
SantaTeresa
Laboratory
San Jose, CA

•

TECHNIQUES IN oy Nancy Wheeler
SQL APPLICATION DESIGN

May 1986 TR 03.290

TR 03.290

TECHNIQUES IN SQL APPLICATION DESIGN

May. 1986

Nancy Wheeler

IBM

General Products Division

Santa Teresa Laboratory

San Jose. California

ABSTRACT

This report identifies common technical and design issues
that arise in creating an application for an interactive
environment us1nq Structured Query Language (SQL). The top­
ics include database des1gn_ locking, performance_
error-handling and application portability. The target
audience is programmers just beginning to use a relational
database.

iii

• • • • • •

• • • • • • • • • • •
• • • • • • • •

• • • • • • • • • • • • • •

• • • • • •
• • • • • • • • • • •

• • • • • •
• • • • • • •

• • • • •
• • • • • •

• • • • • •
• • •

• • • • •
• • • • •

• • • • • • • •

• • • • • • • • • • •
• • • • • •

• • • • • • • • •
• •

• • • • • •
• • • • • • •

• • •

TABLE OF CONTENTS

Introduction 1

•Database Desiqn • • • • • • • • • • • 2

The Database 2

The Table 4

The Index 7

Authority • • • • • • • • • • • • 7

Locking • • • • • • • • • • • • • • 9

Lock Size 9

Isolation Level 10

Explicit Lock Control 11

Units of Recovery 11

Performance Considerations 13

Indices 13

Concurrency 13

Query Optimization 13

Blocking 14

Cod1nq Techniques 15

· I·Error-Handling • • • • • • 17

The SQLCA 17

Message Text Retrieval • • • • • 17

Warning Conditions 18

Application Portability 19

Database Configurations 19

Catalog Tables • • • • 19

SQL Incompatibilities 20

Error Codes 2tQ

Conclusion 21

Bibliography • • 22

v

• • •
• • •

• • • • • • • •

• • • • • •

LIST OF ILLUSTRATIONS

Figure 1 • SQL/DS Database Structure 3· · · • · •
Figure 2. IBM Database 2 Database Structure if· •
Figure 3. SQL Datatypes . . . • 6· • · Figure 4. Cursor Stability Locking 10•· · • · · •
F1qure 5. Query Optimization • • • • • • • • 14· • · •
Figure 6. Using Host Variables 15• • • • • • • • • • · Figure 7. AP 127 Data Formats for SQL 16• ·

vi

INTRODUCTION

When programmers first begin thinking of writing applica­
tions that will use IBM relational databases. either Struc­
tures Query Language/Data System (SQL/DS) 01- IBM Database 2
(DB2), they first think about the programming questions. For
example, how will the SQL statements be coded so that the
correct data will be retrieved and updated? Once the data is
retrieved, how will it be manipulated or displayed? How
will the reports wanted by management be qenel'p"'~~:' 'i~•.o..:ol!

questions, all valid, need to be answered.

Another set of issues arise when des1gn1nq a relational
database application. These issues are not directly related
to the data manipulation code, but rather have to do with
the definition of the env1ronaent in which the code
executes. Often these issues are ignored, or addressed
after the fact. If, however. they are addressed early in the
design of the application. ~he ease with which the app11ca­
~ion moves into eff~c~ent production can be increased.

This report 18 not intended to resolve all the issues nor
answer all the questions. Its purpose is to identify the
issues and give direction and references in order that
informed decisions can be made.

The focus of this report is on design ~.8U.S for SQL appli ­
cations written in APL2. APL2 uses DYNAMIC SQL to execute
its SQL statements. Dynamic 'SQL is used for interactive
environments where the specific table and column names to be
used in the queries are not known until execution time.
STATIC SQL is used in compiled proqraas· and requires that
the table names and columns be known at compile time.
Design issues for static SQL programs are soaet1aes differ­
ent and not specifically discussed here.

1

DATABASE DESIGN

Before an SQL application can be written, the database con­
figuration to be used must be designed. This design involves
finding a place for the relational tables, creating the
tables, indexing the tables intelligently. and deciding on a
scheme for accessing the tables.

THE DATABASE

SQL/DS and DB2 each have different structures for their
database storage allocation, although the two structures do
parallel each other.

SQL/DSa In SQL/DS, a DATABASE is managed by a VM virtual
machine. Some installations will have only one database
defined, while others may have mUltiple databases. Since the
databases are created by system programmers and are
large-scale entities. the normal decision is choosing the
database appropriate for the application. Only for very
large applications would it be likely that an entire data­
base was dedicated to an application. It should also be
remembered that users must issue an EXEC. SQLINIT, to switch
databases. That may be a consideration in designing tQe
invocation process for your application.

Within a database. tables are created in DBSPACES. There are
two types of DBSPACES, public and private. The basic dif­
ference between them 1s that anyone with the right authority
level can create a table in a public DBSPACE, while only the
owner of a private DBSPACE can create tables in it. Private
DBSPACES also require more stringent locking policies. If
there will be much concurrent access of the tables in your
application, a public DBSPACE 1s probably best. Whether to
create a separate DBSPACE for your application alone depends
on its size and frequency of use.

Figure 1 on page 3 shows a pictorial representation of the
SQL/DS structure.

2

SQL/DS Installation

Database Machine Database Machine

DBSPACE DBSPACE

TABLE

TABLE

Figure 1. SQL/DS Database Structure

DB2a In DB2. a DATABASE is not a physical entity. It is a
way to logically group tables together. If your application
is large and has more that a few tables. it may be a good
idea to group them together by defining a separate database
for them. If not, you will need to be assigned a DATABASE to
put them in.

The physical entity in which tables are created in DB2 1s
the TABLESPACE, which 1s analogous to the SQL/DS DBSPACE.

Figure 2 on page ~ shows a pictorial representation of the
DB2 structure.

3

DB2 SUbsystem

DATABASE DATABASE

TABLE
SPACE

TABLE

TABLE

TABLE
SPACE

Figure 2. IBM Database 2 Database Structure

THE TABLE

Table design is a topic to which an entire paper could be
devoted. and many papers have been written on design method­
ology for relational tables. Here we will be content to just
describe to you some of the database-specific considerations
of tab~e design.

TABLE SIZEs There are limits on the width of table you can
create.

In SQL/DS this limit is in the number of columns (255) you
can define for a table. and in the maximum number of bytes
(approximately 4070) that each row can occupy. Note,
however. that the limit in bytes does NOT include LONG
VARCHAR columns. They are stored differently in the
database. More about LONG VARCHAR in a moment.

In DB2. you can declare up to 300 columns per table. and the
maximum number of bytes per row 1s based on your page size
(4K or 32K, depending on the installation). The DB2 byte
limit does include LONG VARCHAR columns.

4

COLUMN TYPES: The SQL column data types supported by APL2
are summarized in Figure 3 on page 6. Most of the types are
fairly straightforward. The LONG VARCHAR type, however, is
handled quite differently in SQL/DS and in DB2.

In SQL/DS, the LONG VARCHAR type 1s a distinctly different
type from the VARCHAR type. VARCHAR columns can be declared
with widths up to 254 characters. LONG VARCHAR columns have
no size specification. Their size 1s fixed at 32K and there
are many restrictions as to their use. LONG VARCHAR columns
cannot be used in search predicates. no indices can be cre­
ated using them. and you cannot use them to sort your table.

In DB2, the LONG VARCHAR type is really just the VARCHAR
type with a default maximum width. A column declared as LONG
VARCHAR 1s treated the same as one declared as VARCHAR. You
can declare a VARCHAR column with any width up to the page
size of your installation. If you use the LONG VARCHAR type
to define a column, that page size will be used as the
default width.

In either database system, you should be judicious in your
use of LONG VARCHAR columns. storage must be allocated in
the APL2 SQL interface CAP 127) to retrieve data from
tables. and often it is difficult to allocate enough to
fetch more than a few rows with LONG VARCHAR columns.
Because AP 127 does not know until after the fetch 1s com­
plete how many bytes of real data are in the column, it must
allocate enough for the maximum width. LONG VARCHAR should
only be used in SQL/DS 1f the data will actually be wider
than 254 characters most of the time. In DB2, since you can
declare VARCHAR columns wider than 2SQ characters, it is
better to make an accurate estimate of the size of the data:
and use the VARCHAR declaration with that number. These
techniques will help you minimize the amount of storage
unnecessarily allocated.

5

SQL DATA TYPE DEFINITION

SMALLINT Halfword (15-bit) integer.

INTEGER Fullword (31-bit) integer.

FLOAT Double-Precision
floating point.

(8-byte)

DECIMAL lIl.n Packed decimal, where m is
the column width and n 1s
the number of digits to
the right of the decimal.

CHAR n Fixed-length character. with
column width specified by n.
where n :s: 254.

VARCHAR n Variable-length character.
with maximum column width
specified by n.
In SQL/DS. n ~ 25~.

In DB2, n S 32767.

LONG VARCHAR Variable-length character.
Maximum column width
defaults according to
database.

Figure 3. SQL Datatypes

VIEWS, If your tables are large_ or if you want certain
users or groups of users to access only part of the data
they contain_ you can create VIEWS of the tables. VIEWS are
logical tables whose definitions are based on real tables;
users can access them much as they would a real table. If
you want to use the VIEWS to update the data, however, you
should read carefully about the ramifications of doing so.
Because VIEWS do not physically exist, the update rules for
them are somewhat more restrictive than the rules for
tables.

6

THE	 INDEX

Choosing appropriate indices for your tables 1s one of the
most important design decisions you will make. because it
can have a very great effect on the performance of your
application. You can define indices on columns or combina­
tions of columns, and indices can be unique (no duplicates
are allowed in column(s) used to define the index> or nonu­
nique.

If no indices are defined on a table. each row of the table
.ust be searched every time you issue a query to find the
rows that aeet the conditions of the query. If there 1s an
index on the column you specify in your search condition.
the rows that meet the condition may be accessed directly,
thereby speeding up the query.

Another effect of an index is that it can force uniqueness
of data. If a UNIQUE INDEX is defined on a column or group
of columns, the database will not allow duplicate data to be
~nserted into those columns.

The design question to be answered with indices is when to
stop. How many indices 1s too many? If you define an index
on every column in yo~~ ~,ble. you will have direct access
to data whenever possible (there are some circumstances
where an index cannot be used). The time required to update
the table, however, will be increased. Every time a row is
updated. each index must also be updated. The correct
answer to the question is. of course. dependent on your
application. Ideally, you will define indices on columns
that will frequently be used in search co~d1t1ons. and not
define so many that updating the table is prohibitively
slow.

AUTHORITY

When using Dynamic SQL. authority .ust~be granted to users
to access the tables after they have been created. Differ­
ent levels of authority that can be granted (SELECT. UPDATE.
INSERT. etc.); care should be taken that you do not grant
more authority than 1s necessary to any user. There are many
schemes for managing authority. We l~st a few herea

•	 Grant all authorities to all users. All.users will then
be able to access and update all data. This scheme is

7

not advised unless the integrity of the data ~s unimpor­
tant.

•	 Grant SELECT authority to all users and UPDATE/INSERT
authority to a limited number of users. This scheme
offers more integrity but limits usability. All database
update requests must be routed to one of the few users
who can do them.

•	 Grant SELECT authority to all users for interactive data
access and write batch programs using STATIC SQL to do
updates. Programs written in VS FORTRAN and IBM 370
Assembler Language can be called from APL2 using the
Name Association Facility. Authority to upc'"t:-. & ~'- ..-..._~l

programs is based on the authority to run the program
rather than the authority to update the tables. This
method restricts the updates as desired. but is less
flexible since a new batch program must be written each
time different type of update is desired.

•	 Define VIEWS for groups of users and allow the groups to
update only their views. This technique may have
restrictions based on the rules for updating VIEWS.

•	 Use a central se~ver user ID. and route all requests
through the server. The server is. then. the only ID
that has authority to access the data. The server's pro­
grams can be written to check each user's requests for
correctness. and can further refine the authority scheme
by allowing users to update only certain columns of the
tables. See "Multi-User SQL Applications in APL2". Dr.
James A. Brown (IBM TR 03.247) for a complete discussion
of this scheme.

•	 (SQL/DS only) Use the CONNECT command in your applica­
tion to connect the user as the application user ID. In
this scheme. only the application user ID has authority
to access the tables. All users will be able to make
updates while running the application. but will not be
able to access the tables outside the application from
their own user ID. The updates. therefore. are
restricted to the type and format allowed by the appli ­
cation.

8

LOCKING

The types of locks obtained when accessing SQL tables. and
the duration of those locks. can affect the perceived per­
formance of an application. "Concurrency" 1s the term used
to refer to the ability to have multiple users accessing
data simultaneously. In general. with greater concurrency.
there 1s less average waiting time for data access, and thus
performance is perceived to be better.

The application can control some aspects of locking during
execution, and others are determined at design time.

LOCK SIZE

The size of the locks obtained 1s determined at the time the
DBSPACE or TABLESPACE 1s allocated. In DB2, a TABLESPACE can
be locked in its entirety. or a page at a time. In SQL/DS. a
public DPSPACE can be locked by DBSPACE, page. or row. A
private DBSPACE 1s always locked in its entirety.

With TABLESPACE or nBSPACE locking, fewer locks are neces­
sary but their scope is wider. Anyone else Wishing to access
the affected table or tables aust wait until the current
transaction is terminated before being qranted that access.

With page locking. locks ar~ obtained ~nr the pages on which
the rows accessed by the transaction reside. With row lock­
ing, locks are obtained only for the rows accessed by the
transaction. If the transaction only accesses a few rows of
the table. other users accessing different parts of the
table may have a shorter wait. If the transaction accesses
most of the rows of the table. however. the performance
impact of obtaining many locks may be qreater than that of
the waits by other users. When deciding on a lock s1ze_ the
types of transact~ons to be executed should be considered.

9

ISOLATION LEVEL

The duration of locks 1s controlled by the ISOLATION LEVEL
attribute. The isolation level for APL2 1s chosen during the
BIND (DB2) or SQLPREP (SQL/DS) step of the APL2
installation.

There are two different isolation levels. With the REPEAT­
ABLE READ (RR) isolation level. locks are not released until
the unit of work terminates with a COMMIT or ROLLBACK. With
the CURSOR STABILITY (CS) isolation level. locks are
released when the cursor moves off the area (DBSPACE.
TABLESPACE. page. or row) locked if the data on the area has
not been changed. If it has been changed. the locks a~e held
until the unit of work terminates.

Repeatable read locking quarantees that if the same data is
read twice during the same unit of work. the data will not
have changed. Cursor stability locking allows aore concur­
rency. Once an application is finished reading data and it
moves on, other users can then access the data. However. CS
also means that ~f the first application reads the data
again. it could be different than it was before. Figure 4
shows an example where data integrity could be lost.

PROGRAM ACTION DATABASE ACTION

P1 reads R1 R1 locked

P1 reads R2 R1 unlocked

P2 reads R1 R1 locked

P2 updates R1

P2 commits R1 unlocked

P1 updates R1
but R1 is different

R1 locked
but its integrity is
uncertain

Figure 4. Cursor Stability Locking

In general. applications that will do updates and depend on
reading other data to determine which updates to make should
not use CS lockinq. Applications that only read data can
benefit from the added concurrency provided by CS locking.

10

In DB2. it is possible to BIND two plans for the same pro­
gram. One approach in isolation level control is to BIND
one APL2 plan with RR and one with CSt and execute with the
RR plan only when doing updates.

EXPLICIT LOCK CONTROL

In addition to controlling lockinq with installation parame­
ters. locking may be explicitly controlled with the SQL LOCK
command. The SQL LOCK command will ~ock the entire
TABLESPACE in which the table being accessed resides.

Since SQL LOCK~ commands cause the default locking to be
overridden, another method for maximizing concurrency is to
choose the CS isolation level with page or row locking, and
use SQL LOCK commands when doing updates to insure data
integrity.

UNITS OF RECOVERY

A unit of recovery (unit of work) ends when a ROLLBACK or
COMMIT is issued by the application. At the time of the
ROLLBACK or COMMIT, the changes made by the application are
made permanent (COMMIT) or discarded (ROLLBACK), locks still
held are released. and the state of the application is reset
(queries are purged. and associated storage may be
released).

Applications should issue COMMITS or ROLLBACKS as frequently
as possible in order to free up data for other users. while
maintaining the integrity of the data. If. for example. a
transaction involves making two updates. and the two updates
are dependent on each other, the COMMIT should not be issued
until both updates are complete.

In compiled programming languages. an implicit COMMIT 1s
issued for the program if ~t term~nates normally. If it ter­
minates abnormally. an implicit ROLLBACK is issued. In APL2.
no implicit COMMITS are issued. Applications written ~n APL2
must issue COMMITS explicitly ~n order for their work to
become a permanent part of the database. An implicit
ROLLBACK (in SQL/DS, a ROLLBACK RELEASE) 1s issued when the
AP 127 shared variable is retracted.

1 1

PERFORMANCE CONSIDERATIONS

One of the most frequently asked questions is. "How can I
make my SQL application run faster?" Unfortunately_ this
question 1s also the most difficult one to answer. There
are many factors that can affect the performance of an SQL
application. some of which programmers can do something
about. and some of which they cannot. The list of items
here is not exhaustive. but each area mentioned 1s one in
which careful design can make a difference.

INDICES

As stated previously. indexing can make a measurable differ­
ence in query performance.

CONCURRENCY

In qeneral. the more concurrency your application can
achieve, the better the perceived performance of the appli ­
cation. Even though the application is not using CPU time
while ~t waits for locks. the user usually perceives the
wait as a problem with the application. Techniques for
achieving more concurrency are mentioned in the discussion
of lock1n9 above.

QUERY OPTIMIZATION

Some SQL queries are very straightforward. and can only be
written one way. When coding more complex queries. there may
be several different ways to achieve the same result. each
with different execution times. For example. the BETWEEN
keyword is more efficient than using the equivalent math­
ematical expression (see Figure 5 on page 14), and a JOIN is
less expensive than a correlated subquery. More techniques
for query optimization are covered in the database applica­
tion programmer's qU1des.

12

SELECT * FROM TAB WHERE NUM BETWEEN 1 AND 10

is faster than

SELECT * FROM TAB WHERE NUH >= 1 AND NUM <= 10

because the index i8 used .ore efficiently

Figure 5. Query Optimization

The SQL EXPLAIN command can be used to analyze query per­
formance. EXPLAIN is executed with an SQL statement as its
argument. and it places data about the query execution into
an SQL table or tables defined for that purpose. Using
EXPLAIN, a programmer can test variations of a query to see
the differences in their performance.

BLOCKING

rhe SQL lanquaqe allows only one row of data to be fetched
from the result table at a time. There are two ways that
the fetches can be b10cked to save on execution time.

SQL/DS BLOCKINGs In SQL/DS.Release 3, the BLOCK option can
be specified dur1nq the SQLPREP step of APL2 installation.
When possible. SQL/DS will fetch a block of rows ~nto a
buffer. and do the individual fetches from that buffer. The
access time to the buffer is less than" that to the real
data.

APL2 BLOCKING: When fetch~ng data from SQL/DS or DB2 using
the APL2 interface. it "is possible to specify how many rows
AP 127 should retrieve. AP 127 will fetch the desired num­
ber from the database and build one APL2 object to pass to
the user. Using a larger blocking factor will cause the
application to need fewer calls to AP 127 to retrieve the
data it needs. If. for example. your result table has 1000
rows. a blocking factor of 20 w111 require SO AP 127 calls
to fetch the entire table. Change the blocking factor to 500
and only two calls to AP 127 will be necessary.

13

When deciding on the APL2 blocking factor. storage· needs
must also be considered. While it may seem smart to set
blocking to a very high number to minimize the AP 127 calls.
larger blocking factors result in larger storage require­
ments. If your tables have many thousands of rows. a compro­
mise will probably be necessary.

CODING TECHNIQUES

There are some additional coding techniques that can aake an
application more efficient in its use of the SQL interface.

USING HOST VARIABLES. If the same query can be used more
than once in a unit of work by using a host variable for
selection criteria instead of a literal string. the total
cost decreases. because the cost of the prepare can be split
among all the calls rather than repeated for each call.
Figure 6 on page 15 shows an example.

Prepare the query

DELETE FROM TAB WHERE NUM ·- ?

or

DELETE * FROM TAB WHERE NUM = a1 (in APL2)

and execute it several times, rather than executing

DELETE FROM TAB WHERE NOM = 1
DELETE FROM TAB WHERE NOM = 52·
DELETE FROM TAB WHERE NOM = 99

Figure 6. Using Host Variables

USING THE LOWEST LEVEL OF THE INTERFACE a When several lev­
els of access to SQL are available. choose the lowest level
to avoid unnecessary overhead. In APL2. access to AP 127.
the SQL interface, can be achieved using an end-user work­
space function (SQL>. or with application programmer func­
tions <PREP, OPEN. etc.>. The SQL function.must parse the
statement. choose the correct application programmer func­

tions. call them, and check for errors. While it 1s an
excellent tool for ad hoc queries and testing. a production
application will have better control and performance if it
uses the direct access and adds its own customized
error-checking.

OUTPUT FORMAT' Sometimes several different output formats
are available. In APL2. the result data can be retrieved in
two formats. MATRIX and VECTOR. The VECTOR format requires
less space and therefore may improve the performance of the
fetch. rhe MATRIX format is a more flexible format for
aanipulat10n in APL2. If the application can use the VECTOR
object to do its computations. VECTOR may be the format of
choice, and the larger the result tables are. ~h" ••~~~_~

the savings will be. Figure 7 on page 16 shows the APL2
DISPLAY of the two formats.

DISPLAY MATRIX DISPLAY VECTOR
.+------------------------ .+-~--------~--~~--------- .
+ .+---. .+---.--. I .+------. .+----. .+--.

ICROW I I PROD I IPP11 I +CROW I +PROD I +PP11
' ___ I,---_. ,----, I IINGRAM I IADMIN I IPA21

.+-----. .+---- . .+--. I I JACKSON I IPROD 'I I
I INGRAM I IADMINI :IPA21 I IMULVEY I I SALES I IPS21
,------, ,-----, '---' I t -------. -----. • ---' 1•

.+------ . .+---. .e . '€------------------------,
I JACKSON I I PRODI I I ,-------, ,----, .-'
.+-----. .+----. .+-- .
I MULVEY I I SALES I IPS21._----_. ,-----, '---'

€-----------------------­
Figure 7. AP 127 Data Formats for SQL

15

ERROR-HANDLING

Error-handling. of course. is a part of every application
design. In an SQL application. there are two levels of
errors. There are errors from the programming environment
(in APL2. AP 127) and errors from the database (SQL/DS or
DB2). Error analysis can be tricky in SQL applications,
especially if the application end users will enter SQL
statements themselves. Determining whether the error was
caused by the application or by the user can be difficult.

The APL2 interface. AP 127. provides the application with a
numeric return code vector indicating the source and type of
the error and the error code itself. Using this return code
vector. several facilities are available to aid in
error-handling.

THE SgLCA

The SQLCA is an SQL control block which prOVides error
information. The fields of most interest to the application
programmer are the SQLCODE (the error code). SQLERR <message
tokens) and SQLWARN (warning indicators).

The database application programmer's guides contain
detailed information on tha structure of the SQLCA and the
meaning of its fields.

In APL2. the SQLCA can be obtained using the AP 127 function
MESSAGE.

MESSAGE TEXT RETRIEVAL

DB2 MESSAGE TEXT. DB2 provides an assembler routine.
DSNTIAR, which accepts the SQLCA as its parameter and
returns formatted message text. The MESSAGE function of AP
127 calls this routine automatically and returns the format­
ted text along with the SQLCA.

16

SQL/DS MESSAGE TEXT: SQL/DS provides HELP text for all
SQLCODES and other SQL keywords in SQL tables shipped with
the SQL/DS product. These tables can be accessed by the
application using SQL SELECT statements.

AP 127 MESSAGE TEXT: If the return code vector indicated an
AP 127 error rather than an SQL error. the MESSAGE function
will return to the appl~cat1on the formatted text of the AP
127 message.

WARNING CONDITIONS

In addition to error conditions. SQL may also return
warnings to the application programmer in the SQLCA. 'Warning
conditions are identified by a positive SQLCODE (errors give
negative SQLCODES) or by the character "w" in one of the
SQLWARN fields. When a warning is returned. a condition
that mayor may not be indicative of a problem exists. For
example. a DELETE was issued. but no rows in the table met
the criteria specified in the DELETE.

17

APPLICATION PORTABILITY

There are two IBM relational database systems. IBM Database
2 (DB2) runs in the MVS environment. Strucured Query Lan­
guage/Data System (SQL/DS) runs in the VM environment. In
both databases. the SQL language 1s used for data access.
There are. however. differences that an application program­
mer must be aware of.

DATABASE CONFIGURATIONS

The mechanisms used to set up the environment are different
in the two databases. As we noted above. DB2 has the
TABLESPACE. SQL/DS has the DBSPACE. and the two systems have
a different concept of the DATABASE. Authorization privi­
leges are only partially compatible. and user access to the
system 1s achieved differently in DB2 and SQL/DS. As a
result of these differences. the installation and setup pro­
cedures for an application must be different for the two
systems.

CATALOG TABLES

Catalog tables are tables installed with the database system
that keep track of the status of the system. For example.
one catalog table keeps data on· each table created. While
the SQL/DS and DB2 catalogs contain similar information.
their naming conventions and structures are different.

If your application uses information from the catalog
tables. it 1s necessary to have separate routines to access
the tables in the two systems. Another alternative 1s to
define VIEWS of the system tables your application uses dur­
ing the installation of the application. The creation of the
views would be different in the two environments. but the
code that accessed the views could then be the same.

18

SQL INCOMPATIBILITIES

There are not a great number of SQL language incompatibili­
ties between SQL/DS and DB2 other than the configuration
differences already mentioned. Some SQL extensions exist in
SQL/DS. however. that are not supported in DB2. One is the
CONNECT command. a command that allows connection to the
database with a user ID other than the VM user ID. The set
of commands referred to as EXTENDED DYNAMIC SQL 1s also not
.upported in DB2. Extended Dynaa1c SQL allows an interac­
tive program to prepare queries and .ave them in the
database to be executed at a later t1ae.

NOTE: APL2 supports CONNECT (an error code is returned if it
is used in the DB2 environment), but it does not support
Extended Dynamic SQL.

A co.plet~ list of the SQL incoapat1b111t1es between SQL/DS
and DB2 can be found in the Development Guide for Relational
Applications.

ERROR CODES

In general. 9iven a specific error cond~~on, both DB2 and
SQL/DS will return an error code. The number of the error
code, however, is usually not the same. An application that
is to be portable should not depend on any specific
SQLCODES. but rather have general error-handling routines.

19

CONCLUSION

This report has discussed various topics in SQL application
design, at a very high level. in order to help programmers
become more aware of the issues they will encounter. More
detail 1s available on all these topics and other topics of
interest to the SQL application programmer. The bibliogra­
phy lists the references that were used in preparing this
paper. In addition. the SQL/DS. DB2 and APL2 products each
have a complete library of publications available for fur­
ther research.

•

20

BIBLIOGRAPHY

1.	 SQL/Data System Application Programming for eMS
(GH24-S068)

2.	 SQL/Data System Planning and Ada1n1strat1on for VM
(5H24-5043)

3.	 IBM Database 2 Application Programming Guide for TSO
(SC26-£1081)

4.	 IBM Database 2 Reference (SC26-Q078)

5.	 Development Guide for Relational Applications
(SC26-4130)

6.	 APL2 Programming. Using Structured Query Language
(5H20-9217)

7.	 Multi-User SQL Applications in APL2 (~R 03.247)

21

•

•

