
This work was presented to the gra ~2:2

school of Yale Uni.versity in candi ac/
for the degree of Doctor of Phi'oso~hj

Tentative Compilation

A Design for an APL Compiler'

May 1978

78-CS-013

Terrence C. Miller

Institute for Information Systems, C-021

University of California, San Diego

La Jolla, CA 92093

Report 78-C5-001

Dept. of Computer Science

Yale University

New Haven, CT 06520

Research Report No. 133

Th; s wo r k ~V ass tlPpo r ted in par t b \.: t 1-=
~1obi 1 Foundati on

ABSTRACT

Tentative Co.pllatlon
A DestKQ for an APL Co~pller

Terrence Clark Hiller

Yule University. 1918

Ib~ proaralllBtng language A.l'l. has obtaint!d a grovlna followJolo Much

of 1 ttl popular lty can be asc r lbell to I t8 tee acneSR (co.plleated acta

can be described briefly) and composabl11ty (complete a18orlth•• aa,

be ~Xr(~~sed as a alnale unit - the one-liner). However, the user aa,

pay a high price for thest! featurl:s In te.l.ms of Inefficiency of

execution. particularly In terms of memory space required. This

di::.:..c[ratloo describes the destgn of 8 compiler for APt. which

813,nlflt-anlly lO\lcctt the coat of An. execution.

l1h. Je~tgu includes a notation wlth which the actlous required (or the

t!xccullon of the mdJoi'lty of th~ Al1.. opelatoI8 flay be expcea.ed.

1(an3for~dtlun9 arc JpplteJ to tbe prolra. expre8~ed In thla

Inlcr~cjlate notatiou. TIle transformations re-order Independent

Cd 1c\llH lon~ fUf a g lven opctat Ion. and lntenDtx calculat 1008 fc)r

actJcral Ulh!rdtton!ta The intent fa to p[oduce an intermedtate result

only ","~n Il t.i nceded (thus avoiding litorage) and only if It

cOlltrlbLJtt!9 to (h~ (IIUJI result (thu:J elltllnatlu8 UlllI~ccs"Jilry

c.llculcltloos). Ex<1lbpleti !tho,", thdt significant Bdving_ at~ obtained ..

l"hc:: out put of th~ COLJpt 1er 19 expres,!I,ed 111 tems of "ladders" - •

coullol st ruclure d~~lgl1t'd by AI au h~[' lIs to slmpll(y AVL execut lon.

The l.:umpller can gcot!cate cnde for the "ladder machine" dctllgned by

U. a I 1C 8 Htilt ~ r •

Tentative Co.pit.tlon:

A Deltan for an APL Co.pller

A DIII.ettatlon

Pre8eoted to tbe '.cult.y of the Graduate School

of

Yale UnlverRity

in Candidacy for the Degree of

Docto[' of Phllo8ophy

by

Terrence Clark Hiller

tidy, 1918

(£) Copyright by Terrence Clark Hl11e~ 1978

ALL IIGBTS RESEIYID

ACKNOWLEDGEHENTS

1 a. grateful to my advtsor. Alan Perils. for suggesting this

problem and for asktr'll the right questions to keep the work 8otng. The

other .embers of my coemtttee. Ned Irona and Larry Snyder. provided

valuable insights 10to how this work could be effectively presentcda

The theals work of Chartes Htnter provided the hardware environment

for this software destgn. H18 eucceS8 .ade ., work possible. H~. along

with Hike Condry. cootrtbuted .any valuable Bugge8tions. The teat of

tb1. theel. vae prepared using 80ftware auch Improved by tbe work of

Steve Rel8s.

Finally. 1 would 11~e to .cknowl~dBe th~ 8upport of my wife. OeniBe

Sulltvaae She contributed Ireatly to tbe author#••pelliog. grammar •

• nd sanity.

lhl, research vaa perti.ii, 8upported by the Hob!! roundatlon.

- 111 ­

~ ~- ~ ..--_."""",",-__-..-_-_.....
:==~~-- ..-..........f....::-~-.:::..::- •• --- _.... . r-. ..~'"'~~............--r-.~~ ~-

TABLE or CONTENTS

2.1.2. :1 Reshape 32

2. 1.2.4 Function Ent!:")' 32

2.1.2.5 Function Return))

2.1.3 Operation Dimension 34

TABLE OF CONTENTS
2.1.4

2.1.5

Index Origin

Length

35

. .)~

1. INTRODUCTION

1.1 TUE PROBLEM

1.2 PREVIOUS WORK

1.2. I Simple Interpret.er

1.2.2 Translation Into Algol

l.2.3 Beating And Drags1ns (Interpreter)

1.2.3.1 Beating

1.2.3.2 Drag-Along

1.2.4 Beating And Dralltna (Compiler)

1.2.~ APL Emulator

1.3 A tlUtTI-LINF. CotIPILER

o

18

18

.. 20

.. 20

• 20

21

21

.. 21

23

• 21

24

2.1.5.1

2. I.~. 2

2. I. 5.)

2.1.5.4

2. 1.5.5

2.1.5.6

2.1.5.7

2.).6 Value

2.1.1 Type!

2.1.7. 1

2.1.1.2

2.1.1.3

Co_pression

Take And Drop

over-take

Reshape

funct ton Entry

Function Return

Hultlple Assignments

Hultlple Assignment

}'unction Entry

Function Return

.. 36

36

• 16

31

]1

31

~ 31

•• 38

)8

..)8

39

)9

2. CoMPILING A DYNAIliC LANGUAGE 27 2.1.8 POAltlon •)9

2. 1 RunH tiGS 30 2.1.9 Summary Of Binding Problems .. t.o

2.1. I Valence • 10 2.2 OVERViEW UF COHPlI.ATION • • 4)

2.1. 1. I Function Entry • 30 2.2.1 Parsing • 46

2. I. a. 2 Function Call 10 2.2.2 Functlon Calls • • 46

2. I. I.) Multiple Definitions]1 2.2.) Control Structure • ~8

2.I.l Rank • 11 2.2.4 Conate.lnt Propagation • • 48

2. 1.2. 1

2.1.2.2

Hultiple Aselanments
\

Transposition

• 32

• 32

2.2.4.1

2.2.4.2

Rank

Type

• • SO

Sl

- 1"4 - - v ­

TABLE OF CONTENTS tABLE OF CONTENTS

2.2.4.3 Length 51].) STREAM GENERATORS 79

2.2 .. 4.. 4 Value 52). J. 1 Bea t I ng And Pragg log .. 81

2.2. S ldioa. • 54 3.3.2 Operator Transposition 82

2.2.6 Operator Conver.loo 56 3 ..) ..) F 11 t e rIng • 8~

2.2.6.1 Take Us- Drop • 56 3.1.4 Merging • 87

2.2.6.2 Subscription • 56 1.4 STRt.AH Gl-:NERATOR GRAPHS 90

2.2.6.3 Transposition 56].4.1 Loop Nesting • 91

2.2.6.4 Ravel • 56 3.4.2 H~ader Node 91

2.2.6.5 Reshape .. 51 3.4.3 Raveled Nesttng 92

2.2.6.6 Single Dimeoslon Operatore • • 58 J. 4. 4 Splice Order •• 92

2.2 .. 6.1 Lamination 58 3.4.5 Co-routine Graph • 9S

2.2.6.8 Functlonale 58 3.4.6 Control Structure Sanity 96

2.2.6.9 Scalar Conversion 58 3.4.1 Loop Indices 101

2.2.1 Oata Dependency 58 3.4.8 Loop Limit 101

2.2.8 StreaM Generator Creation 59 3.4.9 Array Stor3&e Pointers 103

2.2.9 Strea. Generator Reflne~ent .. 60 3.4.10 Storage Spacing 105

2.2.10 Interpreter Instructioo. .. 62 3.4.11 Address Increments 'OS

3.4.12 AddreS9 Calculation lO~

l. STREAM GENERATORS'- A HODEL FOR THE EXECUTION or APL • • 6]
3.4.13 Sper.lal Labels 106

].1 ARRAY OPERATION EFFICIENCY
 • 63
3.4.14 Address Generation SanIty Ifl8

3. 1. 1 Dragging And Beatlns • 65

3.4.15 Loop Limit Validity III

J. 1.2 Operator TranapoaltloD • • 66

3.. 4.16 Sequencing Correction Ill.

3.1.) Filtering • 61

3.4.17 Example8 liS

3.1.4 HCl"gtng • 69

]. 4. 17.' Fille rIng liS

1.2 ARRAY ACCESS AND LAUDERS • 10

).4 .. 11.2 Hergtn8 116

3.2.1 Array Storale • 71

].5 COMPILER OBJECT CODE 111

3.2.2 Ladders 12

- vi - - vii ­

--- ~--....-~._---- ----- .._- '~--- -......._. ~_~.__-"'_4 _ _.... ~_ ~ r

TABLE OF CONTENTS TABLE OF CONTENTS

4. BUILDING STREAM CENERATORS fOR APL EXPRESSION 121 4.2.] Honadic Operators 144

4.1 GRAPH TRANSFORMATION 121 4.2.4 Dyadic Operators 145

4.1.1 Command. .. 124 4.3 ELiMINATION or UNNECESSARY CALCULATIONS 145

4.1.1.1 Adjust 124 4.4 REUUCTION Of TUlPORARY STORAGE 147

4.1.1.2 Check 12S 4.4.1 Generation And Use 150

4.1.1. J Overlaying 125 4.4.2 Graph Order for Maximum Overlay 15]

4.1.1.4 Transpose 121 4.5 ELIMINATION Of EXTRA CONTROL STRUCTURE I ~9

4. 1. 1.5 Re\lereal 128 4.5.1 Syncronization Within Sub-graphs 159

4.1.1.6 Herging 130 4.5.2 Loop Jamming 162

4. I. I. 1 Nesting III 4.5.3 Alias Elimination 162

4. l. 1.8 Alternatives III 4.5.4 Tight Llnkase Of Called functions 163

4.1.2 Demons ,. 116 4.~.5 Subroutines 164

4.2

4.2.2.2 Strea. Generator Subroutine

4.2. I Operands

4.2.1. I Array.

4.2. 1.2 Scalacs

4.2.2 functions

4.2.2.1 Separate Unit

4.1.2.1 Address calculation

4.1.2.2 Empty Nodell

4." 2.) Pointer Reset

4.1.2.4 Redundant Cbolces

4.1.2. S Evocation Order

4.1.2.6 Scalar Ope['ands

4.1.2.7 Repeated Calculation.

4.1.2.8 In-Line Asslan.ent

CRfATION OF STRfAH GENERATORS

• • .. • •

111

1)1

131

137

138

138

140

140

141

141

141

141

14]

14)

141

5.

5.2.8 Example 8 - Filtering

5.2.9 Example 9 - Herging

5.2. I Example I - Prime Numbers

5.2.2 Example 2 - Roman Nuwbera

5.2.3 Example) - J Choose N

5.2.4 Example 4 - Symbol Table Update

5.2.5 EXdmple 5 - String Search

5.2.6 Example 6 - Selection

THE EXECUTIUN OF STREAH CENERATORS

5.1 EHem ION ENVUlONtIENTS

5.1.1 T['anRlatlon Into Machine Language

5. 1.2 The Ladder Machine

5. 2 TRANSLATION EXAf'WLES

- Transposition5.2.1 Example

,. ,. •

•

•

•

•

•

•

•

•

•

•

l70

111

114

174

115

lIS

116

116

IbS

(6)

166

161

Ib9

110

- yilt - - ill -

TABLE OF CONTENTS

S.2.10 SUalDary

5.2.10. I Code Sl~e

5.2.10.2 Array Reference. (Ti.e)

~.2.10.) Temporary Stor_le

~. 1 CUHf [lEI OVERIIEAD

5.3.1 Data Dependency

5.J.2 ConBtralnt Prop_latlon

S.3.l Strea. Cenerator Refinement

6..	 CONClUS IONS

6.1	 THE COHPILER

6.2	 FlIT URE ,",ORK

A.. 101015

A.. I IDIOHS

A.l.1 Niladic

A. 1.1.1 Rank

A.I.I.2 Indices Of Array

A.1 .. 2 Honad.tc

A.I.2.1 Self Indexing

A.I. 2. 2 Extre.u. Position

A.I. 2.) Span

A.I.) Dyadic

A.I. l. I End Around

A. 1. J. 2 firet-found

A.i.l.] Bounded Extre.ua

A.1.3.4 Take-tIll

A.I .. l.5 Deley

-	 J[­

, 11

117

•• 118

179

180

180

180

180

182

• •	 • 182

184

••	 186

186

186

186

186

181

181

181

181

188

188

188

•	 188

188

188

TABLE OF CONTENTS

A.l.J.6 Select Index • • • • • .. • • • ..

B.	 CONST.AIMT PROPAGATION

1.1	 CONSTRAINT PROPAGATION PROCEDURE

8.1.1 Node Propertie.

B.I.2 Property List

I. 1.2.1 Generated Infon-atlon

B. 1.2.2 Propagated Jnfor.ation

B. I.) Property Insertion

B. J. 4 Algebra Of Pr~pertles

B.l.5 Termination For Constraint Propagation

1.2	 SYNTAX CONSTRAINTS

8.2.1 Honadic Operatore

B. 2.1.1 Honadie Arlth~etlc Operatlonl

8.2. 1.2 Not

8.2.1.3 Size

B. 2. 1.4 Index Generator

B. 2. 1.5 Ravel

11.2.1.6 Reduction

B. 2. 1.7 Scan
8.2.1.8 Reverse

8.2.2 nyadlc Operators

B. 2. 2.1 Dyad Ie Arith.e~Ie Operatorl

B. 2. 2.2 Dyadic Logical Operators

8.2.2.3 Dyadic Equality Operators

B. 2. 2.4 Dyadic Relational Operatora

8.2.2 .. 5 Re.hape

-	 xl ­

• •	 • • 188

189

189

189

192

19j

194

19~

200

202

. • :0)

20)

201

20J

20]

•	 204

204

•	 204

•	 204

•	 20t.

• •	 20S

205

20S

• • • 20S

206

•	 206

•••

TABLE OF CONTENTS TABLE OF CONTENTS

1.2.2.6 Catenation 206 C.4.1 Addres8 Calculation 220

B. 2. 2. 7 Indexing • 201 C.4.2 Re-orderlnl 220

8.2.2.8 Inner Product • 201
D. STREAM GENERATORS AS IMP-tO • • • • • • • •••••• 9 222

B.2.2.9 Outer Product 207

B. 2.2.10 Take • • 207 E. STREAK GENERATORS AS LADDER KACHINE CODE • • • • • • •••• 228

B. 2.2. 11 Drop • • 208
F. STREAK GENERATORS FOR THE APL OPERATORS 2))

8.2.2.12 Transpo8e • 208
r.l DEFINITIONS 2J)

8.2.2.11 Rotate • • • 208
F.2 TilE OPERATORS 234

8.2.2.14 Compress • • • 209
F. 2. 1 Monadic Operators 234

B.2.2.15 EKpand 209
f. 2.1. I Scalar Ope£atloD 2)4

B. 2.2. 16 Index • • 209
F. 2. J. 2 Take 234

8.2.2.11 Membership • • 209
F.2.") Drop 2]~

8.2.2.18 Decode 210
F.2.1.4 Reverse 2}~

B.2.2.19 Encode • 210
F. 2.1.!t Subscription 216

c. ARRAY ADDRESSING WITIt LADDERS r.2.l.6 Tranapo.ition• 21t 231

C.l ADDRt:SS S[~EtlCING ••••• F. 2.1. 1 Reduction 238• 211

C.I.l Storage Spacing - G • 212 F.2.1.8 Scan 2)9

C.l.2 Pointer Increment - DELTA F. 2.1.9 Iota 240• 211

e.2 TUE SELECTION OPERAtORS • • 215 F. 2.1.10 Ravel 240

C.2.1 Take ••• 215 f. 2. l. 11 Shape 241

C.2.2 Drop F. 2. I. 12 Uupllcatton 241• 216

C. 2.) Subscription • 216 F. 2.1.13 Reshape 242

C.l RE~RnERING F.2.1.14 Scalar Creation 242• 211

C.l.l Transpoee '.2.1.15 Boolean Creation 243

<:.3.2 Reverse '.2.1.16 Self Indexinl • 243

• 218

• 218

C.4 STREAM GENERATORS . 219 r.2.1.17 Extre.u. Position 24)

- xii - - xilt ­

TABLE or CONTENTS

F.2.1.18 Span

r.2.1.19 Rank

P. 2.1.20 Indices Of Array

r40 2.1. 21 Scalar To Vector

'.2.2 Dyadic Operatora

r .2.2.1 Scalar Operation

F. 2. 2. 2 Subsc rt ptlon

r. 2. 2.3 RotatioD

P. 2. 2. 4 CompreslI

F. 2. 2• .5 Expand

F.2.2.6 Catenation

F.2.2.1 Index:

F.2.2.8 Membership

r. 2.2.9 Outer Product

F.2.2.10 Inner Product

F.Z.2.20 Bounded Eatre.u.

'.2.2.21 take-ttll

F.Z.Z.2l Delay

-	 xlv ­

tABLE or CONTENTS

•	 241

F.2.2.2l Select-Iodex 261

244

F. 2.2.24 Successor • 261

•	 • 244

G. EXAMPLE STREAK GENERATORS 262
•	 • 244

G.l EXAMPLE I - PRIME NUMBERS .. • 262
245

G.2 EXAMPLE 2 - ROHAN NUMBERS • 264
•	 245

G.l EXAMPLE) - J CliOOSE H 2tJS
246

247
 G.4 EXAMPLE " - Snt80L TABLE UPDATE 215

G.5 EXAMPLE 5 - STRING SEARCH • • • .. • •••• 276
248

G.6 EXAMPLE 6 - SELECTION 278
249

G.7 EXAMPLE 7 - TRANSPOSITION • • • • .. • • • •••• 219•	 • 250

G.8 EXAMPLE 8 - fiLTERING 260
•	 • 2~1

G.9 EXAMPLE 9 - HERGING • • • • • .. • • • • • • • • • 282
•	 252

2~1
BIBLIOCRAPYY

•	 2~4

255

•	 256

257

•	 259

259

.. 259

2S9

260

260

260

•	 260

261

-	 xv ­

284

LIST OF FIGURES

3-12 - Address Generation Errora " III

3-13 - Loop Li.lt Errors " " " 114

4-1 - The Tranalator " 122

LIST OF FIGURES
4-2 - Adjust and Check .. " 126

2-1 - language Changes " .. " " " 29
4-3 - TeaDaposition " " " 129

2-2 - Operations Hot eo.plled .. " .. " 42 4-4 - Herging " " " " 132

2-3 - Sample Execution "" """""" 4S 4-5 - Nesting .. " """" " " .. IJ4

3-1 - Ladder Fixed Part " " " .. " • .. 75
4-6 - Alternatives " " " " .. " .. " " " .. " 136

3-2 - Ladder Splices " 77 4-7 - Evocation Order Demon 139

3-3 - Hulti-Pointer Ladder " " .. " 81 4-8 - Translation of an Operator " " 142

)-4 - Ladder With Multiple Nesting 89 4-9 - Unnecessary Calculation. 141

3-5 - Nesting Graph " 93 4-10 - Generation/Use 154

3-6 - Raveled Nestiog 93 4-11 - Generation/Use Order 1~8

3-1 - Splice Order " " 96 4-12 - Synchronization Within Sub-graph. " " " " 161

]-8 - Evocation Graph 96 4-11 - Loop Jamming 163

1-9 - The Super Tree ... 98 8-1 - Constraint Propagation " " 198

3-10 - Control Structure Errore .. " " 100 B-2 - Set Algebra .. " " "" .. "" ,,. 201

3-11 - Control Path to Node I " " 102 G-l - Example 1 " • .. • .. " " " • • • • 269

- xvi -
- xvii -

19

CHAPTER I

INTRODUCTION

1.1	 THE PROBLEM

The programmtng language Art haa achieved a Icowina follovlnl (.aetly

outside the computer science community). In this theai. we present.

d-.:slgu ot a sy:3te.. for executtng the langUAge which atte.pte to

alleviate 90me of the difficulties that have been cited a. It.itio. the

cont lO'led &r","'th of the language. In part tcu)ar we address the

f 0110'"' I ng proble_.If:

..	 The interpretative execution of API.. prolra•• can be slow co.pared to

that attained with program8 cOCIplled frOil lanluaaee such •• FORTRAN

or Algol 60 (121.

2.	 API. functions will often aenerate tarae a£raya 8. intermediate

results on the way to a 8aall array (or even a 8calar) 88 the

answct. An e.ample of 8uch • functlon 1. liven in chapter' 5.

1.	 The &tyl~ of APL program.tng aost efficient for an experienced user

(full use of the power of th~ erra, operdtlona to ellmlnate explicit

control structure aDd Improve brevity (201) tend. to WO[8en the

problems ltsted above.

- 18 ­

INTRODUCTION

4.	 Current i.pIe.entation. which process functIons on • line by liDe

b.slB encouraae the use of 1001 lines to achieve efft~ieDcy.

Readability suffera.

n,e en" iron_eot for which the compiler Is designed la that of • stngle

processor whose instructions act on individual data Item. only. It bas

also been designed to be .ost useful 10 either of tvo clrcumstaoces:

I.	 ~.en APL 1. used In a production altu8tlon. a liveD functloD will be

executed repeatedly. Thus the cost of compiling the function (eveD

If high) will be offset by the 8a~lng8 In execution time. Also the

tRllOt array. will tend to be large In Much a 11tuarton. As the

execution time rieea. the significance of compiler overhead

di.lnisne8. ~~n the outer-product operator la used 10 place of

ex.plicit looping. the .I&e of the inrermedlate result. "'Ill often be

a power of the size of the Input. Given llrge Inputs. actual

ato~age of Bueh Intermediate value. 1. Dot feaalble •

2.	 At the other end of the scale ta tbe .mall personal APt ey.tem for

vh ich storage apace 18 the crt t teal resource tlit"1. Many f unct tooa

can not be executed If Intermediate results must be etored In

meaory. n,e .torage required fo[' the more complicated APt .yatem 1.

not of co_parable importance. It can be In the fo~. of read-oo)y

Incmory which 1s of much lO\ler COBt. The user 01 such a system 18

aleo tn a better posltlon to tolerate lonler execution tJ.e. (Wben

all else falls. you take the BystCil ho.e. and key In tbe funetton

Juat before gotng to bed).

21 IN1IWUUf;TIUN	 20

1.2 PREVIOUS WORK

Curreotl, available i.pie.entation. of Apt have atteapted to 801ve eo••

of the problem••entfoned above. In the .eetIOD. below we deacribe

re_alDlng weaknesses which aotlvated the destgo of thl. theeia.

1.2.1 S1mple Interpreter

n,e ortglnal Implpmentatlon of Aft II) and many that followed ~ere

Interpreters which execute each operator separatel, 88 encountered. All

Inter.edlate results are etored tn .emory. Great speed t.prove.ent hae

been obtained by the fine tunlnl of the routines for variou8 operatore

and by the recognition of short epectal pattefo8 of operattona 1221.

Our deSign also recognizes a ••all nu.bet of spectal patterns (which we

call nld lo.s"). HO'olever ••• Is ahown In chapters 3 and 5. the reduction

of temporary storage may require Interleavlna the individual

calculations of a sequence of operatlona. fro. the exa.ple. presented

tn chdpter It t. clear that the sequences 01 operation. which can be

profitably Intecleaved are too 10nl (and thus too numerou8) to be

recognized as epecial cases.

1.2.2 Translation Into Algol

Jenkins (121 Implemented a translator fro. a sub-set of APL into Algol.

He	 \Jas forced to restrict lhe langUAge aa that co.pilatlon could take

place before any dara vaa avaIlable. and eo a c~piled .odule would

alway. remain valtd. The features of APL which present difficulty tn

INTRODUCTION

that regard are discussed In chapter 2. Yhile the compiled code is

algniflcantly faster t'lan interpreted APt for scalar calculations the

advantage almost dtsappear. foe large arraye. Jenkins did not

Investigate the reasonA for the inefficiency of array calculation.

However, experience latned In thla implementatioD suggest that It

resulted fro. sequentiaa execution of operatofs which require large

a.ounts of te.porary .torale. and Ira. the coat of arra7 eleaent addresa

leueratlon.

1.2.3 Beating And Dragging (Interpreter)

In hie 1910 theais "AN APL Machlne" (II Philip Abr••• toveetlgated the

eemantic8 of APL and developed two techniques for improving execution

efficiency. They are:

1.2.).1 Bealing - Abrams recognized that a eet of operations he called

selection operations (take. Drop, Reverse. transpose. and

Subscdptton by vectors of the foe. AtBIC 1C) could be 1.plement~d by

changes to the parameters used to senerate array ttem addre86es. and

did not require actual creation of the result array. He also sho\Jed

that an expression 10 which. selection operation was applied to the

result of certain operatora could be transformed 80 that selection

(~lich may decrease but never increase the number of ele~ents) was

applied before the operation, posllbly reducing the number of

calculations.

1.2.3.2	 Dras-Along - Abra.s· Interpreter deferred execution of

operator••e lana 8S possible. PO.8lble .eant:

"'---...... ~~.....-..--.-._-------...,.,	 ,

INTRODUCTION	 22

I.	 The value was not required for assignment to a variable.

2.	 The function mappins position in the result to position in the

input was simple (Ie. Grade-up was not deferred since the

functton would be "aort").

1.	 The calculations for each resultsnt array position were

I ndepend~nt.

this resulted In savings of storage of intermediate results and

improved opportunities for beating.

To a large extent the work of thts thesis is an extension of the work of

Abrams. Three weaknesses 10 particular are addressed:

1.	 An Abrams interpreter will always store the operands and the result

of certain operatorB, even thought it 18 possible to defer them in

maay cases. The ~perator8 include Compression, Expansion,

Catenation, Rotation, general Subscription, Scan, Encode, and

Dccode.

2.	 Function lines arc proce9sed independently. We will see tn chapter

~ that Important storage savings can result from the elimtnatlon of

varldblcs that are used ooly to carry a value between two tinea.

3~	 Even If assignment occurs In the Interior of • line, it is never

deferred. No consideration is given to e11.1nallng storage

specified by the UBer when he recognizes a common Bub-expreBsion.

The elt..toatlon of user specified stor8ge requires analyst. of the

INTRODUCTION	 2)

entire function to verify that the data Is not used elsewhere. That

analysl8 would not be feasible for an Interpreter.

1.2.4 Beating And D~agglng (Complier)

The APt for the Hewlett Packard HP-)OOO 11 computer 1. a compiler (131.

In contrast to the approach of Jenk.ins, DO restrictions are placeJ on

the APL to be complied, and no declarations are required. Compflatton

Is deferred unttl the execution of • line 19 required. At that time

properties of the tnput data are avatlahle to guide compilation. ~I~a a

line Is ex~cuted a second ttme, the properties of the new Input must be

inspected to verify that the previous compilation remains valid. This

technique, which has also been described by PerIls 1191, Is an ex.tenslon

of the concept of incremental compilation as described by Kitchell (lB).

The existence of the IIP-}OOO complier 1. Important to the wor" of

this thesis in that It disproves the contention (II) that APt can not be

compiled. llowever, It shares the ltrlttat Ions of the interpret3t lye

implementation of Abrams work. The compiler does not consider more thaa

one line at a time, nor does It eli.lnale user epeclf:ed storage.

1.2.5 APL Emulator

Significant speed improvements over an Interpreter lIay be obtaincd by

writing micro-programs to directly execute lome of the APL oper.ltol"S

«(or example Ill). However, tbi. approach prevents the tnt~rleavlng of

operations required for beating and dra881n8~ The emulator will 8till

24INTRODUCTION

pe(fo~ all the unnece88ary operation. done by the lnterpre~r. only

fa.te~. A180 DO ~educttoo 10 teeporary atoraae 1. po•• tble.

I.]	 A MULTI-LINE COHPllER

The design presented here is an extenelon to the UP-3000 APL e~pller

which differ- froa that .yste. to the follow!nl vays,

1.	 ~,~n a function 18 e~ecuted, the coapller vill dete~ln8 if several

lines can be cOllptled tOllether 88 • unit.

2.	 The execution of a larger clas. of operatora (lnclud1na asslgn.ent)

can be deferred.

1.	 If the deftnitlon of a vartable 18 active only within 8 Bingle

complied unit. the elimination of that storage will be attempted.

In o£der to lower the f£equency of recompllatlon and increase the size

of compiled units (both become lIlore Important 88 cOl.piler overhead

lncrca»ee), reetc letlon- are placed on tbe input langu8le. They are

detailed 1o Chapt.er 2, and are less severe than those proposed by

Jenkins. Chapter 2 desf:rlbcs the compilation procedure.

In cOIl..on '11th the 11"-)000 compiler, this cOlapllel' .1l"'e8 no ntte.pt

to do .athe.~tlcal 8"81y819 of the usere alaorlthm.

The object code of the co.piler 1s the description of a network of

ladders - • control etructure conalstiol of nested loops connected by

co-routines destgned by Perlll (191. The ladder etructure w•• de.la lled

INTRODUCTION	 2~

to facilitate the accese to array ele.entl and the i_ple.entatlon of the

.electlon operation.. Chapter 3 describe. ladder. In detail and

discusses the extensions needed to ..ake po.sible the defelllent

(interleavinl) of the additional operatora listed above. The process of

handling each API.. operator end .Inl.fzing 0"e£al1 temporary 8to('age 1.

described in chapter 4.

We consider the .aJor cont£lbutlons and accomplish.ents of tbls

work to be:

J.	 n,e develop.ent of a pro<:edure (described to Chapter 2) vhi-:h

deterllllnes the requ{('elDents for the legal execution of an APL

expl'es8lon. precisely lQc41teB the 8mall sub-Bet of those

rellu! rCllents that ••y, ftot be vert f led at campil e-tlme, and

Identifies the point tit which information required for compilation

and execution will first become available.

2.	 n,e development of a rep('esentatlon In which the actions required to

eKecute a majority of the ArL operators can be eKpres8ed. Taking

advantase of that representation, this comptler can defer the

execution of catenation, co_pression, expans'on, general

subscription, rotation, encode. decode, and acan all well a8 the

simpler oporntlons hllndlt!d by r.."JrlJ .. r systCUls.

].	 nle de"elop..ent of a translation procedure which can handle those

operators which .ake it impos8ible to move ell 8electlon operators

to the operands of an expcess(on. In particular we handle those

cases tn which selection operatlona .oy be efficiently handled by

being .oved to the root of the parae tree for the expre•• lon.

.~; . .:--_...~-~_.. -..-..........-. .._---_-..........-,..... S4 f --...-..... '

LI.. ,-.

INTRODUCTION 26

4.	 The development of an implementation tor compression whIch does not

require the entire left operand to be calculated in advance.

Haeslve savings tn storage can re8ult in those caaes when the aa.e

acray appears in both the left and right operands (a COIIaon APL

technique Is to compress an array ualng a functlon of 1taelf)e

5.	 The development of a storage alnimlzatton algorith. which will

identify "'hen only part of aD array auat be tn Meaory and which can

make improvement8 even in those caaea where the .ore complex

operations trap a selection operator in the .iddle of an expression.

Ue show 10 our examples tarse 18tne In performance which resulted fro.

the new capabilities listed above. In contrast, the very recent work of

Guibas and WYdtt 1101 makes no attempt to handle ite•• 2-4 and deal.

with 5 in v~ry weak way.

The purpose of this work was to study the de8tgD of 8n APL compiler

and not to build one. No actual software exilt8. The production of •

useful, complete APL syste. fs not a one-pereoo ta8k. In addition, much

of the work that would be involved (prOafdmmtng workspace control,

function editing, ••••) haa little connection to the deslao 1••ues

considered in this thesi ••

28

.~ -_.__._----------~

CRAnER 2

COMPILING A DYNAMIC LANGUACE

The execution of a program i8 a proceS8 of binding (the laat step 18 the

bindIng of a particular value to the output variable). A co.pller for a

language affects bindings without reference to tlte input data. nle

blnding9 thuR made are permanent. An Interpreter bind. only after

tnapectton of the Input and only for the duration of that one execution.

Host actual systems use a c(Mablnatton of the two technique. and are

labeled according to which predominates.

It hag been believed (for eKample Bee (111) that the definition of

APL ~ake8 It Impossible to ell.loate vartablltty before each actual

eKecution. That conjecture hos. however been disproved by the creation

of the 111'-1000 A.·L compiler. Compit at ton of AI'L is poss ible if we

include 10 the definition of co.pltatton given aboye~bindlng8 made with

re(erence to the actual data for the first execution which then a.y

becOtDe perllllanent. S1 nee the cont loned Vol 1td tty of the bind Ingl la not

guaranteed. it IIlUet be re-verlfled whenever the complIed code Is

executed w1th Dew data. Efficient execution will onl, occur when the

bindings remain valid and complIed code .ay be reused. Fortunately the

- 27 ­

COMPILJNG A DYNAMIC LANGUAGE

dyna.lc features of APL which could cauee the aost recomptlatton are not

often used. nletr use 1s also an exa~ple of a style of programming

which 1 am quite happy to discourage.

Since compilation references input values and we need to verify the

continued validity of compiled code. the program compiled mU9t be

divided Into "unitA" which are compiled separately. The division must

be done 80 that the verlficdtton of the choice of several possible

cOUlpllatlnns for the unit depends solely on properties of input

variables before the unit id executed. The compiler will generate a

preamble for each untt which specifies the required operand

characteristics. The testing for data dependent situations for which no

cOlllpllation i8 correct lDay be done by code compiled Into the unit.

The IIp-lOaO compiler vl11 never compile lIore than one line In a

single unit, nor will it ever include a called function Into a line it

Is compiling. Since efficiency increases with the size of the complied

unlta••y complIer will. when possible, do both. It also t£t~s t~

locate those cases In which potential binding variability {~8ultlng fro.

a gtven operation can not be legally realized, and thus to pliminate the

need for division into separate units.

In the course of this dlscusalon. we will introduce aodtflcatloo9

to the Jangu8ge API.. which are aesulaed by this des lin. They are

presented individually In the .ectfcn of th •• chapter which first

prescnte the destgn decl.toD which motivated thea. They are summarized

In Figure 2-1.

COHPILINC A DYNAMIC LANGUAGE	 29 COHPILING A DYNAMIC LANGUAGE)0

Functions

One-Element Array

OperatIon Hodlfter8

Inde. Orl110

Take

Goto

Part 131 Aeallll8let

becut 10D Order

Language Changee

- FIU~ctlon deftnltionll art.. global and lDay not be
masked.

- Valence of a definition Gay not change.

- Local variables are not available to a called
functton unless explicitly Indicated In functton
header' (new syntax).

- A one-element array Is not eqUivalent to a 8calar.
Honadic 1 (new operator) create a Bcalar.

- The dimension to be affected by an operator .uat
be implicit or specified aa a constant.

- Origin lIay be changed only while In calculator
.ode.

- Take may not return more ele.ente tban 1n the
right operand.

- The COlO operator' fIIay not branch to a line which
Is not labeled.

- When aS91gnment changeB only part of an extstlns
array, the right operand muat have the Ba_e 8hape
as the sub-array assigned to.

- The selection operators (t, I, •• _, and [,)) .ay
be used to 8peclfy the Bub-array to be changed.

- alght-to-Left order of execution t. not laraateed
except for the operande of the new line .eperator
operator O.

figure 2-1

2.1	 BINDINGS

T~e bindings which must be a.de in order to execute API.. are discussed

belov. For each the .ource8 of variability are listed aDd the biDding

tille 18 given.

2.1.1 Valence

An APL identifier .ay have valence 2 (dyadic function), 1 (monadic

function), or 0 (niladic functton or vartable). nle valence of an

Identifier can not alv8'8 be deteOllned fro. the syntax of an APL.

expres8ion. For example, In the expression A B-C tIle identifier 8 could

have any valence. As a result an APL expression ••y only be fully

parsed in the context in which it vill be executed, and valence bl~dlng8

made at ftrst execution .ay fall tn three cases:

2.1.1.1	 Functlo~ Entry - A slobal symbol ••y be redefined between caJls

on a function. Unles9 thi. 18 ruled out, any function which

reference. a global symbol atght require recompilation each time It

Is executed. The entry to the functIon must begin a new unit.

2. 1.1. 2 Fune t ton Call - A global or local va rt ab Ie may be cedef 1ned as

a aide effect of a function call (the execute operator Is consldereJ

8 function call). UOlCRS thle Is ruled out. the functlon _ust

return to a different unit than itself to per-it checking tor such

side effecta (done by interpreter 88 part of the proce•• of

beginning the execution of • unit).

COKPIl.ING A DYNAHll: LANGUAGE	 31

2.1.1.3	 MUltiple Definitions - If a ltne of an APL function can be

reached from more than one predecessor (target of • COlO). then

there .a1 exist .ultlple definition polnta for a sy.bol used In that

'line. The possibility of the two definitions havina different

valence makes it necessary to have .11 such atatements begin a

compilation unit.

StraVQ (23] showed that for An. without local function definitions

(as6umed here). only 2% of the identifiers In 8 .ample of prolra•• had

ambiguous valence. Once a valence 18 resolved (firat e.ecution or user

query) the U8f: of the IdentifIer remains fIxed in al.08t all ca.e. (1

change tn I .lllton possibilities) (22).

We therefore restrict the functton definition mechani.m tn APL

8lightly. All function definitions must be global. TI,e masking of a

global function name by a local variable or for-al parameter will be an

error. Any operdtlon ~hlch changea the valence of an exist ina symbol i.

an error. Violation of this restriction t. a run-tlae er~or fru. OFX.

These restrictions eliminate the necesaity of re-par.tol due to valence

change.

2.1.2 Rank

80th the control structure of the object code and confor.abJllty checks

I
depend on the rank of Input operands nnd lnte~medlate results.

The(efo~e compilation requires knowledge of the ranks of the result of

all nod£8 of the parse tree. In the .aJority of c&sea a liven unit will

be syntactically correct with only ODe set of operand ranks. If this

O»IPILING A DYNAMIC LANGUAGE	 32

occurs, then compilation can take place without reference to information

about the operand.. n.e following ct rcu..taacell 8ay introduce rank

variability:

2.1.2.1	 Multiple Assignments - If a line of an Apt function can be

reached fro.. more than one predecessor (target of a GOlO)" theo

there may exist multiple assignment Btatements defining the operands

of the line. to permit the interp[et~1' to check whether an

alternate path has resulted In ranka different than at flr&t

execution, any lIuch statement must begin a compiled unit.

2.1.2.2	 Transpo8ition - A tranRpo8ition operator with a variable left

operand has a result of unknown rank (dlagonallzatlon may or ~ay not

be specified). If other constraints do not eliminate this

variability. the traDsposition may not be complied until Info~~atlon

ftxln! the rank Is available. It can be prOVided by the user, or

the transposition may be placed In a eeparate compilation unit rro~

the calculation of the left operand. The value of the left ope~and

will be used to gutde the eomp!l at ton of the un 11: cant 8 Intng the

trensposltlon or vertfy its reusability.

2.1.2.] Reshape - A reshape operator with a variable left operand ha'i 8

rEsult of unknovn rank. If other constraints or information from

the user do not ell.inate thl1 variability, this Implementation viii

not comp lie the opcrat Ion. The genera t Ion of operands aDd the use

of the result will be placed In separate co.piled units.

2. L	 2.4 Function Entry - The rank of global variables and arguments Clay

change between calla 00 a function. 10 many c••e. only one

34 COfPILING A DYNMIlC LANGUAGE]]

pOI.ibility viii be lelal. but certatnly a function whole .ynta.

allows variable rank arguments ••y be written. In two spectal

circumBtancea the rank variability .a, be hidden fr~ the function

by the caller Ill.

I.	 If no 8lobal variables are referenced. the function procesBes

each argument Item (or pair of ite•• for a dyadic function)

Independently, and result 18 • acaler ite. for each input lte.,

then the [unction .3Y be compiled 10 e. oat to care about the

structure of Input.

2.	 If no slobal variable. are referenced, if the function proce.lel

Ita arlumentes) by row (or plane or ••••). and If the result for

each group 191 either a tlcalar or the 8a.e ahape e. the tnput,

then the f une t Ion can be compll ed to be call ad repe. ted'l, once

for	 each group.

Otherwise the function .U8t be recOGIplled when alobal or arsulleot

rdnk.tl vary, and thU8 muet begtn the co.piled unit contatntnl it.

n,e detel"lltnatlon that a functton fall8 Into one of the .pectal

cases listed above require. only a al.ple exa.inatton of the eode

produced when the function 11 co.plled Independently (Ie - If all

computation 18 In the tnner-.08t loop, then each operand tte. i.

handled Independently).

2.1.2.5 FunctIon Return - A Function .ay return result. of vartable

rank or change global variables. Unle•• the result rank ts a

functIon of argumeDt r.nk only and DO Ilobal variable. are chanled,

COMPILING A DYNAMIC LANGUAGE

the location to which the function retu~n••U8t begtn a compll~d

unit.

Fortunately the rank of e variable u8ual1y haa a connection to the

semanticR of the program which re8ults In Ita belRa fixed. The work of

Bauer and Saal 141 8uagesta that 801 of ranks may be determined

atallcsily (Without access to actual operands). Our experience Is that

except for the case of univer.al functions, which cftn be complied, use

of the 8ame expres810n to generate results of different rank on

successive executions 18 fare. Host array rank. are derived from a

funda.ental characteristIc of the problem beiDa 8olved.

This dealan identifies at compile ti.e those acalars which gUst be

used repeatedly In a 81ngle operation In order to have cooformablltty.

Since array sizes .ay not be known at th18 time, this complier will not

allow one ele.ent arrays to be used a. scalara unle•• they have been

converted into a scalar usln8 a new operation Honadle 1. The proces8

which checks for rank conforwability will insert the conversion operator

where needed If the B'ze of the array t. known to be l at compile ttlDe

(ex. ItA). and If the operation ultoa the value requires a Icalar (ex.

.onadie ,). The ravel operatorIt be uled to convert B Bcalar

lnto 8 one element vector.

2.1.1 Operation Dtmellslon

Severa) array operations apply to one (Implicitly or explicitly

specified) dJ.enalon of their operand(a). n,e code complied for these

operation. 1. heavily dependent on ~,Jch dl.enaton Ie .ffected.

CUHPILING A DYNAMIC LANGUAGE	 35

Therefore. we restrict APL to uee only cooetante wilen the dt.eDBlon to

be operated 00 1. explicitly specified.

2.1.4 Inde~ Origin

This compiler produces code which may (dependln. 00 operatora In the

expre8sion) be invalid if the index orlatn changes. In order to Avoid

constant test J ng, we allow illdex oriein to be chansed only via ti,e

u)OIlIGIN" co.aand e.ecuted In ~alculator .ode.

2. L S Length

lhe complIer "'Ul attempt to use syntactic constraints to fix. the size

of' array operands, but if it faHa, the cOllptler will not bind the

complied code based on the sizes at first execution. Thl8 approach

contrdsla with the IlP-)900 APL .yatem which does bind on size. resulting

In fl'"equent recompllatlons. The object code has been desllned 89 that

operdnd sile Is reflected tn a small n,~ber of parameters which must be

given values by the interpreter before a complied unit 1. executed.- All

length coofollDability tests actuall,. required viiI be done by the

tnlerprete~. The compiler will aenerate a preamble for each compiled

unit whlch instructs the interpreter what calculations and teats to

perfoflD.

If a compIled unit contatns an operation whose result 8ite can not

be calculated before the unit e.ecute•• tile unit will Intel"rupt its

execution when the 81ze 1. firat available. The tnterpreter can then

COMPILING A DYNAMIC LANGUACE)6

perform any necessary conformabll1ty check. and calculate any parameters

which depend on that size. There are 1 APt events \lbich can cause

length variability.

2.1.5.1	 Compl'"ession - The length of the compressed dillenstoo is equal

to the number of 1'8 in the left opetand. That length \ltll be

available the first time the left operand has been completely used

(compression of other tban (irst dt.ension will result tn repe3ted

access to left operand). Parameter adjustments may be required even

if confon.abtllty checking is not.

2.1.5.2	 Take And Drop - The length of the result of take or drop

depends on the value of the left operdnd. Sln~e in the object rode

these operations are Implemented by changes to addressing param~t~r9

which m"st be calculated by the interpreter, take or drop with 8

variable left argument 18 compiled 80 that the operation does not

begin unttl the left operand haa been fully evalu•.u:ed. At that

point the Interpreter will calculate the paramcters which control

access to the 8elected elements of lhe right operand.

2.I.S.J	 Over-tak~ - If the Take operation Is allowed to return more

element8 tban exist In Its right operand, a Take operator with a

vartable left operand has a result of unknown size. Also the

performance Improvement algorithm used by this implementation tries

to .(lYe the Take operation so that it Is per-(onDcd as early all

possible. That la correct only tf the Take operator will not return

.ore elements than ex 1st In the rlgllt operand. The cestr Ie t ton 19

ilDposed dyna.tcally when the tak.e i. exec::uted. If the over-take

38 Ct::tfPII.ING A DYNAMIC I..ANGUAGE 37

option I. desired. It could be Included a. 8 separate operator

(~.Ich would be interpreted).

2.1.5.4	 le.hape - A reshape operator with a variable left operand has.

result of unknown size. If other cODatralnt. do not elf.loate this

variability. the operation will be perforaed by the Interpreter.

2.1.5.5	 FUQctlon Entry - If a function reference. 110bat verlable., o~

If Interoal conforaabl11t, Is not I.plled by confor-abllity of

arguments, Its execution will require Interpreter proce.slna 00

entry.

2.I.S.6	 Function ReturD - If • function eets Ilobal variables, or If

the result shape 1. not that ot 80.e scalac operator applied to the

argument(s) (possibly reduced). then cantormabillt, checkln. will be

required after 8 calion the function.

2.1.5.1	 Multiple Assfgnments - If • line of an APL function caR be

(eodu.·d Crorl morc th"" one prcdeceaeor (tdrgct of II COlO). then

there lIay exl.t multiple dsstgo.eot atatcaenta deftnlng the operands

of the line. TI1US confor.abllity checking wtll be required.

1lle output of the cOl.llpller 18 a co-routtne with the interpreter. The

interpreter will do parameter computation and confor.ability checks and

the ~omplled code vtll evaluate the Apt. The two will Interleave a.

needed. nle work of Baue r and Sa~ll (4 J suggellted that only 18% of the

potential length contotlasblltty checkinl 18 actually required and t.hat

length checkIng was required io aD average of tvo place. to each of a

collection of functions. Thus the ••aunt of loterteavinl will not be

COMPILING A DYNAMIC LANGUAGE

eKee•• lve.

2.1.6 Value

The co.ptler attempte to pertor. calculations st compile time so AS to

Increase efficiency end tighten syntactic constraints. TIle interpreter

viii perfotm the alze operatton (monadic ,.). since that requires access

to symbol table Information. Code to detect value dependent errors viII

be compiled into the object code (index, domain (ex. divide by zero),

and right operand of expansJon with vroq number of 1'.). We have

Imposed an additional constraint on the dy;dlc Bcalar operationa uBed

with Scan. All ltea. of the operand .uat be 10 the range .8 well as the

doaaln of the operator. lbl. 1. done to penaJt the use o(• technique

de~eloped by McDonald (161 for executing the Bcan operator without

repeated acce•• to ele.ent. o(the operand.

2.J.1 Type

Operand type must be known at compile tl.e. If .yntactl~ ~on9tralnt8 do

not eliminate potential variability. compllatton before first eKecuttoo

will require user Interrogation. nleCe exists no APL operation ~ho8e

reeult type 1. nor given by operand typell but the following sltu~tlons

..y require type checking and recompllattoR:

2.1.7.1	 Hultlple As.fgn-ent - If a line of ap Art function may be

reached (r08 .ore than one predeces80r (target of a GOTO), the tJpe

of yariables referenced allht be derived (rom different operands.

a __ .._ _.,.._ • ."._-.....-_.._~ _ ..L~IfI , ... _. ~.' -...", -...--~; ~.--.... ~ ~L..........,~ _D'¥.."...._.9"'t~_-~~.pt~.... "'~""'''II~~~'''1-~''''''
........,..

COHPIl.INC A DYNAHH: LANGUAGE 19

Thus that line Guat begin a compiled unit.

2.1.1.2	 Function Entry - A functton which h88 alternate le8a1

compilations depending on the type of arguments or alobal variables

may oot be included In a larger co.piled unit.

2.1.7.) Function Return - A functton may not be part of 8 larger

compiled unit if its result could be of vartable type or If it

ch~nge. global variables.

Bauer aod Saal (4) {ouod that in a sample of programs only 12% of the

domain checking (~Itch includes type checking) could not be perforaed

statically. Thi. Buggeata that type varlablltty 18 rare.

This compiler will not procese integer and floating point number.

as two separate types. It aB8~e8 the artthmetic lnstructlona of the

target machine are type sensitive and conve~l 8uto.atlcally a8 needed.

It a180 allows a numeric value to be used as a boolean ope~and (which I.

standard fo~ APL). When thl. conversion 1. required, the compiler

Inserts the new operation monadic ~ tnto the expre881on. Thi. operator

will 8igoal a domain error at run time If It. operand ha. values other

than 0 and I.

2. 1. 8 Poat t Ion

lhe actudl storage location for an array Is not known until each

e.~clltlon take. place. The complier code will access array ele.ente

lUling pointer. which are initialized from para.eters at entry. The

Interpreter viii perfor. etorale allocation and eet the para.ctere. A

40COMPILING A D'fflAHIC LANGUAGE

reshape operation with variable left operand i8 performed by the

interpreter 8ince no upper It.it can be placed OD the storage required

until the operand 18 calculated. Storage alloeatioD IDay be interleaved

with the execution of the compiled code 10 the case of compression.

2.1.9 Summary Of Btndtng Proble...

The prpcedlng sectIons have listed those places which may require

interpreter lntervt!ntlon. Some, In particular length conformablltty

checking. are handled by interleaving the execution of compiled code and

the tnterpreter. However. In other cases the validity of the compiled

code about to be executed Is In question. These cIrcumstances require

division into separate compiled untts 80 that execution of a unit ts

only started if the entire unit is valid (bindings atlll hold). n~

locattona of possible unit divisions are:

I.	 TIle beg lnnl ng of a statement which tlay be reached (rom Clore than one

place tn the functton (Golo targct) is a unit boundary. To cake the

location of 8uch lines feasible, we restrict the GolO operation 60

that Its right operand IOUS! be either the empty vector (no branch).

or 0 (functlon exit), or the line number of a line which Is labeled.

This restriction is imposed at run-time (Goto Is interpreted).

[very labeled line thell becomes a untt boundary.

2.	 Ule entry to a function will be a unit boundary except to epeclal

circu.8tances (see Section 2.2.2).

42 COMPll.lNG A DYNAMIC LANGUAGE	 41 COHPILING A DYNAMIC LANGUAGE

3.	 The return fro. a fuoctfon will be a unit boundary eKcept in .peel.l

clrcu.atancea (see Section 2.2.2).

4.	 The point at which the left operand of a Tr.n.pose 1. firat

available will be a unit boundary.

5.	 Unit boundaries are required before and after the Reshape operation

except in special cases (see Section 2.2.6.5).

6.	 All ays te. funct 10n8 and those API. operators "hich represent a

complex a110£lthll are processed by the interpreter. Figure 2-2

11st8 the part8 of Af'L which are not complied. Unit boundariee

appear before and ~fter each auch operation.

10 Chapter 6 we dlscuse briefly the proble. of ell_inatlna theae

restriction.. nle Inabiltty of my de81gn to bandle control .tructure

(coro) can be costly. As an example ve consider the APL functionl

Z·H COMPOSE P;X;TiV
(t 1 U+X·-(pP)pI-Z+- .T+-l
(2)L: ~L.,M>pZ+-Z.T"l/U+P-Z[X+-X+T=U)

which finds the fIrst H numbers which have tt,e (ona MfP.I wbere P Ie a

vector of distinct prime numbers .nd I t. a vector of non-negative

integers. "1 compiler would separate the GOTO operatol' (1'0. the body of

line 2. As a result, the streaa lenerator code would exit to the

Interpreter after each lterattoo. However. all tafor.atlon needed to

compile tbls function 4•• 81011e unit Ie avatlable (tncludtna size of Z

which t. H). The stOlle unit would execute Vitll .uch lower Interpreter

overhead.

Operation. Not Compiled

Roll and Deal - 7

I/O Operators - O. ~. 8, 8, etc.

Laalnate

Goto - +

Hatrlx Division - I

Execute - monadic E or •

I-beam - I

Sort Operators - , and •

All .yate. function. - esaaple Ofl

rLaure 2-2

~ ~""""""~.""""--'''''''.''''''''''''':II____.	 T ••• ..._ ._l""___ -....	 '

CUM PILING A D'iNAHIC LANGUAGE	 43

2e2	 OV£RVILW OF COHPILATION

The compller will be evoked by the interpreter aa a result of two

different circumstances:

1.	 ~len an expression Is ex~cuted tn calculator mode or an un-compiled

function 1s executede At this time the entire ltne or function will

be parsed and divided (nto compilation units. The first of these ie

then translat.ed and executed. Each unit will be translated the

first lime it muRt be executed. Since compilation takes place after

the definition of all operands and called functtons, all tnfOtlJl4tton

necessary for compilation Is available.

2.	 The USCI' may a190 request the compilation of an entire functton.

Tide ,",ould be done to build a Ilbral'"y of functions or to cause a

lunction to be complied before the function that called it (80 that

tnfOrtDdtton ubout the c.l1 led function i8 available when the caller

18 compiled). If ~he f unct Ion has not previously been executed in

the automat (e camp II a t Ion ltIode, or 1f d rgll"eot. are not del loed,

then valence. rank or tYre Information not liven by the functton

syntax would have to be supplied by the user.

If the use r recolap 11 es a fUtlct 100 that has been eKecut ed, he

can reque9t that bindIngs be .ade bast!d on the p['opertlee of its

81'"guI1lcnls and lntentedlate resulto from the pt(or execution. nile

facility would be used 8S follows:

1.	 The user would execute 8 function (pos9ibly .e part of teattn.

It). As part of tht_ execution all functton. ~.lled would be

44COHPILING A DYNAMIC LANGUAGE

compiled.

2.	 lie would then request re-compilatlon of the orlg10al function.

The called functions would be In complIed fOlll and thus the

information needed to identify functions which could be link{'d

lnto the co.piled unit of the caller would be available. At the

same time the binding tnlor_atlon dev~loped during the ftrst

execution would be used to guide compilation.

"owever o a user will never have to request co_ptt.tion to order to

get	 corl'"ect execution of • functton.

In both cases the code resulting from th~ translation of a funerll.n i9

saved and will be re-used by the interpreter if possible. TIle &t~ps of

compilation are described below. They are motivated by the binding

requl~ement8 liven above. Figure 2-) liata the stepa of an example

execution. Routine names ehown In all capital letters live the major

modules of the deetgn.

46
U.tiPJLING .\ DlNAHIC LANGUAGE 45

SAMPLE £XEClTI ION

I.	 COHMANO/SCANN£R sets Input line and reduces ~(C-O)/C 0 C+A+8 into

tokeD ••

2.	 CONSTRAINT/PROPAGATION procedure deter.lnes that A and I and thus C

.ust be numeric, that C and thus A and I .ust be vectors, and that A

and I euat be confonaable.

1.	 The IDlOlt/RECOGHIZER makes no change. tn thl. example.

4.	 TIle OPERATUR/COUVERSION procedure explicitly indicate. that I

affects the second dlmeosion of C.

5.	 The DATA/DErENDEHCY procedure recognizee C a. local.

6.	 nle TRANSLATOR generates two oUtput8:

a.	 a stream generator which will execute thl. expre8slon.

b.	 ln8tructlona for the 8et-up and aanagement of the atreaa

generator (see 1 below).

1.	 The INTERPRlTt:R eJlecutes the set-up instructions which Include

8tordte allocation fOI" D and transferring the location and .i"e of

A. I, and D (C haH been el tmlnated) tnto the local 8torale of the

stream lenerator. n,e last Instruction of the eet-up prolr•• t. a

co-routine jl~P to the Itream lenerator.

8.	 When the INTERPRETER relalne control, tt execute_ an instruction to

fetch the actual .tze of D froa etrea. leQer.to~ local atorale, and

tbea e.ttl.

'Laure 2-)

COHPII.ING A OYHAHIC LANGUAGE

2.2. I Para Ina

When all sy_bol valences are known, APL is • very limple lanl'~ge to

parae.
Indeed it: has been ahown that a 3 state finite-state .achlne

augmented by a stack to handle Deated expressions 18 sufficient (241.

The	 function 1. parled Into One tree with lines Joined by a successor

operator. nle nodes of the parse tree are labeled to pen-it other

stages of compilation to reference Individual nodes. this document USel

stringe (most often of length I) of lower-case letters .8 parse tree

Dode labels. They are a.BIgned to lexagraphic order during a

rlght-Ieft-toot order travers.l of the parle tree.

2.2.2 Function Calla

fUnction calle are handled in two dIfferent ways. TIle .oat general fora

(always correct) I. to create unit boundaries before and after the

function call and handle the function call in the Interpreter.
(The

called function .ay be • compiled uller function but the transition i8

handled by the interpreter.) This type of function call require. that

the function araumenta and result be held tn ator_le acro.s unit

boundaries. nle parse tree t. alter~d &0 that

<left argument> FUNCTION <rlaht arlu.eDt>

beca.el

Tlt<rlght .rgu~nt>

Tlt<left argu.ent>
Tl-t-T2 f"UNLi'[ON Tl

Systea functions and the APL operators lilted 10 table 2-1 are alway.

handled tn thl. vay.

48 COt1PILINC A DYNAMIC LANGUAGE	 47

User fUDctions ~,lch have beeD complied previously and which meet

requirements listed below may be linked Into the code of the callIng

complJed unit. A description of the linking mechanism 1a liven tn

Chapter 4 after the control atructure of the coaaplled code haa been

descrtbed. For 8 function call to be Included inside a compiled unit,

the following conditions must be 8att8f1ed~

1.	 The functloD itself compiled Into a single unit.

2.	 The 8tngle complIed untt which t. the called function does not

contain the calling function. (Conditions and 2 rule out direct

or indirect recursion.)

3.	 The compiled unIt \lhlch Is the function does not acce8S any global

variable which is accessed by the calling unit.

4.	 There 18 only one possible legal compllatton for the function (Ie DO

rank or type vari~bll1ty as described tn Section 2.1).

In order to simplify this analY8i8 we require that the local variable.

of 8 function be accessible to a called function only if explicitly

designated In a function header entry of the form:

(fUN) ;VAR) ;V,1R2 •. ••)

Similar chaoKes have been proposed by others for the purpose of

decreasing opportunities for errors. this modification to APL does not

result In a static name acoping system ae uBcd by Algol. Ite effect i.

to bide un-na.ed local variables fro•• called function which i8 looking

back along Its call chain to 88tlsf1 a alobal refereDce. Hare detailed

COHPILING A DYNAMIC LANGUAGE

analY81s would permit 80me relaxation of these restrictloQ8.

2.2.) Control Structure

Every Gota target begine a complied unit which is started by the

Interpreter. nUt8 the Coto operator is not compiled and 1s preceded by

a unit boundary. As a re8ult of this design decision, the cooptler Is

heavily biased In favor of the style of APL programming \lhteh avol«1s use

of Goto: The whole des tgn 18 orl ented towards the execut ton of array

operations.

The par8e tree ia now converted to an ordered forest by eliminating

all 8['"CS which crOSB unit boundaries. Each unit 18 a tree.

2.2.4 Constraint Propagation

The co.piler will then attempt to determine the properties of each Dode

of	 the pa['se t['ees. rills will be done by propagating information

derived from constants and syntax restrictions. The procedure is

concerned with 4 characteristics of the value produced at each node of

the	 parse tree:

1.	 Rank (number of di.enslons - a Don-negative integer)

2.	 Type (numeric, boolean, numeric-Dr-boolean, or character)

3.	 Length (of each dimenston - a non-negative integer)

COMPILING A DYNAMIC LANGUAGE	 49

4.	 Value (Bcalars .nd vectors only)

The constraint propagatton pcocedure attempt. to derive thIs tnfor••tioD

ba~ed on (to o£der of u~e and decreaslnB desirability):

l.	 n,,~ £ank. (0 or I), type, length, and value of all Con8tant ••

2.	 Operator eewantlc8 (ex~ monadic I alva,. produces a nu.erlc vector

.ud requires a nuaerlc right argUMent).

).	 TIle properties of p£evlou8ly ~o.plled. called functions.

4.	 n.e rank, type. aDd length of operands represented 88 comptle-tt.e

vaelableB (lnttL,ll, vith no value) vhh:h aay be propalated all if

the)' wer'e ftxed value••

s.	 The actual .. ank and type of each operand (trOll exi.tina definition

or usec spf."ctf Ie at ton). Th18 Infolllation atve. value. to tl'e

co~plle-ttme variables defined above.

6.	 The actual length or each operand.

1.	 nle value. of scalar operands.

As (,8ch Item of information la applied, An atteBpt I. made to propasate

thaC lnform.1t Ion to other posh Ions In the parse tree (ex ••'fA Is

nu.,.erlc If A 18 numeric). Appendix I Itves the propagation procedure

and Ilst9 all operatoe characteristic8 used. Con8tralnt prop.gatloD Ie

done independently for each cOGplled unit. The handling of and

requlr~.ent. (or lnfor.atloo about each of tbe relult propertle. Ie

COMPILING A DYNAMIC LANGUACE	 50

described below~

2.2.4.1	 Rank - Ranks m\lst b~ kno"'n fo£ compIlation to take pla.ce.

Therefore rank InfoOlatlon must exist for ~ach node, and if given 8e

• compile-time variable (operand property), the variable .uat be

df!ftned (operand defined). If, after propagation of the initial

informatton listed above, there exist8 a node with no rank

prediction, a new comptle-tilac variable Is created to represent the

rank of the hlghellt 8uch node and that lnfol1lation 18 than

propagated and the process repeated until all lIuch nodes have an

(undefined) compile-time variable representing rank associated with

them. 51 nee the propagation process never relloves luion.at Ion (fOCI

a node. the above will ter_toate.

The lowest occurrence In the parse tree of an undeflm>d

compile-time variable representing the rank of a node tndicatt."s

when, in the COtDputation, the lnformatlon needed to fix the rank

will be available. the .ost common situatLon Is for the variable to

represent the rank of an opprand. Otherwise, the v~rtahle will

r~prCBent • value or length of a position at or below the left

argudlcnt of a trllnepose or (l'9hap(' opt:'rrtl ton wht('h hAS cBu'h,j rank

variabilIty. If the cOJlpliallon of the entire function has twC'n

requcstf'd by the utJ€!r. a dpclaratlon will be requcsrcJ for COld. rank

varIable which doc8 not h:lve a value. When thl! compilation 19

taking place at first execution, the point at which the variable

will £ecctve a value _"st be 8t a leaf (uoit boundary). If this I.

not	 lottielly true, the unit .usC be subdfvlded. Execution of the

fir.t aub-dlvlaion of the the unit thuB ,eoerated '1111 produce the

52 COHi'IJ.ING A DYNAMIC LANCUAGE 51

Information needed for compilation of the dependent units.

The lowest appearance of a defined rank variable indicate.

locations where rank chccking must be perforMed. If they apply to

intermcdiate results. stream generator interruption will be

required.

2.2.4.2	 Type - Types must be known for compilation to take place. All

nod~6 will have a type prediction after the propagation of initial

predictions. All compile-time variables appearing in these

predictions must have values before compilation can take placeo If

the compilation of the entire fp~ctlon haa beeq requested by the

uacr, a declaration ~tll be requested for each undefined

compile-time variable representing a node type. When the

compilation takes place at fll8t executIon, there never will be any

remaining type variability.

The appearance of defined tYVe prediction variable. Indicates

locations where type checking is required.

2.2.4.J	 Length - Length values take thrt:e forms - actual length,

aalnlmum length, and max.lmu. length. Every node .ust have a ..axtlllu"

len~th de!' (t ned to penal t storage allocat Ion. The only operat Ion

which will not always propagate a maxi.uII length prediction upw8£de

18 Reshape. A reshape which does not have a .<lxhaum 1eosth

prediction will be Interp~eted.

Every node aU8t a180 have an actual length prt!dtction to penalt

co"fo~mab1l1ty checking. If after propagation of the ioltial

COHPll.ING A DYNAMIC LANGUAGE

lnfar-mat ion tllere exist8 8 node wt th no entry represent lng its

actual leDgth, a new compile-time variable Ie created to represent

the length of the hlght!8t such node. nIts Informat ion Is then

propagated and the process repeated until all nodcs have a length

prediction.

Undefined compile-time variables r~pregentin8 lengths do not

prohibit compilation but give the location (or confonnability

checking or parameter calculation, and if not at a leaf, force an

interruption of stream generator execution. Since all AFloperators

generate rectangular structures, only one unit of the dimension of

unknown length must be tested for length conformability. The 6tre~ta

8enerator can then run uninterrupted and the test Is executed only

once. Deftned VAriables representing length locate requlrcoents for

length checking.

TIle length tests imposed for constraint verification also

permit the Interpreter to detect null arrays. Since the loop

control of the stream generators tests after execution of the body,

the loops wtll always exec.ute once. Tl~erefore wht!n the Interpreter

detects a null array it aborts the ,-,xecutlon of that section of the

8trea~ gcnerator and performs the calculation directly.

2.2.4.4	 Value - Value information cogea (rem coostant9. scalar

ollcrande, and the operations which convert a predicted length (p) or

rBnk (pp) into a valu~. The InfonDation i8 needed for cOOlpHdtton

or psra.eter generatioR when:

COHPILING A DYNAMIC LANGUAGE	 Sl

I.	 A variable representing rsok O~ .axtmu. length lete It. value

(lowest occurrence) froID the value of • node. These are handled

as described In the eections for tbo8e properties (2.2.4.1 .nd

2.2.4.).

2.	 Dyadic take, drop, transposition, or reshape appear (left

operand) •

Operdtor do.alD. index, or confon-abllity requireeente are cheeked

by	 code compiled tnto the stream generator.

tomplle-time varldbles which repre8eot the value of a Bcaler

operand or the actual length of an operand are never a.'lgned ftxed

values bdsed on the those characteristics of the operands, unless

requlreJ to define a rank predlctlon. lIowe"cc, the actual values a., be

u8ed to teat relations between expressions involving c~plle-tl.e

vart.lblc8. An eKanaple 18 the expr-esslon (N.H)pA where Nand Mare

8£alara and A .s a .atrlx with predicted length. X and Y. If at first

eaecut Ion N...·M equalB x... y, then the reshape lDay be compiled 88 requ1r1ns

DO duplication. n.e c~uallty .U6t be tested before each execution.

Aa the blocks are further subdivided into units, temporary storage

arrays will be created lo hold values which are calculated In one unit

and used tn another. New nodes will be added to the parse tree at the

point of division to rep£esent the aSllgnpu~nt and reference. The new

vartables a£e operands to the unit. referenclng the.. and .ay be a8s1lned

predictions. If requfl"CGent8 ••po8ed by the same node CBuse subdivision

at two different places In the tree, ooly the highest 18 actually dODe

54
C~IPIL[NG A DYNAMIC LANGUACE

(the other requirement Is assumed not to propagate past that point).

Susan Gerhart t9J has designed s systea ~,ich determInes the

properties the operands of an APt function must have for the function to

execute. Syntactic constraints are generated and propagated in 8 manner

810111ar to that descr tbed above. However, she lDakes no attempt to

develop Infor.atloD needed to select between alternate legal

Interpretations of the function. Nor does ahe locate those places at

which such tnf011l3tton will lmter- be available (undefined consplle-thle

variable).

Our attempt to advance blotting tilDes Is sl.Uar philosophically to

the work of Jane. and chnlck (14 J. However, the t r tedlR lque and that

proposed by Kaplan and Ullman tl51 are oriented to determining

properties which hold at entl"y to simple 8l:atements. APL requires

Int("a-statement a031y918. They also do not handle Information to be

available tn the future or the inter-del1endence of dlffel"ent properties

(Bueh 88 8 rank depending 00 a value). A det.lled description of the

constraint propagation algorltha aod the characteristic' of the API.

operators appear. in Appendix B.

2.2. S Idioms

One goat of this compiler design is to process the)dngu3Re APt. using

one consistent procedure. However. it ltd!! become app:uent that thl'(e

eKtBt fI 8mal1 act of combloat 1009 of operators and oplHandS which 1, .. Ye a

.uch .ore efficient twplcmcntatton then that produced by translating

each opersto£ eep.rately. A coamoo chs£acterletlc of theBe patterns ,.

-", .. ,__ ~	 .-.---__.~ l_.~,~_.......~~:_.e"' .._~~·__.......-.....- ...A"",..--...­

COHPILINC A DYNAMIC LANGUAGE	 55

the occurrence of the same operand on both the left and right of an

operator or group of operators.. n,e8e patterns will be recognized and

replaced In the parse tree by a unique new internal operator. An

eKawple 19 VlllV which "'ill require two passes over Y If translated

directly. but can be easily Implemented using Just one. A list of all

such "idioms" currently recogn[zed Is in Appendix It.

Idioms are recognized by applying 8 pattern matching procedure to

the parse tree. Each node of the tree Is visited. If It could be the

root of a 8ub-t£ee headed by one of the Idioms. it_ i.medlate

d~scen"aDt8 (maximum number 4) are examined to deter.tne If they match

the tdtom~ The nodes which are operands to the tdiolD description- will

laatch any node which is predicted to have the rank or constant value

requl red by the IJ 10m. The pat tern matcher will never have to look

lower In the parse tree ..

Some of the Idlo~8 require that the Solme value be used In two

places in the expression. These viII only be recognized if the

corresponding nodes In the parse tree ace leaf nodes referencing the

same variable. No common 8ub-exp£es8ion recognition wtll be done by the

idiom recolnlz~r.

\lhen an idiom Is recognltt!d. the pattcrn is locally contracted Into

a stngle internal operator~ In the case of multiple references to the

sauae variable, only one will be retained. Since both the search for

idioms and the transformation of them requires acce88 to • a..all (<4

Dumber of nodes for eac.h possible tdloa. the entire proce•• requires a

t i ..e ",I.tch 1. linear In the 8ize of the p. [se tree ..

COMPILING A DYNAMIC LANGUAGE	 5&

2.2.6 Operator Conver8ion

The parse tree of the APt function has now been split fnto a forest of

parse tree8 for unit8 each of which wtll be compiled separately. Based

on information obtaioed by constraint propagation. operations in the

parse tree will be Modified to distinguish special ca6C8~

2.. 2.6.1 Take Or Deop - If the left argumt>nt of take- or drop Is kno,,""1l to

be a constant. the operat ton becomes monad Ie ,,1 th the fanner left

operand 8. a .odifler ..

2.2.6 .. 2 Subscription - Subac£tptton will be expanded Into a node for

each dintension of the subscrlpteJ a('ray~ The left oper.lnd of ~nch

node will be the suhscript for th.lt dhlension. Th\! right operand

for the lowest (last dillensfion) wIll be the subscripted arrAy and

the remaining nodes will usc successive results as thl'tr- light

operand. If a subscript 19 null. the node Is remove'" from the pars!!

tree. If a subscript 1s known to have a constant value o(the fonD

AtF-.C. the node is converted to a monadic operator with the value

as modlfier. If the subscript Is of that form. but not all of thE"

Hcalars 1\. 8, and C are known to be constant. the ... and I operations

are replaced by tbe 8uccessor operator in forming the left opt-rand.

2.2.6.3	 TranBposition - If the left operand i9 knmlt1 to be a constant.

the operation becomes monadlc with the left operand value 89 a

modifier.

2.2~6.4 Ravel - The [~Yel operation (monadic .) vill be modified with

the dimenslona that it aflecta.. The epeclal case of a scalar right

58 C(lHPllING A DYNAMlC LANGUAGE	 SI

operand viii be converted to a unique internal operator if the

scalar t. an Intenaedlate reeult, other",lae the operation beeo.e. 8

Blaple reference to • vector (which will be created by the

interpre~er).

2.2.6.S	 Reshape - The lnforlllation known about the length of the right

op~rand "ill be compared to the in(onaatlon known about the value of

the left opera~d to recosnlze 1 spec I•• ~age8.

1..	 If the reshape 1s the duplication of the right operand in 8 new

firet dimension, Bnd If the duplication factor Is known to be a

constant, the node becomes the .onadlc duplicate operator with

the duplication factor as a modifier.

2..	 If the reshape I. the dllpllcat ton of the rl8ht operand in 8 new

first dimension, and if the duplication factor 18 variable, the

node beromes the dyadIc duplicate operator '11th the Bcalar

duplication fBCtOC 8S left operand.

l..	 If the reshape 18 a partial ravel of the right operand, the node

beca.ea a ravel operation appropriately .odlfled.

4.	 If none of the above special cases can be recognized, if it i.

known that re9ult has the sa.e number of eleaenta 8S the rlsht

operand, and I f the shape of tt'e re8u) t 18 known, the node

beco-es a monadic operator With the result shape .a a .odlfler.

Au ex.epie 1. «(pC).2),2)pC. the Duabe[' of eleaeDt. In tbe

result vllieb 1. (pC)t2)-2 equal. pC vtlich t. the ollaber of

eleaeot. 10 C (When pC 1. even) ..

COHPILING A DYNAMIC LANGUAGE

A combination of I, 2, and] will be split Into separate node8. If

one of these special caBeR clln not be ldp-ntifled, the reshape Is

8pltt out into 8 separate unit (storage added as needed) which vlll

be interpreted. Except for caeea I and 1, a reshape w1th both

operands con9tants will be don~ at compile time.

2.2.6.6	 Single Dt.ension Operators - All operations which apply to a

single dimension ace modified with the dtgenslon. The parser will

have absorbed explicit dimension indicators such as in tIL,) into

the node for the operation. Illlpilcl, dimension destgnatlons which

depend on operand rank (Le. last dimension) are now filled io.

.. tI2.2.6.1	 Laminat Ion - I f the d hl~n81(jn .H~Uf tel' for dyad Ie , has a

non-integer value Indicating lamination, the operation is 6pllt out

Into a separate unit which wIll be tnterprPted.

2.2.6.8	 funct lonals - (Scan. Reduct ton, Inner Product, and Outer

Product) The scalar operAtion. associated with these operations are

modifiers to the node.

2.2.6.9	 Scalar ConversIon - (the new operation - .on.die 1) If B

vector operand Is not 8n inte~edlate relult, thl. operation becomes

a ataple reference to • Bcalar variable.

2.2.1 Data Dependency

The coapller consider. u.er specified array variable. which are active

within only one compiled unit to be te.poro['y ator_le. n.l••llows tbe

60 COMPILlNG A DYNAMIC LANGUAGE 59

elimination of storage added to Improve readability of the code or

hecaU6e of the users re1:ognlt Ion of a COlAIDOn sub-expression. If an

array variable Is referenced In any unit without an assignment hovlng

appeared earlier In that unit, Is a global variable, or f. potentially

accessible to called functions, that variable will be considered 8a

global to the compiled unft and will always actually exist In memory.

Conventional control-flow analy818 (21 could be done to dete~ine

~,e" variables are active. but that 18 not required. Other standard

program transformations such a8 cOllmon 8ub-expcesslon elimination and

lDoving invariants out of loops could be done at thie ttme, but ore not

included In this design.

2.2.8 Strea.. Generator Creation

All of t'le above serve a8 pre 1I.inartes to the real work of the compiler

- ttll! RL-'1klng explicit of the control structure implied by the array

operations of APt. This Is accOlDplJshed by translating APL Into vllat

call stream generators. The actions required to execute the .ajorJty of

lhe APL operators can be expreused tn the stream generator notation.

Chapters) lind 4 contain a complete description of stream genertltofs snd

the translation process outlined below.

weh tree of the parse forest which f8 to be compiled is translated

separately at lht! first tillc that all requirements can be evaluated.

The utream generators are comprised of Bets of nested loops connected A.

co-routtnes. They are gencrated by traversing the parae tree In

right-left-root order. For an array leaf the code to access the array

COHPlI.ING A OYNAMIC LANCUAGE

i8 generated. At an operator node the stream g~nerator8 for Its

operand(s) are combined. and code to calculate the result is inserted

into Lhe control structure. The way the generators are combined depends

on the operation. TIle monadic selection operators can often be absorbed

into the array acceSB parameters unless some previous calculation can

not be reordered. At any point where temporary storage may be required

for the corr~ct or efficient execution of the APL the required

8fislcnmento are generated.

2.2.9 Stream Generator Refinement

The stream generators created initially ~ay compute values which are

never used. These calculations must be elim.inated. The next step is to

eliminate all unnecessary storage. TIlts will be done by re-ordering

independent calculations so that a9 soon a8 an Inlermedtat~ result Is

available, It is consumed. When thts Is possible both the consu:lIcr and

producer share the same control structure and only d sln~le scalar item

of the intermcdiat~ result will exist at anyone time.

nte use of the sawe address generation mechanislD to process se'll"ral

arrays in parallel requires that In addition to h.tvlng th~ 9.HIC numtH"r

of elements, they have the same shape. In order for this restriction to

apply to the right and left operand9 of all assignment operations, shape

conformabillty wi I \ be hnpo8cd on aSSignment to a 6ub-array. The resul t

of such an 888 ign.cot will be the right operand. The a881g1U:ll~nt 5 of

vslucs to each element of a sub-array are considered to be indtpeodent

alld llay be re-ordcred. As a result, if the Baae pOSition 10 the .rr.ay

62 CuHPll.INC A DYI~AHIC I.ANGUAGt: 61

ia selected .ore than once. the reeult 1. not fully defined (It will b~

one of the values assigned to that p08ltlon - no error). However, the

use of the saae control .t['ucture for array access on both .Ides of the

assignment operator .eane that all the selection operatione a., be uBed

to select the target Bub-array (ex. (1 1_.4)+1 Bete the dlalonal of A to

1) •

If a variable. whose assignment and reference are thu8

synchronized. Is a temporary created by the complier or a UBer specified

variable which has been Identified (see Section 2.2.1) 88 being

temporary storaae for the unit being complIed, the aB8lgo.ent (and the

variable) may be eliminated. It 18 thl. ell.inatlon which provides the

major benefit of uBing thle compiler.

The rll!-order 1ng of operat lone desc r Ibed above take. advantage of

the fact that the definition of Af'L specifies right association but doe.,

not f1x order of execution. lbJa COMpiler viII not Ruarantee right to

left execution order. In particular. absurdities such as X[I+1 2] are

undel1n<I. Since the complier can combine lineR and eli.lnate storage

used only to hold valuee between lines. aore Jegltlaate usea of

execution order such clB (AlIi!O)/A+B+C will execute efficiently when

written on two Itne9. To perMit the above and et.ilar expreesJone to be

handled efllclently in calculator .ode. we will use a 8ucceSBor operator

o to combine losical lines Into one input line. The two Itne. are

eaecuted 10 rllht to left order. Thle I. the only operator which

tapoaes r1lht to left order of evaluation on lt8 operand••

COMPILING A OYNAHIC LANGUAGE

2.2.10 Interpreter Instructions

A9soctated with each atrea. generator 1s a set of instructioQS to the

interpreter specifying the actions necessary to verify constraints,

calculate array acceS8 para.eters, and transfer Information to and (r~

the interpreter eymbol tdble. These instructions co.hine vith the parts

of the AI'L function which are not cODlpiled to produce ~ new function

which Is executed by the interpreter. The stream generators are

co-routines whose execution 18 interleaved with the interpreted pdrt of

the function. Re-colGpllation of a unit, becauee of biDding failure,

viii change part of the code about to be interpreted tn addttion to the

stream generator (indeed the teat which Juet fatled viiI be changed to

8ucceed wit" the new bindinl).

64

.. .- -- -.. _. - - -- -~ -~ - ~ - , ----------_ ..-------_.----_- ----~ ----_- -~_._~--- ­

CHAPTER J

STREAM GENERATORS - A HODEL FOR IUE EXECUTION Of AFt

Chapter 2 cousidered the questlon of how and when to bind information 80

38 to penait compilation of an API. ·(unctlon. Now we look at the proble.

of	 efflc.lently executing the array expressions of APL.. 11\18 chapter

d~8crlbc8 the syntax and Bemaotlc8 of the Intermediate representation

inlo whlch the APl. expressions are translated.. n,e compiler algorlthll8

t!(!6c"tbcd In Chapter 4 are etated in teras of how they aanipulate this

representation.

). I	 ARRAY OPELATIUN EFFIClENCY

The effIcient ex~cutlon of a Bcalar ortented language Ruch 88 FORTRAN Of

Algol 60 requires the elimlnatton of unnecessary calculations and

control overhead. Some cO~GOn transformations are:

I..	 elt.lnattoo of repeated calculation of the 8ame value (common

sub-expres.Ion and loop Invariants) ..

- 6] ­

STREAM GENERATORS - A HODEL. FOR TilE EXECUTION OF API.

2.	 elimination of calculation of unused values (dead v8rjabl~8).

J.	 reduction of control overhead (loop Jallllling).

As a result of these transformations, the v.llue \l(expressions not

a8slgned to variables must be retained for varying periods. The same

situation arises with intermediate results of expres8ion evaluation aod

control parameters. this requires careful allocation of machine

reglster8 in order to minimize memory access. In doing the above, the

compiler will tak~ advantage of the (Jose correspondence between the

operators and operands of the language aod those of the machine. The

operatlons compute only ~cD18[., and intermediate values may thus be

held In a machine reKJBt~r.

tlowcver when Al'L. is executed on a machine having only scalar

opecattons (the environment to which the work of this thesis is

applicable), the problem Is more complicated because:

I.	 Intermediate results may be arrays which can not be kept in ~achJne

registers. If tc~porary storage In memory is to be avoided,

calculations must he re-ordered so that each Bcal.lr ft,·., ts consuoed

as 8000 a8 it Is produced. n,r re-orderlng drpeods on the fact that

for many A~. op~rators the computations ustn~ ar(3Y components arc

independent of each other. Oper-atlons for which that ts not true

(Ex. t \) may prevent the necessary re-order lng and force the use of

temporary Htorage.

2.	 'l'he expressions I~nerate complex control patterns when array

operations are mapped tnto machine instructions acting on single

STREAM CENERATORS - A HODEL fOK THE EXECUTIUN OF APL 65

Itc"B. Ovcrhead 8Iay be reduced by cOtllblnfn8 two calculations which

run In parallel. Analyst. of control patterns i.plled by array

operations 18 simplified by the connection between the control and

operand .hape and operator semantics. LeB8 totor.ation i. avatlable

when trying to transfona user specified control pattern••

l.	 Because of selection operato£8 ooly part of .0 inter.edlate ~e.ult

~y be Deeded. Thus the partial execution of operatore aust be

posalble.

The IDOre common transformations are applicable (8ome before and eo.e

after translation into scalar code) but wilt not be dlscuaaed further

here since known algorithms apply. The exa.ple. de.~rtbed below .how

some of the transformations unique to APL.

l.l.l Pragglns And Beating

An example of t'ae need fo£ operator Interleaving and pa rtlal executt~n..,

of operators I. the simple APL expre8s1on A.S StRtCtD where 8. C. and D

are matrices of size 10 by 10. An AlgOl pl'ogra.. which pel'for•• title

calculation t. shown below:

FOR 1:-1 STEP I UNTIL 10 nu fOR J:-I STEP 1 UNTIL 10 DO
Till; J J : de II j JI+O II; J) ;

FOR 1:-1 STEP I UNTIL 10 DO FOR J:-I STEP I unTIL 10 DO
T211;JJ:~1(1;JJ.TI[I;JJ;.

FOR 1:-1 STEP I UNTIL 5 DO	 fOR J: -I STEP I UNTil. 5 00
AII;J):-T2fl:Jt;

TI'le p£ogr•• represent. the atandard vay of executiol APt. which 1. to

do each operatton separately, 8torioa all tnteracdlate re8ulta. n••

STREAM GENERATORS - A HOOEL FOR tHE EXECUTlON Of AFL 66

progrsm constats of three aeta of neated loope, does 200 additions. 42~

loads, 225 8tore~. end usee at least 100 words of temporary storage (200

1f 12 i. not the .&ale storage .s TI). the temporary storllge 18 clearly

unnecessary a. can be .een tn ao l.proved Algol version of the 8ame

expression:

foa I:-l STEP I UNTIL S DO fOR J:-I STEP 1 UNTIL 5 DO
A(I;JJ:-B(I;J)+(C(IiJliDlliJ)i

which reflect8 the transformations Abrallls II) called "beatlog and

dragging", and has only one set of nested loops, does 25 additions. 15

loads, and 2S stores, and uses no temporary storage. The 2 operations

have been interleaved but the Ite•• of each operand are accessed 10 the

same order. Also the actual additions for each element are not

re-ordered. Tbe result Is the same even If the additions are

non-aBBociatlve floating point operations.

].1.2 Operator Transposition

In other cases the Item. must be processed in different order. for

exa.ple. the standard execution of $4-'I(/t /[llAIB with A and a being 10 by

10 ..trices Ie repretumted by:

FOR 1:-1 STEP 1 UNTIL 10 DO FOR J:-l STEP 1 UNtiL 10 DO
. Tlll;JI:-All:JI/B(ljJt:

FOR	 J:-l STEP I UNTIL 10 DO T2IJ):-O;
FOR	 1:-10 STEP -I UNTIL I 00 FOR J:-l STEP I UNTIL 10 DO

T2IJ):-TllljJ}+T2{J);
5:-1
fOR	 J:-10 STEP -I UNTIL I DO S:-T2IJJ*S

T"ls code haa 6 loops (2 neeted), does ZIO arlth.etlc operations, 410

__ _ ~ _... __1.""""'~""~~~"~'.~~

STREAM GE~lRAtORS - A tlODLL fOR TItE EXECUTION OF APL 67

loads: and 211 stores (S 18 kept In a register), and uses 110 worde of

temporary storage. Changing the order of calculation 80 that

intermediate valllCS lIay be u6ed .e 800n •• produced yleldl1

S:-li
FOR J:-IO STEP -1 UNTIL I DO

BEGIN 1:-0;
FOR 1:-10 STEP -1 UNTIL I DO T:-(All;JJ/BII;JI)+T;
5:-1'5

Et~D

which has 2 loops, does 210 arithmetic operation, 200 loads, and

6lore. and uses no temporary storage (T will be a resister). It takes

ddvantage of the fact that the calculations for each element of AlB are

tndepend~nt. The correctnes. of this transfor-atlon which may be

applied at tbe APt level to yield S.M!.'_AtS wal proved by Abra•••

J.l.J Filtering

For a nUl8ber of AI'L opcr:ltors the above 81aple transfonoat lon8 are not

sufficient to produce reasonable execution. An eKample ts the

expn~s61on 8,,(v/A)/[t levA 0 A+-CAD where C, 0, and E are 10 by 10 boolean

matrices. This expression removes a row of IvA if that row of A 18 all

zero. An Algol p£ograa for the 8tandard execution of this expre8slon

18 :

68STREAM GENERATORS - A HODEL fOR TItE EXECUTION OF APi.

FOR 1:-1 STEP 1 UNTIL 10 DO fOR J:-l STEP 1 UNTIL 10 DO
A I1 ; J I : -C (l ; J I AND D II i J I ;

FOR 1:-1 STEP I UNTIL 10 DO fOR J:-l STEP 1 UNTIL 10 DO
TIII;J):-Ell;J) OR AII;J);

FOR 1:-1 STEP I UNTIL 10 DO
BEGIN T211):-FALSE.

J:-10 STEP -1 UNTIL 1 DO T2(1):-All;Jl OR 12(1)
END;

K:-O
FOR 1:-1 STEP 1 UNTIL 10 DO

BEGIN IF 121t} THEN BEGIN K:-K+l;
FOR J:-l STEP I UNTIL 10 00

B(l\ ; J J: -T I (I ; J I
END

E~:U

...,htch conststs of It sets of nested loops, does 300 logfcal opf"rattons,

betw~en 510 and 610 loads (depending on number of rows preserved), and

between 210 and 310 stores, and uBea JI0 words of te.porary storage, and

aakea two complete passes over A. A more efficient execution of the APL

can be obtained u8tng the following program:

K:-O

FOR 1:-1 STEP I UNTIL 10 no

BEGIN T: -FALSE;

FOR J:-IO STEP -I UNTIL I DO

RECIN A(I;J):-Cll;J) A~~ O(I;J).

T: -,\ [l ; J) OR T

END;
IF T THEN BEGIN K: -K+l;

fOR J:-I STEP 1 UNTIL 10 DO
BIK;J):-EII;J) OR A(I;JI

END
END

which has only one loop at the outer level, does between 200 dud '}OO

logical operations, between 200 and 400 loads and between 100 and 200

stores, uReB no temporary storage (T 18 a register), and makes two

passes over each row of A in succe6sion. The change In order of access

to A Is a significant transfonDacion. A common occurrence tn APL

functions Is the generation of a large array, followed by an exp£f'sslon

70 STREAM (,[N£RATOAS - A HUnEi. FOR TilE EXECUTION OF Aft 69

such as the example which flltera out sele,cted cOliponent8 of the

original afray based on their values. Further proces.ing then U8ee onl,

the surviving co.ponents. TIIU8 the variable A '11'1 be referenced only

10 the given filter e .. pres91on. n,e flr8t I.plementatlon whIch doe. tvo

complete paAses over A would require 811 of A to be in atofale. The

second \lhlch uses A a (OW at a ti.e "ould requlr-e only a ro" of A to

e.l~t at anyone time savlns 90 vorde of ator_le 10 this exa.ple.

(A(l;J) would become T2(JI.)

].1.4 Hergfna

API. also bas opf!ratfon8 which select between two data sourcea instead of

filtering one. An example 18 the expres.lon S~t/t/B.C.rl1Dwhere I 1. ­

10 by 5 matrIx and C and 0 are 5 by 5 matrices. nle conventional

execution 19 given by:

FOR 1:-1 STEP 1 UNTIL 5 00 FOR J:-l STEP 1 UNTIL 5 DO
Till; J 1: -c II ; J) ;

fOR 1:-1 STEP I UNTIL 5 00 FOR J:-I STEP 1 UNTIL S DO
T1(1+S; J J I -0 (I ; J J;

rOM 1:-1 STEP 1 UNTil 10 00
BEGIN FOR J:-l STEP I UNTIL S DO T2II;JJ:-IIl;JJ;

FOR J:-I S,[EP 1 UNTIL S DO T21t;J+S):-tlll;J)
Elm

rOR I :-1 STEP 1 UNTIL 10 00
BEG I NT) {I I : -0 •

FOR J:-I0 STEP -1 UNTIL I DO
T) II I : -T 211 ; J 1f-1) II)

END
S:-Oj

FOR 1:-10 STEP -I UNTIL 1 DO 5:-1)111.5

"hlch usce 10 loop8. doe. 260 loads and 161 .tores. and usee 160 words

of te.porary atorage. 11 (~O worda of storale. 50 load_. and 50 stores)

aay be ell.tnated by ual08 h.lf. of 12 .a TI. 1I0wever to elt.lnate T2

STRE,u1 GENERATORS - A HODEL FOR TUE EXECUTION OF APL

end T3 the pCOg~8. must be transformed to:

5:-0.
fOR 1: - 5 Sl'El' -I UNT 1I~ 1 DO

BEGIN T: "'0;
FOR J~-~ STEP -I UNTIL DO 1:-011 ;J)+T;
FOR J:-5 STEP -1 U»YlL no T: -B (I .5 ; J) +T ;
5:-'£+5

EtlD;
FOR 1:-5 STEP -1 UNIIL 1 DO

BEGIN 1:-0;
FOR J:-5 STEP -I UNTIL DO T:-eII;JI+T;
FOk J:-5 STEP -1 UNTil DO 1:-B (1 ;Jl+t;
5:-1 ...5

END;

which ha. 6 100p8, does 100 loads and I .tore, and uses no temporary

storage. TIle loops calcul.te a function betveen position io the rcsult

of catenation and position in the input.

1.2 ARRAY ACCESS AND LADDERS

Froll the number of occurrences of 8ubscripted variables In the t?'xamples

above it 19 clear that an important part o(the execution of an APL

expression 1s the leneratlon of the addresses of elements of an array.

In develop!ns an addre•• generation 8110rlth. we take advantage of the

facl that the aequcnce of array p081tlons for which addresses 8rc needed

1s often Independent of calculated valu~8 (.8 true in the examples).

Indea ortlto 0 1. Msau.ed for all the equations of this section.

Sl'RWt Gt:NERATORS - A HODEL fOR TilE EXECUTION or APL 11

}.2.1 Array Storage

Following the suggestion of HInter (11) we store array elements 80 that

the (unction .applng 8ubscrlpt positions Into addressee uses only

arithmetic operations, and 1o partJcular we want certatn sequences of

addresscs to rcquire only the fast arithmetic operatton addition. The

expressloo for the address of an array element (PI) given the subscripts

Is:

Pi· fiE"fA ti II xC (l-l)

""here BETA 19 th£' address of the element whh all subscripts equal to

zero, I Ls the vector of subscripts. and G Is a veclor of constants

which d(!pend on the size of the array. Given an array there are several

potJ6lbie 8torortge orders for which it ill possible to 8ss18" a C

8atlfifylng the above expres9lon. However, APL defInes a linear order on

the elt~mC'nt8 of an array. This 18 ravel order or rov-maJor order

(right-most 8ub:U"rtpt challiing .ost rapidly). The p081tton in ravel

order of an elcuH-u[wlrh 8ubscript vector I 18 given bJ:

f,'!I()JI ()-2)

wh.!(c kilO i. the VCt:tor of .1I",cnstona of the array. (Th18 18 known ••

the odOloeter (un(,:tlon.) The rnvel operation wtll not require copying.

and 8cqucnclng thcough an array tn ravel order .,tll be 81apltfled if

tht.·re ex J9ts a Sl:aL1C GR ouch that:

(U/:"i'A. t /1 lOr;) =Hf..··i"1t (RH01 I)'lCGR (l-3)

Is true (equal 1) for ell I which sattafy:

STREAM GENERATORS - A HODEL fOR THE EXECUTION UF APL 72

"/(I2:0).I<RHO ()-4)

(all legal subscripts). When this Is true the 8ame address generation

.echont.m can be used to access the elemente •• an array or ae a vector.

\.Ie show to Appendix C that If:

G+-GR~)(\l,.l.RHO ()-s)

then equation (3-3) viII be sat tafted. If L" 18 the aUllbcr of

addressable unit8 per data word tbis will cause the array to be etared

in ravel order 1n consecutive location••

].2.2 Ladders

The "ladderu Is an algorithm developed by Perils {PERI which generales

addresses of successive elements of an array 10 ravel order. The

conlrol structure developed to represent thts algorithm provltlE'R 8

framework for the execut ton of Art. In this thesis \Ie uS\J the term:

"l adder" to refer to those components of tht'! Intermt'lltate or final

(~prcBenlatloo of the comptt('d progr.•m which have that structure. We

will define ladders by giVing rules for writing dO Algol program ~'Ich

rcprt!scnta the addr('6~ gent-riltton alil,orithm. nle I.,dd,'", wlll ("l)ns(st of

n+l purely nested 1001'S where 0 Is the number of dhaensiol\8 of the

erray. The program will be built up froll program fragmcnts of the

follo\ling form:

74 SllEAH GENERATORS - A HODEL FOR TilE EXECUTION or AfL 1) STREAK GENERATORS - A HODEL FOR THE EXECUTION OF AfL

frag_ent Id text

A LIO): PI : - lETA

1(11 I io {l ••.• n} llil :- 0;

LII):

C(ll t in (l .•.•nl 1111 :- Ill) + I,

IF Ill) < RHOlll THEN

BtelN PI :- PI + DELTAllJ;

COlO Lill

END

o COTO LIO'"

where PI, BETA. 111:0). and RHOll:n' are the quantitiea defined In the

prevldu8 section and DELTA(I:n) bold. the values ueed to JDcre.ent Pl.

n.e Algol pro&raa repreaentlal a ladder of depth n J. liveD byz

Ai

".Bill *;

Sln-l J Ai

Bin] $;

C (n); *;

CUI; Ai
D

vtlere ' *' represent. a locat Ion in the proara. at which .dcUt tonal

computational statements may be inserted. and '$' 18 a 'A' at which PI

contains the addre•• of the array ele.ent whoBe eubacrtpt po_1tloR t. I.

For 0-1 the proara. II:

L(OI: VI z- BETA: *;
1(1) :- 0;

LUll ";
112) I- 0;

LI2' 1 .;

1 (l) : - 0;
Llll: $;

Ill) ;- II]) + 1;
IF 11]1 < (UfO(]1 TIIEN

BEGIN PI :- PI + DELTA())i COTO Lll) ENDi
*;
1(2) :- 1(2) + 1;
IF 112) < RIIO(21 TUEN

BEGIN PI :- PI + DELTA(2); COlO L{l) END;.,
Illl ;- Illl + Ii
IF 1(1) < RHO(l) TUEN

BEGIN Pi :- PI .. DEI.TAII' i COlO LIl) END;
*,
COlO LIO)

Figure 3-1 18 a flowchart of the minimum required actions of this

progralll (called the "fixed part" of the ladder).

The boxes of the flowchart have been labeled with the identifiers of the

program (ragmcnts frOil whJch they vere derived. That flowchart clearly

ehovs the orl11n of the na.e ladder for this structure. ~e consider the

ladder to constst of ntl "rungs" conslsting of the oth rung A dod n

runga fOllDed by Bill and <.;(tJ for 1 in (I •••• n). \then this progr.ulI is

executed, I will take on all legal 8ubscrlpt values In odolleter order.

At each t['anaitlo" a einlle ele.ent (ro. DELTA t. added to PI. We show

in Appendi. C that If the 8r£., 1. Itortd in ravel order, then:

"/GR=OEI,TA (1-6)

holds (adding GR (1 if wo['d addresslnR) wtll alway. produ~e the

address of one data element fro. the address of the previous data

element). n,e addres8 8equ~nce 1. not generated by a 8ingle loop. since

co_put.tlon of ce['tatn operators such •• reduction depend. 00 the array

__

C(ll - ell) I L-----.--J

STR£AH GENERATORS - A HUDEL fOR TilE EXECUTION or APL 7S

<:... '"','
F

_ ~'rldllJ~~-PJ.p I'OELTA'"

r·-~~--£(ll~.~~:-J -~--

F B(21

<' --....... C(21 Cl21
~('."'H:' _-----.!_-{ -_ .. --- C- .HZ'"_.~ rl.-p. J ­l:~~'~J ·on JAm -- ­ •

Bill -
IIJJ.'~

ell)
.__----- C (J I _~D'LlAI~
 ~"Jl" ~>!..,_. --'- --- • ~

LSil(

[__~~:~)I.,_, 1 _
---P-I~~~ITd···-~-

Figure 3-1

STREAM GENERATORS - A HODEL FOR THE EXECUtION OF APL 16

structure.

This i8 8 special case of the result derived In Appendix C that for

any array whose storage is d~ftned by equdtlon (J-I) there exists a

DF.tIA which will allow a ladder to access that array in ravel order'. tn

AppcndlK C It 18 shown that the application of certain common API.

operators to an array which Is stor~d In [dve) order yields an array

which can dlso be accessed In ravel order by a ladder. but with

different BETA, RIIO, and nELlA. Since no data Is moved in sturagl" lo.'hcn

these ope£atora are applied, and since these operators 80mpttmes change

the orderlng of the data anti even the number of data items in the a:-'Cay

to which they are applied, the resulting array Is not stored In ravel

ordt!r. The fact that ladders can be used to access these resultant

arrays means that the storage orderings "'hieh dilfer from the rCivel

ordering and which the ladders can handle arc comptonly occurrtng ones.

The operators, which Abram!l called sclection operators, are reverse.

tran9pose, take, drop, and certain types of subscription. Other access

orders can be gennrated by directly calculating PI using equation (]-l).

The IHdder fixed part defined abovt! generatt:8 the gequcnc~ of

add resses needed to access a s Ingl e array. Uowever, that def i nit lon 19

not complete as it makes no provision for calculations with the array

elements when they becoaae available. Figure 3-2

8ho"'5 the same ladder as before except that In addition to the fixed

part of the ladder shown in Figure)-1 seven numbered boxes call~d

ll up J ieee u have been odded~ Code to perform scalar calculat Ions III.IY be

placed in each box. A splice may be inserted Into any edge of the

flowchart defining the fixed part of a ladder corresponding to the

71 STREAM GENERATORS - A ttUOEl FOR THE EXECUTION OF APL 18STREAH GENERATORS - A HODEL fOR THE EXECUTION OF API.

{START)- ~

I rl~"'. I
~;ce7 ~~

-]F
~~

"""-- nll,fUlIII) -. T PI+P,"OH lAB a
~'-

[~:I=-J
___ 1

~ce6J
~

III J {PUC'('. J------ T p •• , ••OlL lAl U

'"'---­

C=lJ:- .

local Ion of a "*" or u$" tn the Algol program. Figure 3-2 shows all

possible .plice locations for a ladder of depth) (spllces numbered by

order of first execution). The eplice which 18 In the Inner--.ost loop

(Splice 4 or "$") .ay fetch Ire. or store Into the arr4lY element pointed

to by PI. (PI "lll have 8uccesslve v.lues of the address sequence at

each execution of splice 4.) All the splices lDay contain code using the

control variable. (BETA, PI I, RHO, C, and DELTA) and Items from a local

.emory T.

We have now specified a structure which allows access to and

calculation with the elements of a single array. Since almost all Art

expressions Involve more than one array, the ladder definition also

Includes a facility for combinin, Beveral ladder. into a larger

atructure. Each ladder i. a co-routine. The control variables (PI.

BETA, I, RHO. DELTA, and G) are local to each I adder. and th~y share a

alobal vector T. Control will pas. between ladd~r8 as specified by

co-routine Jumps placed io the splices. The collection of ladd~rs Is •

"ladder network" which 18 a co-routine with the Interpreter.

The requirements of fixed rank and type present In the constraint

propagation phaRe of the cOlllpiler were Imposed because the ladder

atructure depends on the rank of the associated array, and the splice

code instructions are dependent on the type of the data. However, the

length of the data ia reflected only tn the values of the control

variable.. Thua we only require length to be known at execution time

when control vartable. (and T) are tDiti.liled by the lnterprete['e

[~~~;~:~~J--:-.-
1---­

[~~~.~~ 5__J
F

-~

Ph' .'(JElIHl lJ

Splice 4 ~
Figure 3-2

STR£AH GENERATORS - A HODEL FOR THE EXECtrIIOtl OF APL 79

].) STREAM CENERATORS

A "stream generator" t. a la.dder network. Uowever. we have lIodifled the

deflnltioD of the ladder given by PerlJs (PERI (prescnted io previous

section) so as to provide 8 closer .atch between the capabilities of the

ladder and the requirements for efficient execution of APL secn In the

preceding eX3Clples. \Ie have borrowed the term ateea. u8ed by 8urge

(BUR) since It ~ptly describes the flow of data right to left through an

APL ekpresslon. However. the ftnlte, array-based sequences of data

items described arc very different fra. those described In (6). and the

notatton used to describe them 18 unrelated.

In thll section we ~tll progressJvely modify the original

definition for the ladder to arrive at the dt'ftnttlon 8 Btreall

g4!nerator. Eada chdnge will be IDOttvated by [eference to an example.

In parall~1 with the modification of the structure we vill introduce neW

notation for specifying stredm generators. nle reader should keep In

mind that the notation presented here 18 destgned for human processing_

It shows the toformat Ion Ileeded by the compllt"t al gorlth.s. but not the

fOriOi that informat Ion would take internal to the campi ler.

TIle examples pr~8ented above viii now be re-done In ler.s of

laJJ("('6. In these examples a 8111pler picture will be used to describe a

ladder. The actions of the fixed part which can not be sep.. rated (a

Bingle rung) are collected Into one box In the flowchart. TIle Jth rung

"'Ill contain the exit test for the loop at level J. Except for the oth

rung the new boxes have In and out-deBree Z. These edges are the ladder

"ratls ll
•

STRUt! GENERATORS - A HOOEl h)R THE [Jf.t UT illS or An 1'.:'

The fixed code t. ollltteod and the addre•••equ~nc~ bt'SnK A"n~r.t~4

i8 indicated \lith the name and dtmenslon of th(' arr.)· "r,-.ft ""hh:h ;ihl anlj

DELTA are based (ea. AI etand. for the flr.t 41.~nslon of A). nap

labeling will distinguish between asatanment and reference (AI ­

reference. AI. - 86Btgnaent) and vill incorporate the 8elc(tlon

operators which affect only addr~ss sequencloa (ea. a lab~l aay be StAt

not Juet AI). The ladder of rlgure 3-2 would be shown .a:

7

"1

I .2

AJ

4

where LI 18 the ladder label. The .pllce code Is listed. labeled by

splice number and Is scalar API.. augmented by the function EYOKE L (where

1.. 18 a ladder label) which doce a co-routine Jump, and by IPl) which

refera to the array element pointed at by PI. Execution atarts with the

Interpreter doing EYOKE Lt.

82
blR£.AM {;F,NlIlAToRS - A HOOEL FUR Til! EXf.CUT ION or APt 81

J.l.1 Beattna And Dralllni

The APL expression A4 5 5tBtCtD wa. translated tnto the Algol prolr...

FOR 1:-1 STEP J UNTIL 5 DO fOR J:-l STEP I UNTIL 5 DO
AIl&Jj:-SII;J)+(CII;JJ+OII;J);

lIowever, the J.",";~cr netw __ "'-)(thle expression 18.

LI~l1
C _"Dl

t_-­
CV

L2:

3 33 3

J: 11 t J·(Pll):711)47t I1t[PI]]: 7t.l1·111 I-[PT)]:[PI1",11:1]

['JUKE L2 [VOICE l) EVOKE 1.4 EVOKE LI

~;E\UKE Interpreter

which con81&t8 of 4 ladders Instead of the .Ingle loop of the A.Igol

Vf'rJiton. The overhead generated by 4 set.s of loop control and the

co-routlDlng is undesirable. tn addition. the perfect synchronization

o(the access to the 4 array. Ja obscured. We tllUe wt8h to .odlfy the

ladder concept to permit .ore than one array to be acceased by •• tnlle

laddt!r. To accomplish thla we ••ke PI aDd BETA Into a vector of

pointers and lultlal value.. Each pOBitioD 1••BBoctated with an arr.y

STREAM GENERATURS - A tlODEL fOR TItE EXf.ClITION OF AI'L

(not 8 ladder) dod these variables are globel to the entire network.

Similarly DELTA and G which' were vectors ~10Be length vas given by the

rank of the array, now becolle matrices '11th a row for each itea in PI.

Only I and RHO (the loop control paralleters) re.ain local to the

ladders. In Figure)-] we 8ee the fixed part of a ladder structure

ecce8sfoR two arrayB.

Usinl thl. new facility the ladder network .hown above becomes:

3: [PI [J]] 4-f PI r2]] t (PI (31) t{ PI [If 1J

S:EVOKE Interpreter

~.-L_

Ll:

~Cl..S'8,. s.c,. s •• ,

A2+' ,t'2. $.(2' 't02

3

which Icnerates addressee efficlentl, with the .ue low control overhead

8. the Algol version.

).).2 Operator Transposition

Gtven thi8 new feature we can al80 translate the expre•• loo S~M/i/[l~IB

tnto a .tnlle ladder. nle clteole 1n aceeS8 order ahown 10. the Alsol

ver.Jona

••	 •--, _ au 1........._............. 1....-. _ .-...., It......J.,~...­

STREAH GENERATORS - A HODEL 'OR TilE EXECUTION OF AI'L 83 STRtAH GENtRAToRS - A HODEL rOR TRt EXECUTION Of AYL 84

s: ool;

fOR J:-IO STEP -1 UNTIL I DO

START BEGIN T:-o;

FOR 1:-10 STEP -I UNTIL 1 DO T:-(AII;Jl/Bll;Jl)~T;
S:"TiAS

END

88 reversal of nesttng order (or the loops controlltoc the: subscripts I

and j 1s reflected in the ladde~:

[--sp~~

'---J~ I: T(11+-1

.----' '---­ 2:T[2]+-O
~ ----- T

~~ Pll2Jtplll1.0EUA(

"

C0...

2,1 I 5

<1(11'\~'~~ Pf[lJ"PJ(lltDHlti(1.1)1-1----~~

3:T[2]~([PI{l]]'[PI[2))).f(21

."2' +82
4:T(1)~T[21-T[l][--':~l~:'~~~_~l
S:EVOKE Interpreter

~- -~ ---f
(~,Jch stores into 5 from f[l)~r

[--5':I~:e 6_J C·At.... J~
'-:=JF

~, ..._~~ T
~(2)'~t~-'	 PII1J.PH1JtO£I.TAll. ZJr-

P It 2 I ., It 2) .D£l H1(2 I :n
 3
~~-':t=t

by the inversion of array dimensions shown by the fixed part labels.[~_~-'~~~:~~~~~J

[--S~~iIC~]

3. 3. J F11 t e r log

F ~-t-=
--------------~. I~.. Plll,"f·lll}tl>£ll"'(l. J] The Algol code fo[' 8+(vIA)/£11EvA 0 A+CI\D:~l3J 'H~'i.J~_~	 PUIJ"PIU)t[,[Ll .. l2.JI-......-C	 --------­
[-::'-II31.,---J --~ _

-.------,--" ~---'--{ Spl ice ~-

Figure 3-3

STREAM GENERATORS - A HODEL fOR TilE EXECUTION OF API. as

1:-0
FOR (:-1 STEP I UNTIL 10 DO

BEGIN T:-FALSE;
FOR J:-IO STEP -I UNTIL 1 DO

BEGIN A(I;JI:-Ctl.J) AND Dll;J);
t: -A. (I; J J OR T

END;
IF T TIIEN BEGIN K:-t<H;

FOR J:-I STEP I UNTIL 10 DO
IfK;J):-E'l:J) OR AII;J)

END
END

use8 one subscript (K) whIch 11 not a loop Index. Also. the U8e of

variable [occulS only for 80me value. of 1ts Jndex I. the selectton

beinH depend~nt on values o(A. In order to avoid having to calculate

311 addr~H8 sequence tn splice code the co-routine facility will be used

to select one of tvo ladders to execute In each 8tep. The splice code

is extended to Include an If-then-else construct. Tbe value of the if

clause must be In a regtster, and the alternatives .ay only contatn aD

[\~KE. Both ladders vtll sequence the pointer (element of PI)

associated with E but only one wfl1 actually aeees. the array and

sequence the pointer to B. Additional processing necessary to Bet

correct 8equ~nc t nS 'It 11 be described In the section OR atrea. generators

nle variable A occurs 1 tl~es In this expression. Since the

assignment 1s the first access. each references the aa.e value. In the

salle stofc1ge. but there Is no guar8ntpe that the] uses of A will

proceeed In syuchronl tat ton. n'erefore we may need) dlf ferent pointer.

to A. n,eBe "altasee" for A wtll be written as A· and A· #. In thts

exa.ple two pointers do mOYe together and .ay be coabtned.

We a180 eliminate the storage of all but 8 etoale ro~ of A vhich 1.

acces8ed repe.tedl,.. Thus the ladder rung which would have aoved the

86STREAM GENERATORS - A HODEL FUR THE EXECUTiON OF APL

pojnter to the 8tart of the next rov must reset It to the beginning of

the ein81e row. This til done tn the ladder fixed part by uslnl 8

different DELTA (calculated from a C of zero). and lndlcat@d by • label

fonaed preflxtns the label for the dimension re8et by .. -" (ex. -A.) ..

Using theae new features the ladder network ie:

LI :

_- -
Cl· 0 1·C

5

-r
4.L __

11

-- tA2"
.C2' .02­

(--v
33

2:7111~

J:T(2]4(P1l1Il Afl'I(2)] 3:(PI[6])+[PI[5]]v[PI(tt)]

LPl[J]}<47f 2]

7111 4 -71 2)vTI J J

4:EVOKE Ll4:tf 1'ftl	 then EVOKE L2 4:[\'OKE Ll

else EVOKE Ll

~:EVOkE Interpreter

which has	 the 8ame pattern of access to A as the Algol program. 8ec.;\ule

this structure .ove8 the same '1 in two different ladder. at the sa.e

level, adjustmente .uet be .ade to the ladder flIed part. n,ey .re

deacribed	 1n section].4.16.

4

V
4 2

3 3 33
1: ~t t J·O

2: 111).·0 2:T(2)+-O

): 71- 2 J.[Pl[t)]): 7l2)·[PI(2]1]: T[2}.(Pl[3]1 l: T(2] .{ Pi r 2 II
tT[2) t7{ 2] t712] J\7121

4:EVUKE L2 4:T[I].-712]t1{1) 4:EVOKE L4 4: 71: 1 J·-l1 ~) t 111 1
EVOKE Ll EVOKE Ll

5:EVUKE Ll 5: EVOKE Interpret er

STREAlI GF.NERAYORS - A HODEL. FOR THE EXECtrflON OF APL 87 STREAH CENERATORS - A HODEL fOR TUE EXECUTION or An. 88

J.3.4 Herging

The ezpres8ioo S+./t/B,C.[t 10 tran8lated loto an Algol prolr..:

5:-0;

FOR 1:-5 STEP -1 UNTIL I DO

8EGIN	 T:c:O;
FOR J:-S STEP -1 UNTIL 1 DO T:-D(I;JI+T;
FOR J:-5 STEP -1 UNTIL 1 DO 1:-8(1+5;J)+T.
S:-y..-5

END;

FOR 1:-5 STEP -I UNTIL 1 DO

BECIN	 T:-O;
fOR J:.~ STEP -1 UNTIL I DO T:-C(I ;JI+T;
FOR J:-S STEP -I UNTIL I DO T:-8(I.J)+T;
S: -T+5

END.

which does not have 8iraply ne8ted loops. ntuB the ladder network for

thts expression i8 one:

which, a8 in the first example. uses co-routines to synchronize pdrls of

the network delven by the snme loops tn the Algol program. Since only

tlH~ llppf"r level Is synchronized we can not merge the (\010 ladd,~rs as

before. We ~ust allow more then one loop to be nested at one l~vc\. If

the ladder has multiple nesting then the remaining local control

variable vector. (1 and RHO) must become global matrices. A ladder will

use the same number of rows 8S the maxl.um nu~ber of nodes at 8 given

level. Fi&ure)-4 shows the (iKed part of • ladder usin& the new I and

RIIO.

The modified network 181

90 SlREAM GENF.RATORS - A HODEL FOR TilE EXECU·r ION OF APLSTREAH CENEIATt)RS - A. HODEL fOR TH£ EXECUTION OF APL 89

START

PlllhlEUIUl

PU2heEfl1ll2J

~---------.
~'ce I I

Splice 7
[=r

CU"~J-"'---""',J=~-
_--- - __ T

PIU J.PI (U'-DfLJA(1, I JI -----.
<~)'~HO(~

PIUhPI t2J'O[LH'(~.11

----L~]
l=-_~'~~~~; 'l1' __

L_~~~;e_~J ~> ... ,

--------~. T~.2J'f<"f)(1 ;.!>--~ "O.L1AII.l~~ _~<1l"'PIl~I'O.lfA12·!1 _­
<II> 1· P II Sp lite 3

[-:'~~:~~~:-J
---- -- -__r_ -----'J­

[Sp I ice S

- -:IF-----­~--- ~5
Ill11\"~!~

~-

I,)1 ••~:J ~ -~~==--[S~ice4
Figure 3-4

,.--a----J.7\
+°2.....

1.

.:-t

14
1:1'[1]"1

ZI T(21"'0

31 T(2) +{

6 : T[2 J4- [

7:71. 1 J.11

P

:1]t1f

I [3]

PI[1]

1)

1, n 2]

It 7{ 2 1

II

IS: T(11·T

16:EVUKE

II : 1t 21· [

) 4 : 71. 21·{

6
10: 712)·0

(LIt 7111

Interpr

f'lf 71] t

PI[1 n 1

e

j(21

T[21

ter

3

1n which each rung is labeled with the row of 1 and RIIO tt refel"enccs.

~)

Because this structure moves the eame PI In two loop. nested at the same

level, it will require adJust.ent9 to the ladde~ fixed parts In ord~r to

set cor~ect 8dd~e88fnl. These vill be described 1n aecttoa 3.4.16.

).4 STREAK GENERATOR GRAPHS

As the power of the ladder hal Irown. the flow charta needed to describe

them have gottttfl Increaslngl, co.plex, and the condensed notation is not

adequate for completely specifylna the ladder fixed part. Ue will now

_odify the notatloo to ell.lnate redundant In(oraat1on. and at the 8a.e

ti.e Increaae the 10for.atlon contained to the dt.lra. of tbe .tream

__... .. __ .__ ~ .-_,__._._r- - ~- ...;.~,....~...........~
_ __ -.----.-----.~-~.---.-...JWi4,.,"*+*JlOCi.. ..--.~

SfREAH GENERATORS - A HODEL FOR TUE EXECUTION OF APL 91

generator so that significant processing caD be done without reference

to the splice code. As each new feature 18 described, we viII specify

how that 10for.-atloo caD be u8ed to detenalne the actual ladder fixed

part needed.

).4.1 Loop flestlng

The flov chart draws each loop of the control structure, and tn the

conJcosed notation ~e retained both area connecting the body of a loop

to the rung containing the exit test for that loop. However. no

Information 18 IOBt if the flow chart t. converted Into a directed sraph

by removing all arcs which carry the flow of control out of a loop body

(upwards pOinting 10 examples shown). Ftgure J-5 shows en example of

thtl conven.ion.

The oodea of the Iraph represent ladder rungs. If an edge goes

froUi node a to node b •. then the loop controlled by the ladder ftxed part

defJoed by node b is nested inside the loop defined by the ladder fixed

part defln~d by node a. Node b 18 defined to have a nesting level one

higher than that of node a. Since the ladder control atructure allows

only pure nesting, the Sfaph 1•• tree.

1.4.1 IIc.ldel' Uode

nle graph node derived (rOIl the oth runa of t\le flowch t 18 labeled to

d18ttngulsh It (drawn 8malier) and called the 'theader noden
• It viII be

a root node In the oeetlna graph (foreat if Beveral ladder.). These

STREAM CENER.ATORS - A HODEL FOR TilE EXECUTION Of APL 92

header nodes will contain a label Which live. the nesting level (~O) for

the header. Every node now has a fixed level. This level Is u8ed 8S

the second subscript for all references to DELTA, C. RHO, and tn the

fiKed part code defined by the node. Node (I) 1n Figure l-S Is th~

header node.

3.4.) Raveled N(stlng

n,e [dvel operation of APL may reduce two dimensloos to one. Ttds is

shown in 8 stream generator I1raph by labeltog the edge connecting the

two nodes (drawn =.:.= Instead of 8& 3 stngle l1ne). (The control

structure represented docs not change.) Both nodes are considered to be

at the same level. The loop limit for a raveled structure 19 the

product of the It.ita for the nodes. In Figure 3-6 nodes (2) and el)

for. a raveled 8tructure.

).4.~ Splice Order

The 6tream generator graph does not have a dlBtlnct edge as:Joclated with

each splice and splice Dumber8 are not 911vwo. They •• y be calculated a8

follows:

I. Start at the header of ladder LI and with a current splice nmaber of

O.

2. Traverse the tree tn root-l'lght-left-root-order. (All nodes except

leaves ere visited twice, and all edges are traversed twice - once

backwards.)

STREAK GENERATORS - A HODEL FOR THE EXECUTION OF APL 9)

(1)
becoMes

~~) _-__~ ---::'2)

C-)13)

Figure 3-5 - Nesting Graph

~U)

C~'2)

C ~U)

Figure 3-6 - RaY~led Nesting

STREAM GENERATORS - A HODEl. fOil TilE EXECUTION OF AYL 94

l.	 ~,eD ao edge t. traversed, the current splice number 18 incremented

and the new value I. aa.lgned to that position and direction (of the

traversal, not of the edge) of the ladder 8tructure.

4.	 When a leaf node Is reached. the current ladder number i8

incre.ented aDd the new value t. asalgned to the body of the

(innermost) loop which t. controled by the fixed part defined by

that node.

5.	 The process 18 tben repeated for each ladder In order.

figure)-1 shows the .plice order for a ladder of depth 2.

~,en the graph ts not a straight IJne. the sub-trees are executed

In right to left order for each step of the loop definr.d by the node

with .ultlple sons. For each 8tep (a stngle execution o(the body of

the loop) o(any node. the list of splices executed Inside. with

duplicate9 removed. will be Borted in increasing order.

The ladder structure defines an t.nftnlte loop. However the

instruction "EVOKE lnterp£eter" will always occur tn the highest

numbered spltce of 8o~e ladder In the network. and the co-routine

connection. will auaraotee that DO header node at level 0 executes .ore

than one step.

, 1_--. ,__.'...--.-...-__-

STkEAH GENERATORS - A HODf.L FOR TilE EXECUTION OF APL 9S

3a4.~ Co-routine Graph

The ladders in a stream generator are linked together u8ing the EVOKE

functlona n,e ladders are co-routines. When a ladder Is evoked, tt8

execution i9 resumed (roil the point after the 189t EVOKE it executed

(ladders start at the beginning of Splice I)a However, the control

dependency relationship Is that of non-recureive subroutInes. A ladder

"ill ahmys execute un EVOKE of the ladder that evoked It. This

Instruction will be the final instruction of a splice which ttl traversed

tn dn upwards direction. (A ladder evoked will execute one 8tep at 80ae

level and return.) The complier will replace a string of 8uccessive

E")KEa by one equivalent EVOKE.

TIle linkage structure .ay be shown graphically by adding evocation

~dgeB to the atream generator Staph. They are directed edges leading

from the node defining the loop contatnlng the EVOKE to the node

deC lolng the loop ended by the return. nley will be labeled (drawn 8S

- -) to distinguish them (ro. the ed8~8 indicating ncsting

'Which arc dra.wn as 80lid lines. We call the source of an evocation edge

.. "cholcc" node i(Inore than one such edge 1~8ve8 it. the nodes entered

are called "target" nodes. In F1sure 3-8 we see a ladder network In

wh lch tllC:! splice code (or the loop def t ned by node (I) contatn. an EVOlE

of the ladder containing node (2). and the last instruction of the

sp lice code of the loop del I ned by node (2) 1a aD EVOKE of the ladder

contatnto. node (I).

STREAK GENERATORS - A HODEL FOR THE EXICPTION OF APL 9&

c~'

5(1') ~(J.)
C~

4(t)12 ('1.)

(_._~
3

Fi9ur~ 3-7 - Splice Order

CD

c---==>------(-----:J

(2)

F'gure 3-8 - Etucation Graph

STREAM GENERATORS - A HODEL FOR THE EXECUTION OF APL 97 STREAM GENERATORS - A HODEL FOR TUE EXECUTION OF APt. 98

).4.6 Control Structure Sanity

A.[t]8,[2]C
nle stream generator deec£tptlon .echantsm described above t. too

powerful in that It will .llow the apeclflcatlon of patterns of control

vhieh can not actually be executed. To ellalltnate 60me of the daniel[' sod

to give a clearer picture of the way the 8t[ea~ &eOer8tor8 will be u8ed,

a 8et of re.trletJona OQ the sraph structure 18 liveD:

I.	 TIle header node of ladder Ll which Is the etartina potnt of the

ladder network. must be at level o. The "EVOkE Interpreter"

Instruction which ends the execution of the network .uat be the 18.t

Instruction of the 1aat (highest n...ber) .pllce. The header node of

ladder Ll i8 called the I'entry point" of the strea. lenerator.

2.	 If the trees del10ed by header and loop node8 aod neating edges (the

ladders of the network) are considered to be alngle nodes of a super

Iraph, the evocation ed"es define a directed ,raphe Since each

ladder returns to the ladder tbat started it by evoking e.plicltly a

particular ladder. _ ladder m.y be evoked fro. only one place. A8 a

resul t the graph def.lned b1 the evocat ion edges 1. a tree. F11ure

3-9 shows the graph and super tree for A.£ 1](fJ.(2]C).

1.	 TIh! co-rout 'oe facility I. used only to synchronize two) adders

(onl y one ("yac.olt Ion edge) eaves the 8Upt~r nude) or to 8e lec t one of

two POB81ble calculations to do In conjunction with that 8tep of the

evoking ladder. In that case two evocation edges leave the Huper

Dode. However the .pllce code .uet auarantee that only one t.

executed for each 8tep of the loop contalntol the EVOKE.. Thi. vill

be accomplt.hed b, putting the. lD opposite br.nchee of an

oj'" 60 G)
T<f " , --.c:~
1~	 cD

,,0,,~

, "'' ­

o~

d
,, ,,

D
()

" ,

Figure]-9 - The Super T£ee

100

,--------~......................-__.. . -.....

STREAH GENERATURS - A HODEL FOR TUE EXECUTION OF APL 99 STREAM CENERATORS - It. HODEL rOI TilE EIH"l'"ll.)t\ tolf An.

If-Then-Else etate-ment.. (The above a180 means that the two

evocat Ion edges will leave the salle loop node 1n the actual graph.)

4..	 Except as needed to implemeot reshape. evocation edges will not

connect (synchronize) nodes (loops) h3vlng diffe£ent levels.

5.	 A "step" of a raveled structure 1s a step of the inner-most loop ..

TIlcrefore, since evocation edges synchronize steps. they may not

connect to a node from vhich a raveled neating edge leaves.

These restrictions are not checked and enforced by any part of the

compiler'. Rather they served as 8~ldellnes for the wrIting of the

actual procedures used to build stream 8enerato~8 (described tn Chapter

4). Figure 1-10 sho,",s violations of the last two rules.

In a ladder network meeting these restrictions, it Is posstble to

determine for any given loop X whst other loops In the network. have been

entereJ but not comple"ted when X Is executed. That sequence of nodes

called the "control path" leading to X 18 identified by the follow1nl

procedure:

1.	 The sequence 10 initialized to contain X.

2.	 If the fJnft node In the sequence 18 not a header (root) node, theo

put ita (ather at the beginning of the Bequence, and repeat this

step.

1.	 If the f t r8 t node 10 the sequence 18 a header node but not the ent£y

point. put the source of the evocation ente£lng that ladder at the

beglnn!nl of the sequence, and return to 8tep 2.

lhts psttero 11 not allowed cCS/6",¢
d c':=)

but	 reshaping V Into N requires c6", ~
"~

This pattern 1. not allowed y ~r~?)C U~

r
'--- --­

C~__~~

but	 cavel will be represented by

c~~ .6
c:=)/

Figure)-10 - Control Structure Errors

STREAM GENERATORS - A HODEL FOR TKE EXECUTION OF APL 101	 102STREAM GENERATORS - A HODEL FOR THE EXECUTION Of APL

All cootl"ol paths start at the entry point. We define the " ••par.tlon

point" of tvo control patha to be the l.at node 1:.0-..-00 to both

sequeoces. Ftgure 3-11 show. an eKe.ple ~ontrol path.

,	 ...

].4.7 Loop Indices ~~_ c;
n,e assig1\lDent of the [OW of 1 to be "aed 10 • liven ladder f hIed part

18 -.ade by the coepller- baaed on tbe Il'aph .tructure. The ('ute. are: ._- . L--Y--c0--{ i-~)6-c
I.	 n,e •••• row of 1 '1111 not be used in tva different ladders (node.

Fllure 3-11 - Control Path (*) to Node I
of	 the super tree).

2.	 One 800 of each Don-leaf Rode In a ne .. ting tree vill uae the 8a••

row of I as the father. (Thle Ie a ••ply to reduce the Quebec of

roW's used.)

J.	 Other nesting 80n8 wlll uee different rowe of I than the fathel'.

Slnce tvo node. are In the aa.e ladder If connected by • neat1ftl ed,e,

no conflict. can arise.·

1.4.8 Loop Li.it

The value ueed to control the Au.ber of tl.ea a loop e.ecutee is defined

by a label 00 the graph bode for that loop and hae one of tbe followlnc

forme:

I.	 pAl - The loop lI.lt 1. (pA)(Il.

.__...--..........----~.--..~ .,...._---1'......._._ __._~--.

STREAM GlNERATORS - A HODEL FOR THE EXECUTION or APL 101

2.	 epA - The loop Ii.lt Is the current value of the index of the loop
t

associated with the tth dimension of A In the code for expression e.

1.	 pt. - the loop limit i8 given by the scalar value of node 8 of the

pars~ tree of the APL eKpresston.

4.	 Pel - the loop ll~tt 11 let fra. the current value of the Index (+l)

~lenever the node labeled e. reaches its ii.it. (Thl. 18 used fo£

compression. The comptessed dl.eoston of the result ends when the

compressor does.)

or an expression combining these ~alue. using ~- ,l ,f , and scalar

constants. The va lue spec if led will be stored 10 the rov of lUlU

1I1dtchtng the row of I selected for that loop.

3.4.9 Array Storage Pointers

A unl<lue element of PI and row of G Is associated with each array

acces8t!d by a ladder net\lork. The follOWing labels Indicate that tbe

ladder fixed part they define Inerelleote the PI associated with the

varlable named, and specify the dimension of the array which defines

that	 entry in G.

I.	 At - The loop advances the PI pointing to A the amount corre8po~dlnl

to Incrementing the jth subscript. A is referenced.

2.	 At. - The loop advances the PI pointing [0 A'the aMount

th

cocrespondlng to incremeotlng the i Bubscript. A 18 ••signed to.

STREAM GENERATORS - A tlOOEL FOR THE EXECUTION Of APL 104

l.	 -Ai - The PI point tn. to A i. backed up to the ftrlt p081tloo of the

th
1	 dimension (to permit £epe3ted acces.).

4.	 tpA - The pointer takes on successive values of t(pA)(lL (If
t

possible the loop index viii be used.)

s.	 ,. - The polnter takes 00 luccessive values of

, <result of parse t£ee node s>.

Since there 18 a one-ta-one association between array Dames and

pointers, the array nage (un-subscripted) will replace the notation (PI)

in splice code to indicate access to array ele.eots.

~Ien an a8signment occurs inSide an exprcsglon. all referenc~8 to

that variable appearing to the left of the aSSignment operator are

considered to refer to a different variable (may be a different area In

memory). A distinct nawe wlll be used In stream generator labels. If

the same array name appears .ore than once in an expre9slon, local

allases will be assigned to pe~lt the use o(different polnters. An

in-line assignment will be assumed to be two occurrences of the array

n.lae	 (ooe for the ass 19oment. and one for the use of the va llle) • The

usc of an alias will be indicated in our examples by following the

original variable name by""". The complier wtll lIerge aliases if It

detects synchronized access to the same storage.

STREAM GENERATORS - A HODEL FOR TilE EXECUTION or API.. 105 STREAM GENERATORS - A HODEL FOR TilE EXECUTION OF APL 106

3.4.10 Storage Spactns	 referenced.

n.ere will be a row of G corre.pondlnl to each itea of PI. The orderln,	 2. eM t	 - the pointer to A ta adJuetcd to .c Ount for the rotation of
thof the value. to a row of C depend. on the potltlone of label. In the	 tile 1 coordinate of A epeclfled by the eapre8ston e. A Is

.trea. 8pnerator Ir.ph. referenced.

3. Aile]. - the poLnter to A ta adjusted to point to the element whose

J. 4. 11- Mdr~S8 Incrementa lth coordinate 1. equal to the current value of the expression

defined at node e of the parse tree of the A~. expression. A 18
There will be a rov of DELTA correapondlnl to each ltea of Pl. Ule

assigned to •
value of l)[llA 1a calculated flO. G, IUm, and the neetinl relatlona

liven by the graph. nu~ t:alculatlon t. de8ct'tbed 1n detail tn Appeodtx ,. eflA1• - the pointer to A 18 adjusted to account for the [otat Ion of

c. the .th coordinate of A specified by the eXprl!Bston e. A Is

A8sIgned to.

l. 4. 12 Addres8 Cal culat ton

Both rotation and subscription employ similar splice code. The previous

10 additton to the simple selection operators ~llch may be affected by value of the 8l1b9l~rtpt Is kept 3S an Ite. of T and the mult lplc of the

ch.toKe, to the 8ETA, RUO, and G of the IIldder fixed part, there are tvo item of G 8980cletpd '11th Al necessary to _ave to the nt'w .ubscrtpt

Atli. selection uperators which suet be taplemcnted uBlng epllce code to position will be edded jo PI at each step. TI,e ladder fixed part will

calculdte aJdreeses. TI,ese are rotation ond general subscription. hove re.oved the effect of Increment.tlon tn lower level loops io 8

Since ve \laut the addre!ls genel'"atlon proces8 to be completely described .tlltl8r faehloR to the action indicated by the label -At.

by lht! LJbels on the nodes of the strea. generator graph., new labela

are deftn..d below vhleh Indicate that tht:! appropriate address
3.4.1] Special l.abels

computdtlon occure at the beginning of the loop deftned by the Irapb

Dode. TI,ey are: In order that the graph representation alone, without splice code. be

sufficient for analysis needed to eliminate unnece••3ry tempo£ary
I.	 A1fe) - the pointer to A is adjusted to point to the ele.ent whoe.

atorsge, labell for two special arrays aud a set of functlons which

lth coot'dlnate ts equal to the current value of the expree8ion

.odify the .eaning of label. are defined:

defioed at node e of the parse tree of the APt. expression. A 1.

.~~ .I_~_"" •• ~,~ .. ~ __ • ~ ~__.__ ' .. __ ~~ ~ •__...... ~ ~"* .'~"""""~""'~~~I_~""''''~''''''''''I'''.~ .-.. __=............".~~~~...,.....,,_.~

5 T1U-Al1 GU' ERA tUR 5 - A nOD I:: L .'OR TilE [XI::Cur l UN or APL 101

1.	 ZERO - represents an array of unspeclfled size containing the

numeric value zero.

2.	 BLANK - represents an array of unspecified size containing the

character value blank. The compiler will not actually lenerate code

,to access stored values \lhen ZERO or BLANK are used.

J.	 e
i

- a function \ihlch .arks Its left operand 8a the source of the

i
th

dl~e"~lon of the result (subscript Is omitted for a scalar) of

the expression dcflnel1 by node e of the parse tree. A node 80

labeled 19 a "result node" for e. lhe nodes on 8 control palh to •

rcaul t node ,are catlell " act Ive".

4.	 n\c I - a function with the 8a.e acantnl as above which alao

indicates lhat the calculation depends on n previous values of

result. (fixes order)

s.	 (~I - 8 (uncllon whlch 81gnn18 that the lubelB ..odlfted contribute to

the expres8ion for e. The node does nol produce a dl"enslon of the

result, and Its loop must be completed before values are available.

6.	 SKIP - a function that Indicates that all computation Is olllttted

from ita left op~rdnd and only pointer movement Is done. Since no

vdlucs are produced, any reBult labels are re.oved fro. the opcralld

of	 SKl P

nle 6et Qf labela of a node will be liven 8S a text string which .hould

be parsed 88 an API. expression, with the exception that the ay.bol ','

18 used aa a liet element eeparator and haa • precedence lower than all

STREAM GENERATORS - A. HODE.L FUR TnE EXECUTION Uf APL lOt!

other operator8, including functton application.

3.4.14 Address G~neratlon Sanity

TIle streum generator description lDethod described above is too powerful

In that It will allow the specifications of ladders which do not

generate valid addres9 sequences. In particular ao I[em of PI

associated with a given array Is only valid if a loop associated w1th

cach dimension of the array has been euter",d and not ell't~d. To

el tmlmHe some of the danger and to give a clearer picture of thp. way

the stream generators will be used, 8 set of restrictions on the

labeling Is given: (examples of violations of these restrictions app~.r

In Figure 3-12)

1.	 Pointers vill only be used at the highest level at which they are

valid. 1'h18 IDcans that they \llli only appeal' in a splice leadlng

down from, or up to, a fixed part whose Iraph node is labeled to

indlcote that that loop change. the pointer. The potnt~r t~ valid

deeper tn the ncstlng structure but the same value would be fetched

repeateJly, 80 it should be moved Into a resister at the higher

level.

z.	 Any label Indicating pointer .ove.eot for reference (Af,A.rel, or

e414) must appear on a rontro1 path to 8 leaf on which must be fouodt

one and only one such for each dimension of A. (Allases generated

because of multiple references to the 8ame array io the An. are

considered distinct.)

STREAM CENERATORS - A HODEL FOR TUE EXECtrflON OF APL 109

J.	 Any label lndlcatloa pointer .ove.ent for 8sBlln.ent (A.4.A1(el+. or

e~t14) .ust appear on a cont£ol path to a leaf on whlch _uat be

found one and only one 8uch for each dl.enalon of A.

4.	 l~o labels for the eame dimensIon of a given array reference or

asslgnlilent &llIst be at the aa.e level. labels for two d ••enalona ••y

be at the same level 001, if they are In the B8.e node. The

ordering along the control path end the orderln. by level .U8t

agree.

5.	 If the same cont('ol patla to 8 leaf holds both an asstgn.ent and a

reference to the same area of storage, the a8s1lnment and reference

(or each dt.enalon mU8t be at the ss.e level. The asslln_ent label

for a dt.enslon must not be later alonl the control path than the

reference to that dlmenston.

6.	 If the separation of two different control patba whtch define an

a881&nment and a reference to the Same area of storage occur at a

node with multiple neBllng. the a8s1gnment must be In the right

branch (executes fitet). If it occurs at a choice node. the

asslgo.ent .uat be tn the ladder contalnlnl the choice.

I.	 TIle ,lddreS8 calculation algorlth.. asslIIIes that there al'e no l'epeat8

In the address sequence. If the control structure specified by the

strea. generator graph .ake repeated passes over 8n array or pert of

an array, the address pointer .ust be reset. the reset operation 18

Inti icated in the graph by labels of the for. -Ai. The graph

.peclflea • repetition If the control path to the lowest Dode

••Aoct.ted with the liven reference or ••• 1gnaent contatn. any loop

itOSTREAM GENERATORS - A HODEL FOR. TUE EXECU110H Of APL

nodes not labeled to be part of that operation. The reset operation

.ust	 be placed on all the node8 In the lap.

8.	 If. node contaios an address computation label referencing the

result of parae tree node e. then a value of the expres9ion must be

available at that polnt. lhiB "'ill be true if the control path to

the node has on it labels for each dimension of e.

9.	 The control path lead lng to a node label ed "ith e Pt\ must conts La 8

node labeled "ith eJA 1·

10.	 n.e restrictions of uniqueness and distinct levels wtdch apply to

address generation labels a}Bo are imposed on the labels for ~.

As was the case for the control structure rule's, no part of the complIer

checks and enfol"cee all of these re8triction.. Rather they fIIerved liS

luldelloea (or the writing of the actual procedure. used uaed to build

Btre•• generators (Bee Chapter 4).

,. 1 .-.-.................~.........................

S~LAK GENERATORS - A HODEL FOR tHE EI£CUTION OF ArL 111 STREAK GENERATORS - A HODEL FOR THE EXfCutl~N or AYL 112

~
(m18ttl08 level)

be Chan~ed
to b8 • At

QS-----6
2 Q 9­

4J-6-cp
ctJ en

(duplicated .otlon)

(ordel" conflict)
... ••

01

J be Cha0
1

e6
~

_____9_~
A 1+ A

C=~_j2--=
C_!f~L~L)

(order conflict)

Figure 3-12 - Addres8 Generation Errors
(cont.)

Figure 1-12 - Addres8 Generation Errore

114 STREAH GENERATORS - A HODEL FOR TUE EXECUTION OF APl III

].4.15 Loop Limit Validity

When 8 choice Dode selects between alternattve taflets, the number of

alternatlves .ust equal the number of choices. n,e alternatives .uat

also match In alze at lhe other levels. In addition, since the

increment UELTA at ooe level 18 calculated on the 8s8u.ptlon that all

lower levels exhaust their corresponding array dt.enstons, the effective

loop II.its .Ull .atch the size of the array. Thu. we requirel (see

examples In fisure 1-11)

1.	 If two loop It.lt labels appear on the Baae node, they .U8t agree.

(If not based on the Bame array. contor.ability require.ente froa

COllstralnt propagation may be used to establish equality.)

2.	 If evocat ion edges 1eave a node, the loop li.1 t of the choice node

muat equal the 8UII of the It.lt. of the target node••

1.	 If the control path connect In. two active nodes at the 8aae level

doe. not paS8 over an evocation ed,e at that level, the loop It.it.

of the t\lO nodes .ust be equal.

4.	 n.e 8ua of the loop It.Jt8 of all nodes containing pointer Incre.ent

I~bcl. (or a Btven array dt.enston muat equal the length of that

dimension. If there ~k19t8 more than one node tncre.cnttna 8 81ng1e

pointer, the control palh!l leading to those node••U8t separste at

either a node with multiple nestlnl ~,lch 1. their father or at s

chotc.e node which 1. at their co-.on level ..

theBe requlre.ent. ere checked explicitl, (described In Chapter 4).

STREAM GENERATORS - A HODEL fOR TUE EXECUTION OF APL

@0-~--.0J) AJ

pA •	 li.lt (I) • It.it (2) + It.it (1)

2
____ CI;!-~---do

It.it (I) muat equal 11~tt (2)

but 11.lt (l) need not equal 11.lt (4)

Ftgure)-13 - Loop Lt.lt Eerrora

SlREAH GENERATORS - A HODEL FOR THE EXECUTiON OF APL liS

3.4.16 Sequencing Correction

""Ien the pointer move_cot fo£ one dillenston of an array t. accOUIpllehed

In more lhan one node, the standard ladder fixed parte will not produce

the correct address sequence because at both the ffrat and the last

(test fails) steps of a loop the pointers are not incremented.

Therefore at the transition between two nodes aovlng the 8aae pointer

one Increment ~ill be omitted. It must be done in the 8eparation node

before the first execution of the second option to execute. Pointer

react applted to pointer .otlon in a different ladder will require the

8aQe correction.

3.4.11 Examples

The &trcam generator graphs for two of the exampl,e8 presented earlier

are 8hovn below. In these drawings we have included only those re8ult

Idbels which are needed to show special prope[tles of nodes <I \) and

re l<'t I oRsh' p8 be tween them. Th j 8 was done to save space and avoid

clutter. In Appendices F and G graphs with all labels shown are

presented. An inspection of tho8e drawln£8 wlll quickly reveal utay

labe Is are OlD It t cd here. The procedure uged to generate these 8 raphe 18

dt!8crlbed in Chapter 4.

3.4.11.1 Filtering - The stream generator for the fllterln! example ­

B·(v/A)/(t]BvA 0 A~AD 18 described by:

._--_.._----------_--..._--~--- ..,...-_.

STREAM GENERATORS - A HODEL fOR TilE £xEcl1rloN OF APt 1\6

- - - ... j 1 0 I ({\ 1- C1 ' • (01 - -. A... ~ - - ­

O,,,.,•. 11.;,.C,D.) CSKI' -:, .•• ,)E·,··A"""
2: 71 t 1+0

l:B·EVA)ZA.-?l21.-CA D
711]~Tl21vTf 11

4: If 71.1) then EVOKE L2
else i::WKE Ll

in the new notation.

3.4.11.2 Herging - The .erllna exa.ple S+i/t/B.C.[tlD now appears al:

Stl.IP E:l.,j

118
STREAM GENERATORS - A HODEL fOR TilE EXECUTION OF APL 111

STREAM GENERATORS - A HOUEL FOR TilE r.XECUTION OF APL

<network> ::-<ladJer> I <network>";"<laddcr>;

~
/

/'

r:::~).~.c) ~(tDt.tCJ)".Cl "--------r '-­
-- 7-.. r.'-:-}L----- __~~

G:._~!J~_'_~~~_) ~~ (J/te2'f;'~~\

1: 111)<' t 10: 712 J.·O

2:111).0 11:11 2)+Ct71 21

3 : 11 2)·0 t T[21 14:T[21"8.7'(11

6:7171·8.7\ 21 15:711)+-n 2).71:1]

l:T[I J.·7121t1t 1]

~,lch 18 a considerable Bt.pltfle.tion.

3. ~ (OHPII.ER OBJECT COOE

The object language of the compiler has been designed to 81.ply and

efficiently a.plement the control structures given by the graph

representation and to be easily translatable tnto .achtne code fo~ the

ladder lDolchlne designed by Charles Htnter (see Appendix E fol' •

de6crJption of the ladder .achine and au exa.pie progr••). A 8NF

definition of the eynta. follows:

<ladder> : :-I.AOIlER <ladder '>":"<8tatement>;

<statement> ::-<cond stdtement> I
<assign statement>
<Iult statement> I
<loop statement> I
<switch statement>
<empty)1
«statement list»;

<statement l1et> :: -<st.lt Clnellt> I <statement 1 t Bt>";"c8tatement);

<cond etatement> ::-<tewporary>"."","<ltateraent> I
<t Cl!1llO r a ry >".'''', "< s ta temen t >ELSE<8t at eraen t) ;

<8ss1go 8tate.ent>::-<var> <expr>;
<expf> : :-<v..lc><dop"<('xpr>

<constant><dop><expr>
<mop><cx.P[> I
«cxpr»1
<var> I
<const.Hlt> ;

<var> ::-<m~meory) I <temporary>
<potnter> I <b~5e> I
<index> I <limit> I
<9lep~ I (spaclng>;

<toit statement> ::-INIT <polnt~r , 1t8t>;
<loop statement> : :-REI'[,\T <9t.1tell('nl> AT <level'>

USING <tn,Jf'K '>
<9l t •Pping 11 s t >i

<8teppins lIst> : : ·.'0\'1 NG <pol nter '> ,
<stppplnR ltst>,cpofnter '>
<E'UlptY>i

<swl t ch stateaeDt>:: -eVOKEd adder ,>;

<~mory> ::·I<po'"tcr~);
<temporary), ::-T«regtsler f»i

<pointer> ::aPl«point~r 1>1:

<base> ::-8[TAI<p~lnter '»i

<Index> ::~ll<lndpx '>,<levcl ,»;

<limit> ::-RIlUI<inJrx I>,<level ,».

<sll'p> ::-OEtfAI<polnter I>.<leve) ,».

<spacing> ::-GI<polnler '>.<level ,»;

<mop> : : - i I -II(I f II Ill"1€II " III I 01 !I t
<dop> : : - t I -I '0(I q I III "I el n 1"1 01 !I

I\IVlfllIYI<lsl=1 ~I ;>1-;

<ladder '>::-<level '>::-<polnter '>::-<reslster '>::-<ll.lt '>
It·<con8tant>::-<unalgned integer>

120

___."........ ,...... ,~~.............'.....~,......~'_'...4.-Jr.i _

STREAM GENERATURS - A HODEL fOR TUE EXECUTION OF Art 119

TIle 8e_antic8 of the language are defined tofor_ally below with

reference to the existing languages IHP-IO (5) and APL. With the

exuptlon of the APL operators the language t. an extenston of IMP-IO

and progr,,)ms which use only the standard arithmetic operations ",til

compile Into PDP-IO machine code. Appendix D shows the IMP extensions

oeces83ry and a 84mple of IHP-tO compiler output for Btrea. aenerator

code.

l.	 the operators (mop and dop) are equivalent to the corresponding

scalar operators of APL.

2e 18 8calar assignment e (AlI~I:.)

]e	 .> Is the IMP conditional. (Algol IF HE 0 tHEN ••••••)

4.	 The lolt statement Ie expanded tOI

PI «pointer I»_BETA«potnter '»

for each element of its pointer' list. An init atatcment .uat be

executed for a polnter before that pointer i8 referenced ..

~..	 TI,e loop statement 18 expanded to:

l«lpd f '. '>.<l(·Vt~1 I>J OJ
<unlqul! labpl>: <~ILltC!1Q~"t>

II<index '>,<lcv~l I» [«index '>.<level '>]+1;

1«lndex '>,<level '»-tT RIIO«index '>,<level '»
 99.9..'>"

(Plf<poloter '>1 Pl(cpointer '>ltD[~rA«pointer '>,clevel ,»;
••• { repeat-for each item In stepping list)
GOTO <unique lab~l»;

which can not be written directly.. TIle index ,~. and level '"8 hovo

values Ilven 1n the USING and AT c.lause. of the loop state.ent.

STREAM GENERATORS - A HODEL FOR THE EXECUTION OF APt

6.	 Each ladder Btores a separate program coonter. An EVOKE statement

makes the designated ladder active (that ladder' must appear 8S a

lab~l). All progrs. counter8 start at the beginning of each ladder

and execution starts with an implied EVOKE 1.

1.	 Control, upon reaching the end of • ladder, returns to the

beginning.

8.	 The construct I ...) 16 an indirect reference to the memory whlch

holds array elements.

All features not described should be considered 8S IMP-IO extended to

handle matrices. \Ie a8sume that the operands and the values for BETA,

~tO,DELTA, and G have beeo pre-loaded.

,....BUILDING STREAK GENERATORS foa APL [XPRESSIUN

lIod.

CllAYfEI 4

BUILDING STREAM GENERATORS fOR APL EXPRESSION

I~- d~~ r: ~~---~
"--".':r~"~_J e '.,=-~~_~}!?:n~)~o ...~~ G~~'~~\--]--,-- -:=1----Jrl----c~ ---------,f'utld ~r.ph Lan'- r'.', ..:11:1" T!· •• ,.i:;»rlll ':0"&:>1"_ I

(laoJda"') f or' ~,'r _" 6., ..." ,n a.j ,;" ...,1, , Gr \" h (I t ..ll'." and l;r a;-t> i ":' ~ :" -t - .',(1 .. Io

.. ~ 1> ';~__ Il~~:i.~i. 4-i) (4 =~i:.!~!.:J
The translation of an Art expression tnto a stream geneTator take. place

~ 0 8
10 three steps. First, stream geo~ratO{8, which have the maximum

[~.I." , .:::~':-:.I:J
To,- d' (lp .. , .•"".control and pointer flexibility and teaporary storage which .a, be
<4]Hf1i 4-9)

requlr~d, are generated usinS the graph representatIon. Second, --=~-=-~]~==-
Build G••• >!', "IIO~'I""

transformdtlons are applied to the graph In order to eli.lnate control Cr'.,:"
[\ , (F 1'\1 ~ ~ II,) i

overhead and unnecessacy stocage. Finally, the Icaphlcal reprenentation ----=-r--..
is translated Into the matching program. Figure 4-1 18 a flow chart for ·.. (i." ..,-~;~:=Jn.lI·\.~OJ. ..

Ordar

(4 S/(flg 4-11)the translator. For the purposes of describing the translator tn this L
_=-_l-~~=_

thesis, we have presented se~er.l co.ponents of 1t as Interpreters of a

L,,,.r- •• 'J !.~'tJ-'.l~ 1I~'I~"<3
R.·j·. C .. ~,.,I .';)41:

cOliJll'-md language. We then give the '·progra.." to be executed in
~" ~)

different situations. Such an approach could, but need not, be used In -=[~=-
~ Loc". ('jntr-,,:]­

do aachlne Implementation. J 'I've' ur' E: 1.,,-,,- <,v".to'
(4 6 1c:

[--~"~~~::d-~~4.1 GMAfU TRANSfORMATION
___4_- -­

L
nle f 1£6t two atepe 1nO/olve t ransforuaat Ions of 8 tl'ea. generator 8 raphe. ~0
To Biapllfy the description we define below a set of standard operations

F i g·e 4-1 .. The Trans I atar

- 121 ­

124 BUILDING STR£MI GENERATORS FOR APt EXPRESSION	 121

(commands). The definitions of the operations are given in ter.8 of the

8t rue t'ure of the I raphs. Wheo a node _oves. itl labele move vith it.

These operations (except Overlay) a88u.e that the grapha which the,

transfor. have the follow1na propertle.:

I.	 Only the entry point of the gfaph .ay have aore than one ncetina

80n, aDd the control pOlth to any result node .ust include the

left-most 80n of the entry point. We are building a control

structure ..,hich does a succession o(complete operatioos at the

highest level. n,e last one produces the reault.

2.	 If a Dade has evocation edges leaving tt, It has no nestlna 80nl.

3.	 All header nodes are at level O.

4.	 All reBult nodes are In leaves of the Buper (evocation) tree.

The operations (except Overlay) preserve these propeetlel If they hold

for	 their input. Since they hold for ladders created to Bccea. an

array. they will bt! preservPd until the fInal atagea of the Improvellent

of	 the steen. generator, al "hleh time Overlay may be applied 8S the

Idst	 usc of these nperdtlons.

A stream i!>cncrator graph havtng lhege properties may be partitioned

into the entry poInt and one or more "sub-graphs". two nodes are 1n the

sa~e eub-graph if and only if the control path to both of the. include.

the same neeting 80n of the entry point. A eub-Iraph 1. active if it

contain. result nodes.

BUILDING STREAM GENERATORS FOR Art EXPRESSION

4. 1. J Comm..'1nds

The complIer viii process the graph using the operattonl given belovo

The atepa carried out for each command are given and .any are

Illustrated by examples. In the eKamples, the graphs have beeD edited

to re.ove label. not needed to Identify result node••

Certatn of these operations are not applicable In all taaes. If an

operation can not be correctly applied, It i8 said to ufafi ll
• \.lhen

fatlure ~ccur8. the graph la restorf"d to Ita state before the operation

was invoked. Failure of a command t8 reported to ~Iatever process

Invoked It.

4.1.1.1	 Adjust - A stream generator graph A Is "adjusted to fit" a

ladder B by chang!nl loop limits In A if necessary 80 that:

I.	 For each node in 8. the node In the entry ladder of A at the

same nesting level has the 8ame li.1t.

2.	 Graph A meet8 the requIrements for the relation betw€'en the

li.ite of choice nodes and their target9 ~lveo In Sectl~n

l. 4. 15.2.

Graphs which have been adju8ted may be tn violation of thfl

restrictIons given in Sections].4.15.3 and l.4.IS.4 whIch specify

tile correct relation between loop limit8 of nodes at the ~aDe I~vel

and between loop li.ita and array sizes. Subsequent comcanJs may

correct the Bitualton, but when AdJU8t la u8ed (In Herge below). the

co••and Check .uet be eKecuted at the end of proceastnA to vectf,

...... -._W"~ .. y. _ ~..~~_"... I'" 'm••••_* .._~......~..·...,_II'I_........·1iI'~.... _ ~..~ ; "~~J"""'-"
,_._._.... , •• .•	 'Sf' I:II:V

bUILDING SlkEAH GENERATORS fOR APL EXPRESSiON	 lZ5 BUILDING STREAH GENERATORS fOR APL EXPRESSION 116

that the final graph i. correct. The command: Herle I and b (a8 In l+l,Z)

4." L 2 Check - Check does not alter a graph. It verifies that loop

limits meet the restrictions given In the three sections mentioned

above. If the cestrlcttons are violated, then the co..u.and using

Check falls. Figure 4-2 shows examples for Adjust and how it can

cause Check to fall.

4.1.1.1	 Overlaytng - When two stream generators with the 8a.e structure

are opero1tLng (or can operate) In synchronization, it 18 desirable

to use the same control structure for both. Thl8 will be

accompU81u~d by oveclaylng the two genecator8. Two Ifaphe (or

sub-gfaphs) may be completely overlayed If:

1.	 nle two grllphs ace isomorph Ie.

2.	 Th~ equating of nodes of the IllomOrphl911t preserves not only

adJacent·), but olso the t)'p'! of connection (ncatinA, raveJed

nesting, or evocation), the level, end the rllht-to-left order

of altllttple edges leaving a node.

3.	 The loop 1 illite for e ..lch equated pal r of nodes agree.

4.	 I f two <:hoice nodes are equated, they .ust both .ake the 8aae

selection at each step.

Because of the requirement of preserving right-to-left order of

edges, the overlay process Involves only a elRlle stmultaneous

traversal of each araph (tree). A s.mple Interpretation of the

first two rl.!quire.eot8 1& that the pictures of the two Iraphs .U8t

(..~.) (0k-. .~_h __---tb,9~
requests that a be copied and adjusted to ftt both active ladders for b.

~~_._._-~-----_.~

S2
~	 ~

Since (pX)=(pl)+pZ t. true by conformablllty, aleck vlll 8ucc~ed after

Overlay. However the command: Herge band d (a& In (V/A)+(WIEl)

(0 (~ 0_Q- .~ ~
(__ ~p__ • .t~--{_~_1j-··0!.__) ~---.. .L~~_F'__.~--(;.!..,.,}. .. { dl)

1 2 3

requests that d be adjusted to fit the active ladder for b (1). This

means that the ltmUs (or node 1 and node 2 mU8t agree, but

confor.ability requires node. I and 1 to have the same 11.it. TI,us

Check will fail.

Figure 4-2 - Adjust and Check

BUIl.OIN(; STREAM GENERATORS FOR ArL EXPRESSION	 127

look the same. Obviou9ly this operatton will not chenle the nestlnl

pattern or change header level.

It ie aleo possible to do a partial overlaying In two cales

which do not permit complete overlaying. TIley are:

J.	 If complete overlayIng would combine two choice node. with

dtffereDt selection patterns. the Bodes .8Y be c~btned. but

overlaying Heops with that node. Both seta of evocation edges

leave the pew node.

2.	 If two node. can not be overlaye.d because of count or addres8!na

restrictions or because one 18 a raveled 8tructure and the, are

neltttna 8008 uf nodes that can. tltey .8Y becoae 8eparate neattn.

eons of the combined father. OvertayiBS stops at this dlvt.ton.

nle laat forlD of incomplete overlaylnl ca.. create lIultlple

neBUnK At 'l"y point. lIoucvcr It III perforra('d only durin. the flo01

stage of thr Improv~m~nt procc98. nle .erglng operation (below)

which usea Overlay reque!Jto co.plete overlay onl)'.

4.1.1.4	 Transpose - Several API. operators (ex. Transpose) require the

per~utl"g of the order of nestlnc o(the nodes label~d to be part of

an op~rand. ~,e" thl8 Is done. it Is nece88ary to al80 .ove the

other active nodes. 1ran.poalna a etrea. aenerator Ar-apb 1.

aceo.pi1.hed using the procedure liveD below "'Itch t. Illu8trated In

Figure 4-3.

BUILDING STREAM CENERATORS FOR APL EXPRFSSION	 1~8

1.	 The active sub-graph 1. detached (['om the entry point and

tran.for.ed 88 8pecified In .tepa 2 tbru S.

2.	 The neattng edae8 connecting active nodes are broken.

3.	 All active nodes at each l~vel are aoved to the Bpecified nev

level 88 a unit.

4.	 Each set of nodes formerly connected by nestln~ ~dges are

reconnected in their new order. If gaps exist in the nestinG.

nev (unlabeled) nodes are creat~.J. (Gaps wlll be created when a

node whIch has no neattng 80n8 is moved below a level formt'dy

beneath it.)

5.	 If nodes become inactive due to transpo8ition they are

discarded. (They '1111 have been generated earlier to fill.

gap.)

6.	 The tr8n8fon,,~d 8ub-llrnph in tht'n recoou('cl ...d to til .. cntl'")'

point. Right to left order wll 1 be pre8erved.

The above procedure 18 only correct if there 18 not multiple active

nesting. TIlls trantifor.atlon wll1 preserve that statuI. It will

a190 leave all level 0 header nod~9 at that level since level 0 1s

not subject to transposition.

4. 1. 1. ~ Reverssl - Several API. operato rl (ex. reverse) requl re thAt

the processing of a given d1.ension of a strea. ~encrator be

reversed. n,l. II done by reverstng all pointer Sncre.eut label. In

active node. at the specified lev~l. There are 2 epeclal cases.

+._~ __ ~_.-...._ -	 -.- ~~ 'lf'lr ..~ _~~~__ _......_._.r~ __,; ~ ~",. _ ---_­_

8U(t~tNG STREAM GENERATORS FOR APL EXPRESSION	 129

for
3 21"

e	 /~ dol'."

of
~7:1--­	 •

G6
~~------ --r·1

.J G!_]

Transpose comm.and	 - after steps I and 2:

o	 o o
c;:=:>	 C--.!.l -) c_-=~ (- -.--- -)

L~~-..r------(_ dl }------c-~

(~_~1) L~
after step]:

(~	 o o
C Cl)	 .--;;-)c-~~	 , '--.~

C~=~----- (=~~~~J_-----.(=-~ __.)

C-=~~'--J c-=~	 L-··)
result:

.-~--- -------- (0 . r\/----- "L-- i'_ "i
r6~ ~~l:: L2 GJ=>

Olj------Cd l :>------a=;
0' • - no.. nodo Cb

Figure 4-) - TrandpOBe

BUILDING SIREAH CENERATORS FOR APL E~·RESSION	 1)0

1.	 n,e operation may not be applied to 8 node containtng the label

functions I or \.

2.	 If revereal i8 applied to a raveled structure. all nodes

co.prlslng the structure .ust be reversed.

4.1.1.6	 Merging - the generation of the stream generator graph for aD

opcrat Ion wit lch requ! res synchronized access to I t8 t"'o conronDdb ie

operands (ex. dyadic scalar operations) requtr~9 merging the entry

points and the active sub-graphs of the two operands (inactive

sub-graphs are first disconnected). There are 1 cases. each

described below and illustrated fn Figure 4-4.

1.	 If in each graph the result nodes are in the ladder containing

the entry point (ex. AtB). the two graphs are completely

Ove~laycd if possible.

2.	 If one g~aph has result nodes tn a different ladder froID the

entry (control path uscs evocation edges) (eJl. 4ttl.'.IJ)). each

ladder containing result nodes Is detached and cOlDpletely

Overlayed (If possible) with a .py of the graph for the other

operand which has been Adjusted to fit. The resulting ladders

are re-connected and the whole Checked.

3.	 If both operands have evocation edges as part of the control

path to a result node (ex. (A.[J]B)tC.[21D) lhen we select

the operand 10 which the ffrst such occurs at the highest level

(selection can be arbltr.~y If levels are equal). Each ladder

132 BUilDING STREAM ~ENERATORS FUR APL EXPRESSION	 131

coataln!ng result nodes 18 replaced by a copy of the the graph

fo£ the other operand which ha_ been Adjusted to fit the ladder

it replaces.

For each graph B which replaced a ladder A. we detach each

ladder to 8 contalnlnl result nodes and co.pletely Overlay it

(if possible) with a copy of A which has been AdJuated to flt.

TIle re8ults are reattached. and the whole 1_ Checked.

TIle	 laactlve sub-graphs of each operand are then attsched to the

header of the .erged active structure (to the right). If either

Check or Overlay fal1a then Merge fat La.

Tbt~ procedure will not create _ultlple active neBtlna _Inee

complete overlaying can not cause new neatlna. Since ladder

structures dre .oyed Intact, header. vlll Itay at level 0 If at that

level to borh operands.

4.1.1.7	 Nesting - Certain APL operators (ex. outer product) require a

at ream generator vt~lch accesses one operator In81de the lnner-W>8t

loop accessing the other. The generation procedure which 18 ahown

In Figure 4-5 Is:

I.	 TIle active Bub-graph for the operand to be nested under the

other 18 detached.

z.	 A copy of tt i8 attached to each reault node of the other etrea.

lener~tor which la at the end of an acttve control path.

BUILDING STRf.AK GENERATORS fOR APt EXPRESSION

Calle 1: (or Herglng
a and b
requires
only 80 .1\. 5Q­at_pie

0. ~~ overlaylnl G4L.k;.-J~
G~!->~:o (--t=>	 -L-

Case 2: for

Si> <Z)
-- - ------*-----­

b_l -.,.---e-~------~~L-JG~ ciS
Herglng a aod b requires copying the ladder for 8

a 1\.[11
" \ . _~~-._ -(Q~ S~~_

L~~~_r- ---- J- - - - - - ..,I~ __~!-~~

Case l: fo["

(0 Q c::)
d~ '" ~ ~~-- '-"'\...-...,r- :.-----.."i--:' '--J '--~I-)L. _ ~2
l~--'L ---c- III) GO_·2_ ~~==>

Hergtng a and b requtree copying both a and b

.1\~(2]
" I'

I	 \ I •,	 \, ..

t;\ (0 ~~~t=).." ~ ,.,.{1'--"', (:) (;')
\. U J g" -.:..t ..' " ,,~ "y'L_ ,'___ ___ " I .. J_ __ ..t._ _

G·C-) (",.b.) t G{~) S-.l C~!:~-)
C-=';:b2 -;.-- --G;~~ C .~.bZ }-hL.:}---<L ._;l~;)

Ftgure 4-4 - Heralna

134
BUILDING STRtAH GENERATORS FOR APL EXI'R[SSlON	 13)

1.	 If the ncwl y pos It toned sub-graph coola Ins any header nodes. new

empty nodes ar-e inserted between each headec and Its nesting Bon

until nodes \lbich had equal nc.tiog level In the original

8ub-&raph are agaln at the same level. If a new node 1s a

nesting ance9to~ of a node modified by SKIP, then that modifier

Is placed on the new node.

4.	 The header of the lover operand Is combined with the header of

the Ullp~r. Any sub-graphs ncated below thut header become sona

o(the comb1ned header (on the right).

The result of th18 procedure fOt" nesting will have all its header

nodes at It!vel 0 if ao p06itlon~ in hoth operands. Since the Dew

nest tng connect lons ore made to nodes wi th no active 80ns, and only

one connection Is made, no .uttiple active nesting can be created.

4.1.1.8	 Altcfllatlvce.: The API. operations vhlch require the selection

of one of two possible sources for the rC6ult (ex. expansion) are

l~plementcd using co-routine evocation. New evocation edges are

udd,·d. running frum the lowcst re8ult node(9) of the graph which

makt's the scl~ctlon. t(l the active node In the entry ladder of each

altcrnat'vc which Is at the level of the operatlun. The procedure

ts 1l1ustrat<.>d in Figure 4-6. There are 2 special caeca:

I.	 If the nod~ from wh leh the evocat jon edges leave 18 above the

level of the operat Ion (as tn V\(n 1,4 where n 18 not highest

dt.cnaton of A). it vill be nested under new ellpty nodes until

at a matchIng level.

BUILDING STREAK GENERATORS FOR APL EXPRESSION

,for: Neata b under a

/\- ..
• / b\

~
~~	 cp
c±=>

and	 for:

,-~~ ~ o 9 ~~

~L:> GL_b~-J c±.J.--O---'l -,)

1\'. Nests 8 under c

c/ a\p
,~ '-"

after steps 1 and 2:

(0­ -­ . ~ ____

(' _i/~
--y~
C~~

N
.--Y~

.=:"'-...
(.~

C .t 1 ~- - - -
-~ - _._./

- - - f .)­ - - ­ - - - -~ .1)'­ '--~

the	 rCNult after step]:

(0 0-------- (:j~
x r--J~ .J""" ...--~-,

• } \ C1 0 , tl ,je"C -'--T- Cr: '---- ­(~~1 -----'L - - - - _ _ _ r-' --)- - - - - - - - J~ -~ 1-' .­ n (>01.-J- "'--- , __

F18u~e 4-~ - Neuttng

BUILDING STREAM GENERATORS FOR AFt EXPRESSION	 135

2.	 It one of (he alternatlve. doe. not hAve en active node in the

entry ladder at the level of the operatton (88 In A.{2]8.[t]C­

see Figure 4-1), no lelal connection can be .ade. n.e Evocatlon

Order deaon described in 4.1.2 .uat flret be applied. It will

guarantee that the new de.ttnatlon for the evocation edge 1..8 a

proper tar-get.

Thl8 opera.tton will fail tf an alternattve cootalns Inactive target

nodes at the level of the operation (Ie, the result of • cOtapre.81on

may not be compressed over the sa_e dl.enslon without belDI Btored)

unless the operation i8 betnl uBed to represent catenation (8ee

Appendix G - Exa~ple 4).

The creation of alternatives has no effect on nesting .tructure

or header 1ev e18. There will be nodes nested below the choice node

only if it Is possible to have an Inactive node nested below a

result notle (which hilS been ruled out).

n,pse operation. wtll be used both to create and improve stream

generators. We show In Appendix C that reversing or transposing.

Bub-graph of the entry point will not change the contents of storage.

I~ne of these operotlons wtll create multiple active nesting or

pull header nodes dovn frOUt level 04 Hev ncst Ing connections are made

only to the entry point and at the lowest result node of a ladder.

Multiple ncsllng will only be created at the entry point unleee an

Inactive Bub-graph hanga below a lowe8t re.ult node.

BUILDING STREAK GENERATORS FOR APL EXPRESSION lJ6

forI

.D G~ g~
the	 Alternative cOlIIDand produce.:

~~---------~~---------~

and	 for:

1\[2]

~~al ~	
(v

·(1; cb
J=G~ C-D2_~_J

the	 reBult ls&

~(~)
----1	 9 S-~(bi)	 ell JT	 -L,C!~/~_·- ~---~)------ -e-~-__)

Figure 4-6 - Alternatives

BUILOING STREAM GENERATORS FOR APL EXPRESSIOU 111

4... 2 [)tH.ons

Faithful application of the above procedures can yield graphs not suited

(or later pba8~s in the compilation. To avoid this the following

transformations will be carried out whenever applicable.

4wl.2w 1 Address Cdlculation - If nodes containing address calculations

are moved by a transposition, tbe addre88 calculation will be moved,

if necessary to the location where the 8ubscript 18 available (sce

Section).4.14.8).

4.1.2.2	 Empty Nod~8 - If empty nodes are cr~ated, they .uat be assigned

loop limits mt.~~t Ing the requirNentll for loop- Ii_it validity given

tn Section 3.4.15.

4.1.2.1	 Pointer Reset - When graphs are transposed or nested, pointer

reset labels must be added as required by Section 3.4.14.9, and

removed when they are not required.

4.1.2.4	 Redundant ~hotce8 - If a control path passes through two choice

nodes, and if the branch selected by the first determines the branch

which will be selected by the second, the branchs which may not be

6elected can be deleted. If that results in a choice having only

one branch, the remaining alternative can be overlayed with the

cho lee. An example 18 (A.8) fA ,e. We aaw to Figure 4-4 how Hergins

the results of two Alternative operations leneratea a Iraph with two

choice nodes on each control path to a rcsult node. In this case

they are at the saae le"el and identical.

~_ ~_ ~ ~ ~	 ~~.._"......._""._ -.· ··.........1_ -.............."'""'.....-.- -...,.....,..-"n"'...

BUILDING STREAM GENERATORS FOR APL EXPRESSION	 llit

4.1.2.5	 Evocation Order - The co-routine pattern described tn Chaptt"r

requires that if an evocation edge enters a ladder, it connects to a

node at the same level as the source of the edge. The above

trau6fonDatlons .ay produce a graph which does not have a suitable

target for 8 subsequent operation. If so, the stream generator IIa1St

be traosformed to create one. Ule procedure which operates at the

level of the super tree defined by the evocation edges Is: (see

Figure 4-7 wh teh shows the exall1p le A I r21.8, (1)C)

1. Locate 8 node with a Bon which does not contain a l~gal targ~t.

2. Break the connections into the father and Into and out of the

80n.

1.	 Put the 80n in place of the father, and in the place of each

grandson attach 8 copy of the rather (Including any descendants

not detached).

4.	 Attach each grandson to the remaining broken link on the

appropriate copy of the original father.

5.	 Repeat unt 11 the super graph is ordered.

Uhen the evocation edges are brokeD and reconnected the choice noics

remain the same and the targeta become the nodes at the matching

level. n,ls procedure haa no effect on nesting structure or header

level.

4.1.2.6	 Scalar Operands - If an operand of a dyadic operatioo 18 a

scalar, tts header Ie .ersed with the header of the other operand.

"1...-.-...... .__

BUltOINC SIREAH GENERATORS FOR APt.. EXPRESSION	 140BUILOING STRtAH GENERATORS fOil API.. EXPRESSION	 139

the graph:	 Labels to reference that Bcala! are placed 00 all the result nodes

of the other operand.

(0 ~G?_)
4.1.2.1 Repeated Calculations - If an operation will build a graph

~- ~(~f, %'
which has, or could have, after transposition. nodes of one operand

bt _C~~--) ? ... _----_._-­ nested below nodes not of that operand. and If the labels modified

<» <2> <4> <1> <5>
to be the result of that operand are not slaple pointer moveoent

which results frolll
reference only. then labels specifying assignment to a tempo~ary

;l\.l2]
array are added to each modified node and they become the result.

a l \A,[ll 8
~ '

b / \c
 4.1.2.8 In-Line Assignment - If. in the graph for an operand_ the

has an evocation tree
 /O~/

I' '

"0
with <1) 88 a "(ather" whose modifiers indicating which labels represent the result of that node

son <2> does not have a ~ '

proper target node (<» and of the parae tree are applied only to simple pointer tncr~m~nt

<4> are grandRons) 0' "0 assignment labels, and if the operation Is not assignment, th~

this i8 tranufor.ed to:	 stored quant lty wi 11 be used a8 the operand. nle challges made to

the graph are detailed In the section of Appendix F describlng the

assignment operation. (Note: ntis Interpretation of assignment

a/
//0"

'D,
implies that the value of an a881gnmeot to part of an array 18 the

right operand of the assignment. It al80 forces shape

/

/ ,
' confor_ability.)

(J' "0 (~)/' "'0
This operation nests on active structure under the entry point.

but It alao removes the result Idbele frOli the old sub-graph. 111111

which la:
the result will not have Ilultlple active ncetlng_ n,e ne'" active

Rub-graph lta8 no mul t l pIe neat I 08 and conte ln9 no t OdC t b,e node9 ~0)t (;) (;) 0fS ~ ~a; (~--) I.:-· .----	 Header level Is not affected.C "-J I~ ., ~) b' ep
(~f~=:> GO C~2) co:=> ~ The la8t two demons reflect thdt one Intent of the generation proce~1I t.

Figure 4-7 - Evocation Order De.on to leave .axhlu. flexibility for the i_prover by tncludlna all tcmporary

BUILDING STREAK GENERATORS FOR APL EXPRESSION 141 BUILDINC STREAH CENERATORS FOR AFL EXPRESSION Ul

storage that could possibly be needed. The improver vill never need to

generate tempora["!e8, only ell_inate thea.

4.2 CRLATION OF STREAM GENERATORS

["Ight-left-root order. If, during the processing of a node for an

p["edlctlons an~ requirement8. The parse tree will be traversed In

The input to the [["anslator Is the pa["se t["ee wIth itl associated
A

~
VI A~onf R.qul,..d

b", O••or, .t fro'"

of li.1

operator, teaporary .lorage 1. created to hold the result, or If an

,
applied, the par8e tree vill be .odified to reflect the changet

operand .U8t be placed tn a temporary before the operation can be
OeMon

N

, ,. , ,
/~

==> ~
:',+

'I bc

/ / "
'"

--..

-
~
~0~..· CU"I'l.f~J ~

,

L __)r-" -­

I ' v. ~.:.. ion,.,. .".

4.2. 1 Operands

flowchart of the processing of an operator.

produced for each operator are shown 1n Appendix F. Fiaure 4-8 shows

each operand or operator 18 given below. Examples of the graphs

where band c are new parse tree labels. The act:lon to be taken for

8

C==:=J
1

1:. Acll')f,S .,

L~fror't .." La.'-J-­___

,,.a,,.'o.'. 'raph

~Ien a leaf

follows;

node (storage reference) Is encountered. it 18 handled 88

(ft-) G A

4.2.1.&

18 a

Arrays -]f the variable (or constant) I, an array,

header node over loop Dode. nested to a depth equal

the graph

to the rank

Figure 4-9 - Translation o~ an Operator

BUILDING STREAM GENf.RATORS FOR APL EXPRESSION	 lit]

of	 t~e array. Each loop n~de 1. labeled vith etA i,pA • Thi. 1••
I

e1011e ladder with no aultlple nestlnl or inactive nodes.

4.2.1.2	 Scalars - If the variable i •• 8calar, the graph 1. only a

header node.

Each ladder created Ie based on an erray. New ladders vill be lenerated

for operattona only "hen a new temporary array i. created.

4.2.2 functions

User written functtons may be handled In one of two way.:

4.2.2.1	 Separdte Untt - If earlier phases of the compiler have

separated the function call tnto a separate coaaplled unit, that call

Ie not complied, but .erves to instruct the Interpreter to c€*plle

(If necessary) and execute the fUDctlon body.

4.2.2.2	 Stream Genpcator Subroutine - If earlier analysis has

deter_tned that a previously complied functton ••y be included tn

the call1ni complied unit, it will appear In the parse tree a8 an

operator or dpproprlate valence. The co_mand prosr.. for proce.8lna

this operdtor 15:

for	 each 0llcrdntl of the funct ton do
(build a simple ladder with shape of operand;
label the new ladder to 3s91gn to a temporary;
execute Herge command between new ladder al~ operand);

build a st.ple ladder with shape of result;
label It to assign to a temporary

and	 a8 result of the (unction call;
Overlay entry points of operdnd and result laddera

with result a8 left-aoat sub-areph

BUILDING STREAM GENERATORS FOR API. EXPRESSION	 1~4

The resu} t sub-graph repreaent. the act ton of the funet ton whtdt Ie

actually connected to the calling atree. generator by evoking it

fro. the entry point. Since that ladder does not actually exist, it

can never be overlayed.

~,en a function 19 complied a preamble i. generated containing

instructions to be followed by the interpreter io performing validity

checks and initialization. n~e pr~amble also 11&t8 all 810bal varl~blel

appearing in the funct 10n togetller "'ith the cooetraints that DlUtn be

imposed upon or between tbe alobal variables and oper.ods of the

funetton.

4.2.] Monadic Uperators

~,en a monadic branch node (monadic operator) 18 traversed, the graph of

the r~sult 1. built by transforming that of the operand. The

transformations applied for each operator are liven in AppendiX f (wIth

examples).

Reduction Is the only operation which can create an Inactlve nude

in a ladder containing result nodes. Since the. result of a reduction Is

always placed In storagt!, when thiS Bl.-eam generator 19 us(>d for an

operand, the In-line ARBlgmDent de"on will create 8 new acti e Bub-graph

whtch contains only rCBul t nodes. TItuS when the tr?nsform.lt Ion

operations are applied no result node for a .onadic operation may have

an Inactive nesting 80n. n'erefore no aulciple nesting can be created

by 8 monadic operation except at the entry p~lnt. Since the graphs

produced for operands have headers at level 0 and no .ultlpJe nesting,

,'''''-,.......,......"..,,-....- ...

BUILDlNC STREAM GENERATORS FOR APL EXPRESSION 14S

and the transfo£mAttons p~e8erve the.e properties, they hold for the

re~ult8 of monadic operations.

4.2.4 Dyadic Operators

nl~ graph for the result of a dyadic operation 18 built up froll those of

tht! operands. The procedure used for each API.. operator i8 liven tn

Appen1ix F (with examples).

n.e dyadic operations create inactive nodes only throulh use of the

monadic operation reduction which. as seen above, does not cause

violation of the nesting restrlctlbna. Therefore. like the monadic

operations. they create multiple nesting only at the entry point. Aleo

the ladder cant-lining the result nodes used for the choice in the

aJternative operation will have only reBult nodes. Since the

alternative opl.!ratlon UBes the lowest reault nude ae the choice node. no

nodes will be nest~d under it. Thus the dyadic operation vill a180

presp-rve the dE:.sln:d propert lee.

4.3 El.iMINATION OF UNNECESSARY CALCULATIONS

Compression and the selection operators (exc~pt transposition without

d I agona 1I zat ton) d J scacd pa rt of thei I." t'lght operand. If the val ue i8

us~d nowhere ~l8e It should not be calculated. During the course of

8treaq generator creation the selection operatlon9 \Ieee applied to the

stream generators for their right operands. but the In-line A.8igRllent

prevent. any operation fra. affecting the calculatioD of • value which

BUILDING STREAK GENERATORS FOR APL EXPRESSION 146

has been 8tored.

How, afte~ the completion of the generation phase, if all

references to any given dimension of an array which is local to the

stream generator are affected by the Balle selection operator. then the

equivalent operation will be applied to the sub-graph of the entry node

which 18 active for the generation of that array. ~len the operation is

not dlr~ctly applicable (vould senerate temporary storage). it Is

abandoned. If the application Is succep-ful. then the select ion

operation Is removed from all the labels (or the arrdy. ~Ie appllcatloD

of thIs transformation .ay create more opportunities to apply It.

However. since operations are moved towards the leaves of the parse

tree. the process wi 11 terminate. Figure 4-9 Is a f LOlolchdrt f or this

phase of the compiler.

The "reject" Side of the alternative construction used to Il11plcment

comprc8s1on doe. only pointer move.col for the .ourc~(s) of thl.! rig~t

operand. If the right operand Ie an expreSSion which has not bren put

in temporary storage. calculation of unneeded clements vlll be skipped.

If the right operand hOld been stored. only the final reference to [lie

stored value is skipped. However, the compiler tlttempt!J to el iminate

tep~porary storage by moving the calculat ton to point oC use. In the

case of compression, • side uffect will be the eltmination of unneeded

calculations.

147
BUILDING STREAH GENERATORS fOR APL EXPRESSION

.I'ld

t.~~~'''.lJh r:-d••

l'.' ,II _ I.Acc ••

_.!~~bI..c: .

-]lu..-I l,.1

b., V~~~1t>-~~--
............. ~----

C---:J­
Loo •••

-M~rl_:__
no-;;"hc--~V

-­

.)..'rlic;,t>l.~.... y

~F• _~.'.:l"~~r :.,,, _.?"""'- r..~

H
 N
--~ ...

~l'-"---- __. Y ~~ ..:e:;:;: .•. ,~", t:Q'l"J::!-V~ C.,',.p"at.t.

-------t:'~/ -­ ~---
-~o".

H~]v

~0

Figure 4-9 - Un-necessar~ Calculation9

BUll.DlNG STREAM GUU:RATORS FOR APL EXPRESSION llt8

4.4 REUUCTION OF TEHPORARY STORAGE

The primary re:1Ison for trapelatlna APL into .trea. lencrslor8 ill to

facilitate the elimination of unnecessary tempor-ary storage. TI,e streaa

generator graph reveal. the order in which intermediate results are

generated and used. It also contains the tnfonuat Ion needed to

determine alternate orders. The ideal 81tuat10n Is a stream gpnerator

In which the order of generat (on and use match for all tntermed fate

values. When this occurs no temporar)' storage ls requl red. nle

compiler will attempt to find the ord{ which comes closest to this

Jdeal. During this process a constraint 1s imposed that no calculations

will be repeated In order to reduce storsle. The task of determining

the best ordering 18 c.omplex because the constraint of no repeated

calculation8 requires that certain operations be done in one particular-

order (ex. Scan), and because certAin operations require internal

temporary 8torage unless done In a specific order (ex. Reduction).

If the level 0 heltder which is the entry point of t'u~ stream

generator h88 more than one nest Ing son, each 8ub-t ree ('xccult's

Intlcpendently tn 8UCcc8sIon, communicating array data only via memory.

The creation rules have proJu<.:ed a graph In which thE' entry point Is the

only node with more than one nestiog 90n. nley have also produr.ed a

configuration In which a successful application of thp commands

transpose or reverse to the generation of an ~rray (re9ult labels for

that parse tree node used to detenalne active Bub-graph) wlll not chang",

the result tn storage (Bee Appendix C). These two op~ratlons which ve

call "reordering" .8Y thu8 be applied to the etrea. sener-ator a8 needed.

BUILDING STREAM GENERATORS FOR API. EXPRESSION	 149

nle elf.ination of temporary storage requires that the steen.

generator be transformed 80 that the calculations are done In

synchronization instead of In sequence. n,e desired transformation i.

to overlay all the Bub-graphs of the entry point. ~Ien overlaying I.

blocked only by the presence of raveled neatinl. two sub-graphs ••y be

8ynch[onlz~d as co-routines u81ng evocation.

The complIer attempt8 to Belect the order fol' each 8ub-Braph which

vecmit & tbe maximum overlay. Storage ..y be eli.lnated In the (ollowln.

cascs:

1.	 ~th assignment and all referehces to an array di.en81on are In the

same node.

2.	 TIle assignment to an array di.eosion 18 In a choice node and the

only references are 10 all the targets.

1.	 TIle assignment and" reference of the entire arraJ are at ••tchina

levels of two ladders syncbronized by evocation.

If an array is used In a node where none of the above apply. or if there

exist a node where the storage 19 modified by I or \. then Btorage of

that arcay aay not be eliminated lower In the graph.

The most straightforward approach to picking an order for ench

sub-graph would be to try all possible combinations of ordering and

select tbe one requiring the .lnl.um atorage. Unfortunately that

approach requires the examination o(• number of cases that Brows

exponentially with the number of 8ub-graphs. Th~ aectlone belov

8UII4DING STREAM GENERATORS FOR An EXPRESSION	 ISO

describe a procedure which 1s not guaranteed to generate an optimal

ordering. but it is computationally feasible (time) and has proved to

perfor. well.

4.4.1 Generation And Use

The determination of best order for each 9ub-graph Is simplified by the

use of an alternate representation for the generation and use of arrays.

We draw a graph in which each node represents one of the sub-graphs of

the entry polnt of the s(£eam generator graph. The nodes are labt!led

with the nomes of the array. (or scalars) assigned to by that sub-graph.

if one 8ub-grdph uses a value generated by another. a directed edge Is

drawn froll generation to UBe 1n the new graph. Th~ edgt! Is labl~led with

the name of the array (or scalar). If a node has out-d~gree O. the

values 1t 88s1gos are not referenced In this strea. generator. If the

arrays (and scalars) generated are local to the stream generator. the

node (and the associated sub-graph) are deleted (only functLons without

aide-effects have been included in larger st[~am generators).

Each edge indicates a possible storage savings to be obtained by

over LlY Illg the sub-graphs represented by the two nodes connected by that

edge. TItUS we f 1rst el tmlnate edges connect ing sub -graphs wh Ieh we can

detemlne can not be overlayed (the complexity of the recognition

process is diecuscd below). This occurs in the following situations:

(con8idered 1n order listed)

1.	 Required Stor~ge - Storage of a lenerated array 1. required if:

BUILll1NG STR£..AH CENERATORS fOR APL EXPRESSION	 151

I.	 A use of that arrey .s subscripted or rotated.

2.	 A dimenslo" of the use is .odlfied b, a selection operator.

1.	 TVo dimensions of the use are tn the .aae node (dlalonalized)

4.	 Two uses of the same array In one .ub-Iraph (altaee.) are not tn

the same order at the .ame level ••

When an array 18 used 1n that vay, edges for that array entering

that Rode cooucet two nodes which .ay Rot be overlayed. ThOBe edles

are deleted.

2.	 Scalars - A 8ub-graph generatln, a acalar inter.edlate result In 8

.. eglster .\l8t complete beto .. e the value may be used. ThU8 edges

representing a scalar are deleted fro. the graph.

J.	 Alternatives - If both the generation and use of an array are in

ladders which dee alternatives selected by a choice node (reached

via evocation edges). and if the alternative is not l.plementlng the

compression operator, ~hen overlaying Is possible (see definItion)

~nly If the choices In the two sub-graphs are identical. Otherwi.e

overlaying 15 Impussible, and the connecting edge Is removed fro.

the graph.

In the C88e of co_pression it may be possible (Bee Section

4.~.1) to move an array use from the alternative. into the cbolce

ladder. If thl. occurs, overlay1ns 1. possible. Thus edle.

representing that .ltuatloD are retained.

BUILDING STREAM GENi-:RATORS FOR APt EXPRESSION	 152

4.	 Order Conflict - Any path through the graph defines 8 (unction which

maps each ordering of the node at the beglnnlns of the path to that.

ordering(s) of the node at the end of the path which causes

generation and use to be synchronized. If there exists a node with

out-degree Breater than 1, and if patl,s which leave that node along

different edge. rejoin, the ordering functions defined .uat be

consistent. If this Is not true, either the fo ..k or join ml,st be

eliminated.

5.	 Repeated Use - If one use 18 nested under another, no order exlst9

which permits both to be completely overlayed with its genl~rc1tiun.

6.	 Required Sequencing - If two nodes may not be overlayed, thi8 may

block the overlaying of other paira of nodes In three circumstances:

1.	 A node which depends (path exists) on both .ay be overlayed with

neither.

2.	 A node depended on by both .ay be overlayed with neither.

3.	 Two nodes which may not be overlayed may not be overlayed with

the same node.

~~n a choice exists as to which edge in the graph to ell.ioate, the one

representing the smallest quantity of temporary Btorage is sele~teJ (Ie

- best Is a &lobal array - next the smalle9t temporary). If any edge

fo~ a liven arrey h8s been elJ.lnated, that arr.y must be 8tored, and it

1. considered global 10 any further processing. As a final 8tep, all

_ .. _ ·"·_1· ... • _ -- -- - _._- ------.---.~ -----..... ...- ~--..-.,,-.-~..........--.-""----- ..--~ •......----...........-----------.~...,.......-----...~-..--............ .",.. ...------..............................--..- ... -­

BUIUHNG STI<EAH GENERAtuRS fUll APt t:X~ttESSION	 1))

e~g~8 fo£ arr8yB con81d~red to be ,Iobal ace ell.inated. n'UB lhe

procL'dure that aclecttl aub-grapb ordech,,, .. will only attempt to .atch

seoeratlou!u8c o(f.I~r when atur41ge Bavlng& are p088ible. Figure 4-10

tihow~ .ill eXdmple of this process.

[;eteCl.lon of order conflict or required 8cquellclng may require

tnu;iu¥ all polthes froUi each node. and In worst case could could require

tJ me propor t lund 1 to tht" s(juare of the number of nodes. l'he other caHca

depend on prupl!rtles uf Hinsle 1l0dt:9 or edied (nu..ber of ~dge8 bounded

by squdre of lI~b~(of nodes or by size of original functIon).

4.4.2 Craph Order for HdximUia Ovcrl<l1

The [t.~mov.tl of eJg.ea lUoly hdVC divided the seneration/uae graph lnto

several unconnected compollents. Each will be procetiBed separately In

~,at followu. Each edge £emalntng indicates the possibility of

\ ellmlnation of temporary storage via oue of four patterns of overlay1ns.

1.	 Tlt~ seoerat ion dod use are both 1n the cntry ladder. and ace

overla)'ed.

2.	 Cople9 of the entry ladder containing the generatlon (ad.Juated to

fit) aCt ovcrlilyed with the ladder&:i of u~c tn thelr position a8

alternatives. (Because of the in-line a881gnw~nt demon. an cnl(y

ladder which Is a generatlon will not have alternatlvea.)

l.	 The entl"y ladders of cavies of the Bub-graph containing a use are

ov~rlay~d witb the alternatives containing th~ generation.

l~ ..MUILDl~G STkt:AK ~~NLkATO~S fOR APL E~kESSluH

Ihe APL expresstona:

C.. tA
1)..-8
A~~·.·D

5'-+/+/8
r..S..E

ar.	 translated into

(.~)
~~~-:--...:..--"-

---------~ L~_ ...." .. -----~----==--------"---
~;-.-:-;. .•(;~)(~ ~<ll••·EI)"Ei ~~-:<-;) j~.l"') 0.!.::;)
.---- --r ~I~ 

f2 t • E2."t:2'-j ~ ~ 

TIle Generation/UDe Graph 18 

~ 1 
0 ,\ )"D 

--~ '\E II /(1)(}) ----.::\ 7 _~ 
~•. C W 

ed8e (1) 18 d~leted due to nesting conflict (repeated utie) 
(2)	 18 del~ted bectiuse S is a scalar 
(l)	 1s deleted becauHe (2) was d~leted (r~qulred sequencing) 

leaving 

(£)	 w 
E 

Figure 4-10 - Generatlon/UB~ 



DUII.DIUG SllC.£AH (;l:NlRATORS fOR Art. EXl'RESSIUN 
155 

4. ,",'hen the choices ace ident ie.i, two Bub-Iraph. vi th the aenerat 10n 

and UBe in alternatives are overlayed. 

An eiJge 1n.1)' represent one of t\lO • t tuat Ions: 

I.	 nle storage may be eli.inated by overlaying the stream lener.tor as 

currently ordered. 

2.	 nle storage may not be eliminated because use and generation are in 

different ol"ders. Reordering the sub-graph corresponding to either 

node will correct this situation. 

nle end result of thle algoeilhm i8 a graph with only edges of type 1. 

lIowever, that i8 not sufficient to ell.Inate unnecessary atorage. There 

arc 2 caRes which require a Bub-graph to have 8 particular order before 

storage may be ellwinated. n~Be are: 

I.	 nle storage may not be eliminated ~en generation occurs below a
 

node labeled with I or \ (/(n) 'or \(n) where n 18 not lowest
 

dimension will require atorage unlesB transposed).
 

2.	 n.e storage may not be eli.inated if use t. repeated (neated under 

anl)ther array - 8 In Ao. tB or nested under a duDUly node which waB 

created for au alternative operation - V tn V/[n]A where n i. not 

highest dimension). 

When the Bdme array 18 uBed in both the choice and target ladder. of a 

compression, atorage of that array can oaly be elillfnated at or above 

the level of the choIce. However, we have not included co.pre•• tna the 

BU I LlH NG STREAM GENERATORS FOR AI'l. EXPRESS ION	 156 

lowest dimensIon as one of the requirements since it conflicts with the 

elimination of repeated ulle of the left operand. Since we can use the 

storage allocated for the final result to hold candidate components, 

this i8 not a serious problem. 

In addltJon there will be sub-grapha (produced to handle reshape) 

which can not be reordered. 

nle algorithm presented below gives priority to satisfying the 

requil"enu~nt8 i nd ieated by edges and wi L1. 1f necessary I 1(!<1ve the 

requirementB indicated by nodes unsatisfied. Node requirements arc 

relaxed In a fixed order depending on the operation that va8 the source 

of the requirement. They are never reinstated even if the higher 

priority requirement wIth which they conflicted is later cllCJln.1ted. 

RequirementB are relaxed in the order giv('n below: 

1.	 Reshape Input - The mon,ldle reshape operation generate-s ,1 sub-graph 

which lDay not be reordered. If that causes an order mismatch along 

an edge entering the reshape node when all node requirements dr~ 

honored, the edge Is deleted. (The node requ1 rement is absolute). 

2.	 Repeated Use - The preference to avoid repeated use will be the next 

one abandon~d. If aaving storage Is critical, values used 

repeatedly may be calculated rep~aredly. 

3.	 Reduct ton and Scan - The preference that the d tmens iOIl r+!lhh:ed or 

Bcanned be the lowest one is lhe last abandoned since the resulllng 

storage .ay not be avoided. lIowever, no examples have b~en seen in 

which the storage of internal intermediate re8ults required when the 

preference 18 not honored exceed the storage reBulting from atsmatcb 



-~.~,._.~_ ..... _- .....~#-- ............... ~,_ ... - • ..,.-~--~- .....--.-.-..-----...-----.......-.......... _~.. ......-,...~............-lIt:='....-.........-.........-..-.~~ .... d • 1M... ..........,...,..,••• "'". t
 

BUILDINC STREAK GENERATOkS FOR Art E~PRESSION 1'Hi bUILDING STRLAH GENERATOiS FOR ArL EXPRESSION 1~7 

of seuecatloD Mod uae. 

-0 
4. le6hdpe Output - If, after all node require.cute are relaxed, an (.eh S•. 'b-ljr.ph 

C ,., * 'f",II'hnlj 10 
edg~ conflict Involves an ed,e leavina a re.ba~e node. the cdae 1_ " ··u•• ~, ...'h "coJ'II. 

deleted. =( f __1L- __I~ 
,to fi'lIIcJuc.tiI}t,:.noa (roap~altt~ (f; ...~PI"" •• lon 

The complier proceeds aa follow»: ~T-- __C ~ =r:_­
'-'diC.~I. ~.-O"(j"I- ~ltd ~.-("'d.r;],-,.J a.-.:.r'J.'" 6"J

0,.. .....,,,' fl ...d In.JH.• I. )toulc. .. a. l ..cJlc.6'.
I. Vialt each node of Gen~rationJU5e graph and establish preferenc~~. 
O,.,J.r FI·•• .J ~ 0,.1 ... ,. F ..... lJ O,..~ .. r F~,ltric=

~~.~. -!- ---- ._-~::- -.r:-- --[.---­
2. Visit eacb each node which has a pr~fe(ence in order of decrea~l"1 GJ CA)· -{~) G) (0

• 
priority, and trace each patb le...ving that node. if a nod~ with a c= "hul £a.:h Hud. J 

~-;') Wh.et. H •• f' ,.,J O. J",' "'9
 

cout 1 te t t ng preference 18 rCdched. the pretert:nce wi th tilt: lowec ~t~ In '".r"_ 0••••
 

priority Is abandoned. If. node vitb no pr~fer~nce 18 rcached, a 
E • .,;:h F.at, l •• ,u,'J------Jt.-.". 

1h.t

f ~ 

U.',I••:.-,1.1 "' ....~r.II."<~ y~~~.preference 18 establ16hed .. 
--.....~,;..~)I. ... - ~.,j H,;"u. ~r i.'•.1 

---.--------~---- ~­

N 
l. If 4 node now exists with no prefe£ence. select one with In-degree S.IU~-.:--J N .~--",,--- V j.-" 

U'I-fl~Iil·J "0<1_ J.::----.. 0".·. ~. ,B)
o. Select an ordering and trace all patha leaving tht! node. If w. '" In-J<iiI~' ". i __ ~ 

_.~-=---(i) __
 
co"flictti wiLh a pr~fcrenc~ are dtscov~r~d. tielect a new ordering
 . (r•• ~ i·.,JU -',' :,'".~ 

S.I.cl _" Lir,:JItI'I,.,g ~.;ol ~I'.,) .... __" (1,.:1.,' ;'.'.J "lin I
and repeat. If no conflicts are found, establisb thiM order a8 a E----r-::J __ --"'y' L:~~F_~':':~ 
preference for all node. 011 the path. Thtll step is repeated until ______ -----. EF,o.. "I::] -~t-- r 
all nodes bave dO order preference. < 4;')I\tlIC'.l> Ur",.,. ~ff • .;:l.d <~~.J"tll';;' "'1'~-"'~---...i-~ 

--........ ,,"-- --""....j I, ~).-'~ \.-/
JY' --- -TV 
-----:~~I -.~ N -. .- ("~:-;:, I~~- H 

Figure 4-11 Is Ii flow Cholct of the ordering proced1lre. ~dtlf'i- -'r l"';-~ 0 ) <~J Will, c:=J".f'.~'~ 
~~ .~ ~7 

This procedure which eutabiishcli preferences explores the whol\: grlipb lvV 
---, I r----- ------..~----. 

£ ~ ",.", ii'. ['1,).
starting from each node. Thus it may require time proportional to the <.: [nl", a"lI ,. .. ,iil'.p .. 

._~square of the Il~ber of node6. The final order aelectlon tr~ce8 the ~­

(0 ~~)"raph for each alternative trl,=d. The nU&lber of alt~[natlvL!u 18 given 

by 01 ~Iere Q I» tbe depth of the graph (h1shcat arcay rank which
 
Figuru 4-11 - GcncrQtion/U~e Order
 



160 BUILDING STREAM GENERATORS FOR APL EXPRESSION	 IS9 

rarely exceeds 4). 

10 Chapter S the perfor_ance of the co.pller for a eet of exampl•• 

18 dlacuRsed. The actlon of the above procedure for one ea.aple 1. 

shown tn AppeodJA G. 

4.~	 lLIHINATIUN OF EXTRA CONTROL STRUCTURE 

~Ke uonecee.ary temporary storale has been eli.lnsted, the co.pller 

viII att~mpt to reduce overhead and code aile by at.plify!n, tbe control 

8tl'ucture. 

4.S. I Syncronlzatluu Within Sub-sraphs 

The alternative construction produces a stream geflerator to which the 

nodes above the level of the choice to the choice ladder and the 

altern~tlve8 are synchronized. Unless a level consists of a raveled 

8trUC(U[~, all pointer movement can be done tn the choice ladder. Since 

hdvlnK three loops doing the work o( one 1. undesirable. the pointer 

movement Idbel, art! moved. ALl node. nov without pointer .oye.ent 

labels and not neated under nodes with the.. are rc.oved. Thi8 operation 

will cn·ate head€"r node8 at a Jeve! Ireater than O. the pointer 

lnllia Il,. t Ion opur.tt lonlf t\l'"t! .oved tnto t he clio lc~ ladder. 

If tile choice node was created to execute a catenatton, it edu,u8ta 

first one alternative than the other. The • .!I.e access pattern can be 

obtained with leBs overhead by aaklnl the two target nodes neattng 80ne 

of the father of the chotce. The choice node i. deleted. The .erg1nl 

BUILD I N(; STIlEAM GENERATORS FOR APL EXPRESS ION 

example of chapter) shows this transformation. 

If the choice Dode was created to execute a ca.-pression, the 

pointer movement labels for the right ope£and •• y be lIoved froa the 

target Into the choice If either: 

I.	 lhe target nodes 8£e at the lowest level of the alternatives. 

2.	 TIle choice node contains a pointer movement label for the Bame array 

(different 81ias). The labels muat be eJl.8ctly identical. When the 

movement label Is removed fro. an active target. it _U8t be replaced 

with. pointer ~eBet label. 

If the tarset node modified by SKIP nov has no pointer movemcnt labels. 

that alternative gay be eli.inated. 

'1 lure 4-12 .hov. exa.ple. of the obove transfor••tions. 



161~UIL01NG STREAM CLNlkAIORS fOi APL £XfRESSION 

A,B 

~ 
C~·-

{l­

~ ~ ~
 
dJ--c5--ctJ
 

ijt 

c~~=.J 

(V-I)/V 

CKIPVt')- !J_.( V1aJd
 
iJt 

6-c-~~-) 
fl&uce 4-12 - SyochronlzatioQ Within Sub-scapha 

BUIUHHG SIREAH Gl::NE.RATUkS FOR At'L EXi'RESSION	 lb2 

4.~.2 loop Jawmtng 

l'h~	 loop control required by the stream generators may be reduced 10 the 

following 61tuatlon~: (~ee Figure 4-13) 

I.	 Two Bub-graphs match 1n shape and can be fully or p.u. t lally 

overlayed without resulting 1n r~fercnce to an array before 

asslglUDl::nt (the order of reterellce and assignment along the control 

paths uf tlU~ r.:£ul t1 ng stream gClwcdtor IIUS[ be du:cked). 

2.	 If 1n all ladders comprising Cl sub-graph of th~ .::ntry point [\010 

adjacent levels use the Sdme DELTA vdlue f?r all polnlerti, and if 

there Is no 8pllce code in the ladd~r ralls connecting the two 

levelS. Lhe two levels can. be collap!ted ioto one. 

The translation into Btrea. senerators has conslderably ~tmp11fled the 

problem of reco&nl~tQS the opportunity to i'pply the8e two 

transformationa. 

4.5.3 Alia8 Elimluatlofi 

Given two pointers A and A' which refer to [b~ Hame array, if fol" ~.lch 

occur renee of A' J A 16 prescnt 1n the sa.we form 00 the liollln.t! node. h'
J 

may be eli.tnated. Only one pointer t. needed. 



164 8UIUHNG STREAM GENERATORS fOR APt. EXPRESSION 163 

D+AtB 0 E"Ate 

0~+~A~L) 
'0' 

A+-8.C 

~R~--­
~CB1) 

&:~~~~~~ 
f 

w-_2~__-\ 
A(.B2~C2· (pD l ).pB~...J 

Figure 4-13 - Loop Ja..tog 

BUILDING STRt:AH GENERATORS FOR APL EXPRESSION 

4.5.4 Tight Linkage Of Called Functloos 

If a function ~hlch has been linked into. compiled unit acceS8~S its 

argulaents (reaults) tn the Balle order that it 18 generated (used), and 

if there are no repeats, then the two acceS8 polnt8 m8' be linked with 

en evocation edge. A different veratllo of the compiled rouclne, which 

was created to expect that quantity to be in a register. will be uBed. 

4.~.5 Subroutines 

If the stream generator contains identical Bub-graphs (created by 

copying). one copy .sy be created (with combined llmtts). It vIIl be 

evoked froa each node for.erly adjacent to one of the oetainal copies. 

The evocation edges viii no longer define a tree. 



CltAYfER S
 

TUE EXECUTION Of STREAM GEN~kATORS
 

The previous sections have described a procedure for translating APL 

into stream geoerdtora. Now we will examine the actual execution of 

alrcam scocrators and evaluate the. baeed on the followiRa criteria: 

I.	 th~ amount of alorslc used, 

2..	 the size of the code gene['ated, 

1.	 the speed of e.~cutton. 

Our prlwdry concern 18 wltb the amount of Mtocage required. The other 

{actors are considered to demonstrate the feasibility of this method for 

executing APL. 

~.l	 EXECUTION ENVlRONHENTS 

Exa~lDatlon of c~de .1ze and execution time require the specification of 

exactly lww the a(rea. generators wtll be executed. 

TUE	 EXECUTION OF STRf.AM GENERATORS 160 

~.l.l TraDdlatlon Into Machine Language 

The object code of the compl1~r can be tCdfislated lnto machine code for 

the Dl&ita1 Equipment (;urporation PDP-lO usinS an extend~d vcrtiloH of 

the cOlapller foe the IHP-tO language. the examplt:8 b~lo", will show thllt 

thia approach 1s feasible. However, three problems suggest that this 

approach Is not the {dedi oue: 

1.	 tlos[ of thu Al'L scalar operattoo5 would have to Le InterpreteJ. If 

the arithmetic operation9 are to be independent of number 

representation, then all mU6t be Interpr~ked. 

2.	 The conteol structure will make ¥~ry h~avy u~e of short patt~r"s ot 

instructions. The lack of dingle instructionS to perform th~ge 

functions lncrcaBeB code size and Blow~ execution. 

3.	 The control parametertJ I, RHO, DELTA, and G and the pointers PI dod 

BEtA are used frequently, but ar~ too numerous to ke~p in r~gliter8. 

The high rate of memory acce8S will "low execution. 

becaU9C of (hetlc factor!:i olInd the overhead of cmnpllll[ lon, no til.H..'cJ 

advantage will be claimed for a compiler translating Into machine code. 

Onl)' the size of the object module will be consillcred in order to 

demonstrate that the 8tora~e economy obtained by uding the compiler dUC5 

not	 require special hardware. 

An e~a.ple of the machine langudge represerotatioR for d stream 

generator i& given to AVpendlx D. T~4t e~ampl~ assumes that all numbec~ 

are	 represented aM 1BteKer». It uses a.chine ina[ructlone for the 

scalar operations. 

- 16~ ­



THE	 EXECUTION OF STREAM GENERATORS 161 

~.1.2 The Ladder Machine 

A better environment for the execution of a stream generator 18 provided 

by au aUKtllary proces8or - the ladder machine. Charles Hinter (17) has 

designed two ver61on5 of a proccsstng unit designed to execute networks 

of ladders as conceived by rerlte (19). With .loor .odification. they 

are also well suited for the execution of atrea. aeneratora. The ladder 

machine keep. all control parameters In faat local me.ory. Acceas to 

.atn .emory 18 required only to fetch or store array values (Spltce code 

(rill . 

In Hlnler's dealgn the ladder aachtne executes Independently of the 

maIn (PU. "'hen the ladder machine 18 ewecutlng a stream senerator. the 

maln CPU may do other unrelated processing. An alternate approach .ore 

sult~d to a s ..aller machine would be to provide the ladder machine 

capabilities aa an exteosion (mtcro-prolra-.ed} to the in8truction eet 

of the single cpu. 

TIle .odl[led ladder wachlne upon which our estimates of code size 

and speed are based is described 1n Appendix E. An exa.ple of the 

ladrler code rcpre8entatlon Is given. The strea. generator Is the same 

dS the one whose pup-tO Indchlne code representation 18 shown 10 Appendix 

D. 

Hinter wrote 8 translator which produced code for his ladder 

....",chlne. Since tllc ladder Is basically a hard",a ... e representation of the 

array access!nl method employed by Abra•• , Hinter's translator producea 

code which reflects the tr-ane(oraattoRa Abra•• called "beatina and 

draaslns". Uslng tht. translator and a .1aulator for hla ladder 

TUE EXECU'r ION OF STREAM GENERATORS	 168 

machine, Hinter obtained the followi08 cDlDparisooe: 

I.	 For the simple exrresston A~B: 

I.	 The tilDe to cOUlpile the expression and load the ladder machLu~ 

would be twice that required to set up for interpretative 

execution. 

2.	 The time required to load the ladder machine with the r.sults of 

a previous comptlation 1. half that required to set up for 

interpretative execution. 

).	 If the expression must be compiled, the ladder .ac~ine will be 

slower than the interpreter for A and B with leas than 50 

elements. 

2.	 Hinter'. moderate-p~rformance laddec processor executing with a DEC 

POP-II host CPU will execute t/( ,200)c,200 approximately 4 times 

faster than a IBM JI0/l58 running APL.5Y. 

In the examples given later tn this chapter, we will compare the speed 

of the ladder machine code produced by Hinter'. trauslator with the 

speed of the code produced by this compiler.. In asking that rotUllarison. 

we will aH8u~e that the 8ame hard~are i8 used to execute the output of 

both t£an81atorB • 



·.--~.............-...... ...~~--,_ .._--~~
 ~..-

Ttlt:	 EXfCUTION Of SlllEAtt GENEiATUllS 169 

5.2	 TllANSl..AT ION EXAHl'LES 

In the tiections below we prescDt the. output of the complier for each of 

• aet of el(a.plca. rbe output 1. aUAI,zed to deteoaine; 

I.	 TIle ah:e of the object IDOdule if tranalatttd into fDf-IO .achine code 

(see Appendix D). 

2.	 11,e size of the object .adule if tranillated. 1nto ladder machine code 

(8~e Appendix E ). 

1.	 The oWDber of array element loada and Mtares executed (aiven the 

81~e. of input). 

4.	 The amount of temporary storBge used (given the 8i~e. of input). 

nle	 lata two IUcallure8 will be cOUlparcd against the saIDe values obtained 

ba8~d 00 the following lI.:thoda of execut Ing API.: 

1&	 a ndive tnterpreter which performs each opel"atlon sepal"ately, 

putting each tntel"IDcdiate result Into temporary storage. 

2.	 A complier which compiles on a line by line basis and Incocporates 

the work of Abrams. The IIP-)OOO AI'L compiler (ll) and the APL 

translator developed by Hinter are exagplea of such a compller. 

The stream &en~l"ator. and the final obJ~ct code for each example are 

given In Appendi. G. 

THE EXECUTION or STREAM GENERATOIS	 110 

~.2.1 Example 1 - Pclme Numbers 

Tbe expc~681on S~~/2:t/llJO=(\N)Q.I,N will calculate the nuwber ot 

pclmca less thau or equal to N. It 18 an t=xcellent I:xazaple of an 

expression which gt:neratea a larje loteClDediate l"e8ult 00 the WdY [0 a 

small an8~er. and it has been analyzed by ~evecal authofa (1) (W~~) (~I 

(19). It compiles into 17 PDP-l0 instructions or l6 l.dder 

lnatructloo•• 

for	 H - 10, the expl"e•• lon performs aa followa: 

Arra, Ele.ent References Temporary Storage 

Naive Interpreter 510 220 

lW-)OOO Compiler o o 

Steea.. Gcn~rator o o 

Results ai.ilar to tbdt obtained using 6tr~am generators were obtained 

by We¥brtsht IWeg). Daniela (8) proposed to go further by consideriug 

.ath~.atlcal propertlea of the operators. The .pact! requlrewcntB when 

this expres.lon 1. interpreted Irow •• N.'} And wtll liI.lt H sooner than 

excessive execution time. 

5.2.2 Example 2 - Ru~a" Numbel"8 

The expn~sd ton Jt4.( • ( (7p 5 2) TN J •• ~ ,tt) / .~lt 7~ 'MOCLAV I' COnVel"tH an t Dt eger 

(H) into It. representatioo 1" loman QUllerala. It compil~& Into 68 

PUr-tO Instl"uctiona or 31 ladder instructions. 

~'en the result contains 7 characters. the executioQ of this 

e~pre.8toD reqUire.: 



Tnt: f.XECU"( luU or STR~AH GENt!IlATURS 171 

Arra, Element aefe~ence. Ie.parer, Storsse 

Naive Interpreter 27J 14 

HP-lOOO Complier 16S 10 

Streaa Generator 28 

The stream generatofs perforwance 18 el.11ar to that described for tbi. 

e2aEple In Daniels 181. 

5.2.) f.xample) - .1 Choose N 

nle function 

D* J CHOOSE A;8;C;N.V 
[1] N· J.1tp A 
(2) 8+(N.NMJ!N)p2 t ~1 2 2 3_«,N) •. =,N) •. VA 
(3) V"218 
(q] C+«'CV)~Y,V)/8
 
[ 5 J p.. ( (J • 1 ) =•I[ 1 ]C) Ie
 

takes as Its argument It. a boolean matrix each colulDn of which haa J 

elements equal to I. Each colu..n i9 unique and together they sive all 

the \lays of choosing J elements frOil H. The output of the function 0 Ie 

the Bame lafor.ation for Jtl. The function .akee N copies of each 

column of the input and forces "on" (1) 8 different position in each 

copy. It. th~R dlscarda all duplicate columna and those which still have 

only j l's. 

n'e strea.. generator (see Appendix G) reveal. the characteristic. 

of the functIon. It wtll run without confon-ability checking (no fixed 

loop 11.lt label appedre on the 8aae node aa a variable label). Each 

column of A 1a used once (the label A2 appears only once and at level 

I). That coluao I. uaed repeatedl, ( the label Al appear below a 

TIIF. EXECUTION OF SIREAH CENERATORS 111 

pointer r-~8et label for A) to generate candidates for columns of th~ 

output. nits meanll that each column IIlIAt be In memory. but the function 

could be entere.d repeatedly (as a co-routine since V accumulates) once 

for each Input column. If we wished to go d1ree t ly fr01ll J to J"2, two 

copies of this 8tre~ generator could be strung together eliminating the 

storsge of all but a single column of the .atrlx fo~ J+J. 

It complIes into 206 PDP-IO instructions or 96 ladder instructions. 

For N - )0 and J - S this function requires: 

Array ElelDe,lt References Temporary Sto["'lge 

Naive Interpreter 7,318.518 277.100 

IIP-JOOO COldpller 6,SJ).b04 50,400 

Stream Generator 6,414,660 2,530 

The execution time is dominated by that required to execute l'd/ "'hlen is 

of order O.5 x (Nlt..1!N)''} (6,350,400). A compiler. which could recognll~ 

that the process of locating duplicate entries In a vector (V) could be 

speeded up considerably by maintaining V In sorted order and Inserting 

each new value If unique, could produce much more efficient code. 

Uowever, that level of sophistication was Dot considered in the design 

of this cOlbpller. 

The fUllctlon generates a large number of candtdottes for inclusion 

In Its oUtpllt and then ll'SlS each one to detennl ne I ( they relll t y bt't ong 

In the output. As seen abo"e. the execution of such 8 function 111.1;' 

require a cOtDptler which can execute the function without ever storing 

all the candidates at one time. n,la 18 especially true if execution ra 

to take place on ••••11 .achine with. limtted workspace and DO ~irtua\ 



1/4 

... ~ .._~ __ .......... ...-- ~~ • ~~ ~_r __ .... ~-. __ ~ ~ ~-....__ - ._~ ......-.- _,.....,.~ _ _
.. 

' ..... i .... 

THE EXLCUT10N OF STREAM GENERATORS 171 

storage. The valu~ of a stream y;enerator cowpl1er depends considecably 

on the prevalence of thi. style of prog[aWlll1n~ 1n API.. My tllprC6tiioD. 

based on the programs writen by the introductory progrcuol8iug clalises 

tou&ht by Profe~8or reells at Yale. 1s that this cowpller 1s nceded. 

Uowever. the deta 11 ed loves t 'gat lou of a I arje a.unple of programs 

neccessary to confl[lQ that impression has not been done. 

It la ..1.0 not cl~ar to what extent lain••ade by the compiler 

depend on a failure by the uler Lo properly analYle the problem. 

However. tha ttnS\oIer to that question for thle particular problem 1. 

au~u,e8ted by thl: function below: 

X~N CHOOSg r,D,T,Hl,M2
 
(1] T~2.tO. ,N-l
 
(2) H2··,\flA-< \[ 1 )Nl 0 Hl·-0;T•• tr 
[3] 0+-( .H2)/.1 2 tlltr-.+1 1 2lslT-.-H2 
[~) 1~(O=2ID)/D 
[5] [}+-(Np2)lD 

which 18 alMo a solut 10n. U,ia functIon makes a copy of each input 

calUUUl for each 0 preced ing the f t ren 1 I n that colulAll. I t then turns 

"onU (I) a difft:r~nt ooe of those 0'8 1n each copy. No duplicates are 

crcatf:d and all columna have J-tl I's. The old result Is stored with 

e~ch coluan converted to a stngle number. Since a column slartiog with 

1 does not contribute to the new value. odd ~nttieti are dIscarded. The 

execution time of the new veraion Is of order N"J!N instead of (N)CJ~N)*2 

for the original. Uowev~r. the naive interpreter and the UP-1000 

compiler would atore at least an extr .. 635,040 and 5.440 elemente 

retipectively when N-IO and J-5. "y conjecture. supported by this 

eX4mple. i8 that uaer cleverness haa .ore effect on 8pe~d than apace 

(prOVided he adheres to the loop-free style of proara~In8). 

THE EXECUTION Of STREAM GENERATORS 

j.2.4 Eka.ple 4 - Symbol Table Update 

U,e function 

SfN I,r 
[1) l'+- ......XtA 
[2] A+A.Y/.X 
[3) B+-(B.f/.O)+X::;A 

uses global var1ables A and B which are respectively a vector of bingle 

character ay.bola and a count of the number of times eaeb symbol has 

been encountel'~d. The functioD arguaacnt I til a character. It will bt: 

appended to A if required and tbe .atching ttea of B will be upddted ~r 

created. 

It compilca iDto U> POP-IO instructions or 4H laJder instruct1oDs. 

Wben A haa 10 element. and X 18 a new element, this function requ1l'"t;?s: 

Array Ei••CDt References Temporal" Storage 

Naive Interpreter 137 22 

UP-)OOO Compiler 101 11 

Stu~ciU. Generator 42 o 

5.2.5 Example 5 - String Search 

nle two line APL expression: 

v..·(B[C e .+-l+,pA]I\.=A)/C 0 C"(8::;11tA)/lpB 

eeacchea a 8tc1llK I for occurrences of 8tr1na At. and puta all Btatt'ng 

posltlon8 loco D. 



176 
THE EXECUTION Of STREAM GENERATORS 175 

It compiles into 110 PDP-tO instructions or S4 ladder instructions. 

~len A 1e 10 cbaracters long, its flr8t character occur8 10 tl.ea tn • 

~,Jch t. 100 characters long, and A occurs once to I, the expres810n 

requires: 

Array Element References Temporary Storage 

Naive lnterpreter ll8l 210 

UP-]OOO Compiler 951 210 

St~ea. Generator )01 210 

5.2.6 Example 6 - Selectloo 

TIle APt expre88ion A~5 5tBtCtD which was used In chapte~ ) to introduce 

multiple array ladders will compile tnto 45 PDP-I0 Instructions or 25 

ladde~ Instructions. ~~n the Input. are 10 by JO .atrlce8, this 

expression require.: 

A~£ay [ie_eDt References Te.porary S~ora8e 

Nalve Interpreter 650 200 

UP-JOOO Complier 100 o 

Strea. Generator 100 o 

~. 2. 1 f.xR~rle 1 - lron81)tl8ltlon 

The ex prctJ8 ton ~-,'.. / t /r till! 8 which was used In chapter- 1 to .ho" the 

Importdnce of ~c-orde{tng calculstlons co-piles Into 38 PDP-I0 

Inslructlon. or 20 ladder instructions. ~~n the input. are 10 by 10 

aatrtcea this expr~•• luR requires. 

THt: EX£CUTIOH OF STREAM GENERATORS 

Array Ele.ent References Temporary Storage 

Naive Interpreter 420 110 

UP-lOOO Compiler 200 o 

St£ea. Generator 200 o 

5.2.8 Exa.ple 8 - Filtering 

The two line expression 

8+(v/Al/(t}EvA 0 A~AO 

which was u.ed In chapter l to introduce the use of co-routines compilEs 

Into 13) PDP-l0 Instructions or 14 ladder lnstructions. When the Inputs 

are 10 by 10 matrices and 5 rOW8 survive, this expre8ston requires: 

Array Element Reference. Temporary Storage 

Naive Interpreter 810 210 

UP-)OOO Coapller 7:0 2iO 

Strea. Generator 450 10 

5.2.9 Exaaple 9 - Hergln, 

The expression S.-t/+/B.C .l11D which \lUB ulled In charter) to drmonlll rutc 

the need for .ultlple ncating compiles into 86, PDP-IO Instructlon8 or 41 

ladd~[ Instructions. ~,en B t •• 10 by S .atrl. and C end D arc) by 

.. trIces this expre8sIon requiresl 



-----

THE fltCUTlON Of STREAM GENERATORS 117 

Array Ele.uot Ref~cenc~8 Temporary Storage 

Naive lnte(pr~ter 320 IbO 

Utt-}OOO COllpilt:r 300 150 

Strealll Generator 100 o 

~. 2. 10 SUlDIDary 

~. 2.10.1 Code Size - The t-able ahows the si:le (1n bytes) of the 1 

representatloRs for aD APL expresston and gives the blow-up caused by 

translating the orig1nal APL. 

Example APt. Ladele r Code' .Blow-up poP-to Code Blow-up 

21 64 3.0 11:15 8.it 

37 124 3.4 340 9.2 

82 364 4.7 1030 12.6 

4 JO 192 6.4 425 14.2 

311 216 ~h 1 550 14 .. 5 

6 11 100 9.1 225 20.5 

12 80 6.7 190 15.8 

8 20 296 14.8 665 )).1 

9 13 168 14.5 4)0 )1.1 

1.6 16.0 

Considering the conclsenc:is of the An notation, the blow-up factor is 

rl!asonable. For comparison Algol 60 proged-IDS for the algorithm (both 

before and after the trauafomattol\8 made tn producing the streall 

generator) of exa.ple l cOlDptled tnto 230 and 158 worda, reapectively& 

of PO.r-IO code (VB. 206 PDP-I0 words for 8tr-eam generator). (1 found 

lUI-; I::X£CUTION OF STllEAH GENERATORS 178 

tlu: Alaol verBlona harder to wr 1 te than the APL.) An object ~odul~ of 

20b PDP-lO worda for the fUllction of exalIlple 1 (the laq~est) 18 

certainly of tolecablc 61~e. A workspace containlng 20 Bueh funcllon5 

would require approximately 4K(octal) words of PDP-tO ~e.ory for storage 

of ladder code. TIla[ size Seems a reasonable cost for the 20 !liuch 

powerful functions. 

The last two examples, which expe[ienccd the largest blo~-up, ~cr~ 

those in which multiple copied of a ladder referencb_s ooe array \I~[e 

created •• the stream generators were built, and then Dot eliminated dS 

tbey vete improved. 

5.2.10.2 Array B.efer~nce8 (Time) - The table bela,", show the impr..>vement 

in nuaber ot references to array clewenti obtuincd by using the ~t(~da 

generators: (100% imVrovcmcnt meaDS all ref~renc~8 were eli~iDat~d) 

Example va. Interpreter va. Hf-1000 Compiler 

100% 0% 

2 90% 8ltt 

3 131 2% 

4 101 61% 

5 15% 69% 

6 651 0% 

53% 0% 

8 95% 941 

9 691 61% 
1IIIIIoo ....~ __ 

72% 411 



Till tXt:LUTION OF STREAM GENERATORS 119 TilE EXECUTION UF STREAM GENERATORS 160 

the comparison with the "P-)OOO compiler Ilvea an approxiaate lndtcatl~n 

of the .p~ed difference between a ladde£ .achine £unnlng code produced 

by thie complier and a ladder .achtne running code produced by Hinter'. 

(Abrams based) translator. 

5.2.10.J Temporary Storage - The table below 8ho\l8 the improve_eRt In 

the dmount of temporary 8torage obtained when the 8trea. &cneratore are 

used: (1001 t.pro~cment _eaRS no te.po£ary 8turage) 

Exa.ple V8. lnter-peeter ve. UP-JOOO Compiler 

1001 01 

91% 901 

3 99% 95% 

4 1001 100% 

100% 1001 

6 1001 0% 

100% 01 

8 96% 961 

9 1001 1001 
--- ----~ ..... 

99% 651 

Th~ streaming technique is effective. and including additional operator. 

over those handled in the IIP-)OOO cOIIptler doe••ake a etanificant 

difference. 

5.3 CUHPILER OVERIlEAD 

Htnter included in his performance estlmatea 8n allowanc~ for the tlae 

taken to generate ladder code. In order to compare the compilation 

.ethod he Implemented with the one deac£lbed here, we laust esti.ate the 

coat of tl.e extra processing required in the creation of stream 

generators. The extra work appears in three places. 

S.).l Data Dependency 

The data dcpendenr:y analysts needed to identify t~mpoeary storage 

within a cO'lptled unit is, 10 the simple fona described tn c113pter 

2, a trivial book-keeping operation during a traversal of the parse 

(orest. In the examples shown It is not required, since each 

example consist8 of only one comptled unit. 

5.3.2 ConstraInt Propagation 

Hinter' 8 compi lee tmpllc It ly prupagates pred lct 1009 lIpward9 In tile 

parse tree dur log the generat Ion of ladder code. In all of the 

examples given, "'lth compilation taking place at first execution. 

the upwards propagation produced all the infonaatton necessary for 

compilation and the propagatioll phase ended after pE:rformtng an 

equivalent amount of wock. 

5.).3 Stream Generator Refine~cnt 

Host of the compiler algortthms have been described tn terms of 

actiooa involving the vi6iting of noJes of various graph structurt.'s. 

Using number of nodes visited .8 rough estt.ate of execution tille. 



-~~-.'""'I:"--~""" ••••. . ....-.................--...... ...................~~~
 

~-

nlE EI£CUTION OF STREAM GENERATORS 181 

the alrea... generator ref (Delllent phatlc uf tr.malation of t:xalltplt! ) 

requlr~s approxt.aL~ly 801 lAta much tilDe a8 the relDainder of the 

compilatIon comJQon [0 both compliers. The nu.bee of nodes visited 

1s reduced consldcrdbly by the fact that (as In all other e~amplea) 

the (IrGt ordering coo61dered (preferences sat16fied) yield~d the 

maximum pOHslble overlay. 

Accurate perforwdnce estimates await the implementation In production 

focm of Lht:: (r ..ufilature frOID both Hinter's aud th19 tht;!sl8. llowcver the 

example~ suggest that a reasonable estimate 18 thdt the stream generator 

cowptler would require t~ice the ttme to generate a block ot code for 

the ladder .achine. This ralsea the eatlmated array size needed, before 

cOUlpllatlon t. faster thaD interpretation, to 12~ elellents. 





CHAYfER 6 

CONCLUSIONS 

b. 1	 Tll~ COHVllER 

The	 results presented tn chaph!:[ aU'sgest that the compiler presented 

in this lheu 18 can and tlho"ld be jlDpl~u.cnted. llowever:, the COalt of the 

tln.11 proc~s81ng needed to reduce tcaporary storage iM sufficiently high 

to preclude 1ta application 10 all caseti. The stream generator output 

by the cr~at10n phaBe requires very Jittle further proccuslng to be 

executable. If the complIed code will not be uaed agaill, and if the 

storage required i8 available, llWlledlate (but alover) execution lUay be 

more efficient. But In those situations (prodUl..:tlou and/or space 

limited ~oftware) which need the full complier, the dlfferenc~ 10 

e~ecutlon time performance will often be critical. 

APl cxprcoslons may be divided into three clasdcs: 

1.	 Expretistone which are executed efficiently even by a naive systea 

(FORTRAN written tn AlL). Foe 8uch expressions, a naive .yete. I. 

preferable, sioct! tbe coapiler achlev~8 no gain in perfonutoce to 

offeet tbe increased overhead (except when compiled code 18 uMed 

'--'-'~'''''~--~----'---------~---''''------''-------

cONCLUSIONS	 un 

repeatedly). 

2.	 Exprt!al81oQ8 which require the procesl:IJng of thls co.pller for 

efficient execution (auch .a example) of chapter 5). 

l.	 Expressions which ilre beyond help froID this system. (The expr~fjSl0D 

S..... /./(~A).A 0 A....Vlo.tV2"'tll require storage of A unless eilh~r 

each elc.eut of A It1 calculated twice or the calculatloQ of A iii 

done tn 14 order which tit not cavel order for A or _A. This cowpl1~r 

would 8tor~ A). 

This work wl11 be truly valuable only it a signlficant percentage of APl 

exprc8stons being written fall into class 2. Ue do not have any 

experimental evidence concerning that question. "ow~ver, the style of 

APL proaramming adYocat~d by Perlts in (20) and de~onBtrdted in (21J 

certainly decreases the Bi~e of class 1, and 6~em. to result in 

con_latency of orderings of access to arra}s. nlat conslstency pe~ttd 

opthalzatlon. 

Exact inform,aion 00 lhe pcrforlLance and appllcabll ity ot lhis 

design (loclu~lnK data on the trade-off de~crlbcd ubove) "'ill not be 

available until the detdUIl 18 IlIIplemcDceJ as part of ... cOllillletc APL 

system. The '~wlett Packard UP-)OOO APL system would provide an IJc41 

base for the 1.pleaaentdt Ion. The cont roller which 1Il•.magea the 

interaction of the incremental expression complier aod the tntcrprt:tcr 

exi8ts. A!ao the current output of the compiler Is code for: a. virtual 

INlcbioe. That .achine could be chan~ed [0 be a ladder a.cblne wlthuut 

I'equlrlnl a aajor rcstructurloa of the cOIQililer. 

- 182 ­



185 COIiC,lUS IONS	 184 l:ONCLUSIONS 

I estimate that a .an-year of effort would be required to add the 

features of this design to the UP-lOaO .yatem. Once tn operatton, the 

comptler could coll~ct data about Its ovn effectjvene8.. A co.plicatln. 

factor In any auch Investlsation would be the tendency of users to 

adjust their programming style to match what execute. efficiently. An 

analysis oC current. APL usage might not .how the style of proare...tnl 

(heavy u8e of out er-product and co.presslon) for wltleh tbe complIer 

...kea tht! m08t difference .I.ply because the nalYe e.ecutlon 1. 

Intolelably Inefficient (or tmpo.sible). 

6. 2 FUTURE WORk 

nle cur rent de. tgD Itllit. the size of cOlipiled un its by a88U11lna that 

I.	 [very labeled atatement (potential Coro target) mUlt bello a new 

compiled unit. 

2.	 Nu two functions which use the •••e global variable••a)' be part of 

a single compiled unit. 

The work of Jones and Muchnick 114} and Kaplan and UlI.an liS) sUlgest. 

an approach which lDay make it possible to exactly identify those places 

tn the APL function at which bindings ml,ht becolDe invalid. Thl. would 

be a valuable addition to the compiler. 

A second open question 18 the relation between thl. work and the 

execution of API.. on pdrallel or pipeline ••chlne.. n,e etr'ea. lene£at.or 

araph dues identify the level of loop ne.tina below which .11 etep. are 

independent and thue could be perforllled in parallel. The .tredm 

generator graph and the ladder structure elsa define 8 repeated aequence 

of operations which could be pipe-lined. Howeyer, 8S mentioned 10 the 

discussion of APL emulator., there secm. to be a conflict between 

Itorale econom, and parallelism. ntt. tille/apace trade-off should be 

investigated. 



___ .. _ ... _ .... t~_... ~_ .... .---..... ....... _.". .. _~... ...................... ~ ........... ..". ........... _ ... .."...............-.-........-: ................... " ............~._~_~.,...........~........................ .... ..... Q••, ......l.......~.......~ .....~
 

"'4. 

APPENDIX A
 

IDIOMS
 

A. I lUlUHS 

lhe coruHructa which thts compHer r~co8ni~es atl IdlolDS are 11t1ted 

below. H.Joy of thelll are the reault of unuHual properties of the tI:e APL 

operators " f, and t. The operator' Is the only APt operator ",hieh 

6~lcct8 as tttt result the flrst quantity lIleetins 80me c[lt~ria. The 

operators f and t differ from all the other dyadic 8calal" operator.. in 

that	 they eelect olle of thelr opcrands inatead of combining thelD. 

In the idiom descriptions that follow the variable V is • vector and 

the Yd.rlable S 16 a scalar. 

1..1.1 Niladic 

A.l.l.1	 kdnk - ~pA - Rank ia a scalar constant computed at compile 

ttme. 

A. 1.1.2 IndIces Of ArrlAY - 'J.(pA)f 11 or llpV - This idio.. generates a 

vector whose length (aiveD by shape of A) 18 precalculated by the 

interpreter. 

- 181. ­

IDIOMS	 itl1 

A. 1.2 Ho08"UC 

A.i. 2. 1 Se lf Index log - V. V - The reBul t of th18 ~Apresalon 18 the 

position of the first occur-cence In V of each element of V. 

Normally execution of l requires a ~earch of the left operand tor 

each lte. in the right uperand. lIo\lever, when the operands are the 

8am~, ou1y the part of the left operand ~t and before the curreut 

position in the right operand need be examined. This permits th·.! 

idio.. to be executed a8 the items at V are calculdt~d. 

A.i. 2. 2 utreaum POBlt tau - V. rIV or V.l/V - the results of theae 

expressions are th~ po~itions of the aaxtmua and minimum elements of 

V respectively. Normal processing would result 10 two pas~es over 

v. Since the pass that finda th~ aaxlwum (minimum) can also 

remember Ita location, only ooe is needed. 

A.l.2.l	 Span - r/l/''.~V - This cKprcslilon ciliculates the dtffcrcuce 

between thc largel:lt and !lmalleBt clements of V by p~rformtng all 

p08~1ble 8ubtCdCt1ollB dod taking t',e maxl.auill. The 8ame result id 

obtained frolll (f/V)-LIV. \I~ also recogoi~e thdt both the aaximuill 

and .inll8W8 can be found 1n a 61ngle pass over v. nle graph Is the 

same as for the reductioD of V. 

A.l.) Dyadic 

A.i.).} End Around - l~V.S or l~,V - Tbe8~ expression. are equivalent 

to simple cat~natlou in the reverse order. 



IDJOMS	 188 

A.l.3.2	 First-found - l/VI1V2 - Thts expression alves the ffret 

position In VI of whichever element of V2 first occurs. Nor.al 

translation would result In a pa8s over VI fo£ each ele.ent of V2. 

A better way 18 to te8t each element of VI Rgainlt all of VZ, 

.topping Rt th~ (Icat .atch. 

A.i.).l Bounded tItre.u. - l/S,V or rIS.V - The 8caler 5 18 used 

instead of the nor.al tdentity value for the reduction of V. 

A.i.).4 Take-till - (V,S)tV- The result of this expres810n Ie Y up to 

and Including the flret occurrence of S. It can be executed .8 a 

stngle pas9 over V which 18 equivalent to compreBeton of V. Thus 

the expres810n can be executed •• V 18 calculated. 

A.I.J.5	 Delay - S.-tfV or I.S.V - These expres8ion8 can be executed 

with a paBs over V which eavee the current value In • real.ter for 

delayed acceS8. 

A.I. ).6 Select Index - A( VI,pAl - Tb18 conatruct Is co-piled •• VIA. 



- ... #l ......... _,.'111.,.~~..-......-.. ~iII ............. ~-..,..-.-............--~,,~....... ~--... ........ -......-v.-.................... ..........,.__- ....--..~~~~~---

'........
 

APPENDIX B
 

CONSTRAINT PROPAGATION
 

B.I CUMSTRAINT PROPAGATION PROCEDURE 

The constraint propagation procedure operates on the parae tree of the 

APL function. TI\e function ha~ been Bub-divided Into compiled unite 

which have no tnternal control structure, and each block la analyzed 

lnJepeQd~ntly. n\U8 DO flow analyeis 18 involved. 

8.1.1 Node Properties 

n~ proc~dure 1a conc~rned with 4 characterlBtlc8 of the value produced 

at each node of the parse tree: 

1. R.dnk (nuzber of dllDcnalone - a noo-neiatlv~ 1otejer) 

2. Type (numeric, boolean, numeric-or-boolean, or character) 

1. length (of each dimeosloD - a non-negative integer) 

4. Value (6calar8 aDd vectors ooly) 

- 189 ­

CONSTRAINT PROPAGATiuN 190 

The fnfocfldtlou ce~ardtn8 lh~ result of a node 18 d~flned to have a 

"V061tloou In th~ parae t[~e. It as located on the ed~e eott:rtog 

(l~adto8 downwards into) the node. "'e aSliume an lJaagln."uy edge entering 

the root of the tree 80 as to provide a location for the informdtion 

about the flnal value cf the expression. For any node we can refer to 

tnfocmatlon located: 

1. Above It. (vropurt tea of tbe reiiul t of that nod~) 

2. To the right. (properties of right operand) 

1. To the left. (propertie8 of lett operand) 

In the case of .onadic op~,ator8 or operands, Some of the po~ltioos (ie. 

left for a monadic operaror, and left and right for a leaf) will nor 

e~18t. 

Knowledge of a property (oe a requirement for that knowlcdte) Is 

represented by the appcardnce of an expression 1n the slot for that 

property at the approprlat~ position. In the case of length and value, 

a vector of separate expressions ••y b~ required. The expre8sions have 

the fora given by: 



192 CONSTRAI~T PROPAGATION 191 CONSTRAINT PROPAGATION 

<high ll .. it> : : - If ~'<con8tant> I 
"<"(constant>; 

<low It.it> ::- ,,~u<con9tant>1 

1I>It<constant>; 
<range> : : - <hIgh 1 t mit> n <low 11.. it> ; 
<property ter.> ::- <constant>1 

<high lhait>1 
<low 11.. lt>1 
<range>, 

<property value> : : - <property tena> I 
<varlable>1 
<property ter.> 0 <variable>; 

The limit operators .ay only appear 1n expressions for rank and lenath. 

The property values define letB of possible value. for the property 

(only one ele.ent for type and value pcopertles). The constants define 

one element sete containing the.selves. The limit operators (S,< .~ • 

» define Bets whIch contain all the pos81ble rank or length values 

which have the indicated arithlletlc relationship with Bome ele.eot of 

the operand set. Since the legal values of rallk and length for. a 

flnlle set (non-negative integers bounded by an arbitrary aaxlaua such 

a6 Cklchtne aize). all property value Bets are finIte. U.e "0" operator 

la set intersection. The compile-tl.e variables used In these 

expressIons represent lllfonaation which haa been (or will be) derived 

.from the current valueu of the AI'L varla.bles 8ppearins at • paree tree 

leaf. They will not appear in the expres8ton for the value of • 

property which has been completely deter.toed by syntax re8trl~tlon. 

and/or values of constants. 

B.l.2 Property List 

The constraint propagation algorithm keeps a list of Information known 

about the eKpre8s1on being processed, but not yet represented in th~ 

parse tree. At each step an item from the head of the list Is 

transfered to the proper positIon. The entries In the list have tbe 

fona 81 vea by: 

<propagation value> ::- <property valup.>1 
«property value» 11+" <constant>1 
«property value» ,,_It <constant>1 
«property valuc» u+" «prope['ty valul~»1 

«property value» "tit «property value» 
lit" <constant>1 

«property Vo1)U(») "til «property value» 
"_" <constant>1 

"s" «property value> >I 
"<:" «property value»1 
">11 «property value»1 
,,2'11 «property va lue»; 

nle operators u+" and If_" produce the set consisting of those element9 

generated by taking the outer product of the two sets using the 

Indicated arithmetic operator and eliminating .11 values which are not 

possible elements. These operators are used In expressions for rank and 

length informatloo only • 

These pxpresslons give the largest property value set which may 

exist for a given position either absolutely (8 property term) or In 

terll8 of the property value. of other positions. Ihe I)ropagat ion vdlues 

contain constructs which arc not al1owt~d tn a property value. t.'hen a 

propag.lt ion value i6 t.lken of f the 1tst, eva! uatcd and p I aced tnt he 

given position 88 a property value. a new variable 18 cr~ated to 

represent that pact of the propagatIon expre•• aon. n,e v81ue of • 



~,...... ............-..~............~.........~.............................- ....~...._-­__ , -.	 ~""",..., ,.., __ .,...- .....,. ...-... ---. ~ _ ....,.~'t-.4 

CONSTRAINT ~KOrAGATION	 193 

variable "tll be J1ven as an expn~~81on of the foOl defined by: 

<variable elUIl) :;- <~ari~blc> + <~ariabJe>i 

<variable atoUl> ::- «variable suw»1 
«variable ~"w) + <co"utaot»1 
«variable sum> - <constaot»1 
«variable atom»1 
<variable>. 

<variable 11m1t> :: - "s" <var tab Ie atom> I 
Il~U <variable atom>1 
.. ..:" <variable atow>1 
It:>" <vilrlable ato&ll>i 

<V.1[ lable tt:C1D> ::- «vurldble 11~it»l«variable term»1 
<variable atOll>, 

<var1able expr> ::- <variable t~cm>'«variable exp~» 

<variable exp[> 0 <variable term>i 
<variable v~lue> ::- <variable expr>1 

<variable e.-pr> 11 <property value>; 

"'here the aUIl and lillit fonaa are used for rauk. and lenith information 

only. 

Il~m# on the Itet coae frum two sources. 

B.1.2.1 Ceoerdited Infocmatlon - List Itelll8 are generated by the 

gigol'ltlua baaed on prope[ciea of the operators or operands at individual 

nodes of the pdrse tr~e. these items are: 

I.	 Prt..'pcrty [enUI derived from constantB. 

2.	 t-rope rty tenus derIved feu. the propert ics of operatore .. 

1.	 Variable names 8ener~t~d to be thu property values of leaf nodes 

~hlch are APi.. var14bles. not constants. TIle variables are ad~tgned 

to	 represent runk, typt:. and length of all leaf nod~a and the value 

gf	 a leaf known to be a scalar. If two leaves refer to the same APL 

variable., the aame comptl~-tlmo varlabl~a will be asataned 

CONSTRAINT PROPAGATION 194 

.4. Property tee.a d~rtved fro. the current values of the API.. Vd r lab lea. 

They are the current values of the compile-time variables defined 

above. 

~..	 Variable naa~8 generated to' represent II property "alue which must be 

klwwn by the cOIIIpller. 

Cbapter 2 haa discu8sed the order of generation and the significance of 

these Itt!IQs. 

8.1.2.2 Propagated Information - We call two Po&ttlon6 In th~ pars~ 

tree "adjacent" if the two edges directly connect to the same par~e lree 

node. In a binary tree a seC of propert1es (an edge) may be adj~cent to 

a ..axilDull of 4 others. The operato£ at the noJ~ which provides the 

connection defines relatione between adjacent aeta of properties. Thege 

relatlona are given in 8~ctlon B.2. 

For each operdtor thcr~ Is a set of propdgatlon ~.prcs~ion8 which 

give (a8 p£opagatton valut!s) the lIlaxluuUD prop(~rty value set foe a Slv~1\ 

alot in tcr•• of adjacent property valud~. An expression may be u~ed 

only if nil It. CU....olH.~nt.. are defined .. SO&ae require the prop~rty (cr. 

of a liven component to have 8 particular value. 

If the trauafer of a list itcm into Its position in the panie trt:e 

r~sulta In new inforwatlon being added to the pruperty valu~ at that 

pOdltlon, both end» of tile edge for the position .. (t~cted art! clt,udncd 

to deter.tne if inforoHlt 10n about adjacent post t 10na i8 implied. If it 

Is, the propagation exprcaMlon ta added to th~ tdtl of the llat. We 



196 (;1Ir1S'1 RA un I'ROI'A(.Ar (ON	 195 

define lie'" lnfonaatlon to lDean: 

I.	 nle appearance of a variable In a property value which va. for-erl, 

empty or contained on]y a property term. TI,la can happen only once 

for each property and position. 

2.	 The nUlQber of items ill the Bet defined by the property tenl has 

decreased. ~Ien the property value .110 contain. a variable. we 

f.meJlat~ly place on the ltst propagatton value. consiatln, of the 

new property term Cor every p081tion whero the property v.lue .1so 

contains that variable. Nor-al propagation 1. only considered 

towards adjacent positions not usinl that variable. 

An item on the propagation list Is tagged with the name of the position 

gcne£atlng it a8 ..,ell a8 the p08itlon to which It Is to be applied. 

~len an ite. 18 applied it will never generate a new l18t item 

propagating that change back to ita source. 

~ten propagation value. are placed In the 11et, the property values 

are represented by name (property and positiQn). When theee expre88ion8 

reach the head of the list, the actual exprea8iona are .ubatituted for 

the names. 

8.1.) P£operty Insertion 

When a 118t itea i8 processed for in.ertton of it. infor-atton into the 

paree tree, the following step. are taken: 

CONS..-RAiNT fRUI'Al:AlIUN 

1.	 The propagation value i. joined to the p~ope~t, value {or th~ slot 

using the n operator. 

2.	 All variables appearing In the new expression are replaced by the 

expre8sjon ,iven by 

"«the variable> n <variable value for the variable»". This procetis 

18 repeated for any nev variable which appears. (Note: this requirea 

marking of expanded variablea 80 a8 to avoid infinite expan8ion. 

The syate.. re.e.bers which ter.s of the result were present before 

expansion and the variable from ~Ilch oth~r8 ~ere de~lved. 

3.	 The resulting expression i8 8implified as described in section 

8.1. S. and will have the fona: 

<expansion> ;:- <property tena> I <variable expr>1
 
<property term> n <variable eKpr>1
 
<expansion> n <variable>,
 

4.	 If two variables appear in the expansion. the two variables are 

equated by replaclna all occurrences of one (chotce erbitrary) with 

the other. 

5.	 If the expansion contains. variable expreSSion but 00 variable a 

new variable 18 created and Jolne" to the expansion. 

6.	 The new property value ls the union of the property tem and 

variable from the expansion. 

7.	 The new value of the variable consists of the unton of all 

components of the varlable expression .arked 88 co.ing fro. the 

original expression or from the expansion of that variable 



• 0 '____ _ ­

CONSTRAINT PROPAGATION 191 

(including auy name equating). 

if at any point 10 the process a contradiction appears (~x. 

( >5) n «5,) or X n «(Xil» ), it indicates an error In the APL 

e~pceb~lo". Const£aln( propagation Is abandoned. 

An eK.Jwple 19 tihowu tn Figure ii-i. The first page bhow~ the 11ttt 

Itcws in lh~ order they were applied to the parad trce. Indented 

entrlcs indicate an lte. "hich wall generated by a constraint propagation 

rule and added to the end of the lIst when the ttem inuuedlately above it 

waH applied. The application of ~ generated item 18 markdd with a .*'. 

nu.~ other 1tt:lt items reflect infonaation k.nown about individual nodes. 

TIle second page .. ho",. the final propel'tJ value. and their significance. S; Type Is numeric 
I: Type Is numerlc 

1: Type ls numeric 
6: type is Numetic 
It: Rank l:i 1 
4: Type id bool~an 

4: tYVe is boolean 
2: Type Is ow.eric 

): Type 1& Du~er1c 

2~ Rank is 0 
); Rank is i 

1: Typu Is T 
); Type '51 T 

3: Type is 'f 
2. Type 151 'f 

1: Rank Is l 
5: R.lnk 18 l 

3: llank Is X 
4: H..mk 18 X 

6; Rank Is A 

1: Length 1M D 
5: Length 1. SO 

6: Type 1.. a 
7: 'fYPd Is R 

); l.t:'n~th Is 0 
4; length 19 0 

1: I.(~ngtll 151 8, C 
.1: Type 151 nurueric 

T1-nUQlt!r Ie 
*3: Type 13 numeric 
*): R.ank Is 

X.. 1 
*5: Type 16 T 

7: Type's T 
*2; Typ~ l~ T 
'S: Rank 19 X 

1:Rank 151 Atl 
*4: Ra ok is X 
*5: l.cnf,lh is E4-'S:O 

7; l.(!ngth Is B, C, E 
*4: length Is 0 
*1: Type 'Ii T 
*1: Rank 1s Y~AiX 

lIlI1: Length 18 B, C, E 
.7: Type 15 It 

R 151 r~placcJ by T 

Figure 8-1 - Conatralnt Propagation - List Items 



CONSTRAINT PROPAGATION 
199 CONSTRAINT PROPAGATION 200 

8.1.4 Algebra Of Propertles 

Whlle the notation used Is non-standard, the object .. descrlbeJ are 

Rank - Y finite sets of the non-negative integers. We take advantage of tbe well 
Type - T 
Lenlth - a,e,E known properties of such objects to establisb that: 

•• + 

1. <li.it op l~ «ll.it op 2> <set» equal. <it.lt op J> <set> for all 
Rank - A Rank - I 

Type - TType - T possible combinations of op 1 and op 2. 
Length - 8,C Leoath - E 

'\ 
2. {<limit op I> <set l»+«llmlt op 2> (set 2» equ~18 either

A 

<limit op 3> «set l>+<set 2» o£ ,il.it op » <set 1 or 2>. 

Rank - XRank - I l. (<limit op I> <set l»+<set 2> equals <It.it op 2>«sct 1>+<8ct 2».Type - T
 
Length - D


Type - Baal. 
Length - 0
 

8
 
4. «set 1> n <set 2»+<set J> equals 

lank - 0 «set l>+<set l» n «sct 2>+(set »)
R..ln~ - X
 

Type - aumer'tc
Typ~ - 1
 
1.ength - D
 

Figure B-2 shows all actual combinations. These trans(orm3tions willo8 

convert the formula produced in step 2 of the p£ocedure given abov~ to a 

legal expansion. The complIer builds the expressions internally 8a a 

T • numerlc - type check (or B and A 8trlng of tokens in Pollah postfix fona. TIIU8 the transCoODations .Ire 

done aa simple string pattern _atching and repIAce.eat.- rsnk check for I 
I ­

_ 1t~ngth of rceu) t of cOlllpre881on. i8 not f I xed 80E- ~ 

interpreter parameter calculation will be interleaved with 

stream 8~nerator calculations
 

_ rank of A t. not fixed by .yntax, and .uat be known for
Y - A .. 1 

compilation 

fllure B-1 - Constraint Propasatlon - Flnal aC8ult8 



202 'ONSTkAIHT fKOPAGATION 201 

«<X) -> «X-1) «~X) -> no restriction. 

«SI) -> <I «>X) -> no restriction. 

~«¥) -> <X $(~X) -> no restrict10n 

S(SI) -> sl ~(>X) -> no restriction 

It(~X) -> :2:1 ~«X) -> no reutrictloQ 

~(>l) -> >X ~(SX) -> no restriction 

> (~X) -> >X >«X) -> >0 

>(>1) -> >(lt1) >( ~1{) -> >0 

(* - we Janore the fact that thltt tiet aay not contain 

the largest elemeDt of tbe tU~t of possible values) 

«X) t- «I) -> < (ItY-l) (~X) (<'1) -> 2:.l 

«X) (SY) -> «~ltV) Cu) (st) -> ~ 

«X) (2:Y) -> ~y (~l) (2:Y) -> ~(XtY) 

(..:X) (>Y) -> >Y (~I) (>X) -> >(X+y) 

(Sl) «Y) -> < (Xt-l) (>X) «Y) -> >X 

(SX) (sY) -) i:(I+Y) (>X) (~Y) -> >x 

(Sl) (~y) -> ~y (>1) .. (~Y) -> >(1+1)
 

(SX) (>Y)
 -> >1 (2:1) .. (>Y) -> )0 (X+I+l) 

(>X) .. y -> >(XtY) 

(~X) ... Y -) ~(XtY) 

(Sl) + Y -> (S(Xt-V» n (~Y) 

«X) .. Y -> «(It-Y» n (~Y) 

F1aure B-2 - Set Alaebra 

CONSTRAINT fROl'AGATIOK 

B. L 5 TenDinat 10n For ConstraiDt Propagat Ion 

n.e con.traint propagatloD procedure tenatnat~& when the ltst of Item~ 

to be put into par5e tree positions 1& empty. lt is clear that th~ 

pl'OCeS8 will tenl1nate. A new list item ts generated only when the be[ 

tor ~ome propel'ty vdlu~ decr~a8es In »tze. Since all sets ~re finice, 

thiS proceds can not cunt loue 1ndel tui tel y. What IIlUti t be eva) u.H ed more 

carefully 1& the possibility of decreaslojl the &lz~ of oj ver.y large set 

10 tiny step. reaultlog tn ~xccutlon tillie not glveD as a functlon of 

p .. n.~ tree size. Uowever it caD be ahollin tholt .this l~ not possible. A 

change to the property value at one position in the parae tree may 

result In changes at touf other adjacent positions. We can Imagine 

mal"lul(S lIovillg on the parlie tree outwards from an Inlt lal point of 

dlstubancee A .arker may Hpllt into) at ~ver1 property positloo. 

However. lilnce we do not allow a change to prvpas_te back to the 

poaitlon that cdused it. no .arker .oil retrace 81 path 1t or itll 

iUUlledlate ancestor has followed. Slnc~ tlte graph (tree) has no cycles, 

no marker c~n let back [0 the initial position. 

TIma each pOSition ln the parse tr~e 18 affected at most once for 

every new itea of information introduced. Thesa items of information 

cOllie froua the nodes of the parse tree in the tOili of syntax restrictions 

and operand properties. Each node senerates a maximum of one item for· 

each property of each of the three pos1tlona surrounding 1t. No &lo~ 

refinement occurs. lbus tbe number of steps of constraiot propagatioD 

is of order '.2 vllere N 18 the alze of the parse tree. 



204CONSTRAiNT PROPAGATION	 203 CONSTRAINT PROPAGATION 

B.2 SYNTAX CONSTRAINTS	 8.2.1.4 Index Cenerator - mooadic , 

RA :- 1 
This 8ection l1st8 the syntax constraints and propagation rules used by	 TA :- numeric 

RR :- 0 
the constraint propagation. In these rulee we use two letter variable TR :- numeric-ar-boolean 

LA :- va 
names to £efer to properties. the ftrst letter gives the property 

( T(ype), k(ank), L(ength), and V(alue) ). The second gives the 
1.2.1.5 Ravel 

positiun (R(ight). L(eft), and A(bove) ). The positions are in 
RA :- 1 

relation to the operator which establishes each set of rules. TA :- TR 
LA : - >( / J.R 
if RR < 2 then VA :- VI 

8.2.1 Monadic Operators 
8.2.1.6 Reduction 

8.2.1.1 Monadtc Arithmetic Operation. - .. - K • r l •• I ! 0 

TA :- a9 required by operation
 
TA :- numeric RR :- >0
 
1ft :- numeric-or-boolean TR :- as required by operation
 
RA :- RR RA :- RR - •
 
l.A : - LR LA :- LR with reduced dilllension removed
 
If va te constant then VA 1- op va RR:-RA+I
 
8R :- RA IU. : .. RA for un-reduced dimensions
 
loR : - LA.
 

B.2.1.1 Scan 
8.2.1.2 Not - .... 

TA :- as required by operator
 
TA :- boolean RA :- >0
 
TR ': - boolean RR :- >0
 
RA :- kit RA ;- RR
 
I.A :- Ut TR :- as lequlre4 by operator
 
if VR 'a constant then VA :-- va RR :- RA
 
RR : - RA LA :- LR
 
LR : - t.A LR :- tA
 

TA :- lR 
TR :- TA 

8.Z.1.3 SIze - Hon.dic p 

kA :- I	 B. 2.1.8 Revertte 

TA :- nu.ertc 
lA :- kR	 ItA :- >0 
VA :- LR	 RR :- >0 
a.a	 :- U RA :- RR
 

tA :- 1'1
 
loA :- Lit
 



_____~~.............,.~
........... tIfI>.".. _ ••• _ ­
~",,,,,,,,""_"IIII'--._~-.-""""'-------- . ...' 

CUNSTRAIN"C PROPAGATION 20S CONSTllAltn PIlOPAGAllON 206 

kit :- RA if ilL - 0 and 1M. - 0 thcn LA :- 1 
Til ;- TA if va 1s constant and VL 1. COQitAot theD VA :- VL op va 
LR : - LA i f lUI ;> 0 the 1\ itll : - IlA 

if III > 0 theA Lit :- LA 
1f III > 0 then ilL :- aA 
if ItL > 0 then l.L 1- LA 

8.2.2 Dyadic Operators 

1.2.2. I Dyadic Arithmetic Ope~.dto~. - t - j( f r L * • I ! 0 

1.2.2.4 Dyadic Rclatjonal Operators - .. S ~ ;> 

TA :- nUlQectc 

TR :- nu~~rtc-orbooleaR TA :- boolli!un 
TL :- nuw<'!rlc-or-boolcan TR :~ "ume(1c-or-boolean 
if RR > 0 then RA ;c RR else RA ;- RL Tt :- numeric-or-boolean 
if RR > 0 then l.A :-.. LR if IlR :> 0 then RA :- RR else llA : .. IL 
it Rl )0 0 thell RA :- Itt if It1l > 0 then 1.A :- LR 
it RL » a then l.A : - LL if ilL > 0 then RA :- RL 
t f Rt • a and RR • a then loA : - 1 if AlL > 0 Lhcn LA :- lL 
'f VR 
if Ril 

16 con9tdnt 
)0 0 then aa 

and VL 
:- RA 

1. constant then VA : ­ VL op va I f ilL 
it VIl 

• 0 and RR - 0 the R loA t ­ 1 
1e conal.,nt and VL 1. constant then VA :- VL op va 

if 1lR ) 0 then La :- LA if Ilk > 0 then ItR :- IlA 
if Rt ;> 0 then III ;- llA if Ilk > 0 then LR :- LA 
if Ill. > 0 then ll:- LA. if ilL > 0 then Rt :- RA 

if kL ) 0 then LL .- LA 

1.2.2.2 Dyadic Logical Operator. - A V ~ ~ 

B. 2.2.5 Reshape - dyadic P 
TA :- bool~an 

Tit :- boolcdn TA :- l'R 
'fl. :- boulean RA :- l.L 
if RR > 0 then itA :- Rit els~ RA :- kL I.A ;- LV 
if kR > 0 then tA ;- Lit Tit :- TA 
if 1<.1. > 0 then RA :- at LL :- RA 
if Rl. > 0 then 1.A :- LL 
If Rt • 0 and RR - 0 then 1..A : - 1 
1 f va 16 cunstant and VL Is constant then VA : - VL op va 
if RR ;> 0 then Rft :- RA 1.2.2.6 Catenation - dyad1c , 
if RR > 0 then La :- LA 
if ttl ;> 0 then Rt :- &A RA :- >0 
If RL > 0 then LL :- LA it Ril > 0 th~n RA ;- RR 

TA ~- TR 
LA :- Lil except for dj~~Dsion cateoated 
1f RL > 0 then itA :. Rt 

1.2.2.3 Dyadic Equality Operators - = • TA : - Tt 
LA :- Lt except for dimensioD cat~nate4 

TAo :- boolean if Rll - 0 and Rt - 0 theA RA :- 1 
Tt :- Tft LA :- LL + LR for cdteoated diaensloQ 
TR : ­ TL if III > 0 then Rt :- RA 
if Rit > 0 th~n IlA :- Ilk else RA :- RL TI.. :- tA 
if kk ;> 0 th~Q LA :- LR if 1Ul ) 0 then ItR :- ll.A 
if RL > 0 th~n kA .- it Til :- TA 
if RL > 0 then LA :- LL 



CONSTRAINT PKOPAGATIOH 207 CONSTRAINT PROPAGATION 
208 

8.2.2.1 Indexing - [ ) 
I.A :- I VL 
LA :- sLR

itA ;- >0 
I.L :- RARR :- >0
 

Tt :- numerlc-or-boolean
 
TA :. 11 
RA :- +/ It 8.2.2.11 Drop
LA :- Lt 
RI :- '!: RA 

RA :- >0lR :- TA RIt ; .. >0
LL :- LA 

Rt :- <2II :- nuqber of 8ubacrlptl 
TL :- numeric-or-boolean 
RA :- II 
RA :- LL 
IR :- IA

1.2.2.8 J,ner Product LA :- ~!{ 

LL :- RA
tA :- as required by left operator
 
1R :- as required by right opera[or
 
Tt :- as requfred by right operator
 
if II • 0 xor Rl. - 0 then RA :- RR i- RL - 1
 B. 2.2. 12 Transpose
If ItR > 0 and It > 0 then IlA :- ItR + It - 2
 
If II - 0 and aL • 0 then RA :- 0
 RA :- >1
tA :- IILt,1 ttR 

IR :- >1
If RR > 0 and Rt > 0 then RL :- 1

last position of LL :- first position of LR. TL :- numericif KI > 0 and It > 0 then 
RA : - s RR

first pOlitlon of La :- laat position of LL TA :- TR 
RA :- .aximu. of VL 
IR :- ~ RA 
l.L :- RR

1.2.2.9 Outer Product IR :- LL 

RA :- >0
 
TA :- as r~qutred by operator
 
TI :- as required by operator
 8.2.2.11 Rotate
Tl :- 8S required by operator
 
kA : - Rt .. Ril
 RA :- )00
LA :- tL,l.R RR :- >0 
RR :- <RA 

IL :- nUNertc-or-booleanRt :- <itA RA :- RR 
TA : - TM 
LA :- LR 
IR :- RA 

1.2.2.10 Take TR :- TA 
LR :- LA

RA :- >0 
RL. : - RA - 1

RR :- >0 
IlA : - RL + 1It :- <2 
LL :- LA without rotated dimensionTt :- nu.eric-or-boolean 
LA except rotated d••ension :_ LLR.A :- II
 

RA :- LL
 
II 1- RA
 



CONSTRAINT PRUPAGATION 209 CONSTRAINT PROPAGATION 210 

B.2.2.14 Compress LL :- LA 
II :- It 

ItA ;- >0 It : - Ii 
RR ;- >0 
kt .- 1 
'fl :- boolean 
kA :- RS B. 2.2. 18 ~code 

RR ;- RA 
TA .- 1M. TA :­ as required by left operato( 
TK :: - lA Til ;­ as r~quircd by right op~rator 

LA ;- lk CKcept foe compressed dlwenslon TL :­ ad required by right operator 
l.A ;­ ~ I.a for cOUIpeefitied diulcnsion if RR - 0 xoe Rt - 0 then aA :- ilR + Rl -
IB except tor co~prc9sed dimension :- LA if IlR > 0 and Itt > 0 then RA :- kR + RL -
1.R ;.­ ~ LA for compcetised di5l~nBloD if U. - 0 and RL - 0 then RA :- 0 
I.L :- LR for compressed di ...~n61on I.A :­ -l,lL,lilR 
co~pre~6ed dimension of La :- LL if IUl > 0 and Itt > 0 then 

IU6t position ot LL :- first p081tioD of La 
if llR. :> 0 and Rt :> 0 thell 

first position of La :- last posttion of LL 
B.2.2 .. 1~ Expand 

RA : ~ >0 
RR ;- >0 8.2 .. 2.19 Encolle 
n. ; - booledn 
Rt .­ 1 fA :- numeric 
TA :- 1k ti :- numeric or boolean 
1'R ;- TA IL ;- numeric or boolean 
LA :- La for un-expanded dtweosiona lA :- IL + aR 
LA ;: ­ U. for expanded dhumli Ion LA :- LL,LR 
un~xpdnded dimensions of LR :- LA 
lL :- LA foe e¥panded dimension 

IS. 2. 2. lb I"d~x 

TA .- nuw~l:lc 

III :- 1 
itA :- RR 
LA ;. LR 
RR :- RA 
LR :- LA 
Tt .- TR 
Tk • ­ TL 

B. 2 .. 2a 11 Membership 

TA ;- boolean 
llA ; - Itt 
LA :- LL 
aL :- kA 





APPENDIX C
 

ARRAY ADDRESSING WITH LADDERS
 

Thlu appendlM d~BcrlbeB the proccd~re8 used to calculate the array 

acccti8&ing pa[am~ter8 used by the ladders of the atrea. generatorB. It 

lu largely a reforwulation of al.llar preseotatlona by Perlla (19) and 

particularly Hlnler (11). 

C.l ADDRESS S[~ENCING 

TIle storage locations for the elements of an array are lIven by equation 

]-1 : 

PI ~ Bfo.'TA't t 1[>0.(; (C-l) 

nle Bewant tea of Al'l. impose an order tnll - ravel order - wh leh orders 

array elewcnt8 "'lth rieht-llost tiubscclpt varylns mOlit rapidly. This 18 

the saua~ oed.:r obtained by considering the dubscrlpt8 a .. UdlgitH" 1n 0. 

numbet"	 and ordering the 8ubBcripttl according to their value a8 aln"le 

QU~ber8. If we uee equatlon 1-2 to calculate the nu.bers J. then: 

ARRAY ADORESSING WITH LADDEiS 212 

J.-RH011 (C-2) 

~lncd edch aubdcelpt l(k} may legally ran~e frog 0 to &IO(k) 

independently. J may have valuea [aul1ns fro. 0 to -lt~/HH~ 

C.1.1 Storage Spacin~ - G 

So that the APL operatora whlch .ust access the array as a vector 10 

cavel order 40 not require recopying of the data. we want to u&e values 

of BETA and G such that the equation: 

P/.-8t.VfAHtJxGR (C- 'l) 

will generate the sawe valua of fl a8 equatlon C-l. If we act lETA to 

be	 equal to at:TAlt. then th~ equality required ia: 

( tIIl'.(;)=J~GR (C-.. ) 

Replacing J by the equation whicb calculates It ~alu. slvel; 

( t// x G)=(RHOll)1tGR tt:-~ ) 

1n which the Decode operation caD be expandeJ according to its 

definit10n to &lv~: 

(iIII(G);;;( i/I)o,(I... \l.()URHO)-.GH (C-6) 

If we apply the dl&trlbutlve law we obtain: 

(tll~G)=tl/x(GH1t~~\t.tl.RHO) (C-1) 

whicb vill obViously be satIsfied if we u~t C .a foilowsl 

- 211 ­



ARRAY ADDRESSING 'HIH l.AODERS 21) 

G.G~t>)(\t .(>lIRHO (C-8) 

If GR i8 the number of addre•••ble me.ory unite ueed to atore an ite. of 

the array (.ay Dot be a.aller), then the array 1. stored In ravel order 

in congecutlve locations. 

C.I.2 rointer Increment - DELTA 

figure )-1 18 Q flo\lchart of the fIxed part of a 1adder. Each ti.e 

control n~aches the arc labeled "PI VALID", I will },ave a legal 

8ubscr-lpt value. All item9 of the inltlal 1 will be l.:CI"O (tile downward. 

path fro. the start box includes statements which clear I)~ and 

succes8lve valu~8 will b~ in ravel order (the right-most subscript 18 

advanced tn the bolto.. loop and thu8 _oat l"apJdly). It t8 obvlous fro. 

the flowchart that after execution of the arc labeled "PI VALID" only 

one horlLontal rung will be executed before the botto.. arc is 

[e-~ntcred. lncrefore one t te. (["011 the vector- DEl.TA 18 addlll!d to PI at 

each 8tep. Equation C-l defines the relation 'Ie "'ant to hold between I 

and PI each time control reaches the bottOd of the ladder. A value fOI" 

D£I.TA must be found which generates the required sequence. 

If ('.e horlzont'll rung last executed was ilt level k, then lUI • 0 

(or 1 )00 k (l(kf-ll Is cle.·ucd on the downwards path from level k). If 

11k) does not 'Hive Its lDaxlmulD value. then the nCKt tlBe the Increment 

and test at level II. 1& executed the horizontal branch at level k Is 

eIecuted. On return to the botta. of the ladder, I(ll • 0 for > k, 

and IIJI. (J < Il) are unchanged. Only 11k), which has been increaeed by 

I, t. different. '1 equation C-l the chanle In PI .U8t equal Glk). 

ARRAY A{WRESSIN{; WITII lAllOERS 214 

If we aSBu.e control has reached the bottom of th~ ladder after 

executing rung J, then lilt-II I_ zero. Control will uu,ch rung J agllin 

only when the test at level J+l fails. This will occur on the 

8t 
RHOlJ+IJ execution of the increment and te6t at level j+l. The first 

kilO IJ+II-1 t t.es the teet e.ecutes, it succpeds and the rung at 1evel 

Jtl 1. executed. As we saw above, PI wIll bave been Inr.re..ented by 

G f J+l J. That increment consls t s of DELTA. (j+l J pi us the e Uee t of lower 

levels which we "'ill call LOW{ki-IJ. By this definition the equation 

G = DELTAt-LOW (C-9) 

st
holds. At the RIIOljtlJ execution of the increment and test at level 

J+l the test fails anti rung J executes celiUt t iog in a change to PI of 

DEtTAIJ} ... to\ol(j+IJ. Since the total change to PI after the 6et~ond 

execution of rung is shown above to equal CIJI. the rclat Ion: 

G[J] Df'LTA[j 1+ LOW[ j+1] 
+C(j+l ))(-J +RII(l[ J+1) (C-IO) 

must hold. Using equation C-9 to ellmSnate LOY and 8impllfying we 

obtaio 8 recurrence relation for DUJA: 

DKLT.4[ j ]+G( j 1+D£l.T.4[ Jt-.) 
-RHO[J.t)(G[J+l] (C-ll) 

Since l.OW(,,} Is obviously zero when n IA the depth of the ladder, ttH'n 

DELTA[n ]·G[n 1 (C-' 2) 

providea an ln1t1al value and we c~n calculate DELTA. A .ore rigorous 

derivation of this result 1. preeented by Hinter (11). 



---------------_..--.- ....._---_._-------­

ARRAY ADDRESSING \11111 LADDERS 2as 

C.2 'fliE SEl£CTION OPEllATORS 

TIle opecat Ions T"ke, Drop, and Subscription by it vector of tile loCID 

o4t8)(.C I'equlre only chanaes to the addreful aeneratJon parauaetece.. The 

fonuulae for calculatioa the new value .. are gtven below. 

C.2.l Take 

When the Take opecatloo with T a8 the vector left operand ia applied to 

dO arrayo the p06ttlon In th~ old afray corresponding to 8ubacrtpt IT of 

the new array 111 aiven by: 

I '-[1't (RHU- T) )('f<.0 (C-1l) 

Th~ new addre68ing parameters muat ~enerate the Bame value of PI for 

each Bubdcript IT a8 are gcn~rated u8ing the I calculated above and the 

old values of BlTA and G. nlis requires that: 

( lJETATt t /GTKIT)z:8ETA tt IG >efTt (RI/O-T) )(T<O (C-14) 

be true for all legal IT. It will be true If: 

l1f:1'11 T· I1f;TA t t IGJll( HIIO- T) )(T,O (C-l5) 
G'f4G 

iue uucd to calculate the new valuea. nle size of the result IUla also 

changed requiring: 

RHJ7'" T (C-16) 

New values for DELTA are tbeA calculated uslnl the fon.ulae derived 10 

C.l.2. 

21bAllAY ADDRESSING WITY LADDERS 

C.2.2 Drop 

~.en the Drop operation with D 8. the vector left operand 1s appll~d Lo 

an array, the pCliiltton in tbe 014 array cOl'rcaponding to Bubscript 10 of 

the Dew array Is given by: 

I.-IOtO(U (C-l1) 

The new addre8slng parameters .uat senerate the same value of PI for 

each 8ubacript ID aa are lenerated using the 1 calculated above and the 

old values of BETA and G. This requires thatl 

(&''lIlD. t/GDxID)-=Bgr,itt/GxJDJl.Of D (C-18) 

be true for all legal ID. It will be tru~ If: 

B/:''1'A[}4LJfTAt t /G ..Of D (C-19) 
GD..G 

are ueed to calculate the new values."' The al1& of the result has also 

changed r~qulrlni: 

RIIOO·RJlO-ID (C-2D) 

New valuea for DELTA are then calculated u81ng tho formulae d~rlYeJ in 

C.l.2. 

C.2.) Sub8crlption 

"hen the array ie subscripted and the aub.crlpe In pOSition k i8 given 

by A(k)-tBlkJK,Clk) (act A(k)'(), Ilk).·I, and C(kl.lWO(lt.) for those 

d ••ensioDS not subscripted), the po.ltion 1n the old array c o rrespondlllj 



ARRAY AllORESSING WIllI LADDERS 217 

to subscript IS of the oev array 18 given by: 

J--A tBw.[S (C-21) 

n,e new addressiog parameters mU8t generate the same value of PI for 

each subscr'pt IS as ere generated using the I calculated above and the 

old values of lETA and G. Th.s requires that: 

( Bt.'TAS t t/G:;>( IS) =Bt'TA t t IG xA. 8"'18 (C-22) 

be true for all Lc&al IS. It will be true If: 

8f:rt1.~· BETA t t /G-A (C-2)) 

G5·C-8 

are used to calculate the new valuea. nle 81&e of the reault haa a180 

changed requiring: 

RIIOS·C (C-24) 

Hew values for UELTA. are then calculated usill8 the fonaulae det'lved In 

C.l .. 2.. 

C .. ) RE-oRUCRING 

The other two operations which require only changes to the address 

generation para.elers are transpose and reverse. The s ••e 

transfor.dtloos are ueed durlnl the aeneratton and t.provemcnt of .tre.. 

aenccatora to cbange the order tD which array iteas are acee88ed .. 

ARRAY ADDRESSING WItH LADDERS 218 

C.3.1 Transpose 

When the Transpose operation with Ia as the vector left operand 18 

applied to an erray, the position In the new array corresponding to 

8ubscrlpt I of the old array Is given by: 

ITR--Irm I (C-15) 

The new addressing parameters must generate the same value of PI for 

each subscript ITR as are generated using 1 and the old values of BEtA 

and G. This requires that: 

(Bf.'TA11i .. t !G'ffl lC [( TU1)=8ETA u /G-[ (C-2to) 

be true for all legal I. It vill be true 1f: 

&~TA TH. &'TA ( C-21) 
GTR.GI TR) 

are used to calculate the new values. The size of the result has also 

changed requiring: 

HI/Om· HI/Of 1'R ) (C-28) 

New value. for DELTA are then calculated using the fOllllulae derived tn 

C.l.2 .. 

<:.3.2 Reverse 

If the reverBal operation Is applied to an array. and if the boolean 

vector R 18 true for each position corresponding to • dimension wh'ch 18 

reversed, the po.ltion In the old array correspondl", to 8ub6C~lpt 1M of 



---------------................wrr"--- ..... ..., ,..."..,.l...............- .......	 •
....~ _...-_............~..
-' ~	 
._---...---.--.-...-.. .---

ARiAY ADDRESSING WITH LADDERS	 219 

tbe	 uew arcay is giveo by; 

[-4 IRtRI<HHO-l t2 X IH	 (C-29) 

TIu: nl!W addressing parallleters must aenecate the flame value of PI	 for 

edcll Bubac r 1pc III aa are lenel'ated uaiol I and the old values of	 BETA 

clud G. Thts requ!l'es that: 

(tJ£1'AR t t IGRI<[ R) ;.8ETA t t /GxIRtRxRHO-l t2w.IH (C-lO) 

be	 true for all legal 1. It will be true tfl 

tJt"fAR. 8~~:4 t t IGxR)fRHO-l (C-Jl) 
GR·-G-2-R)t.G 

are	 used to calculate the new values. The 8ize of the result has not 

changed 60 that: 

RHiJR·RIJO	 (C-12) 

New values for DELTA are then calculated using the fo~mulae durlved in 

C.I.2. 

C.4 STREAM Gt:.Nt:ttA'fORS 

The procedure described In chapter 4 ""hieh creat~8 stream generdco["s 

from APt ellpresslon:i was destgned 60 that only the entry point uf the 

graph could have mOl'e than one nesting 80n. It also produce~ a graph 

w1th all the hcadec nodes at level O. ThuM each 6ub-&raph hangins below 

the ~ntcy point contains only one or lIore (if connec[~d by evocation 

ed~C8) sImple ladders with tbe .ddre8s leneration .echaDla~ d~acclbed 

220AkiAY ADDRESSING WITH LADDElS 

above. 

C.4.1 Address Calculation 

The labela on the atceaUl geoerator araph nodea specify the addretislng 

desired 88 follows: 

1.	 If a nod~ is labeled with a pointer movement label (At or At.) the 

th
value of G assigned to that node wIll be that given tor the I 

dimension of A. 

2.	 If a node is labeled with a p~1nter re~et or address calculation 

label. the corresponding iteQI of C Is l:ero. 

l.	 If the array name in a lab~l 18 modttled by ~ the corresponding Iteg 

of G 18 negated. 

4.	 The values of RHO to be u*ied In the calculatloQ of lETA .nJ DELTA 

are taken frog the length of the array dimension specified by the 

label (not fro. loop limit label). 

n,e	 calculation of BETA and DELTA proceed a8 specified earlier. 

C.4.2 Re-ordcl'lng 

The 6ub-graphs of the entry node of a stream generator communlcat~ ooly 

via rcsi.tecs (scalars) and memory (arrays). E4eh Dub-graph CKecut~ti to 

cOllpletlon before th-= nelle 1s started. thUd the ordcr that calculat~d 

values are placed into stocaae 1s not important. Only the final 



ARRAY AOOR E55 ING "11 Til LADDERS 221 

position In .eaory of each itea matters. 

The transposition and revereal operation. described in chapter 4 

are applied to all arrays being accessed by that ladder. It 18 obvlou. 

fru.. the preceed iUI seel {ons that ele.eats of two array. with tt,e same I 

will t.ave the salDe 1Til ur 11 af tel re-orderlns. Thus for those operator 

which calculate each elemeot Indepf"ndently. the current operand values 

contributing to a given position in the ['Qsult will be the 8ame after 

I"e-ordertng. 

Of tho8e Ai'L operation. which are complied tnto Btreall lenerators 

the ones for which each position Is not Independent are reduction and 

scan (and others d~(lned In tcr•• of those whtcb Include innt!r-product. 

encode. decode, and membership). Both require sequenttal access alonl 

one dimension In a fixed direction, and accumulate 8 value. When these 

operators ale translated Into strea. generators, te.porary storage for 

the running values 19 provided. Thus the dimension being reduced or 

scanned lIay be at any level (ladder aay be transposed), but It .8Y not 

be reversed. The definition of reversal does not permit that operation 

to be applied to a graph node labeled (lor \) a8 beioa reduced or 

scanned. Therefor~ legal re-orderlnS8 vill not .ffect ftnal array 

content. 



APPENIHI D
 

STREAM GEN~RATORS AS IMP-lO
 

The 11etlng below 1~ the (edited) 11~t1n3 output ot tbe IMP-lO co.~11er 

produced durin6 the flnal compilatIon into macblne code of the stream 

~cncratoc description representing the ArL expresltlon 

F~At-/(-IHtC)t.--IOfE $ A complete description of the language and the 

extension lIIechaul:ul may be found tn (5)­

IHP I ~o 1-SlP-14 ~lREAM.ll0(50.1l0) 1~-JUL-l1 10:)0 

o 
o 5YN'fAX EXTEN~JUNS #l* . 

o 
a LAOUER l.ABtL, EVOKE. STAIUiUn. ANU CO-ROUT IHE INl'IIALllATION 
o , 
o lSCURLDl IS RECISTEN, ~[S[KVEO; 

o ! $I.NW\G! 15 )) LOt'iG. , 32 LADDERS POSSIBLE'
 
a <ST>:; .,LAOOER <EXP ,A>~ :' <5T ,is>
 
a ;:-I.OCAI. SL,EI. IN nl$lN~G!IA)_I.OG(SL)i
 

o GO TO EL;SL:I. 
o GO 'ro SL; 
o EL:O"; 
o <51> ::- EXIT ::- "OATA(041000000012D)". 
o <Sl>::-E~K£ <EXP.A>
 
a ::-LOCAL L IN "ISLNKRGII ISCURLDtJ_LOC(L)i
 
o !$CUKlDI Ai 

o GO TO (1$LNKKGI(I$(;URLDltl; 
o L:O"; 
o <ST>:1-BEGIN::-LOCAL EL IN 
o 1l1$CURlDI_OiGO 1'0 EL. 
o I $INTERI : [VOJ(£. 1;EXIT i 

STREAM GENERATORS AS lHP-10 22] 

o l:::L.O·'; 
o <s'[>.: -t:ND:: _"GO TO I $lNTEIU" i 
o , 
o INIT STATtltEUT 
o , 
o <PTL>: ;-<EIP,lb; :_url (BI IETAIB)", 
o ",PT ••>: :-<PTI•• A>. <[Xii. B>;:-..nAirI (B) BETAII) u; 
o <51>. ;-IHIT <I'TL.A): :.nau , ­

o , 
o HATIUCES WI Til 5 l,;OlUHNS 

o
o , 

<S1> .:- <V»L.A~ IS <EXP.l> BY 5 
o .. - "A IS 1·5 LONC" • 
o <VBL> :: ­ <VUL.A>«lXt,I>.<EXP.J» 
o : :- uAllOCON.JOREG]" -> "AIC..ll (JI" ELSE 
o n A(l • JOCON I" -) IIAIJ) 111\ ~ r' 
o ELSE "AtJ"I.~)". 
o , 
o REPEAT STATEHF.NT 
o , 
o ISLEY! IS REGISTER, RESERVEDi 
o <INCL>::-MUVING <EXP,B> 
o ;: .....Pl (BI_Pl (Bl ..OELTA(B.I$LEVI)". 
o <lNCL>:a-",INl:L.A>.<t:XP,B> 
o ::-uA;~1(81 Pl(B)tDELTA(B.I$LEVnUi 
o <ST>.:-REPt:.AI <SJ-;A> A1 <EXP.I> 
o USING <[XP,C> 
o <INCl,E> 
o 1:- LOCAL IU. IN 
o II) (C.B) I); 

o RI.:Ait$I.EVI Bj 
o (lIC,ISU':V!) {(CtiSLEY!) .... ) LT RUOIC,tSLEvt]->
 
o - (E.GO Ttl RL)".
 
o <51>: .-REi·EAT (~T ,A> Al <EXP.I> 
o USING <EXP,e> 
o ;:- LOCAL Rt IN 
o nIIC,BJ 0; 
o RL;A.1SI.EV!_Bi 

o (1IC.I$LEVtl_1IC.t$LEVIJ+1) LT RUOIC,!$LlVJI-> 
o GU TO RL".o ,
 
o ••••••••••• 1.0CAL STOkAGE •••••••••••••••
 
o , 
OTIS 17 LONG; '16 REGlSTERS, 
o PI IS 17 LONGi'tb PU[~T[RS'
 

OilS 1] BY 5i 'j6 IN1HCE5 - 4 If.V£lS'
 
0' (TUOSE BEl.lJ\.l ACTUAU.Y DEF'ua:o BY lM.TA STATDiWTS)
 
o 8fTA IS 11 LONG. 10 POINT£k INITIAL VALUES 
o Dt:L'fA IS 17 BY S; lb INC1U)t[NTS - 4 l.EVJ::LS 
o kilO IS 11 BY 5i 16 LIMITS - 4 LEVELS 
o 
o ., ••••••• AlkAY STORAGE ••••••••••••••••• 
o , 

- 222 ­



225 STREAH GENERATORS AS IHP-IO	 224 STREAM GlNERAnmS AS IMP-lO 

o A,r ARE S LONG;	 000002 $UffER 

o B,C,D,E ARE 125 LOUG;	 000006 %L3 
o ,	 000001 tEl.2 
o 'A •• t •••• CONTRUL PARMIETERS ••••••••••••	 000012 151.15 
o ,	 000027 tRI.12 

o IlLHOTE( 000031 %RI.1O
 
I BETA: DAIA(O,A,BII04I,C(I041,D(124),E(124),f)i 0000)) %R1.8
 

I RUO: OATA(O,~,5,5.5, 000035 tRI.L.
 

2 0,0,0,0,5); 0000-;1 lIF';
 
1 DELTA:DATA(O,I,O,O,O, 000053 %RL6
 
2 0,34,29,-21,-1, 00U·061 IIFI
 
2 0,)4,29,-21,-1, 000101 111'9
 
2 0,124,-1,-1,-1, 000126 Iff 11
 
2 0,124,-1.-1,-1, 000152 IIFI)
 
2 0,1,0,0,0»); 0001 ~5 tLI4
 
o , 000151 tELl6
 
o ••• ,.,,, •• t.:O-RoUTlNt: INITIALIZATION •••••
 
o , 
o BEGIN;	 000000 HOVEl 1,0 
o , 000001 JRST tEL2

o ••••• STREAM GENERAtOR CODE •••••••••••••••••••• SIN'ClR:
 

o	 000002 HU~1 3,%1.3 
o ,	 000(0) HUVEH 1, $tNKRG( I ) 
o AFL - r A+-/(-/B+C)t.--/UtE	 000U04 tlOVEI 1,1 
o , ­ 000005 JRST @$lNKRG(l ) 
o LADDER 1: (I NIT 1,2, 1.4,5,6; ILl:
 
1 REPEAT(TllJ 0; 000006 CA LI~1 12
 
2 REPEAT(TI2J 0, lEl2:
 
) REPEAT(T()) 0; 000007 t1OVf.1 J,%SLI5 
4 REPf,A-rrr ()J (lPI (4))+ [PI ISIJ )-T (J)) 000010 HUVEH J,SLNKRGtI 
4 AT 4 USING .. 00001. JRST IELtb 
Ie HOVING 4, 5; ISLl~: 

4 1(4) 0; 000012 HI)VE 1,8ETAi-l 
4 REPEAT(T (4) «( PI (2)) +(PI (]IJ )-t (4)) 00001) HtlVllt J,PUI 
4 AT 4 USING 2" 000014 HtIVl: 4,DETAiZ 

HOVING 2, ); 000015 HOV1::H 4,fl"2 
4 T(2) (TI4)-TI]J)+TI2J) 000016 tlUVE 5,8F:TA..) 
J AT ) USING T 000011 HOVEH 5,1'1-+] 
) .10 YI NG 2. ) , 4, 5; 000020 HOVE 6,BETA+4 
) Til) T(2)-TIlI) 000021 thlVI:H 6,Plt4 
2 AT 2 USING T 000022 tUl\,L 7,8ETA+5 
2 HO VI UG 2, J, It , ~ : OOn(2) HOVI-.H 7,I'It5 
2 (Pl(611 (PI(lIl+t(lJ) 000024 tIO\l:, 10,B£TA+6 
1 AT I USING t - 00002S HOVLH 10, Pl-t6 
1 HtJ VI HG 1, 2, J, 4 • 5, 6 ; 00002& SEllH H6 
I EvuKE 0); %RlI2: 
o ,	 000021 St:fZH T+l 
o •••••• _•••••••••••••••••••••••••••••••••••••••••••	 OOOOJO SEllH 1+1 
o ,	 ZiLIO: 
o £N01111%%1%11%%% 000011 SETZH t-.·2
 

000032 SETZH 1+10
 
A*	 CODE PRODUCEU 8Y PROGRAM STREAH tRL8: 

00003] SElZH T+l 

http:���,.,,,��


221 
SlRlAH Gt:NlRAIOkS AS IHP-tO 226 STRlMI GENERATOkS AS IMP-tO 

0000)4 

0000)) 
OOO(J36 
0000)1 
000040 
000041 
000042 
00004) 
000044 
OOU045 

SEllH 
UL4: 

HUVE 
ADU 
SUBD 
KllVl::l 
AOS 
(AtolL 
JR~T 

Ht)\'t:: 

ADOB 

li II 

).~PI+5 

3.@Plt4 
l. T+l 
2,4 
4,1+5(2) 
4.RUO·t-S,(2) 
%lf5 
4,DELTAt24(2) 
4, PI ..4 

OOO1l4 
OOOII~ 

000116 
aOOlll 
000120 
000121 
000122 
000123 
000124 
0OO12~ 

JRST 
HUVE 
AllU8 
HUVE 
AOOB 
HOVE 
Auno 
HUVE 
AUUB 
JHST 

%lF11 : 

IIF 1& 
4.0ELTA-t12(2) 
4.Pl+2 
5,UELTA-t11(2) 
S,P!+) 
6.DEI.TA+24(2) 
o,Pl+4 
7,DElTA+ll(2) 
], PI t~ 

%RLI0 

000046 
000047 
0000')0 

000051 
000052 

OOOU)) 
onOO54 
OOOOSS 
00'1056 
000051 
000060 
O(JOO61 
000062 
000(6) 
00006' 
OOOObS 
00OO6b 

000061 
O(H)010 

000071 
000072 
00D07) 
000014 
000D15 
000U16 
00007] 
000100 
000101 

UUVE 
AOU8 
JRST 

11£5: 
Sll'lH 
SECZH 

lRL6: 
HUVl:. 
Aun 
SUBD 
HOVEl 
AOS 
eAtu. 
JRST 
HUVE 
AnOB 
HOVE 
ADI>B 
JRST 

llFl. 
HUVE 
SUB 
Anno, 
HOVlI 
AOS 

CAUl. 
JkST 
:-UIVE 
ADOS 
Hu,rt: 
AI)l)B 

5,DEl.TA+JI(2) 
5.Plt5 
%R1.4 

1t4 
1+16 

1.@fl ..3 
1.@PI+2 
3.1t4 
2,4 
4,ltl2(2) 
4,RHUt-l 2(2) 
%IFl 
4.DELTAt12(2) 
4,PI+2 
5. UI::LTA·H 1(2) 
S. PI·t) 
11l.6 

3.1'..-4 
J,Tt) 
J. Tt2 
2,3 
4,1+5(2) 
4.RIIO+'(2) 
IlF9 
4,OEI.TAt12(l) 
4.Pl+2 
5, DE l t A ... 1( 2) 
S.Pl+) 

000126 
000121 
unOl30 
OUOl31 
000132 
00013) 
000134 
000135 
000136 
000111 
000140 
00014l 
000142 
000143 
000144 
000145 
000146 
000141 
000150 
00015l 

000152 
000151 
000154 
000155 

000156 

000151 

HUYt.: 
ADO 
HUVUi 
HOVEl 
AOS 

CAUL 
JM..ST 
MuVE 
AUIJ8 

tbJV£ 
AUOB 
HOVE 
AnnB 
MOVE 
AnDti 
HOVE 
Al>qB' 
HOVE 
ADUS 
JRST 

I1Fl): 
HOVEl 
HlIV£H 
HUV£I 
JkST 

XLI4: 
JiST 

XELI6: 
JiST 
EHU 

3,T11 
3,~1' 1+1 
1.@1'1+6 
2. I 
1. J tS( 2) 
3. RlllHS( 2) 
Ilfll 
l, OU,TAtS(2) 
l ••'(tl 

4.DflTAtI2(2) 
4.Pl+l 
5.DU.TAtl7(2) 
'.P) .. ) 
6.UELtA+24(2) 
6.1'1 ...4 
1.0ElTA"'l1(2) 
7, PI .. , 
lO,DEI.TAt-16(2) 
IO,Plt6 
%RL12 

1.%L14 
1. $LNKJtG( 1) 
1.0 
@~lNKRC(I) 

ISLlS 

$lNTEIL 

000102 
000101 

HUVE 
AUOB 

6, Dll."CAt24(2) 
6.Pl+4 

112 WOkOS OBJECT CUDE 

000104 HUVE 1, DEl.TA..·) 1(2) 
000105 WOIl I,PltS 
000106 JkST lRL8 

11F9: 
000101 HUVE 1, T-t2 
000110 SUBS 1.1+1 
000111 HUVEI 2,2 
000112 AOS 4,1 ... 5(2) 
00011 ) CAKL 4,RUOt5(2) 





__, - ---....._._"".'--.......--....
 

ArPENDIX E 

STkEAK CLN£RATORS AS LADDER HACUINE CODE 

Thi& dppelldlx detiCrtlJcB the vertil01l of the ladder .achine upon which 

Wl:re bdhed	 the cod~ 8i~e and apeed e8l1w~te6 of Chapter S. The original 

d~ti 19l1 by H1 ntee (171 Wd8 for a machine to execut e the l.ldder conteol 

structure defined 1n Section ]42. The desigl\ sketched below 

incorporates chang~s reflecting the itddltlonal ft!aturett added to the 

ladder Htruclure (Section ).3). 

lhe local au.::mocy of the ladder machine 18 ocsani.z:ed ali 32 bit 

,",orJ.:i. The flrsl 1144 words ar~ r~secv~d for the control variables u8.:d 

by lh~ cOI(~pl1ec ulJjccl coJe: (Section 3.5) 

o ­
2~6 -

25~ 1u 
511 lfi 

T(rcg1btcr II 
DEL'fA(polntcr I,level I. 

~ll - 761 Is G(polnter I.level II 
168 - 1023 Is l(lnJex ',ley~l II 

1024 - 1219 1s RHO(loJcx I,level II 
10dO - 1191 l!i I'I(pu1nt~r II 
1112 - 1143 lti is£TA(pointec ') 

with o ~ regtAtec , $ l5S 
o S pointer , S 31 
o $ Inde¥ , ~ 31 
o s l~vel , S 7 

- ;l28 ­

S'rk~AH GEN£».ATOaS AS u.nDElt HAClilNE CODE	 229 

the	 r~malnder holds instructloDS. 

The Intitructlop8 executed by the ladder machine are each siogle 

word. (32 bita) and coostat of: 

1.	 Two address instructions for each of the APL monadic Bcalar 

operators. 

Hor rellatee ,.,regiater '2 

2.	 Three addre"8 instructions fol' e.ach of the A.Pl. dyadic scalar 

operators. 

DOP reglster 'l,realatee '2, resister '3 

3.	 MaiD mewoey load and stare (indtl~ct using pointers PI). 

GET register I,pointer
 
PUT reg15tcr I.pointer
 

4.	 Local mem.ory II} oad" and "store" (t r: -.sfer to or (COWl T). 

LOAD register ',address
 
STO register I.addrea8
 

5.	 Rcal&ter clear. 

ell regIster' 



SlkEAH GENERATORS AS LADDER MACHINE CODE	 2)0 STRF~ GENERATORS AS LADDER HACIIINE CODE 2)1 

6. Unconditional branch	 The op-code 18 is 8 b1ta vide and addresses occupy 16 bit •• 

81 addce.1	 The etrea. generator for F·A4--/(-/B"'C) •• --/PtB is given by: 

LADDER. 1l (INtt 1,2. l. 4,5,6; 
7.	 Conditional branch REPEAT(T (1) Oi 

RErtiTfr (21 0; 
REPEAT(T I 31 0: 

(T(reglster IJ -> GOTO 8ddre•• ) REPE~T(T(JI «(PI1411+(PI(~JJ)-TI)I) 
AT 4 USINC .. 

BNE register I,addres8 HOVING 4, S; 
T(41 0;
 
REPEAt(T (4) «(PI (2)J+(PI (3)) )-T (41)
 

AT 4 USING 2"
 
8.	 Pointer initializatIon HOVING 2,); 

T(2) (T(4)-1(1))+TI2J) 
AT ) USING .. 

(Pl(pointer ')8ETA(polnter I)) HO VUlG 2.).". 5 ; 
Til) T(2)-TIl)) 

INll pointer , AT 2 USING 1 
HOVING 2,3,4.5; 
(PI(6)) (PlfllJtTIlJ) 

AT I USING I ­
9. Index increment and test	 HOVING 1,2,J,4,S; 

EVOta: 0); 

(I(tndex I.level ')1 (1ndeK I,level 11+1; 
((index I.level IJ Cr. RHO(1ndex I,level II This translates into the ladder code given below. Ue have added lobels 

-) COTO addree.). 
to thi. listing to permit symbolic addresses. 

INC index '.le~el I,addre8. 

LOOPO:	 INIT 1 
INlt 2 

10.	 Polntee Increment INlT ) 

INIT ~ 

INl'r 5 
(Pl(p~lnter ')Pllpotnter I,+DELTA(polnter 'ttevel II). HHT 6 

C1.RI 1,1 
STEP poJnter I.level , I.OOPI: CUt I 

CLRI 1,2 
LOOP2:	 (LR 2 

CLRI I, ) 
II.	 Co-routine evocation. 1.OOPJ: eLA. ) 

l:I.Rl 1,4 
LOOP": GET 5,4
 

EVOICE ladder , GET 6.5
 
+ 5,~,b 

l,S,3 
INC l,lt,SlUPt 
STEP " 



,	 ....~4__ ~-~ .................._- ~
 

.... '" 

STREAK GENERATORS AS LADDER KACUINE CODE 232 

STEP ~ 

6R LOOP4 
s.apl;	 etR it 

elRl 2.4
 
LOO"~; GlY ~,2
 

GEt 6,1 
... ~,5,b 

4,5,4 
INC 2.4.SKIP2 
STEP 2 
STEP ) 

DR Lours, 
S~l 1'2;	 - 3,4,5 

... 2,),2 
ItjC l,l,SKIP) 
s'rEl' 2 
51£1' ] 

STEP 4 
STlP 5 
SR LOOP} 

SKIP):	 - 1,2,1 
INC l,2,SKIP4 
STEP 2 
STEP 1 
STiP 4 
SlTP ) 

8R LOOP2 
SWo;lP4:	 Glf 7, 1 

... 7,1,1 
PUT l,b 
INC a,1,5UP5 
STt:r 1 
s'rEP 2 
STEP 3 
STEP Ie 
Sl[l} 5 
ST£P 6 

5K1P5:	 EVOKE 0
 
8R LOOPO
 

••• ;9 instructions ••• 

Ill*:: 12 bit instructions would permit a 51&::P 1nstr-uction to tlpeclCy up to 

4 putnLe[ "a. Itowuver, all ladde[, code iostruction COLlOt8 1n this 

thesla ati8ume the fora of step uHed above. 

• 



•
 



-_.. _.-._------------_.--­

STREAM GENERATOllS l"OR rUE APL OPERATORS	 2)4 

r.2 rUE OPERATORS 

f.2.1 Monadic Operators 

When a lIIIonadlc branch (},od~ (Ilonadic operator) itt traversed. the g rclph of 

the result 18 built from that tOf the operand aD f0110\l8: 
APPENDIX F 

STREAK GENERATORS fOR TUE APL OPERATORS 

r.2.1.1	 Scalar Operation 

No change i. made to the graph for tht: operand. Code foe toe 

operatioQ i8 built Into tbe sp11ce code at. the point(a) where YafUe9 

f.l	 DEFINITIONS are available. 

The	 procedure the compiler uSes to handle each of the APL operators 

""hieh is c(Jmpl1~d i8 given together \.lith dn ex.ample fur each. The ..hort F.2.1.2 Tak.e 

APL irdglDcnt8 which identify the ldiolD8 uae the convention that S 1. a IF problem nodes are active at dim~nBion affected 
1HEN (Aaslgn operand Into teaporary arraYi 

liC a1 ar and V a vectol". In these proc..:.du['ett we '01111 use the tenD '* In-line Assignment dCUtOll acta here *' 
apply t~ke to new operand) 

"problem node" to refer to a node with any of the followIng properties" ELSE .odlfy lQbels of active nodes of operand ~t level affcc[~d 

with Tak.ci 
\ 

1.	 One or aore of the labels haa been .odified by \. b\~t (2	 _~L 
2.	 nh~ noJe 18 a choice Dode. ~V G~l;;) =9 ~1 ~f')~~Y 

"" 
3.	 n,e node Is part of a raveled structuree but d'Af)t (:-') 2' (';)

c I 
'./	 Y' __~I "..---~~ ~_~ _----L-----~( s.qP W).". ----J .. l Vi 9'.:1 ~----IC.l ttl w,:- ... ~ 

The name was cho&:ien because Much nodes prevent the direct application of a b JI '"--- ~------j '-~ 

.ever~l operations. ".--... 
,.,.....~-- lit • 

~.	 r 

0T1"~ SK'r "1'.,:>--- 01 U..-Ul --'--':"'''1 """~_::~',:,i~~
~ 

~ 

- 211 ­



STRf-AH GfNERATUILS FOR TilE Art OrERATORS	 21S SHU,'H (,ItHHAIORS FOR TilE APt OI't:RATIJRS 2J6 

f.2.1.) Drop	 f.2. l.5 Subscription 

If proble.. nod,'& are active at di.enAion affected	 If problem nodes are active ot dlm~n81on u(fected 
TU[N (Assign operand Into temporary array; TIIEN (AsH!gn operand tnto temporary array.
 

/* In-line Assigllment demon acts here */ /* In-lln~ Asoiglment demon act. here */
 
apply drop to new operand) apply eubBcription to new ope~and)
 

ELSE	 .odify labels of active Dode. of operand at level affected ELSE modify label. of active nodes of operand at level affected 
with DroPi with Subecciptlon; 

, 
b~1+2k'3] 

r.2.1.4 Reverse ~V (Pexecute Reverse command; 
IF FAIl.URE
 

THEN (Assign operand Into temporary ~rr8Y;
 ( ."1"0'* In-line A8signment demon acts here */
 
.pply re~er8e to new operand);
 

JL. .--"
V' • i\,(\ 

,I' ~l 1] f.:j	 (s~b
c •	 _ 

_.- _1__ 
---

v -I:. ". ',_.v.	 ~~~"l (- )' '~l ~.~ 1 .~~b r{ ~ .<1 ~~_~ '-..::!~__ ~ 
(~( "0 "'I'J.,, (1'> "J~~) 

=-~~	 (~(~--~~.:~?2~) .ij, 

(;) C0 
.__1__,. ~I _ 

( 'J 1 tv J • ~ • y1 r - - - -{ 'v 1 • ~~-l--- -L _.- ­-----J--- -~
 

( ~~_~~1-:;~0
 



STREAM GENl:.RAlURS "'uR TUE API. OI)ERATuRS 231 STREAM GENEItATORS .·OR TIlE API. OPERATORS 2)tJ 

'.2.1.6 Transposition r..2.1.7 Reduction 

ellt:cut II! Tcautipose couuDdud. build d al~ple ladd~r wilh shape of operand; 
If dlagollallzatlou 19 specified 1* now adjacent */ label dlwensions not being reduced to assign to. d lcuapu[.lrYi 

TUEH (IP probl~. nodes are actjv~ at levels affected label reduced dhuension with It 
tliEN (Abslso operand into tewllorary array execute H~r~e cOllllBand between new ladder and oper<indi'* In-line Astii~llml!nt d~IQOQ act~ here */). 

collapse affected levels of each ladder}. for a non-associative opel"atlon, the reduced dlmenlilon Qust be 

In a slwilar fashion to the requIre.ent of the re-order operation. revcrtied or alternate operations pc[form~d. (for associative 

the collapse procedure a8ttumeB the abst!nce of multiple neating. It operation lhid dimcnolon my be altered to matcn delivery.) 

will pre8~rve that property. Since no active node has an inactive The reduction op~r~tloQ will be most efficient if the the 

600, the collap8e operatIon will rt:duce the depth of each ladder 10 reduction 1a applied [0 the last dimeoslon. The temporary deorage 

the active Mub-graph ot the entry point unlforaly by one. 1s not acce88~d repeatedly, And thus its elimination may be 

possible.b'\ 1 _ 

~A b'~/[l]l~ 

(0 t;) 
==> 

G··A,...A. ~N 

_L \(- •• A~.-~-A;) 

~~) 
----....., 

=;. ~ 
.2 ";c'~"l ' 

(,(•• d •••0."• "-4)' ~r.2) 



STREAM GEtlt:RATORS FOR TKE APL OPERAToRS	 239 

f.2.1.8	 Scan 

build a simple ladder with shape of operand; 
label new ladder to asstgn to a temporary; 
label all levels with 1\. 
execute Herge command between new ladder and operandi 

We require that all data scanned be 10 the rallle of the ope['ator aa 

~ell au l~ 1t8 domalo. Non-a8s0ciatlve operation. require special 

h. nd 11"I 1161. 

The scan operation vill be .oat efficient if the .cao 1. applied 

to the last dimension. The te.porary .torale I. not ecceeBed. and 

thus its eli.inallon .ay be p0811ble. 

b\':" 
~H 

~	 • 
G~--",,"~. ) -=4 

c 1 (t 1 dl t ••• -. "1)· t"t,---L-______ 
-* 

\. ~ ·2 "2""2 ) 

I'C1(ba d2 '2•• 8 ,2 "2>""2 

STREAM GENERATORS FOR TilE APL OPERATORS	 240 

r.2.1.9 Iota 

add a neil (left-l&Ost) neating 80n to the header
 
of the graph for the scalar operand;
 

label the new node as f)IS, HI and a8 the nCiI r~.ul t;
 

F. 2.1. 10 Ravel 

change n~6tlng edges connecting active nodes at
 
levels alfected to raveled nesting edges;
 

build a new ladder with the shape of the result and
 
label it to assign to a temporary and as the result;
 

create a copy of the new ladder for each result ladder
 
in the operand and Adjust to fit;
 

connect an evocat Ion edge from
 
the lowest active node in each operand result l~dder
 

to the lowest active node in the matching copy of the new ladder; 

b'-\ 
a N 

('11~~;)	 _3>
 
~ (.t b, dl '1",,'11 lt11'~11-) ___I 

~	 Sr- .
~-~) ~;) 



'"--. .-..................~. ................-. • -	 ......... .... .... ....... "'"
~~~'111111 ~ 

STklAH CENlRATORS FOK THE APt OPERATORS	 241

1'.2.1.11 Shape

Host uses of shape become modifiers of monadic operations. If lh1 ..

la<1S not occur ccd, the tiet-up code will store the vee tur. and the

scream generator Is a simple refeE'ence to that n~w vector. n,e

coastrd-lnt propdgation phase will have subdivided the function ao

tholt th~ Informdtlon 1s avallable when the generator itt started. If

the operand Is not a variable u8~d elsewhere. then only those valuea

"'hleh d(:tcnaine stze fle~d be c.leulut&!d (IUlY b6J Done).

f.2.l.12 Duplication

create	 a new one level ladder with It.it

equa 1 to duplicat 100 factor.

Nest o~erand unde£ new ladder;

,
b''\ DUPLICA.TE

~V

4-~
C~~_l.~Vl) ~

STREAM GENERATORS FUR TUt: At'L OPERATORS	 242

f.2.1.13 RC8ha~e

build a new ladder with the shape of the result and

label lt to assign to a temporary al~ dS the r~sulti

create a cop)' of tlh! ale'" l.lddcr for each result bidder

in the opcr.and aod Adjust to flti

connect an eYo~4tlon edge [rag

the lowest active node 10 each 0pcfJnJ. [COull ladder

tu the loweat act\ve node 10, the Ul.llChioK copy of the uew ladder,
H~ltber &ub-gcaph m~y be altec~d durlUi later proc~5s1ns·

(E'cbhaptng V [0 bave shape. of T)
b'~V

~ (~
----~--_._-- ~ !

9~~) ~t ".'li'l) G~tl'l '11 , .. / ~,~

/ ­ \"<.. <1 .~ 4: fl" 'f~.):/

F.2.1.14 Scalar Creatton

Splice code 1n the entry point will fetch the op~rand tnto a

register. If tl.e operand of thili operation is a parti~ tree It!df (or

1 tV), then the f-:tch \01111 be done by the int erpreter. All scalar

operand. and iutecmedlate results are kept in r~glaters.

STKY.AH (;Elft:HAltJRS fUIC. Tilf AJ~L Ort:RAtuRS	 243 STREAM GENERATORS FUR TilE APL OPERATORS 244

r.2.1.15 Booledo Creation	 '.2.1.19 Rank - ppA

The graph for the operand 18 unchanled. Splice code to check value

range will be added to the point where values are avallable.

F.2.1.16 Self Indexing - V,V

Nest the graph for the operand undel' 8 copy of It.elf;

change ll.it label of lower copy to epV ;

1

Reduce the last dl.enalooj

\

b,",ELE' I"OEX

~V

:9

~
(-I VI;;) Cl<bl dl '1.'-1 Vl)'.Vl

c v!' CUVl

F.2.1.II Extremum Poaition - Vtr/Vor V'l/V

n.e grdph 18 the 83.e .a for the reduction of V.

'.2.1.18 Span - f /Vo.-V

The Ir.ph 18 the aa.e a. for the reduction of V.

Rank Ie a scalar constant computed at compile time.

F.2.1.20	 Indices Of Array - ,(PAl[tl

nle graph i8 a eingle active node labeled ,pAl,oA •
t

'.2.1.21 Scalar To Vector

create a one level graph to reference the vector;
attach it a8 the left-most nesting 80n of the entry point of

of the sraph (0[" the right operand;

The	 remainder of the aonadic oper.tora are treated 8S function calls.

---..... ..._~__.... ~ ~._.........-:............_-..".. -... "...-....................,.,.,~~~.IIiII4I~-..~...~~-..... -~

STREAK G£N£RATORS FOR TilE APL OPERATORS	 245 STREAK GEHl::aAIORS FOR TItH APt OPERATORS 246

F.2.2 Dyadlc Operators	 F.2.2.2 Subscripllu n

IF 6ubscrlpt Is an , vector
The graph for the [e~ult of a dyadic operation is butlt up trOll tbose of THEN (attach rl~ht operand to the heddcr of

the left operand as a "e~ left-mo~t ncsttna SOD~

the operand.. as follows: apply monddic bubsc£lptto~)

ELSE (IF acttve nodes of right operand are problca nod~.

THEN (Assign right operand to a tCllllpor.lr)' i
/* In-line Assignment dewon acts ~ere *'
subscript new right operanJ)

r.2.2.1	 Scalar Operation ELSE (N~st left operand unJec right operandi
Tran~posc to bring subscript ddjdcent to

e~ccute He[~e comm~ndi level subs~r'pt~di

IF fAILtRE rewuve noJes being subscrip[~di

TU£N (A:.slgn operand cauulug fallure to temporary;	 FOR edcb array ref~rcuc~ removed 00
/* In-line A~81gl~ent demon acts here *\	 add a &Ubscr1ptlon label to
apply scalar operation)	 the lowest node of the s.ubst.:rlpt);

EUiE but Id actual calculat ion.. lnto splice code.
If tbe result of a dubacclption 1. c~-ordered. the subscription

K	 labels will havu to be Ul.oved to the low~6t node label~d 018

generattns the subscript.
d~ ~y

(A[.Hi]N··']
c~ }.A

q
:'-'0' "l.bl V" ••,,)	

(~)d~~	 (?!
_-1___ =? .. - .__L ~

(.101 Ai ';;"1 \ (tq"l ". '(1"41 :'11)---1--' '--------- ..-~--/

(~-~~-~.:~~~ ---~~)~
\ . £.. ~ ~ ~ .. - } ~~-'~i? -..........-...--_._---~


~~~~C·J "]'~ ~ bJ C2 "~.<i">H2[C.n ) 

( •• oJ '.,.=5 



STREAM GENERATORS fOR TilE APl OPERATORS	 24bSTREAM GE.NERATORS FOR TUE APL OPERATORS	 241 

F.2.2.1 Rotation	 F.2.2.4 Compr~s9 

create a one level ladder for loR; IF ("ight oper.wd has choice node at level
 
r of cOlllpr\.'9sloll .llld one ahernl\tl"e Is tnactive


'6 fir 1a ("otated diacoelon of r-(ght operand *\ TIlEH (Assig" r 19ht op(!caml to a tt'mporary
 
/* In-line AHsIgnmcnt demons acta here -\);
 

Nest It under left operand; copy the right opprand;
 

Transpose to put new node at level of rot8tton; label one copy as the result of the compression;
 
l' active nodes at the rotatp.d level of t.he right operand add the modifier SkIP to all
 

arc prubl~m nodes (except hCdd(!( nodes) of the other:
 
THEN (Assign right operand to te~porary use the left operand [0 select between
 

/* In-L1ne Assignment de1llon acts here *\); two Alternatives which are the two copies;
 
execut e U~rg~ cOIOID..1nd; change the 11.1t labels of the target node.
 
IF FAILURE to be pill '* 1 l.bel. left operand .,
 

TII[N (Astilgn operand calu.lng fallure to temporary; ,
" In-line AssignMent de.on acts here *\ ,
 
execute H~rge com_and); c\ I


remove pointer .ove.~nt labels for rotated diGeoslon
 
of rtght operand;
 .AN

FOR each label removed DO	 add a rotation label to the
 
lowest node of left operand;
 

If the result of a rotation i. re-ordered, the rotation label••ust 

be _oyed to tlle 1owe8 t node of the l'18ht ope r 8od • 2
(hi r11'(~ 

7'\(1) =r~-/ 
~ a~ ~H	 G";,0 

/-~	 (0 ~ ~!_-
loJ )
 
~~: StclP "1""1
.----L _ ~b~~1 ~ 

---- -- I ,(..b.-) ", r---j 

-~"1 ~"1 (;1 -1 ,~rt! - ~"1 __) 
-- -- - --\.. .: b, n,. ••• )~":'0----------

t.~" -: Vt- -.H1."1) dtftt ~ 



STRUH CU~f.R:\TORS FOR TilE AI)L OI'lIlATOltS 249 SlRWI GENERATORS .'OR Tilt: APL OPERATORS 2~O 

r.2.2.5 txpand .r.2.2.6 Catenation 

It' ri~h[ "perclfld hae choice noJc at lcvel IF right opcr4nd has clUllce oode at lcvel
 
of exp.ln~ Ion Bnd oue al [ern.lt 1ve i~ tnac [lve of compression aud one alternative 15 tndctive
 

THEN (Assi~n right operand to a tcwporary lUEN (Assign eight operdnd [0 .. [C:npvCdCY
 
I*' In-line M.UlgOtJlcUl d~ ...un9 .lcta he,~ *\)i /'11 In-line A:isJguuU!ut delaons at:ta ht!ra: 111\);
 

bulld eli He,", ladder with shape of eight operandi IF left operand has choice nodo dt level
 
IF right opcr.iuJ 15 nUUl~rlc of compression and one altcrndtive Js inactive
 

THEN label new ladder with ZERO THEN (Assign left op~rand to a tempurdry 
ELSE lalH:1 ncw ladder will. Bl.ANK; ,. In-line Malgnmcot demons acta here 111\).
 

label eight operand and new ladder a8 re8ult; bu1ld a ncw one level laddec ",1th li.it equal to the
 
UtiC the left operand to 8elect between aUla of the lengths of the cAtenated dhllens1on;
 

two AI [t.' COdt {yes which are the right operand and the new ladder tlelect6 betweeo the right and left
 
the n~w ladJer; opecanda a8 Alternatives at lev~l of catenatci
 

change the limit label ot the tacget nodes 10 the new
 ,ladder tu be pll; '* 1 labels lett operand ., c' •
,,
 
,7\ll)
 bD., .. 

ah ~\M 

-~~~ . ~~--,Gl Al.\ti1_J ( L'l ~~'litl )~ S?__ =r= .& ~ 
( ·1 Vi!;) (~11~~ ) G",·~0 C~~ 

( t.'4: "2'Qft 2 )
{} 

J ~ / S)'-, C? ~ is( <1 «1 bl -1·,·'1 )A':~ .~:::--_n.j___ _ ::==='" ==-­C z~0-----00;~-------~1 
( c"2 ••••,;. ~- - --- ."? ••: -- -- - -( c< b: .2' .e: ) 
"'"---~ ~.C__:Z~l"O':_2_)' G~) 



STREAM GENERATORS FOR THE APL OPERATO~S 251 STREAM GENERATORS FOR THE APt OPERATORS ],2 

F.Z.2.] Index. F.2.2.8 Membership 

Nest left argument unde~ right operal~; 

Reduce each di.en.loD derived fra. left operand. 
Nest right operand under left operand; 
Reduce each d jmen910n derived f rom right operand; 

Y',\
a/X b \~ r 

('eduction. u8ing the same associative. co.mutative operation_) 

(Inactive nodes may be re-ordered here and 1n other multiple 

\ 

C'\ Ean, 
~~q 

dlCel -I ' ...... Yi.'.". 

41"-1 )Cl- t)(1 

~ 
G·-It:'.) 

8 
Gk~ ,----p--\

( 

~l. · .. l"1 )11" .• l~dl(Cl '. __~ .-" 

'-------­ 1

C .--.lYl~ 



_ ._._._-_ .......-----..-.- ... ._.---_... _---~~--.....- ~ ....-----...- ~ . ....--_~
 

STIlEAH GlNEkATOIlS FOR TilE APL OPERATORS 253 STREAM GENERATORS FOR TUE APL OPERATORS 2~4 

r.2.2.9 Outer Product 1.2.2.)0 loner Product 

H~8t the right operand under tbe left operand; pcrfor. Outer Pr~duct;
 
label both rCdulta aa result of operatioR; Dla&onalize the la.t dimension of left operand
 

with first dimQoalon of right op~rand;
 

Reduce reaultlna dlmenaton.
 

A'· 
ah ~\ r 

.l\~r 
~ 

a) (~1 ?'Y1 ) {:) 0')~ 
0/ ~ .L ---- -----. 

( .1 Hlofc'X...

~1 ).~" =>.) 
( d 1 ( C l -1 T1 • . :-; t ) • ti .( 1 ) ~~ "'----------_. 

C·l K l o0 ~h:<'( :",.,-_) 

E~~0 
J 



STREAM GEUf:kATO~S FOR rUE APL OPERATORS 2SS STREAM GENERATORS FOR THE APi. OPERATORS 256 

, • 2. 2. It De c ade '.2.2.12 Encode 

Reverse the la8t d laenaloo of the left operand; Reverae the last dimension of the left operand;
 
Scan the last di.enaion of the left operand; Scan the last di.enaion of the left operand;
 
Reverse the last dlUlcnsloo of the left operand; Re~~r8~ the last dtmcualon of tb@ left operand;
 
perfor. Inner Product. perform Outer Product;
 

" "yT/~ 
• IL b. R 8/~ ~R 

c~ I:P ~ ("";') 
c=~-­

.. ~ ... ---Gt;.-) r;::-;1 ;) ~~~ •• H,:;;:) ~"".l')'.9 
~ -------,

.----( r c •. 8 J 
____L~G~b~-'~-9 (".(a. r.·. 'l.)' • to. ~
 

'- ­ '- . 



___"_",_",~ ", ", __ "__.,,,,",,, '-"__""""'''-_~.~'''''''''''''''~''''''''''''''''''''''''''''M-r-'~~''''''''''''__~'''~~~,~.......... .,"t ......~~~.... 64. ~.....,........ ............. ...
.............~~ W4
 

. '~" 

STREAH CEHlRAIURS FOR TnE APL OI·t:RA10R5 251 

F.2.2.11 A:Jstgnment 

r~lclbcl the r~~ult nod~s of the single ladd~c
 

for the left operand to assign to the 81oll1e
 
array it refcrc"ce~;
 

label left op~ramt as the reault; 
Heege the right and left operands; 

n,e In-lln~ Assignment demon ",111 not be applied before aStfignment. 

If the aastgnlD~nt Is to Ii ",hole array (replaceYlent). the loop limit 

I ab~18 of [he let t operand wIll be ia"ored. If the aB8i8m.~nt 18 to 

a 8ub-array (left o~crand includes traotipo81tlon. 8ubscrlpttoo. or 

tihuple selection). then 11.. it8 lIutit ..at<:h. 

If a graph 111 c It!att:d wh ieh asalgns tht! 8iUle va.l ue to more than 

one arruy, temporary storage areay .. "'Ill be ellmtnat~d unttl ouly 

one copy of the data 18 stored. Result labels wIll be tran8ferr~d. 

aj~N 

~ 2 =9 

r;\ 
C_~~1.~1·0 (~l!tl~ ~'(C1 ~. ~ ••1~\...-.:_------­

Note that the labels troUl the left operand are placed 80 a8 to be 

mudlfted by the rcsult labels of the right operand. If L 16 a 

teUllJordCY which 18 Mub8equeotly adajiRed to d different array. the 

label. C A a A LA <t- would be replaced by tho.~ for the new sl:u.ignGlcoc. 

STREAM GENEllATURS fOR Tltt: APL orERATuRS 2~8 

"'hen the In-lln~ Ass tgnment demon 19 appl ted af [c r an OlBfilgolllent. 

the a<:tlontf .Ire: 

build a 1i1mple ladder with sh.lpe of Btored result;
 
label to cefenmce that array.
 
tran8fel' .odifiera orl&lna111 fro.. left operand
 

of assignment to Dew laddeci
 
,. c and a 10 above .,
 

Overlay entry points (n~w ladder on the left)
 

~--
b1''; l •• _-...'C·,········:)

~ 



260 
SIRlAM CENt:R.AfORS fOR lUI:: API. OPERATORS	 259 

£.2.2.14 Reghape 

OYddic reshape 18 not complIed, 80 no sraph i8 eve~ created. Die 

lnte(p£~tcr will re-ove extra elements or create duplicates fro. the 

8tor~d operand (end if nece••ary copy the atored operand into actual 

ravel order). 

F.2.2.15	 Transposlt1on 

TI,e right operand become9 the successor of the left operand. If the 

right operand Is a single ladder, and if the transposition does not 

specify dtagon~ltzatton (thIs wIll be kuovn due to rank 

constraints). then tlu! interpreter can apply the equivalent of 

.unadlc transpose to that ladder by changfn. add£e8. sequence 

parameters. OtheOllse, the right operand .U8t be aaBlaned to • 

temporary. and monadic traospoattloo applied. 

F.2.2.16	 Take And IJrop 

The right operand becoaaes the 8ucce8sor of the left operand. The 

monadic operation 1. then applied to the right operand. 

F. 2. 2. 11 Dupllcat Ion 

The r1aht operaod becomes tlte 8ucce.SOI" of the left operand. The 

aonadlc operation i8 then .pplied to the r1lht operand. 

STREAM (a::NERATORS FOR nlE APt OPERATORS 

'.2.2.J8 End-around - ·l~V.S or l~.V 

The Iraph 18 equivalent to catenation In reveree order. 

'.2.2.19 First-found - l/Vl,V2 

Nest V2 under V1; 
Reduce lower level; 

,X1RST FOUND 

aA ~ R 

2 ~	 (;) 
=::::> ,.. ._"'~----...

~Ll) ~::'l ) 
dl \:.1 el T l , 1'1 "l l ,"Ll ~ 

- i _--,-\ 

c.:""~ J}Cd: t 

'.2.2.20 Bounded Extremum - l/S.v or rls.v 

The graph is the same 38 for reduction of V. 

F.2.2.21 Take-till - (V,S)tV 

The graph is that produced for V/V vItI. the choice node modified by 

\. n.e 1.eader la labeled wIth tIle parse tree lablel for the leaf S. 



, • _. _,~.~~,._ ......~_.~~. __.__.__...- ..__,..__•__..............__...._,.._.__..........""~ ...__..~ .........,...........~ ..... "'_~_;w._""-lh ....~ .... ~."'W .. _'a.-........ .,...... '"..)....Il_,~llIWMl't ......"",.....-..:Lf'i'OI;IiI:....._ .... ,.. .......
...n~'..~ ..KAIW·.,.".flli."'(~~-

STk£Ati GENt:RAIORS FOR TUI:: AIJl OrERATOIlS	 261 

F.2.2.22	 Ucloy - S,-l+V or -ltS,V 

Thla will be graphed ~. 81.~le ecce•• to enlire vector with Bcaler 

~eference to header. 

F.2.2.l3 Select-tndex - A(V/lpA} 

Thll11 conatrucl 1.. compiled &8 VIA. 

f.2.2.24	 SUcccllldor - 0 

The two entry points are Overlayed. TIle rl~ht to left order of 

sub-grapha 1. prese[Ved within'and between the sub-grapha of tbL two 

ope-cando. 

All	 other dyadic operation. are cOllsidered to be function calla. 





EXAMPLE STkEAH GENfRATOiS 2bl 

APPE.NDIX G
 

£lAHfLE STREAM GEN~RATOBS
 

The stream geperatoca and final obJ~ct code for the e~~wpled of Cbapter 

~ are g (v~n below. l"or all except example 1 Duly the final stream 

gen~rator grapha are Includ~d below and th~y have been edited to remove 

all parse tree node labels not essential 10 ahowing the structure of the 

generator. Eacb stage of stream senerator development 18 presented for 

eJlawple 1. 

G.l EXAHrLE 1 - PRlH~ HUKBERS 

The expression S.-1/2~ t I[ 1]0;:.( ,N)".I ,N will calculat&! the Dumber of 

primes less than or equal to N. 

The tltreaa generator for thl. ellpre8810Q lal 

T

----\ 

p/nl .... ". 

G:-::j 
The objeet code pro~uced Is: 

LADDEIL 1: (T (l) 0 j 

IEPEAT(TI2J OJ 
Till-III,II; 
IlEPEAT(TI4) 0=(1(1,2) IT(3)). 

T(2() (4) ...t (2]) 
AT 2 USING 1; 
T(ll 1(11+(T(2)=2)) 

AT 1 USINC 1;
 
EVOKE 0)
 

which complies 10to 11 fOP-lO instructions or 16 ladder in8truction~. 

For N - 10, the expression performs as follows: 

Array Element ReferenceM Temporary Storage 

Naive lnte£preter S10 220 

IIP-3000 Compiler o o 

Stream Generator o o 

- 262 ­



EXAMPLE S'fRI::AH GlNERATORS 264 

G.2 EXAMPLE 2 - ROHAN NUMBERS 

The expre•• lon R4( .(1pS 2)TN)o.2:t'I)/."lt 7p'MOCf.xVI' cooYerts an Integer 

(N) 10to It. represeotatlon 10 lo.ao nuaeral.. TI,e strea. lenerator Ie: 

"1 ••".,11 lit. l'~u • r11'''1 tL,.,Ll 

\ 

, 

"G=~4:)
 

The object code produced Is: 

LADUER l:{IN IS IN T(I) 
INIT 1.2; 
T (21 T (l'J; 
R£PEAT(TIJl (PIIlJllt(2J; 

TIZ)-l(T(llt(PIIIIJ); 
T ( 4 J.- ( PI (21 J; 
REl'f-AT(T(5J T(3J~lllt2J; 

1(51-·> EVOKE 2) 
AT 2 USlNG I) 

AT I USING 1 
HOVING I, 2; 
RIIOI2.1) 1(2.1)+1; 
EVOKE 0); 

LAUDER 2: (lNIT ); 
REPf~T«(rl(]JI T(41; 

EVOKE t") 
AT I US HU; 2 
HOVING ]) 

which compiles Into 68 PDP-IO in8tructions or 31 ladder inetructions. 

When the result ~ontatn8 7 characters, the elCecutiou of this expression 

requires: 

EXAMPLE STREAM GENERATORS 265 

Array Element Refereoces Temporary Storage 

Naive Interpreter 273 74 

8P-)000 Compiler 165 70 

Strea. Generator 28 

G.] EXAMPl.E] - J cnOOSE N 

The. fuoctlon 

D+ J CHOOS€ A~B;C;N 

(1] N··t"1tp.4 
{2] 8~(N.N-J!N)p2 1 ~t 2 2 a_«,N)SO.=,!l·.vA 
[3] V~21B
 

(~] C+«,pV)=V,V)/B
 
[5] V+{{J+l)=+![t]C)/C 

takes as its argument A a boolean matrix each column of ~htch has J 

eleaenta equal to 1.. Each column Is unique and together they &lve all 

the ways of choosing J ele.eota from N. The output of the function D Is 

the ea.e iaformatlon (or J+l. The etrea. aenerator is: 



EXAH1'tE ~TkfAH Gt:tn:RATuRS 260 J::XAHPtl:; STltt:Att Gt:NU~ATUMS lb 1 

--, LADOEI l:(UHT 1,2,1; 

I
u 

8 REPEAT(T III 0; 
RErEAT(t:VUKE 2; 

T(I) (2 111Tll)-fT(2); 121BI 
(PI 1411_T(2) IT_' 

AT 1. USING 1 
HOVING 1i 

&2 IPl(2jJ Tllii IV'. '''1 [J"'Y.l~\J ( o., .•~ (0"0'1' or, "1 V, ... -" .... G~~ Till 1.- ­\'-2C~----1__> I --- > ­

--]
RUO(2, 2) 1Il,II+I. 'upV' 
Rt::Pf.AT (114) «(PI11));;'((1))A111); 

1(4'-.>(1(3) 0;T(51 1(2,2)) 'l' 
Al 2 US 1NG 2 - ­

HOVING 1.
(~'-~ 1(4) T(5)~lll.l); ,(,pV)=I 

'[(41-·> EVOta: l) 
AT I USING 1 
HOVING I, 2, 1; 
8"0(4.11_1(4,1)+1; 'paa' 
EVOKE 0); 

LADDER 2;(INIT 1; 
aErEAT(T (61 111,ll; I.N' 

REPEAT(REP£AT(T (1 I_I (3,3); 'IN' 
T(21_(T(6j=T(1])V1PI(3jl;

The object code is: EVOKE 1) 
AT 1 USING 1 
MOVING ) ) 

AT 2 USING 1 
HOVING l) 

AT 1 USINC ) 
HOVING l); 

LADDER );(, (J+l) IS IN 1(911 
UUT 5. 
kEPEAT(T(8J 0; 

REPEAT Cf 1MI (PI (5)) ...1' (8) 't-/e,
 
Al 1 U:iIN{; 4'
 
HUViNG Ii
 
T 181_ T lij) ::1'(9).
 
1(8J -> EVOKE 4 ELSE EVOKE 1)
 

AT 1 USINC 4 
tl0VING 5; 
RUO{5,11115,1)?I); 'pal' 

LADDER 4:(INIT 4,6; 
RE~EAT(REI'[AT((PI (4) )_IP I 16) I) 

AT 2 U5lUG 5 
HOVING 6."'. 
EVOKE 1) 

AT 1 USING ~ 

HOVINC 6. 4) 

(~'3'\ .11 

wblch coapl1ee 1nto 206 PDP-IO instructloDs or 96 ladder InstructioDs. 



2b9 
EXAHPLE STREAM GENERATORSElMlPlE STREAM CENERATORS 268 

farae tree~For H - 10 end J • , this function requires: 
() 

ap 

Array Eie_eRt References Te.porary Storage ---~---------ae- o 
ao 

~alve Interpreter 7.118.S18 271,200 
ad ------..__ 08n 

UP-lOGO Compiler 6,5)],604 SO, 400 

al af ...... C ac r L+ II, 
Strea. Generator 6,414,660 2,530 / 

ql\r p'" 1 ll~ k.)l.p
ak /+ eh ",./[1]Figure C-l which follows shove each atale of the develop.ent of thle 

,~0.8 J/ I0" 2result. a J a1 as ,C z 
N.N-.I!N 

2 ? 3~v,.v hYlP U"V 

1/"'•. vX 'V 

(f\,.'Ae 

d • :L 
Const.l"ol\\t Propagation and Operator Conversioo: 

'. 
~~{2-31 (partial ravel)It.: =9 

"0·"N.NKJ!N 

Idiom Recognition: 

=? 
'~: I'OnW:Xv 

and 

'~ 1PV 
z: 
'~ =) 

"'V 
f1lqre G-l - Example 1 



-----------._._-------


EXAHrLE STREAH GENERATORS 270 EXAMPLE STREAM GENERATOaS 211 

Stdgea of Steed. Gc"~r.tor Creation; 
(active sub-graph at each step only) 

r ---­
ffZ "" -."
~~~) 

i!.b';J

I__...:L.-.-.

(fl .1 ,~.v~~
_-r--~I

I
}

~
(~1 '4.~-,-;)

e·

f.

(0
I

--------~---(~~

c·

Q~~ --~ .1 " •. ~"'1

l ·l .. ;. 4 J

po: (~~)

,..--_L
S·'·~·~

/._~__----i __---­

(''''.' "1 '1· ...' a'2"'~'-­ .. ,
---/

y~
aa~ a~

/ ,
,I ,,

~

,

/~.

wbere

r: (0
r-__~l__~Len...,....)
r-~

" lor 1 .: r 1. th ~', •. n ~ Ii'.::'. \,' Iii 1)

"--­ .,.'

.:

'l.bY
9; l __
~--,j ~'d.-.,l~
~.l __ ~

-]._----_.~--)---­ -
(U>. c.~", .:1.1

9,;' Ii,: '-l ~_ j

------=.l-_~

~.,.~

(...:::=:-)
o

(::-:-'--1:-.'" .g~
'--- .. ----:.1-----------' ,

(-:-::-::~ ~·_=~~~,-~·'L
~.. • I~""'-

---------~ - -.-­
where" D-''''... .(2-3]::9

~" az R aq~:~l]

lJ 91 "1 _, ,,:s.~,d

i : {J. r.. d}

/--~]=---
~l.: "q ••. 'j] ., H'')

-----,------.-./ ____L _

~~
..----- ------\

G
L

(~~ --))
~-~

, G~
------~

to reflect c~eatlon of T a~ storage for Decode (reJucclon)

to reflect creation of S a& storage for S~lf Index (reduction)

w": (?)

(:::~:~:::: .:,-;.-,~
"­ ---'1.
C"'Y".U'''.'~

___(£_ ~2__
l ~C.l -0;.'1) ~KIP , •. t· .;.a~)

1
'\ .

",., S'l' '. ""1)' '1-1,... a' ·1' ...)
~------./

w' ...

all '~L: I.YVH

abo 0
__--.:1-----.

(., "." a. ~)

(.•: 'I :··2)_u

:;~L' INDEX ;;":-7
V

where

to reflect cleatloD of te.porary storage for ravel

fisure C-l - Example 1 (cont.)
'laura G-l - [xa.ple] (cont.)

213 EXAMPLE STR[~~ GlNERATORS 212 EXAMPLE STREAM GENERATORS

ad: C? (~

E:~ '"' C':'" .",.,j ~
,.".~a) , \ ~'=~~~

'·2'-'·' 0<7 C,.", .':J ..~(.,, ..v~._---~-'-~~

all~._Ci2 ____ al:_~ /~ "'

C_~::.'v' ~ G:' u·,,) (. .../... C'".C,

(",~.~~, ('7') • V.I (a"'l UI4'. 11002 C' 2)' ,e2

"--------~-

where ,axah ... '\ ./(1]

',,-,
BV /U aV~~~~l

",

to reflect creatlun of U 88 sto~age for Reduction

0
/

00:

J__ __' -~.~ . -~
{."1'''0 ~ (--- -,

(
S-..IP C'~_ I ~Cl\ . I 'n, p..) .C .•u•)

~_.~:...'.. (•• " .'. I I ,-----' ,

'i1(lP C' '2."d)

C·--'~~:.~~'-~~~'-D~.~ C",. ::'~U:::~-:}--
__ a, ~'C:" 2.·~al ,,--- --- -~_/

the fInal graph (or ap has the graphs for 80, ah. ad, W, and r
a8 Bub-graphs. (Some reBult labels will have been re.oved fra­
generation Bub-graph by lo-line aS8ig~ent demon.)

Figure &-1 - Exe.pIe] (cont.)

Ceoeration/Use Graph

crv

V \M

"'.C ' '.8a'. ,.---Ia~--

uQC I

ad: preference conflict ­

ao: preference conflict ­

-

ah: preference ­

clhdnatlon of repeated lise ~d

wi th h,1'I log Ct1rnpl e ss Jon a ff t!l: t

d tnlcoS ton •
cilmi nat ion of repcatc(t us..:! of
priority and ad Is rc-ord~r""d

elimination of repeated tlse of
with having compression affect
dimension
elimination of repeated use of
priority and ao is re-ordered

reduction should affect lowest

r: preference - reduct Ion should affect Im",.'st
- r Is re-ordered

w: pre fe rence - reduction should effect lowest

T c'1uflJcts
h""lv("st

T has higher

U conflicts
lov~st

II has ht,&her

dict.>usl'·l1\

d Imenston

dimension

There is nu conflict between nodes '11th an order pref~rence. Testing

possible orderings for II reveals that,if • Is re-ordered the graph lDay

be overl.yed to have the following fora:

figure G-l - Example] (cont.)

............ --....... r'•."..__ ~'MIIJ,,_~.....,~.....................,.........,.......~~.....II.~..~~4~:........ ...,~..... _

ElAHIJl.t: STRt:AM G£NERATORS 214 EXAMPLE STREAM GENERATORS 21~

';T ;;d
III	 ~ ~ dl G.4 EXAMPLE 4 - SYMBOL TABLE UPPATE o	 ~

•< n
'Un	

:r ...
tT n	 a: --­..	 v}
D	 ~ :J Tbe function
:I	 I» (a OQ jli:j ~ i ~t :~ -0cr
o
Ii	 ~ ::J

[J 1-<.....	 til n	 :J SfM Kir"	 ::.J c P­
Q
rt	

o Q.. [1] r.,--Xt::A

n D o
g.	 I If : f

rD	

I}
A. I" I	 (21 Ai A• r/ .X

" -= n I 2 n:
..., Ul

:J ... I ,. I
o • I .	 [3] Bt(8.f/.O)tX=A

" ...	 It n
:T

I I
CIQ < :T rt I
,.,

Q
::r Ic:	 l» dl I t

uae& alobal variables A anJ B which are r~6pecttvely a Y~ctor of tiin~le
-a Q III

II	 tJl "o n '---	 r:o	 Dt UJ X AI rl, /~
I	 n :::r n

o S
II	

character sJlDbola and a count of the nUllb~[' of til:l~8 ~ach &ytibol h.lS

III rt

III II It
 been eDcounter~d. The fUDctloQ .flu.eot X Is a character. It will beo	 n S~	

It

c:

c:

; ~ 0 iJ:.- j l- (:)
....	 ... -g" t ("~	 I';~ n o '1	 t appeDded 10 A if (equjr~d and the .atchlng itea of 8 will be updated or"d ;s lit,.... • &

It o C)
I	 created. n,e Mlream generator 1a:

.-j
o	 ~ ,I o OQ

n n­ A­

'<"

....	 ~"'D: (l-~-}'-""-"~o O n	 I
:I CIa

<
I	 n --- n _/~\.CI

n" '1
"• I	 : ~ v,

I::I	 nJ ,
0"	 :z I ,

III	 I

,....
., " I
. '-'"

I

,	 •
QQ MIl

L
I

Ql	 :J .. ,..... ~ I
II:l	 " :T • I'1	 to"'" o,IQ.

W ,I / _----A

51 M a
......	 ... o

I ~ ~ /
I ab(Ct-' .01-' Al)' tu -----~ (:••'Al.Sl.Cl••••• '~."~)t""

("B
I~ '0

QQ	

•.... .:) \ _/
l' ~}-(~ ·:'1-{:11-0)

The object code 1s:

"	 I ",\ ,_,,';~J"' I" :f~/'	
~

/l~ -- ~ ­I	 (30
I	 / u

@-&f}-B ~)._{){}~

217 EXAMPLE STRf.AH C~N[RATORSEXAMPLE STRf.AH (:EtH RATORS 216

LADDER I:('X IN T(I)I
liB T I, 2,). 4.
tl21 0:
REPF.A" r (II' I 11) J '1'((I I J &

T(lI IPIIlJJ=TlIJ;
(PI(4Jl v IPI12))+T());
1121 T&21 Till)

AT 1 USIN(; ...

HUVItIr. t. 2,). 4,

Plill v((1ItUEI:rAIJ.IJi

PI 141-r I t4 IIIH. LTA(4, l) ;

1\£1'[1\1 r[(2 J -> Evon 2)

Al I USIN(~ 2;

Rno I). I) _I 11, I)

Evon: 0).

LADDER 2:('0 IN T(1I1
R£. rEAT (fl) I (3)) T (I) ;

("(f4) .-t(1) t (1 (I J=IPIll) J) :
[YUKI: I)

AT I USING J
tIUVIH(; l, ,.)

which complies tnto 85 PDP-10 InBtructlona or 48 ladder Instructions.

Wheo " has 10 "ie.ent. and I 1•• new element, thl8 function requires,

Array EJe.ent References Temporary StoraBe

N~lvc Jnt~rpr~tfr 137 22

111'--1000 Compiler 101 11

Stre~m G~ocrator 42 o

G. S lXAHt'I.E S - STR 1I1e SEAR(:11

The two 1 tile APl. e.p[,,(~89toO:

P.·(B[C- .• -l+IpA1A.=AlIC <> C"-(8=.lttA)/,pB

l!tcarchee • 8trlng B for occurrences of .tl'Ing A and pUla all .tartina

p081tlOQ8 lnto D. n,e strea. generator 18:

__Ul .,....) _ \._=-=

r= 1~"1,8(C']),(Al

"'-... ,.r

The object code Is:

LADDER 1:('ltA IS IN T(lll
IIUT t;
REPf..AT(TI2J 1 (l,l) i I,pS'

TIlJ-TII I:::(PI (1) I.

T ())--> EVOKE 2)

AT I USltlG I

HOYING .;

RUOll.lJ__1 (2, 1)+1:

[VOK}: 0) i

LADDER 2:(INIT 2.).
REPE"t('f(1) I;T 1/.1 0;

REI' EAT (T (5 J-'f [2)+I (2. 21-1; ,. -1 t l fJ It,
PI(2) Pl(2}"C(2.1JJ(T(SI-T{4})i
Tl)1 TI)) A ((PlI2)J:IPl(Jl)))

AT 2 USING 2

HOVING 1:

T(ll -> EVOKE 3 ELSE EVOKE 1)

AT I USING 2

HOVING 2. 1;

RHO() •• I 1(3.1)+1);

LADUER): (J NIT 4; ~-

REPEAT«(Pl(4)) T121:
EVOKE ...)

AT I USING 1

HOYINC 4)

which complies Into 110 PDP-lO instructions or 54 ladder tnstrllcttQns.

When A 18 10 characters long. its first character occur. 10 times In

which t. 100 chat'"actera Ions. and A occurs once tn a. the e.pu~88Ion

- ~~~-~ _.... - -- --__.......... ~---_.----...........	 ...~,..~~~--~- ..__._---~--------_--...- ~~

EXAHYLE STIlEAH GfNEIATOIlS 218 ~XAHrLE STREAH GEN[MATORS	 211j

require.. : iilac cue t Ions. Wben tbe 1oput. are 10 by 10 ma trices. th i 8 express 10n

require.:
Array Ele_eDt References Temporary Storage

Naive In(e(pr~ter 1181 210 Array Eleaept References Tempor.ry Stordge

UP-3000 Compiler 9~1 210 Halve Interpreter 6~O 200

Stream Generator 101 210	 UP-lOOO Co.piler 100 o

Strea. Generator 100 o

G.b EXAMPLE 6 - SELECTION

G.l ElAHPLE 1 - TRANSPOSITION
The AI'l. expre•• ion A.·~ ~t8-tC.D which was used in chapter 1 to introduce

multiple array ladders 1. translat~d into; The expres8ion S..-x/t/[l]AiB which was used 1n chapter) to show the

importance of fe-orderiug calculations .8 traDslated Into:

"0 A~ ••••8 0.=:0 i
CJ hl(Al.~'.)... '--l

./

(~ "2 ~2.· •••, •••cz· •.oj	 .=r
r-h.... (Al'fj- \

0
',,--- L)' t 1)

The object code 18:

The objecc code la:
LADDER 1: (I NIT 1. 2,),4;

REP[AT(R[PEAT«(flllIJ_IPI'2)1+(PII)I)~IPI(41)

AT 2 USING 1 LADDER l;(INIT 1.2.
HOVING 1, 2, 1. 4) Til) I.

AT 1 USING I REPEAT(Tl21 O.

HOVING 1. 2. 1. 4i
 REPEAT('f (21_(IPI (1) It (PI (2)))+T (2)

EVOKE 0)
 AT 2 USING 1 tWVING 1, 2:

T ll1 T 121-1 (l))
AT 1 USINC i HOVING 1, 2i

whIch wl11 compile toto 45 PDP-I0 iDstrucclon8 or 25 ladder 'S IS IN T' 1J ,
EVOlE 0)

EXAMPLE STREAM CENERATORS 280 EXAMPLE STREAM GEr~ERATORS 281

which complies loto 18 PDP-l0 instructions or 20 ladder in8tructions. LADDER 1:(1"11 1,2,3,4,5.6
T(2J 0;

When the Inputs are 10 by 10 .atrlcee thla ezpre•• loD requires, llEPEAT(T (l) 0;
Rf.PEAT(TI2) (PI (3) J"IPI (4));

(PIIIIJ T(2J;
Array EIe_eDt Jefereoce8 Teaporary Storale T(1J_Tr"2)Vf(lJ)

AT 2 USING 1
Nal~e Interp[et~r 420 110 HOVING I. 1, 4;

T (I) -> [WKE 2 ELSE EVOKE l)
UP-lOOO Complier 200 o AT I USING I

HOVING I. 2,);
Srrea. Generator 200 o RllOI).I) 113,l)"';RIlOI2.1I1(2,l)-""

EVOI<E 0)-; ­

LADDER 2:(1121 -> Pl(SI YI{ll}tDELTAIS,l);
T [21 I; -­

REPEA-r(RU'EAT((PI (2) J (PI (5)) "(PI (6) 1)
Ga 8 ElAHPLE 8 - FII.TERING AT 2 USING 2 ­

tlUV1NG 6, 2, S;
EVUKE 1)

Tue two llDe eKpres8100 AT I USING 2
HOVING 6, 2, S)i

LADDER 3:(1(2) -> PIISI PI(~J+DELTAI5,I];
B,,(vIAl/[t]EVA 0 A+CAD T12) 1; ­

REPEAT (RlPEA'r(o)
AT 2 USING)

which was used 10 chapter) to introduce the use of co-routines t. HOVING S;
EVOKE 1)

traDal.ted tnto: AT I USiNG 1
HOVING 5)

which co~ptle8 Into III PDP-IO Instructiong or 14 ladder lnstructioos.

'When the inputs are 10 by 10 matrices and 5 roVII survive, this

expression requires:---1----0 ~T-0 SKI' £1. th("".".E''-''. -.'1 (It .,<o"c",.o,,-,., _

Array Element Ref~rence8 temporary Storage~--[~-r:
NaIve Interpreter 870 210

SkiP £1'''£1 IIP-lOOO COllpller 710 210(1~.~~~".' "~:) C::~.., 1':'" .o~'0

Strea. Generatot' 450 10

The object code Ie:

[lAHflE STREAK GENLRATORS	 282 ElAHPLE STREAM CEN~RATORS	 283

G.9	 EXAMPL! 9 - HERCINCi which co.pilca into 8b PDP-lO lnat['uctloott or 41 ladJ~r instructloDs.

~\en I 18 a 10 by 5 matrix and C and Dare 5 by 5 matrices this
The eJtpreJuJ ion S. 1" / t /8.C.[1]0 "'h teh was used 10 chapter 1 to delaOnBtrate

expression ['equlresl
lbe ueed for .ultiple neatlng Is trauslated Into:

Array ElemcDt References Temporary Storag~

Halve Intecprete[' 320 ibO

liP-lOOO CompIler 300 l~O

Stream GeDerator 100 o
~~l(t'l' .itl) -,t'l	 • ..- Jl (t01- +"'1)' ttO 1

/
- - ._--_._­

CJ/·a:~.ii;.!)

nle object code fa:

LADDER l:(INIT 1.2.).

TUJ Ot
REPEAT(T 121 0;

REIJ f.AT(1 12'_1 P I (2)) ..-T (2 J)

AT 2 USING I

HUVING 2;

Rt:fEAT(T 121 (PI (l))+1 (21)

AT 2 USING "2

~lllVI:oiG 1.
Til 1_1 (21+1 (11)

AT I Util~G I
HUVING I. li
Pl (I)_PI (I) to EI.TA (1 • 1J ;
REPEAT(I(21 o.

REt-EA-r (112 t JPI (lll+T (2)
AI 2 USING i
HOVING li
RlI)£AT (T 121 (PIUII ..T f 2)
AT 2 USING '2
KOVING .J i
Till T (2 J..T tJ l)

AT I USING 1
HOVING Ie li
'Till NOW HOLDS SI
EVOKE 0)

285 BIlLlOGllAPiIY

BIBLIOGRA'HY

I) Abea•• , P. S. I "An APL Machine", Stanford Unlvera1ty Co.puter

Science Depart.eat, a~pO(t STAN-CS-l0-158 (1910).

2) Aho, A. V. o Ullman, J. D., nleory of Parslns, Translation and

Compl~, Prentice-Uatl (1972).

1) Ashcruft e E. A. o "To\l3rds an APt Compllel'tt 8 o.:pt .. at Applied

Andlysls and Compute~ Sci~nce, U"lverslty of Waterloo, Report

($-70-01 (1970).

41 ~au~ 1", A. H., S.:ul, II. J., 'IUoes APt Rca 11 y Heed Run-t tIDe

Lh~cldH~IO, Saftwarc:-I'ractlce and E:Il:perleru;e, 4()129-138 (1914).

sa Biloftiky, U., uPOP-IO UI1'12 ll~fe[cnce Manual ll , Dept. of Co.pule("

Sciencc. Yale University (197).

b) Burge, W. U' t ~Jvc f!~allllDlng Technique!.. AdJlson-Uesley

(197).

11 Breed, I.. H., l.athwell, K.U. ll ul1le Implementation of APL:l60" in

!!~!.E!~-!.'vc ~~~ !~ ~Cllll~t ~!~ Mathematica. H.

rlercr and J. R~lnf~lds editors, Acade~lc Press (1968).

8) Uolult= 1S, 8 •• liVe ry lUllh Le'lel Opt !o.t loll tun; Dcsign of an Opt tllll&er
fOI- ArL", l.abor.uury for COlDputeC Scl<'llce, Kctiidilcllusett8
)n~[llut~ of Technology, t~~81~ p~oposaa (1~16).

9) Gech.u(, S. L., "Verlftca.tton of Al'L I'ro~["&I!:Iu~ nept~ of cou,pute~

Sclt.:llce, C.:lrnc~le-N~llon Unlv-crslty, Ph.D. thests (1972).

10J (;ulbd.:i, l. J •• UY.Jtt, U.K•• "t;owpUation HInd Dtduyed [valuation to
APV', Confe renee Record of the Ft f th ACH tiyulposlum on
frl"ctpl~. of r[ogram~lni Languagcu. Assuclatton for Cowputlog
H., chI nc r y (I ~ 7&) •

Il) Ua~slt[, A., Lyon, L. E., lOAn APL e~ulator on Syutcml10". I~H

Systems Joutnal, 1~(4»)58-J7~ (1976).

- 284 ­

12) Jenkln., H. A•• "Traoalatina APL - AD Eapl~lc.l Study", Proc. of
the APL 1~ Conference, PI •• Italy, June 191>, SIGPLAN Technical
Comalttee on Art (1915).

III J\lhnaton, B.. L., lI~wlett-r8ckard Co •• Palo Alto, Cal Horu!.,
perdonal communtcatlon (1911).

141 Jones, H. D., Muchnick, S. S •• "Btnd tOK Time Optt•• z,,(Ion .0
Pcogc,*illwtnj l.angu01S6:S", Confcrt:nce llt!corJ of the TId rd ACH
Sympos tUII Oil Pc Inc lples of Progra.... lng Lanlu.ageZl. !steoe lat 100
foe Co....uttng Hachtnery (1«;116).

1~) laplan, H. A., Ulillan, J. A., itA Gcuerdl Scheme for the Automatic
Inferellce of Vartable Typeti", Conference kecord of the Fifth
ACH SYlAposlW1 00 '1'lnc lplea of Pfogcalumtll& laUgU.lg~8,

ASljoclattoQ for Computing M.Jchlncry (191t1).

16) HcDoonell. E. E., "Th~ Caret Functions: Efficient Algorlth~d for
the ScanB and ih:duct 1008 of t:lght tioolean t'unct loosn,
Procedlug9 of the 51.th International APl U6ers CO"fer~D~e,

Analudm CA (1914).

11) Hinter, C. R., itA Uachlnc Dcalg" for [fflclent Implcwentartol1 of
ArLit, Dept. of Computer Science, Y~l~ University. Rcsc.ardl
R~port 81 (1916).

18) Ht tclh: I, J. G., "TIle DeslgQ and Conal cucllon of .·l~a: Ib Ie and
Efficient Interactive Pl"ogrdlUUlilng S)'utCInS". J)cpt. of COU,pult:C
Sc tence. Carneg ie-He lion Un Iv~rs I t y, rh. D. thc~ t::/. (1910).

19] Peclls, A. J •• "St~pa Toward an APL Complier - Upd~t~du. Dept. of
Cuwput~~ Science, Yale University, Research Rc~art 2~ (1915).

20] 'eells. A. J., "In Praise of Al'L - A tc1uguage for lye lea.l
Programilling", SIAM He,,~, lOt l) (1911).

211 P~rl Is, A• .I., Rug"ber, S.... r~e AI'L Id lOll Llat"I, Dept. at
Com~ute[Science, Yale Unlv~~81ty, Research keport 87 (1911).

22) lyun, J •• Burroughs Corp., persaudl comcunlcatton (1911).

2)) Strawn, G. 0., "OoeB API. Really Het:!'d Run-tlllle Pan,lni'"
SoftWAre - rtacllce uod Expectence. 1 (1911).

24) Zakat, I., uA HlcroprogtdllUlled Art JQlpl~lIl~ntdt100". ~pt. of
COlllputcr ~clence, Unlv. of Calif., Berk.eley, Ph.D. tt.esle
(1'i71).

2~1 lronM, E. T., Yale UnlverMity. personal co~ulllc~tlon (1971)

