 64K} '

//SYSPRINT DD SYSQUT=*
//SYSLMOD DD DISP=SHR,DSN=output data set
//0BS DD DISP=SHR,DSN=input data set
//SYSUT1 DD UNIT=SYSDA,SPACE=(13030, (40,20))
//SYSLIN DD *

MODE AMODE (31) ,RMODE (ANY)

INCLUDE OBJ(AP2TAPI)

INCLUDE 0BJ(AP2XAPIC)

ENTRY APL2PI

NAME APL2PI(R)
/*
/7

The input data set should identify the data set in which AP2TAPI and AP2XAPIC reside. The output data
set must be available to the non-APL application when it needs to load APL2P]1. The APL2 load libran
provides a convenient location since that data set must also be available during execution of the APL2PI
interface.

Under MVS, APL2 and the APL2PI routine must be invoked under the TSO terminal monitor program.
IKJEFTOL. This is the normal mode of operation if the application s running in a TSO environment. and
no special action is needed. If, however, the application was designed to operate in a batch environment. it
must be invoked through the TSO terminal monitor program. For example, = batch program, normally
invoked with:

//STEP EXEC PGM=MYPROG
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

must instead be invoked with:

//STEP EXEC PGM=IKJEFTO1
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
MYPROG

*

//SYSPRINT DD SYSQUT=*
//SYSIN DD *

Finally. in either a TSO or batch environment, the files necessary to run APL2 must be allocated before
issuing the APL2PI “INIT" call from the non-APL application.

26 Calls 1o APL2

invoking a non-APL Application through APL2PIE

The APL2PIE external function can be used to invoke a non-APL application which can subsequently
make use of the APL2PI interface, viz.:

0 11 ONA 'APL2PIE’
'*COMMAND®' APL2PIF 1 'NAME'®

The user must ensure that when such a request is made, that APL2PI is available as a separate load module
in the same load library (or in the same concatenated list of libraries) from which APL2 was loaded.
Instructions on creating APL.2PI as a separate load module are described above.

Parameters may be passed to the non-APL application by specifying them in the * COMMAND* left argu-
ment of APL2PIE, viz:

0 11 [ONA 'APL2PIE’
'COMMAND PARMS' APL2PIE 1 'NAME®

The specified non-APL application (COMMAND) is entered with register | pointing to a TSO CPPL control
block. The first word in this control block points to the TSO command buffer representing this command,
viz:

R1 => A(command buffer) => command buffer

The command buffer begins with a halfword length field indicating the total length in bytes of the command
buffer, followed by a halfword offset field indicating the offset from the command name to the beginning of
the command parameters, followed by the command. Thus for * COMMAND PARMS®' APL2FPIE 1

*NAME",
R1 => A(command buffer) => X'006170008',C'COMMAND PARMS'

MVS/XA Considerations

In the MVS/XA or MVS/ESA environments, APL2 normally runs in 31-bit mode. In that mode, the APL2
workspace is placed above the 16 megabyte line. In order to obtain results from APL2, the APL2 routine
must therefore run in 31-bit mode. This should pose no problem if the non-APL application runs in 31-bit
mode when it calls APL2PI. when its service routine is called by APL2PI, and when it is accessing data in
CDR form returned by APL2PL

If the non-APL application must run in 24-bit mode when calling or being called by APL2PI, the APL2
workspace must be forced below the hne. This can be done by invoking APL.2 with the invocation option
XA(24).

IMS Considerations

APL2 and APL2/AE are not officially supported in an IMS environment. Some users have successfully
used the APL2/AE product, however, under IMS. To do so the application must be invoked by the TSO
terminal monitor program, IKJEFTO!. Thus, in the IMS environment, the transaction is structured to
invoke IKJEFTO] which in turn invokes the application code that uses APL2PI and through it APL2/AE.
Note that IKJEFTO! is an authorized program and that this characteristic must be preserved when running
under IMS.

Calls to APL2 27

Language Related Considerations

VAVG ARGS;SIZE3;NUMBERS;RESULT
[1] ~n ARGS: Vector of 3 addresses from non-APL appl/ication
[2] R ARGS[11»> Number of numbers (fullword integer)
3] m ARGS[2]1» Vector of numbers (floating point)
[4] A ARGS[31+> Result field (fullword integer)
(5]
[6] +(0v.=3 11 ONA 2 3p'PTAATP')/ERROR
[71 +(3#pARGS) /EREOR
(81l
[9] A Retrieve size of input vector from ARGS[1]
{10) SIZE<'I4 0' FPTA ARGSI[1]
[11]
[12] A Retrieve vector of numbers from ARG[2]
[13] NUMBERS<('E8 1 ',3SIZE)PTA ARGS[2]
[14]
[15] A Compute the average
[16]1 RESULT«(+/NUMBERS)+SIZE
[17]
(18] A Return resul/t to ARGS[3]
[19] 'E8 O' ATP RESULT ARGS[31]

[20] =0

[21]

[22) ERROR:'Unexpected error' OES 9 9
v

Figure 5. APL2 AVG program used in language related examples

Using the APL2P! Interface from FORTRAN

Most functions available on the APL2PI interface can be used in a simple and straightforward fashion in
FORTRAN programs. Since the FORTRAN language does not provide support for data structures or
pointers however, the "APLF’ and "APLV’ calls cannot be used effectively, and only limited function is avail-
able between APL2 and a FORTRAN service routine.

This section presents three simple examples of the use of the AP1.2P] interface from FORTRAN programs.
Each of the examples shown has the ability to invoke APL2, or be invoked by APL2. The IBM VS
FORTRAN Program Product (5668-805) Version 2, Release 4 was used to construct these examples. Other
FORTRAN compilers may or may not have similar capabilities.

The first example shows a FORTRAN program which makes use of the APLL2PI "APLS’ call to invoke the

APL function AVG in packaged workspace PKGLIB ,STATS to obtain the average of a vector of numbers
passed to it. Lines of the FORTRAN routines shown below are numbered on the left for reference in the
notes after the figure.

28 Calis to APL2

1 REAL*8 NUMBERS(1800),RESULT
2 INTEGER*4 TOKEN,RC,SIZE,LENGTH
3 INTEGER*2 RETCODE(2)
4 EQUIVALENCE (RC,RETCODE(1))
5 TOKEN=0
6 LENGTH=0
C ---- CALL APL2PI TO INITIALIZE APL2
7 CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',0,8,0,16,'SM(OFF) WS(200K)"')
8 IF (RC .GT. 1) GOTO 98
9 WRITE (6,*)'Enter number of numbers to average'
10 READ (5,*) SIZE
11 WRITE (6,1)'Enter ',SIZE,' numbers'
12 READ (5,*) (NUMBERS(1),I=1,SIZE)
¢ ---- CALL APL2PI TO COMPUTE AVERAGE
13 CALL APL2PI ('APLS',TOKEN,RC,'PKGLIB.STATS ','AVG ' ,LENGTH,' ',
1 SIZE,NUMBERS,RESULT)
14 IF (RC .NE. 6) GOTO 99
15 WRITE (6,2) 'The average is: ',RESULT
¢ ---- CALL APL2PI TO TERMINATE APL2
16 16 CALL APL2PI ('TERM',TOKEN,RC)
17 RETURN
C ---- UNEXPECTED ERROR FROM APLZ INITIALIZATION
18 98 WRITE (6,*) 'Unexpected error during APLZ initialization'
20 WRITE (6,3) 'Return code: ', (RETCODE(I)},I=1,2)
21 RETURN
C ---- UNEXPECTED ERROR DURING APL2 FUNCTION EXECUTION
22 99 WRITE (6,*) 'Unexpected error during APL2 function execution’
23 WRITE (6,3) 'Return code: ', (RETCODE(I),I=1,2)
24 GOTO 16
25 1 FORMAT(" ',A,12,A)
26 2 FORMAT(' ',A,F8.3)
27 3 FORMAT (' ',A,212)
28 END

Figure 6. FORTRAN program demonstrating use of the "APLS’ request

Notes
* Lines 1-2: define the various data items that will be passed as arguments in subsequent API.2PI calls. It
is important to ensure that the data types defined match those expected by APL2PI (e.g.: TOKEN, RC,

L) and by the APL2 function being called (SIZE, NUMBERS, RESULT).

* Lines 3-4: the return code returned by APL2PI is returned in the fullword (INTEGER*4) field RC.
This code is, however, best interpreted as a pair of halfwords (INTEGER*2). The definition of
RETCODE as INTEGER*2 and equivalent to RC provides simple and meaningful subsequent access
to the return code.

Calis to APL2 29

« Lines 7-5: APL2 1s initialized with an INTT” call to APL2PL. The FORTRAN program is identificd 1o
APL2PI as 'SAMPLE’. Since no service routine is required, the TYPE, ANCHOR, and SERVICE
parameters are coded as 0 on the call.

If APL2 is not active when these statements are exccuted, 1t will be initialized as a result of this call and
a return code of 0 will be returned. If APL2 was already active, this call is used to identify the
FORTRAN program to APL2PI and a return code of 1 will be returned. Thus the error routine s only
invoked if an unexpected error is encountered.

« Line 13: The function AVG in packaged workspace PKGLIB.STATS is invoked with arguments
SIZE, NUMBERS and RESULT. Since this APL function is expected not to return any explicit result,
a value of 0 is passed as the RLENGTH parameter on the call. Because this field is updated to reflect
the actual length of the result. the parameter cannot be coded as 0 in the call itself. Instead. the variable
L is defined and initialized to 0 prior to the call. If this call was made repetitively, L would have to be
reinitialized prior to each call. Failure to do so could cause unexpected results in the FORTRAN
program.

> Line 16: Note that the return code from the “TERM’ call is not checked. Two possible return codes

might be expected: 0 0 if the non-APL application ornginally caused APL to be invoked, or 0 10 if the
non-APL application was invoked from an active APL environment.

» Lines 6, 10, 13 and 19 in the APL function AVG: FORTRAN passes arguments 10 subroutines ‘by
reference’. That i1s to say, FORTRAN passes the addresses of argument data rather that the values of
the argument data. The external function PTA allows an APL application to retrieve data passed by
reference, and the external function ATF allows an APL application to update arguments which were
passed by reference.

T'he second example demonstrates the use of the "APLX" and "APLE’ calls. When this program is executed,
it causes APL.2 to be initialized and then returns control to the APL environment. When this occurs, the
following message will appear on the user’s screen:

0o
o +
+ ENTER 'APL2PI‘' TO RETURN CONTROL +
R T +

At this point the APL user can interact with APL freely and, when finished returns contro! to APL2PI by
calling the APL.2PI external function, viz:

A<B«C<«10
APL2PI

30 cCalls to APL2

1 CHARACTER RESULT(1600)
2 INTEGER*4 TOKEN,RC,LENGTH
3 INTEGER*2 RETCODE(2)
4 EQUIVALENCE (RC,RETCODE(1))
5 TOKEN=0
6 LENGTH=1600
¢ ---- CALL APL2PI TO INITIALIZE APLZ
7 CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',0,0,0,16,'SM(OFF) 1S(200K)')
8 IF (RC .GT. 1) GOTO 99
C ---- RETURN CONTROL TO APLZ
S CALL APL2PI('APLX',TOKEN,RC)
10 If (RC .NE. ©) GOTO 98
C ---- EXECUTE AN APL EXPRESSION
11 CALL APL2PI('APLE',TOKEN,RC,13,'** **,0ONL 2 3 4, LENGTH,RESULT)
12 IF (RC .NE. 6) GOTO 97
13 WRITE (6,*) 'Names in APL workspace: ', (RESULT(I),I=1,L)
C ---- CALL APL2PI TO TERMINATE APL2
14 10 CALL APL2PI ('TERM',TOKEN,RC)
15 RETURN
C ---- UNEXPECTED ERROR FROM APL2 INITIALIZATION
16 99 WRITE (6,*) 'Unexpected error during APL2 initialization’
17 WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)
18 RETURN
c ---- UNEXPECTED ERROR ON ATTEMPT TO RETURN CONTROL TO APL2
19 98 WRITE (6,*) 'Unexpected error returning control to APL2'
20 WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)
21 GOTO 16
c ---- UNEXPECTED ERROR ON DURING APL2 EXECUTION
22 97 WRITE (6,*) 'Unexpected error during APL2 execution'
23 WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)
24 GOTO 10
25 1 FORMAT(' ',A,212)
26 END

Figure 7. FORTRAN program demonstrating use of '"APLX" and "APLE’ requests

Notes

¢ Line 9: causes control to be returned to the active APL session. Note that the VALUE and RESULT
optional parameters on this call cannot be used in a FORTRAN program. This is because these param-
eters involve the use of data in CDR format, and FORTRAN is not capable of dealing with CDR

format.
* Line 11: causes the APL expression

' ',ONL 2 3 4

Calls to APL2 31

to be executed. Catenating a blank on to the output of ONL causes the names to be separated by at
least one blank in the result returned to the FORTRAN program. Note that APL characters may be
imbedded in FORTRAN source programs but may not be printed correctly in the compiled listings.

The third example demonstrates the use of a FORTRAN service routine which can be accessed from APIL..
In this example, the FORTRAN mainline routine initializes APL2, specifying the SERVICE subroutine as a
type | service routine to be used by the APL2PI interface. After APL initialization is complete, the
FORTRAN mainline then passes control to the APL environment with an "APLX" call. When that
happens, the following message appears on the APL user’s screen:

0O
e T T et +
+ ENTER ‘'AFPL2FI' TO RETURN CONTROL +
e e e et +

and the user can interact with APL freels. For the purposes of this example, the user should enter the
following to cause the SERVICE subroutine to be invoked:

0 11 (ONA 'APL2PIE’
1234 AFL2PIFE 3 'SAMPLE'

This causes control to be passed to the service routine (the SERVICE subroutine) of the APL2PI applica-
tion identified as SAMPLE (the mainline FORTRAN program). The value 1234 is the first of 5 arguments
passed 1o the service routine. All of the arguments can be retrieved by the FORTRAN SERVICE routine,
but only the return code argument can be updated to return data from the FORTRAN SERVICE routine
to the APL environment.

Once execution of the SERVICE routine is complete, and control is passed back to the APL.2 uscr, the user
completes his work and returns control to the FORTRAN mainline by calling the APL2PI external func-
tion.

Notes

* Line 8: the fourth argument of the 'INIT’ call causes the FORTRAN application to be identified to
APL2PI with the name SAMPLE. This name will be subsequently used as the second item of the nght
argument of APL2PTIE when control is passed to the SERVICE routine, whose address 1s provided in
the seventh argument of the ‘INIT call.

32 Calis to APL2

NOYOT W N

o]

10
11

12
13

14

15
16

17
18
19

20
21
22

23
24
25

26

27

28
29
30
31
32
33
34

10

99

98

97

EXTERNAL SERVICE

CHARACTER RESULT(1000)
INTEGER*4 TOKEN,RC,LENGTH
INTEGER*2 RETCODE (2)
EQUIVALENCE (RC,RETCODE(1))
TOKEN=0

LENGTH=1000

---- CALL APL2PI TO INITIALIZE APL2
CALL APL2PI('INIT',TOKEN,RC,'SAMPLE ',1,0,SERVICE,16, 'SM(OFF) WS(200K)")
IF (RC .GT. 1) GOTO 99

---- RETURN CONTROL TO APL2
CALL APL2PI('APLX',TOKEN,RC)
IF (RC .NE. ©) GOTO 98

---- EXECUTE AN APL EXPRESSION
CALL APL2PI('APLE',TOKEN,RC,13,'** **,[ONL 2 3 4',LENGTH,RESULT
IF (RC .NE. 0) GOTO 97

WRITE (6,*) 'Names in APL workspace: ', (RESULT(I),I=1,L)

---- CALL APL2PI TO TERMINATE APLZ2
CALL APL2PI ('TERM',TOKEN,RC)
RETURN

---- UNEXPECTED ERROR FROM APLZ INITIALIZATION

WRITE (6,*) 'Unexpected error during APLZ initialization'
WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)

RETURN

---- UNEXPECTED ERROR ON ATTEMPT TO RETURN CONTROL TO APL2
WRITE (6,*) 'Unexpected error returning control to APL2'
WRITE (6,1) 'Return code: ', (RETCODE(I),I=1,2)

GOTO 10

---- UNEXPECTED ERROR ON DURING APLZ EXECUTICN
WRITE (6,*) 'Unexpected error during APLZ execution’
WRITE (6,1) 'Return code: ',(RETCODE(I),I=1,2)

GOTO 10

FORMAT (' ',A,212)
END

SUBROUTINE SERVICE (VALUE,RC,RESULT,ADDRESS ,ANCHOR)
INTEGER*4 VALUE,RC,RESULT,ADDRESS,ANCHOR

WRITE (6,*) ‘FORTRAN SERVICE routine called by APL2'

WRITE (6,*) 'Input values: ',VALUE,RC,RESULT,ADDRESS,ANCHOR
RC=9999

RETURN

END

Figure 8. FORTRAN program demonstrating use of a service routine

Calls to APL2

33

Using the APL2PI interface from C

Most functions available on the APL2PI interface can be used in C programs. The ‘APLF" and "APLYV
calls and some varniants of the 'APLX" call involve the use of data in CDR format and are more difhicult. but
not impossible, to handle in the C environment € service routines are not supported.

fhis section presents 2 number of examples of the use of the APL2PI interface from C programs. Each of
these examples has the ability to invoke APL2, or be invoked by APL.2. The IBM C;370 Program Product
(5688-039, 568%-040) Version 1 Release 2 was used to construct these examples. Other C compilers may or
inay not have the same capabilities.

To understand any of the calls to APL2PI from the C environment. the reader must understand the hnkage
conventions used by the APL2PI interface. All calls to or from the APL2PI interface assume the /370 OS
linkage convention. That is to say, when the call occurs, it is expected that the caller will have set the fol-
lowing registers:

* R1 contains the address of the caller’s parameter ist. The parameter list is expected to contain a list of
addresses -- one for each argument in the call.

» R13 contains the address of a save area, 18 fullwords in length, which may be used by the called routine
to save the caller’s regsters.

» R14 contains the return address in the calling routine.

o R15 contains the entry point address in the called routine.

To cause the C program to utilize these conventions, “#pragma linkage (...,08)” must be used in the C
program to define the APL2PI routine.

Further, any arguments which are to be updated by the called routine must be passed as pointers rather than
values. In the C language, arrays and strings are always passed as pointers, so they requirc no special han-
dling. Scalars arguments, however, are not normally passed as pointers and must be prefixed with “& " if they
are to be updated, viz:

#pragma linkage (ROUTINE,OS)
int input,output,array(5]
input=3

ROUTINE (input,&output,array)

causes the procedure ROUTINE to be called with arguments ‘input’. ‘output’ and ‘array’. The arguments
‘output’ and ‘array’ can be updated by the called ROUTINE, but any attempt to update ‘input” will not be
reflected in the calling program.

Finally, APL2PI expects to be called as a subroutine rather than as a function and thus produces no explicit
result.

The first example shown below illustrates a C program which makes use of the APL2PI "APLS’ call to
invoke the APL function AV G (see Figure 5 on page 28) in packaged workspace PKGLIB,STATS to
obtain the average of a vector of numbers passed to it. Lines of the C program are numbered on the left for
reference in the notes after the figure.

34 cCallsto APL2

1 #pragma 1inkage(APL2PI,0S)
2 #include <stdio.h>
3 main()
4
5 int token=0,size;
6 union {
7 int code; /* Return code as 1 fullword */
8 short rc[2]; /* Return code as 2 halfwords */
9 } re;
10 double numbers[1000],result,value;
11 char parms[]="SM(OFF) WS(206K)"; /* APL initialization parms */
12 int len=sizeof(parms)-1; /* Length of parms */
/* ---- Call APL2PI to initialize APLZ ---- */
13 APL2PI(“INIT",&token,&rc.code,"SAMPLE ",0,0,0,1en,parms};
14 if(rc.code > 1) goto errorl;
15 printf("Enter numbers tc be averaged\n");
16 printf("Terminate input with non-numeric\n");
17 for (size=0 ; O<scanf("%1f",&value) j;sizet+)
18 numbers{size]=value;
/* ~--- Call APL2PI to compute average ---- */
19 APL2PI ("APLS",&token,&rc.code, "PKGLIB.STATS *,"AVG *,0,' ',
20 size,numbers,&resuit);
21 if(rc.code != 0) goto error?;
22 printf(*\nThe average is: %1f\n",result);
/* ---- Call APL2PI to terminate APLZ ---- */
23 shutdown:
24 APL2PI("TERM",&token,&rc.code);
25 return 0;
26 errorl:
27 printf("Unexpected error during APL2 initialization\n");
28 printf("Return code: %hd %hd\n",rc.rc[@],rc.rc{1]);
29 return;
30 errore:
31 printf("Unexpected error during APL2 function execution\n");
32 printf("Return code: %hd %hd\n*,rc.rc{0],rc.rc[1]);
33 goto shutdown;
34)
Figure 9. C program demonstrating use of the "APLS’ request

Notes

Line 1: causes APL2PI to be called with OS linkage conventions.

Line 6-8: the return code produced by APL2PI is returned as a vector of 2 halfwords.

the return code field allows simpler comparison to expected values such as 0 0 or 0 1.

Redefinition of

Lines 13, 19, 24: the scalar arguments ‘token” ‘r¢’ and ‘result” are updated by APL.2P] and so must be

prefixed with ‘&’

Calls to APL2 35

The following cxample demonstrates the use of the “APLP and "APLY” calls in a C program and the use of
data in CDR format. This example also shows that the "APLF’ call can be used to request execution of
APL primitives or system functions.

f
! 1 #pragma linkace [APL2PT,08)
i 2 #include sstcio.h>
3 #define CORID ©x88300060
4 main{) {
i 8 struct cdrdesr ¢ /* DR Descriptor section */
P7 union |
.8 ursigned int cdrdlen;
] unsigned char carflags;
i } carher;
11 int carxrhey
12 char cdrriy
i3 char cdrr.g
I 14 short cdrrank;
[
5 b
:6 struct cdrpir | /* COR Pointer section */
17 int cdrpsien;
18 int cdrdsien;
18 char *cdrptr,
26 int cdrpien;
21 g
22 struct { /* COR for vector 2 3 4 */
23 struct cdrdesc desc;
24 int rho;
25 int data[3];
26 } v234 = {CDRID+16,3,'/",4,1,3,2,3,4},
27 *ptr_v234; /* Pointer to v234 */
28 struct { /* CDR for matrix result */
29 struct cdrdesc desc;
30 int rows;
31 int cols;
32 struct cdrptr pointers;
33 } *result;
34 char *result_data; /* used to point tc result data */
35 int token=0,1,j;
36 union {
37 int code; /* Return code as 1 fullword */
38 short rc2]; /* Return code as 2 nalfwords */
39 } rey
40 char parms[]="SM(OFF) WS(200K)"; /* APL initialization parms */
41 int len=sizeof(parms)-1; /* Length of parms */

Figure 10 (Part 1 of 2). C program demonstrating use of the 'APLP and 'APLLl" requests

36 Calisto APL2

/* ---- Call APL2PI to initialize APLZ ~--- */

42 APL2PI("INIT",&token,&rc.code,"SAMPLE ",0,0,0,1en,parms);
43 if(rc.code > 1) goto errorl;
/* ~---- Call APL2PI to enter STATS namescope ---- */
44 APL2PI ("APLP",&token,&rc.code,"PKGLIB.STATS "Ys
45 if(rc.code != 0) goto error2;
/* ---- Call APL2PI to execute ONL 2 3 4 ---- */
46 result = 0;
47 ptr_v234 = &v234;
48 APL2PI("APLF* &token,&rc.code," ","ONL " ,&result,0,&ptr_v234);
49 if(rc.code != 0) goto errorZ;
/* ---- Display result returned by APLZ ---- */
50 printf("\nResult returned from execution of ONL 2 3 4\n\n");
51 printf("zssx\n%ssd\n%ssc\n%s%x\nssxhd\n%s%i %i\n%s\n%s\n",
52 “CDROLEN = *",result->desc.cdrhdr.cdrdlen,
53 "CDRXRHO = ",result->desc.cdrxrho,
54 “CDRRT = ",result->desc.cdrrt,

55 “CDRRL = ",result->desc.cdrrl,
56 "CDRRANK = " ,result->desc.cdrrank,
57 "CDRRHO = ",result->rows,result->cols,
58 "CDRDATA: ",
59 N oo ") ;
60 result_data=result->pointers.cdrptr;
61 for (i=0ji<result->rows;i++){
62 for (j=0;j<result->cols;j++)
63 putchar(*result_datat++);
64 putchar('\n');
65
66 printf(-------- \n\n");
/* ---- Call APL2PI to exit STATS namescope ---- */
67 APL2PI ("APLP",&token,&rc.code);
/* ---- Call APL2PI to terminate APL2 ---- */
68 shutdown:
69 APL2PI("TERM",&token,&rc.code);
70 return 0;
71 errorl:
72 printf("Unexpected error during APLZ initialization\n");
73 printf("Return code: %hd %hd\n",rc.rc[0],rc.rc[1]);
74 return;
75 error2:
76 printf("Unexpected error during APL2 function execution\n");
77 printf("Return code: %hd %hd\n",rc.rc(6],rc.rc(1]);
78 goto shutdown;
79 '}

Figure 10 (Part 2 of 2). C program demonstrating use of the ‘"APLP’ and "APLF’ requests

Calls to APL2

37

Notes

Lines 3, 6-33: this routine makes use of the "APLF’ call which requires that arguments and results
passed to and from APL2 be provided in CDR format. CDR format 1s descrnibed in detail in the APL2
Programming: Processor Interface Reference manual (SH20-9234). CDR'’s passed from C programs to
APL2PI may be dense or pointer form CDR’s; CDR'’s returned from APL2PI are always pointer form
CDR’s.

Lines 6-15: the descniptor section of a CDR is defined as a C structure. Note that CDRRHO is not
included since this CDR field may be a null vector.

Lines 16-21: the CDR pointer section is defined as a C structure.

Lines 22-27: a dense form CDR representing the integer vector 2 3 4 is defined and initialized. The
address of this CDR 1is assigned to ptr_v234 on line 47 and that address is passed as an argument on the
"APLF’ call on line 4%.

Lines 28-33: the "APLF" call on line 48 should produce a character matrix result. This result will be
returned as the address of a pointer form CDR which is mapped by this structure.

Line 44: an ‘APLP’ call is issued to cause the PKGLIB.STATS namescope to be entered; subse-
quent APL2PI calls will be executed in that namescope. This technique is necessary if subsequent
‘APLT"” calls request cxecution of pnimitive functions since the packaged workspace argument cannot be
provided on such calls.

Line 48: an 'APLF” call is issued to request execution of the system function [JNL with right argument
2 3 4. Note that a system function name or 4 primitive function symbol can be specified as the
function to be executed on an "APLF’ call. If APL symbols are imbedded in character literals in a C
program they may not be displaved correctly in the listing.

The RESULT, LARG. and RARG arguments of the "APLF’ call are expected te be fullword fields
which contain the addresses of CDR’s. Therefore, pointers must be specified, using the C ‘&’ operator,
when these arguments are passed on the call. Since a left argument is not provided for this call, the
LARG field is coded as 0 in the argument list.

38 callsto APL2

Using the APL2PI Interface from COBOL

Many of the functions available on the APL2PI interface can be used in a simple and straightforward fashion

in COBOL programs. Since COBOI. only provides very rudimentary support for pointers, however. the
‘APLF’ and "APLV"’ calls cannot be used effectively. COBOL service routines are not supported.

The following example shows a COBOL program which makes use of the APL2PI interface to generate a
set of random numbers and to compute their average. The program illustrates simple use of the 'INIT",

"TERM’, "APLE’ and ‘APLS’ calls. Lines of the program are numbered on the left for reference in the notes

after the figure. The IBM VS COBOL II Program Product (5668-958) Version 1, Release 3 was used to

construct this example. Other COBOL compilers may or may not have similar capabilities.

1 Identification division.

2 Program-id. callapl2.

3 Environment division.

4 Configuration section.

5 Source-computer. IBM-370.

6 Object-computer, IBM-370.

7 Input-output section.

8 Data division.

9 Working-storage section.
10 1 TOKEN picture s9(9) binary value zero.
11 1.
12 2 RCODE.
13 3 RCODE1 picture s9999 binary.
14 3 RCODE2 picture s9999 binary.
15 2 RETCODE redefines RCODE picture s9(9) binary.
16 1 ZEROV picture s9(9) binary value zero.
17 1 OPTIONS picture x(16) value "SM(OFF) WS(200K)".
18 1 QNA-ATR picture x(14) value "O 11 [ONA 'ATR'".
19 1 GET-RANDOM picture x(20) value ""E8 1 x' ATR 5 2 100",
20 1 RESULT-LENGTH picture s9(9) binary.
21 1 RESULT-BUFFER.
22 2 RESULTS computational-2 occurs 5 times.
23 1 NUMBERS-ARRAY.
24 2 NUMBERS picture -ZZ9 display occurs 5 times.
25 1 ITEM picture s9(9) binary.
26 1 ITEMS picture s9(9) binary value 5.
27 1 AVERAGE computational-2.
28 1 DISPLAY-AVERAGE picture -779.999 display.

Figure 11 (Part 1 of 2). COBOL program demonstrating use of the '"APLE" and "APLF’ requests

Calls to APL2

39

29 Procedure division.
30 Call "APL2PI" using
31 by content "INIT" by reference TOKEN RCODE
32 by content “SAMPLE » ZERDV ZEROV ZEROV
33 Terngth of OPTIONS OPTIONS
34 If RETCODE is > 1 go to ERRORI
15 End-if
25 Call "APLZ2PI" using
37 by content "APLE" by reference TOKEN RCODE
38 by content length of QNA-ATR QNA-ATR
39 by content ZERGY ™ *
4% If RETCODE is not = O go to ERRORZ
41 End-if
472 Move length of RESULT-BUFFER to RESULT-LENGTH
43 Call MAPLZPI" using

| 44 by content "APLE" by reference TOKEN RCODE
45 by content iength of GET-RANDOM GET-RANDOM
46 by reference RESULT-LENGTH RESULT-BUFFER
&7 If RETCODE is not = @ ¢go to ERRORZ
A8 End-if

toag Perfcrm with test after
50 varying ITEM from 1 by 1
51 until ITEM = ITEMS
52 move RESULTS(ITEMY) to NUMBERS(ITEM)
53 End-perform
54 Display "Random numbers returned by APL2: "
55 NUMBERS-ARRAY upon console
56 Call "APL2PI™ using
57 by content "APLS" by reference TOKEN RCODE
58 by content “"PKGLIB.STATS ™ "™AVG " ZEROV " ®
59 by reference ITEMS RESULT-BUFFER AVERAGE
60 If RETCODE is not = @ go to ERROR2
61 End-if
62 Move AVERAGE to DISPLAY-AVERAGE
63 Display "The average is: " DISPLAY-AVERAGE upcn console.
64 Shutdown.
65 Call "APL2PI™ using
66 by content "TERM® by reference TOKEN RCODE
67 Stop run.
68 Errorl.
69 Display "Error during APLZ2 initialization: "
70 RCODE1 » * RCODEZ2 upon console
71 Stop run.
72 Errord.
73 Display "Error during APL2 execution: *
74 RCODEL1 » * RCODEZ2 upon console
75 Go to shutdown.

Figure 11 (Part 2 of 2). COBOL program demonstrating use of the 'APLE" and "APLF" requests

40 Calis to APL2

Notes

» Lines 12-15: the return code returned by APL2PI is formally a pair of halfwords in a fullword field. In
some situations it is useful to treat 1t as a single fullword; in others, as a pair of halfwords.

* Line 16: numeric literals cannot be specified as arguments in a COBOL CALL statement, and therefore
must be given names in the data division.

» Lines 18-19: specify APL expressions that will later be executed by means of "APLE’ calls to APL2PL.
Note that APL characters can be specified in such expressions but may not print correctly in the
COBOL program listing.

* Lines 30-33: APL2 is initialized by means of an 'INIT’ call to APL2Pl. Note that arguments that are
to be updated on the call must be passed by reference, while constants and arguments which are not
expected to be updated are passed by content. If a ‘by content’ argument is updated as a result of the
call to APL2PI, the updated value will not be available in the COBOL program.

 Line 34: this program is set up to allow it to invoke APL2 or to be invoked by APL.2. This is done by
accepting a return code of either 0 or 1 from the 'INIT” call.

* Line 39: in this particular example, the calling COBOL program will not bother to check the results of
the ONA executed in this call, since the subsequent call will fail with a predictable error if the ONA fails.
Therefore, the RLENGTH and RESULT fields are specified as ZERQO and ” ” respectively. APL2PI
will update the RLENGTH field with the length of the actual result, but that updated value will not be
returned to the COBOL program because the ZERQO argument was passed by content.

APL2 and COBOL Data Representations

APL2 typically represents numeric data in a number of different formats in the workspace. Real numbers
are represented as double precision floating point values, mntegers are typically represented using fullword
integer representation, and boolean values are often represented as bits. The representation of the value of a
variable or the result of an expression is dependent upon the operations performed upon it and cannot be
simply predicted. Most of this is transparent to the APL2 user who sees numbers as numbers an lets the
computer manage their representation in its internal memory.

COBOL, on the other hand, is a language in which data representation is visible to and carefully managed
by the programmer. When data is passed between a COBOL application and APL2 using the APL2PI
interface, that data must be transformed to a representation acceptable to APL2 and/or the COBOL applica-
tion. This same situation exists when other high level languages are used with the APL2PI interface. The
APL2 external functions PTA, ATP, ATR and RTA are available to assist with such transformation.
PTA and ATP are described in this document; ATR and RTA are described in the APL2 Programming:
Using the Supplied Routines manual (SH20-9233).

The following table shows the correspondence between types specified in the COBOL USAGE clause and
those specified in the patterns used with the PTA, ATP, ATR and RTA extemal functions:

Calls to APL2 41

C0BCL Picture and USAGE RT/RL in

Numeric type pattern
Birnary PIC $9999 BINARY 12
PIC S9(9) BINARY 14
Internal Flcating COMPUTATIONAL-1 E4
COMPUTATIONAL-2 E8
Externa? Flcating PIC +9(3).99E+99 DISPLAY none
External Decimal PIC S99399 DISPLAY 5
Internal Decimal PIC S9999 PACKED-DECIMAL P3

In addition to allowing numeric data to be represented in these forms, COBOL. also separately maintains a
scale factor or decimal point position for binary and decimal representations (the scale factor is an inherent
part of the floating point representation and consequently does not have to be separately maintained). When
COBOL computations are performed on binary and decimal data, COBOL, aligns the data around the
decimal point to achieve the desired results. When such data 1s passed to APL, the position of the decimal
point is not passed. For example, if the vanable

01 CASH PICTURE S9999.99 BINARY VALUE -1234.56.

was passed to APL, it would be received as the value ~123456. If the COBOL program treated the
value as dollars and cents, and the APL program treated it as cents, no problem would exist. If the position
of the decimal point was variable or significant, it would be lost unless passed as a separate explicit argument
to APL.

Similarly, if the value 1234567 was placed by an APL application in the COBOL CASH field as defined
above, it would be interpreted by COBOL as the value -1234.56. This is because only the data, and not the
decimal position is passed between APL and COBOL.

This behavior becomes a little more complex when decimal (packed or external) data is passed from or to a
COBOL program. On the System’370, packed and zoned decimal representations allow a very wide range of
numbers to be represented (31 digits for packed and 15 for zoned). When a packed or zoned decial number,
passed from COBOL, is accessed with the PTA function, using the 'P” or "2’ representation types, that
number is converted into double precision floating point representation so that it can be subsequently proc-
essed by APL. This conversion may lose precision and may change an integral value to a non-integral onc
(i.e.: a real number). Worse, the ATP and ATR external functions will not accept floating point right argu-
ments when a representation type of ‘P’ or "Z’ is specified in the pattern specified in the left argument. This
problem can be circumvented by converting the data to fullword integers using the APL floor (L) primitive,
viz:

DATA«1.23x100

DATA
123

‘P2 0' RTA 'P2 0' ATR DATA
DOMAIN FERROR

*P2 0' RTA 'P2 0' ATR DATA

A

‘P2 0' RTA 'P2 0' ATR LDATA

123

An alternate and often preferable way to avoid such problems is to use the BINARY, rather than DISPLAY
or PACKED-DECIMAL, usage clause in COBOL. programs for integer data that is passed to or from APL.

42 Calls to APL2

Using the APL2PI Interface from PL/I

Most functions available on the APL.2P] interface can be used in PL:I programs. The '"APLF" and "APLV’
calls and some variants of the "APLX" call involve the use of data in CDR format, and are more difficult,
but not impossible to handle in the PL/I environment. PL‘I service routines are not supported.

The following example shows a simple PL/l program which makes use of the APL2PI interface to call the

function AV G 1n packaged workspace PKGLIB .STATS to obtain the average of a vector of numbers
passed to it. Lines of the PL/I program are numbered on the left for reference in the following notes. The
IBM PL'I Optimizing Compiler Version 2, Release 2 (5668-909) was used to construct this example. Other
PL/1 compilers may or may not have similar capabilities.

Notes

* Line 3: the APL2PI entry point must be declared in PL/I programs as shown on line 3. This declara-
tion ensures that APL2PI will be called with the correct linkage conventions.

e Line 6: the return code returned by APL2PI is formally a pair of halfwords in a fullword field. In some
situations it is useful to treat it as a single fullword; in others, as a pair of halfwords.

* Line 9: numeric literals cannot be specified as arguments in a PL/l CALL statement and therefore must
be given names by means of declarative statements.

* Line 14: this program is set up to allow it to invoke APL2 or to be invoked by APL2. This is done by
accepting a return code of either 0 or 1 from the 'INIT" call.

* Line 20: note that APL2PI always updates the LEN field as the result of an "APLS’ call, thereby
destroying the initial value of this field. If a subsequent "APLF’ call was made by this program, the
LEN field would have to be reset before the call.

Calls to APL2 43

Ny e

[FelNes RN NS IS Y]

— b e
N ks T

13
14

| 20
| 21

22

23
24

26
27
28
29
30
31

32
33
34
35
36
37

38

*PROCESS CPT(2);
PLI2APL: proc options(main reentranti) reorder;

dct APL2PI entry options{asm inter);

dcl (NUMBERS(100), RESULT) fluat bin(53);

dcl (TOKEN init(0), RC, SIZE, LEN init(0)) fixed bin(31);
dcl RETCGDE(2) fixed bin{l5) based{addr{rc));

dcl PICSIZE pic '79';

dcl (PICRCY, PICRC2) pic 'Z22Z9%;

dcl ZERO init(8) fixed pin(31) static;

dci OPTIGKS char{16) init{*SHM{OFF) WS(206K)') static;

dc! OPTLEN init/1€) fixed bin(31) static

dcl BUFFER char(72};

/* ---- call APL2PI to initialize APL2 ~--- */
call APLZFI{'INIT',TOKEN,RC, *SAMPLE ',ZERO,ZERD,ZERD,OPTLEN,OPTIONS);
if RC > 1 then goto ERRORI;

dispiay{'Enter number of numners to average ') reply(BUFFER);
SIZE = BUFFER;

PICSIZE = SIZE;

display('Enter ' || PICSIZE !| ' numbers ‘) reply(BUFFER);
get string(BUFFER) Tist({NUMBERS(I) do I=1 to SIZE));

/% ---- call APLZPI to compute average ---- */

call APLZPI('APLS',TOKEN,RC,'PKGLIB.STATS *','AVG ',LEN,' ',
SIZE,NUMBERS,RESULTY;

if RC == 0 then goto ERRUK?;

display('Tne average is: '||RESHLT);

/* ---- call APL2PI to terminate APL2 ---- */
SHUTDOUN:

call APLZPI('TERM', TOKEN,R7);

return;

/* ---- unexpected errcr during APL2 initialization ---- */
ERRORL:

display('Unexpected error during APLZ initialization');
PICRC1 = RETCODE(1);

PICRC2 = RETCODE(2);

display('Return Code:' || PICRC1 || PICRC2},

return;

/* ---- unexpected error during APL2 function exetution ---- */
ERROR2:

display(‘'Unexpected error during APLZ function execution');
PICRC1 = RETCODE(1);

PICRC2 = RETCODE(2);

display{'Return Code:' || PICRC1 || PICRC2);

goto SHUTDOWN;

end; /* PLI2APL */

Figure 12. PL/l program demonstrating use of the '"APLF request

44 Calls to APL2

Concluding Remarks

The APL2PI interface allows applications written in compiled languages to be extended and enhanced with
routines written in APL. A wide variety of uses and benefits can be envisaged for such hybrid applications:

applications written in languages which do not provide sophisticated numerical computational facilities
(e.g.: COBOL, C) can be enhanced by exploiting APL’s power in the area of numerical computation
and vector processing;

those portions of application which involve complex or changing algorithms might be better or more
productively implemented in APL;

applications can be prototyped by initially implementing large portions of them in APL, capitalizing on
the inherent productivity of APL during the application design and implementation phases;

APL’s powerful interactive capabilities can be exploited by applications in which human interaction is an
important component. More than just an interactive interface, APL offers an interactive computational
facility which can be used to substantially enhance compiled applications;

APL offers distinct benefits for applications which require substantial and frequent changes. Typically,
APL applications, or those sections of applications written in APL can be modified or enhanced much
more quickly and at lower cost than applications or routines written in other languages. By imple-
menting those sections of an application that are most subject to change in APL, the developer can
benefit from these characteristics of APL, while retaining the advantages of high level languages for other
sections of the application.

Calls to APL2 45

46 Calls to APL2

Appendix A. Implementation Details

The APL2PI interface consists of a complex set of routines which can be used in a variety of ways to allow
APL and non-APL applications to interact and benefit from each other’s strengths.

The purpose of this paper has been to provide documentation on the interfaces to and from APL.2PI and
examples of their use. For many applications, documentation at this level will be entirely sufficient. In
more sophisticated applications, however, it may be useful to understand some of the inner workings of the
APL2PI facilities. 11 is the objective of this appendix to provide a first glimpse of these inner workings.

The APL2PI interface is comprised of two major sets of routines:

1. A set of routines written in Assembler language which provide the interfaces used by the non-APL appli-
cation. The main routine in this set is APL2PI (contained in the AP2VAPI object module in
VM'CMS, and in the AP2TAPI object module in MVS/TSO). APL2PI is the entry point to which
control is passed from the non-APL application when any request is made to the interface.

2. A set of APL external functions delivered in an APL packaged workspace which provide the interfaces
used by APL. routines or the APL user when communicating with the non-APL application. The two
important functions in this set are APL2PI and APL2PIE. Note that this APL2PT external func-
tion is not the same as the APL2PI routine used by non-APL application programs. The APL2PI
external function is simply an niladic cover function for the APL2PIFE external function. Its use will be
described 1n more detail below.

The non-APL application which uses the APL2PI interface can be invoked independently or from an active
APL session. If invoked independently, the non-APL application causes APL invocation to occur on the
first call to the APL2PI interface (typically an 'INIT” call). To invoke a non-APL application from an
active APL session, the APL user makes use of the APL2PIE external function. This external function
activates the APL2PI interface and through it causes the non-APL application to be invoked. Once the
non-APL application is so initialized, it can call the already active APL2PI interface to make requests to the
pendant APL session.

It is possible for both modes of operation to be used together. For example. a non-APL application could
be invoked using appropriate VM;/CMS or MVS/TSO commands, and that application could use APL.2PI]
to cause APL to be invoked and to submit requests to it. One or more of those requests could cause one or
more non-APL applications to be activated from the APL environment. All of these non-APL applications
could interact using the facilities provided with the APL2PI module and the APL2PIFE external function.
Note, however, that at any given time only one application (APL or non-APL) is running -- all of the other
applications are in a pendent state.

Non-APL applications invoked independently or from an active APL environment are often maintine pro-
grams written in a high level language. Invocation of such high level language mainline programs typically
cause a programming environment to be established. Thus when a FORTRAN program is invoked, the VS
FORTRAN programming environment is established to support its execution; when a COBOL program is
invoked the VS COBOL II programming environment is established to support its execution. Care must be
taken when more than one non-APL application programs is activated. Certain languages or versions of
languages do not support more than one instance of the programming environment at any given time. Thus,
if one non-APL application written in COBOL is activated, it may not be possible to activate a second one
written in the same language, because the second instance of its programming environment would interact
destructively with the first instance.

Appendix A. Implementation Details 47

Invoking APL from a non-APL Application

When a non-APL application, invoked and running independently of APL, wishes to access APL facilities. it
does so through the APL2PI interface. The APL2PI routine (in the AP2VAPI object module for VM CMS
or the AP2TAPI object module for MVS;TSO) can be link edited with the non-APL application. or it can
be dynamically loaded (e.g.: via a LOAD macro, or SVC 8), or dynamically accessed (e.g.: as a VM CMS
nucleus extension) by the non-APL application. Once the APL2PI routine is available to the non-APL
application, the non-APL application makes requests by transferring control to APL2PI using the standard
0OS CALL protocol described earlier in this paper.

The first call typically 1ssued by the non-APL application is an 'INIT’ call to request initialization of APL2.
If 'INIT’ is not the first call made, the APL2PI interface recognizes that APL2 has not yet been invoked and
automatically issues the equivalent of an ‘INIT’ call with default APL2 imitialization parameters. Whether
this “INTT" call 1s issued implicitly or explicitly, APL2PI then causes APL.2 to be invoked. In the VM/;CMS
environment, this 1s done by issuing a CMS SVC 202; in MVS/TSO, the APL2 load module 1s loaded by
the APL2P] routine, a CPPL control block is created and control 1s passed to the APL2 module with R
pointing to the CPPL which describes the arguments to the command. Thus, it looks to the APL2 module
as if it had been invoked from a VM/CMS or MVS,/TSO command line.

Before invoking APL2, the APL2PI routine will identify its own entry point making it visible in the address
space or virtual machine. This is done by issuing an IDENTIFY macro in MVS/TSO or by establishing
APL2PI as a CMS nucleus extension in the VM :CMS environment. This is an important step that will
allow APL2 to find its way back to the APL2PI routine after APL2 invocation is complete.

The typical command used to invoke APL2 will contain the arguments QUIET and RUN(APL2PI). The
QUIET argument suppresses display of the APL2 greeting message and the interaction associated with the
RUN(APL2PI) argument. Its use is not essential to the proper operation of the APL2PI interface, but it is
recommended since it leads to less confusing interaction in most cases. Once the APL2PI interface 1s initial-
1zed, QUIET will be turned off, so that APL2 output will be displayed normally.

The RUN(APL2PI) argument in the APL2 invocation command is not optional and is required for proper
operation of the interface. It causes the APL2P1I external function (in the AP2PAPIW packaged workspace
supplied with APL.2) to be executed. As noted above, APL2PI is simply a cover function for

APL2PIE 0O ''. Execution of the APL2PT external function (i.e.. APL2PIE 0 '') causes some

housekeeping to be performed in the AP2PAPIW package workspace, a [JNA& to be issued to the APL2PI
external routine, and control to be passed to that routine.

Here things become a little confusing, because there is an APL2PI external function in the AP2PAPIW
packaged workspace and an external routine named APL2PI which is, in fact, the same APL2PI entry point

that is accessed by the non-APL application. Here is what happens: the APL2PI external function in the
AP2PAPIW packaged workspace executes APL2PIE O ''. APL2PIE issuesa

0 11 ONA ‘*APL2PIX'. Inthe NAMES file APL2PIX is defined to be the APL2PI entry point.
Since the APL2PI entry point was IDENTIFY’d or made a CMS nucleus extension earlier, this ONA will
set up a link between the APL2PIE external function and the APL2PI routine. Once this link has been

established, APL2PIE calls the APL2PI routine. This call causes the APL2 session to be suspended
awaiting the completion of the APL2PI external routine, and control to be passed to APL2PI.

At this point, APL2PI recognizes that the invocation of APL2 is complete and passes control back to the
non-APL application if an explicit 'INIT’ call was issued, or proceeds with the non-APL applications
request if the 'INIT’ call was implicitly issued.

This initialization process may be clearer if considered as an ordered set of events:

1. The non-APL application is activated by the user.

48 Calis to APL2

2. The non-APL application calls APL2PI with an "INT1” request.
3. APL2PI invokes APL2 with options that include RUN(APL2PI).

4. The RUN(APL2PI) option causes the APL2PT external function in packaged workspace AP2PAPIW
to be run when APL2 invocation is complete.

S. APL2PT calls the external function APL2PIE in the same packaged workspace.

6. APL2PIE calls the external routine APL2PI, which 1s, in fact, the same routine that was called in step
2 by the non-APL application.

7. When the APL2PI routine receives control from APL2FPIE, it realizes that APL2 inmitialization 1s com-
plete, and it returns control to the non-APL application that called it in step 2.

When and if the non-APL application 1ssues a request other than 'INIT" or ' TERM’ to the APL2PI inter-
face, APL2 will be in a state where it 1s awaiting the completion of execution of the APL.2P] external
routine. "APLE’, "APLS’, "APLF’" and "APLV’ requests are completed by APL2PI using “callback” requests
to APL.2, i.e., a combination of "XE’ and "XF’ service calls as documented in the APL2 Programming:
Processor Interface Reference manual (SH20-9234). The "APLP’ request is executed by returning control
from APL2PI to the APL2PIE external function which executes the request using local logic and then
returns control to the APL2PI routine.

The 'APLX" request causes the APL2PI routine to return control to APL2PIE which issues a message
and returns control to the APL user or application which called it. When the user or APL application
subsequently issues an APL2PTI or APL2PIE 0 "' request, control returns to APL2PIE in the
AP2PAPIW packaged workspace and from there to the APL2PI routine. Finally, APL2PI sets return codes
and return values appropriately and returns control to the non-APL application which called it.

When the non-APL application issues a "TERM’ request to APL2PI, the APL2PI routine returns control to

APL2PIFE which stacks an) OFF command and returns to its caller. When the YOFF command is exe-
cuted, it causes APL to be terminated and control to be returned to the routine that originally invoked APL
1.e., APL2PI. The APL2PI routine cleans up and deallocates its own resources and returns control to the
non-APL application.

Invoking a non-APL Application from APL

A non-APL application can be invoked from the APL environment using the APL2PIFE external function,
viz.:

0 11 0ONA 'APL2FIE'
'ROUTINE ARGUMENTS' APL2PIE 1 °'NAME®

When APL2PIE receives this request, it calls the external routine APL2PI with a request to activate the
specified non-APL application routine. APL.2PI initializes the interface and then loads and calls the
non-APL application routine.

In the VM/CMS environment, APL2PI first looks for an existing CMS nucleus extension whose name
matches that of the specified routine. If one is found, its address is used as the entry point address for the
non-APL application. If no matching CMS nucleus extension is found, APL2PI issues a CMS
NUCXLOAD for a relocatable CMS module with the specified name. If that NUCXLOAD command is
successful, the address of the loaded routine is used as the entry point address of the non-APL application.
If the NUCXLOAD fails, control will be returned to APL2PIE and then to the APL caller with a return
code indicating that the routine could not be found.

Appendix A. Implementation Details 49

If the specified routine is found as an existing CMS nucleus extension or 1s successfully loaded as a result of
the NUCX1.OAD command, APL2PI builds a parameter list matching CMS SVC 202 conventions and
enters the non-AP1. application.

In the MVS TSO environment, APL2PI issues a LOAD (SVC 8) for the specified routine, constructs a
parameter list in CPPL format, and enters the non-APL application.

When the non-APL. application receives control from APL2PI, it can issue calls to APL2PI to make service
requests. The first request issued should be an 'INIT’ request. Although APL and APL2PI have already
been initialized, this ‘INIT’ request allows the non-APL application to identify itself by name to the APL2P]
interface, and it allows a service routine to be specified if desired.

Other APL2PI requests can be subsequently issued by the non-APL application. APL2PI processes these
requests appropriately, invoking APL services as necessary, and when the request is completed, it returns
control to the non-APL application. The "APLE’, "APLS’, "APLF" and "APL V' requests are completed by
APL2PI using “callback” requests to APL2, i.e.: a combination of "XL" and "XI" service calls. The "AP1 P’
request 1s executed by returning control from APL2PI to the pendant APL2PIE external function.
APL2PIF processes the request and retumns control to APL2PI.

The "APLX’ request causes the APL2PI routine to return control to the pendant APL2PIFE external func-
tion and from it to the APL application or user that originally called it. When the APL user or application
subsequently issues an APL2PI or APL2PIE 0 '°' request, control is returned to the APL2PIE
external function and from there to the APL2PI external routine. Finally, APL2PI sets return codes and
return values appropriately and returns control to the non-APL application which calls it.

Before terminating, the non-APL application should issue a ' TERM’ request to APL2PI. When this request
1s received, the non-APL application is deleted from APL2PI internal tables, and control is returned to that
application. The application is then free to terminate. When it does so, control is returned to APL2PI since
APL2PI orniginally invoked the non-APL application. APL2PI in turn returns control to the APL2PIE
external function that called it. Finally, APL2PIE returns control to the APL application or APL. user that
last called it.

Environment Isolation

APL2, when it is invoked, establishes STAE and STAX exits so that asynchronous or unexpected events
(attention signals, program checks, ABENDs, etc.) are captured and properly handled. Many non-AP1
applications, particularly those written in high level languages, need to do much the same thing. When
cooperating APL and non-APL applications are run via the APL2PI interface, APL2PI must take care to
keep the APL and non-APL environments separate so that things like SPIE. STAE and STAX exits do not
interact or cancel each other out, and so that each application is properly notified of events appropriate to it.

In the MVS/TSO environment, this is done by using MVS task isolation. APL and each non-APL. applica-
tion is established as a separate MVS task, and APL2PI activates and decactivates the appropriate tasks as
control flows between APL and a non-APL application. Since each MVS task may have its own set of
SPIE, STAE, and STAX exits, no conflicts exist between APL and any of the non-APL applications, and
events are directed to the task that is currently active.

In the VM/CMS environment, multitasking facilities, and therefore task isolation, are not available. In order
to provide the necessary isolation, therefore, APL2PI manages the boundary crossing between APL and
non-APL applications. As control flows through APL2PI between the non-APL and APL applications,
APL2PI saves the SPIE, STAE and STAX information for the application giving up control and reestab-
lishes the SPIE, STAE, and STAX information for the application to which control is being passed.

S0 Calls to APL2

There is another aspect of the implementation in the VM- CMS environment that deserves mention. In
CMS when a command is issued (by the user or by an application program using SVC 202), an SVC level is
added to the CMS SVC save area chain. Typically this is entirely transparent to the user or application
program and is simply a detail in the internal operation of CMS. The important part for API.2PI users is
that APL2 is dependent on running all of its operations at the same CMS SVC level. Thus APL2 would
ABENXND if it passed control to an external routine which changed the SVC level and returned to APL2. For
this reason, when a non-APL application is invoked from an active APL environment using APL2FPIE,
APL2PI simulates the operation an linkage of SVC 202 rather than simply issuing an SVC 202 to invoke the
non-APL application. In this way, the non-APL application and APL both operate at the same CMS SVC
level as they pass control back and forth between each other.

There are many cases in CMS where applications can issue commands and thereby cause additional levels to
be added to the SVC chain. For example, a REXX application could call an XEDIT session which in turn
could call an XEDIT macro which could execute CMS commands. Each of these calls would introduce
another SVC level to the SVC chain. If such an application were to make calls to APL2PI, all calls would
have to occur at the same SVC level. Further, if that application was invoked from APL via APL2PIE, all
calls to APL2PI would have to be made from the SVC level at which the application was invoked. If these
rules are not followed, APL2 will ABEND when control is returned to it at an invalid SVC level.

Termination Processing

A well behaved non-APL application issues an ‘INIT’ request to APL2PI as its first request and a " TERM’
request before it terminates execution. Further, well behaved APL users or APL applications which invoke

non-APL applications via APL2PIF ensure that those non-APL applications are terminated before the
APL session is terminated with an) OFF command.

Unfortunately, it is often difficult to ensure that APL users or non-APL applications are always well
behaved. APL2PI, therefore, takes certain precautions to ensure orderly shutdown in unusual situations.

When APL2P1 1s first invoked, as part of its initialization, 1t tells APL. that it needs to be notified of APL
termination. Thus, when an) OFF command is 1ssued from the APL environment, APL2PI receives
control. If anv non-APL applications invoked from the APL environment, or any service routines for
non-APL applications are pendant at that time, they are sent a ‘shutdown’ request (in the form of a 0 2
return code) from APL2PI. Those applications are expected to recognize this return code, complete their
processing and return control to there callers immediately. In each of these cases, APL2PI is the caller, and
thus APL2PI is able to determine when all of these non-APL applications and service routines have shut
down. When that occurs, APL2PI frees its own resources and returns control to APL which then terminates
gracefully.

Note that if APL was invoked from a non-APL application, that non-APL application is not notified by
APL2PI (via a 0 2 return code) during APL.) OFF processing. Instead, APL termination proceeds
normally, and when complete, control is returned to APL2PI because APL2PI originally invoked APL.
When that occurs, APL2PI frees its own resources and returns control to the non-APL application which
originally invoked it. The non-APL application will be given a successful return code of 0 0 if the termi-
nation occurred as a result of "TERM’ request that it made; otherwise, 1t will be given a 0 2 (unexpected
termination).

Appendix A. Implementation Details 51

