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Abstract

A sampler of the fundamental equations of mathematical physics is presented, by means of computer
programs which provide working models of interesting physical phenomena, including

a satellite going around the Earth according to Newton,

the propagation of an electromagnetic wave according to Maxwell,

the same satellite going around the Earth according to Einstein,

an electron moving in a one-dimensional potential according to Schrodinger, and

sums over all histories according to Feynman.

These computer programs are like experimental laboratories in which one can play with physical
phenomena, and most of them generate motion pictures of the simulated happenings, which helps to
make these exotic phenomena more familiar and understandable.

The programs are presented in APL2, and each is less than a page long, showing how close APL is
to the mathematics of general relativity and quantum mechanics.

Our intent is to transmit some of the basic ideas of mathematical physics to people who know little
physics or mathematics, but who fecl comfortable on the computer. This exposition, however, is for
physicists who may be interested in using it as the basis for a course.






Preface

This “computer gallery” is an attempt to bring outsiders within touching distance of man’s major
achievements in his effort to understand the physical universe. Einstein and Infield’s book The Evo-
lution of Physics does a marvelous job of explaining the major themes of physical theory to the general
public without the usc of mathematics. As its authors point out, The Evolution of Physics is not as easy
to rcad as a novel. Nevertheless, it covers mechanics, electrodynamics, general relativity and quan-
tum mechanics, the full range of fundamental physics, without requiring any previous knowledge of
physics, and without more mathematics than is used at the checkout counter of a supermarket.
Reading their book is a marvelous experience. And it is amazing to think that Einstein was personally
involved in creating much of the physical theory described in his book.

Another classic in the popularization of science is Feynman’s Messenger lectures on The Character
of Physical Law, which was filmed by the BBC and later transcribed into an MIT Press paperback.
As Feynman points out in these lectures, nature seems to behave in an essentially abstract math-
ematical manner; one cannot open the hood and expose the hidden mechanism of gears and belts.
It is not really possible to appreciate the major aspects of the behavior of the physical universe,
without the use of substantial amounts of mathematics.

This effort is also based on the premise that the fundamental ideas of physics are simple and beautiful,
and can be appreciated by a large public. The major obstacle is not the difficulty of the concepts, but
rather the unfamiliar mathematical vocabulary employed in formulating them. In their explanation
of Newtonian physics, Einstein and Infield get around this obstacle by explaining the basic concepts
of the differential and integral calculus in intuitive physical terms without using the usual forbidding
mathematical notation. Later they practically formulate in words Maxwell’s partial differential
equations for the electromagnetic field.

The usual path that leads from the popularizations of Einstein and Infield and Feynman to within
touching distance of the great intellectual poems of physical theory, is to pursue a course of study of
several years duration, and to work one’s way through a large number of textbooks, textbooks which
must be diligently studied, one by onc, in the proper order. It seems unfair to deprive those of us who
cannot do this of the pleasure of being on intimate terms with so much beauty. Here we try to provide
a short cut. Of course, the contents of years of study cannot be poured into one booklet. We con-
centrate on five major triumphs of mathematical physics, associated with the names of Newton,
Maxwell, Einstein, Schrodinger, and Feynman, which illustrate major currents of physical thought,
major themes, major styles in physical theory. And the attempt is made to achieve precision
notwithstanding the mathematical barrier, by presenting the mathematics on the computer, rather
than in traditional mathematical notation. Computer programming is a mathematical language that
is rapidly becoming more widespread than traditional mathematics, due to the dramatic advent of the
era of personal computing.

This “gallery’” may be regarded as a mathematical appendix to Einstein and Infield’s popularization,
in which computational working models are provided to illustrate the fundamental physical principles
discussed by them. In cach case we also indicate appropriate readings for students that help to ex-
plain the programs.

I would like to thank Neil Patterson and Robert Bernstein for their enthusiastic support and encour-
agement, and [ am grateful to IBM’s Research Division for giving me a sabbatical to work on this
project, and to the Theoretical Physics Group of the Physical Sciences Department for its hospitality.
The help of members of the Theoretical Physics Group has been invaluable, and I am especially in-
debted to Gordon lLasher, Bruce Elmegreen, Martin Guizwiller, Philip Seiden, and Donald
Weingarten, and also to Larry Schulman of the Technion in Haifa, who visited this group the summer
of 1984. I am grateful to Donald Orth and Norman Brenner for their help with APL2. Finally, I want
to thank for their patience and perseverance those who attended a course on this material given at the
I1BM Thomas J. Watson Research Center in the fall of 1984,
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Introduction

Before leaping into the details and the computer programs, we would like to summarize the person-
alities of the five pieces ol physics we shall present.

The first major step in physical theory was duc to Newton. He discovered rules for calculating plan-
etary motion. In Chapter | we shall consider a model solar system, consisting of a finite number N
of point masses interacting with cach other via gravitational attraction. The physical state of this
system is described by 7N real numbers giving the masses and the current positions and velocities of
the N bodies. The force acting on a particle is the sum of the forces on it exerted by each of the other
particles. And the force one particle exerts on another is proportional to the product of their masses
and inversely proportional to the square of the distance between them. A force acting on a particle
has the effect of producing an acceleration, that is, a change in its velocity, which is proportional to
the force and inversely proportional to the mass of the particle.

These laws formulated by Newton gave rise to the so-called mechanical world view. There are a
number of remarkably strange features of Newton's laws. Some of these problems were known to
Newton himself and upsect his contemporaries, and others later troubled Mach and were elucidated
by Finstein. The major cause for amazement that the world runs this way is concerned with “action
at a distance.” How can two gravitating bodies far away from each other have an instantaneous effect
upon one another, without something propagating through the space between them at finite speed?
This objection seems quite reasonable, but Newton’s laws postulate instantaneous action at a dis-
tance. And Feynman emphasizes another troubling aspect of Newton’s laws, namely their abstract
mathematical nature and the lack of a mechanism. “Does each planet measure the distance to its
neighbors with a ruler and then use an internal computer to calculate the square of this distance?”
he asks. Another conceptual difficulty is concerned with the fact that real numbers are employed in
describing the physical statc of a planetary system. Real numbers in principle contain an infinite
amount of information, but no one has ever measured any physical quantity with more than about a
dozen digits of precision, and floating point numbers in the computer usually only have about a half
dozen or a dozen digits of precision.

The next major step forward in physical theory was from action at a distance to field theories, in
which effects propagate locally and at finite specd throughout an extended region of space in which
a field resides. In Chapter 2 we shall give a computer model of a piece of electromagnetic field. Now
the mathematical framework consists of a cube in three dimensional space, and each point within it
is associated with two vectors or arrows. Each vector may be represented by a triple of real numbers.
One of the two vectors gives the magnitude and direction of the electrical field at that point, and the
other gives the magnitude and direction of the magnetic field. Just as real numbers with infinite
precision cannot be handled on the computer, neither can the infinity of interior points of a cube.
So instead we consider an N x N x N lattice of points. Each point affects its nearest neighbors,
which in turn affect their neighbors, and so on, and this gives rise to light waves and radio signals.
2N3 vectors and 6N? numbers define the state of the field.

There are a number of serious problems with Maxwell's equations. One problem, pointed out by
quantum theory, is that electromagnetic waves also manifest a particle-like behavior calied photons,
particularly evident in hard X-rays and gamma rays. The version of Maxwelil’s equations we present
is called the vacuum field cquations, because it describes electromagnetic waves propagating in a
vacuum. There are no sources of the fields. And the electron turns out to be a very troublesome field
source, because it seems to be a perfect mathematical point. This unfortunately implies that an infi-
nite amount of cnergy is stored in the electromagnetic field which surrounds it. Feynman emphasizes
in The Feynman Lectures on Physics that this problem has never really been solved, not even in
quantum field theory. Problems like this lead some people to suspect that perhaps it is not really the
case that space and time are infinitely divisible and flow continuously. Perhaps space and time are
discrete and come in minimum units or quanta

From Maxwell’s vacuum field equations. we jooo 10 € inapter 3 to Einstein’s field theory of gravitation.
In this theory gravity is achicved by o old o focad oot pather than by action at a distance.
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Einstein’s theory predicts gravity waves, but so far these remain undetected. The protagonist is now
a four dimensional manifold, the space-time continuum, which is curved or bent. Gravity waves are
ripples in the curvature of space-time. Light and small test particles go as straight as they can through
this curved medium, on what are called geodesics, which we show how to calculate. We also present
Einstein’s field equations in the form of a computer program which checks whether the way space-
time is bent is okay or not, in a universe that is entirely empty except for a single point mass. This is
the famous Schwarzschild solution describing a black hole and its event horizon.

In Chapter 4 we leave classical physics for quantum physics, a strange world full of probability waves
propagating in many dimensional phase spaces, and interfering constructively and destructively with
each other. Usually probabilitics are real numbers between zero and one. Probability zero means
impossible, and probability onc means certain. The kind of probability which appears in quantum
mechanics is very strange indeed, for it is a complex number, whose magnitude or size is proportional
to the traditional probability or degree of propensity, but whose direction represents the phase of a
wave. To distinguish them from normal probabilities, the complex-valued probabilities occurring in
quantum physics are called probability amplitudes. Normally, if there are two different ways in which
something can occur, then the overall probability of occurrence is the sum of the individual proba-
bilities, and is greater than either one of them. But in quantum physics the situation is quite different.
If two probability amplitudes that are added together have the same magnitude but opposite di-
rections, then they cancel out and give a zero overall probability of occurrence. And the hydrogen
atom according to Schrodinger’s equation is a kind of musical instrument, whose discrete spectrum
of energy levels corresponds to the different frequencies of sound generated by the instrument. It
consists of a central proton surrounded by waves giving the probability amplitude that the electron
is at any given location.

Finally, in Chapter 5 we consider Feynman path integrals and the quantum theory of fields. Here is
our computer model for an electromagnetic field: The setting is now a space-time cube, represented
asan N x N x N x N lattice of N* points. The electromagnetic field is not the primary object. In-
stead it results from a gauge or phase field. The gauge field is represented by angles of rotation
specified on each of the links connecting adjacent points in the lattice, and there are 4N* of these
links. Thus it is necessary to specify 4 N* angles in order to specify a particular gauge field config-
uration history or path. In the Fcynman path integral formulation of quantum mechanics, one cal-
culates probabilities for experimental results according to the following prescription: a physical
system may go along any path it likes, in fact it goes along all possible paths! Feynman gives a for-
mula for calculating how much cach path contributes to the overall probability, and how different
paths interfere constructively and destructively with each other. It is really amazing that the world
behaves in this bizarre fashion. This is closely related to the “many worlds” interpretation of quan-
tum mechanics.

The latest efforts in the dircction of a unified field theory, called non-abelian gauge theories, are
similar to the model that we have just described. The principal innovation is that they involve a richer
notion of “phase” than before. For example, instead of the rotations of a circle, one may consider
the rotations of a multi-dimensional sphere.

Now for the details.

Introduction 2



1. Action at a Distance: Newton’s Law of Gravitation
Readings

° Einstein & Inficld, Chapter 1, *“T'he Rise of the Mcechanical View.”

o  PSSC Physics, for the formulas for centrifugal force and gravitational potential energy

I Action at a Distance: Newton™s 1 aw of Gravaation



Newton—Orbits
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The program Newton provides a working model of a “‘solar system.” It does planetary orbit calcu-
lations for point masses, according to Newton’s laws:

F = ma

Jo= (e

2
,
The program is given the masses of the bodies and their initial positions and velocities. The units used
are seconds, meters, and kilograms. This is a simplilicd version with only two bodies and minimal
computer graphics.

More precisely, we simulate an artificial satellite orbiting around the earth. Here are the initial con-
ditions. The masses of earth and of the satellite are 6 x 10 kilograms and 10 kilograms, respec-
tively. The earth is initially at rest at the origin of coordinate system. The satellite is initially 107
meters from the center of the carth, which is about 2200 miles above the carth’s surface, and is
traveling at 6 x 10° meters per second (about 13400 miles per hour) perpendicular to the radius
vector connecting it to the carth’s center.

We use a time step of sixty scconds in the calculation, and draw a motion picture frame every fifteen

time steps, i.¢., every quarter hour of simulated time. Altogether, we draw twelve pictures of the or-
bit. Thus the total simulated time is three hours.

We do not have to worry about how to draw a picture of a three dimensional situation, because we
have set things up in such a manner that the last coordinate of the position of the earth and the sat-
ellite is identically zero. Each picture of the trajectory is a 50 by 50 array of pixels (picture elements),
in this case single characters. Each pixel represents a square that is 500 kilometers by 500 kilometers.
The earth is represented by the letter “E,” and the satellite is represented by an asterisk “*.”

| Action at a Distance Newton's aw ol Grasdation 5
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2. The Electromagnetic Field: Maxwell’s Equations

[t may be preferable to build up to the 4-vector potential version of Maxwell’s equations that we

present here, by first considering a program for the traditional form of Maxwell’s equations based

directly on E and B.

Readings

e Einstein & Infield, Chapters 2 & 3, “The Decline of the Mechanical View,” & ‘‘Field,
Relativity”, for the concepts

e Feynman, Leighton & Sands, for the formulas

Additional References
° Potter, on centered integration

®  Moriyasu, on Maxwell’s equations in gauge theory

2. The Eiectromagnetic Fickd Maxwell's Fquations



Maxwell—4-Vector Potential Vacuum Field Equations
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This program presents the modern relativistic version of Maxwell’s equations in the form that is used
in quantum mechanics, and which inspired gauge theory. The electrical and magnetic fields E and B
play a subordinate role; the principal actor is the 4-vector potential 4, consisting of the scalar poten-
tial ¢ and the vector potential 4.

Let’s start by stating the Maxwell’s equations in terms of the scalar potential ¢ and the vector po-
tential 4. Then we will restate this in terms of the 4-vector potential A4,.

Here are Maxwell’s vacuum ficld equations in terms of ¢ and A.

0A

E=—-V¢p ——

¢ ot
B =VxA
Py

Vi -
ot
2

vi4 - 12 a;n =0
¢ Ot
1 9¢

Ved — —— —— =0
2 or

Here is a more explicit version of these equations, written in terms of components:

3¢ ¢ I a4, 94, 94,
E—-(EvayaEz)—-' (Ea _6;.7 —(g) - ( at E] ot ] ot

Thus

3¢ 94, dp 04, 3 04,
E=-{—+ st o +
Ox ot dy ot oz ot

As for B,

4, 04, 094, 94, 04, 94,
B=(B,.B,B)= B Al S -
v dy 0z 0z ox ~ Ox dy

Then we have four very similar equations giving the time evolution of ¢ and the components of A4:

2
o o Fo 1 Pe
x> 6y2 oz* et ar?
8%4, . 0%A, . 0’4, 1 4, o
x> ay* a2 ol
2 2 2 2
6/4}, + aA,V + aAy ___l_aAy -0
ox? ay? Y '
34, 4. A | 84 0
+ T + - — =
ox 2 day” Az ’ ¢ ’ or 2

Finally, here is the Lorentz gauge condition again

2. The Blectromagnetic Ficld Maxwell's Fquations It



0A, oA, 0A, J
P A S WA
ox dy a9z 2 ot

Now, let’s reformulate this in 4-vector notation, and let’s take the speed of light to be unity ¢ = 1.
The 4-vector A, is defined as follows:

AII = (A()‘ Al’ sz A'{) = ((j)' A) = ((l)v Axv A.V' A:)

We also need to introduce the partial differentiation operator 9, :

s (2 _o0 _a _a
“T o ax’ ay’ dz

Similarly, the D’Alembertian operator [ is

From A, is obtained the antisymmetric tensor F,, (i.c., F,, = —F,), whose six independent compo-
nents are the components of E and B.

F,= au Av - av Au

124%

Then E and B are determined as follows:

— —

X 3
E, 0 -8B, B,
f‘l“’ =
E, B. 0 - B,
E, - B, B, 0
And the field equations become
O4,=0

while the Lorentz gauge condition is
(',()A()"f‘ al Al + 82A2+ 6';14'; =O
Now we discuss the formulation as difference equations. First of all, we make the important decision

that Ar = Ax = Ay = Az = A . Next, we replace first and second order partial derivatives by differ-
ences as follows:

o Jx+M)-fx=-D)
ax 2 A
[./'(-x +A) = f(x) ] B [f(X) — flx = 4) J
A A S+ 4) =2 f(x) + f(x = A)
6x2 A - A2

(recall ¢ = 1) can be expressed as

2. ‘The Blectromagnetie Fickd Muascw el baguation, 12



Yt + A) - 2y + Yt — A)
A? B

Ylx 4+ A) — 2y + Y(x — A) +
A’

¢@+A)—2¢+¢(V—A) +
A2

Yz + A) — 2y + y(z = A)
AZ

This difference equation is space and time centered and therefore highly accurate. Multiplying
through by A?, and rearranging things slightly, we get

YU+ A)= -4y —yY(r - 4)
+yY(x+ A) + Y+ A) + Y(z + A)
+Y(x = A) + Yy — A) + ¥(z - B)

This yields a “leapfrog” method, i.e., from ¢(¢) and ¢(r + 1), we calculate (¢ + 2), then from
Yt + 1) and (¢ + 2), we calculate (¢ + 3), etc. This technique is simultaneously used on each
component ¢ = A4, of the 4-vector potential, since these evolve independently.

Now we consider a solution to these equations which is a plane wave propagating along the x axis.
We take

4,=10, 0, fix = 1), 0]

so that
E=-— [0, %—f(x -1, 0] =-[0, —f(x-0, 0]=[0, f(x-1), 0]
and
7
B = [0, 0, w-f(x—t)] = [0, 0, f'(x—t)]
ox

Thus E and B are always of equal magnitude and perpendicular to each other and to the direction of
propagation. With this choice of A4, the field equations simplify greatly, since

Ay=A;=A43=0

and
04, 04,
dy a9z
Thus to verify that Maxwell’s equations are satisfied, it is sufficient to note that
& i : :
DA2=—‘2—A2— 2A2=(*—f(x—t))—f(x‘t)=0
at Oox

and
P 0
In Maxwell, we consider for 20 time steps a world with periodic boundary conditions that is 20 x 1

x 1, which essentially reduces us to the case of a one-dimensional field. And we take
f(x) = — (20/27)cos(2mx/20), so that f* = sin(27x/20).

2. The Eleetromagnetie Field Maxwell's Fquations 13
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In this picture and the one on the next page, the ficld strength —1 is flush left, O is in the middle, and
+1 is flush right.
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3. Curved Space-Time: Einstein’s Field Equations for Gravity

Our first program, Einst, repeats the orbit caleulation that was done in the program Newton in Chapter
1, and fortunately the result of the general relativity calculation is essentially the same as the one we
obtained before. The metric used in this program is an approximate one, and is an casy consequence
of special relativity and the principle of equivalence applied to the gravitational field experienced on
a rotating disk. Paradoxically, il this program s improved to use the Schwarzschild metric, it gives
much worse results. The reason better physics gives worse numbers, is that the mathematical method
cemployed works better in rectangular coordinates than in polar coordinates.

Readings

e  Einstein & Inficld, Chapter 3, “Ficld, Relativity.”

e  FEinstein Relativity, for the merry-go-round

e  Skinner, for the meaning of I and R

e Linstcin The Meaning of Relativity, Tor the formulas for I oand R and the fact that the
gravitational time dilation metric gives Newton’s equations of motion

e  Eddington, for the meaning ol curvature
e  Penrose, for a gcometrical statement of the tield cquations
e  Harris, for a discussion of different approximations to the Schwarzschild metric

e  Unsold, for a summary of relativistic cosmology

Additional References

[ Rindler
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Einst—Geodesics in Rectangular Coordinates

YLOAD EINST
SAVED 1385-01-08 19,04 .43 (CMT-%) 2727K(2695K)
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[ 1] 0ro«1
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I 31 E<1000
[ w1 DELT<60
{n1] C«318
[ DX« (X VR, (DELTXOE3) 0, (DELTXCY ) (1VR7,0,0,0)
7 STy
[ 4 LOOP :
[ 9] DRAW X«XtDX«DX - { (GAMMA X)+.xDX) +.xDX
[10] F{((12x15) 25TEP<STEP+1) /LOOP

VDRAWLO]V
[o] DRAW X
{1] ORBIT[25+0;24%+01«"E"
[2] ORBITL?25+LX[11+5F5;25+L X[ 2]+5E51«" %!
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o1 YA ¢
(11 7«4 UpO
{213 (1 182)« (71 71 "1),1-.0088%(+/34X%2)%_5

vDGDX[01V
[0] 2+«DGDX X
[11] Z+501 21((C c[21X+2) - (C"cl 21 (X+4 LUpX)-Z+Ex(14)o.=14))22xE

VCAMMATOIV
10] +GAMMA X
11 Z« hx(BC X)+.x(2 1 38Z)+(3 1 28%)-(2 3 18Z<«DCDX X)

VFRAME[D]V
L0l FRAME PIC
(1] Y0 e, 1t -,
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The program Einst docs the following. Given two close initial points in space-time, it calculates the
motion of a small test particle according Lo the weak field nonrelativistic motion metric resulting from
the principle of equivalence. This is given by the geodesic passing through those points.

More preciscly, we calculate the trajectory ol an artificial satellite orbiting the earth. The mass of the
carth is 6 x 102 kilograms, which is .0088 mcters in units in which G = ¢ = 1, and the earth is at rest
at the origin of coordinate system. ‘The satellite is initially 107 meters from the center of the earth,
which is about 2200 miles above the carth’s surface, and is traveling at 6 x 10* meters per second
(about 13400 miles per hour) perpendicular to the radius vector connecting it to the carth’s center.
These initial conditions give us the first point on the trajectory.  In order to determine a geodesic
passing through it, we need a sccond point on the trajectory. We get this point by estimating where
the artificial satellite will be sixty sceonds later, assuming that for the first minute the gravitational
clfect due to the earth is negligible and the satellite travels in a straight line.

This gives us a sixty second time step in the calculation, and we draw a motion picture frame every
fifteen time steps, i.c., every quarter hour of simulated time. Altogether, we draw twelve pictures of
the orbit. Thus the total simulated time is three hours.

The first subroutine, DRAW, draws a picture of the geodesic trajectory. We do not have to worry
about how to draw a picture of a three dimensional situation, because we have set things up in such
a manner that the z coordinate of the position of the carth and the satellite is identically zero. Each
picture of the trajectory is a 50 by 50 array of pixcls (picture elements), in this case single characters.
Each pixel represents a square that is 500 kilometers by 500 kilometers, The carth is represented by
the letter “E,” and the satellite is represented by an asterisk ©*.”
Below we use Einstein’s summation convention: any term with repeated indices denotes the sum over
all values of this index (1, 2, 3, and 4).
The next subroutine, G, caleulates the 4 x4 matrix consisting of the coeflicients of dx, dx, in the fun-
damental metric form, which gives the distance ds between two infinitesimally close points in terms
of the differences between their coordinates:

2

ds” = g, j dx; dx/

These sixteen values of g, as a function of x;, x,, xy and x; define a space-time and determine all its
geometrical properties. g must be a symmetrical function of 7 and j. Given a point X in space-time, G
produces the 4 x4 matrix of the g, at that point. For convenience in defining the particular metric that
we use, let

Xy = X
Xn = )
X% =
Xy =

Here is the gravitational time dilation metric for a point mass:

ds’ = |1 - 2m dr — (d)(2 + dy2 + a’zz)

2,2, 2
X +yv +z

Here x, v, z are the usual rectangular coordinates measured in meters, and the mass m and time 7 are

measured in units in which ¢ = ¢ = 1.

L.ct us be more explicit. Since light travels 3 x 108 meters per second, our unit of distance is meters,
and our unit of time is such that the speed of light is unity, it follows that one second is equal to
3 x 108 of these time units. And our unit of mass is the normal one multiplied by the gravitational
coupling constant G and divided by the speed of light squared. In these units the mass of the carth
s (6 x 102)(.667 x 10 19)/(3 x 108)2 = 44 centimeters, and thus the radius of the cvent horizon
of the carth, i.c., the Schwarzschild radius of the carth, is 2m = .0088 meters.

The next subroutine, DGD X, caleulates the 4 x4 x4 matrix consisting of the partial derivatives of the
&, with respect Lo the x; at a point X in space-time.
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The next subroutine, GAMMA, calculates the connection ™ at a point X in space-time, which is also
known as the Christoffel symbol of the seccond kind. This consists of a 4x4 x4 matrix used to cal-
culate the result of an infinitesimal parallel displacement of a vector from the point X:

| I 98, 98, 98,y

l'\\' — + _

" 2 ox, ox ox

" a

il

[
? g\ll (guu. v+ 8w — Suv, a)

Here g written with superscripts rather than subscripts denotes the metric inverse, a 4 x4 matrix which
is defined as follows

ki 1 ifi=j
k&~ = { 0 ifis)
and which is calculated using the APL. matrix inverse function 8.
Finally here is the equation for a geodesic:

dzxu . dx, dx,
ds? ab g4y ds
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Einst2—Numerical Verification of the Curvature near a Black Hole

yLOAD EINST?
SAVED 1985-01-08 19.04.29 (GMT-5) 2727K(2695K)
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[ 7] 1 1
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[103 t L

[11] 'RICCI TENSOR ='
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(1] (1 18Z)++1 18Z«C X

YDCDXIO]Y
(01 2+«DGDX X
[1] 2501 21((C"c[23X+2)-(G"c[2]) (X« upX)-Z«Ex(14)o . =14))+2xE

VGAMMATDOIV
ol Z+«GAMMA X
[11] Z+.5%x (G2 X)+.x(2 1 38Z)+(3 1 28Z)-(2 3 18Z«DGDX X)

VDGAMMADX[DO1V
{o3 Z«DGAMMADX X

YRuCO1V
fol Z+RY4 X
{11 Z«(1 3 28Z)+.xZ2«GAMMA X
[21] Z«(-2Z)+(1 2 4 38Z+«DGAMMADX X)+(1 3 2 u®Z)-(1 4 2 3R82)

[11 Z«501 2 31((GAMMA ™ c[21X+2) - (GAMMA " c[ 2] (X4 upX)-Z+Ex (14)o.=14)) ¢+ 2xE]

3. Curved Space-Time: Einstein’s Fickd Eguations Tor Gty

23




The program Einst2 checks the Schwarzschild solution of the vacuum field equations of general rela-
tivity numerically at a single point of space-time. This involves calculating the Riemann curvature
tensor at that point, and checking that various components sum to zero. More precisely, we check
Einstein’s field equations for gravity two meters from the center of a black hole with a Schwarzschild
radius of one meter.

Below we use Einstein’s summation convention: any term with repeated indices denotes the sum over
all values of this index (1, 2, 3, and 4).

The first subroutine, G, calculates the 4 x4 matrix consisting of the coefficients of dx, dx, in the fun-
damental metric form, which gives the distance dy between two infinitesimally close points in terms
of the differences betwceen their coordinates:

ds* = 8, dx; dx,

These sixteen values of g, as a function of x. x,, x; and x; define a space-time and determine all its
geometrical propertics. g must be a symmetrical function of { and j. Given a point X in space-time, G
produces the 4 x4 matrix of the g, at that point. For convenience in defining the particular metric that
we use, let

XI = r
X?_ = f
X4 = [
Here is the Schwarzschild metric for a point mass:
2 2m 2 - dr? 24 .2 2 2
ds” = (l ———r——)dt - | — 4+ (sm 0de” + db )

(-2)

Here r, 0, ¢ arc the usual spherical polar coordinates, measuring, respectively, distance from the
origin in meters, inclination from the z axis in radians, and angle around the 7 axis in radians. And the
mass m and time ¢ are measured in units in which G = ¢ = 1.

The next subroutine, G2, calculates the metric inverse, which is a diagonal 4 x4 matrix defined as
follows:

ki § vili=
bik& = {Oifi;éj

In Einst we simply calculated the metric inverse by using the APL matrix inverse function B. In Einst2
we take advantage of the fact that the Schwarzschild metric is diagonal to get a more accurate metric
inverse by simply replacing each clement in the diagonal of the metric by its reciprocal. This addi-
tional accuracy was not needed in Einst.

The next subroutine, DCD X, calculates the 4 x4 x4 maltrix consisting of the partial derivatives of the
g,, with respect to the x;:

9%,

axk - g,‘!" k
The next subroutine, GAMMA, calculates the connection I' at a point X in space-time, which is also

known as the Christoffel symbol of the second kind. This is a 4 x4 x4 matrix used to calculate the
result of an infinitesimal parallel dsplacement of a vector from the point X:
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u a

- l s agua + agva _ aguv
w 28 dx, dx dx,
1 .
= —i_ g\ll (guu, vt 8yu u— Euv, a)

The next subroutine, DGAMMADX, calculates the 4 x4 x4 x4 matrix consisting of the partial deriva-
tives of the connection components at the point X:

Al

=1,
axl gk, 1

The next subroutine, R4, produces the Riemann curvature tensor, which is a 4 x4 x4 x 4 matrix used
to calculate the change in a vector at X after parallel displacement around an infinitesimal
parallelogram:

u ~
ar,s‘a + l.\'h
Bx,, axa

u u N r u r
= - F.va, b+ I‘sb.a + l—‘m rsh - Fr[) Fsa

u SPR U
Ryp = — + 1 ra Fgp =T rb rsa

A space-time is flat if and only if all the components of the Riemann curvature tensor are identically
0.

Finally, we calculate the Ricci tensor at the point X in space-time

Ra

uw = Nuya

R

which is 2 4 x4 matrix obtained from a 4 x4 x4 submatrix of the Riemann curvature tensor, and we
check Einstein’s vacuum field equations, i.e., that

R, =0

uy
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At the point of space-time under consideration, the components of the Ricci tensor are at least seven
orders of magnitude smaller than the relevant components of the Riemann curvature tensor. This is
thercfore an excellent numerical verification that the Schwarzschild metric satisfies Einstein’s vacuum
field equations.
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4. Quantum Probability Waves: Schrodinger’s Equation in One Dimension

My original goal was to present here a working model of the hydrogen atom, but unfortunately it
seems that much too much computation is nceded and this is quite impractical. So instead of doing
time evolution according to the Schrodinger equation in three dimensions, we work in one dimension.

Readings

Einstein & Infield, Chapter 4, “‘Quanta.”

e  PSSC Physics, for the de Broglie wave length of a particle

e  PSSC Physics, for the Bohr hydrogen atom

® Born, for a summary of the formalism of quantum mechanics

e  Polkinghorne, for a summary of the formalism of quantum mechanics
Additional References

e Eisberg & Resnick

e Potter

®  Gerald & Wheatley

®  Goldberg, Schey & Schwartz
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Schrod—One Dimensional Time Evolution
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Introduction

This program provides a one-dimensional working model of a quantum-mechanical particle moving
in a potential.  We use centered integration, which requires implicit solution of the difference
cquations, to get good numerical results. Boundary conditions are given for a Gaussian wave packet
to propagate freely, and to scatter against a square barrier and inside an infinite well.

How does quantum mechanics describe the state of a particle by means of the complex valued wave
function ¢, which possesses both a magnitude and a phase or angle at each point at which it is de-
fined? The square of the magnitude of ¢ at a point is proportional to the probability that the particle
is there. And the rate at which the angle of ¥ changes with position, i.e., the rate at which ¢ rotates
as position varies, is proportional to the momentum of the particle. (Rotation clockwise goes in one
direction, counter clockwise moves in the opposite direction.) Also, the rate at which the angle of
changes with time, i.e., the rate at which y rotates as time varies, is proportional to the energy of the
particle. (We have just stated the Schrodinger equation in words, in view of the relationship between
momentum and energy given by p2/2m = (mv)?/2m = mv?/2.) The Heisenberg uncertainty princi-
ple is reflected in the fact that if the velocity of a wave packet is known exactly, then  is a uniform
rotation whose magnitude does not change as a function of position, so that the position is completely
uncertain. Contrariwise, a spatially localized wave packet will contain a mixture of frequencies, that
is, of momenta, and will spread with time.

Computational Technique
Here is Schrodinger’s differential cquation &y = #y on a line:

oo o 82
(*73;)"— “am a2 TV)Y
le.,
9 w9
_.i=_.'1_. ___.__.__._i_‘,_V\p
ot ik 2m dx

This yields the following time and space centered finite difference equations:
‘l’x, +1 = ‘px. !
At

> Vert oot = 2% o1 F ¥t 14 Yapt, = 2¥x  + ¥y
- 2 + 2
1 2zm 2 (Ax) 2 (Ax)

i
+ ? (Vx ‘l/x, 1+ Vx ‘l’x‘ I)
This can be expressed as the following system of linear equations:

1
¢_x+|,/+l(—B) + ¢x.1+l(K;+2B—';—Vx) + ‘I’x—l.1+1( -p) =

Gt ® + v (=284 5V) + v )

i ( # ) i
a = — B = a — —
it 2m 2 (Ax)
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Thus we are led to a matrix formulation of the time evolution of the wave function ¢ according to the
Schrédinger equation: the matrix A times the column vector of  values at time ¢ + 1 is equal to the
matrix B times the column vector of { values at time ¢:
Yo, 141 Yo, ¢
A : =B :
YN-1, 141 VN1,

where matrix A has the following element at row / and column

-B ifj =i+ lori—1

1 «
1 _ &y
At+ZB 5 Vi if

]

and matrix B has the following clement at row i and column
B ifj=i+1lori—1

1 o
—_— =2 — V. it
At B+2 it

-~

Thus the column vector of ¢ values at time ¢ + 1 is equal to (the inverse of matrix 4) times matrix B
times the column vector of  values at time r:

Yo, i1

Yo,
: Bl
YNCL 4 YN_1.1

The program Schrod deals with a one dimensional “*world” one meter long in which the position x
goes from —.5 to .5 with periodic boundary conditions. We simulate this world fromr =0 tot = 1,
i.c., for one second. We take Ax = 1/50 and Ar = 1/(20 x 50), but we only draw a picture of the
wave function ¢ every 20 time steps. Thus the one meter space is divided into 50 cells, and the one
second time is divided into a motion picture with 50 frames. Each frame is in two parts, a drawing
of the probability as a function of position, and a drawing of the phase as a function of position, in
which the positions are given as cell #°s going from | to 50. Along with each frame, we print the total
probability, and this value, which should always be exactly unity, is indeed very accurately conserved.

Experiment 1—A Momentum Eigenstate
I is identically zero, that is to say, there is no potential and we are looking at free propagation.
Here is the formula for the initial wave function, which is included in Schrod as a comment (see line
[20]):
Yx) = e?"ix (=5<x<.5)

This has a one-meter wave length and defines a particlc whose momentum is known exactly, and
whose position is totally uncertain. This is also a stable standing wave on this torus, i.e., a momentum
eigenstate. And it is the first momentum eigenstate above the ground state, in which y is a constant.

How do we expect this system to behave? According to de Broglie, a particle of mass m with mo-
mentum p and cnergy E undergoing free propagation in one dimension is described by a wave func-
tion
. 2mi
Y = expl 27i(tx — v} ] = exp —h—f(px — Erp)

where
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= waves per unit space (wave number)

3
I
>

E .
v = o = waves per unit time (frequency)
It follows that
p=rh
and that
2 2,2
E= s _T h
2m 2m
Hence
V_£_ h72
T h T 2m
Le.,

2
Y= eXPI:27Ti(Tx - 'hLl) :I = exp[2m'¢ (x - Th t)]
2m 2m

Thus this wave propagates with speed

Th
2m

which is precisely half of what one would expect from the fact that
mv=p=-h

The program Schrod deals with a one dimensional “world” in which the position x goes from ~.5 to
.5 with periodic boundary conditions, so that T must be a positive integer for the value of ¢ to wrap
continuously around the end of the world. In fact, the initial wave function is the r = 1 case, and
we take m = 1 and % = .1, so that

h=2nh=6.28% = .628
and
¥ = expl2mi(x — (h/2m)t)] = exp[ 27i(x — .314¢) ]

Schrod integrates the wave function over ¢ going from 0 to 1. In one unit of time, ¥ will propagate a
distance of .314 meters. Since we take Ax = 1/50, this is about sixteen of the fifty cells into which
space is divided, which is fortunately what we actually see in the output from Schrod.
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PROBABILIPY(POSTITION) AT TIME - O
FOTAL PROBABILITY - 1

| V.o 0 | * |
| v oo 1 | * |
I v o 2 | *
| v oo K | * |
| V=0 iy | * |
| v-o O ® |
| Voo [ * |
| Voo ! | * |
[ s | *|
| v-0 9 *|
| v-noo10 | *|
| v=0 11 | *|
i v=o 12 | * |
| v=0 13 | * |
| v=o 1a | * |
| V=0 15 | * |
bov-o 16| * |
| v=0 1/ | * |
| v-0o 18 | * |
| V=0 14 | x|
| v-0 20 | * |
IV 2 | * |
) V=0 v | * |
i Vety 23 | * |
v 2w | *|
boven on ] *
| V-0 b | * |
| V-0 27 b * |
| v=6 28 | * |
|ov=0 29 | * |
i v=0 30 | *|
| v=0 31 | *|
| V=0 32 | *|
bov=0 33 | * |
| v=0 34 | * |
I ov=0 35 ) * |
i v=0 36 | * |
ov=0 37| *|
| v=o 38 | *|
| v=0 39 | *|
| v=0 uo | * |
Iov=0 41| *
| v=0 u2 | *|
| v=0 w3 | *|
j V=0 wy | * |
|ov=0 an | *|
| V-1 b { * |
| v=0 n7 * |
[ R VI | * |
fov=o uo | *|

In this and all subscquent graphs of probability as a function of position, zero probability is flush left,
and the values have been scaled so that the largest probabilities in any given graph are always flush
right.
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PHASE(POSTTIONY AT TIME = 0

v oo 0
Voo 1
V-0 ?
V=0 3
¥=0 4
V=0 '
V=0 6
V-0 t
Voo 8
v oo 4
Voo 1o
v-o 11
V-0 17
V.0 13

b
(=]
-
[

[ L | B | B I

F L {1 | | | | £ S | | [ I T N [ I 1Y

WA i

I N S N T i i N N T S e N N S S o SN N
D020 0CCO0O00O0CORO0O0ODOOCO0O0OOCLOCOOOC

w

N

In this and all subsequent graphs of phase as a function of position, phase — is flush left, O is in the

middle, and + is flush right.
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Experiment 2—A Gaussian Wave Packet

There is an intimate and important relationship between the information given in the two parts of
each motion picture frame: the graph of the phase indicates the changes which are taking place in the
graph of the probability. If the graph of the phase is vertical, that means that ¢ is stationary. If the
graph of the phase slopes downward to the right, that means that ¢ is moving down the page. And
if the graph of the phase slopes upward to the right, that means that  is moving up the page. In our
second experiment, following Goldberg, Schey, and Schwartz, we have a Gaussian wave packet that
is simultaneously broadening due to the uncertainty principle, and moving down the page due to its
momentum. If it had no momentum and only broadened, the graph of the phase would slope down-
wards to the right below the peak of the Gaussian, and it would slope upwards to the right above the
peak of the Gaussian wave packet, showing that these two halves of the wave packet are moving in
opposite directions. Since, however, we have made the wave packet move down the page, the point
at which the graph of the phase is vertical lags behind the peak of the Gaussian wave packet, for it
occurs at the point at which the backward spreading just balances the forward momentum.

Here is the formulia for the initial Gaussian wave packet:

S ) N2 2
Y(x) = e'for o7 im0/ 20 (=5<x<.5)
where
ko = 30
x) =0
0() = 05

The first exponential gives the wave packet a momentum proportional to ., and the second one de-
fines a Gaussian probability distribution with average x, and variance g,. As this wave packet under-
goes free propagation, it retains its shape but broadens, i.e., the variance o of the Gaussian
distribution increases. k, = — k, propagates in the opposite direction, and k, = k,/2 propagates at
half the speed. It can also be shown analytically and verified “‘experimentally’ (that is, via compu-
tation) that the rate at which the Gaussian broadens is independent of the speed at which it propa-
gates, i.e., independent of k.

The potential energy ¥ is a time independent function of position. In Schrod as written, V is iden-
tically zero, that is to say, there is no potential and we are looking at a case of free propagation. The
program is, however, easily modified to create a square barrier, which illustrates mixed reflection and
transmission. It is also easily modified to create an infinite well, which illustrates total reflection. The
relevant changes are included in Schrod as comments (see line [ 8 7).

[.et’s now check the extent to which experiment corroborates theory. We shall calculate how fast
we expect the Gaussian wave packet to propagate, and then we shall look at the the output from
Schrod to see how well it agrees with our expectations.

According to de Broglie, the wave number r and the momentum p are connected as follows
P
h

We are working with a world in which the position x goes from —.5 to .5, and the initial value of the
wave function ¢ is approximately

¥ = exp| ikyx | = exp[ 2mirx]

where ko = 30. It foliows that

T == :‘j—’— =3 —:5;—(*)‘ ~ 5
£ P

is the number of waves per unit distance, and the wave length is
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7\=—1—z.2
T

This may be verified by examining the graph of the phase of i at time 0 drawn by Schrod, which
consists as it should of 5 segments. Once we know the wave number 7, the momentum p is deter-
mined, for

hk
p=hr= —% = hiky = .1 x 30 = 3 kilogram-meters per second
T

since fi = .1 in our toy world. Finally, since mv = p = 3 and the mass m is equal to one, it follows that
the velocity v is equal to 3 meters per second.

That’s the theory. Now let’s look at the facts. Examining the output from Schrod, we see that at time
0 the peak of the Gaussian wave packet is at point # 25, and it is at point # 37 at time .08. Since our
total space of one mecter is divided into 50 cells,

Ax (37 — 25)/50 space .24 space

—_—= = = 3 meters per second
A 08 time 08 time p

which gives excellent agreement with theory.

\
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AL this time the wave packet has wrapped around the “end of the world,” and its forward edge has
collided with its trailing edge, producing this interfercnce pattern.
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Rescaling

We would now like to make these experiments more realistic by rescaling them. In our first exper-
iment we have looked at a “particle” whose mass is one kilogram and whose de Broglie wave length
is one meter in a toy world in which 4 is one-tenth and in which the potential is measured in joules.
Let’s consider instead the typical guantum mechanical situation of a valence electron. The mass of
t(!]c clectron is 30 orders ol magnitude smaller, its wave length is typically measured in angstroms
A = 10" meters, its potential is typically measured in clectron volts or eV = 1.602 x 107! joules,
and # is 33 orders of magnitude smaller. So let’s analyze the rescaling necessary if we now consider
a typical valence electron and the correct valtue ol 4.

First we will analyzc the rescaling intuitively with physical arguments, and then we will verify this
analysis by directly manipulating the Schrodinger equation.

According to de Broglie, the wave length associated with a particle is given by

We took A =1, # = .1, and m' = 1, whereas actual values for a typical valence electron are
A=10"°=10A, fi=1.055 x 10-% ~ 10-* joule-seconds, and m, = 9.109 x 10-3' ~ 10-% kilo-
grams. l.e., we have multiplied the wave length by a factor of 107, the mass by a factor of 103, and
# by a factor of 10%. To compensate for this, let’s multiply the velocity by a factor of a 108, so that
the various correction factors are mutually consistent:

(H/H) 1077

AN) = g = =
(A/X) (m/m')(v/V) 1073 % 10°

Thus the one meter of space and the one second of time simulated in the computation performed by
Schrod becomes ten angstroms and 102 x 10-% = 10~ seconds.

In summary, our calculation applies to the actual electron rest mass and value of Planck’s constant in
a world 10~° meters long that wraps around, and we have seen that the wave function y propagates
at .314 x 10% mcters per sccond, while the electron which ¢ describes has a de Broglie wave length
of 10 A and travels at .628 x 10¢ meters per second, i.e., approximately one-five-hundredth the
speed of light. -

=

Note that this rescaling also affects the units used to measure the energy and the potential. The
kinetic energy of our original one kilogram *‘particle” was

2 2
E= m; = 1 x :2628 ~ .2 joules

Since to get a real electron we must multiply the mass m by a factor of 10-3% and the velocity v by a
factor of 10°, it follows that the energy E is multiplied by a factor of 10-30+6x2 = 10-'8. Thus one joule
becomes 1078 joules, which is about 6.25 eV. It follows that our calculation corresponds to an
electron with an energy of about .2 x 6.25 = 1.25 volts.

Now lets rescale our second experiment by the same factors. Le., we multiply distance by a factor
of 10%, mass by a factor of 10%, £ by a factor of 10%, velocity by a factor of a 10°, time by a factor
of 10-"5, and energy by a factor of 10-'%. Thus the one meter of space and the onc second of time
simulated in the computation performed by Schrod becomes ten angstroms and 10-'5 seconds, our
calculation applies to the actual electron rest mass and value of Planck’s constant, and the Gaussian
wave packet and its associated eiectron with a de Broglic wave length of two angstroms, both travel
at 3 x 10° meters per second, i.c., approximately one-hundredth the speed of light.

Since it is very interesting to study the propagation of this wave packet in situations in which V # 0,
it is important to note how this rescaling affccts the energy and the potential. The kinetic energy of
our original one kilogram *‘particle’ way
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2
2 T2

= 4.5 joules

Since the energy E is multiplied by a factor of 10-!% which is about 6.25 €V, it follows that our cal-
culation corresponds to an clectron with an cnergy of about 4.5 x 6.25 ~ 28 volts. And if we took
the value of the potential V at a point to be one joule, it must actually be 6.25 volts for the result of
our calculation to apply to the real m, and # over ten angstroms of space and 10~ seconds of time.

Now let’s rederive these scaling results, by arguing directly from the Schrodinger equation. The
equation that we solve numerically is
V) 1 R &)

=~ - - +V
ot ifa 2mp a(,yx)2 v

where @ = 10% is the factor by which we multiply the true value of #, B = 10%¢ is the factor by which
we multiply the true value of the rest mass of the clectron, and y = 10% is the factor by which we
multiply the true value of the de Broglie wave length of the electron. le., a, B and y are the scaling
factors for #, m and x. Hence we have
2 2 2
W 1 o 9 By

= =1 - + v
a " ina g om g2 |2 Y

An « cancels out, and we get

oy 1 oot | By
—r - - — | vy
a[ "‘21] if 2m o | &
By

which is the Schrodinger equation with the correct values of # and m, and with ¢ = (a/By?) t and
V' = (By?/a2) V. Thus the numerical solution of our equation is also a solution of the correct
Schrodinger equation over a period of time ¢’ a factor of a/By? =~ 10-'5 times smaller and with po-
tential V' a factor of By2/a® = 10~ times smaller.
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5. Quantum Field Theory: The Feynman Path Integral and Quantum
Electrodynamics as a Lattice Gauge Theory

Gravity is curvature of space-time. And electromagnetism is curvature of the fiber bundle of the
phasc of the Schrodinger wave function. Morc precisely, the 4-vector potential corresponds to the
connection of general relativity; it tells how to propagate a phase vector from one position to another.
This is a beautiful analogy; it is not the unificd ficld theory that Einstein was scarching for nor is it a
quantum theory of gravity. But it clearly is a high point of contemporary theoretical physics. Un-
fortunately, I could not devise a program that performs a meaningful quantum electrodynamics cal-
culation, and that would be understandable at the level T am trying to reach. But | believe that the
material presented in this booklet can be used to help bring this pinnacle within sight; it helps to make
possible a deeper understanding of two excellent recent Scientific American articles on gauge theory
(Rebbi “Quark Confinecment’” and Bernstein & Phillips), and it can also be used to help bring within
reach some slightly more technical explanations of gauge theory (Moriyasu and Yang).

Readings

e Einstein & Infield, no rcading, since this is a subsequent development

e Feynman, Leighton & Sands, on the principle of least action

e  Hibbs, on path integrals in quantum mechanics

e Feynman & Hibbs, on path integrals in quantum electrodynamics

®  Misner, Thorne & Wheeler, on path integrals in quantum gravity

e Rebbi “Quark Confinement,” on lattice gauge theory and Monte Carlo path integrals

o  Bernstein & Phillips, on curvature and gauge theory

e Eddington, on Weyl’s original gauge theory

e  Moriyasu, on gauge theory (more technical)

®  Yang, on gauge theory (more technical)

&  Mattuck, on many body physics

Additional References
e Creutz & Freedman, for path integrals in imaginary time

o Creutz, Chapter 3, “Path Integrals and Statistical Mechanics,” for path integrals in imaginary
time

e Maddox, for the Dirac cquation as a path integral

®  Gaveau, Jacobson, Kac & Schulman, for the Dirac cquation as a path integral
9 Jacobson & Schulman, for the Dirac cquation as a path integral

[ Rebbi, Latrice Gauge Theories

e  Schulman
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Feyninan—Nonrelativistic Quantum Mechanics in One Dimension
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This program treats a onc-dimensional non-relativistic quantum mechanical situation via a Feynman
integral over all paths = a sum over all histories. We use Feynman’s original formulation, in which
time is real.

According to Feynman, the amplitude to get from position a at time ¢, to position b at time ¢, is given
by the following integral over all paths x(¢) such that x(¢,) = g and x(1,) = b:
\(lh):/y

o' Sth,a)/ ki

Kb, 1y, a, 1) = f d x(1)

v(1,) =a

Here 7 is Planck’s constant divided by 27 (its numerical value is actually 1.055 x 10734 joule-sec),
and S(b, a) is the action over the path from a to b. The action is defined as follows:

Iy
S(b, a) = f (KE — PE) di
lu

Here KE = Kinctic enerpy and PE = potential energy. Thus the action S is also (1, — ¢,) times (the
expected value of KE — PL).

Note that the Feynman approach in a sense includes that of Schrodinger. Let us define y/(x, 1) to be
the amplitude to be at position x at time ¢, starting from anywhere at time — .. Then we can use the
so-called “propagator” K to cxpress in integral form Schrodinger’s equation for the time evolution
of the wave function y:

4o ,
sty = [ K w0 &y

The usual differential form of the Schrodinger equation is obtained as the limit of

o6
Ylx, t +¢) = f Kx,t +¢&,p,t) ¢, 1) dy

as e tends to zero.

In order to obtain a finitc number of paths, we limit oursclves to positions between —.5 and .5 and
to times between 0 and 1, and we divide the space from —.5 to .5 into N cells, and the time from 0
to 1 into N intervals, so that Ax = Ar = 1/N. At this level of granularity, there are NV possible paths.
Thus our goal is to calculate the N x N propagalor matrix K(x<', x) = the amplitude to reach cell x
from cell x in unit time, by summing over all N¥ possible paths in the manner prescribed by Feynman.
In order to do this, we shall start by calculating K(,(x', x) = the amplitude to reach cell X' from cell x
in time At.

It fortunately turns out that we can integrate over all N¥ paths, with only N amount of work. This
is done by raising the infinitesimal propagator matrix K, to the Nth matrix power to get the matrix
K. This procedure is justified by the equation

4
Kz, t + 2A1, x, 1) = f K(z, t + 241, y, t + A1) Ky, t + At, x, 1) dy

which states that the amplitude to get from x to z in time 2At is the sum of the product of the ampli-
tudes taken over all intermediate points in the path y; this is essentially the rule for matrix multipli-
cation.
But how can we calculate K;? In order to do this, wc must be able to estimate the Lagrangian
L = KE — PE in a segment of a path in which the particle has moved from position x to x" in time
Ar. The obvious estimate is:

2
my* ma ] ” V(x') + V(x)

2 DA 2
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But taking into account the periodic boundary conditions, we see that in this estimate |x — x|
should be replaced by

min  |x' —x}, 11— |x —=x]|
since it may be shorter to get from x to x” by going in the opposite direction and wrapping around our
toy world which is only one unit in length.

Now for test data. First we must decide on the potential energy V as a function of position, which
we have assumed to be time independent. We shall consider the case of free propagation, i.e., no
forces are acting on the particle, and take V to be identically zero:

V=20

Next we must pick an initial wave function ¢ to which to apply the propagator K in order to determine
how ¢ looks after unit time. We choose a very simple case, an eigenfunction or standing wave in
which the particle has precisc momentum and totaily uncertain position:

Y(x) = ™' (=5<x<.5)
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PROBABILAITY (POSITION)Y AT 1iMeE - 1
TOTAL PROBABILITY — 2.108530190k17
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Note that the total probability is outrageously different from one. We have already calculated what
the value of ¥ should be after unit time by using the Schrodinger equation (experiment 1 in the pre-
vious chapter); our result this time differs from the previous one by a large complex normalization

factor. Going to imaginary time improves convergence and makes normalization trivial, but the

physical interpretation of the mathematics is then much more subtle.
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Postscript

Before posing some queries, we cannot help expressing our amazement that a significant portion of
the spirit of fundamental physics has in some sense been captured in six pages of APL. In particular,
our calculation of the Ricci tensor is hardly more than half a page. Partly this is a tribute to
APL—but there are deeper issues involved. Speaking as a computer programmer who has worked
with large COBOL, RPG, and assembly language commercial programs, and speaking as a systems
programmer who has been involved with optimizing compilers and operating systems, 1 am struck by
the fact that gencral relativity is in some sense captured by a program of such small size. This pro-
gram is minute compared to any real useful computer program that 1 have cver dealt with. The moral
is, I believe, that general relativity is simple compared, for example, to the complexity of human so-
ciety as mirrored in the size of the computer programs which service it. Indeed, the beauty of some
of the fundamental ideas of theoretical physics is preciscly that they are so simple and yet at the same
time so powerful and far-reaching.

This enterprise also raiscs questions of a more fundamental nature. There is a school of foundational
thought in mathematics that maintains that what cannot be computed does not exist; this
constructivist foundational tendency in mathematics suggests that there is perhaps more to the com-
puter based approach to physics than meets the eye. Do real numbers with their infinity of decimal
digits really exist, or is space-time ultimately discrete and finite? s it possible that the universe is
really a giant computer or a cellular automaton, as Edward Fredkin belicves? Turning to the more
mundanc, can computational complexity theory be applied to physics and used to give lower bounds
on the computational effort required to do physics, and maybe even to show that some physical
computations are inherently inaccessible no matter what method is used to calculate them? Path in-
tegrals for fields are terribly time consuming, even if Monte Carlo approximation (sampling) is used.
It would be terribly frustrating if physics were to expose the innermost mechanism of the world and
this proved to be quite simple, but it turned out to be impossible to ever calculate from it how any-
thing of interest worked!

I would like to end by telling a joke that R. D. Mattuck attributes to G. E. Brown about the manner
in which physics progresses. In Newtonian physics the two-body problem has an exact analytical
solution, the cliipse, but the three-body problem (earth-moon-sun) can only be approximated nu-
merically. In gencral relativity the one-body problem can be solved exactly (the Schwarzschild met-
ric), but the two-body problem seems too difficuit. Finally in quantum field theory, the zero-bocly
problem or vacuum is already too hard to solve! In fact the vacuum is such a hotbed of activity that
according to some reckonings its energy is infinite-——can this be right, ask Feynman & Hibbs?

Readings

¢  Chaitin, on the size of programs as a measure of complexity

e  Feynman, on how can an infinite amount happen in an infinitesimal cube
e  Wolfram, on physical calculations lacking computational shortcuts

e  Mattuck, on how many bodies it takes to have a problem

e Feynman & Hibbs, on the cnergy of the quantum clectrodynamic vacuum

e Series of three special issues on the physics of computation in the International Journal of The-
oretical Physics, vol. 22 (1982)
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