

Editorial Staff

Editor
G . F. Hoffnagle

Associate Editors
A . G. Davis
J. R. F riedma n
M. J. Haims

Staff Ed itor
C. R. Seddon

Editorial Secretary
R. A . Flatley

Publications Staff

Publications Manager
C. E. Tan gney

Art Director
J . F . Mu sgrave

Production Assistant
L. A . Fasone

Editorial Assistant
A. R. Thornton

The co ver and thi s spe cial
issu e celebrate th e 25th
anniversary of APL. The
graphics sho wn on the
co ver are mappings of th e
complex flo or fun ction fo r
the fi rst f our integra l pow
ers of the co mplex plane .
The mappings illustrate
how A PL is used as a " tool
fo r thou ght " to analyze and

visualize int ricate problem s throu gh its int era c
tive support fo r expe rimentation . They depict
phase. magnitud e . poles . ze ros. and branch cuts.
The phas e is shown by hu e in the co lor wheel. with
cyan bein g positive real. The magnitude is shown
by color saturation and brightness: magn itudes
less than on e get progressi vely darker as satura
tion increases . and eventually become bla ck ;
magnitud es grea ter than one ge t progressiv ely
lighter as saturat ion increa ses , and event ually
bec ome white .

The co ver art was create d by David A. Raben
horst at the iBM Resea rch Division in Haw
tho rne. N ell' York . H e used the native support fo r
complex nu m bers an d the po wer of image proc
essing in APL2 and A iX on the iBM Ri SC S vs
tem /6000.

Advisory Board
J . A . Arms tro ng (Chairman)
J. A . Ca n navino
G . H . Conra des
C. J. Conti
W . A. Etheringto n
H. G. F igue roa
H . K. F rid rich
E . M. Han co ck
R. J . LaB ant
N. C. Lautenbach
R. J. Libera
P. R.Lo w
J. C. McGradd y
P. R. Sc hne ide r
E . F . Whee le r

Director of Technical Journals
S . T riebwasser

The IBM Svstems Journal is a refereed tec hnical journa l pub
lished quarterly by Inte rna tiona l Business Mach ines Co rpo
ra tion. Armonk. New York 10504 U.S .A. Officers : John F.
Akers . Cha irman of the Boa rd; Jack D. K uehler . Preside nt ;
Robert M. Ripp . Treasurer; John E. Hickey. Secretary .

T he Journal welcomes su bmissio ns and SUbscriptio ns from
member s of the wo rldw ide professional and aca de mic com
munity who are inte res ted in adva nces in so ftware and sys
tems . A guide for au tho rs was pub lished in Volume 29. Nu m
ber 4 (1990) and is avai lable as a reprint by orde r number
G32 1-5419(see be low) . Please se nd man uscripts and le tte rs to
the Ed ito r. IBM Systems Jou rnal . Armo nk . New York 10504
U.S .A .

Subscri ption rate : $20.00 per ca lendar year (s ing le co pies
$6.(0). To o rder subsc rip tio ns or report cha nge of address.
write to IBM. P.O. Box 3033. So utheastern. Pennsylvania
19398 U.S .A . Reprints of art icles in th is iss ue at $ 1.00 eac h
may be orde red fro m IBM bra nch offices using the reprint
o rder num ber on the last page of eac h artic le . Co mplete copies
of this and othe r issues may a lso be ordered from branch
offices using the order number on the back cover.

Subscript ions may be entered o r ca nce lled by IBM em ploy
ees in the U.S .A. via V M/C MS by us ing the co mma nd
JO UR NALS, or by mail ing the Jo urna ls SUbscription Ca rd
(Z M08-2203). Change of address fo r IBM employees is han
d led au to matica lly by the IBM Co rporate Employee Resou rce
Informat ion Sys tem and need not be re po rted to the Journal.
IBM employees outs ide the U.S .A . may subsc ribe th rough
thei r Co untry Litera ture Coo rdina tors or loc al IBM libraries.

--------- - ------- - ---- - - -----_.--_ .

Systems Journal

Vol. 30, No.4, 1991

416
527

414 Preface Verification of the IBM RISC
System/6000 by a dynamic
biased pseudo-random test

The IBM family program generator
of APL systems A. Aharon, A. Bar-David, B. Dorfman,
A. D. Falkoff E. Gofman , M. Leibowitz, and

V. Schwartzburd

433 APL2: Getting started
APL2 as a specification

J. A. Brown and H. P. Crowder 539 language for statistics
N. D. Thomson

446 Extending the domain

of APL
 Advanced applications of APL:
M. T. Wheatley 543 logic programming , neural

networks, and hypertext
M. Alfonseca456 Storage management

in IBM APL systems

R. Trimble Language as an

554 intellectual tool : From
hieroglyphics to APL469 Putting a new face on APL2
D. B. Mcintyre

J. R. Jensen and K. A. Beaty

582 A personal view of APL

490 The APL IL Interpreter
K. E. Iverson Generator

M. Alfonseca, D. Selby, and R. Wilks

498
594 Books

Parallel expression
in the APL2 language 597 Contents of Volume 30 , 1991
R. G. Willhoft

598 Erratum
The foundations of
513 suitability of APL2 for music

Stanley Jordan and Erik S. Friis

© Co pyrig ht 1991 by Internat ion al Business Mach ines Corporation . See individual articles for co pyi ng informa tion. Table of Co ntents
page may be free ly co pied and dis t ributed in any form . ISSN 18-11670. Printed in U.S .A .

Preface

The first APL workspace became available at IBM on
November 27, 1966, making 1991 the twenty-fifth
anniversary of APL. The IBM Systems Journal joins in
the anniversary celebration by presenting 12 papers
and one essay covering APL's history, implementa
tion, and applications. We are indebted to R. P.
Polivka of the IBM Data Systems Division in Pough
keepsie, New York, for his extensive contributions
to the planning and development of this issue, in
cluding the solicitation of numerous papers and
suggestions for referees. We also commend and
thank J. McGrew of the IBM Application Solutions
Division in Kingston, New York, for his consider
able efforts in ensuring the proper appearance of
APL throughout the issue.

The term APL is attributed to a suggestion made by
A. Falkoff when a name was needed for the pro
gramming language that was to be built from the
ideas in K. E. Iverson's 1962 book entitled A Pro
gramming Language. Today, after many generations
of the language and implementations, APL2 is IBM's
strategic interactive programming language , serv
ing IBM and its customers in a wide range of ap
plications and across a broad spectrum of imple
mentations.

The papers and essay begin with a history and an
introduction to APL, then progress through a set of
papers on APL systems and a set on applications,
end ing with an exploration of the importance of
symbols and a look forward from Iverson 's unique
vantage point.

The first paper, by Falkoff, traces the genealogy of
the IBM family of APL systems. His perspective
stems from his place as one of the first, foremost,
and current advocates of APL. He describes the in
terplay between language constructs, implementa
tion methods, and evolution for the breadth of
IBM APL systems.

Brown and Crowder introduce the essential fea
tures of APL2, IBM's current APL offering. The au

thors show, through examples, the use of arrays and
functions, and show how the arrays (APL's data
structures) control the flow of execution of a pro
gram.

Programming languages exist in close association
with the language environment designed for their
use. In the first paper in the set on APL systems,
Wheatley discusses the issue of connectivity among
APL2, its environment, and other programming lan
guages. From the point of view of APL2, there are
three major facilities that permit communication
beyond the APL workspace : system variables and
functions, shared variables, and name association .
Each is presented, along with the historical setting.

Most APL systems have depended on the storage
management technique known as garbage collec
tion. This strategy has become less effective as vir
tual and real storage have grown dramatically. APL2
Version 2 takes a new approach: a quickcell scheme
for small data items, a variation of the buddy sys
tem, and a bit map scheme for large blocks of stor
age. Trimble shows how this provide s a better
means of storage management.

Jensen and Beaty present the results and the expe
rience of building an X Window System** interface
for APL2 (called APL2/X). They also present a C in
terface for all IBM APL2 systems (called APL2-to
C), which was created in order to support the
APL2/X effort. Following an overview of the X Win
dow System and the interface design criteria, the
authors detail the APL2/X and APL2-to-C inter
faces, concluding with a sample program.

The APL IL Interpreter Generator has contributed
to the successful and rapid proliferation of APL sys
tems. Alfonseca, Selby, and Wilks describe IL and
the use of it to generate new APL interpreters. To
date IL has been used to create nine IBM products,
with as little as 13 person-weeks of effort.

APL, with its array orientation, would appear to be
a natural candid ate for use in parall el expression

414 PREFACE IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

and computing. Willhoft analyzes each APL con
struct for its potential parallelism. Through argu
ment and studies of examples, he shows that APL
has a high degree of parallelism, both in its con
structs and in its common uses. The types of par
allelism examined are data, algorithm, data flow,
and task. Suggestions are made for improving the
language and implementations to further increase
parallelism.

Turning to papers on APL applications, Jordan and
Friis describe the application of APL2 to music, both
for building music software and as a musical nota
tion. Examples are given that show how frequency,
pitch , tempo, loudness, chords, and passages can be
represented in APL. The authors claim that the
iconic nature of APL2 is well suited to musical
expression.

Verifying that an implementation of a new archi
tecture indeed matches its functional specification
usually involves the use of test generators. The
IBM RISC System/6000* was tested in that way by the
random test program generator (RTPG), built in
APL for that purpose. Aharon, Bar-David, Dorf
man, Gofman, Leibowitz , and Schwartzburd
present the concepts and implementation of RTPG.
They discuss the advantages of using an interactive
language in test situations, where many changes are
made with a need for rapid test creation, and the
suitability of using APL to represent computer ar
chitectures.

Thomson describes the efforts of a group of aca
demic and industrial statisticians in the United
Kingdom , with the support of the British APL As
sociation, to build on the popularity of APL for sta
tistics and on its ability to express specifications of
mathematical functions. They are creating the APL
Statistics Library (ASL), which will contain stan
dardized APL specifications of statistical functions.
The author describes the philosophy of ASL code
and documentation and illustrates how it provides
a medium for algorithmic discussion among statis
ticians . The paper concludes with a demonstration
of how advanced functions can be readily and re
liably built using standardized ones from ASL.

Alfonseca summarizes his work on the application
of APL to the fields of logic programming and ar
tificial intelligence, neural networks, and object
oriented programming and hypertext. The paper
argues that APL is applicable to a broad range of
modern programming challenges.

Leaving the papers on APL applications, McIntyre
describes APL from the perspective of symbolic lan
guages throughout history , including our number
system, many ancient written languages, and much
of mathematics. He finds that APL, a symbolic lan
guage, is an "intellectual triumph." This paper grew
out of an invited talk at APL83 in Washington, D.C.,
where the author presented a detailed history of the
evolution of symbols.

The issue closes with an essay by Iverson that traces
the development of his rationale for the APL nota
tion, beginning with his original motive : creation of
a tool for writing and teaching about data process
ing. Much of the essay is devoted to a discussion of
the J language, which has evolved from his earlier
work with APL. Iverson continues to pursue lan
guage styles and constructs that would be accessible
to wide audiences.

There have been two changes to the form of the
Journal. The first is the use of asterisks to signify a
trademark or registered trademark. The appropri
ate designation for each term is shown just before
the list of references in each paper. The second is
the inclusion of the date on which the paper was
accepted for publication by the editors (following
editorial and peer review, and author revisions) and
after which content would not have been materially
changed. That date is shown just after the list of
references in each paper.

The next issue of the Journal will contain several
papers on the Optimization Subroutine Library
(OSL) and others on such subjects as a portable
model for the design of device drivers in OS/2*.

Gene F. Hoffnagle
Editor

"Trademark or registered trademark of International Business
Machines Corporation.

""Trademark or registered trademark of Massachusetts Insti
tute of Technology.

IBM SYSTEMS JOURNAL. VOL 30. NO 4, 1991 PREFACE 415

The IBM family

of APL systems

The developmental history of IBM subfamil!es of
APL systems is traced in this paper, focusing on
the in ter-relationships among them and the
methods of implementation used by the various
groups involved. The language itself, and .the way
its evolution was managed, are also eonstaere«
as factors influencing the development process.
A chart is included that illustrates the evolution
of mainframe and small machine programming
products supporting APL, beginning in 1964 up
to the present time.

I n the 25 years since the first viable APL system
was introduced outside of IBM, offerings of APL

systems spanning most of the significant hardware
families have been produced at a rate of more than
one per year. These systems have been produced by
small groups of designers and develo pers; at no
time have there been more than about 20 people,
company-wide, working on APL i~plementa~ion~at
the same time. It is worth asking how this high
productivity came about: the methods of imple
mentation, the language itself, and the manage
ment of its evolution must have all been facto rs. In
this paper, each of these factors is discussed as th.e
history of the various subfamilies of APL systems IS
traced.

Figure 11 is provided to visually aid the reader in
following this history . In this chart, shown late~, the
entries shaded in blue are systems that achieved
some form of product status; the others are devel
opmental or experimental systems, which in many
cases had significant IBM internal usage. The ver
tical coordinate is a time line, starting with 1964 at
the top. On the horizontal axis there are six c?l
umns. In general, each column is devoted to a major
subfamily of APL systems, or to the work of a par

416 FALKOFF

by A. D. Falkoff

ticular implementation group. The fourth column
does not fit this description; it shows work per
formed by different groups on two different sub
families of systems, but they are connected in an
interesting way that is described later. The directed
lines on the chart indicate significant design influ
ences or transport of code. Of course, they do not
tell the whole story, as the actual transactions were
usually more complex than can be so simply dia
grammed.

Mainframe systems

The earliest work on APL and its forerunners, PAT
and another called IVSYS , was done in IBM's Re
search Division. As has been reported elsewhere.?
PAT (for Personalized Array Translator) was an in
teractive interpretive system using a limited set of
array operations, coded for the IBM 1620 processor.
It made clear that such a system could successfully
be built , and it helped to motivate the design of the
APL type element for the IBM Selectric* typewriter
mechanism. IVSYS (for Iverson system) was the first
attempt at a mainframe systern.:' It was an inter
preter written in FORTRAN to run in batch mode
on the IBM 7090 series of machines, and was ren
dered interactive by running it under an experi
mental time-sharing monitor" (TSM) on an IBM
7093 processor.

OCopyright 1991 by Int ern ational Business Machines Co rpo ra
tion . Copying in printed form for private use is permitted .wi t~
out paymen t of royalty pro vided that (1) eac h reproduction IS

done without alte ration and (2) the Journal reference and IBM
copyright not ice are includ ed on th ~ first page. Th e titl~ and
abstract, but no other port ions, of this paper may be copied or
distributed royalty free without fur ther permi ssion by compute r
base d and oth er inform ation -service systems. Permi ssion to re
publish any other port ion of this paper must be obta ined from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

APL\360. No sooner did the original APL group
have IVSYS running in late 1965, but they were told
that the TSM project, which was not under their
control, would be dismantled. If they were to con
tinue experimenting with Iverson's ideas," the only
recourse was to undertake the development of a
time-sharing system of their own, along with an in
terpreter, for the recently announced IBM Sys
tem/360* line of machines. This work went remark
ably well, resulting in an integrated system,
APL\360,6 with excellent performance characteris
tics." The system was operational about three
months after work was started, and the three im
plementers who did the bulk of the programming
were later to receive an industry award for their
work." It is worth looking at the factors that con
tributed to this success.

First, although this was a new system, there were
some important design decisions regarding the lan
guage, as well as some coding experience, carried
over from the IVSYS project. Second, the design and
development group was small and enthusiastic.
This attracted help, both in the form of direct con
tributions to the coding and thoughtful feedback
from early users. Third, the group did not try to do
it all themselves. Mathematical functions were bor
rowed from the FORTRAN IV subroutine library, and
ideas from other sources were adopted if consid
ered useful. Fourth, the systematic nature of the
language lent itself to a clean internal design of the
interpreter. Fifth, the system was designed to be
independent of the host operating system. The han
dling of input and output, management of user stor
age, and time-sharing functions were all built into
the supervisor, which was tailored to the specific
needs of the language processor, thus avoiding
some of the complexities of more general systems.
And last, even at that early stage, APL itself was
used as a design tool. The supervisor, for example,
was modeled in APL, and as the interpreter code
progressed, the model was run on it for validation.

Starting in November of 1966 an APL\36O system op
erating on an IBM Systern/360 Model 50 was providing
regularly scheduled service to users in the IBM Re
search Division in Yorktown Heights, New York.
Soon thereafter copies were started up in other IBM
locations, notably Endicott and Poughkeepsie, New
York. The next evolutionary step was the develop
ment of systems to run under the two extant operating
systems, 00S/36O and OS/36O, and this was accom
plished with help contributed by knowledgeable users
in Poughkeepsie.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The first publicly available APL system was the cost
free "Type III" program (available without formal
support) released in 1968. It was followed in 1969
by the two program products (pPs) shown in the
chart. These were among the very first programs
offered when IBM unbundled programs and hard
ware. An important decision taken then, which
would influence the progress of APL in ways that
even now are not completely understood, was to
hold back the source code and release only object
code to customers. This was done deliberately, to
discourage proliferation of language variants and to
give the original designers a better chance of di
recting the further evolution of APL along a coher
ent and consistent path. A positive effect of this
policy was to facilitate formal standardization of
APL later on, and the ad hoc standardization that
resulted from having a single control point simpli
fied the development of other APL products along
the way. A possible negative effect was the discour
agement of interest in APL as a subject of university
research.

CMS/APL. An early variant of APL\360 was pro
duced in IBM's Cambridge Scientific Center, where
pioneering work on virtual systems was in progress.
A small team there 9 adapted the APL\360 DOS code
to make use of virtual storage under the Conver
sational Monitor System (CMS), running in the spe
cialized hardware of the IBM System/360 Model 67.
This CMS/APL system, which was made available as
IBM's first installed user program OUP), was also the
first to explore two significant variations in the de
sign of APL systems.

One such variation had to do with workspace size,
which, in APL\360, was fixed at a constant value (of
32K bytes) for all workspaces in the system. By
means of a relatively small modification to the in
ternal structure of the workspace, CMS/APL enabled
operation in the memory paging environment of
the control program of CMS (CP/CMS) and enabled
the use of variable-sized workspaces up to the ca
pacity of the virtual storage available. An issue
here, which was to be argued at length for a long
time after, was the difference between swapping
complete workspaces (in effect, paging logical
units), and the paging of fixed segments of memory
having no necessary relationship to the computa
tional process occurring. It is probably fair to say
that with the state of the art then, and for some time
thereafter, swapping was more efficient, although it
did require a uniform, fixed workspace size in the
system. With modem hardware and programming

FALKOFF 417

Figure 1 IBM APLsystems

PAT (1620)

IVSYS (7093)
I

APL\360

APL MICROCODE FOR SYSTEM/ 3 60

MODEL 25

CMS/APL IUP

APLSV MVT

.--------------:l~
APL MICROCODE FOR SYST EM/ 3 70

MODEL 145 CMS

VERSION 1 APLlCMS PRPQ

APLSVI APL2 EXPERIMENTAL

VS APL CMS/VSPC PP APLSV PRPQ VERSION 3

< :APLSV IC

VS APL CMS /VSPC /CICS PP

IBM APL STANDARD

VS APL CMS/VSPC/CICS/ TSO PP

APL2 IUP

VS APL REL.4.1 PP

APLSV IC 5.1 APL2 PP REL.1

APL2 PP REL.2

"c:::::================::::::::::j ~

APL2 PP REL.3

~~
NOTE, BLUE ENTRIES REPRESENT IBM PRODUCTS.

~® GREEN ENTRIES REPRESENT DEVELOPMENTAL
OR EXPERIMENTAL SYSTEMS. SOME OF WHICH

®© HAD SIGNIFICANT IBM INTERNAL USAGE.

®1J

418 FALKOFF IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

MAT (1500)

~nJ 1

D
I : APL \ 150 0 ~

APL FOR ELSIE (LC)

113 0 FEASIBILITY

APL\ 1130 TYPE II I '"

,-----,
SCAMP PROTOTYPE, 510 0 FEASIBILITY]

' " ' ''0-' i}=]
I

H APL FOR SYSTEMI7

:JAPL 5110-A.,
I :>IL APL (1)

APL 5120 - A VALIOATION (APLSV)

SERIES/1 APL

~l ""w"",

i}=

iF
t=::::

@@J,

@@
@@
@{/
@[83
@®
7/@
7/~

7/~

7/~

7/@J,
7/@
7/@
7/7/
7/[83
7/®
[83@

[83~
APL/PC VERSION 0 " B100 DPPX APL PP "~ [83 ~
APL / PC VERSION 1

~ "'''"G. '"~'" '" VERSION 1

,~NiHonGo APL TI APL/PC
VERSION 2 VERSION

IL APL2 ~ APL/PC
i--:;:J VERSION 2.1

[83~

[83@J,
[83@
[83@
[837/

APL2/ PC

APL2/PC
(3 2-BIT)

.IT APL2 /6100 ~
[83[83
[83®

~AP L2/ 6 0 0 0 Il
®@
®~

IBM SYSTEMS JOURNAL. VOL 30. NO 4, 1991 FALKOFF 419

techniques, paging problems such as thrashing (in
efficient paging into and out of rea l memory) have
been reduced or eliminated. Present-day main
frame APL systems all use paging, and workspaces
do not have to have a fixed size.

The other variation, which is not unrelated techni
cally to the first, but which had greater significance
for the marketing of APL, was that CMS/APL sepa-

Shared variables work well for
communicating with any facility
outside of the APL workspace.

rated the APL interpreter from the rest of the
APL\360 system and used it as a language processor
in a different supervisory environment. APL\360 was
a complete subsystem having minimal dependency
on the host operating system. Its supervisor and
user interface management were tailored and re
fined to optimize the use of APL and were never
applied directly to other processors, whereas CMS,
Time-Sharing Option (TSO), and the Customer In
formation Control System (CICS) were built to be
hosts to many different processors. In its time,
CMS/APL did not make a strong impression in the
marketplace, but in the longer run the more general
type of system that it represented turned out to
have grea ter market acceptance, and nowadays APL
products are marketed as language processors
rather than as subsystems like APL\360 or APLSV
(discussed below). However, with the powerful
means of access to other host facilities provided by
modem APL2 systems, this distinction has become
less compelling.

APLSV. Although APL\360 was complete, in the
sense that it implemented the entire APL language
as it was then defined and it could be used for sig
nificant applications, it nevertheless lacked certain
pract ical facilities. There was no way for a user to
import or export information except through a
typewriter terminal, and there was no means of file
access. Work to rectify this situation was started in
1969when the original APL group moved from IBM's
Research Division to IBM's New York ScientificCen

420 FALKOFF

ter, and continued when the group subsequently
moved to IBM's Philadelphia Scientific Center.

There was a vigorous debate within the APL group
on the choice of a direction for providing the nec
essary communication facilities," and ultimately it
was decided to use shared variables with a formal
ized protocol. 11 The consensus was that this ap
proach was the one least likely to compromise the
integrity and generality of the language, as it
avoided the introduction of special functions just
for manipulating files. It was considered that the
APL array functions already encompassed the usual
file operations-for example, appending a record
to a file is an instance of catenation-and elabo
ration of them just for files was not desirable. 12

Under the shared-variable paradigm, access to an
external file system would be provided by means of
relatively simple auxiliary processors (APs) having
an interface to a shared-variable processor (svr) on
one side and an interface to the host file system on
the other. The APL processor would, of course, also
have an interface to the sVP. Thus, any of the op
erating system's file operations could be specified
by an appropriate character string that was gener
ated in APL as a character vector and passed as a
shared variable to the AP, which then put it into a
form understood by the host file system.

This paradigm of shared variables was shown to
work as well for communicating with any facility
outside of the APL workspace, including the APL
interpreter itself. The same facility that was intro
duced to provide file access thus turned out to be
a rational basis for the solution of the problem of
how to incorporate into the language dynamic con
trol of primitive-function parameters such as index
origin and print precision. This took the form of
system variables, which were formally a subclass of
shared variables having distinguished names, and
system functions, which in principle implicitly uti
lized system variables. 13,14 The shared-variable in
terface to APL is itself represented by a set of such
system functions and system variables .

The shared-variable facility was completely mod
eled in APL, including the system functions that
were intended to manage it. Other enhancements
to the APL interpreter were also modeled; the new
primitive format function, for example , was based
upon format functions written in APL that had been
provided in the APL\360 product. In general this
method of programming, starting with APL models ,

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

was a multistage process. A functionally correct
model was first written without regard to machine
considerations, and when this was deemed to be
correct, another version was produced using only
APL primitives that could be easily mapped to ma
chine code. Since both versions were executable, it
was not too difficult to validate their functional
equivalence, after which the second version could
be used as a model for the final machine language
program.

Experimental APLSV systems were produced for the
then current System/360 operating systems in 1971
and 1972, as shown in Figure 1. Again, the job was
accomplished in a relatively short time by a small,
highly motivated team. An internal IBM announce
ment and a technical seminar on APLSV and shared
variables was held in 1971, after which the Phila
delphia Scientific Center made available on-line
APLSV service to other IBM locations. This service
was well received, and the high rate of usage con
stituted very effective testing for the product offer
ing, which was made publicly available in 1973 in
the form of a specially priced and contracted prod
uct, or programming request for price quotation
(PRPQ).

The APL standard. Although questions were raised
at the time, particularly in response to the seminar
in 1971, regarding the wisdom of the shared-vari
able approach-as contrasted, for example , with
building specific file and input/output facilities into
the language-it does appear in retrospect that it
was the proper direction. At the very least, by es
tablishing a clear boundary between the language
and the system facilities, it ultimately made it easier
for the industry to agree on an APL standard. And
by the same token, it has made it easier to build new
APL systems, and to port APL systems between ma
chines with dissimilar architectures.

The first official IBM standard for APL, put in place
as an interim document in 1974, was the language
as defined by the APLSV implementation." Work
on a formally written standard had already been
started in the Philadelphia Scientific Center, but
was still a long way from completion and adoption.
Over the course of several years and many itera
tions, the work product and the responsibility was
transferred to IBM's Santa Teresa Laboratory in
California. Finally, after undergoing the formal rat
ification process in IBM, this formal document be
came the IBM APL standard in late 1977.16 In 1979
the technical portion of this standard was published

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

in its entirety as an appendix to a paper describing
its evolution. 17 This appendix was later adopted as
the first draft APL standard by a committee of the
International Organization for Standards (ISO). It
was not accepted as wholeheartedly by the Amer
ican National Standards Institute (ANSI) commit
tee, which insisted on rewriting the document in a
different style altogether. Nonetheless, the APL lan
guage definition finally embodied in the standard
adopted by all parties in 1987 is essentially that of
APLSV.

Internal APLSV systems. By the time that the Phil
adelphia Scientific Center closed in mid-1974, IBM
in general, and certain key sites in particular, had
developed a strong dependency upon the APLSV
service for running daily business. By this time also,
the product direction had taken a turn, as discussed
later, and there was not yet a fully supported APL
product that could sustain the necessary mainte
nance and service level required. The affected sites
therefore banded together to form an internal APL
support group for the purpose of maintaining the
APLSV program while they waited for a product to
which they could satisfactorily migrate.

Some language development was included in the
work of the support group, but their major activity
was more in the nature of systems work-keeping
up with evolving operating systems, and developing
new or enhanced auxiliary processors for file man
agement and other purposes. Notable among the
latter was a processor, AP19, that enabled one active
user to activate another user account under pro
gram control from inside the first user 's work
space. 18 The first version of this worked only in a
single machine, but a later version worked between
machines not even necessarily in the same location.
The primary motivation for this facility was the
practical need to run long jobs in batch mode un
attended, but it also made it possible to easily
model and simulate general forms of cooperative
and parallel processing.

APUCMS and VS APL. While the original APL
group was working on the design and development
of APLSV in Philadelphia, a rather different line of
inquiry was going on in IBM's Palo Alto Scientific
Center in California. Here, the interest was in per
formance and the possibilities inherent in building
a hardware APL machine. As shown in the first
column of Figure 1, this work first resulted in a
microcoded APL system for the System/360 Model
25. This was a single-user dedicated APL system in

FALKOFF 421

which the control code that emulated the System!
360 was replaced with code that emulated APL. 19

APL\360 was used as the model of how an APL ma
chine should appear to a user, and some pieces of
code were used from existing systems, but overall
the implementation was basically new. It intro
duced the use of arithmetic progression vectors
(APV), which conserved both time and storage in
many common situations, and facilitated more ef
ficient evaluation of certain array transforma
tions;" it made use of a very fast syntax analyzer
that required a new internal representation of APL
statements; and it used a different storage alloca
tion method. Not all of APL was implemented at the
microcode level, but this being an APL machine, the
part not so implemented was necessarily written in
the subset of APL that was microcoded. The super
visor program was also written in APL and executed
that way without further translation.

The next step along this line of development was
APL microcode for the System/370* Model 145. By
this time (1972) APLSV had seen heavy use inter
nally, and the shared variable concept had been
generally accepted as the proper direction for man
aging system-related operations in APL systems.
This technology was transferred, and other aspects
of the work planned for the Model 145 were dis
cussed, at a week-long workshop set up by the
teams from Palo Alto and Philadelphia.

Also by this time, CMS as a time-sharing host was
gaining in market acceptance, and a decision was
taken by the Palo Alto group not to make a dedi
cated APL machine, as was done for the Model 25.
Instead, they concentrated on an APL interpreter
that would run under CMS and optionally use mi
crocode to enhance its performance. 21 Two product
offerings came directly out of this work: the inter
preter with microcode assist, which could run only
on the System/370 Model 145, and an independent
interpreter named APUCMS, which could run on any
machine running CMS.

The microcode assist did indeed provide customers
with a significantly more powerful APL processor
than the Model 145 could provide without it, but its
marketing was hampered by the fact that there was
no similar upgrade available for the more powerful
machines in the System/370 family. Although the
design of the APL assist was quite general, the code
itself could not be ported to other machines be

422 FALKOFF

cause they had a different underlying processor or
did not use microcode at all.

While this work was going on in the Scientific Cen
ters, plans were being made in the IBM Program
ming Center in Palo Alto for a new interactive time
sharing system to be called Virtual Systems
Personal Computing (vsrc), and a principal lan
guage processor under that system was to be APL.
Because of the marketing considerations noted pre
viously in the discussions of CMS/APL and APUCMS,
this type of general time-sharing system, with in
dependent language processors, was preferred over
integrated systems like APL\360 or APLSV. As a con
sequence, when APLSV was made available as a
product in 1973, it was given the more tentative
status of a PRPQ, rather than full program product
status, and the stand-alone interpreter developed in
Palo Alto to run under CMS was chosen as the base
for vs APL, the processor planned for vsrc, How
ever, as an interim product of the type anticipated,
the APUCMS interpreter produced in the Palo Alto
Scientific Center was also released then as a PRPQ.

In its original form and before it was actually put on
the market, the APUCMS interpreter had incorpo
rated some language changes in addition to the
changes in the internal design. Several of these
were considered to cause problems in the language
definition, and were opposed by the APL group in
the Philadelphia Scientific Center where, as de
scribed earlier, work on an APL standard was al
ready under way. The disagreement was escalated
and resolved expeditiously under pressure of the
need to get on with product plans . In addition to
settling the issues of the moment, this resolution of
the problem had the beneficial effect of accelerat
ing the adoption of an APL standard within IBM,
which, as noted earlier, has been an important fac
tor in the continuing high productivity of APL de
velopment groups.

Eventually, the vs APL interpreter was produced by
the APL product development group in the General
Products Division of IBM as their first major prod
uct. They had previously (while still part of the Sys
tems Development Division) taken over mainte
nance of APLSV when the Philadelphia Scientific
Center closed in mid-1974. Over the course of the
next several years, as shown in Figure 1, successive
releases of vs APL added support for additional IBM
mainframe time-sharing environments until all
four-s-cxrs, VSPC, CICS, and TSO-were included . A
still extant final release was made in 1983.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

An ongoing use of vs APL is the hands-on network
environment (HONE) system, where APL has long
been the vehicle for delivering configurators and
financial analysis programs to the IBM marketing
and support teams. This use posed two system
problems that were not addressed by the APL prod
uct systems until the most recent release of APL2,
described below. These problems arise in a situa
tion in which large numbers of people must use
identical programs but also maintain individual
works paces to hold their own data. First, if each
person copies the programs into an individual
workspace, and then saves it, the file storage system
will be flooded with redundant material. Second,
the common programs change over time as new
products and new plans evolve. This information,
which comes from centralized responsible sources,
would somehow have to be propagated to all the
copies in the individual workspaces.

The HONE solution to these problems was to de
velop a system facility where the individual users
are given only use access to the common programs,
which are held in a privileged storage area. The
parties responsible for maintaining the programs
can then upgrade as necessary the single copy held
in common.

APL2. The evolution of APL2 is an u. eresting il
lustration of how a small group of people with a
shared vision can maintain the continuity of their
technical work and bring it to a successful conclu
sion, even over a time span of more than 15 years.
During this time, people were transferred between
three or four divisions and made several cross
country moves, all while producing other results of
value to the company.

Thus, the desirability of breaking out of the con
straints of rectangular arrays was recognized very
early in the course of the work on APL, and some
background work on the subject was steadily main
tained in the Research Division while APL\360 was
being developed. The group was then transferred to
the Philadelphia Scientific Center, where definitive
work, leading to an implementation of some form
of generalized arrays, was started after the APLSV
program was well along . When the center was
closed in 1974, most of the APL group was trans
ferred, as a group, to the West Coast, where they
became part of the APL development organization.
The work on a new APL interpreter----dubbed
"APL2" at this point-was kept going there for a
while, along with maintenance of APLSV, but the

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

pressures of producing the vs APL products even
tually reduced this to a crawl. However, language
studies had been continued by the small contingent
of the Philadelphia group that had remained on the
East Coast, and the design of a new interpreter was
resumed in earnest in 1978 after they and others
were reassigned to the Research Division in York
town Heights, New York. The transfer of APL2 tech
nology was completed later (1982), when the peo-

The evolution of APL2 illustrates
how a small group with a shared

vision can be successful.

pie directly working on the interpreter were again
transferred to the APL development group in Cal
ifornia.

In keeping with the usual method of doing things in
the APL development milieu , the initial work on
APL2 did not start as a blank slate, but as a variation
of the working APLSV interpreter. Actual coding
started in Philadelphia in 1971, a comprehensive
paper on the principal ideas was published in
1973,22 and by 1974 an interpreter with general ar
ray operations was available for experimentation,
first running under APLSV in the Philadelphia sys
tem , later running in Palo Alto, and later still in IBM
Kingston, New York, as an alternative interpreter
on their APLSV service system. As this evolved, new
functions unrelated to general arrays were picked
up from the APLSV internal releases.

The first APL2 product was an interpreter running
under eMs, which was announced as being some
what experimental and was marketed as an in
stalled user program (rUP). In addition to the func
tions necessary for the accommodation of general
arrays, it incorporated numerous language en
hancements. These ranged from simply making the
primitive mathematical functions work with com
plex numbers, through several new and extended
primitive functions such as eigenvalues, picture for
mat, and replication, to simple-sounding but far
reaching changes in APL operators, which were now
able to accept defined functions as operands, and
could themselves be user-defined.23,24

FALKOFF 423

The APL2 IUP included an important new system
function, DTF, which either generated a transfer
form-a system-independent representation-of
an APL object, or established an object in a work
space from the transfer form. It also included two
new system commands,)OUT and)IN, which gen
erated and accepted host system files composed of
collections of objects in transfer form. Although the
primary motivation for these operations was to fa
cilitate migration between different APL systems, in
time these collections of APL objects in transfer
form have come to be regarded as another form of
saved workspace with its own useful characteristics,
even where migration is not an issue.

A full-fledged APL2 program product, which em
phasized system facilities for integration with other
IBM programs as much as new language features,
was released in 1984. The code was a further de
velopment of the IUP , with some emphasis on
speeding up execution, some language changes, and
a full complement of auxiliary processors. Many of
these were inherited from vs APL, with or without
enhancements. This use of existing code was facil
itated by resolving some differences between APLSV
and VS APL in the internal design of the shared
variable processor to ensure portability of existing
auxiliary processors. Notable among these were a
full-screen session manager and a processor for ac
cess to database products such as DATABASE 2*
(DB2*) and System Query Language/Data System
(SQIlDS*). Communication with APL2 from the In
teractive System Productivity Facility (ISPF) prod
ucts was provided by an auxiliary processor distrib
uted with ISPF. Other system facilities included
national language support for system commands
and messages, a new internal character type of four
bytes per character for supporting large character
sets such as Kanji, and various utilities to facilitate
migration from older APL systems.

Carried over from the APL IUP was the use of prim
itive defined jUnctions-functions written in APL
rather than machine language that are nonetheless
part of the language processor and are invoked by
the use of primitive function symbols or system
commands. First used to facilitate experimentation
with language changes, primitive defined functions
have been retained in the later releases of APL2,
where they are used for a variety of system oper
ations and primitive functions, or portions of prim
itive functions , for which high performance is not a
requirement. There is also a complementary facility
in APL2 that uses ordinary user-type names to in

424 FALKOFF

voke machine coded functions . This is a device that
goes back to the first version of APL\360, where it was
used to provide useful functions, variously called
keyword functions or workspace functions, for
which special-character names were not available.
In the case of APL2 it was used for the eigenvalue
and polynomial functions that were included as
primitives in the IUP but were felt to be somewhat
premature for inclusion as such in the program
product.

The second release of APL2, which followed the first
by little more than a year , continued the trend
toward closer integration of APL with its environ
ment . There were improvements in the support for
database products and graphic display devices, and
direct access was provided to system editors outside
of APL. Of possibly greater significance, however,
was the introduction of a new facility known as
name association , where routines written in
FORTRAN, assembler, or Restructured Extended
Executor (REXX) could be called from APL appli
cations. " This facility works by providing dynamic
linking between the active workspace and other
namespaces, allowing different parts of a process to
be sequentially executed by different processors, as
may be appropriate. Although inspired in part by a
shared variable auxiliary processor developed many
years earlier at the IBM Heidelberg Scientific Cen
ter in Germany," it differs from the use of the
shared variable facility in that the parts of the proc
ess are never executed in parallel or asynchro
nously, the associated names may refer to external
objects of any kind (not just variables) , and the
name association is preserved across working ses
sions.

The third release of APL2, in late 1987, included two
major extensions to APL2 system capabilities. One
was the automatic utilization of hardware vector
processing when available, an obvious exploitation
of the natural array properties of APL. The other
was the inclusion of an encapsulation mechanism
for APL workspaces, which transformed them into
load modules, known as packages, which could then
be accessed by a name association processor.
Among other applications, packages have the po
tential to solve the problems addressed by use
access on the HONE APL system previously men
tioned. The existing primitive defined function fa
cility, which already depended upon isolation of
namespaces for its operation, was used as an inte
gral part of the implementation of the package fa
cility. The associated processor was also extended

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

to support FORTRAN function calls in addition to
calls to subroutines; and a complementary facility
was provided to allow routines written in other lan
guages to request execution of APL expressions.

In recognition of the greater availability of personal
computers and workstations with versatile displays ,
and their use as terminals and for running native
APL systems, this release of APL2 allowed the use of
lowercase alphabetics as an alternative to under
scored alphabetics, and provided a system com
mand for setting the mode.

In earlier times of APL design and development
there was a strong effort made to reach consensus
on new ideas, and an equally strong emphasis on
the importance of testing by users. As the devel
opment center shifted about and the development
process itself became more formalized this was not
lost sight of, although some aspects of it have been
hard to maintain. Since about 1982, however, with
the popularization of electronic conferencing, the
IBM internal computer network has been used quite
effectively to gather together user experience with
developmental systems, and publicize opinions on
new ideas. User testing of new systems has been
formalized at the same time, with selected sites
within IBM undertaking responsibilities as virtual
extensions of the regular development test group.

Small machines

The first implementation of an APL-like system on
a small machine was the PAT system on the IBM
Model 1620, done in 1964. APL has had a presence
of small machines ever since. In fact, as is detailed
below, the first portable desktop personal computer
marketed by IBM was designed as an APL machine.

APL\1130. In 1965-1966 the IBM Los Gatos Lab
oratory in California was working on the design of
a very small, low-cost (hence LC or "Elsie") ma
chine. It was to have a relatively simple instruction
set and an internal memory of only 1024 words,
supplemented by an external magnetic disk, about
eight inches in diameter, which used grooves on one
side for mechanically indexing to the magnetic
tracks. Science Research Associates, then a subsid
iary of IBM, was interested in the educational po
tential of such a machine, and commissioned a
study to produce an APL system for it. Two of the
three people who conducted the study had previ
ously worked on IVSYS. 27 Drawing on this experi
ence, the group proposed a modified architecture

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

for Elsie, better suited to implementing APL. An
emulator for this machine design, and an assembler
for programming it, were written for the IBM Model
7090, and design of the APL system proceeded from
there. The result was then successfully transferred
to a real Elsie prototype, so that in due course an
APL system was running in Los Gatos.

Unfortunately, business considerations kept Elsie
from ever becoming a product, but the work on it
was not wasted. By 1967 APL\360 was becoming
widely known within IBM, and the Research APL
group was approached by an IBM branch office in
terested in the possibility of having an APL system
available for the IBM Model 1130, a midsize "sci
entific" machine. To quickly produce a prototype
and show feasibility, an Elsie emulator was written
for the Model 1130 and the APL system was in
stalled on it. It ran successfully. To improve per
formance, one additional instruction was added to
the Elsie emulator, an escape to the native 1130
architecture, which was used as the path to more
efficient coding of successive parts of the inter
preter. As shown in Figure 1, an upgraded APL\I 130
was later produced as an IBM Type III program.

Not shown in the figure is a more formal APL\1130
product that had a very short life. It was a time
sharing upgrade of the Type III program, produced
by the APL development group in Palo Alto, which
was then still part of the Systems Development Di
vision. It was shipped to one or two customers be
fore being withdrawn from the market. But it, too ,
was not wasted. Indeed, it figured importantly in
the early development of the modem personal
computer.

APL 5100. In late 1972 the Palo Alto Scientific Cen
ter was asked by IBM's General Systems Division
headquarters in Atlanta, Georgia, to suggest an APL
product suitable for production by their division. In
response, the Scientific Center proposed an entry
level machine that could fit on a desk. This sug
gestion was accepted, and they proceeded to as
semble a team composed of people with hardware
knowledge from Los Gatos and people with soft
ware knowledge from the Scientific Center to work
on the design. The team selected a processor engine
known internally as "Palm" for the machine's cen
tral processing unit, in preference to another, called
DC.5, that was also available at the time.

Once again, the quickest way to show feasibility and
produce a prototype was to emulate an existing ma-

FALKOFF 425

chine that already had APL programmed for it. In
this case, the Model 1130 was chosen. Thus ,
APL\1130, a system that had its origins in Elsie, the
earl ier Los Gatos machine , and that had been
ported by emula tion to the Model 1130, where it
was eventually converted to native 1130 architec
ture code, was now ported to a new machine in
which Los Gatos was also involved in the hardware
design. The functioning prototype, know as SCAMP
(Special Computer APL Machine Portable), was
produced in the short time of six months, and was
successful in persuading the General Systems Di
vision to proceed with a production machine. 28

At present the SCAMP prototype, an APL machine
that was the unique forerunner of the first produc
tion personal computer, resides in the collection of
the Smithsonian Institution in Washington, D.C. 29

The prod uction machine was designed at IBM's
General Systems Division laboratory at Rochester,
Minnesota, and was made available as a product,
the IBM 5100 machine , in 1974-less than a year
and a half from the start. This remarkably short
development cycle for such a complex new product
can be attributed in large part to the fact that em
ulation was used again, even in the final product.
This time, however, although the same Palm inter
nal engine was used, System/360 architecture was
emulated rather than 1130 architecture, so that the
up-to-date APLSV product system could be used as
the APL facility with virtually no modification.
There were some changes, however, that antici
pated later developments in personal computers.
For example, the primary input/output device was
a cathode ray tube with an associated keyboard that
included an extra shift, named " CMD," and a num
ber pad; there was a software switch to enter a
communication mode to enable the machine to act
as a terminal on a host system; and another switch
to automatically copy input and output to an at
tached printer.

The later models, the IBM 5110 and 5120, which had
a different internal processing engine and also used
a later version of APLSV, carried these forward
looking changes considerably further. Where the
IBM 5100 had only a tape cartridge for nonvolatile
storage of files and workspaces, the later machines
included an eight-inch diskette facility, separately
available in the IBM 5110 and integral in the IBM
5120. Whereas the CMD key in the IBM 5100 was
used very modestly to generate APL system com
mands from six keys in the top row, the IBM

426 FALKOFF

5110/5120 CMD key was also used to produce the
APL overstrike characters, as well as the distin
guished names of system variables and system func
tions, with a single shifted keystroke . The CMD key

The SCAMP prototype, an APL
machine, resides in the collection

of the Smithsonian Institution.

was also used to switch the entire keyboard from an
APL character mode to a standard lowercase and
uppercase character mode in which the single APL
characters were still available as a third shift. All the
models had a shared variable facility for commu
nicating with the tape drive and the printer, and in
the later models this was extended to include the
diskette drives, the display screen, and the serial
input/output port.

There is considerable family resemblance between
these early APL machines and the personal com
puter (rc) line of machines IBM produced a few
years later. The IBM Portable Personal Computer,
in particular, with its built-in small screen looks a
lot like the IBM 5110, and its part number of 5155
is clearly in the sequence of the earlier machines .
(The early PC itself is model number 5150, and the
PCIXT* and PC/AT* have model numbers 5160 and
5170.) This is not really surprising, since the IBM
Rochester development group that produced the
5100 and 5120 machines was later transferred to the
IBM laboratory at Boca Raton, Florida, where they
constituted the beginning of the Entry Systems Di
vision of IBM, which developed the IBM rc,

APL\ 1500. Returning for a moment to the 1960s,
a variant of the IBM 1130machine was the IBM 1500,
a system intended for the educational market. This
system used a faster version of the 1130 processor,
known as the 1800. The IBM 1500 was an ear ly ex
ample of a multimedia machine, featuring a cath
ode ray tube display and a film projection unit in
addition to the usual typewriter input and output.
In 1965 the Service Bureau Corporation wrote a
program called MAT/1500 for the IBM 1500, whose
primary software was a computer-aided instruction
program called "Coursewriter." MATIl500 was in-

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

tended to augment this mostly verbal system with a
mathematical capability, including elementary
functions and some array operations.

Some three years later, Science Research Associ
ates undertook to write a full APL system for the IBM
1500. They modeled their system after APL\360,
which had by that time been developed and seen
substantial use inside of IBM, using code borrowed
from MAT/ISOO where possible. It is interesting to
note that in their documentation they acknowledge
their gratitude to "a number of high school students
for their compulsion to bomb the system.,,30 This
was an early example of a kind of sportive, but very
effective, debugging that was often repeated in the
evolution of APL systems.

DPPX APL. At about the same time that the Palo
Alto Scientific Center was working on SCAMP , an
other APL system design was under way at IBM in
Poughkeepsie, New York , using the uc.s engine
that had been considered as an alternative to Palm
when Palo Alto selected its processor engine. When
nearly completed, the project was moved to King
ston and the target machine became the IBM 8100,
which had the UCI as its internal engine, an upgrade
of the uc.s, This was to have been a complete AP L
system, including its own supervisor, but work on it
was halted before it reached product level. The
project was subsequently moved again, this time to
the Lidingo laboratory of IBM Sweden . The tech
nology transfer was effected in part by the tempo
rary assignment of one, and then another, of the
original developers. It was brought to product sta
tus running under the Distributed Processing Pro
gram Executive (DPPX) operating system of the IBM
8100, rather than its own supervisor.

DPPX APL was a multiuser time-sharing system that
made innovative use of the shared variable proces
sor in its internal operations. (Work on its design
also led to suggestions for broadening the function
ality of shared variables, which, though not imple
mented at the time, are still worth considering. 31)
Motivated by an absolute limit of 64K bytes for the
workspace size, the designers consigned as much
function as possible to the shared variable proces
sor, so as to free up space in the workspace that
would otherwise be taken up with the interfaces to
other parts of the system. Thus, for example, com
munication to the keyboard and display input and
output was mediated by the same shared variable
processor as was available at the user level. Also, to
facilitate the use of shared variables between work-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

spaces-a means of overcoming the workspace size
limitation as well as a way of functionally segment
ing programs-the system provided support func
tions to start and control secondary sessions from
inside an active workspace, much in the manner of
the AP l9 processor on the internal APLSV systems
described earlier.

The system emphasized the utilization of DPPX fa
cilities from inside APL programs. Sets of support
functions, which had the same appearance as the
workspace functions mentioned previously in the
discussion of APL2, were provided, for example, to
facilitate the use of the DPPX Presentation Services
(rs), Alternatively, these operations, and others,
could be effected by means of explicit shared var
iables using an auxiliary processor connecting di
rectly to DPPX input/output and command pro
grams. This gave the APL programmer willing to
work at that level access to the operating system
commands and macros .

Another innovation, at the APL language level
(which was otherwise essentially that of vs APL),
was the introduction of a system variable, DCMD,
to which a character string depicting an APL system
command could be assigned . Thus , it was possible
to imbed in a running program an order to save the
workspace at that point, while the program contin
ued to run. Though sometimes controversial, this
feature of dynamic execution of system commands
was well thought out, as were the other innovations
in DPP X APL. It is unfortunate that the system did
not see enough real use for a body of opinion to
build upon the value of these innovations. Still,
there is little doubt that with its emphasis on com
munication and integration with the environment,
DPPX APL was a step in the right direction, as evi
denced by subsequent developments in the two
major current APL systems, APL2 and the derivatives
of IL APL, discussed next.

ILAPL. In 1974 the Computer Science Department
of the IBM Madrid Scientific Center started an APL
system for the IBM System/Z, a small sensor-based
machine intended for use in applications such as
process control and laboratory automation. The
APL system was modeled after APLSV in the expec
tation that the use of shared variables would sim
plify both the design and the subsequent operation
of the sensor input/output, but the APLSV code itself
was not used. In order to accommodate an APL
time-sharing system to a machine that had as little
as 16K of two-byte words in its main memory, the

FALKOFF 427

interpreter was modularized so that its parts could
be swapped into memory much the same way as the
workspaces. The system was coded in assembly lan
guage."

System!7 APL was never made into an IBM product,
but it saw some use in several research laboratories
both inside and outside of IBM, and was used by the
Madrid Scientific Center itself to control the envi
ronment in an experimental agricultural project. Its
major significance, perhaps, was that it was the first
implementation of APL by a team that went on to
develop a portable APL system that has been the
basis for the IBM implementations of APL on per
sonal computers and workstations.

In 1976 the Scientific Center was asked to write an
APL system for the IBM Seriesll ", the successor to
the IBM System/Z, Reluctant to simply repeat the
same work in another low-level language, the team
conceived the idea of writing a portable APL system
in a systems programming language intermediate
between assembler and a high-level language such
as APL. The language they designed, known as IL
(for Intermediate Language), has a simple syntax,
somewhat resembling APL, and a semantics closely
related to that of assembly languages, but tailored
to the requirements of an APL system." An APL
system written in this language can be ported to
different machines by writing compilers from IL to
each. Since each compilation is essentially a one
time affair, the execution speed of the compilers is
not an issue, but the time to produce one is, and
therefore they have been written in APL. 34

The IL approach was first tested by writing an in
terpreter only, and compiling it to System/370,
where it could be compared to APLSV and de
bugged. Once this was successful, the IL implemen
tation was expanded to include an APL system com
mand handler, an input editor and scanner, and a
shared variable processor. 35 Nearly all of the coding
for IL APL was new, taking only a few algorithms
from APLSV and vs APL. Others were based on pub
lications, some of which were also the source for
APLSV and other mainframe APL systems.36,37

Series/I APL. After the validation of IL APL on the
IBM System/370, the first download porting was to
the Series/L It was still necessary to code machine
dependent parts of the system, such as the APL
time-sharing supervisor and library management
operations, by other means. The IL interpreter was
also modified for the Series/I . The architecture

428 FALKOFF

of this machine placed severe limitations on the size
of the APL workspace, and to mitigate this problem
the IL APL designers developed the idea of a two
part workspace: a main workspace of the maximum
size, where APL objects were created and modified,
and an elastic workspace , which used a secondary
memory to swap out APL objects not currently ref
erenced, when more execution space was needed.

A choice had to be made between two operating
systems on Series/I : Realtime Programming Sys
tem (RPS), which was the official IBM offering, and
Event-Driven Executive (EDX) , which was then be
ing developed informally by interested groups in
the company. The Madrid Scientific Center did not
have resources to do both machine-dependent sub
systems. RPS was selected, on the basis that it was
the mainline offering, while internal interest in an
APL system on EDX was probably strong enough to
generate its own separate support. In fact, this
proved to be the case, and a support group for an
EDX version was formed under the aegis of the APL
Design Group in Research. A viable EDX system
was produced," which was used in about 40 inter
nal IBM sites. Neither version was ever offered as an
IBM product.

APL/PC. The second download porting of IL APL
was to the IBM Personal Computer (PC), in 1982.39

One requirement placed on the design was that it
should be usable in a PC with only 128K of random
access memory, a configuration that was considered
generous at that point in the evolution of the per
sonal computer market. But even with larger mem
ories, in order to achieve acceptable performance it
was necessary that the workspace size stay within
the 64K primary addressing capability of the ma
chine. To reduce the severity of this limitation, the
elastic workspace concept was carried forward from
the Series/1 design.

The language level of APUPC was essentially that of
the APLSV internal system, which included picture
format, ambivalent defined functions , and the ex
ecute alternative system function. All of these were
also in the APL2 !UP, which became available at
about the same time as the zero-level of APUPc, but
not in vs APL, the principal mainframe product at
the time. APUPC also included DTF and)IN and
)OUT, as found in the APL2 IUP. In addition to fa
cilitating communication and migration between
different APL systems, especially between main
frames and PCs, the use of the transfer form also

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

served to overco me the absence of the APL copy
command in APUPC.

An important aspect of the design of APL for the PC
was the deliberate effort made to bring as much of
the und erlying machine as possible under control of

APL2 SUpports 32-bit addressing
for the PS/2 and runs on the AIX

platform for the IBM RiSe
System/6000.

the APL programmer. This took two forms. First, a
new system function, DPK, was introduced to allow
access to any part of the machine memory for both
reading and writing, and to execute machine-code
subro utines. Second, auxiliary processors were pro
vided to interface with the Basic Input/Output
System (BIOS) and Disk Op erating System (DOS)
interrupts, with the DOS file system, and with pe
ripheral devices, including the display.

The development versions of APUPC were tested by
the APL Design Group in Research, using scripts
and programs first constructed in connection with
work on APL2. A preproduct-Ievel program was
then made available for testing by interested parties
in many different parts of the company, before the
first product offering was released in 1983. This was
the beginning of an iterative process-upgrading or
changing the ILAPL, subjecting the resulting PC pro
gram to widespread internal use and testing, and
product release- a process that is still going on,
through several vers ions of APUPC, APL2/PC, and
APL2 for workstations.

The next use of IL APL was the porting to the IBM
5550, the personal computer available in Japan,
done in collaboration with the IBM Tokyo Scientific
Center. This resulted in a product known as Ni
HonGo APL. For this version the internal data types
were expan ded to include two-byte characters, and
the keyboard and display operations were elabo
rated, so as to accommodate the much larger Kanji
character set. Otherwise, NiHonGo APL and APUPC
were the same.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

In the period from 1984 to 1986, a second IL APL
interpreter was developed and also ported to the
IBM 5550 machine. The main changes affected
memory management, and many of the implemen
tation limits of the first version were markedly in
creased. There were also some performance im
provements, and a substantial increase in the
number and scope of the auxiliary processors. Most
significant among the latter was AP2, an interface to
non-APL programs, which made it possible to
dynamically load and run DOS programs or pro
grams written in FORTRAN or assembly language.
This processor was under development at about the
same time as the name association facility in APL2,
and represents an alternative approach to solving
the same problems.

There was one more refinement of APUPC, a ver
sion intended for internal use only, which included
support for IBM Personal System/2* (PS/2*) Model
80, and a workspace packaging program. Although
the same term is used, the resulting APUPC package
is quite different from that of the mainframe APL2.
In this case, a separate program, running directly in
DOS, uses the name of an APL workspace and the list
of auxiliary processors it uses, and produces a DOS
(.EXE) program that contains the workspace and
the necessary parts of the APL system and can there
fore run independently.

APL2/PC. Over the period from 1986 to 1990, an IL
implementation of APL2 was produced, and succes
sively enhanced, by the Madrid Scientific Center in
collaboration with the IBM United Kingdom Scien
tific Centre in Winchester. 40 There have been two
releases of this system and several field upgrades.
The first release, in 1988, was a 16-bit version that
can run on any of the IBM PC or PS/2 machines, and
requires only 256K of real memory. It retains most
of the implementation limits of APUPC version 2,
which derive from the 16-bit addressing structure of
the underlying structure, but the workspace size can
be as large as 440K bytes. Except for complex num
ber arithmetic and some minor language refine
ments, it is a full-function APL2 system with a com
prehensive set of auxiliary processors, a full screen
manager modeled after the mainframe APL2 ver
sion, and direct invocation of DOS operations by
means of a)HOST system command.

The 32-bit version, released in 1989, was generated,
downloaded, tested, and debugged in 13 man
weeks, an impressive confirmation of the effective
ness of the IL approach. In this version there is no

FALKOFF 429

practical limit on workspace size, which can be as
large as 15 megabytes, for example, on a 16-meg
abyte PS/2, and there are no separate limits on the
size of APL variables . It has all of the language and
system features of the 16-bit version, and both may
be used to produce running packages of APL ap
plications , as described previously.

APL2/6000. The most objective test of the IL APL
approach was the most recent one, the porting to an
Advanced Interactive Executive* (AIx*) platform
on the IBM RISC System/6000*. In this case, one
person with no prior knowledge of either IL APL or
the RISC System/6000-working alone except for a
few days of help at the end-was able to produce

, the necessary back end of the IL compiler, which
translates the IL code to the language of the object
machine , and bring up a viable APL workspace on
the machine in less than 10 weeks. With a second
person writing the machine-dependent parts of the
program in C, the system was brought to the point
of being publicly demonstrated less than six months
from the start. An internal IBM release was reached
in 10 months and a product announcement was
made two months after that.

Other APL processors

All of the APL machine implementations described
so far (and shown in Figure 1) are interpreters, as
befits the language processor in a highly interactive
system. However, there has been a steady pressure
in the marketplace to improve the performance of
production applications in APL. As a result, in ad
dition to the microcode assist described above, ac
celeration techniques ranging from adaptive inter
pretation, to translation to intermediate languages,
to direct compilation to machine language have
been worked on and used experimentally.

An adaptive interpreter for APL was designed in the
IBM Israel Scientific Center in the mid-'70s. The
program analysis was implemented in APL, and it
compiled code to an intermediate language con
ceived of as a virtual APL machine." The imple
mentation was completed far enough to estimate its
performance, which was promising as far as it went,
but no production use was made of it. However, the
techniques were further evaluated in the APL De
sign Group in the Research Division when one of
the investigators took an assignment there, and
they provided background for the APL compiler
work that followed.

430 FAlKOFF

This compiler work branched into two principal di
rections, both of which used APL itself as the prin
cipal programming tool. One direction emphasized
the exploitation of APL array operations to directly
generate very fast machine code and take advan
tage of the potential for automatic parallelization
of APL programs at the basic block level.42 At first
relatively narrow in the range of APL expressions it
could compile , this program has been improved and
enhanced to the point where other internal IBM
sites are experimenting with it for production ap
plications while the investigation continues in the
Research Division. Consideration is currently being
given to translating into another high-level lan
guage, rather than directly into machine code.

The other branch of the Research Division work in
APL compilers started out with the intent to trans
late into a high-level language, namely FORTRAN, in
order to take advantage of the optimizing compilers
already extant for that language and the portability
implied by the widespread availability of FORTRAN
compilers. 43 The general scheme of this compiler is
to work within the APL2 system, compiling those
functions in an application that are most resource
consuming, and invoking the compiled functions at
run time by means of the name association facility
in APL2. An important objective of the work on this
compiler was to translate all of APL, up to its chosen
language level, without compromising on the nu
ances of end conditions or other detailed aspects of
the language definition. The work was transferred
to the numerically intensive computing (NIC) group
at IBM in Kingston, New York, around 1987, where
it underwent enhancement of its user interface and
was migrated from CMS to Multiple Virtual Stor
age. Finally, under the aegis of that group, the pro
gram, now known as AOC (APL2 Optimizing Com
piler), was turned over to an IBM Business Partner
for marketing and further enhancement. It was an
nounced as a product in early 1991.44

Another instance of translating APL to a high-level
language is the work done in the IBM Federal Sector
Division using Ada as the target language. The
translator was written in APL2, and had the limited
goal of allowing an algorithm designer to prototype
rapidly in APL and, after debugging there, translate
the program to Ada for compilation and running in
that environment. 45 The APL acceptable to this
translator had to be highly stylized, but it never
theless turned out to be useful in an important pro
totyping application.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

Concluding remarks

It is perhaps fitting to make note of some of the
things not discussed in this paper. Foremost among
these is all the work on APL implementation done
outside of IBM. The actual number of implemen
tations of APL is in the dozens, most of which have,
or have had, an economic life. Virtually every major
manufacturer of computers has had its own imple
mentations, starting very early in the history of the
language, and many of these, like the systems pro
duced or modified by APL time-sharing vendors, have
contributed to the evolution of the language itself.

As noted in the text, APL has figured prominently in
the evolution of small machines. Its very interactive
nature, combined with the simplicity and power of
its array operations, has been a magnet for design
ers of small machines. Thus, even before the IBM
5100 was developed, a small Canadian company,
Micro Computer Machines, had built several APL
machines small enough to fit in an attache case. At
the present time, there are implementations for all
the major families of small computers, as well as for
several workstations and lesser-known small and
intermediate machines.

Another large area untouched by this paper is that
of applications written in APL, except for one. That
one, of course, is the design and implementation of
APL systems. As the APL compilers come into their
own, this field of application may well broaden sig
nificantly.

Finally, it should be mentioned that there has been
an unbroken series of international APL confer
ences since 1969, and numerous implementers'
workshops and standards committee meetings, at
which language, implementation, and standardiza
tion issues have been refined to the benefit of all
concerned. Thus, IBM's family of APL systems has
evolved in an active and stimulating environment
that continues to attract the kind of highly talented
people who made it happen in the first place.

Acknowledgments

While I have tried to achieve a dispassionate and
even-handed tone in describing the developments
in APL products, the actual events often took place
in a far more emotional, and sometimes adversar
ial, atmosphere where points of view were ad
vanced with fervor and fiercely defended. In the
course of writing this paper I consulted with many

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

of the people involved in these events, most of
whom are mentioned in the references. Without
exception, the responses were not only helpful, but
warm with the remembrance of past associations. I
hesitate to list their names, for fear I may inadvert
ently leave some out, but I want to thank them all
for their present help, and for their earlier contribu
tions to the evolution of APL systems. I also want to
express my gratitude to John C. McPherson, whose
name does not appear elsewhere herein, but whose
influence was pervasive. Now a retired IBM vice pres
ident, John recognized the value of APL very early,
and shared his technical insights and gave support
and encouragement to everyone involved in APL
development throughout the course of the work.

"Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes

1. Figure 1 is an extension and elaboration of one produced by
R. H. Lathwell in 1982.

2. H. Hellerman, "Experimental Personalized Array Transla

tor System," Communications oftheACM 7, 433 (July 1964).

3.	 A. D. Falkoff and K. E. Iverson, "The Evolution of APL,"

in History ofProgramming Languages, H. L. Wexelblat, Ed

itor, Academic Press, New York (1981), p. 666.

4. H. A. Kinslow, "The Time-Sharing Monitor System," Pro

ceedingsAFlPS 1964, FJCC 26, Spartan Books, Washington

DC (1964), pp. 443-454.

5.	 K. E. Iverson,A Programming Language, John Wiley & Sons,

Inc., New York (1962).

6. A. D. Falkoff and	 K. E. Iverson, "The APL\'360 Terminal

System" in Interactive Systems for Experimental Applied

Mathematics, Academic Press, New York (1968).

7.	 L. M. Breed and R. H. Lathwell , "The Implementation of

APL\'360," in Interactive Systems for Experimental Applied

Mathematics, Academic Press, New York (1968).

8.	 The Grace Murray Hopper Award of the ACM, presented

to L. M. Breed, R. H. Lathwell , and R. E. Moore in 1973.

L. J. Woodrum of the IBM Poughkeepsie Laboratory con
tributed code for sorting and other operations, and provided
continuing assistance in the development of APL\'360.

9. W. Barrett and M. F. C. Crick .
10.	 A. D. Falkoff, "A Survey of Experimental APL File and I/O

Systems in IBM," Colloque APL, Institut de Recherche d'In
formatique, Rocquencourt, France (1972).

11. R. H. Lathwell, "System Formulation and APL Shared Var
iables," IBM Journal ofResearch and Development 17, No.4,
353-359 (1973).

12. The technology and the concept have now come together, 20
years later. As this paper was going to press, Release 1 of
APL2 version 2 was announced, one of its principal new
features being the ability to directly apply primitive APL
functions to host system files.

13. A. D . Falkoff and K. E. Iverson, Communication in APL
Systems, Technical Report 320-3022, IBM Philadelphia Sci
entific Center, PA (1973).

14. A. D. Falkoff and K. E. Iverson, "The Design of APL," IBM
Journal of Research and Development 17, No.4, 324-334
(1973).

FALKOFF 431

15. IBM Corporate Bulletin C-B 3-9045-001 (October, 1974).
16.	 IBM Corporate Standard C-S 3-9045-001 (December,

1977).
17.	 A. D. Falkoff and D. L. Orth, "Development of an APL

Standard,"APL79 Conference Proceedings,APL Quote Quad
9, No.4, Part 2, 409-453, ACM, New York (1979).

18.	 B. J. Hartigan, "API9-A Shared Variable Terminal Inter
face for APL Systems,"APL8I Conference Proceedings,APL
Quote Quad 12, No.1, 137-141, ACM, New York (1981).

19.	 A. Hassitt, J. W. Lageschulte, and L. E. Lyon, "Implemen
tation of a High Level Language Machine," Communica
tions of the ACM 16, No.4, 199-212 (1973).

20. A. Hassitt and	 L. E. Lyon, "Efficient Evaluation of Array
Subscripts of Arrays," IBM Journal of Research and Devel
opment 16, No.1, 45-47 (1972).

21. A. Hassitt and L. E. Lyon,	 "An APL Emulator on Sys
tem/370," IBM Systems Journal 15, No.4, 358-378 (1976).

22.	 Z. Ghandour and J. Mezei, "General Arrays, Operators and
Functions," IBM Journal of Research and Development 17,
No.4, 335-352 (1973).

23.	 D. A. Rabenhorst, "APL2 Language Manual," SB21-3015,
IBM Corporation (1982); available through IBM branch of
fices.

24.	 J. A. Brown, The Principles of APL2, Technical Report
03.247, IBM Santa Teresa Laboratory, CA (1984).

25.	 J. A. Brown, J. Gerth, and M. Wheatley, Communication
Method Between an Interactive Language Processor and Ex
ternal Processes, U.S. Patent No. 4,736,321 (1988).

26. H. Eberle and H. Schmutz, Calling PL/I or FORTRAN Sub
routines Dynamically from VS APL, Technical Report
77.11.007, IBM Heidelberg Scientific Center, Germany
(1977).

27.	 L. M. Breed and P. S. Abrams; the third person was W. S.
Worley, Jr.

28.	 P. J. Friedl, "SCAMP: The Missing Link in the PC's Past?,"
PC 2, No.6, 190-197 (November 1983).

29.	 J. Littman, "The First Portable Computer," PC World 1, No.
10, 294-300 (October 1983).

30. S. E. Krueger and T. D. McMurchie, A Programming Lan
guageV500, Science Research Associates, Chicago, IL
(1968).

31.	 K. Soop and R. A. Davis II, "Extended Shared-Variable
Sessions,"APL85 Conference Proceedings,APL Quote Quad
15, No.4, 148--150, ACM, New York (1985).

32.	 M. AIfonseca, M. L. Tavera, and R. Casajuana, "An APL
Interpreter and System for a Small Computer," IBM Systems
Journal 16, No.1, 18-40 (1977).

33. M. L. Tavera and M. AIfonseca, IL. An Intermediate Systems
Programming Language, Technical Report 01-78, IBM
Madrid Scientific Center, Spain (1978).

34.	 M. Alfonseca and M. L. Tavera, "A Machine-Independent
APL Interpreter," IBM Journal ofResearch and Development
22, No.4, 413-421 (1978).

35. M. L. Tavera and M. Alfonseca, The IAPL Machine-Inde
pendent APL Processor, Technical Report 03-80, IBM
Madrid Scientific Center, Spain (1980).

36.	 R. H. Lathwell and J. E. Mezei, A Formal Description of
APL, Technical Report 320-3008, IBM Philadelphia Scien
tific Center, PA (1971).

37.	 A. D. Falkoff, "A Pictorial Format Function for Patterning
Decorated Numeric Arrays," APL8I Conference Proceed
ings,APL Quote Quad 12, No.1, 101-106, ACM, New York
(1981).

38. P. A. McCharen,	 The Series 1 APL-EDX System Installation
and User's Guide , Technical Report 19.0552, IBM Burling
ton, VT (1981).

432 FALKOFF

39. M. L. Tavera, M. Alfonseca, and J. Rojas, "An APL System
for the IBM Personal Computer," IBM Systems Journal 24,
No.1, 61-70 (1985).

40. M. AIfonseca and D. A. Selby, "APL2 and PS/2: The Lan
guage, the Systems, the Peripherals," APL89 Conference
Proceedings, APL Quote Quad 19, No.4, 1-5, ACM, New
York (1989).

41. H. J. Saal and Z. Weiss, "A Software High Performance
APL Interpreter," APL79 Conference Proceedings, APL
Quote Quad 8, No.4, 74-81, ACM, New York (1979).

42. W.-M.	 Ching, "Automatic Parallelization of APL Pro
grams," APL90 Conference Proceedings, APL Quote Quad
20, No.4, 76-80, ACM, New York (1990).

43. G. C. Driscoll, Jr. and D. L. Orth, "Compiling APL: The
Yorktown APL Translator," IBM Journal of Research and
Development 30, No.6, 583-593 (1986).

44.	 "1991: The Year of the APL2 Optimizing Compiler, "
Interlink, January 1991, Interprocess Systems, Inc., Atlanta,
GA (1991).

45. J. G. Rudd and E. M. Klementis, "APL-to-Ada Translator,"
APL87 Conference Proceedings,APL Quote Quad 17, No.4,
269-283, ACM, New York (1987).

Accepted for publication June 27, 1991.

Adin D. Falkoff IBM Research Division, Thomas 1. Watson Re
search Center, P.D. Box 704, Yorktown Heights, New York 10598.
Mr. Falkoff is currently a research staff member in the Com
puter Science Department at the Thomas J. Watson Research
Center. He joined IBM in 1955, and since 1960 has worked on
various aspects of computer science, including APL. He was a
member of the visiting faculty at the IBM Systems Research
Institute for several years, and a visiting lecturer in computer
science at Yale University. From 1970 to 1974, Mr. Falkoff es
tablished and managed the IBM Philadelphia Scientific Center,
and from 1977to 1987was the manager of the APL design group
at the Thomas J. Watson Research Center. He received a
B.Ch.E. from the City College of New York in 1941and an M.A.
in mathematics from Yale University in 1963, the latter under
the IBM Resident Scholarship Program. He has received IBM
Outstanding Contribution Awards for the development of APL
and the development of APL\360.

Reprint Order No. G321-5443.

IBM SYSTEMS JOURNAL, VOL 30, NO 4. 1991

APL2: Getting started

APL Is a concise and economical notation for
expressing computational algorithms and
procedures. This paper Introduces the main Ideas
of APL2, an IBM Implementation of APL, and
Illustrates the programming style with some
graphical examples.

O riginally developed as a mathematical tool for
teaching computer concepts, APL offers a sys

tematic and structured method for thinking about
computational problems and implementing solu
tions. Because the APL nota tion can be executed
directly on computers, APL is a rich and powerful
programming language, suitable for solving a wide
range of computational problems in science, engi
neering, and business.

The original APL notation was described by Iverson
in 1962.1 The first commercial computer program
ming implementation of the language was docu
mented in 1968,2 and in 1971, Brown extended the
APL nota tion in his work at Syracuse University. 3

APL2, the IBM implementation of extended APL, is
documented in Reference 4 and today is used as a
problem-solving tool for a wide variety of applica
tions, as one may conclude reading papers such as
those described in References 5-8.

APL2 consists of three fundamental components:
arrays, functions, and operators. Arrays are the data
structures of APL2, consisting of collections of num-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

by J. A. Brown
H. P. Crowder

bers and text characters. Functions are programs
that manipulate arrays; functions take arrays as ar
guments and produce new arrays as results. Oper
ators, a powerful concept in APL2, are programs that
manipulate functions; they take functions as oper
ands and produce new functions as results.

The purpose of this paper is to introduce the key
APL2 concepts of arrays, functions , and operators
and how they relate and interact in a unique prob
lem-solving environment. Several examples are
provided that show how solutions to some inter
esting problems can be expressed precisely and con
cisely.

APL2 arrays

Arrays are the data structures of APL 2. Arrays are
collections of data, the values being numbers or
characters or both. Arrays have structure and are
organized as single elements, vectors, matrices, and
higher-dimensional rectangular arrangements. In
addition, APL2 arrays can be structured in hierar
chical arrangements, as described later.

CCopyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

BROWN AND CROWDER 433

Arrays can have names that are used to refer to
their contents in APL2 expressions. Shown below are
arrays named A (contain ing a single number), NUMS
(containing a list of five numbers), CHAR (contain
ing a matrix of six characters), and MIXED (con
taining both numbers and characters):

A
3

NUMS
1 3 5 7 3 . 14159

CHAR
CA!!
FA!!

MIXED
2 BE OR NOT 2 BE

These examples show how the values of arrays are
displayed by APL2; input is indented from the left
margin, and output is flush left. The default display
shows the array values but little about the array
structure. To better understand the structure of
APL2 arrays, use the function DI SPLAY to construct
pictures that show array structure. Following is
DI SPLAY applied to the previous examples:

DI SPLAY A
3

DISPLAY NUMS

~ 3 5 7 3 .141591

DI SPLAY CHAR

DISPLAY MIXED

[' 2 I~E OR NOT I 2 §]
E:

In the first example, the array A is displayed with no
structural information. In APL2 terms, A is a simple
scalar; it has only value and no structure of interest.
In the next example, NUMS is displayed in a box with
an arrow on the top edge, indicating that NUMS is a
vector or one-dimensional array. The matrix CHAR

434 BROWN AND CROWDER

is displayed in a boxwith two arrows, indicating that
the data are arranged along two dimensions. Fi
nally, the display of MIXED indicates that it is a
vector containing both simple scalar numbers (two
instances of the number 2) and two character vec
tors.

In the last example, MIXED is an instance of a nested
array that has other arrays as items. The following
sequence builds up and displays a more compli
cated nested array D:

A~2 2p 10 11 12 (13 14)
B~15

C~16 17 18
D~A B C

DISPLAY D

1 10 11 15 ~6 17 181

[12 ~3 141

E:

E:

The array D is a vector with three items. The first
item is a two-by-two matrix, one of whose items is
again a vector of length two. The second item of D
is the simple scalar 15, and the third item is a vector
with three items.

APL2 arrays are very powerful but simple in concept.
An APL2 array is a rectangular arrangement of
items; any item in the array can be a single number,
a single character, or another array of arbitrary
complexity. This ability to structure data as nested
APL2 arrays offers two major benefits . First, most
data processing and computational data structures
can be modeled and captured as APL2 arrays and
thus used in APL2 applications. And second, as dem
onstrated in following sections, complicated APL2
data structures allow simpler APL2 application pro
grams that are easier to design, code, and maintain.

As a final example of an array, the nested array
SALESDA!!A is a matrix having four rows and five
columns. DI SPLAY shows all the detail of the ma
trix and each item in row one and column one is a
character vector; every other item is a single num
ber :

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

DISPLAY SALESDATA

~ Ii&GION/QTRI §] §] §J §J

I~ORTHEASTI 632 1256 959 1033

IMID-COAST I 719 548 1179 1180

ISOUTHEAST I 1435 884 1020 1331

E

The default display of SALESDATA in APL2 has the
following form similar in appearance to a spread
sheet report:

SALESDATA
REGIONI QTR 1Q 2Q 3Q 4Q
NORTHEAST 632 1256 959 1033
MID- COAST 719 548 1179 1180
SOUTHEAST 1435 884 1020 1331

This array structure is identical to the data aggre
gates that are created and manipulated by rela
tional data systems. This ability for APL2 arrays to
consistently represent data relations has resulted in
APL2 being used for data analysis and manipulation
in conjunction with relational database manage
ment systems.

APL2 functions

APL2 functions are programs that manipulate and
perform calculations with arrays. Functions take ar
rays as their arguments and create new arrays as
their results . In APL2, functions can be either prim
itive or defined. A third class of functions is dis
cussed later. Primitive functions are part of the
APL2 language and are provided with the APL2 Pro
gram Product from IBM. Defined functions are pro
grams that are composed of primitive and defined
functions. APL2 provides a rich set of primitive func
tions, but a subset of these is introduced here so
that interesting examples can be presented.

In the previous section on arrays, the defined func
tion DISPLAY is used to further understand the
structure of APL2 arrays. DISPLAY takes as its ar
gument any APL2 array and produces a character
matrix showing the array's structure. The primitive

function reshape denoted by the symbol "p" is also
used to convert a list into a matrix. Reshape works
on both numbers and characters:

3p ' A'
AAA

2 2p1 2 3 4
1 2
3 4

v s 2 3p'CATFAT '
CAT
FAT

The same symbol is used for the function shape
which yields information about the structure of its
argument:

p3p ' A'
3

C
CAT
FAT

pC
2 3

In APL2, for conservation of symbols, each symbol
represents two functions. When the symbol is writ
ten with one argument (on the right) you get one
function , and when the symbol is written with two
arguments (one on each side) you get the other
function . In most cases, the two function s are re
lated. In the case of shape, the result is an array that
gives structural information-the "shape"-about
its array argument. In the case of the relat ed func
tion reshape, the result is an array whose structure
is dictated by the left argument and is composed of
items from its right argument.

An important concept in APL2 is the rank of an
array-the number of directions along which data
are arranged. The rank of an array is the number of
items in the shape of the array , so it follows that
rank is obtained by applying the shape function to
the shape of an array. Matrices have rank 2 (data
arranged in rows and columns), vectors have rank
1 (data arranged along one direction) and scalars
have rank 0 (no structure; data arranged along zero
directions). The following is an example of each:

pp2 3p'CATFAT '
2

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 BROWN AND CROWDER 435

1
pp1 2 3

pp 'A '
o

A large class of functions in APL2 is called scalar
functions because the functions apply to the simple
scalars of their arguments independent of array
structure. Examples include most of the arithmetic
functions such as addition (denoted by +), subtrac
tion (-), multiplication (x), division (+), power (*) ,
maximum (r), minimum (L), and the scalar func
tions include the relational functions such as less
than «), less than or equal (:S), and equal (=).
Some examples are:

2 3 4+ 5 6 7

7 9 11

1 2 3 :s 321

110

100 x 1 2 3

100 200 300

and in the example before of a nested array D,
where:

DISPLIU D

1 10 11
 15 ~6 17 18 1

l<12 ~
E- ----- ------- ---'

an arithmetic function example is:

DISPLIU D+10

25 [~6 27 281 1 20 21

l22 B
E

E

When a single item is presented to a scalar function ,
the scalar is paired with every item in the other
argument. This powerful concept, scalar extension,
is used frequently in following examples.

436 BROWN AND CROWDER

A useful function for array manipulation is catenate
(denoted by ,). Catenate is used to join arrays to
form new arrays:

A
1 2 3

B
100 200 300

A,B
1 2 3 100 200 300

M

1 2

3 4

N

100 200 300

400 500 600

M,N

1 2 100 200 300

3 4 400 500 600

N,O
100 200 300 0

400 500 600 0

Interval (denoted by 1) produces arrays based on
numerical sequences. Interval and arithmetic sca
lar functions can be combined to produce a wide
variety of arrays:

17

1 2 345 6 7

2X17

2 4 6 8 10 12 14

-8+2Xl7
-6 -4 -2 0 2 4 6

2*17

248 16 32 64 128

Notice that in APL2 expressions, functions are ex
ecuted from right to left.

Enclose (denoted by c) is used to convert any col
lection of data into a scalar. For example:

DISPLIU Q

~
~

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

DISPLAY cQ

E--------.J

In the second expression above, the DISPLAY func
tion shows the result to be a scalar . The data are
organized along no axes and have rank O. Inside the
scalar, however, the complete original array is re
tained. Therefore enclose returns a scalar that con
tains its argument as its only item.

This data structure has several practical applica
tions. Arrays are sometimes used in situations
where the structure is not important. Enclose al
lows hiding the inner structure of arrays . For ex
ample, ' JI M' is a three item character vector. If an
application treats this array as a name then the fact
that it has three items is not relevant. The expres
sion c ' JIM ' hides the structure, making it easier to
treat it as a single object (a name).

Enclose is also useful if the contents of an array are
required to participate in scalar extension. Note the
difference that enclose makes in the following ex
amples:

DISPLAY 100 200 300 + 1 2 3

303
1li01 202

DISPLAY 100 200 300 + c1 2 3

103 203li01 102 l~O1 2021 1

E--- - ---------

~0 1 302 3031

In this second expression , the scalar c 1 2 3 is
paired with each of the numbers 100, 200, and
300.

Defined functions in APL2 are programs that consist
of a sequence of APL expressions. Syntactically, de
fined functions are used in the same manner as
primitive functions. The function AVG, for example,

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

computes the average of a list of numbers:

[OJ Z....AVG X
[1J R COMPUTE THE NUMERIC AVERAGE
[2J R OF VECTOR <X>
[3J Z.... (+IX)+pX

AVG 3 9 7 11 14
8 .8

2 x AVG 3 9 7 11 14
17 .6

The function SD computes the standard deviation
of a list of numbers; it invokes AVG as a subfunc
tion:

[OJ Z....SD X
[1J R COMPUTE THE NUMERIC
[2J R STD DEVIATION OF VECTOR <X>
[3J Z AVG X
[4J Z ((+/(X-Z)*2)+pX)* .5

SD 3 9 7 11 14
3 .709

APL2 operators

APL2 operators take existing function s as arguments
and produce new functions as results. The functions
produced by operators are called derived functions.
Operators can process both primitive and defined
functions.

The operator reduction (denoted by I) takes a
function as operand and produces a related derived
function. Derived functions are the third class of
functions. What follows is an example of reduction
applying to the addition function producing the
summation function and applied to the maximum
function producing the largest of function :

+/1 3 4 2 5
15

Iii 342 5

5

If F is any function, then the expression FI ABC
is equivalent to the expression cA F B F C.

Reduction also produces functions that operate on
arrays of higher rank:

BROWN AND CROWDER 437

M
1 2 3 4
5 6 7 8
9 10 11 12

+/M
10 26 42

ri M
4 8 12

The operator each (denoted by ..) applies its func
tion operand to each item of an array. For example,
the interval function "1" can be combined with
each to produce a derived function that produces
arrays of arithmetic intervals:

DI SPLAX 15

~ 2 3 451

DISPLAX 1 " 1 5

['0 ~ 0 ~2341
E

~ 2 3 4 51 I

Each can produce derived functions that take two
array arguments. For example, each applied to the
reshape function "p" produces a function useful for
building structured arrays:

DISPLAX (d) p" ' ABC'

['G~ §J I
E---- - - -

DISPLAX 3 p" , ABC '

[' ~ §J §J I

E

In the second expression above, the left argument
3 was replicated by scalar extension to apply to each
item of the character vector right argument. Using
enclose to produce scalars for scalar extension can

438 BROWN AND CROWDER

give the following type of result:

DISPLAX 2 3 p ' ABCDEF'

GBCl
~

R.... 2 3 p ' ABCDEF'
DISPLAX (c3 4) p"R

.. CCCC
CCCC
CCCC

.. FFFF
FFFF
FFFF

E--- - - - ---------J

Each can apply to defined functions exactly as it
applies to primitive functions. Next, the AVG func
tion is applied to a vector of numeric vectors to
produce a vector of averages:

DISPLAX A

476[' ~ 5 1 E4J
E

[i . 75 2 .95 5 .45 12 .851

AVG" A
5 3 6.25

This expression applies the program AVG over and
over again to the items of data in A. This is close to
the definition of iteration. The APl2 each operator
is the array analogue of iteration. It permits the
writing of many iterative computations without a
loop.

APL2 examples

The following sections present three different ex
amples that illustrate APL2 programming style. Use
of APL2 is by no means restricted to these kinds of
applications.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

A graphical example of the each operator. Earlier
it was seen that the each operator was useful for
introducing structure into nested arrays. Here each
is used at a higher level for drawing pictures.

The following APL2 defined function draws a circle
on a graphics device:

[OJ DIAM CIRCLE LOC
[1J A SIMPLE CIRCLE FUNCTION
[2J ' GSMOVE' GDMX LOC- .5 xDIAM
[3J ' GSCOL' GDMXtCLR_WHL~1¢CLR_WHL

[4J 'GSARC' GDMX LOC ,360

The left argument of CIRCLE is a single number,
the diameter of the circle to be drawn. The right
argument is a pair of numbers giving the x-y coor
dinate of the center of the circle. The function con
sists of calls to the GDMX function that is supplied
with IBM's APL2 Program Product. GDMX uses the
Graphical Data Display Manager (GDDM*) 9 to per
form graphics primitives, but any graphics system
could be used in a similar manner."

As an example, an expression to draw a single circle
using the CI RCLE function is:

2 CI RCLE 0 0

Figure lA shows the resulting picture.

Consider now the requirement to draw several cir
cles using the basic circle-drawing routine. In most
programming languages, this would involve design
ing and writing a higher-level program to stage data
for repetitive calls to CIRCLE. In APL2, this addi
tional structure can be incorporated into the data
instead of the program. For example, consider the
following expression:

2 CIRCLE" - 4 0 4, "0

Figure IB shows the graphical result of executing
this expression.

In this example, we are using CIRCLE with the each
operator. The resulting function is applied to the
vector of pairs in its right argument (recall right to
left execution). Since the left argument is a scalar
number, all circles are drawn the same size.

In the next example, CIRCLE is used with a vector
left argument of sizes and a scalar right argument
indicating locat ion:

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

Figure 1 Result of drawing one , three , and five circles

B

c

o
0 0 0

(15) CI RCLE" cO 0

The resulting arrangement of concentric circles is
shown in Figure 1C.

The final example involves a more compl icated cal
culation. Building the right argument to CI RCLE is
similar to the example shown in Figure IE-we are
constructing a vector of pairs representing loca
tions of multiple circles. The y coordinate of each
pair is computed using 10, the A PL2 function for
mathematical SINE. Figure 2A shows the result of
DISPLAY on the first two pairs:

T~ . 2 x-45+1 70

T~T , " 3x10T

Figure 2B is the graphical result of executing the
final expression:

1. 5 CIRCLE" T

This example demonstrates the power of APL2 ar
rays. The use of hierarchical arrangement allows
the representation of complicated data structures .
But in addition, the structure of data arrays re
places the unnecessary complicating programming
structure that clutters application programs; com-

BROWN AND CROWDER 439

Figure 2 Result of drawing multiple circles

A
T<- .2x-45+l70
T<-T ," 3x10T

DISPLAY 2fT

[>,a-1. 7547515791 La .6 -2 .2031912941

€---- - --------------'

plexity is moved out of programs and into the data.
There is no explicit loop here; there is no IF . . . THEN
. .. ELSE. The structure is in the data, not in the
program. This simplifies application design, imple
mentation, and maintenance, and encourages mod
ular design and program reuse.

Representing and manipulating sparse arrays.
Many computational applications are required to
create, manipulate, and process sparse arrays whose
elements are mostly zero. It is wasteful in both
memory and computation to process these data as
full arrays. In many cases, especially for large ar
rays, structures can be used to encapsulate these
data in a sparse format. APL2 does not have a
built-in sparse array representation, but depending
on the application and the nature of data manip
ulation and calculation required, sparse structures
can be represented by APL2 nested arrays.

A sparse vector can be represented as a two-item
nested array; the first item contains the indices of
the nonzero coefficients in the vector, and the sec
ond item contains the coefficients themselves. For

440 BROWN AND CROWDER

example, the vector V has most of its elements equal
zero:

V
o 0 0 0 4 0 0 0 0 0 0 2 000 3

Th e function SIIPACK packs vectors into a sparse
format:

[0] Z~SIIPACK V;I
[1] R PACKS A FULL VECTOR <V>
[2] R INTO A SPARSE VECTOR <Z>
[3] I~V;iO

[4] Z~(I/lpV)(I/V)

Now the result of:

SII~SIIPACK V

is:

DISPLAY SII

16[' ~ 12 1 C
E-----------'

A common computational operation on arrays is
inner product. The following example shows a func
tion SIP performing an inner product between a
full vector FV and a sparse vector SII. In APL2 terms,
this should give th e same result as the inner product
of FV and the non sparse representation of SII:

[0] Z~V SIP S
[1] R INNER PRODUCT OF
[2] R FULL VECTOR <V>
[3] R WITH SPARSE VECTOR <S>
[4] Z~V[tS]+ .x2~S

FV
14332 144 5 2 3 5 1 1 3 4

FV SIP SII
30

FV + .x V
30

A sparse matrix can be represented as a list, each
item of which is a sparse vector representing a col
umn of the matrix. The array SM represents a matrix
with three rows and four columns:

pSM
4

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

p"SM
2 2 2 2

Next the four items are arranged in a two-by-two
matrix so that the result of DISPLAY fits on the
page , as shown in Figure 3.

The function derived from SIP using each can be
used to premultiply SM by a full vector:

(c1 3 2) SIP" SM
7 .3 7 .8 13 .5 7 .2

This calculation should give the same result as per
forming the analogous calculation with the full ma
trix. In the next example, the function UNPACK re
stores sparse matrices to full two-dimensional APL2
matrices. Inner product on full arrays is performed
by the derived function +. x :

UNPACK SM
1. 1 1.2 0 0
o 2 .2 2 .3 2 .4
3 .1 0 3 .3 0

1 3 2 + .x UNPACK SM
7 .3 7 .8 13 .5 7 .2

Simulation and analysis of dice throws. A data
analysis example is discussed next, illustrating the
functional programming style of APL2. In this mode
of APL2 application design , a series of computa
tional steps are each performed by separate func
tional units, with the result of one functional unit
becoming the operand of the succeeding functional
unit. Because functional units are independent,
they can be "unplugged" and replaced by function
ally equivalent units; this allows experimentation
with various implementation strategies and fine
tuning of the application.

The function DI CE is used to simulate a prescribed
number of rolls of a pair of dice:

[0] Z+-DICE N
[1] R ROLL DICE <N> TIMES
[2] Z+-?(N ,2)p6

Now if the number of rolls of the dice are 5 and 8:

DICE 5
4 1
1 4
2 4
5 2
5 6

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 A two-by-two matrix

DISPLAY 2 2pSM

1

[~ ~1 3.11 I[E'J ~ .2 2.21
€ €

1[0 B I
€

€-----------------"

DICE 8
2 6
5 2
3 3
1 3
3 5
4 3
6 4
2 5

The argument N is the number of rolls to simulate.
The result of executing DICE is an N-by-2 matrix,
each row representing a dice roll. DICE uses the
APL2 function roll (denoted by ?), which produces
random numbers. In this particular application, the
elements of the result are picked from the pseudo
random uniform distribution in the range 1 to 6.

Next, the function COUNT can be used with DI CE to
summarize the results of a series of dice rolls:

[0] Z+-COUNT A
[1] R COUNTS DICE THROWS IN <A>
[2] Z+-+/A
[3] Z+-+/(1+111)0 .=Z

Now the expression:

A+-DICE 7

results in:

BROWN AND CROWDER 441

Figure 4 Result of 36 dice throws

ff3
U
Z
W
0::
0::
::l
U
g

10 ---,------------------------

B

4 5 6 7 B 9 10 11 12 2 3
RESULTS

A
2 5
2 4
2 5
6 3
1 1
4 2
5 2

The argument to COUNT is a dice-roll series pro
duced by DICE. COUNT computes the sum of the
two dice values for each roll, and tabulates the to
tals of each sum in the series. The result Z is an
integer list of length 11; Z[1] contains the number
of 2s rolled in the series, Z[2] contains the number
of 3s, and so on. The sum of Z equals the number
of rolls.

COUNT A
1 0 002 3 0 1 0 0 0

COUNT DICE 50
2 1 2 9 6 10 9 6 4 1 0

COUNT DICE 500
14 33 37 50 55 89 73 42 58 22 17

Continuing the discussion, the function EXPECT
can be used to compute the expected number of
dice-pair sums for a prescribed number of rolls:

[0] Z~EXPECT N;T
[1] A EXPECTED NUMB ER OF EACH SUM
[2] A FOR <N> DICE THROWS
[3] Z~Nx(TL¢T~111)+35

The argument EXPECT is the number of dice rolls.
The result Z is a list of length 11; Z[1] gives the
number of expected occurrences of 2s in N rolls,
Z[2] gives the number of expected occurrences of
3s, and so on. Some examples are:

EXPECT 36
1 2 3 4 5 654 321

EXPECT 72
2 4 6 8 10 12 10 8 6 4 2

442 BROWN AND CROWDER IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 5 Result of 100 dice throws

ffl 20 --r------------r---r-,.-----r------------~

o
Z
w
a:
a:
:::>
o
o
o

15

10

5

2

RESULTS

3 4 5 6 7 B 9 10 11 12

EXPECT 500
13 .9 27 .8 41 .7 55 .6 69.4 83 .3 69 .4

55 .6 41 .7 27 .8 13 .9

Finally, the function DRIM can be used to plot
the actual and expected results of a dice roll series .
The main component of DRIM is the CHARTX func
tion distributed with IBM's APL2 Program Product.
DRIM accepts a two-item list. The first item is the
actual results of dice-roll simulations as generated
by DICE and COUNT; the second item is a list of
expected dice-roll results as computed by EXPECT:

[OJ DRIM D;FORMNAME
[1J ~ CHARTS ACTUAL AND EXPECTED
[2J ~ DICE ROLLS
[3J FORMNAME~'DICE'
[4J (1+111)CHARTX~D

The following expression simulates 36 dice throws
and produces the picture in Figure 4:

DRAW (COUNT DICE 36) (EXPECT 36)

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

Figure 5 shows the result of the following expres
sion with 100 dice throws.

DRIM (COUNT DICE 100) (EXPECT 100)

Note that as the number of simulated rolls in
creases, the actual occurrences come closer pro
portionately to the expected occurrences, giving an
empirical confirmation of the statistical law of large
numbers. The absolute deviation of actual from ex
pected grows as the number of rolls increases. The
following expression simulates 1000 dice rolls and
the result is shown in Figure 6:

DRIM (COUNT DICE 1000) (EXPECT 1000)

The functional programming style of APLZ encour
ages the construction of complicated programs
from less complicated subprograms. This ability,
derived from the APLZlanguage syntax, can result in
shorter application development times and more
error-free code. In addition, it can simplify appli
cation maintenance and encourage code reuse .

BROWN AND CROWDER 443

Figure 6 Result of 1000dice throws

2 3 4 5 6 7 8 9 10 11 12
RESULTS

ffJ
o z
w
a::
a::
::::l

8150
o

100

50

Conclusion

APL2 is one of the most powerful array processing
notations in existence. But this power does not
come only from the existence of structured data.
Much more important is the ability of the structural
data to control the flow of execution of a program.
The structure of the data determines how algo
rithms are applied rather than determining the con
trols that the programmer inserts into a program.

This is why APL2 programs can be very small and
easy to write and maintain. The complicated struc
ture that sometimes permeates programs and
makes them large and hard to manage is removed
from the program and placed into the data, leaving
programs that more accurately reflect the user 's
vision of the problem solution. APL2 is one alter
native solution to structured programming.

' Trademark or registered trademark of International Business
Machines Corporation.

444 BROWN AND CROWDER

Cited references and note

1.	 K. E. Iverson,A Programming Language,John Wiley & Sons,
Inc., New York (1962).

2.	 A. D. Falkoff and K. E. Iverson, APL\360: User's Manual,
IBM Corporation (1968).

3.	 J . A. Brown,A Generalization ofAPL, Ph.D. thesis, Depart
ment of Computer and Information Science, Syracuse Uni
versity, Syracuse, NY (1971), Clearing House 74hOO4942
AD-770488./5.

4. APL2 Programming: Language Reference, SH20-9227, IBM
Corporation (1988); available through IBM branch offices.

5.	 Stanley Jordan and Erik S. Friis, "The Foundations of Suit
ability of APL2 for Music," IBM Systems Journal 30, No.4,
513-526 (1991, this issue).

6. M. Alfonseca, "Advanced Applications of APL: Logic Pro
gramming, Neural Networks, and Hypertext," IBM Systems
Journal 30, No.4, 543-553 (1991, this issue).

7.	 A. Aharon, A. Bar-David , B. Dorfman , E. Gofman, M. Lei
bowitz, and V. Schwartzburd , "Verification of the IBM
RISC System/6000 by a Dynamic Biased Pseudo-Random
Test Program Generator," IBM Systems Journal 30, No.4,
527-538 (1991, this issue).

8.	 J. R. Jensen and K. A. Beaty, "Putting a New Face on
APL2," IBM Systems Journal 30, No.4, 469-489 (1991, this
issue) .

9.	 GDDM Version 2 General Information , GC33-0319, IBM
Corporation (1990); available through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

10. The precise definition of this function is not relevant to the
discussion; however, an explanation of what the function
does follows: Line 1 is an APL2 comment. Line 2 puts the
center where requested. Line 3 selects a color. In GDDM
colors are indicated by integers. This line rotates a vector of
integers and uses the leading one as the color of this circle.
Each time the function is called, it chooses the next color in
sequence. Line 4 draws an arc of 360 degrees (i.e., a circle).

Accepted for publication June 21, 1991.

James A. Brown IBM Santa Teresa Laboratory, 555 Bailey
Avenue, San Jose, California 95150. Dr. Brown is currently IBM's
chief APL architect in the Technical Computing Solutions De
partment in Kingston, New York, and also in the APL Products
Department in IBM's Santa Teresa Laboratory. He is respon
sible for the overall design of IBM APL systems and for mar
keting strategies. Dr. Brown received his Ph.D. in computer and
engineering science from Syracuse University and his graduate
thesis became the basis for the IBM APL2 products. He is a
member of the Computer Science Accreditation Board that cer
tifies computer science curricula at universities, and he is the
language editor for the ACM Quote Quad.

Harlan P. Crowder IBM Corporation, 1530 Page Mill Road,
Palo Alto, California 94304. Dr . Crowder is currently a consult
ant in the areas of application and technology with IBM's Tech
nical Computing Systems Department. He is responsible for
support and services for technical computing technology, in
cluding mathematical sciences, optimization, computer lan
guages, and applications ranging from high performance com
puting to analytical business solutions. Dr. Crowder received a
B.S. in chemistry from East Texas State University, an M.S. in
operations research and industrial engineering from New York
University, and a Ph.D. in computer science from the City Uni
versity of New York. He is a member of the ACM, the Institute
of Management Sciences, and the Operations Research Society
of America .

Reprint Order No. G321-5444.

IBM SYSTEMS JOURNAL, VOL 30. NO 4. 1991 BROWN AND CROWDER 445

Extending the domain
of APL

This paper explores connectivity mechanisms
between APL and other languages and
applications available on a modern computer
system. The design, implementation, and
application of APL facilities such as shared
variables, auxiliary processors, external names,
file subsystems, and namespaces, as they are
implemented in IBM's APL2 product, are
discussed and compared.

D ue to the persistence and insight of men like
Iverson and Falkoff, in APL we are blessed

with a language which, after more than 25 years of
use, is still elegant, concise, precise, general, usable,
and machine-independent.

The definition of APL is purely abstract: the
objects of the language, arrays of numbers and
characters, are acted upon by the primitive func
tions in a manner independent of their repre
sentation and independent of any practical in
terp retation placed upon them. The advantages
of such an abstract definition are that it makes
the language truly machine independent, and
avoids bias in favor of particular application
areas.'

Despite the importance of machine-independence,
a language that is used for computer programming
cannot practically exist without access to the com
put ing environment in which it runs. Further, to be
useful in a wide variety of applications, such a lan
guage must also be able to access many of the other
tools, libraries, rou tines, and subsystems available
in that computing environment.

In the last 25 years, APL implementations have
grown significantly in their ability to interact with

446 WHEATLEY

by M. T. Wheatley

the computing environment, including its associ
ated software tools. This paper reviews the key fa
cilities in APL that provide this function, briefly fo
cusing on their history, objectives , characteristics,
benefits, and problems. The discussion is centered
around IBM implementations of APL.

Description of facilities

Early APL systems. When APL was first imple
mented on the IBM System/360* in 1966, it provided
two mechanisms that allowed access to the envi
ronment: system commands and l-bearns. Most APL
users are familiar with system commands, since
their use has survived and is widespread in current
APL implementations. l-bearns, on the other hand,
are less familiar.

The use of the dyadic I-beam primitive was first
introduced in APL\360 to allow execution of IBM Sys
tem/360 instructions from within an APL program.
It was considered an ad hoc facility for the use of
system programmers, and was never formally ac
cepted as a primitive or made part of the APL lan
guage. Nonetheless, I-beams were very useful and
the facility was extended in later APL implementa
tions. Monadic and dyadic definitions provided ac
cess to the underlying computing system. The def
inition of a dyadic I-beam required an integer left
argument that specified the subfunction to be per

©Copyright 1991 by International Business Machines Corpora
tion . Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

formed, and a right argument and result that varied
by subfunction. Monadic I-beams, whose right ar
gument specified the subfunction, simply returned
a subfunction dependent result.

In APL\360 and APLSV , the use of dyadic l-bearns was
restricted to privileged users and provided such
functions as user and system control and access to
memory. The monadic l-beams provided statistics
on various aspects of the systems and access to cer
tain key system variables such as time, date, and
terminal type. All of the nonprivileged l-beams
were replaced by system variables in later APL im
plementations (see Table 1).

Since the earliest implementations of APL, there
have been requests from users for linguistic access
to many of the functions provided by system com
mands. However, it was felt that the useful, usable,
and rudimentary syntax of system commands did
constitute a language-one that was incompatible
with APL and had no constructive potential. I
Locked functions were therefore provided in
APL\360 to allow applications to perform such tasks
as setting index origin, or the random seed. These
locked functions contained l-bearns that performed
the actual work. Again, this provided an ad hoc
solution to the problem. The long-term solution
was implemented with the introduction of system
functions and system variables in APLSV.

System functions and variables. In APLSV, two new
types of objects, system functions and system var
iables, were introduced into the APL language.
These objects, distinguished by names that start
with the character 0,2 are defined in the implemen
tation and are available in every clear workspace. In
many senses, they are similar to primitives insofar
as they provide specific predefined functions .

When system functions and variables were intro
duced into the APL language, they were introduced
cautiously and only a few were provided. Unfortu
nately , their introduction was interpreted by some
implementers as the long overdue solution to a se
rious problem-the problem that APL was limited,
particularly in its access to system facilities. A num
ber of APL implementers immediately reacted by
introducing a large number of new system functions
and variables. These functions and variables were
introduced without much forethought, with little
consistency in syntax or semantics, and with little
compatibility between implementations. It was ini
tially believed that system functions and variables

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Table 1 Nonprivileged mona dic I-beams

I-beam Description Replaced
By

19 Cumulative keying time DAr
20 Time of day OTS
21 Compute time since sign on DAr
22 Free space in workspace DWA
23 Number of users signed on OUL
24 Elapsed time since sign on DAr
25 Current date DTS
26 First value in line counter OLC
27 Line counter vector OLC
28 Terminal type OTT
29 User account number DAr

were not part of the APL language, so implement
ers , perhaps installations, and maybe even individ
ual users were free to invent as many as they
pleased. System functions and variables, however,
are very much a part of the APL language, as is
demonstrated (in hindsight) by their inclusion in
the APL standard. They now provide one of the
more serious impediments to compatibility and
portability.

Little thought was given to which functions should
be provided as system functions, as primitives, or by
means of other mechanisms. Very little guidance on
this subject was provided to implementers. Func
tions such as format have been widely implemented
both as primitives and system functions. Perhaps
they are most appropriately neither; perhaps they
should be defined functions. In the rush to provide
commonly used, "omnipresent" functions with ad
equate performance, implementers have clearly
gone overboard with system functions and varia
bles. Fortunately, there have been no system op
erators introduced to date.

Component file systems. The need for file I/O was
recognized as a key requirement in APL systems,
before the introduction of system functions and
variables. Component file systems were developed
to fill this need and access to them was provided
with locked functions that used the I-beam primi
tive. These locked functions were replaced with sys
tem functions soon after the introduction of those
facilities. A typical component file system adds
about 20 system functions to the language.

Component file systems provide facilities that allow
APL arrays to be stored in and retrieved from ex
ternal files. They are designed to be fast, straight-

WHEATLEY 447

forward , and simple to use in APL applications.
They are not primarily designed to provide mech
anisms that allow data interchange, via files, with
non-APL systems. The file and record formats im
plemented in component file systems are typically
complex and difficult to read or write from other
high-level languages.

Shared variables and auxiliary processors. The
introduction of shared variables with APLSV was
motivated by the same need for file I/O facilities.
Lathwell, Falkoff, and others who worked on this
problem recognized that a primitive function or sys
tem function solution would eventually become
unmanageable, particularly if a variety of access
methods and file formats were to be supported:

Most programming languages approach commu
nication and storage problems by defining ex
plicit communication primitives such as READ
and WRITE to transfer information. These spe
cialized primitives, used in conjunction with de
clarative statements and job control languages,
result in programs which contain file-handling
details irrelevant to the algorithm, and are
strongly dependent on host operating systems
and file structures. This approach was deemed
inappropriate for APL because it conflicted with
many of the principles that guide APL design; in
particular, it conflicted with the requirement for
machine-independent theoretical definitions of
primitive functions. 3

. . . there is a high cost associated with the use of
primitive functions for communication, as is the
rule in most programming languages. This cost
takes the form of complications in both syntax
and semantics, and follows from the fact that in
any language the arguments of a primitive func
tion must be objects in the language. Thus, when
functions like READ and WRITE operate on a va
riety of files, these files must necessarily be in
cluded in the language as additional constructs.
The situation can become more and more com
plex, to the point where simple input and output
statements are no longer adequate, and auxiliary
statements, such as data declarations, must be
introduced. These complications then make the
language costly to implement, and costly to use."

Further, Lathwell and others working on the prob
lem realized that the requirement was not only for
file va, but for other types of communication with
components of the underlying computing facility. It

448 WHEATLEY

was decided to implement a solution for the general
communication problem, and to use that solution
to implement file I/O facilities , among other things.
The solution was shared variables, whose use had

With APL2, variables may be
shared between APL users

on the same computer.

been originally postulated to describe channel ar
chitecture in the APL formal description of the IBM
System/360.5

A shared variable differs from a normal APL vari
able insofar as it is "shared" or owned simulta
neously by two "partners" or processes. Each part
ner can set or use the variable; its value at any given
time reflects the last value set by either partner.

A control mechanism is provided to synchronize
access to the variable, if such control is desired by
the partners. If a shared variable is left uncon
trolled, each partner is free to set or use the variable
at will. With access control, however, protocols
such as "master/slave" or "message passing" can be
easily established.

Declaration, control, and management of shared
variables is provided with a set of system functions.
Variables can be shared between APL users or with
other processes, referred to as "auxiliary proces
sors," in the computing environment. Typically,
auxiliary processors are programs written in a lan
guage other than APL that are designed specifically
to share variables with APL applications and to pro
vide specialized functions, such as file va, to those
applications.

With APL2, variables may be shared between APL
users on the same computer, between APL users and
an auxiliary processor, or for that matter, between
auxiliary processors. Auxiliary processors that exist
in the APL user 's address space are called "local"
processors, and normally share variables only with
that APL user. Auxiliary processors may also be im
plemented as multiservers that exist in separate ad
dress spaces and share variables simultaneously

IBM SYSTEMS JOURNAL. VOL 30. NO 4, 1991

with more than one APL user. Such auxiliary proc
essors are called "global processors," and can pro
vide facilities such as shared file support to a group
of APL users.

Experimental facilities have been developed that
allow variables to be shared between partners on
separate computing facilities that are linked by tele
communication facilities.

Shared variables are handled by a component of the
APL system called the "shared variab le processor."
This component is invoked when either partner at
tempts to set or use a shared variable. In most APL

Shared variables were designed to
provide a general, asynchronous

communication facility.

implementations, the shared variable processor
uses an area of memory referred to as "shared
memory" to temporarily hold the value of a shared
variable until both partners are aware of it. Shared
memory is also used to hold control and manage
ment information, such as identification, state, and
access control for the shared variables and the part
ners sharing them .

The initial implementation of shared variables in
APLSV supported communication between APL us
ers, and communication with auxiliary processors.
One auxiliary processor, TSIO, was provided with
the system, and it was expected that installations
would write others as required. TSIO provided se
quential and direct access to files maintained by the
underlying operating system. It was particularly
useful for exchanging files with applications written
in other languages, but fell short in terms of func
tion and usability when compared with the more
special purpose component file systems.

There is no technical reason that a component file
system should not be implemented with shared var
iables and an auxiliary processor. In fact, such im
plementations eventually emerged. At first, propo
nents of the component file system refused to
consider the use of shared variables. In their de-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

fense, it should be pointed out that the use of
shared variables was often difficult and complex
before general arrays were introduced into the lan
guage . Auxiliary processors typically required
paired variables and sometimes multiple modes of
communication.

Further complicating the issue and polarizing those
involved was the fact that many of the auxiliary
processors that emerged were inelegant and inher
ently sequential in their communication protocol.
Component file systems, on the other hand, typi
cally presented a more elegant and usable interface.

Finally, it should be remembered that shared var
iables were designed to provide a general, asyn
chronous communication facility. It was originally
envisaged that they would be used within cover
functions to implement a specific communication
protocol, or access method interface. Because these
cover functions were not "omnipresent" or partic
ularly good performers, however, and because most
of the required communication involved simple
synchronous protocols (e.g., READ, WRITE), the sys
tem function approach remained a more desirable
alternative for many users.

When general arrays were introduced into the lan
guage, the use of shared variables and the imple
mentation of auxiliary processors became consid
erably simpler. The command and data could be
packaged together in a single WRITE request, and
the return code and data could be packaged to
gether for READ . Paired shared variables, with all of
their associated complications, were no longer re
quired.

Name association and external functions. Thus far,
we have dealt mainly with issues involving file 110.
Since the emergence of APL there has been an ad
ditional requirement voiced by users for facilities
that allow non-APL programs to be called from APL
and to exchange data with APL. Over the years there
have been a number of attempts to provide such
facilities, typically with specialized auxiliary proces
sors. While these auxiliary processors provided at
least some of the needed function, their use never
became widespread, probably for the following rea
sons:

• The auxiliary processors were difficult and cum
bersome to use. Their use depended on shared
variables for passage of control and data . Typi-

WHEATLEY 449

cally multiple variables had to be shared, and
typically the interface was complex.

•	 The shared variable interface used was inher
ently asynchronous, while the primary require
ment was for a synchronous interface to subrou
tines written in languages other than APL.

•	 Passing argument data was difficult. The shared
variable processor sometimes imposed limits on
the size of data that could be passed to a sub
routine. Further, subroutines in other languages
often required multiple heterogeneous argu
ments that were difficult to package and send
across the shared variable interface.

•	 It was difficult to access routines that were not
specifically designed to interface to APL. Existing
libraries of subroutines required argument data
types not supported by APL or specialized inter
face conventions.

General arrays presented a practical solution to
some of these problems. They allow parameter
passing on subroutine calls with a syntax amazingly
similar to that commonly used in other languages,
as shown in the following example.

APL:

A+-l0 20 30
B+-'ABCDE'
C+-1. 2 1. 3
PROCESS (A B C)

FORTRAN:

INTEGE R*4 A(3)/1 8 28 38/
CHAR*5 B/'ABCDE' /

REAL*8 C(2)/ 1.2 .1 .3/

CALL PRO CESS(A,B, C)

When this was recognized, it became clear that sub
routines written in other languages could be treated
syntactically as locked APL functions. To complete
the design of this facility, "associated processors"
were invented and the system function DNA was
introduced to declare a name to be external to APL.

ONA is used to declare the name of a variable, func
tion, or operator to be external to APL and to be
associated with a specified processor. When that
name is subsequently encountered during execu
tion of an APL expression, control is passed to the
associated processor to perform the computation
required to reference or specify the variable, or to
execute the function or operator with the argu

450 WHEATLEY

ments and operands provided. On completion of
this synchronous call to the associated processor,
execution of the APL expression continues with any
results returned.

The processing to be performed on an external
name when control is passed to its associated proc
essor is not defined in the APL language. An APL
system may provide many associated processors to
deliver different sorts of function to the APL users.
When this facility was initially introduced in APL2
Version 1, Release 2, two associated processors
were supplied to provide support for calls to rou
tines written in FORTRAN, assembler, and REXX.
Since that time, users have used these processors to
call a wide variety of routines and languages in
cluding PUI, COBOL, C, and Pascal.

The problem of argument coercion to the data
types expected by the external routines in languages
like FORTRAN was solved by providing facilities in
the associated processor to allow descriptive infor
mation to be associated with any of the called rou
tines. This information, among other things, pro
vides descriptions of the expected arguments and
their data types for an external function. When the
function is called, it is used to determine if the
expected arguments have been provided, and if the
data types of those arguments need to be trans
formed to data types expected by the external func
tion. A similar process is used to transform results
from the external function to data types acceptable
to APL.

One of the real advantages of this solution to the
requirement for calls to non-APL routines is that
these external routines look just like APL locked
functions. Thus it is possible to write an application
entirely in APL and then replace portions of it with
routines written in other languages; or it is possible
to design a heterogeneous application without do
ing damage to the syntax of the APL portions of that
application.

In APL2 Version 1, Release 3, the facilities support
ing external functions were extended to allow ex
ternal functions called from APL to issue calls back
to APL. Using these facilities, non-APL routines can
request execution of APL functions or operators, or
can reference or specify APL variables. This exten
sion could be particularly useful for external opera
tors whose operands might be APL functions , or for an
APL compiler that might choose to compile parts of an
application but use APL primitives for other parts.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Recently, an enhancement to APL2 Release 3 was
made to allow non-APL application programs to
invoke APL and issue calls to it. Using these facil
ities, applications written in a wide variety of lan
guages can conveniently and simply execute APL
functions, passing arguments to them and receiving

Namespaces represent an
important advance in APL

systems.

results from them. Using the same facilities, the
non-APL application can also reference or specify
APL variables, or pass control to the APL interactive
environment.

APL names paces. When external functions and as
sociated processors were designed, the interface
was structured such that calls to routines written in
APL could be accommodated. In particular, ambiv
alent functions and operators were not excluded in
the interface syntax.

After considerable discussion and experimentation,
it was decided to use this facility to address the
problems of name scope isolation and shared code
for APL applications. 6

With an extended interface provided in APL2 Re
lease 3, it is possible to declare an APL variable,
function, or operator to be external to the work
space and to exist in another "namespace." A
namespace differs from an APL workspace in two
ways. First, it is formatted to allow it to be handled
by the operating system facilities used to load pro
grams, rather than in the normal format of a saved
workspace. Second , it is accessed in a read-only
mode; the results of computations are never actu
ally stored in a namespace, but rather in the user's
active workspace from which the namespace was
accessed.

Like the active workspace, each namespace defines
a name scope. A name scope is simply a set of
names of variables, functions , and operators and
the values and definitions associated with them .
Users are able to declare names to exist in a

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

namespace, in much the same way that external
function names are declared with DNA. When the
name of an external APL function, operator,
or variable is encountered during the execution
of an APL expression , the system locates the
namespace in which it exists and switches to the
name scope of that namespace in order to process
that name.

For an external APL function, this means that ar
guments to the function are provided from the call
er's name scope, but names referred to in the body
of the function come from the namespace's name
scope. For an external APL variable, it means that
the value comes from the namespace name scope
when the variable is referenced, and is set in the
name scope of the namespace when the variable is
specified.

Since namespaces are accessed on a read-only ba
sis, they may be shared between users. New or mod
ified values or function definitions in a namespace
name scope are actually saved in the user 's active
workspace. Thus, if more than one user accesses the
same namespace, the system behaves as if each has
its own private instance of it. Further, the state of
the namespace, if modified as a result of execution,
is maintained and can be saved and reloaded along
with the workspace with which it is associated.

Namespaces represent an important advance In

APL systems:

• They provide a simple, convenient, and powerful
way to segment applications and to deal with the
problems of "name pollution" common in large
applications.

• They allow dynamic	 access to segments of an
application without)LOADor)COPY commands.

• They provide	 a mechanism where application
programs can be shared by multiple simulta
neous users; this is particularly important for
large popular APL application packages.

Comparison of facilities

As previously described, there are three major fa
cilities provided in the APL language that allow ac
cess to things outside the APL workspace: system
functions and variables, shared variables, and name
association.

Had all three of these facilities been proposed for
incorporation into the APL language at the same

WHEATLEY 451

time, all three probably would have been accepted.
Clearly, there are advantages and useful applica
tions for each of the facilities. It should also be clear
that there is a substantial amount of overlap in the
applications for which each facility has been used.
Many applications could be implemented with any
one of the facilities, and the specific choice that was
made in many cases reflected the state of APL im
plement ations at the time, rather than any partic
ular reason that one facility was better for an ap
plication than another.

System functions and variables offer the advantage
that they are "omnipresent," and create no name
conflicts with application-defined names. A unique
function or variable, however, is required for each
distinct operation. Unless restrictions are placed on
implementers, this will inevitably lead to a large and
unmanageable number of system functions and var
iables, and conflicting names between implemen
tatio ns. The APL standard defines about 20 system
functions and variables; APL2 defines 41; another
popular implementation defines over 120.

Some system functions and variables are clearly
part of the language and are required for execution
of most applications. DID, OCT, and ONC are cer
tainly in this class. Further, it is appropriate that
they be implemented as system functions and var
iables rather than primitives, because they have to
do with the implementation of APL as a program
ming language, rather than as a machine-indepen
dent language. Other functions like OSVO or DNA
must be implemented as system functions if they
are to provide access to facilities that in turn pro
vide extra-linguistic function .

It is not clear, however, that system functions and
variables like ODL, OARBOUT, OAI, and OUL should
be part of the language. None of these is required
for proper operation of the primitive functions and
each could easily be implemented as an external
function or with shared variables.

There are no explicit rules or guidelines to tell im
plementers whether a facility should be imple
mented as a system function , a primitive , or an ex
ternal function. There is some consensus that
primitive functions should deal only with abstract
objects (arrays of numbers and characters), while
management of the APL environment or interface
to things outside the APL environment should be
provided with nonprimitive functions. All of the
system functions defined in the APL standard or

APL2 have to do with APL as a computer program
ming language, and thus are appropriate nonprim
itives. There are, however, a number of primitive
functions like .i. , ~, ?, and fE which might better be
implemented as something other than primitives.

The distinction between the shared variable and
name association facilities is a little clearer. Shared
variables implement a general-purpose, asynchro
nous communication facility between cooperating

There is some consensus that
primitive functions should deal

only with abstract objects.

but independent processes. Name association, on
the other hand, allows the processing associated
with function call and variable reference or speci
fication to be handled in a synchronous manner by
an external processor and in a name scope other
than the user's active workspace.

Because system functions and shared variables pre
dated the implementation of name association,
these earlier facilities were sometimes used to im
plement function that is more appropriately han
dled by name association. File I/O is a good exam
ple. There is a need for access to many different file
subsystems from APL, which often require the use of
different syntax and arguments and whose use may
be desirable in one application but not in another.
Typically, the access to file subsystems is most con
veniently implemented with synchronous subfunc
tion calls, rather than with the more complicated
shared variable interface. Because of the diverse
requirements for functions to handle these inter
faces and because of the number of functions re
quired for full support of an access method, it
makes most sense to implement these functions as
external functions rather than system functions.
One final advantage of the external function ap
proach is that it is possible in some cases to change
access methods by merely changing the name as
sociation of the external functions.

Another class of functions that are more appropri
ately provided as external functions include ?, fE,

452 WHEATLEY IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

dyadic "W, and OFMT. Each of these functions im
plements one of a set of acceptable solutions. For
example, ? generates random numbers with a flat
distribution. While this is acceptable in many ap
plications, there are certainly lots of other applica
tions where other distributions would be more
appropriate. Where functions exhibit this charac
teristic, they should be provided as defined or ex
ternal functions rather than primitives or system
functions.

Choice of the correct facility. From the foregoing,
it should be clear that the choice of a "correct"
facility for the implementation of a specific function
is not simple. There are no clear-cut guidelines, and
many new proposals fall into grey areas. Nonethe
less, there are some principles that should be kept
in mind when choosing a facility to implement spe
cific function: .

•	 APL is designed to be an abstract language whose
definition is machine-independent and need not
be associated with a computer system in any way.
Primitives in the language should adhere to these
principles.

•	 Primitives in the language should be useful
across a wide variety of applications and a wide
variety of users. Further, they should be general
and usable in conjunction with other primitives
to provide rich function.

•	 Function should not be implemented as primi
tive where only one of a set of commonly ac
ceptable solutions is implemented. Random
number generation is an example of such a func
tion. It is useful only if the particular mathemat
ical algorithm used is appropriate to the user 's
problem.

• System functions and variables are	 part of the
language. Users should be able to depend on
their availability across implementations. Use of
a system function or variable should not inhibit
the portability of an APL application.

•	 There is no such thing as a primitive variable.
Thus, variables such as 010 or OCT, which are
implicit arguments to primitive functions, are ap
propriately implemented as system variables.

• Functions that are	 needed to declare the ma
chine-dependent characteristics of an APL object
(such as "shared variable" or "external func
tion") are appropriately implemented as system
functions.

•	 Functions required to manage the contents of a
workspace , such as ONC, ONL, OCR, and OFX, are

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

appropriately implemented as system functions .
Care should be exercised in this area, however,
since other commonly accepted system functions
such as OTF can be easily defined based upon "W,

OCR, and OFX. Redundant function should be
avoided.

•	 The availability of external functions and varia
bles makes it possible to implement a great deal
of commonly used function with acceptable per
formance characteristics. In a large number of
cases, external functions and variables are a
more appropriate implementation vehicle than
system functions and variables.

•	 External functions use a synchronous interface
to facilities outside APL that can be thought of as
a subroutine call. Shared variabl es, on the other
hand, provide an asynchronous communication
channel and are more appropriately used where
this asynchronous characteristic is important.

Improvements and extensions

Given the opportunity to do it all again , there are
certainly some things that would be done differ
ently. In a perfect world, implementers would be
more clairvoyant and would easily choo se between
primitives, system functions, external functions,
and shared variables. Unfortunately, given the
broad base of existing users and their investment in
APL application code, it will be difficult to make any
radical changes in the short term. Existing facilities
will have to continue to be supported, probably for
a considerable length of time. We can hope, how
ever, that as new function is implemented, appro
priate facilities will be used, and that the benefits
inherent in the use of that new function will quickly
attract users.

With regard to the facilities themselves, however, a
number of improvements and extensions can be
envisaged:

•	 While the use of system functions and variables
to implement new function should be avoided in
many cases, the usability of system variables
could be improved with a simple extension. If
pass-through localization 7 was provided for sys
tem variables, certain operations,which are cum
bersome now, could be made much simpler. For
example, with pass-through localization a func
tion could easily capture its caller's 010 before
setting its own:

WHEATLEY 453

VZ+-L F R;OIO ;IO
[1] IO+-OIO A GET CALLER 'S OIO
[2] OIO+-O A BUT USE OIO+-O

•	 It is sometimes possible to make simple changes
to auxiliary processors that result in substantial
performance or usability improvements. For ex
ample, APLZ's AP 111 has been extended recently
to support matrix output. It could also easily be
extended to support matrix input.

•	 Variables in APL namespaces are currently cop
ied into the user's workspace before they are
used. It was just simpler to implement the system
that way. An obvious extension would allow ex
ternal variables to be used without first having to
make a copy of them. With such an extension,
namespaces could be used as data spaces housing
large, shared, in-memory tables of data.

•	 Shared variable processor facilities could be ex
tended to allow communication between physi
cal machines. Such an extension might be par
ticularly useful between APL applications run
ning in a client/server relationship, for example,
between workstation and host-based applica
tions.

•	 Similarly, associated processors could be devel
oped to generate remote procedure calls to cause
external functions to execute on a different phys
ical machine. Again, such an extension would be
particularly useful to a workstation APL imple
mentation where the power and facilities of a
host machine might be highly attractive. Such an
extension would allow true distributed process
ing without any change to the language or to
many existing applications.

•	 The introduction of external functions and as
sociated processors into APL represents an im
portant advance, allowing hybrid applications to
be constructed from a variety of tools or lan
guages. The facilities provided with APLZ are
nonetheless relatively rudimentary at the present
time and could be extended and simplified to
make the construction, testing, and maintenance
of such hybrid applications considerably simpler.

• As described in this paper, facilities to perform
input/output (e.g ., file I/O, screen I/O, etc.) have
been implemented in a variety of ways including
locked functions, system functions, shared vari

454 WHEATLEY

ables, and external functions. All of these imple
mentations introduce a degree of complexity to
the APL user who simply wants to treat data as
data, irrespective of the source or destination.
The introduction of large workspaces in APLZ
demonstrated that when all data used by an ap
plication could be maintained in APL variables in
the workspace, the complexity of the application
was often reduced substantially. The technology
provided with associated processors, if extended
in a few areas, could provide a mechanism that
would allow data on files, or for that matter, data
on the user's screen to be treated by the appli
cation as if the data were resident in variables in
the user's workspace. Indeed, limited forms of
this approach have been implemented in some
systems with shared variables or system variables
used to access external data. The use of external
variables and associated processors offers an op
portunity for generality and power not afforded
by earlier approaches.

These examples of improvements and extensions
range from suggestions that would make the facilities
in today's APL implementations more usable and
more valuable, to extensions that open up new op
portunities for APL applications and for the exploita
tion of system facilities from an APL environment.

Conclusion

APL was originally conceived as a mathematical no
tation used to express ideas and algorithms. When
it was later found to be a useful computer program
ming language, it became evident that its domain
had to be expanded to provide connectivity to sys
tems and facilities outside the APL workspace.

The mechanisms that provide connectivity between
APL and other facilities in the computing environ
ment have evolved over more than 20 years. There
is no evidence to suggest that this evolution is com
plete. In fact , it seems to have been accelerating
recently. In the first 20 years, we made many mis
takes by rushing to use existing interfaces to solve
all problems, often without a good understanding
of the interfaces and without attempting to deter
mine whether completely new types of interfaces
need to be developed. The unfortunate part of this
story is that users have made substantial invest
ments in application code that is often difficult and
costly to migrate to new and better facilities as they
emerge.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

The wise APL application developer develops an
application as a set of building blocks that can be
replaced as better technology becomes available.

• Trademark or registered trademark of Int ernational Business
Machines Corporation.

Cited references and notes

I.	 A. D. Falkoff and K. E. Iverson, "The Design of APL," IBM
Journal of Research and Development 17, No.4, 324-334
(1973).

2.	 Forma lly, the names of system functions and variable s may
begin with either Dor ~; however, to date no ~ names, other
than ~ itself, have been introduced.

3.	 R. H. Lathwell, "System Formulation and APL Shared Var
iables," IBM Journal of Research and Development 17, No.4,
353-359 (1973).

4.	 A. D. Falkoff, Some Implications of Shared Variables, Tech
nical Report 02.688, IBM San Jose, CA (June 1975).

5.	 A. D. Falkoff, K. E. Iverson, E. H. Sussenguth, "A Formal
Descrip tion of System/360," IBM Systems Journal 3, Nos. 2
and 3, 198- 261 (1964).

6.	 1t shou ld be noted that this choice is implemented by a par
ticular associated processor provided with APL2. Other as
sociated processors could be implemented to offer other
choices to the user.

7.	 With pass-through localization, a local variable retai ns its
global value until specified.

Accepted for publication July 24, 1991.

Michael T. Wheatley IBM Santa Teresa Laboratory, 555 Bailey
Avenue, San Jose, California 95141. Mr. Wheatley is currently a
Senior Tech nical Staff Member in the language products de
velopment organization in the IBM Santa Teresa Laboratory.
He has been involved with APL marketing, support, and devel
opment within IBM for over 20 years . From 1979 to 1989 he
worked with James Brown on the design and implementation of
APL2. As part of that effort, Mr. Wheatley led the design and
implementation teams for the shared variable processor, auxil
iary processor, associated processor, external function, and
namespace components of APL2. Mr. Wheatley graduated with
a B.S. in mathematics from the Unive rsity of Montrea l in 1966.
He holds two patents, one patent on file, and one published
invention disclosure, all of which are APL-related. He is a re
cipient of an IBM Outstanding Innovation Award for his work
in the design and implementation of APL2 name spaces . Mr.
Wheatley is currently the cross language architect in the Sant a
Teresa Laboratory with lead technical responsibility for IBM
language products.

Reprint Order No. G321-5445.

IBM SYSTEMS JOURNAL. VOL 3D, NO 4, 1991	 WHEATLEY 455

Storage management

in IBM APL systems

APL systems have traditionally used specialized
storage management schemes that avoid storage
fragmentation by "garbage collection, " moving
live data as needed to collect unused storage
Into a single area. This was very effective on
systems with a small amount of real storage
addressed directly. It has become less effective
on today's systems with virtual addressing and
large amounts of virtual storage. Both traditional
schemes of storage management and a recently
implemented replacement for them are described.
The focus is on implementations for IBM
mainframe hardware.

Programs written in compiled languages typi
cally use static definitions of working storage.

Much of the time the language syntax requires that
variables be declared as a particular type, structure,
and often a particular size. This allows the compiler
to generate very specific code for accessing the var
iables.

In contrast, interpretive programs typically provide
much less data declaration information, and dec
larations are often implicit in the data usage. A
number of interpretive languages allow a single
variable to take on varying definitions at different
times during program execution. APL, in fact, has no
data declaration constructs at all for objects that
exist within the active workspace. An object may
change during execution from Boolean to real to
complex, from simple scalar to four-dimensional
array to nested structure, and from numeric to
character to defined function.

Depending on the point of view, this dynamic char
acteristic of data has been described as introducing
anarchy into the language, forcing heavy execution
time overhead, or permitting powerful and elegant

by R. Trimble

algorithms that are independent of data structure
and format. Less frequently analyzed is the impact
on storage management strategies, and the second
ary impact of those strategies on total system per
formance. This paper discusses the storage man
agement schemes that are used for APL running on
IBM mainframe processors.

APL data organization

By necessity, APL objects must be completely self
describing, and it is impractical to assign them fixed
locations or sizes. This leads immediately to a level
of indirection in locating named objects accessed by
programs or users. Ultimately the locator tech
nique must provide for a symbol table lookup, since
new references to objects can be introduced inter
actively at any time . In practice, though, a symbol
table search incurs too much overhead on every
reference, so a pointer table with statically assigned
slots is used, each slot pointing to the current lo
cation of the associated data. Programs needing to
access a data object can retain a table index for that
object instead of its actual address.

Traditional APL implementations are contrasted
here with systems like LISP that have large numbers
of internal connections among relatively small
stored objects. Some APL systems, such as VS APL, I
did use internal synonym chains to avoid making
copies of objects, but in general APL systems have

ClCopyright 1991 by International Business Machines Corpora
tion . Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract , but no other portions, of this paper may be copied or
distributed royalty free without further permission bycomputer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

456 TRIMBLE IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

handled large array objects that were mostly exter
nalized, or named. LISP and some other languages
typically use direct internal pointers from one ob
ject to another, and this is the only reasonable ap
proach when storage cell sizes are very small. A full
pointer table for LISP could easily use up a quarter
or more of all available space in the system, and
management of space within it could become a
severe problem.

APL2 has introduced nested arrays into the lan
guage, and this has significantly increased the num
ber of internal connections, but the array orienta
tion remains. For this reason, and to avoid the
decision overhead of handling a mixture of direct
and indirect pointers, APL2 follows traditional APL
usage of making all pointers indirect.

There are two major ways in which pointer tables
have been implemented by APL systems. Figure 1
shows separate symbol tables and pointer tables .
This approach permits the symbol table to be struc
tured for binary or tree searches, and to be reor
ganized or expanded as needed.

Figure 2 shows a combined symbol and pointer
table. The names of objects are stored as if they
were objects themselves (though some systems
store short names directly within the table). To lo
cate a symbol by name, the system must follow the
name pointer from each row of the symbol table .
The combined table requires less storage, but is not
amenable to table reorganization, since an un
known number of indices into it exist throughout
storage. Typically a hashing scheme is used to lo
cate names within the table, but this precludes dy
namic expansion of the table. Table expansion
would be possible only if sequential searches were
done (which are very costly in time) or if an index
were maintained (still significantly more costly than
hashing). For these reasons, systems employing the
combined table normally have a fixed symbol table
size, or a size that can only be set when an APL
workspace is first created.

The combined table was used in earlier APL systems,
including IBM's APL\360, APLSV, and vs APL. AP12,
IBM's current offering for the IBM System/370* and
System/390*, uses separate symboland pointer tables,
in large part because of nested array extensions, but
also partly because it was designed for large applica
tions with more objects, making symbol table expan
sion much more important.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 1 Separate tables for locating objects

ADIN

JIM

KEN

SYMBOL TABLE
POINTER
TABLE

Whichever structure is used by an implementation,
the primary pointer table contains addresses of all
other objects in the APL workspace, and that is the
only place (with occasional exceptions) such ad
dresses are kept. Since interpreter routines always
maintain a direct pointer to the pointer table, there
is very little extra cost in converting a table index to
the address of the corresponding object. Most im
portantly for storage management, it is also easy to
move an object from one place to another, since
only a single pointer to it needs to be updated. One
other rule is enforced to make this possible-any
pointers to locations within an object are always
stored as offsets, not addresses.

Traditional APL storage management

Another attribute of APL objects is that many of
them are very transient. APL programs often use
simple names like Xfor variables that contain many
different kinds of data during the execution of a
single defined function . Since the storage require
ments for these various usages may gyrate wildly,
the system actually creates a new object each time
a value is assigned to the variable, and discards the
object that previously represented the variable
(thus their transient nature). Also, because APL is
an array processing language, intermediate results
are arbitrarily large and it is not practical, in gen
eral, to use predefined temporary areas to hold
those results. Thus each processing step within an
APL statement produces a new object as its result.

TRIMBLE 457

Figure 2 Combined table for locating objects

¢;:===========:> 0 1

SYMBOL TABLE

Because of these characteristics, storage allocation
and release are critical paths in the performance of
APL systems. Operating system path lengths for al
locating and freeing storage are typically hundreds
or thousands of instructions. If APL were to use
those services for each object allocation, they could
easily use up 90 percent or more of the application
execution time. Thus APL, along with a number of
other languages, was compelled to provide its own
storage management function within an area
(which APL calls an active workspace), obtained
from the operating system.

The traditional APL storage management technique
is very simple, but extremely fast in processing time.
The APL system adds a standard prefix to all objects.
The size and format of the prefix have varied among
APL implementations, but the prefix has included at
least a flag (typically the first bit) that indicates
whether the area is currently in use or is garbage ,
i.e., data no longer needed, and a field containing
the length of the area.

A pointer is maintained to the beginning of a free
area where it is known that no storage is currently
allocated. When an allocation request is made, the
storage is allocated at the beginning of the free
area, and the free pointer is stepped beyond the
new allocation. When an area is freed, its garbage
flag is set. (Often the end of the freed area is
checked against the free pointer; if they match, the

458 TRIMBLE

free pointer is backed up, but this is not a necessary
part of the algorithm.) Figure 3 shows a simple
example of what a workspace might look like after
a few such storage operations.

Eventually, of course, the free pointer will ap
proach the end of the free area, and a storage re
quest will be made that cannot be satisfied. This
triggers garbage collection, which has a number of
meanings in computing literature:

1. Garbage collection sometimes refers to the proc
ess of determining which parts of storage can be
reused, perhaps byfollowingallvalid storage links.
APL, as was already indicated, maintains a garbage
bit in each block of storage. It also maintains
(either in the storage block or the pointer table) a
use count (i.e., storage is in use) field for each ac
tive block. The garbage bit is turned on when the
use count goes to zero, so there is no ambiguity
about which blocks of storage can be reused.

2. When a garbage bit is available , the system nor
mally, at some time, scans storage looking for
blocks it can reclaim. Often part of that scan
involves coalescing adjacent garbage blocks. APL
garbage collection performs this process.

3. Blocks identified as containing garbage may be
chained together for later reuse. This has not
typically been done by APL systems, because it
doe s nothing to relieve fragmentation and es-

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

Figure 3 Sample of workspace with garbage, where A1-A7 represent allocation requests that have been satisfied

___1- GARBAGE '--_-----JI- IMMEDIATELY USABLE

sentially leads to the same sorts of operating
system storage management schemes and path
lengths that APL has tried to avoid.

4.	 "Live" blocks (those containing data that are
currently in use) may be moved, resulting in ad
jacent areas of garbage that may be collected
into larger garbage blocks. Since APL maintains
a complete indirect pointer list, it is relatively
simple to move live entries. (APL systems nor
mally maintain a pointer list index in the live
entries, which makes it trivial to locate the one
pointer which must be updated.) So for APL, gar
bage collection is the process of returning all of
the garbage areas to the block of free storage.

5. There are several possible algorithms. APL sys
tems have almost universally used a "shifting"
rule that keeps the live storage blocks in their
previous order. The advantage of this is that over
time the more static objects in the workspace will
migrate to the low-address end, and will be un
affected by later garbage collections. (Typically
a "lowest garbage " pointer is maintained so that
the system can skip over the static part of the
workspace.) The disadvantage is that in the short
term very large amounts of storage may need to
be moved to make small but previously long
lived blocks reusable.

Some APL systems have used predictivegarbage col
lection techniques that do the storage compaction
as soon as a certain amount of garbage has accu
mulated. This approach can eliminate long pauses
for garbage collection at unexpected times, but typ
ically also increases the number of times that an
object will be moved before it reaches its final rest
ing point (or is deleted). Thus the net effect of such
schemes is to increase the total amount of storage
movement in the system, and so increase the CPU

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

time used in processing an application. The ap
proach can be useful despite this characteristic,
both because it does yield a more predictable re
sponse time , and because it can reduce the appli
cation working set. More will be said later about
that aspect.

One other enhancement used by VS APL I was to
"ping-pong" allocations between both ends of the
free area. It did this by maintaining floating point
ers to both the beginning and the end of the free
area, and by alternating their usage. The usefulness
of this becomes apparent when we consider what
happens while processing a series of primitive func
tions in an APL statement. For example:

A+-l 3 2 . 5
A+-2+3xLA

Figure 4 illustrates the sequence of allocations with
a normal single-ended workspace system. Note that
each primitive operation must obtain space for its
result and calculate it before the space for the pre
vious temporary result can be released.

Figure 5 shows the corresponding sequence of al
locations with a two-ended (ping-pong) workspace.

Because of the ping-ponged allocations, temporary
blocks can often be returned immediately to the
free area, and embedded garbage builds up more
slowly.

The costs of garbage collection

The first APL implementations ran on systems
without paging facilities and used 32K-byte work-

TRIMBLE 459

Figure 4 Processing with a one-ended workspace

I' 3 2.5 I l ~\ \

L-A--.J

r, 3 2.5 r, 3 2 I
\ \ S I\ ~

L-A----.L-LA-.J

3 9 6 r, 3 2 [' 3 2.5
I 1
\ s S l ~ " L-A LA ---.l...- 3x -.J

(DISCARD)

2.5 139 6I' 3 l ~15 " BI I\ \ \ \ \

L-A--.J L 3x--l.-2+--l
(DISCARD) 1- GARBAGE

15 " B
1_ IMMEDIATELYI

\ \ I\ ~ USABLE
L..-A~

spaces. A typical garbage coIlection would move 4K
bytes of data or less, and might use the time equiv
alent of less than 1000 instructions.

Today's APL products run on systems that are often
capable of supporting workspaces up to a gigabyte
or two in size, all in pageable virtual storage. Al
though many users limit themselves (or are limited
by their installations) to 10-megabyte workspaces
or less, a significant number are routinely using SO
lDO megabytes or more. In typical cases only a small
part of these larger workspaces is used for static
data and functions. The extra space has made it
possible to manipulate multiple megabyte arrays
and use algorithms with very large intermediate re
sults. But this in tum means that garbage collec
tions often involve moving many megabytes of data.

A typical garbage collection for a 20-megabyte
workspace might move 2-4 megabytes of data, re
quiring execution time equivalent to executing on

460 TRIMBLE

the order of 100 000 instructions. But this is only the
beginning of the problem. In the process of locating
and moving the data, the APL system will probably
touch 75 to 80 percent of the pages in the work
space, or around 400 pages for the 20-megabyte
example . On typically loaded multiuser systems a
significant number of these will be paged out, re
sulting in long delays to retrieve them , one after
another. These delays can easily add up to execu
tion pauses of 5 to 10 seconds, which is intolerable
in an interactive system. These sudden paging loads
can also trigger periods of saturation for the paging
devices, and thus lead to execution pauses for other
interactive users on the system.

Finally, periodic usage spikes of real storage caused
by garbage collection mislead system resource man
agement programs, causing them to overestimate
future APL real storage requirements and fre
quently to move APL users to a lower priority ser
vice class for most of their processing.

IBM SYSTEMS JOURNAL, VOL 30, NO 4. '991

Figure 5 Processing with a two-ended workspace

[I' 3
I

2.5

s
 l s ~
L-A-----l

I
I'3 I2.5 ['32l ~s s), s
L-A-----l L lA---I

[' 3 2.5 V I' 3 2 I,
96 I s S Is ~

L-A 3x.--J L lA--.J
(DISCARD BUT REUSED)

139 6

I
I' 3 I2.5 15 " Bl ~
s s s S s
L-A 3x.--J L-2+~

(DISCARD)
[- GARBAGE

15 " 8 1_IMMEDIATELY IS l S l ~ USA8LE
L-A-----.J

The scenario just described at 20 megabytes be
comes much (more than ten times) worse at 200
megabytes. The system has a limited amount of real
storage, and only a fraction of that can be dedicated
to a single user. It is a rare system today that will
allow one user to control as much as 150 megabytes
of real storage at a time . Note that APL garbage
collection actually involves two pointers "floating
up" through the workspace, one for where blocks
are being moved to and the other (many megabytes
ahead of the first in such a huge workspace) for
where blocks are being moved from. When the dis
tance between those pointers exceeds about half
the real storage of the available user storage in the
system, the pages will begin to be paged out and
back in again between the time they are used. This
can triple or quadruple the paging load described
above. Execution pauses of many minutes have
been reported under these circumstances.

As was indicated earlier, predictive garbage collec
tion, taking action when a thre shold is reached on

IBM SYSTEMS JOURNAL. VOL 30, NO 4, '991

uncollected garbage, actually increases the total
amount of storage movement and thus the proc
essor time required to run a given application. De
spite this, it can be useful, because the paging usage
spikes are significantly reduced, and the "moved to"
and "moved from" pointers are much closer to
gether during a garbage collection.

Using quickcells to minimize garbage
collection

APL2 uses one very successful strategy to reduce the
number of garbage collections. Although object al
locations come in many and varying sizes, it was
noted that a large number of them are quite small.
This is particularly true for APL2, which actually
uses two or more separate storage areas for most
nonscalar data objects. One of the areas contains
the data objects themselves and the other contains
the description of the data . (Nested arrays include
a number of descriptor areas and data areas.)

TRIMBLE 461

• The standard descriptor blocks for vectors , ma
trices, and three-dimensional arrays can all be fit
into a 32-byte area.

• The same size area can hold the data for an array
of 1-3 real numbers, up to six signed integers or
24 characters, and as many as 192Boolean values.

APL2 storage management includes special han
dling for 32-byte storage cells. When such a cell or
quickcell is no longer needed, it is put on a special
chain instead of being marked as garbage. Then
when another area of that size is needed, the chain
is checked first, thus avoiding encroachment into
the free area in many common situations. Since the
chain is maintained in last-in-first-out order, the
cell selected from the chain has the highest prob
ability of still being in real storage.

There is another performance advantage to these
quickcells. Any time a new storage area is created
from what was the free area , a free slot in the
pointer (or symbol) table must be located and as
sociated with the area, and the required header
area must be formatted. The quickcells retain their
table slot and are already formatted. Using them,
APL2 was able to achieve a path length of about 30
instructions to allocate a 32-byte area, including call
and return overhead, necessary tests, and addi
tional formatting specific to the type of area being
obtained.

APL2 also provides a separate quickcell pool for
each type of scalar data (a single unstructured char
acter or number). There are six of these pools, cov
ering everything from standard characters to com
plex numbers. Four of those six (characters,
extended characters, short integers, and signed in
tegers) need only a 16-byte area, so the system splits
a quickcell to form two "short scalars." Allocation
path lengths for all of the scalar quickcells are a
trivial 11 instructions because special entry points
are used, only one test (for empty pool) is needed,
and the cell is already completely formatted except
for the actual value.

Of course it is possible for APL applications to use
a very large number of such areas for a short time ,
leaving huge pools of quickcells behind. The nor
mal garbage collection algorithm would not detect
those, but APL2 provides a special quickcell cleanup
rout ine that does release the table slots and mark
the cells as garbage. This is usually performed if a
standard garbage collection is not able to free up
enough space. Until such time as this happens,

462 TRIMBLE

though, large quickcell pools can have the effect of
increasing the number of real pages required by the
application.

Using bUddy-system cells to avoid garbage
collection

It is tempting to try to extend the advantages of
quickcells to larger areas. This must be done care
fully, though, because as the number of special
classes is increased the cost of determining the ap
propriate class can rise, and pools of storage can
grow in some classes at the expense of available
space for others. One interesting solution to this
dilemma is a storage management technique called
the "buddy system."

Knuth 2 reports that H. Markowitz first used the
buddy system for SIMSCRIPT, but it was apparently
first published by Knowlton :' and may have been
named by Knuth. This early work has now come to
be called a "binary buddy system." Hirschberg " pro
posed a more space-efficient buddy system based
on a Fibonacci series , and Cranston and Thomas5

described a simplified recombination scheme for
Hirschberg's system. Shen and Peterson 6 took a
different space-saving approach, which they called
a "weighted buddy system." Then Peterson and
Norman 7 produced a paper that reviewed the var
ious buddy schemes and concluded that either the
original binary system or the improved Fibonacci
system was preferable. Bozman et al.8 found buddy
systems in general very fast but inferior to subpool
based systems for their purposes with IBM's VM/SP
product. This may have been because the binary
system described below required an additional dou
ble word in each allocation. As will be shown, no
extra storage is needed for APL.

Unfortunately for APL2, the improved Fibonacci
system depends on availability of three status bits in
the storage block, which would require a major re
structuring and reinterpretation of flags throughout
the interpreter. So the following information fo
cuses on the original binary system. It should be
noted that Page and Hagins ? have more recently
defined an improved weighted buddy system, but
we have not analyzed that for applicability to APL.

The binary buddy system works by allocating all
storage in sizes which are a power of two. Free area
chains are maintained for each storage size. If no
storage is available on a particular chain, an area can
be taken from the next larger size and split to form

IBM SYSTEMS JOURNAL, VOL 30. NO 4. 1991

two areas, one of which will be put on the chain and
the other used to satisfy the current request . (This
splitting is, of course, a recursive process since the
next larger chain could also be empty.)

Consider what would happen if a request were
made for 80 bytes of storage and the system cur
rently had no free blocks smaller than 4K bytes. The
initial request would be rounded up to the next
power of 2 (128 in this case) and then recursive
splitting would be used to satisfy it. An implemen
tation can choose which of the two "buddies" cre
ated by splitting an area is to be used immediately,
and which is to be placed on the chain . For this
example we assume that the buddy at the lower
address is placed on the chain. Figure 6 is a pictorial
representation of the way the 4K-byte storage area
would be divided up at the end of the request.

First, note that any request for a small amount of
storage when pools are empty will not only get that
storage but will prime all pools up to the next one
that was not empty. Because of this behavior, pools
tend to be nonempty much of the time, and a ma
jority of storage requests can be satisfied without
having to split larger cells.

A second less obvious observation is critical to the
behavior of the buddy system when storage is re
turned. If the original 4K area illustrated in Figure
6 began on a 4K-byte boundary, then the 2K bud
dies will each be on a 2K-byte boundary, 1Ks on a
1K boundary, and so forth, no matter how many
times the area is split. In general any buddy system
cell must be on a boundary that is a multiple of its
size, and that requirement will be met automatically
so long as it was met by the original areas. A dif
ferent way of stating this is that for any buddy cell
of size 2", the low order n bits of its binary address
will be zero.

Now consider what happens when a cell of size 2"+1

is split. The first (low address) cell created will have
n + 1 low order zero bits in its address, while its
buddy will have the same address except for a 1 in
the first of those n + 1 low order bits. Splitting a 1K
(29+ 1)cell, for example, yields Boolean addresses of

xxxx xxxx xxxx xxxx xxxx xx88 8888 8888
xxxx xxxx xxxx xxxx xxxx xx18 8888 8888

But that same bit position is the location of the sole
1 in the binary representation of the length (2") of
the new buddy cells. This leads to the remarkably

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 6 Dividing a 4K storage area to satisfy an SO-byte
request

ION 2K CHAIN I

ION 1K CHAIN I ION 512 CHAIN I

ION 256 CHAIN I JON 128 CHAINI

128 8YTES,

80 IN USE

useful conclusion that given any buddy cell, per
forming an exclusive-OR operation of its address
with its length will yield the address of its buddy.

The exclusive-OR technique makes it feasible to
coalesce cells without an unreasonable amount of
processing if two pieces of information are avail
able with each cell:

•	 A flag that indicates whether the area is currently
in use

•	 A field containing the length of the area

These are the same pieces of information that APL
storage systems have always maintained. The buddy
can be located by using the exclusive-OR operation.
Once located, the two areas can be coalesced if the
buddy is not in use and if it has not been further
subdivided, i.e., if its length has not been reduced.

Knowlton's original paper expressed one concern
that most later researchers seem to have ignored.

TRIMBLE 463

He felt that it might be better not to coalesce bud
dies in all cases where that was possible. Based on
some modeling we indeed found what we called a
"zipper" effect that can occur if a single small stor
age area is repeatedly allocated and freed at a time
when most chains are empty. (Getting the block
causes a series of cell divisions, leaving one cell on
each chain. Freeing that block then zips all the cells
back together into one large area, leaving the chains
empty again.) Kaufman 10 has looked at this in some
detail and considered two types of solutions:

1.	 Leave a minimum number of cells on each chain,
with the number probably determined by the us
age level of the chain

2. Delay recombination until a larger cell is needed

He concluded that there were conditions where
each solution would be better than the other. For
our work we chose a simplified form of the first
solution, bypassing the coalesce if it would leave the
chain empty.

It would not be fair to leave this topic without ac
knowledging one significant problem. Traditional
APL storage allocation techniques rounded storage
sizes up to a multiple of eight, while buddy (plus
quickcell) allocation rounds sizes to a power of two
with a minimum of 16 bytes. This has been referred
to in the literature esintemalfragmentation, and can
result in an effective virtual storage utilization of
only about 75 percent.

That number can be intuitively understood by ob
serving that all of the storage areas allocated to a
given buddy cell size are at least 50 percent as large
as that cell, and at most 100 percent of the cell size.
Assuming a linear distribution of sizes, the size of
the required storage would average 75 percent of
the cell size. In practice, size distributions are
skewed with more allocations of the smaller sizes,
so that the typical utilization should be somewhat
less than 75 percent. Compensating for this is the
fact that more than half of the allocations are for
either scalar quickcells or array descriptors in
quickcells. And it happens that those always use at
least 75 percent of the cell size.

Buddy system researchers have also explored exter
nal fragmentation, which occurs because multiple
unpaired but unused cells of some size may exist
and yet be unusable if a larger block of storage is
needed. This fragmentation is not a conceptual
problem for APL, because active cells can be

swapped at any time so that the unused cells do
become buddies. It can, however, have some prac
tical effect, because the swapping process can be
time consuming for the CPU, and can increase the
real storage requirements of the system.

Managing large-scale accountable storage

It is not very practical to extend buddy cell sizes
beyond 4K bytes on an IBM System/370, because in
most cases operating system interfaces do not pro
vide for storage alignment on any boundary greater
than 4K. But this is not a serious problem for two
reasons:

1.	 The number and frequency of large allocations
is far lower than for small allocations.

2. Once a large area has been allocated, a great deal
of effort normally goes into filling it with data.

Both of these reasons ensure that path lengths for
large area allocations are not critical. Any of a num
ber of more conventional storage schemes could be
used successfully to provide accountability and re
use of large areas. Indeed, it would be feasible to
depend on operating system storage management
for these areas. APL systems do not do that at the
present time because of a concern about storage
fragmentation. If storage should become badly
fragmented there would be no practical way to re
cover when using operating system control. So long
as APL controls the storage, garbage collection can
be used if necessary.

Along with the work to support buddy system cells,
there is also a new scheme for managing larger
blocks of storage. Historically such schemes have
usually been based on maintaining linked lists of
available areas. (Each currently unused area con
tains a pointer to the next unused area in its group.)
Since we were dealing specifically with large
amounts of pageable storage we were concerned
about the potential paging overhead of traversing
such chains to locate a usable area.

The solution chosen was to maintain a bit map of
storage blocks. This became feasible because the
smallest unit of storage to be managed was a 4K
page (2 12 bytes). All subdivisions of that were man
aged by the buddy system. Because of operating
system limitations, the largest total area that APL
could be presented with was somewhat less than 1
gigabyte (230 bytes). This meant that all possible
pages could be represented by 230

-
12 = 2 18 bits. This

464 TRIMBLE	 IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

is 215 bytes, given an 8-bit byte. Thus a bit map for
the largest supported amount of storage could be
stored in 32 K, or eight 4K pages, a very reasonable
amount of space when dealing with a gigabyte of
storage. For workspaces up to 128 megabytes the
bit map requires only a single page.

One of the problems that linked list management
systems must address is coalescing adjacent free
areas . This problem disappears with a bit map,
since the bits are stored in virtual storage order.
Linked list systems can also simplify the problem by
using address order for linking, but this usually

Bit maps are used for pages and
buddy system cells are used for

smaller cells.

makes allocation and de-allocation searches too ex
pensive. With a bit map there is no problem at
de-allocation time. The storage add ress is trivially
converted into an index into the table. But locating
an available area of appropriate size during allo
cation is another matter.

This was solved by using a set of 256-byte lookup
tables to convert one 8-bit pattern to another. A
table is chosen based on the number of pages re
quired for an allocation. Each byte in the bit map
is treated as an index into the table. The content of
the table entry indicates whether the request can be
satisfied from that section of the bit map.

If, for example, a request was made for six pages of
storage, the request could be satisfied by either

• Six or more contiguous free bits within a byte
• Three or more contiguous free bits at the edge of

a byte with the remaining one to three bits avail
able at the adjacen t edge of the adjoining byte

The bit configurations satisfying the first criterion
are:

eeeeeell eeeeeeel leeeeeel l leeeeee
eeeeeele eeeeeeee leeeeeee eleeeeee

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Treating these bit configurations as binary num
bers, zero-origin entries 3, 1, 129, and 192, as well
as 2, 0, 128, and 64 in the lookup table would need
to contain values that indicate the configurations
are satisfactory.

The System/370 includes a translate and test (TRT)
instruction that can automate the search, so long as
unsatisfactory configurations have a binary zero en
try in the lookup table. Because of this a convention
of putting the one-origin offset of the first satisfying
bit into the table was chosen.

Seven tables of this form were generated, to allow
searches for up to seven contiguous available bits in
a byte. Note that if the search succeeds, both the
byte and bit numbers of the desired position in the
bit map are known.

When fewer than eight pages are required, a fast
search is made for all bits within one byte using one
of the above seven tables. If this search fails, a byte
by-byte check of the bit map is used to look for an
area crossing two bytes. This check also utilizes a
lookup table that is indexed by the bit map bytes,
but in this case the indexing is done manually, and
the codes within the table indicate the number of
bits available on each edge of the argument byte
(i.e., the code is treated as a pair of 4-bit numbers).
By adding appropriate edge-counts from adjacent
bytes, the system can determine whether enough
space is available at that boundary.

If eight or more pages are needed, a search is made
for a byte in which all eight bits are free . Once such
a byte is found, the search is expanded around that
byte as needed to obtain more than eight pages. If
no appropriate area can be found containing an
all-free byte, and if 14 or fewer pages are needed,
the same edge search is run that is used for less than
eight pages.

The expanded search for more than eight bits is
somewhat tedious, but it should be noted that the
storage areas involved are always longer than 32K
bytes, so the processing cost after allocation is usu
ally much larger than the time spent to locate an
available area.

In all of the searches a choice had to be made be
tween a "first fit" (or perhaps "next fit") and a "best
fit" rule. Bays's analysis11 shows that next fit is a
poor choice, but does not provide a clear prefer
ence between first and best fit. We prototyped an

TRIMBLE 465

exact fit scan followed by a first fit scan, but found
that for our bit map search routines using first fit
alone provided slightly better overall performance.
We did not analyze the reasons, but assume it was a
combination of the extra CPU cost for a double scan
and because first fit develops a set of "favorite pages,"
or those which are less likely to be paged out.

As with the buddy system, there is a storage penalty
for the page-oriented allocations. For blocks up to
8192 bytes (8K) the same usage constraints exist as
for buddy cells, and the effective utilization is
slightly less than 75 percent. This number rises,
though, for larger blocks. The only allocations
made to a ten page block, for example, are those
requiring more than 90 percent of its space . The
usage of large arrays varies greatly among applica
tions, so it is difficult to generalize. It is probably
safe to say, though, that for most applications the
effective utilization of large-scale storage will be
between 75 and 95 percent.

Getting the best of both

The previous discussions of buddy cells and large
scale storage each ended with warnings about limits
on effective utilization of virtual storage. To some
extent this is a deceptive concern. All storage man
agement systems produce small fragments of stor
age intermixed with live data, and for most systems
the fragments are either completely unusable, us
able only at great expense , or usable only for a small
subset of the allocation requests. But there are
three ways in which this is a very real concern:

• The fragments at issue are all less than one page
long, and are all on pages containing live data.
Thus in a paging system they always act to in
crease the number of real pages required to run
the application effectively.

•	 Unlike traditional APL storage management,
there is no way to "squeeze" the fragments out of
the live data and make them available again.

•	 Because of the previous point, the unusable frag
ments would still exist in APL workspaces that are
saved.This implies an increase in required perma
nent storage space as well as additional data trans
fer while reading and writing the workspaces.

To address these concerns a hybrid scheme was
implemented . The workspace is divided into two
sections, with a floating boundary between them.
Storage to the left (low address end) of the bound

466 TRIMBLE

ary contains densely packed object s managed using
traditional garbage techniques. Storage to the right
of the boundary is managed using bit maps for
pages and the buddy system for smaller cells. So
long as enough reusable storage is available at the
right end of the workspace, garbage is allowed to
collect at the left end. In many cases this will suffice
for so long as the workspace is active. When a re
quest arrives that cannot be satisfied, some form of
garbage collection is done . One of three alterna
tives is chosen:

1. If there are enough free pages at the right end
to satisfy the request (but they are scattered),
and there is more storage available in free pages
than in garbage at the left end , then allocated
pages at the right end are rearranged so that all
free pages are in one group.

2.	 If there is enough garbage at the left end to
satisfy the request, and there is more storage
available in garbage than in free pages at the
right end, then all garbage at the left end is col
lected, the dividing line is moved left to the end
of the last page on that side still containing data,
and the remainder of the collected storage is
made available in the page pool.

3.	 If neither end has enough space to satisfy the
request on its own, all unused quickcells are re
leased and then a full garbage collection of the
workspace is done. At the end of this proce ss the
dividing line is at the end of the last page con
taining data, and the remainder of the work
space is in the page pool.

The third form of garbage collection is always per
formed when a workspace is saved. (The page pool
is not kept with the saved workspace. Indeed when
the workspace is reloaded later the page pool may
be of a different size.)

Note that this concept of two storage zones is a
simplified form of "generational garbage collec
tion" as recently advocated by Appel, 12 Wilson and
Moher;" and others.

Comparative performance measurements

A limited amount of performance measurement
has been obtained comparing APL2 with and with
out the storage management changes described in
this paper. The results are very encouraging, but
should not be over-interpreted. A storage-intensive
test function was generated that allocated and ini-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 7 Comparison of CPU times

en 100 -.----------------,
o
Z

OLD SYSTEM,...'",.. o
fa BO ,..en ,...,..=>
e, 60 ,..o ,...

,.. NEW SYSTEM ,..
40 ,...,...,..,..
20 ,..,..,..
o~:..,-r-.,..-,-___,-._...,___.-r_..,

o 20 40 60 80 100
AVERAGE MEGABYTES

tialized storage blocks of random sizes and random
lifetimes. The algorithm automatically adjusted to
workspace size, and tended to keep an average of
60 to 65 percent of the workspace in use. This is not
a typical APL application, but it was created specif
ically to exaggerate any differences in the storage
behavior of the systems.

Figure 7 shows the amount of CPU time used by the
test case over a range of workspace sizes. It has
been scaled by the average amount of allocated
storage rather than by workspace size to remove
any bias due to buddy cell internal fragmentation.
All tests were run on an IBM 3090* with 128 mega
bytes of real storage and very little other concurrent
activity, so no paging was needed.

Figure 8 shows test case elapsed times from the
same runs as Figure 7. We believe that the accel
erating slope seen here is caused by IBM's Multiple
Virtual Storage Resource Manager function inten
tionally slowing the application down as larger frac
tions of the system's total real storage are used.

Testing under loaded conditions produces similar
results . As a controlled environment, ten tests were
submitted simultaneously and competed for three
initiators on an idle system with three CPU s. Sepa
rate runs were made with IOO-megabyte and 200
megabyte workspaces. With three initiators and
three CPUs these resulted respectively in roughly
1.5:1 and 3:1 overcommitments of available real
storage. At 100 megabytes the new system used 47

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

Figure 8 Comparison of elapsed times

en 200--.------ - - - - - ---,
Cl
z OLD SYSTEM o
o
~ 150 /

/
Cl /w /
~ 100
en

/
/...J ,...

W ,..,...
50 ,-'

.... -- ,-...-

o 20 40 60 BO 100
AVERAGE MEGABYTES

percent as much CPU time and only 38 percent as
much elapsed time as the old. At 200 megabytes the
elapsed time dropped to 34 percent. In both the
100- and 200-megabyte cases the usable allocated
storage dropped by less than 1 percent since inter
nal buddy cell fragmentation is of little conse
quence in such large workspaces.

Finally, it is important to stress again that the differ
ences shown here are exaggerated from those that
would be seen by an APL application. More than 90
percent of the test application time was spent in al
locating and initializing storage. It would be more
typical for an application to spend between 1 and 10
percent of its CPU time in that code, and it could
spend much less than 1 percent of its elapsed time
there if it was highly input/output oriented.

ConclUding remarks

For 25 years APL systems have depended on gar
bage collection for storage management, and it has
served them well. Pure garbage collection schemes
are likely to be used less in the future than in the
past, but composite schemes will continue to exist
where garbage collection is an important compo
nent.

This paper has focused on the current storage man
agement schemes for APL running on IBM main
frame hardware and their operating systems. The
issues and solutions would be entirely different, for
example , if the storage model used by an IBM Ap-

TRIMBLE 467

plication System/400* processor were assumed.
This paper has not addressed the unique attributes
of Enterprise Systems Architecture systems, but the
virtual storage model that they implement is not
radically different from their predecessors. It does
hold out the promise of breaking the 1-2 gigabyte
barrier that was assumed earlier in this paper. Un
for tunately it appears the promise can be realized
for APL2 only with a major rewrite of the inter
preter, and that work has not been accomplished. It
would be premature to speculate on optimal stor
age management strategies for multiple address
spaces.

One clear lesson of the last four decades is that
com puter addressability will quickly expand beyond
anything we consider reasonable today. The more
sobering lesson is that application storage require
ments seem quite capable of expanding as fast as
hardware capabilities. This race will not only keep
implementers of language products busy for the
foreseeable future, it will also keep a noticeable
part of their focus on matching these storage re
quirements and capabilities.

• Trademark or registered trademark of International Business
Machines Corporation.

Acknowledgments

Brent Hawks and James Brown did an outstanding
job of finding and fixing the many bugs in the orig
inal prototype code written by the author to explore
this topic. The author would especially like to thank
Brent Hawks for the long hours he spent serving as
a sounding board for, and generator of, ideas. Fi
nally, thanks are gratefully extended to John Gerth
for a thorough review of the text and his very help
ful suggestions.

Cited references

1.	 VS APL Program Logic, LY20-8032, IBM Corporation
(1976); available through IBM branch offices.

2. D. E. Knuth,	 "Fundamental Algorithms," The An of Com
puter Programming, Volume 1, Addison-Wesley Publishing
Co., Reading, MA (1968).

3.	 K. Knowlton, "A Fast Storage Allocator," Communications
of the ACM 8, No. 10, 623-625 (October 1965).

4.	 D . S. Hirschberg, "A Class of Dynamic Memory Allocation
Algorithms," Communications of the ACM 16, No. 10, 615
618 (October 1973).

5.	 B. Cranston and R. Thomas, "Simplified Recombination
Scheme for Fibonacci Buddy Systems," Communications of
the ACM 18, No.6, 331-332 (June 1975).

6. K. K. Shen and J. L. Peterson, "Weighted Buddy System for

468 TRIMBLE

Dynamic Storage Allocation," Communications ofthe ACM
17, No. 10,558-562 (October 1974).

7. J. L. Peterson and T. A. Norman, "Buddy Systems," Com
munications of the ACM 20, No.6, 421-423 (June 1977).

8.	 G . Bozman, W. Buco , T. P. Daly, and W. H. Tetzlaff, "Anal
ysis of Free-Storage Algorithms-Revisited," IBM Systems
Journal 23, No.1, 44-64 (1984) .

9.	 1.P. Page and J. Hagins, "Improving Performance of Buddy
Systems," IEEE Transactions on Computers C·3S, No.5,
441-447 (May 1986).

10.	 A. Kaufman, "Tailored List and Recombination-Delaying
Buddy Systems," ACM Transactions on Programming Lan
guages and Systems 6, No .1, 623-625 (J anuary 1984) .

11.	 C. Bays, "Comparison of Next Fit, First Fit, and Best Fit,"
Communications of the ACM 20, No.3, 191-192 (March
1977).

12.	 A. Appel, "Simple Generational Garbage Collection and
Fast Allocation," Software Practice and Experience 19, No.2,
171-183 (February 1989).

13. P. Wilson and T. Moher, "Design of an Opportunistic Gar
bage Collector," ACM SIGPLAN Notices 24, No . 10, 23-25
(October 1989).

Accepted for publication July 16, 1991.

Ray Trimble IBM Santa Teresa Laboratory, 555 Bailey Avenue,
San Jose, California 95141. Mr. Trimble is an advisory program
mer in APL products development. He has worked in the APL
organization since 1976 and has been a technical leader in a
number of development projects for both VS APL and APL2.
He is the author of the manual APL2 Programming: Processor
Interface Reference and has been heavily involved in developing
other APL manuals. Mr. Trimble joined IBM in 1966 and
worked first on a large-scale macro preprocessor supporting
multiple languages. Beginning in 1971 he served as joint chief
programmer for access methods in the original MVS develop
ment project.

Reprint Order No. G321 -5446.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Putting a new face
on APL2

APL 2IX is an interface between APL 2 and the
X Window System®, built at the IBM Cambridge
Scientific Center. This Interface enables the full
set of the X Window System Xllb calls and the
related data structures to be used directly from
programs written In APL2, thereby providing
APL2 with a true, full-function windowing
environment. The Interface also deals with the
broader and more general Issue of how to call
C programs from APL2. The interface and the
experience of building it are described in some
detail in this paper.

T he intent of this paper is to detail the experi
ence of building an interface between APL2 and

the X Window System**.APL2, having evolved over
two and a half decades, was a good candidate for a
"face lift" in that it benefits greatly from having a
modern presen tation system. In turn , the X Win
dow System gains the flexibility and power of APL2
in developing and driving applications.

This paper is divided into several subsections. To
set the stage, some simple examples of how the
interface can be used are shown, and an overview
of the X Window System is also given. With that as
a background, we then discuss the rationale for
building such an interface, as well as some of the
design choices made . Next, the general APL2-to-C
interface that has been implemented is presented.
APL2/X uses this interface heavily. The focus is on
how to be able to use a large number of already
existing C routines from APL2 with as little addi-

IBM SYSTEMS JOURNAL. VOL 30. NO 4, 1991

by J. R. Jens en
K. A. Beaty

tional work required as possible. Finally, examples
of how to use this interface to access and call C
routines from APL2 are shown, with a focus on the
special consideration that the X Window System
entails.

It is assumed that the reader has some knowledge
of both APL2 and the X Window System. See, for
example, APL2 at a Glance by Brown et al. 1 for an
introduction to APL2, and Introduction to the X Win
dow System by Jones ? for information about the X
Window System.

An example. An example might help illustrate the
capabilities of the X Window System when used
with APL2. To display the image of this example, run
the following APL2 expression:

XIMAGE MAN COL ' Basi c'

XIMAGE is an APL2 function that uses the X Window
System calls to display an image. MAN is an APL2
variable containing an image of a mandrill, COL is
a color lookup table, and' Basic ' is a window title .
It results in a new window displaying the content
shown in Figure 1.

ClCopyright 1991 by International Business Machines Corpora
tion . Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

JENSEN AND BEATY 469

Figure 1 Basic image

Figure 2 Image turned on side

This image can be manipulated using normal APL2
functions. The manipulation can take place on the
image matrix, the color table , or both. For instance,
to turn it on its side as in Figure 2 use:

XIMAGE C~MAN) COL ' Lazy'

To triple its size as shown in Figure 3, use the fol
lowing function:

XIMAGE C3/3fMAN) COL ' Large'

To display as a negative as is done in Figure 4 use:

XIMAGE MAN Cl000-COL) 'Neg'

470 JENSEN AND BEATY

Finally, to create four mirror images of the mandrill
as in Figure 5 use:

B2 MAN,¢MAN
B4 B2 , [1] eB2
XIMAGE B4 COL 'Four'

Why an APL2 X Window System interface. From
the advantages each has to offer, it is evident that
APL2 and the X Window System can benefit from an
interface connecting them. We now describe some
of the more compelling benefits for APL2.

APL2 is provided with a modern-day interface. The
present interface of APL2 dates back to the late
1970s and has a distinct character-cell flavor to it.
Graphics are limited to fixed, nonmovable images.
Several desirable features can be incorporated by
utilizing the functions of the X Window System:

• Keystroke sensitivity for programs
• Pointing devices such as a mouse
• Multiple fonts of varying size
• Bitrnapped graphics and image
• Dynamic graphics capabilities

Many of these features are as much a product of
better hardware (in the form of workstations) as
they are of the software, but this does not negat e
the fact that they need the software to utilize these
advanced features.

The interface enables a given APL2 application to
display its output on any connected workstation,
and enables a workstation to initiate and run APL2
programs on many different hosts at the same time.

Similarly, the X Window System gains from using
APL2. APL2 provides an interactive environment.
Each call or series of calls can be tried out, verified,
and altered at will until the right combination is
reached. This activity can take place without any
recompilation whatsoever, speeding up the devel
opment process. The X Window System can use the
array processing ability of APL2 to easily store and
manipulate images using standard APL2 primitives,
as shown in the example presented earlier.

For those readers not familiar with the X Window
System, the next section presents a brief overview.

An overview of the X Window System

The X Window System is the de facto standard for
windowing systems in the UNIX ** environment. In

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 Image tripled in size

many respects it is very similar to the Operating
System/2* (05/2*) Presentation Manager" and Mi
crosoft Windows** for the IBM Personal Computer
Disk Operating System (pc DOS) in that it provides
the application programmer with a multitude of
calls to control and manipulate the content of win
dows on a display. However, it also differs from
these products in some key aspects. The foremost
difference is that the X Window System was de
signed from its inception to be network-transpar
ent. This means that an application can display its
results on any workstation attached to a local area
network, no matter where the application may ac
tually be running. The X Window System employs

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

the client-server model of computing. It enables the
application, or client, to make use of the resources
of the workstation, or server, to display its output
and receive input from the user, as illustrated in
Figure 6.

Server. The X Server is a program running on the
workstation that manages the interaction with the
user. It typically controls one or more screens , a
keyboard, and a mouse or similar pointing device.
It allows clients to have use of all of these devices
and other resources such as windows, pixmaps,
fonts, and graphics contexts. The server receives
directives from communicating clients via network

JENSEN AND BEATY 471

Figure 4 Negative of image

protocol requests and acts upon them to draw win
dows, graphics, text, and images on the display.
Whenever the user of the workstation performs an
action such as pressing a key, moving the mouse,
etc., the server will generate an event message and
return it to the client program via the underlying

Figure 5 Image quadrupled

network protocol (traditionally TCP/lP, the Trans
mission Control ProtocollInternet Protocol). 3

Client. The application is the client program. It
sends requests to the server via the network pro
tocol and receives information back from the server
in the form of replies or events. These requests can
be generated and handled at the network protocol
level, or higher-level calls can be used.

Window manager. The window manager is an ap
plicat ion that controls where windows are placed,
the size of the windows, the window decorations,
and the interaction style. In separating it from the
X server, the X Window System has made it pos
sible to have a replaceable window manager im
plementing different interaction styles. As an ex
ample, some window managers enable window
moving and resizing by grabbing and dragging the
window borders, whereas other window managers
will use menus to accomplish the same end result .
Among the many window managers that exist, one
now in common use is the Open Software Foun
dation (OSF) Motif** window manager that gives
the X Window System a "look and feel" almost

472 JENSEN AND BEATY IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 6 The X Window System client-server relationship

X CLIENT AIX WINDOW MWM
(APPLICATIONI VM/CMS MANAGER AIXWM

MVS CWM
OEMs UWM
ETC. TWM

GWM
ETC.

1 1
TCP/IP

REQUESTS EVENTS

RISC SYSTEM/SOOO X SERVER
X STATION 120

PS/2 (AIX)
PS/2 (DOS)

RT
WINDOWS	 MULTIPLE DISPLAYS-EOEMs FONTSETC. PIXMAPS	 MOUSE
GRAPHICS CONTENTS

KEYBOARD

identical to that of the OS/2 Presentation Manager.
A list of other existing window managers can be
found in Figure 6.

These three components of the X Window System
need not run on the same processor. An application
can be running on, say, a host with the Virtual
Machine/Extended Architecture operating system,
or VM, communicating through the X Window Sys
tem client services with an X Window System server
running on an IBM RISC System/6000*. The net ef
fect of this setup is that the results of the application
appear on the display of the workstation as though
the application had been run locally.

It is also possible for a single client application to
display on many servers at once. Likewise, a server
can service many clients at the same time, display
ing the output of each application program at once .

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Communications among the client, server, and win
dow manager can be handled by any method that
provides a reliable bidirectional byte stream. When
the client and server both run on the same proces
sor, some sort of interprocess communication is
used for communication between the two. When
the client and server are running on separate proc
essors, the TCPIIP communications protocol usually
provides this service, although any other reliable
communications scheme could potentially be used
in its place .

The X Window System output capabilities can be
summarized as follows:

•	 Controlling multiple windows on one or more
display screens

•	 Drawing graphics primitives such as lines, arcs,
rectangles, and polygons with or without fills

JENSEN AND BEATY 473

Figure 7 The X Window System hierarchy

APPLICATION PROGRAM

OSF/MOTIF

X WIDGET SET

X INTRINSICS

XLiB

NETWORK PROTOCOL (TCP/IP)

•	 Writing high-quality text with many different
fonts

•	 Supporting images

Inputs are received in the form of events. Events
can be generated by the user pressing a key on the
workstation keyboard, by the user manipulating the
mouse (moving it or using the mouse buttons), or
by other events, such as when a window is cleared
and needs to be redrawn.

The X Window System is a layered architecture,
depicted in Figure 7. An application can draw upon
the calls of all of these layers. The X Window Sys
tem network protocol is at the base of the hierarchy,
ultimately defining the traffic flowing between the
client and server components.

The Xlib level is the next level. Most application
programmers will never interface with the X Win
dow System at a level lower than this one. It consists
of about 400 separate calls written in C and more
than 100 data structures.

The X lntrinsics and the X Widget Set taken together
form the X Toolkit. A widget set is a collection of
common graphics elements that applications may
use, such as menus, scrollbars, pop-up windows,

and the like. The X Widget Set makes use of the X
Intrinsics, which provides it with an object-oriented
interface.

The OSFlMotif toolkit is an elaborate toolkit that
implements application elements such as sliders,
pull-down menus, and buttons in a three-dimen
sional appearance.

One final aspect of the X Window System needs to
be touched upon. It does not seem to be a generally
known fact that it is indeed possible to run the X
Window System under VM 4 or Multiple Virtual
Storage (MVS). 5 In fact , most of the development
work of APL2/X was performed on a VM system. VM
and MVS both support the X client services as part
of TCP/IP Version 2 for VM and TCP/IP Version 2 for
MVS.

Interface design criteria

As a stepping-stone to building the X Window Sys
tem interface, a general APL2-to-C interface was
implemented. Although general in scope, it is cer
tainly true that its built-in functionality has been
heavily influenced by the following considerations
that surfaced during the construction of the APL2/X
interface.

•	 The interface should be able to use the existing
C functions without any changes or modifica
tions. This requirement is important, since the
source code for the C functions may not be avail
able .

•	 The interface must be able to support a large
number of calls efficiently. The X Window Sys
tem defines about 400 separate calls, depending
on the release considered.

• To be useful, APL2/X must be able to support data
structures but also allow APL2 to manipulate the
data using APL2 functions. Data structures play
an important role in many X Window System
calls.

•	 The external C routines must be used in a man
ner much akin to normal APL2 functions (i.e.,
maintain the "feel" of an APL2 function) when
called from within APL2. Specifically, attainment
of this likeness requires that function arguments
be passed explicitly and by value. The interface
must take care of the needed argument type co
ercion. Also, the interface should specifically re

474 JENSEN AND BEATY	 IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

frain from using designated variables or storage
areas that can be updated as a side effect of the
call; rather, all output should be returned as ex
plicit results of the call.

• The defined X Window System call syntax should
be adhered to as closely as possible so as to en
able the use of the normal X Window System
documentation. Only two noteworthy deviations
apply throughout the interface:

1.	 Output-only arguments are never specifi~d on
input; they will be generated automatIcally
and returned as part of the explicit result of
the function call.

2. Arguments are given by value, even in cases
such as a character string, where C expects a
pointer in the parameter list. The interface
again handles the details of making this hap
pen.

At times, maintaining this fidelity to the X Win
dow System call syntax seems slightly out of pla~e

in an APL2 setting. One of the places where this
is apparent is on those calls where the X Window
System expects a varying numbe~ of arguments
passed in an array or character stnng. These calls
invariably require the specification not only of
the array itself, but also of the number of ele
ments in the array. This latter piece of informa
tion is, of course, directly available with the APL2
array, so it seems slightly silly and annoy~ng to
have to specify it in the call. However, III t.he
name of consistency we have chosen to stay with
the X Window System call syntax throughout,
even in cases such as this one.

•	 APL2 will handle storage management automat
ically, whereas C most often leaves the task for
the caller to do. APL2/X takes over this chore
when calling the C functions, so the APL2 pro
gram is freed from addressing this task explicitly.

•	 Enable the same interface from APL2 to the X
Window System in multiple host environments
to allow APL2 applications that use APL2/X to be
run under the Virtual Machine/Conversational
Monitor System (VM/CMS), Multiple Virtual
Storage/Time-Sharing Option (Mvsrrso), or un
der Advanced Interactive Executive* (AIX*) on
the RISC System/6000.

All of these items are discussed later in more detail.

Using the X Window System from APL2

APL2 can use the X Window System in two differ
ent ways. It can either use it indirectly, if the out
put device APL2 is communicating with is being
remapped to a workstation running the X Window
System, or directly by issuing calls to the X Window
System from APL2. The indirect approach allows
existing applications written for a 3270-type display
screen to run on an X Window System workstation,
but the interaction style is then, of course, limited
to that of a 3270 device. However, to be able to
utilize the features and facilities of the X Window
System, it is necessary for the applications to be
given direct, explicit access to the X Window Sys
tem.

APL2 using the X Window System in compatibility
mode. The simplest way today to use the X Window
System from APL2 is in compatibility mode. Essen
tially it is another way of getting someone else to
worry about supporting the X Window System. Two
existing IBM products that do just that are described
below.

X3270. The X3270 is a terminal emulator that en
ables a 3270-type session to run on an X Window
System workstation, given the proper network at
tachments. It supports different size fonts including
APL2, GDDM-style graphics, and 3277GA emulation
and has limited mouse support. 6

GDDM/XD. GDDM/XD is an interface that permits
the display of output from GDDM on workstations
supporting the X Window System. It is available as
part of TCP/IP Version 2 for VM and TCP/IP Versi~:m

2 for MVS. It displays both character and graphics
output in a separate window on the X Window Sys
tem workstation.7

Exploiting the X Window System from APL2.
APL2/X takes a different approach to the X Window
System. In order to fully exploit the X Window
System from the APL2 environment, it is essential
that the application be given direct access to all of
the X Window System calls.

The connection between C and APL2 is illustrated in
Figure 8. APL2/X receives data from APL2 in its com
mon data representation (CDR) format. The CDR
format is a documented data format for APL2 ex
ternal data. It includes not only the data, but also
descriptive information about data type, rank, and
dimensions. The format varies, depending on the

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991	 JENSEN AND BEATY 475

Figure 8 Calling C programs from APL2

APL2 ENVIRONMENT C ENVIRONMENT

APL2 COMMAND PROCESSOR

CDR

CDR

DNA OR AP144

CDR
----+

C ArgUs!

CDR
+-

DO

!

!
DO

COMMAND AND
STRUCTURE TABLES

host operating environment. The data are sent from
APL2 to APL2IX using the associated processor 11
(VM) or a new auxiliary processor APl44 (AIX).

Once in APL2IX, the incoming CDR is transformed
into a DO, or data descriptor, which is the data
representation used internally by APL2IX in all of
the host environments within which it operates.
This transformation essentially involves breaking
up the CDR into self-contained arrays connected via
pointers. This data representation can be used di
rectly for new functions specifically written to use
this data structure.

However, it is more common to use already-existing
C functions. To do so, the data must be in the form
that the functions can use. The second transforma
tion is then involved to build the C Argl.ist, The
argument list is for the C function that is to be

476 JENSEN AND BEATY

IC APPLICATIONS

I

C FUNCTIONS

--+ C STRUCTURES

called. The ArgList format is also employed when
accessing and using C data structures.

The conversion process is controlled by a command
definition that describes the arguments required by
a given command. These definitions are stored in
command tables. The first argument in any call
identifies the command to be executed. The tables
are searched to locate the matching command def
inition.

APL2/X data descriptor

APL21370, 8 APL2/6000, and APLZ/PC 9 all pass data to C
in the form of a monolithic block of data. This block
includes not only the data, but also information
describing the data type, rank , and dimension.
APL2/X breaks up the block of data into its compo
nent pieces, storing the descriptor and data infor-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

mation in separately allocated areas for each nest
ing level of the data. This division ultimately cuts
down on the amount of data copying needed, and
has also enabled APL2/X to extend the descriptors
with additional information. The descriptors cur
rently hold the following pieces of information:

r c Element return code
fl ags Assorted control flags
refs C indirection count
data Pointer to data values (or the data

value in the case of a scalar)
all oc Number of elements allocated
xr ho Number of elements stored
r t 1 Data type
rank Rank
dims Array dimensions (zero, one, or more)

APL2/X adds the rc, all oc, fl ags, and ref s items for
its own use. The remaining items are extracted from
the data passed from APL2.

The ability to use separately allocated items has
proved to be very useful when constructing elabo
rate return values. As an example, see the result of
the GetCon s t command given later in the section on
support for C constants. The result consists of a
three-column table. The first column consists of a
character string, the second column another char
acter string, and the third column a value that can
be either numeric or yet another character string.
This table is built in a bottom-up fashion, with each
element being appended in turn. With use of the
separately allocated items, it just becomes a ques
tion of keeping track of a set of pointers, whereas
a monolithic approach would require a preliminary
pass to determine the size of the final table, before
the actual building of it could get under way.

Defining and calling C functions from APL2

The supported X Window System calls are defined
in a command table, along with their parameter and
result type codes. The type codes are used to val
idate argument inputs and to gather resultant out
put for returning to APL2 . The X Window System
command table, as well as the related X Window
System structure definitions table, are compiled
into the command interface written in C. There
fore, the interface that resides between APL2 and
the actual C functions (commands) being called is
the one responsible for validating input and check
ing for and returning expected function results.

By having the command and structure definitions
reside in the C command interface, we can funnel

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

all Xlib calls through a common APL2 function
rather than having an APL2 function for each X
Window System function call. This significantly re
duces the number of X-Window-System-related
functions that need to be present in the application
workspace.

The APL2/X interface ends up being identical in VM
and AIX. Two simple APL2 functions C and X hide
the fact that communication between APL2 and
APL2/X is handled by processor 11 in VM and by
shared variables in AIX, giving APL2/X a single com
mon interface to APL2 in all host environments.
These functions with calls and parameter are given
in the following box.

(rc [res u lts]) ~ C comma nd [pa r m]

[r es u lts] ~ X command [parm] ., .

The terms in the box are defined below.

command	 The name of the X Window System
call to be invoked, specified as an APL2
character vector.

[parm]	 All but a few of the X Window System
calls require additional input parame
ters to be specified. These parameters
are given after the name of the call
itself, in the same order as listed in the
X Window System documentation.

[resu I t s]	 The output from the call (if any) is re
turned in the form of an explicit result.
This result includes the X Window Sys
tem explicit result (if any), as well as
any implicit results passed back via
output parameters given on the call.

r c	 The command return code. Note that
this is only returned when using the C
function. C and X only differ from one
another in the way they deal with error
conditions. Cpasses back an error code
as part of the function return. It is then
up to the calling program to check this
code and take appropriate action on a
nonzero return code. X supplies a de
fault error-handler to check the return
codes as they are returned from each
call to APL2/X . Xwill suspend operation
in the function by issuing a "DES a 1"

JENSEN AND BEATY 4n

event, if an error is encountered. The
programmer then has a chance to cor
rect the problem.

Using these two functions as the base interface al
lows easy portability of applications from host envi
ronment to host environment, without having to
change the calls of the application to the X Window
System. We have been able to run identical sample
APL2/X applications under VM/CMS and AIX on the
RISC System/6000 without changing a single line of
APL2 code.

The X Window System calls XOpen Display and
XDrawL i nes can serve to illustrate the close corre
spondence between X Window System calls issued
from C and from APL2. 10,11 In C, the calls might look
like the following:

int poi nts[4][2]=
I l IS. IS) . IISS. ISI. lIS.ISS} . (IS. IS});

dp = XOpenDis play(· ·) ;

XDrawLines(dp .win .gc ,points .4 .S)

The same calls can be issued from APL2 (via APL2/X)
as follows:

points ~ 10 10 100 10 10 100 10 10

dp ~ X ' XOpenDi spl ay' "

X ' XDrawl i nes' dp win gc po ints 4 a

The call to XDrawL i nes obviously assumes that the
parameters dp, wi n, and gc have been set up by
preceding calls to other X Window System func
tions.

Command definitions. The interface can support
an unlimited number of C routines. Each routine is
defined by a command definition that describes the
needed aspects of the call as follows:

•	 Command name
•	 Input type codes
•	 Output type codes
• Address of C function to be called
•	 Call method
• Two optional parameters that can be used by the

command

Some examples of command definitions (all of
which implement X Window System calls) are:

AC FN2(XD rawlines .· I I I I2[] I I· . ··

ACF N2(X OpenD isplay .· 5· .·1·)

ACFN2(XParseGeometry. "S" .·11111")

As can be seen, not all of the command definition
fields need be given explicitly. In the above exam
ple, only the first three fields are given explicitly.
Instead, they are often set implicitly through the
choice of the defining C macro. In the case of ACFN2
above, the call method is a laid-out argument list,
and the two optional parameters are not used. Fur
thermore, the first argument given to the macro
defines both the command name and the C function
to be called.

The calls can be grouped into different categories.
Each category has a defining C macro associated
with it to cut down on the number of items that
need to be specified explicitly.

In APL2/X, experience has shown that the com
mands fall in one of three categories:

1.	 Most commands can be implemented using the
standard facilities available in the base interface.
In APL2/X we have implemented about 300 com
mands this way, or about 75 percent of the total.

2.	 Some commands require some common pre- or
post-processing but are otherwise fairly stan
dard. An example is:

AXFAS(XGetGCValues. "IIX ·. · IG" .

&axGCValues)

The call runs the X Window System function
XGetGCVal ues . This function returns a pointer to
a structure of type XGCValues . The cover func
tion takes this pointer and resolves it into its
constituent values by using the structure class
(axGCV al ues) as a guide to what elements the
structure contains. Thus, a call to XGetGC Val ues
will return the actual values to APL2, not just a
pointer. A number of X Window System calls uti
lize this function.

We have used this facility extensively during the
development of the interface. A lot of the func
tionality that is now part of the base interface was
prototyped in this fashion and was elevated into
the base only when the generality was established .

In the implementation of the X Window System
Xlib calls, 65 calls fell in this category, or 17 per
cent of the total.

3.	 The third type of calls consists of the ones that for
some reason or another require some specialized
pre- or post-processing, e.g.:

478 JENSEN AND BEATY	 IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

ACFA8(" XNe xtEvent". " I " . "G". ax NextE vent)

There are a number of reasons why functions end
up in this category. Examples are calls returning
the X Window System event structures. We use a
cover function to convert the event structure
pointer to its constituent values, so that the values
can be returned by the call, instead of a pointer to
the values.

Of the total, 30 X Window System calls required
handling as special cases, or about 8 percent.

Command tables. The command definitions are
grouped together in tables. For example, all of the
X Window System calls are defined in a single table.
Typically, a table contains only related commands,
although this is not a requirement. These tables
form an integral part of the APL2/X interface.

When the C or X functions are called and the in
terface gets control from APL2, the interface as
sumes that the first argument given is the command
name. The interface uses this name to search
through its command tables looking for a matching
command definition. If one is found, it controls any
further parameter verification that needs to take
place before the actual C function can be invoked.

The default is for the command name matching to
be case-sensitive, but it is a matter of a compile
time option to change this default to be case-in
sensitive.

The command tables not only allowed us to group
logically related commands together but also
proved to be beneficial during the development
stages, where a given set of commands could be
worked on by an individual without any fear of
overlaying someone else's work. Not all of the ta
bles need be active all of the time; they can be
activated and deactivated under user control, and
their ordering (governing the command search or
der) can also be changed.

Currently the APU/X interface defines the following
command tables:

• Xlib calls
• Structure support (structure commands)
• Interface control (system commands)

Tables implementing other collections of C func
tions and structures can easily be added to this list.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

The command tables can also be set up and used in
a nested fashion , i.e., subcommands may be spec
ified in a secondary command table. In that case,
the command as given by the user is effectively
made up of two (or more) separate character
strings, one for each command table used. We use
this facility to implement some of the APL21Xsystem
commands, but we have not found it that useful
overall.

Type codes

The specified command determines what addi
tional parameters need to be given, as well as what
information will be passed back as a result of the
call. These requirements are described by a series
of "type codes" attached to the command, with each
parameter described by a single type code.

A large number of type codes have been defined.
They are specified using one- or two-character al
phanumeric strings. Whenever possible we used the
same choice of character codes as those given in
APL2 Programming: System Services Reference for
the APL2/370 processor 11 argument patterns. 12 The
code is given on the left side, and its definition
follows to its right.

81 One-bit Boolean
88 Eight-bit unsigned integer
C1 Character (one-byte)

[8 Double (eight-byte) floating-point real

12 Short (two-byte) integer
14 Long (four-byte) integer

Type coercion may be applied by the interface to
convert the APL2 data to the type expected by the C
function and to convert results from the C function
to a type that can be handled by AP L2.

To enhance portability we also added definitions
that left the actual length of a parameter up to the
host environment, e.g.:

Integer-This code can be used whenever a C
"int" is called for.

Other additions were called for by specificneeds of
C and X:

s A NULL-terminated character string
p A C pointer-This code is treated as a large

number that the calling APL2 application pro
gram probably should never change.

JENSEN AND BEATY 479

X

X2	 Two-byte hexadecimal value
X4	 Four-byte hexadecimal value

Two- or four-byte hexadecimal value , depend
ing on the underlying environment

The hexadecimal values can be specified on input as
a bit-vector, as an integer, or as a string of hex
characters.

Finally, a couple of special type codes:

G	 Accept any parameter given-This code will
often be used where further verification of the
input will be performed later. An example can
be found in the structure commands. Valida
tion of the content of the structure instance is
postponed until the proper structure class def
inition has been determined.
A place-holder-The value is ignored.

Argument indirection is specified in a C-like man
ner by prefixing the type code, e.g.:

*C1 A string of characters
** 1 A double indirect reference to an integer

Arrays are also specified in a C-like manner, e.g.:

12[3] A vector of three (short) integers
Cl[] A vector of characters-The length is

left unspecified, so any length will be
accepted.

1[2 :2] A two-by-two array of integers
1[2] [2] Another way to specify the above two

by-two array

Some considerations pertaining to arrays:

• Any array passed to a C function is passed as a
pointer to the values, not the values themselves,
as required by C.

•	 One or more array dimensions can be left un
specified. The length will then be set according to
the incoming data.

• The	 type code specification is more compact
than the one used by the APL2/370 argument pat
terns and also more like native C and APL2, we
believe.

Structures are catered to as well, e.g.:

{II} Any combination of type codes can be spec
ified inside the braces , including nested
structures.

The type codes are also affected by prefix and suffix
modifiers . The prefix modifiers are :

<	 Input only
>	 Output only
I	 Input/output
?	 Optional parameter

The suffix modifiers are :

Repeat last type code as many times as
needed to account for the given input values.

*	 Ignore any input parameter beyond those
already verified.

Both of these suffix modifiers may only be specified
at the very end of a list of type codes or following
the last item before a "}" ending a substructure
definition .

Parameter passing

All parameters are passed explicitly to and from
APL2. APL2/X does not cater to side effects such as
update-in-place (i.e., changing the value of an APL2
variable other than by explicit reference), nor does
it use call-by-name, where the name of a variable to
be used or changed is passed as a parameter and the
interface reaches back into the workspace to access
the specified variable. Although both are techni
cally feasible to do, there has been neither the need
nor the desire to use them. In fact, a conscious
effort has been made to stay away from them , as it
was viewed as detrimental to the clarity of the re
sulting code .

On calling a C routine from APL2 only those pa
rameters listed as "input" or "input/output" must be
specified (i.e., the parameters listed in the input
type code field). The interface will generate what
ever output parameter place-holders are needed in
the actual call to the C function. Upon completion
of the C routine, all parameters listed as "input/
output" or "output" will be returned to APL2, in
addition to the explicit C function result (if re
quired). We thus take advantage of the ability of
APL2 to return multiple values in the explicit result
of a function invocation. This is an outgrowth of the
desire to avoid relying on (hidden) side effects.

Many X Window System calls return more than one
result via their parameters. The parameters used in
this fashion are always identified by including the
suffix "_return" with the parameter name. These

480 JENSEN AND BEATY	 IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

parameters appear at the end of the parameter list.
We have taken advantage of this fact in the way that
the input and output type codes are specified in the
command definitions .

XParseGeometry is an example of a call returning
multiple parameters. The C function prototype and
an example of its use via APL2/X are given below:

int XParseGeometry(string . x_return. y_return .
width_return . hei ght_ret ur n)

char *string;
i nt *x_return . *y_return;
in t *w i dt h_return. *heig ht _return ;

A Multiple output .
(mask x y width height) ~

X . XParseGeometry ' . 25xS8+18-18 '

Parameters passed by value

Parameters are passed to and from APL2 by value.
This is true no matter what level of indirection is
needed by the C routine to be called. The burden
of setting up this activity and adminis tering the
space is handled by the interface. Thus, using the
XParseGeometry example given above, "string" is
given as '"25x80+10-1O''' in the call from APL 2,
and the interface will convert this string to the
proper "char *" format before calling the real C
routine.

Passing the parameters in this fashion maintains
the feel of an APL2 function . The housekeeping
chores of managing the temporary storage fall upon
the interface, not the user.

These statements do not imply that C data pointers
are never returned to APL2, or are used by it. Quite
the contrary, pointers are typically specified using
the "P" or "I" type codes and are passed back to
APL2 as large numbers. The application running in
APL2 may use this large number on subsequent calls
to external functions via APL2/X but will rarely, if
ever, have a need to modify the value of the pointer.

Dealing with struct ures warrants some special com
ments. We prefer to pass them by value, and given
a choice we have set up the calls to do so. However,
there are enough exceptions to this procedure to
prevent it from being a general rule. The exceptions
come about for the following reasons:

1. Performance-It is inherently more expensive in
processing time to create the structure on the fly
from its values. If a structure instance is being

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

used repeatedly without its content being rede
fined, it is more efficient to create the structure
once and then refer to it using the pointer to the
created structure instance.

2.	 Permanence-The structure may be modified by
future calls. It is therefore important that it re
mains in a fixed location in storage.

3. Hidden side	 effects-Most X Window System
structures do not exhibit this problem, but we
did encounter it using the "Xrm" class of calls.
Although unstated, the structure pointer was
also being referred to in a hidden lookup table .
Another manifestation of such effects is where a
data structure has an unspecified or hidden pre
fix or suffix section .

Wherever possible, APL2/X allows structures to be
specified on input either by value or by a pointer to
an already-existing structure instance.

Support for C data structures

As would be expected of any sizeable C application,
the X Window System defines close to 100 C data
structures. Therefore, to fully support the X Win
dow System, the APL 2/X interface had to be able to
provide access to these data structures as well as the
many function calls that are defined by the X Win
dow System. In doing so, APL2/X has implemented
these data structures in C and provided import and
export access from APL2.

Those familiar with the object -orien ted paradigm
will recognize the similarities in that approach to
the APL2/X handling of data structures . APL2/X
maintains a structure (class) definition as part of
the C command interface. APL2 calls upon this def
inition to create new instances of the structure in
memory and to assign values to and retrieve values
from the fields (class data members) of the in
stance.

The structure instances are stored in memory con
trolled by C and thereby directly available to the C
application, in this case the X Window System.
Upon request from APL2, the instance of the data
structure is mapped to an APL 2 vector. The vector
may be simple (homogeneous) or general (het er
ogeneous), depending on the underlying C defini
tion. When in APL2, the array can be manipulated
in the normal APL 2 fashion.

Structure commands. A common set of structure
commands has been defined to allow APL2 to easily

JENSEN AND BEATY 481

create and access the data structure instances main
tained by C. Again one can draw comparisons to
these structure commands and those implemented
for class definitions in many object-oriented lan
guages. The structure commands provide the
means to create instances of a given structure type,
to perform the chores of getting data in and out of
it, and to free up the space once it is no longer
needed.

Listed below are the commands that are defined.
The commands are shown in three groups : those in
the left column operate on a single instance of a
structure, the commands in the middle column op
erate on multiple adjoining structures, and the one s
on the right return assorted information from the
structure definition.

Clear MClear GeConst
Get MFree GetFields
New MGet GetSiz e
Put MNew
New Put MPut
SFree

Structure command usage. The syntax common to
all of the structure commands includes the com
mand name followed by the structure type. For
those commands that deal with existing structure
instances, the pointer to the structure instance (its
handle) is expected as the third argument. Follow
ing is the general structure command syntax as
called from APL2:

t. rc [result)) ~ C command struct [par m) .. .

Some examples of using these commands are:

R Cr eat e a new XTextltem instance
item ~ X ' New' ' XTex t l t em'

R Now fill it with data
X 'Put ' 'XTextltem' item

('Simple ' 1 2 3)

R Verify that the data made it i n
X 'Get' ' XTex t l t em' item

Simple 1 2 3

R Use	 the structure in a call
X ' XDr awTex t ' dp w gc x y item 1

R Remember to free it when all done
X ' SFr ee' ' XTex t l t em' i t em

Structure type definitions. The structure type def
initions are grouped in tables in the same manner

as are the command definitions. In fact, the APL2/X
interface provides for each environment grouping
to accommodate both a command table and a struc
ture table, as these definitions often go hand in
hand. Currently, these three structure definition
tables are provided by APL2/X: X events and other
X structures, and C primitive structures.

In order to have the structure commands work, the
tables must specify the structure type being ad
dressed. The structure type located in one of the
predefined table s provides the definition of the el
ements of a structure instance of that type. Specif
ically, the type definition contains information
about each field of the structure, the names , and
data types. The field data types are specified using
the same type codes as are used for the function
arguments in the command tables.

This structure definition information is also readily
available from APL2 via the interface. Having this
information available can be of great assistance
when using the data structures from within APL2, in
that it associates each element in the vector with its
related field name in C.

To help illustrate the point, this is how the
XTextltem structure from the X Window System
Xlib.h header file is defined in C:

typedef s t r uct {
char *chars ; / * Pointer to s t r i ng */
int nchar s ; /* Number of chara cters */
int delta; / * Delta between s t r i ngs */
Font f ont : / * Font to be used. or None */
XTe xtltem;

APL2 accesses the structure information in the fol
lowing manner:

R Get	 all XTextltem fields
X 'GetFields ' 'XTextltem '

char «cbers S
int nchars I
int delta I
Font font I

Note that the full C definition of the field is main
tained even though the field name and the field type
code are the only pieces of information used
by APL2/X. The C data type specification (e.g.,
char ", int, or Font) is kept as part of the field
definition since it is often very useful, if not crucial,
to the understanding of the role of a given structure
member.

482 JENSEN AND BEATY	 IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Structure field access. To accomplish the equiva
lent of field access by name as provided by C, two
APL2 functions, axGetFF and axGetFF1, are in
cluded as part of APL2/X. These functions use the
field information provided by GetFields to asso
ciate indices to the various field names, thereby
providing the index-by-name capability for a re
lated structure instance held in an APL2 vector. The
main difference between these two functions is that
axGetFF provides the indexing for all of the fields
in the structure, and axGetFF1 returns index in
formation for selected fields specified in the call.

By means of an example, we now demonstrate how
the chars field of an XTextltem structure instance,
text, is accessed from both C and APL2. Note that
the axGetFF function has previously been called in
APL2 to associate the correct index to the field
name:

In C: In APL2:

tex t.c hars text[chars]
text->cha rs text[chars]

As a benefit of obtaining the field indexing of the
structure from C, the APL2 application can have a
measure of independence from changes in the or
der of fields in the underlying C data structure. That
is to say that as long as the fields remain intact and
the C structure definition is maintained in accor
dance with the C application, the APL2 application
will not have to change either.

Abandoned approach. Originally we implemented
the structure support using "typed" instances so
that each instance had a hidden header section that
identified the structure type. This implementation
meant that the structure class did not have to be
specified on each structure command since the in
formation was already available. However, when
the structure was allocated by the C application
instead of the APL2/X interface, it meant a lot of
extra work because the interface would have to al
locate another instance with the proper header
attached and then copy the structure data of the
application into this new area. With the implemen
tation of nested structures this activity became dif
ficult to control, so we ultimately abandoned the
"typed" instance approach.

in its header files. As any experienced programmer
would attest, the use of constants is a major benefit
to an application in that it provides symbolic ref
erence so that when a change is called for, only the
constant value needs to be changed, regardless of
how many references exist. Because these constants
disappear during the compilation process, there is
no penalty for defining large numbers of them, and
the X Window System takes advantage of this and
defines a large number of these constants in its
header files.

The sheer number of constants employed by the X
Window System dictated that APL2/X implement ac
cess to these constants in a selective manner rather
than expose the whole lot. This approach is logical
since any given constant is typically used by only a
very limited number of structures or functions. In
fact, in the majority of cases, the constants defined
in the X Window System header files are related to
specific fields of a structure. Therefore, in giving
APL2 access to these constants, the constants are
logically tied to a related structure definition.

The GetConst command provided by APL2/X as part
of the structure commands is used to retrieve the
constant values associat ed with a given structure for
use in APL2. Following is an example of the ou tput
from this command:

x ' Ge t Cons t' ' XSi ze Hi nt s'
USPosit ion X 1
USSize X 2
PPos it ion X 4
PSize X 8
PMinSize X 16
PMaxSize X 32
PResizel nc X 64
PAspect X 128
PB aseSize X 256
PWinGravity X 512
PA ll Hints X 252

It is a simple task for an APL2 function to issue this
call, create a set of variables, and initialize them to
the constant values that are returned. In fact, the
axGe tFF and axGe tFF1 functions previously in
troduced in the last section not only define struc
ture field indexing, they also create these constant
variables for use by the APL2 application.

By doing so, the APL2 functions are able to use the Support for C constants
same constants as defined by the X Window Sys

If the X Window System defines a large number of tem. Such usage insulates the application from
structures, it defines ten times that many constants changes to these constant values. We experienced

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 JENSEN AND BEATY 483

an example of this when upgrading the APL2/X in
terface support of the X Window System from
release 11.3 to release 11.4. Release 11.4 had
changed some of the constants associated with the
XSi zeHi nt s structure, among other changes. These
changes meant that the table holding the constants
in APL2/X had to be recompiled to pick up the
changed values, b-it through the use of the
axGetFF function it never affected the APL2 ap
plications.

System commands

APL2/X provides a group of system commands in
addition to the structure and X Window System
commands. These commands are used to control
and interrogate the interface itself, as opposed to
accessing and using external functions that supply
the application with needed services. The names of
these commands all start with a closing parenthesis,
mimicking the APL2 system commands.

The following system commands are presently de
fined:

)Cmds List the available commands
)Env Get Get current command environments
)Env Set Change the command environment

order
)RC List a return code message
)St r ucts List the available structures
)Syntax List the ,syntax of a specific command
)Ve rsio n Return the AP L2/X version identifier

Some examples of their use follow:

X ')Synt ax' 'XPar seGeometry '

Xlib XPar seGeometry S IIIII

X ' JVersi on '

AP L2/X Devel opment Vers ion 8.88

X ')Env' 'Get '

Xl ib Structs System

Return codes

A major difference between APL2/X and processor
11 of APL2/370 is in the way that errors are reported.
Processor 11 treats this condition at an atomic level,
using the normal APL2 error messages such as
DOMAIN ERROR and VALUE ERROR. If the error
stems from using an element of the wrong type in
a vector of arguments, it can be quite difficult to
locate the source of the error, especially since the

~ JENSEN AND BEATY

APL2 /370 DNA argument pattern information is not
directly available to the application.

APL2/X improves error reporting in several ways.
First of all, the arguments in error can easily be
determined, since each argument passed to APL2/X
will be associated with a return code. Second, the
return code is tied to an error message explaining
the source of the error, if using the XAPLZ function.
Third, the syntax of the call is available for inspec
tion via a system command.

For instance, using the X function:

X ' XOp enDispl ay'
Error in in put (RC=l)

Index rc parm
8 8 XOpenDisplay
1 16

16 Expected parameter of t ype ' %s' is mi ss i ng
Comma nd ' XO penDi sp l ay ' def i ned by:

Xli b XO penD is play SI
X 'XO penDisp lay '
1\

Note the use of the default error handler that is part
of the X function; it will halt execution at the place
of error and will point out the parameter or pa
rameters in error.

Using C instead (without the trailing comment, of
course; it is just placed here for explanation):

C ' XOpenDi spl ay' ' fi r s t' ' second'

17 8 8 17

o 17: Too many paramet er s

The C function does not halt the processing when
an error is encountered. Instead, it returns a non
zero return code to the application, and it is up to
the application to take whatever corrective action is
required. Note the structure of the element return
codes : it contains an element for each given or re
quired parameter, whichever count is the larger of
the two. This way it is possible to uniquely identify
the source of any errors in the parameters.

This principle extends to nested parameters as well,
as the following example shows:

C ' Put' ' XT extI t em' 589128

(1 ' t ext' 234)

1 8 8 8 26 21 8 8 17

17: Excess i ve number of paramet er s gi ven

o 21: Dimensi on 98i mu st be equal to 98s
o 26: Ca nnot conve rt fr om ty pe 98 to t ype 98s

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Issues In calling C routines from APL2

The initial version of APL2/Xwas completed on a VM

system, using processor 11 of APL2 Version 1 Re
lease 3 to call functions external to APL2 itself. The
only two programming languages specifically men
tioned in the documentation for processor 11 are
FORTRAN and System/370 Assembler. 13 Init ially we
used the FORT RAN linkage-type of processor 11
rath er than OBJECf. It was chosen because it would
include the length information for each parameter
passed. However, in trying to call rout ines writte n
in C, we encountered the following problems that
had to be solved in order for us to implement the
X Window System interface:

•	 Character strings not null-terminated-Charac
ter strings are by definition required to be ter
minated by a null byte in C, but processor 11does
not ensure that the strings passed are null-ter
minated.

•	 Returning the result of a C function to APL2-C
functions compiled with the C/370 compiler place
the result in register 1, but processor 11 expects
a result to be passed back to APL2 in register O.

•	 Using C pointers-It is not possible to specify a
given parameter as being a pointer , such as the
C definition char * would requ ire. The argument
patterns 14 of processor 11 do not cater to this
type of definition, and it is therefore possible to
handle the distinction of passing a parameter by
value, as opposed to passing it by reference.

•	 Fully specified function argument patterns- The
function argument pattern of proce ssor 11 must
be completely known by the time a function is
called. It is not possible to defer processing and
verific~tion of some of the arguments unt il later,
or to Ignore others altogether. Thu s, it is not
possible to call a given function with differing
types of arguments.

The above problems are related to calling a single
~ function. In addition to these problems, trying to
Implement an X Window System interface intro
duces another set of problems related to the sheer
number of calls to support (395 in the case of the
X Window System):

• No list options-There is no call to obtain the
function argument pattern of a given external
function from within APL2 (short of extracting it
from the names file), or to obtain a list of all the
accessible external functions.

• Cumbersome to implement and maintain-For a
function to be used, it must have an entry in both

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

the names file and the assembler stub module as
well as a DNA definition in the workspace. E~ch
workspace needing access to the X Window Sys
tem therefore ends up with a large number of
functio n ~efinitions, in most cases swamping the
real functions of the application.

As can be seen, most of these problems revolve
~rou nd parameter passing. They have been solved
in APL2/X by having the interface itself take over the
~arame ter verification chore, using the FUNCfION
hnk ag~-typ~ of processor 11, without any parame
ter verification Imposed by the processor. And in
stead of storing the argument patterns in an exter
nal names file, APL2/X now stores these patterns in
command tables internal to the interface. Thus ,
what APL2/X receives is the APL2 data specified by
the calling function, and it is up to the interface to
perform any needed parameter validation and co
ercions. This scheme has given APL2/X maximum
control of the parameter passing, and thus the fol
lowing results have been achieved:

•	 Only a single external function is established in
the workspace . The name of the C function to be
called is now passed as the first argument in the
call.

•	 Null-termination of character strings is handled
au tomatically by the interface. It avoids having
the caller do it in APL2 by either imposing a fixed
length ~est ~ iction on each string or requiring that
the stn ng include the NU LL terminator.

• The	 interface supports pointer variables. The
support caters to an unlimited number of refer
e~ce indirect io.ns. As an example, an argument
With a declaration of "i nt ** " is supported. This
would be specified as "** I".

•	 Argument verification has been extended to al
low for deferred verification. Such verification
has proved to be especia lly important when
working with data structures, where the content
and structure can vary greatly from structure to
structure.

• Add itional	 data types are supported, such as
hexadecimals. Also, some dat a types can be spec
ified in multiple ways. An example of the latter
is a bit-field, which can be specified as a vector of
~its , an integer (i.e., packed bits), or in hexadec
irnal :ormat (in the form of a character string).

•	 Multiple results can be retu rned as explicit re
sults of the call to a given C function, without the
need to b~ild special APL2 functions that preal
locate vanabies to hold the re turned informa
tion.

JENSEN AND BEATY 485

•	 Commands have been added to interrogate the
interface itself. This interrogation enables the in
terface to return the expected syntax of a given
call or provide lists of the commands and struc
tures supported.

•	 Using function linkage has enabled APL2/X to use
the processor 11 service routines. These routines
provide some useful services, such as data con
version and execution of APL2 expressions from
within C.

• A large number of utility functions have been
implemented in C that allow us to process and
manipulate APL2 data structures in C in an easy
and proficient manner.

Taking over the argument verification job turned
out to be a blessing in disguise for APL2/X. It made
the "port" to the APL2/6000 and APL2/PC environ
ments very easy to accomplish. (In APL2/PC, only the
basic APL2-to-C interface has been implemented,
not the support for the X Window System.) Both of
these environments communicate with APL2/X via a
shared variable interface, unlike the APL21370 im
plementations. Except for different internal for
mats of the APL2 data passed from APL2 , the proc
essing remains the same as far as APL2/X is
concerned, at the internal level and , more impor
tantly, at the user interface level too.

Changes to the X Window System call
syntax

One of the design goals for APL2/X was to imple
ment as faithful a representation of the X Window
System in APL2/X as possible . However, some dif
ferences exist due to the very different nature of C
and APL2. The important differences are:

•	 Function arguments are always specified by
value in the same way that they would be for
regular APL2 functions. This is true for all types
of arguments, scalars as well as arrays. APL2/X
performs any needed type coercion and also adds
any required indirection pointers based on the
type code information before making the actual
call to the C routine.

Note that the explicit use of pointers in APL2/X is
not precluded. In fact, they are used as such in
many of the X Window System calls, as well as in
the routines that implement the structure calls.
In these cases, the pointer given is a "magic"
constant; as far as the application is concerned it
is a value that uniquely identifies some available

486 JENSEN AND BEATY

resource, and no explicit changes to the value
should be attempted. A prime example of such a
constant is the X Window System "display point
er. " This pointer is used on most X Window Sys
tem calls, but no calculations are ever performed
on the pointer itself.

•	 Only input parameters may be specified on the
calls to the X Window System. APL2/X automat
ically adds any needed output parameters that
the call may require. It is a change from the C
environment, where the output parameters must
be specified explicitly on the call and space pos
sibly allocated to hold the results.

•	 All results from calling a function are returned as
explicit results, including results returned in C
via changes to the output arguments. No side
effects such as changing of global variables in the
workspace are employed. Also, pointer argu
ments are de-referenced, so what is returned in
APL2 are the data values , not the pointers.

The above differences are a consequence of the
basic design philosophy underlying the APL2-to-C
interface. Another difference, described next, is
specific to the X Window System calls dealing with
event structures and is more a matter of con
veruence.

X Window System events are always set or returned
by value. The event data are then immediately
available for use in the APL2 environment, instead
of the structure commands being employed to re
trieve the event structure values on the basis of a
returned pointer value. The rationale for this de
cision is that the event data are almost invariable as
required by the APL2 application, not just the event
pointer, so APL2IX returns the data to speed up the
process. In the rare cases where the event pointer
is required, it can be acquired through a separate,
special call to the interface.

Potential improvements

Although we have come a long way in providing
APL2 with access to the X Window System, more
work can certainly be envisioned. First among the
possibilities would be to add a layer of APL2 func
tions to help use the X Window System facilities.
This could shield some of the complexity of the X
Window System, in much the same way it was done
in the past in the workspace FSC126 that helped APL2
create and use a full-screen panel by accessing rou
tines of GDDM via APL2 cover functions.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

A second option is to extend the range of supported
X Window System routines. The Xlib layer is the
only layer supported today. There appear to be no
technical problems in extending the support to
higher layers of the X Window System functional
ity. It is certain that APL2 would benefit from gain
ing access to higher-level routines that create and
manipulate window system items such as menu
bars, sliders, pop-up windows, and other items as
sociated with a modem, windowed user interface.
Indeed, this possibility is not restricted solely to the
X Window System libraries; other collections of C
functions can be accessed equally well from APL2
via this interface.

In an effort to improve the interface for use with C
applications in general, some experimental work
has already gone into providing the means to
dynamically define C commands and structures
from APL2. This capability allows APL2 to directly
interface with existing C applications without re
quiring the definitions of the related functions and
structures to be built into the APL2/X interface itself.

Last, an even better support for data structures is
possible if implemented in APL2 itself, maybe in the
form of an option on DNA to allow APL2 to access
external data variables in much the same way that
external functions today are supported. An advan
tage would be a single copy of data, with the obvious
corollary of improved data integrity.

A final example

It would appear as though it is a rite of passage for
a windows-based system to have a "HelloWorld"
sample program. APL2/X follows this trend. The
HelloWorld APL2 function listed in Appendix A il
lustrates how many of the concepts and ideas pre
sented in this paper fit together. It shows how an
APL2 function can implement the two fundamental
concepts of a windows-based system: window ma
nipulation and responding to user-generated
events. We will let the function listing speak for
itself as to the detail; for a more in-depth discussion
of the program, see Introduction to the X Window
System, Chapter 2,15 IBM AIX APL2/6000 User's
Guide," or An Interface Between APL2 and the X
Window System. 17

Note that the function as listed takes a simplistic
view of the world. It has only minimal error-check
ing, and it is coded as a single, large function. A
production-level version of the same function

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

would certainly have to do a more thorough job
verifying that error conditions had not occurred.
Also, much of the functionality would be imple
mented through secondary functions common to
many windowed applications. However, since the
focus of this paper is purely and solely on the ca
pability to access and call C and the X Window
System routines from APL2 functions, this example
is presented in the form given.

Summary

A major goal achieved in this project was to enable
APL2 to use the exciting new facilities that the X
Window System embodies and to bring to the X
Window System the power of the APL2 interactive
environment and array-handling capabilities. This
truly brings the potential of a modem-day interface
to APL2 while at the same time augmenting the X
Window System. A second goal was to provide a
common interface to the C language from all of
IBM's APL2 systems, ranging from PC DOS through
AIX on the RISC System/6000 to VM and MVS, in
cluding full support of C data structures. A third
goal was to maintain the function-call "feel" of
APL2, enabling the external functions to be used as
though they were truly written in APL2.

To ach ieve these goals a number of large issues had
to be overcome. Among the more daunting ones
were data mapping, handling storage management,
and automatic parameter indirection so vital to any
C interface. Since APL2 and C are so diverse in the
way they deal with storage management, it proved
to be a real challenge, especially when dealing with
data structures.

The APL2/X interface described is currently avail
able to IBM customers on two APL2 platforms. In
APL2/6000 for AIX on the RISC System/6000 (Pro
gram No. 5765-012) it is included as the AP144 aux
iliary processor," and it is provided as a sample
offering with TCP/IP Version 2 for VM (Program No.
5735-FAL) to be used by APL2NM. 19

Acknowledgments

We would be remiss if we did not acknowledge the
significant amount of help we have received from
many people. A special acknowledgment goes to
Bob Cohen, who worked with us part time while
pursuing his Ph.D., for implementing and verifying
a good portion of the X Window System calls. We
would also like to thank our manager, Love Sea-

JENSEN AND BEATY 487

wright, and our center manager, Dick MacKinnon,
for making it possible for us to engage in this proj
ect; Andy Pierce for showing us his REXX-based
interface and providing us the X Window System
on VM/CMS; Mike VanDerMeulen and John Mizel
for helping us port the interface to the RISC Sys
tem/6000; Ray Trimble, Michael Wheatley, Nancy
Wheeler, and David Liebtag for helping us through
the DNA of APL2 ; Elbert Hu for including APL2/X
with TCP/IP Version 2 for VM; and the many people
that answered our queries on the electronic forums
and provided us with good feedback during the de
velopment.

• Trademark or registered trademark of International Business
Machines Corporation.

•• Trademark or registered trademark of Massachusetts Insti
tute of Technology, UNIX System Laboratories, Inc., Microsoft
Corporation, or Open Software Foundation, Inc.

Appendix A: HelloWorl d listing

[0]	 HelloWorld;DIO;dp;w;gc;s;e;k;rw;bp;wp;m
;hello;hi;done;None;hp;hints;rc
;nl;x;ep

[1] A Sample X program, based on helloworld.c
[2] A from Oliver Jones:
[3] A Introduction to the X Window System
[4] A Prent i ce-Hal l , 1989; ISBN 0-13-499997-4
[5] mo+o
[5]
[7] A Define some constant text-strings
[8] hello+'Hello, World.'
[9] A The exclamation point makes hi ugly:
[10] hi+'Hi' ,('A' =DAF 55)~DAF 90 33
[11]
[12] A Ini t i al i zat ion
[13] ~(O =dp+X 'XOpenDisplay' ")Uopen
[14] D+'XOpenDisplay failed ... '
[1 5] 0+' . . . HelloWorld aborted'
[15] ~lexi t

[17] lopen :
[18]
[19] A Default pixel values
[20] s+X 'XDefaultScreen' dp
[21] bp+X 'XBlackPixel' dp s
[22] wp+X 'XWhitePixel' dp s
[23]
[24] A Define an X cons t ant
[25] None+O
[25]
[27] A Prepare to set window position and size
[28] (rc nl)+'Y-' axGetFF 'XSizeHints'
[29] m++IPPosition PSize
[30]
[31] A Build an XSizeHints structure instance
[32] hp+X 'New' 'XSizeHints'
[33] hints+X 'Get' 'XSizeHints' hp
[34] hints[Y-flags Y-x Y-y]+m 200 300
[35] hints[Y-width Y-height]+350 250
[35] X 'Put' 'XSizeHints' hp hints
[37]
[38] A Window creation
[39] rw+X 'XDefaultRootWindow' dp
[40] x+hints[l	 2 3 4],5 bp wp
[41] w+X' XCreateSimpleWindow' dp xw,»:
[42] x+hello hello None('A' 'test')2 hp
[4 3] X 'XSetStandardProperties' dp w,x
[44] X 'SFree'	 'XSizeHints' hp

[45]
[45] A Create a	 Graphics Context
[47] gc+X 'XCreateGC' dp wOO
[48] X 'XSetBackground' dp qc bp
[49] X 'XSetForeground' dp gc wp
[50]
[51] A Window mapping
[52] X 'XMapRaised' dp w
[53]
[54] A Input event selection
[55] m+'ButtonPressMask' 'KeyPressMask'
[55] m+m,c'ExposureMask'
[57] Crc m)+m axGetFFl 'XEvent'
[58] X 'XSelectInput' dp W<+lm)
[59] ep+X 'XGetEventBuffer'
[50]
[51] A Get some more constants
[52] m+'KeyPress' 'ButtonPress'
[53] m+m, 'Expose' 'MappingNotify'
[54] (rc m)+m axGetFFl 'XEvent'
[55] A ••• and some event structure layouts
[55] nl+nl,l~'K-' axGetFF 'XKeyEvent'
[57] nl+nl,l~'B_' axGetFF 'XButtonEvent'
[58] nl+nl,l~'E_' axGetFF 'XExposeEvent'
[59]
[70] A Main event-reading loop
[71] done+O
[72] levent:~Cdone =O)+lend
[73]
[74] A Read and process the next event
[75] x+IKeyPress IButtonPress
[75] x+x,IExpose IMappingNotify
[77] ~(m=K-type~e+X 'XNextEvent' dp r/»
[78]
[79] lExpose:	 Repaint window on expose eventsA

[80] ~e[E_count]tlevent A Count > 0 ?
[81] x+e[E_display E_window] ,gc,50 50
[82] X(c'XDrawImageString') ,x,helloCphello)
[83] ~levent
[84]
[85] lButtonPress: A Process mouse-button presses
[85] x+e[B_display B_window],gc,e[B_x B-y]
[87] XC c'XDrawImageString'),x,hi(phi)
[88] ~levent
[89]
[90] lKeyPress:	 A Process keyboard input
[91] k+El~X 'XLookupString' ep
[92] ~Cdone+(tk) E'qQ')tlevent
[93] x+e[K-display K-window],gc,e[K_x K-y]
[94] X(c'XDrawImageString'),x,k(pk)
[95] ~levent
[95]
[97] IMappingNotify: A Reset keyboard
[98] X 'XRefreshKeyboardMapping' e
[99] ~levent
[100]
[101] l end : A Termination
[102] X 'XFreeGC' dp gc
[103] X ' XDes t r oyWi ndow' dp w
[104] X 'XCloseDisplay' dp
[l05] nl+OEX""nl
[105]	 lexit:

V 1991-4-15 18.43.0 CGMT-4)

Cited references

1.	 J. A. Brown, S. Pakin, and R. P. Polivka,APL2 at a Glance,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1988).

2.	 O. Jones, Introduction to the X Window System, Prentice
Hall, Inc., Englewood Cliffs, NJ (1989).

3.	 D. Comer, Intemetworking with TCP/IP, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1988).

4. IBM Transmission Control Program/InternetProtocol Version
2 for VM: Programmer's Reference Manual, Appendix A,
SC31-6084, IBM Corporation (1990); Program No. 5735
FAL; available through IBM branch offices.

488 JENSEN AND BEATY	 IBM SYSTEMS JOURNAL. VOL 30, NO 4, 1991

5.	 IBM Transmission Control Program/Internet Protocol Version
2 for MVS: Programmer's Reference Manual, SC31-6087,
IBM Corporation (1991); Program No. 5735 HAL; available
through IBM branch offices.

6.	 X327G-AIX X Windows 3270 Emulator User's Guide, SC23
0579-0, IBM Corporation (1991); available through IBM
branch offices.

7. J. A. Pierce and R. O. Reynolds, The X Window System in
the S/370 Environment, G325-4100-0, IBM Corporation
(1991); available through IBM branch offices.

8. APL2 Programming: Processor Interface Reference, SH20
9234-0, IBM Corporation (1987), pp. 15-23; available
through IBM branch offices.

9. APL2 Programming: APL2 for the IBM Pc. User's Guide,
Version 1.02, SC33-0600-2, IBM Corporation (1990), pp.
436-438; available through IBM branch offices.

10.	 R. W. Scheifler and J. Gettys with J. Flowers, R. Newman,
and D. Rosenthal, X Window System: The Complete Refer
ence to X1ib, X Protocol, ICCCM, XLFS, Digital Press, Bed
ford, MA (1990).

11. AIX Calls and Subroutine Reference for RISC System/6000,
Volume 4: User Interface, SC23-2198, IBM Corporation
(1990); available through IBM branch offices.

12. APL2 Programming: System Services Reference, Chapter 23,
SH20-9218,IBM Corporation (1990), pp. 238-239; available
through IBM branch offices.

13. Ibid., p. 237.
14. Ibid., p. 243.
15. See Reference 2, Chapter 2.
16. AIX APL2/6000 User's Guide, SC23-3051-0, IBM Corpora

tion (1991), pp. 305-314; available through IBM branch of
fices.

17. An Interface Between APL2 and the X Window System, IBM
licensed material provided with TCP/IP Version 2 for VM
(Program No. 5735-FAL), pp. 5-14; available through IBM
branch offices.

18. See Reference 16, pp. 209-216.
19. See Reference 17.

Accepted for publication June 10, 1991.

John R. Jensen IBM Cambridge Scientific Center, 101 Main
Street, Cambridge, Massachusetts 02142. Mr. Jensen is a scientific
staff member at the Cambridge Scientific Center. He joined
IBM Denmark in 1978as a systemsengineer. In 1982,he worked
at the IBM Canada Computing Centre in Vancouver, British
Columbia, and from 1983 to 1988 was at the Dallas Develop
ment Laboratory in Texas, working on the ICII and OfficeVision
products. He became a member of the Cambridge Scientific
Center staff in 1988. His current areas of interest include user
interface design, application proto typing, programming environ
ments, and compilers. Mr. Jensen received an M.Sc. degree in
electrical engineering from the Technical University of Copen
hagen, Denmark, in 1978and an M.B.A. in accounting from the
Copenhagen School of Economics in 1981. He is a member of
the ACM and the IEEE Computer Society.

Kirk A. Beaty IBM Cambridge Scientific Center, 101 Main
Street, Cambridge, Massachusetts 02142. Mr. Beaty is a scientific
staff member at the Cambridge Scientific Center. He joined
IBM at Sterling Forest, New York, in 1981 as a systems pro
grammer. Furthering his experience at Sterling Forest, from
1983 to 1987 he became involved in telecommunications, in
cluding the technical software leadership role in the creation of
IBM'scentrally managed internal VNET backbone network. He

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

has been a member of the Cambridge Scientific Center since
1987. Mr. Beaty received a B.S. with honors in mathemat
ics/computer science (while minoring in business administra
tion) in 1981 from Manchester College, North Manchester, In
diana . He is a graduate of the IBM Systems Research Institute
and has recently completed a Certificate of Advanced Study in
software engineering at Harvard University.

Reprint Order No. G321-5447.

JENSEN AND BEATY 489

The APL IL Interpreter
Generator

The objective of the APL IL Interpreter Generator
is to solve the problem of creating APL
interpreters for different machines at a minimum
cost. The objective has been accomplished by
writing an APL interpreter in a speCially designed
programming language (IL) that has very low
semantics but high-level syntax. The interpreter
is translated to each target machine language by
easily built compilers that produce high
performance code. The paper describes IL, the
APL interpreters written In IL, and the final
systems generated for seven different target
machines and operating systems. Some of these
systems have been generated in an extremely
short time.

Among the many languages used to write pro
grams, APL and its successor, APL2, are very

powerful. They support highly structured data of
several different internal types and recognize a
large number of primitive functions and operators,
some of which (for example, execute, ~) are ex
tremely complicated for some arguments. The ex
istence of these primitives makes it very difficult for
APL to be compiled (except for subsets of the lan
guage or through the inclusion of an interpreter in
the machine code). Thus full APL and APL2 systems
have to be interpretive. These interpreters are very
large programs, consisting of tens of thousands of
instructions.

Since interpreted programs normally run at least an
order of magnitude slower than their compiled
equivalents, programs written in APL or APL2 start
with a speed handicap as compared to programs
written in, say, C. However, the designers of APL
and APLZ and the implementers of the interpreters

by M. Alfonseca
D. Selby
R. Wilks

have tried to reduce this effect in two different
ways:

•	 By extending the language with ever more pow
erful primitives. In a single stroke, these perform
complex operations that, in other languages,
would require complicated algorithms. In this
way, the time for interpretation is minimized
with respect to the time for execution. The fact
that most APL primitives apply to entire arrays
also helps in this direction.

•	 By programming the interpreters in very low
level languages that make the best possible use of
the resources of the machine or the operating
system.

As a result , APL and APL2 interpreters were usually
written in assembly languages, with the consequent
loss of portability. It has been estimated several
times that, done in this way, the full development of
an APL system for a new machine requires a total of
about 30 person-years.

The APL IL Interpreter Generator started as a proj
ect in the IBM Madrid Scientific Center in 1977.The
objective of this project was to solve the problem of
obtaining APL interpreters for different machines,
at a minimum cost. The solution was to write an APL
interpreter in a programming language, specially

OCopyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract , but no other portions, of this paper may be copied or
distributed royalty free without further permission bycomputer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

490 ALFONSECA, SELBY, AND WILKS	 IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

designed for the purpose, that has very low seman
tics but high-level syntax. This interpreter is trans
lated to each target machine by appropriate, easily
built compilers that produce high-performance
code.

In the past 14 years, the programming language
called the Madrid Scientific Center Intermediate
Language (IL) has reached its third version; it has
been essentially stable since 1980. The first section
of the paper describes the language design deci
sions, which in many cases are curiously parallel to
those made in the design of the C language, al
though there are important differences. The second
section of the paper describes the different inter
preters that have been written in IL since 1980. Fi
nally, the last section describes the procedure used
to generate an APL system for a given target envi
ronment (a machine and an operating system).

The Intermediate Language

The Madrid Scientific Center Intermediate Lan
guage (IL)was designed in the late 1970s, according
to the following criteria: on the one hand, a high
level syntax was desirable to assure portability be
tween different machines and operating systems;
on the other hand, very low-level semantics would
make it possible to obtain highly optimized code
with very simple, easy-to-build compilers.

The procedure that was followed to design the IL
instructions was to select the most common oper
ations in the assembly languages of different IBM
machines and to represent them with a high-level
syntax. In this way, compilation of IL instructions
into assembly language usually becomes a one-to
one translation between one IL symbol and one as
sembly instruction.

Even control instructions were subject to this pro
cedure. Since the only control instruction in assem
bly languages is usually the branch on condition, this
instruction is the only one that was implemented in
IL, although it received a high-level syntax in the
following way:

~label IF condition

Optimization, in this kind of intermediate lan
guage, is not a question to be solved by the com
pilers, which we want to build as quickly as possible,
but by the IL programmers who write the APL in
terpreter. Remember that this job should be done

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

only once, although there may be as many compil
ers as there are different target machines.

The only assumption about the machine in which IL
may eventually be implemented is that its memory
is considered to be a vector of fixed but undefined
size (eight bits or more per byte; two, four, or eight
bytes per word). Memory units should be consec
utively numbered.

The four elements of IL are now described.

Constants. Constants can be numeric or literal. In
actual fact, a literal constant can also be considered
as numeric and operated on accordingly. This
means that an expression such as

'A'+1

is valid and (assuming ordinality in the character
set) is equivalent to constant

'B'

The C language manages character constants in the
same way.

ASCII (American Standard Code for Information
Interchange) or EBCDIC (extended binary-coded
decimal interchange code) can be selected as the
internal representation of the literal constants. In
the case of the APL IL interpreters, ASCII has been
chosen.

Numeric constants can be either integer or floating
point. Floating-point constants, such as 2 . 0, are
distinguished by the presence of the period from
integer constants, such as 2 .

Identifiers. Identifiers are names that begin with a
letter other than Q (which is reserved) and continue
with any (possibly empty) combination of letters
and figures. The maximum number of characters in
an identifier is five.

What an identifier represents is controlled by its
first letter, according to Table 1.

A full-word variable has an implementation
dependent length. Depending on the machine (in a
16-bit system, for instance), a full-word variable can
be the same as a two-byte variable. This type is, to
a certain extent, similar to the int type in the C
language , but IL does not distinguish full-word in-

ALFONSECA, SELBY, AND WILKS 491

Table 1 Identifiers and their definitions

tegers from pointers. Assembly languages do not
usually make this distinction either.

The only data structure supported is the vector (a
succession of values at consecutive locations).
Higher structures (such as matrices) are not a part
of IL, as they are not a part of assembly languages.
A scalar is considered to be the same as a vector of
one element.

Declarations. In an IL program, declaration instruc
tions are located at the beginning and clearly sep
arated from executable instructions. Every variable
used by a program must be declared, either by as
signing initial values to it, or by defining an equiv
alence.

Init ial values are assigned by means of instructions
such as the following:

A 1 3 5 7
B 10pOw ,ABC ,

The first instruction defines A as a vector of four full
words with initial values of one , three, five, and
seven. The second defines B as a vector of ten full
words with initial values of zero. The third defines
Was a vector of three bytes with initial values equal
to the ASCII representation of letters A, B, and C.

Equivalences are very powerful and have different
forms, such as:

C=A[2 J
V=8p F
C1=3pP1(4)

The first instruction defines variable C to have the
same address as the third element of vector A (zero
origin is used) . Both A and C are full-word objects
by virtue of their initial letter.

Identifier Representation

O,R ,T,U ,V,W
I,J,K,L,M,N
A,B,C,D,G,H,P
F
E
S
X,Y,Z

A variable whose value is a vector of one -byte integers or literals.
A variable whose value is a vector of two-byte integers .
A variable whose value is a vector of full-word integers or pointers.
A variable whose value is a vector of floating-point values.
An internal label in a program.
A public label in a program.
A named constant.

The second instruction defines V as a vector of eight
bytes, sharing the address of floating-point variable
F. This means that V is the vector of the bytes that
make up the floating-point value of F, assuming
that floating-point values are represented in eight
bytes.

The third instruction defines C1as a vector of three
full words whose address is the current value of
pointer P1 plus four. Of course, if the value of P1
changes, the address of C will change accordingly.

Pointers are extremely useful in IL programs, just as
they are in C. However, there is no restriction on
the number of equivalences that may be defined to
a pointer at the same time. For instance, the fol
lowing declarations

A1=4pP(O)
I1=P(O)
V1=P(0)

are all valid and define three variables that share
the same address (the value of pointer P), but have
a different type. A1 is a pointer or full-word integer
vector of four elements. I1 is a two-byte scalar, and
V1 is a one-byte scalar.

Executable instructions. Executable IL statements
are analyzed and executed from right to left. Func
tions are executed without any precedence rules in
the order in which they are found. Parentheses are
not allowed. The main IL executable instructions
are of two different types: assignment instructions
and execution control instructions.

Assignment instructions may take four different
forms, according to the following syntax:

variable expression
variable ~ expr ession
vari able V expressi on
pointer_vari able ~ addr es s expression

492 ALFONSECA, SELBY, AND WILKS IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

where the first form corresponds to normal assign
ment, the second increments the value of the vari
able by the right-hand expression, the third decre
ments that value in the same way, and the fourth,
only applicable to pointers, assigns to the variable
the address of the expression on the right side.

Execution control statements have three different
forms:

-- l abel
--label IF condition
--label list OF index

where the first form corresponds to the uncondi
tional transfer, the second to the conditional trans
fer, and the third to a computed go-to instruction.

The operations that can be a part of an expression
are the typical ones usually encountered in most
machine languages, such as the following: addition
(+), subtraction (-), multiplication (x), division (+),
residue (I), bit shift to the left (t) , bit shift to the
right (~), bit-to-bit logical operations that include
not (~), and (A), inclusive or (v), and exclusive or
(0), absolute value (I in monadic form) , and an
operation to compute the integer part of a ftoating
point number (~ in monadic form) .

The following is an example of an executable in
struction in IL:

Pl~AREF+ZEI4 t 4+ltDREFI

This instruction computes the value of pointer Pl
in the following way: The value of variable DREFI
is multiplied by two (a shift to the left of one po
sition is equivalent to a multiplication by two); then,
four is added to the preceding result. Next, the new
result is shifted to the left by as many positions as
the value of constant ZEI4 (which depends on the
target machine). Then the value of variable AREF is
added, and finally, the result is assigned to pointer
Pl.

Another kind of executable instruction is the sub
routine call. Its syntax is very simple, just the name
of the subroutine. No parameters can be passed
explicitly. All of them must be passed through com
mon memory, or by means of a set of special pointer
variables, the values of which are automatically re
stored before returning to the calling routine.
These variables fulfill the role of the machine reg-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

isters, and in fact, in several of our implementations
they are registers, but this is not necessarily so.

Language tradeotTs. A question that could be dis
cussed is whether IL has any advantages over C for
the implementation of machine-independent soft
ware. This question is really after the fact since IL
was designed in 1977, at a time when C was in its
infancy and far from being as widespread as it is
now. However, in our opinion, IL is superior to C in
its memory management capabilities, which are
much nearer to the machine language level, and
also in its ability to define multiple pointer-based
structures that can overlap freely and move around
without any restrictions.

In contrast, C has better type-constraint capabilities
that provide the programmer with mechanisms to
detect certain errors at compile time, which IL com
pilers do not have. However, we did not find the
lack of these capabilities frustrating in our devel
opment of APL interpreters.

Finally, IL, being a less complicated language, can
be translated by very simple compilers. This point
was important in our development procedure,
which is described in the last section of this paper.

The APL IL interpreters

IL has been used for the development of several
different interpreters. In the time from 1978 to
1982, an APL interpreter was built at about the same
level of the language as the one implemented in the
vs APL product. This interpreter was especially ap
plicable to small machines with reduced data spaces
in memory, and to increase the amount of work
space available to the user , we introduced the con
cept of an elastic workspace. This interpreter was
compiled into the System/370* (which we used as
our test machine), the Series/l ", and the IBM Per
sonal Computer.

The Series/1 computers had an important limita
tion : the memory data space used by one applica
tion was restricted to 64K bytes. To increase it, we
implemented the elastic workspace as a disk exten
sion of the workspace. APL objects directly acces
sible to the user (in the active workspace) could also
reside on disk and would be copied into the main
memory only when they were needed.

When the IBM Personal Computer was announced
in 1981, we decided to translate our interpreter to

ALFONSECA, SELBY, AND WILKS 493

this machine under the Personal Computer Disk
Operating System (rc DOS, or DOS). In this case,
there was the same limitation in the fact that the use
of segment registers made only 64K bytes directly
available. But these machines have greater flexi
bility in comparison to the Series/1, since the con
tents of the segment registers can be changed by the
program. This flexibility made it possible for us to
implement the elastic workspace extension in main
memory, which made it much faster and more ef
ficient.

The workspace was divided into two different sec
tions. In the first section, with a length of 64K bytes,
all the objects were directly accessible to the pro
grams. This section included the APL symbol table,
the APL execution stack, and many APL objects, all
of them smaller than 32K bytes.

The second section (the elastic workspace) con
tained APL objects larger than 32K bytes and (pos
sibly) smaller APL objects that did not fit in the
directly available workspace at a given time and
were not currently needed. Depending on the
amount of space available (limited in DOS to 640K
bytes but possibly reduced by the actual memory of
the machine and the loading of the operating sys
tem extensions), the elastic workspace could be au
tomatically reduced to zero.

This organization made it possible to build the IL
compiler for the IBM Personal Computer in such a
way that the compiler could assume that all of the
objects are directly accessible and forget about seg
ment registers. The only module not complying
with this restriction was the handler of the elastic
workspace, which was written directly in assembly
language.

However, the indicated memory organization had
an important disadvantage: many of the basic APL
structures, such as the symbol table and the exe
cution stack, could not increase further than 32K
bytes, and users soon found that this was a strict
limitation. Therefore, during 1983-85, we devel
oped a new APL interpreter with a more general
workspace management, specially adapted for 16
bit addressed segmented microprocessors (such as
the i8086). This interpreter, which from the lan
guage point of view was still at the vs APL level, was
compiled into the System/370 (which we always use
as the test machine) and also into the IBM Personal
Computer (under DOS) and the IBM Japanese Per
sonal Computer and IX PC (under Japanese DOS) as

a result of a joint project between the IBM Madrid
and Tokyo Scientific Centers.

The elastic workspace concept was abandoned, or
(as it may be preferred) extended to the whole
workspace. In actual fact, what happened is that
this system incorporated a single workspace area
containing all of the APL objects, including the sym-

This organization made it possible
to build the IL compiler for the
IBM Personal Computer so that

the compiler could assume all of
the objects are directly accessible.

bol table and the execution stack, regardless of their
sizes. The lower part of the workspace, however,
always directly accessible through the base segment
registers, includes all of the interpreter data and
work areas plus four "operand areas."

An operand area is a section of the workspace lo
cated in the lower 64K bytes of the total workspace,
where the system can copy APL objects, either com
pletely or partially. A set of special subroutines
manages the transfer of the data from the operand
areas to the workspace proper and vice versa. The
remainder of the interpreter works only with the
operand areas and can thus forget about the seg
ment registers. Only a few modules in the whole
interpreter (less than 10 percent) must work di
rectly on the workspace, and thus they must be
hand-modified in assembly language to introduce
the required modifications to the segment registers.

In 1985 we started a joint project between the
Madrid and United Kingdom Scientific Centers to
build an APL2 interpreter written in n., This inter
preter has been compiled, as usual, into the Sys
tem/370, and also to the following target machines
and operating systems: the IBM Personal Computer
(IBM PC), Personal Computer AT*, and Personal
System/2* (under DOS and Operating System/2*, or
OS/2*), the IBM Japanese Personal Computer (un
der Japanese DOS), the Intel 80386**-based ma
chines in 32-bit addressing mode (under DOS), the

494 ALFONSECA, SELBY. AND WILKS IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

Table 2 Previously available interpreters

1. IBM Personal Computer APL, version 1.0, Program Number 6024077, 1983.
2. IBM Personal Computer APL, version 2.0, Program Number 6391329, 1985.
3. 5550 NiHonGo (Japanese) APL, version 1.0, Program Number 5600-JPL, 1984, developed in collaboration with the Tokyo

Scientific Center.
4. 5550 NiHonGo (Japanese) APL, version 2.0, Program Number 5600-JPN, 1985, developed in collaboration with the Tokyo

Scientific Center.
5. JX NiHonGo (Japanese) APL, Program Number 5601-JPL, 1985, developed in collaboration with the Tokyo Scientific

Center.
6. APL2 for the IBM Personal Computer, version 1.0, Program Number 5799-PGG (PRPQ RJ0411, Part No. 6242936), 1988.
7. APL2 for the IBM Personal Computer, version 1.0E, Program Number 5604-260 (Part No. 38FI753), and Program Number

5775-RCA (Part No.38F1754), 1988.
8. APL2 for the IBM RISCSystem/61J00, Program Number 5765-012, 1991, developed in collaboration with the APL2/601JO

Development Group from the IBM Kingston Laboratory.

IBM 6150 RT PC* (under Advanced Interactive Ex
ecutive", or AIX*), and the IBM RISC System/6000*
(under AIX).

There are two versions of this interpreter. The first
one, used to generate the PC-like 16-bit systems,
still uses the memory management described for
the second APLinterpreter. However, in the second
APLZ interpreter used to generate the 32-bit sys
tems, where memory management is not a problem,
some of the modules have been replaced by others
that work directly on the workspace, skipping the
copy to the operand areas, to improve performance.

An additional improvement in the APL2 interpret
ers is the presence of a reference table, functionally
intermediate between the symbol table and the ac
tual APL objects. This improvement means that
most of the time the interpreter may refer to a given
object by its reference number, regardless of the ac
tual position where the object is located in the work
space. There are several important consequences of
this organization that are now described.

On the one hand, a given APL2 piece of data may be
pointed to by more than one APLobject. Since APL2
supports general arrays, this capability is important
to prevent memory duplication. The reference ta
ble keeps information that indicates whether an ob
ject is multipointed, which will be used in case of
modification to decide whether the value should be
copied somewhere else before the changes are per
formed.

On the other hand, garbage collection is much sim
plified and made extremely fast. This has always
been the case with APL,but it is even more dramatic
now that extremely large workspace sizes can be

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

attained. With our 32-bit interpreter, workspace
sizes can reach many megabytes, but even so , ga r
bage collection never takes longer than a few seconds.
This speed contrasts with other interpretive lan
guages, such as LISP and Small talk , where garbage
collection was traditionally a very expensive proce
dure, sometimes taking several minutes to complet e.

Table 2 lists some of the previous interpreters th at
have become international IBM products.

Generating an APL interpreter

The procedure to generate an APL2 system for eac h
environment (machine and operating system) can
be summarized as follows. First, a compiler that
translates IL code into the target machine code is
built. Next, the APL2 IL interpreter is compiled into
the target machine code. This produces an incom
plete system, with a few loose ends (subroutines)
that depend on the operating system and that have
not been written in IL. These subroutines are th en
written, usually in assembly language, and added to
the compiled interpreter. Finally, some auxiliary proc
essors are written to perform special ro operations.

This procedure has proved its usefulness in the fast
and effective generation of APL2 interpreters for
different machines. The outstanding example was
the i80386 interpreter, where we could get rid of the
fourth step (since we took care that all auxiliary
processors written for the IBM Personal Computer
and Personal System/2 [PS/2*] interpreter would be
compatible). The total effort required to execute
the other three steps and produce and debug a full
APL2 system for these machines was 13 person
weeks. The system was announced and shipped just
six months after the work started.

ALFONSECA, SELBY, AND WILKS 495

Another outstanding example was the porting of
the APL2 ILinterpreter to the IBM RISC System/6000
machine under the AIX operating system. It was
done in about ten person-weeks by two people who
did not have previous knowledge of either ILor the
RISC System/6000 machine code.

IL compilers. The ILcompilers are usually written
in APL or APL2, which makes them very easy to
adapt to new target machines. They are somewhat

When an APL system must be

generated, it is usually not

necessary to build a full

IL compiler.

slow since they are being interpreted, but this is not
a problem since, in principle, they need only be
executed once.

When an APL system must be generated for a new
machine or operating system, it is usua lly not nec
essary to build a full IL compiler. Since the source
language is the same, the lexical and syntax analysis
sections of any of the preceding compilers are au
tomatically usable. Only the code generator section
must be rewritten, and even there, many subpro
grams and program structures can be reused.

The exception is the IL-to-System/370 compiler,
since we are using the System/370 as a test machine
and many changes and trials are performed on it.
Therefore, the IL-to-System/370 compiler was writ
ten in ILand is much faster than all of the other IL
compilers.

At this point , we have ILcompilers available for the
System/370, the Series/1, the i8086 and i80286 ma
chines (which include the IBM Personal Computer,
the PS/2Models 25, 30, 50, and 60 and the Japanese
IBM PC), the i80386 machines (such as PS/2 Models
70, 80, 90, and 55SX), the IBM 6150, and the IBM
RISC System/6000. The last three compilers are
written in APL2.

496 ALFONSECA, SELBY, AND WILKS

Operating-system-depen den t code. Operating-sys
tern-dependent code performs those functions that
depend closely upon the operating system and are
not easily made machine-independent. They in
clude system initiation and disconnection, machine
check recovery , console I/O, sequential file I/O, and
the timer routines. This code, as compared to the
size of the APL interpreter, amounts to about 5 per
cent of the total code.

In the case of the Series/I , we also implemented a
time-sharing system able to support the simulta
neous use of the machine by several users . This
system was written directly in assembly language,
and its presence increased the amount of machine
dependent code to about 10 percent of the total
code of the system.

Auxiliary processors. Auxiliary processors are writ
ten for the management of different peripherals
and specialized computations. They perform func
tions such as loading and execution of external pro
grams, printer interface, operating system inter
face, full screen management, data file processing,
communications, graphics, music generation, spe
cial device drivers , and logic programming.

Not all of these auxiliary processors are available
for all of our target machines. Some of them are
written in IL, some in C, and some in assembly
language. A few of them (such as the special device
drivers) are not only machine- and operating-sys
tern-dependent, but also hardware-attachment-de
pendent. It makes no sense to develop them in a
high-level language, since assembly language al
ways provides the maximum efficiency.

Conclusion

The APL IL Interpreter Generator has proved its
usefulness in generating APL and APL2 interpreters
with a considerable reduction of the total product
cycle. It has been used to generate nine IBM prod
ucts: the eight APL and APL2 systems listed previ
ously, plus an educational product announced by
IBM Japan, called LETSMATH, that includes the in
terpreter without the user being aware of it. Several
additional systems, restricted for IBM internal use,
have also been generated in the same way.

• Trademark or registered tradem ark of International Business
Machines Corpor ation.

•• Trademark or registered trademark of Intel Corporation.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Cited references

1. APL Language, GC26-3847, IBM Corporation (1975); avail
able through IBM branch offices.

2. APL2 Programming: Language Reference, SH20-9227, IBM
Corporation (1987); available through IBM branch offices.

3.	 M. Alfonseca and M. L. Tavera, "A Machine-Independent
APL Interpreter," IBM Journal of Research and Development
22, No.4, 413-421 (July 1978).

4. M. L. Tavera, M. Alfonseca, and J. Rojas, "An APL System
for the IBM Personal Computer," IBM Systems Journal 24,
No.1, 61-70 (1985).

5.	 M. AJfonseca and D. Selby, "APL2 and PS/2: The Language,
the Systems, the Peripherals," APL89 Conference Proceed
ings, APL Quote Quad 19, No.4, 1-5, ACM, New York
(1989).

Accepted for publication June 21, 1991.

Manuel Alfonseca IBM Software Technology Laboratory, Paseo
de la Castellana, 4, 28046 Madrid, Spain. Dr. AJfonseca is a
Senior Technical Staff Member in the IBM Software Technol
ogy Laboratory. He has worked in IBM since 1972, having been
previously a member of the IBM Madrid Scientific Center. He
has participated in a number of projects related to the devel
opment of APL interpreters, continuous simulation, artificial
intelligence, and object-oriented programming. Eleven interna
tional IBM products have been announced as a result of his
work. Dr. AJfonseca received electronics engineering and Ph.D.
degrees from Madrid Polytechnical University in 1970 and 1971,
and the Computer Science Licenciatura in 1972. He is a pro
fessor in the Faculty of Computer Science in Madrid. He is the
author of several books and was given the National Graduation
Award in 1971 and two IBM Outstanding Technical Achieve
ment Awards in 1983 and 1985. He has also been awarded as a
writer of children 's and juvenile literature.

David Selby IBM United Kingdom Scientific Centre, Athelstan
House, St. Clement Street, Winchester, Hants, S023 9DR, En
gland. Mr. Selby joined IBM at the Havant manufacturing lo
cation in 1977, where he worked on many APL project s in the
capacity of analyst programmer and later as a microcode engi
neer for the 4700 Finance Industry System. In 1985he joined the
Scientific Center at Winchester in the Graphics Systems Re
search group as a scientist employed on workstations. Beginning
in 1983, he collaborated with Dr. AJfonseca on APUPC 2.0 with
special emphasis on auxiliary processors and device support. The
result of this work was used in APUPC 2.0, Japanese PC APL
2.0, and the APL2/PC products. Mr. Selby is also responsible for
the design of the extended memory driver of the 32-bit version
of the APL2/PC interpreter and has worked as a technical con
sultant to the APL2/6000 project. While working for IBM, he has
obtained an ONC in electrical engineering, and an HNC in
computer science. He has also received an IBM Exceptional
Achievement Award.

Ron Wilks IBM United Kingdom Scientific Centre, Athelstan
House, St. Clement Street, Winchester, Hants, S023 9DR, En
gland. Mr. Wilksjoined IBM in 1973and has used APL since his
very first day with IBM. He started his career in a group devel
oping diagnostics for small disk files. From there , he joined the
IBM Hursley Information Systems (IS) Applications Support
group to support APL and related products. While in IS, Mr.
Wilks assisted with enhancements to the APUPC Version 1

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

product culminating with the announcement of the APUPC
Version 2.0 product for which he received an IBM Exceptional
Achievement Award. After IS, he joined the small group of
APL2/PC developers to assist with APL2 for the IBM PC prod
uct and , more recently, the AIX APL2/6000 product.

Reprint Order No. G321-5448.

ALFONSECA, SELBY. AND WILKS 497

Parallel expression
in the APL2 language

This paper reports on an investigation of parallel
expression and execution in the current APL2
language. The study covers a historical,
theoretical, and empirical viewpoint. The parallel
nature of APL is traced from its foundations in
the Iverson notation to current problems in
executing APL on parallel hardware. The paper
discusses features of the APL language and its
current implementations that limit taking
advantage of parallel expressions. A survey of
related topics from the work on APL compilers is
also included. Each APL21anguage construct is
examined for potential parallel expression. The
operations are grouped based on the possible
parallelism exhibited by each operation, and the
possible implementation of each group is
discussed. Three APL 2 applications are explored
to determine the actual parallelism expressed in
"real" APL2 code. These applications are chosen
from distinct areas: graphics, database systems,
and user interactive systems. The actual data
passed as arguments to every operation are
dynamically examined, and the information is
collected for analysis. The data are summarized
and results of the study are discussed.

I n the last several years, APL has received atten
tion as a language that can be used to express

parallel algorithms. The primary interest has been
in the ability of the language to express algorithms
on vector or array arguments directly, eliminating
the need for a programmer to convert them into
sequential loops. The question to be addressed in
this paper is: Given a powerful array language, how
much parallelism is expressed implicitly? This study
attempts to better understand the extent of parallel
expression that is contained in typical APL2 appli
cations.

The parallel nature of APL2 is investigated in two
ways that make this paper unique from similar stud

498 WILLHOFT

by R. G. Will hoft

ies in the past. First, there is an emphasis on com
pleteness. All APL2 primitives are examined for pos
sible parallel execution . Next, there is an emphasi s
on gathering empirical information. This study
measures real code to achieve a better understand
ing of the extent of parallel expression in "real"
APL2 code .

Once the parallel nature of current APL2 is under
stood, this paper also answers two other questions:
From a language viewpoint what items could be
changed to increase the parallel expression in the
language; and what lessons can be learned regard
ing the development of parallel interpreters for the
current APL2 language?

The parallel nature of APL

APL: A parallel language. APL is a language that
can be considered parallel since its very inception.
Ken Iverson, in his original definition of A Pro
gramming Language, I defines a language that is at
its very roots a parallel language . The Iverson no
tation (the name used to describe the notation in
Iverson's book) was not intended to be imple
mented. However, APL and APL2 were developed
directly from the concepts that he outlined.

The 25 years of APL history have been scattered
with work that has attempted to extract and exploit

OCopyright 1991 by International Business Machine s Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL. VOL 30, NO 4, 1991

the power of the Iverson notation. Recently much
of that work has been focused on using APL (or
APL-like notation) on parallel machines. The ad
vantage of APL for parallel applications was recog
nized as early as 1970 by Abrams:

In general, APL programs contain less detail than
corresponding programs in languages like ALGOL
60, FORTRAN, or PUI.... While this aspect of APL
often makes programs shorter and less intricate
than, say, ALGOL programs, it also requires that
an evaluator of APL be more complex than one
for ALGOL, especially if such expressions are to
be evaluated efficiently. On the other hand, a
machine doing APL has greater freedom since its
behavior is specified less explicitly. In effect, APL
programs can be considered as descriptions of
their results rather than as recipes for obtaining
thern. ?

The following sections explore the history of APL as
it relates to execution on parallel machines.

Types of parallel expression. Parallel expression
can be classified in a number of ways. The terms
course grain and fine grain have been used to dis
tinguish the size of the tasks that are executed in
parallel. SIMD (simple instruction stream, multiple
data stream) and MIMD (multiple instruction
stream, multiple data stream) concentrate on the
nature of the instructions that are issued to perform
the calculations, and vector processor, array proces
sor, and multiprocessor tend to emphasize the dif
ference in the machine architectures that are used
for parallel execution. All of these terms inter
relate and are often used interchangeably.

For the purpose of this work, four terms will be
introduced that focus on the nature of the expres
sion from which the parallelism is extracted. They
are data parallelism, algorithm parallelism, 'data-flow
parallelism, and task parallelism.

The first three types of parallel expression are im
plicit-parallelism is "implied" by the operation(s)
specified instead of being explicitly stated by the
programmer. Task parallelism is the one explicit
parallel expression.

Data parallelism in APL. Data parallelism refers to
the application of a single conceptual operation to
a number of data items at the same time. Each of
the operations is completely independent from the
rest. Hillis has coined the term data parallel to dis-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

tinguish the difference in parallelism that comes
from simultaneous operations across large sets of
data, rather than from multiple threads of control. 3

The key concept of this definition is the fact that the
expression of parallelism comes from the specifi
cation of operations across sets of data.

Although Hillis connects the idea of threads of con
trol to his definition, our use of the term will not
make this connection. There are times that the ex
ecution of a single conceptual operation to a set of
data items will require, or at least allow, indepen
dent and distinct algorithms to be run on the sep
arate data items. Although the execution in this
case is MIMD , instead of the SIMD implied in Hillis's
definition, the expression of parallelism is still of
the data parallel form.

The concept of arrays of data is not unique to APL.
What sets APL apart is that arrays in APL are viewed
as a unified whole, rather than a collection of
individual data items." This view is what made
Iverson's work so powerful. Iverson also defined
operations on arrays including element-wise
application of functions, scalar extension, selec
tion, reduction, and permutation operations. The
power of these concepts has been recognized in the
work on new parallel languages" and in the work to
include parallelism in existing languages, such as
FORTRAN. 6

Brenner 7 outlines some of the considerations and
advantages of implementing APL on an array proc
essor similar to the Connection Machine. " Brenner
recognized the potential of execution of scalar
functions, scan, and reduction on a parallel proc
essor. Brenner also gives a thumbnail sketch of how
some other APL operations might be executed in
parallel. He outlines methods for compress, ex
pand, grade up, reshape, rotate, take, drop, index
of, member, and inner product. Although this is an
impressive list, it is only a small part of the oper
ations that can be done in parallel, as will be shown
in this paper.

The parallel execution of APL has not only been
shown theoretically, but also has been implemented
in several machines. The Analogic APL Machine,
introduced in 1980, used the APL language to drive
a vector processor. As Delo points out, "One im
portant achievement of the project is running soft
ware ... that had been written in a standard pro
gramming language to run on a conventional

WILLHOFT 499

computer." 9 Even today this is an achievement that
has been matched by few other parallel computer
projects.

While the APL machine was specially designed for
APL execution, most parallel hardware is not de
signed with APL in mind. However, APL seems well
positioned to take advantage of the new hardware.
For example, the IBM 3090* Vector Facility is a
high-performance pipeline processor designed to
significantly improve vector performance;" APL2
was one of the first languages to use the Vector
Facility for the processing of vector (array) data.
The close match between the expressiveness of
APL2 and the processing of the IBM Vector Facility
has led Brown to conclude"... in some senses, the
IBM Vector Facility is a machine designed for ex
ecuting APL." II

A lgorithm parallelism in APL. Algorithm parallel
ism refers to operations that can exploit the rela
tionships of the data items to allow execution in
parallel. This is in contrast to the assumption of
indepe ndence among the items in data parallelism.
In this form of parallelism, it is the algorithm that
is para llel in nature. The data must be viewed as one
item.

Examples are sorts, FFfs (Fas t Fourier Trans
forms), matrix inversions, and similar operations.
In each of these cases there are suboperations that
can be executed in parallel, but these operations
must be coordinated and supervised by an overall
plan.

Although this type of parallel expression can clearly
be replaced by algorithms written using the other
parallel expression methods, the power of the ex
pressiveness is lost. The advantage of capturing al
gorithm parallelism at the language level is that it
allows for different architectures to execute the op
eration as is best suited for the machine .

Data-flowparallelism inAPL. Data-flow parallelism
results from the flow of results of one operation to
arguments of the next operation. Since often there
are multiple arguments to a given operation, each
of those argumen ts can be calculated in parallel. To
exploit data -flow parallelism it is necessary to cal
culate the data dependence (both argument and
result) of each calculation. Then the order of cal
culation can be generated and is usually repre
sented graphically. This directed graph shows the
operations that can be executed in parallel.

500 WILLHOFT

This type of parallelism is by far the most difficult
for the programmer to detect and exploit using ex
plicit parallel expression. And although it is difficult
for the system to detect this parallelism, the benefits
of doing so are well worth the investment.

Most of the work that has been done in the area of
data flow in APL has been in three areas. The first
is work that is being done on developing an APL
compiler. 12.13 Clearly, data flow is necessary to un
derstand the manipulation of data in APL so that it
can be compiled. The second area of work is in the
area of functional languages. Backus 14 understood
the potential that APL had as a functional language.
Many have attempted to exploit this potential, usu
ally with the goal of being able to create a parallel
language based on functional constructs.P:" Fi
nally, there are some who have looked at data flow
solely as a method of execution within the APL lan
guage. v":"

In this section some of the methods and results of
the work in all three areas are presented. The goal
is to present the relationships between the work
and some common ideas.

Abrams? and Wakshull l 7 both explored the area of
lazy evaluation. In this form of evaluation, values
for arguments are not calculated until they are
needed by the function that references them.
Abrams used this idea to eliminate calculation on
data that were later to be discarded, a concept he
called "drag-along." Wakshull, while not discussing
the benefits, gives a method by which an entire line
of code can be executed using only data-flow prin
ciples.

Both Wakshull " and Ching 13 discuss the concept
that both the left and right arguments to a func
tion can be calculated at the same time. They for
malize this concept by showing how a single dyadic
function call can be placed within a pair of
PARBEGIN and PAREND statements.

Budd 12 shows the power of constructing a complete
data-flow graph. By doing so he is able to make
statements about the rank, shape, and type of data
variables. Although this benefit is connected with
the problems of compiling APL, the technique is
useful for discovering a number of properties of
APL code without actually executing the code . For
example, this type of analysis would be useful in
determining interference between the assignments
of two functions.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Task parallelism. Task parallelism expresses paral
lelism as separate tasks that are started and stopped
by the application. These tasks run concurrently
and mayor may not communicate and synchronize
with each other. All other forms of parallel expres
sion can be broken down into task parallelism. The
implicit parallel expressions already discussed are
methods of hiding these operations from the user of
the language, and therefore freeing the user to con
centrate on the expression, not the control, of par
allelism.

Task parallelism concentrates on the starting, stop
ping, synchronization, and communication between
processes (tasks) at a level at which the user retains
control over these operations. Task parallelism is
exhibited in APL2 in the area of shared variables.

Shared variables , and the concept of auxiliary
processors, are the oldest parallel facilities in APL.
The auxiliary processor in APL can be a process
running in parallel with the current workspace eval
uation. The processing in the auxiliary processor is
asynchronous to the workspace processing. The
synchronization of the workspace with a given aux
iliary processor is done with the shared variable.
The shared variable is also used to pass commands
to the auxiliary processor and to receive results
from that unit.

APL2 has expanded the power and use of shared
variables in several ways. Most importantly APL2
now allows variables to be shared between individ
ual APL2 workspaces. In addition, several new
shared variable system functions have been intro
duced that allow for more flexible methods of poll
ing and using the shared variables. It has been
noted by Gerth 19 that shared variables allow par
allel structures without adopting artificial con
structs in the language.

Hindrances to parallelism. There are some hin
drances to parallelism in APL. These items must
either be eliminated from the language or their ef
fects must be minimized.

Assignments and side effects. One of the major prob
lems in trying to execute code in parallel is that side
effects may be produced. A side effect is any change
in the state of the machine during the execution of
a function that can be observed outside the func
tion. Typical examples are assignments, I/O, and im
plicit results (such as the change to DRL made dur
ing the roll and deal functions). Side effects hinder

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

parallelism because the total behavior of the pro
gram must create the same side effects in the same
order to be a proper parallel implementation. Tu
and Perl is16 eliminate assignment in their func
tional language based on APL.

Dynamic binding. Dynamic binding causes the
names in APL programs to be bound to values based
on the environment in which the function is called.
Dynamic binding makes it difficult to determine,
before actual execution, many of the particulars of
a program's activities. This complicates the areas of
determining parallelism and avoiding interference.
The alternative to dynamic binding is static binding.
Static or lexical binding causes the values to be
bound to the names based on the environment in
which the object is defined . This solves many of the
problems of program analysis and is therefore re
quired by much of the data-flow work. 12,15,16

Branching. The danger of GOTOs (branches in APL)
have long been known by programmers. Specifi
cally, in the area of parallel execution, branching
makes it difficult to determine the exact execution
of a program. At least two methods have been pre
sented to deal with this problem. Some simply do
not allow branching. 16 Others allow branching but
only evaluate parallelism inside basic blocks (the
areas between branches). 13

Lack of declarations. Finally, the lack of declara
tions in APL deprives the interpreter (or compiler)
of knowledge that is often known to the program
mer. Some have suggested including (optional)
declarations. 12

APL2 as a parallel language

APL2 is an inherently parallel language because al
most all primitive operations are defined on arrays
of objects . The following sections classify and dis
cuss these primitive operations. Akl defines paral
lelism as follows:

Given a problem to be solved, it is broken into a
number of sub-problems. All of these sub-prob
lems are now solved simultaneously, each on a
different processor. The results are then com
bined to produce an answer to the original prob
lern."

The key to exploiting parallelism is finding inde
pendent subproblems to be solved. The following
discussion of each of the classes establishes how

WILLHOFT 501

Figure 1 Monadic scalar functions

Ceiling
Conjugate
Direction
Exponential
Factorial

Floor
Magnitude
Natural logarithm
Negative
Not

Pi-tim es
Reciprocal
Roll*

• See Reference 22.

Figure 2 Dyadic scalar functions

Nand
or equal

And Less than Nor
Binomial Less than or equal Not equal
Circular Logarithm Or

functions
Divide Maximum Power
Equal Minimum Residue
Greater than Multiply Subtract

Add Greater than

Figure 3 Right scalar funct ion

I Index of

independent subproblems can be defined. This
then gives the key to implementation of these op
erations on a broad spectrum of parallel machines.
For example, these operations could be done one
per processor on a SIMD machine, or assigned in
groups (based on data location) on a MIMD ma
chine.

Scalar functions. Scalar functions can be most eas
ily defined as the ability of a function to operate on
individual elements of an array in exactly the same
way that they are applied to the entire array. In
other words, the calculation of every individual data
element is independent of the other.

The following paragraphs define in turn monadic
and dyadic scalar functions. The discussion of dy
adic scalar functions includes the concepts of scalar
extension, and also introduces two new terms, right
scalar function and left scalar function. The func
tions that fit each of these categories are listed.

502 WILLHOFT

Finally, there are functions that are closely related
to scalar functions but do not fit the strict definition.
These are also presented.

Monadic scalar functions. The formal definition of
a monadic scalar function 21 is any function that
meets the following requirement:

(F R) CI J ~~ F RCIJ

The heart of this definition is the fact that the cal
culation of each element is independent of any
other and that the definition of the operation on the
whole array is defined in terms of the operation of
the function on the individual elements. The func
tions in Figure 1 are defined in APL2 as being
monadic scalar functions.

Dyadic scalar functions. The definition of a dyadic
scalar function 23 is very similar to the definition of
the monadic case . A dyadic scalar function is any
function that meets the following requirement:

(L F R)CIJ ~~ LCIJ F RCIJ

Again the independence of the individual calcula
tions can be seen. Figure 2 illustrates the dyadic
scalar functions.

Scalar extension. Scalar extension in APL2 is defined
as "If one argument is a scalar or a one -item vecto r,
pair the scalar or one-item vector with each item." 24

This allows APL2 to express the concept implicitly
that most parallel languages define explicitly as a
"data broadcast." The advantage in APL2 is that the
programmer does not need to express the broadcast
as a separate operation.

Right scalar functions-Consider now the case that
the left-hand argument is not a single item, so that
scalar extension would take place, but rather a data
structure that is needed by each application of the
function to items in the right argument. Therefore
what we desire is not a scalar broadcast, but rather
an array broadcast. This concept is captured in the
following definition. A function will be called a
right scalar function if the following is true:

(L F R)CI J ~~ L F RCIJ

Although the term and definition is new, the con
cept is already used in APL2 in the functio n shown
in Figure 3.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Left scalarfunctions-In a similar way, any function
that meets the following requirement will be called
a left scalar function:

(L F R) [IJ ~~ L[IJ F R

Again, this concept is also already used in APL2 in
the function shown in Figure 4.

Each. The operator each accepts a single function
as an operand, and the resulting derived function is
monadic or dyadic based on the valence of that
function. Each changes the operation of the func
tion such that the function, instead of being applied
to the entire argument(s), is rather applied to each
item of the argument(s). The combination of all of
these applications is the result of the derived func
tion. Each, when applied to any function, produces
a derived function that is by definition a scalar func
tion (see Figure 5).

However, to be applied in parallel, one additional
criterion must be satisfied; each application of the
function must be independent of the others. The
practical implication of this is that the function that
is used must be free of side effects. This is true of
all primitive functions in APL2 except for roll and
deal. But this is not true of user-defined functions
in APL2 in general.

Scalar related functions. There are a number of
functions in APL2 that, although not strictly scalar
functions, still exhibit many of the characteristics of
scalar functions. These are listed in Figure 6, and
the following paragraphs provide a brief descrip
tion of how they are related to scalar functions.

Find-Find can be defined in terms of the left sca
lar function member. Each item of the left argu
ment is searched for in the right argument using the
member. After each search the partial result is
shifted to another processor, based on the shape of
the left argument, and the next search done. Clearly
this is a highly parallel operation.

Format-In all three format functions-default,
format by example, and format by specification
there is a right scalar operation. In format by ex
ample and format by specification the formatting of
each item in the right argument can be carried on
completely independently of the other. Only when
all of the items are formatted must the result be
compiled to form a new matrix . However, even this

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

Figure 4 Left scalar function

I Member

Figure 5 Scalar derived functions

I Each (monadic) Each (dyadic) I

Figure 6 Approximately scalar functions

Bracket indexing Index
Find Index with axis
Format (default) Interval
Format by example Without
Format by specification

operation is an operation that is performed along
axes and can be done in parallel.

In the case of default formatting, there is an addi
tional step of determining the format parameters
for each column. This also can be done in parallel
with each processor determining on its own the re
quired size for its item. These can then be combined
together in a process very similar to reduction along
the first dimension.

Indexing-Indexing, both in its functional form and
as bracket indexing, would be difficult, but reward
ing, to implement in a parallel form. Index would be
considered a result scalar function, that is, each
item in the result can be determined using an in
dependent calculation based on the arguments.
First, several sequential steps would be completed.
The shape of the result would have to be deter
mined and the locations allocated. Next, each lo
cation in parallel could obtain the correct indices;
then , based on the shape of the array being indexed,
it could determine positions and finally get the
value from that position.

Interval-Interval is also a result scalar function.
Interval would be very easy to implement on any
machine in which each processor could determine
a unique ID (identification), and all the IDs are se
quential. Interval could then be simply imple-

WILLHOFT 503

Figure 7 Reduction functions

Reduce Reduce Nowise
Reduce with axis Reduce N-wise with axis

Figure 8 Scan functions

I Scan Scan with axis I

Figure 9 Product functions

Decode Inner product

Encode Outer product

men ted as laying out the shape of the result and
telling each processor to generate a number based
on its !D.

Without-Without is defined" as follows:

The member and not part of the definition (most
likely combined as a single operation) can be con
sidered to be a left scalar function as defined above .
The parallel nature of replica te will be dealt with
later.

Reduction and scan. Scan and reduce operations
(Figures 7 and 8), like scalar functions , have been
at the heart of APL since its inception. Their im
portance to parallel processing has also been clearly
established. Steele has called them primitive par
allel operations. " Reduce can be considered a sub
set of the scan operation where only the final value
is considered to be important.

When defined on vectors, these operations are par
allel only when the function that is being applied is
associative.P' so only the associative case will be
dea lt with here. Brenner," along with many others,
has outlined a method of doing the scan (and there
fore reduce) in 2®pX passes . This means, for ex
ample, that a million element vector can be scanned
in 20 operations on a sufficiently parallel machine.

504 WILLHOFT

The placement of these operations in this classifi
cation is very difficult. They are placed here so that
we can deal with their primary definition, that is, on
vectors. However, they are often used on higher
order arrays (for example, on matrices). When ap
plied to matrices these operations exhibit two levels
of parallelism. First is the parallelism outlined
above. Second is the parallelism that is involved in
the application of the operation along an axis, as
outlined in the next section. These two levels of
parallelism can be handled separately, or combined
to generate a highly parallel construct.

Product functions. The final set of functions that
must be considered before we leave the area of
scalar functions is the product functions (Figure 9).
These functions are based on the dot operator.

Decode and encode are included with the product
functions because they can be expressed in term s of
the product functions.

The product functions are also result scalar func
tions, with each item in the result being calculated
from a separate calculation. In the case of outer
produ ct this is the simple application of a function
to two data items . In the case of inner product this
result is more complex, consisting of the application
of a function on two vectors and applying reduce to
the resulting vector.

Axis funct ions. Moving from the area of scalar
functions, the next logical step would be functions
that are applied to subarrays of the arguments.
These will be called axis functions . However, before
presenting the individual functions, it would be
helpful to formalize the concept of an operation
along an axis and the concept of subarrays.

Subarray. A subarray is a subset of the data con
tained in an array that is selected by using zero or
more elided axes. All non elided axes must have a
scalar value .

In APL2 the axis specification can be used to apply
the function to independent subarrays within an
array. The axis specified indicates the axis that is to
be elided. We shall demonstrate this principle by
discussing enclose with axis and disclose with axis.
These functions were chosen because they can be
used to describe all other operations that take an
axis specification (see Table 1).

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Table 1 Decomposition of axis specifications. The columns in th is table show a decomposition of each of the lines
of code that can be used to replace the most general case for each of the functions with axis spec ification.

Function Result Disclose Enclose Operation Enclose
Operation Operation Operation

for Left for Right
Argument Argument

Catenate Z~ ~ [A]
Expand Z~ ~ [A]
Partition Z~ ~ [A]
Reduce Z~

N-wise reduce Z~ :>[A]
Replicate Z~ ~ [A]
Reverse Z~ :>[A]
Rotate Z~ :> [A]
Scan Z< :> [A]
Drop Z~ :> [A]
Index Z~ :> [A] '
Laminate Z~ :> [r A]
Ravel Z~ :> [t A]
Scalar Z~ :> [A]
Scalar Z~ :> [A]
Take Z~ :> [A]

• See Reference 32.

The enclose with axis function takes subarrays
along the axes specified and makes them a single
data item in the result. Therefore, the resulting ma
trix has the shape of the argument with the specified
axes removed, and each item has the shape of the
axes removed. For example:

A+-2 3 4P124
B+-e[1 3JA
pB

3

2 4

DISPLAY B

1 5 6 7 81 1 2 3 4
[13 14 15 16 l17 18 19 20

E---------------

r-+--------,
~ 9 10 11 12
21 22 23 24

The disclose with axis function is very similar to this
except the elements are disclosed and placed back
in the subarrays as specified . For exampl e:

(c[AJL)	 , c [A]R
L\ .. c[A]R ..(-t.:	 c[A]Rc:

01"" c[A]R
L	 01"" c [A]R

01"" c [A]R
<P" c[A]R

L	 <P" c [A]R
0\ .• c[A]R

(cL) c[A]R
(-t.: c[A]R
(c "L)	 c"R

, c[A]R
(c [AJL) 0" cR
(«t.: 0" c[A]R
(cL) c [A]R

C+-C)[1 2JB
pC

243
C

1 5 9

2 6 10

3 7 11

4 8 12

13 17 21
14 18 22
15 19 23
16 20 24

For each of the axis functions listed in Figure 10,
the application of the function results (conceptu
ally) in the enclosing of the array along the given
axis, applying the function to each item of the re
sult, and then disclosing the result along the same
axes. In light of parallel operation, it can be con
sidered that each of the operations on the subarrays
is an independent operation, and therefore can be
done in parallel.

Scalar functions with axis. In addition to the above
operations that take an axis specification, all of the
scalar functions can take an axis specification. The
concept is also based on subarrays and can be ex
pressed in terms of enclose and disclose (see Table
1). The axis specification on scalar functions causes
the items in one argument to be broadcast (scalar
extension) to subarrays in the other argument.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991	 WILLHOFT 505

Figure 10 Axis functions

Catenate Ravel with axis
Catenate with axis Replicate
Disclose Replicate with axis
Disclose with axis Reverse
Drop with axis Reverse along first axis
Enclose with axis Reverse with axis
Expand Rotate
Expand with axis Rotate with axis
Laminate Rotate along first axis
Partition Take with axis
Partition with axis

Figure 11 Recursive funct ions

I Depth Enlist Match I

Figure 12 Matrix inversion functions

I Matrix divide Matrix inverse

Axis operators. Bernecky" and Gfeller 28 have both
described a language enhancement called axis op
erator. Although their descriptions are different in
syntax, they both carry the same fundamental idea.
The axis operator has the effect of dividing the ar
guments into smaller matrices and applying the
function to these smaller items. This type of oper
ator would allow functions to be considered as axis
funct ions, independent of their original type, much
as the each operator forces its operand to be con
sidered as a scalar function.

Recursive functions. Some functions in APL2 can be
defined in the form of the following recursive def
inition:

f(x) = g(f applied to each item in x)

Where: f(x) is a function that is defined at some
level in the tree (usually simple
scalars)

g(x) is a combining function

culation in each of the branches of the tree is in
dependent of the others and therefore can be done
in parallel. The functions are shown in Figure 11.

Depth. The function depth, which returns the depth
of the deepest item in a nested array, can be ex
pressed in terms of a recursive definition:

=R -> 1+ f/="R

Where: = simple scalar -> 0

Enlist. Enlist converts a nested array into a simple
vector using a depth first met hod . The recursive
definition of this routine is:

Where: E simple scalar one item vector

Match. Match returns a 1 if the two structures are
identical at all levels, and a 0 otherwise. The re
cursive definition of this routine is:

Where: L=R -e- 0 if L and R have different
shapes

L=R 0 if L and R are simple
scalars with different values

L-R -> 1 if L and R are simple
scalars with the same value

In general, the execution speed of match can be
improved if, when any nonmatching condition is
detected, all the execution in the tree is terminated
and the 0 result returned. This makes the execution
of the branches nonindependent, but they still can
be executed in parallel.

Whole array functions. Moving from scalar to sub
arrays, the next logical step would be operations
that manipulate entire arrays and therefore do not
contain simple independent operations. However,
both of these operations (see Figure 12) have been
studied as classic parallel programming problems
with many already published solutions,

The sorting functions in APL2 (see Figure 13) take
an array as an argument and return a vector of
indices as a result.

The characteristic nature of these functions is that Rearrangement functions. The last class of opera
their execution results in a tree structure. The cal- tions that can be executed in parallel are those that

506 WILLHOFT IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

deal with data rearrangement. The characteristic of
each of these functions is that the operation is done
on addresses and not on data. The operations are
shown in Figure 14.

The method of execution for each of these opera
tions is basically the same:

1. Calculate the shape of the result.
2. Create an	 array of processors that match this

shape.
3.	 Broadcast the control information to each proc

essor.
4. Each processor calculates the current position of

the data that are needed at that processor.
5. Each processor gets the data.

Not parallel. Some operations in APL2 cannot be
executed in parallel. The primary reason for this is
that they are defined on single objects or they do
only a single operation. These operations are
shown in Figure 15.

For example, deal is only defined on scalars. En
close, first, pick, and shape all do a single operation
on an entire array. Execute executes only one vector
at a time. However, that line could be a parallel
operation.

Other possible parallelism. There are other areas
of possible parallelism in APL2. These are not dis
cussed in this paper but are mentioned here for
completeness.

Vector notation. Vector notation, or strand nota
tion, allows a vector to be created by placement of
objects next to each other. When these objects are
simple constants, then creation of the vector is very
straightforward. However, if the objects are expres
sions involving calculations, then this very simple
construct allows for expression of a fork and join
parallel structure.

Data-flow analysis. Data dependence is key to de
tecting parallelism in programs. 29 Several authors 12

have explored some of the areas of data-flow eval
uation in APL. Most of this work has been related
to the work being done on APL compilers.

Measurement of parallelism in APL2 code

For the measurements on the degree of parallelism,
three applications were selected. These were se
lected to cover a broad spectrum of applications

Figure 13 Sorting functions

Grade down

Grade down (w/collating sequence)

Grade up

Grade up (w/collating sequence)

Figure 14 Rearrangement functions

Drop Transpose (general)
Reshape Transpose (reversed axes)
Take

Figure 15 Functions that cannot be executed in
parallel

Deal First Ravel
Enclose Pick Shape
Execute

from the commercial data processing field. Each of
the applications studied represents real code either
available as a product or running in a manufactur
ing support area. Each of the applications is de
scribed briefly below, along with an explanation of
the distinctions of that application.

Database application. The first application studied
was a database verification process. In this process
approximately 5000 database records are read and
all of the data in those records are verified. The
information is verified by checking for consistency
against lookup tables and checking for conform
ance to established input formats. The database is
also conditioned to conform to the requirements
for later processing.

This application was selected to show APL2 working
in a non -numeric processing intensive process . The
processing involves a large number of searches,
sorts, justifications, and merges .

Interactive application. An education catalog and
enrollment system was selected as an example of an
interactive application. This system was highly user
interactive, being completely full screen and menu
driven. Within the application all user input is

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991	 WILLHOFT 507

checked for errors. During the session studied, the
users searched the catalog using two different
methods, viewed two course descriptions, enrolled
in a course, scheduled time in a learning center, and
reviewed their current enrollments.

This program contains a large amount of control
flow logic code, which decodes user commands and
performs complex error checking. Also, since it is a
full-screen design, it must create and refresh
screens and windows. The application also does a
significant amount of formatting of data to display
in "nice" formats to the user. This application
would be considered by most to be a highly sequen
tial system.

Graphics application. The last of the three appli
cations that was studied is the GRAPHPAK work
space that is distributed with APL2. This workspace
does a variety of presentation, business, and scien
tific/engineering graphics. The DEMO program
within this workspace was used for the measure
ments on this application. This code represents
fairly old APL code (late 1970s) that was written
long before any emphasis on parallel processing.

The GRAPHPAK workspace uses APL functions to
manipulate vector represented images and display
them using GDDM (graphical data display manag
er). It uses homogeneous coordinates to perform a
number of scaling and rotation calculations on
graphical images. It is a concentrated use of the
numeric capabilities of APL2.

Description of method. To measure the data par
allelism in APL2 it was necessary to collect statistics
regarding the data passed as arguments and oper
ands during actual APL2 operation. The method
chosen for this was to replace every primitive func
tion and operator call with a call to a function or
operator that would produce the same results but
would collect information regarding the data
passed to the operation. This method is outlined
below. 3D

Workspace conversion. The workspace conversion
consisted of replacing each primitive function and
operator call, and all uses of brackets with calls to
user defined functions. Each of these replacement
functions had to fulfill two distinct purposes. First,
it had to do exactly the same data manipulation as
the primitive function. Second, it had to collect data
and save the data for future use (see the next sec

508 WILLHOFT

tion on data collection). The two actions must be
totally isolated from each other.

The first part of the replacement operation is easy
in most cases. Most of the time it is possible simply
to call the function that is being replaced. However,
there are some cases that present problems. The

The workspace conversion
consisted of replacing each

primitive function and
operator call.

replacement functions must explicitly handle fill
and identity functions for empty arguments. Also
bracket indexing and bracket axis must be imple
mented using the syntax of normal functions and
operators. Finally, the outer product must be im
plemented as a monadic operator.

A set of conversion routines was created that re
placed all the primitive operations, as listed above,
to the replacement routines. Often this was a sim
ple replacement, but sometimes it involved syntac
tic changes to the code. For example, all bracket
indexing were converted to the index function.

The converted workspace was shown to be the func
tional equivalent of the original workspace through
a variety of verification methods. This converted
workspace could then be run and the data collected
automatically during operation.

Data collection. Each replacement function also
must collect data. Each function evaluates its ar
guments, summarizes the information based on the
operation type, and passes the information to the
/d /dCOLLECT function. The /d /dCOLLECT function is
responsible for compiling the information using
several global variables. It is important that the data
collection function interfere as little as possible
with the application workspace.

The data were collected using a tabular method. A
three-dimensional array was created with each
plane being the information for one of the primitive

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Table 2 Database application paralle lism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to Parallel Average Maximum Parallel Average Maximum

Operation Operations Data Items Data Items Operations Data Items Data Items

ASCALAR 4,371 3,763 353 16,384 3,904 14 4,096
AXIS-A 10 10 2 2 10 8 8
AXIS-V 6,005 3,121 105 16,384 2,222 32 2,048
DERSCAL 12 0 0
DSCALAR 2,781 343 181 8,192 0
MSCALAR 206 63 60 128 0
NOTPAR 1,751 1,470 3 1,024 20 31 256
PRODUcr 1,137 1,133 37 8,192 1,061 1,310 524,288
REARRANGE 3,786 1,096 7,064 524,288 3,303 3,048 524,288
RECURSE 10 10 9 16 0
REDUCE 174 157 61 2,048 65 82 2,048
SCAN 70 70 44 64 1 8 8
SORT 0 0 0

Table 3 Interactive application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension

Calls to
 Parallel Average Maximum Parallel Average Maximum

Operation Operations Data Items Data Items Operations Data Items Data Items

ASCALAR 10,370 5,156 239 16,384 4,770 27 256

AXIS-A 218 218 2 16 71 6 64

AXIS-V 30,428 13,027 17 4,096 2,125 45 1,024

DER SCAL 1,879 1,650 4 32 0

DSCALAR 18,022 2,906 21 1,024 140 2 2

MSCALAR 3,355 1,214 10 32 0

NOTPAR 17,360 4,944 55 16,384 3,611 25 4,096

PRODU cr 1,627 1,515 8 64 276 247 2,048

REARRANGE 15,465 14,246 331 16,384 11,493 406 16,384

RECU RSE 3,122 2,690 248 16,384 371 2 3

REDUCE 1,475 1,221 17 64 161 183 512

SCAN 307 282 22 64 3 9 16

SORT 14 14 8 16 13 12 32

operations. The arguments to the function are tab • Total calls to operation-The total number of
ulated according to their primary and secondary times that the operations in the group were
parallel dimensions as in the table. The data are called during running the application
then tabulated in the array in groups; 0-8 have their
own group and after 8 they are grouped by powers

For both the primary and secondary parallel diof 2.
mensions:

The data collection routine also collects data on
routines that either do not fit the above method or
require more information to be saved. These are • Parallel operations-The number of times the

given operation(s) were called with two or more called exception data. All of these data are gathered
data items during the operation of the application and then

• Average data items-The average number of saved when the program is done .
data items for all parallel calls

Data analysis. The data are summarized by groups • Maximum data items-The maximum number
of operations. For each group, the following dat a of data items presented to this operation by any
are calculated: single execution

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 WILLHOFT 509

Table 4 Graphics application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to

Operation
Parallel

Operations
Average

Data Items
Maximum
Data Items

Parallel
Operations

Average
Data Items

Maximum
Data Items

ASCALAR 27,393 13,957 16 2,048 10,541 63 512
AXlS-A 651 651 2 2 637 52 1,024
AXlS-V 27,587 20,905 22 2,048 4,914 19 1,024
D ERSCAL 0 0 0
DSCALAR 80,584 15,416 16 2,048 0
MSCALAR 3,663 1,275 47 2,048 0
NOTPAR 9,484 4,764 2 1,024 5 28 128
PRODUCT 3,026 2,912 14 1,024 1,387 39 2,048
REARRANGE 21,620 13,195 47 2,048 13,142 40 2,048
RECURSE 0 0 0
R EDUCE 6,235 5,899 10 512 1,276 16 1,024
SCAN 205 172 9 128 135 6 16
SORT 284 0 284 48 512

Table 5 Overall application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to

Operation
Parallel

Operations
Average

Data Items
Maximum
Data Items

Parallel
Operations

Average
Data Items

Maximum
Data Items

ASCALAR 42,134 22,876 122 16,384 19,215 44 4,096
AXIS-A 879 879 2 16 718 47 1,024
AXIS-V 64,020 37,053 27 16,384 9,261 28 2,048
DERSCAL 1,891 1,650 4 32 0
DSCALAR 101,387 18,665 20 8,192 140 2 2
MSCALAR 7,224 2,552 30 2,048 0
NOTPAR 28,595 11,178 26 16,384 3,636 25 4,096
PRODUCT 5,790 5,560 17 8,192 2,724 555 524,288
R EARRANG E 40,871 28,537 458 524,288 27,938 546 524,288
RECURSE 3,132 2,700 247 16,384 371 2 3
REDUCE 7,884 7,277 12 2,048 1,502 37 2,048
SCAN 582 524 21 128 139 6 16
SORT 298 14 8 16 297 47 512

Since the information for some operator calls was
included in the exception data, this information is
also summarized .

Results. The results for each of the applications
above are summarized in the following tables:
Table 2, data base application; Table 3, interactive
applicat ion; and Table 4, graphics application.
Table 5 shows the combined results. 31

General observations. The percentage of parallel
operations (approximately 45 percent of the
300K+ operations) is high. The average number of
data items is moderate, 10-100 .

It is interesting to note that the array operations
force the user to write array code, hence there is a

very high percentage of parallel operations. How
ever, the scalar operations, especially dyadic scalar
functions, which allow the user to write scalar code,
have a much lower parallel operations count.

Application-specific observations. The database ap
plication exhibits the highest percentage of parallel
operations (56 percent) and the highest average
parallel operations (as high as 7K). The graphics
application has lower average parallel operations
than might be expected. This might be due to the
fact that when this system was written, machines
were smaller, and looping solutions were often used
where array solutions would be used today. The
interactive solution exhibited a higher than ex
pected degree of parallelism.

510 WILLHOFT IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Conclusions

In the introduction to this paper, the question of
how much parallelism is expressed implicitly in
APL2 was presented. This study shows clearly that
APL2 exhibits a high degree of parallelism in its
structure. APL2 is a parallel language due to a his
torical perspective that placed a high emphasis on
array operations. The paper establishes that 94 of
the 101 primitive APL2 operations can be imple
mented in parallel. We demonstrate also that typ
ically 40-50 percent of APL2 code in "real" appli
cations is parallel code. In light of these statistics,
it is clear that APL is already a powerful parallel
language.

Language recommendations. There are some fea
tures of the language that reduce the available par
allelism. The following recommendations address
specific areas in the APL2language that increase the
potential for parallel operation.

Side-effect-free functions. It has been shown that
each is a highly parallel construct that can be used
as a fork-join construct. However, for defined func
tions this construct cannot be executed in parallel.
This is the result of the lack of side-effect-free func
tions in APL2. It is necessary for the programmer in
APL2 to be able to declare, or have the system de
tect, that a given function has no side effects. Once
this is done, it will be possible to parallelize expres
sions involving each (and other operators) without
worrying about data interference.

Axis specification on more operations. Only a subset
of the APL2 operations currently accept an axis
specification. Because of this it is necessary for the
programmer to manipulate the data before and af
ter the operation to make the data conform to the
required axes. Often the programmer will use an
explicit enclose-disclose pair, use transpose, or
(worse still) write a looping solution. This problem
could be solved in two different ways. APL2 could be
modified so that all, or at least most, operations
accept an axis specification. Or, as has been pro
posed by others, an axis operator could be intro
duced.

Control flow operators introduced. Each is the first of
several necessary control flow operators, essentially
implementing a FORALL construct. Other opera
tions need to be introduced to perform other struc
tured processing constructs. For example, looping,
recursion, if-then-else, case, and the WHERE con-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

struct from FORTRAN 8X need to be included. In
addition to the obvious data-flow simplification, the
APL2language with these constructs (given a proper
implementation) would be a much easier language
to read.

Parallelization of APL2. In addition to the lan
guage considerations, this study leads to some con
clusions in the area of execution of current APL2 on
parallel machines.

Emphasis on arrayfunctions. Much of the emphasis
in parallelizing APL2 has been with the scalar func
tions. This study points out that the array functions
also provide a rich resource for parallelization. By
considering the rearrangement functions as parallel
operations on the addresses of data, rather than the
data themselves, a large pool of parallel operation
is available.

Importance of data-flow analysis. Finally, it is im
portant to note that although 45 percent of the calls
in this study could be executed in parallel, there is
still a large body of code that is sequential in nature.
Data-flow analysis is the key to unlocking the par
allelism in this code. Much emphasis must be
placed on this area of research if APL2 is to prove
a successful parallel programming language.

• Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes

1. K E. Iverson,A ProgrammingLanguage, JohnWiley & Sons,

Inc., New York (1962).

2. P.S.Abrams,AnAPL Machine, Ph.D.dissertation, Stanford

University, Stanford, CA (February 1970), p. 64.

3. W. D. Hillis and G. L. Steele, Jr., "Data Parallel Algo

rithms," CommunicationsoftheACM29, No. 12, 1170-1183

(December 1986).

4. Abrams (see Reference 2) shows how to do some array

manipulations without any movement or calculation involv

ing the actual elements. This concept involved the use of

what he called array descriptors.

5. G. L. Steele, Jr., "Design of Data Parallel Programming

Languages," presented at Syracuse University, NY (Decem

ber 7, 1988).

6. "American National Standard forInformation Systems Pro

gramming Language FORTRAN," Draft S8, Version 112,

June 1989, FORTRAN Forum 8, No.4 (December 1989).

7. N.	 Brenner, "APL on a Multiprocessor Architecture,"

APL82 Conference Proceedings,APL Quote Quad 13, No.1,

57-{i0, ACM, New York (September 1982).

8. W. D. Hillis, "TheConnection Machine (Computer Archi

tecture Based on Cellular Automata)," Physica lOn, 213

228 (1984).

9. J. nero, "A High-Performance Environment for APL,"

WILLHOFT 511

APL84 Conference Proceedings,APL Quote Quad 14, No.4,
122-129, ACM, New York (June 1984).

10.	 R. S. Clark and T. L. Wilson, "Vector System Performance
of the IBM 3090," IBM Systems Journal 25, No.1, 63--82
(1986).

11. J. A. Brown, "AnAPL2 Description of the IBM 3090 Vector
Facility," APL88 Conference Proceedings,APL Quote Quad
18, No.2, 44-48, ACM, New York (March 1988).

12. T. A. Budd, "Dataflow Analysis in APL," APL85 Conference
Proceedings,APL Quote Quad 15, No .4, 22-28, ACM, New
York (1985) .

13. W.-M. Ching, "Automatic Parallelization of APL-Style Pro
grams," APL90 Conference Proceedings, APL Quote Quad
20, No.4, 76--80,ACM, New York (July 1990).

14. J. Backus,	 "Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of Pro
grams," Communications of the ACM 21, No. 8, 61~1

(August 1978).
15.	 A. Koster, "Compiling APL for Parallel Execution on an

FFP Machine," APL85 Conference Proceedings,APL Quote
Quad 15, No.4, 29-37, ACM, New York (1985).

16. H.-c. Tu and A. J. Perlis, "FAC: A Functional APL Lan
guage, " IEEE Software 2, 37-45 (January 1986).

17. M. N. Wakshull, "The Use of	 APL in a Concurrent Data
Flow Environment," APL82 Conference Proceedings, APL
Quote Quad 13, No.1, 367-372, ACM, New York (Septem
ber 1982).

18. J .-J.	 Girardot, "The APL90 Project: New Dimensions in
APL Interpreters Technology," APL85 Conference Proceed
ings,APL Quote Quad 15, No.4, 12-18, ACM, New York
(1985).

19. J. A. Gerth, "Toward Shared Variable Events-Implications
of DSVE in APL2 ," APL83 Conference Proceedings, APL
Quote Quad 13, No.3, 265-274, ACM, New York (March
1983).

20.	 S. G. Akl, The Design and Analysis of Parallel Algorithms,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1989).

21. APL2 Programming: Language Reference, SH20-9227-3,
IBM Corporation (1988), p. 54; available through IBM
branch offices.

22.	 Roll is defined as a scalar function and for most practical
applications can be considered a scalar function. However,
it is important to note that it does not strictly fit the defi
nition. Consider the following example:

DRl>-5000

?(1100)[5 10 15 20 25 J

1 7 1 6 21

DRL<- 5000
(? 1100); 5 10 15 20 25 J

5 5 5 5 21

The problem with roll is that it is a function with side effects ,
so the order of calculation is important. In most cases, the
above can be ignored because in each case five random
numbers are generated, independent of the order of calcu
lation. Although this effect can usually be ignored on se
quential machines, the introduction of parallel calculation
of random numbers is a much more complex problem. (See
Reference 33.)

23. See Reference 21, p. 55.
24. Ibid., p. 58.
25. Ibid ., p. 250.
26. This is not strictly true. For example:

-IX <-~ +IXx(pX)pl 1

So it can be seen that some functions (notably subtract and
divide) can be rewritten into functions that are associative.

27. R. Bernecky, "An Introduction to Function Rank,"	 APL88
Conference Proceedings,APL Quote Quad 18, No.2, 39-43,
ACM, New York (March 1988).

28.	 M. Gfeller, "A Framework for Extensions to APL, " APL88
Conference Proceedings, APL Quote Quad 18, No.2, 162
165, ACM, New York (March 1988).

29. M. Wolfe and U. Banerjee, "Data Dependence and Its Ap
plication to Parallel Processing," International Journal of
Parallel Programming 16, No.2, 137-178 (1987).

30. R. G. Willhoft, "A Tool for the Empirical Study of the Ex
ecution of APL2 Primitive Operations," APL Implementer's
Workshop, Syracuse University, NY (September 11-14,
1990). (Includes a complete description of the method and
code used for the study .)

31. R. G. Willhoft, "Parallel Expression in the	 APL2 Lan
guage," APL Implementer's Workshop, Syracuse University,
NY (September 11-14, 1990). (Includes more complete test
results.)

32. This disclose must allow simple scalars as elements, i.e., if
the argument to disclose is simple, then do nothing.

33.	 O. E. Percus and M. H. Kalos, "Random Number Gener
ators for MIMD Parallel Processors," Journal ofParalleland
Distributed Computing 6, 477-497 (1989) .

Accepted for publication June 21, 1991.

Robert G. Wlllhoft IBM Information Systems Division, 1701
North Street, Endicott, New York 13760. Mr. Willhoft is currently
an advisory engineer in Systems Analysis Engineering, IBM En
dicott. He is currently working on his Ph .D. from Syracuse Uni
versity with an expected graduation of December 1991. His dis
sertation topic is A Parallel Language for the Expression and
Execution of Generalized Parallel Algorithms. Mr. Willhoft re
ceived his M.S.E.E. degree from Syracuse University in 1984 and
his B.S. from Geneva College in 1978.

Reprint Order No . G321-5449.

512 WILLHOFT	 IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

The foundations
of suitability of APL2
for music

APL Is commonly used In sc ientific and
quantitati ve applications, such as engineering
and finance, but there has been little acceptance
so far In artistic and symbolic applications, such
as music. This paper demonstrates the suitability
of APL2, a dialect of APL, as a powerful tool for
the building of music-oriented software. The
Interactive interpreter, flexible built-In prim itive
functions and operators, and the Independence
from the details of the hardware are attractive
features for music programmers. With APL 2, a
user can Interactively create and transform
complex Informational structures. Thus, It Is no t
only a formidable language for Implementing
music software, but also a valuable notation for
representing the music Itself.

T oday, most music software is written in tradi
tional compiled languages, such as Pascal and

C. Applications include Musical Instrument Digital
Interface (MIDI) sequencers, patch editors, and li
brarians as well as computer-assisted composition,
analysis, and education programs. Some may feel
that the mathematical orientation of APL2 is not
well suited for music, with music occupying a place
outside of the world of numbers. This may be con
ditioned by previous experience in which images
are mathematical. For example, in math class, a
teacher probably illustrated an increasing continu
ous function by drawing a curve, rather than by
singing an ascending glissando.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

by Stanley Jordan
Erik S. Friis

A growing awareness of the mathematical nature of
music may force a rethinking of this perception. We
have found the awesome mathematical power of
APL2 to be one of its strongest suites for musical
software. Much of musical structure is based on its
quantitative features. Quantitative relationships
between parameters of sound form the basis of pat
terns and groupings. Many of the parameters them
selves can be ordered in perceptual scales. Berry 1

even goes so far as to contend that all of the sig
nificant parameters of music, including rhythm, tex
ture, and tonality , work in conjunction to create
variations in intensity-lines of growth, decline,
and stasis over time. Berry claims that these vari
ations in intensity are the primary determinants of
musical form, and intensity is the quintessential
quantitative parameter.

Like standard music notation, APL2 uses a character
set that is iconic. Since musicians are accustomed to
iconic notation systems, APL2 quickly becomes a
comfortable working environment. In fact, the

ClCopyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page , The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

JORDAN AND FRIIS 513

iconic nature of the language has led some to refer
to it as "the international road-signs of program
ming."

SUitability of APL2 for music

Smith ? asserts that APL2 appeals to the right hemi
sphere of the huma n brain, which is specialized for
holistic thinking . Users of APL2 are encouraged to
think holistically, in part because operating on col
lections of data is, in general, no more difficult than
operating on single entities.

Another feature that appeals to the right hemi
sphere of the brain is that one often visualizes the
data structures and their transformations while
programming in APL2. The flexible structure and
syntax of APL2 conform well to the way most mu
sicians conceptualize music. Smith also writes:

. .. users of APL2 claim that it is the most powerful
programming language in existence . Enthusiasts
claim that with only a few lines of code, they can
create what is unachievable in most other lan
guages. Indeed, the impact of using APL is so
substantial that active users often report [that]
their enti re thinking process has been trans
formed by use of the language.

And yet critics claim the APL language is impos
sible to learn and hard to use. Can this be true? 2

Lafore ' addresses the question of the difficulty of
learning a less-than-English-like programming lan
guage-in this case, C. Lafore's comments seem
even more relevant to programming in APL2:

When most people first look at a C program, they
find it complicated like an algebraic equation,
packed with obscure symbols. "Uh oh," they
think, "I'll never be able to understand this!"
However, much of this apparent complexity is an
illusion. A program written in C is not much
more complicated than one written in any other
language, once you've gotten used to the syntax.
Learning C, as is true with any language , is
largely a matter of practice. The more you look
at C programs, the simpler they appear, until at
some point you wonder why you ever thought
they looked complicated.3

With APL2 one can easily create and manipulate
complex data structures. These data structures can
be used for an enormous variety of representations
of musical structures. APL2 comprises a powerful set

514 JORDAN AND FRIIS

of primitive functions and a concise syntax for using
these primitives to transform data . Transforma
tions are an important concept in music, in that they
provide a way of relat ing one set of sounds to an
other or deriving one from another in meaningful
ways.Perception itself utilizes transformations, and
with a clear representation for music, many trans
formations that make sense mathematically or
structurally also make sense musically.

Most programming languages allow for the access
and manipulation of a single piece of dat a at a time,
such as a character, an integer, or a floating-point
number. This observation is further apparent in the
following text from Lafore:

This is a rather amazing capability when you
think about it: when you assign one structure to
another [structure, in this case, refers to a C
structure as opposed to a data structure in gen
eral] , all the values in the structure are actually
being assigned, all at once , to the corresponding
structure elements. Simple assignment state
ments cannot be used this way for arrays, which
must be moved element by element. 3

Unlike C and most other programming language s,
in APL2, operation on an entire structure is the rule
rather than the exception.

Parallelism. There has been much discussion re
garding parallel hardware in the computing litera
ture. Many see it as the wave of the future -just a
matter of time . This bodes well for music program
mers, because music is highly parallel. The question
is: What languages can be run on a parallel ma
chine?

Most languages in use today were written for a ma
chine using the Von Neumann architecture," i.e., a
single central processing unit capable of executing
only one instruction at a time. Complex problems
must be analyzed into their constituent parts in or
der to be solved. Obviously this can be a necessary
and even essential component to problem solving.
However, analysis is only helpful to a certain point.
Beyond that, one could further granularize the
problem, but further analysis will not result in the
understanding or solution of the problem. Users of
many programming languages are required to an
alyze a problem far beyond the level that clear hu
man comprehension requires. For the sake of the
computer, excruciating details of the computation
must be specified. Users of most languages do not
realize how much the computer is programming

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

them. Despite great advances in ha rdware capabil
ities, this situation has not changed much because
most are still dealing with the limitations of a Von
Neumann machine. To a remarkable extent the
Von Neumann organization of our machinery still
influences high-level language design. '

APL was designed without the typical constraints of
the Von Neumann mind-set. It was first designed as
a short-hand notation for describing algorithms and
was only later implemented as a computer lan
guage. With conventional programming languages,
programmers are constantly dealing sequentially
with collections of data or operations on them that
they actually think of as simultaneous. The ability
when using APL2 to extend the domain of a program
from individual elements to collections of elements
without an increase in syntactic complexity, allows
a more accurate representation of the holi sm that
is being conceptualized. And not only do we nat
urally tend to group collections into gestalts, or
wholes, but also we often change our scheme of
organization at a moment's notice. APL2 also excels
in this area.

Unconstrained environment. Whereas most pro
gramming languages force the making of many ini
tial decisions regarding the data and program, APL2
lets you improvise. Since APL2 is interpreted, you
can enter an expression and it will be executed im
mediately. Without those tiresome edit, compile,
and link cycles, you are free to experiment with
ideas and variations on ideas. And because data are
in the active workspace and are always accessible,
you can inspect the results of a single expression to
make sure that it does what you intended. Satisfied,
you can move on with confidence to the next step.

In APL2 there is no need to declare variables, define
pointers, or allocate storage. You are free to
change a variable at any time to any size, structure,
or content without concern regarding where and
how it will occupy memory. The APL2 interpreter
will make these determinations by using a dynamic
memory allocation scheme.

The late binding of APL2 expressions allows refer
ences to be made to names that do not as yet exist
when a function or operator is defined, as long as
the name exists at execution time. The workspace
concept allows for the blending of applications at
an atomic level, achieving an extensive level of in
tegration. The result of all these features is an "ide
al" environment consisting of arrays and a powerful

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

arsena l of tool s to manipulate them. This can be
quite useful to musicians who are interested in ad
dressing a particular problem, but who may not
have the patience or interest in performing opti
mizations of the solution.

Notational simplicity. APL2 is extremely concise. If
abu sed , this feature can lead to incomprehensible
programs-if used properly, it can lead to a degree
of clarity of understanding that puts APL2 in a class
by itself. Such an advantage is familiar to mathe
maticians, who tend to simplify notation in order to
clearly express complex ideas. In carrying less "no
tational baggage," one can concentrate more
clearly on the concepts being represented or the
relationships between them.

More verbose notations, such as those using key
words to represent built-in functions, are appropri
ate for concepts that are less often used. Keywords
are helpful because of their associations to common
words or concepts making them easier to remem
ber. But for frequently-used concepts, people have
a tendency to abbreviate-to choose shorter sym
bols. This is especially apparent in representing
music. The fundamental concepts of APL2 are so
repeatedly useful that they merit symbolic repre
sentation. We feel that history has in fact confirmed
this. Despite ongoing language development and
conflicts over standards, the core of the APL lan
guage has remained remarkably stable. The ulti
mate proof of the clear organization of the lan
guage is the ease with which it has been general
ized. ?

We believe that the symbols of APL2 were carefully
chosen for their mnemonic value, making them sur
prisingly easy to remember. The conciseness of the
notation seems to make it possible to view an
expression and simultaneously see the "forest" and
the "trees." User-defined terms in programs, which
by nature are more variable, are represented by
keywords, while the stable APL2 primitives remain
symbolic. APL2 symbols also provide the additional
benefit of avoiding name conflicts with user-defined
terms. However, if one insists on using keywords,
simple user-defined "cover functions" may be de
fined that call the primitives. This raises an impor
tant distinction that novices are not always aware
of, namely, APL2's primitive functions and operators
are independent of the symbols that represent
them. Typically, a single symbol can call either of
two functions depending on syntax.

JORDAN AND FRIIS 515

Applicability to music

Having discussed the character of the language, we
now discuss some examples of APL2 in the context
of music software. The examples are simple, and
they do not pretend to represent all the parameters
of real music, but they are meant to serve as a guide
to what is possible .

Pitch. Pitch is the psychological correlate of fre
quency, which most people conceptualize as a one
dimensional quality; however, our perception of
pitch is actually two-dimensional. Research has
shown that there are two psychological attributes of
pitch, tone height and tone chroma .7

Tone height is simply the sensation of "highness" or
"lowness." Tone chroma is the perception of note
color regardless of octave. Babbitt coined the term
pitch-class to refer to sets of octave -related pitches,
where class refers to our sensation of equivalence
of pitches so related. 8

Tone height is particularly important in the per
ception of melodic contour-the shape of a melody
as its ascending and descending patterns unfold.
Tone chroma is especially important in harmony.
When the voicing of a chord is changed by disposing
its notes into new octave ranges, there is often a
sense that its character has changed more texturally
than harmonically.

To represent pitch in APL2, two values may be
used-octave and pitch-class-so as to have sepa
rate control of these two psychological variables.
On the other hand, the use of a single value often
makes calculation easier. Thus it can be advanta
geous to use a single value for an internal repre
sentation, and two values for an external represen
tation to the user for display and entry purposes.

The following examples describe a few methods for
representing pitch in APL2:

1. One	 value-a frequency number expressed in
cycles per second

FREQUENCY~220 155 .57 92 .5

2. One value-a MIDI note number

PITCH~57 51 42

3. Two values (pitch-class and octave) as a char
acter vector

516 JORDAN AND FRIIS

PITCH~'A3 ' ' Eb3' ' F#2'

4.	 Two values (pitch-class and octave) as a mixed
vector

PITCH~(' A' 3)(' Eb ' 3)('F# ' 2)

5.	 Two values (pitch-class and octave) as a numeric
vector

PITCH~(9 3)(3 3)(6 2)

Example 5 indicates a common method for indi
cating pitch-class, using an integer in the range 0-11
as follows:

Integer Pitch-Class

0 C
1 C# or D ~
2 D
3 D # or m
4 E
5 F
6 F # or G ~
7 G
8 G # or A ~

9 A
10 A # or B]
11 B

This system, first introduced by Babbitt,8 uses mod
ulo-12 arithmetic to reflect the cyclic nature of
pitch-class relations. Byusing the MIDI conventions,
one can express pitch in a convenient method. MIDI
is a communications protocol that electronic
musical instruments such as synthesizers and com
puters can use to send and receive real-time per
formance information. A MIDI note number" is a
single integer (0-127) representing a key on a MIDI
keyboard. This system assigns to middle-C the
value "60." The "C# ," a semitone higher, corre
sponds to the value "61." Thus, MIDI represents
pitches indirectly-not as soundwave frequencies,
but as key numbers on a very long keyboard (about
ten octaves).

MIDI note numbers are convenient because they
simplify calculation. For example , to transpose an
array of pitches up a perfect fifth (seven semitones)
one could simply enter:

PITCH~PITCH+7

Monophonic scores. A musical score is a notated
representation of music, or a precise set of instruc-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

tions to a performer. In this latter view, the com
parisons to a computer program should be obvious.
The musical vocabulary of today is so vast, and so
varied, that composers often find that the tradi
tional "common practice notation"l0 cannot always
express what they have in mind. They have been
forced to invent new notation systems that may take
the form of written instructions to the performers
or some new visual representation. In the field of
electronic music, composers have an unprece
dented degree of precision in the control of pa
rameters of sound, such as timbre or tone color.
How does one notate this? The answers may vary
considerably, but many composers agree that the
whole idea of notation, or more generally repre
sentation, has become a field of study in itself. The
computer has been recognized as having the po
tential to bridge this gap, for it has the power, as
Papert has pointed out, "to concretize the for
mal." 11 Anyone who has used a modern MIDI se
quencer with a graphical interface can attest to this
fact. But while most MIDI software on the market
provides fixed representations that have proved
useful and easy to learn for most people, there re
main some who would like the power to create new
representations, without committing to anyone un
til it has proven its usefulness. Furthermore, al
though most good sequencers allow global editing
and some degree of algorithmic generation, this
generally takes the form of supplying parameters to
fixed routines. Serious computer musicians require
a programming language that extends easily from
individual notes to higher-level descriptions. This is
appropriate because composers typically think in
high-level terms-often the exact notes are just the
details . If a composer can specify structures at an
appropriately high level, then the system becomes
a much more useful tool of thought. We have found
APL2 to be an excellent language for prototyping
representations for music. Arrays in APL2 may be
viewed as visual structures that can be formed and
transformed with ease.

The discussion that follows illustrates some simple
score representations and a few techniques for
manipulating them. Many functions that apply to
single pitches also apply to structured collections of
pitches with little or no change in the syntax.

A monophonic score or melody can be represented
by a simple numeric vector:

SCORE~60 62 64 65 67 69 71 72

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Since this collection can be conceptualized as an
individual entry, it can be described using APL2's
vector notation and assigned a name in one step.
The variable SCORE can represent either a semantic
or syntactic musical structure. If the structure is
regarded outside of time, then the vector-a se
mantic structure-may represent a collection of or
dered pitches. The pitches do not have to be played
at any particular starting time or tempo. On the
other hand, if the vector is a syntactic structure,
then it represents a series of ordered pitches with
a temporal attribute. More detail can be found in
Reference 12.

There are numerous ways to represent timings, ei
ther implicitly or explicitly. A critical question is
whether some general assumptions can be made
regarding timing, or whether to represent a time
value for each note. At this point it is perhaps de
sirable to implement the latter approach since the
timing information is varied and unpredictable,
whereas the former approach is preferred when
timings are more likely to be regular and predict
able. At any rate, any decisions about definite tim
ings are postponed until later, so we notate only an
ordered collection of pitches.

An implied tempo can be defined such that each
position in the array represents a beat, such as a
quarter note or eighth note. Thus , there is a map
ping between the index position in the vector and
the order position in the pitch succession. If de
sired , an APL2 variable can hold a value for the
duration of time represented by one step in the
index position. Even varying tempos may be de
fined-i.e., the first four positions of the array rep
resent quarter notes , or the next four positions
represent eighth notes. But for this simple illustration,
let us assume a constant time per index position.

Rests can be indicated by pairs of single quotes
(with no spaces in between), to be used as "place
holders" indicating empty elements. Figure 1 is an
example of a score with three rests, the second one
occupying two time periods.

Thus, if a constant time period is assumed , it is
fairly easy to verify the timing simply by visually
inspecting the score array. All manner of rhythms
can be created in this way. If each index position
corresponds to a much shorter duration, e.g., 64th
notes, this representation has a much higher reso
lution , i.e., there is finer control of timing, but the
rhythms will become less intuitively obvious. The

JORDAN AND FRIIS 517

Figure 1 A simple representation of a score

SCORE~60 62 64 " 65 " " 67 69 71 " 72

DISPLAY SCORE

IJ 65 IJ IJ 67 69 IJ "I[60 62 64 71

E

result is a score that will occupy more space, both
on the printed page and in computer memory. Such
a representation willquickly become wasteful to the
extent that the music is sparse , i.e., there is a high
ratio of rests to notes. In this case, it is more eco
nomical to specify an explicit time value for each
note, so as to make it unnecessary to account for the
time periods between notes.

Suppose we wish to represent the melodic line
shown in Figure 2. Pitches and start times can be
assigned in two separate steps as shown in the fig
ure , and can be put together into a single structure
as follows:

Figure 2 An example of pitch and time points

SCORE~~~PITCHES TIMES

DISPLAY SCORE

..60 0
64 1
69 2
71 3
72 6
67 8
65 16
62 17
64 18
65 19
74 22
72 28
71 29
69 30
71 31
72 32

The variable SCORE contains a matrix where each
row represents a single note. The first column of the
matrix represents pitch and the second column rep
resents starting time. We decide on eighth note s as
the unit for timing. Thus in 4/4 time, there would be
eight eighth-note time intervals per measure .

Now if we wish to add another parameter , loudness ,
we can define seven levels as variables using vector
assignment

(ppp pp p mf f ff fff)~17

where 1 7 is shorthand for the series

0123456

and where DIO has been set to zero.

PITCHES~60 +0 4 9 11 12 7 5 2 4 5 14 12 11 9 11 12

TIMES~O 1 2 3 6 8 16 17 18 19 22 28 29 30 31 32

518 JORDAN AND FRIIS IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

These numbers are arbitrary. They are not intended
as actual measurements of loudness intensity, but
are used here to distinguish among seven graduated
levels.

Initially, a third column is appended to the matrix,
and each element in this column is set to the value
"4." Now using the variable f assigned to value 4:

SCORE....SCORE, f

DISPLAX SCORE

.60 0 4
64 1 4
69 2 4
71 3 4
72 6 4
67 8 4
65 16 4
62 17 4
64 18 4
65 19 4
74 22 4
72 28 4
71 29 4
69 30 4
71 31 4
72 32 4

If we now want to retain the current timings, but re
verse the order of the pitches from last to first-s-called
a retrograde-this is very easy to specify in AP12:

SCORE[j OJ....¢SCORE[jO J

The columns (and the rows) of the matrix are in
dexed starting from zero. Figure 3 shows the actual
staff notation for this example:

DISPLAX SCORE

.72 0 4
71 1 4
69 2 4
71 3 4
72 6 4
74 8 4
65 16 4
64 17 4
62 18 4
65 19 4
67 22 4
72 28 4
71 29 4
69 30 4
64 31 4
60 32 4

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 Reversing the order of the pitches

tJ ~ I I -.

Now, suppose we want to edit the score in order to
accomplish a specialized task-to find each note
that occurs on a downbeat and make it one unit
louder. The next section discusses the evaluation of
the APL2 expression that accomplishes this task .

How the expression is evaluated. Following is a
step-by-step explanation of how the APL2 expres
sion

SCORE[j2JSCORE [j 2J+0=8 ISCORE[j 1J

is evaluated:

1.	 Since APL2 evaluates an expression from right to
left, the subexpression "8 ISCORE [j 1 J" is eval
uated first. The result of this subexpression is the
eight -residue (or the "modulo-eight" in tradi
tional mathematical terms) of the starting time
values, shown in the second column in previous
displays of the SCORE matrix . The argument
"eight" for the residue function was chosen be
cause each measure is eight time units long. See
Figure 4A.

2.	 The next subexpression to be evaluated is O=w
where w represents the result of 8 ISCORE [j 1 J.
The result of this subexpression is a Boolean
vector whose corresponding elements are set
where zeros occur in w, which happen to fall on
the downbeats. The "=" in APL2 is not an assign
ment, it is a test , returning a "1" when elements
are equal in value, and a "0" otherwise. Figure
4B shows the resulting Boolean vector.

3. Next, the vector in Figure 4B is added to the
loudness values (shown in the third column of
previous displays) resulting in another interme
diate value. Boolean values are numeric values
and can be treated as such , illustrating a com
mon use in APL2 programming, as well as the
conciseness of the language. Figure 4C displays
the result.

4. Finally , the result replaces the contents of the
loudness values of the SCORE matrix and can be

JORDAN AND FRIIS 519

Figure 4 Evaluation of APL2 expressions

DISP~AY 8 ISCORE[;1J

@1 2 3 6 0 0 1 2 3 6 4 5 6 7 01

DISP~AY 0=8IsCORE[;1J

I~ 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1

DISP~AY SCORE[;2J+0=8!SCORE[;1J

@4 4 4 455444444445 1

DISP~AY SCORE

.72 0 5

71 1 4

69 2 4

71 3 4

72 64

74 8 5

65 16 5

64 17 4

62 18 4

65 19 4

67 22 4

72 28 4

71 29 4

69 30 4

64 31 4

60 32 5

seen in Figure 4D. A graphic representation of
the parse tree for the same APL2 expression fol
lows:

+

SCORE [; 2 JI \
1 \
o	 I

/ '\
8 SCORE [; 1J

Our task description in natural language is trans
lated into a one-line APL2 expression. Most other
computer languages would have required many
more lines of code and may have involved writing
a program, compiling it, and linking it. This par
ticular APL2 expression is not difficult to under
stand . In most other languages the solution would
have been more complicated, simply because the
extra lines of code and the loops would not con
tribute to the conceptualization of the process .

520 JORDAN AND FRIIS

Polyphonic scores. So far we have only represented
monophonic scores-that is, one voice, or "one
note at a time. " A polyphonic score represents
more than one voice playing simultaneously. To
represent a polyphonic score the monophonic
model can be expanded by the introduction of rank
or depth. In the previous section we started with a
monophonic score represented as a numeric vector.
A vector in APL2 has a rank of one, whereas a rank
two array is called a matrix. A matrix can be used to
model a polyphonic score , such that each row or
column of the matrix is the equivalent of a mono
phonic score . Since a matrix in APL2 must be rect
angular and its rows and columns are parallel along
each axis, the same ordinal and temporal attributes
that formed the basis of the monophonic vector
model also hold true for the polyphonic matrix
model.

Figure 5 contains an example of a 3 x 8 matrix,
which represents a polyphonic score. If we assume
that each column in the matrix represents a quar
ter-note beat, this score represents eight major tri
ads at quarter-note intervals, as expressed by the
SCORE expression.

Notes in the same column are to be played simul
taneously, and notes in the same row are to be
played sequentially. Thus, we define a mapping be
tween matrix dimensions and musical dimensions,
such that each column is a time period, and each
row is a voice. Of course the roles of the dimensions
could be reversed. It is just a question of how we
wish to visualize the structure. Changing the actual
matrix to reflect this new mapping of parameters is
simply a matter of applying the APL2 transpose
function (not the musical transpose) to the array.

SCORE....~SCORE

DISPLAX ~SCORE

..60 64 67
62 66 69
64 68 71
65 69 72
67 71 74
69 73 76
71 75 78
72 76 79

It is possible to imagine many mappings of this
kind, all having different characteristics, and all be
ing useful for different purposes. This reveals one
of the reasons why the computer is such a powerful

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

tool for music: It provides the ability to create new
kinds of musical representations as well as the free
dom to explore the representations themselves as
fields of interest.

A PLAY function. The potentials of computer mu
sic go beyond just representation. When linked to
appropriate audio signal generating hardware, the
computer can become a musical instrument with
exciting capabilities. The discussion that follows il
lustrates the capabilities of a PLAY function that
could be created in APL2. Define PLAY such that:

1. It accepts a score as a right argument.
2.	 The duration of each note will, unless otherwise

specified , default to a set value , e.g., a quarter
note.

3. An optional left argument may be accepted that
specifies a common duration for all the notes, or
a list of durations-one for each note.

The elements of the score are MIDI note numbers.
The PLAY function sends performance instructions
to an attached external device, such as a musical
synthesizer.

As was previously illustrated, the following vector
can represent a C-major scale:

SC AL E~50+0 2 4 5 7 9 11 12

DISPLAY SCALE

['50 52 54 55 57 59 71 72 I
E--------- - --

This expression will play the C-major scale starting
at middle-C in ascending order:

PLAY SCALE

Since APL2 notation can be easily adapted for par
allel processing models, it is interesting to examine
the musical possibilities of a truly parallel version of
the language.

For example, the each operator C) provides a for
midable vehicle for exploring the parallel potentials
of APL2. The each operator applies a specified func
tion to each element of its arguments. Assuming a
truly parallel each operator, when it is executed,
envision a set of n independent processes running
on a parallel multiprocessor, where n is the number
of elements at the first level of depth in the array
arguments.

Figure 5 A polyphonic score

SCORE~~50 54 57+cO 2 4 5 7 9 11 12

DISPLAY SCORE

50 52 54 55 57 59 71 72

54 55 58 59 71 73 75 76

67 69 71 72 74 76 78 79

A chord, which is a simultaneity of pitches, could
then be played as follows:

MAJ OR~ O 4 7

PLAY"50+MAJOR

Again, imagine three independent processes, each
of which plays a single pitch for a set duration:

PROCESS 1 PROCESS 2 PROCESS 3

PLAY 50 I I PLAY 54 I I PLAY 57

Depth can play an important role in the modeling
of a musical score. For example, an increase in
depth can signify that grouped notes are to be per
formed simultaneously.

50 52 54 (55 59 72) 57 59 71 72

The above vector is a polyphonic score representing
three individual notes, followed by a chord inside of
the parentheses, followed by four individual notes,
all at a quarter-note tempo.

A further increase in depth could signify a set of
virtual tracks to be played simultaneously, or sets of
MIDI events on different MIDI channels. An increase
in depth again could be used to model a set of
multitrack tape decks or a set of MIDI cables.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991	 JORDAN AND FRIIS 521

Figure 6 An example of 12 major chords

DISPLA:! CHORDS
r-+-- -------------------- ----------------------------

€- -- - - - - - -- - --------- - - - ------ ----------------

DISPLA:! €MAJOR+60+1 12B
60 64 67 61 65 68 62 66 69 63 67 70 64 68 71 65 69 72 66 70 73 67 71 74

Figure 7 MIDI pitches with duplicates removed and sequent ial ordering

DISPLA:! «V1V)=lpV)/V

60 64 67 61 65 68 62 66 69 63 70 71 72 73 74 75 76 77 78

DISPLA:! V~V [.tV]

60 61 62 63 64 64 65 65 66 66 67 67 67 68 68 68 69 69 69 70 70 70 71 71 71 72 72 73

Utilizing depth, a sequence of 12 chromatically as
cending major chords can be represented by:

CHORDS ~60 +(cMAJOR)+l12

and expanded as shown in Figure 6A. The following
expression will playa sequence of 12 major chords:

PLILl CHORDS

while application of the each operator yields a se
quence of three 12-note chords (each chord will
sound quite complex):

PLILl""CHORDS

The introduction of a second each will result in the
playing of a chord constructed of the pitches rep
resented by the MIDI note numbers 60 through 79:

PLAY"""'CHORDS

which is equivalent to

PLILl"'ECHORDS

and

PLlLlcECHORDS

Whereas the following expression will result in the

522 JORDAN AND FRIIS IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

------------------ --- - --- - -

------------ ---------- --------,

- - - - - --- - - --------- - - - ----------'

58 72 75 59 73 75 70 74 77 71 75 78 I

rences. A pitch that has no occurrences in the vec
tor will not be played, or can be thought of as being
played at a volume level of zero.

For example:

PLAY" 50 50

or

PLAY c50 50

will sound one unit louder or perhaps twice the

intensity of:

PLAY 50

If only unique pitches are to be selected from Fig

ure 6B, then application of the following APL2 id
iom to the vector of MIDI note numbers will filter
any duplicates:

---- -- - - ---- - 73 74 74 75 75 75 77 78 1

arpeggiation of the 12 chords:

PLAYE:CHORDS

Figure 6B displays the values of the generated
pitches.

Note that some of the pitches represented in the
resulting vector in Figure 6B have multiple occur
rences, i.e., the same pitches occur in different ar
peggios.

One extension that can be made to this model is to
specify that a pitch can be played at different vol
ume levels, determined by the number of its occur-

Therefore, when this idiom is applied to:

V.... E:CHORDS

the unique pitches are evaluated and shown in
Figure 7A.

Or the pitches can be sorted by MIDI note number
and can then be played sequentially at their relative
volumes:

Figure 7B shows the ordered note numbers and can
be played with the following:

PLAY VVVcV

resulting in the groups shown in Figure 8A.

The relative volume of each pitch can be obtained
by using:

E:p"VV

displayed in Figure 8B.

Finally, the following vector represents the number
of distinct pitch-classes present in V:

pVV

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 JORDAN AND FRIIS 523

Figure 8 Pitch and volume for ordered groups of note numbers

DISPLAY W
r-- - - - ------- - -----------------------------------

E:-- - - - - --------------------------------------- - - - -

DISPLAY Ep"WB
0. 1 1 1 2 2 2 3 3 3 3 3 2 2 2 2 1 1 11

where

DISPLAY pVV

As can be seen, the power of APL2 to represent the
music score in terms of pitch and volume is only the
beginning of the use of computers in music appli
cations.

The Smoliar model. We now describe another mu
sical application of APL2. This work is inspired by
Stephen Smoliar, who described a system for au
tomated musical analysis. 13 Smoliar was himself in
spired by Heinrich Schenker (1868-1935), who is
widely regarded as the most influential music the
orist of the 20th century." Smoliar has designed a
computational model loosely based on Schenker's
theory of tonality. To enhance the understanding of
the application, we first present some background
in Schenkerian theory.

Heinrich Schenker's influence on music essentially
corresponded to Noam Chomsky's transforma
tional grammar" in the field of linguistics, although
Schenker's work predated Chomsky's by a number
of years. The similarities are striking . In both
Schenkerian analysis and transformational gram
mar, a stream of symbols is scanned and recursively
parsed into groups , yielding a hierarchical struc
ture . Thus, a tree representation of a composition
can be created where each level summarizes the
events in the level below, from a higher-level per

spective. The theory includes a suite of transfor
mations, or rewrite rules, that can be used to alter
the material without essentially changing its "mean
ing." Syntax is modeled by trees, and it is the rewrite
rules that assert relations between trees, the most
notable relation being similarity of meaning.

Smoliar writes, "Schenker viewed every well-com
posed tonal piece as being reducible to one of es
sentially three patterns, all based on the tonic scale
and triad."13 Before Schenker, much of harmonic
analysis consisted of labeling chords as they pro
gressed . This can lead to a concise harmonic de
scription of the surface structure of a piece of mu
sic, but it does not adequately deal with the range
of tonal functions each chord actually serves in con
text, or the range of structural levels at which it may
function. Schenker asserted that the same kinds of
voice-leading relations that exist from note to note ,
or from phrase to phrase, also hold true in the
large-scale form of a composition, where entire sec
tions or movements combine into a unified whole.
A theory that is independent of structural level
leads to a very elegant and organic view of musical
structure.

Smoliar showed that many rewrite rules can be pre
cisely formalized, so that a formal programming
language of transformations can be developed. One
can imagine computer-assisted analysis and com
puter-assisted composition programs that could
provide new insights into the nature of tonal struc
ture, perception, and the creative process itself.
Smoliar's model was designed to assist music the

524 JORDAN AND FRIIS IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

orists in tonal analysis by representing music in a
hierarchical structure and by effecting transforma
tions that explicitly deal with this structure. A mu
sical event is modeled as a tree structure, which can
be entered or displayed at a computer terminal or
internally stored as a list.

There are three types of events:

• A single note
• A sequence	 (SEQ) of events occurring in a des

ignated order

Figure 9 A Smoliar model score

• A simultaneity (SIM) of events

The structure is recursive because an element of an
event can itself be an event.

Figure 9 shows a representation of a simple score
using the Smoliar model, and implemented in APL2.

One fundamental limitation of this model is that
there is no way to explicitly indicate precise dura
tions of time--only order relations between events
are expressed. Nonetheless, it is a powerful abstrac
tion for modeling harmonic and tonal structure. By
creating a hierarchy with these kinds of nestings at
many levels, one can model an entire composition,
yet have access to its parts at all levels of the struc
ture. The hierarchies are musically significant be
cause they model how we actually parse real mu
sical events, and how these events group into larger
events.

Conclusion

The ideal of a shared notation that can be read by
both humans and machines can only be realized if
the notation is close enough to human thought to
be practical. Our minds must rise above the ancil
lary details of computation and even implementa
tion , so we can be free to contemplate complex
concepts more clearly. Music in particular requires
this freedom because musical structure itself is so
complex. Even simple-sounding passages can re-

SCORE~ 'SEQ ' 60 62 64 ('SIM' 65 69 72) 67 69 71

DISPLAY SCORE

67 69 71ISEQI 60 62 64 ISI MI 65 69 72

€ ---------'
€	 ----J

.. . ..I ~ .. I

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991	 JORDAN AND FRIIS 525

veal surprising complexity when analyzed. The ex
amples in this paper can attest to this-so many
numbers to describe such simple fragments of mu
sic. One can imagine what would be required to
describe a symphony .

APL2 provides a solid conceptual foundation for in
formation processing. Suddenly we have control by
attributes. We can specify parts or aspects of the
music that we wish to examine or modify. And most
important of all, we can create new schemes for
classifying these structures, so that the foundation,
though solid, remains flexible enough to follow in
any direction.

Composers have long employed complex notation
systems, attempting to capture the essence of what
they wish to express. Theorists seek to understand
how we hear music, and attempt to make maps of
possible musical spaces. Both require a language in
which new languages can be easily defined. In the
computer age, APL2 seems to be an important ev
olutionary step along this path.

Cited references

1.	 W. Berry, Structural Functions in Music, Dover Publications
Inc., New York (1987) .

2. P.	 Smith, A Programming Language for Thoughts and
Dreams, Technical Report 77.0175, IBM Information Prod
ucts Divis ion, P.O. Box 1900, Boulder, CO 80301-9191
(1986).

3. R. Lafore, Microsoft C Programmingfor the PC, Howard W.
Sams & Company, Carmel, IN (1990), pp. 21, 327.

4. J. Back us, "Can Programming Be Liberated from the Von
Neumann Style?-A Functional Style and Its Algebra of
Programs," Communications ofthe ACM 21, No.8, 613-641
(1978) .

5. P. Benkard, "Rank vs. Depth for Array Partitioning,"APL84
Conference Proceedings,APL Quote Quad 14, No.4, 33-39,
ACM, New York (June 1984).

6. J. Brown, The PrinciplesofAPL2, Technical Report 03.247,
IBM General Products Division, 5600 Cottle Road, San
Jose, CA 95193 (1984).

7.	 L. Van Noorden, "Two -Channel Pitch Perception," Music,
Mind, and Brain, Manfred Clynes, Editor, Plenum Press,
New York and London (1982), pp. 251-269.

8. M. Babbitt, "Twelve-Tone Invariants as Compositional De
terminants," The Musical Quarterly 46, No.2, 245-249
(1960).

9. Musical Instrument DigitalInterface (MIDI) Specification 1.0,
The International MIDI Association (IMA), Sun Valley,
CA (August 1983).

10.	 F. R. Moore, Elements of Compute r Music, University of
Califo rnia at San Diego, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1990), pp. 12-14.

11. S. Papert, Mindstorms: Children, Computers, and Powerful
Ideas, Basic Books, Inc., New York (1980), p. 21.

12. E. S. Friis and S. Jordan, "Musical Syntactic and Semantic
Structures in APL2," APL90 Conference Proceedings, APL

526 JORDAN AND FRIIS

Quote Quad 20, No.4, 130-139, ACM, New York (August
1990).

13.	 S. Smoliar, "A Computer Aid for Schenkerian Analysis, "
Computer Music Journal 4, No.2 (1980) . The MIT Press,
Cambridge, MA, and London, England, pp. 41-59.

14.	 H. Schenker, Der Freie Satz, Universal Edition, Vienna,
Austria (1935); Ernst Oster, Translator, Longman, New
York (1979) .

15. N.	 Chomsky, Syntactic Structures, Mouton, The Hague,
Netherlands (1957).

Accepted for publication June 11, 1991.

Stanley Jordan 163 3rdA venue, Suite 143, New York, New York
10003. Stanley Jordan received his B.A. in music from Princeton
University, where he studied music theory and composition with
Milton Babbitt and computer music with Paul Lansky . He is a
composer, guitarist, and a recording artist with Arista Records.
In 1985, his Blue Note album, "Magic Touch" was Billboard
magazine's number one jazz album for 51 weeks . Mr. Jordan is
widely acclaimed as the foremost innovator of the "Touch Tech
nique," or "Tapping Technique," which allows one guitarist to
sound like two or three. He has been developing computer music
applications in APL since 1978.

Erik S. FrIIs Matrix Development Corporation, Suite B, 19
Shadow Lane, Montvale, New Jersey 07645. Mr . Friis graduated
from Rensselaer Polytechnic Institute in 1983 with a B.S. in
computer science cum laude. He joined IBM in 1983 and was
involved in software design and development for eight years. In
1991 he left IBM to start the Matrix Development Corporation,
a software company. He is the author or coauthor of several
papers published by SIGAPL of ACM and has authored several
IBM Technical Reports. He presented papers at the APL89 and
APL90 conferences, and he was an invited speaker, along with
Stanley Jordan, at the APL91 conference held at Stanford Uni
versity.

Reprint Order No. G321-5450.

IBM SYSTEMS JOURNAL, VOL 30, NO 4. 1991

Verification of the IBM
asc System/6000
by a dynamic biased
pseudo-random test
program generator

Verification of a computer that Implements a new
architecture is especially difficult since no
approved functional test cases are available. The
logic design of the IBM RiSe System/6000"" was
verified mainly by a specially developed random
test program generator (RTPG), which was used
from the early stages of the design until Its
successful completion. APL was chosen for the
RiSe System/6000 RTPG Implementation affer
considering the suitability of this programming
language for modeling computer architectures,
the very tight schedule, and the highly change
able environment In which RTPG would operate.

T he ultimate goal of design verification is to en
sure equivalence between a design and its func

tional specification. Strictly speaking, we can say
that this goal can be achieved by exhaustive simu
lation or formal proof of correctness. The exhaus
tive simulation , in which all possible combinations
of all inputs and memory elements of the design
should be applied , can be done only for very small
designs. Also, the state of the art of the formal
techniques and the complexity of designs and spec
ifications, usually written in English, do not allow
utilization of the formal techniques in most indus
trial applications. 1 Despite significant progress

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

by A. Aharon
A. Bar-David
B. Dorfman
E. Gotman
M. Leibowitz
V. Schwartzburd

achieved in recent years in formal verification, it
has been pointed out that formal verification is not
intended to replace simulation completely and that
simulation is presently the major tool for the (par
tial) validation of hardware designs.2

In practical applications only a relatively small sub
set (as compared to the exhaustive set) of selected
test cases is simulated. The challenge , then , is to
create a subset that provides high confidence in the
correctness of the design. We discuss how biasing
techniques, combined with the dynamic approach
to random test program generation, help to solve
this problem.

This paper describes the concepts behind and the
implementation of the IBM RISC System/6000* ran
dom test program generator (RTPG) developed to
assist in the interactive creation of the adequate
subset , as well as to automatically produce a vast

ClCopyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract , but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

AHARON ET AL. 527

number of test programs for the comprehensive
verification of the design.

At the moment the design was launched, no func
tional test cases existed for RIse System/6000 ar
chitecture. It was obvious that the traditional way of
writing test cases could not provide the required
level of confidence in the design. The design veri
fication methodology developed at the IBM Haifa
Research Group (HRG) 3,4 had already been suc
cessfully applied to several smaller designs such as
floating-point units and a microcontroller. It was
decided to adopt this approach for verification of
the RIse System/6000 computer system.

APL was chosen as the programming language for
the RIse System/6000 RTPG after considering the
suitability of this language for modeling computer
architectures, the very tight design schedule, and
the highly changeable environment in which RTPG
would operate. Originally the RIse System/6000
RTPG was developed in vs APL on the virtual ma
chine (VM) operating system. It was later "migrated"
to AP12 on the same system. It is currently being used
for verification of follow-on products and is running
mainly in batch mode on a cluster of over 30 Rise
System/6000 machines, using IBM's APL2I6000.

The second section of the paper discusses some
aspects of processor verification and describes a
test program format suitable for this purpose. The
subsequent section presents the main RTPG con
cepts and ways to realize them. The RTPG structure
and the basic operation modes are described in the
fourth section. Highlights, conclusions, and results
of the RTPG experience are summarized in the last
section.

The nature of processor verification

The RISe System/6000 RTPG and its predeces
sors. Logic verification of VLSI (very large-scale in
tegrated) designs has always been an intrinsic part
of the design process; however, the complexity of
verification grows much faster than the complexity
of designs. The problem is widely recognized in the
case of microprocessors, as they present the leading
edge of single-chip design complexity. Verification
of microprocessors is considered to be a bottleneck
of the entire design process, with crucial impact on
the schedule for delivery of new systems.' An au
tomated approach is essential for verification of a
system that consists of several VLSI chips including

a processor, a floating-point unit, a storage control
unit, and caches.

In most applications, a test case for a processor is
a program written in assembly language. The main

A random approach to automatic
test generation has proved to be

successful.

goal of the tool called RTPG, 6 which is actually a
dynamic biased pseudo-random test program gener
ator, is to make the test program generation process
more productive, comprehensive, and efficient.

A random approach to automatic test generation for
software 7 and hardware" verification has proved to be
successful. It was applied to the verification of se
lected design units such as a floating-point unit? and
even a complete processor, B but very strong restric
tions were imposed on the generated test programs.
As a result of those restrictions, many parts of the
design could not be accessed and, thus, could not be
verified.

For some designs, such as a floating-point unit, the
main part of the verification task can be fulfilled by
programs that consist of only one instruction. The
generation of such programs is relatively straight
forward: The generator (or the user) selects an in
struction and the required controls, generates the
operands randomly (or provides them), and then
invokes a reference model of the design to get the
expected results. The generation of multiple in
struction test programs is much more complicated,
especially when such features as program control
instructions, interrupts, and address translation are
to be verified. There are approaches -" that present
a way to generate multi-instruction test programs.
They are based on creating special tables of oper
ands, and each instruction may select operands only
from the relevant tables. Although much more pro
ductive than manual test writing, these approaches
have drawbacks. The tables used must ensure that
the generated test programs are worthwhile, that
they would create the required instruction stream,
and that they would not quickly end up with an

528 AHARON ET AL. IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

interrupt. These conditions imply use of the utmost
caution in creating the tables and make this task
very cumbersome. The generated test programs are
relatively simple, and again, must obey many re
strictions. For example:

• Some instructions are	 always preceded by spe
cially inserted instructions, e.g., for initialization
of base registers to get the allowed memory ad
dresses. Thus, some sequences of the instruc
tions can never be generated.

•	 For the same reason, a register may not be used
as a source for different types of activity, such as
an operand in an arithmetic instruction and a
base register for addressing.

• To avoid creating endless loops, only branch for
ward instructions are generated. In branch con
ditional instructions, where it is not known a pri
ori whether the branch is taken or not,
instructions for both possible paths must be gen
erated. As a result, the generation of test cases
with many branch conditional instructions is
quite difficult.

Such an approach to test generation may be clas
sified as a static one , since the test programs are
assembled first and executed afterwards. There is
no relation between the intermediate machine
states during execution of the test program and the
test generation process. In RTPG the test generation
is interleaved with the execution of every instruc
tion as soon as it is generated. This dynamic nature
of RTPG allows us to overcome drawbacks of the
static approaches.

Because RTPG makes it easy to write test programs,
it encourages the logic designer to create appro
priate test programs while the logic design is still
fresh in the designer's mind, whether these pro
grams can be simulated at that early stage or not.
Thus, the design verification is naturally integrated
into the design process.

There are two challenges in having a test program
generator ready at the early stages of design. The
first is simply the time required to implement the
test program generator. The second is a require
ment for high flexibility. Frequent changes are re
quired to the generator because the architecture
specification is often very much in flux at this time
and because implementation-specific details of the
test programs are decided as the design progresses.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

These requirements are two of the reasons that APL
was chosen for the RISC System/6000 RTPG imple
mentation. APL provides quicker implementation
than many other languages. It is also easy to modify
to meet changing requirements as well as to handle
various designers' requests. Another reason is the
special suitability of APL for describing and mod
eling computer architectures. From its very begin
ning, APL was used for this purpose. Iverson's orig
inal book IJ contained a description of the IBM 7090
machine, and in 1964 the complete System/360*
was formally described in APL. 12 All Boolean and
relational functions are supported, and these func
tions provide very efficient bit-per-bit execution for
bit arrays of any length. The language has the ability
to individually address each bit in an array. It is
often necessary to work with bit fields and subfields
within instruction or data words, including double
precision floating-point data which are 64 bits long
in the RISC System/6000. APL allows the needed
fields to be easily split out, whereas many languages
do not support bit operations at all (and especially
not in more than 32-bit words). Because bit oper
ations are so common, RTPG keeps values for all of
the instruction and data words in Boolean form.
Since APL stores a Boolean value as a single bit in
the host processor storage, there is no penalty for
keeping data in this convenient form. The APL ro
tate function together with the selection functions
(like take and drop) are natural for implementing
bit-shifting operations that are required in any com
puter processor model and are especially powerful
in the IBM RISC System/6000 architecture. For ex
ample, the result of a Shift Right Algebraic Imme
diate (SRAI) instruction 13 is calculated by the fol
lowing concise expression:

GPR[RA;J ~ 3 2t (SH/GPR[RS; OJ), GPR [RS; J

and the Carry bit (CA) is:

XER[2J ~GPR[RS; OJ ~ v/ (-SH)t GPR [RS;J

Here SH is the shift amount, RS and RA are the
numbers of the general-purpose registers involved
in the instruction, and the second bit of XER (fixed
point exception register) contains CA. A description
of the same instruction in any other programming
language would be much longer and less easily un
derstood. Note that the description of this instruc
tion in English takes 10 lines in the architecture
document.

AHARON ET AL. 529

Finally, although RTPG was initially planned to run
on an IBM 3090-type processor (under VM), it was
recognized early-on that it would also be necessary
to run RTPG on workstation platforms. In fact, RTPG
is now running under IBM's APL2/6000 on the very
platform that it helped to verify. The transfer of the
RTPG APL code from APL2 on the VM operating sys
tem to APL2/6000 on the Advanced Interactive Ex
ecut ive* (AIX*) operating system was trivial. The
only change required was to the four file I/O pro
grams and to the display screen programs. As men
tioned earlier, RTPG is now running on a cluster of
over 30 IBM RISe System/6000 processors to do the
work of verifying new processors under develop
ment for the RIse System/6000 family of computers.

Test programs for processor verification. The most
natural way of processor verification is to run as
sembly programs through the design model and to
compare the simulated results with the expected
ones. Usually the test programs are written as self
checking programs that return only a "go/no-go"
flag. This concept is simple; however, its usage faces
difficulties since:

•	 It can be used only when the design model is at
an advanced stage, or at least when load and
compare instructions are implemented.

•	 The test programs should obey the restrictions
imposed by the supervisor that runs them.

•	 It requires more simulation cycles (running time)
because of additional load and compare instruc
tions that are simulated.

The RTPG approach is different. A test program
generated by RTPG consists of three parts:

1.	 Initial state defines the contents of all registers,
control flags, tables, caches, and memory loca
tions (called "facilities") that influence, explicitly
or implicitly, the execution of a test program.
The instruction pointer (IP) register provided in
this part contains the program initial address.

2. Instrnctions	 are given as the contents of caches
or memory locations or both. The instructions
part may be included in the initial state but is
separated for better readability.

3. Expected results present the final state of all fa
cilities that were changed during the test. The
user may request that the final state of additional
facilities also be included in the expected results.
The IP register provides the test program break
point.

530 AHARON ET AL.

The collection of these three parts is referred to as
a test program in this paper. Such test programs are
self-contained: they include all information re
quired for their independent and completely pre
dictable execution. This feature enables them to
freely migrate between test libraries and to be ex
ecuted in any order.

A small test program generated by RTPG for the IBM
RIse System/6000 processor is shown in Figure 1.
As usual, asterisk "cards" (or lines) are used for
comments. Comments may also be included in any
line after the required data. The header (H) card
contains the test number and indicates the begin
ning of the test. The register (R) cards specify reg
ister names and initial values. The instruction (I)
and data (D) cards provide memory addresses and
their contents. The IP values (both the initial value
and the result) are given as effective addresses, i.e.,
before any address translation is performed. All
other addresses are given as real memory ad
dresses. The I and D cards are essentially the same
and have different tags for readability only.

In addition to the data required for the processing,
an RTPG-generated test program contains the fol
lowing information:

•	 User comments to record the purpose for which
the test has been created

•	 Corresponding assembly code (in the I cards) for
readability

•	 Calculated effective address of data and target
instructions, included as comments in I cards of
load, store, and branch instructions

•	 The translation path of each address when a test
program is running in address translation mode
(not demonstrated here for reasons of clarity)

•	 The initial value of the Random Link (DRL) used
to create the test and other control parameters
required for regeneration of the test program
(Only a few of these are shown in Figure 1.)

•	 Hooks for handling the program in test libraries

When requested, intermediate results of each in
struction are included as comments in the instruc
tions part of a test (the debug mode described in the
fourth section).

Realization of the RTPG principles

RTPG realizes the dynamic approach to test gener
ation in the following way. A test program is built
step by step (instruction by instruction). Each step

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 1 An RTPG-generated test program for the Rise System/6000

- RISC Systemf6000 RTPG - - --------- --- ----
H 10000;
* Created by : Userld Mar 28 12:38:17 1990
* Title A simple test program for RTPG paper
* Comment: Add. Load. Branch.and Store inst ruct i ons
* Num~er of tests: 1; Instructions in te st : 4;
* Instructions: a lx b sth
* Seed: 228656141; FN; example; Instr. order: f; New_Reg : y;

-- - - -- - --- - ---- - -- - - - Initial ization -- -.-- . - -- - ---- - --------

R IP 00010000
R R1 03642998
R R8 OOOOOOOF
R RIO 1E12115F
R R22 0129DFFF
R R30 800000BA
R MSR 00008000
R CR 8CC048C8
R XER • 2000CD45
D 0129DFFC 4E74570E
D 03640B90 7D280411

Assembly Program - --- - -------- - -- . . - -- -

I 00010000 7C48F415 ao. R2.R8.R30
I 00010004 7CEOB02E lx R7.RO .R22 * EfA 01 29DFFF
I 00010008 49BBB904 b *+29079812 • TfA 01BCB90C
I 01BCB90C B141E1F8 sth R10.X'E1F8' (R1) * EfA 03640B90

Expected Results

R IP 01BCB910
R R2 800000C9
R R7 4E74570E
R MSR 00008000
R CR 8CC048C8
R XER 0000CD45
D 0129DFFC 4E74570E
D 03640B90 115F0411
END

consists of two main stages: a generation stage and
an execution stage. At the generation stage a new
instruction is chosen, and the required facilities are
initialized. The execution stage is then invoked to
execute the instruction and to update the affected
facilities.

Dynamic test generation. The generation stage
starts by inserting the operation code into the in
struction word and establishing the rest of the in
struction fields. At any point in the process each
facility may be either free, which means that no
value has been assigned to it yet, or have a value, in
which case one is assigned to it by the initialization

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

part of the process or by the execution of previous
instructions. All facilities that influence the execu
tion of the generated instruction are inspected, and
those that are free are initialized. This principle
works regardless of the complexity of a generated
instruction and the initialization that it requires.
For example, a single store instruction, besides ini
tialization of data, base, and offset registers, may
require initialization of an entire address transla
tion path.

As soon as the instruction and all of the associated
facilities are defined, the instruction is executed
and all facilities that are changed during the exe-

AHARON ET AL. 531

cution are updated. Therefore, at the beginning of
the generation of the next instruction, RTPG has the
exact information about the current state of all fa
cilities in the system. This information allows RTPG
to:

• Select an instruction and its fields to gain the best
effect from the execution (various biasing strat
egies help to achieve this goal)

•	 Bias data and operands, depending on the in
struction being generated

•	 Reject the instruction if its execution would ren
der the test program invalid

•	 Include any number of branch instructions in the
test

•	 Control eventual interrupts
•	 Protect the required areas of memory and cer

tain registers from being used by the generated
test

• Define, on the fly, all required entries in the sys
tem tables (such as the page frame table)

A trace of the most recently updated facilities is
also available and is used for implementation of
some useful RTPG options.

Biasing. The generation of test programs is biased
in order to increase the probable occurrence of
events that otherwise have very low chances of be
ing created. Biasing is both the strong point and the
vulnerable point of RTPG. Strong, because it allows
the generation of test programs with the required
features. Vulnerable, because the selection of biasing
strategies cannot be completely formalized and de
pends on the experience of the RTPG developer and
that person's knowledgeof the design.The goal of the
biasing is not the creation of unique or very rare sit
uations, but rather is to direct the generation process
toward selected design areas so that most of the
events in these areas are tested when the number of
generated test programs is reasonably large.

The biasing functions are employed in the process
of selecting instructions, instruction fields, regis
ters, addresses, data, and other components that
construct the test program. The starting set of the
RTPG biasing strategies is derived from the archi
tecture. Each instruction or process (such as inter
rupt action or address translation) specified in the
architecture is represented by a block diagram com
posed of decision and execution blocks. In every
decision block the data affecting the decision are
selected in such a way that the subsequent blocks
are entered with user-specified or RTPG-controlled

532 AHARON ET AL.

probability. However, in multi-instruction test pro
grams it is not always possible to get the required
data. Let us say that the user asked for a 10 percent
probability of floating-point overflow, and in the
current instruction the decision was made to create
it. If all floating-point registers already have values
assigned by previous instructions, it may happen
that no pair of registers will produce an overflow.
Thus , in the generated test cases the actual prob
ability of overflow might be less than the requested
one.

To some extent RTPG is a system that gathers into
its biasing strategies all of the experience gained
during the verification of several processor designs.

RTPG gathers into its biasing
strategies all of the experience

gained during verification of
several processor designs.

As an example, consider the strategy of register
selection, which is very important, especially for a
RIse-type architecture where a large number of
general-purpose registers is available and as many
as three or four registers may be used in one in
struction. The RIse System/6000 RTPG allows the se
lection of anyone of the following three strategies:

1.	 Selection of free registers only. Here RTPG has
complete freedom in biasing the instruction op
erands. Also, the result of each instruction will
never be overwritten by the actions of subse
quent instructions. Only relatively short test pro
grams can be generated when this option is cho
sen.

2.	 Random selection (the default strategy) . A reg
ister is selected randomly with biasing toward:
•	 Increasing the probability to use the same reg

ister more than once in an instruction.
•	 Preventing usage of a register as a target if it

has been a target during its previous usage.
This feature increases the test program ob
servability, i.e., the probability to propagate
any intermediate errors to the observable ex
pected results.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

Figure 2 The RTPGenvironment

INTERACTIVE

bI::::::
-===:::9

=- .---:	 Jl
~

INTERFACE RTPG

I"'"

BIASING

SELECTION
 D

BATCH
r
'<,

RTPG

REFERENCE ARCHITECTURE
MODEL[in]

MENU

~l }

:;
TEST
PROGRAMS

'<,

II

BIASING

TEST IMPLEMENTATION
PROGRAMS
EVALUATION

3. High probability to select the target register of
the previous instruction as a source or target of
the current instruction. This option is useful in
the verification of the register bypass logic as
well as in the verification of synchronization be
tween instructions when multiple instructions
are issued and executed concurrently.

The starting set of biasing strategies is revised based
on test coverage analysis of the generated test pro
grams on both the RTPG reference model and the
design models." Coverage evaluation helps to de
tect and remove "holes" in the biasing. The final set
of strategies ensures that there is a generation proc
ess with a reasonable probability of covering every
architectural feature and every design block.

RTPG supports two biasing levels: local and global.
The local biasing is involved in selecting immediate
fields of instructions and selecting data for the op
erands. Many local biasing functions, specific for
every class of instruction, are implemented in RTPG.
For example, the generation of operands for add
class instructions ensures a high probability of get
ting long chains of carries. In a "count leading
zeros" instruction the biasing ensures the creation
of operands with equal probabilities for any num-

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

ber of leading zeros. Some more sophisticated local
biasing functions are implemented in more com
plicated cases, e.g., floating-point instructions.

Examples of global biasing control parameters that
have a primary effect on the generation process are:

•	 Instruction selection strategy
•	 Initial value of the machine state register (MSR)
• Strategy for selecting general-purpose registers
•	 Memory areas that the test program is allowed to

use

Each global and most of the local biasing strategies
may be specified by the user. They are selected
randomly by RTPG if not provided.

RTPG structure and basic operation modes

Environment. The RTPG design verification envi
ronment is shown in Figure 2. The interface and
biasing blocks are actually parts of RTPG but are
shown separately because of their connections to
the external world. RTPG includes a reference model,
a high-level architectural model of the processor to
be tested. The lighter-shaded lines indicate flow of

AHARON ET AL. 533

Figure 3 The main RTPG menu

RIse Sy stem/6000 RTPG Menu
Mar 28 12 :38 :15 1990 Menu name: Demo Test number : 1000
Header »> A simple t est program f or RTPG paper «<
Comme n t »> Add. Load. Bra nc h , and Store ins t r uct ions «<

Number o f tests - > 1
Instr. per t e s t -> 4 Bia s i ng Cont ro l s

AVP FN -> e xampl e Regs . New ? (y I n) y
X I n it FN -> Regs . Last ? (yIn) n
FldLi s t FN - > Inst r . La s t ? (y I n) n
In sList FN -> Memory La st ? (yIn) n

Instr . Order (f/s lr) f
Instr . : --> a - > I x

-> b -> s t h Debu g Options
--> -> Seed
--> - > Deb u g mode1 (y I n) n
--> -> Mod e l t r a ce ? (yI n) n

Instr . pnt r . -> x ' 00 0 10 0 00'
Memory size --> 64M Hardware run ? --> n Loop mode? -> n

RTPG messages _

I-Help 2-Save 3-Quit 4-Init 5-SeU 6-Run 10- Ge n II-ReGen

information with manual work involved in the proc
ess, and the darker lines indicate automatic flow of
data between the units.

The architecture specification document is the pri
mary source of information for the RTPG develop
ers, and most of its features are embodied in RTPG.
RTPG has to know all of the instruction format, and
for each instruction, all of the parameters that in
fluence its execution. This information is required
for generating the instruction fields and for check
ing that all necessary facilities were defined before
the execution of the instruction. RTPG has to keep
a record of all facilities changed during instruction
execution. The final state of all of the changed fa
cilities provides the expected results .

The architecture may leave the handling of certain
situations to the implementation. For example, un
aligned storage access may cause an alignment in
terrupt in some implementations and may be han
dled by hardware in others. All such situations are
handled in RTPG so that the test program that is
created is correct for the implementation being
tested.

534 AHARON ET AL.

User interface. The RTPG user interface includes
several screens that allow the user to define the
initial state of the processor and to control the test
program generation process . The main screen used
to generate the test program of Figure 1 is shown
in Figure 3.

All screen parameters are optional, and if not spec
ified, the default values are used (e.g., the default
for InsList contains all instructions). The interface
provides a way for documenting the generated test
programs, selecting biasing strategies, initializing
instruction fields, registers , and memory, and exe
cuting existing test programs.

The user may initialize any of the required facilities
within an X_Init file. The file has the usual test
program format. Thus, a prototype of a test pro
gram may first be created by RTPG and thereafter
used for initialization and generation of many new
test programs on top of the prototype. The X_Init
file may also contain blocks of instructions and data
that become parts of the test program. This feature
is useful for including interrupt handler routines in
the generated test programs.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The Debug Mode is a powerful by-product of the
dynamic nature of RTPG. Including it in RTPG is
almost free since RTPG already scans all changed
facilities after every executed instruction. When

RTPG offers two modes of
operation.

this option is employed, the expected results of
each intermediate instruction are included in the
generated test program. This option is very useful
in locating problems when a test fails. However, it
requires much more space for storing the test pro
grams.

RTPG offers two modes of operation: the generation
mode (Gen) and the execution mode (Run). In the
first mode, RTPG is used to generate one test file per
invocation. The file contains the requested number
of test programs, each program generated accord
ing to the control parameters specified on the
screens. The batch version of the Gen mode is used
for mass production where a large number of test
programs is created for predefined sets of initial
conditions. Such generation is performed as over
night runs or during weekends. Since the "porting"
of RTPG to the IBM RIse System/6000 platform,
RTPG runs as a background process concurrently on
many RIse System/6000 machines connected in a
local area network. The programs generated on the
workstations as well as the programs generated on
the VM host machines are submitted automatically
to various simulators connected to the same local
area network . Tests that do not expose any design
problems are discarded.

In Run mode RTPG executes an existing file of test
programs and returns it, including correct expected
results. The original file mayor may not include
expected results. If they are provided, they are com
pared with the expected results created by RTPG,
and any discrepancies are reported. Run mode is
used to define the expected results for manually
written test programs. In case of changes in the
architecture, it is used to confirm or update the
expected results of programs imported from other

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

sources or generated previously by RTPG. Another
use of Run mode is to rerun an existing test pro
gram in Debug Mode. This use is done frequently
when a test fails and when it was originally gener
ated with the Debug Mode turned off.

Test coverage evaluation on the architecture level.
The quality of verification is improved significantly
when there is a means to estimate test coverage on
both architecture and implementation levels. In re
gard to RTPG, the results of coverage analysis pro
vide feedback for improving the biasing functions .
Also, the coverage analysis on the architecture level
is used in the preparation of a relatively small sub
set of tests that include test programs for every
architectural feature. In the RIse System/6000 RTPG
the high-level reference model was implemented
within RTPG. The interpretive nature of APL con
siderably facilitated the implementation of some
coverage analysis techniques, including techniques
that require fault injection.

One of the simplest coverage techniques is ensuring
that each line of the code has been executed at least
once. A special function analyzes the character rep
resentation of an APL function and splits each la
beled line into two lines. The first one contains the
label and an assignment statement that sets the cor
responding bit in a trace vector associated with this
function. The second line created by the split con
tains the APL statement that was on the line before
the split (but without the label). Assignments of the
bits of the trace vector are also inserted after each
statement with an APL right arrow (branch). A
bucket of test programs is then executed (using the
Run mode) on the "trace-modified" RTPG. Zero
values in the trace vector indicate blocks that were
not reached.

Another coverage technique called "skip muta
tion," 14 which requires injection of faults into the
code and thus provides much higher confidence in
the generated test programs, may also be easily im
plemented. Skip mutation means that one line of
the analyzed function is not executed. To make this
technique more sensitive, an original APL function
may be replaced by its more detailed version . Skip
mutation is performed by another function that
takes the character representation of an APL func
tion to be checked and precedes the required line
by the comment symbol " r:l". The information from
the previous step (line coverage) is used to select
only those test programs that pass through the

AHARON ET AL. 535

skipped line. The procedure is repeated for each
line in the function.

The coverage analysis is done automatically as soon
as both the function to be analyzed and the test file
are specified. However, because of performance
considerations, only functions for which a low cov
erage is suspected are analyzed. In the RISC Sys
tem/6000 RTPG environment, only functions that
implement the floating-point unit were analyzed by
both techniques.

RTPG implementation. The RISC System/6000
RTPG is implemented as a single workspace which
is able to create test programs of up to several thou
sand instructions on a six- to eight-megabyte virtual
machine. The user interface was written in REXX to
simplify some Conversational Monitor System
(CMS) file-related checking that was not so easy to
implement in vs APL. The RTPG functions may be
grouped into:

• Utility and service functions
• Functions for instruction execution
• Biasing functions
• Simulation of interrupts
• Address translation

The service functions prepare the initial machine
state, manage instruction selection, prevent the cre
ation of endless loops in the generated test pro
grams, and mask undefined results. These functions
also handle the Run option, including comparing
the actual results with the expected ones that are
provided in the original test program.

Each RISC System/6000 instruction has a corre
sponding APL function with the same name that
operates on the architectural facilities (defined as
global variables) to perform the behavior of the
instruction. Each "instruction function" is parti
tioned into a biasing section and an execution sec
tion which are used as required for biasing and
setup or reference model operation. As soon as the
instruction to be generated is selected, the required
APL function is invoked by "executing" the charac
ter representation of the instruction mnemonic.
Thus, when a new instruction is added to the sys
tem, or in case of a change in the instruction mne
monic or behavior, only one function must be
added or changed. A rich set of utility functions that
perform many of the required common tasks, such
as incrementing the instruction pointer or adding

536 AHARON ET AL.

two register values, facilitates writing of the "in
struction" functions.

The register arrays of the processor are modeled as
APL Boolean matrices. The memory is modeled as

The RiSe System/6000 RTPG is
implemented as a single

workspace.

another Boolean matrix with a companion address
vector that maps processor memory addresses to
APL matrix indices.

When the project was started, very little reusable
RTPG software existed from previous projects (al
though the concepts were well understood). At any
moment no more than four persons were working
on RTPG. One of them was dedicated to the user
interface written in REXX, and one was involved
only part time in RTPG development. In less than
four months the first version of RTPG, which sup
ported almost all branch and fixed-point instruc
tions, was given to the designers. Floating-point in
structions were delivered a month later. From that
time only two people on average were involved in
RTPG development, working on the storage control
unit, on cache modeling, on imbedding architecture
changes, and on implementation-dependent fea
tures. They also supported RTPG in the field, re
sponding to numerous designers' requests. This ac
tivity was completed exactly one year after starting
the project, and since then, only one person is in
volved in RTPG support and enhancements. This
person's responsibility includes porting RTPG to
APL2/6000 and upgrading it to support follow-on de
signs.

Concluding remarks

We described a comprehensive procedure for bi
ased random test program generation and the RTPG
implementation of the approach. This approach
has been adopted as a main technique in the design
verification process of several IBM designs. The de
signs varied from floating-point coprocessors to the
complete complex of the IBM RISC System/6000

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

computer. In all cases the corresponding VLSI prod
ucts came out fully functional on the first pass. In
the case of the RISC System/6000, once the final
design was completed, no new bugs were found.

RTPG accompanies the design process from its very
early stages through its successful completion. At
the beginning of the process, RTPG is used by the
designers to generate simple test programs directed
toward recently developed logic. This use results in
a significantly lower error detection rate at the ad
vanced stages of the design. At the system level,
RTPG is used mainly in batch mode , where a sig
nificant volume of test programs, some of them
consisting of up to several thou sand instructions,
is generated and simulated on the design model.
The employed biasing strategies have evolved,
based on requests coming from the designers and
the feedback from the coverage analysis.

The RTPG development effort is not considered to
be negligible. However, it is incomparable with the
amount of resources required to achieve similar
verification quality with manually written or purely
randomly generated test programs. At the moment,
RTPG is notably tailored to the architecture it
serves. Nevertheless, existing RTPG s provide a good
groundwork for the development of new ones, even
when the architectures are different.

Choosing APL for the implementation of RTPG al
lowed us to provide this tool to the designers on a
timely basis, and it also allowed us to keep up with
many changes and modifications to RTPG necessi
tated by the novelty of the approach and also by
frequent changes in the architecture at that time.
Shoulder-to-shoulder work with the designers con
tributed to the success of the tool but required in
stant response to their reque sts. Again, APL, with no
compilation and linkage overhead, allowed us to
quickly respond to these requests. The interpretive
nature of APL was used to implement some test
coverage evaluation techniques that work on the
architecture level directly in RTPG .

In the beginning, RTPG was used mainly in the in
teractive mode . With a capability to generate 20 to
30 instructions per second, it provided fairly good
response time to the users. The design model sim
ulator running on the VM host machine was slower.
Porting of the simulator to the RISC System/6000
platform and the use of hardware assist for the sim
ulation required more and more test programs to
feed all available simulators . Moving RTPG to

APL2/6000 solved the problem of limited available
compute r time, and now RTPG, running on a cluster
of RISC System/6000 machines, is able to produce
the required number of test programs.

Acknowledgments

The authors deeply appreciate the help of their col
leagues at the VLSI testing and verification group in
HRG, especially Raanan Gewirtzman and Yossi
MaIka for their work on test coverage evaluation .
The authors gratefully acknowledge cooperation
with IBM design and simulation teams in Essonnes,
Burlington, Boca Raton, and Austin that enabled
us to develop this verification methodology and to
experiment with it on their designs. Special recog
nition goes to Israel Berger (HRG) for his innova
tive contribution to the methodology and his su
pervision and support, together with Yoav Medan
(H RG) and Jerry Long (Austin), during the devel
opment process of the RISC System/6000 RTPG .

'Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. P. Camurati and P. Prinetto, "Formal Verification of Hard
ware Correctness: Introduction and Survey of Current Re
search," Computer 21, No.7, 8-19 (July 1988).

2. Formal Verification of Hardware Design, M. Yoeli, Editor,
IEEE Computer Society Press, Los Alamitos, CA (1990).

3.	 A. Aharon, A. Bar-David, E. Gofman , M. Leibowitz, and V.
Schwartzburd, RTPG-A Dynamic Biased Pseudo-Random
Test Program Generator for Processor Verification, Technical
Report 88.290, IBM Israel Science and Technology, Tech
nion City, Haifa 32000, Israel (July 1990).

4.	 A. Aharon, R. Gewirtzman , E. Gofman , and Y. Maika,
Hardware Design Verification with Task Models, Technical
Report 88.289, IBM Israel Science and Technology, Tech
nion City, Haifa 32000, Israel (June 1990).

5. N. Tredennick, "Trends in Commercial VLSI Microproc
essor Design," VLSI CAD Tools and Applications,
W. Fichter and M. Morf, Editors , Kluwer Academic Pub
lishers, Norwell, MA (1987).

6.	 A. Aharon, A. Bar-David, R. Gewirtzman, E. Gofman, M.
Leibowitz, and V. Schwartzburd , Dynamic Process for the
Generation of Biased Pseudo-Random Test Patterns for the
Functional Verification of Hardware Designs, Israel Patent
Office , Patent Application No. 94 115 (April 1990).

7. D. L. Bird and C. U. Munoz, "Automatic Generation of
Random Self-Checking"Test Cases," IBM Systems Journal
22, No.3, 229-245 (1983).

8.	 A. S. Tran , R. A. Forsberg , and J. C. Lee, "A VLSI Design
Verification Strategy," IBM Journal of Research and Devel
opment 26, No.4, 475-484 (July 1982).

9.	 P. M. Maurer, "Design Verification of the WE32106 Math
Accelerator Unit, " IEEE Design and Test of Computers 5,
No.6, 11-21 (June 1988).

10. C. Bellon et al., "Automatic Generation of Microprocessor

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991	 AHARON ET AL. 537

Test Programs," ACM/IEEE 19th Design Automation Con
ference Proceedings (June 1982), pp. 566-573.

11.	 K. E. Iverson,A Programming Language , John Wiley & Sons,
Inc., New York (1962).

12. A. D. Falkoff,	 K. E. Iverson , and E. H. Sussenguth, "A
Formal Description of System/360," IBM Systems Joumal s,
Nos. 2 and 3, 198-261 (1964).

13.	 POWER Processor Architecture, IBM Corporation, Ad
vanced Workstation Division, 11400 Burnet Road, Austin,
TX 78758 (1990).

14. A. Aharon, I. Berger, E. Gofman, and M. Yoeli, "Testing a
Microprogrammed Control Unit," VLSI and Computers,
COMPEURO Conference Proceedings, Hamburg, Germany
(May 1987), pp. 390-393.

Accepted for publication June 20, 1991.

Aharon Aharon IBM Israel Science & Technology Ltd., Technion
City, Haifa 32000, Israel. Mr. Aharon joined IBM at the Haifa
Research Group (HRG) in 1983 and since 1989 has been the
manager of the VLSI Testing and Design Verification Group.
From the time he joined the HRG he has been involved in
developing a methodology for logic verification of hardware de
signs and applying it to various designs within IBM, among them
the IBM RISC System/6000 for which he received an IBM Out
standing Technical Achievement Award. Mr. Aharon received
his B.Sc. degree in 1981 in computer engineering and his M.Sc.
degree in electrical engineering in 1983 from the Technion, Is
rael Institute of Technology. Since 1984 he has been an Adjunct
Teaching Associate in the Electrical Engineering Department at
the Technion . Mr. Aharon is a coauthor of several papers and
technical reports. He also wrote several teaching books pub
lished by the Open University of Israel in the areas of digital
systems, logic design, computer organization, and microproces
sors.

Ayal Bar-David IBM Israel Science & Technology Ltd., Technion
City, Haifa 32000, Israel. Mr. Bar-David joined IBM at the Haifa
Research Group (HRG) in 1983 and has been involved in the
development of tools for logic verification of hardware designs.
He received a general award for his participation in the verifi
cation of the IBM RISC System/6000. During 1987-1989 he was
visiting at Qualcomm Inc., San Diego, California, working on the
design of ASICs for digital communications. Presently he is
working on the development of CAD tools for VLSI. Mr. Bar
David received his B.Sc. degree in 1983 and M.Sc. degree in
1986, both in electrical engineering, from the Technion, Israel
Institute of Technology.

Barry Dorfman IBM Advanced Workstations Division, II400
Burnet Road, Austin, Texas 78758. Mr. Dorfman is an advisory
programmer in the simulation/verification area of the Central
Electronics Complex Engineering Center. He joined IBM at
Austin, Texas, in 1976after receiving a B.S.E.E. degree that year
from Arizona State University, Tempe , Arizona. He held vari
ous assignments in circuit and logic design and received an IBM
informal award for his design and APL implementation of an
engineering processes system. He worked in the information
systems area of the Systems Technology Division where he was
responsible for developing several software systems. In 1987Mr.
Dorfman joined the IBM RISC System/6000 team where he
works today with processor verification and the RTPG program.

538 AHARON ET AL.

Emanuel Gotman IBM Israel Science & Technology Ltd., Tech
nion City, Haifa 32000, Israel. Dr. Gofman joined IBM at the
Haifa Scientific Center and Research Group in 1977. For his
work on projects on the Hydraulic Network Solver (1977-1979)
and Computer-Aided System for Scheduling School Time-Ta
bles (1979-1981) he received two awards from the Information
Processing Association of Israel, first in Implementations of Sci
ence and Technology and second in Data Processing in Admin
istration. Since 1981 he has been involved in developing a meth
odology for logic verification of hardware designs and
application of this methodology to various designs in IBM. He
spent 1986-1987 as a visiting staff member in the IBM Inde
pendent Business Unit, Austin, working on verification of the
IBM RISC System/6000. For this work he received an IBM
Outstanding Technical Achievement Award. Dr. Gofman re
ceived an M.Sc. degree in applied mathematics from the Mos
cow State University, USSR, in 1968, and a Ph.D. in technical
cybernetics in 1975 from Riga Politechnical Institute, Latvia.

Moshe Leibowitz IBM Israel Science & Technology Ltd. , Tech
nion City, Haifa 32000, Israel. Mr. Leibowitz is a research staff
member in the Haifa Research Group (HRG) VLSI group . He
graduated from the Technion, Israel Institute of Technology
with a B.S.E.E. degree (cum laude) in 1975 and received an
M.S.E.E. degree from the Technion in 1989. He joined IBM in
March 1985 at Haifa, Israel, and took part in and led several
projects in VLSI testing and simulation and in physical design.
Currently he is on international assignment at IBM Boca Raton
working on VLSI synthesis and design verification.

Victor Schwartzburd IBM Israel Science & Technology Ltd.,
Technion City, Haifa 32000, Israel. Mr. Schwartzburd joined IBM
at the Haifa Scientific Center in 1984. He has been involved in
developing a methodology for logic verification of hardware de
signs and application of this methodology to various designs in
IBM. From 1986 to 1988 he worked on development of an au
tomatic verification system for the IBM RISC Systern/6000. For
this work he received an IBM Outstanding Technical Achieve
ment Award. He also has a patent (with other IBM employees)
on the method of automatic verification and testing. He spent
1990 and 1991 as a visiting staff member in the IBM Storage
Systems Products Division, Tucson, Arizona, working on testing
of the IBM 3990 Control Unit. Mr. Schwartzburd received an
M.A. degree in electrical engineering from the Moscow Power
Institute, USSR, in 1957.

Reprint Order No. G321-5451.

IBM SYSTEMS JOURNAL, VOL 30, NO 4. 1991

APL2 as a specification

language for statistics

APL has had a dedicated following for many
years among some sections of the academic and
Industrial statistical communities. One of Its
greatest strengths Is Its value as a specification
language. Not only can algorithms be described
consistently and unambiguously, but also, given
an appropriate interpreter, the specifications can
be immediately executed. A group of academic
and Industrial statisticians in the United Kingdom
recognized these capabilities and embarked on a
project called ASL (APL Statistics Library) with
the support of the British APL Association. ASL
alms to provide a collection of coherent APL
functions for widely used statistical calculations,
thereby creating standards for the unambiguous
expression of statistical algorithms. A natural
consequence of this is that discussions of more
complex algorithms and methods can occur
without the need to revisit and redefine basic
functions and the ways In which they Interpret
data.

M any statistical algorithms already exist in APL.
The APL Statistics Library (ASL) is unique,

however, in the way in which it uses APL2 as a spec
ification language for statistical functions, which
themselves define a statistical sublanguage with a
high degree of consistency and extendability in its
naming conventions. This allows users of ASL-based
software to predict with greater accuracy the pur
pose and usage of a function from its name and
argument names.

In software engineering, specification languages ex
ist to allow programmers to evaluate programs and
their correctness at all levels of detail. APL provides
this facility for statistical algorithms but with the
important additional property of executability. This
means that ASL code used for the purpose of spec-

by N. D. Thomson

ification can be submitted to an APL2 interpreter
and executed.

Further, by having algorithms defined at APL source
level, potential users are given much greater control
over their analyses than they would have using
conventional packages. Alternative functions are
available to perform operations such as matrix inver
sion, numerical integration, random number gener
ation, and approximations for functions associated
with distributions. Users can substitute their own
functions at appropriate points in an algorithmic se
quence.

This paper gives examples that (1) describe the phi
losophy of ASL code and documentation, and (2)
illustrate the way in which it provides a medium for
discussion of algorithms among statisticians.

ASL structure

ASL is structured into "volumes." The foundation
volume is called the Basic Statistics Volume and
has two key roles: first, that of specifying a core of
algorithms that statistical practice and experience
require as basic; and second, that of standardizing
the statistical sublanguage, thus giving users of ASL
a great general advantage in communicating with
each other. Later volumes that cover more special
ized areas such as regression, time series, and mul

C>Copyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other port ion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 THOMSON 539

Table 1 Coding system for writing functions and
naming arguments

Prefix Algebraic
Type

b
ne n

f z

s (r)

c
g

Explanation of Codes

ne nonempty

f frequency

s shape

b Boolean
n non-negative integer
z integer
r real (default)
c character
g general, i.e., character

or numeric

s scalar

v vector

m matrix

a array

c continuous

Rank Suffixes

s

v v

m m ...

a a

c

tivariable analysis can utilize and build on the ex
isting core of algorithms.

The Basic Statistics Volume is divided into a num
ber of sections covering univariable statistics,
distribution functions, elementary multivariable
statistics, estimation and significance testing, non
parametric statistics, basic time series, analysis of
variance, and combinations.

ASL function naming conventions

The function names used in the statistical sublan
guage are inflectional, and the general pattern of a
function name is

<root> <inflection .. >

where the dots denote the possibility of multiple
occurrences.

Sometimes alternative algorithms are given, for ex
ample, for generation of random normal variables,
which differ in characteristics such as elegance ,
speed, and space requirements. These are given se
rial numbers as a further inflection.

540 THOMSON

Sometimes a function calls a succession of auxiliary
functions . This may occur in a set of tightly bound
recursive functions such as arise in combinatoric
algorithms. The auxiliary functions are named by
applying successive bs as prefixes to the root or root
+ inflection, so that the full specification of a func
tion name is

[tl .. J<root><inflection . . ><serial number>

The largest root-based groups are statistics and dis
tribution functions. Examples of function names
are the following:

MEAN
MEANFM mean of a frequency matrix
PCTILEFMC percentile of a frequency

matrix-continuous case
NORMQUANT quantile of normal

distribution
FTAIL probability in right tail of

F distribution
PERM list of permutations of

given order
I'::. PERM auxiliary to PERM
MPERM auxiliary I'::.PERM

The following conventions are used in writing func
tions and naming arguments:

1. Function results are denoted by Z.
2. A left or right argument is specified either by a

descriptive name such as IXSET standing for
"index set," or by a composite "word" made up
of not more than four parts, in lowercase letters,
which describe the argument type using the cod
ing system illustrated in Table 1. The type fm
(frequency matrix) describes the special case of
a numeric matrix with two columns, the first of
which is to be interpreted as denoting class val
ues in ascending order and the second as a vector
of integers giving the number of items belonging
to each class.

3. A reasonable degree of abbreviation in naming
functions and arguments is employed to avoid
excessively long names. Function names are
never less than four characters in length.

Examples of functions from the Basic
Statistics Volume

The meaning of a statistical function such as
"mean" is data-dependent. If it is applied to a vee-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

tor, i.e., a sequence of numbers, then the underlying
calculation will be different from that performed if
it were applied to a matrix and the result defined to
mean a sequence of column means.

It has always been a fundamental part of the phi
losophy of APL to generalize function semantics
with regard to data. In this spirit, it is possible to
have the same APL expression realize both of the
above interpretations of "mean," but the expression
is also meaningful if applied to an array of three or
more dimensions.

There is, however, a problem associated with this
ability to generalize, namely that a data matrix is
capable of several different interpretations. For ex
ample, each column of the matrix:

DA!1A
o 1
1 4
2 3
3 2

may be regarded as a vector of values of a variable.
On the other hand DA!1A can be interpreted as a
frequency matrix as described in the previous sec
tion-that is, one item with value 0, four items with
value 1, and so on. Another interpretation might be
two items lying between 0 and 1, four items between
1 and 2, etc., with the items in each class spread
uniformly throughout the class width. For example
the four items in the second class would be spread
to values at 1.125, 1.375, 1.625, and 1.875.

The Basic Statistics Volume provides pairs of func
tions that deal with the multiple-vector and fre
quency matrix interpretations. For the mean they
are called MEAN and MEANFMrespectively, so that
the following results hold:

MEAN DA!1A
1.5 2 .5

MEANFM DA!1A
1.6

The definition of the root (i.e., noninflected) func
tion for MEAN applied to a nonempty array (nea) is:

[OJ Z--MEAN nea
[l J Z--(+fnea)+l Dpnea

The symbol p means the "shape" of the array, e.g.,
4 2 in the case of DA!1A. The symbol 0 means "in
dex" so 10 pDATA is the first item in 4 2, namely 4.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The symbol f means take sums along the first axis.
That is, if nea is a vector, MEAN returns the mean
of a sequence of numbers; if it is a matrix, it returns
a vector of column means. If it is a three-dimen
sional array, then MEAN returns a matrix of the
means of items occupying the same positions in the
different planes, which is useful in dealing with rep
lications of cross-tabulated data.

The function MEAN can readily be generalized to
calculate other moments about the origin :

[OJ Z--n MOMENT nea
[lJ Z--(+fnea*n) +l Dpnea

The only difference is the addition of"* n" where *
denotes exponentiation.

2 MOMENT DATA
3 .5 7 .5

The moment about the mean can now be specified
as:

[OJ Z--n MOMENTM nea
[lJ nea--nea-(pn ea)pMEAN nea
[2J Z--n MOMENT nea

Using basic functions to discuss more
advanced ones

The example chosen is that of the jack-knife. 1 Sup
pose that the reader were required to explain this
concept to someone who had not met it before but
had reasonable acquaintance with basic statistics.
The first step might be to describe the process by
which items are withdrawn one at a time from a
vector v to form pv samples each of size (pv)- l.
Four additional symbols are needed, all but the first
of which belong to APL2 but not to first-generation
APL.

Index of-which is the vector of positive

integers from 1 to N, e.g., 13 is 1 2 3

~ Without-in the sense that A~B means the

object A excluding those items which occur in
the object B

c Enclose-which means regard the array to its
right as a single object (scalar)

.. Each-an operator which directs that the
function to its immediate left must be applied
to each of the items in the argument on its
right

THOMSON 541

Write n for pv.The sample construction process for
the jack-knife is described by first enclosing In so
that it can be considered as a single unit, then the
individual items of In are each excluded in tum.
This is described by the following:

and the process can be made into a function, as
follows:

[OJ
U J

Z--JINDEX n
Z- (q n)~ "l n

JINDEX 3
2 3 1 3 1 2

The result of JINDEX is a set of n vectors each of
length n-1, which are the index sets that must be
applied to v to select the samples required for the
jack-knife. The process of selection is described by
bracket indexing:

[OJ Z--IXSET SELECT v
UJ Z--v [IXSETJ

2 3 SELECT 27 9 52
9 52

This selection process must be applied for each of
the index sets, which leads to the following func
tion:

[O J Z--JSAMPLES v
[1J Z--(JI NDEX pv)SELECT"cv

JSAMPLES 27 9 52
9 52 27 52 27 9

The enclose which is applied to v is necessary be
cause each of the index sets given by JINDEX pv
is applied to the single object v which has to be
(notionally) replicated once for each index set.

As an aside, the choice of v rather than nev for the
argument indicates that the algorithm remains
sound (although of trivial interest) in the case
where v is an empty vector.

The above development may seem a little tedious
because each APL2 symbol and function has been
described at some length. To illustrate how rapidly
this small learning investment pays off, consider
how easy it is now to specify another quantity which

542 THOMSON

arises early in jack-knife theory, namely the jack
knife root mean square:

[O J Z--JACKRMSE nev
[1 J Z--((2 MOMENTM

MEAN" JSAMPLES nev)
x-1 +pnev)*0 .5

Conclusion

This paper has endeavored to argue the case for
using APL2 within the professional statistics com
munity as a language for standardizing and speci
fying algorithms. The paper illustrates how a set of
such standard APL2 functions can be used as a basis
for reasoning about and extending base algorithms.
A group of statisticians in the United Kingdom is
actively engaged in continuing to develop this work.

Cited reference

1.	 B. Efron, lack-knife, the Bootstrap and Other Resampling
Plans, Society of Industrial and Applied Mathematics ,
U.S. (1982).

Accepted for publication July 25, 1991.

Norman D. Thomson IBM United Kingdom Laboratories,
Hursley House, Hursley Park, Winchester, Hampshire S02I 2JN,
England. Mr. Thomson joined IBM in 1969. He has earned an
M.A. in mathematics at Cambridge and a B.Phil. in statistics and
computing at St. Andrews. His interests have been in education
and in the application of statistics and simulation in manufac
turing. Dr. Thomson has been involved in many projects in col
laboration with the IBM United Kingdom plants. He has been
an ardent enthusiast for APL and is the author ofAPL Programs
for the Mathematics Classroom, Springer-Verlag , 1988.

Reprint Order No. G321-5452.

IBM SYSTEMS JOURNAL. VOL 30, NO 4, 1991

Advanced applications of
APL: logic programming,
neural networks, and
hypertext

This paper reviews the work of the author on the
application of the APL and APL2 programming
languages to logic programming, e"!ulatlon of
neural networks, and the programmmg of
hypertext applications.

T he last decade has witnessed the emergence
and maturation of a whole set of new fields and

techniques in computer science, such as log
ic programming (which actually started in the
1970s), neural networks, object-oriented program
ming, genetic algorithms , and a few others. APL
(and its successor APL2) remains abreast of the
times as a programming language and has demon
strated its capability for all of these exciting new
fields.

This paper summarizes the previous work of the
author in three of the indicated fields. The first
section, on logic programming, describes the design
of a logic programming auxiliary processor, capable
of performing declarative logic inferences similar to
Prolog, that can be invoked and used from an APL
workspace. This processor is now a part of the
APL2/PC IBM product.

The second section , on neural networks , describes
how APL can be used to model , teach , and imple
ment these modern structures which, though de
scending directly from the perceptrons of the 1960s,
have now revived with a new strength and are being
applied to new, interesting fields.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

by M. Alfonseca

Finally, a third section summarizes why APL2 is ex
tremely apt for the development of object-oriented
applications and describes in some detail a hyper
text application built on these lines.

APL and logic programming

The literature on APL shows that there has been a
long-standing discussion about the usefulness of
this language for artificial intelligence applications.
This usefulness is considered a direct consequence
of the great power of the language , the ease of
programming with high-order data structures, or
the possibility of using a "parallel" approach to
solve certain problems. Reference 1 gives more de
tails on the latter.

In particular, the new list structures introduced in
the APL2 form of the language 2 provide APL with all
of the power of LISP, the classical language for ar
tificial intelligence. 3,4

Several attempts have been made to build expert
systems using only the current Eower of the lan
guage, either with APL or APL2. 9 Building an ex
pert system usually requires the implementation of

ClCopyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page . The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

ALFONSECA 543

Table 1 Reserved symbols for AP998

APL Symbol Standard Symbol Meaning

"
v

<
&
I

IF
AND
OR

NOT

an inference machine, or some version of logic pro
gramming, in APL. The problem here is speed.
However, some of the approaches find highly orig
inal ways to solve this problem.

A related approach is the emulation of Prolog-like
rule-based inferences. Although such emulation
has been done more than once, 10,11 this approach is
usually too slow, for it boils down to interpreting an
interpreter.

A better solution to this problem would be the im
plementation of a Prolog-like inference processor
in a lower-level language in such a way as to be
easily accessible from normal APL programs. In this
way, powerful hybrid systems could be imple
mented. Applications built in APL using this "logic
auxiliary processor" would gain access to a whole
class of new possibilities (logic inferences, "natural
like" language, nonprocedural programming) while
at the same time maintaining all of the APL numeric
calculation and symbolic manipulation capabilities.

This inference processor is already written and is a
part of the APL2/PC product. It is an auxiliary proc
essor, called AP998, accessible from APL2 in the
usual way through shared variables, and incorpo
rates a subset of a Prolog-like interpreter.

It has been said that this method is not really an APL
solution, since it does not use pure APL programs
but instead adds one external program (the auxil
iary processor) written in a different language. I
think this criticism is unfair, because:

• Auxiliary processors are,	 and have been for a
long time, a part of APL. The fact that they are
included in the products proves this assertion.

•	 APL allows the construction of auxiliary proc
essors in different languages, and this capability
is a plus, not a minus, of the language . It is a
well-known fact that APL as an interpretive lan
guage has a certain impact on performance. The
standard solution (avoiding loops in the code) is

544 ALFONSECA

not always feasible, especially when cascaded re
sults are involved, that is, those processes where
the next value to be computed depends on pre
viously computed values. In those cases, it is a
great advantage to be able to speed the system up
by programming the bottlenecks in a lower-level
language. If this can be done in such a way that
the resulting auxiliary processor is of general ap
plication and can be reused in very different con
texts, APL becomes richer and increases its power
for future applications.

The remainder of this section describes the logic
inference auxiliary processor, AP998.

The logic language. The logic language imple
mented by AP998 is a subset of Prolog using only
infix notation. The lexical elements of the language
are the following:

•	 Words-A word can be defined as any character
string not including spaces. Uppercase and low
ercase are considered to be equivalent. Exam
ples are:

JOHN

I S-FATH ER-O F

25

•	 Reserved symbols-Certain symbols have spe
cial meaning for AP998 and should not be used
outside their context. To be recognized, these
reserved symbols must be separated from adja
cent words by at least one space. Each meaning
can be represented by two different symbols, one
of which is easier to represent with the APL key
board, whereas the other is easier to represent
with the standard keyboard. The symbols are
shown in Table 1.

•	 Synonyms-Certain words can be defined as syn
onyms for the reserved symbols. In this way,
many natural languages are recognized by AP998.
In English, the synonyms recommended for the
symbols are the words indicated in Table 1 under
the heading Meaning. Only one synonym may be
defined for each meaning at a given time.

•	 Variables-Any character string starting with
the "star" symbol (the asterisk, *) represents a
variable. Examples are:

*X
*CASE
*1
*

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The syntactic elements of the language are the fol
lowing:

•	 Clauses-They are assertions or negations of dy
adic predicates, written in infix notation: They ~n
sist of a certain number of words or vanables, WIth
a possib le negation term in any position. They can
also include a plausibility integer. Examples are:

JOHN IS MALE

JO HN IS FATHER OF JANE

*1 IS NOT FATH ER OF *2

?88 WE ATHER IS FINE

The plausibility integers are numbers between
zero and 100, zero corresponding to the negation
of the assertion, 100 to its certainty, and 50 to its
uncertainty. If the plausibility of an assertion is
not given, it is assumed to be ~b~olute..If the
assertion is affirmatively worded, It IS used In that
form with a plausibility of 100. If the asserti?n is
negatively worded, its negation is used with a
plausibility of zero.

•	 Rules-Basically the rules are formal logic im
plications. A <- B is equivalent to A IF B, where
A and B are assertive or negative clauses. Rules
consist of two parts (premises and conclusion)
joined by the IF symbol or its synonym.

A special case rule is the "axiom" or ':fact," a rule
without premises, that reduces to a single clause.
Axioms may be considered as assertions or nega
tions of dyadic predicates written in infix notation.
Examples of axioms are:

•	 JOHN IS MALE-equivalent to the Prolog
monadic predicate MALE(JOHN)

•	 JOHN ISFATHER OFJANE-equivalent to the Pro
log dyadic predicate FATHER(JOHN, JANE)

•	 ?80 WEATHER IS FINE-indicates an 80 percent
plausibility that the assertion .is true .

•	 * = *-an axiom that contains a vanable and
defines equality to AP998

Rules with premises allow the system to deduce
new facts from the facts defined to it. Examples of
rules with premises are:

*x IS SO N OF *y IF *X IS MA LE AND *y IS
PARE NT OF *x

*x IS PARE NT OF *y IF *x IS FATHER OF *y OR
*X IS MOTH ER OF *y

?78 I WILL GO TO THE THEATER IF WEA THER IS
FINE

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

As the examples show, rules are accepted by the
system in a way very similar ~o natural la,nguage .
The last example can be read In the following way:
"There is a 70 percent plausibility that I will go to
the theater if the weather is fine. "

When the conclusion of a rule depends on uncer
tain premises, the following are applied:

1.	 The plausibility of two premises separated by
AND is the minimum of the plausibilities of the
individual premises.

2.	 The plausibility of the conclusion of the rule is
the product of the plausibility of the rule times
the plausibility of the premises, divided by 100.

3.	 If the plausibility of the conclusion is smaller
than a certain threshold value, and the subgoal
answered by th e conclusion included a variable,
this solution is abandoned (i.e. , its plausibility
becomes zero).

4.	 If two premises separated by OR carry to the
same conclusion, both results are passed to APL
separately (as independent answers to the same
question) .

Structure of the knowledge base. AP998 maintains
information in two different data spaces. The first
one is a symbol table, where words are stored. The
other is the rule table. The size of each is automat
ically chosen by AP998 to fit all of the words and
rules defined to it. Their starting (minimum) size is
2K bytes. Their maximum size is 63K bytes.

A stack is also used for logic inferences, the size of
which can be adjusted by the programmer within
the same interval. (The default size is 2K bytes.)
Therefore, the total data space for AP998 may v~ry

between 6K bytes and about 190K bytes. The In

formation in the stack allows AP998 to provide in
formation on why it came to a given conclusion.

The maximum number of rules accepted by AP998 is
about 3000. Of course, this number depends on the
rules themselves, for rules are variable-length ob
jects, depending on the number and sizes of their
premises.

Example. As an example of the use of AP998, we will
solve the following logic problem, taken from Ref
erence 12:

"Wh en Alice entered the forest of forgetfulness, she
did not forget everything, only certain things. She of
ten forgot her name, and the most likely thing for her

ALFONSECA 545

Figure 1 AP998 solution to logic problem

j' Solution to the ALICE problem in AP998 'j
j' Definition of YESTERDAY '/
sunday is yesterday of monday
monday is yesterday of tuesday
tuesday is yesterday of wednesday
wednesday is yesterday of thursday
t h ursday is yesterday of friday
friday is yesterday of saturday
saturday is yesterday of sunday
/ ' Data about the lion and the unicorn ' /
The lion lies on monday
The lion lies on tuesday
The l i on lies on we d n e s d a y
The unicorn lies on thursday
The unicorn l i e s on friday
The unicorn l i e s on saturday
/ ' Data about t he phrases they said ' /
The lion can say that on ' if

the lion lies on •
and ' Y is yesterday of '
and the lion lies not on *y

The	 lion can say that on ' if
the lion lies on ' Y
and 'Y is yeste rday of '
a nd the lion lies not on '

The	 u nicorn can say that on * if
the unico rn lies on •
and · Y is yesterday of •
and the unicorn l i e s not on * y

The	 unicorn can say that on * if
t he unicorn l i e s on · Y
a nd 'Y is yesterday of '
a n d the unicorn lies not on *

/ ' Fi n a ll y . both the lio n and t he unicorn '/
/ ' have said that to day . so that 'j
Today is ' if

the lion can say that on '
and the unicorn can say that on •

to forget was the day of the week. Now, the lion and
the unicorn were frequent visitors to this forest. These
two are strange creatures. The lion lies on Mondays,
Tuesdays, and Wednesdays, and tells the truth on the
other days of the week. The unicorn , on the other
hand, lies on Thursdays, Fridays, and Saturdays, but
tells the truth on the other days of the week.

"One day Alice met the lion and the unicorn resting
under a tree. They made the following statements:

LION : Yesterday was one of my lying days
UNICOR N: Yesterday was one of my lying days

"From these statements, Alice , who was a bright
girl, was able to deduce the day of the week. Wh at
was it?"

546 ALFONSECA

The solution is given by the AP998 program in Fig
ure 1.

Th e AP L2/PC product also includes a workspace con
taining a set of cover functions that can be used with
the AP998 auxiliary processor. Figure 2 is a sampl e
of their use in solving the Alice problem.

Performance, The performance of the auxiliary
processor when compared against the use of pure
APL functions depends on the application, on the
number of rules, and on the average search depth
to solve a question. In the case of the Alice example
just detailed, the average time to solve the problem
is 18.5 milliseconds on a Person al System/2* with a
25 Mhz processor speed. The APL2 function in Fig
ure 3 needed 38 milliseconds to get the same result.

Of course, in this simple case, where the loop can
be eliminated completely, the difference is not very
large. In a real case , with many more rules and a
true cascade of results, the use of the auxiliary
processor would provide a real performance im
provement.

Figure 2 Cover functions used to solve logic problem

ASK ' TODAY IS "
THURSDAY

WHY
I HAVE USED RULE NUMBER 18 :

TODAY IS THURSDAY IF
THE LION CAN SAY THAT ON THURSDAY
AND THE UNICORN CAN SAY THAT ON THURSDAY

I HAVE USED RULE NUMBER 15:
THE	 LION CAN SAY THAT ON THURSDAY IF

THE	 LION LIES ON WEDNESDAY
AND WEDNESDAY IS YESTERDAY OF THURSDAY
AND NOT THE LION LIES ON THURSDAY

I HAVE USED RULE NUMBER 10:
THE	 LION LIES ON WEDNESDAY

I HAVE USED RULE NUMBER 4 :
WEDNESDAY IS YESTERDAY OF THURSDAY

I HAVE USED RULE NUMBER 16:
THE UNICORN CAN SAY THAT ON THURSDAY IF

THE	 UNICORN LI ES ON THURSDAY
AND WEDNESDAY IS YESTERDAY OF THURSDAY
AND NOT THE UNICORN LIES ON WEDNESDAY

I HAVE USED RULE NUMBER 11 :
THE	 UNICORN LI ES ON THURSDAY

I HAVE USED RULE NUMBER 4:
WEDNESDAY IS YESTERDAY OF THURSDAY

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 APL2 function

[0] Z~ALICE ;LL;UL ;LC ;UC ;DAYS;YEST
[1] DAYS~'SUND ' ' MOND' ' TUES' 'WEDN ' 'THUR ' 'FRID' ' SATUR'
[2] YEST~-1¢DAYS

[3] (LL UL)~('MOND' ' TUES' 'WEDN')('THUR' 'FRID' ' SATUR')
[4J LC~«~DAYS€LL)~(YEST€LL» v «DAYS€LL) ~(~DAYS €LL»
[5] UC~« ~DAYS€UL)~(YEST€UL» v «DAYS €UL) ~(~DAYS€UL»
[6J Z~(LC~UC)/DAYS

APL and neural networks

A neural network (also called a "connectionist sys
tem") is a set of elementary units, called neurons,
mutually related by means of connections. Each
neuron has a certain number of inputs and a single
output, which can divide itself to provide connec
tions (inputs) to many other neurons. In addition,
a certain real number is associated with each neu
ron (its threshold) and with each connection (its
weight).

The response of a neuron is a procedure that com
putes the output of the neuron as a function of its
inputs, the weights of its input connections, and the
threshold of the neuron. Usually, the response of a
neuron can be expressed in the following way:

f«I WiXi)-0) (1)

where Xi is the set of inputs to the neuron, Wi rep
resents the respective weights of the input connec
tions, 0 is the neuron threshold, and f is the re
sponse function.

If the response function f can only have the values
zero or one, the neuron is called digital. Otherwise,
it is called analogic.

In typical neural networks, all the neurons have the
same response function, and connections are such
that the neurons can be divided into a certain num
ber of layers. Neurons in the first layer (the input
layer) have inputs that do not come from other
neurons, but that come from outside the neural
network (from the environment). Neurons in the
last layer (the output layer) have outputs that do
not go to other neurons, but go instead to the envi
ronment. There may be zero to any number of in
termediate layers (also called "hidden layers").

A neural network where at least one neuron sends
a connection to another neuron in a preceding layer
is a neural network with feedback. An interesting
family of neuron networks with feedback is called
"Hopfield neural networks." 13

A neural network with just two layers (one input
layer and one output layer) and no feedback be
tween them is called a perceptron. In an important
paper, Minsky and Papert proved that it is impos
sible to generate the "exclusive-OR" operation with
a perceptron." Their paper effectively put an end
to all research in neural networks for several years.
Current research usually uses neural networks with
one intermediate layer.

Matrix representation of a neural network. In gen
eral, any neuron in a neural network can provide an
input (a connection) to any other neuron. There
fore , the network structure can be represented by a
square n-by-n matrix, where n is the number of
neurons in the network and the element i,j in the
matrix is the weight of the connection from neuron
ito neuronj. Nonexistent connections can be rep
resented as connections of zero weight (since Equa
tion 1 is not affected by those null connections).

The connection matrix represents the structure of
the network. To include all of the available infor
mation we need an additional vector with the
thresholds of all of the neurons in the network,
given, of course, in the same order as in the matrix
rows and columns.

However, if the response of all of the neurons in a
network is of the form indicated by Equation 1, the
network will be equivalent to another network. In
that other network, all ofthe neurons in the original
network are present, with the same connections and

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991 ALFONSECA 547

weights, but with zero threshold, and an additional
input neuron, whose output is always one, has been
added. The additional input neuron is connected to
every neuron in the network by means of a con
nection whose weight is equal to minus the thresh
old of the target neuron in the original network.
The proof of this assertion is obvious from Equa
tion 1.

Th us, a neural network with n neurons and arbi
trary thresholds can be considered equivalent to
ano ther neural network with n + 1 neurons, all of
them with zero threshold. Therefore, the behavior
of any neural network can be represented by a sin
gle matrix if the response of its neurons corre
sponds to Equation 1.

We will represent the inputs as a vector of values
which we will extend to the same length as the num
ber of neurons in the network. This extension is
easy. It is enough to assume that all of the neurons
have exactly one input, and assign zero as the input
value of those neurons that in actual fact did not
have any input.

The output of the network can be computed by
means of the following simple APL2 function:

[OJ Z~C O NEC COMPUTE1 INPUT jA

[1J Z ~ INPUT

[2J L : A~Z

[3J Z ~ (INPUT+A+ .xCONEC»O

[4J ->(~A=Z)/ L

The left argument is the connectivity matrix that
defines the network. The right argument is the in
put vector. Note tha t the response function, applied
to the whole neural network, is digital, and reduces
in th is case to an inner product and a comparison.

The preceding function has a loop because each
inner pro duct propagates the effect of the input to
the next accessible layer. The loop, which proceeds
until the network stabilizes, will eliminate the tran
sien t stages and provide us with the steady-state
result. In a neural network without feedback, the
loop will be executed at most n times, where n is the
number of layers in the network, usually equal to
three.

Analogic neurons. The neurons described in the
previous subsection were digital, since their output
can only be zero or one. Analogic neurons can pro

548 ALFONSECA

duce other outputs, such as any number in the
[0, 1] interval. For example, a commonly used re
sponse function for neural networks is:

(2)

with appropriate corrections when the value ob
tained is too near one or zero. The following APL2
function computes the result of a neural network
composed of neurons with this response function.
The neural network is assumed to be represented
by a single connectivity matrix.

[OJ Z~CONEC COMPUTE2 INPUT jA

[1 J Z ~INPUT

[2 J L :A~Z

[3 J Z ~+1+*-INPUT+A+ .xCONEC

[4 J Z[(Z<0 .2)/lpZJ~0

[5 J Z [(Z>0 .8)/lpZ J~1

[6J ->(~A=Z)/L

Learning. We say that a neural network "learns"
when it modifies its behavior in such a way that its
response to a certain set of inputs adapts to another
set of predefined "desired outputs."

Different learning procedures modify the weights
of the connections of the neural network in such a
way that the outputs get closer and closer to the
desired values. These techniques require a teaching
period during which the following steps happen:

1.	 One or several inputs are applied to the network.
2.	 The corresponding outputs are computed.
3.	 The outputs are compared to the desired out

puts.
4.	 The weights of the connections are modified so

that the outputs become more like the desired
outputs.

The above process is repeated until the network
behavior is acceptable.

One of the learning procedures most used in neural
networks is called "back propagation" because the
weight corrections are applied to those output neu
rons in the last layer that differ from the desired
value , and then the correction is propagated to the
preceding layers. The APL2 program in Figure 4
executes a version of back propagation.

This program makes use of several global variables:
CONEC is the matrix defining the neural network.
LAYERS is a vector that contains the number of

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 4 Back propagation program

[0] BKPROPl I; I NPUT ;OUTPUT; O; OUT; E;d; NT; NO;ER;N;El
[1] E ~0.02

[2] NT ~l + +/N ~LAYERS

[3] L: 'Input value : ' ..~IN [I ; J
[4] INPUT ~1 ,IN[I ;] ,(N[2]+N[3])pO
[5] ' Ou tput value : ' ,- OU[I; J
[6 J OUTPUT ~OU[I ;]
[7] Ll :0~(-N [3])tOUT ~CONEC COMPUTE INPUT
[8] ER~0 .5x + / (El ~0 -OUTPUT)*2
[9] ~(ER<lE-l0) /0

[1 0J d~Ex OUT o. x El
[l l J NO ~1+N[1]+N [2]+ lN[3]

[12] d ~dxCONEC [;NO]~O
[13] CONEC [;NO] ~CONEC[;NO J -d
[14 J El~(-NT)tEl
[15J NO~(v/d~O)/ltpd

[16] d~ExOUTo .x(CONEC+ .xEl)[NO]

[17] d~dxCONEC [;NO]~O
[18] CONEC[;NO J~CONEC[;NO]-d
[19 J ~Ll

neurons in each layer. IN is a matrix of possible
inputs. Finally, OU is the set of desired output val
ues.

The program assumes that the number of layers in
the network is three (the usual number). A few
modifications would have to be done to apply a
similar procedure to a perceptron or to a network
with four or more layers.

Performance, In evaluating the performance of
neural networks, there are two different consider
ations.

Performance of the learning process is one item.
From the analysis of the back-propagation algo
rithm, it will be seen that the function contains an
unavoidable loop . Therefore, the use of an inter
preter (such as APL) will introduce a certain deg
radation. However, it must be remembered that the
learning process is usually executed only once. M
ter the neural network has learned successfully, it
can be used many times without any further exe
cution of the back-propagation algorithm or what
ever else has been used. This means that the bot
tleneck is not so important unless the number of
neurons is very large, and then APL may also have
problems due to lack of space. But even this space

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

problem can be solved, as the network connectivity
matrices contain many zeros, and an implementa
tion of sparse matrices can be used to make them
fit in a given workspace .

Once the neural network has been trained, it will be
applied to special cases, and this means that only
the COMPUTE functions will be needed. It is easy to
see that these functions also have a loop, but of a
very different kind, since the number of times it is
executed is equal to the number of layers in the
network , which is usually equal to three. Therefore,
interpretation time is negligible in this case as com
pared to the execution time of the inner product,
where APL has no disadvantage as compared to a
compilative program, since the inner product algo
rithm is a precompiled section of the interpreter.

APL and hypertext

The classical way of obtaining and presenting in
formation is linear. In a book, or a written paper,
or on the screen of a computer, the information is
displayed as a succession of pages, each consisting
of a number of lines, each line made of a succession
of words. The reader will usually reach the desired
information in a sequential process, by reading a
word at a time , line by line, and page by page.

ALFONSECA 549

However, the use of certain "fast-reading" tech
niques allows the reader to browse the information
in an extended way, overreaching the limits of the
linear presentation. In an extreme case, rarely at
tained, we can consider that an ideally fast reader
would be able to look at a page of text as a single
unit, scanning it in a block and thus gaining a two
dimensional access to the information it contains.

What is hypertext? The term hypertext15 has been
applied to a recent means of information presen
tation that tries to transcend the limitations of the

All kinds of information can be
combined to make up a hypertext

application.

purely sequential display, allowing the reader a
greater freedom in using scanning and retrieval
procedures. The term was first applied in 1965 by
Ted Nelson, who defined it as a hypothetical non
sequential writing tool.

We can define hypertext as a nonlinear form of
information presentation, where the units of infor
mation are the members of a hierarchy, linked in a
certain way that makes it possible to attain very fast
information retrieval. The search for an appropri
ate piece of data follows a nonlinear sequence di
rected by the train of thought of a reader, who is
able to perform an associative navigation through
out the mass of information within reach. In this way,
since it transcends the limitations of the written page,
it can be said that hypertext provides the reader with
a three-dimensional access to information.

The units of information in a hypertext system are
usually the nodes of a hierarchical organization.
The links that make up the hierarchy, which should
be independent of the physical sequence of nodes,
may be implicitly or explicitly defined by means of
preprogrammed tags.

The benefits of hypertext are obvious. Besides the
greater freedom provided to the reader by its three
dimensional access to information and its user
friendliness, it is also quite easy to develop.

550 ALFONSECA

Hypertext media. All kinds of information can be
combined to make up a hypertext application. We
find:

•	 Visual information. This form is the most fre
quently used type in current computers. It con
sists of text, graphics, images, animation, video
recordings, etc.

• Auditory information. This type includes speech
and audio recordings.

•	 Other sensory data. At present, olfactory and
tactile data are not usually found in computer
applications, but perhaps in the future they will
also be integrated into hypertext systems.

•	 Computer programs.

All of these kinds of information are kept in the
ordinary physical storage media, such as fixed disks,
diskettes, tapes, and compact discs.

Applications of hypertext. Hypertext methods can
be applied wherever there is a need to manage large
masses of information that can be divided into
many chunks and accessed in a random way. For
example :

•	 On-line documentation (help systems, reference
works)

•	 Publishing (on-line dictionaries, computer-based
encyclopedias)

•	 Computer-aided instruction (training manuals,
tutorials, user guides)

•	 Expert systems, which require a highlydeveloped
interface to make use of the system so that it is
friendly to a professional user who is not oriented
to computer science (a physician, a lawyer, etc.)

Object-oriented programming and hypertext. Ob
ject-oriented programming (ooe) 16-18 is a program
ming method that is almost the exact opposite of
classical procedural programming. In oOP, it is the
data that are organized in a basic control hierarchy.
One piece of data may be linked to another through
a relation of descendancy, and this fact gives rise to
a network (usually a tree) similar to the hierarchy
of programs in procedural programming. There are
also programs done in OOP, but they are append
ages to the data (in the same way as in classical
programming in which data are appendages of pro
grams). It is possible to build global programs (ac
cessible to all ofthe data in the hierarchy) and local
programs (accessible from certain objects and their
descendants).

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

In oOP, the execution of a program is fired by
means of a message that somebody (the user, an
other program, or an object) sends to a given object.
The recipient of the message decides which pro
gram should be executed. (It may be a local pro
gram or a global program which must be located
through the network that defines the structure of
the objects.)

Object-oriented programming is the appropriate way
to program a hypertext application. In fact the hier
archical data structure of oOP is the exact counterpart
of the hierarchy of information units (the nodes) in
hypertext. Hypertext links become the relations be
tween objects in oOP. Hierarchical relations corre
spond to the links defining the hierarchy . Semantical
relatio~s provide the possibility of implementing
other lmks that transcend the hierarchy.

Th.emost.generally used way to represent objects in
object-oriented programming systems is by means
of frames, a powerful data structure proposed by
Mi?sky in 1975.19 A frame system is a graph in
which the nodes (frames) have a name and contain
~ll of the information available about a given ob
ject, For example:

Fra me TABLE
Is _a : FURNITURE
Files : 8 . 1,2
Drawe rs : 8 . 1
Legs: 4
Light : 8 .1

Objec~-oriented programming and APLl. In APL2,
the existence of the general array makes it very easy
to define and implement frames, which can be con
sidered as general matrices of two columns, where
the first element in each row contains a name and
the second a (possibly multiple) value. For exam
ple, the frame mentioned above is a general matrix
of five rows and two columns; it can be represented
in APL2 in the following way:

TABLE +- 5 2 P
'IS_A' ' FURNITURE'
,FILES ' (0 1 2)
' DRAWERS' (0 1)
' LEGS' 4
, LIGHT ' (0 1)

With the use of frames, it is quite easy to build an
object-oriented programming paradigm in APL2.
Each object is represented as a frame, linked to
other objects to form a hierarchy. The root of the

hierarchy is called OBJECf and is initially defined as
follows:

OBJECT +- 8 2 p
' PARENT' "
' CREATE' ' METHOD'
' ERASE' ' METHOD'
' PARENTS' 'METHOD'
' CHI LDREN' 'METHOD'
'PROPERTIES' 'METHOD'
'VALUE' ' METHOD'
'METHODS' ' METHOD'

Each object in the hierarchy automatically inherits
the p~operties and the methods defined by its ances
tors (ItS parent and the ancestors of its parent), unless
some property or method has been redefined, either
by the same object or by a lower-level ancestor. The
inheritance of methods and the ability to send mes
sages to any object are easily implemented by means
of the APLZ function MESSAGE, with the syntax:

MESSAGE ' Object' ' Method'
[additi onal info rmation]

and the implementation shown in Figure 5.

References 20 and 21 explain in more detail the
a~plicability of APL2 for object-oriented program
mmg. Thus, we can deduce that object-oriented
programming in APL2 is a good way to program a
hypertext application.

An on-line dictionary written in APLl (OOP). A
part of a Spanish on-line dictionary for the high
sc~oolle~el has been implemented in APL2/PC using
~bJect-onented programming techniques. The die
tionary currently contains the definitions of 2130
words in science and technology, distributed in the
following fields:

• Biographies (123)
• Computer science (18)
• Technology (338)

• Electronics (71)
• Materials (59)
• Vehicles (54)
• Instruments (78)
• Miscellaneous (76)

• Medicine (409)
• Biology (1100)

• Anatomy (244)
• Physiology (120)
• Cytology and histology (38)

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 ALFONSECA 551

Figure 5 Implementation of MESSAGE

[0] fiR~MESSAGE fiX;fiOB ;fiMET ;fiSRCH ;fiA;fiI ;fiB
[1] sos- : ELMlfiX
[2] fiMET ~ " ELM 2~fiX

[3] fiX ~2~fiX

[4] -fiEl IF~EXIST fiOB
[5] fiSRCH ~fiOB

[6] fiL :fiA~(fiB~GET fiSRCH)[;l]
[7] - fi Ll IF(pfiA)~fiI~fiAtcfiMET
[8] -fiE2 I F O=pfiSRCH ~~fiB [fiAtc 'PARENT ' ;2]
[9] -st.
[1 0] fi Ll :fi X ~ (cfiOB) .fiX

[11] "DEA ' fiR~'. fiSRCH. ' _'. fiMET.' sx:
[12] -0
[13] fi El :fiMSG ' THE OBJECT ' fiOB ' DOES NOT EXIST. METHOD =' fiMET
[14] - 0
[15] fi E2 :fiMSG 'UNKNOWN METHOD ' fiMET ' FOR OBJECT ' fiOB

• Genetics (14)
• Biochemistry (78)
• Ecology (23)
• Paleontology (40)
• Microbiology (28)
• Zoology (incomplete) (302)
• Botany (incomplete) (140)
• Miscellaneous (73)

•	 Others (142)

The OOP application consists of a total of 2133 ob
jects, three of which (the root of the hierarchy) are
in the APL2/PC workspace, whereas the others (the
words in the dictionary) are included in 44 files,
created and used by means of the AP211 auxiliary
processor. 22.23 The total size of these files is
1372 216 bytes, which makes an average of 644
bytes per word definition, 31187 bytes and 48 words
per file. Words are distributed in the files themat
ically to reduce the overhead, since it can be as
sumed that groups of words searched in the dictio
nary will usually be related in this way. Therefore,
not all files are equal in size, the largest one con
sisting of 142words and 93K bytes, and the smallest
one consisting of 8 words and 4K bytes.

Summary

This paper and others in the references show the use
fulness of APL and APL2 for the most modem pro
gramming techniques and applications. Among these
applications are artificial intelligence, neural net

552 ALFONSECA

works, object-oriented programming, and hypertext,
which have been described in some detail.

"Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1.	 J. A. Brown and M. Alfonseca, "Solution to Logic Problems
in APL2," SEAS Spring Meeting 1987, Vol. 2 (1987), pp.
819-829.

2. APL2 Programming: Language Reference, SH20-9227, IBM
Corporation (1987); available through IBM branch offices.

3. J. A. Brown, "APL2- A New Comer on the Artificial In
telligence Scene," SEAS Spring Meeting 1986, Vol. 2 (1986),
pp.819-830.

4.	 R. Guerreiro, "APL2 and LISP," SEAS Anniversary Meeting
1988, Vol. 2 (1988), pp. 1435-1460 .

5. J. Ansell and M. Al-Doori , "Towards an Expert System,"
APL-ication Proceedings (1989), pp. 65-72 .

6. D. Smellie and F. Evans,"A Structured Approach to Build
ing Expert Systems," APL-ication Proceedings (1989), pp.
86-99 .

7.	 A. Prys-Williams, "Expert Systems with Existing Software,"
VECTOR 5, No.3, 57-74 (January 1989).

8. P. Rodriguez, J. Rojas, and M. A1fonseca, "An Expert Sys
tem in Chemical Synthesis Written in APL2/PC," APL89
Conference Proceedings,APL Quote Quad 19,No.4 , 293-298
ACM, New York (1989).

9.	 K. Fordyce, J. Jantzen, G. A. Sullivan, Sr., and G. A. Sul
livan, Jr. , "Representing Knowledge with Functions and
Boolean Arrays," IBM Journal ofResearch and Development
33, No.6, 627-646 (November 1989).

10. J. A. Brown, E. Eusebi, L. Groner, and J. Cook ,Algorithms
and Artificial Intelligence in APL2, Technical Report TR
03.281, IBM Corporation, Santa Teresa Laboratory, San
Jose , CA (1986).

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

11. M. J. Tobar and M. Alfonseca, "Emulating Prolog in a PC
APL Environment ," APL86 Conference Proceedings, APL
Quote Quad 16, No.3, 13-15, ACM, New York (1986).

12.	 R. Smullyan, What Is the Name ofThis Book? , Prentice-Hall,
Inc., Englewood Cliffs, NJ (1978).

13. J. J. Hopfield, "Neural Networks and Physical Systems with
Emergent Collective Computational Abilities," Proceedings
of the National Academy of Science 79, 2554-2558 (1982).

14.	 M. Minsky and S. Papert, Perceptrons: An Introduction to
Computational Geometry, MIT Press, Cambridge, MA
(1965).

15.	 Hypertext: Theory into Practice, Ray McAleese, Editor ,
Blackwell Scientific Publications, Oxford (1989).

16.	 B. Cox, Object-Oriented Programming: An Evolutionary Ap
proach , Addison-Wesley Publishing Co., Reading , MA
(1986).

17.	 B. Meyer, Object-Oriented Software Construction , Prentice
Hall, Inc., Englewood Cliffs, NJ (1988).

18. Object-Oriented Computing, G. Peterson, Editor, Vol. 1 & 2,
IEEE Order No. 821 and 822 (1987).

19. M. Minsky, "A Framework for Representing Knowledge,"
The PsychologyofComputer VISion , P. Winston, Editor, Me
Graw-Hili Book Co., Inc., New York (1975), pp. 211-217.

20.	 M. Alfonseca, "Object Oriented Programming in APL2,"
APL89 Conference Proceedings, APL Quote Quad 19, No.3,
6-11, ACM, New York (1989).

21. M. Alfonseca,	 "Frames, Semantic Networks, and Object
Oriented Programming in APL2," IBM Journal of Research
and Development 33, No.5, 502-510 (September 1989).

22. APL2 for the IBM Personal Computer, Program Number
5799-PGG, PRPQ RJB411, Part No. 6242036, IBM Corpo
ration; available through IBM branch offices.

23. M. Alfonseca and D.Selby,"APL2 and PS/2:The Language,
the Systems, the Peripherals," APL89 Conference Proceed
ings, APL Quote Quad 19, No.4, 1-5, ACM, New York
(1989).

Accepted for publication June 10, 1991.

Manue l Alfonseca IBM Software Technology Laboratory, Paseo
de la Castellana, 4, 28046 Madrid, Spain. Dr. Alfonseca is a
Senior Technical Staff Member in the IBM Software Technol
ogy Laboratory . He has worked in IBM since 1972, having been
previously a member of the IBM Madrid Scientific Center. He
has participated in a number of projects related to the devel
opment of APL interpreters, continuous simulation, artificial
intelligence, and object-oriented programming. Eleven interna
tional IBM products have been announced as a result of his
work. Dr. Alfonseca received electronics engineering and Ph.D.
degrees from Madrid Polytechnical University in 1970 and 1971,
and the Computer Science Licenciature in 1972. He is a pro
fessor in the Faculty of Computer Science in Madrid. He is the
author of several books and was given the National Graduation
Award in 1971 and two IBM Outstanding Technical Achieve
ment Awards in 1983 and 1985. He has also been awarded as a
writer of children's and juvenile literature.

Reprint Order No. G321-5453.

IBM SYSTEMS JOURNAL. VOL 3D, NO 4. 1991	 AlFONSECA 553

Language as an
intellectual tool: From
hieroglyphics to APL

We learn elementary mathematics before
understanding the source of its symbols and
procedures, which therefore appear, incorrectly,
to have been decreed ready-made. Language and
reason are intimately related, and the
embodiment of an idea in a symbol may be
essential to its comprehension . APL unifies
algebra into a single consistent notation; it
allows us to exploit the powerful concepts of
functions and operators; and it helps us to
escape from the tyranny of scalars by giving us
the tools to think in terms of arrays, or multiple
quantity, as J. J. Sylvester so eloquently urged
us to do a century ago. APL has an Intellectua l
consistency that is a source of satisfaction and
pleasure. This paper traces the history of
symbols from hieroglyphics to APL.

The APL language, a language with symbols and
not words, is one of the intellectual triumphs of

our time. Its modern incarnation began with Iver
son notation.P but its roots go far back into the
past.

In the beginning

Perhaps the earliest record of what came to be APL
was carved on a sculptured mace of granite about
3100 BC, before the invention of papyrus. Of course
you cannot read it, unless as is the case with con
temporary APL, you know the meaning of the sym
bols.

554 MCINTYRE

by D. B. Mcintyre

We shroud in mystery whatever we do not under
stand. Incrystal optics we speak of "extra-ordinary"
rays, though there is, of course, nothing extra-or
dinary about them . Negative numbers were called
absurd or fictitious. Even after Leonardo of Pisa
(known as Fibonacci), in the year 1202, had taught
us to recognize debt as a negative asset, it took
another 400 years before the number scale was rep
resented geometrically. Intellectual progress is
slow, and an additional 250 years passed before
Sylvester showed how absurd it was to style as imag
inary the quantities represented by the symbols i, j,
k of "complex" numbers and quaternions.

I remind you of the words of Whitehead: "Math
ematics is often considered to be a difficult and
mysterious science, because of the numerous sym
bols which it employs. Of course, nothing is more
incomprehensible than symbolism we do not un
derstand.")

The inscription illustrated in Figure 1 is a record of
the triumph of Menes, founder of the first dynasty

ClCopyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 1 An example of early hieroglyphics

Figure 2 The key to hieroglyphic numbers

11.000 110.000 1100.000 11.000.000

THE RHINO PAPYRUS l
USES THE SYMBOL
ABOVE FOR THE LOTUS
FLOWER ORGINALLY
PORTRAYED IN STONE AS

of historical pharaohs, who united the two king
doms of Egypt. With Figure 2 as our key, we read
that he captured 400 000 oxen, 1 422 000 goats, and
120 000 prisoners.

Although the variables are named, the example
lacks the equivalent of APL's assignment arrow . A

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

hundred is represented in hieroglyphics by a picture
of the coiled rope used by Egyptian surveyors, or
"rope-stretchers," whose descendants today use the
"chain" as a unit of measurement. We should re
member that Eratosthenes, the director of the great
library in Alexandria, was the first to measure the
earth's circumference, thus initiating the science of

MCINTYRE 555

Figure 3 Examples of Egyptian methods of arithmetic

1637 + 405 • 1042 1_6_37 -' + 1405 = '-11_04_2 --'

37 100UBLING 637 • 12741 1_6_ _ 1DOUBLING 1 = '_12_7_4 _

1637 x 10·6370 1'-6_3_7 1 X 110 = 1_6_37_0 ----l

geophysics. Lotus flowers and tadpoles represent
large numbers, and one can only hold up one's
hands in amazement at so large a number as a mil
lion. The base is, of course, 10. Poor though 10 is
as a base," it was and remains popular because we
have 10 fingers to count on. The Egyptian system,
like the Roman, did not use place notation, and so
had no need for zero.

Egyptian methods of arithmetic arc illustrated in
Figure 3, reading the symbols from right to left, i.e.,
the more significant figures are to the right. The
three examples represent: adding 637 and 405; dou
bling 637; and multiplying 637 by 10. The system
has been derided as clumsy, but for more than a
thousand years no nation was able to improve on
the Egyptian notation and methods.5 Again, Figure
2 is the key to understanding the notation in Figure
3. This system makes addition, subtraction, dou

556 MCINTYRE

bling, and multiplying by 10 easy. We, on the other
hand, must memorize 55 combinations in order to
add, and we must learn another table in order to
multiply .

Most of us probably imagine that children always
learned addition and multiplication tables, but in
1542 Recorde had to explain at length how to mul
tiply two numbers between 5 and 10. Consider the
implication of Samuel Pepys's entry in his diary for
July 4,1662: "Comes Mr. Cooper of whom I intend
to learn mathematiques, and do begin with him
today. After an hour's being with him at arithme
tique, my first attempt being to learn the multipli
cation table." Five days later he records: "Up by
four o'clock, and at my multiplicacion-table [sic]
hard, which is all the trouble I meet withal in my
arithrnetique." Now Pepys was a 30-year-old grad
uate of Cambridge, an able man of business, soon

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 4 First appearance of symbols in print

+

x

> <
A i ii

I AI
E

v

/\

to become a Fellow of the Royal Society (as pres
ident of the society, Pepys gave his imprimatur to
Newton's "Principia"). As Secretary of the Navy he
became one of the nation's leading financiers.

How seldom do we look back in maturity at what we
learned by rote as children, and that is why I like the
title (as well as the content) of Klein's Elementary
Mathematicsfrom anAdvanced Standpoint. 6 We are
taught as if the common mathematical symbols
came to humankind in antiquity engraved on stone;
as if they had no history. The dates when some of
these symbols first appeared in print show that our
notation evolved over centuries 7,8 (see Figure 4).
The imprints on our bank checks show that in our
own time technology has changed some of our fa
miliar symbols.

The acceptance of symbols

The symbol for plus is probably an abbreviation for
the Latin et, and that for minus may be "a simple bar
used by merchants to separate the indication of the
tare, for a long time called 'minus,' from that of the
total weight of the merchandise."? De Morgan
thought the symbols might be marks on sacks or
barrels showing whether they were over or under
weight. Recorde, in 1557, first used these signs in an
English book, the same one in which he gave us the

equals symbol, which he chose "because noe 2
thynges can be moare equalle." Euler's I (sigma)
suggests summation; epsilon is the first letter of the
Greek esti (is a), which suggests membership; and
the symbol for or is the first letter of the Latin vel.

In his survey of the development of mathematics,
Kline pointed out that Leibniz "certainly appreci
ated the great saving of thought that good symbols
make possible. Thus by the end of the seventeenth
century, the deliberate use of symbolism-as op
posed to incidental or accidental use-and the
awareness of the power and generality it confers
entered mathematics." 10

Our notation having been at least 500 years in the
making, it is no surprise that the story is not yet at
an end. What is remarkable is that Iverson is ap
parently the first to look at the consistency and
completeness of the notation as a whole. Function
syntax is inconsistent; e.g., summation has its argu
ment to the right, factorial to the left, and absolute
value is written on both sides of its argument. Ex
ponentiation has no symbol at all; its second argu
ment is merely written as a superscript. Iverson also
considered which other functio ns have sufficient
utility to warrant separate graphic symbols. He
showed that function names should not be elided,
and pointed out the advantage of each symbol rep-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 MCINTYRE 557

Figure 5 Exponents enclosed in circles (Stevinus, 1585)

resenting related monadic and dyadic functions.
Iverson simplified syntax by abandoning function
hierarchy (originally imposed for writing polyno
mials) and making each function take everything to
its right as its right argument.

Acceptance of good symbols has, however, never
been easy. After introducing the times symbol
(Saint Andrew's cross) in 1631, Oughtred wrote:
"This manner of setting downe Theoremes,
whether they be Proportions, or Equations, by Sym
bo les or notes of words, is most excellent, artificiall,
and doctrinall [i.e., serving to teach]. Wherefore I
earnestly exhort every one, that desireth though but
to looke into these noble Sciences Mathematicall,
to accustome themselves unto it: and indeede it is
easie, being most agreeable to reason, yea even to
sence. And out of this working may many singular
consectaries [i.e., conclusions] be drawne: which
without this would, it may be, for ever lye hid." 11

But 15 years later, still more encouragement was
needed: "[My] Treatise being not written in the
usuall synthetical manner, nor with verbous expres
sions, but in the inventive way of Analitice, and with
symboles or notes of things instead of words,
seemed unto many very hard; though indeed it was
but their owne diffidence, being scared by the new
ness of the delivery; and not any difficulty in the
thing it selfe . For this specious [i.e., pleasing to the
eye] and symbolicall manner, neither racketh the
memory with multiplicity of words, nor chargeth
the phantasie with comparing and laying things to
gether; but plainly presenteth to the eye the whole
course and processe of every operation and argu
mentation." 11

It seems that not much has changed, judging from
the experience of Giuseppe Peano (who provided
two of APL's symbols). We are told that he "used a
great deal of symbolism because he wished to
sharpen the reasoning.. . . Peano used this sym
bolism in his presentation of all of mathematics,

558 MCINTYRE

notably in his Formulario mathematico (5 vols.,
1895-1908). He used it also in his lectures, and his
students rebelled. He tried to satisfy them by pass
ing all of them, but that did not work, and he was
obliged to resign his professorship at the University
of Turin." 12

Smith, quoting Nesselmann's Algebra of the Greeks
(1842), says that mathematics evolves through
three stages: rhetorical, with words and sentences in
full; syncopated, in which words are condensed by
abbreviation; and symbolic, in which there are no
words at all. 13

,14 Consider the way we write equa
tions. Comparison of 20 examples from 1463 to
1693 15 shows how long it took to pass from words
to our present symbolic system. Simon Stevin
(Stevinus, 1548-1620), for instance, made great
progress by identifying exponents, writing them en
closed in circles (See Figure 5). His books (1585,
1586) were influential in promoting the use of the
new methods. (See Reference 16.)

The superscript method of denoting a to the power
b (that is, a b

) was used by Hume in 1636, though his
use of Roman numerals for the exponent shows he
thought only of integer powers. The form we use
now was first used by Descartes in 1637. John Wal
lis, a distinguished predecessor of Sylvester's as Sa
vilian Professor of Geometry in Oxford, was one of
the first to write equations in the form we use today,
though even he often wrote aaaa for a" . Until the
end of the eighteenth century it was, indeed, com
mon practice to write aa for a 2. Wallis, who gave us
our symbols for greater-than-or-equal-to (;:::) and
less-than -or-equal-to (:5) and our symbol for infinity
(00), found a meaning for negative exponents (1655,
1657), but Newton was the first to permit the ex
ponent to be positive, negative, integer, or frac
tional (1676).

Euler, in 1777, introduced the symbol i (impossible
or imaginary) for ,\r1, and by 1837 Sir William
Rowan Hamilton had so adopted the geometrical
interpretation of complex numbers (Wessel, Gauss,
Argand) that it could be said that exponentiation
had been extended to the case of a negative number
with a fractional exponent. Cayley further extended
the scope of exponentiation by raising matrices to
positive integer powers and to the power -1 , which
he called the "inverse or reciprocal" matrix. 17,18 To
day's APL handles all these cases directly.

To indicate that a word was abbreviated, the prac
tice used to be to put a stroke (solidus) through the
last letter. This accounts for the lines still seen in

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

symbols for the British pound (£, Latin libra), the
dollar ($, an abbreviation of pesos) , the cent (It),
and the sign ij: (for the Latin recipe, or the imper
ative "take") displayed by pharmacists. 19,20 Cardan
used ij: for "root" (Latin radix) in 1539, and we still
talk of "extracting" (pulling out) the root. Although
Euler believed the square root symbol (V) to be
the deformed letter r (abbreviating radix), Cajori
doubts this, suggesting its origin might be a dot. 21

We are taught that it is a simple step from expo
nents to logarithms, and few developments have
been more important. Laplace recognized our im
mense debt to Napier in his well-known remark
about logarithms, that, by halving the labor, they
had doubled the life of the astronomer and math
ematician; but we seldom think of the primitive
state of the conceptual tools available in 1614, or
recognize Napier's genius. In his day, algebra dif
fered little from arithmetic, and the notation we
take for granted was almost nonexistent. Napier's
discovery came three years before he invented the
decimal point, and less than 60 years after Recorde
introduced the equals sign and first used the signs
+ and - in an English book. Just how Napier suc
ceeded in calculating his table of logarithms is well
described by Gittleman. 22

In a volume commemorating the 300th anniversary
of Napier's Description of the Marvellous Canon of
Logarithms, Glaisher well expressed the power of
good notation: "Nothing in the history of mathe
matics is to me so surprising or impressive as the
power it has gained by its notation or language.. . .
By his invention [of logarithms] Napier introduced
a new function into mathematics. . . . When math
ematical notation has reached a point where the
product of n x s was replaced by x" , and the ex
tension of the law x m • x n = x m +n has suggested
x'" .x'" = X, so that X 1/2 could be taken to denote
the square root of x, then the fractional exponents
would follow as a matter of course, and the tabu
lation ofx in the equation lOX=y for integral values
of y might naturally suggest itself as a means of
performing multiplication by addition. But in Napi
er 's time, when there was practically no notation,
his discovery or invention was accomplished by
mind alone without any aid from symbols. vf (See
also Reference 24.)

"We who live in an age when algebraical notation
has been extensively developed can realise only by
an effort how slow and difficult was any step in
mathematics until its own language had begun to

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

arise, and howgreat was the mental power shown
in Napier's conception and its realisation.. . . In our
days when the rules of computation are precise, and
when the construction of instruments has reached
a high state of efficiency, the processes of multipli
cation and other arithmetical operations can be
performed by machines designed for the purpose.
These apparatuses which save mental strain and
time are effective aids to calculation, and they may
be regarded as the modern successors to Napier's
rods. " 23

APL and functional programming

APL 's concise notation helps us grasp the intellec
tual content of an algorithm without the distraction
of extraneous and irrelevant matters prescribed by
a machine. APL is a succinct and admirably consis
tent language that not only uses verbs (functions) to
act on nouns (data arrays), but uses adverbs and
conjunctions (operators) to derive new verbs, and
permits definition of new verbs, adverbs, and con
junctions. It has the subtlety and suggestiveness
which, as Bertrand Russell said, makes agood no
tation "seem almost like a live teacher," and , to
quote Pledge, "Suggestiveness is the essential ser
vice of symbolism." 26

With APL, the goal of functional programming
(Backus, 1978) can be achieved. The word function
(derived from functio, meaning a performance or
execution) was used at the end of the 17th century
by mathematicians writing in Latin. Leibniz, who
gave us many terms such as constant, variable, and
parameter, used "function" in our sense in 1673.
Euler used the symbolj for a function in 1734, and
in 1754 used the notation !,(a,n) for a function of
the variables a and n, i.e., to state that the result
depends upon the current values of a and n. Iverson
does better than this; in 1976 his method of direct
definition 27 of functions shows formally exactly how
the result is derived from the arguments, and Eul
er's parentheses are not needed.

The relationship between ordinary APL and direct
definition is illustrated by the following examples:

In ordinary APL:

[1]
[2]

VZ+ A PWS B
Z+- A + B

\I

7
3 PLUS 4

MCINTYRE 559

»r- F N
[1 J ~ (N=O)/ ' ~O , OpZ+-1 '
[2J Z+-Nx F N- 1
[3 J 1/

F 4
24

In direct definition:

PLUS: a + w

3 PWS 4
7

F: w x F w-1 w=O 1
F

F 4
24

The left and right arguments are denoted a and w.
The recursive definition of the factorial should be
read: "The factorial of w is w times the factorial of
w-1 unless wequals zero, in which case the factorial
of w is 1."

To illustrate the advantage of Iverson 's method,
consider the problem of cluster analysis. Each en
tity, described by n variables, can be considered a
point in n-dimensional space, and we are required
to compute the distance between each point and all
the others. If n is 2, the data are given in a matrix
of two columns. We then represent each entity as a
point , with coordinates x and y, plotting the points
on a scatter diagram. The theorem of Pythagoras
lets us determine the distance between any two
points, and the results complete a square matrix.
This similarity matrix gives the closeness of each en
tity to every other one based on all measured prop
erties. The matrix is symmetric with zeros on the
diagonal. In APL the algorithm automatically ex
tends to higher dimens ions.

Hellerman used this as an example of APL notation,
in a book that (in both of its editions) is a landmark
in the history of APL. 28 His solution is as follows:

I/Z+-D1STANCE P;N;1 ;J
[1J N+-(pPHOJ
[2J D+-(N,N)pO
[3 J J +-0
[4J W :1+-O
[5J L1:D[1;JJ+-(P[1;J-P[J;J)

+.x(P[1 ;J-P[J;J)
[6 J ~(N)1+-1+1)/L1

[7J ~(N)J+-J+1)/LO

1/

560 MCINTYRE

Direct definition allows this to be expressed in a
single line:

DSQ : (0 2 1 2~w o .-w)+ .*2

If this line seems strange or unduly terse to some
one new to APL , I would point out that if we already
know how to add , subtract, and square numbers,
there are only three APL functions to learn : inner
and outer products and dyadic transposition. I re
member Adin Falkoff saying that good notation
cannot make an inherently recondite concept easy,
but it can remove unnecessary impediments by ex
pressing the concept in as simple a manner as pos
sible: Einstein's E = m x c2 is a simple statement
of a relationship that probably can be fully under
stood by very few.

For a further illustration consider eight statis tical
functions , first in standard AP L notation:

n +-MEAN X

[1J Z+-(+/X) O.LpX
-s

[2J 1/

IJZ +-DEV X
[1J Z+-X- (MEAN X)o .+ (O.LpX)pO
[2J 1/

n+-ss X
[1J Z+-(DEV X)+ .*2
[2J 1/

IJZ+-V AR X
-[1J Z+-(SS X)+ 1+0.LpX

[2J 1/

n+-SD X
[1J Z+-(VAR X)*0 .5
[2J 1/

IJZ+-SP X;M
[1J Z+-M+ . x ~M+- DEV X
[2J 1/

IJZ+-COV X
[1J Z...(SP X)+ - 1+0.LpX
[2J 1/

n+-COR X;S
[1J Z...(COV X)+So .xS...SD X
[2J 1/

They define the means, deviations from the mean s,
sums of squares of the deviations, variances, stan
dard deviations, sums of cross products, covari
ances, and correlation coefficients.

IBM SYSTEMS JOURNAL. VOL 30. NO 4. 1991

The functions form a pedagogic sequence in the
sense that to understand anyone of them you must
first understand those that precede it. Each func
tion can be directly defined in a single line, and each
takes the origina l data as its argument.

Next, in direct definition:

MEAN: C+/ w)+OJ.pw
DEV :w-CMEANw)o . +COJ.pw)pO
SS: CDEVw)+ . *2
VAR :CSSw)+-1+0J.pw
SD :CVARw)*O. 5
SP:M+ .xQM...DEVw
COV :CSPw)+-1+0J.pw
COR :CCOVw)+So .xS...SDw

Using Iverson's new dialect J ,29 - 31 the same func
tions can be defined even more succinctly, and with
out parentheses . Not only are no variables assigned,
no explicit reference is made to the arguments. This
is tacit definition, or pure functional programming
(Backus, 1978), which leads to efficient execution
and invites parallel processing. (Version 3.3 ofIver
son's J is used for the examples that follow.}"

mean= .+/%/f

dev=.-mean

SS=.+/@* :@dev

var=.ss% <:@/f

sd=.% :@var

sp=.+/ .*-I :@dev

cov= . s p%<:@/f

cor= .co v%*/-@sd

The sequence of functions starts with the mean and
ends with the correlation coefficient. Is this struc
tured programming? Is it top down or bottom up?
Such questions seem to vanish in a sequence that is
almost self-documenting.

The style of programming brings to mind the words
of Babbage: "The almost mechanical nature of
many of the operations of Algebra, which certainly
contributes greatly to its power, has been strangely

misunderstood by some who have even regarded it
as a defect. When a difficulty is divided into a num
ber of separate ones, each individual will in all
probability be more easily solved than that from
which they spring. In many cases several of these
secondary ones are well known, and methods of
overcoming them have already been contrived: it is
not merely useless to re-consider each of these , but
it would obviously distract the attention from those
which are new: something very similar to this occurs
in Geometry; every proposition that has been pre
viously taught is considered as a known truth, and
whenever it occurs in the cours e of an investigation,
instead of repeating it, or even for a moment think
ing on its demonstration, it is referred to as a known
datum. It is this power of separating the difficulties
of a question which gives peculiar force to analytical
investigations, and by which the most complicated
expressions are reduced to laws and comparative
simplicity ." 33

Revisiting our roots

Being aware of the long history of functions in
mathematics, and having seen examples written in
current APL, we can now use APL to illuminate our
roots, which reach back to Egyptian hieroglyphics.
The word algorithm , according to the Oxford En
glish Dictionary, is an erroneous refashioning of
algorism, a word derived from "al-Khowarazmi, the
native of Khowarazm, surname of the Arab math
ematician who flourished early in the 9th Century,
and through the translation of whose work on Al
gebra, the Arabic numbers became generally
known in Europe," In its original form it was used
by Chaucer, and the Oxford dictionary cites the use
of algorithm in 1774.34

,35 I found it first used by
Sylvester " in one of the earliest papers to speak of
matrices (compare References 27 and 37 for APL
treatment of polygons and polyhedra).

The earliest known book of algorithms is the Rhind
Papyrus, based on work written 2000--1800 Be and
copied by Ahmes the scribe in 1650 Be. 38-40 It is a
textbook on solving practical problems. Consider a
simple example, shown in Figure 6 and using Figure
2, again, as the key; to multiply 12 by 12 begin by
writing down 12, and by successive doublings obtain
1,2,4, and 8 times 12. Check the rows 4 x and 8 x
(on the papyrus the check marks are red) and add
them to get the required result. The symbol preceding
the answer is a rolled-up scroll (quod erat demon
strandum), which in fancywe may take as the ancestor
of our equals and APL' s assignment symbols.4\

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 MCINTYRE 561

Figure 6 Rhind Papyrus problem 32; multipl ying 12 by 12

/

/

Figure 7 Hieroglyphic method of showing frac t ions

1/2 II 1/ 10 II 1/12 II 213

IBM's System/360* and its descendants use this an
cient method to multiply integers. Microcode for
fixed-point mult iplication builds the 1x, 2 x, 3x,
and 6 x products of the multiplicand in local stor
age. Then, just as the scribes did nearly 4000 years
ago, it combines the products corresponding to the
mult iplier. If the multiplier is 8 or more, a shift of
4 is first made (corresponding to multiplication by
16), and then produ cts are subtracted rather than
added; e.g., to multiplyby 11,first shift to multiply by

16, then subtract 6x and add 1x. One may ask why
the products used by System/360are 1x, 2x, 3x, and
6x instead of the 1x, 2x, 4x, Sx used by the Egyp
tians. When I raised this question in a lecture in New
York in 1982,John Macpherson (who was the first to
implement binary coded decimal on an IBM com
puter) gave me the explanation in engineering terms.

However unfamiliar its symbols may be to us, the
hieroglyphic message is inherently simple. So it is
with the symbols of APL, all of which stand for well
known or easily understood operations. Many to
day, as Oughtred found 350 years ago, are "scared
by the newness of the delivery; and not by any dif
ficulty in the thing itself'!

The ancient Egyptians used mathematics for prac
tical purposes, such as paying wages and collecting
taxes. Consider the instructive example of salary
distribution at the Temple of Illahun-not paid in
salt (as the word "salary" implies) but injugs of beer
and loaves of bread. Division, of course, often pro
duces fractions, and the hieroglyphic way to repre
sent fractions can be seen in Figure 7.

All fractions were represented as unit fractions, i.e.,
with a numerator of 1. Even 2/3, which seems like
an exception, was represented as the unit fraction
IlLS. The eye-like symbol is perhaps the earliest of
all APL function symbols. It is the reciprocal, or
monadic divide, which in APL has become an eye
closed into a slit, with dots above and below (+).

If a loaf of bread is divided into 10 parts, and you
are to get 1 share, your portion is 1/10; if you are to
get 2 shares your portion is liS; and if you are to get
5 shares your portion is 1/2. From these simple frac
tions, other shares can be computed by combina
tion.? For example, 3 shares are the same as 1 +
2 shares, i.e., liS + 1/10; 4 shares are the same as
2 + 2 shares, i.e., 1/5 + 1/5, which, by consulting a
table of values of 2/n, is set down as 1/3 + 1/15.

Sylvester became interested in the unit fractions of
the Egyptians when reading "the chapter in Can
tor's Geschichte der Mathematik which gives an ac
count of the singular method in use among the an
cient Egyptians for working with fractions. It was
their curious custom to resolve every fraction into
a sum of simple fractions according to a certain
traditional method, not leading, I need hardly say,
except in a few of the simplest cases, to the expan
sion under the special form to which I have the
name of a fractional sorites.T'?

562 MCINTYRE IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

1

Sylvester's algorithm is expressed in APL with tol
erance as left argument:

n+-T F X
[1 J ~(X~T)/ '~0 ,OpZ+-l0 '

[2J Z+-Z , T F X-+Z+-f +X
[3 J 'l

Sylvester's example is:

1E-16 F 335+336
2 3 7 48

In direct definition , this leads to a useful paradigm
for writing recursive functions in APL:

F:Z, aFw-+Z+- f+w : w~a 10

(01) = +/+1E-16 F 01

Roger Hui (in a personal communication) trans
lated this into the purely functional form in J, using
@ . for agenda :

f=. i .@8 : ' (>.@% @] , [f J-> .&.%@Jl @.< :

1e_16 f 335%336
2 3 7 48

The initial result of the function must be the identity
element for the primary function, which for catena
tion is an empty array of the appropriate shape-in
the case of Sylvester'salgorithm this is an empty vec
tor.

An example using recursion

A good way to introduce recursion is by one of the
oldest of all algorithms: the calculation of pi by
approximating inscribed (and circumscribed) poly
gons." The symbol pi (1T) was chosen by William
Jones (1706) because pi is the length of the perim
eter of a circle of unit diameter. An inscribed hexa
gon has 6 sides each of length 0.5, which gives 3 as
the first approximation. 45

Doubling the sides of the hexagon gives a better
approximation, and fur ther doublings give still
closer values. The secret is, therefore, to compute
the length of a new chord from the length of an old
one, which is not difficult to do once the theorem
of Pythagoras is known. CH gives the new chord as
a function of the old one .

IBM SYSTEMS JOURNAL, VOL 30, NO 4. 1991

n<-CH X

[1J Z<-(0 .5x1-(1-X*2)*0 .5)*0 .5

[2] 'l

For a circle of unit diameter, the first approxima
tion is given by the perimeter of a hexagon whose
sides are each equal to the radius, i.e., the approx
imation to pi is 3.

After 8 doublings (8 applications of CH), pi is given
by:

6x(2x2x2x2x2x2x2x2)xCH
CH CH CH CH CH CH CH 0 .5

3 .14159

We have a notation (exponentiation) that allows us
to abbreviate this to:

6x(2*8)xCH CH CH CH CH
CH CH CH 0 .5

3 .14159

With APL we can use recursion to effect successive
applications of the function CH:

n+-N C X

[1J ~(N=O)/'~O, OpZ+- X'

[2J Z<-(N-1) C CH X

[3 J 'l

n <-PI N

[1J Z<-6x(2*N)x N C 0 .5

[2 J 'l

In direct definition these functions can be given
more concisely:

CH :(. 5x1- (1- w*2)*. 5)*. 5
C:(a-1)C CHw : a=O : w

PI :6x(2*w)x w C 0 .5

PI 8
3 .14159

Because Iverson 's J includes primitives for square
root (%:), halve (-:), and square (* :), and a con
junction (dyadic operator) for raising a function to
a power (1\ :), we have the following formulation:

ch= . ' %: -: 1- %: 1- * : y. ' : "

6*(21\8l*ch ch ch ch ch ch ch ch 8 .5
3 .14159

6*(21\8l*(ch A:8l 8.5
3.14159

MCINTYRE 563

Though the ancient Egyptians used heap as a gen
eral term for an unknown quantity.tv" Diophantus,
a Greek mathematician in Alexandria about 300
AD, was probably the original inventor of an algebra
using letters for unknown quantities." Diophantus
used the Greek capi tal letter delta (not for his own
name!) for the word power ("dynamis"; compare
"dynamo," "dynamic," and "dynamite"), which is
therefore one of the oldest terms in mathematics. 14

Today we use a conjunction to raise a function to
a power. The syntax brings out the parallelism be
tween raising a number to a power and applying a
function an equal number of times, The algorithm
fails when the number of doublings is further in
creased.4~

Hindu-Arabic numerals and zero

Hind u-Arabic numerals were introduced to the
western wor ld by Leonardo of Pisa (Fibonacci) in
1202 with these words: "Novem figure Indorum he
sunt 98 76 5 4 3 2 I. Cum his itaque nouem figuris,
et cum hoc signo 0, quod arabic cephirum appellatur,
scribitur quilibet num eros." [The nine numerals of
the Indians are these: 9 8 7 6 5 4 3 2 1. With them
and with this sign 0, which in Arabic is called cipher,
any des ired number can be written.50] (Slightly dif
ferent in Reference 51.)

It was, however, far easier for most people to add
and subtract with Roman numerals (or with Egyp
tian hieroglyphics for that matter), and this was
sufficient for their needs. They also believed that,
with the new system, accounts could be more ea sily
falsified-for instance by changing zero into 6 or 9.
Adoption of the new symbols was therefore very
slow. The oldest known Hindu-Arabic numerals on
a gravestone are dated 1371, and their earliest use
on coins outside Italy was in 1424. They were not
used on an English coin until 1551.52 Even today
Roman numerals are used for royalty. Clocks not
powered by digita l technology still commonly dis
play old-style symbols on their dials.

As long as calculatio ns were performed on counters
or boards (see the etymology of bank and bankrupts
there was no need for a symbol to show an empty
column. Menninger has some excellent sentences
on the subject : "Zero is something that must be
there to show that no thing is there, [for] only the
abstrac t place-notation needs zero. Zero first lib
era ted the digits fro m the counting board.t' "

Surely one of the most remarkable inscriptions in
Europe-" is: I . V" . Y. It records the date 1505 in

564 MCINTYRE

symbols which, though Roman, are used with a po
sitional significance unknown in Rome. The scribe
"had heard about the new place-value system and
now tried to find it in the Roman numerals. Since
the meaning of the zero was still not clear to him,
I YO Y = 1505; at the critical point he yielded and
retreated into the 'named' place-value notation.v"
He solved his problem by inserting a superscript
letter c to identify the hundreds column (compare
Sylvester's locative symbols) . It is exciting to catch
the conversion from the old way to the new as it was
happening!

If it took so long for Hindu-Arabic numerals to
make their way in the western world, we can hardly
expect APL to be universally adopted in 25 years.
But we can find encouragement in Menninger's
words: "These ten symbols which today all peoples
use to record numbers, symbolize the world -wide
victory of an idea. There are few things on earth
that are universal, and the universal customs which
man has successfully established are fewer still. But
this one boast he can make: the new Indian nu
merals are universal .r "

One of the satisfactions in working with APL comes
from its consistency and completeness, exemplified
by its recognition of identity elements, i.e., argu
ments that, used with a dyadic function, give a result
identical to the other argument. If at each iteration
in a FORTRAN loop, we accumulate by adding to a
variable named SUM, why must we set SUM to zero
before entering the loop? The reason is that zero is
the identity element for addition, as 1 is of multi
plication. APL, being rich in scalar dyadic functions,
needs more kinds of identity elements than other
languages do .

Although the computation of pi by inscribed poly
gons is recursive, we did not accumulate interme
diate results, but proceeded at once to the next
approximation. On the other hand, Sylvester's al
gorithm for Egyptian unit-fractions constructs a
vector, and the starting point must therefore be an
empty vector.

We can calculate interest payments on a declining
balance by following the same recursive paradigm.

Ordinary APL:

IIZ<- A where W
[1J Z<-A
[2 J 'V

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

VZZ~N	 IB W;Z ;B;R ;I
[1]	 ~(O >A ~N-l)/ '~O , OpZZ~O 3pO '
[2]	 ZZ~Z ,[O]A IB W[O l] ,ltZ~B ,R ,I

where B~W[2]-R~W[1]-I~ x/W [0 2]

[3] V

Direct definition:

where :a :O :w

IB :Z ,[O]A I Bw[O l] ,l tZ~B ,R ,I

where B~w [2]-R~w[1] -I~x/w[0 2] :
0>A~a-l :0 3pO

where B = current balance; R = amount going to
reduce principal; I = amount going to pay interest.

If the principal is $20,000, the interest is 10 percent,
and the monthly payment is $1,000, the function IB
computes a table for 12 months (numbers are
rounded):

12 IB 10 1000 20000+1200 1 1

19167 833 167

18326 840 160

17479 847 153

16625 854 146

15763 861 139

14895 869 131

14019 876 12 1+

13136 883 117

12245 891 109

11 347 898 102

10442 905 95

9529 913 87

In 1's pure functional form, define i, r, and b as three
forks:

i~. 2&1 * {.

r=. 1&{ - i

b= . 2&1 - r

i b=. ((b . r . i)@J .
(:@[i b (2&{ .. b)@]) '
(0 3&$ @ 0:) @.(=0:l

To understand the structure of this function, con
dense it as follows:

i b=. (f@] . (:@[ib g@J) ' h

@.(=0 : 1

Read it thus:

To the result of function f of the right argument,
catenate the item (row) resulting from the function
ib with a decremented left argument, and a right
argument computed by function g from the previ
ous right argument. Function h gives the identity

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

element for catenation of rows to a table with 3
columns. Terminate when the left argument is zero.

Because calculation of interest payments on a de
clining balance builds a table, we must start with 0
rows and 3 columns. Zero, then, is not enough; any
language is incomplete if it fails to include different
kinds of emptiness.

The identity element for matrix multiplication is
the appropriately named identity matrix, first rec
ognized by Cayley: "A matrix is not altered by its
composition, either as first or second component
matrix, with the matrix unity."17 In the following
example, the recursive function MP raises a matrix
(left argument) to an integer power (right argu
ment), and consequently requires the identity ma
trix of the same shape as the matrix argument.

Ordinary APL:

vz-» MP N;I
[1]	 ~(N=O)/ ' ~O , OpZ~I o .=I~ll tpM '

[2]	 Z~M+ .xM MP N-l
[3 J V

More succinctly in direct definition:

MP :a+ . xaMPw-l : w=O :I o. =I~l lt pa

M~3 3Pl9
M+ . xM+ . xM

180 234 288

558 720 882

936 1206 1476

M MP 3

180 23 4 288

558 720 882

936 1206 1476

Zero seems to behave like the queen in chess; for
is it not the most powerful piece on the board? Any
number multiplied by zero is reduced to zero. But
emptiness is more powerful still, because any num
ber, including zero, is reduced to emptiness when
multiplied by an empty vector. Emptiness is not,
however, to be confused with nothing, which is the
result of executing an empty vector. You cannot
multiply a number by nothing-a value en-or results
if you try. Shakespeare made the fool touch some
thing profound in saying to the king without a
throne: "Now thou art an 0 without a figure. I am
better than thou art now; I am a Fool, thou art
nothing.,, 57

MCINTYRE 565

Unlike the play on words in Lewis Carroll's
Through the Looking Glass, the distinctions be
tween zero, emptiness, and nothing are not only use
ful but essential. The recursive APL functions al
ready given include in a single line, zero, an empty
vector, and (when the end condition obtains) noth
ing.

Logic

Because logic deals with two states, true and false,
the mathematics of 0 and 1 is said to be logical.
Propositions, or statements that may be judged true
or false, are logical statements, and computers are
logical machines because they manipulate binary
digits (bits). The mathematics of logic began with
Boole, 5~ 1 just at the time Sylvester introduced the
term matrix. Jevons considered Boole's work to be,
perhaps, "one of the most marvellous and admira
ble pieces of reasoning ever put together.v" Ber
trand Russell thought highly of Boole's work, going
so far as to claim that "Pure mathematics was dis
covered by Boole in a work which he called 'The
Land of Thought.' "63

"Let us conceive, then," wrote Boole, "of an Alge
bra in which the symbols x, y, z, etc. admit indif
ferently of the values of 0 and 1, and of these values
alone.T" Today we call a vector consisting of Is and
Os a logical or Boolean vector, and Iverson nota
tion, from its outset, used Boolean vectors to select
from arrays, whether or not they were logical. 1
Where Boole used x(s) to stand for the selection of
all the x s from subset s, Iverson used u/s in APL (or
u#s in J), which is compression if u is Boolean and
replication if it is not.

Because a computer's memory and registers can be
described as arrays of 1s and Os, we now recognize
that Boole laid the foundation for the design and
description of modern computers-which are log
ical machines. But to most of his contemporaries
his work seemed of little significance. The obituary
notice in The Athenaeum (December 17, 1864)
dryly reported that "The Professor's principal
works were 'An Investigation into the Laws of
Thought,' and 'Differential Equations,' books
which sought a very limited audience, and we be
lieve found it."

The Oxford English Dictionary cites the use ofBoo
lian algebra [sic] in 1895 and 1902, but however we
spell it, the usage is questionable. As Sylvester em
phasized, there is only one universal algebra, which
must , of course, include logic: "I have also a great

566 MCINTYRE

repugnance to being made to speak of Algebras in
the plural; I would as lief acknowledge a plurality of
Gods as of Algebras." 65 I am sure he would have
approved of APL, which incorporates logical func
tions so that they can be used together with arith
metic functions in a single expression. For example,
from Iversonr "

"A theorem is a proposition which is claimed to be
universally true, i.e., to have the value 1 when ap
plied to any element in the universe of discourse.
For example, the proposition

((O=2IX)A(O=3IX))~O=5IX

is a theorem which may be verbalized in a variety of
ways:

"X is divisible by 2 and Xis divisible by 3 implies that
X is divisible by 5.

"Any number divisible by both 2 and 3 is also di
visible by 5.

"If X is divisible by both 2 and 3 then X is divisible
by 5.

"Divisibility by 2 and 3 implies divisibility by 5."

According to John Venn (whose name is well
known in connection with the diagrams that so ef
fectively illustrate the meanings ofand , or, and not),
Jevons "was certainly the first to popularize the new
conceptions of symbolic logic." The boldness, orig
inality, and beauty of Boole's system fascinated
him, and Jevons's book ' ? was largely founded on
Boole. Jevons, unlike Boole, emphasized the im
portance of the inclusive or and his symbol ('1')
survives (though without the dots) in PUI and in
countless IBM technical manuals.

In 1865, Jevons completed construction of his rea
soning machine, or logical abacus, adapted to show
the workings of Boole's logic in a half mechanical
manner, a full account of which was published by
the Royal Society in 1870.68 Mechanical devices
had been designed by Napier, Pascal, Thomas of
Colmar, and in Jevons's own time by Babbage,
Stanhope, "? and Smee, 70,71 but Jevons claimed that
until the work of Boole, logic had remained substan
tiallyas molded by Aristotle 2200 years ago. De Mor
gan, whose Formal Logic 72 was published, by coin
cidence, on the same day as Boole's book, " pointed
to the connection between two revealing facts: "logic

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

1

is the only science which has made no progress
since the revival of letters; logic is the only science
which has produced no growth of symbols." In my
view APL is in the best tradition of Boole, De Mor
gan, Jevons, and Venn. 73

One of the most striking features in Iverson's A
Programming Language is his demonstration that
"the generalized matrix product and the selection
operations together provide an elegant formulation
in several established areas of mathematics. A few
examples will be chosen from two such areas, sym
bolic logic and matrix algebra." ?' Iverson pro
ceeded to show how his notation leads to a natural
extension of De Morgan's laws. 75

De Morgan's law:

Iverson's extensions:

A/U ~V/~U

;i/U <-.... ~=/~U

In ordinary APL:

U ? 5 4 3 p 2
V ? 3 6 7 p 2

A/ , (U ;i .A V)=~ (~U) = .V (~V)

In J , the latest form of Iverson's notation, his 1962
example is executed as follows:

u=.?54 3 $2

v=.?367 $2

(u-r : / . * . v)-: -. (-. u) = / . + . (- . v)

where:

is NOT EQUAL; * is AND; - is MATCH ;
is NOT; and +. is OR.

In algebra a leading negative can be removed by
changing the signs of all quantities in the expression
that follows; in APL a leading NOT (~) can be re
moved by interchanging the pairs AND and OR,
EQUALS and NOT-EQUALS, etc. In the following ex
ample both functions F and G remove redundant
blanks from a string.

Ordinary APL:

n F S ;U

[1 J Z (~UA1¢U<-S= ' ') / S

[2 J 'V

n G S ;U

[1J Z (Uv1¢US;i ")/S

[2 J 'V

Direct definition:

F :(~ UA1¢U....w= ' ') / w
G:(Uv1¢U....w;i ' ') / w

APL continues to grow in power, and Iverson 's
final example, " written but not executable as
+ . / in APL, can be executed in J as follows.

Given:

A=. 1 3 2 8. 2 1 8 1 .: 4 8 8 2
B=. 4 1. 8 3 . 8 2. : 2 8
f=. - :&8
h= . +/ @ /t"8

Then:

(f A) + / . h B
4 6
6 4
6 1

Iverson's generalized matrix product found imme
diate application in his formal description of in
dexed addressing on the IBM 7090 computer, 77

which in one line made clear what takes half a page
of text in the Principles ofOperation manual for that
machine. There are, of course, many similar exam
ples in Reference 78.

Arrays and locative symbols

APL is often referred to as the array processing lan
guage , and its power does to a great extent come
from its ability to work with arrays directly, a fea
ture of increasing importance as vector processors
and parallel computing become available. When we
specify a place by giving its latitude and longitude,
or define a point on a scatter diagram by giving its
X and Y coordinates, we intend that two numbers
should be taken together to identify one object.
This is the first step in thinking in terms of what
Sylvester called multiple quantity.

Stevinus was the first to show how forces combine
in the manner we know as the parallelogram of

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 MCINTYRE 567

forces. 79
--81 The discovery is so important that New

ton ' " stated it as Corollary I immediately after his
Laws of Motion. Authors of modern textbooks of
ten suggest that the rule for vector addition is quite
arbitrary by saying that the sum of two vectors is
defined to be a third vector whose components are
given by the sum of the corresponding components
of the given vectors. Such a statement disguises the
fact that in the real world we observe that forces
combine in this manner.

Many first encounter the word vector in Kepler's
so-called Second Law of Planetary Motion: the ra
dius vector sweeps out equal areas in equal times .
Kepler's prodigious calculations are even more re
markable when we remember how few mathemat
ical symbols were available-logarithms, and even
the decimal point had not yet been invented.

Once Kepler had found a mathematical relation
ship that held throughout space, he looked for a
deeper reason. Introducing the Newtonian concept
of force into science, he claimed that a magnetic
force (anima motrix) emanated from the sun and
carried the planets in their orbits. 83

Vector is the Latin word for a carrier, and it is used
in medicine today in this sense. Vector meus is "my
horse," and vehicle, wagon, way, and convection are
from the same root. It was therefore an appropriate
word for whatever it is that carries the planets in
their orbits round the sun. I looked in vain for it in
Kepler, " but Small'" gives radii vectores. Harris, in
1704, defines vector to be "A line supposed to be
drawn from any Planet moving round a Centre, or
the Focus of an Ellipse, to that Centre or Focus, is
by some writers of the New Astronomy, called the
Vector; because 'tis that line by which the Planet
seems to be carried round its Centre.r "

A vector in two dimensions can be represented by
a complex number (and vice versa). Wessel, a Nor
wegian surveyor, was the first to realize this, but his
work, though published in 1799, was unrecognized
until 1897. A modern geometric treatment of the
addition and multiplication of complex numbers
was given by Argand in 1806, but these ideas re
ceived little attention until Gauss took up the topic
in 1831.

Ifcomplex numbers can represent points in a plane,
it is natural to try to create hypercomplex numbers
to represent points in three-dimensional space. Sir
William Rowan Hamilton finally succeeded in do
ing this in 1843.81

568 MCINTYRE

In a long paper on "algebraic couples" written in
1837 Hamilton said : "In the THEORY OF SINGLE
NUMBERS, the symbol y -1 is 'absurd' [it is an im
possible root, or an imaginary number]; but in the
THEORY OF COUPLES, the same symbol y -1 is
'significant' [i.e., it denotes a possible root, or a real
couple]." What did he mean? I found the answer
more clearly in Hamilton's own words than in mod
ern textbooks.

Knowing that if you double a force you double the
vector that represents it, Hamilton looked on 2
times as the operator that doubles; it is a special
case of what he called a tensor, an operator that
stretches (not to be confused with the modern use
of the word). In the same way -] times is a reversor.
Moreover if y2 times is applied twice it doubles;
and if y -] times is applied twice it reverses. Con
sequently i times (where i is y -1) is a versor, or
operator that rotates a vector without changing its
length; it is taken as producing a counter-clockwise
rotation of 90 degrees. Application of - 2i times
would then be the composition of a rotation, a
stretch, and a reversal. It is to Hamilton that we owe
our terms scalar and vector (1846).

It seemed plausible that if couplets represent vec
tors in two dimensions, triplets would represent
vectors in three dimensions, but after years of un
successful attempts, Hamilton realized, in a flash of
genius, that a consistent algebra of triplets is im
possible. Four terms (quaternions) are needed,
shown in the example below:

complex:

quaternion: a + bi + cj + dk
i2 = j 2 = k2 = ijk = - 1
ij = -ji

Quaternions are of interest to the pure mathema
tician because they do not obey the laws of ordinary
arithmetic: multiplication of quaternions is asso
ciative but not commutative.

Hermann Grassmann (a German schoolmaster)
worked on vector systems at about the same time as
Hamilton, and it was Grassmann who, in 1862, gave
us inner and outer products, analogous to the scalar
and vector parts of Hamilton's multiplication of
quaternions.P?"

All of Arthur Cayley's early papers were on, or
used, determinants, and both he and Sylvester pub-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

lished on the rotation of a solid body. These are all
topics that led naturally to the algebra of matrices.
A matrix can, as we know, be looked upon as an
array of multidimensional vectors, and so it is in
teresting that in 1843, the year Hamilton discovered
quaternions, Cayley published on "the Geometry of
(n) dimensions. " Work on matrices was almost
bound to follow.

Cayley was much influenced by Hamilton and vis
ited Hamilton in Dublin. Cayley wrote his first pa
per on quaternions in 1845 at the age of 24, and
considered the quaternion theory to be "a gener
alization of the analysis which occurs in ordinary
Algebra. " Later the same year he wrote on "The
octuple system of imaginaries," showing that con
sistent arithmetics exist for couples, quadruples
(but not triplets), and eight-fold hypercomplex
numbers. Two years later he demonstrated that "in
the octuple system of imaginary quantities neither
the commutative nor the distributive law holds."

In 1848 Cayley showed that the combined effect of
two rotations could be represented as the product
of two quaternions, and shortly afterwards
Sylvester (in the year he introduced the t~rm ma
trix) pointed out that any number of rotations can
be represented by a single rotation about one axis.
As we would now say: each rotation can be repre
sented by a matrix, and the product of these ma
trices is a matrix completely describing the com
bined rotation, whose axis is an eigenvector of this
matrix, and the angle of rotation can be found from
the corresponding eigenvalue. By 1855 Cayley used
matrix product (calling it the composition of ma
trices), and in his memoir of 1858 he wrote: "I~ will
be seen that matrices comport themselves as smgle
quantities; they may be added, multiplied, or com
pounded together, etc.: the law of the additi~n. of
matrices is precisely similar to that for the addltIO.n
of ordinary algebraical quantities; as regards their
multiplication (or composition), there is the pecu
liarity that matrices are not in general convertible;
it is nevertheless possible to form the powers (pos
itive or negative, integral or fractional) of a ma
trix ... ,,17 In this memoir he uses Sylvester's latent
roots (eigenvalues), but without naming them.

Sylvester's paper, written in 1882,begins thus: "Pro
fessor Sylvester referred to the general question of
representing the product of sums of .two, four , or
eight squares under the form of a like sum, and
mentioned that Professor Cayley had been the first

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 8 Sylvester's locative symbols

8 + 8h + 8t + 2u

is 1882

p = aA + bu + cv + dn

to demonstrate, by an exhaustive investigation , the
impossibility of extending the law applicable to 2, 4,
and 8 to the case of 16 squares. The new kind of
so-called imaginaries referred to by Professor Cay
ley are, as far as Mr. Sylvester is aware, the first
example of the introduction into Analysis of loca
tive symbols not subject to the strict law of associ
ation , and he considers the law regulating the con
nexion of the two products represented by a
succession of three such symbols, most interesting,
inasmuch as such products are either identical, or
if not identical, of the same absolute value, but with
contrary signs: most persons, before this example
had been brought forward, would have felt inclined
to doubt the possibility of locative symbols ('vulgo'
imaginary quantities) whose multiplication table
should give results inconsistent with the common
associative law, being capable of forming the
groundwork of any real accession to algebraical sci
ence ,,91

His footnote is illuminating (compare also Refer
ence 92): "Using 8, h, t, u to denote thousands,
hundreds, tens, units, the year of grace in which we
live may be represented by 8 + 8h + 8t + 2u [-]
8, h, t, u, being locative symbols which it would be
absurd to style 'imaginary quantities'; but they are
as much entitled to that name as the i, j, k, or any
like set of symbols-the only essential difference
being that one set of symbols is limited, the other
unlimited in number-and accordingly the law of
combination of the one set is given by a finite and
of the other an infinite 'multiplication table ' . .. The
'locatives' indicate out of what 'basket,' so to say,
the 'quantities' appearing in an analytical expres-

MCINTYRE 569

Figure 9 Sylvester's multiplication tables

ICOMPLEX NUMBERS

IaUART ERIONS

IMATRIX MULTIPLICATION

sion are to be selected-the multiplication table
determines the basket into which their product is to
be thrown The whole analytical side of the the
ory of qua ternions merges into a particular case of
the general theory of Multiple Algebra. As far as the
present writer is aware , Professor Cayley in his
Memoir on Matrices (1858), was the first to recog
nize the parallelism between quaternions and ma
trices ... ,,91

570 MCINTYRE

Sylvester's locative symbols and multiplication
tables for complex numbers, quaternions, and ma
trix multiplication are given in Figures 8 and 9
(from References 18,91 ,93,94) . By this method of
representation Sylvester states in 1884: "a matrix is
robbed as it were of its areal dimensions and rep
resented as a linear sum." Sylvester's 2 by 2 matrices
I , L, M , and N are given in Figure 10, where the
matrices, "construed as complex quantities, are a
linear transformation of the ordinary quaternion
system 1, i, j, k." As he said: "Every matrix of the
second order may be regarded as representing a
quaternion, and vice versa. "

Sylvester's matrix identities given in Figure 10 can
be demonstrated very concisely in Iverson's J,
which supports complex numbers. The inner prod
uct is given by p , and square computes the product
of a matrix with itself; i is V - I. One line suffices
to express the identities. The match function is - :

i = .%:_ l

p=. +/ .*

square=. p

1= .1 8 ,: 81

L= . (i ,8) , :8 , -i

M=. 8 _1,: 18

N= . (8 ,- i), : -i ,8

«-1)- :&.> (s quare &. > L; M;N),
<L p MP N

These matrices, derived by Sylvester (see also Ref
erences 71, 95) as an exercise in pure mathematics,
are intimately connected to the Pauli spin matrices,
which have central significance in relativistic quan
tum theory; they are also close to the spinor trans
[ormatiott. " to basis quatemions, and the basis ele
ments of the 16-dimensional Clifford numbers,97

whose algebraic £roperties can easily be demon
strated in APL. 9&-1 The three Pauli matrices (0'1, 0'2 '

and 0'3) describing the spin of an electron, together
with all permutations of Pauli's identities, can be
stated formally and executed. These are shown be
low in J with the numbers in square brackets from
Pauli.

Given:

p=. +/ *

i = . %:

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Fig ure 10 Sylvester's 2 by 2 matrices

I L M	 N

The matrices are :	 After Sylvester returned to England, the principal ex
ponents of the New Algebra in the United States were

1=. 0' 0 Benjamin Peirce and J. Willard Gibbs. Sylvester
called Peirce's 1870 memoir" "a work which may al

51= . 0 1 . : 1 0	 [33.10]
most be entitled to take rank as the 'Principia' of the s Z>, (0 ,- i) , :(i ,0)
philosophical study of the laws of algebraical opera

53= . 10 ,: 0 _1 tion." Gibbs's address "On Multiple Algebra" to the
and the permutations are: Section of Mathematics and Astronomy of the Amer

ican Association for the Advancement of Science is a
Z= . 0 1 21 .y=. 51 ;52 ;53

classic. In it Gibbs wrote the following:

I - : "2 p- "2) y	 [33 .9]
"The multiple quantities corresponding to concrete

1 1 1
quantities such as ten apples or three miles are
evidently such combinations as ten apples + sevenf = . p-p	 [33.11]
oranges, three miles northwestward + five miles g= . r t , f l&{) - : (2 *i) &* @ (2&{)
eastward, or six miles in a direction 50 degrees east

1 -: "0 9 "3) Z
of north But if we ask what it is in multiple

1 1 1
algebra which corresponds to an abstract number
like twelve, which is essentially an operator, which f= . P : - @ p" [33 .12aJ changes one mile into twelve miles, and $1,000 into g=. (. () @ f) 1&(
$12,000, the most general answer would evidently h= . 9 -:"2 i&* @ (2&()
be: an operator which will work changes as, for 1 1 - : "1 h "3 > Z
example, that of ten apples + seven oranges into

1 1 1
fifty apples and 100 oranges, or that of one vector
into another. If the operation is distributive, it may f = . p+p [33 .12b] not inappropriately be called multiplication, and g= . (. f (1 &()
the result is par excellence the product of the op(00 , :00) - :"2 g "3 > Z
erator and the operand. The sum of operators, qua

1 1 1
operators, is an operator which gives for the prod

In each of these iden tities, function! describes the uct the sum of the products given by the operators
essential relationship; functions g and h make it to be added. The product of two operators is an
possible to test all "cyclical permutations of the in operator which is equivalent to the successive op
dices."98 erations of the factors ." 101

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991	 MCINTYRE 571

Figure 11 Gibbs's example of transformation

ffJ 100 -y---------,...----,
('J 50,100z
-c
a:
a

50

7

O~-.....:.::.:..;..,-.........--..____.- ___l

a 10 50
APPLES

Figure 11 illustrates the problem Gibbs posed and
makes the answer obvious. Although Gibbs did not
tum to Hamilton, Sylvester, or Cayley for the so
lution, I betray their influence in Figure 12, where
I separate the versor (as a rotation matrix) and the
tensor (a scalar). The example can be worked as
follows:

The transformation matrix (with tensor and versor
composed):

x~ 50 100 ffi 10 -7 ,[-0 .5J 7 10
N~ (1 -1 x X), [- 0. 5J ~X

N+ .x 10 7
50 100

Isolate the tensor and determine the angle of ro
tation in degrees:

9 .15

(180+01)x -2 1 0 X+Y
28 .44 28 . 44

Confirm by composing the tensor and versor, where
RFD is Radians From Degrees:

n~RFD X

[l J Z~oX+180

[2 J 'V

si-r X

[lJ Z~2 2pl 1 1 lx2 1 1 20RFD X

[2 J 'V

(9 .15 x F 28 .44) + .x 10 7

50 100

The wondrous tale of multiple quantity

This example, simple though it is, throws light upon
the nature of the "new world of thought" to which
Sylvester gave the name of "Universal Algebra or
the Algebra of multiple quantity" in 1884.

James Joseph Sylvester was born in 1814. In 1837
he completed his studies at Cambridge and pub
lished the first of his 342 papers. It was on crystal
lography. His next two papers were on the motion
of fluids and rigid bodies-all topics of importance
to my own subject of geology-and all amenable to
matrix algebra. Some additional history can be
found in Reference 102.

Sylvester.Pl"?' the self-styled mathematical Adam.
gave "more names (passed into general circulation)
to the creatures of mathematical reason than all the
other mathematicians of the age combined" (1888).
In 1850, the year he was called to the bar, he in
troduced the term matrix for "a rectangular array of
terms, out of which different systems of determi
nants may be engendered as from the womb of a
common parent." 107,108 Sylvester introduced 109 the
Greek letter lambda (A) for the latent roots of a
characteristic equation (his terms) in 1852-three
quarters of a century before the term eigenvalue was
invented; and in 1853 he introduced the inverse
matrix. 110

In 1884, at the age of 70, he published his Lectures
on the Principles of Universal Algebra, the "apo
theosis of algebraical quantity," in the American
Journal of Mathematics , which he himself founded
and edited. His title reminds us that Newton used
the term universal arithmetic for what we call alge
bra. Emphasizing the importance of matrices as
multiple quantity, he speaks of a second birth of
algebra, its avatar in a new and glorified form. 111 In
the words of this enthusiast, who lived a century
before APL was implemented: "A matrix of quadrate

572 MCINTYRE IBM SYSTEMS JOURNAL. VOL 30. NO 4, 1991

form . . . emerges . . . in a glorified shape-as an
organism composed of discrete parts, but having an
essential and undivisible unity as a whole of its own .
. . . The conception of multiple quantity rises upon
the field of vision [Matrix] dropped its provi
sional mantle, its aspect as a mere schema, and
stood revealed as bona fide multiple quantity sub
ject to all the affections and lending itself to all the
operations of ordinary numerical quantity."

"This revolution," he continued, "was effected by a
forcible injection into the subject of the concept of
addition; that is, by choosing to regard matrices as
susceptible to being added to one another; a notion
as it seems to me, quite foreign to the idea of sub
stitution, the nidus in which that of multiple quan
tity was laid, hatched and reared. This step was, as
far as I know, first made by Cayley ... in his [im
mortal] Memoir on Matrices [1858], wherein he
may be said to have laid the foundation-stone of the
science of multiple quantity. That memoir indeed
(it seems to me) may in truth be affirmed to have
ushered in the reign of Algebra the 2nd; just as
Algebra the 1st ... took its rise in Harriot's Artis
Analyticae Praxis, published in 1631, ... exactly 250
years before I gave the first course of lectures ever
delivered on Multinomial Quantity, in 1881, at the
Johns Hopkins University." 18 References 112 to
115 add some additional information about Cayley.

If Sylvester were here today, what pleasure would
he find in Iverson's notation, implemented even on
our personal computers as an interactive lan
guage-this notation that encourages, and as it
were expects, us to think in terms of arrays or mul
tiple quantities, manipulating them as entities in
the spirit of Sylvester's exhortations! That eloquent
mathematician would be even more moved, I am
sure, by boxed arrays (arrays of arrays) , and array
processors, which are APL machines.

A century ago both Sylvester and Gibbs urged us to
think in terms of arrays. Most computer languages
and what Backus called (perhaps unfairly) the Von
Neumann bottleneck, force us, however, to work
with scalars. Within the confines of a few pages, I
have attempted to trace the development of nota
tion and methods from hieroglyphics to APL. I have
tried to show that APL is much more than yet an
other computer language; that its intellectual im
portance is great; and that (yet again using Sylves
ter's words) APL continues "T he wondrous tale of
Multiple Quantity."

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 12 Separation of versor and tensor

I10l APPLES

~ ORANGES

r;t;l15Ol
~~

cos 28 -sin 289.16
sin 28 cos 28 11~ H19~ I

'-------------'

The story will, of course, never be completed. We
have seen the recent introduction of two hitherto
undefined phrases now called hooks and forks . 116

One example of each must suffice here.

+/ % 41 y computes the sum over the reciprocals
of the tally of y, which is unlikely to be useful ,
whereas, if we unify the phrase, placing it in pa
rentheses, it becomes a fork (+ / %41) y equivalent
to (+ / y) % Ufy) , which computes the mean (or
means over the leading axis if the rank exceeds 1).

(- mean) y is a hook, equivalent to y - (mea n
y), which gives the deviations from the mean, a
necessary step in computing variance.

It should be noted that when we define the phrase,
as for example mean=. +/ % 41 the phrase is
unified without requiring parentheses. The func
tions used above for the Pauli identities are exam
ples of forks. The statistical examples above include
hook (sums of cross products) and fork (correlation
coefficients) . The function for interest on a declin
ing balance (ib) includes a train of five functions,
three of which (i, r, b) are forks, and it ends with an
interesting hook.

In a paper published in 1866 we find Sylvester writ
ing on the subject of operators. "The force of the
bracket [i.e., parentheses] explains itself. This won
derful symbol has the faculty of extending itself

MCINTYRE 573

without ambiguity to every possible development,
however new, of mathematical language. It is sus
ceptible only of a metaphysical definition as signi
fying the exercise, with regard to its content, of that
faculty of the human mind whereby a multitude is
capable of being regarded as an individual, or a
complex as a monad. In a word, it is the symbol of
individuality and unification." I am unable to assert
that Sylvester foresaw the phrasal forms of mod ern
APL 125 years ago, but his words seem remarkably
apt in reference to these new developments.

Notation as a tool of thought

In ending I wish to quote from some of our great
predecessors who appreciated the power of sym
bols as an aid to reasoning, or in Ken Iverson 's
memorable phrase, "notation as a tool of thought."

Lavoisier wrote a memoir in 1787 on the necessity
of reforming the nomenclature of chemistry. In it
he made this statement: "Languages are intended,
not only to express by signs, as is commonly sup
posed, the ideas and images of the mind; but are
also analytical methods, by the means of which, we
advance from the known to the unknown, and to a
certain degree in the manner of mathematicians.
. . . Algebra is the analytical method by excellence
[sic]; it has been invented to facilitate the opera
tions of the understanding, and to render reasoning
more concise, and to contract into a few lines what
would have required whole pages of discussion; in
fine, to lead , in a more agreeable and laconic
method [plus commode, plus prompte et plus sure],
to the solution of the most complicated questions.
Even a moment's reflection is sufficient to convince
us that algebra is in fact a language: like all other
languages it has its representative signs, its method
and its grammar, if I may use the expression: thus
an analytical method is a language; a language is an
analytical met hod; and these two expressions are , in
a certain respect synonimous [sic]."117

In 1821, Babbage, in his thought-provoking paper
"On the Influence of Signs in Mathematical Rea
soning," said: "The quantity of meaning com
pressed into small space by algebraic signs is a cir
cumstance that facilitates the reasonings we are
accustomed to carry on by their aid. The assump
tion of lines and figures to represent quan tity and
magnitude, was the method employed by the an
cient geometers to present to the eye some picture
by which the course of their reasonings might be
traced: it was however necessary to fill up this out

574 MCINTYRE

line by a tedious description, which in some in
stances even of no peculiar difficulty became nearly
unintelligible, simply from its extreme length: the
invention of algebra almost entirely removed this
inconvenience, and presented to the eye a picture
perfect in all its parts, disclosing at a glance, not
merely the conclusion in which it terminated, but
every stage of its progress. At first it appeared prob
able that this triumph of signs over words would
have limits to its extent : a time it might be feared
would arrive , when oppressed by the multitude of
its productions, the language of signs would sink
under the obscurity produced by its own multipli
cation.... Fortunately however such anticipations
have proved unfounded.

"Examples of the power of a well-contrived nota
tion to condense into small space a meaning which
would-in ordinary language-require several
lines, or even pages, can hardly have escaped the
notice of most of my readers: in the calculus of
functions, this condensation is carried to a far
greater extent than in any other branch of analysis,
and yet, instead of creating any obscurity, the ex
pressions are far more readily understood than if
they were written at length The power we pos
sess by the aid of symbols of compressing into small
compass the several steps of a chain of reasoning,
whilst it contributes greatly to abridge the time
which our enquiries would otherwise occupy, in dif
ficult cases influences the accuracy of our conclu
sions: for from the distance which is sometimes in
terposed between the beginning and the end of a
chain of reasoning, although the separate parts are
sufficiently clear , the whole is often obscure.. . .
The closer the succession between two ideas which
the mind compares, provided those ideas are
clearly perceived, the more accurate will be the
judgement that results ." 118

"The advantage of selecting in our signs, those
which have some resemblance to, or which from
some circumstance are associated in the mind with
the thing signified has scarcely been stated with
sufficient force: the fatigue, from which such an
arrangement saves the reader, is very advantageous
to the more complete devotion of his attention to
the subject examined; and the more complicated
the subject, the more numerous the symbols and
the less their arrangement is susceptible of symme
try, the more indispensable will such a system be
found . This rule is by no means confined to the
choice of the letters which represent quantity, but
is meant to extend, when it is possible, to cases

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

where new arbitrary signs are invented to denote
operators. . . . The more complicated the enquiries
on which we enter, and the more numerous the
quantities which it becomes necessary to represent
symbo lically, the more essentially necessary it will
be found to assist the memory by contriving such
signs as may immediately recall the thing which
they are intended to represent." 119

Sylvester, in 1877, said "It is the constant aim of the
mathematician to reduce all his expressions to their
lowest terms, to retrench every superfluous word
and phrase, and to condense the Maximum of
meaning into the Minimum of language." 120

Whitehead, in 1911, claimed that "By relieving the
brain of all unnecessary work, a good notation sets
it free to concentrate on more advanced problems,
and in effect increases the mental power of the race.
.. . By the aid of symbolism we can make transitions
in reasoning almost mechanically by the eye, which
would otherwise call into play the higher faculties
of the brain. It is a profoundly erroneous truism,
repeated by all copy-books and by eminent people
when they are making speeches, that we should cul
tivate the habit of thinking of what we are doing.
Th e precise opposite is the case. Civilization ad
vances by extending the number of important op
erations which we can perform without thinking
about them." 121

Bertrand Russell said: "The great master of the art
of formal reasoning, among men of our own day , is
an Italian, Professor Peano, of the University of
Turin. He has reduced the greater part of mathe
matics (and he or his followers will, in time, have
red uced the whole), to strict symbolic form , in
which there are no words at all."

In the first paragraph of his book in 1959, Russell
wrote: "There is one major division in my philo
sophica l work: in the years 1899-1900 I adopted the
philosophy of logical atomism and the technique of
Peano in mathematical logic. This was so great a
revolu tion as to make my previous work, except
such as purely ma thematical, irrelevant to every
thing I did later. The change in these years was a
revolu tion; subsequent changes have been of the
nature of an evolution." 122

And finally, Giuseppe Peano himself, in his paper
on "The Importance of Symbol s in Math em ati cs" in
1915 wrote: "Th e oldest symbols, which are also the
most used today, are the digits used in arithmetic ,

which we learned about 1200 from the Arabs, and
they from the Indians, who wer e using them about
the year 400. The first advantage that on e sees in
the digits is their brevity. . . . Further reflection re
veals that these symbols are not just shorthand, i.e .,
abbreviations of ordinary language, but constitute a
new class of ideas. .. . The use of digits not only
makes our expressions shorter, but makes arith
metical calculation essentially easier, and hence
makes certain tasks possible, and certain results ob
tainable, which could not otherwise be the case in
practice. For example, direct measure assigned to
the number Pi, the ratio of the circumference of a
circle its diameter, the value 3. . ..

"A rchimedes, about 200 a.c., by inscribing and cir
cumscribing polygons about a circle, or rather by
calculating a sequence of square roots, using Greek
digits , found Pi to within 1/500. The substitution of
Indian digits for the Greek allowed Aryabhata,
about the year 500, to extend the calculation to 4
decimal places, and allowed the European mathe
maticians of 1600 to carry the calculation out to 15
and then 32 places, still following Archimedes'
model. Further progress, i.e. , the calculation of 100
digits in 1700, and the modern calculation of 700,
was due to the introduction of series.

"The same thing may be said for the symbol s of
algebra... . Algebraic equations are much shorter
than their expression in ordinary language, are sim
pler, and clearer, and may be used in calculations.
This is because algebraic symbols represent ideas
and not words... . Algebraic symbols are much less
numerous than the words they allow us to repre
sent.

"The evolution of algebraic symbolism went like
this: first, ordinary language; then, in Euclid, a tech
nical language in which a one-to-one correspon
dence between ideas and words was established;
and then the abbreviation of the words of the tech
nicallanguage, beginning about 1500 and done in
various ways by different people, until finally one
system of notation, that used by Newton, prevailed
over the others.

"T he use of algebraic symbols permits schoolchil
dren easily to solve problems which previously only
great minds like Euclid and Diophantus could
solve The symbols of logic too are not abbre
viations of words, but represent ideas, and their
principal utility is that they make reasoning easier.
All those who use logical symbolism attest to
this ." 123

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 MCINTYRE 575

Concluding remarks

A progression of great thinkers has moved the hu
man race towards the adoption, first of an econom
ical and efficient number system containing zero
and based on place value, and then of a universal
algebra, APL, which operates on arrays or multiple
quantities, and is totally devoid of words.

There have also been those who resisted the inev
itable progress, who found it difficult to adopt new
and improved tools for thought. In our own time we
hear appeals to revert from this high intellectual
level and use English words, and to submit to the
tyranny of scalars, as if Sylvester's eloquence a cen
tury ago had fallen on deaf ears.

Unlike its predecessors, APL is an executable no
tation. APL represents, in a phrase used by Babbage,
the "triumph of symbols over words." As so many
of our distinguished predecessors predicted, it
makes reasoning easier. APL is the result of brilliant
insight, careful thought, and hard work through at
least 5000 years. Iverson is the latest in a succession
that includes Peano, Sylvester, Cayley, De Morgan,
Boole, Newton, Leibniz, Napier, Stevinus, Fibon
acci, Diophantus, and the unknown Egyptian whose
work was copied by Ahmes the scribe.

In 1866Sylvester proclaimed that: "To attain clear
ness of conception, the first condition is ' language,'
the second 'language,' the third 'Ianguage'- Pro
tean speech-the child and parent of thought." 124

In reflecting on the significance of APL I have
adopted a historical approach. Having done so I
find that Sylvester had something to say on that
subject also. The occasion was his Presidential Ad
dress to the British Association 125 in 1869 when he
said: "the relation of master and pupil is acknowl
edged as a spiritual and lifelong tie, connecting suc
cessive generations of great thinkers with each
other in an unbroken chain ."

We think in a different way because of APL.

Acknowledgments

This paper was based on a series of lectures spon
sored by ACM and IBM. Lou Solheim and Tom
Olsen, Karsten Manufacturing Company, provided
a transcript of my address to ACM 's APL83; I. P.
Sharp Associates provided a transcript of my ad
dress to the 1982 ACM APL users meeting; and Ed

576 MCINTYRE

Shaw provided the transcript of my address to an
ACM SIGAPL meeting in New York. Jon McGrew
and Jay Friedman, IBM Corporation, went to great
pains to aid in the preparation of the paper for
inclusion in the IBM Systems Journal. I am indebted
to Kenneth E. Iverson and Adin Falkoff for more
than 20 years of stimulation, criticism, and advice,
and to the late William J. Bergquist for showing me
that Iverson's notation had been implemented as
executable APL.

' Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes

I.	 K. E. Iverson , "The Description of Finite Sequential Proc
esses," Proceedings of a Conference on Information Theory,
Colin Cherry and Willis Jackson, Editors, Imperial Col
lege, London (August 1960), pp. 447-457 .

2.	 K. E. Iverson, A Programming Language, John Wiley &
Sons, Inc., New York (1962).

3.	 A. N. Whitehead, An Introduction to Mathematics, Home
University Library, New York and London (1911).

4.	 A. C. Aiken , The Case Against Decimalisation, Oliver and
Boyd, Edinburgh (1962).

5. R. J. Gillings, Mathematics in the Time of the Pharaohs,
M.LT. Press, Cambridge, MA (1972). Reprinted by Dover
Publications Inc., New York (1982), p. 16.

6.	 F. Klein, Elementary Mathematics from an Advanced Stand
point , Third Edition first published in 1924-1925; English
translation, 2 volumes, published by Dover Publications
Inc., New York (1939).

7. F. Cajori ,A	 HistoryofMathematical Notations, Vol. I, The
Open Court Publishing Company, La Salle, IL (1951), first
published in 1928; Vol. 2, The Open Court Publishing
Company, La Salle, IL (1952), first published in 1929.

8.	 E. E. McDonnell , "The Caret and Stick Functions," APL
Quote Quad 8, No.4, 35-39 (June 1978).

9. F. Cajori , op. cit., Vol. 1, pp. 230-231.
10. M. Kline, Mathematical Thought from Ancient to Modem

Times, Oxford University Press. New York (1972), p. 262.
II.	 Contemporary publications of early mathematicians are

difficult to find. I consulted Oughtred's books in the British
Library and the National Library of Scotland. Instead of
giving citations in the usual form, it is more useful to rec
ommend the following two sources: A. De Morgan, Arith
metical Books from the Invention of Printing to the Present
Time. Being notices of a large number of works drawn up
from actual inspection. Taylor and Walton, London (1847),
republished, with a biographical introduction by A. R. Hall,
London (1967); and Reference 7.

12. M. Kline, op cit., p. 988.
13.	 D. E. Smith, Mathematics, Our Debt to Greece and Rome

Series, Marshall Jones Company, Boston, MA (1923) .
14. H. W. Turnbull, The Great Mathematicians , Methuen and

Company, London (1929) . Reprinted in The World of
Mathematics, Vol. I, James R. Newman, Editor, Simon and
Schuster, New York (1956), p. 115.

15. D. E. Smith , Historyof Mathematics, Vol. 2, first published
in 1925, Dover Publications Inc., New York (1958), pp.
427-431.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

16. S.	 Stevin or Stevinus (1548-1620), La Thiende, 1585.
French translation, La Dism e enseignant fa cilem ent expedier
par Nombres Entiers sans rompuz taus Comptes se rencon
trans aux Affaires des Hommes [the a rt of decimal arit h
metic made easy: the use of whole numbers to per form
quickly all business calculations]. English ver sion The Art of
Tenths, or Decimall A rithmeticke [sic) ... invented by Simon
Stevin , 1608 (compare the etymologies of dime and tithe).

17.	 A. Cayley, "A Memoir on the Theory of Matrices," Royal
Society of London, Philosophical Transactions 148, l7-37
(1858). Reprinted in Collected Math ematical Papers 2, No.
152 (1889).

18.	 J. J . Sylvester , "O n the Inver se and Negative Powers of a
Matrix ," Lectures on the Principles of Un iver sal Algebra,
American Journal of Math ematics 6, 270-286 (1884).

19. F. Cajori, op. cit., Vol. 2, pp. 15-29.
20.	 K. Menninger , Number Words and N um ber Symbols, Ge r

man editi on (1957), English translat ion , Th e M.LT. Press,
Cambridge, MA (1969), pp. 291, 353, 358; The Treasury of
Mathematics, Henrietta O . Midonick, Editor, Philosophi
cal Library, New York (1965).

21. F. Cajori, op. cit., Vol. 1, pp. 366-369.
22.	 A. Gittleman , History of Math ematics , Cha rles E. Mer rill

Publishing Company, Columbus, OH (1975), pp . 141-149.
23. J .	 W. L. Glaisher , "Logarithms and Computa tion ," in

Napier Tercentenary Mem orial Volume, Ca rgill G ilsto n
Knott, Editor, London (1915), pp. 63-80.

24.	 P. E. B. Jourdain, "Th e Nature of Math em at ics," reprinted
in The World of Math ematics, Vol. 1, James R. Newman,
Editor, Simon and Schuster , New York (1956), p. 23.

25.	 J . R. Newman, The World of Math ematics, Vol. 3, James R.
Newman, Editor, Simon and Schuster, New Yor k (1956),
p. 1856.

26. H. T. Pledge, Science Since 1500: A Short History of Math
em atics, Physics, Chem istry, Biology, H. M. Stati onery Of
fice, London (1939).

27.	 K. E. Iverson , Eleme ntary A nalysis, A PL Press, Swarth
more, PA (1976), pp. 140-15 8.

28.	 H. Hellerman, Digital Computer System Principles, Me
Gr aw-Hili Book Compa ny, Inc., New York, 1st Edi tion
(1967) ; 2nd Editi on (1973), p. 53.

29.	 K. E. Iverson , "A Person al View of A PL," IBM Systems
Journal 30, No.4, 582-593 (1991, this issue) .

30. R. K. W. Hui , K. E. Iverson , E. E. McDonnell, and A. T.
Whitney, "A PL\ ?,"A PL 90 Conference Proceedings, Co pe n
hagen , Denmark (August 1990) ;APL Quote Quad 20, No.
4, 192-200 (J uly 1990).

31.	 K. E. Iverson, The lSI Dictionary ofJ, Version 3.3, Iverson
Software Inc., Toronto (1991).

32.	 The Ro sett a stone (now in the Brit ish Museum) is a basa lt
slab with inscriptions in th ree notations: (I) hierogl yph ics,
(2) demotic, and (3) Greek , which provided the key to
deciphering hierogl yphics. Like the Rosetta sto ne, my ex
amples of (I) ord inary APL, (2) d irect defin ition , and (3)
J, provide an opportunity for tho se familiar with one par
ticular notat ion to deciph er others.

33.	 C. Babb age, "O n the Influenc e of Signs in Ma the matical
Reasoning," Cambridge Philosophical Society, Transac
tions 2, 333 (1827) , read Decemb er 16, 1821.

34. R. Record e, "The Ground of Ar tes" (1540), later ed ition,
1646. Reprinted in part in The World ofMath em atics, Vol.
1, James R. Newman, Edito r, Simo n and Schuste r, New
York (1956), pp. 2 10-2 17.

35. K. Menninger , op. cii. , p. 426.

IBM SYSTEMS JOURNAL. VOL 30. NO 4. 1991

36. J. J .	 Sylvester, "O n Sta udt 's Theorems Co ncern ing the
Con tents of Polygons and Polyhed ron s," with a no te on a
new and resembli ng class of theore ms, Philosophical Mag
azine 4, 383 (1852).

37.	 K. E. Iver son , APL in Exposition , Technical Report 320
30 10, IBM Corpo ra tion (1972). Rep rint ed by A PL Press,
Swarthmore, PA (1976), pp . 19-23 .

38. J.	 R. Newman, "Th e Rhind Papyrus," in The World of
Mathem atics , Vo l. I, James R. Newman, Edito r, Simon and
Schus ter, New York (1956), pp. 169-1 78.

39.	 A. B. Chace, The Rhind Mathem atical Papyrus, translation
and comme ntary, The Natio nal Co uncil of Teachers of
Mathemati cs, Reston , VA (1979).

40.	 The Rh ind Mathematical Papyrus, T. E. Pee t, Editor, British
Museum, London (1923).

41. R. J . G illings, op. cit ., p. 104.
42.	 R. J . Gillings, op. cit., pp. 104-127.
43. J . J . Sylvester , "On a Point in the Th eory of Vulgar Frac

tion s," A merican Journ al of Math em atics 3, 332-335, 388
389 (1880).

44.	 K. E. Ive rson , Eleme ntary Functions: A n A lgorithm ic Treat
m ent , Science Research Associ ates, Inc., Chicago (1966),
pp. 15- 16.

45.	 P. Beckm ann ,A History ofPI , The Go lem Press, St. Mar tins
Press, New York (1971).

46.	 R. J . Gillings, op. cit., p. 157.
47. P. E. B. Jourdain , op. cit., p. 12.
48. P. E. B. Jourdain , op. cit ., p. 16.
49. G .	 Fo rsythe, "Pitfa lls in Co mputa tio n," A merican Mathe

m atical Mon thly 77, No.9, 931-956 (1970).
50. K. Menn inge r, op. cit., p. 425.
51. D. E. Smith, History ofMathema tics, Vol. I , p. 216; Vo l. 2,

p. 71, footno tes , Dover Publications Inc., New Yor k (1958).
52. F. Cajo ri, op. cit., Vol. I, p. 50.
53. K. Menn inger , op. cit ., pp . 39 1-392 , 398, 400.
54. Ibid ., pp. 285, 392, 400.
55. Ibid. , p. 392.
56. Ibid ., p. 391.
57. W . Shakespeare, Lear, Act I, Scene 4.
58.	 G . Boo le, The Mathema tical A nalysis of Logic, Being an

Essay Towa rds a Calculus of Dedu ctive Reasoning, pub
lished in Ca mbridge and London (1847). Reprinted by Ba
sil Blackwe ll, Oxford (1948). Also in G. Boole, Studies in
Logic and Probabilities, with notes and additio ns, Watt s and
Company, London (1952) , pp. 49-1 24.

59.	 G . Boo le,An Investigation ofthe Laws ofTho ught, on Which
A re Founded the Mathema tical Theories of Logic and Prob
abilities, Walton and Maberly, Londo n (1854). Reprinted
by Dover Publicat ions Inc., New Yor k (1953) . Also re
pr inted by Peter Smith and by Th e O pen Co urt Publishing
Co mpa ny, La Salle, IL.

60.	 A. De Morgan, "O n the Symbols of Logic, " Ca mbridge
Ph ilosophical Society, Transactions 9, Part 1 (1850).

61. R.	 Feys and F. B. Fitch, Dictionary of Sym bols of Math e
m atical Logic, Nor th -Holland Pub lish ing Co mpany, Am
sterda m (1969) .

62.	 G. Boole, Studies in Logic and Probability, Watt s and Co.,
Londo n (1952), Appe ndix A, p. 471.

63.	 W. Kneale, "Boolc and the Revival of Logic," Mind 57
(1948), pp. 149-175 . Cite d by J. R. Newman in The World
ofMathem atics, Vol. 3, J ames R. Newman, Editor , Simon
and Schuster, New Yor k (1956), pp. 1853-1 854.

64. G . Boole, see Refer ence 58, p. 37.

MCINTYRE sn

65. J. J. Sylvester, "A Word on Nonions," Johns Hopkins Uni
versity Circulars 1, 241-242 (1882); 2, 46 (1883).

66. K. E. Iverson, see Reference 37, p. 32.
67.	 W. S. Jevons, Pure Logic, or the Logic ofQuality Apart from

Quantity, London (1864).
68. W. S. Jevons, "On the Mathematical Performance of Log

ical Inference," Royal Society, Philosophical Transactions
160,497-518 (1870) .

69. R. Harley, "The Stanhope Demonstrator, an Instrument for
Performing Logical Operations," Mind 4, 192-210 (1879).

70.	 A. Smee, The Process of Thought Adapted to Words and
Language, Together with a Description ofthe Relational and
Differential Machines, Longman, Brown , Green, and Long
mans , London (1851).

71. C. S. Peirce,	 "Logical Machines," American Journal ofPsy
chology 1, 165-170 (1887).

72.	 A. De Morgan, Formal Logic: or, the Calculus of Inference
Necessary and Probable, first published in London in 1847,
A. E. Taylor, Editor, reprinted by Open Court Company,
London (1926) .

73.	 Sylvester had not only been a colleague of De Morgan's,
but at the age of 13 had been De Morgan's pupil. He was
the second person to be awarded the De Morgan medal
(1887) . The first was Cayley (1884) . Cayley received a
Royal Medal from the Royal Society in 1859, as Sylvester
did in 1861. Sylvester received the Copley Medal in 1880;
it is the highest honor possible from the Royal Society.

74. K. E. Iverson, see Reference 2, pp. 23-25.
75. M. Kline , op. cit., p. 1189.
76. K. E. Iverson, op. cit., p. 24.
77.	 K. E. Iverson, op. cit., p. 73.
78.	 A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth, "A

Formal Description ofSystem/360," IBM Systems Journal 3,
No.3, 198-263 (1964).

79. S. Stevinus, Statics and Hydrostatics (1586).
80.	 W. W. Rouse Ball,A Short Account ofthe History ofMath

em atics, 4th Edition originally published in 1908, Dover
Publications Inc., New York (1960) , pp. 245-246.

81. M. Jammer, Concepts ofForce: A Study in the Foundations
of Dynamic s, Harvard University Press, Cambridge, MA
(1957). Reprinted by Harper Torchbooks, New York
(1962), pp . 123-132.

82.	 I. Newton, Sir Isaac Newton's Mathematical Principles of
Natural Philosophy and His System of the World, translated
by Andres Motte in 1729. Revised and edited by Florian
Cajori, University of California, Berkeley, CA (1946) .

83. M. Jammer, op. cit ., pp. 85-93.
84.	 J. Kepler, Astronomia Nova .. . De Motibus Stellae Manis

(1609).
85.	 R. Small, An Account of the Astronomical Discoveries of

Kepler: Including an Historical Review ofthe Systems Which
Had Successively Prevailed Before His Time, J . Mawman,
London (1804) . Reprinted by University of Wisconsin
Press, Madison, WI (1963) , p. 198.

86. Harris, Universal Dictionary ofthe Am and Sciences (1704) .
87.	 While still an undergraduate, he was appointed to the

Chair of Astronomy in Dublin, soon afterwards becoming
Astronomer Royal of Ireland. Schr6dinger called him "one
of the greatest men of science the world has produced,"
and Whittaker said that "after Isaac Newton, the greatest
mathematician of the English-speaking world is William
Rowan Hamilton."

88. E. W. Hyde , Grassmann's Space Analysis, Mathematical

578	 MCINTYRE

Monograph, No.6, 4th Edition, John Wiley & Sons, New
York (1906) .

89. F. Kline, op. cit ., Vol. 2, Chapters 2 and 3.
90. M. J. Crowe, A History of Vector Analysis: The Evolution of

the Idea of a Vectorial System , Chapter 3, University of
Notre Dame Press, South Bend, IN (1967).

91. J. J. Sylvester, "O n the 8-Square Imaginaries," Johns Hop
kins University Circulars 1, 203 (1882).

92. K. Menninger, op. cit ., pp. 53-54.
93. J. J. Sylvester, "O n the Involution and Evolution of Quater

nions," Philosophical Magazine 16,394-396 (1883).
94.	 J. J. Sylvester, "Sur les Quantites formant un Groupe de

Nonions analogues aux Quaternions de Hamilton," 2nd
paper, Comptes Rendus 98, 273-276, 471-475 (1884).

95. B. Peirce, Lin ear Associative Algebra, memoir read before
the National Academy of Sciences in Washington, 1870.
Reprinted with notes and addenda by C. S. Peirce, inAmer
ican Journal of Mathematics 4, 97-229 (1881).

96.	 C. W. Misner, K. S. Thorne, and J. A. Wheeler, "In Grav
itation: Chapter 41," Spinors, W. H. Freeman and Com
pany, San Francisco, CA (1973) .

97.	 A. Kyrala , Theoretical Physics: Applications of Vectors, Ma
trices, Tensors, and Quaternions, W. B. Saunders Company,
Philadelphia, PA and London (1967) .

98. W. Pauli,	 "Pauli Lectures on Physics, " Wave Mechanics 5,
English translation, Charles P. Enz , Editor, The MIT Press ,
Cambridge, MA and London, p. 158.

99.	 P. A. M. Dirac, The Principles ofQuantum Mechanics, Ox
ford University Press (1935), pp. 67-70; 4th Edition (1958),
pp . 149-151.

100. C. W. Misner, op. cit., pp. 1135-1158.
101. J. W. Gibbs,	 "O n Multiple Algebra," address before the

Section of Mathematics and Astronomy of the American
Association for the Advancement of Science by the Vice
President, American Association for the Advancement of
Science, Proceedings 35, 37-66 (1886) . Reprinted in The
Scientific Papers ofJ. Willard Gibbs, Ph.D., LL.D., Vol. 2,
Dover Publications Inc ., New York (1961) .

102. In 1839, at the age of 25, Sylvester was elected a Fellow of
the Royal Society. Although, in his own phrase, he was
"one of the first holding the faith in which the Founder of
Christianity was educated to compete for high honours in
the Mathematical Tripos at Cambridge," he could not ob
tain his B.A. degree until 1872, after all religious tests had
been abolished. At different times he was Professor of
Physics in London, where he was a colleague of De Mor
gan 's; Professor of Mathematics at the University of Vir
ginia , where he left in haste after successfully defending
himself with a sword-cane against the brother of a student
whose work he had criticized; and Professor at the Royal
Military Academy.

103.	 The currently popular movement that enjoys "debunking
history and toppling eminent Victorians" has not spared
Sylvester and Cayley. Hawkins (see Reference 104) says
that "the significance of Cayley 's memoir on matrices of
1858 has been grossly exaggerated." Sylvester is not even
mentioned. Those interested may, however, consult Ref
erences 105 and 106.

104.	 T. Hawkins, "Th e Theory of Matrices in the 19th Century,"
International Congress of Mathematicians, Vancouver,
1974, Canadian Mathematical Congress (1975) , pp . 561
570.

105.	 A. Cayley , Collected Mathematical Papers, 13 volumes,
Cambridge University Pre ss, London (1889) .

IBM SYSTEMS JOURNAL, VOL 30. NO 4. 1991

106.	 J. J. Sylvester, Collected Mathematical Papers ofJames Jo
seph Sylvester, with index and biographical noti ce by H. F.
Baker , Editor, 4 volumes, Ca mbridge University Press,
London (1904-191 2).

107.	 J . J. Sylvester , additio ns to the articles "O n a New Class of
Th eorems," and "O n Pascal' s Th eorem," Philosophical
Magazine 37, 363- 370 (1850).

108.	 J. J. Sylvester , "On the Relation Betwe en the Minor De
terminants of Linearly Equiv alent Quadratic Functions,"
Philosophical Magazine 1, 295-305 (1851).

109.	 J. J. Sylvester, "A Demonstration of the Th eorem That
Every Homogeneous Qu adratic Polynomi al Is Redu cible
by Real Orthogonal Substitutions to the Form of a Sum of
Positive and Negativ e Squares," Philosophical Magazine 4,
138-142 (1852) .

110.	 J. J . Sylvester, "On a Th eory of the Syzyget ic Relation s of
Two Algebraic Functions," Royal Soc iety of London ,
Philosophical Transactions 143, Part III, 407-548 (1853).

111.	 J. J. Sylvester, "Th e Genesis of an Idea, o r Story of a Dis
covery Relating to Equations in Multiple Quantity," Nature
31, 35-36 (1884) .

112.	 In his publications in two contine nts (a nd in France)
Sylvester made many refer ences to th e memoir by Cayley
(see Reference 17). With every reference to Cayley he pays
the highe st tribute. He refer s to the memoir as "le beau
Memoire" (Refer ence 113), "his great paper on Matrices"
(Reference 114), "Cayley's immortal Mem oir " (Refere nce
115), and "Professor Cayley's ever-memorable paper on
matri ces. Thi s pap er constitutes a second birth of Algebra,
its avatar in a new and glorifie d form" (Refere nce 111).

113.	 J . J . Sylvester , "Sur les Ou ant ites forma nt un Groupe de
Nonions analogues aux Qu at ern ions de Ham ilton ," 1st pa
per, Comptes Rendus 97, 1336-1340 (1883).

114.	 J . J . Sylvester, "O n Qu aternions, Nonions, Sede nions,
etc.," Johns Hopkins University Circulars 3,33,34, 57 (1884).

115. J . J. Sylvester , see Reference 18, pp . 270--286.
116.	 K. E. Iverson and E. E. McDonnell , " Phrasal Forms," APL

Quote Quad 19, No.4, 197- 199 (1989).
117.	 A. Lavoisier, Methode de No menclature Chimique: Nomen

clature Chimiqu e, Paris (1787), pp . 1-25 . Chymical Nomen
clature: A Memoir on the Necessity of Reforming and Bring
ing to Perfection the Nomenclature of Chymistry [sic]; read
to the Public Assembly of the Royal Academy of Sciences in
Paris on the 18th of April , 1787, Edinburgh (1787), pp . 1-1 8.

118. C. Babbage, op. cit., pp. 331-332.
119. Ibid., pp. 370--371.
120.	 J. J . Sylvester, "Address on Commemorat ion Day at Johns

Hopkins University, 22 February 1877," in Collected Math
ematical Papers 3, Number 10 (1877) .

121. A. N. Whitehead, op. cit., p. 59.
122.	 B. Russell, My Philosophical Development, George Allen

and Unwin , Ltd. , London (1959).
123.	 G . Peano, "Th e Importance of Symbols in Mathem atics,"

orig inally published in Italian, Scientia 18, 165-173 (1915) ;
English translation in Selected Works of Giuseppe Peano,
with a biographical sketch and bibliography by Hubert C.
Kennedy; George Allen and Unw in, Ltd ., London (1973) ,
pp. 227-234.

124. J . J. Sylvester, "Note on the Properties of the Te st Oper
ators Which Occur in the Calculus of Invariants . . .," Philo
sophical Magazine 32, 461-472 (1866) .

125.	 J. J. Sylvester, Presidential Address to Section '~" of the
British A ssociation , Exeter Brit ish Association Report
(1869), pp . 1- 9.

IBM SYSTEMS JOURNAL. VOL 30, NO 4, 1991

General references
e. N. And erson , The Fertile Crescent: Travels in the Footsteps of
Ancient Science, Sylveste r Press, Fort Laude rda le, FL, First Edi
tio n (1968), Seco nd Edition (1972) .

Anonymous, Obituary Notic es: G . Boole, Royal Society, Pro
ceedings IS, vi- xi (1867).

Anonymo us, Ob ituary Noti ces: W. S. Jevons, Royal Society, Pro
ceedings 35, i-xii (1883) .

R. e. Archiba ld, "Mathematics Befor e the Gree ks," Science 71,
109- 121, 342 (1930); 72, 36 (1930).

J . Backus, "Can Programming Be Liber ated fro m the Von Ne u
mann Style? A Functional Style and Its Algebra of Prog rams,"
1977 Tu ring Award Lecture, Communications of the ACM 21,
No. 8, 613-641 (1978).

E. T. Bell, Men of Mathematics, Simon and Schuste r, New York ,
and Victor Gollancz, Londo n (1937); Cayley and Sylveste r, In
variant Twins, reprinted in The World of Mathematics, Vol. I,
J. R. Newman, Edito r, Simon and Schu ster , New York (1956),
pp.341- 365.

M. Black, The Nature ofMathematics, with bibliography of sym
bolic logic, New York (1934).

e. B. Boyer , A History of Mathematics, John Wiley & Sons, Inc.,
New York (1968) .

R. e. Buck , "Sherlock Holmes in Babylon ," The A merican Math
ematical Monthly 87, No.5, 335-345 (1980).

Sir E. A. Wallis Budge, A n Egyptian Hieroglyphic Dictionary,

Dove r Publications Inc., New York , first pub lished in 1920.

Sir E. A. Wa llis Budge, Egyptian Language: Em}' Lessons in
Egyptian Hieroglyphics, Dover Publicatio ns Inc.. New York , first
published in 1910.

F. Cajo ri, "A lgebra in Napier's Day and Alleged Prior Inven
t ions of Loga rithms," in Napier Tercentenary Memorial Volume.
e. G. Knott, Edi tor , Londo n (1915), pp. 93-109.

F. Cajo ri, A History ofElementary Mathematics, Macmillan Pub
lishing Co mpany, New York (1930).

F. Cajori,A History ofMathematics, Macmillan Publishing Com
pany, New York (1919).

F. Cajori , "Histo ry of the Exponentia l and Loga rithmic Con
cepts," A merican Mathematical Monthly 20 (1913).

F. Cajori , William Oughtred: A Great Seventeenth-Century
Teacher of Mathemati cs, Th e Op en Court Publi shin g Company,
La Salle, IL (1916).

P. Carruthers, "Introduction to Unitary Symmet ry"; Chap ter I,
Angul ar Momentum and Isospin , Interscience Tracts on Physics
and A stronomy, No. 27, Interscience, John Wiley & Sons, Inc.,
New York (1966).

H. S. Carslaw , "Th e Discovery of Logarithms by Napier," The
Mathematical Gazette 8, 76-84, 115-119 (1915) .

M. Caspar, Kepler, Abelard-Schuman, London and New York
(1959).

W. K. Clifford, Application of Grassmann's Extensive A lgebra,
Vol. 1 (1878).

M. R. Cohen and E. Nagel, A n Introduction to Logic and Sci
entific Method , New York (1934).

A. W. Co nway, "Q ua te rn ions and Matr ices," Qu aternion Cen
tenary Celebrati on , 8th Novemb er , 1943, Royal Irish Academy,
Proceedings ASO, 98-103 (1945) .

M. P. Crosland, Historical Studies in the La nguage of Chemistry,

MCINTYRE 579

first published in 1962, Dover Publications Inc., New York
(1978).

B. Datta and A. N. Singh, History of Hindu Mathematics: A
Source Book, Asian Publishing House, Bombay, London, and
New York, Part 1 (1935); Part 2 (1938); single volume (1962).

A. De Morgan, Syllabus ofa Proposed System ofLogic, Maberley,
London (1860). Reprinted in On the Syllogism and Other Logical
Writings by Augustus De Morgan, edited with an introduction by
P. Heath, Routledge and Kegan Paul , London (1966).

S. E. De Morgan, Memoir of Augustus De Morgan, Longmans,
Green & Co ., London (1882).

L. E. Dickson, "Linear Algebras," Cambridge Tracts in Mathe
matics and Mathematical Physics, No. 16 (1914), Hafner Pub
lishing Company, New York; undated reprint.

Dictionary of Scientific Biography, 14 volumes, C. C. Gillispie,
Editor, Charles Scribner's Sons, New York (1970-1976).

W. J . Dobbs, "The Teaching of Indices and Logarithms," The
Mathematical Gazette 8, 119-125 (1915).

J. M. Dubbey, The Mathematical Work ofCharles Babbage, Cam
bridge University Press (1978).

Elements of Quatemions by the Late Sir William Rowan Hamilton,
W. E. Hamilton, Editor, London (1866); Second Edition, 2 vol
umes, C. J. Joly, Editor, Longmans, Green & Co., London (1901).

H. Eves, Introduction to the History of Mathematics, first pub
lished in 1953, 4th Edition, Holt, Rinehart and Winston, New
York (1976).

G. Flegg, Numbers: Their History and Meaning, Schocken Books,
New York (1983).

H. G. Forder, The CalmIus ofExtension, Cambridge University
Press, Cambridge (1941), reprinted by Chelsea (1960).

S. Gandz, "Studies in Babylonian Mathematics," Osiris 8, 12-40
(1948) .

M. Gardner, Logic Machines and Diagrams, McGraw-Hili Book
Company, Inc., New York (1958).

J. W. Gibbs, Elements of VectorAnalysis, privately printed, New
Haven, CT (1881 and 1884).

J. W. Gibbs, "On the Role of Quaternions in the Algebra of
Vectors," Nature 43, 511-513 (1891).

J. W. Gibbs, "Quaternions and the 'Ausdehnungslehre,''' Nature
44,79-82 (189]).

J. W. Gibbs, The Scientific Papers of 1. Willard Gibbs, Ph.D.,
LL.D., Vol. 2-Dynamics, Vector Analysis and Multiple Algebra,
etc., Longmans, Green & Co., London (1906 and 1931); Dover
Publications Inc., New York (1961) .

J. W. Gibbs, VectorAnalysis, E. B. Wilson, Editor, Charles Scrib
ner 's Sons, New York (1902).

J. W. L. Glaisher, "On the Early History of the Signs + and
and on the Early German Arithmeticians," Messenger of Math
ematics 51, 1-148 (1921-1922).

H. Grassman, Hermann Grassmanns Gesammelte Mathematis
che und Physicalische Werke, F. Engel, Editor, B. G. Teubner,
Leipzig (1894); includes: "Die Wissenschaft der extensiven
Grosse oder die Ausdehnungslehre, ein neue mathematische
Disciplin,' Leipzig (1844); also "Geornetrische Analyse" (1846) .
For Inner and Outer Products see: (1844), pp. 77-102, and
(1846), pp. 345-351.

R. P. Graves, The Life ofSir William Rowan Hamilton, 3 volumes,
Dublin (1882-1891).

580 MCINTYRE

Sir W. R. Hamilton, Elements ofQuatemions, First Edition, Lon
don (1865), Second Edition, London (1899) .

Sir W. R. Hamilton, see also Elements ofQuaternions (1866) and
The Mathematical Papers (1967) .

T. L. Hankins, Sir William Rowan Hamilton , The Johns Hopkins
University Press, Baltimore and London (1980) .

T. L. Heath, Diophantus ofAlexandria: A Study in the History of
Greek Algebra, 2nd Edition, Cambridge (1910).

J. van Heijenoort, From Fregeto Godel:A Source Book in Math
ematical Logic, 1879-1931, Harvard University Press, Cam
bridge, MA (1967).

V. F. Hopper, Medieval Number Symbolism: Its Sources, Mean
ing, and Influence on Thought and Expression, Columbia Uni
versity Press, New York (1938).

E. W. Hyde, "Calculus of Direction and Position," American
Journal of Mathematics 6, 1-13 (1884).

G. Ifrah, From One to Zero: A Universal History of Numbers,
Viking Penguin Inc., New York (1985); English translation of
"Histoirc Universe lie des Chiffres."

K. E. Iverson, "Notation as a Tool of Thought," 1979 Turing
Award Paper, Communications of the ACM 23, No.8, 444-465
(August 1980).

W. S. Jevons, The Principles of Science: A Treatise on Logic and
Scientific Method, First Edition (1874) ; 2nd Edition (1877) . Re
printed by Dover Publications Inc., New York , with introduction
by Ernest Nagel (1958).

L. C. Karpinski, The History ofArithmetic, Rand McNally & Co.,
Chicago and New York (1925).

G . Lame, Lecons sur la Theone Mathematique de l'Elasticite des
Corpes Solides, 1st Edition, Bachelier, Paris (1852).

H. Lass, Vector and Tensor Analysis, McGraw-Hill Book Com
pany, Inc., New York (1950) .

C. I. Lewis,A Survey of Symbolic Logic, University of California
(1918). Reprinted by Dover Publications Inc., New York (1960).

C. I. Lewis and C. H. Langford, Symbolic Logic, Princeton Uni
versity, Princeton, NJ (1932). Extract: "History of Symbolic Log
ic" included in The World ofMathematics, Vol. 3, J. R. Newman,
Editor, Simon and Schuster, New York (1956), pp. 1859-1877.

A. Macfarlane, "Lectures on Ten British Mathematicians of the
Nineteenth Century," Mathematical Monographs, No. 17, John
Wiley & Sons, Inc., New York (1916) .

E. Mach, The Science of Mechanics: A Critical and Historical
Account of Its Development, First German Edition (1883) ; En
glish translation, Chicago (1902). Reprinted by The Open Court
Publishing Company, La Salle, IL (1960).

D. MacHale, George Boole: His Life and Work, Boole Press ,
Dublin (1985) .

The Mathematical Papers of Sir William Rowan Hamilton , Vol.

3-AIgebra, H. Halberstram and R. E. Ingram, Editors, Cun

ningham Memoir No. 15, Cambridge University Press , New

York (1967).

D. B. McIntyre, "Experience with Direct Definition One-Liners
in Writing APL Applications," An APL Users Meeting, Proceed
ings, 1. P. Sharp Associates, Ltd ., Toronto (1978) , pp. 281-297.

D. B. McIntyre, "In troduction to the Study of Data Matrices,"
Models of Geologic Processes-an Introduction to Mathematical
Geology, P. Fenner, Editor, American Geological Institute,
Washington, DC (]969).

O. Neugebauer, "The Exact Sciences in Antiquity," Acta His
torica Scientiarum Naturalium et Medicinalium, Vol. 9, Copen-

IBM SYSTEMS JOURNAL. VOL 30. NO 4. 1991

hagen (1951), and Princeton University, Princeton, NJ, and Ox
ford (1951). Reprinted by Harper Torchbooks, Harper, New
York (1962), and by Dover Publications Inc., New York.

R. P. Polivka and S. Pakin, APL: The Language and Its Usage,
Prentice -Hall, Inc., Englewood Cliffs, NJ (1975); see p. 192 for
Boolean product A < . < B.

G. Prasad , Some Great Mathematicians ofthe Nineteenth Century,
Their Lives and Their Work, 3 volumes, The Benares Mathe
matical Society, India (1934).

J . E. Ouibell (with notes by W. M. F. P), Hierakonpolis, Part I,
Plates of Discoveries in 1898, Egyptian Research Account, 4th
Memoir , Bernard Ouaritch, London (1900), Plate 26B.

G. Sarton, "The First Explanation of Decimal Fractions and
Measures (1585), Together with a History of the Decimal Idea
and a Facsimile (No. xvii) of Stevin's Disme," Isis 23, 153-244
(1935).

G. Sarton, "Simon Stevin of Bruges (1548-1620)," Isis 21,241
303 (1934).
G. Sarton, The Study of the History of Mathematics, Cambridge,
MA (1936).
J. F. Scott, A History of Mathematics from Antiquity to the Be
ginning of the Nineteenth Century, Taylor and Francis, London
(1960).
D. E. Smith, "Algebra of 4000 Years Ago," Scripta Mathematica
4, 111-125 (1936).

D. Smith, Interface: Calculus and the Computer, First Edition ,
Chapter 12;Second Edition, Saunders (1984), p. 63-75; Instruc
tor 's Manual , pp. 23-25 .

D. E. Smith, "The Law of Exponents in the Works of the 16th
Century," in Napier TercentenaryMemorial Volume, C. G. Knott ,
Editor, London (1915), pp . 81-91.

D. E. Smith, A Source Book in Mathematics , McGraw-Hili Book
Company, Inc., New York and London (1929), especially pp.
217-228.

D. E. Smith, The Teaching of Elementary Mathematics , Mac
millan Co., London (1901).

D. E. Smith and J. Ginsburg, "From Numbers to Numerals and
from Numerals to Computation," from Numbers and Numerals .
Reprinted in The World of Mathematics , Vol. 1, J. R. Newman,
Editor, Simon and Schuster, New York (1956), p. 442-464.

D. E. Smith and L. C. Karpinski, The Hindu-Arabic Numerals ,
Boston and London (1911).

S. Stevin, The Principal Works of Simon Stevin, 5 volumes, Vol
ume 1, General Introduction, Mechanics, E. J. Dijksterhuis,
Editor, C. V. Swets and Zeitlinger, Amsterdam (1955).

D. J. Struik, A Concise HistoryofMathematics, 2 volumes, Dover
Publications Inc., New York (1948).

F. J . Swetz, Capitalism and Arithmetic: The New Math ofthe 15th
Century, The Open Court Publishing Company, La Salle, lL
(1987).

F. Thureau-Dangin, "Sketch of a History of the Sexagesimal
System," Osiris 7, 95-141 (1939).

H. A. Thurston, The Number-System, Interscience Publishers,
Inc., New York (1964).

J. Venn, "Boole's Logical System," Mind I, 479-491 (1876).

J. Venn, "George Boole, 1815-1864," Dictionary of National Bi
ography.

M. Ward and C. E. Hardgrove, Modem Elementary Mathematics,
Addison -Wesley Publishing Co., Reading, MA (1964).

W. Whewell, Historyofthe Inductive Sciences from the Earliest to
the Present Time , 3 volumes, Vol. 2, HistoryofMechanics, Second
Edition, John W. Parker, London (1847).

E. T. Whittaker, "The Sequence of Ideas in the Discovery of
Ouaternions,' Ouaternion Centenary Celebration, 8th Novem
ber , 1943, Royal Irish Academy, Proceedings ASO, pp. 93-98
(1945).
R. L. Wilder, Evolution ofMathematical Concepts: an Elementary
Study , John Wiley & Sons, Inc., New York (1968). Reprinted by
The Open University, Milton Keynes (1978).
E. B. Wilson, VectorAnalysis:A Text-Book for the Use ofStudents
Founded Upon the Lectures ofJ. Willard Gibbs, Charles Scrib
ner's Sons, New York (1909). Reprinted by Dover Publications
Inc., New York (1960).

Accepted for publication August 5, 1991.

Donald B. Mcintyre Luachmhor, Church Road, Kinfauns, Perth
PH2 7LD, Scotland, U.K. Donald McIntyre was educated in
Scotland, receiving B.Sc., Ph.D., and D.Sc. degrees from Edin
burgh University where he was a member of the faculty from
1948-1954. He did postdoctoral research at the University of
Neuchatel , the University of California at Berkeley, and the
Dominion Observatory, Canada. From 1954 until 1989, he was
Professor of Geology at Pomona College. In addition to teaching
geology, he has been active for 30 years in computing, obtaining
one of the first IBM System/360 computers in 1965, the second
of IBM's 5100 series, and the second of IBM's 4300 series in May
of 1979. He has lectured around the world for Sigma Xi, the
American Association of Petroleum Geologists, the British Mu
seum, the Geological Society of America, the ACM as a Dis
tinguished Lecturer, the State Seismological Bureau in Beijing,
the University of Nanjing in China , and numerous universities
in the United States, Canada, Britain, and Europe. In 1969 he
gave the Matthew Vassar Lecture on the subject of APL at
Vassar College . In 1971,he was a consultant with the APLgroup
at the IBM Scientific Center in Philadelphia under A. Falkoff
and K. Iverson . He has received a Fulbright Award, a John
Simon Guggenheim Memorial Fellowship, and in 1985 was
named California College and University Professor of the Year
by the Council for the Advancement of Support of Education.
Donald McIntyre is now retired in his native Scotland, but is still
active in the use and promotion of APL. He is an Honorary
Fellow at the Universities of Edinburgh and SI. Andrews.

Reprint Order No. G321-5454.

IBM SYSTEMS JOURNAL. VOL 30. NO 4. 1991 MCINTYRE 581

A personal view of APL

This essay portrays a personal view of the
development of several influential dialects of
APL : APL2 and J. The discussion traces the
evolution of the treatment of arrays, functions,
and operators, as well as function definition,
grammar, terminology, and spelling.

I t is now 35 years since Professor Howard Aiken
instituted a computer science program at Har

vard, a program that he called A utom atic Data Proc
essing. It is almost that long since I began to de
velop, for use in writing and teaching in that
program, the programming language that has come
to be known as API..

Although I have consulted original papers and
compared my recollections with those of col
leagues, this remains a personal essay that traces
the development of my own thinking abo ut nota
tion. In particular, my citation of the work of others
does not imply that they agree with my present in
terpretation of their contributions. In speaking of
design decisions I use the word we to refer to the
small group associated with the early implementa
tion , a group that included Adin Falkoff, Larry
Breed, and Dick Lathwell, and is identified in "Th e
Design of APL" 1 and "The Evolution of APL. " z
These papers contain full treatments of various as
pects of the development of APL that are given scant
attention here.

Because my forma l education was in mathematics,
the fundamental notions in APL have been drawn
large lyfrom mathematics. In particular, the notions
of arrays, functions, and operators were adopted at
the outset, as illustrated by the following excerpt
from A Programming Language. 3

by K. E. Iverson

An operation (such as summation) which is ap
plied to all components of a vector is called re
duction.... Thus, +Ix is the sum, xix is the
product, and vI x is the logical sum of the com
ponents of a vector x .

Th e phrase +Ix alone illustrates the three aspects:
afunction +, an operator I (so named from the term
used by Heaviside" for an entity that app lies to a
function to produce a related derived function) ,
and an array x.

The present discussion is organized by topic , trac
ing the evolution of the treatments of array s, func
tions, and operators; as well as that of other matters
such as function definition, grammar, terminology,
and spelling (that is, the representation of primi
tives).

As stated at the outset, the initial motive for de
veloping APL was to provide a tool for writing and
teaching. Although APL has been exploited mostly
in commercial programming, I continue to believe
tha t its most important use remains to be exploited:
as a simple, precise, executable notation for the
teaching of a wide range of subjects.

When I retired from paid employment, I turned my
attention back to this matter and soon concluded
that the essential tool required was a dialect of APL
that:

°Copyright 1991 by International Business Machines Corpora
tion. Copying in printed form for private use is permitted with
out payment of royalty provided that (1) each reprod uction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission bycomputer
based and other information-service systems. Permission to re
publish any other portion of this paper must be obtained from
the Editor.

582 IVERSON IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

•	 Is available as "shareware," and is inexpensive
enough to be acquired by students as well as by
schools

•	 Can be printed on standard printers
•	 Runs on a wide variety of computers
•	 Provides the simplicity and gen erality of the lat

est thinking in APL

The result has been J, first reported in Reference 5.

Work began in the summer of 1989 when I first
discussed my desires with Arthur Whitney. He pro
posed the use of C for implementation, and pro
duced (on one page and in one afternoon) a work
ing fragment that provided only one function (+),
one operator (/), one-letter names, and arrays lim
ited to ranks 0 and 1, but did provide for boxed
arrays and for the use of the copula for assigning
names to any entity.

I showed this fragment to others in the hope of
interesting someone competent in both C and APL
to take up the work, and soon recruited Roger Hui ,
who was attracted in part by the unusual style of C
programming used by Ar thur, a style that mad e
heavy use of prep rocessing facilities to permit writ
ing further C in a distin ctly APL style.

Roger and I then began a collaborat ion on the de
sign and implementation of a dialect of API. (later
named J by Roger), first deciding to roughly follow
"A Dictionary of APL" 6 and to impose no require
ment of compatibility with any existing dialect. We
were assisted by suggestions from many sources,
particularly in the design of the spelling scheme
(E. B. Iverson and A. T. Whitney) and in the treat
ment of cells, items, and formatting (A. T. Whitney,
based on his work on SHARP/HP 7 and on the dialect
A reported at the APL89 conference in New York).

E. E. McDonnell of Reu ters provided C programs
for the mathematical functions (which apply to
com plex num bers as well as to real), D. L. Orth of
IBM ported the system to the IBM RISC System/
6000* in time for the APL90 conference, and L. J.
Dickey of the University of Waterloo provided as
sistance in porting the system to a number of other
computers.

The features of J that distinguish it from most other
APL dialects include:

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

1. A spelling scheme that uses ASCII characters in
one- or two-letter words

2. Convenient international use, provided by facil
ities for alternative spellings for the national use
characters of ASCII , and by facilities to produce
the error messages in any desired language

3. Emphasis on	 major cells or items ; for example,
reduction (f /) applies f between items, and ap
plication of f between cells of lesser rank is ob
tained by using the rank operator

4.	 The function argument to scan (\) is, like all
functions, ambivalent. Scan applies the monadic
case of the function rather than the dyadic . Thus,
the traditional sum scan is given by +/ \ a rather
than by +\ a, and < \ a boxes the partitions pro
vided by the scan .

5. A number of other partitioning adverbs are pro
vided, including suffix scan (\ .), windows of
width k (as in k f\ a) , and oblique (/ .).

6. Use of the hook and fork (discussed later) and
various new operators together with the use of
the copula to assign names to functions. These
facilities permit the extensive use of tacit pro
gramming in which the arguments of a function
are not explicitly referred to in its definition , a
form of programming that requires no reparsing
of the function on execution, and therefore pro
vides some of the efficiency of compilation. (See
Reference 8.)

7. An immediate and highly readable display of the
definition of a function f obtained by simply
entering f

Significant use of J in teaching will, of course, re
quire the development of textual material using it.
Three steps have been taken toward this goal:

1.	 The dictionary of J includes 45 frames of tutorial
material (suitable for slides) that are brief treat
ments in J of topics from a dozen different areas.

2.	 At the urging of L. B. Moore of I. P. Sharp As
sociates, I prepared for distribution at APL89 a
booklet called Tangible Math, designed for in
dependent study of elementary mathematics. It
was based on the use of Sharp 9 shareware for the
IBM PC, and required no reference to an APL
manual. I have since produced a J version of
Tangible Math .10

3. At a four-hour hands-on workshop for teachers
of mathematics organized by Anthony Camacho
of I-APL II and funded by the British APL Asso
ciation, Anthony and I used Tangible Math to
expose the participants to the advantages of ex-

IVERSON 583

ecutable mathematical notation. The teachers
left with a copy of J and with enough experience
to continue the use of J on their own. Such work
shops could be used to bring teachers to a point
where they could develop their own treatments
of isolated topics, and eventually of complete
subjects, on their own.

In the three decades of APL development, many
different ideas have been proposed and explored,
and many have been abandoned. Those that sur
vived have done so through incorporation in one or
more implementations that define the many dia
lects of APL.

These dialects fall into several families, two of
which have been particularly influential. I refer to
them by the names of their most recent exem
plars-APLz l2 on the one hand, and J on the oth
er-and sketch the development of these families
in a later section.

In the remainder of the essay I largely confine my
remarks to those dialects that have influenced, and
been influenced by, my own thinking. This empha
sis is intended not to denigrate the dialects not
mentioned, but to keep the discussion focused and
to leave their exposition to others more conversant
with them.

Although my motive for producing a new dialect
was for use in teaching, this dialect has led to much
greater emphasis on a style of programming called
functional by Backus," and defined in J as tacit
programming (because arguments are not referred
to explicitly) . These matters are addressed in the
section on tacit programming.

Terminology

Although terminology was not among the matters
given serious attention at the outset, it will be help
ful to adopt some of the later terminology imme
diately. Because of our common mathematical
background, we initially chose mathematical terms.
For example, the sentence

b ~ (+\a)- .xa~2 3 5 7

illustrates certain parts of speech, for which we
adopted the mathematical terms shown on the left
as follows:

584 IVERSON

Functions or operators
Constant (vector)

+ x

2 357
- Verbs

Noun (list)
Variables a b Pronouns
Operator \ Adverb
Operator Conjunction

(Punctuation
Copula

I now prefer terms drawn from natural language, as
illustrated by the terms shown on the right. Not only
are they familiar to a broader audience, but they
clarify the purposes of the parts of speech and of
certain relations among them:

1. A	 verb specifies an "action" upon a noun or
nouns.

2. An adverb applies to a verb to produce a related
verb ; thus +\ is the verb "partial sums."

3. A conjunction applies to two verbs, in the man
ner of the copulative conjunction and in the
phrase "run and hide."

4.	 A name such as a or b behaves like a pronoun,
serving as a surrogate for any referent linked to
it by a copula. The mathematical term variable
applied to a name x in the identity (x+ 1)x (x+ 3)

2+4x+3equals x serves to emphasize that the
relation holds for any value of x , but the term is
often inappropriate for pronouns used in pro
gramming.

5.	 Although numeric lists and tables are commonly
used to represent the vectors and matrices of
mathematics, the terms list and table are much
broader and simpler, and suggest the essential
notions better than do the mathematical terms.

6. To avoid ambiguity due to the two uses of the
term operator in mathematics (for both a func
tion and a Heaviside operator) I usually use only
the terms adverb and conjunction, but continue
to use either function or verb, list or vector, and
table or matrix, as seems appropriate.

Spelling

In natural languages the many words used are com
monly represented (or spelled) in an alphabet of a
small number of characters. In programming lan
guages the words or primitives of the languages
(such as sin and = :) are commonly represented by
an expanded alphabet that includes a number of
graphic symbols such as + and =.

When we came to implement APL, the alphabet
then widely available on computers was extremely
limited, and we decided to exploit a feature of our

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

company's newly-developed Selectric* typewriter,
whose changeable typing element allowed us to de
sign our own alphabet of 88 characters. By limiting
the English alphabet to one case (majuscules), and
by using the backspace key to produce composite
characters, we were able to design a spelling
scheme that used only one-character words for
primitives.

Moreover, the spelling scheme was quite mnemonic
in an international sense, relying on the appearance
of the symbols rather than on names of the functions
in any national language. Thus the phrase k t X takes
k elements from x, and .. denotes drop.

Because the use of the APL alphabet was relatively
limited, it was not included in the standard ASCII
alphabet now widely adopted. As a consequence, it
was not available on most printers, and the printing
and publication of APL material became onerous.
Nevertheless, in spite of some experiments with
"reserved words" in the manner of other program
ming languages, the original APL alphabet has re
mained the standard for APL systems.

The set of graphics in ASCII is much richer than the
meager set available when the APL alphabet was
designed, and it can be used in spelling schemes for
APL primitives that still avoid the adoption of re
served words. Such a scheme using variable-length
words was presented in Reference 6, and received
limited use for communicating APL programs using
standard printers, but was never adopted in any
commercial implementation. A much simpler
scheme using words of one or two letters was
adopted in J, in a manner that largely retains, and
sometimes enhances, the international mnemonic
character of APL words.

In a natural language such as English, the process
of word formation is clearly distinguished from pars
ing. In particular, word formation is static, the rhe
matic rules applying to an entire text quite indepen
dently of the meanings or grammatical classes of the
words produced. Parsing, on the other hand, is dy
namic, and proceeds according to the grammatical
classes of phrases as they evolve. This is reflected in
the use of such terms as noun phrase and verb phrase.

In programming languages this distinction is com
monly blurred by combining word formation and
parsing in a single process characterized as "syn
tax." In J, the word formation and parsing are dis-

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

tinct. In its implementations, each process is table
driven; the parsing table being presented explicitly
in the dictionary of J, and the rhematic rules being
discussed only informally.

It is interesting to note that the words of early APL
included "composite characters" represented by

I largely confine my remarks to
those dialects that have

influenced my own thinking.

two elements of the underlying alphabet; these
were mechanically superposed, whereas in J they
appear side-by-side.

Functions

Functions were first adopted in the forms found in
elementary mathematics, having one argument (as
in Ib I and -b) or two (as in a+b and a-b). In
particular, each had an explicit result, so that func
tions could be articulated to form sentences, as in
la-b I -:- (a+b).

In mathematics, the symbol - is used to denote
both the dyadic function subtraction (as in a - b) and
the monadic function negation (as in -b). This am
bivalent use of symbols was exploited systematically
(as in -:- for both division and reciprocal , and * for
both power and exponential) to provide mne
monic links between related functions, and to econ
omize on symbols.

The same motivations led us to adopt E. E. Me
Donnell 's proposal to treat the monadic trigono
metric (or circular) functions and related hyperbolic
and pythagorean functions as a single family of dy
adic functions, denoted by a circle . Thus sine y and
cosine yare denoted by 10y and 2oy, the numeric
left argument being chosen so that its parity (even
or odd) agrees with the parity of the function de
noted, and so that a negative integer denotes the
function inverse to that denoted by the correspond
ing positive integer. This scheme was a matter of
following (with rather less justification) the impor-

IVERSON 585

tant mathematical notion of treating the monadic
functions square, cube, square root, etc. as special
cases of the single dyadic power function.

When the language was formalized and linearized
in APL\360,14 anomalies such as xY for power, xy
for product, Iy I for magnitude, and M i j for index-

Box and enclose have made it
convenient to pass any number of
parameters as explicit arguments.

ing were replaced by x ey and x xy and [y and
M [i ; j J. At the same time, function definition was
formalized, using headers of the form Z+-X F Yand
Z+-F Y to indicate the definition of a dyadic or a
monadic function. This form of header permitted
the definition of functions having no explicit result
(as in X F Y), and so-called niladic functions (as in
Z+-F and F) having no explicit arguments. Th ese
forms were adopted for their supposed conve
nience, but this adoption introduced functions
whose articulation in sentences was limited .

In most later dialects such niladic and resultless func
tions were also adopted as primitives. In J they have
been debarred completely, to avoid the problem of
articulation, to avoid complications in the application
of adverbs and conjunctions to them, and to avoid the
following problem with the copula: if 9 is a niladic
function that yields the noun n, and if f +- g, then is f
a niladic function equivalent to g, or is it the noun n?

In conventional mathematical notation, an expres
sion such as f(x,y,z) can be interpreted either as a
function of three arguments, or as a function of one
argument, that is, of the vector formed by the cat
enation of x, y, and z. Therefore the limitation of
APL functions to at most two formal arguments does
no t limit the number of scalar arguments to which
a function may apply .

Difficulties with nonscalar arguments first arose in
indexing, and the forms such as MI ;J ; KJ and
MI; ; KJ that were adopted to deal with it intro
duced a "nonlocality" into the language: a phrase

586 IVERSON

within brackets had to be treated as a whole rather
than as the application of a sequence of functions
whose results could each be assigned a name or
otherwise treated as a normal result. Moreover, an
index expression for an array A could not be written
without knowing the rank of A.

The introduction of a function to produce an
atomic representation of a noun (known as enclose in
NARS I5

•
16 and APL2, as box in SAX I7 and J, and dis

cussed in the section on atomic representations)
makes it possible to box arguments of any rank and
assemble them into a single argument for any func
tion. In particular, it makes possible the use of such
a boxed array as the argument to an indexing func
tion , adopted in SAX and J and called from.

As may be seen. " the function rotate was initially
defined so that the right argument specified the
amount of rotation. The roles of the arguments
were later reversed to accord with a general mne
monic scheme in which a left argument a together
with a dyadic function f (denoted in J by a &f)
would produce a "meaningful" monadic function.
Exceptions were, of course, made for established
functions such as divided by. The scheme retains
some mnemonic value, although the commute ad
verb (-) provided in J and in SAX makes either
order convenient to use. For example, 5 %- 3
would be read as 5 into 3.

In AP L\360 it was impossible to define a new function
within a program. This was rectified in APLSV 19 by
defining a canonical representation of a function (a
matrix M whose first row was a header, and whose
succeeding rows were the sentences of the defini
tion); a fix function OFX such that OFX M yielded
the name of the function as an explicit result, and
established the function as a side effect; and an in
verse function OCR, which when applied to the name
of a function produced its canonical representation as
an explicit result. The ability to define ambivalent
functions was added in a University of Massachusetts
system;" and was soon widely adopted.

The function OFX established a function only as a
side effect, but the scheme has been adapted to J by
providing a conjunction (:) such that m : d pro
duces an unnamed function that may be applied di
rectly, as in x m : d y, or may be assigned a name,
as in f = . m : d. See the section on name assignment.

Following an idea that Larry Breed picked up at a
lecture by the late Professor A. Perlis of Yale, we

IBM SYSTEMS JOURNAL. VOL 30. NO 4 1991

adopted a scheme of dynamic localization in which
names localized in a function definition were
known to further functions invoked within it.

This decision made it possible to pass any number
of parameters to subordinate functions, and there
fore circumvented the limitation of at most two
explicit arguments, but it did lead to a sometimes
confusi ng profusion of names localized at various
levels. The introduction of atomic representation
(box and enclose) has made it convenient to pass
any number of parameters as explicit arguments; in
J this has been exploited to allow a return to a
simple r localization scheme in which any name is
either strictly local or strictly global.

Arrays

Perhaps because of the influence of a course in
tensor analysis taken as an undergraduate, I
adopt ed the notion that every function argument is
an array, and that arrays may be classified by their
ranks; a scalar is rank 0, a vector rank I, a matrix
rank 2, and so on.

The application of arithmetic (or scalar) function
such as + and x also followed tensor analysis; in par
ticular the scalar extension , which allowed two argu
ments to differ in rank ifone were a scalar. In defining
other functions (such as reshape and rotate) , we at
tempted to make the behavior on higher-rank arrays
as systematic as possible, but failed to find a satisfying
uniform scheme . Such a uniform scheme (based on
the not ion of cells) is defined in "A Dictionary of
APL,·' f. and adopted in SAX and in J.

A rank-k cell of A is a subarray of A along k con
tiguous final axes. For example, if:

A
abed
e f gh
i jkl

mnop
qrs t
uvwx

then the list abed is a l-cell of A , the table from m
to x is a 2-cell of A , the atom g is a O-cell of A , and
A itself is a 3-cell of A.

Each primitive function has intrinsic ranks, and ap
plies to arrays as a collection of cells of the appro-

IBM SYSTEMS JOURNAL. VOL 30, NO 4, 1991

priate rank. For example, matrix inverse has rank 2,
and applies to an array of shape 5 4 3 as a col
lection of five 4 by 3 matrices to produce a result
of shape 5 3 4, a collection of five 3 by 4 inverses
of the 4 by 3 cells.

Moreover, the rank conjunction (denoted in J by")
produces a function of specified rank. For example.
the intrinsic rank of ravel is unbounded and (using
the shape 2 3 4 array A shown above):

.A
abcdefghijklmnopqrstuvwx

• " 2 A
abcdefghi j kl
mnopqr stu vwx

Further discussion of cells and rank may be found
in the section on tacit programming, and in Ref
erence 21.

The central idea behind the use of cells and a rank
operator was suggested to me at the 1982 APL con
ference in Heidelberg by Arthur Whitney. In par
ticular, Arthur showed that a reduction along any
particular axis (+ / [I JA) could be neatly handl ed
by a rank operato r. as in +/" I A. By furth er adopt
ing the idea that every primit ive possessed intrinsic
ranks (monadic, left , and right) I was able , in Ref
erence 6. to greatly simplify the definition of prim
itives: each function need be defined only for cells
having the intrinsic ranks . and the extension to
higher -rank arguments is uniform for all functions.

Adverbs and conjunctions

Even after tasting the fruits of generalizing the I
notation of mathematics to the form f / that per
mitted the use of functions other than addition, it
took some time before I recognized the advantages
of a corresponding generalization of the inner or
matrix product to allow the use of functions other
than addition and multiplication. Moreover, I
thought primarily of the derived functions provided
by these generalizations, and neither examined the
nature of the slash itself nor recognized that it be
haved like a Heaviside operator.

However, when we came to linearize the notation
in the implementation of APL\360, the linearization
of the inner product (which had been written as one
function on top of the other) forced the adoption of
a symbol for the conjunction (as in M+ . x N) . This

IVERSON 587

focused attention on the adverbs and conjunctions
themselves, leading to a recognition of their role
and to the adoption of the term operators to refer
to them.

In reviewing the syntax of operators we were dis
turbed to realize that the slash used for reduction
applied to the (function) argument to its left, and
even considered the possibility of reversing the or
der to agree with the behavior of monadic func
tions . However, Adin Falkoff soon espoused the
advantages of the established scheme, pointing out
that the adoption of a "long left scope" for oper
ators would alIow the writing of phrases such as
+ . x / to denote the function "inner product re
duction," which might be applied to a rank-3 array.

We also realized that the use of the slash to denote
compression (as in 1 0 1 0 1/ ' abcde ' to yield
, ace ') seemed to imply that the slash was ambig
uous, sometimes denoting an operator, and some
times a function. This view was adopted in NARS
and in the precursor to APL2. Alternatively, adverbs
and conjunctions could be assumed to apply to both
nouns and verbs, giving different classes of derived
verbs in the different cases. In this view, compres
sion was not a dyadic function denoted by the slash,
but was rather the derived function resulting from
the application of the adverb / to a noun.

The application of adverbs and conjunctions to
nouns was adopted in SHARP, 22 SHARP/HP, SAX, and
J, but was resisted in other dialects, in spite of the
fact that the phrase cj:J [3] for applying reversal on
axis 3 furnished an example of such usage in early
APL, and in spite of the implied use of nouns in
Heaviside 's notation D 2 f for the second derivative
of f.

In calculus, the expression f+g is used to denote the
sum of functions f and g, that is, (f+g) x is defined
as (f x)+(g x). The utility of such constructs as f+g
and f x g was clear, and I realized that they could be
handled by operators corresponding to the func
tions + and x . What appeared to be needed was an
adverb that would apply to a function to produce a
conjunction . However, I was reluctant to compli
cate the grammar by introducing results other than
functions from adverbs, and I began by suggesting,
in Reference 23, a limited solution using composite
symbols such as + overstruck by an overbar.

Somewhat later I discussed this matter with Arthur
Whitney, and he quickly suggested an operator

588 IVERSON

that we modified slightly and presented as the
til operator in Reference 24, using the definition
x (f t il g) y is (g y) f x. The fork discussed
in the section on grammar and order of execution
now provides a more convenient solution, using ex
pressions such as f+g and f x g.

In mathematics, the notions of inner product and
outer product are used in rather limited areas. In
APL systems, operators provide generalizations of

The need for parentheses will be
reduced by executing compound

statements from right to left.

them that not only broaden their uses, but make
them more readily comprehensible to non mathe
maticians. Much the same is true of "duals" in
mathematics, but because the generalization of APL
is not so widely known or used , it merits some at
tention here.

It is useful to view almost any task as performed in
three phases: preparation, the main task , and un
doing the preparation. In programming terms this
would appear as i n versep mai n p argu me nt.
In other words, the main function is performed un
der the preparation p.

In J the under conjunction is denoted by &. and is
defined as folIows:

m&.p y ~ in ve r sep m p y

x m&. p y is inversep (p x) m (p y)

For example, since 1\ . denotes the natural loga
rithm in J, the expression a +& .1\ . b yields the
product of a and b. The under conjunction is com
monly used with the function open (whose inverse
is box) discussed in the section on atomic repre
sentations.

Name assignment

In mathematics, the symbol = is used to denote
both a relation and the copula in name assignment

IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

(as in "let x=3"). In APL, the arrow was first used
for the copula in Reference 18, and has been used
in all dialects until the adoption of = . and = : in J. 21

The use of the copula was initially restricted to
nouns, and names were assigned to user-defined
functions by a different mechanism in which the
name of the function was incorporated in the rep
resentation to which the function DFXwas applied,
as discussed in the previous section on functions.
The use of the copula for this purpose was proposed
in Reference 23, implemented in SHARP/HP, and
later adopted in Dyalog" and in J. These imple
mentations provided for adverbs and conjunctions
in the same manner. However, this use of the cop
ula has not been adopted in other implementations,
perhaps because the representations used for func
tions make its adoption difficult.

Indirect assignment was first proposed in Reference
26, and is implemented in J and defined in Refer
ence 21. Two copulas are used in J, one for local
assignment (=.), and one for global (=:) assign
ment.

Grammar and order of execution

Grammatical rules determine the order of exec u
tion of a sentence, that is, the order in which the
phrases are interpreted. In Reference 3, the use of
parentheses was adopted as in mathematics, to
gether with the rule (Reference 3, page 8) that "The
need for parentheses will be reduced by assuming
that compound statements are, except for interven
ing parentheses, executed from right to left."

In particular, this rule implies that there is no hi
erarchy among functions (such as the rules in math
ematics that power is executed before multiplica
tion before addition) . Long familiarity with this
hierarchy occasioned a few lapses in my book, " but
the new rule was strictly adopted in the APL\360
implementation. APL\360 also introduced a hierar
chy, giving operators precedence over functions.

The result was a simple grammar, complicated only
by the bracket-semicolon notation used for index
ing. This was later complicated by the adoption, in
most systems, of the statement separator (denoted
by a diamond). The utility of the statement sepa
rator was later vitiated in some systems (including
SHARP, SAX, and J) by the adoption of dyadic func
tions lev and dex, which yielded their left and right
arguments, respectively.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The grammatical rules left certain phrases (such as
a sequence of nouns) invalid. In NARS and in APL2
meanings were assigned to a sequence of nouns: if
a and b are the nouns "hold" and "on," then the
phrase a b yields the two-element list of enclosed
vectors. The adoption of such "strands" led to a
modification of the grammatical rules based upon
left and right "binding strengths" assigned to var
ious parts of speech, as discussed in References 27
and 28. In particular these rules required that the
phrase 2 3 5 [1] be replaced by (2 3 5) [1 J.

Other changes in grammar were adopted in J: the
bracket-semicolon indexing was replaced by a nor
mal dyadic verb from; and any isolated sequence of
verbs was assigned a meaning based upon the hook
and fork , first proposed in Reference 29 and briefly
explained next. The result is a strict grammar in
which each phrase for execution is chosen from the
first four elements of the execution stack, and eli
gibility for execution is determined by comparison
with a 14 by 4 parsing table as shown in Reference
21.

Because the hook and fork (as well as several other
previously invalid phrases) playa significant role in
the tacit programming discussed in a later section,
they are further elaborated here. Briefly, if

mean= .+/ %i!

then

mean x

is equivalent to

(+/x) %(i!x)

The dyadic case is defined analogously. If

diff s q=. +*

then

a d i ffs q b

is

(a+b) *(a- b)

The hook and the fork may be expressed graphi
cally as follows:

IVERSON 589

FORK	 HOOK
9 9 9 9

/	 \ / \ / \ / \
f h f h y h x h

/ /I I \ \ I I
y y x y x y y y

Two further points should be noted:

1. A longer train of verbs will resolve into a se
quence of forks and hooks. For example,
t aut=. <: =<+.= is equivalent to two forks,
as in taut=. <: = « +. =), and expresses
the tautology that less than or equal « :) equals
(=) less than «) or (+.) equal (=) .

2.	 In the expression (+ / %it) 2 3 4 5 to produce
the mean of the list 2 3 4 5, the parentheses
are clearly essential, since +/ % /I 2 3 4 5
would yield 0.25, the sum of the reciprocal of the
number of items. However, it must be empha
sized that the parentheses perform their normal
function of grouping, and are not needed to ex
plicitly produce forks, as may be seen from the
earlier examples.

Atomic representations

It is commonplace that complex constructs may be
conveniently represented by arrays of simpler con
structs: a word by a list of letters, a sentence by a list
of words, a complex number by a list of two real
numbers, and the parameter of a rotation function
by a table of numbers, and so on.

However, it is much more convenient to use atomic
representations, which have rank 0 and are there
fore convenient to combine into, and select from,
arrays. For example, the representation 3j 4 used
for a complex number in APL systems is an atom or
scalar.

In Reference 30, Trenchard More proposed a rep
resentation scheme in which an enclose function
applied to an array produced a scalar representa
tion of the argument. This notion was adopted or
adapted in a number of APL systems, beginning with
NARS, and soon followed by APL2.

A somewhat simpler scheme was adopted in SHARP
in 1982,was presented in "A Dictionary of APL,, 6 in
1987, and later adopted in SAX and J: a function
called box (and denoted by <) applied to any noun
produces an atomic representation of the noun that

can be "decoded" by the inverse function open (de
noted by » to yield the original argument.

A desire for similar convenience in handling col
lections of functions led Bernecky and others to
propose (in References 31 and 32) the notion of
function arrays. These have been implemented as
gerunds in J by adopting atomic representations for
functions.

Implementations

Because of a healthy emphasis on standardization,
many distinct implementations differed slightly, if
at all, in the language features implemented. For
example , the IBM publication APLSV User's Manu
al " written originally for APLSV applied equally to
VS APL and the IBM 5100 computer.

Despite the present emphasis on the evolution of
the language itself, certain implementations merit
mention:

1.	 The IBM 5100 mentioned above is noteworthy as
one of the early desktop computers, and as an
implementation based on an emulator of the IBM
System/360* and a read-only memory copy of
APLSV .

2. The	 I-APL implementation provided the first
shareware version of APL , aimed at making APL
widely available in schools.

Implementations representing the two main lines of
development mentioned in the introduction are
now discussed briefly. The first is the nested array
system NARS conceived and implemented by Bob
Smith of STSC and incorporating ideas due to Tren
chard More" and J. A. Brown (Doctoral thesis,
University of Syracuse). In addition to the enclose
and related facilities that provide the nested arrays
themselves , this implementation greatly expanded
the applicability of operators. In the APL2 imple
mentation, Brown has followed this same line of
development of nested arrays .

Somewhat after the advent of NARS, the SHARP APL
system was extended to provide boxed elements in
arrays, as reported in Reference 22. New operators
(such as the rank) were also added, but their utility
was severely limited by the fact that operators were
not (as in NARS) extended to apply to user-defined
functions and derived functions. In the succeeding
SAX and J implementations such constraints have
been removed.

590 IVERSON	 IBM SYSTEMS JOURNAL. VOL 30. NO 4. 1991

Tacit programming

A tacit definition is one in which no explicit mention
is made of the arguments of the function being de
fined . For example:

s um= . +/

mean= . sum % If

li stmean=. mean"l

[a= . i . 5
8 1 234

sum a
18

mea n a
2

[t abl e=. i . 3 5
8 1 2 3 4
5 6 7 8 9

18 11 12 13 14

mean ta ble
5 678 9

l is t me an tabl e
2 7 12

By contrast, definition in most APL dialects makes
explicit mention of the argument(s):

DFX 2 7 p 'Z ~SUM X Z~+/X '

SUM

Tacit programming offers several advantages, in
cluding the following:

1. It is concise.
2.	 It allows significant formal manipulation of def

initions.
3.	 It greatly simplifies the introduction of program

ming into any topic.

Since the phrase +/ produces a function, the po
tential for tacit programming existed in the earliest
APL; but the restrictions on the copula prevented
assignment of a name to the definition, and there
fore prohibited tacit programming.

In any case, the paucity of operators and the re
strictions that permitted their application to (a sub
class of) primitive fun ctions only, made serious use

of tacit programming impossible. In later dialects
these restrictions have been removed, and the num
ber of operators has been increased.

I now provide a few examples of tacit programming
in J, first listing the main facilities to be exploited .
The reader may wish to compare such facilities in
J with similar facilities defined by Backus 13 and by
Curry." For example, Curry's combinators W (el
ementary duplicator) and C (commutator) are both
represented by the adverb ~ in J, according to the
following examples:

/ : ~b is b/ : b (that is, a sort of b)
a	 %~ b is b%a (that is, a into b)

The facilities to be used in the examples include the
hook, fork , and ~ already defined, as well as the
following which, although defined in terms of spe
cific verbs, apply generally. It may be necessary to
consult Reference 21 for the meanings of certain
verbs, such as * : (square), %: (square root), and
/\ (log). Five examples follow .

1. 2 &/\ Y is 2/\y (Called currying)
/\2. & 2 y is y/\2 (Called currying)

_3. -s- .y is /\ .y Composition
4.	 x - &/\ . Y is (/\ • X) - (/\ • y) Composition
5.	 x - @/\ Y is - x/\y Atop

Some examples from statistics are shown next.

s um=. + /

mean=. sum % If

norm=. - mean

s t d=.% : & sum & *: & norm

Entry of a function alone causes a display of its
definition, a display that can be captured and ma
nipulated as a straightforward boxed array. Thus:

s t d
+- - - - - - - - - - - - - - - - - + - + - - --+

+ - - - -- -- ---+ -+ - - + & norm

+ - - +-+- - - + & * :

1%:I&l suml

+ - - +- + - - -+

+ - - - - - - - - - -+ - + --+
+ - - - - - - - - - - - - - - - - -+ -+ - - --+

In function tables, the f outer product of APL is in
J the dyadic case of f / . For example :

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991	 IVERSON 591

[a=. b=. i . 5
8 12 3 4

a +/ b
8 123 4
1 234 5
2 345 6
3 456 7
4 567 8

a*/b
8 8 8 8 8
8 1 2 3 4
8 2 4 6 8
8 3 6 9 12
8 4 8 12 16

a!/b
1 1 1 1 1
8 12 3 4
8 813 6
8 881 4
8 888 1

Such a table can be mad e easier to interpret by
displaying it with appended arguments, using the
following tacit definitions:

over= .({., .@;} .)& " :@,

by=. (,-"_1 ' ' &; &, .)

a by b over a ! / b

+-+- -- - --- - -+
I 18 1 2 3 4[
+-+- - - - - - - - - +

8 1 111 1
1 8 1 2 34
288 1 36
388 8 1 4
4 8 8 8 8 1

+-+--- - - -- - -+

Adverbs may be defined tacitly in a num ber of ways,
as follows:

sum \ a
8 1 3 6 18

scan=. / \
+ scan a

8 1 3 6 18

-	 scan a
o 1 1 _2 2

592 IVERSON

ta ble=. /(['by ' J 'ove r ') \
2 3 5 *t abl e 1 2 3 4 5

+ -+ - -- - - - -- - -- --+

I	 11 2 3 4 51
+- +- ------- -----+

2 2 4 6 8 18

3 3 6 9 12 15

5 5 18 15 28 25

+ -+ - - - - - - - - - - - - - +

a <t able b
+- + --- - -----+
I 18 1 2 3 41
+ -+ - - - - - - - - - +
881 1 1 1
188111
2 8 8 8 1 1
3 8 888 1
4 8 8 8 8 8

+-+- -- - ---- -+

• Trademark or registered trademark of International Business
Machines Corporation.

Cited references and note

I.	 A. D. Falkoff and K. E. Iverson, "Th e Design of APL," IBM
Journal of Research and Development 17, No . 4, 324-334
(1973) .

2.	 A. D. Falkoff and K. E. Iverson , "The Evoluti on of APl ,"
ACM SIGPLAN Notices 13, No . 8, 47-57 (1978).

3.	 K. E. Iverson,A ProgrammingLanguage, John Wiley & Sons,
Inc., New York (1962) , p. 16.

4.	 See the 1971 Chelsea edition of Heaviside'sElectromagnetic
Theory and the article by P. Nahin in the June 1990 issue of
Scientific American.

5. R. K. W. Hui, K. E. Iverson, E. E. McDonnell, and A. T.
Whitney, "APL/?," APL90 Conference Proceedings, APL
Quote Quad 20, No.4, ACM, New York (1990).

6.	 K. E. Iverson, "A Dictionary of APL," A PL87 Conference
Proceedings, APL Quote Quad 18, No . I, 202-2 11, ACM,
New York (1987) .

7. R. Hodgkinson, "A PL Procedures," APL86 Conference Pro
ceedings, APL Quote Quad 16, No.4, ACM , New York
(1986).

8.	 R. K. W. Hui , K. E. Iver son , and E. E. McD onnell, "Ta cit
Programming," APL91 Conference Proceedings, APL Quote
Quad 21, No .4, ACM, New York (1991) .

9. P. C. Berry , Sharp APL Reference Manual, I. P. Sharp As
sociates, Toronto, Canada (1979).

10.	 K. E. Iverson, Tangible Math, Iverson Softwar e Inc., Tor
onto, Canada (1990).

11.	 A. Camacho, "I -APL Status Report," Vector: The Journal of
the British APL Association 4, No.3, 8-9 (1988).

12. APL2 Programming: System Services Reference, SH20-9 218,
IBM Corporation (1988) ; available through IBM branch of
fices.

13.	 J . Backus , "Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of Pro
grams," Communications of the ACM 21, No. 8, 6 13-64 1,
(1978).

IBM SYSTEMS JOURNAL. VOL 30, NO 4. 1991

14.	 A. D. Falkoff and K. E. Iverson , APL\;J60 User's Manual,
IBM Corporation (1966).

15.	 R. Smith, "Nested Arrays, Operators, and Functions,"
APL81 Conference Proceedings,APL Quote Quad 12, No.1 ,
ACM, New York (1981).

16.	 C. M. Cheney, Nested An-ays Reference Manual , STSC Inc.,
Rockville, MD (1981).

17.	 SAX Reference, 0982 8809 EI , I. P. Sharp Associates , Tor
onto, Canada (1986).

18.	 K. E. Iverson , "The Description of Finite Sequential Proc
esses," Proceedings of a Conference on Information Theory,
C. Cherry and W. Jackson, Editors, Imperial College, Lon
don (August 1960).

19. APLSV User's Manual, GC26-3847-3, IBM Corporation
(1973).

20.	 C. Weidmann, APL UM Reference Manual , University of
Massachusett s (1975).

21.	 K. E. Iverson, The lSI Dictionary ofJ, Iverson Software Inc.,
Toronto, Canad a (1991).

22.	 R. Bernecky and K. E. Iverson, "Operators and Enclosed
Arr ays," A PL User's Meeting, I. P. Sharp Associates, Tor
onto, Canada (1980).

23.	 K. E. Iverson, Operators and Functions, Research Report
7091, IBM Thomas J. Watson Research Center, Yorktown
Heights , NY 10598 (1978).

24.	 A. T. Whitney and K. E. Iverson, "Practical Uses of a Model
of APL," APL82 Conference Proceedings, APL Quote Quad
13, No. I, ACM, New York (1982).

25.	 Dyalog APL Reference Manual , Dyadic Systems Ltd., Alton,
Hants, England (1982).

26.	 K. E. Iverson, "APL Syntax and Semantics," APL83 Con
ference Proceedings, APL Quote Quad 13, No. 3, 223-231 ,
ACM, New York (1983).

27. J . P. Benkard, "Valence and Preced ence in APL Exten
sions," in APL83 Conference Proceedings,APL Quote Quad,
13, No.3, ACM , New York (1983).

28. J . D. Bunda and J . A. Gerth, "APL Two by Two-Syntax
Analysis by Pairwise Reduction," APL84 Conference Pro
ceedings, A PL Quote Quad 14, No.4, ACM, New York
(1984).

29.	 K. E. Iverson and E. E. McDonnell, "Phrasal Forms,"
APL89 Conference Proceedings,APL Quote Quad 19, No.4,
ACM, New York (1989).

30.	 T. More, Jr ., "Axioms and Theorems for a Th eory of Ar
rays," IBM Journal of Research and Development 17, No.2,
135- 157 (1973).

31. R.	 Bernecky, "Function Arrays," APL84 Conference Pro
ceedings, APL Quote Quad 14, No.4, ACM , New York
(1984).

32.	 J. A. Brown, "Function Assignment and Arr ays of Func
tions," APL84 Conference Proceedings,APL Quote Quad 14,
No.4, ACM, New York (1984).

33.	 H. 8. Curry and R. Feys, Combinatory Logic, Vol. 1, North
Holland Publisher s, Amsterdam, Netherlands (1968).

Accepted for publication June 25, 1991.

Kenneth E. Iverson 70 Erskine A venue, No. 405, Toronto, On
tario M4P IY2, Canada. Dr. Iverson received a B.A. in math
ematics and physics from Que en' s University, Kingston , Canada
in 1950, an M.A. in math ematic s in 1951, and a Ph.D. in applied
mathem atics from Harvard University. He was an assistant pro
fessor at Harvard from 1955 to 1960. From 1960 to 1980 he was
employed by IBM Corporation's Research Division where he
became an IBM Fellow in 1970. After leaving IBM in 1980, Dr.

IBM SYSTEMS JOURN AL. VOL 30. NO 4. 1991

Iverson was employed by I. P. Sharp Associates until 1987. He
has received many honors, in addition to becoming an IBM
Fellow, including the AFIPS Harry Goode Award in 1975, the
ACM Turing Award in 1979, and the IEEE Computer Pioneer
Award in 1982. He is a member of the National Academy of
Engineering in the United States. Currently he is working on J
and the use of J in teaching.

Reprint Order No. G321-5455.

IVERSON 593

Books

Exploring Requirements: Quality Before Design,
Donald C. Gause and Gerald M. Weinberg, Dorset
House Publishing, New York, 1989.291 pp. (ISBN
0-932633-13-7).

This book comes as a breath of fresh air at a time
when system designers can begin to feel stifled by
the formal methodologies and computer-aided de
sign technologies that are the focus of attention.
Gause and Weinberg provide us with the assurance
that it is still the human mind, not the machine, that
is the system designer's most important tool.

The subject of the book is the requirements proc
ess, the earliest part of the development cycle in
which designers attempt to discover what is desired.
Part I, "Negotiating a Common Understanding,"
begins by telling us why methodologies are not
enough. Gause and Weinberg are true masters of
the anecdotal example, a technique they often use
to underscore their points.

Most significant system problems found in test and
operational use (where the cost of fixing errors is
greatest) can be traced back to ambiguity in the
requirements. Early attacking of ambiguity lowers
development costs in the end. Unfortunately, sys
tem designers are so anxious to get going that they
often ignore or minimally perform the require
ments exploration phase. If every designer assigned
to a new project were to heed the advice in this
book, it would surely prolong the requirements
analysis, but the overall development process would
be made more efficient. Inefficiencies caused by
requirements ambiguity is at the heart of this book's
message, and there are many sources for ambiguity.
The authors' style is unique in that they do not
simply enumerate those sources, but allow the
reader to experience the ambiguities firsthand. In
fact, much of the book gives the reader the sense of
attending a live lecture rather than reading a book.

594 BOOKS

Part II addresses every system designer's biggest
problem-getting started. The authors' techniques
serve to slow down the beginning of a project, al
lowing the mind to do its work of grasping a better
understanding of the problem. A chapter on "Get
ting the Right People Involved " provides the prac
tical means to accomplish today's market-driven
approach of involving the user throughout the sys
tem definition, design , and development phases.
The message Gause and Weinberg give is clear,
which is that the practice of definition, design , and
development and system understanding are the
same.

"Exploring Possibilities" is the subject of Part III.
These possibilities include providing more how-to
techniques, conducting idea-generation meetings,
using right-brain methods, and selecting a project
name so as to have a theme or rallying point toward
which to work. An excellent discussion is made of
facilitation and facilitators, a concept that the au
thors expect to reach maturity in the '90s. Part IV,
"Clarifying Expectations," brings us still farther
along the path of eliminating requirements ambi
guity by addressing functions, attributes, con
straints, preferences, and expectations. A number
of subtle yet key points are made. For example,
"only the strength of the client 's fears or desires
determines which is a constraint and which is a
preference." Such thought-provoking assertions
are often brought home by an enjoyable anecdote
to give the reader an innate understanding of the
key point. The how-to techniques offered in the
book are highly usable and by following them the
reader should achieve positive results.

The final part of the book, "Greatly Improving on
the Odds of Success," addresses ambiguity metrics,
technical reviews, measuring satisfaction, test cases,
study of existing products, and making agreements.

C>Copyright 1991 by International Business Machines Corpo
ration.

IBM SYSTEMS JOURNAL, VOL 3D, NO 4, 1991

The authors conclude with a little philosophy on
ending the requirements exploration phase. In each
chapter they include a section on helpful hints, vari
ations, and a useful summary that captures the
ideas by using those tried and true editorial stal
warts: why, when, how, and who.

The pace of the book is very comfortable. It ebbs
and flows such that every once in a while a burst of
excitement comes with a new idea, followed by ex
planations that allow the reader to ride the wave.
The numerous diagrams, done with intentional in
formality, keep an interesting and personal tone.

The principles discussed can most definitely be ap
plied by a committed team and management, and
they should contribute to the success of a project.
It is up to creative individuals to find ways to apply
the principles within their own environments,
through the inspiration of the authors. Gause and
Weinberg foresee the '90s as a time in which use of
systems with higher complexity will grow. They en
vision more reliance on computer-aided design
technology, and customers with higher expecta
tions. Gause and Weinberg provide practical meth
odologies and techniques that allow system design
ers to bring their project-development practices to
a level that meets expected system, technology, and
environmental complexity.

Donna H. Rhodes
IBM Federal Sector Division
Owego
New York

Knowledge Engineering, Dimitris N. Chorafas, Van
Nostrand Reinhold, New York, 1990. 380 pp.
(ISBN 0-442-23969-6).

This book is aimed at computer professionals who
want to upgrade their skills, and stay competitive in
understanding the field of knowledge engineering
and the methodology of knowledge acquisition.
The author envisions a bright future for knowledge
engineering and artificial intelligence (AI), in gen
eral.

Despite the author's optimistic forecast for the
field, he does not minimize the many obstacles be
tween "here" and "there." The discussions fairly

IBM SYSTEMS JOURNAL. VOL 3D, NO 4, 1991

balance the difficulties and advantages of specific
approaches. There are a liberal number of sche
matic illustrations. A minimal amount of technical
jargon is used for a book dealing with this type of
subject and, for this reason, it should be easy to read
for a diverse audience.

The book represents a comprehensive survey of the
field of knowledge engineering. It provides an over
view of what is currently going on for those who
have not been directly involved with AI. For people
who already are involved, it may suggest other
projects where the same skills are useful. A part of
the author's purpose seems to be to attract new
people to the field. He suggests that the need for
such experts will grow 25 percent per year during
this decade. Viewed in this light, the book may well
open new vistas of opportunity. Although it pro
vides little insight into the detail required for the
actual implementation of programs, this may per
haps be presumed by his target audience of com
puter professionals.

Included in the book is an appendix that outlines a
training program for knowledge engineers. How
ever, this is not a textbook in the sense of a book
that might form the basis for a curriculum. The
book is a comprehensive survey and, as such, should
appeal to a number of people.

The specific examples cited tend to be discussed
from the perspective of business applications,
rather than research or scientific contributions. Al
though the bibliography contains 200 references,
these are not cited in the text; the few citations that
do occur in the text do not appear in the bibliog
raphy. The index also is not as helpful as one might
desire. In short, the book does not serve as a schol
arly treatise or as a reference source.

The author is a consultant who has written 65
books. In many ways, this book reminds me, in ex
panded form, of some of the reports I have received
from consultants. Such reports tend to be compre
hensive, easy to read, well organized, and noncon
troversial, though they do not expand the field.
While the author may be correct in predicting the
future success of the field of AI, eventual success
may not directly depend on many of the current
methods and theories, but may require as yet un
foreseen breakthroughs.

The book goes into enough depth to make its sig
nificant points. It is easy to read, is up to date, and

BOOKS 595

covers most topics of current interest. I would rec
ommend it to anyone contemplating knowledge en
gineering as a possible vocation, and to anyone who
wants an overview of what this might entail.

W. D. Hagamen, M.D.
Professor of Cell Biology and Anatomy
Cornell University Medical College
New York

VSAM: A Comprehensive Guide, Constantine Kan
iklidis, Van Nostrand Reinhold, New York, 1990.
440 pp. (ISBN 0-442-24641-2).

If you are interested in acquiring a good overall
knowledge of how VSAM works, this is definitely the
book for you. Constantine Kaniklidis has done an
excellent job of consolidating vast amounts of avail
able information into one easily comprehensible
book. He also provides the reader with many good
practical suggestions for using VSAM effectively,
with occasional editorial comments expressing his
likes and dislikes of the access method.

The book begins by presenting the reader with a
short evolutionary synopsis of VSAM from its in
ception in 1973 up to the present. It then proceeds
to describe, in detail, the functional components of
VSAM, including catalog and data set structure and
operation, and the use of IDCAMS in defining, load
ing, and listing catalogs and data sets. With the
functional components having been laid out, sev
eral chapters follow that present various options for
data set security, backup, and recovery, with the
final chapter being devoted to VSAM optimization,
including such topics as control interval size calcu
lation , free space distribution, buffer allocation,
and data set sharing. Throughout the entire book,
each topic is accompanied by examples that help to
clarify the information presented.

Having spent many of my years at IBM working on
the VSAM access method, I think that the reader will
find this book very informative. While the infor
mation included in the book appears to be techni
cally accurate, it is difficult to evaluate its factual
contents down to the "bits and bytes" level, due to
the volume and detail of information presented and

596 BOOKS

the ever-changing nature of the subject. It is there
fore my recommendation that the reader consult
the appropriate IBM publication for verification
whenever a high degree of detail is required.

Gale A. Burt
IBM Storage Systems Products Division
San Jose
California

Note-The books reviewed are those the Editor thinks might be
of interest to our readers. The reviews express the opinions of
the reviewers.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Contents of
Volume 30, 1991

Number One
VM /ESA : A single syste m for ce nt ra lize d and di st ributed
co mp ut ing
W. T. Fischofcr

4

VM Dat a Sp aces and E SA/XC fac ilities
J. M . Gdaniec and J . P. Hennessy

14

ESN390 int e rp reti ve-execution a rc hitec tu re, founda tio n for
VM/E SA
D . L. Osisek , K . M . Jackson, and P . H. Gum

34

VM /ESA C MS Shared File Syste m
R. L. Stone , T . S . Net tleship, and J . Curt iss

52

Coo d inated Resource Reco ve ry in VM/E SA
B. A . Maslak , J . M. Showalter, ami T. J . S zc z)'!:ielski

72

Syste ms man agem ent fo r Coord ina ted Re sou rce Reco ve ry
R . B. Bennett, W. J . Bitner, M. A . MIISII, and
M . K . Ainsworth

90

VM/E SA support for coord ina ted rec overy o f file s
C. C. Barnes , A . Co lema ll. J. iH.Siloll.aller.aml
M . L. Wal ker

107

Number Two
Co mmo n C ry ptog ra phic Architecture Cryptogra phic
Applicati on Pro gramm ing Int erface
D. B . Johnson , G. M. Dolan, M. J. Kelly , A . V . t». and
S. M . Matyas

130

Key handling with co ntrol vec to rs
S. M . Maryu s

151

A key-m an agem ent sc he me ba se d on co ntrol vec to rs
S . M . Maryu s , A . V. Lc . and D. G. A braham

175

ES A /390 Int egrated C ry ptogra ph ic Facili ty: A n overview
P. C. Yeh und R M. Smith, S r.

192

Transac tio n Security System
D. G. Abrahum, G. M . Dola n , G. P. Double, an d
J. V . S tevens

206

T ra nsac tio n Security Syste m extens io ns to the C o m mo n
C ryptographic Ar chitecture
D. B . Johnson and G . M . Dola n

230

Number Three
SNA route ge ne ra tio n usin g tra ffic patt erns
S . C. Baade

250

A base for portable co m munica t ions so ftwa re
S. H . Go ldbe rg ami J. A. M OIIIOII , J r.

259

Persp ectives o n multimed ia syste ms in ed ucat io n
S. Reism an and W. A . Carr

280

FO RT RAN for clu st e rs o f IBM ES/3090 multiproc e sso rs
R . J . S ailulka , E . C. Placlt y, L. J . Scurbo rough ,
R . G . S c-arborough, li nd S . w, W hitt>

296

Pa rti a l co mpi latio n of REXX
R . Y. Pinter, P . Vnrt mun , and Z . Wl'!.1.1

3 12

A C pro gramming model for OS /2 de vice drivers
D . T. Fer iozi

A kn o wledge-ba sed system fo r M VS d um p analys is
N. G. L" IIz and S . F . L. Saelens

336

Mod eling a nd so ftware de velo pm en t q ual ity

S . H. Kan
35 1

Int egra ted hyperte xt a nd program underst and ing tool s
P . Bro wn

363

Tec hn ica l not e- Th e WATI N FO face server and associatcd
uti lities
A. Appel, G . A . C IIO IIIO, E. A. Overly, J . A . Wa licki,
andR , E. Yo....o

393

Number Four
T he IBM fami ly o f A PL syste ms
A . D . FalkoJr

416

AP L2 : Getting st a rted
J . A. Bro wn and H . P . Crowder

433

Extendi ng t he dumain o f APL

M . T. Wilea l" 'y
446

S to rage ma nagement in IBM APL systems
R . Trimble

456

Putting a new face o n APL2
J . R . Jensen utul K . A. Bealy

46'1

The AP L IL Interpre te r Ge nerator
M . Alfonsccu , D. S ctbv, and f? Wilks

490

Para llel expression in the APL2 la ng uage
R . G . Will/lOji

4'18

T he fou ndations of su itability of APL2 for m usic
Stunlev Jordan and Erik S. Friis

513

Ve rificat io n of t he IBM RI SC Syste m/6000 by a dynam ic
biased pseudo-ra ndom test program generator
A. A haron. A . Bur-Duvid, B . Dorfmun , E. Gofmun,
M. Leibo witz. . lind V. Schwurtzb urd

527

A PL2 as a speci fication language for statistics
N . D . Thomson

53'1

Adva nce d a ppl ications of APL: logic programming , neura l
networks . a nd hypertext
M. Alfonseca

543

La ng uage as a n inte llectua l tool : From hieroglyphics to APL
D. B . Mclntyre

554

A persona l view of AP L
K . E. i verson

582

IBM SYSTEMS JOURNAL, VOL 30, NO 4. 1991 CONTENTS 597

Erratum

The paper " Transaction Security System" by
D. G. Abraham, G. M. Dolan , G. P. Double , and
J . V. Stevens that appeared in the IBM Systems
Journal , Vol. 30, No .2, page s 206 through 229,
omitted reference to the source of the signature
verification algorithm. pen design , pen data ac
quisition and signal processing design , and signa
ture recognition reliability data used in thi s sys
tem . The authors regret the omission and now cite
the following as a key reference to this work :

T. K. Worthington, T . J . Chainer, J. D. Williford ,
and S. C. Gundersen , " IB M Dynamic Signature
Verification," Computer Security: The Practical
Issue s in a Troubled World, Proce edings of the
Third IFf? International Conference on Computer
Se curity , Dublin , Ireland (1985), pp. 129-154.

598 ERRATUM IBM SYSTEMS JOURNAL, VOL 30. NO 4, 1991

Th e IBM Sys tems Journal is ab st ract ed by Chemica l Ab
stracts, Computer Ab stra cts , Computer & Control Abstracts,
Computer & Information Systems, Cam ptiler Literatu re In
dex , Data Processing Digest , Ekspre ss lnformatsiia , Elec tri
cal & Electronics Ab stracts , The Eng inee ring Ind ex, lnfor
mutton Science Ab stra cts, Math ematical Reviews, Ne ll'
Literature on Automation (N eth erlands), Ope rations Rc
searchlMana gem ent Scienc e, Refe rativnyi Z IIII rt/al, and Sci
ence Citation Ind ex . Rev iew s appear in Computing Reviews,
Rep roductions of the IBM Sy stem s Journal by years a re avai l
able on micro fiche and positive and negativ e microfilm from
University Microfilm s. 300 N . Zeeb Road . Ann Arb or. Mich
igan 48106 U.S .A . An e lectronic version of the IBM System s
Journal is avai lable as part of a comprehensive dat abase of
peri odicals distributed by the Computer Library Division of
Ziff Communications Compa ny. One Park Avenue. New
York . New York 10016 U.S .A.

