
I NTERACTIVE PROGRAMMING IN
MULTI FACETED ENVIRONMENT :
The APL2 Connection
to IBM Program Products

A b y Ha r lan Crowder
Di c k Dunbar

May 1986 TR 03 . 288

--------- - ------- - ---- - - --------

May 1986

TR03.288

Interactive Programming in a Multifaceted Environment

The APL2 Connection to IBM Program Products

Harlan Crowder

IBM Santa Teresa Laboratory

Dick Dunbar

IBM Almaden Research Center

--_.­
General Products Division
Santa Teresa Laboratory
San Jose, California

The illustrations in this report were created using Interactive
Presentation Graphics, Version 2, and Graphical Data Display Manager,
Interactive Chart Utility running with APL2. Text and graphics were
integrated using the Document Composition Facility. The report was set
in Helvetica type and produced on the IBM 4250 printer.

Interactive Programming In a Multifaceted Environment ii

Interactive Programming in a Multifaceted Environment

The APL2 Connection to IBM Program Products

Application programs written in APL2 have access to a variety of IBM program products. These products
provide services to APL2 applications, including user dialog management, graphics, relational database
control and management, and high-performance processing.

This monograph briefly describes the IBM program products that complement APL2, and explains how
they are used in the APL interactive programming environment.

The APL2 Connection 10 IBM Program Products iii

Reprints of this report may be obtained by writing Harlan Crowder at the following address:

IBM Corporation

Department M30

555 Bailey Avenue

San Jose, CA 95150

USA

Interactive Programming in a Multifaceted Environment Iv

Introduction

The APL2 program product offers a variety of fully supported interfaces to
other IBM products in the VM/CMS, MVS/TSO, and MVS/XA operating system
environments. These include the Graphical Data Display Manager
(GDDM) for user dialogs, device control, and graphics; the Interactive
System Productivity Facility (ISPF) for user interface management; IBM

DATABASE 2 (D82) and Structured Query Language/Data System (SOLIDS)

for relational database access and management; vs FORTRAN and IBM

5/370 assembler language for high-performance processing and access
to existing compiled subroutine libraries; and, under VM/CMS, the VM/SP

System Product Interpreter (REXX) for host-system support, string proc­
essing, and general procedural language programming.

This monograph gives a brief introduction to these various IBM products,
and describes how they are used in the APL2 programming environment
to complement and extend the power and versatility of the APL2

language and system.

The Application System Triad
Most computer application systems have three main components: the
user interface, the database, and the computational problem solver
components.

User
Interface

Database

Computational
Problem
Solver

The User Interface component is that part of the application system that
manages the system's interactions with the user; it can involve the use
of command processors, menu drivers, and graphics. Various facilities
in the APl2 language and system are specifically intended for construct­
ing user interface components; these include the APL2 Session Manager,
the FORMAT primitive, and the various input/output modes. Some appli­
cations, however, require a more versatile and robust user interface
than can be conveniently constructed in APL. The section below on the
User Interface describes the use of GDDM and ISPF in APL applications.

The Database component manages the storage and access of problem
data associated with the application. In APl, the traditional database
component is the workspace, a reservoir for both data and programs. In
APL2, relational data is handled as general arrays in a natural and easy
way. The Database section below describes the use of the IBM relational
database management systems, DB2 and SOLIDS, in the APL2 environ­
ment.

The Computational Problem Solver component is that part of an applica­
tion program that performs the computationally intensive or
sophisticated portion of solution processing. Until recently, APL applica­
tions were limited because the problem solver component could be
coded in APL only. The Names Association facility of APL2 allows APL

programs to access external routines coded in 5/370 assembler

The APL2 Connection To IBM Program Products

language, FORTRAN, and, under VM/CMS, REXX. The use of external
routines will be described in the Computational Problem Solver section.

The User Interface

This section describes the use of GDDM and ISPF for building the user
interface component of APL application systems.

APL2 and GDDM
The GDDM program product is a format manager that processes both
graphics a.nd alphanumerics on display devices, printers, and plotters.
The major component of GDDM is a set of functions for drawing pictures
and controlling text. GDDM operates in the VM/CMS, MVS/TSO, and MVS/XA

environments. For more general information, see GDDM Genera/Infor­
mation, IBM form number GC33-0100. For more technical information,
see GDDM Application Programming Guide, IBM form number
SC33-0148.

In addition to the GDDM Base product, GDDM supports a variety of sepa­
rately orderable features. For example, the Presentation Graphics
Feature (PGF) provides a set of functions for producing business and
engineering charts a.nd graphs; included in the PGF is the Interactive
Chart Utility (leu) that allows the easy construction of basic plots and
charts in an interactive mode. The Interactive Map Definition (IMD)

provides a way to create screen images that define the format of data to
be displayed and processed; these images can be saved in files for later
access and use by the application program.

Using GDDM with APL2

The APL2 shared variable interface to GDDM allows data, in the form of
APL arrays, to be sent directly to GOOM for processing. The GDMX work­
space, distributed as part of the APL2 program product, is a simple,
easy-to-use functional interface to GDDM that takes advantage of APL2

general arrays to formulate and manage data for graphics and user
dialog applications. For example, the GDDM function GSCOL is used to
set the color of subsequent graphic operations on display devices.
Using GDMX, the APL statement to change the GDDM color to red is

, GSCOL' GDMX 2

The left argument to GDMX is the name of the GDDM function; the right
argument is the operand for the GDDM function (in this example, 2 is the
GDDM color code for red).

Using the Interactive Chart Utility (leU) with APL2

The feu is an optional component of GDDM that allows quick and easy
production of charts and business graphics. Operated from a series of
menus and help screens, it is particularly useful for people with limited
computer experience. The following chart types can be constructed
using the leu:

bar charts
histograms
line graphs
pie charts
polar charts
scatter plots
surface charts
tower charts
Venn diagrams

For more information, see GDDM Interactive Chart Utility User's Guide,
IBM form number SC33-0111.

Interactive Programming in a Multifaceted Environment 2

In APL2, leu is invoked using the special CHART call of the GDDM inter­
face. This general facility allows a versatile application programming
interface to the leu; the user can easily tailor the leu invocation to fit
specific needs.

As an example, we consider a very simple interface that takes a vector
or matrix argument and produces a simple plot for a vector, and multi­
ple plots for rows of a matrix. Using this interface in an APL function
called CHART, the APL expression

CHART 2 5 3 4 1

produces the following leu picture:

As a more interesting example, suppose we have sales data for two
products, for four quarters of the year, expressed as a two-by-four
matrix SALES. The sequence

SALES
78 66 92 84
71 55 78 95

CHART SALES

produces the following leu plot:

Manipulating this plot using the interactive facilities provided by leu
produces this chart:

The APL2 Connection To IBM Program Products 3

D Prod 2

100- 0 Prod 1

80­
~

-::0:0

20

.-- ­

-

-

-

I""""""'T

:::::
~

I"""""""

.---­

o
01 02 03 Q4

The ICU, in conjunction with APL2, is a powerful tool for quickly producing
graphic charts for data comparison and analysis, and provides the abili ­
ty to manipulate the pictures to produce good business and presentation
graphics.

Using the Interactive Map Definition (IMD) with APL2

The IMD allows the design and management of terminal screens and
panels for APL applications; once designed, these images are stored in
files for use by the application. Because these images are processed
and formatted at the time they are produced, the application is relieved
of the burden of processing screen formats at execution time; the result
is simpler program code for screen processing and management, and
significantly faster execution time. The GDMX function interface to GDDM

can be used in APL2 applications to manage IMD screens and associated
data.

For more information about the use of the IMD, see GDDM Interactive
Map Definition User's Guide, IBM form number SC33-0154.

APL2 and ISPF
The ISPF program product is a set of executable routines that may be
invoked from application systems ISPF provides the ability to execute
special interactive programs called dialogs that provide interactive
control for applications. ISPF operates in conjunction with APL2 in the
VM/CMS, MVSITSO, and MVS/XA environments.

The available services that use ISPF dialogs include

•	 Identifying various choices of processing routines available in an
application.

•	 Invoking a requested routine, based on the user's choice tromwlth­
in a dialog.

•	 Prompting the user for data entry.
•	 Processing user data into application work areas.
•	 Checking data to verify that it is appropriate for the application.

•	 If the data is not appropriate for the application, identifying the
error to the user and prompting for reentry.

•	 Providing online documentation, consisting of messages and tutori ­
al displays, to help the user in processing an application.

For more information about ISPF, see Interactive System Productivity
Facility General Information, IBM form number GC34-2078.

Interactive Programming in a Multifaceted Environment 4

Using ISPF with APL2
APL2 and ISPF communicate through a shared variable interface, Auxilia­
ry Processor 317 (AP317). This interface allows full access to ISPF
services from within an APL2 application. A distributed workspace
named ISPEXEC, provided with the ISPF product, contains functions for
aiding in the use of ISPF with APL2.

A unique feature of ISPF running with APL2 is the ISPF ability to use APL2 as
a subsystem. In this mode of operation, ISPF dialogs can pass APl state­
ments to the APl2 environment for execution and obtain results back
from APL2 for display or additional processing.

For more information about using ISPF in conjunction with APl2, see ISPF
Dialog Management Services, IBM form number SC34-2173.

The Database

This Section describes the use of DB2 and SOLIDS for building the data­
base component of APL2 application systems.

APL2 and SQL
DB2 and SOLIDS are the IBM relational database management systems.
APL2 uses the Sal interface to communicate with SOLIDS running in the
VM/SP environment and with DB2 running in the MVS/TSO and MVS/XA envi­
ronments.

DB2 and SOLIDS both use and manage data stored as relational tables.
Because tables are simple and familiar (telephone books, airline sched­
ules, and bank statements are all table structures), most people can
understand and use them easily. For example, a collection of employee
data could be stored as the following table:

EMPLOYEE
========

ID NAME INT DEPT YEARS SALARY

113 ADAMS SA 001 12 36000

104 BANKS JA 004 15 35000

107 CROW PJ D02 6 24000

106 DEAN RA 002 12 38000

108 EATON FA 003 18 40000

109 FARR JJ 001 25 50000

103 GALVIN JE 004 5 27000

110 HARVEY HP 004 23 45000

101 INGRAM MO 001 2 18000

114 JACKSON MA 002 1 16000

102 KAHAN BA 003 6 32000

III LAMAR WJ 002 21 45000

105 MULVEY JS 004 3 21000

112 NELSON AB D04 7 32000

Application programs communicate with 082 and SOLIDS using the Struc­
tured Query Language (Sal). sal is a nonprocedural language; users
specify what they want to do, not how to do it. The same language is
used for all operations on relational tables, including definition,
retrieval, and manipulation.

As an example, the following Sal statement could be used to process
the above EMPLOYEE table to obtain the names, department, and salary
of all employees with salaries less than 25,000.

SELECT NAME, DEPT, SALARY

FROM EMPLOYEE

WHERE SALARY < 25000

Using DB2 and SQLIDS with APL2

In APl2, communication with SOLIDS and 082 are handled by the Sal Auxil­
iary Processor, AP127. This shared variable interface allows APL2

The APL2 Connection To IBM Program Products 5

applications to pass Sal statements, in the form of APl character vectors
or matrices, to the database systems, and receive tables from these
systems in the form of APL2 arrays containing both character and numer­
ic data. For example, the SOL statement above, applied to the
EMPLOYEE table, would produce an APl2 matrix of the form:

CROW D02 24000
INGRAM DOl 18000
JACKSON D02 16000
MULVEY D04 21000

The sal distributed workspace, supplied with the APL2 program product,
contains a set of programs for aiding the use of DB2 and SOLIDS from APL

application progra.ms. The workspace contains a variety of functions for
cornmunicatinq with the database systems via AP127:

•	 Data access functions, which pass Sal requests to AP127.
•	 User support functions, which create common sequences of

requests and pass them to AP127.

•	 Task control functions, which allow management of the APl2/S0L
interface environment.

•	 A defined operator UNTIL, which creates a derived function that
processes a stack of requests to AP127.

For more information on the database management systems, see

SQL/Data System Genera/Information, IBM form number GH24-5012, a.nd

IBM DATABASE 2 Genera//nformation, IBM form number GC26-4073.

For more information about the APL2/SQL interface, see APL2 Program­

ming: Using Structured Query Language (SQL), IBM form number

SH20-9217.

APL2 Relational Applications
The APL2/SQl interface, combined with the ability to easily represent
relational data as APL2 arrays, makes APl2 a natural adjunct to D82 and
Sal/OS. The following are potential application areas of APL2 in a rela­
tional environment.
Interactive relational application systems -- The ease with which APl2

can	 create, access, and manipulate relational data makes it a good
candidate for implementing interactive relational application systems.
The Sal interface, combined with the APL2 interfaces to GDDM and ISPF,

provides a powerful and versatile tool for the interactive analysis and
management of relational data.

Relational data model design -- A major obstacle to the use of relational
database systems is the design and implementation of a data model for
a particular application. The data model design phase usually requires
experimentation and analysis to arrive at the correct set of relational
tables for the problem at hand. Because prototype systems are easy to
design and implement in APl, it is the ideal tool for this job.
Small multi-user applications -- APL2 provides a unique set of facilities
for building multi-user application systems. The user-to-user shared
variable interface facility of APL2 allows applications to communicate
directly and asynchronously among different virtual machines (in
VM/CMS) or TSO address spaces (in MVS/TSO). This facility allows the easy
construction of multi-user relational applications, using a single-user
set interface server, accessible from muttlple users.

Interactive Programming in a Multifaceted Environment 6

The Computational Problem Solver

This section introduces the facility in APL2 that allows APL applications to
access external proqrarns written in 5/370 assembler language, FORTRAN,

and, under VM/CM8, REXX.

The Name Association Facility
The APL2 Name Association facility allows portions of APL2 application
systems to be written in FORTRAN and 8/370 assembler language. These
compiled language functions are used in the application the same as if
they had been written in the APL2 programming language. This powerful
facility offers a variety of advantages for production APL2 applications:
Use of existing programs and subroutine libraries -- Existing procedures
written in FORTRAN or assembler can now be used directly, without
modification, in APL2 applications; they do not need to be translated into
APl. This means that programs from compiled subroutine libraries can
now be used like APL functions in APL2 applications.
Improved execution performance -- Computationally intensive portions
of applications may become the bottleneck that limits either the capacity
or performance of the application. The Name Association facility allows
these bottleneck portions to be written in compiled code. Because
external objects are syntactically equivalent to APL objects that they
replace, changing the reference to APL objects in the workspace to the
external name reference is sufficient; the remainder of the application is
not effected.
Easier maintenance of shared programs -- Shared programs are crucial
when applications require that everyone use the same code. For exam­
ple, some applications require functions that control access to critical
resources, such as files or communication facilities. By their nature,
these functions are subject to periodic modification. They are good
candidates for external objects because an external function that is
centrally accessible is easier to modify than the equivalent function
distributed in a number of separate workspaces.
Access to the IBM 3090 Vector Facility -- APL2 applications can use the
IBM 3090 Vector Facility by calling FORTRAN subroutines compiled with vs
FORTRAN Version 2. This allows APL2 to exploit the latest in high-perfor­
mance processing technology for a variety of applications areas.

The Name Association facility also allows APL2 under VM/CMS to call func­
tions written in the REXX programming language. REXX has a variety of
facilities for accessing information about the host system and other
application subsystems; this information is now easily available to APL2

applications. REXX also has language features that aid in string handling
and parsing; APL2 applications that require string processing can take
advantage of these REXX functions.

For more information about the APL2 Name Association facility, see APL2
Programming: System Services Reference (Version 1, Release 2), IBM

form number SH20-9218. For more information about FORTRAN, see VS
FORTRAN Version 2 Programming Guide, IBM form number SC26-4222.
For more information about REXX, see VMISP System Product Interpreter
Reference, IBM form number SC24-5238.

APL2 and VS FORTRAN
We demonstrate the use of FORTRAN subroutines in APL2 with a simple
example. The following FORTRAN program, named SDF, is used to calcu­
late the standard deviation of a list of real numbers:

The APL2 Connection To IBM Program Products 7

SUBROUTINE SOF(S,N,X)
C COMPUTE STANDARD DEVIATION
C OF N NUMBERS X

REAL*8 X(N) , S , A

INTEGER*4 N

A=O.

DO 10 I=l,N

10	 A=A+X(I)

A=A/N

5=0.

DO 20 I=l,N

20	 S=S+(X(I)-A)**2

S=DSQRT(S/N)

RETURN

END

The following sequence shows how SDF is used in APL2:

~ MAKE SDF KNOWN TO APL2 . . .

3 11 DNA 'SDF'
1

A A TYPICAL LIST OF NUMBERS . . .

Q1
5 11 3 24 8

A APPLICATION OF SDF . . .

SDP (0 (pQ1) Q1)
7.414

The first APL2 statement uses the Name Association system function DNA
to make the FORTRAN subroutine SDF known to APL2. When SDF is applied
to an input list of numbers, its argument is a 3-item array corresponding
to the three parameters of SDF: a place-holder for the result, the length of
the input list, and the input list itself. We can use SDF in a more natural
APL2 style by embedding it in an APL2 function. The following function SD,
given a list of numbers, constructs the required argument and applies
SDF to compute the standard deviation:

v
[oJ Z+-SD X
[lJ ~ APL COVER FUNCTION FOR
[2J A FORTRAN ROUTINE SDP
[3J Z+-SDF (0 (pX) X)

v

SD can be used in various ways consistent with APL2 syntax; the actual
standard deviation calculation is performed in FORTRAN:

Interactive Programming in a Multifaceted Environment 8

APL2 and REXX

Q1
5 11 3 24 8

SD Q1
7.414

Q2
17 3 8 11

Q3
3 436

Q4
8 10 9 2.

~ APPLY 3D TO EACH ITEM
~ OF A NESTED ARRAY . . .

SD	 Q1 Q2 Q3 Q4
7.414 5.068 1.225 3.112

This combination of APL-FORTRAN hybrid functions leads naturally to a
programming style that takes advantage of the strong points of both
languages: APL for versatility and ease-of-use, and FORTRAN for process­
ing power.

APL2 can execute REXX functions in three forms:
•	 Primitive REXX functions that are part of the REXX interpreter.
•	 REXX programs contained in files on disk.
•	 REXX functions that are represented as character arrays in the APL

workspace.

The function USERID is a primitive REXX function; it returns the user's
VM/CMS user identification. The following sequence shows its use in
APL2:

3 10 DNA 'USERID' ~ Make USERID known to APL2
1

USERID to
CROWDER

The REXX function USERID requires an empty argument; in REXX, the call
would be USERID (). In APL2, USERID is called with an empty array
argument.

The following example shows the use of dynamic REXX execution where
the REXX function is derived from a character array in the workspace. It
uses the special REXX interpreter built-in function 6.EXEC that is supplied
with the APL2 program product. In this example, the derived REXX func­
tion returns the first character string token that follows a left parenthesis
in its argument string.

3 10 DNA 'AEXEC I ~ MAKE 6.EXEC KNOWN TO APL2
1

R+'ARG PARMS " (I I FIRST REST' 'RETURN FIRST'

R 6EXEC t PARM1 PARM2 (OPT1 OPT2 OPT3'
OPT1

The use of REXX in conjunction with APL2 significantly extends the power
and versatility of APL for a variety of applications.

The APL2 Connection To IBM Program Products 9

Conclusion

Acknowledgment

The APL2 program product ability to access and use the services and
capabilities of other IBM program products makes APL2 a powerful tool
for system integration. In this monograph, we have briefly illustrated
how APL2 interacts with various IBM products for constructing the user
interface, database, and computational problem solver components of
application systems.

Special thanks to Betty Faith and Sheryl Winton for their critical reading
of this paper; their suggestions improved both the style and content.

Interactive Programming in a Multifaceted Environment 10

