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OPERATORS AND FUNCTIONS 

Kenneth E. Iverson 
APL Design Group
 

Research Division
 
Yorktown Heights
 

Abstract 

This paper treats the syntax of ope~ators in APL, 
presents definitions of a number of new operators 
and functions, and provides examples of their use. 

This paper presents some of the operators and 
functions which I have found useful in treatments of topics 
in mathematics and in data processing. Readers are assumed 
to be familiar with APL as defined in Reference [1J. I am 
indebted to a number of my colleagues for useful discussions 
and suggestions, particularly to A.D. Falkoff and D.L. Orth. 
I am also indebted to Michael Halpern for discussions 
leading to the formulation of the axis operator. 

To allow functions to be defined as conveniently as 
variables we will permit the use of the assignment arrow + 
as follows: a name followed by + followed by an expression 
which produces a function, assigns the name to the function. 
Thus F++.x and G++, and H+G are valid expressions. 

Operators may take numeric, character, and even 
operator, arguments as well as functions. For example, the 
slash (/) applied to a dyadic function (as in +/) produces 
the monadic reduction function, and applied to a Boolean 
vector (as in VI) produces the monadic selection function 
called compression. Numeric operator arguments introduce 
the possibility of two juxtaposed vector constants in a 
valid expression. The ambiguity inherent in such 
juxtaposition must be resolved by the use of parentheses. 

Zero-origin indexing will be used throughout this 
paper. 

1. SYNTAX AND ORDER OF EXECUTION 

A function produced by an operator is called a derived 
function. Defined and derived functions behave like 
primitive functions in that they may serve as arguments to 
operators and may be divalent. Although derived functions 
may be divalent, the operators themselves are not. For 
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example, reduction (/) and scan (\) are monadic and the dot 
(in inner and outer product) is dyadic. The jot (0) as used 
in the outer product (o.x) produces, in effect, a special 
"monadic case ll of a dyadic operator. It will be used 
extensively in this manner in the definition of new 
operators. 

Since a monadic function applies to the argument to 
its right, and a monadic operator applies to the argument to 
its left, operators and functions behave in a syntactic 
sense--a5 mirror images. This behavior will be carried 
through in the rules laid down for the order of execution. 

The order of execution of functions in an 
unparenthesized expression is governed by fr single rule: 
the right argument of any function (monadic or dyadic) is 
the result of the entire expression to the right of it. An 
operator (monadic or dyadic) applies in a similar manner to 
the left except that its left argument is the result of the 
longest possible operator sequence on its left. An operator 
sequence is a portion of an expression consisting of a 
non-operator followed by a sequence consisting of monadic 
operators or of dyadic operators each followed by one 
non-operator. The non-operators may themselves result from 
parenthesized expressions. Finally, operators enjoy 
precedence over functions in the sequence of execution, and 
obey parentheses in the usual manner. 

Cornposi te symbols formed from the dieresis ( .. ) and the 
overbar (-) will be reserved exclusively for operators, but 
operator symbols will not be limited to this class. The 
symbols _ and - denote infinity and negative infinity, 
respectively. 

2. POWER AND IDENTITY OPERATORS 

The power operator, denoted by;, applies to a monadic 
function left argument F and an integer right argument K to 
produce the Kth p~wer of F in the following sense: 
F*K+~F F*K-1, and F*1++F. In particular, F*O is the 
identity function and F*-l is the inverse of F. Moreover,
F*_ denotes the limit of F, that is, the limiting function 
F*N for N large. Similarly, F;- denotes the limic of the 
inverse of F. 

The expression p;o yields the identity function of a 
dyadic function P, defined to be the function G with the 
following properties: A G 1+~A, and AGO yields the 
identity element of F. Thus x is the identity function of + 
and * is the identity function of x, properties which 
account for the utility of expressions of the form B+.xL and 
Bx.*L in applying the functions + and x over subsets of the 
elements of a vector B specified by the Boolean array L. 
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For example, if L+(Kp2)T12*K+pB, then B+.xL and Bx.*L 
give sums and products over all subsets of B. Moreover, 
BL.(L*o)£ and Bf .(r*o)L give minima and maxima over all 
subsets of B. Finally, xv.(v*o)L and XA.(A*o)L clearly 
apply the functions v and A over all subsets of X, whereas 
the equivalent expressions XV.AL and XA.~L are not so 
obviously applications of v and A over subsets. 

3. COMMUTATOR 

The monadic operator 
.. 
~ commutes the sense of the 

arguments of a dyadic function P, that is, X F ~E~Y F X. 
For example, the secant slope (-IF X+S,O)~S may be written 
as Sf~-/F X+S,O, and (+/V*2)*.5 may be written as .5*~+/V*2. 
Moreover, the familiar transposition identity 
A+.xB+~~(~B)+.xQA may be written (using the dual operator of 
Section 8) without arguments (i.e. as a relation between 
certain derived functions) as: +.x+++.xV~~, or equivalently, 
+.x~+++.x~~. 

4. SCALAR OPERATORS AND THE IDENTITY FUNCTION 

For each of the scalar dyadic primitive functions, we 
define an associated dyadic operator denoted by the symbol 
for the function overstruck with the overbar. The 
definition will be illustrated by the definition for +: 

(monadic) P+C Y+~(F Y) + (G Y) 

(dyadic) X P+G Y++(X F Y) + (X G Y) 

The sum over the values produced by the function F 
applied to its entire domain will be denoted by F+o. A 
similar definition will apply to each of the scalar 
operators. For example, if P is a proposition, then pVo is 
1 if and only if there exists an element of its domain for 
which p is true, and the number of elements in the set 
defined by P is given by P+o. 

If F is divalent, the expression F+o applies to the 
monadic function denoted by Pi the dyadic form must be 
specified explicitly in the manner presented in the 
following section. 

One of the arguments of a scalar operator may be 
numeric, in which case the following definitions (shown for 
the specific scalar function; and the specific numeric 
quantity 2) apply: 
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certain of the scalar operators are very useful in the 
treatment of sets. If we consider the proposition (i.e., a 
function whose result is 0 or 1) P which defines a set 
(i.e., P X is 1 if X belongs to the set and 0 if it does 
not), then P~Q defines the intersection of the sets defined 
by P and by Q. Similarly, pVQ gives the union, P>Q the 
ordinary difference, and piQ the symmetric difference. 

Use of the form pVo will be illustrated by a proof of 
the fact that the number of elements in the union of sets P 
and Q (that is, PVQ+o) is equal to the sum of 'the numbers in 
P and Q, less the number in the intersection PAQ. For 
boolean arguments A and B, the expression AVE is equivalent 
to CA+B)-AAB. Consequently, pVQ++(P+Q)=(PAQ), and: 

pvQ+o
 
(P+Q)=CPAQ)+o
 
(P+Q+o)-(PAQ+o)
 
(P+o)+(Q+o)-(PAQ+o)
 

Further examples of the use of scalar operators will 
be found in the treatment of the derivative operator in 
Section 11. ( , 

5. DOMAIN AND VALENCE OPERATORS 

If F is a function, then FXo is a proposition of the 
same valence, and with an unrestricted domain, which defines 
the domain of F in the following sense: 

(monadic)	 F6 0 X is 1 if X is in the domain of F. 

(dyadic)	 x FKo Y is 1 if the pair X, Y is in the 
domain of F. 

If F is a function and P is a proposition of the same 
valence, then F~P is a function equivalent to F but further 
restricted to the domain defined by P. Formally: 

The valence of a function F may be delimited by one of 
the expressions F61 or F~2, the value of the right argument 
determining the valence of the resulting derived function. 
Thus, as noted in Section 4, the sum over the dyadic domain 
of the bivalent function F would be denoted by F62+ o , 

whereas the sum over the monadic domain could be denoted by 
either F~1+o or F+o. l 
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6. UNIFORM FUNCTIONS 

A number of familiar monadic functions can be 
characterized by the rank of the argument or arguments for 
which they are defined, and by the ranks of the results they 
produce. For example: 

Expression Rank
 
Monadic:
 

( J-3 a 0 
+/1 2 3 4 5 0 1 
1 5 1 0 

4> 1 2 3 4 5 1 1 
Determinant 0 2 
Matrix inverse (ffi ) 2 2 

Dyadic: 
3+4 0 0 0 
2 2 2 T 6 1 1 0 
3 ¢ 1 2 3 4 5 1 a 1 
2 1 4 EH M 1 1 2 

In general, functions are defined to have an explicit 
rank, although degenerate cases of lower rank are sometimes 
permitted, as in reduction or reversal of a scalar, or as in 
ffi 1 2 3. We will therefore speak of the rank of a function 
as a vector whose first element specifies the result rank 
and whose remaining element or elements specify the argument 
rank or ranks. There remain some open questions concerning 
the specification of the ranks of certain functions (such as 
ravel) which appear to be of unrestricted rank. 

Arguments and results of fixed ranks may still vary in 
shape, and we now define a uniform function as one whose 
result shape depends only upon the argument shape. For 
example, reversal, reduction, and scan are uniform 
functions, but IN is not. The importance of uniform 
functions is that their definition can be extended to 
arguments of higher rank in a systematic way, the argument 
being treated as an array of Ifsubarrays" (along final axes 
which define the units of the function of appropriate rank), 
and the result is treated as the same array of subarrays of 
individual results. Non-uniform functions can be extended 
in a similar manner by employing the scalar rep~esentation 

function discussed in Section 10. 

A uniform monadic function of rank RR,AR (result rank 
and argument rank) applies to an array X of rank AR or 
greater, to produce an overall result of rank (-AR)}pX),RR. 
The result can be.perceived as follows: F is applied to 
each of the rank AR "units" of an "array of rank (-AR)-}pX" 
whose elements are these units, the RR coordinates of the 
individual results being placed last to produce the overall 
result of rank «-AR)}pX),RR. 
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7. NUCLEAR AXIS OPERATORS 

The nuax operator (denoted by ~)applies to a function 
left argument and a variable right argument to specify the 
axes which define the nuclei to which the function is to 
apply. For example, if pA is 3 4 3 5 5 and F is the 
determinant function (of rank 0 2), then F A yields a result 
of shape 3 4 3, and F~O 2 A yields a result of shape 4 5 5. 
The coax operator 0 is also provided; its argument specifies 
the axes complementary to the nuclear axes. For example, 
Fo 1 3 4 A is equivalent to F~ 0 2 A, whereas Po 4 3 1 A has 
shape 5 5 4. 

It must be emphasized that if a function F has a 
result rank greater than zero, the corresponding axes occur 
as the final axes in the overall result, and that the axial 
operators do not specify the allocation of these flresult" 
axes in the overall result. In this they differ from the 
use of brackets to specify axes, as in +\[3JA and ~[3J A, 
since the 3 in these cases specifies not only that the units 
be along axis 3, but also that the vector results are to lie 
along the same axis. For example, if pA is 2 3 4 5, then 
p+\[2]A is also 2 3 4 5, but the result of plus scan over 
axis 2 as specified by the nuax operator has shape 2 3 5 4. 

The fact that the result axes occur last in the 
overall result is often convenient. For example, tiC ,~I) A 
sums over the axes I of A. 

For a dyadic left argument P, the right argument of 
the axis operator ~ has the form I,_,J, where I and J are 
vectors (of any length, including zero) specifying the units 
of the left and right arguments respectively (and where_ 
represents infinity). For example, ~~1 _ 1 3 applies ~ to 
vector left arguments along axis 1 and to matrix right 
arguments along axes 1 and 3. Similarly, K¢~ _3 A rotates 
the vectors along axis 3 of A by amounts specified by the 
scalars of K. 

If the right argument of ~ requires the general form 
I,_,J, then any right argument K which does not include an 
infinity applies to specify axes of both the left and the 
right argument of the resulting derived function and is 
therefore equivalent to K,_,K. The argument _,K·· is, of 
course, equivalent to ",_,K and specifies scalar units in 
the left argument, and K,_ specifies scalar units on the 
right. 

8. COMPOSITION AND DUALITY 

The dual operator, denoted by ~, is a slight extension 
of the notion of dual functions implicit in deMorgan's law 
(VV~+~A and ~~~++=), the extension being to include a 
monadic left argument, as in Lv-x~~rx. Composition, denoted 

(
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by , is the familiar notion of the composition of two 
monadic functions (pee G X++F G X) extended to the two cases 
of one dyadic argument, as well as to the case of character 
arguments which define a function in terms of the expression 
represented by one of the arguments. 

Duality and simple composition. Composition and the dual 
operator applied to a divalent left argument and a monadic 
(or divalent) right argument yield parallel definitions of 
divalent derived functions as follows: 

..< Composition: F G Y+-+F G y.. 
X F G Y+~(G X) F (G y) 

Dual: PVC Y+-+(G*- 1 ) F (G Y) 
X F~G Y+-+(G;- 1 ) (G X) F (G y) 

It should be noted that the extension of the dual to 
include the monadic definition makes the identities r9-++L 
and LV-+-+f hold for both the monadic case (floor and 
ceiling) and for the dyadic case (minimum and maximum). 
Moreover, for the dyadic case the exponential function 
yields the identities xV*+++ and +V~~+x, the latter of 
which provides the basis for the use of natural logarithms 
in multiplication, just as the identity +V(10"*)+-rx forms 
the basis for the use of base ten logarithms. 

In the dyadic case of composition above, the first 
function F is dyadic and the second function G is monadic. 
This is the case that prevails when the functions have these 
valencies or are divalent. If either F is specifically 
monadic or G is specifically dyadic, we obtain another 
important case defined as follows: 

For divalent functions this form can be obtained by fixing 
the valence of one or both of the functions with the valence 
operator defined in Section 5. Frequently the valence 
becomes fixed by composition with a variable (as defined in 
the following subsection) I as in the expression 2·· * . 

The corresponding case for the dual operator (F9DG) 
would lead to the definition F* 1 F X DG Y. It would 
therefore be vacuous (being equivalent to DC) and is 
consequently excluded. 

The definition of the composition p"C given above must 
be understood as referring to a single argument of rank 
appropriate to the function G. For example, if F is ~ and G 
is tE, and pA is -344, then the units of G are 4 by 
matrices, each of which is inverted and transposed to 
produce an overall result of shape 3 4 4. Thus (assuming 
that ffi is of rank 2 2, and extends to higher rank arrays in 
the normal manner) ~··mA differs from the expression ~ tE A, 

4 



-8­

since the latter would invert each of the three 4 by 4 
matrices of A to produce a result of shape 3 4 4 which would 
then be transposed to produce a result of shape 4 4 3. 

Similar remarks apply to the dual operator, and in 
general to all operators. In other words, a derived 
function applies as an indivisible whole to each of the 
nuclei of its argument. The dual operator is defined 
formally in terms of composition as follows: 
PVC++G*-1-- cr'o>, 

Composition with one variable argument. The composition 
operator applrea-to-a-function F and a variable V produces a 
result of valence one less than the valence of F. Thus if F 
is dyadic, the result is monadic; if F is\ monadic, the 
result is a constant. For example: 

* -- .5 X++X*. 5 (*-·.5 is monadic) 

(A constant value) 

2 --* X+-+2*X (2--* is monadic) 

2 * .5++2*.5 (A constant value) 

This form of composition is particularly useful in providing 
the monadic cases (both left and right) of dyadic functions, 
as illustrated above for the square root (*--.5) and the 
powers of two (2·- *) • 

The valence of the derived function is determined by 
context, and this in turn determines the valence of the 
argument function as one greater. For example, in the 
expression * -- _5 (4 9), the function *··.5 is monadic, * is 
dyadic, and the result is the constant 2 3; in the 
expression * .5, the function *-·.5 is niladic (a constant) I 

* is monadic, and the result is the exponential *.5. 

Composition is useful in a wide variety of ways. For 
example, with one variable argument it provides the monadic 
cases (both left and right) of dyadic functions, as 
illustrated above for the powers of two (2·-*) and the square 
root (*--.5). An example for the case of two functions is 
treated in Section 11. 

The dual operator is also widely useful. For example, 
<\ applied to a logical vector yields the same vector with 
all the l's following the first replaced by zeros, whereas 
<\~¢ yields the vector with all the l'S preceding the last 
replaced by zeros. - Similarly, if F is any function which 
applies to columns of a matrix argument, then FV~ applies 
similarly to rows. A further important use of the dual is 
discussed in Section 10. 

( (
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Composition with two variables (characters). This use of 
composition is modeled on the direct or a w definition form 
defined in Elementary Analysis [2J. It incorporates the 
same abilities to define functions with any number of global 
(non-explicit) arguments, to prevent side-effects (by 
automatically localizing all variables specified within the 
defining expression), and to make conditional and recursive 
definitions. The definition is generalized to allow the 
specification of the names of explicit arguments in a second 
argument (with a jot (0) for second argument signifying the 

(	 use of a and w), and to allow the specification of divalent 
functions. Thus, F~'BtX'-'Br and F~rwtX'··o are equivalent, 
and if X+5, then F 20 is 4, and 10 'BtX'··'X B' 20 is 2. 

Recursive definition requires the use of the fun~tion 
name in its definition; this name is identified by placing 
it first in the right argument, separated from the other 
name or names by a colon. For example, if 
C+'XxF X-1:X=O:l', then C··'F:X' defines the factorial 
function on non-negative integers. The name F is local and 
is not associated in any way with the derived function. For 
the a w case C" o , the name of the function is denoted by ~, 
as in C+'wxg w-1:w=O:1 t • 

The symbols a and w may be used like any other names 
except that they must not remain as global names in the 
resulting function. For example, one may use C··ta w t in 
lieu of c':», and 'X+a.'··'X at or 'w+a'··'wa' for the 
equivalent of 'a+w'·· o. 

This form of composition is very convenient for 
defining and applying functions in computations and for use 
in theoretical work. For example: 

POL+ t (w 0 • * 1 P ex ) + • x a ' •• 0 [ 8 • 1 ]
 
1 3 3 1 POL 2 4
 

27 125
 
1 3 3 1 l(w o . * t p a ) + . x a ' - o 2 4
 

27 125
 
SPOL+'C POL w' 0 

C+-l 4 6 4 1 
SPOL 2 4 

16 625 
'ct+ f w ' ·· 0 / 1 2 1 2 (Continued fraction) 

1.375
 
'a+ f w ' ·· o \ l 2 1 2 (Convergents)
 

1 1.5 1.333 1.375 

F~++'wFa'	 0 

'(a POL X)xw POL X' 0+-+ 

'(+f(-tpa)¢ao.xw,1+0xa)POL X' 0 

Divalent functions are defined by catenating the 
arguments for the monadic and dyadic cases, inserting a pair 
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of colons to separate the two parts. More precisely, if ( (
CA uNA and CB··NB define (not necessarily respectively) 
monadic and dyadic functions, then (CA,'::', CB ) .. NA , I : : ' , NB 
defines the corresponding divalent function. Analogously, 
(CA, , : : ' , CB)·· 0 defines the divalent function corresponding 
to CA'· 0 and CB·· 0 For example:• 

P+G+-+' (Fw)+Gw:: (aFw)+a.Gw'··o 

The identity element (or elements) of a function may 
be specified by appending to the name (in the right argument 
of .. ) the symbol 1. followed by the appropriate value. For 
example, 'X+fyr·· 'X Yt_', and 'X+y,·· 'X1.0 Y10 I. 

9. REDUCTION AND SCAN 

The reduction operator is defined as follows: P/A is 
an application of the dyadic function F to the set of 
arguments obtained by indexing A on its last axis. For 
example, if pA is 4 4 5, then +.x/A applies the matrix 
product over the five four-by-four matrices of A to produce 
a four-by-four result. Similarly, if pA is 4 4 4 5, then 
+.x/A yields a result of shape 7p4, and +.x~1 21A yields a 
result of shape 3p4, and Q.(+.x~l 2)/A yields a result of 
shape 7p4. 

The reduction PIA is defined analogously (the indexing 
applying to the leading axis), as are the scans \ and ~. 

The axis operators ~ and 0 apply to the reduction 
operator (lor f) to produce an operator which applies its 
argument function to the arguments obtained by indexing the 
specified axis. For example, +.x(/~O)A+++.xfA. 

It should be noted that F(\~K) and F\[K] are not, in 
general, equivalent, since the result vectors of the former 
lie along the last axis of the result rather than along axis 
K. Similarly, F(/~K) and PI[K] are not equivalent in 
general, although they are for a scalar function F. 

10. SCALAR REPRESENTATION 

The enclose function (denoted by <) produces a scalar 
representation of its argument in the sense that the result 
is of rank zero, and that there exists an inverse function 
(called disclose, and denoted by» such that A++><A for all 
A. Any result producible by an expression which does not 
employ the enclose· function is called a simple array, or is 
said to be simple. 

Selection and reshaping functions apply without change l_ 
to non-simple arrays. However, non-simple arrays are 
outside the domain of all other functions except for 



enclose, disclose, and equality (together with those 
functions such as ~ and E wh i.ch are defined in terms of 
equality) . 

The equality function is extended to non-simple scalar 
arguments as follows: 

1 •	 ( <A ) ~A for all A 

2.	 If A equals B (in rank, shape, and all elements) , 
then «A)=«B) yields 1 

The enclose function applies to all axes of its 
argument (i.e., to the entire argument) to produce a single 
scalar result, but it can also be used in cqnjunction with 
the axial operators to apply to units determined by the 
spesified axes. For example, if A~2 34 5 pl!5, then 
M~<o1 3 A is a 2 by 4 matrix such that for scalar indices I 
and J, the element M[I;J] is a non-simple scalar whose 
disclose (>M[I;J]) is a 3 by 5 simple matrix. 

The disclose function is scalar in the sense that it 
applies to each element of its argument, the new axes 
disclosed becoming the final axes of the result. For 
example, using the matrix M of the preceding paragraph, >M 
is a simple array of shape 2 4 3 5, and A/,(>M)=O 2 1 3 ~ A. 

( The axial operators can also be applied to the 
disclose function to determine the axes to be disclosed. 
For example, >~1 M produces a result of shape 2 4 5 whose 
elements are enclosed 3-element vectors. 

The disclose function applied to a simple array A 
produces a result identical to A. Thus «A)=<>A is a test 
for whether A is simple. 

The expression FV> produces a derived function which 
applies the function F to its argument in an lIitem-wise ll 
fashion, by disclosing each element of the argument, 
applying F, and enclosing the result to produce the 
corresponding element of the overall result. Thus, if 
R~F9>A and Q is a particular scalar element of A, then the 
corresponding element of R is <F>Q. In particular, pH 
equals pA. 

11.	 DERIVATIVE OPERATOR 

Derivatives apply only to monadic functions, but to 
functions of any rank R, the derivative F~ yielding a 
monadic function 'of rank (+ / R ) ,R • Thus: 
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Rank of F Rank of FI1 
( (F­

(Scalar function) 0 0 0 0 (Scalar 
function) 

(Vector function 1 0 1 1 
of a scalar) 

(Scalar function 0 1 1 1 (gradient) 
of a vector) 

(Vector function V) 1 1 2 1 (Matrix of 
partials) 

( V6 ) 2 1 3 1 ( V fl ~ ) 

The shape of FI1 is determined as follows: if U is a 
unit of P, then p F~ U is ( p F U) .su . 

The derivative operator together with composition and 
scalar operators can be used to express the familiar 
differentiation rules as follows: 

P+Gh.+-+Fli+(G6) 

12. DIFFERENCE OPERATOR 

The derivative operator ~ discussed in the preceding 
section actually yields a divalent result, 
being the difference function defined as follo

the dyadic 
ws: 

form 

S F~ X+~«F X+S)-F X)+S 

This function 
expression 0 F6 

is also 
X equals 

completed at 
the derivative 

zero 
F~ x. 

so that the 

13. DYADIC REDUCTION AND SCAN 

If F is a function, then PI and F\ produce divalent 
derived functions whose dyadic forms are defined here. If 
R+K FIX and (K~O)AK~pX, then pH is 1+(pX)-K, and R[I] is 
FjKtI+X. Moreov~r, (-K)FIX is the dual of K FjX with 
respect to reversal, in the following sense: 

l 
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(-K)F/X+~¢K PI ¢X 

Thus 2 -IX and 2 -IX yield backward and forward differences 
of X, respectively. More generally, 2 FIX and -2 FIX yield 
"pairwise applications of F. For example, -2 fiT yieldsII 

the ratios of terms in a series, and A/2=/V determines 
whether all elements of V are equal. 

The new coordinate of the result produced by the 
dyadic form precedes those of the monadic form. Thus if S 
is the shape of FIX, then the shape of K FI X has the form 
N,S. Moreover, (pX) FIX is equivalent to FIX except that 
the shape of the result has a leading element of 1. 

1 

The dyadic form of F\ is defined similarly, differing 
only in that it includes the reductions over all leading 
prefixes so as to yield a result of the same length as the 
argument X. More precisely, if R+K F\X, then pR is pX and: 

R [ I ] ++F / ( ( I K ) LI +1 ) t ( 0 r I - ( IK ) - 1 ) i- X 

For example, -2 -\X yields the forward differences of X but 
includes the leading element of X so that +\ is a true 
inverse, that is, 

+\-2-\X+-+X 
( 

2-\+\X++X 

14.	 THE VARIANT OPERATOR 

Certain functions have variants, in the sense that 
there exist other closely related functions. For example, 
the sine of an argument in radians and the sine of an 
argument in degrees are variants. Moreover, in current APL 
each of the functions dependent on index origin has two 
variants (chosen by DIG) and each relation has many variants 
(specified by OCT). 

We now introduce a dyadic variant operator, denoted by 
and called mark, whose right argument specifies the 

particular varia~ Functions are treated in seven classes 
as follows: 

1 )	 Dyadic circular functions with left arguments 
1,2,3, 1 2, 3 • 

O:D	 w~-+owfDfO.5 

Thus the right argument D gives the number of 
divisions in a right angle and, in particular, 
0:90 is the circular function for argruments in 
degrees, and 0:100 is for arguments in grads. 
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2)	 Relations 

P:K	 uses comparison tolerance K. For example, 
Xs:1E-6 Y. 

3)	 Indexing (monadic and dyadic 1 and subscripting) 

l:K and [:K (as in M[:l;I;JJ) specify origin K. 

4)	 Random (monadic and dyadic ?) 

The right argument is a function which specifies 
the distribution or a character which selects one 
of several standard distribution as follows: 

Distribution 

R Rectangular 
G Gauss 
P Poisson 

This variant also takes an integer right argument 
to determine the origin of the population, as in 
?:O, or ?:1, or ?:'G':l. 

5) Residue arithmetic (dyadic +,-,x,*, and monadic -) 

x F:K Y+-+K!X F Y 

In particular, since oIX++x, we have F:O++F 

6)	 The functions take and expand insert at certain 
positions a flfill element" (blank for characters, 
and zero for numeric); the variant operator allows 
the specification of this element, as in t:1 and 
L\='*', and L\:_. 

7)	 The conformability requirements for catenation can 
be relaxed by "padding" either argument along the 
axes complementary to the catenation axis, using 
overtakes and some specified fill element. This 
is provided by the variant operator, the right 
argument being the fill element, or a jot 
indicating the default fill elements blank or 
zero. For example, M,:O N and M,7'*'~o N. 

For any function F dominated by the variant operator, 
the function F alone is treated as a default case, the 
default value being given by a system variable. For the 
relations, this ~ystem variable is OCT, and therefore 
~+--+~:DCT. 

The default for the functions 1,?, and [ is determined 
by DID, and for the remaining cases we introduce new system 
variables as follows: 

l 



l 
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Circular Functions: DCF 0.5
 
Residue Arithmetic: ORA a
 
Type of Distribution: DDT 'Rt
 
Fill Element: OPE a
 

The rightmost column shows the values in a clear workspace. 

15. BOOLEAN OPERATOR 

The boolean operator * is an ~xample of a useful 
monadic function having a numeric argument. Applied to an 
integer IEt16 it produces the "Ith boolean function ll 

according to the following definition: 

I++2L,O lo.(I~)O 1 

Thus 1~+~A and 7~+~v, and in general, ~··(I~)~+(15-I)~. The 
use of a vector I produces a vector function. 

16. SET FUNCTIONS 

We define seven set	 functions as follows: 

Nub	 uW «lpW)=WtW)/W+,W 

Ordered Nub	 nW W[~W+uWJ 

Distribution	 tjW (uW)o.=W 

Ordered AW (nW)o.=W 
Distribution 

Union VuW (,V)"W 

Intersection	 VnW « ,V)E,W)/,V 

Difference	 V~W (,...,(, V)E ,W)/, V 

Inclusion	 VSW A/( ,V)EW 
V~W W~V 

Strict Inclusion	 VeW ( V~W) A""'V~W 

V=>W WcV 

Practical and theoretical application of the 
distribution functions will now be illustrated. If V is a 
vector with repeated elements and F is a scalar function, 
then every distinct element of F V is contained in FuV, and 
these elements can be IIdistributed" to the positions their 
arguments occupied in V by the expression (FuV)+.x~V. Thus: 
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F V+-+(FuV)+.xtjV [16.1J 

If the evaluation of F is time-consuming, and if puV is 
considerably less than pV, this identity can provide an 
efficient algorithm for the evaluation of F V. Similar 
remarks apply to the ordered nub and the ordered 
distribution matrix. 

The product of the sum of two vectors A and B (that 
is, x/A+B) can be "expanded" to an equivalent sum of 2*pB 
terms, in which a typical term is a product of pB factors, 
one chosen from each position of either A or B. Formally, 
each term is of the form (Ax.*~L)x(Bx.*L), where L is a 
logical vector of shape pB. All terms are therefore 
obtained by replacing L by the matrix T+(Kp2)T12*K+pB of all 
such logical vectors. We therefore have the identity: 

For a scalar X, the expression xjX-R yields the value 
of a polynomial with roots R evaluated at X. By 
substituting X for A and -R for B in the foregoing identity, 
and using the fact that (for a scalar X) the expressions 
Xx.*L and X*+/L are identical, we can derive a sequence of 
equivalent expressions which finally yield a relation 
between the coefficients and the roots of a polynomial: 

x/X-R 
(Xx.*~T)+.x(Bx.+T+(Kp2)T12*K+pB+-R) 

(X*S++f~T)+.x(Bx.*T) 

«X*nS)+.xAS)+.x(Bx.*T) 16.1 
(X*nS)+.x«AS)+.x(Bx.*T)) +.x is assoc 
(X*11+pB)+.X(AS)+.x(Bx.*T)) nS++ll+pB 
«AS)+.x(Bx.*T») POL X POL in 8.1 

The left argument of POL above is therefore the 
coefficient vector of the polynomial whose roots are R. 
Consequently, a function CFR, which yields the coefficients 
when applied to the vector of roots, may be defined as 
follows: 

CFR+ , ( A + f I'J T ) + • x ( - w ) x • * T+ ( Kp 2 ) T 1 2 *K+p w ' •• 0 

The definition of CFR is, of course, a definition of 
Newton's symmetric functions. 

As a final example of the use of the (ordered) 
distribution function, we state the shape of the transpose 
I~A as follows: 

( (
 

l 
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17. INDEXING 

The range of indexing will now be extended to include 
negative numbers in a manner which makes it possible to 
refer to an index position by two different numbers, one 
relative to its position as counted forward, and one 
(non-positive) relative to its position as counted backward: 
an axis of length N may be indexed by any of the elements of 
(12 xN ) - N, the position indexed by I being I+NxI<O. Thus: 

N+4 
DIO+1 
0+ I + ( 1 2 x N ) - N 

3 2 - 1 0 1 2 3 4 
I+NxI<O 

1 2 3 4 1 2 3 4 
OIO+O
 
D+-I+-( 1 2 x N) - N
 

-
4 3 2 - 1 0 1 2 3 

I+NxI<O 
0 1 2 3 0 1 2 3 

For example, in a-origin, X[-1J+~X[-1+pXJ, and selects the 
last element of X. Similarly, in 1-origin, X[O] selects the 
last element. 

We also introduce a form of indexing called from, 
denoted by 0, and of rank O,1,RR, where R is the rank of the 
right argument. The basic definition is: 

IOA++( ,A)[~(pA)~~IJ 

The function 0 distributes over any scalar function; thus, 
IDA+B+-+(IOA)+(IOB). 

The right argument of the axis operator applied to 0 
is of the form I,_,J. For example: 

M+3 4P112 
M 

0 1 2 3 
4 5 6 7 
8 9 10 11 

2 2 0 M 
10 

2 O~_ 1 M 
2 6 10 

2 0 1 0;; 1 1"4 
2 4 9 

( 3 2 P'3 11 6 ) OM 
1 8 6 

The use of the indexing function will be illustrated 
in a proof of the useful identity I~J~A+~I[JJ~A. We first 
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state the definition of the transpose 
any vector index of J~A, then 

K'OJ~A+-rK[JJOA 

as follows: if K is 
( ( 

Then: 

KDI~J~A 

K[I]OJCQA 
(K[I])[J]OA 
K[I[JJJDA 
KOI[JJ~A 
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