JULY 1977

HEWLETT-PACKARD JOURNAL

Small Computer System Supports
Large-Scale Multi-User APL

Powerful, interactive APL is now available for the multi-
lingual HP 3000 Series Il Computer System. A special

terminal displays the APL character set.

by Kenneth A. Van Bree

A PL (A PROGRAMMING LANGUAGE) is an
"\ interactive language that allows access to the full
power of a large computer while maintaining a user
interface as friendly as a desktop calculator. APL
is based on a notation developed by Dr. Kenneth
Iverson! of IBM Corporation over a decade ago, and
has been growing in popularity in both the business
and scientific community. The popularity of APL
stems from its powerful primitive operations and
data structures, coupled with its ease of programming
and debugging.

Most versions of APL to date have been on large and
therefore expensive computers. Because of the ex-
pense involved in owning a computer large enough to
run APL, most of the use of APL outside of IBM has
been through commercial timesharing companies.
The introduction of APL \3000 marks the first time a
large-machine APL has been available on a small
computer, APL \3000 is a combination of software for
the HP 3000 Series II Computer System® and a CRT
terminal, the HP 2641A, that displays the special
symbols used in APL. The terminal is described in the
article beginning on page 25.

Although the HP 3000 is normally considered a
small computer, APL \3000 is not a small version of
the APL language (see page14). As a matter of fact,
APL\3000 has many features that have never been
available before, even on the large computers. For
example, although APL \3000 looks to the user just
like an interpreter, it is actually a dynamic compiler.
Code is compiled for each statement as it is encoun-
tered; on subsequent executions of the statement, if
the compiled code is valid, it is re-executed. By
eliminating the interpretive overhead, a speedup on
the order of a factor of ten can be obtained in some
cases, although the speedup is dependent on the
amount of computation involved in the statement.

The basic data type of APL is an array, which is an
ordered collection of numbers or characters. Sub-
script calculus, as defined by Philip Abrams,? is a
method of selecting portions of an array by man-
ipulating the descriptors that tell how the array is
stored. The use of subscript calculus in the dynamic

2

compiler allows computation to be avoided in many
cases, and eliminates the need for many temporary
variables to store intermediate results,

One problem that has always plagued APL users is
the limited size of most APL workspaces. A work-
space in APL is a named data area that contains all the
data variables and functions that relate to a particular

Cover: In the foreground,
Model 2641A APL Display
Station demonstrates its
role as the principal user
interface for APIN3000, an
enhanced version of APL (A
4 Programming Language)
that is now available on the
HP 3000 Series Il Computer
System in the background.

In this Issue:

Small Computer System Supports
Large-Scale Multi-User APL, by Ken-
e A Van Brée v v s vwvwos PagE 2

APL Data: Virtual Workspaces and
Shared Storage, by Grant J. Munsey page 6
APLGOL: Structured Programming
Facilities for APL, by Ronald L.
Johnston .

APLN3000 Summary

A Dynamic Incremental Compiler for

an Interpretive Language, by Eric

J. Van Dyke page 17
A Controller for the Dynamic Compiler, by

Kenneth A. Van Bree, page 21,

Extended Control Functions for Interactive
Debugging, by Kenneth A. Van Bree, page 23.
CRT Terminal Provides both APL and
ASCII Operation, by Warren W. Leong page 25

Packara Company, 1877

© Hewlett-

© Copr. 1949-1998 Hewlett-Packard Co.

I Dedicated APL System

Multilingual System

i 4 4
F) = 3.06
0) 2.98
| B 3 2s g 3
3 :
@ 0 2.32
| E 3 2.16 E) .
E E 1.8
2 2 1.74
g 2 106
]]
g 1 g 1
B 1.04 9 f
[-2
81 .92
.56
L gIL_ — - .
Standard Mix Light Mix 512K Bytes 384K Bytes 384K Bytes 512K Bytes
512K Bytes 384K Bytes
16 Terminals 12 Terminals 12 Terminals 13 Terminals
16 Terminals 12 Terminals
3 AScripts 5 A Seripts 4 FORTRAN B BASIC 3 FORTRAN 1 COBOL
3 B Scrnpts 3 B Scripts 4 BASIC & APL 3 BASIC 12 APL
2 C Scripts 2 C Scripts 8 APL B APL
3 D Scripts 1 E Script 1 AScript 1 ASgript 1 AScript 2 A Scripls
2 E Scr_|pts 1 F Script 1 BScnpt 1 BScnpt 1 B Script 2 B Scripts
2 F Scripts 2 CScnpt 1 CSecript 1 CSeript 2 C Scripts ")
2 DScript 1 DScript 1 DSeript 2 D Scripts Fig. 1. Average response times
i EScript 1 EScript 1 EScript 2 E Scripts for a range of activities on an HP
1 FSeript 1 FSeript 1 FSeript 2 F Scripts 3000 Series Il System used only
APL Scripts for APL and similar data for a
range of APL activities on a multi-
A Edit interactive program and execute 0 Compute bound large workspace swapping program lingual HP 3000 Series Il System.
B Edit simple calculation program and execute. E Compute bound simple caiculations. :
C Assignments and addition in calculator mode. F Compute bound primes prograrm A system "'_wm 512K bytes of main
memory will support up to 16 APL
terminals

problem or application. Most other APL systems limit
a workspace to 100,000 bytes or less. APL\3000
eliminates this limitation by giving each user a vir-
tual workspace. A workspace is limited only by the
amount of on-line disc storage available.

APLN3000 is the first APL system to include
APLGOL* as an integral part. APLGOL is a block-
structured language that uses keywords to control the
program flow between APL statements. To facilitate the
editing of APLGOL programs. and to provide an en-
hanced style of editing for APL programs and user data,
a new editor was added to the APL system. This editor
can be used on both programs and character data, and
includes many features never available before in APL.

One of the features of APL that makes program de-
velopment easier is that program debugging can be
done interactively. When an error is encountered in an
APL program, an error message is displayed along with
a pointer to the place where the error was detected.
Execution is suspended at this point, and control is
returned to the user. In other versions of APL, the user is
allowed to reference or change only the variables that
are accessible within the function in which the error
occurred, and must resume execution within that func-
tion, APL 3000 has implemented a set of extended
control functions that allow the user to access or change

3

any variable in the workspace and resume execution
within any function that has not yet completed execu-
tion. These extended control functions can be used to
implement advanced programming techniques that
were previously difficult or impossible to implement in
APL. An example is backtracking, which involves sav-
ing the control state at various points in the computa-
tion and returning to a previously saved control state
when an error is detected.

The new features of APL 3000 are described in detail
in the articles that follow.

Performance Data

An HP 3000 Series Il System with 512K bytes of main
memory will support a maximum of 16 terminals using
APL, or a combination of terminals using APL and other
languages. Fig. 1 shows typical response times for vari-
ous combinations of terminal types, APL program
loads, and memory sizes.

Acknowledgments

The authors wish to acknowledge the contributions
of John Walters and Rob Kelley, without whose efforts
APL \ 3000 would never have become a product. John
served as project leader during the development stage
and was responsible for many of the technological

© Copr. 1949-1998 Hewlett-Packard Co.

innovations that are included in the final product.
Rob participated in the design of the incremental
compiler and his expertise in APLGOL helped make
this facility an integral part of APL \3000.

Many people contributed to the initial discussions
that led to the design of the incremental compiler. In
particular, Dick Sites was most responsible for
sketching out the compiling techniques. Larry Breed
and Phil Abrams helped us develop new techniques
for compiling APL while maintaining compatibility
with the original philosophy of APL. Jeff Misch-
kinsky was responsible for the implementation of
APLGOL and the design of the APL\3000 editor.
Alan Marcum offered design suggestions from a
user’s point of view that helped us refine the product.

Our special thanks must go to Jim Duley, Paul Stoft,
and Ed McCracken, whose long-standing support of
our efforts helped us transform our ideas from a re-
search project into a product.”

References

1. K.E. Iverson, “A Programming Language,” John Wiley
and Sons, New York, 1967.

2. L.E. Shar, “Series Il General-Purpose Computer Sys-
tems,” Hewlett-Packard Journal, August 1976,

3. P.S. Abrams, ““An APL Machine,"PhD dissertation,

SLAC Report No. 114, Stanford University, February 1970.

4. R.A. Kelley and J.R. Walters, “APLGOL-2, a Structured
Prdgramming System for APL,” IBM Palo Alto Scientific

Center, Technical Report G320-3318, 1973,

Kenneth A. Van Bree

Ken Van Bree received his
bachelor's degree in electrical
engineering from the University of
Michigan in 1867, his master's de-
gree from Massachusetts Institute
of Technology in 1969, and the
degree of Electrical Engineer, also
from MIT, in 1971. During the
summer of 1970 he helped de-
velop a computer-aided design
program for the HP 2100A Com-
puter. Since joining HP Laboratories
full-time in 1971, he's done com-
puter-aided device modeling and
& mask layout for a 4K RAM, and
helped design and implement the APL 3000 compiler. He's a
member of [EEE. Kenwas born in Newark, New Jersey and grew
up in the state of Michigan. He's single, lives in Mountain View,
California, and enjoys backpacking, scuba diving, motorcycles,
photography, gourmet cooking, and designing and building his
own furniture.

APL (an abbreviation for A Programming Language) is a
concise high-level language noted for its rich variety of built-in
(primitive) functions and operators, each represented by a
symbol, and its exceptional facility for manipulating arrays

APL uses powerful symbols in shorthand tashion to define
complete functions in very few statements or characters. For
example, the sums of each of the rows in a very large table
called T are + /T, The sums of the columns are + /[1]T. The
grand total of all numbers in the table is simply + /T. Sorting
and adding tables and other common operations are just as
simple.

These characteristics, combined with minimal data declara-
tion or other language requirements, help substantially reduce
programming effort. Typical interactive APL programs take only
10-30% as long to write as would equivalent programs in other
languages, such as FORTRAN or BASIC,

APL was invented by Dr. Kenneth E. Iverson at Harvard Uni-
versity. In 1962 a description of his mathematical notation was
published. By 1966, IBM had refined the notation into a lan-
guage and implemented the first version of APL on an experi-
mental timesharing system. By 1969 APL was an IBM program
product and several independent timesharing services began
providing it.

Because APL is both easy to use and tremendously powerful
it has gained widespread acceptance. A large, swiftly growing
APL timesharing industry has developed. Approximately 70% of
IBM's internal timesharing is done in APL. Over 50 North Ameri-
can universities including Yale, MIT, UCLA, Syracuse, Univer-
sity of Massachusetts (Amherst), York, and Wharton have in-
house systems. Popularity has grown in Europe, especially
Scandanavia and France.

Introduction to APL

Although initially designed for scientific environments, APL's
features proved to be ideal for processing business data in
tabular formats. Now, most timesharing services find approxi-
mately 80% of their APL business is in the commercial applica-
tions area.

APL Characteristics
A symbuolic language with a large number of powerful primitive func-
tions.
Uses right to left hierarchy (as opposed to precedence) that can be
overridden by parentheses
Designed to deal with arrays of numbers as easily as other languages
deal with individual items.
Minimum language constraints: very few syntax rules; umiform rules
for all data types and representations; automatic management of
data storage and representation

APL Advantages
Programs can be developed in 10-30% of the time and code space
required by languages like FORTRAN, ALGOL, and BASIC
Concepts of a program can often be more quickly grasped because
of the brevity and conciseness of APL code

Very flexible: programs easy to change; data very accessible and
easy 1o rearrange

Fig. 1. Characteristics and advantages of APL

B

© Copr. 1949-1998 Hewlett-Packard Co.

BASIC FORTRAN ALGOL APL
10DIM A(100) DIMENSION A {100) REAL S, + /A=
20READ N READ (5.10) N INTEGER |, N
30S8=0 10 FOBMAT (13) GET N.
40FOR I=1TON READ (5,20) (A(l), I=1, N) BEGIN
50 READ A(l) 20 FORMAT (BE10.3) REAL ARRAY A (1.N)

60 S=S+A(l) S$=0.0 S=0.0:
7O NEXT | DO 3a1=1,N FOR I:I=1 TO N DO
BO PRINT S 30 S=S+A(l) BEGIN
90 END WRITE (6.40)S GET A{l);
40 FORMAT (E12.3) S:=S+All),
END END,
PUT S
END
Fig. 2. Comparison of steps required lo read and sum a list of numbers.
(R = Revenues by product and salesman
Johnver Vanston Danbree Vansey Mundyke
Tea 190 140 1926 14 143
Coffee 325 18 293 1491 162
Water 682 14 B52 56 659
Milk 829 140 609 120 87
Given:
E = Expenses by product and salesman
Johnver Vanston Danbree Vansey Mundyke
Tea 120 65 830 54 430
Cotfee 300 10 23 802 235
Water 50 299 1290 12 145
\ Milk 67 254 B3 129 76
Find each salesman's total commission where the formula for
Find: commission s 6.2% of profit, no commission for any praduct
to total less than zero
Johnver Vanston Danbree Vansey Mundyke
Answer: { Commission a2 5 113 45 3z
Explanation of APL Code Required:
062 x + # 0] R-E
T A Step 1. Subtract eachitem in matrix E fromeach item in matrix R
Step 2. Find maximum of each item in resultant matrix versus the value of zero
Step 3. Sum aver new resultant matrix by rows
Stepd. Multiply individual items in resultant vector by 062
Step 5. Automatically print new resuitant vector

Comparison of APL Code Required With BASIC Code Required:
APL

062 x +# 0] R-E

BASIC

10 FILES DATA
20 DIMENSION R(4,5), E(4,5), T(5)
30 MAT READ #1, RE
40 MAT T = ZER
S50FORP =1T04
60FORS=1T056
70 T(S)=T(S) + 062 +(R(P.S)—E(P.S)) MAX O
80 NEXT §
90 NEXT P

100 MAT PRINT T

110 END

Fig. 3. Explanation of APL code using typical example

5

© Copr. 1949-1998 Hewlett-Packard Co.

APL Data: Virtual Workspaces and

Shared Storage

by Grant J. Munsey

UCH OF THE POPULARITY of APL can be
i attributed to the convenient way it handles
data. Most other programming languages treat vari-
ables as volatile “‘scratchpad’’ areas that are occupied
by meaningful data only while programs are execut-
ing. Before programs can run, they must load the
variables with data, usually by reading a file. During
program execution the data is accessed by referring
to variable names. When execution is completed,
the meanings of the variables are lost unless the pro-
grams explicitly save their data in another file. APL,
on the other hand, provides direct access to named
data items, large or small, without forcing the con-
cept of a file on the programmer. Once values are
assigned to APL variables, they are accessible by
name eitherin program execution mode or in calcula-
tor mode. The relationship between the data and the
name is preserved until the programmer chooses to
purge the data. The variables and the functions that
operate upon them are preserved together, which
means that APL applications need not go to files to

access and save data.
In APL a unique name is attached to each distinct

set of data by means of the assignment arrow:

DATE«7 4 1776

OCCASION« 'INDEPENDENCE DAY'

APL\3000 variables may be either scalar (single-
element) or array-shaped with up to 63 dimensions.
Though conceptually there are only two data types in
APL, character and numeric, APL\3000 actually
stores its data in a variety of ways for efficiency. APL
differs from most other programming languages in
thatan APL programmer is never involved in specify-
ing or choosing these machine-dependent internal
representations; the APL system automatically
chooses both the most efficient and the most accurate
representation for any given set of data.

Likewise, an APL programmer never writes decla-
rations specifying the shape, size, or amount of stor-
age that will be required for a variable, Variables are
declared by assigning data to them, and the APL sys-
tem allocates the appropriate storage in which to re-
tain the data. Readers familiar with languages requir-
ing declaration of variables (e.g., FORTRAN, BASIC,
COBOL) will recognize that the task of setting up such
declarations can often take a substantial amount of
programming time.

An interesting and useful feature of APL is that a

6

particular variable name may, at different points in
time, refer to different types and shapes of data, as the
following sequence illustrates:

A«3.5
A<2 468
A« '"WHAT WOULD WE APPRECIATE?'
A<2 3p123456
A
1:2 3
4 3 6

In this example, A is first assigned the numeric scalar
3.5. Then A is assigned the numeric vector z 3 6 8.
Next, A is assigned the character vector '"WHAT WOULD
WE APPRECIATE?". Finally, A is assigned a two-row,
three-column array of numbers, then printed. Notice
that each statement whose result is not explicitly as-
signed causes the result to be automatically printed.

The Workspace Concept

As functions and data are created, they remain as-
sociated with their user-assigned names in an area
called the active workspace. This area can be named
and saved for later use by entering the system com-
mand:

)SAVE WSID
where wsID is a user-specified workspace name. This
saves a ‘snapshot” of all currently defined functions
and data items. A saved workspace may be later re-
activated by entering the system command:

JLOAD WSID

The concept of workspaces provides a convenient
means for working on several different problems,
each of which has its own set of pertinent data. For
example, an accountant might have several custom-
ers for whom he is keeping payrolls. Several work-
spaces might be maintained, each containing payroll
information for a particular client. Whenever a salary
report is needed for a client, the appropriate work-
space could simply be loaded and the report gener-
ated. Notice that workspaces are much like folders in
a filing system; each holds the information required
for a specific job.

Since all functions and data for a problem are stored
in a single workspace, workspaces tend to grow very
large as problem size increases. Yet most existing
APL implementations have limited the size of work-
spaces, typically to less than 100,000 bytes. This con-
straint either imposes an artificial limit on the size of

© Copr. 1949-1998 Hewlett-Packard Co.

applications attempted, or forces the more deter-
mined programmer to seek additional storage outside
of the workspace by explicit use of a file system, a
definite violation of the general spirit of APL pro-
gramming.

The HP 3000 is a small computer with a limited
amount of main storage. Yet APL \3000 has avoided
the traditional workspace size restrictions by employ-
ing two strategies: shared data storage and virtual
workspaces.

Shared Data Storage

Shared data storage helps solve the workspace size
problem by conserving storage. Multiple copies of the
same data are avoided in many cases by allowing
arbitrary numbers of variables to share the same data
area. Consider the following two statements:

A—=12569 10

B+<A
The first statement creates a data area for A, while the
second specifies that B is to be assigned whateveris in
A. While one could naively make a second copy of the
data and attach it to B, this is completely unnecessary
and is a waste of storage; B should be able to share the
original data with A.

A potential problem is: if A and B share the same
data area, what happens if either of the variables
changes part of its values? Does this affect the other
variable? For instance, the subscripted assignment

B[3]<20
should not have the effect of also making A[3]'s value
20.

Copy-on-Write

APL™3000 solves this problem by attaching a re-
ference count to every data area, and keeping track of
how many variables are referring to it. Partial changes
to a data area (e.g., B[3]+<20) are allowed only if its
reference count is 1 (i.e., it is unshared). A data area
whose reference count is greater than 1 is never
changed, since more than one variable is referring to
it. Instead, a “copy-on-write" policy is adopted: the
variable to be written into is given its own private
copy of the data, the reference count of the original
shared data area is decreased by 1, and the original
data remains unchanged.

Shared data storage is useful in that it frequently
allows the APL system to avoid making multiple
copies of identical data. But this is really only a wel-
comed side effect of the real purpose of shared stor-
age: allowing the dynamic compiler to implement
certain selection functions and operators by applying
Abrams' subscript calculus.? This technique is used
to improve the performance of APL 3000, providing
a two-fold justification of shared storage: space and
speed.

Subscript calculus places another requirement on
the APL system besides shared data areas: a variable's
data area must be decoupled from its accessing in-
formation. That is, the data area itself must not de-
scribe the method of storing the data therein. To un-
derstand why this is required to perform subscript
calculus, the attributes of APL data must be recalled:
it has some actual collection of values, and it has a
particular size and shape. Consider a numeric vari-
able ABC whose data is arranged in two rows and three
columns:

ABC

124

0589

The storage for ABC contains six data elements that the
user thinks of as a two-dimensional array. At the
machine level, however, storage is actually accessed
in a linear fashion, as if it were a vector. To access any
given element of ABC, the APL system takes a set of
user indexes, consisting of a number for each dimen-
sion in ABC, and calculates a linear address into the
data area holding ABC's values.

It has been common practice to store data in what is
called row major order. In this scheme, data is stored
with the rightmost subscript varying the fastest. For
example, the actual linear layout of the variable ABC
stored in this order would be:

1 2 4 0 5 g
ABC[0:0] ABC[0:1] ABC[0;2] ABC[1;0] ABC[1:1] ABC[1:2]

Notice that zero-origin indexing was used (the first
element in any dimension is index 0). Zero origin will
be used in all formulas and examples hereafter.

When data is stored in row major order, one can
map a set of user indexes into a machine address by
employing the formula:!

RANK -1 RANK -1

ADDRESS = ¥ I[J] x]

=0 K=]+1

where I is the set of user indexes. In addition to the

user indexes, this formula requires some information

about the data’s exact size and shape: RANK is the

number of dimensions in the array, and SHAPE is a

vector of the sizes of each of the dimensions. Together

RANK and SHAPE make up the variable's row major
access information,

Applying equation 1 to calculate the actual address
of the element ABC [0;2]:

SHAPE (K] (1)

1 ' D2
RANK 12
SHAPE ¢ 23

ADDRESS = (1[0] x SHAPE [1]) + (1[1] = 1)
=[0 x3) +(2 x 1)
=2
Referring back to the description of how ABC is
stored, it can be seen that ABC [0;2] is indeed at loca-
tion 2. Thus for data stored in row major order, all that

© Copr. 1949-1998 Hewlett-Packard Co.

is needed to calculate the actual storage address of an
array element from a set of user indexes is the RANK
and SHAPE of the data.

In APL systems not concerned with performing
subscript calculus, this accessing information is tra-
ditionally stored with the data itself, which makes
every data area self-describing. Subscript calculus, on
the other hand, wants to view data in many different
ways without physically rearranging it. The opera-
tion of subscripting (e.g., ABC [1:1]), and the functions
TAKE, DROP, REVERSAL, TRANSPOSE, and RESHAPE can be
implemented so that they rearrange data without ac-
tually moving or copying it, but only if the data area’s
accessing information is not an integral part of the
data. Consider, for example, the APL function that
reverses the columns of an array,

ABC

124

059
RABC<JABC
RABC

421
950
If the result of the reversal must always be stored in
row major order, then nothing can be done except to
make a second copy of ABC’s data for RABC, with its
order rearranged. But if one can depart from row
major storage order in this case, one can generate new
access information for RABC, and it can share ABC’s
data area with no data movement required. This re-
quires generalizing the storage mapping function de-
veloped above to allow other storage arrangements
than row major. The new formula will be:

RANK -1
i)
=0

This generalized formula makes explicit something

that equation 1 was able to imply by knowing that

data was stored in row major order: OFFSET is always
zero; and DEL []] is always
RANK—1
[T SHAPE [K].
K=]+1
The new formula requires that both of these be
made part of a variable’s data accessing information.
Equation 2 can be checked by again calculating the
address of element ABC [0:2]:

ADDRESS = OFFSET + [[J] x DEL []] (2)

I T |

RANK y 2

SHAPE : 23

DEL AR i |

OFFSET : 0

ADDRESS = OFFSET + (I[0] x DEL [a]) + (I[1] x DEL [1])

0+[0x3)+[2x1)

=

L

This is the same address calculated by applving equa-

8

tion 1, so equation 2 seems to work, at least on row
major data. This new formula can be used to share
ABC's data with RABC:

1 2 4] 5] 9
ABC[o:0] ABC[o:1] ABC[o:z] ABC[1;0] ABC[1:1] ABC[1:2]
RABC [0:2] RABC [0;1] RABC [0;0] RABC [1:2] RARG [1:1] RABC [1;0]
By changing both the DEL vector and the OFFSET as
shown below, RABC can be totally described by its
accessing information. As a check, equation 2 can be
used to calculate the storage address of element RABC
[o:2]:

| D02

RANK 2
SHAPE 23

DEL £ 3 -1

OFFSET : 2

ADDRESS = OFFSET + (1[0] = DEL [0]) + (I[1] = DEL [1])

=24 (0% 3)+(2x(=1)

=0
Referring back to the data area shared by Asc and
RABC, it can be seen that RABC [0:2] is indeed at address
0 of the shared dala area.

Thus by including the DEL vector and the OFFSET in

a variable's set of accessing information, data areas
can be shared among variables whose conceptual or-
derings differ. Notice, though, that each variable must
have its own private set of accessing information for
this to work, otherwise the shared data area can only
be interpreted as one shape and storage method.
Using a set of transformations to the DEL vector and
the OFFSET in the above manner to rearrange data
without actually moving it is the essence of subscript
calculus.

Virtual Workspaces

The ws FULL message is well-known to most APL
programmers, In specific terms, it means that the ac-
tive workspace has filled up and program execution
has stopped. In more general terms, it usually means
that the programmer is going to have to do a lot of
work to circumvent the problems of limited work-
space size.

APL\3000 uses a technique called virtual storage
to remove the workspace size limit. This allows the
user to create and maintain workspaces containing
millions of bytes of data. In fact, workspaces are lim-
ited in size only by the amount of disc storage avail-
able on the machine, the same limit that would apply
to data stored explicitly as files.

Two layers of virtual workspace implementation
make this possible. The first layer creates, by means of
microcode routines, a very large linearly addressed
data space. The second layer maintains this address
space in many smaller variable-length segments.

To provide the large address space required to sup-
port virtual workspaces, APL “\3000 uses a set of nine

© Copr. 1949-1998 Hewlett-Packard Co.

Word Address = 32 Bits
M-Bit N-Bit
Page Address Word-in-Page Address
Page Word
Number : Address
o L
N1
; i
I)
i i
L — 2%y

Fig. 1. APL 3000 uses a virtual memory scheme to give each
user whatever size workspace is needed, instead of imposing
a fixed maximum workspace size as most APL systems do.
The virtual memory is partitioned into 2™ pages of 2" words
gach where N+M = 32

virtual memory instructions that have been added to
the HP 3000 Series II instruction set. These instruc-
tions are added by installing eight read-only memory
(ROM) integrated circuits in the CPU when APL %3000
is installed. The virtual memory instructions take a
small amount of main computer storage plus a large
disc file and create what looks like one large linearly
addressed memory. This is done using what is known
as a least recently used (LRU) virtual memory scheme.

The logical addresses used by APL 3000 are 32-bit
quantities. The M most significant bits of the address
are considered the page address and the N least sig-
nificant bits the word-in-page address. Thus the vir-
tual memory is partitioned into 2M pages of 2V
words each (see Fig. 1). The values for N and M are
determined by APL \3000 to provide efficient use of
the computer hardware. N plus M must add up to 32,
so the virtual memory can contain up to 23 words
(4,294,967,296 words). This is the only theoretical
limit to workspace size.

The HP 3000 main computer store is set up to con-
tain a number of 2N-word pages from the virtual mem-
ory along with a small status table for each main-
store-resident page. Each status table contains the
following information:

« The virtual memory address of the first word in
the page

= A link that points to the next status table
s An indicator that tells whether data in the page
has been modified since the page was brought into
main storage from the disc
= The main storage address of the words in the page.
Fig. 2 shows how these status tables are arranged in
main store along with the data from the pages. The
status tables are arranged in a list with each status
table pointing to the next status table. This list is
always arranged so the status table for the most re-
cently used page is the first entry in the list.
Operation of the virtual memory instructions can
be illustrated by describing the execution of a VIRTUAL
LOAD instruction (see Fig. 3). This instruction re-
quires a 32-bit virtual address as its operand and
returns the word stored at that location in virtual
memory. To accomplish this the first task is to deter-
mine the page in which the word resides (the page
address). This is done by taking the M most signifi-
cant bits of the virtual memory address. The second
operation is to find where the required page resides.
This is done by first searching down the list of status
tables to see if the page is in main storage. If the page
is found in the list then the word requested is already
in main storage and all that need be done is to use the

Split Virtual
Address into
Page and Word-
in-Page Parts

Set Up o
Search List of
Status Tables for
Required Page

Move to Next
Status Table
in Chain

this Page
the Last in
the Chain?

Get the Word
Using the Status
Table Pointer to the
Page and the Word-
in-Page Address.

Call Fault
Software to Get
Requested Page

from Disc.

Fig. 2. At a given time, the main computer store contains a
number of 2V-word pages from the virtual memory along with a
small status table for each of these pages. The status tables
are arranged in a flist with the table for the most recently
accessed page at the top of the Jist.

© Copr. 1949-1998 Hewlett-Packard Co.

Starting Virtual Memory
Address of Page

Pointer to Next
Status Table

E
o

Indicator
Pointer to
Page

— S

1

1

I .

Last Status
Table

-

[t

Fig. 3. /f the page that contains the word addressed s not in
main storage, the system brings in the required page from the
disc, swapping it for the page whose status table /s at the
bottorm of the list, that is, the least recently used page.

word-in-page part of the virtual address to access it. If
the end of the status table list is reached without
encountering the required page then a software
routine is called from the virtual instruction mi-
crocode. This routine decides which of the current
main-store-resident pages can be overwritten with
the data from the new page, stores the current page on
the disc if it has been altered since being loaded, and
reads in the new page.

APL\3000 always chooses the least recently used
page as the one that can be removed. This is the page
whose status table is the last one in the status table
list, since the list is maintained with the most recently
used page first. This method is critical to the efficient
operation of virtual memory, because it causes the
pages that are used frequently by APL\3000 to re-
main in main storage where they can be rapidly ac-
cessed while the infrequently used pages migrate to
the disc.

Virtual Segmentation

For this large linearly addressable virtual memory
to be useful in creating virtual workspaces the ad-
dress space must be broken up into several small
blocks of memory, each of which can be indepen-
dently expanded or contracted in size. In APL \3000
this is accomplished by three software routines. The

10

first routine allocates blocks of memory; it is given the
required number of words and it returns the starting
virtual address of the block allocated. The second
routine returns previously allocated blocks of mem-
ory to the free list where they are available for later
reallocation. The third routine can be instructed to
expand or contract the size of a currently allocated
block of memory.

The virtual storage allocation routines work with a
data structure called the free storage list (FSL). The
FSL contains an entry for each block of unused stor-
age in the virtual workspace. Each entry in the FSL
contains the following items:

w A 32-bit virtual memory address that is the begin-
ning of a free block of virtual memory
» The number of words in the free block of memory.

When a block of storage is returned to the FSL by
the software a description of the block is put into the
FSL so that no two FSL entries describe adjacent areas
of memory. In this way the free storage available in a
workspace is represented by the minimum number of
FSL entries.

Conclusion

APL is a convenient language because its work-
space concept allows the programmer to use variables
rather than files. APL \3000 has extended its useful-
ness by allowing workspaces to be extremely large.
Also, storage use and speed have been optimized by
means of shared data areas and subscript calculus.

Acknowledgments

Mention should be made of three people who con-
tributed to the design of the data handling portion of
APL\3000. Jim Duley produced some of the initial
ideas for the virtual memory system, John Sell worked
day and night to get the microcode running, and Doug
Jeung helped tune the code for the HP 3000.7
References
1. D.E.Knuth, "“The Art of Computer Programming, Vol. I;"
Addison Wesley, 1968.
2. P.S. Abrams, “An APL Machine,”" PhD dissertation,
SLAC Report No. 114, Stanford University, February 1970.

Grant J. Munsey
Grant Munsey was born in Los
Angeles and attended the nearby
University of California at Irvine,
graduating in 1971 with a BSEE
degree. For the next 3%z years he
provided software support for
HP's Neely Sales Region, then
joined HP Laboratories to work in
software research and develop-
ment, mainly on APL. He's a
member of ACM. Grant 1s single
and lives in Sunnyvale, California.
\ He's interested in aerobatic flying,
I photography, and sports cars.

© Copr. 1949-1998 Hewlett-Packard Co.

APLGOL: Structured Programming

Facilities for APL

by Ronald L. Johnston

VER A PERIOD OF YEARS the computer science

community has developed a set of programming
disciplines for systematic program design that have
become widely known as structured programming.
One very important component of this science is a set
of interstatement control structures for clearly ex-
pressing the flow of control. These control structures
are embodied in such block-structured languages as
ALGOL or PASCAL, and therefore these languages
have been widely used in teaching computer science
in colleges and universities. One control structure
that has received much criticism as unstructured
and harmful is the coTo of FORTRAN and other
languages.!”® The use of the GOTO, it is argued, is
to be avoided because it can render program flow
unintelligible, unmaintainable, and impossible to
prove correct.

APL is a modern language with array-oriented
functions, but only a single branching construct is
available: »expression, where “expression,” how-
ever complex, evaluates to a statement number to
which control is transferred. This construct is the
rough equivalent of a computed GoTO which, as men-
tioned previously, is not considered a good struc-
tured programming tool. Many APL enthusiasts, in
defense of the language, have argued that its rich set
of array functions reduces the necessity of including
explicit loop constructs in an APL program, thereby
minimizing the importance of good control structures
in this particular language. Nevertheless, empirical
studies? of APL programs have shown that the fre-
quency of branching per line is greater in APL than in
FORTRAN, although there are fewer branches per
equivalent function. Furthermore, as a consequence
of having only one branching construct the control
flow even within well structured APL programs can
often be obscure.

Many attempts have been made to improve the
readability and understandability of the APL branch
function. Saal and Weiss? relate that APL program-
mers use various stylized forms of branching with
great frequency in an attempt to impart some regular-
ity to the branch construct. These constructs have
become much-used idioms of the language. Other
APL programmers,”*® dissatisfied with even these

11

stvlized branching constructs, have invented special
packages of APL functions that attempt to provide
more acceptable control structures like 1F-THEN-ELSE,
WHILE-DO, CASE, and REPEAT-UNTIL. However, these
special functions have discouraged their own use be-
cause they occupied storage in workspaces that were
already too small, and because the function calls im-
posed a run-time speed penalty on the user. The only
acceptable solution lay in enhancing the language
itself, so that APL programmers could use the grow-
ing body of structured programming techniques
without incurring the penalties inherent in the solu-
tions to date.

Solution: APLGOL

APL %3000 includes an alternate language,
APLGOL, which enhances standard APL in the area of
branching. Based on the work of Kelley and Walters®,
APLGOL is a fully-supported language that adds
ALGOL-like control structures to APL to provide the
needed structured programming facilities. Program-
mers writing in APLGOL can make use of such famil-
iar constructs as IF-THEN-ELSE, WHILE-DO, REPEAT-
UNTIL, and CASE. Some constrained forms of struc-
tured branching are also included; they are LEAVE,
ITERATE, and RESTART. The resultant programs are
much easier to read, understand, and maintain than
the equivalent programs written in standard APL.
These qualities are essential in production pro-
gramming environments.

Another language facility, ASSERT, has been incor-
porated to encourage programmers to assert correct-
ness properties of algorithms as they write them,
hopefully to foster the proof-of-correctness approach
to programming that Dijkstra has recognized as so
important to the production of error-free pro-
grams.® %1% Using ASSERT statements the pro-
grammer states properties and conditions that must
be true if the program being written is to work prop-
erly. For example, suppose a function uses the vari-
able A as a divisor and the programmer expects that
no element of A should ever be zero. The following
assertion might be included in the function ahead of
the division:

ASSERT 1: A /A £0;

© Copr. 1949-1998 Hewlett-Packard Co.

APL:

[0] LISTFNSLISTENSFNLIFNAME:[JINLINESINK

[1] mPRINTS TEXT OF ALL FUNCTIONS IN WORKSPACE EXCEPT ITSELF
| 2] Ciowo

| FNLe~FNL| 4551 %[] AV 1« FNL-[INL 3 41] #n GET SORTED FNS LIST

pFNL) "HAVEFNS
[5] [O='(NOFUNCTIONS IN WORKSPACE)'
[6] -0
[

1

a
a
4 —| 0# %
5

7] HAVERNS: [J-' NS [JRENL" 'm BRINT JENS LIST

[8] INK—u©

| 8] NEXTNAME: —(INX=11aFNL}/0

[t0] FNAME—(FNAMES" ')/ FNAME= FNL[INX:] » DE-BLANK NAME

[11] (FNAME,' seses

[12] NLINES=1TpCR[JUR FNAME n GENERATE CANONICAL REP

[13] [="["{[10sNLINES) o) Vi NEINES.1 1 1+ NLINEST']. “oR

[14] INXeINX+1

[15] ~NEXTNAME

APLGOL:

[0] PROCEDURE LISTFNS LISTENSFNL FNAME, 10, NLINES, INX;

[1] A PRINTS TEXT OF ALL FUNCTIONS IN WORKSPACE EXCEFT ITSELF n
1 o
1] FNL—FNL[465 5TAVIFNL—[INL 3 4i]; GET SORTED FNS LIST m
4] IF b=x/pFNL. THEN

i FLSE

7] BEGIN

| &) [«

[8} INX et
[1u] WHILE INX<1TaENL DO

[11] BECGIN

[12] FNAME«{FNAME#=' ') /FNAME--FNL[INX:]: » DE-BLANK NAME 8
[1a] Ce(zuldR), eeves "FNaNE' ;

[14] NLINES = 1T4CR + [JOR FNAME; & GENERATE CANONICAL REP »

[15] [Je="[01 [10=NLINES)0)% NLINES.1)piNLINES).] R

] INX—INX+1;

[17] END:

[18] END;

[19] END PROCEDURE

k

|

[

[5] J+'IND FUNCTIONS IN WORKSPACE)
[

|

IFNS' CIRGFNL 5 n BRINT JFNS LIST »

Fig. 1. An APL function and its APLGOL counterpart. The two
functions are nearly identical, but the APLG OL function makes
use of ALGOL-like control structures that make it easier to
read, understand, and maintain.

In this fashion the programmer lets the correctness
proof and the program grow hand in hand. Each As-
SERT statement contains a relational expression that is
evaluated dynamically each time control reaches it, If
the assertion proves false, execution is halted to per-
mit the programmer to choose an appropriate course
of action. Assertion statements can be conditionally
executed, based on a level number in each assertion.
One useful way to employ assertions is to have all
assertions checked during initial program writing
and debugging. Later, as the program reaches produc-
tion status, assertion checking is turned off. If at some
future date the program exhibits erroneous behavior,
checking of assertions can be easily reinitiated,
greatly facilitating debugging efforts. Using asser-
tions in this fashion, there is no run-time penalty
during production use of the programs; only during
debugging stages are the assertions checked.

A workspace may contain both APL and APLGOL

12

functions, which may call each other without restric-
tion. (However, any given function must be entirely
APL or entirely APLGOL.) APLGOL expressions are
exactly the same as APL expressions, following the
same set of syntax and semantic rules. A function
originally developed in APL can be easily modified to
become an APLGOL function, and vice versa. The
only differences between APL and APLGOL func-
tions lie in the specific syntax of the function headers,
the control structures, the use of the lamp symbol (a)
as a comment terminator, and the fact that APLGOL,
like ALGOL, terminates statements with a semicolon.
Fig. 1 contrasts an APL function with its equivalent
APLGOL function, illustrating how nearly identical
the two functions are.

Canonical Forms

For run-time efficiency, it has been customary for
APL interpreters to translate functions from character
form into an internal form, whereupon the original
character source is discarded. Subsequent requests
for display of the functions are satisfied by translating
the internal form back to a canonical character form.
APL programmers have become accustomed to this
canonical form of their programs being slightly dif-
ferent from what they originally input, in that un-
necessary blanks have been compressed out, labels
“undented”, and the formats of numeric constants
perhaps changed. The short function shown below
illustrates how the original and canonical forms may
differ for APL:

Original APL

PART PERCENT WHOLE
«<1E2 x PART+ WHOLE
Canonical APL

[0] R<=PART PERCENT WHOLE

[1] R<100XPART+WHOLE
In similar fashion, APLGOL translates to internal
form and back-translates to a stylized canonical form.
However, APLGOL canonical form may be markedly
different from the original. APLGOL can be input
free-form with many statements per line, but the ca-
nonical form always has one statement per line, with
indenting for each layer of nesting. As Fig. 2 shows,
the canonical form of this function offers the advan-
tage of making the control structures more obvious by
indenting the IF-THEN-ELSE statements.

One consequence of the APLGOL control structures
is that the keywords of these structures (IF, THEN, etc.)
are reserved and cannot be used as variable or func-
tion names in APLGOL functions. This is not usually
a severe limitation to the programmer.

[0] Re
1R

Important Design Considerations
APLGOL is a fully-supported language, not an
add-on to APL. The decision was made early in the

© Copr. 1949-1998 Hewlett-Packard Co.

Original APLGOL

[8] PROCEDURE A CONFORMS BiIF 1=(x/pA).x
[1] 'CONFORMABLE - SCALAR/UNIT EXTENSION' ELSE IF
THEN IF (pA) A.=p5B THEN CONFORMABLE — SAME SHAPE ELSE
NODT CONFORMABLE - LENGTH ERROR

ELSE ‘NOT CONFORMABLE — RANK ERROR

ND PROCEDURE

pB ITHEN

ppA f=apB

[2]

1
5

Canonical APLGOL
0] PROCEDURE A CONFORMS B:
1] IF(v/1=(%/pA).x /pB) THEN
2 'CONFORMABLE - SCALAR/UNIT EXTENSION
3 ELSE
4] IF (ppA)=ppB THEN
5 IF (pA] Ac=pB THEN
6] 'CONFORMABLE — SAME SHAPE'
] ELSE
] 'NOT CONFORMABLE — LENGTH ERROR’
] ELSE
] 'NOT CONFORMABLE — RANK ERROR';
] END PROCEDURE

Fig. 2. User inputs in APLGOL are translated to an internal
form and back-transiate to a canonical form. The canonical
form makes the conirol structures more obvious by indenting.

design stages that it was to be as convenient to use as
APL and should require no extra steps for the pro-
grammer. It was to suffer no significant speed or space
penalties, but should offer itself as a viable alternative
to programming in APL.

One important design decision was to use the same
dynamic incremental compiler for both APL and
APLGOL (see article, page 17). Once a function has
been translated to internal form (S-code), its incre-
mental compilation and execution is handled by a
single mechanism that is common to both languages.
The most obvious payoff from this approach is that
only one such system needed to be implemented,
resulting in lower development costs than if two
separate compilers had been written. A second, less
obvious advantage is that this guarantees that there
are no insidious semantic differences in the way each
language evaluates its expressions. That is, an ex-
pression like + /' gives the same result (DOMAIN
ERROR in some systems, including ours; 0 in other
systems) in both languages. Finally, it guarantees that
the execution speed of both languages is the same,
except in functions dominated by branching over-
head. In these cases APLGOL tends to be slightly
faster, because it generates more efficient branching
code. APLGOL branches don’t have to be range-
checked at run time as APL branches do, since all
APLGOL branches are generated and guaranteed in-
range by the character-to-internal translator when the
function is created.

These considerations continually influenced the
design of APL \3000, most often having the effect of

13

complicating internal code assignments, data struc-
tures, and support routines. The result, however, is a
system that honestly supports bath APL and APLGOL
without noticable favoritism of either. =

References

1. E.W. Dijkstra, “GOTO Statement Considered Harmful,”
Communications of the ACM, 11 (1968), pp. 147-148.

2. H.]. Saal and S. Weiss, “An Empirical Study of APL
Programs,” IBM Israel Scientific Center, Technion City,
Haifa, Israel.

3. J.P. Dorocak, “APL Functions which Enhance APL
Branching,” IBM Corp., Federal Systems Division, Oswego,
New York, APL 76 Proceedings (1976), pp. 99-105.

4. W.K. Giloi and R. Hoffman, “Adding a Modern Control
Structure to APL without Changing the Syntax,” APL 76
Proceedings (1976), pp. 189-194,

5. L.R. Harris, **A Logical Control Structure for APL,” APL
Congress 1973, American Elsavier, New York, 1973, pp.
203-210.

6. R.A. Kelley and].R. Walters, “APLGOL-2, A Structured
Programming System for APL.” IBM Palo Alto Scientific
Center, Technical Report No. G320-3318, 1973.

7. “The GOTO Controversy,” SIGPLAN Notices (Special
Issue on Control Structures in Programming Languages),
Vol. 7, No. 11, 1972,

8. E.W. Dijkstra, “The Humble Programmer,” 1972 Turing
Lecture, Communications of the ACM, Vol. 15 Nao. 10, Oc-
tober 1972.

9. E.W. Dijkstra, O.]. Dahl, and C.A.R. Hoare, "*Structured
Programming,” Academic Press, London, October 1972,
10. R.W. Floyd, “Assigning Meanings to Programs,” Pro-
ceedings of Symposium on Applied Mathematics, Ameri-
can Mathematical Society, Vol. 19, 1967, pp 19-32.

Ronald L. Johnston

Ron Johnston graduated from the
" University of California at Santa
Barbara in 1973 with a BS degree
in electrical engineering and
computer science. He joined HP
Laboratories that same year, de-
signed a CRT-based interactive
tex! editor, and then helped de-
sign and implement APLA3000.
He's now APL project manager. A
native of Southern California, Ron
1s married, has a two-year-old
daughter, and lives in Sunnyvale,
California. Besides APL, Ron's
passions are off-road motor-
cycling and music—he plays guitar and sings in a duo, the other
half of which is his wife. He also serves as counselor fora church
youth group and as tour director for a youth choir

\a

= -

© Copr. 1949-1998 Hewlett-Packard Co.

APL\3000 Summary

Primitive Functions and Operators

Monadic
IDENTITY
NEGATE
SIGNUM
RECIPROCAL
EXPONENTIAL
NATURAL LOGARITHM

NOT

ROLL

Pl TIMES

CEILING

FLOOR

ABSOLUTE VALUE
FACTORIAL
SHAPE

AXIS (AUXILIARY)
INDEX GENERATOR

REVERSE 1

TRANSPOSE
REDUCTION

SCAN kS

RAVEL
GRADE UF
GRADE DOWN

EXECUTE
FORMAT
MATRIX INVERSE

(Y

1"

PR

s i —]

e W~ = m

Dyadic
ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION
POWER
GENERAL LOGARITHM
AND
OR
NAND
NOR

LESS THAN

LESS THAN OR EQUAL
EQUAL

NOT EQUAL

GREATER THAN OR EQUAL
GREATER THAN

DEAL

CIRCULAR FUNCTIONS
MAXIMUM

MINIMUM

RESIDUE

BINOMIAL

RESHAPE

TAKE

DROP

INDEXING

INDEX OF

ROTATE

GENERAL TRANSPOSE

* COMPRESSION
% EXPANSION

CATENATE

MEMBERSHIP

DECODE

ENCODE

EXTENDED EXECUTE
EXTENDED FORMAT

MATRIX DIVISION
GENERALIZED INNER PRODUCT
GENERALIZED OUTER PRODUCT

Overstrike Characters

F friking onekey, pacing, strik-
Ing other ey Crder Immaterial
Symbol Made with Symbol Made with
* - ! !
! | "‘
-
4 A
. ¥ v
& i = ﬂ A
i T =
B - z Z..
0 0 A A _

System Variables

DA Alphabet Characters :‘:}LX Latent Expression
[lal Account Information l‘_'}N Null Character
[JAL APLGOL Assertion Level [JPP Print Precision
[JAV Atomic Vector [lPW Print Width
[.Ii Backspace Character DR Carriage Return Character
ler Comparison Tolerance [RL Random Link {Seed)
[in Digit Characters [lsN Stack Names
[Escape Character [IT Horizontal Tab Character
[JHT Horizontal Tab Positions (e rerminal Type
(1o Index Origin [ITs Time Stamp
[Line-Feed Character [vM Virtual Memory Characteristics
[Jra Language [IWA Workspace Area Used
[Le Line Counter [wr Workspace ldentification
System Functions
Result Syntax Name
CM~ [er v Canonical Representation
NS+ lcv} [ose wv Capture Stack Environment
AVe— nsv [ov av Convert
NS — [bL NS Delay
BV« [EX cvMm Expunge
CV e [rx cvm Function Establishment (Fix)
NM « (v cv Maonitor Values
NV - [N cvm Name Classificatian
eM«— jev) [ONLo NSy Name List
BV« oM cv Query Monitor
BV« [os cv Cuery Stop
BV~ DQ'I‘ cv Query Trace
NV« [lrsE NV Ralease Stack Environment
NV« {nv] kM cv Reset Monitor
NV« {wv] [Rs cv Reset Stop
NV« Inv} [ORT cv Reset Trace
NV + invi Osm cv Set Maonitor
NV« {wv} [Iss cv Set Stop
NV« {nv) Ost cv Set Trace
nM— (Bvm) [lsve cvm Shared Variable Control
Nv— evm} [svo cvm Shared Variable Offor
NV = [svr cvm Shared Variable Retract
CM (Isvq cv Shared Variable Query
EV.«— v cv Vectar Representation
Notes:
AV Arbitrary Vector BM: Boolean Matrix
BV: Boolean Vector CM: Character Matrix
CV: Character Vector CVM: Character Vector or Matrix
NM: Numeric Matrix NS: Numeric Scalar
NSV: Numeric Scalar or Vector NV Numeric Vectar
{a} «ls Optional
Miscellaneous
T Negative Constant Indicator
Character Constant Delimiter

=~ Assignment

— Branch

[0 Evaluated Input, Output

L Literal Input, Prompting Output

() Grouping

(> Statement Separator

Label Indicator
] Comment Delimiter

Statement Separator{ APLGOL), List Separator

© Copr. 1949-1998 Hewlett-Packard Co.

APLGOL Control Structures

ASSERT INTEGER EXPRESSION: BOOLEAN EXPRESSION
BEGIN STATEMENT LIST END
CASE INTEGER EXPRESSION OF INTEGER CONSTANT

BEGIN

CASE LABEL: STATEMENT,
CASE LABEL: STATEMENT:

CASE LABEL: STATEMENT:;

{DEFAULT:

END CASE

EXIT |EXPRESSION |

STATEMENT:}

FOREVER DO STATEMENT

HALT [EXPRESSION |

IF BOOLEAN EXPRESSION DO STATEMENT
IF BOOLEAN EXPRESSION THEN STATEMENT

ELSE STATEMENT

ITERATE: CONTROL STRUCTURE NAME LIST
LEAVE: CONTROL STRUCTURE NAME LIST

NULL

PROCEDURE HEADER: STATEMENT LIST END PROCEDURE
REFPEAT STATEMENT LIST UNTIL BOOLEAN EXPRESSION
RESTART: CONTROL STRUCTURE NAME LIST

WHILE BOOLEAN EXPRESSION DO STATEMENT

Notes:
{a}: @ 1s Optional

CONTROL STRUCTURE NAME LIST: List of Control Structure Names
among CASE, FOREVER, IF, PROCEDURE, REPEAT. or WHILE.

E.g.: IF,CASE

HEADER: Standard APL Function Header, except that Local Variables

Are Preceded by a Comma instead of a Semicolon.

STATEMENT: One of the Above Contrel Structures, or an APL Expression,
STATEMENT LIST: One or More Statements, Each Terminated by a Semicolon.

Comments Have the Form: 2 COMMENT TEXTe

AlDD}
B{RIEF}
C{HANGE]
cofry}
CU{RSOR}
D{ELETE}
DELT{A}
END
r{IND}
H{ELP}
L{IsT}
LOCK
MAT/|RIX}
M{ODIFY |
QuIT
R{EPLACE]}

RES|{EQUENCE}

u{NDo}
VEC|{TOR}
VER{BOSE|

Note:

Editor Commands
Allows Entry of New Text
Changes Messages to Brief Mode (Short)
Substitutes One String for Another
Copies Text from One Location to Another
Changes the Line Poinler
Deletes Lines in the Edil Text
Changes the Line Inorement
Exits Editor, Making Text into a Function
Locates a String in the Text
Prints Information about Editor Commands
Prints Lines of Text
Similar to END, but Locks the Function
Exits Editor, Creating a Character Matrix
Muaodifies the Contents of a Line
Exits Editor, Discarding the Changes
Replaces Lines of the Text
Renumbers and Moves Text Lines
Negates the Effects of the Last Commands
Exits Editor, Creating a Character Vector
Changes Messages to Verbose Mode [Long)

[u}: a Is Optional, Commands May Be Abbreviated,

System Commands

JBIND
JCLEAR

JCONTINUE

JCOPY WSID {NAME LIST)
\DEPTH {INTEGER |

JDROP WSID

JEDIT |{OBJECT NAME)
JERASE NAME LIST

JEXIT

JFILES {GROUP {.ACCOUNT |}
JFNS {LETTER |

JHELP {COMMAND NAME |

JLANGUAGE [APL OR APLGOL]

JLIB {GROUP {.ACCOUNT }}
JLOAD WSID

IMPE

JOFF
JPCOPY WSID {NAME LIST}

JRESET [ENVIRONMENT NUMBER }

IRESUME

JSAVE {WSID}

151 {ENVIRONMENT NUMBER |
JSIV [ENVIRONMENT NUMBER |

JTERM [TERMINAL TYPE |
JTERSE

JTIME

IVARS {LETTER |
JVERBOSE
|WSID {WSID |
Notes:

{a}: a is optional
WSID: Workspace ldentification

Turns Binding Messages ON or
OFF

Ohtains New, Clean Workspace
[WS5)

Leaves APL, Saving WS in Work-
space CONTINUE

Obteins Part or All of a Stored WS

Sets the Execution Stack Size

Deletes a Stored WS

Enters Editor, Working on OBJECT
NAME

Deletes Objects in NAME LIST
from Active WS

Leaves APL

Lists Stored Files

Lists Functions in Active WS

Prints Information about System
Commands

Specifies Default Language Pro-
cessor

Lists Stored APL Workspaces

Makes a Copy of a Stored WS the
Active WS

Break from APL to MPE Command
Interpreter

Leaves APL

Like COPY, but Doesn’t Replace
Objects

Sets an Environment to the Empty
Environment

Resumes Execution of Suspended
Function

Stores the Active Workspace

Prints the State Indicator

Prints the State Indicator Stack,
with Local Variables

Sets the Terminal Type

Sets Messages to Terse Mode
[Short]

Turns Calculator Mode Timing
ONIOFF

Prints the Variables in the Active
ws

Sets Messages to Verbose Mode
{Long)

Changes the Active WS’s Name

TERMINAL TYPE: One of A], ASCII, BP., CDI, CP, DM, GSI, or HP.

All Commands May Be Abbreviated.

Circular Functions
R—~A B

A R A R
~7 arctanh B 1 sinB
“B arc cosh B 2 cosB
5 arcsinh B 3 tan B
I {T1+Bs2)s5 4 (14B-2})s5
3 arctan B 5 sinh B
“2 arccos B 6 cosh B
~1 arcsinB 7 tanh H

0 (1-Be2)e5

© Copr. 1949-1998 Hewlett-Packard Co.

SPECIFICATIONS AND FEATURES
APL 3000 (Language Subsystem 32105A)

APL 3000 is & language subsysiem that runs under the control of Multi-

programming Executive (MPE) on the HP 3000 Series Il Computer

COMPATIBILITY: APLSV comgpatible, including system functions and variables,
shared variable mechanism, Format (%), Execute (1), Sean(), and Matrix
Inversion and Division [E).

FILE SYSTEM: Full access 1o the Multiprogramming Executive (MPE) file system
allows private or shared files via the Shared Variable mechanism, communica-
tion with other language subsystems, access to peripheral devices (line printers,
card readers, magnetic tapes, discs, elc.).

APLGOL: An alternate fanguage that provides modern ALGOL-like control strue-
twres in an APL environment. IF-THEN-ELSE, BEGIN-END. WHILE-DO,
REPEAT-UNTIL, CASE, and ASSERT are among the constructs available.

EDITOR: Full function and text editing facilities are provided for by a powerful
new editor, Includes features never before available to APL programmars, amang
them the ability to create and edi! matrices and vectors, Provides such com-
mands as CHANGE, COPY, FIND, RESEQUENCE, and UNDO, as well as
a HELP faaility for the novice or occasional user,

CONCEPTUAL DATA TYPES: Character and Numeric,

ACTUAL DATA TYPES: APL automatically chooses the appropriate internal

representation for data from the following types:

CHARACTER: represented by 8-bit codes following the code assignments out-
lined by | AV. Codes include lower-case ASCI alphabetics, contral codes

BIT: values 0 and 1 packed 16 per machine word for data of rank 1 (vector) or
greater {array).

INTEGER: integer values within the range —32768 to 32767 are stored as 16-bit
signed (ntegers.

REAL: real values within the range =(2~ 256. 2"2563 are stored as 64-bit
floating point numbers, 16 decimal digit accuracy.

MAXIMUM ARRAY RANK: 63 dimensions.

MAXIMUM ARRAY SIZE: 32.767 elemenis,

ARITHMETIC PROGRESSION VECTORS: Integer vectors that can be de-
scribed by the form A +B = |1C are stored as Arithmetic Progression Vectors
{APV's), which require no dala areas.

SHARED DATA AREAS: Variables of rank 1 (vector) or greatercan share the same
data areas, avoiding multiple copies of the same data. Shared data areas are
duplicated only if one of the sharing variables attempts to change its data.

WORKSPACE SIZE: Limited only by the amount of on-line disc starage available.
Initial size: 32,767 bytes. Automalically made larger as necessary. Practical
limit: 400,000,000 bytes.

TERMINAL SUPPORT: Accepts terminais, with or without an APL character set,
that use a standard ASCIl interface at speeds from 110 to 2400 baud. Pro-
visions made for both bit and character pairing terminals. Special support
given to the HP 264 1A Display Station to take advantage of its special features.
The following other terminals have been tested: Anderson Jacobson 630,
Computer Devicas Teleterm 1030, Data Media Elite 1520, Gen-Com System
Mode! 300,

ENVIRONMENT: Runs as a standard subsystem under control of Multipro-
gramming Executive (MPE). Allows balch APL jobs, simullanecus use of
five ather languages (BASIC, COBOL, FORTHAN, RPG, and SPL), networked
access to other HP 3000's,

SYSTEM REQUIREMENTS AND PERFORMANCE: The minimum system re-
quired is an HP 3000 Series || with 256K bytes of memory operating under MPE II;
for multiingual operation, at least 384K bytes of memory is needed, Operation
with 10 or more terminals requires full memory (512K bytes). Maximum
recommended number of simultaneous APL users is 16,

INSTALLATION: APL 3000 includes hardware microcode and must be installed
by a factory authorized Customer Engineer. Installation is included in the list
price.

ORDERING INFORMATION: 321054 APL 3000 Subsystem. Inciudes the
dynamic compiler, hardware microcode, and the APL 3000 Reference
Manual {32105-80002). All software supplied in object code form cnly.

PRICE IN U.S.A.: §15,000,

MANUFACTURING DIVISION: GENERAL SYSTEMS DIVISION

5303 Stevens Craek Boulevard
Santa Clara, California 95050 U.5.A

SPECIFICATIONS
HP Model 2641A APL Display Station

General

SCREEN SIZE: 127 mm (5in) = 254 mm (10 in}

SCREEN CAPACITY: 24 lines « 80 columns (1,920 charactar)

CHARACTER GENERATION: 7x8 enhanced dot matrix: 9+15 dot character
cell; non-interlaced raster scan

CHARACTER SIZE: 2.46 mm (.097 in) « 3.175 mm [.125 in)

CHARACTER SET: 128 character APL; §4 character Lpper-cass Roman: 64
character APL overstrike. (Note: the 2641A supports only one additional

character set.)

CURSOR: Blinking underline

DISPLAY MODES: White on black, black on white (inverse video), blinking, half-
bright, underline.

REFRESH RATE: 80 Hz (50 Hz optional)

TUBE PHOSPHOR: P4

IMPLOSION PROTECTION: Bonded implosion panel

MEMORY: MOS ROM: 24K bytes (program), RAM: std. 4096 byies; 12 kilobytes
max. (16K including max. data comm. bufier)

OPTION SLOTS: 5 available

KEYBOARD: Detachable, full APL/ASCI| code bit-pairing keyboard, user-definad
soft keys, and 18 additional confrol and editing keys, ter-key numeric pad;
cursor pad; multispeed auto-repeat, N-key roll-over; 1.22m (4 foo!) cable.

CARTRIDGE TAPE (opticn): Twa mechanisms
READ/WRITE SPEED: 10 ips
SEARCH/REWIND SFEED: 60 ips
RECORDING: 800 bpi
MINI CARTRIDGE: 110 kilobyte capacity (maximum per cartridge)

Data Communications
DATA RATE: 110, 150, 300, 1200, 2400, 4800, 9600 baud, and external. Switch
selectable, (110 selects two stop bits). Operating above 4800 baud in APL
mode may require nulls or handshake protocol to insure data integrity,
STANDARD ASYNCHRONOUS COMMUNICATIONS INTERFACE: EIA stan-
dard R5232C; fully compatible with Bell 103A modems; compatible with Bell
202C/D/S/T modems. Chaoice of main channel or reverse channel line turnaround
for halt duplex operation.
OPTIONAL COMMUNICATIONS INTERFACES (ses 13260A/B/C/D Communi-
cations data sheet for details)
Current loop, split speed, custom baud rates
Asynchronous Multipoint Communications
Synchronous Multipoint Communications - Bisync
TRANSMISSION MODES: Full or half duplex, asynchronous
OPERATING MODES: On-line: off-line; character, block
PARITY: Switch selectable; even, odd. none

Environmental Conditions
TEMPERATURE, FREE SPACE AMBIENT:
NON-OPERATING: 40 to +75°C (—40 ta +167°F)
OPERATING: 0 to 55°C (+32 to +131°F)
TEMPERATURE, FREE SPACE AMBIENT (TAPE):
NON-OPERATING: —10 to 60°C {—15 to +140°F)
OPERATING: 5 to 40°C | +41 to 104°F)
HUMIDITY: 5 to 95% (non-condensing)
ALTITUDE:
NON-OPERATING: Sea level to 7620 metras (25,000 faat)
OPERATING: Sea level 1o 4572 metres (15,000 fest)
VIBRATION AND SHOCK (Type tested to qualify tor normal shipping and handling
in original shipping carton);
VIBRATION: 37 mm (0.015 in) pp. 1010 55 Hz, 3 axes
SHOCK: 30g, 11ms, 1/2 sine

Physical Specifications

DISPLAY MONITOR WEIGHT: 19.6 kg (43 pounds)

KEYBOARD WEIGHT: 3.2 kg (7 Ibs)

DISPLAY MONITOR DIMENSIONS: 444 mm W x 457 mm D = 342 mm H
(17.5in W = 18in D = 13.5in H).
648 mm D (25.5 in D) including keyboard.

KEYBOARD DIMENSIONS: 444 mm W = 216 mm D = 80 mm H (17.5 in W
* 85inD = 3.5 InH)

Power Requirements
INPUT VOLTAGE: 115 (- 10% -23%) at 60 Hz {=0.2%)
230 (+10% -23%) at 50 Hz (+0.2%)
POWER CONSUMPTION: 85 W 1o 140 W max,
Product Safety

PRODUCT MEETS: UL reguirements for EDP equipment, office appliances,

teaching eguipment; CSA requirements for EDP equipment, U.L. and CSA

labels are applied to equipment shipped to the U.S. and Canada.

Ordering Example
Here |s an example for ordering a 2641A Terminal with upper and lower case
Roman character sets, line drawing character set, cartridge tape capabifity
and five extra cartridges to be operated over phone lines;
2641A APL Display Station

-001 Adds Lower Case Roman Character Set
-007 Adds Cariridge Tape Capability

-013 Adds Five Mini Cartridges

-202 Adds Line Drawing Charactar Sel

13232N Adds 103/202 Modem Cable—15 #.
PRICE IN U.S.A.; 2641A, 54100. 2641A as above, 56115,
MANUFACTURING DIVISION: DATA TERMINALS DIVISION
19400 Homestead Road
Cuperting, California 95014 U.5.A.

© Copr. 1949-1998 Hewlett-Packard Co.

A Dynamic Incremental Compiler for an
Interpretive Language

by Eric J. Van Dyke

AI’L OFFERS THE USER a rich selection of primi-
4 A tive functions and function/operator com-
posites. Powerful data structuring, selection, and
arithmetic computation functions are provided, and
their definitions are extended over vectors, matrices,
and arrays of larger dimension, as well as scalars.

Evaluation of complex expressions built from such
terse operations is necessarily quite involved. Code
must be generated and executed to apply primitive
functions to one another and to data atoms, with
whatever type checks and representation conversions
arerequired. Nested iteration loops must be created to
extend the scalar functions over multidimensional
array arguments, and these must include data con-
formity and index range checks.

All of this gathering and checking of information
concerning data/function interaction and loop
structure—and its high overhead expense—is, in the
typical naive APL interpreter, simply thrown away
after the execution of a statement. This is because the
nature of APL is dynamic. Attributes of names may be
arbitrarily changed by programmer or program. Size,
shape, data type, even the simple meaning of a name
(whether a data variable, shared variable, label, or
function), are all subject to change (Fig. 1). Assump-
tions cannot be bound to names at any time and be
counted on to remain valid on any subsequent loop
iteration or function invocation, For this reason, APL
has traditionally been considered too unstable to
compile.

From this dilemma—high cost and wasted over-
head that penalize interpretation but instability that
prevents compilation—grew the dynamic incremen-
tal compiler of APL “3000.

Compile Only as Required

The APL \3000 dynamic incremental compiler is
an interactive compiler/interpreter hybrid. It is a
compiler that generates and saves executable object
code from a tree representation of each new APL
expression for which none already exists. (In general,
each assignment statement, branch, or function invo-
cation is considered an expression.) It is also an in-
terpreter that immediately evaluates every expression
of a statement or function. Whenever possible, previ-
ously compiled and saved code for an expression is
re-executed. Only when absolutely necessary is new
code generated. Thus stable expressions are com-

17

piled, while those with dynamically varying attri-
butes and those that are executed only once are, in
essence, interpreted. The overhead of new code gen-
eration is borne only when necessary, often only
once. This scheme of infrequent overhead provides
justification for costly optimizations, including the
dragalong and beating discussed below, that lead to
more efficient code.

A balance between compiling and interpretation is
accomplished through the generation and execution
of signature code, binding instructions that are emit-
ted before the code for an expression. Their purpose is
to specify and check the attributes that are bound into
the following code, that is, constraints that may not
change if the compiled code is to be re-executed.
Signature instructions are generated that test index
origin (0 or 1), meaning of names (whether data vari-
able, shared variable, or otherwise), type and dimen-
sions of expressions (representation, size, and shape),
access information for data (origin and steps on each
dimension), and run-time index bounds checks.

These signature instructions are bypassed on the
first execution after compilation, when all assump-
tions are guaranteed satisfied. On subsequent execu-
tions, the signature code is used to test the validity of
the code that follows. If these assumptions are found
to be invalid, the code “breaks”. Execution is re-
turned to the compiler and code with a new set of
assumptions is generated (Fig. 2). On recompilation,
an expression is assumed unstable and a not-so-

ANS «— A+B
Y}
Integer Scalar Variable — — —
Dyadic Primitive Function [A N ic Value|
Integer Scalar Variable — e —————
ANS «— A+B
]
Real Vector Variable —— — -
Dyadic Primitive Function ' | [A Domain Error]
Character Matrix Variable —
ANS+«— A+B
A
Monadic User-Defined Function - J
Monadic Primitive Function j [A Numeric Value]
Niladic User-Defined Function———

Fig. 1. APL is dynamic. Attributes of names may be arbitrarily
changed by the programmer or by a program. For this reason,
APL has been considered impossible to compile.

© Copr. 1949-1998 Hewlett-Packard Co.

Compile and
New Save Code
Expression and Signature
Instructions
Previously Test
Compiled Signature
Expression Instructions

Code Breaks
|

Compile Less-

Specific Code
and New Signature
Instructions

Fig. 2. In APL \3000, expressions are compiled when first
encountered. Along with the compiled code signature codeis
generated, specifying constraints that must be met if the code
is to be re-execuled. This signature code is tested on sub-
sequent invocations of the expression, and if the constraints
are not met, recompilation is required.

specific but somewhat slower and less dense form of
code is generated. Further changes may not force a
recompilation,

Wait as Long as Possible; Do as Little as Necessary

The secret to compiling efficient code is in gather-
ing, retaining, and exploiting as much information
about the entire expression as possible before generat-
ing code. The more context that can be recognized,
the more specific “‘smarts” can be tailored into the
code. For this reason, the APL \3000 compiler oper-
ates in two distinct functional passes: context gather-
ing and code generation.

The context gathering, or foliation, phase of compi-
lation is a complete bottom-up traversal of the expres-
sion tree. Fig. 3 shows an example of such a tree.
Description information is associated with each of the
constant and variable data nodes—the leaves of the
tree. These descriptions are then ““floated” up to in-
teract with the parent node. Descriptions are revised
and attached to the corresponding node as necessary
to suit the result. This process continues as descrip-
tions are gathered and carried up through each func-
tion or operator node toward the root. Attached to the
final assignment or branch node will be a context
description for the entire expression. Fig. 4 shows the
foliated tree for the expression of Fig. 3.

The information created by this foliation process
consists of a set of auxiliary description nodes at-
tached to each node in the expression tree. Each of
these description groups contains the attributes of the
result of the expression to which it is attached, as
modified by that function and those below. First in
the set of descriptor nodes is a single RRR node, which

18

6

ANS ~
117

213

Expression Tree for ANS«— 1.1+2 3 p16

Fig. 3. The tree representation of an expression. The
APL \3000 compiler traverses this tree twice, ence for context
gathering and once for code generation.

describes the general structure of the current expres-
sion: RANK (number of dimensions—for scalar, 0),
REPRESENTATION (internal data type), and RHOs (size of
each dimension—for scalar, there is none). Linked to
the RRR node is a chain of DELOFF nodes, or data access
descriptions, at least one for each non-scalar data item
in the expression. A DELOFF node indicates the order
in which an item is accessed and stored—row major,
for example—by means of an OFFSET (origin), and a
DEL (step) for each coordinate. Notice that these de-
scriptions are independent of the data; storage need
not be accessed during this foliation process.
Frequently, data storage is shared. In such cases,
multiple descriptors are created, perhaps with differ-
ing access schemes. Each addresses the same shared
area, A common form of vector data created by the
INDEX GENERATOR function is the arithmetic progres-
sion vector (APV). This vector may be completely rep-
resented by its descriptor; no data area is necessary at
all. For example, 2+3x 14 requires only the descriptor:
RHO: 4 OFFSET: 5 DEL: 3
to represent the values 5 8 11 14.

Dragalong and Beating

It is the gathering and manipulation of these data-
independent descriptors, following the dragalong
and beating strategies developed by Abrams,! that
makes possible the extensive optimizations incorpo-
rated in APL \3000.

Dragalong, the strategy of deferring actual evalua-
tion as far as possible up the expression tree by gather-
ing descriptions. avoids the naive interpreter’s usual
one-function-at-a-time “‘pinhole” evaluation. In-
stead. the code for a collection of parallel functions,
including their associated loops, can be generated
and executed simultaneously. Fig. 5 compares naive
with dragged code.

Beating. the application of Abrams’ subscript cal-

© Copr. 1949-1998 Hewlett-Packard Co.

0~
BANK 1 (Veetor) OFFSE

o RRA (REPRESENTATIONAPY) DELOFF {EEFQU ‘}
RHO 0 & SR

1 (Vector)

3 oy [RanK /
a1 '}{ REPRESENTATION I:'-'_eL:E'}FlRR 23

3

BHO O 2

’ RANK 0 (Scalar)
& RRAR {FIZEPHESE.'.JTA?:C-I‘J Integer }

Foliated Expression Tree for ANS «—1.1+2 3 p 16

Fig.4. Foliated expression treeresults from the context gathering phase of compilation. Auxiliary
description nodes contain the attributes of the sub-expression to which they are attached.

culus to a deferred expression when evaluation is
finally required, produces the desired results for cer-
tain APL functions by description manipulation
alone. In such cases, the original data is shared with
the beaten result, making it unnecessary to copy the
data in a different form. Thus data is touched only
when and only as much as necessary. (Data sharing is
described in more detail in the article beginning on
page 6.) SUBSCRIPTION, RESHAPE, RAVEL, TAKE, DROP,
REVERSAL, and monadic and dyadic TRANSPOSE are the
functions to which beating optimizations may be
applied (see Fig. 6).

The dragalong and beating strategies can signifi-
cantly reduce the amount of data access and storage,

computation and looping overhead, and often tempo-
rary storage required in the evaluation of an expression.
An independent context gathering pass during
compilation provides an opportunity for a number of
specific optimizations in addition to dragalong and
beating. For example, a pair of adjacent monadic RHO
nodes can be recognized as a new internal RANK func-
tion. The result is merely the rank of the argument as
indicated by its description, eliminating the need for
an intermediate rho vector (see Fig. 7). Similarly,
successive CATENATE nodes can often be incorporated
into a new multi-argument POLYCAT function, elimi-
nating the superfluous data moves and intermediate
storage that would normally be required (Fig. 8).

Naive

INITIALIZE INDEX 1 AND LIMIT
WHILE ivDEX 1 # LimiT DO
BEGIN
TEMPORARY |INDEX 1|+ B|INDEX 1|=C|INDEX 1|
INCREMENT INDEX 1
END
INITIALIZE INDEX 2
WHILE INDEX 2 £ LimiT DO
BEGIN
ANS [INDEX 2 |+A[INDEX 2 |+ TEMPORARY |INDEX 2 |
INCREMENT INDEX 2
END

BEGIN

END

INITIALIZE iNDEX AND LIMIT
WHILE INDEX = LIMIT DO

ANS [INDEX | = A[INDEX | +B|INDEX | <C|INDEX |
INCREMENT INDEX

Dragged

Fig. 5. Evaluation of an expres-
sion is deferred as long as pos-
sible. This strategy, called drag-
along, makes it possible to gener-
ate and execule the code for a
number of paralle! functions simul-
taneously, avoiding the naive in-
terpreter’s one-function-at-a-time
evaluation. Shown here (s a com-
parison of naive with dragged
code for aNS—A+BXC. 4, 8, and ¢
are conformable veclors.

19

© Copr. 1949-1998 Hewlett-Packard Co.

| RANEK 2 (Matrix)

SENTATION Integer OFFGET.Q
Hifg SErEs N IMEGET pELOFF (DELD 3
RHO 0 2 et s
4 DEL 1
¥ RHO 1 3
zZa
6
23p16
""1-.._-
| RANK: 2 (Matrix) :
- S e OFFSET 0
ARA HEPHESEH.ATIOI\- irtederh nel off DEL 0 3
BHO 0 2 LA

Y s RHO1 2

22/ W
~ Beaten Resull

6
22423 p16
TN Beaten Aesult
RAMNK. 2 (Mainx) OFFSET 1
RAR -RI:PHFTS!EHTAHDN Integer DELOFF DEL O 4
RHO [+ 2 DEL 1 1
AHO 1 2 = 4

Beatan Result<

$2 2423 p16

Fig. 6. When evaluation s finally required, beating, or the
application of the subscript calculus to a deferred expression,
may praduce results by description manipulation alone. Here
rake (1) and reversal (§) are applied to descriptions for a
simple expression. The dragalong (see Fig. 5) and bealing
strategies can significantly reduce the computation and stor-
age required in the evaluation of an expression.

Code Generation

When the compiler is finally forced to materialize
an expression—either the root has been reached, or
the compiler can drag no farther for one reason or
another—code is emitted. This code generation pass
is a second independent walk of the foliated tree with
dragged and beaten descriptions attached, this time
from the top down, generating and saving executable
code for the expression. By exploiting the context
descriptions that have been gathered up the tree from
each node, specifically tailored code can be gener-
ated. Because APL in general deals with arrays, this
process also usually involves the construction of
loops.

20

APL \3000’s target machine is a software/firmware
emulator implemented on the HP/3000. The instruc-
tion set, in addition to loads, stores, and loop and
index controlling instructions, includes a set of high-
level opcodes that match the APL primitive scalar
functions. Code generation from an expression fol-
lows a recursive descent of the tree: an instruction to
set up a storage area for the result (typically a tempor-
ary) is emitted, followed by a reverse Polish sequence
of data loads and operations, and finally a store into
the result, all nested within the necessary loops.

Any instruction that has the potential to fail carries
within it a syllable number that provides the machine
with a pointer to the original source in case of an
error, allowing for recompilation on binding errors or
message generation on USer errors,

The descriptions at the root node completely de-
scribe all index variables and iteration loops to be
generated. Each DELOFF node, with optimizations
beaten in. describes the initialization (OFFSET) and
stepping (DEL) of an index register. The loops, one for
each dimension of the result, in general, are derived
from the RRR in conjunction with a selected DELOFF.

Loops are all of a basic structure:
INITIALIZE ALL INDEX REGISTERS
INITIALIZE LIMIT REGISTER
WHILE CHOSEN INDEX # LIMIT DO

BEGIN

INITIALIZE LIMIT REGISTER

WHILE CHOSEN INDEX # LIMIT DO
BEGIN

(Tndexed Expression Code)

INCREMENT ALL INDEX REGISTERS
END
INCREMENT ALL INDEX RECGISTERS
END

Equality, unlike > and <, is a consistent termina-
tion condition for loops that may run in any direction.
For each loop, a DELOFF node is selected to serve as the
loop-controlling induction variable. Because of their
special uses, certain indexes are not eligible (those for

S N

|

Fig. 7. The contex! gathering pass provides an gpportunity
for specific optimizations, such as recognizing a pair of adja-
cent monadic =0 nodes as the new internal Rank function.

© Copr. 1949-1998 Hewlett-Packard Co.

IO T

A Controller for the Dynamic
Compiler

by Kenneth A. Van Bree

Tne controller for the dynamic compiler performs all of the
tasks an nterpreter for APL must perforrn, such as handling user
nput and editing, sequencing between lines of 2 function
calling and returning from user-defined functions, and handling
errors. In addition, the controller handles the generation and
re-execution of compiled code for APL statements

One of the guiding assumptions in the design of the controller
was that code for a particular statement could be compiled once
and would remain valid for many re-executions of that
statement. This assumption was based on the observation that
most APL programmers do not take full advantage of the
dynamic capabilities of APL. Changes in the value or size
{number of etements) of a variable are frequent, but changes in
the shape or representation of a variable are rare. For this
reason, the controller has been designed to re-execute com-
piled code as quickly as possible, while still maintaining the
flexibility needed to perform all the other duties related to
controlling an interactive language such as APL

The controiler consists of five interacting modules as shown in
the diagram. Each module performs a subset of the duties
related to controlling the compiler, and any module can call on
any other module to perform a task that it cannot do itself, The
normal flow of control for an APL expression input by the user (iIn
calculator mode) is as follows

Text for the expression Is input by the user through the user
input and editing module. This module is in charge of all
interactions with the user, and before control leaves this
module, all text that the user enters is converted into an internal
form called S-code. S-code is a compact form of the text, with
each identifier replaced by an internal short name for easy
reference. The actual text that the user enters is not saved, but Is
regenerated from S-code If needed

Once S-code has been created, control 1s passed to the line
staterment sequencing module, which handles the dynamic flow
of control between lines and statements in APL. As each
statement Is executed, this module checks to see whether it has
been executed before. If a statement has never been executed
before a syntax analysis is done on the S-code for that
statement. The result of the syntax analysis is ane or more syntax
trees called D-trees. Each D-tree represents the largest part of
an APL statement that can be guaranteed to have no side

Controller

effects. For example, in the statement A<B+C, it C is a
user-defined function, then the statement will be broken up into
two trees. The first tree will maternialize the function C into a
temporary variable, and the second tree will add the results of C
to B and assign the sum to A

As soon as D-trees have been created for a statement, cantrol
is passed to the executable code creation/sequencing medule
Within this module, each D-tree for a statement is examined in
sequence, and if it does not represent a function call, it is
passed to the dynamic compiler. The compiler turns each
D-tree into a block of executable code called E-code. The
compiler calls the execution machine directly 1o execute the
E-code that it has created

Once a valid block of E-code has been created from a D-tree
the executable code creation/sequencing madule is in charge
of storing that E-code block for later reference. As each D-tree is

compiled, the E-code block created is used to replace the

D-tree. When all trees for a statement are compiled there will
exist a series of E-code blocks that represent the statement. On
subsequent executions of a statement, the E-code blocks are
retrieved and given directly to the execution machine. If the
code contains a non-fatal error such as a change in representa-
tion or rank of a variable, the execution machine returns a
non-fatal error indication to the executable code creation/
sequencing module, which calls the non-fatal error handler to
correct the problem. The non-fatal error handler recreates a
D-tree for the part of the statement affected by the non-fatal
error. New E-code is then compiled with the non-fatal error
corrected, and the new E-code biock is saved in place of the
one in which the error was found.

If the executabie code creation/sequencing module detects
that a particular D-tree represents a function call, then control is
passed to the user-defined function call and return module. If
the line statement sequencing module detects a function return,
it can also pass control directly to the user-defined function call
and return module

If any of the other modules detects a fatal error, such as an
undefined varable or a syntax error, control is passed directly to
the fatal error handler. This module suspends execution, prints
an error message for the user, and then returns control to the
user input and editing module to wait for input from the user.

User Input
and Editing

Line
Statement
Sequencing

Non-Fatal
Error
Handler

Syntax
Analysis

Dynamic
Compiler

Execution Syntax
Machine Analysis

Executable Code
Creation/Sequencing

4
User Defined
Function

Fatal

Error
Handler

Call/Return

Execution
Machine

© Copr. 1949-1998 Hewlett-Packard Co.

Expression p

I

!
Polycat

N

£)

e

Fig. 8. Another optimization that
can be effected during context
gathering is combining succes-
Sive CATENATE nodes into & new in-
ternal pOLYCAT function,

single-element arrays that will never be incremented,
for example, or the left indexes of COMPRESS and EX-
PAND, which are incremented asynchronously).

A limit for each loop, calculated as OFFSET + RHO x
DEL (on the appropriate coordinate, from the chosen
induction variable) plus the current induction vari-
able, is also created in a register. Except for the outer-
most (or only) loop limit, which may be constant, the
limit value must be calculated at execution time. In-
itialization values and increments for all indexes cor-
respond to the OFFSETs and DELs of their associated
DELOFF descriptors. Fig. 9 shows the code generated
for a vector expression,

A number of optimizations are performed prior to
the generation of loops. Except for actual display, an
expression represented as an arithmetic progression
vectar (APV) requires no evaluation loop at all; its
description completely specifies the result. Redun-
dant index variables, which would run in parallel, are
shared by collecting those DELOFF nodes having iden-
tical attributes into a single register. If, according to
the descriptors, a loop is unnecessary, as is often the
case with row-major compact storage, it is collapsed,
subsumed by the next outer loop.

In addition, certain improvements in the code can
be made. Unlike larger data structures, in which data
can be partially destroyed if an error is encountered,
scalar and single-element expressions can be gener-
ated without assignment to an intermediate tempor-
ary variable, eliminating the setup, some use of stor-
age area, and the resulting data swap. Occasionally,
when theresult produced from such a unit expression
involves itself, a new data area need not be set up at
all. Instead, the old name is retained for the result of
the expression. Subexpressions yielding a scalar or
single-element array within the scope of a loop can
frequently be materialized, or assigned into a tempor-
ary cell, outside the loop, eliminating their repeated
evaluation. The more complex argument to an OUTER
PRODUCT operator can similarly be constrained to an
outer code loop, affording it less frequent evaluation.

Hard and Soft Code
The code generated by APL \3000 is of two types.

Initially, hard or tight code is produced. In this style
of code, the RHOs, OFFSETs, and DELs, as well as RANK
and REPRESENTATION are bound into the instructions
as constants. If this specific form of code has broken
and a recompilation is required, more general soft or
loose code is generated, in which only the RANK and
REPRESENTATION are bound. RHOs, DELs, and OFFSETS
may be calculated in registers at run time. Thus the
dimensional attributes of an array may dynamically
change without invalidating the code again.

SET UP STORAGE AREA FOR RESULT TEMP
INITIALIZE STORING INDEX TO D
(OFFSET FOR ANS AND TEMP)
INITIALIZE VECTOR ACCESSING INDEX TO 2
(OFESET FOR vecToR BEATEN BY 1)
INITIALIZE APV ACCESSING INDEX TO 1
(OFFSET FOR 13)
INITIALIZE Limir TO 3
[RHO = DEL + OFFSET + STORING INDEX)

WHILE STORING INDEX =LIMIT DO
BEGIN
LOAD APV ACCESSING INDEX
INTEGER LOAD OF VECTOR |VECTOR ACCESSING INDEX |
INTEGER MULTIPLY
COMVERT TO REAL
REAL LOAD OF CONSTANT 11
REAL ADD
REAL STORE INTO TEMP |STORING INDEX |
INCREMENT STORING INDEX BY 1
(DEL FOR ANS AND TEMP)
INCREMENT VECTOR ACCESSING INDEX BY ~1
(0EL FOR VECTOR BEATEN BY 4)
INCREMENT APV ACCESSING (NDEX BY 1
(DEL FOR 13)
END
SWAP TEMP INTO ANS

Fig. 9. When the compiler can drag no farther it emits code.
The code generation phase is a second traversal of the (now
foliated) expression tree. Because APL in general deals with
arrays, code generation usually involves the construction of
loops. Shown here is the code generated for the expression
ANS=—1.1 + ({VECTOR|x13. VECTOR IS an Integer vector of fength 3.

22

© Copr. 1949-1998 Hewlett-Packard Co.

Hard
SET UP STORAGE AREA FOR BESULT
INITIALIZE STORING INDEX TO 0
INTTIALIZE VECTOR ACCESSING INDEX TO 2

A

TEMP

TIALIZE Lmim TO 3

WHILE STORING INDEX & LIMiT OO
BEGIN
LOAD 1
LOAD VECTOR|VECTOR ACCESSING INDEX
ADD
STORE INTO TEMP|STORING INDEX |
INCREMENT STORING INDEX BY 1

END
SWAP TEMP INTO ANS

INCREMENT VECTOR ACCESSING INDEX BY

1

Soft

SET UP STOBAGE AREA FOR
[

NITIALIZE STORING INDEX T
NITIALIZE VECTOR ACCESSING INDEX TO
[RHO—1) x DEL + OFFSET FEOM VECTOR
TI&LIZE VECTOR ACCESSING INCREMENT TO
“DEL FROM vECTOR
ITIALIZE LimiT TO RHO FROM VECTOR
WHILE STORING INDEX £ LiMiT DO
BEGIN
LOAD 1
LOAD VECTOR |VECTOR ACCESSING INDEX |
ADD
STORE INTO TEMP|STORING INDEX |
INCREMENT STORING INDEX BY 1
INCREMENT VECTOR ACCESSING INDEX BY

Fig. 10. Code generatedis of two
types. Initially, hard code is pro-
duced. If this code (ater breaks,

END

VECTOR ACCESSING INCREMENT

SWAP TEMP INTO aNS

more general soft code is gener-
ated. Shown here is hard versus
soft code for the expression
ANS—{{VECTOR) + 1. VECTCRIS @n in-
teger vector of length 3.

For this more flexible form of instruction a price is
paid in terms of speed and code bulk, but this over-
head cost rarely approaches that of an entire recompi-
lation every time a RHO, OFFSET, or DEL changes.
Notice that RANK and REPRESENTATION must always be
bound hard. RANK, which specifies the maximum
number of loops to be generated, must have a constant
value at compile time. REPRESENTATION must be
known to determine the data type of the instructions
issued. A change in either of these attributes always
forces a new compilation.

Fig. 10 compares hard and soft code emitted for a
vector expression, ..

Reference
1, P.S. Abrams, “An APL Machine,"” PhD dissertation,
SLAC Report No. 114, Stanford University, February 1970,

Eric J. Van Dyke
Eric Van Dyke began writing com-
pilers right after he received his BA
degree in information sciences
from the University of California at
Santa Cruz in 1974. After joining
HP in 1975, he helped implement
the dynamic incremental campiler
for APL ~3000. Eric is a California
native, born in Palo Alto, and now
lives in Los Altos. He's single, and
has a passion for wilderness
mountaineering, Including climo-
ing, hiking, skiing, and leading
' ‘ Sierra Club trail maintenance and
clean-up trips. He's also a student
of American folk music and jazz and folk and modern dance.

Several system functions facilitate debugging and program
development in APL. Using the function (=5 (set stop) it is
possible to stop on any or each line of a function or on return
from the function. The [s1 (set trace) function allows the last

result calculated on a line to be displayed along with the function
name and line number, This is helpful tor observing program

Extended Control Functions for
Interactive Debugging

by Kenneth A. Van Bree

flow. The [sm (set monitor) function allows the user to monitor
the number of times that a function and/or line has been exe-
cuted, along with the amountof CPU time spent in each line, and
the total CPU time spent in the function. These functions can be

{continuad on page 24)

23

© Copr. 1949-1998 Hewlett-Packard Co.

used to determine where the majority of the CPU time is being
spenton a particular problem and which lines of a program have
never been executed. All of the monitoring facilities can be
turned on or off and queried under program control

One reason that program development is so easy in APL is
that the entire power of APL is available to the user during
program debugaing. When the APL system detects an errorina
user program (for example, an attempt to read a variable that
hasn't been given a value), the program is halted and an error
message is written on the user terminal. The error message tells
the user the type of error (a vALUE ERROR In this example) along
with a pointer to where the error was detected. The APL system
then returns control to the terminal so the user can try to correct
the error. Al this point the state indicator (S1) may be displayed
The state indicator is a pushdown list (i.e., stack) of all the
user-defined functions that have been called but have not yet
completed execution. The state indicator displays not only the
names of the functions that have been called, but also the line
number on which execution was suspended. In addition, a list of
all the local variables can be obtained for each function that has
been called but not completed. The function in which the error
was found is the topmost entry on the Sl and is called a sus-
pended function. Other functions on the Sl are called pendant
functions.

While computation is suspended, the user has the full power
of APL available to him for debugging. The suspended function
{or any other tunction that is not pendant) may be edited, and
any variable that is available within the suspended function may
beinterrogated or redefined. A new computation may be started
by calling another function, or in most cases the suspended
computation may be resumed from the line at which it was
suspended or any other line. If for some reason the user does
not wish to fix the error, the S| can be cleared, or the entire
workspace including the SI can be saved for later reference.

The flexibility and power available 1o the user during debug-
ging make it possible to detect and correct multiple errors
during the course of the computation. This means that programs
often run to completion the first time they are called, because
most errors can be fixed as they are detected. A recent study of
APL in Europe' showed that the conciseness of APL coupled
with its ease of debugging produced a 3:1 improvement in
programmer productivity over such languages as PL/| and
COBOL.

Extended Control Functions

The state of an APL computation can be displayed at any time
by interrupting the computation (by sending the ATTENTION
character) and displaying the state indicator through the use of
the commands s/ or jsiv. The state indicator shows all of the
functions that have been called but have not yet completed
execution, along with the variables that are local to those func-
tions. The current environment consists of the variables that can
be accessed within the topmost function on the stack, along with
the chain of control represented by the function calls that ap-
pear on the SI. Normally, within APL, any computation must be
done in the current environment. For example, if the functian £
(which has local variabie v) calls function G (which also has local
variable v), and computation is suspended within G, the S might
appear as follows:

)SiV
G[3]- v
Fl2] %

In this environment the value of variable v is whatever has been
assigned within function 6. The value of v within function r has
been shadowed (by the local variable v within &) and is not
accessible within the current function. All names accessible
from function 6 make up the environment of G, and the local
variable v of function r is not in the environment of . Further-
more, it is not possible to resume execution of function F without
first completing function &, since the Sl operates strictly on a
last-in-first-out basis.

Through the use of the extended control functions of
APL 3000 it 1s possible to access variables and resume execu-
tion in environments other than the current environment. The
concept of multiple environments is not new,? but it has never
been implemented in APL befare. APL \3000 allows up to 16
environments to be available at one time. Each environment has
its own state indicator, and control can be passed from one
environment to another through the use of the extended execute
() function. Although the normal Sl in APL obeys a strict stack
discipline, the environments of APL %3000 may create one or
more computation trees. This allows the creation of environ-
ments that share a portion of their S, When this happens, it is no
longer possible to maintain a stack discipline forthe 81, and aset
of pointers must be maintained that links each function call toits
calling function, The extended contral functions maintain a
stack discipline for the Sl unless the user explicitly calls for a
tree-like control structure. The overhead paid for the extended
control capability 1s minimal unless it is invoked by the user. In
the above example, the environment within function F can be
captured by using the system function [lcse (capture stack
environment).

]:ICSE 2 a Capture second function name on Si
1 A The environment number is 1
18IV 1 A Display the S| for environment 1
Fl2] v

Environment 1 now shares a part of its S| (namely the function
Fand its local variable v) with the current environment displayed
earlier. Any arbitrary expression can be evaluated in the en-
vironment of function F through the use of the extended
execute function. For example, the variable v within function £
may be assigned the value 3 as follows:

18'Ve3'

Evaluating an expression in environment 1 (or any other envi-
ronment) is equivalent to evaluating the expression in calculator
mode with execution suspended in that environment. Execution
can be resumed within function r by evaluating an expression
that results in a branch. For example:

18 !

The extended contral functions in APL %3000 can be used for
purposes other than debugging. Since environments can be
captured (using [cse) and released (using [Ass) under program
control, it Is possible to implement such advanced pro-
gramming concepts as backtracking, co-routines, and so on,
which have been difficult or impossible to implement in APL
before.

References

1 Y LeBorgre, "APL Usade in Europe: Scope and Value, Proceedings of APL 76
Ottaws, Canada, September 1976 pp 259-268

2 D.G Bobrow and B Wegbreit, “A Madel and Stack Implemenation of Multiple
Environments, Communications of the ACM, Vol 16, No. 10, Ociober 1973, pp
591603

24

© Copr. 1949-1998 Hewlett-Packard Co.

CRT Terminal Provides both APL and

ASCII Operation

by Warren W. Leong

§f ODEL 2641A APL DISPLAY STATION (Fig. 1)
LV A isaspecial CRT terminal designed to serve as
the pri
tion plus extensive data communications capabilities
allow the terminal to be used with APL interpreters/
compilers that exist on a variety of computer systems,
especially the HP 3000. ASCII operation is provided
to retain compatibility with HP 2640-Series CRT
Terminals.

The 2641A provides a superset of the functions
available with the 2645A Display Station. These in-
clude dual cartridge tape units, extended editing fea-
tures, extended data communications, modular
firmware implementation, and eight user-defined
soft keys. A new, faster microprocessor provides the
control for the standard as well as the extended fea-
tures.

ncipal user interface for APL “3000. APL opera-

APL Features

Major features of the 2641A APL Display Station
are: display of the APL character set, display of the
APL overstrike character set*, display of APL under-
lined characters, and non-destructive spaceover.
These features are accessible during the terminal's
APL mode.

The high-resolution display of 2640 Series Ter-
minals'? provides a clear and easily readable ren-
dition of the standard APL characters as well as the
more intricate overstrike characters (Fig. 2). There are
two separate APL character sets: a 128-character APL
graphics set and a 64-character APL overstrike

*Many APL primitive functions are called by striking ong APL symbol, then backspacing and overstrik-
ing the first symbol with a second symbol, The combination forms a new APL symbol. The APL
overstrike character set makes it possible for the 2641A to display such combinations of basic APL
symbols

Fig. 1. Model 26414 APL Display
Station is designed to serve as the
principal user interface
APLN3000 and other APL sys-
terns. It has both APL and ASCIl
modes of pperation

for

25

© Copr. 1949-1998 Hewlett-Packard Co.

JEDIT TRAPEZOIDAL
APLGOL FUNCTION
SLIST ALL
PROCEDURE R+X TRAPEZDIDAL T1_DT,I.U,AT.D10;
ReX, [0JCCT+/T1_DT), pX)pOl0=1+0;
Us{11tpAd=. =11 TpA;
AT=(BU-.STAITI_DT1])+. nle SuASTI_DT(1];
WHILEC1TpR)>1+1+1 DO
RII;I+XAT+, 2X;
END PROCEDURE

COVR'LFIB*),(2p0R) ,OVR'AFIB*
PROCEDURE ReLFIB N,1;
R+HpOID=1;
1=2;
WHILE HRi+I+1 DO
RLIJ=+/RII-1 21;
R=~11R;
END PROCEDURE
R=AFIB W;D10;APYV
[+10]
Rt /APVINS -1 4APV- L T H42

graphics set (Fig. 3). Each set is programmed into
bipolar ROMs. The APL graphics set follows com-
monly accepted industry standard code assignments.
The APL overstrike graphics set is used internally by
the terminal to display the overstrike characters and
its code assignment is dependent on terminal re-
quirements. As each valid overstrike keystroke se-
quence is completed the proper overstrike character
is displayed on the screen. However, the actual over-
strike character sequence is transmitted to the com-
puter when in character mode or is stored in the
display memory for later transmission when in block
mode.

The 2640 Series Terminals can support up to four
independent character sets. Since the 2641A APL
Terminal includes as standard the APL set, the APL
overstrike set, and the ASCII set, it has room for one
additional character set. Currently this additional set
can be a mathematical symbol set, a line drawing set,

E{}5 10 vERE 241 YooTy¥Es¢ ! 1 0BEEONER! 'BED
RS

~ain

SRA0YY
Le_var="*

L2 LLATYLY
Ol Tox?pl

$=2r2v)(
DEFGHIJK

AHURE
~jywdtcr

L T
0{*a+ABC

WE%
®ABC

SRA0NYY
DEFGHIJK

TRRNAAAY
LMNDPGRS

oL QN0 ON 8008020

$247()e»
defghijk

YR
TUVHXYZL

e 1M
\]1*_‘abe

0300008

a large character set, or a set of the customer’s own
design.

The keycaps have APL legends on their top faces
and ASCII legends, when they differ, on the front
faces (Fig. 4). This allows unambiguous operation
whether operating in APL or ASCII mode. The
keyboard code assignment is bit pairing*, rather than
typewriter pairing*, to retain compatibility with the
2640B and 2645A Terminals. The shift 0 (zero) posi-
tion is re-assigned to mean A in APL and __in ASCII;
this provides full APL compatibility for users when
switching between bit and typewriter pairing layouts.

Firmware

The controlling feature of the 2641A APL Display
Station is the firmware, or microprograms stared in
ROM. All of the characteristics of the terminal are
defined by microprogramming the internal micro-
processor. These characteristics include switch selec-
tion or computer selection via escape sequence of the
two operating modes, APL or ASCII, overstrikes that
are recognized by the terminal, block transfers of APL
program and data statements, and editing features
during APL mode.

The first consideration was how to integrate the
APL operational requirements into the base product,
the 2645A. Since many of the features of APL were
distinctly different from normal operation, it made
sense to define an APL mode for APL operations. In
APL mode the APL character set is normally dis-
played instead of the ASCII character set. Any attempt
to overstrike an APL character results in the display of
a character from the overstrike set. Underlining of
APL characters is done by means of shift F. Block
transfers (via the ENTER key) take into account the
overstrike character set and decompose these into
APL characters separated by a backspace control
code.

APL systems recognize several overstrikes. With

“Bit pairing: shit codes differ from unshift codes by one bit
Typewriter pairing: codes follow an industry standard

Tor certain typawnter terminals

ITval 174008047 ! 1 4¥SADNNE! | GEBDE0EE
1"

45678911
TUVUXYZ~

W+ /0123
LMNOPOGRS

456789:;
tuvwxyz{

»=.10123
Imnopqrs

26

© Copr. 1949-1998 Hewlett-Packard Co.

/

/

!

Fig. 4. 26414 keys have APL legends on fop and ASCI
legends, when they differ, on the front faces

the 2641A, these overstrikes can be done at any time
or in any order. Overstriking poses several complica-
tions for a raster-scan CRT terminal that dynamically
allocates its memory and uses separate graphics sets
for the normal and overstrike characters. An APL user
may type several characters, then backspace to the
beginning of the line and overstrike the required
characters, or the user may complete each overstrike
before proceeding to the next character. Backspacing,
using the backspace key, does not delete characters
previously entered and forward spacing using the
space bar does not erase characters that are being
spaced over.

The basic algorithm for overstrikes directs the ter-
minal to monitor each byte that it writes to the dis-
play, In APL mode, the terminal checks the current
and new characters being typed in the same display
position and determines whether the new character
just overwrites the old (only when the old character is
a blank), whether the old character is replaced by a
new character from the overstrike set, or whether the
old character remains unchanged (the new character
is a blank). Overstrikes are allowed only in APL
character fields. If the cursor is in a non-APL field,
such as Roman, then the terminal performs ASCII
operations rather than APL operations, although the
operating mode is APL.

When the old and new characters form avalid over-
strike such as ' and ., then the composite ! is dis-
played. If an invalid pair is overstruck, then an ouT
character is displayed, providing a clear indication
that an error has been made.

The underline overstrike (shift F) for APL is nor-
mally restricted by APL systems to the alphabetic
characters and a few of the special characters. The
2641A can underline any APL character. The under-

27

line overstrikes are not a part of the character ROMs.
Instead, the underline feature of the terminal’s dis-
play enhancement section is used to simulate the
underline overstrike.

The underlining process begins when an APL
character is displayed and the cursor is repositioned
to the character. When the underline character (shift
F) is typed, the firmware provides the proper en-
hancements to underline the character.

Data Transfer

All display information, overstrikes, and under-
lines can be stored on the cartridge tape units, printed
on a printer, or block transmitted to a computer sys-
tem.

Block transfers during APL mode, from the display
or the tape units, take into account the overstrike set
and underline enhancements. In the case of over-
strikes, the code from the overstrike ROM is used as
an index into a look-up table for the two components
of the overstrike. These two components are then
transmitted with a backspace separating them. The
underlined characters are transmitted with the proper
codes: the character, then backspace, then underline.
The oUT character is treated as a special case and
causes five characters to be output: 0 backspace U
backspace T.

Two types of printers are available for APL: bit
pairing or typewriter pairing. Distinguishing the two
are the code assignments of 19 of the characters. The
2641A allows the user to select either translation
when directing APL data to a printer.

User-Defined Soft Keys

The 2641A has eight special-function user-defin-
able soft keys, f1 through 8. These keys hold up to
80 ASCII characters that are specified by the user.
This specification may be done interactively, with the
old contents displayed while updates are done. The
specification may also be done by escape sequence
from a computer system or from the optional car-
tridge tape units.

After logging onto an HP/3000 Computer System
having an APL 3000 subsystem, the user specifies
the terminal type to be a 2641A by means of the
JTERM HP command, and the system downloads the
soft keys with the following commands:

Command: JRESUME)SI JFNS JVARS
Key: f1 f2 f3 f4
Command: ATTN JEDIT JLOAD |SAVE
Key: f5 f6 f7 f8

Now the user can invoke frequently typed system
calls with a single keystroke. For instance, to edit a
function named ApPL1, the user can press f6 to call the

© Copr. 1949-1998 Hewlett-Packard Co.

system editor, then type ApL1, followed by RETURN,
and be ready to edit. The user may also redefine these
soft keys very simply.

Key f5 contains the ATTN command, which is useful
during line editing. Suppose the user has typed a line
of data but notices a mistake. To correct the error,
the user first backspaces the cursor to the incorrect
character:

ABCFE
Using the 2641A and APL\3000, the user then hits
ATTN, which causes the APL terminal driver to send
an escape sequence to clear the rest of the line;

ABC _

The user continues typing from this point to complete
the data statement:

ABCDE _

The traditional method of editing is to position the
cursor under the incorrect character, then send a line-
feed to the computer and type the correct characters,
producing a display like:

ABCFE

DE
Note that the display can be confusing to read if
several corrections have to be made in this manner.
However, both methods of correction are allowed by
the subsystem and the 2641A.

Extended Features

Editing features have been expanded to include
character wraparound when the terminal is doing
character delete or insert operations. Left and right
margins may also be set. Extended /O operations
with the cartridge tape option include write, back-
space, read, data comparisons, and data logging.

The data communications facility allows data rates
up to 9600 baud, and multipoint capabilities that
allow up to 32 terminals to share a single communi-

cations line. Self-test has been expanded to allow
testing of the optional cartridge tapes and associated
electronics as well as the multipoint communica-
tions option, cabling, and terminating instrumenta-
tion, Multipoint communications can even be tested
up to the remote modem from the terminal keyboard.

Acknowledgments

This product relied on the flexible base provided by
the designers of the 2645A Display Station: Tom
Waitman, Ed Tang, Rick Palm, Greg Garland, Gary
Staas and Bill Woo. Dave Goodreau, Jim Elliott, and
Hans Jeans provided additional product definition
assistance. .’

References

1. J.A. Doub, “Cost-Effective, Reliable CRT Terminal Is
First of a Family,” Hewlett-Packard Journal, June 1975.
2. R.G. Nordman, R.L. Smith, and L.A, Witkin, “New CRT
Terminal Has Magnetic Tape Storage for Expanded Ca-
pability," Hewlett-Packard Journal, May 1976.

Warren W. Leong

Warren Leong has been involved
with the firmware and character
set design for the 2640B/C/N/S
and 2645R/S CRT Terminals and
the 2641A APL Display Station.
He's been with HP since 1975,

¢ Born in San Francisco, Warren
attended the City College of San
Francisco and the University of
California at Berkeley, graduating
from the latter in 1975 with a

BS degree in electrical engineer-
ing and computer science. He's
single, a tennis player, and lives
in Sunnyvale, California.

Hewlett-Packard Company, 1501 Page Mill
Road, Palo Alto, California 94304

HEWLETT-PACKARD JOURNAL

Bulk Rate
U.S. Postage
Paid
Hewlett-Packard
Company
MR C A SLACKBURN
JNOHN H"“'DVT-"._'(UNTV
APPLTED PHYSICS LAF
JOHNS HOPK INS BD
LAUREL MN 20810

2U08107TJOHNNAAABRNWAAA 181

e

C H A N G E O I: A D D R E S S . To change your address or delete your name from our malling list please send us your old address label (it peels off),
. Send changes to Hewlett-Packard Journal, 1501 Page Mill Road, Palo Alto, California 94304 U.S.A. Allow B0 days.

© Copr. 1949-1998 Hewlett-Packard Co.

	Small Computer System Supports Large-Scale Multi-User APL
	Introduction to APL
	APL Data: Virtual Workspaces and Shared Storage
	APLGOL: Structured Programming Facilities for APL
	A Dynamic Incremental Compiler for an Interpretive Language
	A Controller for the Dynamic Compiler
	Extended Control Functions for Interactive Debugging
	CRT Terminal Provides both APL and ASCII Operation

