
MIGRATION FROM APL SV TO VSPC

by John K. Taber

February 1977 TR 03.021-1

TR03.021-1

February 1977

MIGRATION FROM APl SV TO VSPC

by

John K. Taber

International Business Machines Corporation

General Products Division

Santa Teresa Laboratory

San Jose, California

ABSTRACT

This report discusses system considerations necessary to smoothly migrate an APL SV installation to VS APL
under VSPC. It outlines migration strategies and procedures. It also describes what the Conversion program
does.

ii

ACKNOWLEDGMENTS

I wish to thank Harry Saal, Williarn McCain, Vern Griffith, Joanna Woodrow, and Alex MOl row for their

helpful suggestions and review of this report.

III

CONTENTS

INTRODUCTION ...

SYSTEI\~ PLANNING 1

Library Space. . . , . . . 1

Workspace Size. 3

Shared Var iable Space 4

RpJsoflJblt.' Share Size for TSIO . . 4

Share Size for VS APL Auxiliary Processors 5

Fi le Buffers ­ 5

Library Dif terr nccs 5

Librarv Tvpes . 6

Shareable Access 6

Passwords JIlO Workspace Names . 6

Matching Content Attributes . 7

Keeping CONTINUE Workspaccs . 7

TSIO Considerations . 8

THE CONVERSION PROGRAM. 9

Input and Output. 10

Input APL SV Dump Tapes 10

Conversion Control Cards. 10

Output VSPC 'COPY' Tape 10

Output Conversion Report , . 11

Workspace Conversions 11

Workspace Parameters , . 12

Global Objects . 12

Group List's .. 12

Variables , , . 13

Functions and Idioms 13

Damaged Workspaces .. 16

PROCEDURES 16

Conversion Definition 17

Renumbering of Accounts 18

Manual Defin ition .. 19

Use of Select Cards . 19

GLOSSARY , 20

iv

MIGRATION FROM APL SV TO VSPC

by

JOHN K. TABER

INTRODUCTION

Migration of an installation cannot be painless; it requires planning and the cooperation of the installation
and its users if disruption is to be minimized. To keep the task manageable for an installation of any size,
migration will usually be segmented, and each segment will need several iterations, Do not throwaway the
old APL SV installation as soon as VS APL is installed under VSPC; you will have to keep it around to
accommodate recalcitrant conversion problems and stragglers. The Conversion program wit! prove an
invaluable tool in migrating your users, but it is only a tool, not a substitute for intelligent, human planning.
The following pages describe migration problems that we are aware of and give advice on how to cope with
them using the available toots. They are addressed to both the install ati on and the user. The user and
installation people should be familiar with the following manuals:

APL Language (GC26-3847)
VS APL for VSPC: Terminal User's Guide (SH20-9066)
VS TSIO Guide and Reference (SH20-9107)

Installation people should also be familiar with:

VS AP L Installation Reference Material (SH20-9065)
APL Shared Variables (APL SV) Operations Guide (Version 2) (SH20-1461)
APL Shared Variables (APL SV) Operations Guide (Version 3) (SH20-9088)

SYSTEM PLANNING

This section describes how to allocate VSPC resources to accommodate AP L SV users for workspace
libraries and shared variables. It also discusses differences in handling libraries between VSPC and APL SV.
It concludes with a brief summary of TSIO migration considerations.

Library Space

Given that we know how much disk space the APL SV workspaces occupy for an installation, we would
like to determine how much space we should allocate for the VSAM data sets. This cannot be computed
exactly, but the following discussion will help in making an intel.ligent guess. On the average, it is slightly
more space.

There are major differences in how the libraries file workspaces between APL SV and VSPC. In APL SV,
all workspaces for a given installation are fixed length, but the disk space occupied by workspaces differs
depending on how full the workspaces are. In general, free space is not filed. The R13 stack (1000 bytes),
however, is filed. In addition, each workspace requires a PERSAVEW entry in a directory, and each account
requires a PE RLI B entry in a directory. The workspace is filed in two segments, each of which consists of
one or more physical records. The physical record length is fixed and dependent on device type; it is
one-half the track length of the device for most devices. The last record may have any number of pad bytes
to fill it out to the record length. On the average, half of one record per workspace is waste. The first
segment includes the beginning of the workspace through the last m-entry, rounded up to a double word
boundary. The second segment includes the execution stack (if any) through the R13 stack rounded up to
the length of a physical record. In VSPC, all workspaces are variable length, and are filed in one logical
segment, which consists of one or more VSAM control intervals. The segment begins 1,956 bytes after the
start of the workspace and goes through the m-entries. Free space, the R13 stack, and the first 1,956 bytes
are not saved. However, there are dead bytes filed in VSPC as in APL SV, because the minimum segment

filed is a 16K control interval, padded as necessary to fill out the interval length. On the ave: age, one half

of one control interval per workspace, or 8K, win be waste. The control interval itself consists of:

16,352 bytes of workspace and pad

32 bytes of appended trailer data

(including 7 bytes of VSAM overhead)

The workspace is filed in one or more of these records. In addition to library space to contain the work­

spaces, 112 bytes is required for each user for his User Profile Record (UPR - the equivalent of the PERLIS)

in the directory and 64 bytes for each workspace for the Directory Entry Record (DER - the equivalent of

the PERSAVEW).

There is a further complication; although less of the VS APL workspace is filed than the APL SV, the

VS APL workspace may be some unknown percentage larger. Internal objects (variables, group lists, func­

tions, etc.) occupy doubleword blocks, and hence are padded up to doubleword boundaries in VS APL as

opposed to full word blocks in APL SV. Also, objects have more description overhead. And finally,

function tokens (the primitive functions of the language in defined functions) require half word repre­

sentation as opposed to byte representation. But, VS APL saves space because functions do not have directory

blocks and it uses AP vectors and synonym links to save space for variables. The Conversion program, however,
does not convert variables to synonym links or AP vectors; this savings will not be realized until the con­

verted workspace is loaded, executed and resaved. Hence, it is exceedingly difficult to express the size of a

VS APL workspace exactly in terms of its APL SV workspace equivalent. It gains space here and loses space

there. The Conversion program uses 10 percent as a growth figure going from APL SV to VS APL, so far,

successfully. It may be too high.

For the VSAM directory data set, we may calculate

112 x no. of users for UPR

64 x no. of workspaces for DER

not including VSAM and VSPC overhead

(about 12 bytes per record)

not including desired growth

Some percentage for growth is recommended because UPR's are not easily reclaimable for 'deleted' accounts

as are PE R LIB's in APL SV. Locking an account in VSPC does not free the UPR for adding an account.

Accounts are deleted only by copying the libraries, scratching then redefining the VSAM libraries, and,

finally, copying the files back in with a REMOV E option. If your accounts are volatile, that is, there is a

lot of adding and deleting of accounts, you can minimize these library compressions by allowing for

sufficient growth.

You may determine the number of users and workspaces from the last page of an APL SV ACCTG 1 listing.

Total the number of current and remaining libraries for all directories. This is the number of UPR's that

you wi II need. Do the same for current and remaining workspaces; this is the number of 0 E R's that you

will need. These totals include actual users and workspaces and potential new users and workspaces pro­

vided for in the APL SV installation. lfthese potentials (remaining libraries and workspaces) seem unrea­

sonable, adjust accordingly. The unbooked space columns on the ACCTG 1 Iisting can be ignored if the

numbers are positive. Unbooked space means the left over directory space if the entire installation quota

were indeed used. If negative, it means that the directory allocation is not big enough for the installation
quota. If negative, add their absolute values to the library or workspace totals as appropriate.

2

Co-r outinq the minimum VSAM library allocation for workspaces is more difficult. The actual space
occupied in APL SV would not give a satisfactory figure because it would not allow for workspaces wh ich
expand in size. On the other hand, using the slot size of the APL SV installation (a worst case figure)
.vo.rld give an unrealistically large figure. Indeed, APL SV installations do not allocate worst cast library
- xtents. They figure (from experience) that half the workspace quota for the installation will be saved,
a~d of that half, the workspaces will be half full. Thus, if the installation workspace quota is 10,000 and
:~~ slot size is 90,000, the library extent in bytes is 5,000 x 45,000. We suggest the tollowino pI ocedure
to determine a reasonable VSAM library allocation for the workspaces.

1.	 Determine the actual bytes used and the actual extent of the library. This can be figured from
a recent ACCTG 1 run and a recent INCDUMP or FULL DUMP run. The accounting run
listing on the first page lists the slot size and on the second to last page lists the number of saved
workspaces and the number of blocks occupied by the saved workspaces. On the last page, the
dumps list the percentage of allocated blocks used. The APL SV installation manual gives the
block size in bytes for the library device. Compute the average saved workspace size (WSSIZE)
as follows:

WSSIZE *- (BLOCKCOUNT x BLOCKSIZE) 7 WSCOUNT

WSCOUNT is the number of saved workspaces

2.	 Compute the growth factor, a figure between 1 and 2 as follows:

GROWTH *- 1 + (100 - PERCENTFULL) -;- 100

PERCENTFULL refers to the percent of library used in the dump listing. Trim or add to the
decimal part as desired.

3.	 Now compute the VSAM library extent in bytes by the following formula

GROWTH x WSCOUNT x 16384 x r (1.1 x WSSIZE - 3000) -7- 16352

The result is the minimum VSAM library size for workspaces ignoring any system overhead.

Workspace Size

There is a minimum VS APL workspace size below which the workspace is not viable, that is, there would
not be enough free space for interpreter demands. This figure is 20K. Conversion forcibly defines small
APL SV workspaces to be a minimum of 20K. Otherwise, Conversion defines the workspace size to be

6144 + 1.1 x APLSVSLOTSIZE

The increase of 10 percent is to avoid workspace full problems during conversion. The 6K allows for the
terminal buffer and VSPC/VS APL interface requirements.

3

Shared Variable Space

In VSPC, each user must be given adequate space for his shared variables. To determine space needs, you

will have to consider the user's current TSIO needs and his future use of VSPC auxiliary processors. The

following discussion gives you a simple, gross way to provide a shared variable size quota and a refined,

precise way to calculate a size quota based on TSfO usage.

VSPC limits shared variable resources by both a quota and a size limitation. The quota is simply the shared

variable quota, as in APL SV. The size limitation must be specified for each user because the default is

zero bytes. Size limitation means that the user's largest single shared variable that he is allowed to specify

cannot exceed a certain specified size, entered in his user profile record. Although there is no similar

limitation in the APL SV PER LI B for a user, there is nevertheless an installation determined limit. This is

one-half the shared memory, which is an APL SV startup parameter. In other words, in APL SV, a user

cannot specify a shared variable larger than this figure even though this figure is not an explicit limitation

for his account. There is a similar startup parameter for VSPC which you should have changed if necessary

so that VSPC can provide adequate space for the APL shared variable users. VSPC uses the smaller of half

the shared memory size or the user's shared variable size maximum in allocating space for a shared variable.

To be more accurate, the size maximum of both share partners, or one half of shared memory, determine

the maximum size variable which can be shared. The largest variable the user can specify is the smaller of

half shared memory or the user's size maximum. The largest variable the user can reference is the smaller

of half shared memory or his share partner's size maximum. Thus the share size in the UPR gives you a

further refinement for resource allocation. Since a shared variable is transient, that is requires system

resources for a short time, you may make the user's share size in VSPC be une-half the shared memory size

commonly used in the APL SV installation. This figure may be provided to the Conversion program, or

entered by an administrator for each user in VSPC. This is the simple, gross '/I y to set a size maximum,

but the price for this could be slower system throughput (if variables this larqe --P. actually shared) since

shared variables must wait for space to be made available. It is better to deterrn h~ a reasonable share size

for the most users (say 75 to 90 percent) and supply this figure to Conversion, then use VSPC ALTE R to

change share size for the few users for whom the reasonable figure is inadequate. To do this, determine

share size for all or most users, then pick one that will satisfy the most.

Reasonable Share Size for TSIO

Reasonable share size for an individual user depends on TSIO code and record format used to access the file.

If the record format is undefined (U), or fixed blocked standard (FBS), or fixed blocked (FB) but accessed

as FBS, then his reasonable share size is the largest blocksize of all such files plus an APL overhead explained

later. If the record format is variable (V), or variable blocked (VB), or unblocked (F), or fixed blocked (FB)

and accessed as FB, then his reasonable share size is his largest logical record for such files plus an APL

overhead. If the user has a mix of format types, then use the largest figure obtained.

The APL overhead is 16 bytes for all TSIO files except FBS record format, for which it is 28 bytes. Get the

data set descriptions (record length, blocksize, format) by running System Utility IEHLIST (LISTVTOC)

for your TSIO packs. You will have to survey your users to determine if they access FB format files as FBS.

You should be aware that for the rare TSIO user, this determination of share size will not be adequate

because VS APL will double his blocksize. This occurs where the type of the result of an APL expression is

floating point in VS APL but is integer in APL SV. See the discussion of TSIO considerations.

4

Share Size for VS APL Aux iliar v Procr-ssors

You should count 011 your users eventually LJsing VSPC library files or VSAM external files, especially those

users who will be wri lillg new appl ications. For the auxil iarv processors distributed with VS AP L, share size

is determined only by the size of the variable to be shared, not by record length or blocksize of the file. To

the variable size you rnust also add an APL overhead, which depends on the rank of the variable. It is about

16 bytes plus 4 bytes times the rank of the variable. You will have to canvass your users to determine the

maximum sized variable they expect to write

File Buffers

For VS APL Auxiliary Processors, but not for TSIO migration, the user will require an adequate number of

file I/O buffers. Usually, one 4K buffer is needed for each opened file. However, VSAl\~ data sets in rare

cases may require more than one buffer per file. If a user plans to Lise the full screen rnanaqernent auxiliary

processor (AP 124), he will require one and a half buffers (6K) and perhaps more deperidinq on the com­
plexity of his screen format just for the full screen rnanager. If the screen format is 10 fields or less, a 6K

buffer should be adequate. The screen rnanaqer requires more buffer space in 2K increments for more

complex formatting. VSPC subtracts the buffer space for each opened file from the users maximum work­

space size quota while the file is opened. It is available for the active workspace again when the file is closed.

The maximum workspace size is a VSPC parameter in the user's profile which must not be confused with the

size of the workspace. The maximum workspace size is the largest size VSPC workspace slot which the user's

workspaces will need. In this slot will fit the terminal buffer, the file buffers, the full screen buffer, and the

VS APL workspace itself with all its objects, free space, and R13 stack. FOI example if a user's APL SV

workspace size is SDK, but its shared variables are managing four sirnultaneouslv opened files, his VSPC

maximum size will be about 90K for his original workspace plus 16K for file buffers, plus about 10K for

the full screen manager. If buffer need is not allowed for, the user's shared variables will not be able to

communicate with the user's files. Conversion automatically gives each user a workspace maximum large

enough for two fi Ie buffers, and about 10K for the full screen manager buffer. If these are not adequate,
the VSPC administrator will have to alter the user's maximum workspace size. The srnallest user maximum

workspace size that Conversion vvil! define is 30,000 bytes, regardless of the original workspace size. In

other words, for srnall APL SV workspaces (for example, 16K), Conversion falces the VSPC slot size to be

30,000 bytes. The minimum viable slot size to satisfy implicit resource demands is at present about 25,000

bytes, but Conversion uses 30,000 because these requirements may change in the future.

Library Differences

Many aspects of library difference could be discussed here, but we shall limit ourselves to a few significant

points which might confuse the user due to his APL SV expectations

5

Library Types

VSPC distinguishes three types of libraries: public, project, and private. A library's type is not deterrnined

by the account number as in APL SV, but instead by flags. Once type has been defined, it cannot be

changed. The Conversion program automatically flags accounts under 1,000 as publ ic Iibraries and accounts

greater than 999 as private. A VSPC command issued by an administrator must be used to mark an account

as project. The project library is new for APL SV users. In effect, a project library is a public library for

those accounts which are members of the project, and is a private library for non-mernbers of the project.

Since type cannot be changed, be sure that the conversion definition is acceptable. If unacceptable, pre­

define the accounts in VSPC before the Conversion produced 'copy' tape is copied into the VSPC library.

Do consider making some of your hitherto public libraries into project libraries. Apt candidates are special­

ized public libraries devoted to the interests of a department, group, or project, and otherwise not of

interest to the installation as a whole. To create a project library, predefine the account in VSPC as a project

library, then after migration, alter the UPR's of members to make them project members of the project

account.

Shareable Access

By default, files in VSPC are non-shareable. This means that normally a file cannot be loaded by any user

other than its owner. An APL workspace, however, is normally made shareable by VS APL to preserve a

traditional characteristic of APL. Nevertheless, a VS APL workspace can L-",:)('ollle non-shareable if the owner

explicitly makes it non-shareable through the VSPC SHAR E command or it 1. workspace is imported into
1

the VSPC library through the VSPC Service Program IMPORT command. An iorted workspace must be
explicitly made shareable with the SHARE command if that is what the owner wants. The non-shareable
characteristic of a workspace is ignored if it is in a public library (that is, it is loanable by non-owners}, but
it retains its non-shareable status. If renamed and saved in a private library, it is non-Ioadable from the
private library by other users. Also, a non-shareable project library WOI kspace keeps its status in a similar
way; however, non-members cannot load a non-shareable workspace (they can load a shareable workspace
if they know its name and password). Note well that the distributed workspaces arc imported into VSPC
from the distribution tape and are therefore non-shareable. A system administrator should make them
shareable. Conversion marks all workspaces as shareable (in the DE R), thus preserving the characteristics
of APL SV workspaces. The user should be made aware that he can further protect his work spaces by

using VSPC commands to make his workspaces non-shareable. Non-shareable status is cspecrallv rccom
mended for project library workspaces. The project library owner should use the VSPC SHARE command
to make these workspaces non-shareable. Workspaces imported into VSPC (by the import command) are
non-shareable and must be specifically made shareable by their owners, if that is what the owner wants.

Passwords and Workspace Names

Passwords and workspace names in VSPC must be enterable by non-APL keyboards. Practically, this
means that passwords and workspace names cannot contain underscored chai act ers and delta. The Con­
version program preserves all passwords as is. This means that if an APL SV password contains VSPC

6

forbidden characters, the user will not be able to log on to his password protectec accc..»: or ICorJ r '':; iJass­

word protected workspace. The account password can be changed by an administrator The Illega! ,,;/ork­

space password can never be changed by anybody and the workspace is forever inaccessible. T'I~ Conv-rsor

program rejects VSPC forbidden workspace names. Users must change such workspace nassv.or ds \'/hl!2

still using APL SV.

Match ing Content Attributes

Each processor in VSPC has an internal name, called the content attribute, which uniquely Identifies the
processor the VSPC. The VS APL interpreter's customary content attribute is I AD' (external name APL).
However, the installation may assign any content attribute desired from 'AD' to 'AF'. Each workspace
saved by a processor is given a content attribute which matches its processor, and normally, an interpreter
cannot load a workspace with a different content attribute. Conversion automatically marks each work­
space with the content attribute 'AD'. A provision in VSPC, however, allows a higher level interpreter to

access the workspaces of its predecessor. A compatibility bit map, assembled into the interpreter, des­

cribes which 'An' workspaces are loadable. Compatibility may be in either or both directions depending

on the bit maps in each interpreter. Once the back level workspace is saved by the higher level interpreter,
it is given the content attribute of the higher level. This could mean that it cannot now be loaded by the
back level interpreter. Thus, if a VSPC installation is running two different versions of essentially the same
interpreter, but the bit maps specify compatability in only one direction, the higher level user should avoid
preempting his back level workspace. If he loads a back level workspace he should rename it when saving
the higher level version. Finally, if the VSPC installation installs VS APL with a content attribute other
than 'AO', the area mapped by the ASUPAT macro in the interpreter module APLPCOEX should be reas­
sembled to mark AO workspaces as compatible to use Conversion's results. Note also that you can change

the content attribute of a workspace by exporting it, then importing it. The) LI B command does not list
workspaces with a content attribute different from the interpreter, whether compatible or not.

Keeping CONTI NU E Workspaces

In previous implementations of APL, the CONTINUE workspace has been maintained in the library by the
installation but not counted against a user's quota. Many users save an extra workspace by saving it as
CONTINUE, taking the chance, of course, that they may lose it with a genuine line drop. In VSPC,
CONTINUE workspaces are dropped with)OFF and)OFF HOLD, and CONTINUE files of alt types are
dropped by the VSPC OFF command. Conversion preserves CONTINUE work spaces. but if the user wants
to keep it in VSPC, he must resave it with a)CONTINUE command at the end of each session, or save it

under a new name before he logs off from VSPC. Otherwise, when he logs off, he will lose the workspace.
When he first logs on to VSPC, his APL SV CONTINUE workspace will be automatically loaded for him,
unless it is password protected. As in APL SV, the VSPC CONTINUE workspace disk space is not counted

against the maximum library quota which VSPC checks when a workspace is saved, nor is it included in the
disk space totals recorded for accounting purposes.

7

TSIO Considerations

Migration requirements for TSIO users and their data files are discussed in considerable detail in VS TSIO

Guide and Reference (SH20-91 07). This manual should be read by both the installation and the users

before migration. Essentially, VS TSIO is an auxiliary processor which closely duplicates the functions of

APL SV's TSIO so that almost all users will be accommodated with no conversion effort on their part.

Some users, however, will have to either convert their data files, or modify their workspace functions, or

do both. After migration, other users may choose to convert their files to VSPC library files or to external

VSAM data sets.

There are three potential problems that may be encountered by a few users: one is CODE=A character

data which the user intends as byte integers; second is CODE=C character data which the user intends as

APL graphics; and third is the expansion of record sizes in rare cases caused by VS APL type differences

from APL SV.

VS TSIO always assumes that the meaning of character data in CODE=A files is their APL graphic repre­

sentations. It assumes that character data in the file is the APL SV encoding of graphics. Thus, reading

from the file, VS TSIO translates character data to VS APL graphic equivalents. Writing to the file from

the VS APL workspace, VS TSIO translates to EBCDIC equivalents to enforce a standard graphic code for

APL. This assumption is not valid for all users. For a few users, character data are byte integers (have

physical meaning instead of logical meaning - see discussion of variables in workspace conversions later in
this report). These users should convert their character data to EBCD Ie equivalents as follows.

Read each character record in the file. In the workspace, the characte. (" 'Jill be translated to their

VS APL graphic equivalents by VS TSIO.

Using the translation functions and index variables in the CONVERSION distributed workspace,

backward translate to APL SV byte integers.

Write the backward translatedcharacters to the file.

If the user does not update his file, he may modify his read functions to backward translate instead of con­

verting the file.

Note that APL SV TSIO cannot read CODE=A character data once it has been written to the "file by VS

TSIO.

For CODE=C files, VS TSIO always assumes that.the data is byte integers (even though they may have

graphic meaning outside of APL). There is no translation either way, between the workspace and the file.

But a few users may have intended APL graphic meaning for CODE=C data. These users should convert

their data set as follows:

Read each record.

Using the functions and index variables in the CONVERSION distributed workspace, forward trans­

late from APL SV characters to VS APL characters.

8

Rewrite the forward translation into the file.

These users may, if they choose, not convert the data set, but modify their read functions to forward trans­
late, and their write functions to backward translate.

The third potential problem is that in rare cases, VS APL, in writing to a TSIO file via VS TSIO, may
increase the record size (and hence, the blocksize). This can occur only with CODE=A files. An APL
expression may store results in a different internal type in VS APL than in APL SV (for example, floating
point instead of fixed point) and hence generate larger records. One example is

A [3;4] *- 1 t 6 3.2

In this example, the result is forced to floating point in VS APL while in APL SV the result is fixed point
if A is fixed point. In such cases, the user may use the SIZEGP functions in the TSIO distributed workspace
to force the results to be the right type. Or he may redefine his file for the larger record and btocksizes. He
can do this simply by copying the original data set to a new data set, using VS TSIO.

The installation should back up the TSIO files before migration in such a way that an individual file can be
retrieved later. One suggestion is to use IEHMOVE with COpy VOLUME from the TSIO packs to tape.
Later, an individual file can be retrieved by IEHMOV E COpy DSNAME and the right tape sequence number
(provided by the COpy VOLUME listing). However, IEHMOVE does not work for partitioned data sets
with fixed blocked standard (FBS) record formats, unless your system is MVS release 3 or later. To success­
fully archive these data sets, redefine them as fixed block (FB) instead of FBS. Another suggestion is to use
IEBCOPY for a pack-to-pack copy. This does not have a problem with FBS partitioned data sets because in
the DCB parameter of the DD card for the data set, you can specify RECFM=FB.

If migration involves the renumbering of accounts, TSIO files that use the account number to generate part
of the data set name will have to be renamed to match the new account number. User TSIO data sets have
qualified as names, the second qualifier being an alphabetic encryption of the user's account number. The
second qualifier encryption is

~ABCDEFGHIJKLMNOpf [010 + (8p16)TLIBNOl

The second qualifier will have to be changed by the VS TSIO administrator. Note that LIBNO may be
negative, which indicates a restricted data set, accessible only by the owner (or a system level user).

THE CONVERSION PROGRAM

This section discusses significant points about the input to the Conversion program, the output, and finally
conversions to the workspace itself. In brief, Conversion both converts workspaces, and enrolls users in
VSPC. It runs as an independent batch job.

9

Input and Output

Input APL SV Dump Tapes

Input to Conversion is an APL SV selective dump tape, or incremental dump tape, or full dump tape. The

full dump tape contains all the directories followed by all the workspaces of an installation. The incre­

mental dump tape contains all the directories followed by only those workspaces saved since the last full

dump. The selective dump tape contains only specific workspaces, and no directories. Only the directory

contains a user's workspace quota, shared variable quota, and CPU time limit. Therefore, for best results,

dump tapes with directories should be used for Conversion. If directories are not input to Conversion,

Conversion uses defaults, which are:

500,000 bytes library space

o shared variable quota

o shared variable space

infinity cpu time limit

no password for user account

tf directories are not input, only the library space parameter may be overridden with a Conversion control

card, howeve 1', the figure su ppl ied wi II appl y to a II users converted.

Conversion Control Cards

Optional input is control cards which specify Conversion options and parameters and specific workspaces

for selective conversion. Full conversion is the default option. It does not mean that the input tape is a

fuJI dump tape. It means that Conversion will attempt to convert all the workspaces on the input tape(s)

whether full dUITlP, incremental, or selective dump. Select conversion means that Conversion will convert

only the specified workspaces if they are found on the input tape, wh ich may be any sort of dump. Resume

conversion means that Conversion will resume a full conversion once it has found the specified workspace

on the input tape (s). Workspaces before the target workspace are ignored. Resume is used to segment the

migration task, to skip a bad spot on the tape, and to restart conversion if Conversion shuts itself off due to

an excessive number of damaged workspaces. (Conversion assumes that it itself has been darnoqed if more

than ten damaged workspaces have caused program checks.)

Output VSPC 'COpy' Tape

The output of Conversion is a VSPC 'copv' tape, suitable for a copy input to the VSPC Service Program.

The 'copv' tape consists of a User Profile Record (UPR) for each account, a Directory Entry Record (DER)

for each workspace, and the workspaces represented as VSAM 16k control intervals. The UPR enrolls the

user in VSPC if he is not already enrolled. It is ignored by VSPC if the user is already enrolled. The Con­

version produced 'copv ' tape is not a standard VSPC copy tape. Its significant difference is the sequence

of accounts and workspaces, wh ich are written on tape in AP L SV di rectory order instead of collating order

10

as for a VSPC IJIoduccd copy tape. Directory order means that all the workspaces for directory a are Iol­
lowed by all the WOI kspaces for directory 1, and so on until directory 11. Furthermore, accounts within a

given directory are 110t III collating sequence by signon number; they are entry sequenced by time (barring

account deletions, chanqes, etc. which reclaim freed PERLIBS). For an APL SV account, the workspaces

are in collating sequence by workspace name. This is not true for an APL/360 account, however, where the

workspaces for an account are dumped in entry sequence by time. The practical significance of this is that

the VSPC Service Pr oqram selection functions cannot be used all a Conversion produced 'copv ' tape. There

are minor differences as well, concerning the blocking of records on the tape.

Note that under DOS, the Conversion 'copy' tape must have standard DOS labels to be acceptable to DOS

VSPC. In OS, the tape rnav be labelled or unlabelled. VSPC can read a DOS copy tape in as by using the

Bypass Label Processing option. An as copy tape cannot be read in DOS.

Output Conversion Report

A second output of Conversion is the conversion report, which is a summary of exceptional conditions for

each workspace grouped by account. The report is to be burst apart by account and sent to each user.

Users are urged to at least scan the report. It is our experience that users tend to ignore the report.

Apparently, most users are able to use their converted workspaces scarcely aware that Conversion has

modified many Iines of their functions. Where an idiomatic translation fails, users tend to correct the trans­

lation during execution without ever consulting the report, which is rather voluminous even though it is a

summary of exceptions. Nevertheless, the user should scan the report for disasterous failures. Some work­

spaces are damaged and unconvertible and are deleted by Conversion. Functions with unacceptable headers

to VS APL are unconvertible and are deleted. The algorithm for computing the VS APL workspace size can

fail so that some of the APL SV workspace objects cannot be copied into the VS APL workspace due to

workspace full. A function line too long for conversion is replaced in its entirety by an execution time

warning message containing a deliberate syntax error. This can be painful because the figure is quite large

(about 4000 bytes) meaning that a lot of data is lost. This is likely to occur where a user enters a large

amount of text in a character constant without closing quotes between carrier returns.

APL SV conversion reports can be shortened considerably by one simple precaution, which is to have all

users define comparison tolerance in all their workspaces where the default tolerance is appropriate to be

1E·13. Due to a bug in APL SV, the default comparison tolerance is 1.136729599338082E·13. This is a

reportable exception for Conversion and can waste a whole page.

Workspace Conversions

Essentially, workspace conversion is a)COPY of the APL SV workspace into an initialized clear VS APL

workspace. Only global objects and some workspace parameters are converted; temporaries and local

objects are ignored.

11

Workspace Parameters

A clear VS APL workspace is initialized by setting global workspace parameters to their APL SV values as

follows:

010 = index origin

OCT = fuzz

DRL = seed

DPP = print precision

)SYMBOLS =)SYMBOLS + 6

These system variables are set only if their APL SV values are valid (implicit errors are excluded) and only if

their values are other than clear workspace defaults. The symbol table size is always set to 6 greater than the

APL SV size, but is reported only if the APL SV size is different from 256. The reason for increasing the

symbol table size is that Conversion may add six new names to the workspace. Note that OHT and DPP are

not converted. Th is is because in VSPC tabs and pri nt width are session parameters, rather than workspace

parameters. In VSPC, tab and print width settings are valid only for one terminal session and apply to all

workspaces loaded in that session. Also DHT is origin 1 in VS APL and origin 0 in APL SV. This difference

is not handled by Conversion. Latent expression is ignored by Conversion DLX is always null. If the user

wants to preserve OLX, he should assign its value to a workspace variable, making it an easy matter to

reassign the value to DLX in the converted workspace. OTT and OUL do not exist in VS APL. The work­

space identification (library number and name) is preserved unless invalid for VSPC or renamed by a selec­

tive conversion. It is invalid if the library number is greater than seven digits, in which case all workspaces

in that library are rejected, or if the name contains delta or underscored characters. in which case the work­
space only is rejected. Workspace passwords are preserved unchanged without l amination. They had
better be valid for VSPC or else the workspace will be inaccessible.

Global Objects

After initialization, global objects are converted in symbol table order. Conversion consists of changing

internal formats from APL SV to VS APL formats, and in the case of functions, changing language idioms

as well. (The format only option of Conversion prevents idiom conversions; however, in our experience,

this is a rarely used option.) An idiom is a usage of the language peculiar to an implementation: mixed

output, for example, or carrier return imbedded in character literals, both of which are qrarnrnatical in APL

SV but are not permitted in VS APL. Users who keep APL functions on a file and read them into their

workspace and fix them should be aware of potential conversion problems that Conversion cannot attempt

to address.

Group Lists. Global objects converted are group Iists, variables, and functions. Group Iist conversion con­

sists of entering the group name and the name of each group member into the VS APL symbol table, then

creating a corresponding group list in the VS APL workspace. The objects named in the group list are not

converted at this time, but as they are encountered in the APL SV symbol table.

12

Variables. Variablcs dll~ converted by euter inq their names into the VS AP L symbol table and reformatt ing

tner values for VS APl. Conversion does not attempt to reformat variables into VS APL svnonvrn links or

intege r vectors into arithmetic progression vectors (AP vectors). Hence, Conversion is not so frugal of space

as it miqnt be. The LIseI' can compact his workspace in VSPC by executing its functions, then resavinq the

v.ork space. This will take care of synonym links and AP vectors specified within functions. Global variables

generated by t and spcci fied from the keyboard should be respecified by the user to set them up as AP
vectors

The characters of a character variable are translated according to whether Conversion thinks the workspace

is APL ..1360or APl SV. If the workspace is from APl/360, or if the workspace is APl SV but is dumped

LEVEL 0, the dump tape appears to be APL/360. In these cases, Conversion translates the terminal control

characters backspace, linefeed, and carrier return, and terminal graphics specified in the APL/360 Users

Manual into their equivalents in VS APL. All other characters are translated into blot, the illegal graphic

character. Loss of meaningful data can result. If the workspace is fr orn APL SV and is dumped LEVEL 1,

the dump tape appears to be APl SV. In this case, all possible 256 characters are fully translated into all

possible 256 VS APl characters. There is no loss of meaningful data. Therefore it is important that the

APL SV installation use lEVEL 1 when it prepares dump tapes for Conversion. (LEVEL a is a backward

compatability feature of APL SV which allows an APL SV workspace to be transported to an APL/360
installation and vice versa. It mainly concerns a slight difference in the execution stack between the two

implementations which is utterly transparent to Conversion. It also causes the writing of an APL/360 tape

label, which is important to Conversion. LEVEL 1 writes an APL SV tape label.) The full translation is

contained in the CONVERSION workspace distributed with VS TSIO, and in the CONVERT workspace

distributed with VS APl. The three terminal control characters listed above and the terminal graphics are

translated into their corresponding characters in VS APl. Other characters are translated more or less

arbitrarily, but consistently into the remaining VS APL characters. Translation is one for one, and hence,

reversible. The important point to be made here is the implicit assumption of Conversion that the user

always intends for characters to have their logical meaning and never their physical meaning. By logical

meaning, we mean the graphic representation intended by the bit configuration of a character. By physical

meaning, we rnean the absolute value of the bit configuration. This assumption is not valid for all users.

For some, three bytes of characters are the letters 'ABC'. For others, the same three bytes are the core

address X'565758'. Translated to its logical meaning, ttie three bytes become X'414243', obviously a

problem where physical meaning was intended. But these translations can be reversed by using the

CONVERSION or the CONVERT workspaces.

Canve I sian does not distinguish between canonical representations and other uses of character variables.

Therefore, canonical representation of functions are not examined for idioms. If fixed and executed, they

may not work. The user must manually check canonical representations for VS APL validity, or he rnav
use the CONV E RT workspace to check them after miqration, or he may fix these functions before the

workspace is durnped in APl SV to allow Conversion to translate idioms.

Conversion rejects variables if their rank exceeds 63, if any dimension exceeds 2,097,118, or It the product

reduction of the dimension vector exceeds 2,097,118, or if any of these parameters is negative.

Functions and Idioms. In format conversion, only the format of functions is converted. For content con­

version every line of a function is examined and idioms are converted as well as format. In both options of

Conversion, a function is unconvertible if the header is unacceptable to VS APl. Unacceptable headers are

those which contain a syntax error or which specify system variables as their result 01 argurnent. Examples

13

0" header syntax errors are headers containing any primitive function other than the result assignment or
the locals list separator semicolon. This includes localized OTT or OUL, which do not exist in VS APL,
and would be tokenized as primitive 0, name TT or UL. Unconvertible functions are reported by Con­
version regardless of option. Also, lines too long for conversion are reported regardless of option. The
following paragraphs discuss idiom conversions.

I-Beams. Monadic and ambiguous i-beams are replaced by a function name, nominally /8E. Conversion
adds the function IBE to the VS APL workspace before writing it to tape. At execution time, IBE operates
on the evaluated right argument and simulates i-beams 19 through 29. I-beams 23 and 28 have no equiva­
lent in VS APL, and will cause an IBE function error message. An i-beam is ambiguous if its left argument's
global value is a function, or is syntactically invalid. it is ambiguous because at execution time, the func­
tion name could be shadowed by a local variable of the same name at some unforeseeable level of the
execution stack. Conversion assumes that most likely the i-beam really is monadic. If the left argument is
a variable, Conversion assumes that the i-beam is dyadic even though the variable could be a function due
to fixing at execution time. Ambiguous and monadic i-beam substitutions are reported. Dyadic i-beams have
no equ ivalents and are format converted only. They are reported with a warning flag. Conversion gives the
i-bearn simulator function a unique name that does not exist in the APL SV workspace. The first choice
is 18E. If that name exists in the APL SV symbol table, Conversion generates IBF, the next name in alpha­
betical order. If that name too exists, Conversion generates IBG, and so on in alphabetical order until an
unused name is found. The unique name prevents an accidental replacement of data with the simulator
function or an accidental syntax error at execution time. The function is locked, not for proprietary
reasons, but so that at execution time, it will behave like a primitive. But this is a problem for users who
want to edit the "function to supply a value for i-bearns 23 and 28. To get around the problem, in the
CONVERT distributed workspace is the canonical representation of /BE, named CRIBE. The user should
erase IBE in his workspace, copy CRIBE, fix it, edit it, then lock it, being careful to give the new function
the same unique name.

APL/360 Idioms. Monadic transpose, encode and residue are flagged by conversion. These flags can
normally be ignored for an APL SV workspace where the definitions are the same as in VS APL. However,
some APL SV workspaces are really APL/360 workspaces migrated to APL SV and have not been edited for
idiomatic differences .. Owners of these workspaces may want to examine occurrences of these idioms. The
differences are:

1. Monadic transpose reverses the coordinates of an array.
two dimensions of an array.

In APL/360, it reverses only the last

2. The definition of residue now includes negative values in the left argument.
the absolute values of the left argument are used.

In APL!3bO, only

3. The definition of encode now includes negative values in the left argument, since encode is
defined in terms of residue.

The CONVERT workspace has functions which simulate the APL/360 definitions; these are OLDENCODE,
OLDMONTRANS, and OLDRESIDUE.

14

Mixed Output. Mixed output is replaced with an expression using the format function, according to which

paradigm the mixed output statement resembles. Paradigms are:

A; B; C simple print lists

(mA), (mB), IDC

(A; B; C) redundant parentheses

((mA), ((18), ~C)

A,';B	 empty, nonernptv print lists
(mAl, (fiB

A,' final empty print list

IDA

;A beginning empty print list

mA

empty print lists

(empty line)

(;A) empty, nonernptv lists, redundant parens

(iliA)

(A;) empty, nonemptv lists, redundant parens

(mA)

(;)	 empty print lists, redundant parentheses

(empty line, redundant parens suppressed)

This translation results in an execution time length error or unintended formatting if one print list is an
array and the other is a vector or scalar. Therefore, Conversion reports this idiom with a caution flag.

Imbedded Carrier Returns. In APL SV, it is possible to enter carrier returns as characters in a character
literal in defined functions by hitting carrier return before closing the quote, This is not possible in VS
APL, where the carrier return always signifies the end of the input whether or not the quote is closed.
In VS APL, the system variable OTC must be used to control the terminal. Conversion translates this idiom
to an expression using DTC according to the following paradigms (let * be carrier return):

, ,	
single character is carrier return*

OTC(1 + 0/0]

... * ... intervening carrier return

(' ... ',DTC[1 + 0/0], ' ... ')

... ** ... successive carrier returns

(' . .',(npDTC[1 + 010]),' .. ') n =no. of successive carrier returns

15

I

I

* ... initial carrier return

(OTC[1 +0/0],'.. .')

... * final carrier return

(' .. .',OTe[1 + [J/O])

System Variables. OTT and DUL are translated to D TT and 0 UL. They are reported with warning flags

because execution will result in a syntax error. OA V is reported with a caution flag. Since the efements of

[]A V represent different characters, reference to it might have unintended results at execution time.

WSFNS Functions (DELA Y, DIGITS, ORIGIN, SETFUZZ, SETLINK, WIDTH). These functions are

replaced provided that they are locked, two line functions, and match bit for bit the same functions in the

APL/360 distributed workspace WSFNS. The replacement performs the equivalent function with the

appropriate system variable.

Locked Functions. Conversion idiomatically translates locked functions, but reports severity only. It does

not report idioms found to preserve the proprietary nature of locked functions. These functions can repre­

sent a special problem because a locked function cannot be edited. The APL conversant user should have

an unlocked copy of his function available so that he can correct idiomatic problems. However, there are

many APL locked functions which form application packages used by people not conversant in APL. Due

to idiomatic differences, these applications can fall apart, leaving the user without recourse. The disruption

can be severe. Often, the application writer is no longer available to update the application. The installation

should plan to accommodate these users. A suggestion, if the users will permit, is for the APL SV installation

to make a copy of these locked functions into special Iibraries, then from a privileged terminal, unlock the

functions. Later, after conversion, a systems programmer skillful in APL can edit these functions in VS APL

to correct idioms. After relocking them, the concerned user can copy the carl ted functions into his

workspace. The Appendix contains UN LK, a privileged function, which unlocks 'functions in a workspace.

LK locks all functions in a workspace. These functions can be executed only from a privileged terminal.

Damaged Workspaces

An APL SV WSLIST listing will show damaged workspaces, but it will not always agree with Conversion's

report of damaged workspaces. In particular, the WSL 1ST may report a workspace as damaged, wh ile Con­

version will accept the same workspace with no report of damage. This result usually occurs where forward­

backward pointers in the workspace do not agree. The APL SV utilities are sensitive to conflicting forward­

backward pointers whereas Conversion is not. On the other hand, Conversion can reject a workspace as

damaged while the WSLIST listing does not mark the workspace as damaged. This usually occurs where

the printname of a group member, which has been erased, is damaged. The APL SV utilities are not sensi­

tive to this sort of damage whereas Conversion is quite sensitive. We recommend that users pay special
attention to groups in their workspaces to avoid this confusion.

PROCEDURES

The Installation must select a suitable strategy for migration. Also, it must plan for several iterations to

migrate the bulk of the installation, the first iteration rejectees, the recalcitrant, and finally the stragglers.

The old installation must be kept available until migration is complete.

16

I"JIJ can let Couvei siou enroll users as they existed in APL SV 01 you can use select conversion to reassign
~(..(.r)unt numbers and uruoll users, or you can manually enroll USCIS and use Conversion to merely convert

"/fJrkspaces. If the VSPC installation is replacing an APL SV installation, use the first strategy. If the
,APL SV installation is bpill~l added to a VSPC installation that already has other users, the second will have

'"(..J be used because account numbers may conflict. Finally, if you manually define users, you can simplify
your task by taking advantage of VSPC's 'model' profile facilities. If you renumber accounts, you will also

r-ave to rename the users' associated TSIO data sets.

Conversion Definition

1 Canvass the users. Publish the shared variable size that you plan to establish and the default number
of file buffers. Using the VSPC DEFINE command, predefine those users for whom Conversion size and
buffers are inadequate.

2.	 Clean up the APL SV installation. Have the users do the following:

1.	 set default comparison tolerance to 1E-13 in all appropriate workspaces.

2.	 change their logon and workspace passwords to VSPC usable passwords.

3.	 change workspace names to VSPC acceptable names.

4.	 get rid of damaged workspaces by the followi ng sequence:

a.	 Check all groups to ensure that all printnames are valid (no garbage displayed). If a
member has an invalid name (usually it will be of an erased object, no longer in the
workspace) reform the group either supplying a valid name or omitting the invalid member
name. Resave the workspace.

b.)CLEAR

)COpy workspace

)WSID workspace

)SAVE

Notes:	 Preserve the source workspace's index origin, print precision, symbol table size, random
link (where it matters), and comparison tolerance. The installation may perform this
cleanup from a privileged terminal, working from a WSLIST.

5.	 verify their function headers for VS APL acceptability.

6.	 repair functions with long lines apt to be deleted.

7.	 if DLX is not null, assign its value to a variable so that DLX can be easily reestablished in the
VS APL workspace.

The installation should reassign account (signon) numbers for users whose signon numbers exceed seven
digits. This cleanup will save Conversion iterations.

17

3. Take a full dump of the installation being sure to use LEVEL 1. Also, use WSLIST option so that you

can identify the workspaces on each reel. Back up the TSIO files so that they can be selectively restored

later in. case of user error. System utility IEHMOVE (with COpy VOLUME) is suggested.

4. At this point, you have the choice of segmenting the Conversion-Copy runs or trying to do the INhale

job in one iteration. If the dump produces more than two reels, we recommend segmenting the task, reel

by reel. The disadvantage of segmenting is that the first reel must be run first before each r eel to be con­

verted (the first reel has the directories, which Conversion saves on a temporary data set until the target

workspaces are encountered). To segment the task, run a fi II conversion on the fi rst vol U me. Repl y cancel

to Conversion's request for the next volume. Then run the VSPC Service Program using COpy command

with NOREPLACE option on the Conversion produced 'copy' tape. This will enroll those users on the first

dump reel in VSPC. It is important to use NOREPLACE instead of REPLACE because VS APL is installed

in VSPC with distributed workspaces in libraries 1 and 2 that could be replaced with identically named

workspaces from APL SV. However, you may want to replace 1 NEWS in VS APL with your current 1

NEWS in APL SV. If so, this will have to be done in an independent selective conversion-replace copy run.

If you are migrating to a DOS VSPC installation, be sure the 'copy' tape has a DOS label. Migrate the next

batch by running resume conversion specifying the first workspace on the second reel of the dump tape.

Mount the first reel so that Conversion can retrieve the directories, then the second when requested by

Conversion. Run copy with NOREPLACE on this 'copy' tape. Repeat for all reels.

5. This completes the first iteration. Now, migrate the rejected users or workspaces from the fi rst

iteration. The conversion report distributed to the users Iists rejected work spaces and accounts with

reasons for the rejection. Collect a Iist of rejected workspaces with reasons from the users. If re jected

because of invalid WSID, run selective conversion using rename facilities on those wot kspaces. The direc­

tory reel will not be needed if the first iteration successfully defined the rejected use: s. You need input to

Conversion only those reels containing the selected workspaces. You can aVOIL, '/ounting the directory reel

by predefining users whose accounts were rejected. If a workspace was rejected ause of darnaqe or tape

I/O error, selectively dump the APL SV workspace (after cleaning up damaged workspaces}. Run full

conversion on the seldump tape.

6. Migrate the recalcitrant workspaces. You will have to analyze the reasons for rejection and correct

them. If locked functions are the problem, copy the user's workspace into a special library in APL SV,

then from a privileged terminal, unlock the problem functions. Dump and convert the workspace again.

Then, most Iikely with the user's data, procedures, and cooperation, edit the unlocked functions to get

them working right. Lock the functions and copy them into the user's workspace. Other problems will

have to be solved on an ad hoc basis.

7. Using the VSPC ALTER command, modify the profiles of those users for whom Conversion defini­

tion was inadequate.

Renumbering of Accounts

In this strategy, selective conversion is always used to renumber accounts. The lust.all at Ion Reference

Manual says that up to 100 workspaces or accounts may be selected for convcrsion ill one run. This is not

quite true; it is a worst case figure. Conversion uses an internal selection table with vau.ihle length entries.

18

If selection mvolve s only the renumbering of libraries, with no selection of specific workspaces, up to 366

libraries with all their workspaces may be selected and renumbered in one run. Procedure remains the same

as above I except that you never use full and resume options.

You wi II need to keep a cross reference of old to new numbers so that the TSI 0 data sets can be renamed

to match the new accounts. Renaming is a task for the VS TSIO administrator.

Manual Definition

In this strategy, all users are enrolled in VSPC manually by a system administrator using VSPC's DEFINE
command. The UPR's created by Conversion will be ignored by VSPC. First, define one or more model

users. Then reference the appropriate model profile when defining the subsequent users. If account

numbers differ, use selective conversion to renumber accounts to match the assigned VSPC account numbers.

Use of Select Cards

Select cards are used to select specific workspaces for conversion and to renumber and rename workspaces.

With one exception, explained later, select cards may be entered in any order, however, we recommend

that they be entered in the order shown on the WSllST listing for better efficiency of the Conversion

program. Also, be careful to avoid specifying a workspace (or library) that does not exist on the dump tape.

This error causes Conversion to sift through the entire dump (which may be many volumes) looking for the

nonexisting workspace before it quits. Conversion does not report unfound workspaces. If there are no

errors in specifying workspaces, Conversion quits as soon as all the specified workspaces have been encoun­

tered on the tape.

How to write select cards is explained in the Installation Reference Manual for VS APl. As mentioned

before, considerably more than 100 select cards can be entered in one run, depending on the complexity

of each select card. Not explained in the Installation Reference Manual is how to select all the members

(workspaces) of a library and rename only some of the members. Suppose, for example, that library 5

contains in WSLIST order:

WSl
WS2

WS3

WS3 must go to library 2 in VSPC and be renamed OLDWS3 to avoid replacing a WS3 already in library 2.

This can be done with two select cards as follows:

SELECT 5 (2) WS3 (OLDWS3)

SELECT 5

The trick is to place the renaming/renumbering cards ahead of the library selection card. Use this trick

carefully, if the library selection card is placed before the rename cards, the renaming will be ignored.

Further, the renaming cards will act like an erroneous selection card.

19

GLOSSARY

AP Vector. Object in VS APL workspace generated by any expression using en and consisting of integers.

Consists of three elements; the initial value, the increment, and the number of integers.

Byte Integer. A byte of character data that is not intended to have graphic or terrninal control character

meaning within the APL workspace. It may have graphic meaning outside APL, for example, a printable

EBCDIC character such as hexadeci mal byte Fl.

Control Interval. Unit of data used by VSAM to transfer data between programs and physical storage

devices. It may contain one or more logical records. A virtual physical record.

COPY. In APL, refers to action or result of the)COPY command. In VSPC, refers to action or result of

the VSPC Service Program COpy command.

Directory. A data set which contains definitions of accounts and pointers to other data sets which contain

workspaces and files belonging to each account and/or definitions of the workspaces and files. An index of

accounts and files.

Execution Stack. A section of a workspace in which APL statements are temporarily stored for analysis

and execution.

Free Space. Space available in a workspace for temporary and permanent objects. If used for permanent

object, it is no longer part of free space.

Format. The organization and contents of an object in the workspace.

Idiom. A usage of language peculiar to an implementation of the language.

M-Entry. Storage in a workspace allocated to a workspace object or printname.

NOREPLACE. A VSPC COpy option (and the default). It means that a workspace will be added during a

COpy to the VSPC library only if its identification does not match any existing workspace identification.

Prevents inadvertent replacement of workspaces.

Object. The value or definition in an APL workspace which defines an APL item, as opposed to its name.

For example, a variable consists of a name and an object pointed to by its name which contains the value(s)

for the variable.

Paradigm. A model statement illustrating proper grammar or idiom.

Predefinition. Manual enrollment of an account in VSPC before conversion of the account to circumvent

account definition by the Conversion program.

REMOVE. A VSPC COpy option". If the COpy source account is locked [loqicallv deleted) this option

prevents the account from being copied to the output VSPC library.

REPLACE. A VSPC COpy option. Permits a workspace to replace a workspace with the same identification

in the output VSPC library.

20

R13 Stack. A section of an APL workspace, at the high address end, reserved for temporary storage by

reentrant interpreter routines. So called because it is addressed by general register 13 in interpreter routines.

Symbol Table. A section of an APL workspace which contains a pointer to every name and a pointer to

every object in the workspace.

Synonym Link. A VS APL workspace object which represents the values of another workspace object.

For example, if A has a value, then assigning A to 8 generates a synonym link as the object for 8, which

contains a pointer to the object for A.

Terminal Control Character. A byte representing a terminal function, such as carrier return, backspace,

or line feed. Opposed to terminal graphic, q. v..

Terminal Graphic. A byte representing one of the elements of the APL character set.

Token. An element within or associated with an object which syntactically classifies or represents the

object or element of the object. For example, each primitive function is represented in an APL statement

object by a unique token which both represents the function and classifies the syntax of the function.

21

APPEI'JDIX

UNLO~K v v s 11977 It 7 15 22 22 O:J\fPl-:u flY 'JSEfl 3i~8t)2

\/ L(;r;J
(I] r ... 2r ~ 128
[2J Ll:~(18 18 A.#JTJ~, 256 Ib777~16 T2E4,1~1)/L2

[~.] 161:4, liJ,5J6~70912

(~l L2:~{>ll~I+ 0 H)/~l

V

TV UVLK;l;J
(1] I ...21: ~ 128
[2] Ll:~(18 19 A.~lfJ~, 256 16177216 T2r4,l.1./L2
{J] JX4tl'J,2L(,(J2p2)r2X4,1IJ)~-2'-Jltl1pl

l4] ~2:~(>II~I+ 0 81/Ll
V

22

