Idioms and Problem Solving Techniques in APL2

March 25th, 1988

Alan Graham

IBM APL Development
Dept M30/Bldg B231
555 Bailey Avenue,

San Jose, CA 95141
GRAHAM at STLVYM20
8-543-3679, 408-463-3679

il 1dioms and Problem Solving Techniques in API2

Introduction

Idioms form an intermediate language, higher level than individual primitives but
lower level than subfunctions. When a common task arises (such as sorting a
vector of strings), and the programmer knows the idiom that performs that task,
(VS[LOAVA>VS]), the task is immediately solved using the idiom. An order of
magnitude gain in programmer productivity is not uncommon. The usc of
idioms increases readability, while allowing API. implementers to optimize
through idiom recognition.

Since APL. is written symbolically, a pattern recognition mode of reading evolves.
Like a theme in music, an idiom may contain variations. Idioms are generally
written in line, rather than appearing as subfunctions. A single idiom may vary
slightly according to context. When a programmer recognizes an idiom, it is
inspected for variations. Sometimes the idiom is extended to handle the scalar
case, or the empty case, or the casc of arbitrary rank. Other times it is
specialized.

The more you know about your data the simpler the idiom becomes. For
example, starting with the most general form of a phrase and simplifying, the
phrase <[(0=zppA)/l /1ppA]A will take an array of any rank and make an
array of vectors, putting items along the last dimension. This idiom works in any
origin and for arrays of any rank including scalars. If the scalar case can be
climinated, the phrase becomes c[[/1ppA 1A . Furthermore, if origin 1 is
assumed, c[ppA 1A can be written. Finally, if the array is always a matrix
(rank 2) the idiom collapses to €[234 . ‘The particular form depends on
context.

APL.2 is a rclatively new programming language. New idioms are constantly
being discovered and old ones arc being refined as progress is made up the
learning curve. It is expected that some of these initial idioms will seem naive in
light of futurc progress.

These idioms have been collected together because of their benefits in
programmer productivity. Although, machine cfficiency was ignored while
inventing these idioms, the author has not found any of them to be particularly
wasteful in cither space or time.

Mini-Applications

Several small problems arc posed and solved using the idioms found in the
appendix.

Problem 1 - Manipulating Name Lists

When a utility package processes all objects in a workspace, it is desirable to
remove its own names from the name list of workspace objects before
proceeding.

If a name list is manipulated as a simple character matrix, care must be taken to
get the number of columns right. The names that are to be removed from the
namec list must be reshaped into a matrix where the shorter names arc padded to
the length of the longest name. This is somctimes performed by a utility
function, but then the namce of the utility function must also be included in the
name list and the function carricd around with the overall package. More ofien,
the names to be removed are reshaped in line where the programmer carcfully
counts spaces. When comparing the two matrices the number of columns of
cach must be forced to the same size by overtaking. In APIT you could code

a All object names as a matrix
NL<ONL 2 3 u

A Matrix of names to be removed
RL+«4 8p'FUNCTIONDATA F1 . F?2 '
A Width of largest matrix
N<(14pNL)I14pRL

n Force to the same width
NL+«((14pNL),N)4NL
RL+«((14pRL),N)4RL

a Compare and Remove
NL«(NLv.28RL)/NL

There is considerable simplification if the name lists are manipulated as vectors of
strings. If each vector is forced to contain strings without blanks, then direct
comparisons can be performed without worrying about lengths. For example:

A All object names as a matrix
NL«<ONL 2 3 4

n Vector of strings with no blanks
NL<(c[1+DIOINL)~""

n Remove private names from list
NL<NL~'FUNCTION' ‘*DATA' 'F1' 'F2!

Not only is there less code, but it is easier to understand. The vector of vectors
form of the namec list is retained in preference to the simple character matrix
form. The idiom NL<«>NL can be used to force the vector of vectors back into a
matrix.

2 ldioms and Problem Solving Techniques in API.2

Problem 2 - Iteration with Each

When a program is written that solves a single case of a problem, it is often
necessary to iterate with the program over a range of cases. Consider the
problem of timing a vector algorithm over a range of random vectors of various

lengths.

The skeleton of a timing function that times a single vector case of length N
could be as follows.

[0] T+«TIME1 N3;V;T1:T2

(1] n Time operation on N-Item vector
[2] V«?Np1000 Random vector
[3] T1+41+40AT Start Time
(4] (statement that uses vector V)
(5] T2«4+140A1 End Time

(6] T«T2-T1 Elapsed Time

PDNHDP®D

Thercfore, to time line [4] for a single 100 item vector you would exccute
TIME1 100 which would return the CPU time in milliscconds. There is a
slight overhead used in the timing mechanism itself. 1t is assumed that the
statement being timed is non-trivial so that the timing overhead is small in
comparison.

You would want to time the statement over various values of Nand repeatedly
for the same valuc of N, to observe the effect of CPU load and different random
vectors. A natural data structure is a table where one dimenston varies and the
other dimension docs not. An example of such a table is,

N«<(1000x17)~,+Up0

N
1000 1000 1000 1000
2000 2000 2000 2000
3000 3000 3000 3000
4000 4000 4LOOO ug0oO0O
5000 5000 5000 5000
6000 6000 6000 6000
7000 7000 7000 7000

This matrix could not be given to the timing function directly because TTME1
expects a single scalar N to generatean N-item random vector. The Fach ()
operator can be used to amomatically apply TTME1 to the input array.
TIME1 will be called a total of x /p N times.

T«TIME1" N
T
37 35 36 36
76 75 76 75
117 118 118 119
162 162 162 160
207 205 206 206
260 258 261 259
311 313 307 302

L/T n Fastest times?
35 75 117 160 205 258 302

(+/T)=+u n Nverage times?
36 75.5 118 161.5 206 259.5 308.25

All of the details of iteration are subsumed by the Liach operator. The program
is unaware that it is being called multiple times. 'Fhe structure of the input array
controls the function application process and defines the shape of the result. The
emphasis is shifted away from explicit program control through loops and toward
creating the appropriate data structure to control application.

4 1dioms and Problem Solving Techniques in API 2

Problem 3 - Generalizing for Rank

Often it is possible to solve a problem for a given rank array, but difficult to
generalize the code for a higher rank array. Problems naturally fall into working
with arrays of a sct rank. Iverson (IVERSON[21) has assigned primitive
functions a “function rank™ and suggested a rank operator whereby a specific
function rank can be assigned to any function. In “Principles of API.2”
(BROWNL 11), Brown defines a rank operator implemented as a defined APL2
opcerator.

Consider the problem of replacing all occurrences of one string with a new string.
This is naturally a vector problem because the lengths of the new and old strings
may be of different length requiring stretching or shrinking of the target vector.
Given an API.2 function called REPLACEYV that takes a left argument of a
two-item vector of old and new strings and a right argument of the vector in
which to do the replacement. The result is a vector with the replacements made.
How can this be generalized to replace strings in the rows of a matrix or higher
rank array? ‘The function REPLACE below is onc solution,

o] Z+0OLD_NFEW REPLACE A;LAST

(1) a Replace OLD with NEW along last axis
(2] LAST«(0=ppA)/[/1ppA .

[3] Z+«>(<cOLD_NEW) REPLACEV c[LAST]A

It is possiblc that the lengths of the items resulting from REPLACEV™ will vary.
The Disclose (2) function in REPLACE{ 3] handles this by padding the
shorter vectors to the Iength of the longest. REPLACE can be rewritien to
handle both the vector case and the higher-rank case as a single function as

follows:

{ol 2<«0LD_NEW REPLACE A;OLD;NEW:B;I
[1) =~ Replace OLD with NEW along last
[21] +(1<ppA)/HIRANK

£3] n Vector (LOrank) case

{u] (OLD NEW)<, OLD_NEW

(51 B<0QLDcA n Find the old string

(...and so ~n...)
[10] HIRANK:
[11) LAST«(0=ppA)/[/1ppA
[12] 2«>(cOQLD _NEW) REPLACE <c<[LASTIA

The technique used in REPLACE can be made into a general-purposc defined
operator that will apply anv vector function to vectors along the last dimension.
This operator is a special case of Iverson’s proposed Rank operator
(IVERSON[21).

Z«L (F last) R:;V
a Apply FN along last dimension
A Build enclose last FN (V)
2«'2«V A 'Zec[(0z2ppA)/[/1ppAlAN:"
OES(0=4+0p0FX 2)/1 2 n FIX OK?
a Z«F"(V R) or Z+«(V L)F'(V R)
2+ Z«> ,(0=20NC 'L*)/'(V L)
Z+«Z2,'F"(V R)!
a (Do-or-Die idiom)

'‘OFES DET' DEA 2

[K N Ko N Ko N N W N |
QONOUNEWNRO
e e e e e e e e e e

(Note: My naming convention is to name defined operators using only lower case
letters.)

6 Idioms and Problem Solving Techniques in APT 2

Problem 4 - Generalizing for Depth

Nesting is a natural way of making collections of arrays, especially when the
arrays may vary in shape. Some operations may apply to the items (cells) and
not to the collections (frames). Consider the problem of deleting leading blanks
on a string. How can we generalize this to collections of strings?

The solution for a single string is simply

{o] Z«DLB V
{1] =~ Delete Leading Blanks
(2] Z«(+/A\" "=VIV.

As we have scen, the ach operator can be used to apply DL B to all items but it
is tedious for the uscr always to be awarc of whether the array is the atomic item
of interest or a collection of such items. The problem gets worse when
considering collections of collections, collections of those, or when some items
arc atomic and some arc collections. The general solution emerges as follows:
When can we use the above DL B solution?. When we have a simple string, that
is, its depth is less than or equal to one (12=4). If not, the function is
recursively applied with the Fach operator until a simple string occurs. This
general form of DL R (called DLBT) is

{o] Z+«DLBT A

[1] n Delete Leading Blanks throughout
(2] +(1<=A)/RECUR

(3] 2(+/AN"Y "=A)IA A

(4] +0

(51 RECUR:

[6] Z«DLBT" A

This is such a common structure that it can be genceralized with a defined
opcrator “dept h.”

[o] Z«(F depth N) A

(1) a Apply monadic function at Depth N
[2] +(N<=A)/RECIR

[3] Z<«F A

(4] >0

[5)] RECUR:

[61] Z2«(F depth N)" A

With the dept h operator the original DL B function can be applicd to arrays of
any depth by writing (DLE depth 1) ARRAY. (Note: Redundant
parcntheses are used to help clarify what is the derived function produced by
depth.)

Problem 5 - Producing a Derived Function

8

Operators in APL2 apply universally to any function; primitive, system, derived,
or defined. Quite often, an operator must be applicd to a phrase composed of
more than one function. The phrase can be put into a defined function and then
the operator applied to it, but this interruption distracts the programmer from the
problem at hand.

A defined operator can be made that will take a character string expression and
produce a derived function representing that expression. The representation that
is used here is a simple expression form of dircet definition (TVERSON[21]).
Implementation of the Yse-1f-Then forms and other claborations are left as an
exercise to the reader. Alpha and omega characters represent the Ieft and night
arguments respectively. The importance of the derived function is that it can be
used as an operand to another operator. For example, given an array of numeric
vectors, each vector can be sorted by:

'wlbolt dd” AV
Where 'dd " is a direct definition operator. The derived functionis '*wl 4w 1!

dd , which is applied to cach item of AV. The dircet definition operator is
surprisingly casy to code.

(o] Z<L(F dd)R

(1] a Apply Direct Definition to args
(2) (('w'=F)/F)+c' R ' a 'a' with ' R !
[3] Fe«eF n Simple string
(u] (('a'=F)/F)«c' L ' A 'a' WITH * L '
(51 F«eF n Simple String
[61] Fe'Z2«' ,F A Ready to ¢

[71] '‘0Fs QET' QEA F n Execute

The general idea is to replace all occurrences of the single characters 'a ' and
' ! with the names of the actual arguments L and R, and cxecute the resulting
string. Notc the technique of replacing single characters with strings by using
Fnclose (¢) to create a scalar. Square pegs can fit into round holes. Enclose is
the “universal rounder.”

Idioms and Problem Solving Techniques in APT 2

Appendix - APL2 Idiom List

The following is not mcant to be a complete APL.2 idiom list, but instcad a
sampling of the more popular phrases. An cffort has been made to keep the
expressions simple and correct for all arrayvs within the domain of the expression.
Sometimes the scalar (rank = 0) casc or the empty (shape e 0) case
doesn’t work correetly. Notes are included to indicate the special restrictions.
Since it is expected that most of these idioms will be used in-line, as opposed to
being made into utility subfunctions, the simpler version of the expression is
favored. Occasionally, the more sophisticated or general versions of the idioms
arc also shown.

An informal naming convention is used; V for vector, A for array, M for matrix,
and AV for Array of Vectors. T prefer that the cxpressions are natural, rather
than brutally following a rule cast in concrete. Some idioms are named by single
words or short phrases to make them casy to talk about them. Some expressions
are duplicated and used within other idioms. This was done intentionally to
show their different uses.

1. First. 'The first item of a simple array as a scalar,

+A

2. last. The last item of an array.
1,1

3. First Dimension. Size of the first dimension as a simple scalar.
tpA

4. last Dimension. Size of the last dimension as a simple scalar.
+dp A

5. Simplc? Test for simple array.

12=A

6. Nested? Test for nested array.

1<=1

7. Ttem Tist. Make a simple array into a single item.
2(1=2A)/"'"A«ch?
8. Item liqual. Non-pervasive cqual, sometimes called a string equal for its
most common use. Compare items for cquality.

A="B

in

For cxample to scarch for *NAME ' in a vector of vectors:

vv="c'NAME"

9. Type. Replace numbers with 0, characters with ' ' (blank). Preserves the
shape, rank, and structure of the array. (‘This was the primitive function
Type in the APL.2 TUP).

+0pcA
10. Array Type. Type of array: character, numeric, or mixed.

I+210 ' 'e+0pceA
AI4'2Y YCHARACTER' 'NUMERT(C' 'MIXED!

Note: Fails to detect arrays of empty arravs of mixed type as MIXED, such
as the two-item vector ' (10) .

11. Array Type. Type of array: character, numeric, or mixed.

3 11 ONA 'PFA
I«21'AIBJE' 'C'v.e <PFA A
+I+'?' '"CHARACTER' 'NUMERIC' 'MIXED'

Note: Works for alf cascs.

Idioms and Problem Solving Techniques in API 2

13.

14.

15.

16.

18.

19.

20.

21

22.

. Convert a vector into a one-column matrix.

,[10]V

Convert a matrix into a vector of row vectors.

c[1+0I01M

Columns. Convert a matrix into a vector of column vectors.

c{0I0IM

Split. Convert a rank N array into a rank N-1 array of vectors, taking
vectors along the last dimension.

cl(0=2ppA)/T/1ppAlA
or
c[l/1ppAlA n O<ppl

Mix. Convert a rank N array of vectors into a rank N+ 1 array, putting the
vectors along the last dimension.

oAV

. Row Table. Assemble vectors into rows of a matrix.

oV1 V2...Vn

Column Table. Assemble vectors into columns of a matrix.

§o>V1 V2...Vn

General Faminate. Assemble arrays of equal rank into an array of rank one
greater, putting their dimensions last.

>A1 A2...An

Glue Along. Catenate arrays of cqual rank into an array of the same rank,
along a single dimension 1. All dimensions of each array must match except
dimension 1. "The result is an array where the Ith dimension is the sum of
the Ith dimensions of the argument arrays.

>,[I3}/A1 A2...An

For cxample, to make a single N-column matrix out of a list of three
N-column matrices.

>, [(0Iol/M1 M2 M3

Quick list. Vertical list of all visible defined functions and operators.

,[10]J0CR " <c{1+00I0JONL 3

Quick Input. Input N strings into an N-item vector.

‘154,!"”0 Ul

11

12

23.

24.

25.

26.

27.

28.

29.

30.

3l

32.

33

“Chipmunk.” Sclect sub-arrays given a set of paths 1, P2, ... Pn.

P1 P2 ... Pno>"cA

“Chipmunk with glasses and a toothache.”” Scleet multiple sub-arrays given a
sct of scts of paths,

(P11...P1n)...(Pk1...Pkn)>""ccA

Pair-wise. Apply a dyadic function between corresponding pairs of arrays in
two lists.

ALl ... ALn f” ARt ... ARn

All Right. Apply a dyadic function to a list of arrays as a left argument and
a single array right argument,

Al A2 ... An £f7 cA

All Teft. Apply a dyadic function between a list of arrays as a right argument
and a single array left argument.

(cA) F" A1 A2 ... An

Apply Tast. Apply a function to vectors along the last dimension and
assemble equal rank results at the end.

>F e[/1ppAlA

or
of e[(0=ppA)/T /1ppAlA n Scalars too
Word Proof. Given a vector of words and a dictionary vector or words,

select the words that are NOT in the dictionary (misspelled words).
WL~DICTIONARY
Cartesian Product. Generate all combinations of pairs from the left and right
arguments,
(c"AL)e.,(<"AR)

Count Occurrences. Count the number of occurrences of each item in a
vector V1 found in a vector V2.

+/V1e.=V2

Sum By Bucket. Given a vector of categories with possible duplicates, a
corresponding vector of counts, and a category vector without duplicates; give
a corresponding vector of total counts.

COUNTS+.xCATS~.=UCATS

De-Duplicate Row Table. Delete duplicate rows of a matrix. The result is a
matrix with possibly fewer rows than the original where cach row appears
exactly once in the order of the original.

Idioms and Problem Solving Techniques in APL2

34.

s

36.

37.

38.

39.

40.

41.

42.

43.

44.

V«c[1+40I01M
((ViV)=1pV)/M

De-Blank. Delete all blanks in string.

VNI 1

Standard Name list. Force string, vector-of-strings, or matrix into a
vector-of-strings with no blanks.

(,clOI0I&>1/NL)Y)~""

This is useful in producing a name list. For example:

(,c[0I0)®>1/0NL 3 u)~"'

Word Tist. Convert a delimited simple character vector of words into a
vector of vectors. (Release 2 only).

3 11 0ONA 'DAN? A only do once
VV«DELIMITERS DAN V

Convert a vector of strings into a simple veetor with once blank between each
string.
1+et ', VYV

or
14 1ysVV

Quote. Wrap string in quotes and double-quote internal quotes.

'l",((1+|ll':V)/V)’ll"

Scalar Extend. Extend all scalar array items to the shape of the non-scalar
itemns assuming scalar compatibility.

(o"="/A)p"A

Vector Pick. Pick a single item from a vector using an origin zero index.
This works the same in either origin.

4TIV
If Then Flsc.
¢4ACONDITIONYb ' then part' 'erlse part!

or
2+CONDITIONY'else part' 'then part’

Case. FExccute the Tth expression.

247140 'casel' ... 'casen'

Simple Image. Convert a nested array to a simple character array image.

A

Matrix Image. F'ormat any array and vickl a simple character matrix result.

0 140 " 143c(1 1,pA)pA

13

14

45.

46.

47.

48.

49.

51.

52.

S3.

54.

55.

FFormat and right-justify all columns of a report.

14[0I031s0,{0101A

or

1+[0101Ns0,[071014 n NUMERIC N

Alphabetize Matrix. Sort a simple character matrix alphabetically by rows.
MLOAVAM;)

Alphabetize List. Sort a vector of strings alphabcetically.
vvioavA>vV]

Sort Number 1 ists Sort cach simple numeric vector item.
(A"VV)s" e vy

Poor Man’s Rhyming Dictionary. Sort a vector of strings in approximate
rhyming order.

VVIDAVAS¢T VYV]

. Matrix Number. Attach row numbers to a matrix.

(l+pM)9M

Iixecute Along Last. Convert a simple character array representation of
numbecrs into a simple numeric array of non-scalar rank.

de [/1ppAlA«t ', A
Note: This will always produce a non-scalar,

Fvent Type for Expression. Get event type of a specific error dynamically.
This is meant to be used in immediate exccution mode. Although it will
work properly in any context, it is unrchiable because it is dependent on
future extensions. Note: If the exccute of the right argument unintentionally
produces a WS FULL then the result will be 1 3 instead of the intended
cvent type.

{..]) 'OET* DEA '..ERROR..'

Do Or Dic. Report error at defined operation call if expression fails. This is
especially useful with a defined operator where the function is blindly applicd
to its argument(s). ‘The operator has no way of determining if the arguments
arc appropnate to its function operand, except for trying it.

'OES OET' DEA '..expressicon to protect..'
Rank I'ach. Simple integer array of the rank of cach item.
Yo e

Raisc. Strip off onc level of nesting, for example vector of vectors of matrices
becomes a longer vector of matrices.

Idioms and Problem Solving Techniques in API 2

56.

59.

60.

61.

62.

63.

64.

65.

66.

67.

t,/,7,A

Structure. Make an array of the same structure as ' A' but consisting of all
7CT0S.

AxA

Scalar Extend. Assuming all items of the same rank, force all items to the
same shape by overtaking.

(T/p7A)+7A

. Replace All Items. Replace all items in 4 with NEW. The shape of 4 is

unchanged.

(,A)«cNEW

Replace Selected Ttems. Replace scleeted items corresponding to the 1sin
left argument with the corresponding items from NEIW. The shape of 4 is
unchanged.

((,COMPARE A)/.A)« ,NEW

Note: T'or conformability
+/,COMPARE A <«+» p ,NEW or 1 <> x/pNEW

Combinc real arrays representing the real and imaginary parts, into a single
complex array.

R+0J1xTI

Split complex array into real & imaginary. Shapeis 2,pC .

9 110,0C

Join real & imaginary into complex array along the first axis.

1 0J1+.%RI

Split complex array into two-item real & imaginary array. Shape is 2.

8 110c(

Join real & imaginary two-item vector into single complex array.

41 0J1+.%xRI

Real from A, imaginary from B.

(90A)+0J1x110B

Swap real & imaginary.

0J1x+(C

Heterogeneous output can be produced by NO'T including the semicolons
and making sure all sub-cxpressions that include functions are parenthesized.

15

For example:

'PRODUCED* N 'ITEMS, TOTALING' (NxK)

Notc: This form is actually more flexible than the old form of heterogeneous
output using semicolons because any item can be an array of any rank,
shape, type, or structure.

16 Idioms and Problem Solving Techniques in API.2

References

Brown, I. A, “The Principles of APL2,” IBM Santa Teresa aboratory
Technical Report, TR 03.247, March 1984, pp 86.

Iverson, K. E., “A Dictionary of the API, I anguage,” LP. Sharp Associates,
September 1985.

Benkard, J. P., “Rank vs Depth,” APIR3.

17

Acknowledgements

The following people have contributed to this document: Phil Benkard, Jim
Brown, Bill Buscher, Harlan Crowder, Dick Dunbar, 1:d Fusebi, John Gerth,
Michacl Golding, Alan Graham, T.ou Groner, George Henry, Gary 1Logan, Blair
Martin, Jon McGrew, Ray Polivka, Dave Rabenhorst, TToward Smith, Karl
Soop, Ray Trimble, and probably others. My thanks to all of them.

18 Idioms and Problem Solving Techniques in API 2

