
Idioms and Problem Solving Techniques in APL2

March 25th, 1988

Alan Graham

IBM APL Development
Dept M30/Bldg 8231

555 Bailey Avenue,
San Jose, CA 95141

GRAHAM at STLVM20
8-543-3679, 408-463-3679

Idioms and Problem Solving Techniques in 1\ PI.2 ii

Introduction

Idioms form an intermediate language, higher level than individual primitives but
lower level than suhfunctions. When a common task arises (such as sorting a
vector of strings), and the programmer knows the idiom that performs that task,
(V S [OA V! ~ VS J), the task is immediately solved using the idiom. An order of
magnitude gain in programmer productivity is not uncommon. The usc of
idioms increases readability, while allowing API , implcmcntcrs to optimize
through idiom recognition.

Since AI)I ~ is written symbolically, a pattern recognition mode of reading evolves.
Like a theme in music, an idiom may contain variations. Idioms arc generally
written in line, rather than appearing as subfunctions. A. single idiom may vary
slightly according to context. When a programmer recognizes an idiom, it is
inspected for variations. Sometimes the idiom is extended to handle the scalar
case, or the empty case, or the case of arbit rary rank. Other times it is
specialized.

The more you know about your data the simpler the idiom becomes. for
example, starting with the most general form of a phrase and simplifying, the
phrase c [(0 ~ p p A) / r / 1 P P A] A will take an array of any rank and make an
array of vectors, putting items along the las! dimension. This idiom works in any
origin and for arrays of any rank including scalars. If the scalar case can he
eliminated, the phrase heC0t11CS c [r / 1 P P A] A . Furthermore, if origin I is

assumed, C [P P A] A can he written, Finnlly, if the array is always a matrix
(rank 2) the idiom collapses to c [2] A . The particular form depends on
context.

"PI,2 is a relatively new programming language. New idioms arc constantly
hcing discovered and old ones arc being refined as progress is made up the
learning curve. It is expected that some of these initial idioms will seem naive in
light of future progress.

These idioms have been collected together because of their benefits in
programmer productivity. Although, machine efficiency was ignored while
inventing these idioms, the author has n01 found any of them to he particularly
wasteful in either space Of time.

Mini-Applications

Several small problems arc posed and solved using the idioms found in the
appendix.

Problem 1 - Manipulating Name Lists

When a utility package processes all objects in a workspace, it is desirable to
remove its own names from the name list of workspace objects before
proceeding.

If a name list is manipulated as a simple character matrix, care must be taken to
get the number of columns right. The names that arc to he removed from the
name list must be reshaped into a matrix where the shorter names arc padded to
the length of the longest name. This is somct imcs performed hy a utility
function, hut then the n:lITIC of the utility function must also he included in the
name list and the function carried around with the overall package. More often,
the names to he removed arc reshaped in line where the programmer carefully
counts spaces. When comparing the two matrices the number of columns of
each must he forced to the same size hy overtaking. In A PI ,I you could code

A All object n ame s £1.5 c1 ma t r i x
NL+-ONL 2 3 4
A Matr i x of n eme s to be r emov e d
RL+-4 Bp'FUNCTIONDATA F1 F2
A Width of Lerqes t: ma t r i x
N+(1.pNL)rl-4-pRL
A F01-ce to the s eme k' idt h
NL+-«ltpNL),N)tNL
RL+«l+pRL),N)+RL
A Compe r e and Re mov e
NL+(NLv.~~RL)fNL

There is considerable simplification if the name lists arc manipulated as vectors of
strings. If each vector is forced to contain strings without blanks, then direct
comparisons can he performed without worrying ahout lengths. For example:

A All object n eme s c1S it me t r i x
NL+ONL 2 3 4
A Vector of strings t..r i t h no b l e nks
NL+(c[l+DIO]NL)"'··' ,
A Remove p r iva t:e n ames from list
NL+NL~'FUNCTION' 'DATA' 'Fl' 'F2'

Not only is there less code, hut it is easier to undcrst and. The vector of vectors
form of the name list is retained in preference to the simple character matrix
form. The idiom NL+::l NL can he used to force the vector of vectors hack into a
matrix.

Idioms and Prohlcnl Solving Techniques in !\ PI.2 2

Problem 2 - Iteration with "Each

When a program is written that solves a single case of a problem, it is often
necessary to iterate with the program over a range of C;lSCS. Consider the
problem of timing a vector algorithm over a range of random vectors of various
lengths.

The skeleton of a timing function that times :t single vector case of length N
could he as follows.

[0] T+TIMEl N;V;Tl;T2
[1] A Time o per n t Lo n on N-Itenl v e c i o r
[2] V+?Np1000 A Random v e c t o r
[3] T1+t1~OAI A St£11~t Time
[4] (statenlent t: hat uses vector ~')
[5] T2++1~OAI A End Time
[6] T+T2-T1 A Elap5ed Time

Therefore, to time line [4] for a single 1no item vector you would execute
T I ME1 100 which would return the (~Pt J time in milliseconds, There is a
slight overhead used in the timing mechanism it<\elf. It is assumed that the
statement being timed is non-trivial so that the timing overhead is small in
comparison.

You would want to time 1he statement over various values of Nand repeatedly
for the same value of N, to observe the effect of c·pt J load and different random
vectors. A natural dat a ~1 ructurc is a table where one dimension varies and the
other dimension docs not. An example of such n table is,

N+(1000 X\7)o.t4pO

N
1000 1000 1000 1000
2000 2000 2000 2000
3000 3000 3000 3000
4000 4000 4000 4000
5000 5000 5000 5000
6000 6000 6000 6000
7000 7000 7000 7000

This matrix could 110t he given to the timing function directly because TIMEt
expects a single scalar N to gcncratcan Nvitcrn random vector. The Each (••)
operator can he used to automatically apply T I MEt to the input array.
TIME 1 will he called a total of x / p N times.

T+TIME1 N
T

37 35 36 36
76 7S 76 75

117 118 118 119
162 162 162 160
207 205 206 206
260 258 261 259
311 313 307 302

LIT A Fastest times?
35 75 117 160 205 258 302

(+IT) f 4 A 11 '\.. e 1·age t i nle 5 ?
36 75.5 118 161.5 206 259.5 308.25

3

All of the details of iteration are SUhSUfTIcd hy the 1'ach operator. The program
is unaware that it is being called multiple times. The structure of the input array
controls the function application process and defines the shape of the result. The
emphasis is shifted away from explicit program control through loops and toward
creating the appropriate data structure to control application.

Idioms and Problem Solving Techniques in !\ PI _2 4

Problem 3 - Gencra'izin~ for Rank

()ftcn it is possible to ~OhT n problem for a given rank array, but difficult to
generalize the code for :1 higher rank array. Problems naturally fall into working
with arrays of a set rank. Iverson (IVER,c:ON[2]) has assigned primitive
functions a "function rank" and suggested a rank operator whereby a specific
function rank can be assipncd to any function. In "Principles of APL,2"
(BR0 r~' N [1]), Brown defines a ran k operator implemented as a defined APL,2
operator.

Consider the problem of replacing all occurrences of one string with a new string.
"his is naturally a vector problem because the lengths of the new and old strings
may he of different length requiring stretching Of shrinking of the target vector.
Given an "I'l,2 function called REPLA CEV that takes a left argument of a
two-item vector of old and new strings and :l right argument of the vector in
which to do the replacement. The result is a vector with the replacements made.
I low can this be generalized to replace strings in the rows of a matrix or higher
rank array? The function RPPLACE below is one solution.

[0]	 Z +- 0 L D_ NE r~' R Er LACE A; L /I S T
[1] A Replace OLD t..<i t h NE~' a Lo na last axis
[2]	 LAST+(O~pp/l)/r/1PpA

[3]	 Z +- ::l(cOL n_NE f") REPLife E r ... c rL 11 S T] /I

It is possible that the length" of the items resulting from REPLA CE V·· will vary.
The Disclose (:>) function in REPLA CE[3] handles this by padding the
shorter vectors to the lcnuth of the longest. RF:PLA CE can be rewritten to
handle hoth the vector case and the higher-rank case as a single function as
follows:

[0]	 Z+-0 L D_l'i E r~' REPLACE 11; 0 L D ; NE f\' ; B ; I
[1] ARep 1 cl ceO L D t.l i t h NE r" a 1 0 na 1 c.lS t
[2] -+ (.1 < p p J1) / HI R;1 NK
[3 J A t' e c tor (L 0 1"a 17k) c c1oSe
[4]	 (0 L D NE f~') + , .. 0 L D_ NE a'
[5]	 B +- 0 L D (11 n F .in d the 01 (1 < t: r i 17g

(•• • and so o n .•.)
[10] HIRANK:
[11]	 LAST+-(O~ppA)/r/lppl1

[12]	 Z+ :J (cOL lJ _ NE f\') REPL /J CE .. c [L 11 ST] A

The technique used in RErLACE can he made into a general-purpose defined
operator that will apply any vector function to vectors along the last dimension.
This operator is a special cnsc of Iverson's proposed Rank operator
(IVER/30N[2]).

[0]	 Z+-L (F last) R;V
[1] R Apply FN a l o na I as t: d i me n e i o n
[2] A Build enclose last FN (V)
[3J Z+'Z+-V A' 'Z+-c[(O~ppA)/r/lppA]I1'

[4]	 OES(O=tOpOFX Z)/l 2 A FIX OK?
[5] A Z+-F .. (l' R) (1 r Z -+- (V L) F'" (l' R)
[6]	 Z+'Z+-::l' ,(O~ONC 'L')/'(l' L)'
[7]	 Z +-Z , ' F·· (t' R)'
[8] A (Do-or-Die idiom)
[9]	 'DES OET' OFA Z

(Note: 1\1y naming convention is to name defined operators using only lower case
letters.)

5

Idioms and Problem Solving Techniques in ;\ PI 2 6

Problem 4 - Ccneralizing for Depth

Nesting I!' a natural \vay of making collections of arrays, especially when the
arrays may vary in shape. Some operations may apply to the items (cells) and
not to the collections (Frruncs]. Consider the problem of deleting leading blanks
on a string. I low can we generalize this to collections of strings?

"he solution for a single string ;C\ simply

[0] Z..... DLB V
[1] A Del e teL e c.1 (1i ng B 1 a 17k .5

[2] Z +- (+/ A \' '=: l') ... V •

As we have seen, the I~(lch operator can he used to apply DLB to all items but it
is tedious for the user always to he aware of whether the array is the atomic item
of interest or a collection of such items. The problem gets worse when
considering collections of collections, collections of those, or when some items
arc atomic and some arc collections. The general solution emerges as follows:
When can \VC usc the above DL B solut ion". When \VC have a simple string, that
is, its depth is Jess than or (,<]11<1110 one (1 ~=A). Ifnot, the function is
recursively applied with the Iach operator until :l simple string occurs. "]'his
general form of DL F (called TJ L BT) is

[0] Z+-DLBT 11
[1] A Delete Le ad i na Bl(lnks t h ioiia b ou t:
[2] "(l<==A)/RECUR·
[3] Z+(+/A\' '=A)~I1+~11

[4] .. 0
[5] RECUR:
[6] Z+DL8T·· t1

This is such a common structure that it can he ~enrralized with a defined
operator "dept J7.'~

[0] Z+- (F de J)t h N) 11
[1] A AP /) 1 y nio n c1d .i c f U 11C t i (1 n c1 t: De /) t h N
[2] -J- (N < == 11) / REC" R
[3] Z+F 11
[4] .. 0
[5] RECUR:
[6] Z+- (F de [) t 11 N)·· 11

With the de pt: J1 operator the original DLB function can be applied to arrays of
any depth by writing (DD!1 dept h 1) ARRAY, (Note: Redundant
parentheses arc used '0 help clarify what is the derived function produced by
dcpth.)

7

Problem 5 - Producing a Derived Function

Operators in 1\PI ,2 aprly universally to any function; primitive, system, derived,
or defined. Quite often. an operator must he applied to a phrase composed of
more than one function. The phrase can he put into a defined function and then
the operator applied to it, hut this interruption (1i,1 racts 'the programmer from the
problem at hand.

1\ defined operator can he made that will take a character string expression and
produce a derived function representing that expression. The representation that
is used here is a simple expression form of direct definition (IVERSON[2]).

Implementation of the Flsc-If-Thcn forms and other elaborations arc left as an
exercise to the- reader. Alpha and omega characters represent the left and right
arguments respectively. The importance of the derived function is that it can be
used as an operand to another operator. For example, given an array of numeric
vectors, each vector can he sorted by:

, w [! tv]' d d •. A I'

\Vhcrc 'dd' is a direct definition operator. 'I he derived function is 'w [4w] ,

dd , which is appliccl to each item of A v. The direct definition operator is
surprisingly easy to code.

[0] Zo4,L(F dd)R
[1] A Il,)P 1 }' D i 1"e c t: De f i 11i t i 011 t 0 a r g s
[2] ((1 W ' =F) / F) + C t R 1 " 1 6) 1 1'; i t: 11 1 R '
[3] Fo4,€F n Sin7/Jle s t r i.na
[4] « 'a'=F)/F)+c' L ' A 'a' WITH' L '
[5] F+€F A Sinl!Jle Stl-ing
[6] F+'Z+',F A Ready to !
[7] 'DES OET' DEll F n Ex e c u t e

The general idea is to replace all occurrences of the single characters 'a' and
, w' with the names of the actual arguments L and R, and execute the resulting

string. Note the technique of replacing single characters with strings by using
Enclose (c) to create :t scalar. SqUClIT' peg" can fit into round holes. Enclose is
the "universal rounder. q

Idioms and Problem Solving Techniques itt ;\ PI 2 8

Appendix - APL2 Idiom List

The following is not meant to he a complete ;\ PJ.2 idiom list, hut instead a
sampling of the more popular phrases. An effort has been made to keep the
expressions simple and correct for all array« within the domain of the expression.
Sometimes the scalar (1-aJ7k = 0) case or the empty (shape e 0) case
doesn't work correctly. Notes arc included to indicate the special restrictions.
Since it is expected that most of these idioms will he used in-line, as opposed to
being made into utility subfunctions, the simpler version of the expression is
favored. Occasionally, the more sophisticated Of general versions of the idioms
arc also shown.

An informal naming convention is used; V for vector, A for array, M for matrix,
and A V for Array of 'lectors. 'prefer that the expressions are natural, rather
than brutally following a rule cast in concrete. Some idioms are named by single
words or short phrases to make them caC\y to talk about them. Some expressions
are duplicated and used within other idioms. This was done intentionally to
show their different uses.

9

I. First. The first item of a simple array :1" a scalar.

+A

2.	 I .ast. The last item of an array.

3.	 First Dimension, Size of the first dimension as a simple scalar.

+1'11

4.	 Last Dimension. Size of the last dimension :1<\ :t simple scalar.

5.	 Simple? "rest for simple array.

6.	 Nested? 'rest for nested array.

7.	 Item list. Make a simple array into a ~ingle item.

~(1==I1)/'I1+cl1'

R.	 Item Fqual. Non-pervasive equal, sometimes called a string equal for its
most common usc. Compare items for equality.

11="B

For example to search for' NAME' in a vector of vectors:

VV:;··c'NAME'

9.	 Type. Replace numbers with 0, character" \\'1.h' '(hlank). Preserves the
shape, rank, and structure of the array. (This \\'3S the primitive function
Type in the 1\ PI ,2 It JP).

+OpcA

to. Array Type, "rypc of array: character, numeric, or mixed.

I+2.LO ' '£+OpcEA

tI.J. ' 7' 'CHARACTER' 'NUMERIC' r MIXED'

Note: Fails to detect arrays of empty arrays of mixed type as MIXEI), such
as the two-item vector ,t (l a) .

11. Array Type,	 Type of array: character. numeric. or mixed.

3 11 DNA 'PFII'
I+2.l't1IBJE' 'C' v , £··cPFA A
tI~'?' 'CHARACTER' 'NUMERIC' 'MIXED'

Note: 'Yorks for all C:lS(·S.

I 0	 Idioms and Problem Solving Techniques in !\ PI 2

J2.	 Convert a vector into a one-column matrix .

• [to]V

13.	 Convert a matrix into a vector of row vectors.

c[1tOIO]M

14.	 Columns. Convert a matrix into a vector of column vectors.

c[OIO]M

15. Split.	 Convert a rank N array into a rank N-l array of vectors, taking

vectors along the last dimension.

c[(O~ppA)/r/tPpA]A

or

c[f/tppA]A n O<ppA

16.	 Mix. Convert a rank N array of vectors into a rank N + 1 array, putting the
vectors along the last dimension.

17.	 Row Table. Assemble vectors into rows of a matrix.

:> t' 1 V 2 • • • IT n

1R.	 Column Table, Assemble vectors into columns of a matrix.

~='t'1 ~'2 ••• Vn

19. General I .aminntc, Assemble arrays of equal Tank into an array of rank one
greater, putting their dimensions la~t.

jA1 112 •• • l1n

20. Glue Along.	 Catenate arrays of equal rank into an array of the same rank,
along a single dimension I. All dimensions of each array must match except
dimension I. The result is an array where the Ith dimension is the sum of
the Ith dimensions of the argument arrays.

=>,[1]/111 112 ••• An

For example, to make a single l':-cohnnn matrix out of a list of three
Nvcolumn matrices.

:l,[OIO]/M1 M2 M3

21. Quick List. Vcrtical list of all visible defined functions and operators.

• [1 0] DC R·· c [1 +[]I 0] ON L 3 4

22,	 Quick Input. Input N strings into an Nvitcm vector.

1'S'+!U Np '(!J'

II

23.	 "Chipmunk." Select sub-arrays given a ~('1 of paths PI, P2, ... Po.

P1	 P2 •.• Pn~··cl1

24.	 "Chipmunk with glasses and a toothache.' Select multiple sub-arrays given a
set of sets of paths.

(P 11 ••• Pi n) ••• (P k 1 ••• Pk 11) J c c 11

25. Pair-wise.	 Apply a dyadic function between corresponding pairs of arrays in
t\VO lists.

ALl ••• ALn r" AR1 ••• ARn

26.	 1\11 Right. Apply a dyadic function to a list of arrays as a left argument and
a single array right argument.

A1	 112 ••• An r" cJ1

27.	 ;\11 I .cft. Apply a dyadic function between a 1i"l of arrays as a right argument
and a single array len argument.

(cA) r" 111112 ••• An

2R.	 Apply 1 ast. Apply a function to vectors along the last dimension and
assemble equal rank results at the end.

~f"c[r/tPpIlJII

or

n Scnl ar s too

29. Word Proof.	 Given a vector of words and a dictionary vector or words,
select the words that arc N(rl' in the dictionarv (misspelled words).

K'L"'DICTIONI1RY

30.	 Cartesian Product. Generate all combinntion« of pairs from the left and right
arguments,

(c··I1L)o. ,(c"I1R)

31.	 Count Occurrences. Count the number of occurrences of each item in a
vector V1 found in a vector V 2 .

+/l'1 o • =V2

32.	 Sum By Bucket. Given (1 vector of categories with possible duplicates, a
corresponding vector of counts, and a catt'!!ory vector without duplicates; give
a corresponding vector of total counts.

COUNTS+.xCI1TSo.~UCATS

33. De- Duplicate	 Row Table. Delete duplicate rows of a matrix. The result is a
matrix with possibly fewer rows than the original where each row appears
exactly once in the order of the original.

12 Idioms and Problem Solving Techniques in /\ PI ,2

V+c[1+D10]M
((V tV) = t p l') I M

34. De-Blank. Delete all blanks in string.

V~I

35. Standard Name T.ist.	 Force string, vector-of-strings, or matrix into a

vector-or-strings with nn blanks.

(,c [010] ~ ::J 1 / l'l L) ,

This is useful in producing a name Jist.	 J:or example:

(tc[OIO]~::Jl/0NL 3 4) I

3tl.	 Word I .ist. Convert a delimited simple character vector of words into a

vector of vectors. (Release 2 only).

3 11 DNA 'DAN' A only (In once

VV+DELIMITERS DAN V

37. Convert a vector of strings into a simple \'('ctnr with one blank between each
string.

1 4- € '	 ', •• l' t'
01"

14--14-.VV

3R.	 Quote. Wrap string in quotes and double-quote internal quotes.

, , ,	 , t « 1 +' , , '=V)/V), , , , ,

39.	 Scalar Extend. lxtcnd all scalar array items to the shape of the non-scalar
items assuming scalar compatibility.

40. Vector flick.	 Pick a single item from a vector using an origin zero index.
This works the same in either origin.

tltV

41. If Then	 T~J~c.

ttCONDITIONt~'then 1'c11-t' 'p].5e p a r t:'
01~

t. t CONDIT1 ON ... 'e lse p a r t:' v t Iie n p e r t:'

42.	 Case. Execute the Ith expression.

ttI ... O 'cclsel' "cese n '

43.	 Simple Image. Convert a nested arrav to ~, simple character array image.

44.	 Matrix Image. I'orrnnt any array and yield a simple character matrix result.

o	 1tO -1i-liC(1 1,p!1)pl1

13

45.	 Format and right-justify all columns of a report.

l.J.[OIO]TO,[OIO]11

or

l~[OIO]NiO,[OIO]A A NUMFRIr N

46.	 Alphabetize Matrix. Sort a simple character matrix alphabetically by rows,

M[OI1V!M;]

47.	 Alphabetize List. Sort a vector of strings alphabetically.

Vl'[OAV!::>VV]

48.	 Sort Number Lists Sort each simple numeric vector item.

49.	 floor Man's Rhyming Dictionary. Sort a vector (If strings in approximate
rhyming order.

50.	 Matrix Number. Attach row numbers to a matrix.

(t+pM),M

51. Execute	 Along Last Convert a simple character array representation of
numbers into a simple numeric array of non-scalar rank.

:J~··C[r Itppl1 JI1+'.',11

Note: This will always produce a non ..scalar.

52.	 Event Type for Expression. Get event type of a specific error dynamically.
This is meant to he used in immediate cxccut inn 'node. Although it wilt
work properly in any context, it is unrc..liable because it is dependent on
future extensions. Note: If the execute of the right argument unintentionally
produces a WS FUL L then thc result will he 1. 3 instead of the intended
event type.

[••] 'OET' DEli' •• ERROR •• '

53.	 1)0 ()r Die. Report error at defined opera! inn call if expression fails. This is
especially useful \\'11h a defined operator where the function is blindly applied
to its argumcntts), The operator has no way of determining if the arguments
are appropriate to its function operand, except for trying it.

'DES OET' OEI1 ' •• e x p r e s s i.o n to p rotz e c t: •• '

54.	 Rank Each. Simple integer array of the rank of each item.

+··p··p··11

55.	 Raise. Strip off one- Ic\'C'1 of nesting. for example vector of vectors of matrices

becomes a longer vectorof matrices.

14 Idioms and Problem Solving Techniques in ;\ PI 2

+,1,",11

5£i.	 Structure. Make an array of the same structure as 'A ' hut consisting of all
zeros.

57. Scalar Extend. 1\ssuming all items of the S:HllC ran k, force a11 items to the

same shape by overtaking.

e el1

(r/p··II)t

SR. Replace 1\11 Items. Replace all items in A with Nr», The shape of A is
unchanged.

(,A)+cNEW

5<).	 Replace Selected Items. Replace selected items corresponding to the I s in
left argument with the corresponding items from NEr·/. The shape of A is
unchanged.

« ,COMPARE A)/,II)+,NEW

Note: For conformability

+/.COMPARE A ++ p,NEfv O!~ 1 ~...~ x/pNEW

60.	 Combine real arrays re-presenting the real and imaginary parts, into a single
complex array.

RtOJ1xI

() 1. Split complex array into real & imaginary. Shape is 2 , pC.

9 11 0.0C

62. Join real & imaginary into complex :lrray along the first axis.

1 OJ1+.xRI

61.	 Split complex array into two-item real & imnginary array. Shape is 2 .

9 110cC

64.	 Join real & imaginary two-item vector into single complex array.

+1	 OJ1+. x RI

65.	 Real from A, imaginary from B.

(9011)+OJl x110B

()(l.	 Swap real & imaginary.

OJlx+C

67.	 Heterogeneous output can he produced hy Nt)l including the semicolons
and making sure all sub-expressions that include functions arc parenthesized ..

15

For example:

'PRODUCED' N 'ITEMS, TOT/lLIN(:' (NxK)

Note: ']'his form is actually more flexible than the old form of heterogeneous
output using semicolons because any item can be an array of any rank,
shape, type, or structure.

16 Idioms and Problem Solving Techniques in ;\ PI ,2

References

t. Brown, J. A., Ie'rhe Principles of "PI ,2," In\-1 Santa Teresa Laboratory
Technical Report, "rR 03,247, March I q~4. rr ~(,.

2. Iverson, K. E., 11;\ Dictionary of the 1\1'1, I anguagc," 1.1). Sharp Associates,
September 19R5,

3, Bcnkard, J. P., "Rank \'S Depth," I\PI Jtt

17

Acknowledgements

The following people have contributed to this document: Phil Bcnkard, .Jim
Brown, Hill Buscher, 'farlan Crowder, Dick Dunbar, l~d l~l1scbi, John Gerth,
Michael Golding, Alan Graham, Lou (ironer, George l Icnry, Gary Logan, Blair
Martin, Jon McGrew, Ray Polivka, Dave Rnbcnhorst, Howard Smith, Karl
Soop, Ray Trimble, and probably others. 1\1y thanks to nil of them.

1R Idioms and Prohlcrn Solving Techniques in ;\ PI. 2

