
MULTI-USER SQL py Dr. James A. Brown
APPLICATIONS IN APL2

September 1985 TR 03.274

SEPTEMBER 1985
TR 03.274

MULTI-USER SQL APPLICATIONS IN APL2

BY
DR. JAMES A. BROWN

INTERNATIONAL BUSINESS MACHINES CORPORATION

GENERAL PRODUCTS DIVISION

SANTA TERESA LABORATORY

SAN JOSE, CALIFORNIA

ABSTRACT

Tllis paper presents a method for quick implementation of
sma Ll, mul ti-user database applications. The advantages of
having a single access to a database for multiple users are
discussed. Some of the unique features of APL2 are
introduced and used to show a sample implementation of the
multi-user server. A general method for doma i.n checking of
relational tables is presented.

iii

1: Introduction

This paper discusses a method for quick implementation of
small multi-user database applications. These applications
may be given to users wi thout distribution of the actual
code of the application and without granting the user
authority to use the database.

The discussion will include the representations of
relational data in the programming language APL2, some
unique features of the language that make multi-user
applications easy, and some techniques for checking data
destined for relational tables. An earlier paper, (1)
discussed the actual mechan i.sms for communication wi th the
relational database products DB2 and SQL/DS. It showed that
APL2, unlike other programming languages, can access whole
tables in a single operation.

To put on a professional appearance, you would need to add a
full screen, panel driven front end to make the application
user-friendly. This
different than for a
discussed here.

aspect of the
single user ap

application
plication and

is
is

no
not

The reader does not need intimate knowledge of APL to
understand the algorithms presented. The early sections
assume very little knowledge of APL2 Later sections show the
actual code that implements a multi-user server and complete
understanding of these programs does assume APL familiarity.
Someone without APL knowledge can still appreciate the style
and brevity of the programs.

Appendices 2, 3, and 4 give some practical information about
running and using the shared variable processor and are
presented for completeness.

- 1 ­

2: Objectives

There are numerous small applications that never get
implemented because they would take up time needed for more
cri tical matters. The purpose of this paper is to show a
way to get a multi-user database application running
qUickly. The reduced development time makes it practical to
write the s ma L'l e r applications which, although they
sometimes receive only casual use, increase the availability
of information to users and thereby increase their
productivity.

The surprise is that the method described, in addition to
being fast to implement, increases the security of the
application, tightens control on access to databases, and
provides addi tional function to the database products in a
general way.

The database products by themselves provide a secure
multi-user environment. However, the database products are
passive reacting only to requests. The server presented here
is normally passive but may be self activating. It may wake
itself up to take a backup, to moni tor i ts own usage, to
contact its users, or to apply maintenance to itself.

The following sections will present the relevant features of
APL2~ the implementation of a multi-user server, and a
method for additional checking of relational data.

- 2 ­

3: Features of APL

This section introduces the data structures of APL and shows
how they are used to represent relational data. Then three
somewhat unique features of APL are presented that make the
implementation of the multi-user algorithms easy.

3.1: APL2 Data

This section will describe how APL2 represents collections
of data. A collection of data in APL2 is called an array.
An array can be used to represent almost any arrangement of
data.

There are only two kinds of data in APL numbers and
characters. A numbe r (nay be logical (0 or 1),. integer
(1 234), real (3 .86 i , scaled (1 E1 0), or complex (2J3) • A
character may be an ordinary character ('a') from the set of
256 EBCDIC characters, or an extended character (like a
Japanese or Hebrew character) from a set of 2, 1 47 , 483 ,648
extended characters.

An array in APL2 is a rectangular collection where at each
point in the rectangle you find a single number, a single
character, or another array.

Here's a 3 by 3 array of numbers (a matrix):

3 3p 23 1 123E20 1 0 124E15 -1 1 1E11
23 1 1 .. 23E22

1 0 1.24E17
-1 1 1. OOE11

The syrnbol p is the "reshape" function. It means "reshape
the numbers on the right into a collection having three rows
and three columns.

Here's a 3 by 3 array with numbers and characters:

AB TIT
CD
EF

3
LE
55
66

3p'A' 'B' 'TITLE' 'C' 'Dr 55 'E' 'F' 66

Here's a 3 by 3 array with a matrix at each spot:

- 3 ­

3 3p c2 2p1 001

1 0 1 0 1 0

0 1 o 1 o 1

1 0 1 0 1 0

0 1 0 1 a 1

1 0 1 0 1 a

0 1 0 1 0 1

The symbol c is the "enclose" function. It means package the
2 by 2 array into a scalar array (an atom) which is then
repeated nine times to get the three by three array.

In general, at any spot in an APL2 array, it is OK to have
any other array.

3.2: Representing relational data using APL2 arrays

In an APL2, anything can be at any spot. Real data,
however, tends to be organized. In a relational table, you
can only have numbers (of various formats) and character
strings (of various lengths). A relation, in APL2 terms, is
a matrix wi th s ome discipline applied to what kind of data
may occupy the spots.

Here's a stylized representation of a relation:

The top set of boxes represents column titles each of which
is a character string. Each vertical box is one column of
the relational table. Columns may be numeric or character. A
numeric column has a single number in each row. A character
column has a character string in each row.

Here's a real 4 by 4 APL2 ma t r Lx that represents the
employee table for a (very) small company:

- 4 ­

WHO A display the table

EMPLOYEE NAME ID SALARY DEPT

DOE, JOHN 314159 25000 M75

S1-lITH, JOHlJ 271828 22026 \"J88

SHAKESPEARE, WILLIAM 1 4 250 Q25

prlHD A compute shape of the table
4 4

The first and last columns contain character strings, the
middle columns contain numbers, and the first row is
character strings representing titles.

This is the most intuitive way to represent a relation. The
column ti tIes are over the columns where you would expect
them. This is good if all you are going to do is format and
display the data. Just mention the name of the array that
represents the relation, and you get a simple report.

If, however, you are going to be doing computation, you
normally do not want to do computations on the ti tIes
only on the data. Therefore, here is another representation
of the same relation more convenient for computational
purposes:

~[I

This, in APL2 terms, is a two item vector consisting of the
column ti tIes and the data. If the ernployee table TIRO we r e
represented like this, then selecting t.he s e c or.d i tern would
select only t.he data portion. In APL no t a t i.on this is
written 2 =>rIHO where ::> is called "pick".

There are other representations that you could choose for
representing relational tables. For example~ the APL
interface to SQL supports a vector form of a relation which
is often mor e efficient in storage (2). APL2 does not
impose a representation on you.

There is one more difference between a relation and an APL2
matrix columns in a relation are governed by strict
f o rma t.t.Lnq rules. A nume r Lc c o Lurnn is ei t.he r integer, s h ort

- 5 ­

integer, real, etc. A character column is either fixed
length or or variable length where variable means no longer
than s ome max i mum Len-j t.h ,

One way t.ha t APL2 reduces development time for an
application is its insensitivity to the declared column
formats. When retrieving a table, however it is defined,
you just get an array and do not need to know the format
wi th which the table wa s defined. (You can determine the
format by using a DESCRIBE operation, but you never have
to.)

When writing data into a table, formats are more important.
You'd better put numbers into numeric columns and characters
into character co Lumn s , APLs interface to SQL will reject
inappropriate data, but a better way to control the contents
of tables is discussed in the section of Domains of Data.

Another way that APL2 reduces development time is the array
orientation of APL processing. Access to relational data is
on an array basis. Large parts of tables or even whole
tables can be accessed and updated in a single operation.
There is no need to do operations one row at .. a time. In
this respect, APL2 almost looks like an end user application
-- yet it is a general purpose programming language.

3.3: Unique APL Facilities

There are many very powerful facilities of APL2 which make
writing applications fast. Three facilities, in particular,
are discussed now and used later in the implementation. The
facilities are normally not found as parts of a programming
language. They will be discussed primarily by example.

The EACH operator

You often write a program \vith the intention that it will be
applied to one set of data. When the need arises to apply it
to Ina11Y sets of data, you wri te a loop that causes t.he
p r oqr am to be called many t.Lme s . This may be pictured as
follows:

- 6 ­

IInitialize counter I

------. Select Ith set of data

Apply PROGRAM to
selected data

check extent of loop

This might be written as a DO loop, a DO. WHILE, or any of a
number of programming constructs. An APL loop can be
written in this style but there is a more elegant solution.
using the data structures of APL2, the sets of data are
represented as a vector of arrays pictured as follows:

list set I 2nd set I 3rd set I

The new operator "each" (..) takes a program or expression
and applies it to each i tern of a collection. This may be
pictured as follows:

PROGRAM "list set I 2nd set I 3rd set I
is the same as:

PROGRAM 1st set PROGRAM 2nd set PROGRAM 3rd set

Here's a real example using a trivial program (in fact, just
one primi tive function). The function n interval" applies to
one integer and produces the list of integers 1 to that
number :

1 4
1 2 3 4

1 2
1 2

Using "each", the function can be applied to a whole
collection:

- 7 ­

t"2 3 4

1 2 1 2 3 1 2 3 4

giving a three item vector of vectors.

PROGRAfrf could be a simple computation as in i " or a complete
application program. The program could be wri tten in APL2,
FORTRAN') ASSEr-tBLY language, etc. When we wri te PROGR.A}!"" the
comput a t i.ori is probably more significant than t", but the
style is the same - - apply PROGRAM repeatedly to different
data.

The EXECUTE function

APL has a way to treat character data as part of a program.
For example:

t 2+3 t

2+3

This is just a string of three characters.

The "execute" function treats the character data as though
it were an expression in the program:

.t'2+3'
5

Thus, "execute" is like taking off the quotes and just
entering 2+3 which, of course, evaluates to 5.

While this is interesting, it doesn't look particularly
significant. It could be statically compiled.

Here' 5 another e xamp Le of a character string wh i.ch is not a
constant but rather the result of a computation:

A-f-'2+' A define A as two characters

A, '3 t A join A to the character '3'

2+3

Now we can apply the "execute" function to this:

1.A ., , 3 '
5

This is significant. The character string is dynamically
computed as part of program execution, and then treated as a
line in the program. There is no possibili ty of such a

- 8 ­

concept in a comp i Le d language. You cannot compile such
expressions because the value of A cannot, in general, be
pre-determined.

This is a very powerful concept and i t ITIUst be used wi th
caution. "Execute" should not be used where other
techniques will suffice because it can be inefficient.
Later, in the discussion of checking relational data,
"execute" wi Ll, be seen as a most general facility. It is
21,50 used to implement multiple applications unde r a single
multi-user server.

Shared names

A variable is a name which at different times has different
array values. Normally, a variable is associated wi th a
single user and holds data associated with his private
application.

APL has the abili ty to process two independently running
programs which have a name in common. Both programs can see
the value of the variable and set i t even t.ho uqh t.hey are
running in different virtual machines (in eMS) or different
TSO address spaces (in MVS). Such a variable is called a
shared variable because access to it is shared between two
users.

Here's a possible session between two users. (Users in APL
are identified by a numbe r ;) The vertical axis represents
time:

user 1234 user 5678

-----------------+---------------- ­
I

5678 OSVO 'NAME' I
1 I

J 1234 DSVO 'NAME'
I 2
I

now NAME is a shared variable
I NAJ.JE+-5

I
NAME I

5 I
value set by 5678 is seen by 1234

NAME~NAME+1	 I

I

I NA]~JE

I 6
value set by 1234 is seen by 5678

I

- 9 ­

DSVO is the way one program identifies a name it wishes to
share with another user (it stands for Shared Variable
Offer). The response of 1 on the left says 1234 has offered
the name but his partner has not accepted it. But when 5678
says DS~'O ~ he gets a 2 and now the p r oq r ams have a name in
common . Thus!l sharing a variable is a cooperative venture
requiring the conscious intention of both partners. Now as
the session proceeds, any value set by one of the partners
is available to both partners.

A database server works on this same principle except that
the data passed is more meaningful. The server is like user
1234 and each of the users of the service is like 5678.

- 10 ­

4: A multi-user Application

Now it is time to fit these concepts into the implementation
of a multi-user server. Here is a block diagram of the
running application:

user 1

-----"~------
user 2 ____~ .,__-,.71 SERVER

--..1------·-.user 3

The lines of communication in this diagram are represented
in the program by shared variables.

The server would normally run as a disconnected VM server
machine or as a TSO batch session. Each user would normally
be logged on and interacting with the server, but they could
be batch programs as well.

Once sharing is established, one of the users puts a request
in his variable and the server receives the value and
processes it.

As a simple example ~ let the server be a teacher and each
user be a student. The students submit answers to homework
and test problems and the teacher / server records t.hem in a
database. A student sends a request like this:

A~'ASSIGN' 1 5 (2.71282 3.14159)

where A is a variable shared wi th the server. The teacher
has probably set up some full screen panel which prompts for
answers. The above expression would not normally be typed by
the student but rather would be a line in the small program
running the panels. The values given to the variable are,
of course~ entirely up to the application. The teacher has
decided~ when he designed the application~ that four pieces
of information will be passed to the server: the word
'ASSIGN' to say that this is a homework problem (as opposed
to a test), 1 meaning the first assignment~ 5 meaning
problem number 5, and finally the answer to the fifth
problem -- the two numbers 2.71828 and 3.14159.

When the server receives this value ~ it can save it in a
database where the teacher can later retrieve and grade it.

- 11 ­

If there is only one correct answer to the exercise, the
program could even check the answer and do the grading.

As a courtesy, the server makes a response to the student:

A-+-rOK'

meaning that the request was logged in t.he database. Thus
the student sends his answers and gets an acknowledgement
that it was received.

Later the teacher can use all the power of the SQL language
to make selections from the database; select all homework
for one student, select all of assignment 1 and order by
student, select all of problem 5 and compare how different
students did on the same problem, etc.

Another example might be a company whose personnel records
are on line in a database. A mane.ger could request to see
the salary for each person in his department by entering:

SHV-+-'SALARY' 'DEPT' 'J88'

the server would do a selection from the salary database and
set the resulting values
manager would then get the

into
data he

the
req

shared
uested:

variable. The

SMITH, JOHN
BROWN, JOE
WILLIAMS, BILL

22026
31000
19560

Since the application can tell who' 5 asking, it can deny
access to this same information if the person asking is not
a manager:

SHV~'SALARY' 'DEPT' 'J88'
SHV

NOT AUTHORIZED TO SEE DATA

As a last example, suppose that the server accepts reminder
requests. A user tells the server to send him a message at a
specified day and time:

REQ~'REMIND' 'BROWN' 'STLVM20'(1986 2 1) 'VACATION'

The server receives this value and stores it in a f REMIND'
database and sends back an a ckriow Ledqemen t; that the message
was received and understood:

REQf-'OK'

- 12 ­

On February 1, 1 986 , the server must wake up and send a
message to the user. This will be discussed in more detail
later.

Notice that each of these three examples used a different
shared variable: A, SHV, and REQ. This is possible because
the server which will be shown below does not care what name
is used. It will accept a share under any name.

The shared variable is used to pass requests and responses.
The bulk of the code for the application resides wi t.h the
server and cannot be seen by the user of the application. In
the examples in this paper, there is no code in the user's
workspace at all. In a real application, there would be code
primarily involved with prompting or menus for requests and
formatting of resul ts. There would not be any code in the
user's area for accessing the database.

4.1: The Multi-user Application Server

The heart of the multi-user application is the server. This
section describes a general and obvious logical scheme for
the flow of a server and then shows that the scheme maps
directly into a simple APL2 program.

Here is a general block d i aq r am of a multi-user server.
Fundamentally, i t wai ts for demands and then responds to
them.

There are three kinds of demands: new users, requests from
old users, and termination of users.

)

- 1 3 ­

_l

Does someone new Share variables ," want to use me with them

I

'"~

Has anyone given Process requests
'",me a request?

I

... ., 'J~

Is anyone finished Retract variables"­
Iwith me?

_-----..~--.-'----.--~ _.... _, ... _, __ ~_.~. ~'_.-_.~ __._____--1

,~... Wf

Wait for something
to happen

Notice that each demand is phrased in the plural. Each time
a block on the left is visited, there could be zero or more
affirmative
process many

answers. Thu5~ each
independent requests.

block on the right may

This program can be realized in AP
where each line implements one row
program is organized as follows:

L2 by a
of the

four line prog
block diagram.

ram
The

- 14 ­

!
Share with each user
who wants to use me

1

process each request

1

Retract from each
user who is finished

1

wait for something
to happen

I

Notice that almost all of the looping structure has been
removed accept for the essential loop that repeats the
program when something happens. There are now no tests such
as "Does someone ... ", "Has anyone •.• tf , and "Is anyone

ft These are all replaced wi th array logic of the form
ttGet list of ... It followed by "share each", "process e ach n ,

and "retract each". The program becomes very simple and
straight-forward.

Here	 is the APL2 function that implements this server:

VSERVER1 INTERVAL
[1]	 RUN: SHARE··DSVQt 0 A share if anyone is ready
[2] SETS04-(OSVS··VARS)E:C:O 1 0 1 A isolate requests
[3] PROCESS"SETS/VARS A process requests
[4J RETRACP··(1=OSVO··VARS)/VARS A retract those that are done
[5]	 ~RUN OSVE DSVE~INTERVAL A wait for something to happen

V

and the function is called as follows:

SERVER1 1E6

Lines [2J and [3J could have been written on one line given
wider paper and except for this, SERVER1 has one line for
each block on the left in the diagram.

Line [1] shares variables with any new users. DSVQ (Share
Query) returns the account numbers of anyone who has offered
a variable to the server which has not yet been accepted.
It calls the SHARE function for each new offer. Line [2]
checks for requests from existing users. DSVS is Shared
Variable state and an answer of 0 1 0 1 is the state

- 15 ­

reported for a variable which has been set by the partner
but not yet used by the server. Line [3J calls PROCESS for
each request. Line [4J checks for users who are finished
and calls RETRACT to terminate sharing. Since the server is
sharing the variable, if DSVO returns a 1 it c an only mean
that the user went away. Line [5] sets a timer for 1E6
seconds (DSVE~1E6) which will terminate after 1E6 seconds or
when someone does something to a shared variable (OSVE). On
termination of the the wait~ the main loop is started again
(--+RUN) •

Notice that each of the checks could produce multiple
responses: several new shares, several requests, several
terminations. This is the classic use of the "each"
operato~ -- apply a proqram +0 ~ ~p~ of datA when the numb~r

of i terns in the set is not predictable. The routines are
written to operate on only one thing at a time. "Each" takes
care of applying these routines one at a time to each piece
of data. Thus the iterative application of the programs is
accomplished without a loop.

It is possible to write a
no loop at all by using a
apply the server function
Leave off the ~RUN and
this:

server function with
REPEAT operator to
over and over again.
call the server like

SERVER1 REPEAT 1E6

See Appendix 1 for the details of the REPEAT
operator and a discussion of how operators
serve as structured programming constructs.

This server function represents structured programming at
its best. Several sub-functions are called and in APL2 they
are separate entities. That means that this server, once
written, can be treated like a primitive and applied in
other situations to become the core of very different
applications. Just wri te a different PROCESS function for
each application.

The next section shows the details of a PROCESS function
which can be used to implement many multi-user applications
at once. This is useful if you have many low activi ty
applications and do not wish to tie up many VM server
machines or TSO batch sessions. The SHARE and RETRACT
functions are not discussed in the paper but are listed in
appendix 1.

- 16 ­

4.2: The PROCESS Function

The function PROCESS is given the name of a shared variable~

and its purpose is to process the one request represented by
the value of that variable. If a single application were
being implemented, PROCESS would be the main program of the
application and would honor the request and send back a
response.

When you want to write a new multi-user application, you can
copy SERVER and the functions i t calls and wri te a new
PROCESS function. The new PROCESS function is, again,
wri tten to process one request from one user. The common
code makes it work for many requests and many users.

Each small application runs in i ts own server machine or
batch partition. If you have many small applications, i t
quickly becomes impractical to run each of them
independently. If each application is relatively low
activi ty, it may be better to wri te one PROCESS function
that can run more than one application. Here is one way to
write a general PROCESS function:

VPROCESS V;ARG;RES
[1J ARG~!V A get value of shared variable
[2J RES~~+ARG A execute requested application
[3J ~V9'~RES1 A send response back to user

V

This function assumes that the first i tern in the value of
the variable V is the name of the application to be run.
Therefore the user selects which of many possible
applications he wants by making the name of the application
the first item in the vector he sends.

This PROCESS function makes heavy use of the "execute"
function. This can make the program hard to follow because
what gets evaluated is in character strings and not written
as part of the program. Here's an analysis of what actually
gets evaluated in a specific case: Let's suppose that the
following request is made:

REQ~'REMIND' (1986 21) 'VACATION'

PROCESS would be called with the name of the shared variable
t REQ ' and so V would have that character string as its
value.

V
REQ

Thus in line [1J ARG~1V, if we substitute for V its value,
this line become s [1] ARG+-.l t REQ'; and since "execute" just

- 17 ­

removes the quotes (loosely speaking), this becomes [1J
ARG~REQ. Therefore~ line [1J gets the value from the shared
variable and puts it into the variable ARC. The application
can then find the value in a predictable name no matter what
name the user used.

Here's what the rest of the program would look like after
similar analysis:

[1J ARG~REQ A get value of shared variable
[2] RES~RE~lIND A execute requested application
[3] SHV~RES A send response back to user

[1J gets the value that the user gave to the shared
variable. [2J calls the REMIND program which uses the name
ARG to get the other parameters of the application. In [3J~

the resul t returned by REMIND is sent back to the user as
his response.

This is a simple minded PROCESS function. A more practical
one would do some error checking. For example ~ i t would
check that the application name was a legal one.

Let APPL be the list of applications supported

APPL~'REMIND' 'SALARY' 'ASSIGN' 'TEST'

then the following expression will check that the requested
application is one that is supported:

ARG[1]€APPL

Here's what the improved process function looks like:

VPROCESS1 V;ARG;RES
[1J ARG~~V A get value of shared variable
[2] ~(ARG[1J€APPL)/OK A branch if legal application
[3] RES~'ILLEGAL APPLICATION' A set message for user
[4J ~DONE A go send response to user
[5J OK:RES~~tARG A execute requested application
[6J DONE:~V,'~RES' A send response back to user

v

A responsible PROCESS function will also protect itself
against any failures in the applications it runs. A simple
way to do this is to use a controlled execution which will
not t.e rtru.na t e if an error occurs. DEC is like "execute". It
evaluates its character right argument and returns a return
code and and error code along wi th the resul t. If the
executed expression had an error, the return code is zero.
If the expression is just an ordinary evaluation ~ as i t
should be for our PROCESS function, the return code is one.

- 18 ­

Here is a PROCESS function with complete error trapping:

~PROCESS2 V;ARG;RES;RC;ET
[1J ARG~~V A get value of shared variable
[2J ~(ARG[1J€APPL)/OK A branch if legal application
[3J RES~'ILLEGAL APPLICATION' A set message for user
[4J 4DONE A go send response to user
[5J OK:(RC ET RES)~OECtARG A execute requested application
[6J ~(1=RC)/DONE A go send result of successful call
[7J RES~tERROR IN APPLICATION' A set message for user
[8J DONE:~V,'~RES' A send response back to user

v

Thus, by adding a little more mechanism (the function is
still only eight lines long), a general PROCESS function is
developed which is safe from errors made by the user and by
the implementer of the application.

Now to add a new application, you only need add the name of
the application to the list of legal applications and write
a function with that name.

A more professional function could send more error
information back to the user or perhaps log the information
in a file. You can write more code to do whatever you want,
but the style has been established.

- 19 ­

5: Adding a REMIND application

Up to now, the server has only responded to external
demands. A REMIND facility would require the server to wake
up when it was time to send out a reminder. This is
accomplished by using a modified server function:

VSERVER2 INTERVAL;WAIT
[1 J RUN:WAIT~INTERVAL A set maximum waiting time
[2J SHARE" DSVQ t 0 A share if anyone is ready
[3] SETS+-(OSVS"VARS)E:cO 1 0 1 A isolate requests
[4J PROCESS"SETS/VARS A process requests
[5J RETRACT" (1 =DSVO" VARS) / VARS A retract those finished
[6J DSt'E~DOREMIND WAIT A send any REMIND messages
[7] ~RUN DSVE A wait for next event

'V

[1J sets the variable WAIT to the longest time. [6J
processes any reminders past due and returns the earliest
time to the next reminder. [7] wai ts for the time interval
set in OSVE to elapse. Now the application will wake up at
that time (or sooner if anyone makes some other request
first). The functions that implement DOREMIND are shown in
Appendix 1.

- 20 ­

6: Adding a Maintenence application

since the APL server is just a program and is running in
real time, i t is possible for i t to apply maintenance to
itself to fix problems or enhance function -- even add a new
application to itself.

There are two ways to do this. First, the server could wake
up periodically and check for the existence of a file of
updates. If the file exists, the server could run an UPDATE
program to read the file and establish the new functions and
variables in the workspace. This could potentially involve
spooled files and could be a complicated procedure.

The second way is to merely have an application (perhaps
again called UPDATE) which gets as its ARCs the transfer
forms of objects to be added or updated. Of course ~ only a
small subset of users would be authorized to update the
functions in the server.

Using one of these schemes means that the server need never
be made unavailable for the purpose of doing maintenance. If
you want 't o add a new application, just send the updated
APPL variable and the new definitions to the server.
Everyone can then immediately begin using the new
application. If you want to send a new version of an
existing function, just send it. The next time the function
is needed the new version will be called. (This will not
work for the S,ERVER function itself because it never stops
running.)

- 21 ­

7: Checking Relational data

For a given column of a relational table~ there is a certain
set of legal potential values. For example, a column of
department names may contain one of a set of legal
department names. The set of legal potential values is
called the dOlnain of the column. When a value is to be
inserted into a column, several classes of domain checking
may be done:

- class 1 - data type - numeric or character

- class 2 - data length - the number of values

- class 3 - data range - the set of legal values

In general, the database products take care of type and
length considerations and the application must take care of
data range.

7.1: Checking expressions

This section will show how the database products enforce
type and length and show a general scheme for an application
to enforce ranges.

Here is the WHO table presented before:

WHO A display the table

EJ1PLOYEE NAME ID SALARY DEPT

DOE, JOHN 314159 25000 1175

SMITH, JOHN 271828 22026 Ja8

SHAKESPEARE, WILLIAM 1 4 250 Q25

The database products enforce formats on columns. The
DESCRIBE SQL operation is used to fetch the following format
description:

FORM

NAME ID SALARY DEPT

V 32 I I C 3

FORM is a 2 by 4 matrix where the first row gives the titles
of each column and the second row gives tIle f o rma t of each
column. This Ln f o rma t i.on can be extracted from the database
for any table or view desired. It tells you what checking

- 22 ­

the database will allow in each column. Thus, column 1 is
variable length character wi th a maximum length of 32.
Columns 2 and 3 are integer. Column 4 is fixed length
character of length three.

The following four variables represent four rows that are
candidates for new rows in the WHO table:

3270 , BEAUCOUP , 1 J8 8 ' NEW1+- 'MORTON,J'

NEW2~'LATTERMANN,D' 5150.95 31000 'HSC'

NEW3~'POLGAR,Et 2741 10 'OWN'

48500 :J88 1

When you attempt to put a new row into a relational table
(An INSERT SQL operation) the database checks the proposed
data against the formats and either rejects improper data or
converts it to the correct form.

In the four examples, the database will reject NEW1 because
'BEAUCOUP' is not a proper integer. The other three will be
accepted because the data type and lengths are correct.

The checking done by the database may not be as strict as
your application requires. For example, given the ID number
5150.95, as in the second example, the database will
truncate and use 5150 as the integer. But the fractional
part is indicative that someone entered bad data (maybe it
should be a salary). Nothing in the database checking will
prevent a negative salary or invalid department ID from
being accepted by the database. If you want this kind of
data rejected, your program must reject it.

General and complete error checking can be achieved by
associating with each column an expression which validates a
proposed value for that column. The expressions may be saved
as a third row of the DESCRIBE matrix.

Here is the DESCRIBE
expressions where X is
particular column:

table
the

for WHO
proposed

with
new

the
value

checking
for the

FORM
NAME ID
V 32 I
1 (X=LX)A(X>O)

SALARY
I
(X=LX)A(X>O)

DEPT
C 3
(cX)£DEPTS

Each checking expression is defined so that it returns a 1
if the proposed data for the column is valid and 0
otherwise. The designer of the table and the application

- 23 ­

can decide how extensive this check will be. In this
example, it is assumed that any value for NAME is correct so
the checking expression is 1 <which, of course, evaluates to
1) . The database will catch errors for this column (like
name too long or non-characters). The ID and SAL ..4RY columns
must be positive (X>O) and integer (X=LX). If either numeric
column is given character values ~ the checking expressions
will fail and generate an error. Finally, the expression to
check for a legal department assumes that the DEPTS variable
has previously been defined containing all the legal
department names.

DEPTS~'J88t 'R42' 'M75 t tQ25' 'HSC'

These are, of course, only sample expressions. The
may be as extensive or special purpose as desired.
require integers in a certain range ~ you merely
function that checks the range:

checking
If you

wri te a

[1J
VZ+-RANGE N

Z+-(N~UPPER)A(N~LOWER)A(IN)

This gives a 1 if N is within limits and an integer and a 0
otherwise. The checking expression that would use this
function would look like this:

RANGE X

7.2: Evaluation of checking expressions

Given the checking expressions and the proposed values for a
new row, application of an expression to i ts corresponding
value will return ei ther a 0 or a 1. If all applications
return 1, the row is acceptable and may be INSERTED into the
database.

Here's a general function (OK) which, given a checking
expression as left argument and a value as right argument ~

will apply the expression to the value

VZ+-EXP OK X;R;E
[1] (R E Z)+-OEC EXP A apply the expression
[2J 2+-(0 Z)[1+1=RJ A answer is result or zero
[3J DES (1=tE)/E A propagate resource errors

\J

- 24 ­

Line [1J executes the expression. Recall that DEC is like
"execute" accept that it returns a return code ~ error code ~

and result. Here each of the three arrays is given a name. A
1 is expected as the return code (meaning ordinary
expression with a result) and line [2J returns the computed
resul t if the return code is 1 and returns 0 otherwise
meaning that the data is unacceptable. Line [3J makes sure
that an error caused by lack of some system resource is not
interpreted as bad data. Notice that the right argument of
the function is X which is the correct name for the checking
expression.

The third row of FORM (FORM[3;]) contains the four checking
expressions for a row of WHO. To check the data in NEW1 you
could enter the four expressions:

FORM[3;1] OK 'MORTON~J'

1
FORM[3;2J OK 3270

1
FORM[3;3] OK 'BEAUCOUP'

0
FORM[3;2J OK 'Ja8'

1

But there are four checking expressions and four values to
be checked so the "each" operator may be used to apply
between corresponding checking expressions and values:

NEW1~tMORTON,J' 3270 'BEAUCOUP' 'J88'

FORltJ[3 ;] OK" NEW1
1 1 a 1

This operation may be pictured like this:

1'1' OK 'MORTON~J'
1

I'(X=LX)A(X>O)' OK 3270 I

1

'(X=LX)A(X>O)' OK 'BEAUCOup'l

o

I'(CX)€DEPTS' OK 'J88 t

1

- 25 ­

In this example, NAME, ID, and DEPT were OK but SALARY was
not. Because SALARY was character data, the expression
(X=LX)A(X>O) got a DOMAIN ERROR which was trapped by DEC
which returned a return code of zero (meaning error).
Therefore, OK returned a zero for that item.

If you only want a single answer saying "yes" or "no" for
the whole row, apply the "and" function between the four
values with the "reduction" operator:

A / FORM[3 ; J OK" NEr,;1
o

AI will return 1 only if every item of its argument is a 1.
NEW1, as previously discussed, would be rejected by the
database as well because the error is a class 1 error. This
is not true of NEW2.

NEW2~'LATTERMANN,D' 5150.95 31000 'HSC'

FOR~1[3 ;] OK" NEW2
1 0 1 1

A/FORM[3;] OK" NEW2
o

This time the database would allow the row and truncate the
user ID to an integer. The application, however, rejects it
because only integers will be accepted.

NEW3~'POLGAR,E' 2741 10 'OWN'

FORM[3 ;] OK-- NEW3
1 1 1 0

A/FORM[3;] OK" NEW3
o

Here there are no bad data types and no conversions that go
wrong 50 the database would surely accept the data. The
application still rejects it this time because the DEPT is
not one of the valid departments.

NEW4~tWINTON~S' 8775 48500 'J8B'

FORM[3;J OK" NEW4
1 1 1 1

/\ / FORM[3 ;] OK·· NEW4
1

Finally, here's someone who's got all the data correct and
this data is acceptable to the database and to the
application.

Thus, by using character data as representations of checking
expressions and the "each" operator to apply them in

- 26 ­

parallel to sets of values, the application has a trivial,
yet completely general, way to apply any desired degree of
domain checking to relational data before it gets into the
tables.

- 27 ­

8: Conclusion

This paper has shown the design and implementation of a
mul tiple user server which may be used as the core of a
multiple user application. The program can be used as is or
modified to suit a particular need.

Using these concepts, the APL2 application writer who has
authorization to use a database, may distribute an
application which makes use of the database without
requiring that each user also have database authorization.
The application can easily provide any level of authori ty
or range checking on users and data. His application is
safe in that users never have access to the code - - it's
never in their virtual machine or address space.

The resul t is the abili ty to build new applications or add
function to existing applications with little investment of
time and effort.

- 28 ­

9: Appendix 1: Related defined functions

9.1: A Main function for the server

The function MAIN defines the global variables that the rest
of the functions in the server uses then starts the server.

iJ ns i n
[1J MYNODE~'STLVM20' A define node where server runs

[2J RLIST~O 4p" A empty REMIND list

[3] OFFNO+-1 A initial offer number
[4J T~3 10 DNA '6FV' A access file writing function
[5J APPL~c'REMIND' A for now one application
[6J SERVER2 60x60 A wait for one hour

V

MYNODE is used to determine if a REMIND message should be
sent to a user as a message or a file. RLIST is the initial
REMIND list. In a real implementation, the REMIND list would
need to be a file so reminders are not lost over restarts of
the system. ~FV is a file reading and writing primitive
accessed via the external name facility (DNA). APPL is the
list of supported applications. For the example~ only REMIND
is implemented. To add another application~ make APPL a two
item (or longer) vector containing the new application name
then wri te a niladic defined function wi th that name. The
arguments to the application will be found in the global
variable ARC.

9.2: RETRACT and SHARE

The SHARE function is called for each account number
returned by the DSVQ in the SERVER function. Thus the
argument is a single account number.

V SHARE PROC;HISNAMES
[1J A share all variables offered by user PROC
[2J PROC DOSliARE··c[2] OSVQ PROe

v

DSVQ gets the list of names offered to me by user PRoe and
calls DOSHARE for each of them.

- 29 ­

Therefore the argument to DOSHARE is a single name.

V PROC DOSHARE HISNAME;T A share one name
[1J HISNAME~HISNAME~t t A remove extraneous blanks
[2 J J4YNAldE-+- ttl' , ,OFFN'O A construct a un i.que name
[3J T~PROC OSVO MYNAME,' t,HISNAME A accept the share
[4J T~O 0 1 1 OSVC MYNAME A set access control
[5J OFFNO~OFFNO+1 A update offer sequence number

'V

This server application will accept any name that the user
wishes to offer. A unique name is constructed (on lines [2J
and [3J) of the form Q51 where Q is a unique character that
this application only uses in the names of shared variables
and 51 means that tllis 15 the 51st offer accepted. Thus even
if several users offer the same name, the server will always
have a unique name.

The function VARS returns, as a vector of vectors, the list
of all names that begin with the letter t~' and therefore
the names of all shared variables.

[1J
V Z~VARS

Z~c[2J

v
'~t

A
DNL

return
2

the names of all shared variables

The RETRACT function erases all shared variables. Since
this is called only when the partner has retracted on his
side t it will effectively terminate all sharing.

'V RETRACT VAR A erase shared variable
[1]	 VAR~OEX VAR

'V

9.3: REMIND

The previous functions presented are general and will run on
any APL2 system. The functions in the REMIND facili ty are
designed to run with APL2 Release 2 in eMS and would need to
be modified to run in TSO.

The value given to the shared variable should be the word
remind, USERID, NODEID, a DTS style timestamp, and a
character vector message (see the text for an example).

The REJ..1IND facility is composed of two main functions.

REMIND gets control when someone sends a request to be

- 30 ­

reminded at a given time. DOREMIND gets control when it is
time to send the reminder.

Here the REMIND function saves the information about the
message in a nested array in the workspace. The array is
ordered in time so that the first row will be the first
message to be sent. A real application would save the data
on a file or in a relational table.

V Z~REMIND R A save a remind request

[1J A R is userid nodeid timestamp message

[2J (3~R)~CODETIME 3~R A change time to minutes

[3J RLIST~RLIST~[OIOJR A add request to queue

[4J RLIST~RLIST[~RLIST[;3J;J A put closest on top

[5J WAIT~WAITLRLIST[1;3J A get time to next event

[7J Z~tOKt A acknowledge receipt

v

DOREMIND checks for messages which are due to be sent ~ and
calls SENDMESSAGE for each of them. These messages are then
removed from the list.

V Z~DOREMIND TIME;CURRENT;READY;MASK;T
[1J A send message to anyone whose time has come
[2J CURRENT~CODETIME OTS A find current time
[3J MASK~€CURRENT~RLIST[;3J A locate messages ready
[4J READY~MASKfRLIST A select ready messages
[5] SENDJ..JESSAGE" c [2 JREAD Y A send ready messages
[6J RLIST~(~MASK)fRLIST A delete messages just sent
[7J ~(O=tpRLIST)/O Z~TIME A return if no reminders
[8J Z~TIMEL(RLIST[1;3J-CURRENT)x60

~

SENDMESSAGE tries to send a message to a signed on user. If
this fails, then a reader file is sent instead.

V SENDMESSAGE UM;USERID;NODEID;MESSAGE;T
[1] A send MESSAGE to USERID at NODEID
[2J (USERID NODEID T MESSAGE)~UM

[3J ~(NODEID=MYNODE)/REMOTE

[4J T~TOHOST 'TELL ' USERID t AT t NODEID ' , MESSAGE
[5J ~(T=O)/O A exit if message was sent\
[6J A

[7] A user is not signed on
[8J A write a file and send it to him
[9J REMOTE:T~WRITEONE MESSAGE A write one record file
[10J T~TOHOST 'SENDFILE ARB MESSAGE A ' USERID t AT t NODEID

v

For simplicity~ all timestamps are kept as a simple integer.

- 31 ­

v Z~CODETIME T A build a compact timestamp

[1J z~o 12 31 24 60~(100ItT),1.5tT

'V

WRITEONE writes the character vector M to a one record file
named ARB MESSAGE. This file is then sent to a user not
currently signed on. The function ~FV is an external
function defined by entering 3 10 DNA '~FV' and is a
function that will take a whole array and wri te i t as a
file.

v Z+-WRITEONE M A write a one record file
[1] Z+-M ~FV 'ARB lrfESSAGE A 1

V

TOHOST sends a command to the operating system.

V Z~TOHOST R;AP100 A send command R to eMS
[1] AP100~t(EBCD'

[2J Z~100 oSVO 'AP100'
[3J AP100+-€R
[4J Z~AP100

v

9.4: REPEAT

V (F REPEAT) R
[1J A REPEAT FUNCTION F FOREVER
[2J L:F R A call the function
[3J ~L A loop back and call it again

V

This defined operator calls monadic function F wi th any
argument R. When F completes, it is called again. It is like
a structured programming construct DO FOREVER. Because this
is a defined operator, you can see that it contains a loop.
If it were a primitive operator, like "each", the loop would
be buried in its defini tion. Most structured pr oqr-ammi.nq
constructs are methods for phrasing loops.

- 32 ­

10: Appendix 2: Shared variable considerations for TSO

The global shared variable processor (GSVP) is an MVS
s ubsy s t em . Values of shared variables are passed between
users by means of shared memory which is allocated in the
Common Service Area (eSA).

Access to the GSVP is based on a user 1 5 account numbe r
(tDAI) This number is selected by the APL2 user when he
starts the APL2 session. To insure security, it is required
that an installation control access to the GSVP by providing
an exi t module whose name is specified in the ISECNM1E
parameter in the GSVP start up parameter file. This module
should be used to grant or deny access to the GSVP services.
This module is invoked once at the start of the session. A
second exi t module whose name is specified in the GSECNAME
parameter
every time

in
a

the GSVP
user signs

start
on to

up
the

parameter
GSVP.

file is invoked

Shared memory
intended for

is
other

secure
users.

and one user cannot see values

See APL2 Installation and customization under TSO
(SH20-9222) for more information (3).

- 33 ­

11: Appendix 3: Shared variable considerations for eMS

The global shared variable processor (GSVP) runs as a eMS
service machine. Values of shared variables are passed
between users in writable shared segments (DeSS).
Synchronization signals are passed via Virtual Machine
Communication Facility (VMCF).

Access to the GSVP is based on a user 1 5 account number
(tDAI) • This number is selected by the APL2 user when he
starts the APL2 session. It is recommend that an
installation control access to the GSVP by providing an exit
to be invoked by the service machine in the form of a eMS
command named AP2SVPEX. This command may be used to grant or
deny access to the SVP services for this session. If access
is granted, the ness is made available. In addi tion, the
exit may provide or alter the account number to be used for
this session. This will also provide the number reported in
DAI.

Even if the GSVP chooses to deny access to the ness~ it can
still respond with the account number to be used. Thus, even
if you do not intend to use global shared variables, you
could use the GSVP to enforce user numbers. In this case no
ness need even be defined.

Note that ~ in eMS, once the ness is available, a user has
free access to any part of the shared memory. If one set of
users will be cooperating among themselves, you may want to
provide a ness only for them. Then other users sharing with
each other through another ness cannot see this one. Any
numbe r of ness Ismay be defined at the same address wi th
different names. This provides security at the maximum level
provided by eMS -- 8 character passwords.

See APL2 Installation and Customization under eMS
(SH20-9221) for more information (4).

11.1: GSVP failures

The GSCP is easy to install and under normal conditions does
not require any special attention. Occasionally~ a problem
in installation or in the exits can cause the GSVP to fail.
This section discusses some common causes for these
failures.

Two kinds of failures in the GSVP can happen:

- 34 ­

failure trapped successfully by eMS leaving eMS
active.
In this case the service machine will enter VM READ
and be subject to force off after a fixed period of
time (normally 30 minutes).

- failure that causes eMS to fail
In this case the service machine will enter CP READ
and be forced off.

Except for these failures the service machine should always
be running.

The GSVP service machine only runs when a new user tries to
sign on or to respond to an operator command. If there is no
installation exi t, then almost no code is executed and a
failure is unlikely. If there is an installation exi t then
a failure in this exi t could cause either of the above two
failures.

If you have such a problem, it is recommended that you spool
the console of the service machine. You may also want to set
CP TRACE on for external interrupts and program checks (CP
TRACE EXT PROG RUN). After th~ service machine has issued
"AP2CSVP START "issue the following commands to
establish the base configuration:

Q CMSLEVEL
NUCXMAP ALL
AP2CSVP QUERY

Looking at the console log should help you discover the
source of the failure.

If you get the message "SHARED PAGE ALTERED" or a protection
exception, it may be because of incorrect installation. Make
sure that in building the ness that PROTECT=OFF is coded on
the NAMESYS MACRO. This is not the normal default.

Don't let the GSVP server machine get forced off by any
automatic monitoring schemes in use.

Be sure the following SETs are in affect:

SET AUTOREAD OFF

SET RUN ON

- 35 ­

1

12: Appendix 4: Some Shared Variable usage hints

The use of shared variables between sessions assumes that
the global shared variable is available. A program can check
that the GSVP is running by issuing the following:

3 10 DNA 'SVI'

SVI 0
AP2SVP

DNA is used to associate the name SVI with an external
routine that returns information about shared variable. A
response of 1 means that the name has been associated. The
function SVI wi th argument 0 is a request to return the ID
of the GSVP. If it returns a non-empty character vector,
then the GSVP is active and sharing is allowed. If the
result is empty, then an application may choose to wait for
a while (ODL 5x60) and then check again. This can be the
case if the GSVP and applications are brought up
automatically with an IPL. It is possible that the
application will be ready to run before the GSVP is ready. A
short wai t is probably enough to ensure that the GSVP is
ready.

APL2 uses account numbers to identify users. The
installation can enforce the assignment of account numbers
to user ids (see Appendices 2 and 3). An application can
determine the logon id of a user given his APL2 account
number as follows:

SVI 33586
BROWN

Thus, given the account number as reported by DSVQ, the
application can determine the system logon ID. This is
useful in applications like REJ,lIND where the logon ID is
needed to send a message to a user.

- 36 ­

13: Acknowledgements

The original SERVER function was written by Mike Wheatley in
preparation for an IBM Internal class in APL2.
Modifications of the programs were implemented by David
McClanahan as part of a working multi-user application in
use by APL development.

- 37 ­

14: References

(1)	 Brown, J. A., Crowder, H. P., "APL2: Exploi ting DB2 and
SQL/DS", IBM Santa Teresa Technical Report TR 03.267,
July 1985.

(2)	 APL2 Programming: Using structured Query Language (SQL),
IBM Corp., 1984, SH20-9217

(3)	 APL2 Installation and Customization under TSO, IBM
Corp., 1984, SH20-9222

(4)	 APL2 Installation and Customization under eMS, IBM
Corp., 1984, SH20-9221

The following references are general references for APL2.
(5) APL2 General Information, IBM Corp., 1984, GH20-9214
(6) An Introduction to APL2, IBM Corp., 1984, SH20-9229

- 38 ­

