
Santa Teresa
Laboratory
San Jose, CA

CALLS TO APL2 by Michael T. Wheatley

January 1991 TR O~. 390

Calls to APL2

Document Number TR 03.390

January 2,1991.

Michael T. Wheatley

International Business Machines Corporation
Programming Systems

Santa Teresa Laboratory
San Jose. California, USA

ii Calls to A PL2

Abstract

This document describes facilities which have been added to APL2 to allow applications written in languages
other than API__ to issue calls to APL2 ... - to execute APL expressions, invoke API. functions. reference or
specify APL variables, or to enter the APL2 interactive environment. Such applications can be invoked
independently of APL2, or they can be invoked, using facilities provided, from an active APL2 environment.

Abstract iii

iv Calls to APL2

Contents

Calls to APL2 1

Introduction 1

Overview 2

APL2PI Interface Calls 4

Initialization Call 5

Termination Call 7

Execute an APL Function 8

Execute an API. Expression 10

Return Control to APL 11

Execute an APL Function 12

Reference or Specify an i\PL Variable 13

Enter or Exit a Packaged Workspace ~amescope 14

Return Codes 15

Using CDR Results 16

Pattern CDR's 16

External Functions ATP and PTA 16

External Functions APL2PI and APL2PIE 18

APL2PI and APL2 Calls to Other Languages 21

System Related Considerations 22

Using APL2PI in a VM/C\1S Environment 22

Lsing APL2PI in an \1VS/TSO Environment 25

Language Related Considerations 28

using the APL2PI Interface from FORTRA~ 28

Using the APL2PI Interface from C 34

Lsing the APL2PI Interface from COBOL 39

using the APL2PI Interface from PL/I 43

Concluding Remarks 45

Appendix A. Implementation Details 47

Invoking APL from a non-APL Application 48

Invoking a non ..APL Application from APL 49

Environment Isolation 50

Tennination Processing 51

Contents V

vi Calls to APL2

Calls to APL2

Introduction

This document describes facilities which have been added to APL2 to all0 \\7 applications written in languages
other than APL to issue calls to API./2. Such applications can be invoked independently of APL2, or the)
can be invoked, using facilities provided, from an active APL environment.

An interface routine, called APL2PI (APL2 Program Interface), provides capabilities through which:

•	 APt,,2 can be initialized;

•	 APL2 can be terminated;

•	 APL functions can be executed;

•	 APL variables can be referenced or specified;

•	 APL expressions can be executed;

•	 control can be passed to the interactive APL session.

A companion APL external function, called APL2PIE, is provided through which:

•	 non-APL applications can be invoked from an active APL2 environment. Applications so invoked can
subsequently make calls to APL2 using the APL2PI interface;

•	 a request to terminate can be passed to non-APL applications from the active APL2 environment;

•	 control can be returned to a non-APL application (that previously invoked APL2 or returned control to
the active APL environment);

•	 service requests can be passed from executing APL functions to any of the currently active non-Al-L

applications.

The APL2PI routine provides a relatively high level of interface designed to be imbedded as a callable service
in programs written in high level languages such as FOR'rRA~, PLiI, C, or COBOL. APL2PI is a reen­
trant routine that can be link edited with application programs or packaged as a separate load module which
is dynamically loaded before being called. In the VM/CMS environment, APL2PI may also be loaded as a
eMS nucleus extension.

The facilities described in this document are available in current levels of the APL2 and APL2/AE program
products (5668-899, 5688-003) Version 1 Release 3.0, with the following PTF"s and their prerequisites
installed:

APAR VMjCMS PTF MVS/TSO PTF
.-,.,~.---_...

~ .. -~ --.~ ... -- ~ - - .. ~- ..

PL54185 UL69734 UL69735

PL57346 UL69736

PL57347 UL69737 UL69738,UL69739

PL58236	 UL69740
PL53174 UL7I031 UL7I032,UL71033
PL63437 UL74734 UL74735,UL74736
PL6S969 UL79882 UL79883
PL6B968 UL79924

Calls to APL2]

These facilities are not described in the documentation provided with the APL2 Release 3.0 or APL2, AI~

Release 3.0 program products. The information contained in this document has not been submitted to all)

formal IB~ test and is presented on an "as is" basis without any warranty either expressed or implied. The
use of this information is a customer responsibility and depends on the customer's ability to evaluate and
integrate it into the customer's operational environment.

Overview

The APL2PI interface routine is designed so that it can easily be called from languages such as FORTR~t\'.

COBOL, C, Pascal, PL/I, and Assembler. The form of such calls (using Assembler or FORTRA~ syntax)
begins with three consistent arguments:

CALL APL2PI(REQUEST tTOKEN,RC,)

where:

REQUEST is a 4 character request identifier. The following requests are supported:

INIT
TERM
APLE
APLS
APLF

APLV
APLX

initialize APL2.
terminate APL2.
request execution of an APL expression.
request execution of an APL function.
request execution of an APL function. This request is more fully function
the APLS request, but it is not as simple to use.
reference or specify an APL variable.
return control to the APL environment.

ed than

APLP enter or exit the namescope of an APL packaged workspace. Subsequent requests
will be made in that namescope unless specifically directed elsewhere.

TOKE~ is a token used by the APL2PI interface for correct and efficient operation.
an INIT call and should be provided on all subsequent calls.

It is returned by

RC is a 2 element return code returned by the APL2PI interface as the result of any call. A return
code of 0 0 indicates success.

Most calls to APL2PI require additional arguments specific to the request. These will be described in subse­
quent sections.

The INIT, TERM, APLE, APLS, APLX, and APLP requests take relatively straightforward arguments that
can be easily provided in most high level languages. The APLF and APLV requests, however, are designed
to pass arguments to APL and receive results from APL in CDR format. CDR format is a data represen...
tation which allows efficient representation of APL aITaYS including general arrays. While CDR objects can
be constructed in many languages that support data structures (e.g.: Assembler, C, PL/I, Pascal), it is a more
difficult format to use than that used in the simpler service requests. The CDR format is described in detail
in the APL2 Processor Interface Reference manual (SH20-9234).

In the remainder of this section, a simple example will be presented to illustrate the use of this interface.
The example will be presented using FORTRAN because of its simple syntax and understandability. The
program:

1. defines the necessary data items,
2. causes APL2 to be initialized by means of an INIT service request to APL2PI,
3. prompts the user to enter a set of 3 numbers,
4. computes their average by calling the APL function AVG in packaged workspace STATS,
S. displays the result returned by the APL function,
6. causes APL2 to be shutdown by means of a TERM service request to APL2PI.

2 Calls to APL2

This example provides overly simplistic error handling facilities (at statement labelled 99), that rna) not be
desirable in an operational environment. More complete examples are shown later in the paper.

INTEGER*4 TOKEN,RC,LENGTH
REAL*8 NUMBERS(3) ,RESULT
TOKEN=O
LENGTH;;0
CALL APL2PI('INIT',TOKEN,RC, 'SAMPLE ',0,0,0)
IF (RC .NE. 0) GOTD 99
~J RITE (6, *) 'En t er 3 nurn bers I

READ (5,*) (NUMBERS(I),I=1,3)
CALL APL2PI (I APLS I, TOKEN, RC, ISTATS I,' AVG I, LENGTH, I I, NUt~BERS, RESULT)
IF (RC .NE. 0) GOTD 99
WRITE (6,*) 'The average is: ',RESULT
CALL APL2PI(ITERM',TOKEN,RC)
IF (RC .NE. 0) GOTD 99
RETURN

99 WRITE (6,*) 'Unexpected error ·,RC,' was returned from APL2PI'
END

Figure 1. Sample FORTRA' Program

The AVG function invoked by this sample program differs from what a APL user might expect:

VAVG ARGS;NUMBERS;RESULT
(1] +(Ov.=3 11 DNA 2 3p'PTAATP')/ERROR
(2] NUMBERS+'E8 1 3' PTA tARGS
[3] RESULT+(+/NUMBERS)+pNUMBERS
[4] 'EB 1 l' ATP RESULT (1~ARGS)

[5] +0

[6]	 ERROR: 'UNEXPECTED ERROR' DES 9 9
V

Figure 2. Sample APL Function

Lines 2 and 4 of this function use the APL external functions PTA and ATP to retrieve the argument

NUMBERS passed by the FORTRA~ program and to return RESULT to that program. These functions
will be described in the section entitled "External Functions ATP and PTA" on page 16. Their use is
required to accommodate the argument passing mechanisms and data types used in non-Al'L programs.

Calls to APL2 3

~--------------- --------------_.._-----------------­
APL2PI Interlace Calls

All calls to the i\PL2PI interlace assume that the caller provides the necessary arguments 'by reference"
using standard as linkage convention-. That is to say, it is assumed that the calling program passes control
to Af' L2P I with the following general purpose 1egisters set:

R 1 contains the address of a standard as pararneter list, that is, a list of the addresses of the arguments
passed on the call. 'The list is terminated by setting the high order bit in the last address in the list.
Elided arguments imbedded in the list are specified as O.

R 13 contains the address of a standard l Svword OS save area which will be used by the API.2PI interface.

R l i f contains the return address in the calling program

R 15 contains the address of APL.2P I.

Assembler (using the C:\.IJ_< macro), f~OR'rRA~, CODC)l .. , and Pl..'I use these conventions a~ the default
on most calls. C and Pascal, however, often use an extension to these conventions in which a mixture of
addresses and values rna) appear in the parameter list. From C programs, users must ensure that pointers to
the arguments, rather than the values of the arguments, are passed. From Pascal programs, users should
declare the arguments so that the) will be passed by reference rather than by value. Additional information
on this subject can normally be found in the Programmer's Guide manual for the language being used,
Some additional information will be provided in later language specific sections of this document.

Many of the arguments required by /\PL2PI must be specified as character strings 1 sometimes terminated
with a blank. Users should note that many languages, such as PiJI and Pascal, all0 \\1 defmition of variable
length character strings which are prefixed with a length field. Such arguments are unacceptable to .APL2PI
because of the length prefix. Such languages typically provide alternate representations, such as fixed length
strings, without the length prefix, that are acceptable to APL2PI. C null terminated character strings are
acceptable to APL2PI. If an APL2PI argument must be terminated with a blank, a C null terminated string
is acceptable if the character preceding the null is a blank. Again, additional information on this subject can
typically be found in the language's Programmer's Guide manual.

Certain APL2PI arguments (such as SERy'ICE on the 'I~ITI call and PAT'TER~ on the 'APl;\" call) an:
fullword fields containing addresses. Note that in these situations, the caller's parameter list must contain an
address that points to the fullword containing the necessary address. All such arguments and result fields will
be identified in the following descriptions with a phrase like 11 •••a fullword field containing the address of. ..H.

Each APL2PI call provides as its third argument a fullword field into which APL2PI will place a return code
on completion of the call. All such return codes should be interpreted as a pair of halfwords, 0 0 indicates
success; 0 x indicates an error originating in APL2PI J or an alternate successful result; x x indicates an error
detected by APL2 (rather than in the APL2PI interface) and can be interpreted as an APL DET value. A
return code of 1 2 indicates an unexpected SYSTEM ERROR that may have been detected by either
APL2PI or APL2.

4 Calls to APL2

Initialization Call

CAI-JL APL2I l } (/I~IT',1'OKE~,RC,~A\1E,T)!PE,A'CI10R,SER'IICI~,LE~GTH,PAR\1S)

This call provides an explicit mechanism by which APL2 can be invoked. If this call is not issued explicitly
by the calling program, and if APL2 is not active, it will be issued implicitly by other calls to APL2PI
(except 'TER\1 /). Since invocation of APL2 is often a lengthy process, the calling program may wish to
issue this call explicitly some time before making use of other APL2PI services.

This call also provides the mechanism by which a non-APL application identifies itself to the APL2PI inter­
face and optionally specifies service routine and anchor addresses. Thus it is recommended that this call be
issued by all non-API... applications whether or not APL2 was previously activated.

The arguments to tills call are:

'I~IT' a required argument identifying this request.

TOKE~ a fullword integer field into which the interface routine will place a token on successful
completion of this call. This token should be retained and used on subsequent calls to
provide optimal performance. This field should be zero when the 'I~Il-" call is issued, or
the call will end with an error.

RC a fullword integer field into which the interface routine will place the return code on com­
pletion of the call. Return code of 0 0 indicates success. Other return codes are described
below.

!\A\1E a name used to identify the calling application program to APL2PI. This name may be
subsequently used by the APL2PIE external function to direct requests to this application
program. ~A\1E must be 1 to 8 characters in length, and must be terminated with a
blank. If this argument is elided or specified as a null or blank, the name' I (i.e .. a blank
name) will be assigned to the calling application program. This poses no problem if only
one non...APL application uses the APL2PI interface, but may result in errors or unex­
pected results if more than one non-APL application is activated. A non-blank name is
recommended.

T)'PE a fullword integer identifying the type of service routine indicated by the SERVICE argu­
ment. A value of 0 means that no service routine is provided: the A,CHOR and
SERVICE parameters will be ignored. A value of 1 indicates that the service routine
expects its argument and produces its result in non-CDR form. A value of 2 indicates that
the service routine expects its argument and produces its result in CDR form. Additional
details on service routine arguments and results are presented in section "External Func­
tions APL2PI and APL2PIE" on page 18.

A~CHOR a fullword token passed from the non-APL application. This token will be returned to the
non-APL application on every service routine call. Note that updates to this token made
during a call to the service routine will not be retained -- the original value of this token
will be passed on all service routine calls.

SERVICE a fullword containing the address of a routine in the calling application to which service

requests can be directed with an APL 2PIE 3 call from the APL2 environment. If this

argument is elided or specified as 0, or if TYPE is specified as 0, APL2PIE 3 requests
will be denied for this application.

LENGTH a fullword integer field specifying the length in bytes of the PARMS argument. If this
arguments is elided or specified with a value of 0, the PARMS argument is ignored.

PARMS a character string specifying APL2 invocation parameters. This argument is optional, but it

must be provided if the LENGTH argument is specified as non-zero.

Calls to APL2 5

When an TXll" call is Issued. if l\PI.,2 is not already active. ,,\PI-J2PI will append any invocation parameter­
provided on the call to the API~2 invocation command provided in AP2Xr,\PIC CSLC1~ (if AP2X~;\PIl' i-,
link edited with APL~2PI) or to the default APIJ2 invocation command:

APL2 QUIET RUN(APL2PI)

If the resulting invocation option) cause an /\P1_ function other than APL2PI to be invoked, that function

i:, expected to invoke the APL2PI external function to cause control to be returned to the i\PIJ2PI inter­
lace routine on completion of APl,2 initialization.

If the TvlI" call is issued when APL2 is already active (i.e.: from a non..APL application invoked via the

APL2PIE external function), a return code 0 1 ('API, already initialized') will be returned.

Calls to APL2 6

Termination Call

CAL,L APL2PI ('TER\1/,TOKE~,RC)

This call requests termination of APL2. It is effective only when issued by the non-APL application from
which APL2 was invoked. If issued from a non-APL application which did not cause APL2 invocation (i.e.:

one which was invoked by APL2 using the APL2PIE external function), it is nilpotent and returns a return
code of 0 10 (invalid request).

If APL2 was invoked by a non..APL application, that application must issue the TER\1 call before its own
termination. Failure to do so may cause abnormal termination of APL2, the APL2PI interface and possibly
the non-APL application (and possibly even C\1S in a VM/CMS environment).

The arguments to this call are:

'TERMI a required argument indicating that APL2 is to be terminated.

TOKE:" a fullword integer containing the token returned on the II~IT' call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute. On com­
pletion of the 'TER~11 call, this field will be set to zero.

RC a fullword integer field into which the interface routine will place the return code on com­
pletion of the call. Return code of 0 0 indicates success. Other return codes are described
below .

Calls to APL2 7

Execute an APL Function

CAtJ~ APL2PI CAPI ~S ',TOKr~ IRC: ,PKG\"TS,I~~ ,RLI~~GTI I.RES1·l~ T,ARCi 1,AR G2....)

This is one of t~TO calls provided to request execution of an APL function. This call is designed to be easilx
used in high level language programs (such as FOR~rRA~ or COBOL).

The function specified may reside ill a packaged workspace and is called monadically if arguments (Ak G 1\
ARG2: ...) are specified, or niladically if they arc not. Arguments, if an) ~ are passed to the function as a
vector of fullword integers which represent the addresses of the argument data. The API." function is

expected to use PTA to access the argument data, and ATP to update it. PTA and ATP are APl~ external
functions provided with APL2. They are described in detail in the section entitled "External Functions A'lP
and Pl~.L~" on page 16.

The arguments to this call are:

'APLS'	 a required argument indicating that an APL function is to be called.

TOKE~	 a fullword integer containing the token returned on the JI~-Il~r call. If this token is not
provided (i.e.: specified as zero), the call will require more Cf'L time to execute.

RC	 a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below,

PKG\\TS	 the name of the packaged workspace in which the specified function is to be found and
optionally a surrogate name for the function. If this argument is provided,

'PKGWS' 11 DNA 'FN'
or

'PKGWS' 11 DNA 'FN SURROGATE'

will be executed before the specified function is called. If this argument is not provided or

is coded with an initial blank, no DNA will be issued before calling the function. Thus, if
the function exists in a packaged workspace, the first call to it must provide the PKG\\!S
argument, but subsequent calls do not. The PKG\\'S argument is a character string which

is expected to be terminated with a blank, e.g.: 'MYLIB. MYWS '. If the surrogate

name is specified it must be prefixed with a colon, viz:

'MYLIB.MYWS:SURROGATE '.

F~	 the name of the function to be called. This argument is a character string which is

expected to be terminated with a blank. It is used as the right argument to DNA if the
PKG\\'S argument is coded and is then used as the name of the function to be called.

RLE~GTll	 a fullword integer field specifying the length of the result field. On completion of this call.
this field will be updated to contain the actual length of the result or error message
produced (which may be shorter, the same size, or longer than the result field). If no
explicit result or error message is produced, this field will be set to ..1.

Note that this field is normally updated as a result of this call. It therefore should not be
coded as a constant on calls from high level languages for to do so could result in the con­
stant being modified, which in turn could result in subsequent errors in the calling program.

RESULT	 a field into which the explicit result of the function (if any) will be placed. If the result
produced is larger than the length of this field (as specified by RLE1\GTH), only the first
RLE~GTH bytes of the result will be placed into the RESCLT field and RLE~GTH will
be updated to reflect the actual total result length. The result is placed in this field as an
unmodified byte string in left list order, i.e., as if it had been produced by the expression:

8 Calls to APL2

RESULT+(PFA RESULT) ATR RESULT

If an error results from the execution of the specified expression, the error message (£DEM)
will be placed in the RESL~LT field and its length in the RLE~GTH field. An error
message is not produced in all situations. In general, a message will not be produced if the
error is detected before execution of the specified function has begun. In such situations,
the RESCLT field will not be updated.

ARGl,ARG2, ... the arguments to the function. The specified function will be passed a vector of integers

representing the addresses of these arguments and is expected to use PTA to access them
and ATP to update them. If no arguments are coded in the call, the specified function will
be called niladically. A maximum of 64 arguments are supported.

Note that this call allows an explicit result produced by the APL function to be passed back to the calling
routine. The calling routine, however, must anticipate the size of this field in advance, allocate storage for it
and pass it to APL2PI as the RESl:LT argument. The calling routine cannot control the type, structure. or
shape of the data returned, nor can it control whether an explicit result or error is returned. In many situ­
ations it may be simpler to pass output or input/output arguments to the AI>L function and structure that
function to return its results by updating one or more of the arguments using the APL external function

ATP. This approach allows the RESL·LT field to be used for the return of error information only.

If it is deemed desirable to produce an explicit result in the APL function called, that function can control

the data type of the explicit result returned through the use of the external function ATR, viz:

LENGTH=8
RESULT=0.G
CALL APL2PI('APLS ',TOKEN,RC,·STATS ','AVG ',LENGTH,RESULT,NUMBERS)

VRESULT+AVG ARG;NUMBERS
[1] +COv.=3 11 DNA 2 3p'ATRPTA')/ERROR
[2] NUMBERS+'EB 1 3' PTA ARC
[3] RESULT+(+/NUMBERS)+pNUMBERS
[4] RESULT+'E8 1 l' ATR RESULT
[5] +0

[6]	 ERROR: 'UNEXPECTED ERROR' DES 9 9
V

Figure 3. Sample 'APLS' Call

Calls to APL2 9

Execute an APL Expression

This call requests execution of an APL expression. The expression to be executed is specified as a character

string .. effectively the right argument of an ~ primitive. The result is returned as a byte string derived from

the 'enlist (E:) of the result of the executed expression. If an error occurred during the execution of the

expression, the error message (E: OEM) will be returned in the result field.

The arguments to this call are:

';-\PLE' a required argument indicating that an APt. expression is to be executed.

'rOKE~:\ a fullword integer containing the token returned on the 'I~IT' call. If this token is not
provided (i.e.: specified as zero), the call will require more CPU time to execute.

kC a fullword integer field into which APL2PI will place the return code on completion of tl.c
call. Return code of 0 0 indicates success. Other return codes are described below.

a fullword integer specifying the length of the string to be executed,

S fRI:\G the character string to be executed.

a fullword integer field specifying the length of the result field. On completion of this call.
this field will be updated to contain the actual length of the result or error message
produced (which may be shorter, the same size. or longer than the result field). If no result
or error message is produced, this field will be set to ..1.

Note that this field is normall, updated as a result of this call. It therefore should not be
coded as a constant on calls from high level languages for to do so could result in the con­
stant being modified, which in turn could result in subsequent errors in the calling program.

RESt.~LT a field into which the result of the executed expression (if any) will be placed. If the result
produced is larger than the length of this field (as specified by RLE:'\GTII), only the first
RLE~GTH bytes of the result will be placed into the RESl.-~L'r field. RLE~GTI-I will he
updated to reflect the actual total result length. The result is placed in this field as an
unmodified byte string in left list order, i.e., as if it had been produced by the expression

RESULT+(PFA RESULT) ATR RESULT

If an error results from the execution of the specified expression l the error message (E: OEM)
will be placed in the result field and its length in the H.l.E!' G"rH field. An error message is
not produced in all situations. In general, a message will not be produced if the error is
detected before execution of the specified expression has begun. In such situations, the
RESlJLT field will not be updated.

10 Calls to APL2

Return Control to APL

CAt.I. APL.2PI (/APLX',TOKE~,RC,\IAIJl;E,RESL'lJT)

This call is used to return control to APL2, either to an interactive APL session, or to the APL application

that invoked or transferred control to the non-APL application.

Control may be subsequently returned to the non-APL application by calling one of the APL external func­

tions APL2PI or APL2PIE.

The arguments to this call are:

'APLX' a required argument indicating that control is to be returned to APL2.

TOKE:\" a fullword integer containing the token returned on the 'I~IT' call. If this token is not
provided (i.e.: specified as zero), the call will require more Cf'L time to execute.

RC a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below.

this optional parameter, if specified, must be a fullword field containing 0 or the address of
a CDR to be returned as an explicit result to the APL environment. This CDR must

contain 0 0 as its first two items of data. If this parameter is specified as 0 or is not

specified an explicit result of 0 0 MSG is returned. where the value of MSG is defined in
the AP2PAPI~7 packaged workspace which is supplied with APL2.

RESCLT this optional parameter. if specified, must be a fullword field which will be updated to
contain the address of a result CDR when and if control is returned to the non-Al'L appli­

cation. If control is returned with a call to the APL2PI external function, no result CDR
is returned, and this field will be set to O. If control is returned with a call to the

APL2PIE external function, the left argument to APL2PIE will be returned as the
result. If no left argument is provided, the field will be set to O.

If the RESCLT parameter is not provided, no result will be returned, even if one is pro­

vided in the left argument to APL2PIE.

When the 'APLX' called is issued by the non ..APL application, the RESLTLT field may
contain a fullword zero, in which case any result CDR will be returned without conversion,
or it may contain the address of a pattern CDR (see "Pattern CDR's" on page 16), in
which case the pattern CDR will be used to convert any result CDR returned.

Execution of an /APLX / call is not permitted while a namescope entered with the I APLP' call is the active
narnescope, and will be rejected with a 0 10 ('invalid request') return code.

Calls to APL2 11

Execute an APL Function

(:.AL->L i\.Pl->2PI (J~A.PI~1 'J ,.~rOKI~:\,RC:,PKCi\VS,F:\ ,RSIJ~I~,LARG,RARe,)

This is the second of two calls provided to request execution of an APL function. This call is designed for
use from languages such as C and Assembler, and it provides greater access to and control over the argu­
ments and result of the specified function. Lnlike the IAPLS' call, this call passes arguments and expects
results in i\PI~2 CDR format.

The specified function may be in a packaged workspace and may have any valid valence. The arguments to
this call are:

'APl,F/	 a required argument indicating that an APL function is to be called.

TOKE~	 a fullword integer containing the token returned on the II~Il-"1 call. If this token is not
provided (i.e.: specified as zero), the call will require more Cl'L time to execute.

RC	 a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below.

PKG\\TS	 the name of the packaged workspace in which the specified function is to be found and
optionally a surrogate name for the function. If this argument is provided,

'PKGWS' 11	 DNA IFNI
or

'PKGWS' 11 DNA 'FN SURROGATE'

will be executed before the specified function is called. If this argument is not provided or

is coded with an initial blank, no DNA will be issued before calling the function. Thus. if
the function exists in a packaged workspace, the first call to it must provide the PKC;\\'S
argument, but subsequent calls do not. The PKG\VS argument is a character string which
is expected to be terminated with a blank, e.g.: • MY LIB. MYWS '. If the surrogate

name is specified it must be prefixed with a colon, viz:

• MYLIB .MYWS:SURROGATE '.

F~	 the name of the function to be called. This argument is a character string which is

expected to be terminated with a blank. It is used as the right argument to DNA if the
PKGWS argument is coded, and it is then used as the name of the function to be called.

RSLT	 when APL2PI is called, this fullword field may be set to 0 or to the address of a 'pattern
CDR' (see "Pattern CDRls" on page 16) to be used to convert the result of the ..Af'L fune ..
tion. If 0 is specified on the call, the result will be produced as a CDR without conversion.
On completion of the APL2PI call, this field will contain 0, if no explicit result or error
message was produced, or the address of a CDR representing the result or error message

(E: OEM) produced by the function. If the function completed with an API. error, the error
message will be returned as a default CDR, without any reference to the pattern CDR pro­
vided on input. An error message is not produced in all situations. In general, a message
will not be produced if the error is detected before execution of the specified function has
begun. In such situations, the RSLT field will be set to O.

LARG	 a fullword field containing the address of the CDR representing the left argument to the
function or containing 0 if no left argument is provided.

RARG	 a fullword field containing the address of the CDR representing the right argument to the
function or containing 0 if no right argument is provided.

12 Calls to APL2

Reference or Specify an APL Variable

This call may be used to obtain or specify the value of an APL variable. If a packaged workspace is speci­
fied, the specified variable must already exist in the packaged workspace ~ it cannot be created with this call.
To create a new variable in a packaged workspace, use the 'APLP' call to enter the packaged workspace
namescope, then this call (with no PKGWS argument) to create the variable and an 'APLP' call to exit the
packaged workspace namescope.

The arguments to this call arc:

a required argument indicating that an APL variable is to be accessed.

a fullword integer containing the token returned on the 'I;\IT/ call. If this token is not
provided (i.e.: specified as zero), the call will require more Cf'L time to execute.

RC	 a fullword integer field into which APL2PI will place the return code on completion of the
call. Return code of 0 0 indicates success. Other return codes are described below.

the name of the packaged workspace in which the specified variable is to be found and
optionally a surrogate name for the variable. If this argument is provided,

'PKGWS' 11	 DNA 'VARIABLE'
or

'PKGWS' 11	 DNA 'VARIABLE SURROGATE'

will be executed before the specified variable is accessed. If this argument is not provided

or is coded with an initial blank, no DNA will be issued before accessing the variable.
Thus, if the variable exists in a packaged workspace, the first access to it must provide the
PKG\\rs argument, but subsequent accesses do not. The PKG\\TS argument is a character

string which is expected to be terminated with a blank, e.g.: • MYLIB. MYWS '. If the
surrogate name is specified it must be prefixed with a colon, viz:

• MYLIB. MYWS: SURROGATE '.

VARIABLE	 the name of the variable to be accessed. This argument is a character string which is

expected to be terminated with a blank. It is used as the right argument to DNA if the
PKG\\TS argument is coded, and it is then used as the name of the variable to be accessed.

VALUE	 a fullword field containing the address of the CDR representing the value to be assigned to
the variable, or containing 0 if the variable is to be referenced. On completion of the call
the address of the CDR representing the value of the variable is placed in this field.

PATTER~	 This is an optional argument and may be specified when a variable is referenced
(VALCE= 0 on input). If specified, it is a fullword field which may contain the address of
a 'pattern CDR' (see "Pattern CDR's" on page 16) used to convert the value of the vari ..
able. If unspecified, or if the field contains zero, default conversion will be used to produce
the VALLE CDR.

Calls to APL2 13

Enter or Exit a Packaged Workspace Namescope

C::\LL .-\PLo2PI ('API .r.'r(JKI~~ ~R(~ .PK Ci\\TS)

'fills call fila) be executed to enter or exit a specified packaged workspace namescope. Lntil a packaged
workspace namescope is entered, calls to APL2PI will be executed from the namescope established when
}\PL2 was invoked (typically the active workspace namescope). \Vhen a packaged workspace namescope is
entered via an J APLP' call, subsequent calls to AP.L2PI will be executed in that namescope until another
~ APLI> call is issued to exit the namescope or enter another.

'"I he arguments to this call are:

'APLP a required argument indicating that an Af}L packaged workspace namescope is to be
entered Of exited

roxr:-, a fullword integer containing the token returned on the 'Ii'IT~ call. If this token is not
provided (i.e.: specified as zero), the call will require more CPt; time to execute.

RC: a fullword integer field into which APL2PI will place the return code on completion of the
call. H.etUTIl code of 0 0 indicates success. Other return codes are described below.

if specified, this argument identifies the packaged workspace whose namescope is to be
entered. If not specified, the request is to exit the current namescope,

If specified, this argument must be terminated with a blank, and must take one of the fol­
lowing forms:

LIBRARY. MEMBER or MEMBER

where LIBRARY is the DD~A\1I~ (TS() or file name (eMS) of the load library in

which the packaged workspace resides, and MEMBER is the member name of the packaged
workspace. The same rules apply to locating the packaged workspace as when such mfor­

mation is provided in the left argument to DNA.

~ote that execution of the J API~X/ call is not permitted while a namescope entered with an J APLP' call is
the active namescope.

Note also that the uses of 'APLP/ are designed to be paired: an 'API.P' call to enter a packaged workspace.
followed sometime later by an J APLP/ call (without the packaged workspace specified) to return to the pre­
vious environment. Paired 'APLP/ calls can be nested - in other words, one packaged workspace can be
entered from another, but care must be taken in unwinding the nesting. An attempt to issue an ~.IL\PI .I" call
to exit a packaged workspace that was not paired with a previous 'Al)I~PJ call to enter a packaged workspace
will result in a 0 10 error return code C'invalid request").

The JAPLpJ call operates by accessing DEA in the specified packaged workspace. If, when the packaged

workspace was created, a list of accessible objects was specified, and if DEA was not included in that hst
requests to enter that packaged workspace namescope will fail,

14 CaIls to APL2

Return Codes

Each of the calls described above returns a return code in the RC argument field. These return codes are
returned as integer fullwords. but arc best interpreted as pairs of halfwords. If the first halfword is non-zero,

the return code is a DET value that resulted from APL execution. In addition to the OET values. the fol­
lowing return codes are defined:

o0 success

o 1 APL is already initialized. This return code may result from an 'I~IT' call and is the expected
return code when the fI~IT' call is issued from a non-APL application which was invoked from

APL2 using APL2PIE.

o2 Lnexpected shutdown. APL has terminated unexpectedly (perhaps as a result of an) OFF
command or as a result of an unsuccessful 'I~IT' call). This return code may result from any call
other than 'TER\1', in situations where a non-Al'L application is running independently of APL2.
If this return code is received by a non-APL application invoked from AIlL, or during processing in
a routine nominated as a service routine on an 'I~IT' call, processing should be terminated in an
orderly fashion and control returned to the routine's caller.

o3 Expected shutdown. This return code can result from any call to APL2PI and indicates a request
from APL. for the non-APL application to terminate. In response to the request, the non-APL
application should terminate and return control to its caller.

o4 Insufficient space. There is insufficient free memory for the correct operation of the APL2PI
routine. A larger region or virtual machine should be used to run the application.

o5 (TSO only) Not executing under the TSO TMP. The program which issues calls to APL2PI must
be invoked under TSO or a TSO TMP, (typically 'IKJEF1'Ol').

o10 Invalid request, or invalid parameter list. Among other things, this return code may result from an
'APLX' call while a namescope, entered with an fAPL-,P" call was active, or from an 'APLP' request
to exit a packaged workspace when no packaged workspace namescope was active.

o 11 Unexpected internal error in the APL2PI routine.

Normally, return codes in which the first halfword is non-zero originate from APL and should be interpreted

as DET values. The following, however, can originate from the APL2PI routine:

1 2	 (System Error) - an unexpected error in the APL2PI routine.

1 5	 (Xo Shares) - the specified packaged workspace cannot be accessed on a 'API ..P' call. This error
may occur because the specified packaged workspace could not be located or loaded, or because it
was already the active namescope.

3 1	 (Value Error) - the variable named on an 'APL\l' call could not be accessed in the specified pack­
aged workspace.

Calls to APL2 15

Using CDR Results

The ~ ..l\PL,X~. JA:PlJ~1 and iAPL \7 1 calls which return results, return those results in CDR format. These
result s arc always pointer form CDR IS and are built as temporary objects in the API_2 workspace. On the
next call to i\PL2PI, these temporary objects are erased before the call is executed. Thus, CDR result­
returned by f\PL2PI may not be used as arguments on subsequent calls, and all processing of such result­
must be performed before any subsequent call to APt,2Pt

Pointer form CDR's returned by i\PL/2PI have addresses in the CDR pointer section. That is to say. the
C{)RPTR fields in that section contain addresses with the high order bit on, and never zeros or tokens.

Pattern CDR's

Pattern CDR's can be specified on '·i\.PLX~J IAPLF"' or ~API_\T' calls to control the creation of the C.DR
representing the result of an APL function or expression or the value of an API. vanable. If specified, /\PI
will attempt to convert the result or value to the data types specified in the pattern CDR. Further, during
this conversion, API.! will check that the ranks and shapes of the result or value and its items correspond to
those specified in the pattern CDR. If the result or value cannot be converted as specified, or if a rank or
shape mismatch is detected, an appropriate APL error will be generatcJ.

The format of CDRIS is discussed in the i\.PL2 Processor Interlace Reference manual (SH20-9234). The
format of a pattern CDR matches that of the CDR header and descriptor sections. That is to say that it is
just like a CDR without the pointer or data sections. It consists of the CDRr·l-l..~GS, C.DRI)1 .I X.
CDRXRHO, CDRR1-, CDRRL, CDRRA~K, and CDRRIIO fields only. The contents of the
CDRFLAGS field must be valid, but they do not influence the type of CDR produced. A pointer form
CDR result or value is always produced.

Unlike a CDR, a pattern CDR may have CDRXRHO or one or more elements of CDRRI-IO specified as
X"'80000000"' or CDRRA~K specified as X"8000"'. These values indicate that the corresponding fields are
unspecified and are not to be used in rank or shape checking. If CDRRA~K is so specified for a particular
item of the array, CDRRHO fields may not [0110\\' it.

The Pattern CDRs used on this interface are similar to the argument patterns used to describe the arguments
of an external routine called by APL (see APL Programming - System Service Reference, chapter 2~.

SI-I20-9218), Pattern CDRs, however, conform to the true CDR header format (as defined by the 1\I)2(~I)R

macro), while argument patterns are an EBCDIC representation of it.

External Functions AlP and PTA

When an "'APLS"' call is issued to execute an APL function, the arguments provided in the call are passed to
the APL function as a vector of addresses - one address for each argument. To the API.., function this

appears as a vector of integer values. The external function PTA ('Pointers to Array') is provided to allow

access to these arguments. PTA expects a vector of addresses as its right argument and a pattern (similar to
the pattern used with the external function R T A) as its left argument, and it v.;ill produce an APl.. array as a
result. For example:

ARRAY+'CGO 1 3)(I4 O)(E8 1 2)(C1 1 10)' PTA POINTERS

will convert a set of three arguments -- a scalar fullword integer, a pair of double precision real numbers, and
a 10 byte character string, respectively -- to an APL vector of three items.

The external function ATP CArray to Pointer') is provided to allow pointer arguments to be replaced (i.e.:
updated) with an APL array. The syntax for use of this function is:

PATTERN ATP ARRAY POINTERS

16 Calls to APL2

where PATTERN is a pattern (similar to the pattern used with ATR) which describes the data in the desired

{annat, POINTERS is the address of the data to be updated, and ARRAY is the source array. Note that
this function does not produce an explicit result. Further, it makes no check to ensure that the result fields
are large enough to hold the source values.

The PTA function assumes a one ..to-one correspondence between the data descriptors in the left argument,
the data items in the array specified in the right argument, and the set of data areas specified by the pointers
in the right argument. Thus, to update a set of three data areas, three pointers must be provided, an array
containing three items must be provided and the pattern must specify either a three element simple array or1

a general array containing three simple arrays, viz:

'e1 1 3' ATP 'ABC' (P1,P2,P3)
or:

ARRAY+'ABCD' (4 2p18) 1.234
PATTERN+'(GO 1 3)(C1 1 4)(I4 2 4 2)(E8 0)'
PATTERN ATP ARRAY (P1,P2,P3)

If it is necessary to update a data area with a non-simple APL array (i.e.: put a data structure into a single
data area), the non-simple array must be converted to a record using ATR, and then ATP can be used to
move it to the data area, viz:

ARRAY+'ABCD' (4 2p18) 1.234

PATTERN+'(GO 1 3)(C1 1 4)(I4 2 4 2)(EB 0)'

RECORD+PATTERN ATR ARRAY

le1 1 *' ATP RECORD POINTER

Using PTA and ATP

Assume that the function AVERAGE in packaged workspace COMPUTE is called with the following three
arguments:

1. a vector of double precision numbers,
2. a fullword integer indicating the number of items in the first argument,
3. a double precision real field in which the function is to place its result.

The APL function might be coded as shown in figure 4.

VAVERAGE ARGS;V;N;R
[1] +Op3 11 DNA 2 3p'PTAATP' A Access PTA and ATP
[2] N+'I4 0' PTA 2~ARGS A Get N From 2nd argument
[3] V+('EB 1 '.~N) PTA tARGS A Get V Trom 1st argument
[q] R+ (+IV) "N A Compute the average
[5] 'EB 0' ATP R (3~ARGS) A Update 3rd argument (result)

V

Figure 4. Using PTA and ATP

For additional information on the patterns used in the left arguments of PTA and ATP, see the description
of RTA and ATR in the APL2 Programming: Using the Supplied Routines manual (SH20.9233), and the
description of argument patterns for Processor 11 in the APL2 Programming: System Services Reference
manual (SH20"9218).

Calls to APL2 17

External Functions APL2PI and APL2PIE

Two APL external functions, APL2PI and APL2PIE, are provided to facilitate communication from

APL2 to non-Al'L applications. APL2PI and APL2PIE can be accessed by means of DNA. viz:

o 11 DNA 'APL2PI'
o 11 DNA 'APL2PIE'

l'ote that the first item of the left argument of DNA must be 0 (and not 3) for proper operation of the rest of
the APL2PI interface.

APL2PI is a niladic function used to return control to the non-APL application after APL2 initialization or
after an 'APLX' call from the non-Al-L application. It is equivalent to APL2PIE 0 'I as described
below,

APL2PIE is an ambivalent function which serves a number of different purposes:

• return control from the APL2 environment to the currently active non-APL application;
• invoke a non-APL application from the APL2 environment,
• request termination of the currently active non ...APL application,
• issue a service request to a non-APL application.

Calls to APL2PIE can be imbedded in APL applications which run independently or are invoked through

APL2PI from non-Af'L applications. Lse of APL2PIE takes the following forms:

RESULT APL2PIE 0 I'
Return control to the currently active non-APL application, This request can be issued irnme­
diately after APL2 is invoked from a non ...APL application or after a non-APL application has
returned control to APL with an "APLX' call. Attempting to return control in any other situation
will result in a 1 0 return code. If issued rnonadically, no result will be returned to the non-Af'L
application. If issued dyadically, the left argument will be returned to the non-APL application in
CDR format if the RESCLT parameter was provided on the I APLX call.I

~ote that this APL2PIE request (or an APL2PI request which is equivalent to

APL2PIE 0 'I) causes control to be transferred from the APL environment at the point at

which the request is made. Thus, if a request of this type is imbedded in an APL function. thl~

function is suspended at that point and control is transferred 10 the non-APL application. Subse­

quent requests from the non-APL application are executed in the context of this suspended func­

tion. In particular, a subsequent 'APLX' request will return control to the suspended function.

Lsers should avoid imbedding APL2PIE 0 ,. calls in /\PL applications unless their use is

clearly understood and planned for.

COMMAND APL2PIE 1 NAME

Invoke a non-APL application using the specified COMMAND. COMMAND is a character string
containing the name of the module to be invoked, optionally followed by one or more arguments
to be passed to the module when it is invoked. In the l\1VS/l"SO environment, the specified
module must reside in a load library in the user's normal search order. In the VM/CMS environ­
ment, the specified module may be the name of an existing C:\JlS nucleus extension, or the name of
a relocatable load module residing on an accessible minidisk.

The non-APL application is assigned the specified NAME. That name must match the !'A~1r, in
any 'I~IT' call issued by the non-APL application and in subsequent APL2PIE 3 calls to the
non-APL application.

18 Calls to APL2

"Then the specified module terminates. control will be returned to AJ>L and APL.2PIL will return a
result of 0 1 RC where RC is the return code resulting from the module. Control may also be
returned to APL if the non-APL application issues an 'APLX' call. In this case, the result returned

by APL2PIE will have the form 0 0 \lSG and is provided by the VALLTE parameter of the

'APLX' call or a default message provided in the APL2PAPIW packaged workspace.

~ote that for successful use of this service, APL2PI must be link edited as a separate module and
loaded as a nucleus extension in eMS or placed in the APL2 load library in !\1\'S. Additional
information on this subject can be found in the sections entitled "Invoking a non-APL Application
through APL2PIEIf in the "System Related Considerations" section of this document.

APL2PIE 2 "

Request termination of the currently active non-APL application. This request simply sends return
code 0 3 back to the non-APL application in response to its last call to APL2PI. The non-APt,

application is expected to honor this request and terminate. ~ote that NAME may not be specified
in the right argument; only the currently active non-APL application can be terminated.

If the non-APL application terminates as expected! a result of 0 1 RC will be returned from
APL2PIE, where RC is the termination return code resulting from the non-APL application.

VALUE APL2PIE 3 NAME

Make a service request to the NAME'd non-APL application. This request is possible only if the
non-APL application specified a SER\lICE routine address and a TYPE other than 0 on its 'I:\IT'
call. If these requirements are met, this request will cause a subroutine call to that service routine.

If APL2PIE is called dyadically, the left argument is passed to the service routine in CDR or
non-CDR format depending upon the specification of the TYPE parameter on the 'l~IT" call from

the non-APL application. In non-CDR format, the VALUE will be passed as a byte string result
of the expression:

(PFA VALUE) ATR VALUE

On entry to the service routine of the named non-APL application,

Rl =>	 A(VALUE) in CDR or non-CDR format or A(8) if called monadically
A(Return Code) => F'G'
A(Result Pointer) => A(8)
A(APL2PI)
A(ANCHOR)

R13 =>	 18 word save area
R14 =	 return address
R15 =	 address of service routine

The return code field is a fullword which can be updated by the service routine. It is initialized to
zero. If set to a non-zero value, a three element vector (0,1 ,return code) will be returned as the

result of the APL2PIE function call when control is returned from the service routine. The result
pointer field is a fullword, initialized to zero, into which the service routine can place the address of

a value which will be used as the explicit result of the APL2PIE function call when control is
returned from the service routine. If the return code is zero, the result pointer field will be exam...
ined. If the result pointer is zero, a result of 0 1 0 will be returned. If it is non-zero, the specified
result, pointed to by the address in the result pointer field, will be returned.

The result pointer field must contain zero or the address of a result value in CDR or non-CDR
form, depending on the specification of the TYPE parameter on the non-APL application's II~IT'

call. If TYPE was specified as 1 (non-CDR), the result will be interpreted as a byte string prefixed
with a fullword length field. If desired, it can be converted to a different fonn using the APL
external function RTA.

Calls to APL2 19

If T'r'Pl. was specified as 2 (CI)R). the result will be interpreted as an API array in (~DR form.
The array rna) have any value; however, if its first item is zero, it must have the form:

N M VALUE

where ~ M rna) be 0 0, 0 1, or any defined OET value and VALUE may be any valid APL array .

Of may be elided

.1\ service request can also result in the following unsuccessful return codes:

o0 \1SG the service routine .ssued an 'APL,X I request to APL2PI resulting in control being
returned to APL,2 Such a request may result in unexpected behavior and is not recorn­
mended.

o 1 RC the non-Af'L application terminated with return code RC

lOan attempt was rnade to call the APL2PI or APL2PIE external function when the
APL,2PI routine was not active or when no non-APL application was active on the
~t\PL2PI interface.

o4 insufficient free space for correct execution

o 10 invalid arguments (typically NAME too long)

1 2 unexpected error

1 5 invalid NAME or no service routine for the named non-APL application

1 6 this return code results from an attempt to invoke a non-APL application

(COMMAND APL2PIE 1 'NAME') when the named application is already active
on the APL2PI interface.

Note that the service routine entered as a result of this call to APL2PI E can issue requests to APL,2 using
the APL2PI interface. Since such requests can theoretically result in a recursive call to the same service
routine, provisions for such an event should be incorporated into the design of the non-APL application.

All of the different calls to APL2PI are supported from executing service routines. It is recommended,
however, that the ITER \1 , and 'API-iXI calls be avoided as they may lead to unexpected and undesired
results. The 'TER\.11 may result in termination of APl-",2 when the call is made or later at some unexpected
time. The IAPLX/ call will return control to the APL application that invoked the service routine. and it
will appear to that application as if the service routine had terminated. If control is subsequently returned to

the non-APL application (with an APL2PI or APL2PIE 0 ., call), control will be returned to the
executing service routine which will presumably eventually terminate and return control to APL2.

Note that in many circumstances where the non-APL application and/or the service routine is written in a

high level language (such as C or Pl.vl), APL2PIE 3 calls to service routines will not operate correctly.
Typically, two problems prevent correct operation:

1.	 While high level languages provide mechanisms by which a subroutine address can be passed as an argu­
ment on a call, the form in which that subroutine address is passed may not be acceptable to APL2PJ.
The APL2PI INIT call expects the SERVICE parameter to be provided as a fullword which contains
the address of the of the SERVICE subroutine.

2.	 The linkage conventions expected by a high level language subroutine may not match those provided b)
APL2PI (as described above) when the service routine is called. Subroutines written in C and PL;L for
example, may require register 12 to be set on entry, and register 13 to point to a save area within a save
area stack maintained by the C or PLjI run time environment. These requirements are not fulfilled in

the linkage conventions used by APL2PI.

20 Calls to APL2

Service routines designed to be used with APl.2PI will most typically be written in Assembler language.
With some limitations, they can be written in FORTRA' (using the IB\1 v'S FORTRA~ program
product) if the service routine is structured as a FORTRA, subroutine and the non-APL application is a
FOR1~RA~ mainline routine. An example of such a service routine is contained in the section entitled
"Using the APL2PI Interface from FOR·rRA~II.

APL2PI and APL2 Calls to Other Languages

Through the use of DNA, APL users can invoke applications written in languages other than APL2. Sup­
ported languages include FORTRA!'\ and Assembler language, but users have reported success with
COBOL, PL/ I, C, and Pascal as well. The APL2PI interface also provides facilities through which APL can
be invoked by or can invoke a non-APL application.

\Vhen using the APL2PI interface, some care must be taken not to interfere with the operation of the

non-APL application by calling other non-APL routines through DNA which are written in the same high
level language as the non-APL application interacting with APL2PI.

This situation is of concern because certain high level languages, such as FORTRA~, require access to a
"programming environment" for any non-trivial program. Typically. only one instance of the necessary pro­
gramming environment is supported in a user's address space or virtual machine at any given time.
~on-APL applications written in such high level languages that invoke or are invoked by APL2 via the
APL2PI interface will typically establish their necessary programming environment as part of their own invo­
cation.

When a non-APL routine is accessed through the use of DNA, the :I~IT tag in the l"A:\1ES HIe entry for
that non-APL routine specifies whether a programming environment is required for correct execution of that
routine. If required, Processor II will attempt to initialize the environment when the non...APL routine is
first called, or as a result of a specific request from the APL caller. This instance of the environment is not
the same as the instance of the environment established in conjunction with the APL2PI interface, and it
may not operate correctly or worse, it may cause unexpected or erroneous results.

It is therefore recommended that when an application written in a high level language like FORTRA~

invokes or is invoked by APL2 via the APL2PI interface, no other routines written in the same language be

invoked via APL2PI or DNA. Note that ESSL and OSL routines also have a dependency on the
FORTRA" programming environment and should therefore not be invoked when a non-APL application
written in FORTRA~ is active on the APL2PI interface.

Additional information on routines accessed through DNA and their requirements in tenns of programming
environments can be found in the APL2 Programming: System Services Reference manual (SH20-9218) in
the chapter entitled "Processor 11 - Calling Compiled Routines".

Calls to APL2 21

System Related Considerations

Using APL2PI in a VM/CMS Environment

In the \~\.1/CMS environment, the APL2PI interface is provided with the following components:
r

i\P2\lAPI	 TX r 130 - the object module which contains the APL2PI entry point that is called from
non-APL applications. This object module can be combined with the non-APL application or
generated as a separate module that can be dynamically loaded by the non-APL application. or
accessed as a CMS nucleus extension. Each of these alternatives are described below,

This object module can be found in file 5 on the APl.2 and API->2 AI~ basic machine-readable
materials tape, or may be provided as a TEXT file supplied with the P'TF's listed at the begin­
ning of this document.

i\P2XAPIC AP2MSA\1P - an Assembler language source file which can be modified by users to alter the
command and parameters used to invoke APL2 from a non-APL application. If an invocation
command other than the default:

APL2 QUIET	 RUN(APL2PI)

is desired, this source file can be modified, reassembled, and combined with the AP2\1 API object
module. If AP2XAPIC is combined with AP2VAPI, the invocation command assembled into
AP2XAPIC will be used; otherwise, the default invocation command will be used. ~otc that in
either of these cases, the invocation parameters can be supplemented or overridden by means of
the PAR~S parameter in the '!i'IT' call from the non-APL application.

The AP2XAPIC source file can be found in file 3 on the APL2 and APL2.,AE basic machine­
readable materials tape.

Modifying the APL2 Invocation Command and Options

To change the command or options used to invoke APL2 from a non-Al-L application:

1.	 Copy the AP2XAPIC AP2\1SAMP flie to AP2XAPIC ASSI::\IBLE

2. Edit AP2XAPIC ASSE,\1BLE

Modify the statement labeled APIJ2C:\1D~ to change the name of the APL2 module invoked. For
example, to cause APL2/AE to be invoked, change the statement to:

APL2CMDN DC CL9 I APL2AE'	 COMt~AND

Modify the statement labeled APL2CMDO to change the invocation options. It is recommended that
the Qt:IET and RC!'(APL2PI) options be left unchanged.

3. After making the necessary changes to AP2XAPIC ASSEMBLE, reassemble it using the following C\1S
commands:

GLOBAL MACLIB AP2MAC

ASSEMBLE AP2XAPIC

4.	 Combine the TEXT file resulting from this assembly with the AP2\TAPI object module. This can be

done without destroying the original object module with the following C1\1S commands:

COpy AP2VAPI TXT130 A AP2VAPI TEXT A
COpy AP2XAPIC TEXT A AP2VAPI TEXT A (APPEND

The resulting AP2VAPI TEXT file should then be used in place of AP2VAPI TXT 130 in the proce­
dures described below.

22 Calls to APL2

Accessing APL2PI from a non-APL Application

AP2\l..~PI contains the APL2PI entry point that is called from a non-APL application to request services
from APL2. It can be made accessible to the non-APL application in a number of ways:

•	 If the non-APL application is invoked with C\1S LOAD and START commands, the AP2VAPI object
module can be made available as a TEXT file on an accessible C\.1S minidisk, and it will be loaded by
C\1S when the non-Af'L application is loaded. 1-0 make AP2\lAPI accessible as a TEX1"' file, use the
following eMS command:

COpy AP2VAPI TXT130 A APL2PI TEXT A

l'ote that it is necessary to change its name to APL2PI TEXT since it is referred to by that name in the
non-APL application.

•	 If the non ...APL application is generated as a eMS I\10DCLE using the GE~MOD command, APL2PI
can be simply incorporated in that module when it is built, viz:

COpy AP2VAPI TXT138 A APL2PI TEXT A

LOAD non-APL application .

GENMOD non-APL application .

APL2PI TEX1' will be combined with the non-APL application as a result of the LOAD command.

•	 In a number of situations, it is may be desirable to structure APL2PI as a C\t1S nucleus extension and
cause it to be loaded and accessed dynamically from the non-APL application. This approach has the
advantage that APL2PI is placed in CMS protected storage as an entity separate from the non-Af'L
application. To prepare APL2PI to be loaded as a eMS nucleus extension, it can be converted to a
module using the commands:

COpy AP2VAPI TXT130 A APL2PI TEXT A

LOAD APL2PI (CLEAR RLDSAVE

GENt·10D APL2PI

ERASE APL2PI TEXT A

The APL2PI module can be subsequently accessed by the non..APL application using the eMS
!\l.)CXLOAD and ~LCXDROPcommands and ~LCEXT functions. For additional information on
this subject, see the C~S Macros and Functions Reference (SC24-5280) and C:v1S Command Reference
(SC 19-6209) manuals.

Invoking a non-APL Application through APL2PIE

The APL2PIE external function can be used to invoke a non...APL application which can subsequently
make use of the APL2PI interface, viz.:

o 11 DNA 'APL2PIE'

'COMMAND' APL2PIE 1 'NAME'

The user must ensure that when such a request is made, that APL2PI is established as a eMS nucleus
extension; otherwise, an error message will be issued by the APL2PIE function and the request will be
denied. If APL2 was invoked via APL2PI from a non-APL application, APL2PI will already be established
as a CMS nucleus extension, and no other action is necessary. If APL2 was not invoked via APL2PI, then
the user must take explicit action to cause it to be established as a nucleus extension.

To explicitly cause APL2PI to be established as a eMS nucleus extension, it must be first created as a eMS
module. This can be accomplished with the following CMS commands:

COpy AP2VAPI TXT130 A APL2PI TEXT A

LOAD APL2PI (CLEAR RLDSAVE

GENMOD APL2PI

ERASE APL2PI TEXT A

Calls to APL2 23

The resulting i\P1.2PI \10I)l·I.r. can he established as a (=\1~ nucleus extension with the C\lS command:

NUCXLOAD APL2PI

Parameters Ina) be passed to the non-Al-L application by specifying them in the • COMMAND t left argu­

ment of APL2PIE. viz:

o 11 DNA ~APL2PIE'

'COMMAND PARMS' APL2PIE 1 'NAME'

Tne specified non-Al-L application (C,"'OMMAND) 15 entered with register 0 pointing to a C\1S extended
parameter list and register 1 pointing to a C\-1S tokenized parameter list, viz:

RC =>	 A(comrnand verb) :=> CI COr.1!,lfiND I

A(parameters) ..::> C'PARf·1S '

A(end	 of commard)
A, (8)

Rl =>	 CLB I COt.1!'.l,A}(1 I

CL8IPAR~·~S

X'FFFFFFFF i

VM/XA Considerations

ln the y'\1 'XA environment. A PI.2 normally runs in 31-bit mode. In that mode. the r\Pl.2 workspace is
placed above the 16 megabyte line. In order to obtain results from APL2, the APL2PI routine must there­
fore run in 31-bit mode. This should pose no problem if the non-APL application runs in 31-bit mode
when it calls ~A.PI./2PI~ when its service routine is called by APL2PI, and when it i~ accessing data in CDR
form returned by APL2PI

If the non-APL application must run in 24-bit mode when calling or being called by API.2PI, the APL.:'.
workspace must b(forced below the line. This can be done by invoking APL2 with the invocation option
XA(24).

Note that if i\PL,2PI is generated as a separate module (so that it can be ~C(~XI O.A..Ded as described
above), the correct addressing and residency modes must be specified. If the non-Af'I. application operates
in 31-bit mode,

GENMOD APL2PI (AMODE 31 RMOJE 24

is suggested. If the non..APL application operates in 24-h!t mode.

GENMOD APL2PI (AMODE 24 RMODE 24

will be required.

24 Calls to APL2

Using APL2PI in an MVS/TSO Environment

In the \1VS::TSO environment, the APL2PI interface is provided with the following components:

AP21~API	 the object module which contains the APL2PI entry point that is called from non-APL applica­
tions. This object module can be link edited with the non-APL application or as a separate load
module accessed by the non-APL application.

This object module can be found in file 3 (JLG1310.Fl) on the APL2 and APL2 .. AF basic
machine-readable materials tape and is placed in the APL2.AP2\10DS DLIB by the installation
process. or may be provided as an object module supplied with the PTF's listed at the beginning
of this document.

AP2XAPIC an Assembler language source file which can be modified by users to alter the command and
parameters used to invoke APL2 from a non-APL application. If any invocation command
other than the default:

APL2 QUIET	 RUN(APL2PI)

is desired, this source file can be modified, reassembled and link edited with the AP21~API object
module. If AP2XAPIC is link edited with AP21~APIC, the invocation command assembled into
AP2XAPIC will be used: otherwise, the default invocation command will be used. ~ote that in
either of these cases, the invocation parameters can be supplemented or overridden by means of
the PAR~S parameter in the 'I:\IT" call from the non-APL application.

The AP2XAPIC source ftIe can be found in ftie 5 (Jl/G1310.F3) on the APL2 and APL2 AE
basic machine..readable materials tape and is placed in the APL2.AP2S0CRC DLIB by the
installation process.

Modifying the APL2 Invocation Command and Options

To change the command or options used to invoke APL2 from a non..APL application:

I, Make a copy of the AP2XAPIC source file from the APL2 distribution data set.

2, Edit your copy of the AP2XAPIC source file,

Modify the statement labeled AP2CMD~ to change the name of the APL2 module invoked. For
example, to cause APL2 iAE to be invoked, change the statement to:

APL2CMDN DC CL9 'APL2AE'

Modify the statement labeled APL2CMDO to change the invocation options. It is recommended that
the QlJIET and RC~(APL2PI) options be left unchanged.

3. After making the necessary changes to AP2XAPIC, reassemble it, specifying APL2.AP2MACS as the

macro library.

4.	 When link editing AP2TAPI in the procedures described below, specify an I~CLCDE statement for the
object module produced by this assembly.

Steps 1.. 3 in this procedure can typically be performed in a straightforward fashion using ISPF (options 3, 2,
and 4). If you are unfamiliar with the use of ISPF, consult your system administrator for assistance. Step 4
is typically accomplished by executing a batch job such as the one shown in the next section.

Calls to APL2 25

Accessing APL2PI from a non-APL Application

1\P2'r!\PI contains the APL2PI entry point that is called from a non-Af'I application to request services
from I\Pt,2. It can be made accessible to the non-Af'L application b) link editing it with that application.
or by lmk editing it as a separate module and dynamically loading it from the non-APL application.

To link edit it with the non-APL application, simply I~(~L/CDE AP2TAPI (and optionally AP2XAPIC) in
the link edit of the non-Al-L application.

The following job can be used to link edit j\P2']'API (and optionally AP2X.\PIC) as a separate load
module:

j/LINK JOB (ACCOUNT),PROGAMER,CLASS=A,TIME=(l),

II NOTIFY=USERID,MSGCLASS=A,MSGLEVEL=(l,l)

IjLINK ~XEC PGM=IEWL,REGION=512K,

II PARM='NCAL,RENT,REUS,MAP,LIST,LET,SIZE=(S12K,64K) I

//SYSPRINT DO SYSOUT=*

//SYSLMOD DO DISP=SHR,DSN=output data set

//08J 00 DISP=SHR,DSN=;nput data set

//SYSUTI DO UNIT=SYSDA,SPACE=(13030,(40,20))

//SYSLIN DO *

MODE AMODE(31),RMODE(ANY)

INCLUDE OBJ(AP2TAPI)

INCLUDE OBJ(AP2XAPIC)

ENTRY APL2PI

NAfv1E APL2PI (R)

/*

II

The input data set should identify the data set in which AP2TAPI and AP2XAPIC reside. The output data
set must be available to the non-APL application when it needs to load APL2PI. The APL,2 load library
provides a convenient location since that data set must also be available during execution of the APL2PI
interface.

Lnder \-f\rs, APL2 and the APL2PI routine must be invoked under the TSO terminal monitor program.
IKJEFTOI. This is the normal mode of operation if the application is running in a l'SO environment. and
no special action is needed. If, however, the application was designed to operate in a batch environment it
must be invoked through the TSO terminal monitor program, For example, ~ batch program, normally
invoked with:

IISTEP EXEC PGM=MYPROG

//SYSPRINT DO SYSOUT=*

//SYSIN DO *

must instead be invoked with:

I/STEP EXEC PGM=IKJEFT01

//SYSTSPRT DO SYSOUT=*

/ISYSTSIN DO *

MYPROG

/*
//SYSPRINT DD SYSOUT=*

//SYSIN DO *

Finally. in either a TSO or batch environment, the files necessary to run APL,2 must be allocated before
issuing the APL2PI /I~~IT' call from the non-Af'L application.

26 Calls to APL2

Invoking a non-APL Application through APL2PIE

The APL2PIE external function can be used to invoke a non-APL application which can subsequently
make use of the APL2PI interface, viz.:

o 11 DNA 'APL2PIE'

'COMMAND' APL2PIE 1 'NAME'

The user must ensure that when such a request is made, that APL2PI is available as a separate load module
in the same load library (or in the same concatenated list of libraries) from which APL2 was loaded.
Instructions on creating APL2PI as a separate load module are described above.

Parameters may be passed to the non-APL application by specifying them in the • COMMAND' left argu­

ment of APL2PIE, viz:

o 11 DNA 'APL2PIE'

'COMMAND PARMS' APL2PIE 1 'NAME'

The specified non-APL application (COMMAND) is entered with register 1 pointing to a TSO CPPL control
block. The first word in this control block points to the TSO command buffer representing this command,
V12:

Rl => A(command buffer) => command buffer

The command buffer begins with a halfword length field indicating the total length in bytes of the command
buffer, followed by a halfword offset field indicating the offset from the command name to the beginning of

the command parameters, followed by the command. Thus for' COMMAND PARMS' APL2PIE 1

'NAME' ,

X'88170008 1,C'COMMANDRl => A(command buffer) => PARMS'

MVS/XA Considerations

In the \1VS/XA or :\1VS/ESA environments, APL2 normally runs in 3140bit mode. In that mode, the APL2
workspace is placed above the 16 megabyte line. In order to obtain results from APL2, the APL2 routine
must therefore run in 31..bit mode. This should pose no problem if the non-APL application runs in 31-bit
mode when it calls APL2PI. when its service routine is called by APL2PI, and when it is accessing data in
CDR form returned by APL2PI.

If the non-APL application must run in 24.. bit mode when calling or being called by APL2PI, the APL2
workspace must be forced below the line. This can be done by invoking APL2 with the invocation option
XA(24).

IMS Considerations

APL2 and APL2/AE are not officially supported in an IMS environment. Some users have successfully
used the APL2/AE product, however, under IMS. To do so the application must be invoked by the TSO
terminal monitor program, IKJEFTO I. Thus, in the IMS environment, the transaction is structured to
invoke IKJEFTOI which in tum invokes the application code that uses APL2PI and through it APL2/AE.
Note that IKJEFTO1 is an authorized program and that this characteristic must be preserved when running
under IMS.

Calls to APL2 27

Language Related Considerations

VAVG ARGS;SIZE;NUMBERS;RESULT
[1] A ARGS: Vector OT 3 addresses from non-APL application
[2] A ARGS[1]+ Number or numbers (ru/lword integer)
{ 3] A ARGS[2]+ Vector of numbers (floating point)
[4] A ARGS[3]+ Result field (rut/word integer)
[5]
[6] +(Ov.=3 11 DNA 2 3p'PTAATP')/ERROR
[7] +(3~pARGS)/ERROR

[8]
[9] A Retrieve size oT input vector from ARGS[1]
[10] SIZE+'I4 0' PTA ARGS[l]
[11]
[12] A Retrieve vector oT numbers Trom ARG[2]
[13] NUMBERS+('EB 1 ',~SIZE)PTA ARGS[2]
[14]
[15] A Compute the average
[16] RESULT+(+/NUMBERS)+SIZE
[17]
[18] A Return result to ARGS[3]
[19] fEB 0' ATP RESULT ARGS[3]
[20] +0
[21]
[22] ERROR:'Unexpecfed error' DES 9 9

V

Figure 5. APL2 A\'G program used in language related examples

Using the APL2PI Interface from FORTRAN

Most functions available on the APL2PI interface can be used in a simple and straightforward fashion in
FORTRA~ programs. Since the FORTRA~ language does not provide support for data structures or
pointers however, the I APLF ' and "APLV' calls cannot be used effectively, and only limited function is avail­
able between API-t2 and a FORTRA~ service routine.

This section presents three simple examples of the use of the APl-l2PI interface from FORTRA~ programs.
Each of the examples shown has the ability to invoke APL2, or be invoked by APL2. The IB\1 \TS
FORTRA~ Program Product (5668..805) Version 2, Release 4 was used to construct these examples. Other
FORTRA~ compilers mayor may not have similar capabilities.

The first example shows a FORTRA~ program which makes use of the APL/2PI I APLS' call to invoke the

APL function AVG in packaged workspace PKGLIB. STATS to obtain the average of a vector of numbers
passed to it. Lines of the FORTRA!'\ routines shown below are numbered on the left for reference in the
notes after the figure.

28 Calls to APL2

1 REAL*8 NUMBERS(1000),RESULT
2 INTEGER*4 TOKEN,RC,SIZE,LENGTH
3 INTEGER*2 RETCODE(2)
4 EQUIVALENCE (RC,RETCODE(l))
5 TOKEN=O
6 LENGTH=0

C ---- CALL APL2PI TO INITIALIZE APL2
7 CALL APL2PI('INIT',TOKEN,RC, 'SAMPLE ',0,0,0,16,'SM(OFF) vJS(200K) ')
8 IF (RC .GT. 1) GOTD 98

9 WRITE (6,*) tEnter number of numbers to average'
10 READ (5,*) SIZE
11 WRITE (6,1) tEnter ',SIZE,' numbers'
12 READ (5,*) (NUMBERS(I) ,I=l,SIZE)

C ---- CALL APL2PI TO COMPUTE AVERAGE
13 CALL APL2PI ('APLS',TOKEN,RC,'PKGLIB.STATS ','AVG ',LENGTH,' "

1 SIZE,NUMBERS,RESULT)
14 IF (RC .NE. 0) GOTO 99

15 l1RI TE (6, 2) ,The averag e is: " RES ULT

C ---- CALL APL2PI TO TERMINATE APL2
16 10 CALL APL2PI (' TERt·1' , TOKEN, RC)
17 RETURN

C ---- UNEXPECTED ERROR FROM APL2 INITIALIZATION
18 98 WRITE (6,*) 'Unexpected error during APL2 initialization'
20 WRITE (6,3) 'Return code: 1,(RETCODE(I),I=1,2)
21 RETURN

C ---- UNEXPECTED ERROR DURING APL2 FUNCTION EXECUTION
22 99 WRITE (6,*) 'Unexpected error during APL2 function execution'
23 WRITE (6,3) 'Return code: ',(RETCODE(I),I=1,2)
24 GOTD 10

25 1 F0RI',1A T(I " A,I2, A)
26 2 F0Rt~ AT(I " A, F8•3)
27 3 FORMAT (I ',A, 212)

28 END

Figure 6. FORTRA~ program demonstrating use of the 'APLS' request

Notes

•	 Lines 1-2: define the various data items that will be passed as arguments in subsequent APL2PI calls. It
is important to ensure that the data types defmed match those expected by APL2PI (e.g.: TOKES, RC,
L) and by the APL2 function being called (SIZE, J\UMBERS, RESULT).

•	 Lines 3-4: the return code returned by APL2PI is returned in the fullword (I1\TEGER *4) field Re.
This code is, however, best interpreted as a pair of halfwords (I~TEGER+2). The definition of
RETCODE as INTEGER +2 and equivalent to RC provides simple and meaningful subsequent access
to the return code.

Calls to APL2 29

•	 Lines 7-~: AP1.2 is initialized with an 'I ~ 1'1" call to APL2Pl. The FC)R'rRA ~ program is identified to
APL,2Pl as 'S l\'\'1PI_E'. Since no service routine is required, the T'l:"PI~, A~CHOR, and SER\"I(~F

parameters are coded as 0 on the call.

If ;\PL,2 is not active when these statements are executed, it will be initialized as a result of this call and
a return code of 0 will be returned. If AP1J2 was already active, this call is used to identify the
FORI'Ri\~ program to APL2PI and a return code of 1 will be returned, Thus the error routine is only
invoked if an unexpected error is encountered.

~	 Line 13: The function Ave in packaged workspace PKGLIB. SPATS is invoked with argument­
SIZE, ~L~\1Bf~RS and Rl-SlT.T. Since this AI>t. function is expected not to return any explicit result,
a value of 0 is passed as the RLE~'GTl-I parameter on the call, Because this field is updated to reflect
the actual length of the result. the parameter cannot be coded as 0 in the call itself, Instead. the variable
L is defined and initialized to 0 prior to the call. If this call was made repetitively l L would have to be
reinitialized prior to each call. Failure to do so could cause unexpected results in the FORTRl\~

program.

~	 Line 16: I\ote that the return code from the ITER\-'!' call is not checked. 1\\10 possible return codes
might be expected: 0 0 if the non-Al-L application originally caused APL to be invoked, or 0 10 if the
non-A.. PI~ application was invoked from an active APL environment.

•	 Lines 6, 10, 13 and 19 in the ~i\PL function AVG: FC)Rl-RA:\ passes arguments to subroutines 'by
reference'. That is to say, FOR"rRA~ passes the addresses of argument data rather that the values of

the argument data, The external function PTA allows an APL application to retrieve data passed by
reference, and the external function ATP allows an j\PL application to update arguments which \\'CfC

passed by reference.

I'hc second example demonstrates the use of the Ir'\Pl.,XI and IAPLE 1 calls. "Then this program is executed.
it causes APL,2 to be initialized and then returns control to the APL environment. When this occurs, the
following message will appear on the user's screen:

o	 0
+----------------------~-----------+

+	 ENTER 'APL2PI i TO RETURN CONTROL +

+--------------------------~-------+

At this point the APL user can interact with ./\PL freely and) when finished returns control 10 APL2I l ! b)
calling the APL2PI external function, viz:

A+B+C+10

APL2PI

30 Calls to APL2

1 CHARACTER RESULT(1000)
2 INTEGER*4 TOKEN,RC,LENGTH
3 INTEGER*2 RETCODE(2)
4 EQUIVALENCE (RC,RETCODE(l))
5 TOKEN=0
6 LENGTH=1000

C --- ­ CALL APL2PI TO INITIALIZE APL2
7 CALL APL2PI(JINIT',TOKEN,RC, 'SAMPLE ' e 0 0 16 'SM (OFF), J " , ldS (200K) .) •

8 IF (RC .GT. 1) GOTD 99

C ---- RETURN CONTROL TO APL2
9 CALL APL2PI('APLX ',TOKEN,RC)

10 IF (RC .NE. 0) GOTD 98

C ---- EXECUTE AN APL EXPRESSION
11 CALL APL2PI ('APLE' , TOKEN, RC, 13, ' , , , , ,DNL 2 3 4 ' , LENGTH, RESUL T)
12 IF (RC .NE. 0) GOTD 97

13 vi RI TE (6, *) JNames in APL workspace: ',(RESULT(I),I=l,L)

C ---- CALL APL2PI TO TERMINATE APL2
14 10 CALL APL2PI ('TERM',TOKEN,RC)
15 RETURN

C ---- UNEXPECTED ERROR FROM APL2 INITIALIZATION
16 99 WRITE (6,*) 'Unexpected error during APL2 initialization'
17 vJ RITE (6, 1) 'Ret urn code: I, (RETC ODE (I) , I=1, 2)
18 RETURN

C ---- UNEXPECTED ERROR ON ATTEMPT TO RETURN CONTROL TO APL2
19 98 viRI TE (6, *) 'Unexpected error return; ng cant ra 1 to APL2 f

20 vJ RITE (6, 1) 'Ret urn code : ',(RET COD E(I) , I=1, 2)
21 GOTO 10

C ---- UNEXPECTED ERROR ON DURING APL2 EXECUTION
22 97 WRITE (6,*) 'Unexpected error during APL2 execution'
23 WRITE (6,1) 'Return code: ',(RETCODE(I), 1=1,2)
24 GOTO 10

25 1 F0Rt'1AT(' I, A, 212)

26 END

Figure 7. FOR1~RA~ program demonstrating use of 'APlX' and 'APlE' requests

Notes

•	 Line 9: causes control to be returned to the active APL session. Note that the VALUE and RESULT
optional parameters on this call cannot be used in a FORTRAN program. This is because these param­
eters involve the use of data in CDR format, and FORTRAr\ is not capable of dealing with CDR
fann at.

•	 Line 11: causes the APL expression

, " DNL 2 3 q

Calls to APL2 31

to be executed. Catenating. a blank on to the output of ONL causes the names to be separated b) at
least one blank in the result returned to the FOR1~RA~ program. !'ote that APL characters may be
imbedded in FORTRA;\ source programs but may not be printed correctly in the compiled listings.

The third example demonstrates the use of a F'ORTRA~ service routine which can be accessed from API..
In this example, the FORTR.I\~ mainline routine initializes APL2, specifying the SER\lICE subroutine as a
type 1 service routine to be used by the APL2PI interface. After API~ initialization is complete, the
FOR1~RA~ mainline then passes control to the APL environment with an 'APLX' call. When that
happens, the following message appears on the APL user's screen:

o 0
+----------------------------------+
+ ENTER 'APL2PI' TO RETURN CONTROL +
+----------------------------------+

and the user can interact with APL freely For the purposes of this example, the user should enter the
following to cause the SERVICE subroutine to be invoked:

o 11 DNA 'APL2PIE'

1234 APL2PIE 3 'SAMPLE'

This causes control to be passed to the service routine (the SERVICE subroutine) of the APL2PI applica­
tion identified as SAMPLE (the mainline FORTRA~ program). The value 1234 is the first of 5 arguments
passed to the service routine. All of the arguments can be retrieved by the FORTRA:\ SI~R\rICE routine,
but only the return code argument can be updated to return data from the FORTRA~ SER\7ICE routine
to the APL environment.

Once execution of the SERVICE routine is complete, and control is passed back to the _t\PI.,2 user, the user
completes his work and returns control to the FORTRA~ mainline by calling the APL2PI external func­
tion.

Notes

• Line 8: the fourth argument of the "I~IT' call causes the FORTRA~ application to be identified to
APL2PI with the name Si\MPLE. This name will be subsequently used as the second item of the right

argument of APL2PI E when control is passed to the SER\lICE routine, whose address is provided in
the seventh argument of the 'I~IT" call.

32 Calls to APL2

5

10

15

20

25

30

1 EXTERNAL SERVICE

2 CHARACTER RESULT(1000)

3 INTEGER*4 TOKEN,RC,LENGTH

4 INTEGER*2 RETCODE(2)

EQUIVALENCE (RC,RETCODE(l))

6 TOKEN=O

7 LENGTH=1800

C ---- CALL APL2PI TO INITIALIZE APL2
8 CALL APL2PI('INIT',TOKEN,RC, 'SAMPLE 1,1,0,SERVICE,16, 'SM(OFF) WS(200K) ')
9 IF (RC .GT. 1) GOTD 99

C ---- RETURN CONTROL TO APL2
CALL APL2PI('APLX ',TDKEN,RC)

11 IF (RC .NE. 0) GOTD 98

C ---- EXECUTE AN APL EXPRESSION
12 CALL APL2PI('APLE',TOKEN,RC,13,'" ,t JlDNL 2 3 4 ' , LENGTH, RESULT
13 IF (RC .NE. 0) GOTO 97

14 vi RITE (6, *) I Namesin APL W0 rkspace: I, (RESULT(I) , I=1, L)

C ---- CALL APL2PI TO TERMINATE APL2
10 CALL APL2PI ('TERM',TOKEN,RC)

16 RETURN

C ---- UNEXPECTED ERROR FROM APL2 INITIALIZATION
17 99 WRITE (6,*) 'Unexpected error during APL2 initialization'
18 WRITE (6,1) 'Return code: 1,(RETCODE(I),I=1,2)
19 RETURN

C ---- UNEXPECTED ERROR ON ATTEMPT TO RETURN CONTROL TO APL2
98 LIJRI TE (6, *) 'Un expeeted error ret urn i ng cont ra 1 to APL2 I

21 WRITE (6,1) 'Return code: " (RETCODE(I) ,1=1,2)
22 GOTD 10

C ---- UNEXPECTED ERROR ON DURING APL2 EXECUTION
23 97 WRITE (6,*) 'Unexpected error during APL2 execution'
24 WRITE (6,1) 'Return code: ',(RETCODE(I),I=1,2)

GOTD 10

26 1 FORMAT(' ',A,2I2)

27 END

28 SUBROUTINE SERVICE(VALUE,RC,RESULT,ADDRESS,ANCHDR)
29 INTEGER*4 VALUE,RC,RESULT,ADDRESS,ANCHOR

WRITE (6,*) IFORTRAN SERVICE routine called by APL2'
31 WRITE (6,*) 'Input values: ',VALUE,RC,RESULT,ADDRESS,ANCHOR
32 RC=9999
33 RETURN
34 END

Figure 8. FORTRA!\: program demonstrating use of a service routine

Calls to APL2 33

Using the APL2PI Interface from C

Most functions available on the ~'\PL~2PI interface can he used in C programs. The 'APl~F' and 'APL\?
calls and some variants of the'!\PLX' call involve the usc of data in CI)I~ format and are more difficult, hut
not impossible, to handle in the C: environment (~service routines are not supported.

I'his section presents a number of examples of the use of the APL,~PI interface from C programs. Each of
these examples has the ability to invoke l\I)L2, or be invoked by APl~2. The IB\1 C/370 Program Product
(5688.. 039, 56Sg.. (40) Version 1 Release 2 was used to construct these examples. Other C compilers may or
may not have the same capabilities.

1'0 understand any of the calls to A PL2PI from the C environment. the reader must understand the linkage
conventions used by the ~APL2I)I interface. All calls to or from the APL2PI interface assume the .'370 ()S
linkage conventio n. That is to say 1 when the call occurs, it is expected that the caller will have set the f01­
lowing registers'

.,	 R 1 contains the address of the caller's parameter list. The, parameter list is expected to contain a list of
addresses _.. one for each argument in the call.

"J R 13 contains the address of a save area, 18 fullwords in length, which may be used by the called routine
to	 save the: caller's registers.

•	 R 14 contains the return address in the calling routine.
Q R 15 contains the entry point address in the called routine.

To cause the C program to utilize these conventions) "#pragma linkage (... ,OS)'" must be used in the C
program to define the APL2PI routine.

Further, any arguments which are to be updated by the called routine must be passed as pointers rather than
values, In the C language, arrays and strings are always passed as pointers, so they require no special han­
dling. Scalars arguments, however, are not normally passed as pointers and must be prefixed with 'S: if they
are to be updated, viz:

#pragma linkage(ROUTINE,OS)
int input,output,array[5]
input=3
ROUTINE(input,&output,array)

causes the procedure ROCTI~E to be called with arguments 'input', 'output' and 'array'. The argument­
'output' and 'array' can be updated by the called ROl;l-I~l~, but any attempt to update 'input' will not be
reflected in the calling program.

Finally, APL2PI expects to be called as a subroutine rather than as a function and thus produces no explicit
result.

The first example shown below illustrates a C program which makes use of the AI JL2PI 'APIJS' can to

invoke the APL function AVG (see Figure 5 on page 28) in packaged workspace PKGLIB • STATS to
obtain the average of a vector of numbers passed to it. Lines of the C program are numbered on the left for
reference in the notes after the figure.

34 Calls to APL2

1 #pragma linkage(APL2PI,OS)

2 #include <stdio.h>

3 rna i n ()

4 {

5 int token=0,size;

6 union {

7 int code; /* Return code as 1 fullword */

B short re[2J; j* Return code as 2 halfwords */

9 } re;

10 double numbers[1000],result,value;

11 char parms[]="SM(OFF) WS(280K)"; /* APL initialization parms */

12 int len=sizeof(parms)-l; j* Length of parms */

j* ---- Call APL2PI to initialize APL2 ---- */
13 APL2PI(IIINIT",&token,&rc.code,"SAMPLE 1I,0,8,0,len,parms);
14 if(rc.code > 1) goto error1;

15 printf("Enter numbers to be averaged\n ll) ;

16 printf(IITerminate input with non-numeric\n ll
) ;

17 for (s i ze=O ; 0<scanf(Il%1 f" ,&val ue) ;s; ze++)
18 numbers[sizeJ=value;

/* ---- Call APL2PI to compute average ---- */
19 APL2PI("APLSII,&token,&rc.code,"PKGLIB.STATS II,"AVG 11,8, I I

20 size,numbers,&result);
21 if(rc.code != 0) goto error2;

22 printf("\nThe average is: %If\n",result);

/* ---- Call APL2PI to terminate APL2 ---- */
23 5 hutdown:
24 APL2PI("TERM",&token,&rc.cede);

25 return 0;

26 errorl:

27 printf("Unexpected error during APL2 initialization\n");

28 printf(IIReturn code: %hd %hd\n",rc.rc[0],rc.rc[lJ);

29 return;

30 error2:

31 printf("Unexpected error during APL2 function execution\n");

32 printf("Return code: %hd %hd\n",rc.rc[0J,rc.rc[lJ);

33 gate shutdown;

34

Figure 9. C program demonstrating use of the 'APLS' request

Notes

•	 Line 1: causes APL2PI to be called with OS linkage conventions.

•	 Line 6-8: the return code produced by APL2PI is returned as a vector of 2 halfwords. Redefmition of
the return code field allows simpler comparison to expected values such as 0 0 or 0 1.

•	 Lines 13, 19, 24: the scalar arguments "token" 'rc and "result" are updated by APL2PI and so must be

prefixed with "&".

Calls to APL2 35

The following example demonstrates th; usc of the /./\!'LI>' and /APtJ: 1 calls in a C program and the USl' of
data in CI)R format. This example also shows that the I Af'Ll" call can be used to request execution (If

AP.L primitives or system functions.

ro---.---o..----.--.--.--.---,o.. ----_._-_._-_._--------------------- --,

I.
I

1
2

1· k r • ~)' 2-.... OC)pragma In -age(!~: L ~[,
#include <stdio.h>

3 #d~fine CORIO Gx8080G08G
cl, rna 1 n () {

I

5
7
8
9

Ie
11
12
13
14
15

i6
17
Ie
19
20
21

22
23
24
25
26
27

28
29
30
31
32
33

34

35
36
37
38
39
40
41

struct cdrdest /* (OR Descriptor s~ction */
unio~ {

u~signed int cdrdlen;

ur s i cne o char Cdi"flags;

CCY"'hc: r ;

i nt CG;-x'(' ~i 0 ;

char cdrrT-.;
cnar cdrr .';
short r:drrank;

} . . ,

struct cdrptr {
t nt cdrps l en;
int cdrcslen;
char ""cdrptr,
int ceJr"p-1en;

};

struct t
struc~ :drdesc desc;
int rho;
int data[3J;

- { CD" .. D 1 c: 3 j:O!V234 -.. K1 +.LV,) ~

*ptr_v234;

struct {
struct cdrdesc dPse;
int rows;
int eols;

/* CDR Pointer section */

1* CDR for vector 2 3 4 */

Ll 1 3 2 3 41) , , ,.,) J,

j* Pointer to v234 */

/* CDR for matrix iesult */

struct cdrptr pointers;

*result;

char *result_data; /* used to point tc result data */

int tOken=0,i,j;
union {

int code; /* Return code as 1 fullword *j
short rC[2J; j* Return code as 2 nalfwords */

} rc;
char parms [J =u5M (OFF) WS (288K) II; /* APL in; t i 61 i zat ion parms *j
int len=sizeof(parms)-l; /* Length of parms *j

1
I

I
I
I

I

i
i

I
I

_J
I

Figure 10 (Part 1 of 2). C program demonstrating use of the 'APLP and 'Af'Ll " requests

36 CaUs to APL2

j* ---- Call APL2PI to initialize APL2 ---- */
42 APL2PI (" I NIT II , &to ken, &r c . code , II SAr·1 PLE", 0 , 0, 0, 1en, parms) ;
43 if(rc.code > 1) gate errorl;

/* ---- Call APL2PI to enter STATS namescope ---- */
44 APL2PI("APLP",&token,&rc.code,IIPKGLIB.STATS II);
45 if(rc.code != 0) gato error2;

/* ---- Call APL2PI to execute DNL 2 3 q ---- */
46 result = 0;
47 ptr_v234 = &v234;
48 APL2PI ("APLFII , &to ken, &rc . code , II It, II ONL If, &res u1t , 0, &Pt r_v234) ;
49 if(rc.code != 0) gate errar2;

/* ---- Display result returned by APL2 ---- */
50 pri nt f (t1\nResu 1t returned from execut i on of ONL 2 3 4 \n\n ") ;
51 printf(lI%s%x\n%s%d\n%s%c\n%s%x\n%s%hd\n%s%i %i\n%s\n%s\n ll

,

52 IICDRDLEN = lI,result->desc.cdrhdr.cdrdlen,
53 "CDRXRHO = lI,result->desc.cdrxrho,
54 "CDRRT lI,result->desc.cdrrt,
55 "CDRRL ",result->desc.cdrrl,
56 nCDRRANK = u,result->desc.cdrrank,
57 IICDRRHO = lI,result->rows,result->cols,
58 "CDRDATA:II,
59
 11 -_");

60 result_data=result->pointers.cdrptr;

61 for (i=0;;<result->rows;i++){

62 for (j=0;j<result->cols;j++)

63 putchar(*result_data++);

64 putchar(I\n I);

65

66 printf("--------\n\n ll) ;

/* ---- Call APL2PI to exit STATS namescope ---- */
67 APL2PI(IIAPLpU,&token,&rc.code);

/* ---- Call APL2PI to terminate APL2 ---- */
68 shutdown:
69 APL2PI (-'TERM", &token, &rc . code) ;
78 return 0;

71 errorl:

72 printf("Unexpected error during APL2 initialization\n");

73 printf("Return code: %hd %hd\n ll , r c. rc [0] , r c. r c[1]) ;

74 return;

75 error2:

76 printf("Unexpected error during APL2 function execution\n");

77 printf("Return code: %hd %hd\n",rc.rc[0],rc.rc[1]);

78 gato shutdown;

79

figure 10 (Part 2 of 2). C program demonstrating use of the 'APLP' and 'APLF' requests

Calls to APL2 37

Notes

•	 Lines 3, 6..33: this routine makes use of the 'APLF' call which requires that arguments and results
passed to and from APL2 be provided in CDR format. (~DR format is described in detail in the AP12
Programming: Processor Interface Reference manual (51-120-9234). CDR/s passed from C programs to
APL,2PI may be dense or pointer form CI)R's: CDR's returned from APL,2PI are always pointer form
CDR,/s.

"	 Lines 6-15: the descriptor section of a CDR is defined as a C structure. Note that CDRRI-IO is not

included since this CDR field may be a null vector.

•	 Lines 16-21: the CDR pointer section is defined as a C structure.

,.	 Lines 22-27: a dense form CDR representing the integer vector 2 3 4 is defined and initialized. The
address of this CDR is assigned to ptr_v234 on line 47 and that address is passed as an argument on the
'APLF' call on line 4g.

•	 Lines 28-33: the 'API"f/ callan line 48 should produce a character matrix result. This result will he

returned as the address of a pointer form CDR which is mapped by this structure.

•	 Line 44: an IAPI~P' call is issued to cause the PKGLIB. STATS namescope to be entered; subse­
quent APL2PI calls will be executed in that namescope. This technique is necessary if subsequent
/APLF' calls request execution of primitive functions since the packaged workspace argument cannot he
provided on such calls.

•	 Line 48: an Af'Ll" call is issued to request execution of the system function DNL with right argumentI

2 3 4. ~ote that a system function name or a primitive function symbol can be specified as the
function to be executed on an 'APLFI call. If APL symbols are imbedded in character literals in a C
program they may not be displayed correctly in the listing.

The RES C LT, LARG. and RAR G arguments of the 'APl-/F' call are expected to be fullword fields
which contain the addresses of CDRls. Therefore, pointers must be specified, using the C '&' operator,
when these arguments are passed on the call. Since a left argument is not provided for this call, the
LARG field is coded as 0 in the argument list.

38 Calls to APL2

Using the APL2PI Interface from COBOL

Many of the functions available on the APl,2PI interface can be used in a simple and straightforward fashion
in COBC)L programs. Since COBOl_ only provides very rudimentary support for pointers, however. the
"APLI;I and I APi,V" calls cannot be used effectively. COBOL service routines are not supported.

The following example shows a COBOL program which makes use of the APL2PI interface to generate a
set of random numbers and to compute their average. The program illustrates simple use of the "I::\IT',
"TER\1', "APLE' and 'APLS" calls. Lines of the program are numbered on the left for reference in the notes
after the figure. The IB\1 VS COBOL II Program Product (5668 .. 958) Version 1, Release 3 was used to
construct this example. Other COBOL compilers mayor may not have similar capabilities.

1
2
3
4
5
6
7

Identification division.
Program-ide callap12.

Environment division.
Configuration section.

Source-computer. IBM-37G.
Object-computer. IBM-370.

Input-output section.

8
9

Data division.
Working-storage section.

10
11
12
13
14
15
16

1 TOKEN picture s9(9) binary value zero.
1.
2 ReODE.
3 ReODEl picture 59999 binary.
3 RCODE2 picture 59999 binary.

2 RETCODE redefines ReaDE picture 59(9)
1 ZEROV picture 59(9) binary value zero.

binary.

17 0PTIONS pic t urex (16) val ue II St~ (0FF) vJS (200K) II •

18
19

QNA-ATR pi cture x(14) val ue II 0 11 DNA 'ATR' ".
GET -RANDO~·1 picture x(20) val ue II' E8 1 *' ATR 5 ? 100 ".

20
21
22
23
24
25
26
27
28

1 RESULT-LENGTH picture 59(9) binary.
1 RESULT-BUFFER.

2 RESULTS computational-2 occurs 5 times.
1 NUMBERS-ARRAY.

2 NUMBERS picture -ZZg display occurs 5 times.
1 ITEM picture 59(9) binary.
1 ITEMS picture 59(9) binary value 5.
1 AVERAGE computational-2.
1 DISPLAY-AVERAGE picture -ZZ9.999 display.

Figure II (Part 1 of 2). COBOL program demonstrating use of the 'APLE' and 'APLF' requests

Calls to APL2 39

--------,-----_.__...

29 Procedure divisior..

'38 Ca:l ItAPL2PIIl us i ri;
.(~
-,1 by content IIINIT" by reference TOKEN ReODE
32 by content "SAHPL:: ZEROV ZEROV ZEROVII

33 l er.qt b of OPTIONS OPTIONS
.34 If RETCODE is > 1 go to ERROR 1
',15 End-if

'36 Call "APL2PIIJ using

37 by content "APLEIl by reference TOKEN ReODE
38 b'y conten t 1engthe f QN,wl - ATR QN,4 - ATR
39 by content ZEROV II II

48 If RE1CODE is not ~ G go to ERROR2
41 End-if

42 Move length of RESULT ... BUFFER to RESULT-LENGTH
Ll3 Call uAPL..2 P I II using
t4 by content uAPLEII by reference TOKEN ReODE
45 by content 1ength of GET-RANDOM GET-RANDOM
46 by reference RE5JLT-LENGTH RESULT-BUFFER
1:..7 If RETCODE is not ~ 0 go to ERROR2
42, End--; -f

, ~14° Perform with test after
SO varyi ng ITE!·' from 1 by 1
~,

...Ji. un til ITEt·~ = ITEt·1 S

52 move RESULTS (ITE!·~) to NUMBERS (I TEI',1)

53 End-perform

54 Display IIRandom numbers returned by APL2:
 II

55 NUMBERS-ARRAY upon console

56 Call "APL2PI II us i ng
57 by content "APLSII by reference TOKEN ReODE
58 by content uPKGLIB.STATS .. "AVG ZEROV IIII II

59 by reference ITEMS RESULT-BUFFER AVERAGE
60 If RETCODE is not = e go to ERROR2
61 End-if

62 Move AVERAGE to DISPLAY-AVERAGE
63 Display liThe average is: DISPLAY-AVERAGE upontf

64 Shutdown.

65 Call ItAPL2PI,t using

66 by content IITERt·1" by reference TOKEN ReODE

67 Stop run.

68 Errorl.

69 Dis play 'I Er ro r duri ngAPL2 i nit i ali zat ion:
 II

70 ReODEl RCODE2 upon consoleII II

71 Stop run.

72 Error2.

73 Display "Error during APL2 execution:
 II

74 RCODEl n RCODE2 upon consoleII

75 Go to shutdown.

console.

Figure 11 (Part 2 of 2). COBOL program demonstrating use of the 'APLE' and 'APLF' requests

Notes

•	 Lines 12-15: the return code returned by APL2PI is formally a pair of halfwords in a fullword field. In
some situations it is useful to treat it as a single fullword; in others, as a pair of halfwords.

•	 Line 16: numeric literals cannot be specified as arguments in a COBOL, CALL statement, and therefore
must be given names in the data division.

•	 Lines 18-19: specify APL expressions that will later be executed by means of IAPLEI calls to APL2PI.
Note that APL characters can be specified in such expressions but may not print correctly in the
COBOL program listing.

•	 Lines 30-33: APL2 is initialized by means of an II~Il'" call to APL2PI. Note that arguments that are
to be updated on the call must be passed by reference, while constants and arguments which are not
expected to be updated are passed by content. If a 'by content argument is updated as a result of the
call to APL2PI, the updated value will not be available in the COBOL program.

•	 Line 34: this program is set up to all0\\' it to invoke APL2 or to be invoked by APL2. This is done by
accepting a return code of either 0 or 1 from the II~ITf call.

•	 Line 39: in this particular example, the calling COBOL program will not bother to check the results of

the DNA executed in this call, since the subsequent call will fail with a predictable error if the DNA fails.
Therefore, the RLE~GTH and RESCLT fields are specified as ZERO and respectively. APL2PIII II

will update the RI.lE~GTH field with the length of the actual result, but that updated value will not be
returned to the COBOL program because the ZERO argument was passed by content.

APL2 and COBOL Data Representations

APL2 typically represents numeric data in a number of different formats in the workspace. Real numbers
are represented as double precision floating point values, integers are typically represented using fullword
integer representation, and boolean values are often represented as bits. The representation of the value of a
variable or the result of an expression is dependent upon the operations performed upon it and cannot be
simply predicted. Most of this is transparent to the APL2 user who sees numbers as numbers an lets the
computer manage their representation in its internal memory.

COBOL, on the other hand, is a language in which data representation is visible to and carefully managed
by the programmer. When data is passed between a COBOL application and APL2 using the APL2PI
interface, that data must be transformed to a representation acceptable to APL2 and/or the COBOL applica­
tion. This same situation exists when other high level languages are used with the APL2PI interface. The

APL2 external functions PTA,. ATP,. ATR and RTA are available to assist with such transformation.

PTA and ATP are described in this document; ATR and RTA are described in the APL2 Programming:
Using the Supplied Routines manual (SH20-9233).

The following table shows the correspondence between types specified in the COBOL VSAGE clause and

those specified in the patterns used with the PTA, ATP,. ATR and RTA external functions:

Calls to APL2 41

COBOL Picture and USAGE RTjRL in
r,ume'~ i c tyoe pattern
-_.. --_ ... ----- ~~~~--~--~~--~~~- -- ~--_

B~ !1a r'y PIC 59999 BINARY 12
PIC 59(9) BINARY	 14

Internal Floating	 COf·1PUT AT IONAL-l E4
COt-1PUTA I IONAL-2 E8

External Floating	 PIC +9(3).99E+99 DISPLAY none

External Decimal	 PIC 59999 DISPLAY Z5

Interna1 Decimal	 PIC 59999 PACKED-DECIMAL P3

In addition to allowing numeric data. to be represented in these forms, COBOlj also separately maintains a
scale factor or decimal point position for binary and decimal representations (the scale factor is an inherent
part of the floating point representation and consequently does not have to be separately maintained). When
COBOL computations are performed on binary and decimal data, COBOl, aligns the data around the
decimal point to achieve the desired results. When such data is passed to APL, the position of the decimal
point is not passed. For example, if the variable

01 CASH PICTURE 59999.99 BINARY VALUE -1234.56.

was passed to APL, it would be received as the value -12 3 4 56. If the COBO L program treated the
value as dollars and cents, and the APL program treated it as cents, no problem would exist. If the position
of the decimal point was variable or significant, it would be lost unless passed as a separate explicit argument
to APL.

Similarly, if the value -1234567 was placed by an APL. application in the COBOL CASIJ field as defined
above, it would be interpreted by COBOL as the value .. 1234.56. This is because only the data, and not the
decimal position is passed between APL and COBOL.

This behavior becomes a little more complex when decimal (packed or external) data is passed from or to a
COBOL program. On the System/370, packed and zoned decimal representations allow a very wide range of
numbers to be represented (31 digits for packed and 15 for zoned). When a packed or zoned decial number,

passed from COBOL, is accessed with the PTA function, using the 'P' or 'Z' representation types, that
number is converted into double precision floating point representation so that it can be subsequently proc­
essed by APL. This conversion may lose precision and may change an integral value to a non-integral one

(i.e.: a real number). Worse, the ATP and ATR external functions will not accept floating point right argu­
ments when a representation type of 'P' or 'Z' is specified in the pattern specified in the left argument. ThIS
problem can be circumvented by converting the data to fullword integers using the APL floor (L) primitive,
V1Z:

DATA+1.23x100
DATA

123
'P2 o I RTA 'P2 o ' ATR DATA

DOMAIN ERROR
'P2 0' RTA 'P2 0' ATR DATA

A

'P2 0' RTA 'P2 O' ATR LDATA
123

An alternate and often preferable way to avoid such problems is to use the BI~ARY, rather than DISPl_/\)"
or PACKED-DECIMAL, usage clause in COBOl.. programs for integer data that is passed to or from APL.

42 Calls to APL2

Using the APL2PI Interlace from PL/I

Most functions available on the APL2PI interface can be used in PL,:I programs. The I APLF' and /APt.'l'
calls and some variants of the 'APLX/ call involve the use of data in COl\. format, and are more difficult,
but not impossible to handle in the PL/I environment. PLI} service routines are not supported.

The following example shows a simple PL/I program which makes use of the APL2PI interface to call the

function Ave in packaged workspace PKGLIB • STATS to obtain the average of a vector of numbers
passed to it. Lines of the PL/I program are numbered on the left for reference in the following notes. The
IB:\1 Pl..'] Optimizing Compiler Version 2, Release 2 (5668·909) was used to construct this example. Other
PL/I compilers mayor may not have similar capabilities.

Notes

•	 Line 3: the APL2PI entry point must be declared in PL/I programs as shown on line 3. This declara­
tion ensures that APL2PI will be called with the correct linkage conventions.

•	 Line 6: the return code returned by APL2PI is formally a pair of halfwords in a fullword field. In some
situations it is useful to treat it as a single fullword; in others, as a pair of halfwords,

•	 Line 9: numeric literals cannot be specified as arguments in a PL/I CALL statement and therefore must
be given names by means of declarative statements.

•	 Line 14: this program is set up to allow it to invoke APL2 or to be invoked by APL2. This is done by
accepting a return code of either 0 or 1 from the 'I~IT' call.

•	 Line 20: note that APL2PI always updates the LE~ field as the result of an 'APLS' call, thereby

destroying the initial value of this field. If a subsequent'APLF' call was made by this program, the

LE!\ field would have to be reset before the call.

Calls to APL2 43

.--_._._----­

1 *PROCESS CPf(2);
2 PLI2APL: proc opt i ons Ima i n reent runt) reorde r ;

.3 de: APL2PI entry opt i or.s (asm inter);
4 del (NUr,18ERS(1(0) , RESUL.T) fl (jat bi n (53);
5 dc l (TOKEN j ni t (0) , R''''l...) SIZE1 LEN init(0)) fixed bin(31);
6 del RETCODE(2) fixed b-j n (15) based(l:1cidr(rc)) ;
7 dc l PICSIZE pic 'Z9 I;
8 del (PICRCl, PICRC2) pic 'ZZZ9 1

;

9 del ZERO init(G) foj xed bin(Jl) static;
1() dci OPTIOr'~S char(16) i n-; ~-. (I S~·1 (0FF) tlJ S(20(oj V) I) static;
11 del OPTLEr..; ir.it(lE; f~xe'2 b;n(31) s t ut i c ,

l? del BUFFER ehar(72);

/* ~--- call APL2PI to ini tialize APL2 ---- */
13 cdll APL2F:('INIT',TOKEN,RC , !SAMPLE ',ZERO,ZERO,ZERO,OPTLEN,OPTIONS);
14 if RC > 1 then qot o ERROR1;

11
) di spl ay(' Enter number of n(H~l~)erS to average I) reply(BUFFER);

16 SIZE = BUFFE~;

17 PICSIZE = SIZE;
18 dis piay (I En t er I I I PIC S ~ ZE 11 ' numbers i) rep 'I y (BUFFER) ;
19 get string(BUF~ER) list((NUMBERS(I) do 1=1 to SIZE));

/~ ---- call APL2PI to com~ute average ---- *j
20 call APL2PI(IAPLSI,TOKEN,RC,IPKGLIB.STATS ','AVG ',LEN,' •

SIZE,NUMBEPS~RESULT);

:21 ~ f kC -,=;: 0 then gato ERPOf<2;

2? d-isplay('Tne avereqe is; i I IRES!!l.T);

/* ---- call APL2PI to termirate APL2 */
?3 SHUTOO~I.rN :

24 coil A?L2PJ (I TERr.1' , TOKEN) k:) ;

­2.Jr return;

/* --~- unexpected errcr dur-ing APl_2 in i t i el i zat i on ---- */
26 ERRORl:
27 dis play (IUn expeeted er T'0 r' duri n9 A. PL2 i nit 'j ali za t 1 0 n I) ;

28 PICRCI = RETCODE(l);
29 PICRC2 = RETCODE(2);
30 di spl ay(I Return Code: t II PICPCl II PICRC2),
31 return;

/* ---- unexpected error during APL2 function execution ---- */
32 ERROR2:
33 display(JUnexpected error during APL2 function txecution');
34 PICRCI = RETCODE(l);
35 PICRC2 = RETCODE(2);
36 di spl ay(I Return Code:' If PICRCI II PICRC2);
37 goto SHUTDOWN;

38 end; /* PLI2APL */

Figure 12. PL/I program demonstrating use of the 'APLF request

44 Calls to APL2

Concluding Remarks

The APl2PI interface allows applications written in compiled languages to be extended and enhanced with
routines written in APL. A wide variety of uses and benefits can be envisaged for such hybrid applications:

•	 applications written in languages which do not provide sophisticated numerical computational facilities
(e.g.: COBOL, C) can be enhanced by exploiting APL's power in the area of numerical computation
and vector processing;

•	 those portions of application which involve complex or changing algorithms might be better or more

productively implemented in APL;

•	 applications can be prototyped by initially implementing large portions of them in APt" capitalizing on
the inherent productivity of APL during the application design and implementation phases;

•	 APL/s powerful interactive capabilities can be exploited by applications in which human interaction is an
important component. More than just an interactive interface, APL offers an interactive computational
facility which can be used to substantially enhance compiled applications;

•	 APL offers distinct benefits for applications which require substantial and frequent changes. Typically,
APL applications, or those sections of applications written in APL can be modified or enhanced much
more quickly and at lower cost than applications or routines written in other languages. By imple­
menting those sections of an application that are most subject to change in APL, the developer can
benefit from these characteristics of APL, while retaining the advantages of high level languages for other
sections of the application.

Calls to APL2 45

46 Calls to APL2

Appendix A. Implementation Details

The APL2PI interface consists of a complex set of routines which can be used in a variety of ways to all0 w
APL and non-Af'L applications to interact and benefit from each other's strengths.

The purpose of this paper has been to provide documentation on the interfaces to and from APL2PI and
examples of their use. For many applications, documentation at this level will be entirely sufficient. In
more sophisticated applications, however, it may be useful to understand some of the inner workings of the
APL2PI facilities. It is the objective of this appendix to provide a first glimpse of these inner workings.

The APL2PI interface is comprised of two major sets of routines:

1. A set of routines written in Assembler language which provide the interfaces used by the non-APL appli­
cation. The main routine in this set is AP1_2PI (contained in the AP2VAPI object module in
VM :CMS , and in the AP2TAPI object module in \1VS:"TSO). APL2PI is the entry point to which
control is passed from the non-APL application when any request is made to the interface.

2. A set of API__ external functions delivered in an APL packaged workspace which provide the interfaces
used by APl.; routines or the APL user when communicating with the non-Af'L application. The two

important functions in this set are APL2PI and APL2PIE. Note that this APL2PI external func­

tion is not the same as the APL2PI routine used by non-APL application programs. The APL2PI
external function is simply an niladic cover function for the APL2PIE external function. Its use will be
described in more detail below.

The non-APL application which uses the APL2PI interface can be invoked independently or from an active
APL session. If invoked independently, the non-APIJ application causes APL invocation to occur on the
first call to the APL2PI interface (typically an /I~IT/ call). To invoke a non-APL application from an

active APL session, the APL user makes use of the APL2PIE external function. This external function
activates the APL2PI interface and through it causes the non-APL application to be invoked. Once the
non-APL application is so initialized, it can call the already active APL2PI interface to make requests to the
pendant APL session.

It is possible for both modes of operation to be used together. For example, a non..APL application could
be invoked using appropriate V:v1/C~S or MVS/TSO commands, and that application could use APL_2PI
to cause APL to be invoked and to submit requests to it. One or more of those requests could cause one or
more non-APL applications to be activated from the APL environment. All of these non-APL applications

could interact using the facilities provided with the APL2PI module and the APL2PI E external function.
Note, however, that at any given time only one application (APL or non-APL) is running -- all of the other
applications are in a pendent state.

~on-APL applications invoked independently or from an active APL environment are often mainline pro ..
grams written in a high level language. Invocation of such high level language mainline programs typically
cause a programming environment to be established. Thus when a FORTRA~ program is invoked, the VS
FORTRA~ programming environment is established to support its execution; when a COBOL program is
invoked the VS COBOL II programming environment is established to support its execution. Care must be
taken when more than one non-APL application programs is activated. Certain languages or versions of
languages do not support more than one instance of the programming environment at any given time. Thus,
if one non-APL application written in COBOL is activated, it may not be possible to activate a second one
written in the same language, because the second instance of its programming environment would interact
destructively with the first instance.

Appendix A. Implementation Details 47

Invoking APL from a non-APL Application

When a nan..APl, application, invoked and running independently of APL, wishes to access APL facilities. it
does so through the ~-\Pl,2PI interface. The APl-.2PI routine (in the AP2VAPI object module for \/\;1 (=\1~

or the AP21'j\PI object module for :\1v'S/'TSO) can be link edited with the non-Al'L application. or it can
be dynamically loaded (e.g.: via a LO:\D macro, or SV(~ 8), or dynamically accessed (e.g.: as a V'vl C\1S
nucleus extension) by the non-APL application. Once the APL,2PI routine is available to the non-APL
application, the non-Af'L application makes requests by transferring control to APIJ2PI using the standard
OS CALL protocol described earlier in this paper.

The first call typically issued by the non-APL application is an /I~IT' call to request initialization of APL2.
If 'I:\ITf is not the first call made, the APL.2PI interface recognizes that AI>L2 has not yet been invoked and
automatically issues the equivalent of an /I:\ITf call with default APt.2 initialization parameters. Whether
this JI~IT' call is issued implicitly or explicitly, APl.2PI then causes APL.2 to be invoked. In the VMiC:\lS
environment. this is done by issuing a eMS SVC 202; in 1\1\lS/TSO, the APL2 load module is loaded hy
the APL2PI routine, a CPPL control block is created and control is passed to the APL2 module with R 1
pointing to the CPPL which describes the arguments to the command. Thus, it looks to the APL,2 module
as if it had been invoked from a V'vl /CMS or \-1\rS/TSC) command line.

Before invoking APL2, the APL2PI routine will identify its own entry point making it visible in the address
space or virtual machine. This is done by issuing an IDE~l~IFY macro in MVS/TSO or by establishing
APL2PI as a C~1S nucleus extension in the V\1.fC\r1S environment. This is an important step that will
allow ~t\PL2 to fmd its way back to the APL2PI routine after APL2 invocation is complete.

The typical command used to invoke APL2 will contain the arguments QCIET and RC~(APL2PI). The
QGIET argument suppresses display of the APL,2 greeting message and the interaction associated with the
R L"~(API.l2PI) argument. Its use is not essential to the proper operation of the APL21>I interface, but it is
recommended since it leads to less confusing interaction in most cases. Once the AI>1.,2PI interface is initial­
ized, Q C lET will be turned off, so that AJ>L2 output will be displayed normally.

The RL~!'(APL2PI)argument in the APL2 invocation command is not optional and is required for proper

operation of the interface. It causes the APL2PI external function (in the AP2PAPI\\7 packaged workspace

supplied with APL2) to be executed. As noted above, APL2PI is simply a cover function for

APL2PIE 0 ". Execution of the APL2PI external function (i.e.: APL2PIE 0 ") causes some

housekeeping to be perfonncd in the AP2PAPI\\?· package workspace, a DNA to be issued to the APL2PI
external routine, and control to be passed to that routine.

Here things become a little confusing, because there is an APL2PI external function in the AP2Pl\PI""
packaged workspace and an external routine named APL2PI which is, in fact, the same APL2PI entry point

that is accessed by the non-APL application. Here is what happens: the APL2PI external function in the

AP2PAPIW packaged workspace executes APL2PIE 0 ". APL2PIE issues a

o 11 DNA APL2PIX·. In the i'AMES file APL2PIX is defined to be the APL2PI entry point.t

Since the APL2PI entry point was IDE~TIFY/d or made a Cl\1S nucleus extension earlier, this DNA will

set up a link between the APL2PIE external function and the APL,2PI routine. Once this link has been

established, APL2PIE calls the APL2PI routine. This call causes the APL2 session to be suspended
awaiting the completion of the APL2PI external routine, and control to be passed to APL2PI.

At this point, APL2PI recognizes that the invocation of APL2 is complete and passes control back to the
non-APL application if an explicit /INIT/ call was issued, or proceeds with the. non-APL applications
request if the /Il'IT/ call was implicitly issued.

This initialization process may be clearer if considered as an ordered set of events:

1. The non-APL application is activated by the user.

48 Calls to APL2

2.	 The non-APL application calls APL.2PI with an 11:\1'1'1 request.

3.	 APL2PI invokes APIJ2 with options that include RC~(APL2PI).

4.	 The RIJ"~(I\PlJ2PI) option causes the APL2PI external function in packaged workspace i\P2P/\PI\'"
to be run when APL2 invocation is complete.

5. APL2PI calls the external function APL2PIE in the same packaged workspace.

6.	 APL2PIE calls the external routine APL2PI, which is, in fact, the same routine that was called in step
2 by the non-APL application.

7.	 When the APL2PI routine receives control from APL2PIE, it realizes that APL2 initialization is com­
plete, and it returns control to the non-APL application that called it in step 2.

When and if the non-APL application issues a request other than 'I~IT' or 'TER\t1 1 to the APL2PI inter­
face, APL2 will be in a state where it is awaiting the completion of execution of the APL2PI external
routine. 'APLE/, 'APLS/, 'APLF' and 'APL\l' requests are completed by APL2PI using "callback" requests
to APL2, i.e., a combination of IXE ' and 'XF' service calls as documented in the APL2 Programming:
Processor Interface Reference manual (SH20-9234). The IAPLP' request is executed by returning control

from APL2PI to the APL2PIE external function which executes the request using local logic and then
returns control to the APL2PI routine.

The 'APLX' request causes the APL2PI routine to return control to APL2PIE which issues a message
and returns control to the APL user or application which called it. When the user or APL application

subsequently issues an APL2PI or APL2PIE 0 "request, control returns to APL2PIE in the
AP2PAPIW packaged workspace and from there to the APL2PI routine. Finally, APL2PI sets return codes
and return values appropriately and returns control to the non-APL application which called it.

When the non-Af'L application issues a .ITERM' request to APL2PI, the APL2PI routine returns control to

APL2PIE which stacks an) OFF command and returns to its caller. When the) OFF command is exe­
cuted, it causes APL to be terminated and control to be returned to the routine that originally invoked APL
i.e., APL2PI. The APL2PI routine cleans up and deallocates its own resources and returns control to the
non..APL application.

Invoking a non-APL Application from APL

A non-APL application can be invoked from the APL environment using the APL2PIE external function,
VlZ.:

o 11 DNA 'APL2PIE'

'ROUTINE ARGUMENTS' APL2PIE 1 'NAME'

When APL2PIE receives this request, it calls the external routine APL2PI with a request to activate the
specified non-APL application routine. APL2PI initializes the interface and then loads and calls the
non-APL application routine.

In the VM/CMS environment, APL2PI first looks for an existing eMS nucleus extension whose name
matches that of the specified routine. If one is found, its address is used as the entry point address for the
non-APL application. If no matching eMS nucleus extension is found, APL2PI issues a CMS
l'l;CXLOAD for a relocatable CMS module with the specified name. If that NUCXLOAD command is
successful, the address of the loaded routine is used as the entry point address of the non-APL application.
If the ~VCXLOADfails, control will be returned to APL2PIE and then to the APL caller with a return
code indicating that the routine could not be found.

Appendix A. Implementation Details 49

If the specified routine is found as an existing C\lS nucleus extension or is successfully loaded as a result of
the ~t:CXL,Ol\D command, APL2PI builds a parameter list matching C:\'1S S\/C 202 conventions and
enters the non-Al'L application.

In the \1\'S 'TSC) environment, AI'L2PI issues a LOAD (SYC 8) for the specified routine, constructs a
parameter list in (=PPL format, and enters the non-APL application.

When the non-APt" application receives control from APL2PI, it can issue calls to APL2PI to make service
requests. The first request issued should be an /I~IT' request. Although APL and APL2PI have already
been initialized, this 'I~IT' request allows the non-APL application to identify itself by name to the r\PI..2PI
interface, and it allows a service routine to be specified if desired.

Other API~2PI requests can be subsequently issued by the non-APL application. APL2PI processes these
requests appropriately, invoking APL services as necessary, and when the request is completed, it returns
control to the non ..APL application. The /APLE', 'APLS', 'API--tF' and 'API~\"" requests are completed h~

APL2PI using "callback" requests to APL2, i.e.: a combination of 'XCI and 'XI-' service calls. The 'I\Pl P'
request is executed by returning control from APL2PI to the pendant APL2PIE external function.

APL2PIE processes the request and returns control to APl,,2PI.

The 'APLX' request causes the APL2PI routine to return control to the pendant APL2PIE external func­
tion and from it to the APL application or user that originally called it. When the APL user or application

subsequently issues an APL2PI or APL2PIE 0 "request, control is returned to the APL2PIE
external function and from there to the APL2PI external routine. Finally, APL2PI sets return codes and
return values appropriately and returns control to the non-APL application which calls it.

Before terminating, the non-APL application should issue a 'TERYf' request to APL2J>I. When this request
is received, the non-APL application is deleted from APL2PI internal tables, and control is returned to that
application. The application is then free to terminate. \Vhen it does so, control is returned to APL2PI since

APL2Pl originally invoked the non-APL application. APL2PI in tum returns control to the APL2PIE
external function that called it. Finally, APL2PIE returns control to the APL application or API" user that
last called it.

Environment Isolation

APL2, when it is invoked, establishes STAE. and STAX exits so that asynchronous or unexpected event­
(attention signals, program checks, ABE,"Ds, etc.) are captured and properly handled. Many non-Al"I
applications, particularly those written in high level languages, need to do much the same thing. When
cooperating APL and non-APL applications are run via the APL2PI interface, ./\PL2PI must take care to
keep the APL and non...APL environments separate so that things like SPIE. ST.t\F and STAX exits do not
interact or cancel each other out, and so that each application is properly notified of events appropriate to it.

In the MVSjTSO environment, this is done by using MVS task isolation. APl and each non-Al'L applica­
tion is established as a separate MVS task, and APL2PI activates and deactivates the appropriate tasks as
control flows between APL and a non-APL application. Since each 1\-t\?S task may have its own set of
SPIE, STAE, and STAX exits, no conflicts exist between APL and any of the non-APL applications, and
events are directed to the task that is currently active.

In the V\1/CMS environment, multitasking facilities, and therefore task isolation, are not available. In order
to provide the necessary isolation, therefore, APL2PI manages the boundary crossing between APL and
non-Af'L applications. As control flows through APL2PI between the non-APL and APL applications,
APL2PI saves the SPIE, STAE and STAX information for the application giving up control and reestab­
lishes the SPIE, STAE, and STAX information for the application to which control is being passed.

50 Calls to APL2

There is another aspect of the implementation in the yY\;1 :C\1S environment that deserves mention. In
C\1S when a command is issued (by the user or by an application program using S\7C 202), an S\lC level is
added to the eMS SVC save area chain. Typically this is entirely transparent to the user or application
program and is simply a detail in the internal operation of C\lS. The important part for APL2PI users is
that i\PL2 is dependent on running all of its operations at the same c~s SVC level. Thus APL2 would
AB[~D if it passed control to an external routine which changed the SVC level and returned to APl--,2. For

this reason, when a non-Af'L application is invoked from an active APL environment using APL2PIE,
APL2PI simulates the operation an linkage of SVC 202 rather than simply issuing an SVC 202 to invoke the
non-APL application. In this way, the non-APL application and APL both operate at the same eMS SVC
level as they pass control back and forth between each other.

There are many cases in eMS where applications can issue commands and thereby cause additional levels to
be added to the SVC chain. For example, a REXX application could call an XEDIT session which in tum
could call an XEDI1~ macro which could execute CMS commands. Each of these calls would introduce
another SVC level to the S\'C chain. If such an application were to make calls to APL2PI, all calls would

have to occur at the same S\TC level. Further, if that application was invoked from APL, via APL2PIE, all
calls to APL2PI would have to be made from the SVC level at which the application was invoked. If these
rules are not followed, APL2 will ABE~D when control is returned to it at an invalid SVC level.

Termination Processing

A well behaved non-APL application issues an 'I~IT' request to APL2PI as its first request and a 'TERM'
request before it terminates execution. Further, well behaved APL users or APL applications which invoke

non-APL applications via APL2PIE ensure that those non-APL applications are terminated before the

APL session is terminated with an) OFF command.

Unfortunately, it is often difficult to ensure that APL users or non-APL applications are always well
behaved. APL2PI, therefore, takes certain precautions to ensure orderly shutdown in unusual situations.

When APL2PI is first invoked, as part of its initialization, it tells API.", that it needs to be notified of APi",
termination. Thus, when an) OFF command is issued from the APL environment, APL2PI receives
control. If any non-APL applications invoked from the APL environment, or any service routines for
non-APL applications are pendant at that time, they are sent a 'shutdown request (in the form of a 0 2
return code) from APL2PI. Those applications are expected to recognize this return code, complete their
processing and return control to there callers immediately. In each of these cases, APL,2PI is the caller, and
thus APL2PI is able to determine when all of these non..APL applications and service routines have shut
down. "Then that occurs, APL2PI frees its own resources and returns control to APL which then terminates
gracefully.

Note that if APL was invoked from a non-Af'L application, that non-Al-L application is not notified by
APL2PI (via a 0 2 return code) during APL) OFF processing. Instead, APL termination proceeds
normally, and when complete, control is returned to APL2PI because APL2PI originally invoked APL.
When that occurs, APL2PI frees its own resources and returns control to the non-APL application which
originally invoked it. The non..APL application will be given a successful return code of 0 0 if the tenni­
nation occurred as a result of 'TERM' request that it made; otherwise, it will be given a 0 2 (unexpected
termination).

Appendix A. Implementation Details 51

