TIME: Where Did It Go?

Alan Graham

IBM Technical Computing

Dept 6FR/Bldg 32, mail drop 35A
1510 Page Mill Road,

Palo Alto, CA 94304

(415) 855-4465

Abstract

Onc of the most popular features of APL.2 Release 3 is the performance analysis tool. It consists of a single
external APL function, calicd TITME, that allows the user to extract relative timing information by function!
or by line. Timing information may be extracted for sclected functions or for all functions in the workspace.
Monitoring may be sclectively enabled or disabled.

-T'his paper discusses the usc of the TTME function and illustrates how cover functions can be used to
customize and enhance the facility.

Introduction

In the course of application development, developers may need to do-performance analysis. Often,
performance problems appear in the form of an application that scems to run too slowly compared with the
programmer’s expectation. Are there critical sections of code that consume an inordinate amount of CPU
time? In other words, what are the Aot spots?

There have been several APL packages written that will monitor where the CPU time is used. PARAETO
is one such package. Typically, such an APL. timing package modifics your application to include code that
looks at the accumulated CPU time (141404 7) in between the execution of cach line. This generally
works quite well, but because your functions are modified, subtle differences may be introduced. For
example, if cover functions are introduced and the function call stack is queried (p QL C) it will be deeper
than expected. Also, there is always the fear that you will accidentally) SAVE the modified application over
top of your orniginal.

Performance monitoring is somcthing the spstesm can do without modifving the user’s code. The system
knows when a line begins cxecution and when it ends. In APIL.2 Release 2, the hooks were put in place for
the system to keep statistics during exccution of functions and to initialize. enable, and disable monitoring.
The TIME function was built as an interface and after some experimenting, it was included as part of APL2
Releasc 3.

Overview

The TIME function is established in the workspace using ONA. Processor 11 has been extended in Release
3 to access API objects outside of the active workspace. From the user’s point of view TITME looks like
any other locked function.

3 11 ONA '"TIME:
1

If you don’t get a 1 result from ONA it is probably because you already have an object in the workspace
named TIME, you arc not running on APL.2 Release 3, or there is a problem with the installation of APL2.

U Throughout this paper the term function is vsed 16 mean defined function or defined operator.

NL TIME O initializes the timing facility for the functions in the name list ¥L. The name ist may be a
simple string (naming one function), a vector of strings, or a simple character matrix. If no left argument is
given, the initialization applies to all the functions in the workspace (including TTME itsclf).

Internally, a pair of counters are appended onto cach line of every function being monitored and set to zero.?2
They are used to hold the CPU time and a count of the number of times a line is exccuted. The counters of
a function are deleted if any change is made to the function by editing or OF X or if the function is
transferred via YOUT or YCOPY. For an external or locked function (such as TTMFE itsclf) the counters are
appended only to the header.

N-L TIME 1 rcturns a four-column matrix with one row for cach function in the name list that has
accumulated some time or has been called at least once, sorted in descending order by CPU time.? If no left
argument is given, TTME 1 reports all functions that have have been ealled at least once.

‘The four columns are:
1. The number of times the function was called
2. CPU seconds the function accumulated (excluding subfunctions)
3. Percent of the total CPU time

4. Tl‘unction name

On some very fast machines a function may execute so fast that a clock tick docs not occur during its
execution. Thercfore, TTME may report a function with no accumulated accumulated time.

NL TIME 2 rctumns a five-column matrix with onc row for cach linc of cvery function in the name list
that has accumulated some time, sorted in descending order by CPU time. 1f no left argument is given,
TIME 2 reports all functions that have used some time. The first four columns arc the same as TIME 1
except that the fourth column is function name and line number. "Fhe fifth column is the linc of code. For
locked and external functions only a single row appears showing a summary for the entire function. (No
Martha, you can’t deducc details of a locked function by using TIME.)

NL TIME 3 returns a five-column matrix with one row for each linc of cvery function in the name list, in
ascending order by line within function. In other words, it is a function list with timing information. If no
left argument is given, TITME 3 reports all functions that arc being monitored.

NL TIME 3 dcletes the timing information from the functions in the name list. If no left argument is
given, TIME ~ 3 delctes the timing information from all functions in the workspace. (Note: TIME ~ 3 is
how vou clean up a workspace that has been accidentally :ap)SAVIFd with the timing counters.)

TIME = 2 disables the time monitor, but preserves the counters. A left argnment is not allowed.

TIME ~ 1 enables the time monitor after it has been disabled. A left argnment is not allowed.

2 TIME 0 is a mnemonic for zero the counters.

3 TIME 1is a mnemonic for one row per function.

ro

FIMI: Where Did It Go?

Sample Use

Below is a samplc use of the timing facility against a function named ON that appends its arguments along
the lcading dimension. The workspace consists of the ON function and its subfunction MAT 4

v
(0] Z«Y ON X;0I0;:N
[1] ~a put left argument ON top of right argument
(2] 0I0«0
[3] Y«sMAT Y A character matrix
[u] X<¥MAT X A character matrix
[5] Ne(+bpY) (+dpX) A more columns
(6] 2«(N+[1]Y),[0](N+(11X) ~n attach vertically
vV 1987-11-04 10.25.09 (GMT-8)
v
(o] Z+MAT X
[1] A MATrix given any array
(2] +(2=ppZ2+X)/0 A escape 1f already matrix
[3] Z<((x/ 14pX), 141,pX)pX ~n rows by columns

V 1987-11-04 10.23.54 (GMT-8) -

To prepare for timing analvsis bring in the application and the TTME function, initialize the counters,
exclude the TIME function from being timed, set the print width and print precision, and accumulate timing
information by running the application.

JCLEAR A start fresh
CLEAR WS
YIN ON a get application .
. 3 11 ONA 'TIME: a get TIME function
TIME © A zero counters
*TIME' TIME ~3 a don't time TIME
OpPw<320 A no wrap please
OPP«u A limit detail
29 30 pZ«'TOP' ON (20 10p1100) ON 'BOTTOM!

To look at statistics on a function basis use TIME 1. ‘The result is sorted in descending order by CPU
time. FFunctions that are not called arc not shown.

pO0«TIME 1
2 0.036 92.31 ON
4 0.003 7.692 MAT
2 4

Now we want more detail. Since the application consists of only seven lines of executable code, it is
rcasonable to look at all of them. In a typical application, you'd use an expression such as
N+LOIOJTIME 2 where N is a small positive integer such as 15.

¢ Tor presentation here come of the displavs are truncated on the right.

TIME 2
.029 74,36 ON[3] Y<«sMAT Y n char

.564 ON[UW] X<sMAT X A char
MAT[O0]) Z+«MAT X
ON[O] Z+«Y ON X:0I0;N

.001

NENNERODONONNN
OO0 0000000

.002 5.128 MAT[3] Z<«((x/ 14pX), 141,pX)pX on row
.002 5.128 oN[2] 0Io<«0
.002 5.128 ON[S]) N<«(4¢pY)T(tdpX) A more
.002 5.128 ON[(6] Z+<(N+[11Y),[0(N4[11X) A atta
L0011 2.564 MAT[2] +(2=ppZ2Z+X)/0 A esc
2
0
0

The single line ON[3 J stands out as taking the majority of the CPU time. F'ull linc comments are not
shown because they do not accumulate any time. The time reported for ONL 3] excludes the time taken for
the call to MAT, which is detailed in other rows. Thercfore, we can conclude that the majority of time is
spent in the Format (3) pimitive. Notice that ON[4] is the same linc as ON[3] except for the nght
argument instead of the left argument, but uses far less time. In this sample run, a left argument Format is
rclatively expensive compared with a right argument Format. Formatting a simple integer matnx, although
fairly fast, is much morc expensive than formatting a character array (which is a no-op!).

TIME 3 -
u 0 0 MAT[O0] Z+«MAT X
0o - 0 MAT[1] a MATrix given any array
4 ¢.001 2.564 MAT[2] »(2=ppl2+X)/0 n ecc
2 0.002 5.128 MATL3] Z«({(x/ 13pX), 14+1,pX)pX A row
20 0 ON[O0l Z+«Y ON X;0I0;:N
00 0 ON[1])] a put left argument ON top of
2 0.002 5.128 ON[2] 0I0+0
2 0.029 7u4.36 ON[(3] Y<«sMAT Y A char
2 0.001 2.564 ON[u]l X«sMAT X n char
2 0.002 5,128 ON[S] N«(4+dpY)[(*+dpX) ; A more
2 0.002 5.128 ON[6] Z+«(N4[11Y),[(01(N+4[11X) n atta

Listing all lines of both functions, we notice that prologuc comments not only consume zero time, but
actually never execute! The APL.2 interpreter begins exccution on the first non-comment line of a function.

TOP: A Simple Set of TIME Cover Functions

Although the TITMFE function is fairly casy to usc directly, it is provided as more of a tool than an end-user
report function. The most common problem is getting too much information. I'xccuting TTME 2 on an
application of 1,000 lincs of code will produce a matrix of up to 1,000 rows! The CPU times and percents
will display with up to OFP (usually 10) digits of precision, although typically only four digits arc significant.
Cover functions can be built to take this matrix and sclect only the top few slow functions or lines.

TOP is a simple sct of four cover functions that allow an application’s hot spots to be quickly discovered and
ncatly displayed with titles and summanes. The functions are shown in the appendix.

Initialize and run the CROSS application.

JCLEAR A start fresh
CLEAR WS
JIN CROSS A get application
YIN TOP A get TIME, TOP, etc.
TIME O

CROSS 'CROSS' a run application

Show all functions called.

4 1IMI: Where Did Tt Go?

http:Y""'.MAT

TOP FNS
COUNT TIME PERCENT PROGRAM
86 1.231 43,78 IDENTS
897 .u460 16.36 ON
13 .399 14.19 NAMES
14,307 10.92 CROSS

15 .1u9 5.30 DETAIL
28 .113 4,02 MEMBER
27 .098 3.49 ROWS

13 .o0u9 1.74 ASS

1 .00u .14 CROSS

2 .002 .07 UNQUOTE

296 2.812 100.00

Slowest four functions and the slowest four lines.

TOP 4 FNS
COUNT TIME PERCENT PROGRAM
86 1.231 43,78 IDENTS
97 . 460 16.36 ON
13 .399 14.19 NAMES -
14 .307 10.92 CROSS
210 2.397 85.24

TOP 4 LNS
COUNT TIME PERCENT PROGRAM LINE
86 .300 10.67 IDENTS[16]) Z+(pA)p(,A«heo . 2101 /A
84 .252 8.96 NAMES[15] ZA<«(Vv/F<\ZAA.=QZA)/ZA+
15 .212 7.54 CRoSS(15]) O+«QV.,PE,((FF MEMBER [
86 .168 5.87 IDENTS[6] QS«($(-Q)daA\(Q« 1+(¢B

271 .932 33.14

Percent of total time.

TOP 33 PERCENT LNS

COUNT TIME PERCENT PROGRAM LINE
86 .300 10.67 IDENTS[16] Z<«(pAdp(,A«Ao.210[T/A
84 ,252 8.96 NAMES[15] ZA«(v/#<\ZAA.=QZA)FZH+
15 .212 7.54 CROSSU15] O<«gV,PE,((PF MEMBER [
86 .168 5.97 IDENTS[6]1 QS«(d(-Q)da\(Q« 1+(¢B

271 .932 33.14
. TOP 50 PERCENT FNS
COUNT TIME PERCENT PROGRAM
86 1.231 u3.78 IDENTS

97 .u460 16.36 ON
183 1.691 60.14

Conclusions
APL.2 Release 3 includes a powerful time monitor tool, the TIME function. It can be used either directly or

with cover functions to find an application’s Aot spots. 1t is not uncommon to get performance
improvements of 50% after modifying one or two lines of code found to be particularly CPU intensive.

References
1. IBM Corporation, AP1.2 Pragramming.: Using the Supplied Routines, S1120-9233

2. IBM Corporation, AP1.2 Programming: System Services Reference, S1120-9218

6 TIME: Where Did It Go?

TOP functions

Report TOP (Slowest) Functions

v
(o] TOP X;DI0:;0P¥;N;HF:T
[1] A TOP (slowest) few lines or fns (or ops)
[2] a syntax: TOP [nln PERCENT] (LN¥S|FNS)
[3] a example: TOP FNS a all functions
(4] a example: TOP 5 LNS a slowest S lines
[5] A example: TOP 50 PERCENT FNS a fns up thru 50%
[6] n attributes: 0 1 0 1 OFX DCR 'ToP!
(73] 0I0+0 A Zero origin
(8] OPW+320 A don't wrap display
{9] +(2=ppX)/L1 A just timing matrix?
[10] (N X)<X A rowv-count, matrix
[11] X«(NL4pX)4[O01X a top N rows
[12] L1: a format with header/totals
[13] H«(+14pX)4'COUNT* ' TIME' 'PERCENT' 'PROGKAM' 'LINE®
[1u4])] F<«(2xpH)+0 0 0 3 0 2 A Format vector
[15] T<«(pH)+(+/3401]X)." ' a Totals -
[16] O«FsH,[0])X,[0]T p format and display

V 1987-10-30 16.3u4,06 (GMT-8)
Timing Matrix by Lincs or 'unctions

v
[o] 2 «LNS;US™
(1) ~n LiNeS with non-zero times or counts
(2] US™«'ToP' 'LNS' 'FNS' 'PERCENT' ‘'TIME" A my fns
[3] +0pUS~ TIME ~3 A don't monitor us
[u] 2 «TIME 2 A all lines monitored

V 1987-10-30 15.u47.00 (GMT-8)

v
[0] Z «FNS,US™
[1] =» FNS (and ops) with non-zerco times or counts
[2] US «'TOP' 'LNS' 'FNS' 'PERCENT' 'TIME’ R my fns
(31 +0pUS~ TIME ~3 a don't monitor us
ful 2 «TIME 1 A all fns and ops monitored

V 1987-10-30 15.48.51 (GMT-8)

Sclects N Percent of Total Time

v
{o] 2«N PERCENT X;0I0
(1]
[2) ~a attributes: 0 1 0 0 OFX OCR
[3] 01o0+0
fu] OES(o=0NC 'N')/5 1
(5] Z+((4pX)L144/M>+\X[;2])400])X

V 1987-10-30 16.3u4.18 (GMT-8)

a select N percent of the slowest from timing matrix

*PERCENT'
A zero origin
A must be dyadic
a slowest thrn N percent

