
~c 7091 (#30399) 4/26/78
18 pages

Research Report

C?ERATORS A~D FUNCTIONS

Ke~neth E. Iverson
A?~ Design Group
Research Division
Yorktown Heights

}i

Research Ol\ll$.onW
·1:

l~::'¥~ San Jose Yorktown ZuriCh

•

RC 7 0 9 1 (#3 0 3 9 9) 4 / 2 6/7 8
18 pages

OPERATORS AND FUNCTIONS

Kenneth E. Iverson
APL Design Group
Research Division
Yorktown Heights

Abstract

This paper treats the syntax of operators in APL, presents
definitions of a number of new operators and functions, and
provides examples of their use.

((

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:
IBM Thomas J. Watson Research Center
Post Office Box 218
Yorktown Heights, New York 10598

l

(

,'

(

-j-

OPERATORS AND FUNCTIONS

Kenneth E. Iverson
APL Design Group

Research Division

Yorktown Heights

Abstract

This paper treats the syntax of ope~ators in APL,
presents definitions of a number of new operators
and functions, and provides examples of their use.

This paper presents some of the operators and
functions which I have found useful in treatments of topics
in mathematics and in data processing. Readers are assumed
to be familiar with APL as defined in Reference [1J. I am
indebted to a number of my colleagues for useful discussions
and suggestions, particularly to A.D. Falkoff and D.L. Orth.
I am also indebted to Michael Halpern for discussions
leading to the formulation of the axis operator.

To allow functions to be defined as conveniently as
variables we will permit the use of the assignment arrow +
as follows: a name followed by + followed by an expression
which produces a function, assigns the name to the function.
Thus F++.x and G++, and H+G are valid expressions.

Operators may take numeric, character, and even
operator, arguments as well as functions. For example, the
slash (/) applied to a dyadic function (as in +/) produces
the monadic reduction function, and applied to a Boolean
vector (as in VI) produces the monadic selection function
called compression. Numeric operator arguments introduce
the possibility of two juxtaposed vector constants in a
valid expression. The ambiguity inherent in such
juxtaposition must be resolved by the use of parentheses.

Zero-origin indexing will be used throughout this
paper.

1. SYNTAX AND ORDER OF EXECUTION

A function produced by an operator is called a derived
function. Defined and derived functions behave like
primitive functions in that they may serve as arguments to
operators and may be divalent. Although derived functions
may be divalent, the operators themselves are not. For

-2­

example, reduction (/) and scan (\) are monadic and the dot
(in inner and outer product) is dyadic. The jot (0) as used
in the outer product (o.x) produces, in effect, a special
"monadic case ll of a dyadic operator. It will be used
extensively in this manner in the definition of new
operators.

Since a monadic function applies to the argument to
its right, and a monadic operator applies to the argument to
its left, operators and functions behave in a syntactic
sense--a5 mirror images. This behavior will be carried
through in the rules laid down for the order of execution.

The order of execution of functions in an
unparenthesized expression is governed by fr single rule:
the right argument of any function (monadic or dyadic) is
the result of the entire expression to the right of it. An
operator (monadic or dyadic) applies in a similar manner to
the left except that its left argument is the result of the
longest possible operator sequence on its left. An operator
sequence is a portion of an expression consisting of a
non-operator followed by a sequence consisting of monadic
operators or of dyadic operators each followed by one
non-operator. The non-operators may themselves result from
parenthesized expressions. Finally, operators enjoy
precedence over functions in the sequence of execution, and
obey parentheses in the usual manner.

Cornposi te symbols formed from the dieresis (..) and the
overbar (-) will be reserved exclusively for operators, but
operator symbols will not be limited to this class. The
symbols _ and - denote infinity and negative infinity,
respectively.

2. POWER AND IDENTITY OPERATORS

The power operator, denoted by;, applies to a monadic
function left argument F and an integer right argument K to
produce the Kth p~wer of F in the following sense:
F*K+~F F*K-1, and F*1++F. In particular, F*O is the
identity function and F*-l is the inverse of F. Moreover,
F*_ denotes the limit of F, that is, the limiting function
F*N for N large. Similarly, F;- denotes the limic of the
inverse of F.

The expression p;o yields the identity function of a
dyadic function P, defined to be the function G with the
following properties: A G 1+~A, and AGO yields the
identity element of F. Thus x is the identity function of +
and * is the identity function of x, properties which
account for the utility of expressions of the form B+.xL and
Bx.*L in applying the functions + and x over subsets of the
elements of a vector B specified by the Boolean array L.

(

c__

l

-3­
/

For example, if L+(Kp2)T12*K+pB, then B+.xL and Bx.*L
give sums and products over all subsets of B. Moreover,
BL.(L*o)£ and Bf .(r*o)L give minima and maxima over all
subsets of B. Finally, xv.(v*o)L and XA.(A*o)L clearly
apply the functions v and A over all subsets of X, whereas
the equivalent expressions XV.AL and XA.~L are not so
obviously applications of v and A over subsets.

3. COMMUTATOR

The monadic operator
..
~ commutes the sense of the

arguments of a dyadic function P, that is, X F ~E~Y F X.
For example, the secant slope (-IF X+S,O)~S may be written
as Sf~-/F X+S,O, and (+/V*2)*.5 may be written as .5*~+/V*2.
Moreover, the familiar transposition identity
A+.xB+~~(~B)+.xQA may be written (using the dual operator of
Section 8) without arguments (i.e. as a relation between
certain derived functions) as: +.x+++.xV~~, or equivalently,
+.x~+++.x~~.

4. SCALAR OPERATORS AND THE IDENTITY FUNCTION

For each of the scalar dyadic primitive functions, we
define an associated dyadic operator denoted by the symbol
for the function overstruck with the overbar. The
definition will be illustrated by the definition for +:

(monadic) P+C Y+~(F Y) + (G Y)

(dyadic) X P+G Y++(X F Y) + (X G Y)

The sum over the values produced by the function F
applied to its entire domain will be denoted by F+o. A
similar definition will apply to each of the scalar
operators. For example, if P is a proposition, then pVo is
1 if and only if there exists an element of its domain for
which p is true, and the number of elements in the set
defined by P is given by P+o.

If F is divalent, the expression F+o applies to the
monadic function denoted by Pi the dyadic form must be
specified explicitly in the manner presented in the
following section.

One of the arguments of a scalar operator may be
numeric, in which case the following definitions (shown for
the specific scalar function; and the specific numeric
quantity 2) apply:

-4­

((

certain of the scalar operators are very useful in the
treatment of sets. If we consider the proposition (i.e., a
function whose result is 0 or 1) P which defines a set
(i.e., P X is 1 if X belongs to the set and 0 if it does
not), then P~Q defines the intersection of the sets defined
by P and by Q. Similarly, pVQ gives the union, P>Q the
ordinary difference, and piQ the symmetric difference.

Use of the form pVo will be illustrated by a proof of
the fact that the number of elements in the union of sets P
and Q (that is, PVQ+o) is equal to the sum of 'the numbers in
P and Q, less the number in the intersection PAQ. For
boolean arguments A and B, the expression AVE is equivalent
to CA+B)-AAB. Consequently, pVQ++(P+Q)=(PAQ), and:

pvQ+o

(P+Q)=CPAQ)+o

(P+Q+o)-(PAQ+o)

(P+o)+(Q+o)-(PAQ+o)

Further examples of the use of scalar operators will
be found in the treatment of the derivative operator in
Section 11. (,

5. DOMAIN AND VALENCE OPERATORS

If F is a function, then FXo is a proposition of the
same valence, and with an unrestricted domain, which defines
the domain of F in the following sense:

(monadic)	 F6 0 X is 1 if X is in the domain of F.

(dyadic)	 x FKo Y is 1 if the pair X, Y is in the
domain of F.

If F is a function and P is a proposition of the same
valence, then F~P is a function equivalent to F but further
restricted to the domain defined by P. Formally:

The valence of a function F may be delimited by one of
the expressions F61 or F~2, the value of the right argument
determining the valence of the resulting derived function.
Thus, as noted in Section 4, the sum over the dyadic domain
of the bivalent function F would be denoted by F62+ o ,

whereas the sum over the monadic domain could be denoted by
either F~1+o or F+o. l

-5­

6. UNIFORM FUNCTIONS

A number of familiar monadic functions can be
characterized by the rank of the argument or arguments for
which they are defined, and by the ranks of the results they
produce. For example:

Expression Rank

Monadic:

(J-3 a 0
+/1 2 3 4 5 0 1
1 5 1 0

4> 1 2 3 4 5 1 1
Determinant 0 2
Matrix inverse (ffi) 2 2

Dyadic:
3+4 0 0 0
2 2 2 T 6 1 1 0
3 ¢ 1 2 3 4 5 1 a 1
2 1 4 EH M 1 1 2

In general, functions are defined to have an explicit
rank, although degenerate cases of lower rank are sometimes
permitted, as in reduction or reversal of a scalar, or as in
ffi 1 2 3. We will therefore speak of the rank of a function
as a vector whose first element specifies the result rank
and whose remaining element or elements specify the argument
rank or ranks. There remain some open questions concerning
the specification of the ranks of certain functions (such as
ravel) which appear to be of unrestricted rank.

Arguments and results of fixed ranks may still vary in
shape, and we now define a uniform function as one whose
result shape depends only upon the argument shape. For
example, reversal, reduction, and scan are uniform
functions, but IN is not. The importance of uniform
functions is that their definition can be extended to
arguments of higher rank in a systematic way, the argument
being treated as an array of Ifsubarrays" (along final axes
which define the units of the function of appropriate rank),
and the result is treated as the same array of subarrays of
individual results. Non-uniform functions can be extended
in a similar manner by employing the scalar rep~esentation

function discussed in Section 10.

A uniform monadic function of rank RR,AR (result rank
and argument rank) applies to an array X of rank AR or
greater, to produce an overall result of rank (-AR)}pX),RR.
The result can be.perceived as follows: F is applied to
each of the rank AR "units" of an "array of rank (-AR)-}pX"
whose elements are these units, the RR coordinates of the
individual results being placed last to produce the overall
result of rank «-AR)}pX),RR.

-6­

7. NUCLEAR AXIS OPERATORS

The nuax operator (denoted by ~)applies to a function
left argument and a variable right argument to specify the
axes which define the nuclei to which the function is to
apply. For example, if pA is 3 4 3 5 5 and F is the
determinant function (of rank 0 2), then F A yields a result
of shape 3 4 3, and F~O 2 A yields a result of shape 4 5 5.
The coax operator 0 is also provided; its argument specifies
the axes complementary to the nuclear axes. For example,
Fo 1 3 4 A is equivalent to F~ 0 2 A, whereas Po 4 3 1 A has
shape 5 5 4.

It must be emphasized that if a function F has a
result rank greater than zero, the corresponding axes occur
as the final axes in the overall result, and that the axial
operators do not specify the allocation of these flresult"
axes in the overall result. In this they differ from the
use of brackets to specify axes, as in +\[3JA and ~[3J A,
since the 3 in these cases specifies not only that the units
be along axis 3, but also that the vector results are to lie
along the same axis. For example, if pA is 2 3 4 5, then
p+\[2]A is also 2 3 4 5, but the result of plus scan over
axis 2 as specified by the nuax operator has shape 2 3 5 4.

The fact that the result axes occur last in the
overall result is often convenient. For example, tiC ,~I) A
sums over the axes I of A.

For a dyadic left argument P, the right argument of
the axis operator ~ has the form I,_,J, where I and J are
vectors (of any length, including zero) specifying the units
of the left and right arguments respectively (and where_
represents infinity). For example, ~~1 _ 1 3 applies ~ to
vector left arguments along axis 1 and to matrix right
arguments along axes 1 and 3. Similarly, K¢~ _3 A rotates
the vectors along axis 3 of A by amounts specified by the
scalars of K.

If the right argument of ~ requires the general form
I,_,J, then any right argument K which does not include an
infinity applies to specify axes of both the left and the
right argument of the resulting derived function and is
therefore equivalent to K,_,K. The argument _,K·· is, of
course, equivalent to ",_,K and specifies scalar units in
the left argument, and K,_ specifies scalar units on the
right.

8. COMPOSITION AND DUALITY

The dual operator, denoted by ~, is a slight extension
of the notion of dual functions implicit in deMorgan's law
(VV~+~A and ~~~++=), the extension being to include a
monadic left argument, as in Lv-x~~rx. Composition, denoted

(

(

l

-7­

by , is the familiar notion of the composition of two
monadic functions (pee G X++F G X) extended to the two cases
of one dyadic argument, as well as to the case of character
arguments which define a function in terms of the expression
represented by one of the arguments.

Duality and simple composition. Composition and the dual
operator applied to a divalent left argument and a monadic
(or divalent) right argument yield parallel definitions of
divalent derived functions as follows:

..< Composition: F G Y+-+F G y..
X F G Y+~(G X) F (G y)

Dual: PVC Y+-+(G*- 1) F (G Y)
X F~G Y+-+(G;- 1) (G X) F (G y)

It should be noted that the extension of the dual to
include the monadic definition makes the identities r9-++L
and LV-+-+f hold for both the monadic case (floor and
ceiling) and for the dyadic case (minimum and maximum).
Moreover, for the dyadic case the exponential function
yields the identities xV*+++ and +V~~+x, the latter of
which provides the basis for the use of natural logarithms
in multiplication, just as the identity +V(10"*)+-rx forms
the basis for the use of base ten logarithms.

In the dyadic case of composition above, the first
function F is dyadic and the second function G is monadic.
This is the case that prevails when the functions have these
valencies or are divalent. If either F is specifically
monadic or G is specifically dyadic, we obtain another
important case defined as follows:

For divalent functions this form can be obtained by fixing
the valence of one or both of the functions with the valence
operator defined in Section 5. Frequently the valence
becomes fixed by composition with a variable (as defined in
the following subsection) I as in the expression 2·· * .

The corresponding case for the dual operator (F9DG)
would lead to the definition F* 1 F X DG Y. It would
therefore be vacuous (being equivalent to DC) and is
consequently excluded.

The definition of the composition p"C given above must
be understood as referring to a single argument of rank
appropriate to the function G. For example, if F is ~ and G
is tE, and pA is -344, then the units of G are 4 by
matrices, each of which is inverted and transposed to
produce an overall result of shape 3 4 4. Thus (assuming
that ffi is of rank 2 2, and extends to higher rank arrays in
the normal manner) ~··mA differs from the expression ~ tE A,

4

-8­

since the latter would invert each of the three 4 by 4
matrices of A to produce a result of shape 3 4 4 which would
then be transposed to produce a result of shape 4 4 3.

Similar remarks apply to the dual operator, and in
general to all operators. In other words, a derived
function applies as an indivisible whole to each of the
nuclei of its argument. The dual operator is defined
formally in terms of composition as follows:
PVC++G*-1-- cr'o>,

Composition with one variable argument. The composition
operator applrea-to-a-function F and a variable V produces a
result of valence one less than the valence of F. Thus if F
is dyadic, the result is monadic; if F is\ monadic, the
result is a constant. For example:

* -- .5 X++X*. 5 (*-·.5 is monadic)

(A constant value)

2 --* X+-+2*X (2--* is monadic)

2 * .5++2*.5 (A constant value)

This form of composition is particularly useful in providing
the monadic cases (both left and right) of dyadic functions,
as illustrated above for the square root (*--.5) and the
powers of two (2·- *) •

The valence of the derived function is determined by
context, and this in turn determines the valence of the
argument function as one greater. For example, in the
expression * -- _5 (4 9), the function *··.5 is monadic, * is
dyadic, and the result is the constant 2 3; in the
expression * .5, the function *-·.5 is niladic (a constant) I

* is monadic, and the result is the exponential *.5.

Composition is useful in a wide variety of ways. For
example, with one variable argument it provides the monadic
cases (both left and right) of dyadic functions, as
illustrated above for the powers of two (2·-*) and the square
root (*--.5). An example for the case of two functions is
treated in Section 11.

The dual operator is also widely useful. For example,
<\ applied to a logical vector yields the same vector with
all the l's following the first replaced by zeros, whereas
<\~¢ yields the vector with all the l'S preceding the last
replaced by zeros. - Similarly, if F is any function which
applies to columns of a matrix argument, then FV~ applies
similarly to rows. A further important use of the dual is
discussed in Section 10.

((

(
,

l

-9­

Composition with two variables (characters). This use of
composition is modeled on the direct or a w definition form
defined in Elementary Analysis [2J. It incorporates the
same abilities to define functions with any number of global
(non-explicit) arguments, to prevent side-effects (by
automatically localizing all variables specified within the
defining expression), and to make conditional and recursive
definitions. The definition is generalized to allow the
specification of the names of explicit arguments in a second
argument (with a jot (0) for second argument signifying the

(use of a and w), and to allow the specification of divalent
functions. Thus, F~'BtX'-'Br and F~rwtX'··o are equivalent,
and if X+5, then F 20 is 4, and 10 'BtX'··'X B' 20 is 2.

Recursive definition requires the use of the fun~tion
name in its definition; this name is identified by placing
it first in the right argument, separated from the other
name or names by a colon. For example, if
C+'XxF X-1:X=O:l', then C··'F:X' defines the factorial
function on non-negative integers. The name F is local and
is not associated in any way with the derived function. For
the a w case C" o , the name of the function is denoted by ~,
as in C+'wxg w-1:w=O:1 t •

The symbols a and w may be used like any other names
except that they must not remain as global names in the
resulting function. For example, one may use C··ta w t in
lieu of c':», and 'X+a.'··'X at or 'w+a'··'wa' for the
equivalent of 'a+w'·· o.

This form of composition is very convenient for
defining and applying functions in computations and for use
in theoretical work. For example:

POL+ t (w 0 • * 1 P ex) + • x a ' •• 0 [8 • 1]

1 3 3 1 POL 2 4

27 125

1 3 3 1 l(w o . * t p a) + . x a ' - o 2 4

27 125

SPOL+'C POL w' 0

C+-l 4 6 4 1
SPOL 2 4

16 625
'ct+ f w ' ·· 0 / 1 2 1 2 (Continued fraction)

1.375

'a+ f w ' ·· o \ l 2 1 2 (Convergents)

1 1.5 1.333 1.375

F~++'wFa'	 0

'(a POL X)xw POL X' 0+-+

'(+f(-tpa)¢ao.xw,1+0xa)POL X' 0

Divalent functions are defined by catenating the
arguments for the monadic and dyadic cases, inserting a pair

-10­

of colons to separate the two parts. More precisely, if ((
CA uNA and CB··NB define (not necessarily respectively)
monadic and dyadic functions, then (CA,'::', CB) .. NA , I : : ' , NB
defines the corresponding divalent function. Analogously,
(CA, , : : ' , CB)·· 0 defines the divalent function corresponding
to CA'· 0 and CB·· 0 For example:•

P+G+-+' (Fw)+Gw:: (aFw)+a.Gw'··o

The identity element (or elements) of a function may
be specified by appending to the name (in the right argument
of ..) the symbol 1. followed by the appropriate value. For
example, 'X+fyr·· 'X Yt_', and 'X+y,·· 'X1.0 Y10 I.

9. REDUCTION AND SCAN

The reduction operator is defined as follows: P/A is
an application of the dyadic function F to the set of
arguments obtained by indexing A on its last axis. For
example, if pA is 4 4 5, then +.x/A applies the matrix
product over the five four-by-four matrices of A to produce
a four-by-four result. Similarly, if pA is 4 4 4 5, then
+.x/A yields a result of shape 7p4, and +.x~1 21A yields a
result of shape 3p4, and Q.(+.x~l 2)/A yields a result of
shape 7p4.

The reduction PIA is defined analogously (the indexing
applying to the leading axis), as are the scans \ and ~.

The axis operators ~ and 0 apply to the reduction
operator (lor f) to produce an operator which applies its
argument function to the arguments obtained by indexing the
specified axis. For example, +.x(/~O)A+++.xfA.

It should be noted that F(\~K) and F\[K] are not, in
general, equivalent, since the result vectors of the former
lie along the last axis of the result rather than along axis
K. Similarly, F(/~K) and PI[K] are not equivalent in
general, although they are for a scalar function F.

10. SCALAR REPRESENTATION

The enclose function (denoted by <) produces a scalar
representation of its argument in the sense that the result
is of rank zero, and that there exists an inverse function
(called disclose, and denoted by» such that A++><A for all
A. Any result producible by an expression which does not
employ the enclose· function is called a simple array, or is
said to be simple.

Selection and reshaping functions apply without change l_
to non-simple arrays. However, non-simple arrays are
outside the domain of all other functions except for

enclose, disclose, and equality (together with those
functions such as ~ and E wh i.ch are defined in terms of
equality) .

The equality function is extended to non-simple scalar
arguments as follows:

1 •	 (<A) ~A for all A

2.	 If A equals B (in rank, shape, and all elements) ,
then «A)=«B) yields 1

The enclose function applies to all axes of its
argument (i.e., to the entire argument) to produce a single
scalar result, but it can also be used in cqnjunction with
the axial operators to apply to units determined by the
spesified axes. For example, if A~2 34 5 pl!5, then
M~<o1 3 A is a 2 by 4 matrix such that for scalar indices I
and J, the element M[I;J] is a non-simple scalar whose
disclose (>M[I;J]) is a 3 by 5 simple matrix.

The disclose function is scalar in the sense that it
applies to each element of its argument, the new axes
disclosed becoming the final axes of the result. For
example, using the matrix M of the preceding paragraph, >M
is a simple array of shape 2 4 3 5, and A/,(>M)=O 2 1 3 ~ A.

(The axial operators can also be applied to the
disclose function to determine the axes to be disclosed.
For example, >~1 M produces a result of shape 2 4 5 whose
elements are enclosed 3-element vectors.

The disclose function applied to a simple array A
produces a result identical to A. Thus «A)=<>A is a test
for whether A is simple.

The expression FV> produces a derived function which
applies the function F to its argument in an lIitem-wise ll
fashion, by disclosing each element of the argument,
applying F, and enclosing the result to produce the
corresponding element of the overall result. Thus, if
R~F9>A and Q is a particular scalar element of A, then the
corresponding element of R is <F>Q. In particular, pH
equals pA.

11.	 DERIVATIVE OPERATOR

Derivatives apply only to monadic functions, but to
functions of any rank R, the derivative F~ yielding a
monadic function 'of rank (+ / R) ,R • Thus:

-12­

Rank of F Rank of FI1
((F­

(Scalar function) 0 0 0 0 (Scalar
function)

(Vector function 1 0 1 1
of a scalar)

(Scalar function 0 1 1 1 (gradient)
of a vector)

(Vector function V) 1 1 2 1 (Matrix of
partials)

(V6) 2 1 3 1 (V fl ~)

The shape of FI1 is determined as follows: if U is a
unit of P, then p F~ U is (p F U) .su .

The derivative operator together with composition and
scalar operators can be used to express the familiar
differentiation rules as follows:

P+Gh.+-+Fli+(G6)

12. DIFFERENCE OPERATOR

The derivative operator ~ discussed in the preceding
section actually yields a divalent result,
being the difference function defined as follo

the dyadic
ws:

form

S F~ X+~«F X+S)-F X)+S

This function
expression 0 F6

is also
X equals

completed at
the derivative

zero
F~ x.

so that the

13. DYADIC REDUCTION AND SCAN

If F is a function, then PI and F\ produce divalent
derived functions whose dyadic forms are defined here. If
R+K FIX and (K~O)AK~pX, then pH is 1+(pX)-K, and R[I] is
FjKtI+X. Moreov~r, (-K)FIX is the dual of K FjX with
respect to reversal, in the following sense:

l

-13­

(-K)F/X+~¢K PI ¢X

Thus 2 -IX and 2 -IX yield backward and forward differences
of X, respectively. More generally, 2 FIX and -2 FIX yield
"pairwise applications of F. For example, -2 fiT yieldsII

the ratios of terms in a series, and A/2=/V determines
whether all elements of V are equal.

The new coordinate of the result produced by the
dyadic form precedes those of the monadic form. Thus if S
is the shape of FIX, then the shape of K FI X has the form
N,S. Moreover, (pX) FIX is equivalent to FIX except that
the shape of the result has a leading element of 1.

1

The dyadic form of F\ is defined similarly, differing
only in that it includes the reductions over all leading
prefixes so as to yield a result of the same length as the
argument X. More precisely, if R+K F\X, then pR is pX and:

R [I] ++F / ((I K) LI +1) t (0 r I - (IK) - 1) i- X

For example, -2 -\X yields the forward differences of X but
includes the leading element of X so that +\ is a true
inverse, that is,

+\-2-\X+-+X
(

2-\+\X++X

14.	 THE VARIANT OPERATOR

Certain functions have variants, in the sense that
there exist other closely related functions. For example,
the sine of an argument in radians and the sine of an
argument in degrees are variants. Moreover, in current APL
each of the functions dependent on index origin has two
variants (chosen by DIG) and each relation has many variants
(specified by OCT).

We now introduce a dyadic variant operator, denoted by
and called mark, whose right argument specifies the

particular varia~ Functions are treated in seven classes
as follows:

1)	 Dyadic circular functions with left arguments
1,2,3, 1 2, 3 •

O:D	 w~-+owfDfO.5

Thus the right argument D gives the number of
divisions in a right angle and, in particular,
0:90 is the circular function for argruments in
degrees, and 0:100 is for arguments in grads.

-14­

2)	 Relations

P:K	 uses comparison tolerance K. For example,
Xs:1E-6 Y.

3)	 Indexing (monadic and dyadic 1 and subscripting)

l:K and [:K (as in M[:l;I;JJ) specify origin K.

4)	 Random (monadic and dyadic ?)

The right argument is a function which specifies
the distribution or a character which selects one
of several standard distribution as follows:

Distribution

R Rectangular
G Gauss
P Poisson

This variant also takes an integer right argument
to determine the origin of the population, as in
?:O, or ?:1, or ?:'G':l.

5) Residue arithmetic (dyadic +,-,x,*, and monadic -)

x F:K Y+-+K!X F Y

In particular, since oIX++x, we have F:O++F

6)	 The functions take and expand insert at certain
positions a flfill element" (blank for characters,
and zero for numeric); the variant operator allows
the specification of this element, as in t:1 and
L\='*', and L\:_.

7)	 The conformability requirements for catenation can
be relaxed by "padding" either argument along the
axes complementary to the catenation axis, using
overtakes and some specified fill element. This
is provided by the variant operator, the right
argument being the fill element, or a jot
indicating the default fill elements blank or
zero. For example, M,:O N and M,7'*'~o N.

For any function F dominated by the variant operator,
the function F alone is treated as a default case, the
default value being given by a system variable. For the
relations, this ~ystem variable is OCT, and therefore
~+--+~:DCT.

The default for the functions 1,?, and [is determined
by DID, and for the remaining cases we introduce new system
variables as follows:

l

l

,'"

-j5~

Circular Functions: DCF 0.5

Residue Arithmetic: ORA a

Type of Distribution: DDT 'Rt

Fill Element: OPE a

The rightmost column shows the values in a clear workspace.

15. BOOLEAN OPERATOR

The boolean operator * is an ~xample of a useful
monadic function having a numeric argument. Applied to an
integer IEt16 it produces the "Ith boolean function ll

according to the following definition:

I++2L,O lo.(I~)O 1

Thus 1~+~A and 7~+~v, and in general, ~··(I~)~+(15-I)~. The
use of a vector I produces a vector function.

16. SET FUNCTIONS

We define seven set	 functions as follows:

Nub	 uW «lpW)=WtW)/W+,W

Ordered Nub	 nW W[~W+uWJ

Distribution	 tjW (uW)o.=W

Ordered AW (nW)o.=W
Distribution

Union VuW (,V)"W

Intersection	 VnW « ,V)E,W)/,V

Difference	 V~W (,...,(, V)E ,W)/, V

Inclusion	 VSW A/(,V)EW
V~W W~V

Strict Inclusion	 VeW (V~W) A""'V~W

V=>W WcV

Practical and theoretical application of the
distribution functions will now be illustrated. If V is a
vector with repeated elements and F is a scalar function,
then every distinct element of F V is contained in FuV, and
these elements can be IIdistributed" to the positions their
arguments occupied in V by the expression (FuV)+.x~V. Thus:

-16­

F V+-+(FuV)+.xtjV [16.1J

If the evaluation of F is time-consuming, and if puV is
considerably less than pV, this identity can provide an
efficient algorithm for the evaluation of F V. Similar
remarks apply to the ordered nub and the ordered
distribution matrix.

The product of the sum of two vectors A and B (that
is, x/A+B) can be "expanded" to an equivalent sum of 2*pB
terms, in which a typical term is a product of pB factors,
one chosen from each position of either A or B. Formally,
each term is of the form (Ax.*~L)x(Bx.*L), where L is a
logical vector of shape pB. All terms are therefore
obtained by replacing L by the matrix T+(Kp2)T12*K+pB of all
such logical vectors. We therefore have the identity:

For a scalar X, the expression xjX-R yields the value
of a polynomial with roots R evaluated at X. By
substituting X for A and -R for B in the foregoing identity,
and using the fact that (for a scalar X) the expressions
Xx.*L and X*+/L are identical, we can derive a sequence of
equivalent expressions which finally yield a relation
between the coefficients and the roots of a polynomial:

x/X-R
(Xx.*~T)+.x(Bx.+T+(Kp2)T12*K+pB+-R)

(X*S++f~T)+.x(Bx.*T)

«X*nS)+.xAS)+.x(Bx.*T) 16.1
(X*nS)+.x«AS)+.x(Bx.*T)) +.x is assoc
(X*11+pB)+.X(AS)+.x(Bx.*T)) nS++ll+pB
«AS)+.x(Bx.*T») POL X POL in 8.1

The left argument of POL above is therefore the
coefficient vector of the polynomial whose roots are R.
Consequently, a function CFR, which yields the coefficients
when applied to the vector of roots, may be defined as
follows:

CFR+ , (A + f I'J T) + • x (- w) x • * T+ (Kp 2) T 1 2 *K+p w ' •• 0

The definition of CFR is, of course, a definition of
Newton's symmetric functions.

As a final example of the use of the (ordered)
distribution function, we state the shape of the transpose
I~A as follows:

((

l

/

(

-17­

17. INDEXING

The range of indexing will now be extended to include
negative numbers in a manner which makes it possible to
refer to an index position by two different numbers, one
relative to its position as counted forward, and one
(non-positive) relative to its position as counted backward:
an axis of length N may be indexed by any of the elements of
(12 xN) - N, the position indexed by I being I+NxI<O. Thus:

N+4
DIO+1
0+ I + (1 2 x N) - N

3 2 - 1 0 1 2 3 4
I+NxI<O

1 2 3 4 1 2 3 4
OIO+O

D+-I+-(1 2 x N) - N

-
4 3 2 - 1 0 1 2 3

I+NxI<O
0 1 2 3 0 1 2 3

For example, in a-origin, X[-1J+~X[-1+pXJ, and selects the
last element of X. Similarly, in 1-origin, X[O] selects the
last element.

We also introduce a form of indexing called from,
denoted by 0, and of rank O,1,RR, where R is the rank of the
right argument. The basic definition is:

IOA++(,A)[~(pA)~~IJ

The function 0 distributes over any scalar function; thus,
IDA+B+-+(IOA)+(IOB).

The right argument of the axis operator applied to 0
is of the form I,_,J. For example:

M+3 4P112
M

0 1 2 3
4 5 6 7
8 9 10 11

2 2 0 M
10

2 O~_ 1 M
2 6 10

2 0 1 0;; 1 1"4
2 4 9

(3 2 P'3 11 6) OM
1 8 6

The use of the indexing function will be illustrated
in a proof of the useful identity I~J~A+~I[JJ~A. We first

-18­

state the definition of the transpose
any vector index of J~A, then

K'OJ~A+-rK[JJOA

as follows: if K is
((

Then:

KDI~J~A

K[I]OJCQA
(K[I])[J]OA
K[I[JJJDA
KOI[JJ~A

REFERENCES

1. APL Language, Form Number GC26-3847, IBM Corporation.

2. Iverson, K. E., Elementary Analysis, APL Press, 1976.

