
Santa Teresa
Laboratory
San Jose, CA

INTERACTIVE SQL AND APL2 by Nancy Wheeler

May 1986 TR 03.289

TR 03.289

INTERACTIVE SQL AND APL2

May_ 1986

Nancy Wheeler

IBM

Genpral Products Di',i.,:;1on

Santa Teresa Laboratory

San Jose, California

~ I

ABSTRACT

This paper is a tutorial on the use of AP 127, an APL2 aux­
iliary processor which interfaces to the relational data­
bases SQL/Data System (SQL/DS) and IBM Database 2 (DB2) from
the APL2 workspace.

iii

TABLE OF CONTENTS

Introduction
Relational Data in APL2

Mixed, Nested Data
Column Headings
Putting it Together

Using SQL from APL2
Table Creation
Table Retrieval
Column Name Retrieval
A Finishing Touch

Getting Fancier
Data Input Functions
Generalizing a Query
Using AP 127 Operations
Use of EACH for Output

AP 127 Utility Operations
NAMES Command
STMT Command
STATE Command

AP 127 Options
VECTOR Option Setting
LENGTH Option Setting
FETCH Blocking

AP 127 Error Handling
Errors found by AP 127
SQL Errors

The CONNECT Command
Final Words
References

APL2 Publications
SQL/DS Publications
IBM Database 2 Publications
Other Publications

Appendix A. SQL statement Summary
Appendix B. AP 127 Operations and SQL Workspace

Functions
Appendix C. Return Code Summary

1

2

2

3

3

5

5
•
7

7
•
9

11

11

12

12

1~

1S

15

15

16

17

18

19

19

23

23

23

25

26

27

27

27

27

28

29

30

32

v

LIST OF ILLUSTRATIONS

Figure 1 •

Figure 2.

Figure 3.

Figure LI.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11 •

Figure 12.

Figure 13 •

Figure 14.

Figure 15.

Figure 16.

Figure 17 •

Figure 18 •

Figure 19.

Figure 20.

Figure 21 •

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31 •

Figure 32.

Figure 33.

Variable with relational-like data 2

Column names in APL2 format 3
· · · · · · · · PRESFORM function 4· · · · · · · · · Invocation of PRESFORM 4
SQL statements in APL2 variables · · · 5
Creating a table 6
The UNTIL function · · · · 6
Issuing a SELECT · · · · 7
Issuing a DESCRIBE · · · · · · · · 8
HEADS function 8
TABLE function 9· · · · Execution of TABLE 9· · · · The IN function 11· · · · · · •
Execution of a pre-defined query 11
Query with host variable indices 12
Using AP 127 operations 13
Using EACH with SQL results 1q
Active SQL .,;."._~. ~ments 1S· · · · · Text of SQL stat~J;"ents 15
State of SQL s t a t emc....nts · · · · 16
Default result structure 17
GETOPT operation 18
VECTOR format 18· · · · LENGTH option 19· · · · · · · · ROWS option 20
RESUME execution 21· · · · · · · · · Catenating the results 21
RESUME execution again 22· · · · The final result 22·· · · · · · · · An AP 127 error 23
An SQL error 24· · · · MESSAGE with an SQL error. 24
CONNECT command 25. · · · · · · · ·

INTRODUCTION

AP 127 allows APL2 programmers to imbed Structured Query
Language (SQL) statements in their APL2 functions. just as
SQL statements can be imbedded in COBOL or ASSEMBLER pro­
grams. Unlike those languages. however. APL2 allows inter­
active access to the databases. Also, because APL2 does not
have explicit data declarations, SQL declarations and con­
trol blocks do not need to be coded in APL2. The
formalities of connecting to the database and passing it
requests in the proper format are taken care of by AP 127:
the user need only construct the SQL statements.

The AP 127 interface to SQL is simple and takes advantage of
APL2 arrays. One shared variable is used for return codes
and data, and the SQL tables are returned to the APL2 work­
space as nested arrays. Once the data is in the workspace,
the full power of the APL2 language is available for manipu­
lating it.

Along with AP 127, a workspace called SQL is distributed
with the APL2 product. The SQL workspace contains APL2
functions for using AP 127. In general, when functions are
referred to in this paper, but their source code is not
shown, they are included in the SQL workspace. Functions
whose code is shown are not included in SQL.

NOTE: The interface protocols are generally the same when
interfacing to IBM Database 2 (DB2) and SQL/Data System
(SQL/DS). Unless specifically stated, all references to SQL
in this document apply to both environments.

1

RELATIONAL DATA IN APL2

MIXED, NESTED DATA

Figure 1 shows a nested array that 1s typical of what an SQL
table might look like. The examples used in this presenta­
tion are based on a fictional company, ABC Limited, and the
data here is contained in one APL2 variable, ABeT.

ABeT
ADAMS 12 3 36000 ADMIN PA1
BANKS 15 3 35000 SALES PS2
CROW 6 2 2LfOOO PROD PP1
DEAN 12 3 38000 PROD PP2
EATON 18 Lf 40000 RES PR1
FARR 25 5 50000 ADMIN PA1
GALVIN 5 3 27000 SALES PS1
HARVEY 23 5 45000 SALES PS1
INGRAM 2 1 18000 ADMIN PA2
JACKSON 1 1 16000 PROD
KAHAN 6 3 32000 RES pr~2

LAMAR 21 5 45000 PROD PP1
MULVEY 3 2 21000 SALES PS2

DISPLAY 4t[1JABCT
.+--------------------------------­
~ .+----. .+---- . .+-- .

IADAMS I
1 _____ '

12 3 36000 IADMINI
,-----,

IPA11
' __ -I

.... ----. .+----. .+-- .
I BANKS I 15 3 35000 I SALES I IPS21
' _____ 1 ,-----, '---'
.+---. .+---. .+-- .
ICROWI 6 2 24000 IPRODI IPP11
,----, ,----, '---'
.+---. • +--- • .+--.
IDEANI 12 3 38000 IPROD) IPP21
,----, ,----, ' ___ I

£--------------------------------­
Figure 1. Variable with relational-like data

....

2

Tlle DISPLAY workspace, included with APL2, allows a pictori ­
al representation of data, making it easier to see the type
and structure of an object. Here, we display the first four
rows of the ABeT variable for demonstration. Note that the
numbers are scalars, so they have no boxes around them. The
character items are vectors, and the entire object 1s a
matrix.

COLUMN HEADINGS

In a relational database we use the concept of data in
tables with rows and columns, and the columns have names
associated with them. In Figure 2 we assign to . the APL2
variable ABCH a vector of character items representing the
names of the columns of our data.

Use of the DISPLAY function shows that ABCH is a vector of
character vectors.

ABCH .

NAME y~S LEVEL SALARY DEPT PROJ

DISPLAY ABCH

.+--- ..+-- ••+---- ••+----- ..+--- .. ~---.

INAMEI tYOSI ILEVELI I SALARY I IDEPTl tPROJI
1 ' • t , • • • ' ' • _- __ ,

'€--'

Figure 2. Column names in APL2 format

PUTTING IT TOGETHER

Given that we now have some data in one variable, and some
column headings in another, we might want to combine these
variables into a format suitable for a report. The APL2
function PRESFORM will do that. Line 2 of the function
places a row of "=11 signs under the headings to delimit them
from the data_ and line 3 concatenates the data onto them.

3

VPRESFORM[OJV
v

[OJ Z+H PRESFORM T
[1] A PRESENTATION FORMAT
[2J Z+::2HCCp··H)p··'=')
[3] Z+Z,[OIO]T

V 1984-05-31 16.32.57 (GMT-B)

Figure 3. PRESFORM function

To invoke the PRESFORM function. we use the headings (ABCH)
as the left argument and the data (ABer> as the right argu­
ment.

ABCH PRESFORM ABeT

NAME Y~S LEVEL SALARY DEPT PROJ'

.-.-~-_-._­-.-.-. --- - ----------~-_ ---- -. ... _-­
ADAMS 12 3 36000 ADMIN PA1

BANKS 15 3 35000 SALES PS2

CROW 6 2 2L1000 PROD PP1

DEAN 12 3 38000 PROD PP2

EATON 18 4 40000 RES PR1

FARR 25 5 50000 ADMIN PA1

GALVIN 5 3 27000 SALES PS1

HARVEY 23 5 45000 SALES PS1

INGRAM 2 1 18000 ADMIN PA2

JliCKSON 1 1 16000 PROD

KAHAN 6 3 32000 RES PR2

LA~1AR 21 5 45000 PROD PP1

MULVEY 3 2 21000 SALES PS2

Figure 4. Invocation of PRESFORM

4

USING SOL FROM APL2

Now that we have seen what we might do with SQL-11ke data in
the APL2 workspace, we need to know how to create and
retrieve actual SQL data using APL2.

TABLE CREATION

The first step is the creation of the table. To do this we
use an ordinary SQL CREATE statement: we have placed the
statement in a character variable called ABCC.

In addition to the CREATE, we will need an SQL INSERT state­
ment to insert data into the table. The variable ABCl con­
tains the INSERT.

ABCC
CREATE TABLE ABC
(NAME VARCHAI~(20),
y~S SMALLINT,
LEVEL SMALLINT,
SALARY INTEGER,
DEPT VARCHAR(S),
PROJ CHAR(3»

ABCI
INSERT INTO ABC

VALUES (: 1 J : 2. : 3 , : Lf, : 5, : 6)

Figure 5. SQL statements in APL2 variables

In programming languages such as PL/I and COBOL, when you
want to execute a statement a number of times, you use vari­
able names preceded by colons to indicate that the data will
be found later in those variables. In APL2. we use numbers
preceded by colons. The riumb e r s represent indices into an
APL2 vector. AP 127 will remember the indices and replace
them with the DYNAMIC SQL placeholder "?" before passing the
statement to SQL. Mlen we execute the statement, AP 127
will use the indices to get the data from the APL2 vector,
and pass the values to SQL.

5

The table is created in three steps using the APL2 SQL func­
tion, which is included in the SQL workspace distributed
with APL2. First we execute the CREATE statement. and then
the INSERT statement. We pass the data, which 1s already
contained in the variable ABeT, as the second parameter to
the SQL function on the INSERT. Since ABeT is a matrix of
data. the SQL function will issue the INSERT stateaent once
for each row of the matrix. We call the data .atr~z (or vec­
tor) a "value-list".

Finally, we issue a COMMIT to make the additions permanent
in the database. If we did not want the changes to be per­
manent, we could have issued a ROLLBACK instead.

SQL ABCC
o 0 a 0 0

SQL ABCl ABeT
00000

COMMIT
o 0 000

Figure 6. Creating a table

NOTE: AP 127 does not do any 1mplic1t COMMITs. If no COMMIT
is done, work will be rolled back upon retraction of the
var i able shared "11th AP 1 27. This is consistent with tlle
workspace)SAVE conventions in APL2.

The UNTIL function in the SQL workspace allows us to execute
a sequence of SQL commands. It takes a vector of commands
and executes them until a non-zero return code 1s encount­
ered, or until the commands are exhausted. This is valuable,
since in most cases we will not want to do a COMMIT 1f an
error has occurred during the execution of one of the com­
mands. Figure 7 shows an alternative way to execute the
table creation sequence. ·

SQL UNTIL ABCC (ABCl ABeT) 'COMMIT'
000000000 0 00000

Figure 7. The UNTIL function

6

TABLE RETRIEVAL

To retrieve an SQL table, we can also use the SQL function.
We will pass an SQL SELECT statement to the function and
assign the result to a variable called RESULT.

RESULT+SQL 'SELECT * FROM ABC'

1~RESULT

00000
2~RESULT

ADAMS 12 3 36000 ADMIN PA1
BANKS 15 3 35000 SALES PS2
CROW 6 2 24000 PROD PP1
DEAN 12 3 38000 PROD PP2
EATON 18 4 40000 RES PR1
FARR 25 5 50000 ADMIN PA1
GALVIN 5 3 27000 SALES PS1
HARVEY 23 5 Q5000 SALES PS1
INGRAM 2 1 18000 ADMIN PA2
JACKSON 1 1 16000 PROD
KAHAN 6 3 32000 RES PR2
LAMAR 21 5 45000 PROD PP1
MULVEY 3 2 21000 SALES PS2

Figure 8. Issuing a SELECT

The first item in the result variable is the return code
vector. If all zeros, the statement was successfully proc­
essed. The second item is the result data: the data
returned is in the same array format as the data we used to
create the table. (After every AP 127 operation, a two-item
vector is returned. For operations that return no data. such
as CREATE and INSERT_ the second item is null.)

NOTE: The table retrieved does not have to have been created
with APL2. Any table in the database that the user has
authority to access may be retrieved.

COLUMN NAME RETRIEVAL

Now that we have retrieved the table, the next step is to
retrieve the column headings. This is done with the AP 127

7

DESCRIBE operation. which is ~nalogous to an SQL DESCRIBE,
but does not cause an SQL DESCRIBE. The AP 127 DESCRIBE
returns to the user the column information obtained when the
SQL DESCRIBE was done. The SQL trorkspace function DESC 1s
used to execute the operation.

DRESULT+DESC 'APL2'

1~DRESULT

o 0	 0 0 0

2~DRESULT

NAME Y~S LEVEL SALARY DEPT PROJ
V 20 S S I V 8 C 3

(2jDRESULT)(1:J
NAME Y~S LEVEL SALARY DEPT PROJ

Figure 9. Issuing a DESCRIBE

The parameter passed to DESC 1s the character string 'APL2'.
APL2 1s the statement name used by the SQL function to pre­
pare SQL statements. Since we used the SQL function to issue
our SELECT, we use that same name to issue the DESCRIBE.

The result of the DESCRIBE is, as usual, a two-item vector.
The first is the return code vector. and the second the
data. In the case of DESCRIBE, the data consists of the
names and data types of each of the columns. To isolate the
names, we index the first axis of that data.

Figure 10 shows a short APL2 function which will select the
column headings. As we have done. it uses the DESC function
to get the DESCRIBE information, and then indexes the first
axis.

VHEADS[O]V

[0] Z+HEADS NAME
[1J ARETURNS COLUMN HEADINGS
[2] Z+DESC NAME	 ~ SPEC,REF
[3J	 Z+((1+0IO)~Z)[DIO;] A GET TITLES

V 1986-03-23 15.19.09 (GMT-B)

Figure 10. HEADS function

8

--- ----

A FINISHING TOUCH

The TABLE function combines all the steps of table
retrieval. First it issues the query using the SQL
function. Then it calls the HEADS function to get the column
names. Finally, we put it all toqether usino the PRESFORM
function defined earlier.

VTABLE(O]V

[OJ Z+TABLE STMT;T:H
[1J A BUILD A REPORT-FORM TABLE
[2J T+2~SQL STMT A GET THE TABLE
[3J H+HEADS 'APL2' A GET THE HEADINGS
[~J Z+H PRESFORM T A BUILD THE REPORT

V 1986-03-23 15.20.27 (GMT-8)

Figure 11. TABLE function

The table function accepts the SQL SELECT as its parameter,
and returns the finished result.

TABLE 'SELECT +. FROM I\BC'

NAME Y~S LEVEL SALARY DEPT PROJ

--,-.-- -----_.-.­-. - -- ~
....... -_.-. ---­~---~- ~

T1DAf·tS 12 3 36000 ADI·1JN PA1

BANKS 15 3 35000 SALES PS2

CROW 6 2 24000 PROD PP1

DEAN 12 3 38000 PROD PP2

EATON 18 4 40000 RES PR1

FARR 25 5 50000 ADMIN PA1

GALVIN 5 3 27000 SALES PS1

HARVEY 23 5 LfSOOO SALES PS1

INGRAM 2 1 18000 ADMIN PA2

JACKSON 1 1 16000 PROD

KAHAN 6 3 32000 RES PR2

LAMAR 21 5 ~5000 PROD PP1

MULVEY 3 2 21000 SALES PS2

Figure 12. Execution of TABLE

We should point out here that the functions HEADS and TABLE
are purposely made very simple to demonstrate the basic
idea. In a real application, however, you would want to add
error-checking, and probably make them more sophisticated.

9

The QUERY function in the SQL workspace does that. and QUERY
calls other functions that are user- modifiable to add the
headings, combine result tables. and manipulate the result
data in a customized way.

10

GETTING FANCIER

DATA INPUT FUNCTIONS

Figure 13 demonstrates the use of the IN function, also in
the SQL workspace. Assign IN to a variable (here SALESQl and
IN will prompt you line-by-11ne for your SQL statement.
bUilding a character matrix for you. When you are done. you
enter a null line to complete the matrix. Th1s allows easy
entry of long queries.

SALESQ+IN
SELECT NAME, SALARY
FROM ABC WHERE
DEPT = 'SALES'

SALESQ
SELECT NAME, SALARY
FROM ABC WHERE
DEPT = 'SALES'

Figure 13. The IN function

We can use our TABLE function again to execute the SALESQ
query, which is now contained in an APL2 character variable.

TABLE SALESQ

NAME SALARY

----~­~-._----­

BANKS 35000

GALVIN 27000

HARVEY qSOOO

MULVEY 21000

Figure 1~. Execution of a pre-defined query

Two other functions in the SQL workspace make data input
easier. EVAL and EVALSIM take data from an APL2 character
array and create a nested array of the correct format to
pass to SQL. EVAL does this based on the data in the array.

11

and EVALSIM does it based on descriptions of the data. These
functions make it possible to enter data using the IN func­
tion. or perhaps a system editor, rather than creating the
nested matrix directly.

GENERALIZING A QUERY

If we want to make the above SQL statement more general. we
can substitute for the 'SALES' department name a host vari­
able index. We will place this more general query in the
DEPTQ variable.

DEPTQ
SELECT NAME, SALARY

FROM ABC WHERE
DEPT = :1

Figure 15. Query with host variable indices

In the next section we will execute DEPTQ with AP 127.

USING AP 127 OPERATIONS

When the SQL function 1s used to execute a query. it gener­
ates a stack of the proper sequence of AP 127 commands nec­
essary for that execution. The SQL function is easy to use,
and does note require detailed knowledge of the AP 127
interface. We could execute DEPTQ using the SQL function.

It is also possible to bypass the use of the SQL function
and pass the commands to AP 127, either directly using
shared variable operations or with the cover functions pro­
vided in the SQL workspace. There 1s a cover function for
each AP 127 operation. We have used one already, the DESC
function. Now we will use some others to execute our gener­
alized query.

Using AP 127 operations requires a little more knowledge
about how SQL queries are actually executed. It happens in
several steps:

12

1.	 First, we issue the PREP command to PREPARE the state­
ment. The PREPARE causes SQL to parse the SQL
statement. We must name our statement so that SQL can
distinguish it from other statements we PREPARE. We will
call it 'ABC'.

2.	 Next, we issue the OPEN command. If the statement we
prepared had any host variable indices in it. we also
pass the vector of items (value-list) to be substituted
for them. Here, we have only one host variable index,
for the department name. Since the character vector we
are passing is to be considered as only one item by AP
127. we must enclose it. If we did not, each letter in
the vector would be considered a separate item.

3.	 To retrieve the table, the FETCH command 1s used, and
the data can then be assigned to a variable to retain it
for processing.

We can at this point go back and repeat the OPEN and FETCH
steps as many times as desired, using a different department
name each time.

4.	 Finally, we issue a CLOSE command to close the cursor.

Figure 16 shows the sc~··~~ce used to execute SALESQ.

PREP 'ABC' DEPTQ
000 o 0

OPEN 'ABC' (c'SALES')
000 o 0

SALES+2~FETCH 'ABC'

OPEN 'ABC' (c'ADMIN')
000 o 0

ADMIN+2~FETCH 'ABC'

CLOSE 'ABC'
000 o 0

Figure 16. Using AP 127 operations

The choice of whether to use the SQL function or the AP 127
operations should be made, of course, according to the
application. Using the function requires less knowledge of

13

SQL execution protocols. However. SQL also does some state­
ment parsing and error-checking, each of which adds to the
execution time, and may cause you to re-1ssue PREPARE state­
ments unnecessarily, depending on the format of the
value-list passed. In general, for ad hoc Queries and pro­
totyp1ng, SQL is easy and quick to code. For production
applications, AP 127 operations provide aore control and
better performance.

USE OF EACH FOR OUTPUT

Remember that once we have fetched our result ~ables into
the APL2 workspace, we have the full power of APL2 to ana­
lyze and format the data.

This APL2 example uses the EACH (ee) operator to call the
PRESFORM function for each of the variables ADMIN and SALES.
The left argument is enclosed so it will be replicated and
used for each call of PRESFORM. The output from the state­
ment is a two-item vector of result tables, which looks like
a very good beginning for a report to the management of ABC
Limited.

H(c:HEADS 'ABC') PRESFORM ADMIN SALES

IJAI1E SALARY NA~1E SALARY
------­--------.­ ----- -------­

ADAMS 36000 BANKS 35000
FARR 50000 GALVIN 27000
INGRAM 18000 HARVEY 45000

MULVEY 21000

Figure 17. Using EACH with SQL results

For those who like to use the GDDM Interactive Chart Utility
to create reports, the CHART and CHARTDATA functions in the
SQL workspace provide a direct link to that facility.

14

AP 127 UTILITY OPE~ATIONS

In addition to the operations vh1ch issue calls to SQL,
there are some AP 127 operations to query the status of the
SQL statements.

NAMES COMMAND

The NAMES command returns a list of the statement names cur­
rently active.

NAMES
o 0 0 0 0 APL2 ABC

Figure 18. Active SQL statements

STMT COMMAND

The STMT command returns the text of the SQL statement
named.

2 1pSTMT··'APL2' 'ABC'
D 0 0 0 0 SELECT * FROM ABC
o	 0 0 0 0 SELECT NAME, SALARY

FROM ABC WHERE
DEPT = :1

Figure 19. Text of SQL statements

We have again used EACH here to execute the STMT command on
e a ch of the name s , We have tIle)) reshaped the resul t from a
two-item vector to a matrix so that it can be displayed on
our screen.

15

STATE COMMAND

The STATE command returns the type and status of the given
statement.

The first number can bel

•	 0 - Undetermined

1 - Non-Cursor

•	 2 - Cursor (SELECT)

The	 second number can bel

o - Unprepared (Error during PREPARE)

•	 1 - Prepared

2 - Open (Cursor only)

2 1pSTATE" I APL2' 'ABC I

o 0 0 0 0 2 1 CURSOR PREPARED
o 0 0 0 0 2 1 CURSOR PREPARED

Figure 20. State of SQL statements

16

AP 127 OPTIONS

When retrieving a table, AP 127 allows several options to be
set to determine the format of the result table.

The options will be demonstrated using the query contained
in the variable OPTSQ.

First, we execute the query using the default option set­
tings.

OPTSQ
SELECT NAME,DEPT,PROJ
FROM ABC WHERE
LEVEL < 3

ORESULT+SQL OPTSQ

1~ORESULT

00000

DISPLAY 2~ORESULT

.+-----------------------­
4­ .+---. .+---. .+-- •

I leROwl JPRODI IPP1 I
1 ,----, ,----, , - ­ - ,
I -----. .+---- . • +-- •

I I INGRAM I IADMINI IPA21
I ,------, ,-----, ' ___ I

I . -+------. , 'JACKSON I
I ,-------,

.... --- .
lPRODI
,----,

. e •

, _,

I .+-----. .+---- . • +-- •

I
I

I t-IULVEY I
,------,

ISALESJ
,-----,

IPS21
' ___ I

'£-----------------------­
Figure 21. Default result structure

When the result table is displayed, notice that the data 1s
a matrix, with each field of the table a distinct item in
the matrix. Any null fields are represented as APL2 nulls
(empty vectors). This format is known as the MATRIX option.

17

The GETOPT command is used to query the current option ••t ­
t1nqs.

GETOPT
o 0 0 0 0 MATRIX NOLENGTH 20

Figure 22. GETOPT operation

VECTOR OPTION SETTING

Now. we will change the first option. 'MATRIX', to •VECTOR ,
and issue the same query.

SETOPT 'VECTOR'
o 0 0 0 0

VRESULT+SQL OPTSQ

1:>VRESULT

00000

DISPLAY 2~VRESULT

.+------------------------.

.+------. .+---- . • +-- •

,,"CROW I +PROD I .J.PP11
I INGRAM I I ADMIN I IPA21, ,I JACKSON I I PROD I
I MULVEY I ISALESI IPS21
,-------, ,-----, '---'

'£------------------------,

Figure 23. VECTOR format

The VECTOR option returns the table as a vector, with one
item for each COLUMN of the result table. The columns are
made into uniform matrices by padding the variable character
items to the length of the longest one. and by replacing
nulls with blanks and zeroes.

18

LENGTH OPTION SETTING

The vector format saves space, but some informat1on about
the actual size of the data items 18 lost throuoh padding
and null replacement. The LENGTH MATRIX 18 a way to pre­
serve that information. We will now se~ the LENGTH option
and reissue the query.

SETOPT 'LENGTH'
o 0 000

LRESULT+SQL OPTSQ

1~LRESULT

o 0 0 0 0

DISPLAY 2~LRESULT

.+-~--~~-~~~--~~~~~~~~---~-~~~~~-~.
.+------ . .+----. .+--. .+---- .
.CROW I ",PROD 1 .PP11 ~4 4 31
I INGRAM I IADMINI IPA21 16 5 31
I JACKSON I I PROD I I I 17 4 01
I MULVEY I ISALESJ IPS21 16 5 31

' ___ I,-------, ,-----, ,-----,
'€--------------------------------'

Figure 24. LENGTH option

The length matrix is returned as an additional item in the
result vector. and gives the length of each item before pad­
ding. The length of null items is O.

FETCH BLOCKING

SQL allows application programs to FETCH only one row of
data at a time. The third AP 127 option allows the APL2 user
to specify how many rows of the result table to return on
each FETCH request. AP 127 will then FETCH the specified
number of rows before returning to the workspace. Judicious
use of the AP 127 FETCH blocking can save space and exe­
cution time, since each call to AP 127 can be constructed to
return an optimum number of rows for the particular situ­
ation.

19

To demonstrate the use of AP 127 FETCH blocking. we will
reset the options. setting the third option. the ROWS
option, to a smaller number for use with our example. (The
default setting 1s 20.>

SETOPT 'MATRIX' 'NOLENGTH' 5
o	 0 0 0 0

ROWS+SQL 'SELECT NAME.DEPT,PR03 FROM ABC'

1=>ROWS
00100

2~ROWS

ADAMS ADMIN PA1
BANKS SALES PS2
CROW PROD PP1
DEAN PROD PP2
EATON RES PR1

3=>ROWS
FETCH APL2
CLOSE APL2

Figure 25. ROWS option

Note that the ·return code from this request is not all
zeroes. The (0 0 1 0 0) retuI~ code vector signals that the
entire result table has not yet been fetched, and there is a
third item in the result. This th11~ item is returned only
when using the SQL function, and it contains the stack of
commands that were left unexecuted when the non-zero return
code occurred.

The technique we will demonstrate for handling the incom­
plete query involved the use of another SQL workspace func­
tion, RESUME. First. the portion of the table returned is
saved into a variable called TAB. The RESUME function is
called with the unexecuted stack as its parameter, and exe­
cution of the query continues. The next five rows of the
table are fetched.

20

TAB+2JROWS

ROWS+RESUME 3~ROWS

1:JROWS
00100

2~ROWS

FARR ADMIN PA1
GALVIN SALES PS1
HARVEY SALES PS1
INGRAM ADMIN PA2
JACKSON PROD

3=>ROWS
FETCH APL2
CLOSE APL2

Figure 26. RESUME execution

Our return code vector of (0 0 1 0 0) indicates that we
still do not have all of the table. This result is similar
to the result on the last pass, except the data is
different.

To save this piece of the table, we will catenate it to the
previously saved piece and assign the result back to the TAB
variable.

TAB+TAB,[1J2~ROWS

TAB

ADAMS ADMIN PA1

BANKS SALES PS2

CROW PROD PP1

DEAN PROD PP2

EATON RES PR1

FARR ADMIN PA1

GALVIN SALES PS1

HARVEY SALES PS1

INGRAM ADMIN PA2

JACKSON PROD

Figure 27. Catenating the results

Again, we call the RESUliE function, and this time our return
code indicates we have fetched the entire table.

21

When the return code vector 1~ (v 0 0 0 OJ, the third item
of the result is null.

ROWS+RESUME 3~ROWS

1~ROWS

o 0 0 0 0
2~ROWS

KAHAN RES PR2
LAMAR PROD PP1
MULVEY SALES PS2

3~ROWS

Figure 28. RESUME execution again

Finally, we catenate the last piece of the table to the
rest, and we have accumulated the entire result table.

TAB+TAB,(1J2~ROWS

TAB

ADAMS ADMIN PA1

BANKS SALES PS2

CROW PROD PP1

DEAN PROD PP2

EATON RES PR1

FARR ADMIN PA1

GALVIN SALES PS1

HARVEY SALES PS1

INGRAM ADMIN PA2

JACKSON PROD

KAHAN RES PR2

LAMAR PROD PP1

MULVEY SALES PS2

Figure 29. The final result

In the case of such a small table, of course, one would not
normally fetch the result in so many steps. The technique
shown, however, may be used when space considerations pro­
hibit fetching the entire table in one pass, or when the
number of rows in the result cannot be predicted.

The QUERY function, mentioned earlier, incorporates tech­
niques like these for accumulating the result table.

22

AP 127 ERROR HANDLING

When an error occurs durinq AP 127 execution, the first 1tem
1n the return code vector is 1, and the fourth and fifth
items indicate the source and type of error.

The MESSAGE function may be used to retrieve the text of the
message. It accepts as a parameter the return code vector
from the failed operation. The result from execution of the
MESSAGE function depends on the type of error and the envi­
ronment.

ERRORS FOUND BY AP 127

Sometimes an error is detected in AP 127 before the request
is passed to SQL. When an error is discovered by AP 127_
the fourth item in the return code vector is 1, and the
fifth 1s the error message number. In Figure 30, we have
typed an incorrect option setting. MESSAGE returns the actu­
al text of the AP 127 message that corresponds to the return
code.

SETOPT 'VECTOE t

1 0 0 1 127

MESSAGE 1 0 0 1 127
ERROR MESSAGE.
VECTOE IS AN UNKNOWN OPTION VALUE

Figure 30. An AP 127 error

SOL ERRORS

Sometimes, although AP 127 detects no error, SQL returns an
error to AP 127. To show what happens in this case, we will
formulate a query that will fail. and execute it using the
correct AP 127 procedure. AP 127 will not discover this
error, and the query will be passed on to the database.

23

BADR+SQL 'SELECT * FROM GARBAGE'

1:>BADR
1 0 0 2 -20~

2:>BADR

3~BADR

PREP APL2 SELECT * FROM GARBAGE

OPEN APL2

FETCH APL2

CLOSE APL2

Figure 31. An SQL error

When an error is discovered by SQL, the fourth return code
1s 2, and the fifth return code is the SQLCODE.

As with the incomplete fetch case, the third item of the
result contains the stack of unexecuted commands. This will
tell us that the error occurred on the PREP step.

The MESSAGE function can also be used for SQL errors. It
will return the contents of the SQLCA control block, and
this may then be used in conjunction with the database mes­
sage manual to debug the problem.

MESSAGE 1:>BADR

ERROR MESSAGE.

-204

WHEELS GARBAGE

ARIXOCA

110 0 0 -1 0 0

Figure 32. MESSAGE with an SQL error.

NOTE: When executing in DB2, the MESSAGE function will also
return the text of the error message as formatted by DB2. In
SQL/DS, message and help text is available in SQL tables
installed with the system.

24

THE CONNECT COMMAND

The CONNECT command 1s available in SQL/DS only. This com­
mand allows you to specify the User 1D that will be used in
making the database connection. The facility is useful, for
example, when you want only one User ID to have certain
authority or access to certain tables. Then, when necessary,
other users can "become" that User ID, 1£ they know the
password associated with it.

Use of CONNECT can also save keystrokes. When connected as
another user. that user's ID is automatically prefixed to
all table names instead of your own ID. They then do not
have to be explicitly typed. Figure 33 shows an example of
the use of CONNECT.

SQL 'SELECT * FROM SQLDBA.INVENTORY'
o	 0 000 207 GEAR 75

209 CAM 50

221 BOLT 650

222 BOLT 1250

231 NUT 700

232 NUT 1100

ROLLBACK

0 0 000

CONNECT 'SQLDBA' 'SQLDBAPW'

0 a 000

SQL 'SELECT 1c FROM INVENTORY'

0	 a 000 207 GEAR 75

209 CAM 50

221 BOLT 650

222 BOLT 1250

231 NUT 700

232 NUT 1100

Figure 33. CONNECT command

NOTE: The ROLLBACK is necessary before the CONNECT to dis­
connect the User ID already active.

25

FINAL WORDS

This report has demonstrated the basics of using the AP 127
Auxiliary Processor and its associated APL2 workspace. SQL.
Most of the AP 127 operations have been covered, along with
some functions in the workspace. Using this information. you
should be able to start coding SQL statements from APL2.
The appendices to this report contain summaries of the coa­
mands, workspace functions, error codes, and the SQL
statement types.

Of course, there 1s more to coding an SQL application than
just using AP 127 correctly. The SQL database must be
designed and put in place. The queries should be written to
optimize performance where possible. Locking, authority,
and isolation levels are all database parameters that need
to be considered in creating a production application.
Information on these items is for the aost part
system-dependent (different for DB2 and SQL/DS). and 1s
available in the reference manuals for the databases. The
references section at the end of this report cota1ns a list
of publications that are valuable for those who want to
delve further into the SQL issues of the application design.

In addition to finding out more about SQL, you may also want
to find out more about some of the APL2 facilities mentioned
here. The SQL workspace functions QUERY, EVAL. EVALSIM,
CHART, and CHARTDATA were described but not demonstrated.
The details on these are contained in "APL2 Programming:
Using Structured Query Language". The APL2 Language Refer­
ence manual contains information about EACH and the other
APL2 operators and functions. See the references section at
the back of this report for complete information on these
books and other APL2 Manuals.

26

REFERENCES

APL2 PUBLICATIONS

Introduction to APL2 (SH20-9229)

•	 APL2 Programming: Guide (SH20-9216)

APL2 Programming: Language Reference (GH20-9227)

•	 APL2 Programming: Using Structured Query Language
(SH20-9217)

•	 APL2 Messages and Codes (SH20-9220)

SOLIDS PUBLICATIONS

•	 SQL/Data System nnpl1cat1on Programming for eMS
(GH24-5068)

SQL/Data System Planning and Administration (SH24-5043)

SQL/Data System Messages and Codes (GH24-S070)

IBM	 DATABASE 2 PUBLICATIONS

IBM	 Database 2 Introduction to SQL CGC26-4082)

IBM Database 2 Application Programming Guide for TSO
(SC26-4081)

•	 IBM Database 2 Reference (SC26-4078)

•	 IBM Database 2 Reference SUIl~ary (SX26-3040)

•	 IBM Database 2 Messages and Codes (SC26-4113)

27

OTHER PUBLICATIONS

•	 An Overview of APL2 CGG24-1627)

•	 Development Guide for Relational Applications
CSC26-4130)

28

APPENDIX A. SQIJ STATEMENT !jUM~i1\RY

STATEMENT
TYPE

SQL
STATEMENT

AP 127
PROCESSING METHOD

Authorization GRANT
REVOKE

EXEC

EXEC

Either I
EXEC
(no host variables) or
PREP.CALL
(with host variables)

Data
Definition

CREATE
ALTER
DROP
ACQUIRE

Data
Manipulation

DELETE
INSERT
UPDATE

Query SELECT PREP.OPEN.FETCH.CLOSE

Analysis EXPLAIN EXEC

EXEC

CONNECT
COMMIT
ROLLBACK

Control LOCK

CONNECT
COMMIT
ROLLBACK

.,

29

APPENDIX B, AP 127 OPERATIONS AND SOL WORKSPACE FUNCTIONS

FUNCTION AP 127 OPERATION
NAME AND SYNTAX CODE AND SYNTAX

CALL name [values) 'CALL' name [values)

CHART data

CLOSE name 'CLOSEt name

COMMIT 'COMMIT'

CONNECT 1d password • CONNECT, 1d password

DESC name 'DESCRIBE' name

EVAL data

EVALSIM data

EXEC stmt 'EXEC' stmt

FETCH name [options) 'FETCH' name [options)

GETOPT 'GETOPT'

MESSAGE rcode 'MSG' rcode

NAMES 'NAMES'

OFFER

OPEN name [values) 'OPEN' name [values)

PREP name stmt 'PREP' name stmt

PURGE name 'PURGE' name

QUE stack

QUERY name [values)

30­

FUNCTION AP 127 OPERATION
NAME AND SYNTAX CODE AND SYNTAX

RESUME stack

'ROLLBACK'

'SETOPT' options

'STATE' name

'STMT' name

'TRACE' [n1 n2J

ROLLBACK

SETOPT options

SHOW result

SQL stmt (values)

STATE name

STMT name

TRACE n1 n2

(F UNTIL) stack

31

APPENDIX C, RETURN CODE SUMMARY

Return Code Vector Meaning

00000 Normal return. All operations
com.pleted.

00100 Normal return. but the result table
may not have been completely
retrieved.

1 0 0 1 IIlsgn Error from AP 127. msgn is the
number of the AP 127 error message.

1 0 0 2 msgn Error from DB2 or SQL/DS. msqn 1s
the DB2 or SQL/DS SQLCODE.

1 0 0 3 msgn Error from the SQL workspace.
msgn is the workspace message number.

o 1 0 n msgn Warning message. n is 1 or 2
as defined here for error returns.
msgn is the warning message number.

1 1 0 n msgn Transaction backout. All changes
made to the database since the last
COMMIT or ROLLBACK have been
discarded. n 1s 1 or 2 as
defined here for error returns.
msgn is the error message number.

32

