Alice in Packageland

Brent Hawks

IBM APL2 Development
555 Bailey Avenue

San Jose, CA 95141
408/463-3588

Installation Code: IBM
Project: APL
Session: D601

Abstract

AP1.2 can take you to a marvelous new place called "packageland.” Alice fell into a package (rabbit?) hole
and is confused about what packages arc, what to package, how 1o do it, and how to use it. We'll go in after
Alice, and find a fascinating world of ncw ways to make AP1.2 more productive.

Once Upon a Time...

APIL. was onginally confined to working only with objects within the workspace. When APL.2 VI R2 came
along you could then access objects in Assembler, FORTRAN, and REXX. Now, with “the then current
rclcase” of APL2 you can add AP'L.2 to that list.

| must be dreaming...

During the FIP (field introduction program) we had onc customer give us a fantastic report after using pack-
ages. Several APL.2 Relcase 2 workspaces were converted into AP1.2 Release 3 packages. The customer
reported exciting improvements in clapsed time, CPU time, and programmer productivity. These gains were
attributed to sharing code among multiple users, the ability to eliminate function files (resulting in simpler
code), and the need to only maintain a single copy of a packaged workspace.

What is a package?

A package is simply another form of a saved workspace. Using) SAVE vou store the active workspace out
onto disk. The PACKAGE function takes the saved workspace and makes an object deck out of it. You
can then use the linkage editor to make an object module out of it. Towever, it is still just a saved work-
spacc, we've just put it into a wrapper that the operating system can understand.

You can get at objects in the packaged workspace with ONA. Tor example, 3 11 ONA 'TIME!® will
get you the TIME function from the TIME packaged workspace. If you do YFNS you'll scc TTME;
however, all you really have in the active workspace is a pointer to the TIME function in the package (if you
try OCR TIME, the result will be an empty matrix). ‘The function itsclf is still in the package. The
package, if not already in memory, will be loaded when you do the first DV A to the package.

A simple packaging example.
It's quite simple to package a workspace. Tor example, we can quickly package the DISPLAY workspace:
JCLEAR
CLEAR WS

n PACKAGE A SAVED WORKSPACE
3 11 ONA 'PACKACGE'

1
PACKAGE ‘'DISPLAY V0OO000O1'! a PACKAGE IT
DISPLAY TEXT A
YHOST LKED DISPLAY (LIBE FKGLIB a LINK EDIT IT
. CM5(0)
a NOW ONA TO THE PACKACE
YCLEAR
CLEAR WS
'"PXGLIB.DISPLAY' 11 ONA ‘'DISPLAY'
1
'"PKGLIB.DISFLAY' 11 0ONA 'ALX DOLX'
1
DISPLAY ALX a USE FN AND VAR FROM PACKAGE
o"_-"'-
| COIBM
|]
A«'"ABCDE" . a VAR FROM THE ACTIVE WORKSPACE
DISFLAY A a USE FN FROM PACKAGE
o-’----.
| ABCDE |
) t

You would normally “clean” the workspace before packaging it. You clean it by)COPYing it into a clear
workspace, resetting the system vanables, and then resaving it.

The example is from CMS (vou can tell because the result of the PACKAGE function is a TEXT deck). It
turns out that in CMS, you can usc a TEXT deck without doing the linkedit, but it is NOT recommended.

In the example we find out what OL X in the DISPI AY workspace is. Daoing YNMS in the workspace
would give you ALX.2 A.2 DISFLAY.3. lowcever, only A actually exists in the workspace, the
others are pointers into the packaged DISPLAY workspace.

You'll notice that we could not do ONA4 to OL X dircctly. A quad name may only be accessed via ONA as a
surrogate name. Also notice, that DISPLAY and ALX act as if they were in the active workspace.

Why Use Packages?

There are scveral advantages to using packages:

Name Isolation
Run Only Applications
Shared Code

Name Isolation. Many applications that cxpect to sharc a workspace must go to extraordinary Iengths to
keep from having name conflicts. For example, look at the names of things in the PRINTWS workspace; |
tricd to print out a workspace that contained a function called HOST: it turns out that PRINTWS also has
a function called TTOST., so mine got obliterated. If PRINTWS werce in a package, then it could usc its own
1TOST function and print mine at the same time.

Run Only Applications. Tt's casicr to hide AP1 from a user. when using packages. 1t is also possible to make
decommenting and unmeaningful names an automatic part of the packaging process.

Shared Code. Therc are a number of advantages to sharing code among multiple users and-‘or workspaces.

Maintenance

Performance
Eliminate Function Files
Reduce storage requirements

The customer noted above attributed the gains to the use of shared code. The performance was due to the
climination of function files, and the productivity came from reduced maintenance costs and case of imple-
mentation (versus function files). Plcase understand, the package is still ATl and runs at the same speed as
APL in your active workspace. The perforrnance improvements arc duce to things such as reduced paging
(multiple users share one copy of the package), less logic required than for function files, less 1 Q. etc.

What should | package?

Obviously, anything that you want to share (amongst users or workspaces) is a candidate for packaging.
Things that you wish to hide from the active workspace (maybe to avoid clutter or name conflicts) or utility
functions that require frequent maintenance; “end user” applications arc also good candidates for packaging.

Inside of Packages
Now we'll talk a little about name isolation versus localization, changes in a package name scope. and
moving around between name scopes.

Name Isolation

Name isolation 1s NOT the same as localization! Within the active workspace is a name table that points to
the objects in the workspace. The packaged workspace also has a name tabie that points objects within the
packaged workspace. When you switch exccution from the active workspace to the packaged workspace.
vou work from the name table in the packaged workspace.

This means that if you have a function TN that you have accessed via ON A then the name table in the
active WS (workspace) will have an entry for I'N that points to the namc table in the package which actually
points to FN in the packaged WS.

Now suppose that we have variables A and B in the active WS and varable B in the packaged WS. Now
when we exccute PN, we switch name tables and I'N will only sce the B that exists in the package. An
attempt to reference something called A will result in a VALUE FRROR because A exists only in the active
WS, If FN changes B, it will change only within the context of the package, the B that's in the active WS
will remain untouched.

Changes in a packaged WS

As you may have noticed above, I'N can CHANGT: things in the package. Towever, the package may be in
non-writable memory, and anyway, I may not want other users of the package to scc the change. So. what
do I do?

It so happens that when a package is first accessed, its name table is copicd into the active workspace. It still
points to objects in the package, but now I can make changes to the name table and they affect only my
active WS, not someonc clsc’s. Now if anything in the package changes (or is created), then the
new/changed version is put into the active workspace and pointed to by the package’s name table (not the
active WS’s namc table), so it acts as if the package had changed.

T)SAVE the active WS after having made changes in the package, the changes will still be there when |
re-)LOAD the workspace.

One point of interest. In the CURRENT implementation of packages. Any variable that gets referenced
(not just new/changed) will get copicd into the active WS, Functions arc copicd only if new or changed.

29

Packages can call other packages

We already know about ONA as a means for accessing a package from the active WS, 1t can also be used to
access a package from a package, or to access the active WS from a package. There is an external function
E X P that can be uscd to access the previous name scope. Consult the System Services Reference and the
Using Supplied Routines manuals for more information about the syntax of ONA and EXF.

Stopped in a package

Sooncr or later, something will go wrong and yvou will get a SYNTAX FRROR in some function that’s in a
packaged workspace. As is usual in APL.2, cxccution will stop inside the function at the point of the error.
It is IMPORTANT to remember that APL2 is now using the namc table from the package and not the one
from the active WS. So, if you do)NMS you will scc the names of objects in the package! You can edit
things, create/change/dclete things, run things; in short vou can do what you normally do in APL2 - you're
just doing it using the name table of the package.)RESET will get vou back to, the active WS, Any
changes that were made in the package name scope will remain. If vou subsequently) SAVE the work-
space, the changes will still be there when the workspace is again) LOA Ded.

Packages can make things easier (an example)
Suppose that you have two versions of the same workspace and vou would like to know what's changed.
Without packages it’s rather difficult, you have to get around name conflicts somchow.

In the appendix you can sce a sample workspace that will compare the objeets in two workspaces and tell
you which oncs are different. It will even work on itselff The COMPARI workspace only has about four
simple functions that do the actual comparisons. The rest of the workspace is documentation. some code to
allow packaging to work in CMS or TS0, and some cade that allows COMPARF to be packaged.

It works by packaging the two workspaces to be compared and then accesses the objects in the two pack-
aged workspaces with ONA. Name conflicts are avoided by using surrogate names. It will even compare the
system variables.

Other interesting tidbits

If you're going to be serious about packaging you'll also want to know about the optional left argument to
the PACKAGTE function. It's a list of names that arc accessible (via ONA4) from outside of the package. If
the namelist is missing or empty, then the default is to allow all names to be accessed (including system
“quad” names). The cxternal function I:XP, because it is reaching hack to the previous name scope. ignores
this name list.

If you do usc a namec list on a package, you should allow some room for debugging. If you make the
namelist too restrictive, you may find it difficult to isolate a problem.

When using the PACKAGE function in TSO vou will need to allocate a SYSPUNCIHI data set. This is
where the PACKAGET function will put its object deck. On both CMS and T'SO, vou will do well to get
the OS/VS 1.inkage Iiditor manuals.

Iinally, if you access a package that is NOT shared (i.c. in a DCSS in CMS or the 1 PA in TSO) then it will
be loaded into your free space. That mceans, that your memory requirements may change. For example,
you may necd to use a smaller workspace and a larger free space.

Summary
Packages are simply APL.2 and they do just what you want them to do. Name scopes may be a little con-
fusing (just like the first time you saw indircction or recursion), but arc very powerful.

Rcmember that one customer reported major improvements in clapsed time. CPU time, and programmer
productivity when APL.2 Release 2 workspaces were converied to APL2 Release 3 packages. The customer
attributed the gains to: sharing codc among multiple uscrs, the ability to climmate function files, simplified
logic, and the need to maintain only a single copy of a packaged workspace.

Packages allow name scope isolation. You have the ability to put out end-user “run only” applications.
Users can now SI{ARFE the same copy of APl 2 code (without function files) for the first time in APL
history. Finally, you may find it a grcat deal easicr to maintain utilitics functions as packages. You can
maintain a single copy of the utility and all workspaces will usc the same code.

Appendix

COMPARFE WOFKSTACE

(C) COPYRIGHT TBM CORP, 1987

ABSTRACT

U .

|COMPARE the objects in two workspaces for differences. |

| awee e]
| [PkGI |.LOAD! |
| v

et m, -

<
|1PKG1 |.0BJ| |
|

femat e ma ot

{The primary purpose of this workspaces iz for COMPARING (¢ he |
lobjects in two workspaces (most of which will be ident ical) |
lin order to see any differences. i
| |
|This workspace should normally be).04ned rather than)Yrorved |
Ibecause it may create objects in the workspace which conld cansel
I name conflicts and/or loss of data. |
| |
|+aacxs NOTE txass |
|COMPARE creates data sels that may OVFFYRITE existing data sets |
|(see warnings in HOW and in PKC).

) sas e 0 COMPARF eeees
|To COMPARE two workspaces, the syntax 1z:
f
!
|

‘wsid_a' COMPARF ‘wsid b

6

|]
|71f the workspaces have objects of the same name that do not comparel|
|t hen it will create a variable F_name or V_name (F for functions or|
|loperators and V for variables) that jis a two row matrix of the |
|form: F_name+2 1p(0CR wsid_a.name){OCF wsid_b.name). |
|For variables, it will just be the value of the variable. |
|Note also, that for functions/operators, the value for: 2047 name |
|{will be appended as the last line of the DCR. i
! |
|0bjects which are in only one of the WSs are referred to as |
{ORPHANS; you'll see a list of names (if any) for each WS.]
|]
|The system variables (except: DA1 OLC D7S DWA) are also compared. |
|Any differences are reported and a variable is created with a }
Iprefix of QD_ (for example: QD_10 for 010), These are the same |
:as above: two element variables containing the value from each WS.|

i
| 2erns SHOWDIF tasss |
|The function SHOWDIF will try to show the differences belween |
ltwo objects in one of the created variables. For example: |
| 2«SHOWDIF F_FN |
lwill show the lines from the two versions of FN that den't match. |
|The lines from FN in the left workspace will be the first item |
lof the result. SHOWDIF will return the differences side by side |
| if they will display within OFW (a two element vector), ot herwvise |
lit will leave the result as a two row matrix. :
{
|An optional left arg on SHOWDIF will caunze SHOWDIF to decomment |
lits argument before the comparison. Only the exisltence cf]
la left argument is checked; its content is irrelevant . :

|

|

|

|

|

|

i
|
| *re2e WARNING *++++ WARNING s#sss WARNING wesss WARNINC +5ar4
I

|The PKG function in this workspace will create data sel s (hat may
{OVERWRITE existing data sels. See the I'KG function for details.

[ol COIBM
[1) *(C) COPYRIGHT IBM CORP, 1987'

[0] L CAQMPARE R;T:VA;VB;VAB,FA:FB:FAB

[1] A GLOBALS: L_WS R_WS BNLA ANLB ACRA ACRB MBATA BATB FXFP

[2] o FIRST PACKAGE THEM AND ONA TO THF ONI., OCR, AND DAT OF FACH
(3] 'Packaging WS''S..."

] +(v/0=ePKGC (L_WS R_WS)+(e”L R)~"* *')/0 R QUIT IF CAN'T PKG
[(s) «0pL R BNA"'ANLA DNIL' 'ANLB DNI' e GFET DNI. FROM I. R
{6l +0pL R ANA”'ACRA OCR' 'ACRB OCR® A " Ock " v
t7) «0pL R ANAT'8ATA DAT' 'AATB DAT! A " par v v
[8) +0p3 11 DNA 'EXP? A IN CASE 1'M A PACKAGFE
(9} (L R)~8+"L R ® 70 MAKE DISPLAY LINE UP NICELY

[10] n DO OPERATORS AND FUNCTIONS

(113 *..... Comparing Funclions/Operators'

[(12] Te(FA«(<c{2)BNLA 3 n)~"" t)o,c__(FR=(c[2]JANLE 3 n)~"1 1)

(13] FAB«(Vv/T)/FA n COMMON FNS/Or<

[1n] FA«(~v/T)/FA n FNS/OPS FOUND ONLY IN WS_A

{15) FB«(~Vv/T)/FB a FNS/OPS FOUND ONLY 1N WS_B

[16] 2(0<pFA)/'''Orphan Fns/Ops in "', L,'': ‘' ,¥FA!
(17) 2(0<pFB)/'''Orphan Fn3/0ps in **,K,'': *',%FB'

{18) COMPARE_FNS"FABR a SEFE IF THEY AKE THE SAMFE
[19] a DO VARTABLFES

(20) '..... Comparing Variables"

[21) COMPARE_SYS A COMPARF SYSTEM VARS FIRKST
(22) T«(VA«(c[2)aNLA 2)~"" ')e,=__(VB«(c[2)8NLB 2)~"" ')
{23]) VAB«(v/T)/VA n COMMON VARIABLES

(2] VA«(~v/T)/VA R VARS FOUND ONLY IN WS_A
{25) VB«(~v/T)/VE a VARS FOUND ONLY IN WS_R
[(26) o(0<pVA)/* "' Orphan Variables in "', L,"': "', sVA"
(27) o(0<pVB)/'''Orphan Variables in '' R,'': "' ,¥VK'
{28) CCMPARF_VAR"VAR ROSED TF THEY AKE THE SAME

[29] » CLEANUP
[30) <OpPKCDELETE L R
[31] =0p0FX 'L_WS' '"R_WS' ‘ANLA' '"ANLE' 'ACRA* 'ACKB' 'BATA' ‘'BATB' ‘'FXpP'

(ol COMPARE_FNS Fi;A:B

{1) e SEE IF COMMON FNS/OPS ARFE IDFENTICAlL, TF NOT, PUT THFEM INTO CALLER
12) A+ACRA FR+(ekR)~'

£3) B+ACKB R

[n) +(A=__B)/0 a THEY MATCH

{5] @& ELSE - CREATE THEM 1N THE CAILLER'S NAMFESCOPFE

[61] ' Mis-match in Common Fn/Op: ‘',F

[7) A+>(c[2]JA),(c'n V',32 AATA R) A PUT TIME-STAMP AT THE FEND
[8) B+>(c[21B),(c'n v*',¥2 BATR F)

9] “0pEXP('F_',F)'+'(2 1pA B)

{o] COMPARE_SYS;AECA:;AECB;SYSVARS:A:B

[1) =& SEE IF SYSTEM VARS ARE SAME (EXCErr: DAJ OnC DTS DOWA)

(2] SYSVARS+'0AvVOCTOEMDETOFcO100LX0L0ON 70PPOrWDPRORL.OROSVEQTCOTZOUTL
(31 SYSVARS+(1+SYSVARS='0"')cSYSVARS

(u) +0plL_WS ANA 'AECA DEC'

{513 «0pR_WS5 ANA 'BFCB QOFC'

(61 A+AECA"SYSVAES

(73 B+AECB SYSVARS

(8 +(A=__B)/0 o THEY ALl MATCH
[9) =a ELSE SOME ARF DIFFRERENT
{101 (SYSVARS A B)«(~e¢A=__"B)/"SYSVARS A B

[11]) 'System Vars that-don''t match:' ,¥SYSVAKS

[12) LOOP:+(0=pSYSVARS)/0

[13] “O0pEXP('QD_"',(14c+SYSVARS)~" *)'«'(2 1p327+74 B)
{14] (SYSVARS A B)«13¥ SYSVARS A B

[15] =LOOP

[0) COMPARE_VAR RiA:B ,
1] s SEE IF COMMON VARS AFRE IDENTICAL, 1F NOT, PUT THI'M INTO CALLER
[2] +0pL_WS BNA 'A ', Re(cR)~"' *

[3] +O0pR_WS ANA 'B ',F

{u) +(A=__B)/0 A THEY MATCH
{5 a ELSE - CREATE THEM 1IN THE CALLFR'S NAMESCOI'F
[6) ' Mis-match in Common Var: 'R

(71 +0pEXP('V_"' ,R)'+«'(2 1pA B)

{01l 2+l SHOWDIF EFE;A;B:C;D070

(1) @ SHOW DIFFERENCFS EBETWEEN THE TWC (SIDFE BY SIDE 1F CAN)

(2] 010+«1 -

£3] L+2=0NC 'L s LEFT ARG PRESENT

tn) Cep "Res R n ENSURFE THAT FACH PART OF R

[s1 Re("2471,7C)o R A 1S A MATFIX

[6) (A B)+c[2]1"R a SEPARATE AND FORMAT 1NTO SIMPLFE VEC OF VECS
[7) eL/ A« (+/ 72\ rar 2 A4 a ELIMINATE COMMENTS I1F LEFT ARG

(el aL/'B+(+/ A\ " 'a'2B)4 "B

(9l C+(A+DIL,T A)e .=__(B«DLT"R) R COMPIPARE THEM (W/0 LFAD/TRA1l, BLANKS)
(10) Ze>(~v/C)})/A LINES IN A THAT DIDN'T COMPARE

{11) Z2+Z(>(~v/#C)/B) LINES IN B THAT DIDN'T COMPARE

[12) o(0OPW< 14p37)/'7+2 1p7" A SHOW SIDFE BY SIDFE, ELSE 2 1 MATRIX

D D

[ol Z+«DLT R
(1) w DELETE LEADING/TRAILING BLANKS
2] Ze((v\Z)r¢v\bZeF="' ')/F

{o] Z+l, ANA R
(1) =~ PROVIDES DONA COMPATIBLY IN CMS AND TSO
(2] Z+((('TSO'=__eHOST)/CMPLIB,'."),1,)11 ONA R

[0} Re«PKG WS,CMD;PACKAGCFE :CTL DAT XA T

[1) w CONVERTS WS 70 A PACKACED WORKSPACKE

[2) w» TS50 LEAVES SYSPUNCH (CMP_CBJ) AND CMPLIB (CMP_1.0AN) ALLOCATED
[3) s NAMING CONVENTION USED FOR WORKSPACES 1S: V.wsnare

(") a CMPLIB IS A SIMPLF CHAR VEC (1.E. CMPLIB«'PKGLIR")

{5] = IT IS THE Fllename OF THF LOAD LI1BRAKY

[6) & CMP_OBJ IS8 A TWO ELIMENT VEC OF VIICS (1.1, CMP_QR-«'I'KC* ' OBRJ')
{7) n YSYSPUNCHY WILL Bl ALLOCAIFD 70 CMP_CRJ

MDA WO
[l o= S VPR NV I VR WAV I VOV W S N WP W Y)

(o)

W0 ®

—

IT WILIL CONTAIN THE OBJECT DECK CREATFED BY “PACKAGE™

CMP_LOAD 1S A TWO ELEMENT VEC OF VECS (1.FE. CMP_LOAD«'FKG' * LOAD"')
CMFL1B WILL BE ALLOCATED TO CMI'_LOAD
ITS MEMBERS WI1II, BF THE FACKAGED WORKSPACES

txt NOTE *#*»

cMS
"PACKAGE" CRFATES A FILE: wsname TEXT A. A PRE-EXISTINGC FILE OF
THAT NAME WILI BE OVERWRITTEN. T“PKCDELETE™ Wil FRASE THI1S FILE.

TS0
THIS FUNCTION ONLY CHECKS TO SEF THAT 'SYSPUNCH' AND CMPLIR
ARE ALLOCATED, 17 DOES NQT VERIFY THAT THEY ARF ALLOCATED
TO CMP_OBJ AND CMP_I,0AD RESPECTIVELY.

TH1S FUNCTION DOES NOT PROTECT ANY PRE-EXISTING DATA 1IN
CMP_OBJ AND CMP_LOAD. HENCE, YOU MUST PROTECT AGCAINST DESTROYINC
DATA SETS. ADDITIONALLY., THE FUNCTION “PKGCDELETE™ DFELETES
THESE DATA SETS.

+('TSO0'=__eHOST)/TSO

«(1=R+~3 11 ONA 'PACKACE')/ERROR

+(0=pR+PACKAGE WS,' APLWSV2')/FRROR & PACKAGFE THI WORKST'ACF

+R+0 n FEXIT

f

T50:+0p102 OSVO 2 3p'CTLDAT’ SEE 1F WE ARE IN MUS OR MVS/XA

CTL+0 R CHECK THFE WORKSPACFE ADDRFESS

XA+(16x1021%x1024)<SPAT IN XA 1F WORKSPACFE ABOVE THE LI1NE

«0p0FX 2 3p'CTLDAT®

+0p100 OSVO 'CMD!

®» P PP PP B DP» D DD DD DP DD DD

CMD«'APL DD]1 SYSPUNCH' a SFE JF SYSPUNCH ALLOCATFED
+~(~8=__4+CMD)/L2 n BRANCH T1F ALLOCATIED
CMD+'APL DSI ',eCMP_ORJ n SFE JF DATA SFT EXISTS
~(~8=__4CMD)Y/11 a KFANCH TF 17 EXI1S18

R ALLOC NFW DATA SFT

T+«'ALLOC FI(SYSPUNCH) DSN(',eCMP_ORJ,') NEW SPACE(S,5) !

CMD+T,'TRACKS ILRECL(80) BLKSTZF(3120) RECIM(F B) DNIORG(IS)!
+(0=F«CMD)/12

~ERROFR

LY:CMD+'ALLOC FI(SYSPUNCH) DSN(',eCMP_ORJ,') SHFR!® n ALLOC OLD DATA SET
+(0=R«CMD)/ERROR

L2:+(1=R+«~3 11 ONA 'PACKXACGE')/FFRROR

+(0zpR+PACKACE 'V.' ,WS)/ERFOR R PACKAGE THE WORKSTACE
CMD«'APL DDI ' ,CMPLIB R SEE I} CMPLIB ALLOCATED
+(~8=__4CMD)/Ln R BRANCH 1V ALLOCATED
CMD«'AFL DSI ',eCMP_LOAD rR SEE I+F DATA SET FXISTS
+(~8=__4CMD)/L3 a BRANCH 1V 1T FXISTS

a ALLOC NEW DATA SET

T+«'ALLOC FI(',CMPIL1B,*') DSN(',eCMP_LOAD,') NEW SPACL(S5,5) '
CMD«T ,'TRACKS DIR(2) BLKSIZE(n096) RECFM(U) DSORG(ro)®
~(0=R«CMD)/Ln

+ERROR

L3:CMD+'ALLOC F1(',CMPLIB,*') DSN(',eCMP_LLOAD,') SHR* n ALLOC OILD DATA SET
+(02R+CMD)/ERROR

Lu: a OKAY, NOW LINKEDIT THF MFESS
T«'LINK ', (¢CMP_ORBJ),' LOAD(',(¢CMI_IOAD)

CMD«T,'"(' WS,')) NOTEKM NOPRINT * ,XA/'RMODFE(ANY)"
+(0=R+CMD)/0

]

ERROR: 'PXC ERROR ' vk

7+«PKGDELETE NAMES:CHKiCMD:R

f Z+0 IF FVERYTHING WAS PROPERLY DELETED OR NEVER THERF
R IN CMS, DELETES TEXT DECKS SPECIFIED BY NAMES VECTOK
a IN TS50, FORCES PROCFSSOR 11 70 CILOSFE THE OPEN LOADILIE
R THEN DEALLOCATES ARD DELETFS 3YSPUNCH AND CMPLIR
+0p0FX '2«CHK C' 'CMD«C' 'J«CMD* a FOR RFADARILITY
7+~2=__100 BSVO *CMD"’

“('CM3'=__c¢HOST)/CMS

F«'OTHER.CTHER' 11 ONA ‘OTHIFR'

2¢74~v/0 12=CHK 'FREF FI(SYSI'UNCH)®

2+74~v/0 12:CHK YFREF FI(' CMPLIB,)"

7+74~v/0 8=CHK "DELETF ' ,eCMI'_ORJ

{12} 2+Z+~v/0 8=CHK 'DELETFE ' ,eCMP_LOAD

{13) =0

(14) CMS:2(2>=__NAMES)/'NAMES+c NAMES"

[15) L1:2+24~Vv/0 28=CHK 'ERASFE ', (+NAMLR),' TEXT A'
[16) <(0xpNAMES«14NAMES)/I 1

[0l R+«HOST:CTL;DAT R OBTAIN HOST 1D VIA AP102.

[1) o WARNING: THE CONTENTS OF THIS FUNCTION ARF SUBJFCT TO CHANGE
[2) = BETWEEN AP1L.2 RELEASES,

[3) =»

{#) w RESULT: NORMAL - ENCLOSED CHARACTER VECTOR OF HOST KAMFE

[5) = ERROR - DFCREE OF COUPILING OR AP102 RETUKN CODF

[6) =

[7) o NOTE: (DAT+240) = (X'FO' IN WS) = (HOST INFO IN 41°12 1.1.00)
.[8) =

(9] OSVE+S n SET EVENT TIMER 70 S SFCONDS.
[10) L1:+(2A.=R+«102 OSVO 2 3p'CTLDAT')/I2 A + JF SHAKF WOFRKS.
[11) <(0=0SVE)/L1 A =+ I1F EVENT OCCURS.

[12) =0 n RETURN WITH DEGRFFE OF COUrILING.
[13) L2:+(0=R«CT/)/CTL+0SVFE«0 R «-]IF AP102 FEERROK.

[14) CTL+«1,(DAT+2u0),n R GFET HOST SYSTEM DATA.

[15) FK+,(8p2)TDAT A CONVERT LOW-OKDEK BYTF TO BITS
{16) FR<R/'TSO' 'CMS' '232' '716' '"IFR*' '7ut 122 11

o A SAMPLE RUN COMPARING TWO VERSIONS OF COMPARFE

JLOAD COMPARE
SAVED 1987-11-04 114.20.07 (CMT-8)
(C) COPYRIGHT IBM CORP, 1987

*COMPARE' COMPAFRE ‘'COMPB'
Fackaging WS'S...

..... Comparing Functions/Operators ’
Orphan Fns/Ops in COMFPARE : COIBM DIT HO3ST SHOWDIF
Orphan Fns/Ops in COMTPB H COMARF_FNS HOWUSFE SAVWS SYSTEIM

Mis-match in Common Fn/Op: ANA
Mis-match in Common Fn/Op: COMPARFE
Mis-match in Common Fn/Op: COMPAFRF_FNS
Mis-match in Commeon Fn/Op: COMPARE_SYS
Mis-match in Common Fn/QOp: COMPARF _VAR
Mis-match in Common Fn/Op: T'KC
Mis-match in Common Fn/Op: FPKGDELLTFE

..... Comparing Variables
System Vars that don't match: OLX
Orphan Variables in COMPARF ABSTFRACT CMP_LOAD CMI'_OBJ
Orphan Variables in COMPBR : WSID
n SHOW BOTH VERSIONS OF “ANA" FUNCTION
F_ANA
7+l ANA R

a PEOVIDES ONA COMPATIBLY IN CMS AND TSO

Ze((('TSO'=__eHOST)/CMPLIB,' . "}, 1,)11 ONA R

a 91987 11 3 10 16 24 502

Z«L 8NA R

a PROVIDES DONA COMPATIBLY IN CMS AND TS0
2«((('TSO '=__SYSTFM)/'PKGLIB.").,L.)11 ONA R

n V1987 3 13 10 5 31 0O

R SHCW BOTH VERSIONS OF “OLX" SYSTFM VARIABLE
QD_LX n THE ONF FROM “COMPB" 1S5 EMI'TY
rOIBY

