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ABSTRACT 

Most APL implementations to date have been 
interpretive because of the dynamic nature 
of the language. APL\3000 employs a Dynamic 
Incremental Compiler to allow all the 
flexibility of change afforded by 
interpretation, but giving the added bonus 
of faster execution for programs run more 
than once. APL\3000 compiles code on a 
statement-by-statement basis as needed, 
saving the code and reusing it where 
possible. A statement is recompiled only 
when made necessary by changes in syntax or 
changes in variable bindings. The compiler 
produces optimized code by employing the 
Abrams techniques of Drag-along and Beating. 

INTERPRETIVE PROCESSING 

For years now, APL has been considered 
nearly impossible to compile because of its 
late binding of names. Since there are no 
static declarations of name a~tributes, name 
bindings can be determined only at run-time, 
at which point a name takes on the 
attributes of whatever is assigned to it. 
Further, names can have different meanings 
in different contexts, and can even have 
different meanings on different executions 
of the very same statement. The language 
allows so much to change dynamically that 
any given compilation of a statement could 
prove inapplicable to a subsequent 
invocation of the statement. 

This dynamic, potentially unstable nature 
has prompted most APL implementations to 
choose an interpretive approach. While 
straightforward, it carries with it some 
inherent performance limitations. There is 
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a relatively high overhead for interpre- 
tation when compared to executing compiled 
code because an interpreter performs syntax 
analysis and operand-conformability and 
domain checking on every execution of a 
statement. Often the interpretive overhead 
is more costly than the execution itself, 
particularly when the statement deals with 
operands of few elements. 

NAIVE PROCESSING 

Most APL systems have also been handi- 
capped by combining interpretation with 
"naive" operation, in which each 
subexpression is evaluated immediately after 
its operands have been evaluated. For 
instance, the statement 

A~5÷BxC*D 

where B, C, and D are numeric vectors of 
length 100, would be evaluated naively as 
shown by the following stylized code: 

for i÷I until 100 do { tI+C*D } 
t1[i] + C[i] * D[i]; 

for i~I until 100 do { t2+Bxtl } 
t2[i] ÷ B[i] x t1[i]; 

for i~I until 5 do { t3+5÷t2 } 
t3[i] ÷ t2[i]; 

A ÷ t3; 

This approach is noticeably wasteful, 
pointing out out one major source of 
inefficiency in a naive APL system: its 
rigidly literal execution of the statement, 
one function at a time, forces unnecessary 
array-shaped temporary results (and their 
associated accessing loops) to be produced 
in order to generate the end result. In 
this particular example, only the first 5 
elements of the results of BxC*D are 
actually needed, a naive system fully 
evaluates all of its elements (1OO) and then 
takes the first 5. 

APL\3000: AN INCREMENTAL COMPILER 

APL\3OO0 is a complete APL system that 
runs on the HP 3000 minicomputer. It is not 
an interpreter, nor is it "naive", being 
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instead a dynamic incremental compiler which 
uses the techniques of Drag-along and 
Beating to produce optimized code. These 
techniques will be more fully described 
later in the paper. The flexible, 
interactive nature of the language has not 
been changed to accommodate compilation; 
there have been no restrictions placed on 
the language. APL\3000 appears to be a 
"standard" APL interpreter, with few hints 
that it is really a compiler. Calculator 
mode input is immediately compiled and 
executed, as are Quad-input and the argument 
to the Execute function. User-defined 
functions are dynamically compiled 
statement-by-statement. The code produced 
is then saved for subsequent invocations. 

By not compiling a statement until its 
execution is demanded, it is possible to 
overcome APL's lack of name declarations. 
Code can be generated that matches the 
specific run-time attributes of each name. 
This technique has the beneficial 
consequence of also leaving some statements 
uncompiled: those that have never been 
executed. 

The idea of dynamically compiling code for 
APL is not entirely new. It has been 
employed by at least one interpretive APL 
system as a technique for faster processing 
of some primitive functions. However, its 
application was in a naive setting, and the 
object code was simply discarded after its 
single execution because it could not be 
guaranteed valid later. 

SIGNATURE CODE AND BINDING ERRORS 

Recognizing the potential variability of 
name bindings, the APL\3000 compiler hedges 

against any attribute changes that would 
invalidate the compiled code. In addition 
to the working code, it produces a preamble 
block of "SIGNATURE CODE" which specifies 
and checks the assumptions bound into the 
working code. Though signature and working 
code will be discussed as if they were 
physically separate entities, this is really 
only a conceptual distinction. They are 
actually just two components of a single 
code block, with the block's signature 
always preceding the block's working code as 
below. 

+ + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 Signature I Working 
I Code I Code 1 
+ . . . . . . . . . . . . .  + . . . . . . . . . . . . . . . . . . . . . . . .  + 

On re-execution of a statement's code 
block, the signature code is executed first 
to test the validity of the working code 
which follows. If the signature assertions 
are satisfied, then the working code is 
executed with no further interpretive 
overhead. However, if the signature code 
finds that the working code is no longer 
valid, the code "breaks", causing a "BINDING 
ERROR." The dynamic compiler is then 
automatically invoked to produce code for 
the new situation. Figure I illustrates 
this process. 

At the heart of this strategy is the 
assumption that most APL statements are 
"well-behaved" - that is, they do not really 
exercise the dynamic nature of the language. 
If this is the case, then the code that is 
generated will remain valid over several, 
perhaps all, executions of a statement. 
However, if this proves not to be the case, 
it is certainly not desirable to be 
continually recompiling a given statement; 

+ . . . . . . . . . . . . . .  
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FIGURE I: Execution of an expression 
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the cost of compiling is too high, and this 
would reduce APL\3000 to the equivalent of 
an interpreter. To avoid this, the dynamic 
compiler takes the defensive measure of 
changing the type of code it emits for that 
statement. 

HARD AND SOFT CODE 

Signature code is actually a collection of 
assertions about the identifiers involved in 
an expression. These assertions specify, 
for each identifier, the attributes which 
were current at compile time and which must 
remain unchanged for the working code to be 
valid. Two general types of identifier 
bindings are made in compiling expressions; 
these are reflected by two types of working 
code and hence two types of signature code: 
"Hard" and "Soft." 

HARD code is the type of code initially 
emitted for an expression. Here, to gain 
the fastest possible execution, certain 
attributes of identifiers and their data 
descriptors are bound at compile-time as 
constants which are not expected to change: 
I) rank, 2) rho, 3) machine representation, 
and 4) data storage layout. This prevents 
the expression's working code from having to 
make run-time computations of such things as 
subscripting polynomials, loop induction 
steps and limits, subscript range limits, 
and so on. If re-execution of this code 
fails later because an identifier changed 
attributes, then that identifier is assumed 
to be unstable (in the current expression, 
anyway) and the second type of code - soft 
code - is generated by the incremental 
compiler for any of the expression's 
computations involving that identifier. 

SOFT code is less specifically tailored to 
the current attributes of the offending 
identifier. Rank determines the maximum 
number of nested loops needed to access a 
variable's data, so it continues to be bound 
into the code. Representation dictates the 
type of machine instructions needed to deal 
with the data, so it too is bound into the 
code. The soft signature for the identifier 
will assert that both I) rank and 2) machine 
representation are unchanged since the code 
was compiled. All other attributes of the 
identifier are allowed to change from one 
invocation of the code to the next without 
causing the code to break. Soft code is 
less efficient than hard code because it 
requires more housekeeping computation and 
more indirection through the Attribute 
Table, but the lost efficiency rarely 
approaches the cost of repeated 
recompilation. 

DRAG-ALONG AND BEATING 

APL\3000 produces non-naive code by 
employing two optimization strategies 
conceived by Philip Abrams in 1970. In his 
doctoral thesis [I], he described two 
processes, "Drag-along" and "Beating", which 

might be used to dramatically improve APL 
performance for large array operands. 

DRAG-ALONG is the process of deferring 
operations on array expressions as long as 
possible. As more global context is 
recognized, it can often lead to 
simplification or optimization of the 
original expression. The most common 
optimization results from detecting a 
sequence of operations that can share the 
same evaluation loops, reducing both the 
number of loops and the number of 
array-shaped temporaries created. 

BEATING substitutes data-descriptor 
manipulation for brute force data copying in 
many selection functions - a selection 
function being one which rearranges or 
selects data without changing its values. 
Abrams elaborated the concept of using data 
descriptors to indicate how a block of 
linear storage is to be accessed in order to 
exhibit a particular rank, shape, and 
ordering. He further showed that if the 
data descriptors were separated from the 
storage they apply to, then the functions 
Take, Drop, Reverse, Transpose, and 
Subscripting by a scalar or Arithmetic 
Progression Vector (APV, also called 
"J-vectors") could be implemented with no 
data movement. By applying a set of 
transformations to the original data's 
descriptor in these cases, a new descriptor 
can be calculated which properly indicates 
the selected data, and which shares the data 
block with its original owner. 

APL\3000 implements this DESCRIPTOR 
CALCULUS, attaching a reference count to 
each data block. In this way, operations on 
one variable (which must not alter others by 
side effect) can detect sharing and acquire 
a private copy of the data block if 
necessary. As an illustration, if A is 
the 5-element numeric vector 
1.1 2.2 3.3 4.4 5.5, and B is assigned 

the Reversal of A, they would share A's 
data block: 

REF A[I] A[2] A[3] A[4] A[5] 
4- . . . . .  4- . . . . .  4- . . . . .  4- . . . . .  4- . . . . .  4- . . . . .  4- 

I 2 I 1.1 I 2.2 I 3.3 I 4.4 I 5.5 1 
÷ . . . . .  ÷ . . . . .  4- . . . . .  + . . . . .  4- . . . . .  4- . . . . .  4- 

COUNT B[5] B[4] B[3] B[2] B[I] 

Beating may interact with drag-along by 
restricting the scope of a deferred 
operation to produce only the pertinent 
elements of the result. Applying these 
strategies to the example given earlier, 

A÷5÷BxC*D 

APL\3000 would generate the following 
(stylized) code: 

for i÷I until 5 do { tI÷5÷BxC*D } 
till] ÷ B[i] x C[i] * D[i]; 

A÷ tl; 

Note that Drag-along enabled the naive 
approach's 3 loops with 3 temporaries to be 
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merged into I loop with I temporary, and 
Beating allowed the loop to be limited to 5 
elements rather than 100. 

THE COMPILATION PROCESS 

Compilation is a 3-step process which 
flows roughly as follows: 

SOURCE --> TREE --> FOLIATED TREE --> E-CODE 
(I) (2) (3) 

The first step is to perform a SYNTAX 
ANALYSIS of the statement, scanning the 
tokenized source, referring to the Attribute 
Table to find the current name bindings. 
The result of this step is an ordered set of 
expression trees. The statement may need to 
be split into more than one expression tree 
in order to avoid side effects which would 
give unpredictable results. Function calls, 
assignment statements, and shared-variable 
accesses all have the ability to change the 
current attributes of identifiers. The 
compiler must isolate any of these from the 
processing of the rest of the statement in 
order to generate code which cannot 
invalidate itself. Figure 2 shows the 
expression tree for a statement which 
requires only I tree. 

ANS 

FIGURE 2: Expression Tree for ANS ~ ^/P=@P 

(P a variable; value immaterial) 

With the syntax of the statement 
determined, the next compilation step is 
called FOLIATION. This is the context- 
gathering process of tree traversal during 
which the drag-along and beating strategies 
are applied. The result is a much fuller 
tree in which each node has attached to it 
information describing the shape, 
representation, and the accessing methods of 
its result. 

Two types of auxiliary description nodes 
are used to represent this information. 
One, the "RRR" node, describes the general 
structure of an item: I) Rank (number of 
dimensions), 2) Rho (size of each 
dimension), and 3) Representation (machine 
data type). The other, the "DELOFF" node, 
indicates the data-access information for an 
item: I) DEL (steps for each coordinate), 
and 2) OFFset (location of its logical first 
element). 

During foliation, the expression tree is 
traversed leaf-to-root, with all subtrees of 
a node being visited before the node itself. 
This guarantees that a full description of 
each of the node's operands is available to 
the compiler as it foliates that node. If 
the node being foliated is a leaf (constant 
or identifier), the required descriptive 
information is immediately available from 
either the Attribute Table or the Constant 
Block. As an identifier node is foliated, 
its signature code is placed into the object 
code block to indicate the attributes which 
are being bound into its RRR and DELOFF 
nodes. A given identifier has a signature 
emitted for it only once during the tree 
traversal, regardless of how many times 
it appears in the tree. 

As the tree traversal continues, the leaf 
descriptions are pushed upwards towards the 
root of the tree, each function node causing 
the descriptions they inherit to be changed 
according to their defined effect on their 
operands. Note that the foliation process 
is not concerned with actual values of 
variables, simply with their structure and 
accessing information. 

If the node to be foliated is a function 
for which beating can be performed, its RRR 
and DELOFF nodes are derived by modifying 
those of its operands according to the 
subscript calculus defined by Abrams. 

Foliation continues until either the root 
of the tree has been reached or a function 
node has been reached for which there is no 
operand value-independent way of predicting 
the structure of its result. In either case 
the foliated tree (or subtree) is ready for 
the next compilation step, "Code 
Generation." Figure 3 shows Figure 2's tree 
after foliation. 

The CODE-GENERATION process is performed 
by traversing the fully-foliated tree again, 
this time working from the root of the tree 
towards its leaves. By utilizing the 
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L I I pp: 0 
REP: BOOLEAN 

ANS 

PP: 
REP: 

0 
BOOLEAN 

pp: 1 
p: 5 
REP: BOOLEAN 

DEL: I 
OFFSET: 0 

pp: 1 
p: 5 
REP: CHARACTER 

DEL: 1 
OFFSET: 0 

i CHARACTER 

I"DEL: -I 
L OFFSET: 4 

FIGURE 3: 

i 

P-- -- -- I PP: I 
p: 5 
REP: CHARACTER 

Foliated tree for ANS ÷ ^/P=~P DEL: 1 
(P ~ 'RADAR') OFFSET: 0 

context information that has been attached 
to the tree in the form of RRR and DELOFF 
nodes, non-naive code is generated. This 
means that all the optimizations described 
earlier are applied: loop merging, reduction 
of temporaries, evaluation of only the 
required results, and producing the results 
of selection functions by descriptor 
calculus alone. 

Functions which will require loops to be 
generated in order to step through 
non-scalar operands are examined to see if 
their loops can be shared with those of 
other functions. If they have identical 
DELOFF descriptions, then their loops can be 
merged into one set. Multi-dimensional 
operands could potentially require several 
nested loops - one for each dimension. 
However, it is often the case that such 
loops can be collapsed into fewer loops 
because the operand's data access is very 
regular (row-major order, for instance). 

After the looping structures have been 
decided upon, the code within the loops is 
generated by traversing the tree. Starting 
at the tree's root and working towards its 
leaves, each function node is visited and 
its corresponding machine-instruction 

sequence is emitted into the Code Block. 
This traversal continues until all nodes of 
the expression tree have been visited and 
their corresponding instructions emitted. 
Every instruction which has the possibility 
of failing (e.g., divide could fail by 
dividing by 0), has associated with it a 
source pointer by which the source token in 
error might be identified. When the code- 
generation process has been completed, the 
resultant code block is passed to the 
E-machine for execution. Figure 4 shows the 
Hard code generated from the foliated tree 
of Figure 3. 

EXECUTION: THE E-MACHINE 

Our original intent was that the compiler 
produce HP 3000 code. However, it soon 
became clear that the machine architecture 
made this an impractical approach. The HP 
3000 is a "pure-code".machine which strictly 
enforces the distinction between "code" and 
"data". It does not allow one to generate 
code (which is data to the compiler) and 
immediately view the result as executable 
code. Instead, it is necessary to invoke 
the operating system's Linker/Loader in 
order to put the code into a form the 
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{ SIGNATURE CODE } 
ASSERT: (1=ppP) ^ (5=pP) ^ (CHAR=REP(P)) 

(O=OFFSET(P)) ^ (I=DEL(P)); 
ASSERT: WRITEABLE(ANS); 

{ WORKING CODE } 
spadl ÷ O; { initialize forward register to OFFSET(P) } 
spad2 ÷ 4; { initialize reverse register to OFFSET(P) } 
spad3 + 5; { initialize loop-limit register to ~P } 
temp + I; 
WHILE spadl ~ spad3 DO 

BEGIN 
temp + temp ^ P[spadIJ = P[spad2]; 
IF temp = 0 THEN GOTO finish; { early-out } 
spadl +~ I; 
spad2 +,- -I; 
END; 

finish: ANS ÷ temp; 

FIGURE 4: Code Block for ANS ÷ ^/P=~P 
(Hard code, P+'RADAR') 

machine will execute. This is too slow a 
process to be practical for the dynamic 
compiler, which seeks to provide immediate 
response to an execution request, whether it 
be for first execution or recompilation of a 
function's statement, or for processing of 
calculator mode, the execute function, or 
Quad input. 

The compiler's target machine is, instead, 
a hypothetical "E-machine" which is 
simulated on the HP 3000 by a combination of 
firmware and software. This machine has a 
fairly traditional scalar-oriented 
architecture which has, for every APL 
primitive function, a set of corresponding 
machine instructions. It has 256 
Scratch-Pad (SPAD) Registers, which are used 
mainly for loop controls, counters, and 
indexing of variables. All computation is 
done on its Stack, which is also used to 
hold intermediate scalar results. The 
machine shares the Attribute Table with the 
compiler itself, calling upon it to give the 
current name bindings as needed by either 
Hard or Soft code. A 32-bit address space 
is supported, though the HP 3000 itself is a 
16-bit minicomputer. The larger address 
space is provided by a paged virtual-memory 
scheme which has microcoded support. This 

allows APL\3000 to handle very large 
workspaces - the practical limit being the 
amount of on-line disk storage available. 

When the E-machine is invoked, it is given 
the address of a code block to execute, and 
an initial Program Counter offset from the 
beginning of that block. This makes it 
possible to bypass the signature code when 
checking it is unnecessary - as is the case 
when the code has just been compiled and the 
signature is guaranteed correct. The 
E-machine executes until the code block 
either terminates normally or causes an 
error which prevents its completion. The 
E-machine indicates its success or failure 
and passes control back to the process which 
invoked it. If it terminates on an error, 
the type and source location of the error 
are also passed back so that the appropriate 
error-handling mechanism may be invoked. 
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