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ABSTRACT
Tentative Compilation
A Destga for an APL Compiler
Terrence Clark Miller

Yale University, 1978

The programming language APL has obtained a growing following. MHuch

Tentative Compflation:
of tts popularity can be ascribed to tts tetseness (complicated acte

A Design for an APL Compiler
can be described briefly) and composability (complete algorithms may
be cxpressed as a single unit - the one-liner). However, the user may
pay 3 high price for these features tn teims of fnefficiency of
execut loa, particularly in terms of memory space required. This N

disserration describes the design of a compiler for APL which

sianificantly lovers the cost of APL execution.

A Dlosertation
The desigon includes a uwotatfon with which the actious required for the

Presented to the Faculty of the Graduate School
excecut ton of the majocity of the APL operators may be expressed.

of
Transformativns are applied to the prograw expressed in this
Yale University
fatereediate notation. The transformations re-order independent
in Candidacy for the Degree of
calculationy for a glven opetation, and intermix calculations for

Doctor of Philosophy
suveral uperations. The inteat s to produce an intermediate resule

only when 1t 13 needed (thus avoiding storage) and only LE it
contributes to the flaal result (thus eliminating wnecessary by

calculattions). Exawples show that significant saviugs are obtatned. Terrence Clark Miller

May, 1978
The output of the coupller 19 expressed fu terms of "laddecs” - a
control structure designed by Alan ferlis to slmplify APL executtonm.

The cumpllier can generate code for the "ladder wachine" designed by

Chatles Minter.
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CHAPTER |

INTRODUCTION

1.1} THE PROBLEM

The programming language APL has achieved s growing following (mostly
outside the computer science community). In this thesis we present a
design of 3 system for executing the language which attempts to
alleviate some of the difficulties that have been cited as limiting the
continued grouwth of the language. In particular we address the

folloving problems:

l. The interpretative execution of APL programs can be slow compared to
that attained with programs cowpiled from languages such as FORTRAN

or Algol 60 [12].

2. APL functions will often generate large arrays as iIntermediate
tesults on the way to a small array (or even a scalar) as the

answver. An example of such a function is given in chapter 5.

3. The style of APL programaming moet efficient for an expertenced user
(full use of the power of tha errsy operationa to ellminate explicit
coutrol structure aod leprove brevity (20)) tende to worsen the

problems listed above.

- 18 -~
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4. Current ifwplementatfione which process functions on a line by line
basis encourage the use of long lines to achieve efficiency.

Readability euffers.

The environment for which the compiler 1s designed is that of a single
processor whose instructions act on individual data {tems only. It has

also been designed to be most useful fu efther of c¢wo circumstaances:

1. When APL i@ used in 8 production situation, a given function will be
executed repeatedly. Thus the cost of compiling the function (cven
1€ high) will be offset by the savings in execution time. Also the
fnput arrays will tend to be large in such a aftuation. As the
execut{on time rises, the significance of compiler overhead
diminishea. Whea the outer-product operator is used 1o place of
explicit looping, the size of the jntermedfate results will often be
a power of the slze of the input. Given large Inpute, actual

storage of such intermediate values {3 not feasible.

2. At the other end of the scale ia the small personal APL system for
which storage space 18 the critlcal resource Lé;(l. Many functiocas
can not be executed {f ifntermedfate results must be stored in
memory. The storage required for the more complicated APL systew Is
not of comparable fmportance. 1t can be In the form of read-only
mewory which is of much lower coast. The user of such a system 18
also In a better poaition to tolerate longer execution time. (When
all else fails, you take the system home, and key in the function

just before going to bed).
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1.2 PREVIOUS WORK

Curreotly available fmplementations of APL have attempted to solve some
of the probleme mentioned above. In the sections below we describe

remalning veaknesses which motivated the desigo of this thesis.

1.2.1 Simple Interpreter

The original fmplementation of APL {7) and amany that followed were
laterpreters which execute each operator separately as encountered. All
intermedfate results are stored in memory. Great speed fmprovement has
becn obtained by the fine tuning of the routines for various operators
and by the recognition of short special patterns of operations [22].

Our deslgn aleo recognizes a emall number of special patterns (which we
call "fdioms"). Hovever, as {s shown 1n chapters 3 and 5, the reduction
of temporary storage may require Interleaving the individual
calculatione of a sequence of operations. From the examples presented
ta chaptec 5 it {s clear that the sequences of operations which can be
profitably interleaved are too long (and thus too numerous) to be

recognized as speclal cases.

1.2.2 Translation Into Algol

Jeokions {12] fmplemented a tranelator from a sub-set of APL into Algol.
He vas forced to reatrict the language so that cowpilation could take
place before any data was available, and so a compiled module would

alvays remain valid. The features of AFL which present difficulty in

INTRODUCT ION 21

that regard are discussed in chapter 2. While the compiled code is
significantly faster than interpreted APL for scalar calculatlons the
advauntage almoat disappears for large arrays. Jenkins did not
investigate the reasons for the inefficliency of array calculatioa.
However, experience gained in this {mplementation suggest that it
resulted from sequentiai execution of operators which require large
amounts of temporary storage, and from the cost of array element address

generation.

1.2.3 Beating Aod Dragging (Interpreter)

In his 1970 thesis “AN APL Machine"” [1) Philip Abrams itnvestigated the
semantice of APL and developed two techniques for lmproving execution

efficiency. They are:

1.2.3.1 Beating - Abrams recognized that a eet of operations he called
selection operations (Take, Drop, Reverse, Transpose, and
Subscription by vectors of the Form A+Bx1() could be fmplemented by
changes to the parameters used to generate array item addresses, and
did not requivre actual creation of the result array. He also showed
that ean expression ia which a selection operation was applied to the
result of certain operators could be transformed so that selection
(which may decrease but never fincrease the number of elewments) wvas
applied before the operation, possibly reducing the number of

calculations.

1.2.3.2 Drag-Along - Abrame’ interpreter deferred execution of

operators as long as possible. Possible meant:
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I. The value was not required for assignment to a variable.

2. The function mapping position in the result to position in the
input was simple (ie. Crade-up was not deferred since the

function would be "sort").

3. The calculations for each resultant array position were

independent.

This resulted in savings of atorage of intermediate results and

improved opportunities for beating.

To a large extent the work of thié thests i{s an extenslon of the work of

Abrams. Three weaknesses fo particular are addressed:

l. An Abrams fnterpreter will always store the operands and the result
of certain operators, even thought it {e possible to defer them in
wany cases. The operators fnclude Compression, Expansion,
Catenation, Rotation, general Subecription, Scan, Encode, and

Decode.

2. Function lines are processed independently. We will see in chapter
5 that feportant storage savings can result from the elimination of

variables that are used oanly to carry a value between two linea.

3. Even if assignment occurs in the tnterfor of a line, it 18 never
deferred. No consideration is given to eliminating storage

specified by the user when he recognizes a common sub-expression.

The elimipation of user specified storage requires analysis of the

INTRODUCTION 23

entire function to verify that the data i3 not used elsevhere. That

analyeis would not be feasible for an {nterpreter.

1.2.4 Beating And Dragging (Compiler)

The APL for the Hewlett Packard HP-3000 Il computer is a compiler [13].
In contrast to the approach of Jenkins, no restrictions are placed on
the APL to be cowpiled, and no declarations are required. Compilation
te deferred until the execution of a line is required. At that tlime
properties of the foput data are available to guide compilation. When a
line {s executed a second time, the properties of the nev tnput must be
inspected to verify that the previous compilation remains valid. This
techufque, which has also been described by Perlis [19), I8 an extension

of the concept of incremental compilation as described by Mitchell [i8].

The existence of the HP-3000 compiler s important to the work of
this thesis In that 1t disproves the contention {11] that APL can not be
compiled. However, it shares the limftations of the ioterpretative
implementation of Abrams work. The compiler does not conslder wore than

one line at a time, nor does it eliminate user specified storage.

1.2.5 APL Emulator

Significant speed Improveamcnts over an interpreter may be obtalned by
writing wicro-programs to directly execute some of the APL operators
(for example [11}). However, this approach preveats the ioterleaving of

operations required for beating and dragging. The ewulatar will still
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perform all the unnecessary operations done by the interpreter, only

faster. Also mo reduction in temporary storage is possible.

1.3 A HULTE-LINE COMPILER

The design presented here 18 an extension to the HP-3000 APL compfler

which differs from that eystem in the following ways:

L. When a function is executed, the compiler will detersina if several

lines can be complled together a4s a unit.

2. The execution of a larger class of operators (including assignment)

can be deferred.

3. If the definition of a variable {8 active only within a single

comptled unit, the elimination of that etorage will be atteapted.

la order to lower the frequency of recompilation and increase the size
of compiled units (both become more Important as compiler overhead
increases), restrictions are placed on the input language. They are
detatled fu Chapter 2, and are less severe than thase proposed by

Jeokias. Chapter 2 describes the compilation procedure.

In common with the HP-3000 comptler, this compiler wnkee no attempt

to do mathematical analysis of the users algorithm.

The object code of the compiler is the description of a network of
ladders ~ a control structure consisting of neated loops counected by

co-routines designed by Perlis {19). The ladder structure wvas designed
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to facilitate the access to array elements and the implementatlon of the
selection operations. Chapter 3 deecribes ladders in detail and
discueses the extensfons needed to make possible the deferment
(interleaving) of the additional operators Listed above. The process of
handling each APL operator and minimizing overall temporary storage 1is

deecribed in chapter 4.

We consider the major contributions and accomplishments of this

work to be:

1. The development of a procedure (described ta Chapter 2) which
determines the requirements for the legal execution of an APL
expresalon, precisely lgcptes the small sub-set of those
requirements that may not be verifled at compile-time, and
identifies the point st which information required for cowpilatinn

and executfon will first becowe avallable.

2. The development of a representation {n which the actions required to
execute a majority of the AL operators can be expressed. Taking
advantage of that representation, this compller can defer the
execution of catenation, cowpressfon, expansion, general
subacription, rotation, encode, decode, and scan n; well as the

simpler operations handled by earller aystems.

3. The development of a translation procedure which can handle those
operators which wmake it impossible to move all selection operators
to the operanda of an expressfon. 1In particular we handle those
cases in which aelection operations may be cificicnely handled by

being moved to the root of the parse tree for the expresajon.
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4. The development of an implementation for compression which does not
require the entlre left operand to be calculated in advance.
Maasive savinga in storage can result in those cases when the same
arcay appears in both the left and right operands (a common APL

techulque is to compress an array using a function of ftself).

5. The development of a storage minimization algorithe which will
identlfy hen only part of ao array must be in memory and which can
make improvements even in those cases where the wore complex

operations trap a selection operator in the widdle of an expression.

Ve show in our examples large gaine In performance which resulted from
the new capabilities lieted above. 1In coatrast, the very recent work of
Guibas and Wyatt (10) wmakes no attempt to handle items 2-4 and deals

with 5 in very weak way.

The purpose of this work wae to study the design of an APL compiler
and not to bufld one; Ho actual software exlets. The productton of a
useful, complete APL system {s not a one-persoa task. In addition, much
of the work that would be invelved (programming worknpnce control,
functioa editing, ....) has lfttle connection to the design iseues

congidered in this thesis.







CHAPTER 2

COMPILING A DYNAMIC LANGUAGE

The execution of a program is a process of binding (the last step 18 the
binding of a particular value to the output variable). A compiler for a
language affecty bindings without reference to the input data. The
bindings thus made are permanent. An interpreter biands only after
inspection of the input and only for the duration of that one execution.
Host actual systems uge a combination of the two techniques and are

labeled according to which predominates.

1t has been believed (for example sece [11}) that the definition of
APL. makes it impossible to elimlianate variability before each actual
execution. That conjecture has, hovever beeo disproved by the creation
of the HP-3000 AYL compiler. Compllation of APL. 18 possible 1f we
include 1o the definition of compilation given above!bindlnga made with
reference to the actual data for the first execution which then may
become permanent. Since the contlnued validity of the bindings is not
guaranteed, it wuet be re-verified wheaever the cowmplled code is
executed with new data. Efffclent execution will only occur when the

bindings remain valid and compiled code may be reused. Fortunately the
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dynamic features of APL which could cause the most vecompilation are not
often used. Thelr use is alsa an example of a style of programaing

wvhich 1 am quite happy to discourage.

Since compllation references input values and we need to verify the
continued validity of compiled code, the program compiled must be
divided fnto "units" which are compiled separately. The division must
be done so that the vertfication of the chotlce of several possible
compilations for the unit depends solely on properties of input
variables before the unit is executed. The compfler will generate a
preamble for each unft which specifies the required operand
characteristics. The testing for data dependent situations for which vo

compilation 18 correct may be done by code compiled into the unit.

The Hp-3000 compiler will never compile more than one line in a
single unit, nor will it ever include a called function into a line it
is compiling. Since effficlency increases with the size of the compiled
units, my compiller will, when possible, do both. It also tries to
locate those cases tn which potential binding variability resulting from
a given operation can not be legally realized, and thus to eliminate the

need for division into separate units.

In the course of this discussion, we will introduce modifications
to the language APL which are assumed by this design. They are
presented individuaily in the eecticn of this chapter which first
presents the design decision which motivated thea. They are summarized

in Figure 2-1.
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Functions

One-Element Array

Operation Modifiere

Index Origin

Take

Partfal Assignmet

Execut ion Order

t

LANGUAGE 29

Language Changes

Functton definitlons arc global and may not be
masked.

- Valence of a deffnition may not change.

- Local variables are not available to a called

function unless explicitly fadicated In function
fieader {new syntax).

-~ A one-element array is not equivalent to a scalar.

Monadic L (new operator) creats a scalar.

-~ The dimension to be affected by an operator wust

be faplicit or specified as a constant.

~ Origin may be changed only while in calculator

wode.

-~ Take may not return more elements than in the

right operand.

The GOTO operator may not branch to a liane which
is not labeled.

- When assignment changes only part of an existing

array, the right operand must have the same shape
ag the sub-array assigned to.

The selection operators (4, +, 4, 8, and [1]) wmay

be used to specify the sub-array to be changed.

Right-to-Left order of execution is not garanteed
except for the operands of the new line separator
operator Q.

Figure 2-1
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2.1 BIRDINGS

The bindings which wust be made in order to execute APL are discussed
below. For each the sources of variability are listed and the bionding

time 18 given.

2.1.1 Valence

An APL i{dentifier may have valence 2 (dyadic function), 1 (wonadic
function), or 0 (niladtc function or variable). The valence of an
identifier can not alvays be determined from the syntax of an APL
expresglon. For example, in the expresslon A B-C the {dentifier B could
have any valence. As a result an APL expression may only be fully
parsed in the context in which it will be executed, and valence blﬁdlngs

made at first execution wmay fall in three cases:

2.4.1.1 Function Entry - A global symbol may be redefined between calle
on a function. Unless this is ruled out, any function which
refereaces a global eymbol might require recompilation each time it

18 executed. The entry to the function must beglan a new vaft.

2.1.1.2 Function Call - A global or local variable may be redefined as
a vide effect of a fuaction call (the execute operator §s considered
a function call). Unless this 18 ruled out, the function wmust
return to a diffevent unit than itself to peruit checking for such
side effects (done by interpreter as part of the process of

beginning the execution of a unit).
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2.3.1.3 MHaltiple Definitions - If a line of an APL function can be
reached from wore than ane predecessor (target of a GCOTO), then
there may exist multlple deftnition points for a symbol used in that
‘Iine. The possibility of the two definitions having different
valence makes it oecessary to have all such statements begin a

compllation unit.

Strawa [23) shoved that for APL without local function deflnltions:yu
(assumed here), only 21 of the idestifiers in @ sample of programs had
ambiguous valence. Once a valeunce 18 resolved (firat execution or user
query) the use of the fdentifler remaine fixed in alwost all cases (I

change in | @illion possibilities) {22}.

We therefore restrict the function definition mechanism in APL
alightly. All function definitions must be global. The masking of a
global function name by a local variable or forwal parameter will be an
error. Any operation vhich changes the valence of an extsting syabol is
an error. Violatfon of this restrictioun is a run-time ercor from [FX.
These restrictions elimivate the necessity of re-pareing due to valence

change.

2.1.2 Rank

Both the control structure of the object code and conformability checks
depend on the rank of §nput operands nndllntermedlate regulte.

Thevefore compilation requires knowledge of the ranks of the result of
all nodes of the parse tree. In the majority of caves a given unit will

be syntactically correct with onuly one set of operand ranks. If this
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occurs, then cowpilation can take place without reference to information
about the operands. The followiang circumstances may introduce rank

variability:

2.1.2.1 Multiple Aseignments - If a line of an APL functfon can be
reached from more than one predecessor (target of a GOTO), thea
there may exist multiple assignment atatements defining the operands
of the line. To permit the interpreter to check whether an
alternate path has resulted in ranks different than at first

executfon, any such statement must begin a compiled unit.

2.1.2.2 Transposition - A transposition operator with a varfable left
operand has a result of unknown rank (dlagonalization may or may not
be spectfied). If other constraints do not climinate this
variability, the traneposition way not be compiled until inforwation
fixing the rank is available. It can be provided by the user, or
the transposition may be placed in a separate compilation unit from
the calculatfon of the left operand. The value of the left operand
will be used to guide the compilation of the unit comtaining the

transposition or ver{fy tte reusabilfiry.

2.1.2.3 Reshape - A reshape operator with a variable left operand haa a
result of unkonown rank. If other constraints or tnformation from
the user dv not eliminate this variability, this implementation will
not coaplle the operation. The generation of operands aod the use

of the result will be placed in separate compiled units.

2.1.2.4 Function Entry - The raunk of global vartables and arguments may

change between calls on a function. In many caees only one
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poesibility will be legal, but certsinly a function whose syntax
allows vart{able rank arguments may be written. In two specfal

circumstances the rank variability may be hidden from the functfion

by the caller [3].

1. If no globatl variables are referenced, the function processes
each argument ftea (or pair of items for a dyadle function)
independently, and result is a scalar item for each input {item,
then the tunction may be compiled s0 as not to care about the

structure of input.

2. If no global variables are referenced, 1f the function processes
ite argument(s) by rov (or plane or ....), and 1€ the result for
each group f9 either s scalar or the same shape as the tnput,
then the function can be complled to be called repentedly once

for each group.

Otherwise the functlion must be recompiled when global or arguwment
ranks vary, and thus must begin the compiled unit containing 1it.
The determination that a fuaction falls into one of the special
causes llated above requires only a eimple examinatfon of the code
produced when the function 1s compiled independently (le - {f all

computation is {n the inner-most loop, then each operand ftem 1o

handled independently).

2.1.2.5 Function Return - A Function may return results of variable
rank or change global variables. Unleas the result raok is a

function of argument rank only and no global variables are changed,
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the location to which the function returns muet begin a compiled

unft.

Fortunately the rank of a variable usually has a connection to the
semantice of the program which results in its being fixed. The vork of
Bauer and Saal [4] suggests that BOY of ranks may be determined
statically (without access to actual operands). Our experience is that
except for the case of universal functions, which can be complled, use
of the same expreeaifon to generate tesults of different rank on
successive executions i8 rare., Most array ranks are derived from a

fundamental characteristic of the problem being solved.

Thie deaign ldentiftes at compile time those scalars which must be
used repeatedly in a single operation in order to have conformability.
Sfnce array sizes may not be known at this time, this compiler will not
allow one element arrays to be used as scalars unless they have been
coaverted into a scalar using a new operation Monadic 1. The process
which checks for rank conformabflity will insert the conversion operator
where needed 1f the efze of the array {s known to be 1 at couplle’tlue
(ex. 1tA ), and i€ the operation using the value requires a scalar (ex.
monadic ). The ravel operator "," must be used to convert s scalar

into & one element vector.

2.1.3 Operation Dimension

Several array operations apply to one (fmplicitly or explicltly
specified) dlmension of their operand(s). The code compiled for these

operations is heavily dependent on wiich dimension fs affected.
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Therefore, ve restrict APL to uee only coonstants when the dimension to

be operated on f{a explicitly epecified.

2.1.4 lndex Origin

This compiler produces code which may (depending on operators in the
expression) be invalid {f the index origin changes. 1In order to avolid
constant testing, we allow index origin to be changed only vis the

“YORIGIN" command executed in calculator mode.

2.1.5 Length

The compiler will attempt to use syntactic constraiants to fix the size
of array operands, but if it €alle, the compiler wiil not bind the
conplied code based on the sizes at first execution. This approach
contrasts with the HP-3000 APL system which does bind on size, reasulting
fa frequent recompilations. The object code has been designed 8o that
operand slze 18 reflected fn a small vumber of parameters which must be
given values by the interpreter before a complled unit is executed. All
length conformability tests actually required will be done by the
interpreter. The compiler will generate a preamble for each compiled
unit which instructe the interpreter what calculattons and tests to

perform.

If a compiled unit contafns an operation whose result size can not
be calculated before the unit executes, the unit will f{aterrupt fta

execution when the oize 18 first available. The finterpreter can thea
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perform any necessary conformability checks and calculate any parameters
which depend on that size. There are 7 APL events which can cause

length varfability.

2.1.5.1 Compression - The length of the compressed dimension is equal
to the number of 1°e in the left opevand. That leogth will be
avajilable the first time the left operand has been cowmpletely used
(compresslon of other than [irst dimenston will result in repeated
access to lefr operand). Parameter adjustments may be required even

if conformability checking s not.

2.1.5.2 Take And Drop - The length of the result of take or drop
depends on the value of the left operand. Since in the object code
these operations are {mplemented by changes to addressing parameters
which must be calculated by the tnterpreter, take or drop with a
variable left argument is compiled so that the operation does not
begin until the left operand has been fully evaluated. At that
point the interpreter will calculate the parameters which control

acceas to the aselected elements of the right operand.

2.1.5.3 Over-take - If the Take operation is alloved to return more
elementa than exist in ite right operand, a Take operator with a
vartable left operand has a result of unknown size. Also the
performance fmprovement algorithm used by this fmplementatico trles
to move the Take operation so that it {s performed as early as
possible. That te correct only tf the Take operator will not return
more elements than exist in the right operand. The restriction is

iwposed dynamically when the take is executed. If the over-take
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option is desired, 1t could be lncluded as a separate operator

(vhich would be interpreted).

2.1.5.4 Reshape - A reshape operator with a variable left operand has a
result of unknowo stfze. 1If other constrainte do not eliminate this

varlabiltty, the operation will be performed by the interpreter.

2.1.5.5 Function Entry - If a function references global varisbles, or
{f internal conformabiiity is not {wplied by conformability of

arguacnts, its executicn will require interpreter processing on

entry.

2.1.5.6 Function Return - If a function sets global variables, or 1€
the result shape 8 not that of some ascalar operator applied to the
argument(s) (possibly reduced), then conformab{lity checking will be

required after a call on the function.

2.1.5.7 HMultiple Aspignments - 1f a line of an APL function can be
teached from more than one predecessor (target of a GO10), then
there may exist multiple aseignment statcments defining the operands

of the line. Thus conformability checking will be required.

The output of the cowpiler §a a co-routine with the interpreter. The
{nterpreter will do parameter computation and conformability checks and
the compiled code will evaluate the APL. The twvo will fatecrleave as
needed. The work of Bauer and Saal {4) suggested that only 38X of the
poteatial length conformabtlity checklng 18 actually required and that
length checking was required in an average of two places in each of a

collection of functions. Thus the amount of interleaving will not be
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excessive.

2.1.6 Value

The compiler attempts to perform calculations st compile time so as to
increase efficiency and tighten syntactic constraints. The interpreter
will perform the size operation {(monadic ), since that requires access
to symbol table information. Code to detect value dependent errors will
be compiled into the object code (index, domain (ex. divide by zero),
and right operand of expansion with wrong number of 1°s). We have
{mposed an additfonal constraint on the dy;dlc scalar operations used
with Scan. All ftems of the operand must be fn the range as well as the
domain of the operator. This is done to permit the use of a technique
developed by McDonald (16) for executing the scan operator without

repeated acceas to elements of the operand.

2.1.7 Type

Operand type muet be known at compile time. 1f syntactic constralints do
not eliminate potential variability, cowpilation before firast execution
will require user interrogation. There exists no APL operatfon whose
result type 1s not given by operand types but the folloving situations

may require type checking and recompilation:

2.1.7.1 Multiple Assignment - If a line of an APL function may be
reached from more than one predecessor (target of a GOTO), the type

of variables referenced might be derived from different opetands.
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Thus that line must begin a compiled unft.

2.1.7.2 Function Entry - A function which has alternate legal
compilations depending on the type of arguments or global variables

may oot be included in a larger complled unit.

2.1.7.3 Function Return - A function may not be part of a larger
compiled untt if its result could be of variable type or {f 1t

changes global variables.

Bauer and Saal (4] found that in a sample of programs only 121 of the
domain checking (which includes type checking) could not be performed

etatically. This suggests that type varfability 1s rare.

This compiler will not process integer and floating point numbers
as two separate types. It assumes the arithmetic instructions of the
target wachine are type sensitive and convert automatically as needed.
It also allows a numeric value to be ueed as a boolean operand (which is
standard for APL). When this conversion is required, the compiler
Inserts the new operation monadic > into the expression. This operator

will signal a domain error at run time {f {ts operand has vslues other

thaa O and |.

2.1.89 Position

The actual storage location for an array ie not known until each
exvcution takes place. The compller code will access array elements
using polateras which are initlalized frowm parameters at entry. The

interpreter will perform storage allocation and eet the parameters. A

i —
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reshape operation with variable left operand is performed by the
foterpreter aince no upper 1lmit can be placed on the storage required
until the operand is calculated.

Storage allocation way be interleaved

with the executfon of the complled code 1a the case of compression.

2.1.9 Summary Of Binding Problems

The preceding sections have listed those places which may require
interpreter intervention. Some, in particular leagth conformability
checking, are handled by interleaving the execution of compiled code and
the interpreter. However, f{n other cases the validity of the compiled
code about to be executed Is in question. These clircumstances require
divislon into separate compiled units so that execution of a unit is
only stacrted if the entire unit s valid (bindings still hold). The

locations of possible unit divislons ace:

I. The beginning of a statement which way be reached from more than one

place in the function (Goto target) is a unit boundary. To make the
locatlion of such lines feasible, we restrict the Goto operation so
that 1ts cight operand must be either the empty vector (no branch),
or 0 (functlon exit), oc the line number of a ltne which {s labeled.

This restriction is imposed at run-time (Goto 18 interpreted).

Every labeled line thea becomes a unit boundary.

The entry to a function will be a unit boundary except in epectal

circumstances (see Section 2.2.2 ).
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3. The return froe a function will be a unit boundary except in special

clrcumat ancea (see Section 2.2.2 ).

4. The pofint at which the left operand of a Transpose its first

available will be a uait boundary.

5. Unft houndarles are required before and after the Reshape operation

except fa special cases (see Sectlon 2.2.6.5%).

6. All systes functions and those APL operators which represent a
complex algorithm are processed by the interpreter. Figure 2-2
1iets the parts of APL which are not compiled. Unit boundariees

appear before and after each such operation.

lo Chapter 6 we discuse briefly the problea of eliminating these
restrictions. The fanability of my design ta bhandle control structure
{(GOTO) can be costly. As an example we consider the AFL functiont
Z+M COMPOSE P;X;T:V

(11 U+X(pPlp1-2+,T+1

£210: L\ M>p2¢2 T+l JU+PZLX+X+ D=V}
wvhich finde the first M numbers which have the form x/P+] uhere P is a
vector of distinct prime numbers and I 18 a vector of non-pegative
integers. My compller would separate the GOTO operator from the body of
line 2. As a result, the stream generator code would exit to the
interpreter after each iteration. However, all tnformation nceded to
compile this function anm a single unit is available (including size of Z

wvhich i{s ). The single unit would execute with much lowver interpreter

overhead.
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Operat{ons Not Compiled

Roll and Deal - 7

1/0 Operators - ], 0. B, B, etc.
Laminate

Goto - +

Matrix Divielon -

Execute - monadic € or ¢

1-beam ~ I

Sort Operators - ¥ and §

All aystem functions - example OFX ’

Figure 2-2
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2.2 OVERVIEW OF COMPILATION

The compiler will be evoked by the interpreter as a result of two

differeat clrcumstances:

i.

When an expression 18 executed in calculator mode or an un-compiled
function ts executed. At this time the entlre line or function will
be parsed and divided into cowpllation units. The first of these {e
then translated and executed. FEach uvalt will be translated the
first time it muat be executed. Since compilation takes place after
the definition of all operande and called functions, all lnformation

necessary for compilation {e avallable,

The user may also request the comptlation of an eutfre functtoun.
Thie would be done to bulld a library of functions or to cause a
function to be compiled before the function that called it (so that
foformation about the called functton ie availlable when the caller
18 compiled). [If the function has not previously been executed in
the automatic compliation mode, or f{f arguments are not defined,
thea valence, rank or type [nformation not given by the function

syntax would have to be supplied by the user.

If the user reconplles a functlion that has been executed, he
can request that bindings be made based on the properties of ite
arguments and intermediate resulte from the prior execution. This

facility would be used as follows:

1. The user would execute @ function (possibly as part of testing

1t). As part of thie execution all functions called would be
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compiled.

2. lle would then request re-compilation of the original function.
The called functlons would be in compiled form and thus the
fuformation needed to identlfy functions which could be linked
into the complled unit of the caller would be avatlable. At the
same tlwme the bioding information developed during the first

execut fon would be used to guide compilatioun.

However, a user will never have to request compilation lo order to

get correct execution of a fuaction.

In both cases the code resulting from the translation of a function is
saved and will be re-used by the interpreter if possible. The steps of
compilation are dedcribed below. They are motivated by the binding
requirements given above. Figure 2-3 lists the steps of an example
execution. Routine names shown in all capital letters give the major '

wodules of the design.
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SAMPLE EXECUTION

COMMAND/SCANNER gets fnput line and reduces D+(C#0)/C O C+A+B into
tokcns,
CONSTRAINT/PROPAGATION procedure determines that A and B and thus C
must be numertic, that C and thus A and B aust be vectors, snd that A
and B must be conformable.
The IDIOM/RECUGNIZER makes no changes iun this example.
The OPERATUR/CONVERSION procedure explicitly indicates that /
affects the second dimenafon of C.
The DATA/DEFENDENCY procedure recognizes C as local.
The TRANSLATOR generates two outputs:
a. a stream geonerator which will execute this expression.
b. finetructions for the set-up and management of the stream
generator (sce 7 below).
The INTERPRETER executes the set-up instructions which include
atorage allocation for D and transfercing the location and efze of
A, B, and D (C hay been eltfminated) tnto the local storage of the
stream generator. Tﬁe last instruction of the set-up program 1o a
co~routine jump to the stream generator.
When the INTERPRETER regains control, it executes an instruction to
fetch the actual size of D from stream generator local atorage, and

then extits.

Figure 2-3
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2.2.1 Parsing
When all symbol valeaces are known, APL 18 a very simple language to
paree. Indeed 1t has been shown that 8 3 state finite-state machine

sugmented by a atack to handle nested expressions s suffictent (24},

The functton is parsed fnto ome tree with lines jotned by a successor

operator. The nodes of the parse tree are labeled to permit other

Stages of comptlation to refereace tndividual aodes. This document uses

stringe (moat oftea of length 1) of Jower-case letters as parse tree

oode labels. They are aseigned tn lexagraphic order during a

right-left-root order traversal of the parse tree.

2.2.2 Function Calls
Function calle are handled in two different vays. The most general fora

(always correct) 1s to create unit boundaries before and after the
function call and handle the function call fn the interprecer. (The

called function way be a compiled user function but the transition s

handled by the interpreter.) This type of functioa call requires that

the function arguments and result be held fn storage across unit

boundarfes. The parse tree {s altered so that

<left argument> FUNCTION <right argument> '

becomes
Tie<right argumeat>
Tie<left argument>
T3+T2 FUNCTION T1

System functions and the APL operators listed in table 2-1 are alvays

handled fn thig way.
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User functions which have been compiled previously and which meet
requirements liated below may be liuked into the code of the calling
complled unit. A description of the linking mechanisa is given in
Chapter 4 after the control structure of the complled code has been
described. For a function call to be included inside a compiled unit,

the folloving conditions must be satisfied:

I. The functioa itself compiled fnto a single unit.

2. The single compiled unit which is the called function does not
contaln the calling functfon. (Conditions | and 2 rule out direct

or indicect recurafon.)

3. The comptled unit which is the function does not accees any global

variable which i8 accessed by the callling unit.

4. There 13 only one possible legal compilation for the function (ie no

rank or type variability as described tn Section 2.1}).

-

o order to simplify this analysis we require that the local variables
of a function be accessible to a called function only 4f explicitly

designated in a function header entry of the form:
(FUNI1 VARV VAR2. .. .)

Similar changes have been proposed by others for the purpose of
decreasiog opportunities for errors. This modlfication to APL does not
result in a static name scoping system as used by Algol. Its effect {8
to hide un-nawed local varisbles from a called function which 18 looking

back along its call chatn to satisfy a global reference. More detailed
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analysls would permit some relaxation of these restrictioons.

2.2.3 Control Structure

Every Goto target begins a complled unit which is started by the
interpreter. Thus the Coto operator is not compiled and {8 preceded by
a unit boundary. As a result of this design decision, the compller is
heavily blased fa favor of the style of APL programming which avoids use
of Coto. The whole design 18 oriented towards the execution of array

operationa.

The parse tree is now converted to an ordered forest by eliminatiog

all arcs which cross unit boundaries. Each unit is a tree.

2.2.4 Constraint Propagation

The compiler will then attempt to determine the properties of each node
of the parse trees. This will be done by propagating {oformation
derived from constants and syntax restrictions. The procedure is
concerned with 4 characteristics of the value produced at each node of

the parse tree:
I. Rank (aumber of dimenasions - a von-negative integer)
2. Type (numecric, boolean, numeric-or-boolean, or character)

3. Length (of each dimension - a non-negative fnteger)
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4. Value (scalars and vectors only)

The constraint propagation procedure attemptea to derive this information

based on (in order of use and decreasing desirabillty):
I. The rank (0 or t), type, length, and value of all conatants.

2. Operator sewantics (ex. monadic v always produces a numeric vector

and requires a numeric right argument).
3. The properties of previously compiled, called functiona.

4. The rank, type, and length of operands represented as compile-time
variablea (initially with no value) which may be propagated as 1f

they were fixed values,

5. The actual vank and type of each operand (from existing definition
or user specification). This information gives values to the

complle-time variables defined above.
6. The actual length of each operand.

7. The values of scalar operands,

As cach ftem of informatlon is spplied, an attempt 18 made to propagate
that taformatlon to other positions {n the parse trvee (ex. htAd {a
numeric {f A 18 numeric). Appendix B gives the propagatton procedure
and liscs all operator characteristics used. Constraint propagation is
done tandependeantly for each complled unfit. The handling of aud

requireaents for Lnformstion about each of the result propertiees fa
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deacribed below:

2.2.4.1 Rank - Ranks must be known for compilation to take place.

Therefore rank Inforwation must exist for each node, and {f given as
a complle~time varfable (operand property), the variable aust be
defined (operand defined). 1f, after propagation of the fofitial
tnformation llsted above, there exists a node with no rank
prediction, a new compile-tiwe vartable 18 created to represent the
rank of the higheat such node and that tnformatfon 18 than
propagated and the process repeated until all such nodes have an
(undefined) compile~time variable representing rank assocfated with
them. Since the propagation process never removes Infoneatlon frow

s node, the above will terminate.

The lowest occurreunce In the parse tvee of an undefined
complie-time varfable representing the rank of a node indicates
vhen, in the computation, the information needed to fix the rank
will be avallable. The most common sltuation is for the varfable to
represent the rank of an operand. Otherwise, the varfable will
represent 8 value or length of a pasitfon at or below the left
argument of & tranapose or rvahape opervation which las causcd rank
varfabllity. 1f the compitlation of the entire function has been
requcsted by the user, a declaratton vill be requested for cach ramk
varlable which doea not have a value. When the compilation i3
taking place at f1rst executlon, the polot at which the variable
will recelve a velue must be at a leaf (unit boundary). If this is
not initlally true, the unit muet be subdivided. Execution of the

firet sub-division of the the unit thus generated will produce the
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foformation needed for compilation of the dependent units.

The lowest appearance of a defined rank variable indicates
locatlons where rank checking must be performed. [If they apply to
intermediate results, stream generator interruption will be

required.

2.2.4.2 Type - Types must be known for compilation to take place. All

nodes will have a type prediction after the propagation of initial
predictions. All cowpile-time variables appearing in these
predictions must have values before cospilation can take place. If
the compllation of the entire fchtlon has been requested by the
user, a declaration will be requested for each undefined
compile-time varfable represeating a node type. When the
compilation takes place at flrst executfon, there never will be any

remalalng type variabilficty.

The appearancé of defined type predictlon variables fndicates

locations where type checking 18 required.

2.2.4.3 Length - Length values take three forms - actual length,

minloum length, and maxiovuw length. Every node must have a maximum
length defined to permit storage allocation. The only operation
which will not always propagate a maximum length prediction upwards
18 Reshape. A reshape which does not have a maximum length

prediction will be laterpreted.

Every node aust also have an actual length prediction to permtt

conformabfility checking. 1f after propagation of the initial

e
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foformat{on there existe a node with no entry representing its
actual length, a new compile-time variable is created to represent
the length of the highest such node. This fnformation is then
propagated and the process repcated uwntil sll nodes have a length

prediccion.

Undefined compile-time varfables representing lengths do not
proibit compilation but glve the location for conformability
checking or parameter calculation, and {f not at a leaf, force an
toterruption of stream generator execution. Since all AFL operators
generate rectangular structures, only one unit of the dlmension of
unknown length must be tested for length conforwability. The streca
generator can then run uninterrupted and the test {s executed only
once. Defined vartables representing length locate requirements for

length checking.

The length tests ifwposed for constraint veriftication alse
permit the interpreter to detect null arrays. Since the loop
control of the stream generators tests after execution of the body,
the loopa will always execute once. Therefore when the interpreter
detects a null array it aborts the uxecution of that section of the

etream generator and performs the calculation directly.

2.2.4.4 Value - Value information comes from constants, scalar
operands, and the operations which coavert a predicted length (p) or
rank {pp) into a value. The information fe needed for comptlation

or parameter generation when:

-t
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1. A variable representing raok or maximum length gets ite value
(loweat occurrence) from the value of a node. These are handled

as described in the sections for those properties (2.2.4.1 and

2.2.4.3).

2. Dyadic take, drop, transposition, or reshape appear (left

operand).

Operator dowaln, index, or conformability requirements are checked

by code compiled into the stream generator.

Complle-time varfables which represent the value of a scalar
operand or the actual length of an operand are never asaigned fixed
values based on the those characteristics of the operands, unless
required to deftne a raock predlction. Wowever, the actual values may be
used to test relatlons betveen expressions involving complle-time
variables. An example is the expression (N,M)pA where N and M are
scalars and A is a matrix with predicted lengths X and Y. If at first
execution ¥-M equals Xxt, then the reshape may be compiled as requiring

uo duplication. The ecuality must be tested before each execution.

As the blocks are further subdivided into units, temporary storage
arrays wil) be created to hold values which are calculated in one unit
and used o another. New nodes will be added to the parse tree at the
polat of division to represent the assignment and reference. The new
vaciables are operands to the units referencing them and way be aasigned

predictions. If requircaents tmposed by the same node cause subdivision

at two different places fn the tree, only the highest 18 actually dope
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(the other requirement 1s assumed not to propagate past that pnint).

Susan Gerhart |9) has designed 8 system which determines the
properties the operands of an APL function must have for the function to
execute. Syntactic coustraints are generated and propagated in a manner
ailmtlar to that described above. However, 6he makes no attempt to
develop Informatlon needed to sclect berween alternate legal
tnterpretations of the function. Nor does she locate those places at
which such information will later be avallable {undefined compile-time

variable).

Qur attempt to advance binding times is simitar philosophically to
the work of Jones and Muchnick [14). However, their techaique and that
proposed by Kaplan and Ullman (15] are oriented to determining
properties which hold at entry to slmple statements. APL requlres
{ntra-statement analysis. They also do not handle information to be
available in the future or the inter-dependence of different properties
(such as a rank depending on a value). A detalled description of the
constralnt propagation algoritha and the chacacteristice of the APL

operators appears in Appendix B.

2.2.5 ldioms

One goat of thls compiler design la to process the language APL using
one consistent procedure, However, it has become apparent that there
exist a small set of combinattons of operators and opurands vhich have a
such more efficlent {mplementation then that produced by translating

each operator separately. A common characteristic of these patterns is
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the occurrence of the same operand on both the left and right of an
operator or group of operators. These patterns will be recognized and
replaced in the parse tree by a unique new internal operator. An
example t9 Vil /V which will require two passes over V if translated
directly, but can be easily fmplemented using just one. A list of all

such "tdioms” currently recognized is in Appendix A

Idioms ave recognized by applying a pattern matching procedure to
the parse tree. Each node of the tree is visited. If it could be the
root of a aub-tree headed by one of the tdiows, its fmmediate
descendants (maximum number 4) are examined to determine Lf they match
the idiom. The nodes which are operands in the idiowm description will
watch any node which 19 predicted to have tlhie rank or constant value
required by the Idiom. The pattern matcher will never have to look

lower in the parse tree.

Some of the Idloqu require that the same value be used in two
placea in the expression. These will only be recognized if the
corresponding nodes in the parse trce are leaf nodes referencing the
same varklable. No common sub-expresston recognition will be done by the

idiom recognizer.

When an jdiom i8 recognized, the pattern ias locally contracted into
a single internal operator. In the case of multiple references to the
sawe variable, only one will be retained. Since both the search for
idioms and the transformatlon of them requires access to a small { <4 )
oumber of nodes for each possible {idiom, the entire process requires a

time which f8 linear fn the sfze of the parse tree.
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2.2.6 Operator Conversion

The parse tree of the APL function has now been split into a forest of
parse trees for units each of which wtll be compiled separately. Based
on information obtained by constraint propagation, operations in the

parse tree will be modified to distinguish spectal cascs.

2.2.6.1 Take Or Drop - If the left argument of take or drop is known to
be a constant, the operation becomes monadic with the former left

operand as a modiffer.

2.2.6.2 Subscription - Subscription will be expanded iato s node for
each dimension of the subscripted array. The left operand of each
node will be the subscript for that dimension. The right operand
for the lowest {(last dimension) will be the subscripted array and
the remaianlng nodes will use successive results as thelr right
operand. 1If a subscript is null, the node is removed from the parse
tree. If a subsccipt 1s known to have a constant valuc of the form
AtB=1(’, the node is converted to a monadic operator with the value
as modifler. If the subscript is of that form, but not all of the
scalars A, B, and C are known to be constant, the ¢ and t operatfons

are replaced by the successor operator in forming the left operand.

2.2.6.3 Transposition - If the left operand is known to be a coastaat,
the operation buecomes monadic with the left operand value as a

wmodifier.

2.2.6.4 Ravel - The ravel operation (monadic ,) will be modtifled with

the dimenslone that {t affects. The special case of a scalar right

e v
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vpecand will be coaverted to & unique internal operator itf the
scalar te an {ntermediate reeult, otherwise the operation becomes s

simple reference to a vector {(which will be created by the
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A combination of 1, 2, and 3 will be split loto separate nodes. If
one of thease epecial cases can not be identified, the reshape is

aplit out into a separate unlt (storage added as needed) which wilil

interpreter). be Interpreted. Except for cases | and 3, a reshape with both

operandd constants will be done at compile time.
2.2.6.5 Reshape - The ioformatton known about the length of the right

operand will be compared to the tnformatton known about the value of 2.2.6.6 Single Dimension Operators ~ All operatlons which apply to a

the left operard to recognize 3 especlal cases, gingle dimensfon are modifled with the diwension. The parser will

have absorbed explicit dimension indicators such as in +/(2) into
1. 1f the reshape is the duplicatlon of the right operand in a new

the nude for the operation. Implicir. dimensfocn designations which
firat dimension, and 1€ the duplication factor ia known to be a

depend oun operand rank (i.e. last dimension) are now filled ta.
constant, the node becowes the monadic duplicate operator with

the duplication factor as a modifler. 2.2.6.]7 Lamination - If the dimenston modifier for dyadic “," has &

non-integer value indicating lamination, the operation is eplit out
2. If the reshape is the duplication of the right operand fn a new

into a separate unit which will be interpreted.
first dimension, and {f the duplication factor is variable, the

node becomes the dyadic duplicate operator with the scalar 2.2.6.8 Functionals - (Scan, Reduction, Inner Product, and Outer

duplication factor ae left operand, Product) The scalar operations associated with these operations are

modifiers to the node.
3. 1f the reshape fa a partial ravel of the right operand, the node

becomes a ravel operation appropriately modtfted. 2.2.6.9 Scalar Converslon - (the new operation - wonadic 1) 1f a

vector operand 18 not an intermediate result, this operation becomes
4. 1€ none of the above special cases can be recognized, 1f {t ie

a simple reference to a scalar variable.
known that result has the same number of elements as the right

operand, and if the shape of the result is known, the node
becomes a monadic ocperator with the result shape as a wmodifier.
2.2.7 Data Dependency
An example is (({(pC)12),2)pC. the oumber of elemeate in the
result which s ((pC)42)x2 equals pC which 18 the number of

The compliler conslders user specified srray varisbles which are active

elemcats in C (vhen pC 1a even). within only one compiled unit to be temporary etorage. This allows the
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elimlnation of storage added to fmprove readabiltty of the code or
because of the users recognition of a common sub-expression. If an
array variable is referenced In any untt without an assignment having
appeared eacller in that unit, {s a global variable, or 1s potentially
accessible to called functions, that variable will be considered as

global to the cowpiled unit and will always actually extst in memory.

Conventional control-flow analysis (2) could be done to determine
when variables are active, but that is not required. Other standard
program transformations such as common sub-expresslon elimination and
woving invariaats out of loops could be done at this time, but are not

fncluded In this design. !

2.2.8 Stream Ceuncrator Creation

All of the above serve as preliminaries to the real work of the compiler
-~ the making explicit of the control astructure fmplied by the array
operatlons of APL. Thie 1s accouplished by translating APL fnto what 1
call stream generators. The actions required to execute the majority of
the APL operators can be expressed in the etrecam generator notation.
Chapters 3 and 4 contaln a complete descriptfon of stream generators and

the tranalation process outlined below.

Lach tree of the parse forest which 18 to be compiled s translated
separately at the first time that all requirements can be evaluated.
The stream generators are comprised of sets of nested loopes connected as
co-routines. They are generated by traversing the pacse tree in

right-left-root order. For an acray leaf the code to access the array
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is generated. At an operator node the stream generators for its
operand(s) are combined, and code to calculate the result is inserted
into Lhe control structure. The way the generators are combined depends
on the operation. The monadic selection operators can often be absorbed
into the array acceses parameters unless some previous calculation can
not be reordered. At any point where temporary storage may be required
for the correct or efficient execution of the APL the required

assignments are generated.

2.2.9 Stream Generator Refinement

The stream generators created initfally may compute values which are
never used. These calculations must be eliminated. The next step ts to
eliminate all unnecessary storage. This will be done by re-ordering
independent calculations so that as soon as an intermediate result is
available, {t is consumed. When this 1s possible both the consumer and
producer share the same control structure and only a single scalar item

of the intermedfate result will exlst at any one time.

The use of the sawme address generation mechanism to process several
arrsys in parallel requires that in addition to having the same number
of clements, they have the same shape. In order for this restriction to
apply to the right and left operands of all assignment operations, shape
conformabilfty will be tmposcd on assignment to a sub-array. The result
of such an assignment will be the right operand. The assignoents of
values to each elcment of a sub~array are considered to be independent

and msy be re-ordered. As a vesult, If the eame position in the array
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is selected more than once, the result ls not fully defined (it will bo
one of the values assigned to that position - no error). However, the
uee of the same control structure for array access on both sides of the
assignment operator means that all the selection operations may be used
to select the target sub-array (ex. (1 1§4)+1 seta the dlagonal of A to

1.

If a variable, whose assignment and reference are thus
synchronized, 18 a teamporary created by the compiler or a user specified
varlable which has been i1dentifled (see Section 2.2.7) as being
temporary storage for the unit being compiled, the asaignment (and the
varfable) way be eliminated. It 1s this elimination which provides the

major benefit of using this compiler.

The re-ordering of operatlone described above takes advantage of
the fact that the definttion of APL specifies right assoclation but does
not fix order of execution. 7This compliler will not guarantee right to
left cxecution order. In particular, abesurdities such as X[X+1 2] are
uadeftned. Stnce the compller can combine 1ines and eliminate storage
used only to hold values Qetveen lines, more legitimate usea of
execution order such as {A420)/A+«B+C will execute efficiently when
written on two lines. To permit the above and siwmilar expressiona to be
handled efficiently in calculator mode, ve will use a successor operator
O to combine logical lines into one Lnput line. The two lines are
executed in right to left order. This 18 the only operator which

iwmposes right to left order of evaluation on ite operands.
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2.2.10 Interpreter Instructions

Assoclated with each stream generator s a set of fustructions to the
interpreter specifying the actions necessary to verify constratnts,
calculate array acceas parameters, and transfer information to and frow
the loterpreter symbol table. These Instructions comblne with the parts
of the APL function which are not compiled to produce a new function
which §s executed by the tnterpreter. The stream generators are
co-routines whose execution ia interleaved with the interpreted part of
the function. Re-cowptlation of a unit, because of binding failure,
vill change part of the code about to be finterpreted in addition to the
stream generator (indeed the test which just failed will be changed to

succeed with the newv binding).



CHAPTER 3

STREAM GENERATURS - A MODEL FOR THE EXECUTION OF APL

Chapter 2 considered the questlon of how and when to bind information so
as to permit compilation of an APL ‘function. Now we look at the problem
of efficiently executing the array expressions of APL. This chapter
describes the syntax and semantice of the intermedlate representation
foto which the APL expressions are translated. The compiler algorithme
described In Chapter 4 are stated in terms of how they manipulate this

representation.

3.1 ARRAY OPELATIUN EFFICIENCY

The efficient exccution of a scalar oriented language auch as FORTRAN or
Algol 60 requires the elimtnation of unnecessary calculations and

control overhead. Some common transformatlons are:

1. eliwination of repeated calculation of the same value (common

sub-expression and loop invartants).
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2. elimination of calculation of unused values (dead variables).

3. reduction of control overhead (loop jamming).

As a result of these transformations, the value of expressions not
asslgned to variables must be retained for varying periods. The same
situation arises with intermediate results of exprcssion evaluation and
control parameters. Thils requires careful allocation of wachine
registers in order to minimize memory access. In dolng the above, the
compiler will take advantage of the close correspondence between the
operators and operands of the language and those of the machine. The

operatlons compute only scnlare, and fntermediate values may thus be

held in a machine register.

However when APL {s executed on a machine haviog only scalar
operations (the environment to which the work of this thests is

applicable), the problem is more complicated because:

1. Intermediate results may be arrays which can not be kept in wmachine
registers. If temporary storage fn wemory is to be avoided,
calculations must be re-ordered so that each scalar ften is consuped
48 soon as It {8 produced. The re-ordering depends on the fact thar
for many APL operators the computations using array componeats are
independent of each other. Operations for which that 1s not true

(Ex. '\ ) may prevent the necessary re-orderlng and force the use of

temporary storage.

2. ‘The cxpressions generate complex control patterns when array

operations are mapped into machine tfostructions acting on single
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ftems. Overhead may be reduced by combining two calculations which
tun in parallel. Analysis of control patterns implied by array
operations {s simplified by the connection between the control and
operand shape and operator semantice. Less information is available

vhen trylug to transform user specified control patterns.

). Because of selection operatars only psrt of an fntermediate result
may be needed. Thus the partial execution of operators must be

posatble.

The more common transformatious are applicable (some before and some
after translatfon foto scalar code) but will not be discusased further
here slince known algorithms apply. The examples described below show

sowe of the transforwations unique to APL.

J.1.1 Draggtng And Beating

An example of the need for operator Interleaving and partial execution
of operators is the simple APL expression A«5 S4B4CiD where B, C, and D
are wmatcices of size 10 by 10. An Algol program which performs this

calculation is ehown below:

FOR I:=1 STEP 1 UNTIL 10 DO FOR J:=1 STEP ]| UNTIL 10 DO
THL;):=CIL; 304D (1 0]);

FOR I:=1 STEP | UNTIL 10 DO FOR J:=l STEP 1 UNTIL 10 DO
TR s=B(L;I)4T (150},

FOR I:=1 STEP 1 UNTIL 5 DO FOR J:=l STEP | UNTIL S5 DO
Al13)):=T2(1;J};

This program represents the standard way of executing APL, which 1s to

do each operation separately, storlog all fntermcdiate reaults. The
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progrem conaiuts of three sets of nested loops, does 200 additfons, 425
loada, 225 atores, and uvaes at least 100 worde of temporary storage (200
{f T2 1o not the same etorage as Tl). The temporary storage 1s clearly
unnecessary a® can be seen in an improved Algol version of the sane
expressfon:

FOR I:=1 STEP 1 UNTIL 5 DO FOR J:=l STEP | UNTIL 5 DO

A(L;0) 2B LI IJH(CITIDIT;I])5

which reflecte the transformations Abrams (1) called "beating and
dragging, and has only one set of nested loops, does 25 addittions, 75
loada, and 25 stores, and usea no temporary stocage. The 2 operations
have been interleaved but the ftems of each operand are acceased in the
same order. Also the actual additions for each element are not
re-ordered. The result ie the same even {f the additfons are

non-assoclative floating point operations.

3.1.2 Operator Transposition

In other cases the ifteas must be processed in different order. For
example, the standard executios of Sex/4/[1]4:B with A and B being 10 by

10 matrices f8 represented by:

FOR 1:=1 STEP ! UNTIL 10 PO FOR J:=1 STEP | UNTIL 10 DO
TUIL; ) :=A[L3I) /B30

FOR J:=) STEP ) UNTIL JO DU T2(J):=0;

FOR 1:=10 STEP -1 UNTIL | DO FOR J:=1 STEP | UNTIL 10 DO
T2(J):=TL{1;J}4T2{3);

S:=1

FOR J:=10 STEP -1 UNTIL 1 DO S:=~T2{J)*S

This code has 6 loops (2 nested), does 210 arithmetic operations, 410
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loads: and 211 stores (S is kept in a register), and usea )10 words of
temporary storage. Changing the order of calculation so that
intermediate valuca may be used as soon as produced ylelds:
Si=l;
FOR J:=10 STEP -1 UNTIL 1 DO
BEGIN T:«0;
FOR [:«10 STEP -1 UNTIL ! DO T:=(A(F;J}/B{I;J))+4T;
St=T4S
END
which bhas 2 loops, does 210 arithmetic opevation, 200 loads, and |
store, and uses no temporary storage (T will be a register). 1t takes
ddvantage of the fact that the calculatfons for each element of AtB acre

tndependent. The correctness of thise transformation which may be

applied at the APL level to yleld S+x/+/§4tB was proved by Abrams.

3.1.3 Filtering

For a number of APL operators the above simple transformations are not
sufficient to produce reasonable execution. An example is the
expression B+(v/A)/[11EvA O A+CAD where C, D, and E are 10 by 10 boolean
matrices. This expresalon removes a row of EVA f that row of A 1s all

zero. An Algol program for the standard execution of this expreaston

is:
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FOR I:=] STEP 1 UNTIL 10 DO FOR J:=1 STEP 1 UNTIL 10 DO
AfT;J):=C{L;J] AND D{I;J);
FUOR L1:=1 STEP 1 UNTIL 10 DO FOR J:=)} STEP I UNTIL 10 DO
TEI;J):=E{1;J) OR A[1;3);
FOR I:«} STEP 1 UNTIL 10 DO
BEGIN T2{1):=FALSE;
J:=10 STEP -1 UNTIL | DO T2[k}:=A(L;J) OR T2[1)
END;
K:=0
FOR l:~] STEP | UNTIL (0 DO
BEGIN IF T2{1} THEN BEGIN K:=K+#l;
FOR J:«] STEP I UNTIL 10 DO
BEK;J}:=T1(1;J)
END
END

which cousistas of 4 sets of nested loops, does 300 logical operatiouns,
between 510 and 610 loads (depending on number of rows preserved), and
between 210 and 310 stores, and uses 110 words of temporary storage, and
makes two couplete passes over A. A wore efficient execution of the APL
can be obtained using the following program:
K:=0
FOR l:el STEP 1 UNTIL 10 DO
BEGIN T:eFALSE;
FOR J:=10 STEP -1 UNTIL 1 DO
BEGIN A[1;J}:=C{1;J) AND D(1;3);
Te=A{134) OR T
END;
IF T THEN BECIN K:=K+1;
FOR J:=} STEP 1 UNTIL 10 DO
BiK;J}:=E{L;J) OR A(L;3]
END
END
which has only one loop at the outer level, does between 200 and 300
logical operations, between 200 and 400 loads and between 100 and 200
stores, uses no temporary storage (T is a register), and wakes two
passes over each row of A in succession. The change in order of access

to A is a significant transformation. A common occurreace fn AFL

functtons 1e the geuneration of a large arcay, followed by an expression
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such as the example which filters out selected components of the
original arvay based on their values. Further processing then uscs only
the surviving comsponents. Thus the variable A will be referenced only
1a the given filter expresslon. The firet implementation which does two
complete passes over A would require all of A to be (n storage. The
second which uses A a rovw at a tiwe would requive only a row of A Lo
exiat at any one time saving 90 worde of storage {n thie example.

(A{1;J} would become T2{J].)

J. 1.4 Herging

APL also has operatlons which select between two data sources instead of
filtering one. An cxample is the expression S5¢+/+/B,C,111D vhere B 1s a
10 by 5 matrix aod C and D are 5 by 5 matrices. The conventionsl

execution Is given by:

FOR 1:=) STEP | UNTIL S DO FOR J:«l STEP 1 UNTIL § DO
TH{1;1):=C[1;d)}
FOR 1:=1 STEP | UNTIL 5 DO FOR J:=]1 STEP 1 UNTIL 5 DO
Ti145;8):1=D {131}
VOR 1:=1 STEP | UNTIL 10 DO
BEGIN FOR J:=1 STEP | UNTIL 5 DO T2{I;J}:=B{1;1]);
FOR J:=l STEP 1 UNTIL 5 DO T2(1;J45):~TL{1;J}
EUD
FOR [:=1 STEP | UNTIL 10 DO
BECIN T3{I]:«0;
FOR J:=~10 STEP -1 UNTIL 1 DO
TII):=T200; 14T 3L}
END
S:=0;
FOR 1:=10 STEP -1 UNTIL 1 DO S:=T3[1}+45

vhich uses 10 loops, does 260 loads and 16} stores, and uses 160 words
of temporary storage. Tl (50 words of etorage, 50 loads, and 50 stores)

may be eltminated by using half of T2 as Tl. However to eliminate T2
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and T3 the program must be transformed to:

§:=0;
FOR 1:=5 STEP -1 UNTIL 1 DO
BEGIN T:=0;
FOR J:=5 STEP -% UNTIL 1| DO T:=D[1;J]+T;
FOR J:=5 STEP -1 UNTIL 1 DO T:=B(E45;3)+4T;
S:=T4§
END;
FOR I:=5 STEP -1 UNTIL 1 DO
BEGIN T:=0;
FOR J:=5 STEP -1 UNTIL 1 DO T:=C{L;J}4T;
FOR J:=5 STEP -1 UNTIL 1 DO T:=B(l;J])+T;
S:=T4S
END;

which has 6 loops, does 100 loads and 1 store, and uses no temporary

storage. The loops calculate a function betveen position in the result

of catenation and position in the ioput.

3.2 ARRAY ACCESS AND LADDERS

From the nuaber of occurrences of subscripted variables in the examples
above It 13 clear that an fumportant part of the execution of an APL
expression f{s the generation of the addresses of elements of an array.
In developing an address generation algorithm we take advantage of the
fact that tiie sequence of array positions for which addresses are needed
is often independent of calculated valuce (as true in the cxamples).

Index origin 0 {e sssumed for all the equations of this sectlon.
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3.2.1 Array Storage

Following the suggestion of Minter (17) we store array elements so that
the (unction mapping subscript poeitions into addresses uses only
arithaetic operations, and in particular we want certaln eequences of
addresses to require only the fast arithmetic operation addftion. The
expresafon for the address of amn array element (Pl) glven the subscripts

is:
PIL+EETA+ /1%G (3-1)

vhere BETA i3 the address of the element with all subscripts equal to
zervo, 1 18 the vector of subscrlpt;, and G {8 a vector of constants
which depend oo the size of the array. Given an array there are several
povsible storage orders for which it is poasible to assign a G
satisfying the above expression. MHowever, APL defines a linear order on
the cleocnte of an array. This is ravel order or row-major order
(right-most subscript changlng most rapidly). The position in ravel

order of an elemcot with subscript vector 1 fe given by:
ROl (3-2)

where RHO fa the vector of dimcnstons of the arvay, (This 1a known as
the odoweter function.) The ravel operation will not requice copylng,
and sequencing through an array in ravel order will be etmplified if

there exists a scalar GR auch that:
(BETAYA /T =) =BETA+(RHOL T }*GR (3-3)

is true (equal 1) for all I which satiefy:
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A/(120), I <RHO (3-4)

(all legal subscripts). When this is true the same address generation
mechanism can be used to access the elements a9 an array or as a vector.

We show in Appendix C that if:

G+GR*x\1,$14RHO (3-5)

then equation (3-3) will be satisffed. 1f CR is the aumber of
addressable unite per data word this wili cause the array to be storcd

in ravel order in consecutive locations.

3.2.2 Laddere

The "ladder" 18 an algocrithm developed by Perlis {PER} which generates
addresses of successive elements of an array io ravel order. The
control atructure developed to represent this algorithm provides a
framework for the execution of APL. In this thesis wve usc the term
"ladder" to refer to those components of the intermediate or final
representation of the compiled program which have that structure. We
will define ladders by giving rules for writing an Algol program which
represents the address gencration algorithm.  The ladder will consist of
u+l purely nested loops where n is the number of dimenslons of the
erray. The program will be built up from program fragments of the

following form:



STREAM GENERATORS - A HODEL FOR THE EXECUTION OF APS. 73

fragmeat id text

A L{0}: P1 := BETA

B{1) L Lo ()....n} i) := 03

Lit):
Clil t ta (l....n) U} = T(1) + 3;
IF 1(1]) < RAO{1) THER
BEGIN P1 := PI + DELTA(1}3
GOTO L(1])
END
D COTO L{0}

wvhere PI, BETA, I[l:n], and RHO[l:n] are the quantitfies defined in the
previdus section and DELTA{i:n]} holde the values used to fncrement PI.

The Algol program representing a ladder of depth n is given by:

LH

b

Blll *;
Bin-1} #;
Bln) §;
Cinl; *;

ClLl %5
D

vhere ‘%’ represents a location in the program at which additional
cosputational etatemeuts way be inserted, and ‘§° is a “#° at which PI

contains the address of the array elewent whose subscript position is I.

For n=3 the program §s:
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L{O): PL := BETA; *;
1{1) = 03

Lil)s %3
1[2) = 0;
L(2}: #;
1{3) := 0;
Li3): §;
1(3) := 1(3) + )3
IF I(3] < RHO{3) THEN
BEGIN PL := PI + DELTA{3]; GOTO L[3] END;
*3
12) := 142) + 13
1F I{2] < RHO(2} THEN
BEGIN P1 := PI + DELTA{2); COTO L{2] END;
L XY
L

I(h) = T§L) + 1;
IF 1{1) < RHO{1} THEN
BEGIN PL := PI + DELTA[1); GOTO L{{) END;
™
C&TU Liy)
Figure 3-1 {8 a flowchart of the minimum required actions of this
program (called the “fixed part” of the ladder).
The boxes of the flowchart have been labeled with the fdentifiers of the
program fragmeats from which they were derived. That flowchart clearly
shows the origin of the name ladder for this structure. We consider the
ladder to constst of ntl "runge” consisting of the Olh Tung A and n
rungs formed by B{i] and C{1) for 1 {n (l....n). When this program is
executed, 1 will take on all legal subscript values in odometer order.

At each ctransitiown a single elcment from DELTA is added to PI. We show

to Appendix C that 1f the arcay 1o stored in ravel order, then:
A/GR=DELTA (3-6)

holds ( adding GR ( | 1f word addressing) will always produce the
address of one data element from the address of the previous date
element). The address scquence {8 not generated by a single loop, since

computation of certain operators such as reductica depends on the array
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structure.

This 18 a special case of the result derived in Appeadix C that for
any array whose storage ia dcfined by equation (3-1) there exists a
DFLTA which will allow a ladder to access that array in vavel order. In
Appendix C ft 1s shown that the application of certain common APL
operators to an array which is stored In ravel order yields an arrvay
whiich can also be accessed Jn ravel order by a ladder, but with
different BETA, RHO, and BELTA. Since no data is moved in storage when
these operators are applied, and since these operators sowetimes change
the ordering of the data and even the number of data items {o the array
to which they are applied, the resulting array is not stored in ravel
order. The fact that ladders can be used to access these resultant
arruys means that the storage orderiogs which differ from the ravel
ordering and which the ladders can handle arc commonly occurring ones.
The operators, which Abrams called sclection operators, are reverse,
transpose, take, drop, and certain types of subscription. Other access

orders can be generated by directly calculating PI using equation (3-1).

The ladder fixed part defined above generates the sequence of
addresses needed to access a single array. However, that definition is
not complete as it makes no provision for calculations with the array
ejements when they become avatlable. Figure 3-2
shows the same Jadder as before except that im addition to the fixed
part of the ladder shown in Figure 3-l seven nuwbered boxes called
"spllcea" have been added. Code to perform scalar calculations may be
placed in each box. A splice may be inserted into any edge of the

flowchart defining the fixed part of a ladder corresponding to the
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location of a "*" or "$" in the Algol program. Figure 3-2 shows all
possible splice locations for a ladder of depth 3 (splices numbered by
order of first execution). The splice which {s in the tnner-most loop
(Splice 4 or "$") may fetch from or store into the arcay element pointed
to by PI. (PI will have successive values of the address sequence at
each execution of eplice 4.) All the splices may contain code using the
control variablee (BETA, Pl I, RHO, G, and DELTA) and items from a local

wemory T.

We have uvow specified a structure which allows access to and
calculation vith the elements of a single array. Siace alwost all AFR.
expressions {nvolve more than one array, the ladder deffnition also
includes a facility for comwbining several ladders fnto a lacger
structure. Each ladder is a co-routine. The control variables (PI,
BETA, I, RHO, DELTA, and G) are local to each ladder, and they share a
global vector T. Control will pass betwveen ladders as specified by
co-routine jumps placed in the splices. The collection of ladders is &

"ladder network™ which is a co-routine with the interpreter.

The requirements of fixed rank and type present in the constraint
propagation phase of the cowpller were imposed because the ladder
structure depends on the rank of the associated array, and the splice
code instructions are dependent on the type of the data. However, the
length of the data is reflected only in the values of the control
variables. Thue we only require length to be known at execution time

when control varisbles (and T) are iottialized by the interpreter.
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3.3 STREAM GENERATORS

A “stream generator” 1e a ladder network. However, we have wmodifled the
deftnition of the ladder given by Perlis (PER) (preaented in previous
eection) so as to provide a closer match between the capabilities of the
ladder and the requirements for efficlent exccution of APL seen in the
preceding examples. WHe have borrowed the term stream used by Burge
{BUR] since it aptly describes the flow of data right to left through an
APL expression. However, the finite, aryay-based sequences of data
ftems described arc very diffcrent from those described in (6}, and the

notatfon used to describe them 18 uncelated.

in this section we will progre;slvely modify the original
deffnition for the ladder to arrive at the definitfon a stream
generator. Each change will be motivated by reference to an example.
In parallel with the modiffcation of the structure we will introduce new
notation for specifylng streawm generators. The reader should keep in
mind that the notatlon.yresented here is designed for human processing.
It shows the information needed by the compiler algorithms, but not the

form that information would take internal to the compiler.

The examples presented above will now be re-done in terms of
ladders. In these examplea a simpler picture will be used to describe a
ladder. The actions of the fixed part which can not be separated (a
single rung) are collected into one box in the flowchart. The j(h rung
vill contatn the exit test for the loop at level j. Except for the Oth

rung the new boxes have in and out-degree 2. These edges are the ladder

“ratls".
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The fixed code 18 omitted and the address sequence being gencrated
is indicated with the name and dimension of the array upon which Rid and
DELTA are based (eg. A| etands for the first dimension of A). The
labeling will distinguish betveen assignment and reference (Al -
reference, Al* - assigument) and wil) Lncorporate the selection

operators which affect only address sequencing (eg. a label may be SQA‘

not just Al)- The ladder of Figure 3-2 would be shown as:

6 2
C = D
S 3
A3
q

where L1 18 the ladder label. The splice code is listed, labeled by
splice number and 1s scalar APL augmented by the functlon EVUOKE L (where
L 18 a ladder label) which doea a co-routine Jump, and by {PI} which
refers to the array elemeat pointed at by PI. Execution starts with the

interpreter doing EVOKE LI.
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3.3.1 Beating And Dragging
The APL expression A+«5 5tB+CtD was translated into the Algol program:

FOR I:=1 STEP 1 UNTIL S DO FOR J:=1 STEP | UNTIL 5 DO
AfL3S}:=BT;J)4(CLE3I)4D{I3));

L;iijiiiigL_)

)

However, the isduer netw..h >r this expression 183

Lt: L2: L3:

jo

{ 310y Q sicy

C“ w2 >z C 3182 ) C

1%
LFL
3

3 3 3
(P BTMAMNPI) ALt IEPT) 3 (P11
EVOKE L2 EVOKE L} EVOKE 1.4 EVOKE L1

5:EVOKE Interpreter

which consists of 4 ladders instead of the single loop of the Algol
versfon. The overhead generated by 4 sets of loop control and the
co-routining 18 undesirable. 1In addition, the perfect synchrounizatfon
of the access to the 4 arrays I8 obscured. We thus wish to modify the
ladder concept to permit more than one artay to be accesscd by a single
ladder. To accomplish this we make Pl and BETA into a vector of

pointers and initial values. Each position is associsted with an arrey
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(not a ladder) and these variables are global to the entire network.
Similarly DELTA and G which were vectors whose length vwas given by the
rank of the array, now becowe matrices with a tow for each item fa PI.
Only I and RHO (the loop control parameters) remain local to the
ladders. 1In Flgure 3-3 ve see the fixed part of a ladder structure
accesaing two arrays.
Using this new factlity the ladder network shown above becowes:
Li:
3 (PIT1 1€ PIT2) D+ [ PIT3) )+ PITu 1]
5:EVOKE Interpreter

Ay #.5181.94Cy. 910y

f2¢.3182,51C2.5102

NS

3

which generates addressecs efftciently with the same low control overhead

as the Algol verston.

3.3.2 Uperator Tranaposition

Given this new feature we can also translate the expresston S+x/+/[1)A:8

into a single ladder. The change in access order shown in the Algol

versfon:
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FOR J:=10 STEP -1 UNTIL 1 DO

BECIN T:=0;

84

FOR 1:=10 STEP -1 UNTIL | DO T:=(ALT;3)/B{1;J])+T;

S:~ThS
END

a8 reversal of nesting order for the loops controlling the subscripts 1

and J 15 reflected in the ladder:

L1

*R2, 48

al 12

dny. 484

1:T{1)y

2:T(21+0

3:T(2)~((PIC1 I (PI(2)0)+ 00 2)

T+ 21xT( 1]

5:EVOKE Interpreter

(which stores into S from T{(1})

by the taversion of array dimensious shoun by the fixed part labels.

3.3.3 Fillterlng

The Algol code for B+(V/A)/[115vA O A+CAD:
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K:=0
FOR I:«l STEP | UNTIL 10 DO
BEGIN T:=FALSE;
FOR J:=10 STEP -1 UNTIL 1 DO
BEGIN A(1;J]:=C{1;3] AND D{L;J);
T:=A(I;J) OR T
END;
IF T TREN BEGIN K:=Ktl;
FOR J:=1 STEP | UNTIL 10 DO
BE{K;J):=E{L;J) OR A[I;J])
END
END

uses one subscript (K) which f3 not a loop Index. Also, the use of
variable E occurs only for some values of 1ts index I, the selection
being dependent on values of A. In order to avoid having to calculaste
an address sequence fin splice code the co-routine facillty will be used
to select one of two ladders to execute in each step. The splice code
is extended to fnclude an tf-then-else construct. The value of the {f
clause must be {n a reglseter, and the alternatives may only contain an
EVOKE. Both ladders will sequence the pointer (element of PI1)
assoclated with E but only one will actually access the array and
sequence the pointer to B.

Additional processing necessary to get

correct sequencing will be described in the section on stream generators

The varfable A occurs 3 times in this expression. Since the
assignment {8 the first access, each references the same values in the
same storage, but there {3 no guarautee that the 3 uses of A will
proceeed in synchronization. Therefore we may need 3} different painters
to A. These “allases" for A will be written as 4" and A°’. 1In this

example two poiaters do move together and may be combined.

We also elfminate the storage of all but a single row of A which {s

accessed repeatedly. Thus the ladder rung which vould have moved the
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pointer to the start of the next row must reset 1t to the beginning of
the eingle row. Thie is done in the ladder fixed part by using a
different DELTA (calculated from & G of zero), and todicated by a label

formed prefixing the label for the dimension reset by "™ (ex. Al).

Using these new festures the ladder network is:

L2 L3:

13
“A*2.€y.8g t j

e

q
a —

(:j 4C7. 4D, 4a2¢ A'2.62.082¢ €2

3

2:7T 11«0

Jep( 21« (PILE 1A PIL2)) 3:{PI(6])+(PIES1IVIPI[ 4]}
[PIT3Y1T1 2)
(11«1 2vT{ 1)

4:1f 771) then EVOKE L2 4:EVOKE L1 4:EVOKE L1

else EVOKE L3

S:EVOKE Interpreter

which has the same pattern of access to A as the Algol program. Because
thie structure moves the same PI in two different ladders at the same
level, adjustments must be made to the ladder fixed part. They are

deacribed in eection 3.4.16.
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3.3.4 Merging

L L2: L3: La:
The expresslon S++/1/8,C,[11D translated into an Algol program: '
S:=0; S
FOR I:=5 STEP -1 UNTIL | DO +8y 10y 48y
BEGIN T:=0;
FOR J:=5 STEP -1 UNTIL 1 DO T:=D{I;J]+T;
FUR J:=5 STEP -1 UNTIL ! DO T:=B{I45;1]4T;
S:=T+S
END; q 2 q q 2 q
FOR 1:=5 STEP -1 UNTIL 1 DO (_ 02 6z o2 2
BECGIN T:=0; -
FOR J:=5 STEP -1 UNTIL 1| DO T:=C[I;J])4T;
FOR J:=5 STEP -1 UNTIL 1 DO T:=B{i;J]+T;
S:1=T4S
END; 3 3 3 3
til1 )0
.
which does not have simply nested loops. Thus the ladder network for 2271 2)+0 2: 71 21«0
this expression is one: M 2i«{pPI(1]]) 1(2)LPI21] 37027 PI(3)] i) pPii2nl
+712) +112) +112) x1 21
4:EWKE L2 4:TI11T12]1+4T01) 4:EVOKE L4 4: 101 J+71 24701
EVOKE L1 EVOKE L3
S:EVOKE L3 5:EVOKE Interpreter

which, as in the first example, uses co-routines to synchronize parts of
the network driven by the same loops in the Algol program. Since only
the upper level s synchronized we can not merge the two ladders as
before. We must allow more then one loop to be nested at one level. If
the ladder has multiple nesting then the remaining local control
variable vectors (I and RHO) must become global matrices. A ladder will
use the same number of rows as the maximum nunber of nodes at a given
level. Figure 3-4 shows the fixed part of a ladder using the new 1 and
RHO.

The modified network is:
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Tt T Splice 3 Because this structure moves the same PI in two loops nested at the same
1012301012008
level, it will require adjustments to the ladder fixed parts in order to
T get correct addressing. These will be described In section 3.4.16.
Splice S
ite.31000
Ir
L ,hmon_3,_)_I_»—Jn“).mulwn,mu Y 3.4 STREAM GENERATOR GRAPHS
— PLE2)+PIT2)+0ELTALZ 3}
As the pover of the ladder has grown, the flow charts necded to describe
§01.30¢101.30241 I
them have gotten increcasingly complex, and the condensed notation i3 not
T —— Splice 4 "
adequate for completely apecifying the ladder fixed part. We will now
Figure 3-4 . modlfy the notation to eliainate redundant {faformation, and at the same

tlme increase the information contafned fn the diagram of the stream
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generator so that significant processing can be done without reference
to the splice code. As each new feature 18 described, we will epectfy
how that inforwation cae be used to determine the actual ladder fixed

part needed.

3.4.1 Loop MNesting

The flow chart draws each loop of the control structure, and in the
coudensed notation we retalned both arcs connecting the body of a loop
to the rung containing the exit test for that loop. However, no
‘ln(urma[lon ie lost {f the flow chart is converted into a directed graph
by removing all arcs which carry t;e flow of control out of a loop body
(upwards pointing 1in exawples ehown). Figure 3-5 shows an example of

this conversion.

The nodes of the graph represent ladder rungs. 1f an edge goes
from node a to node b, then the loop controlled by the ladder fixed part
deflned by node b 18 nested inside the loop defined by the ladder fixed
part deflned by node a. Node b 1is defined to have a nesting level ome
higher than that of node a. Since the ladder control structure allows

ouly pure nesting, the graph ia a tree.

3.4.2 Header Rode

The graph node derived {rom the Oth cung of the flowchart s labeled to
distinguish it (drawe smaller) and called the "header node”. It will be

a root node in the nesting graph (foreat if eeversl ladders). These
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header nodes will contain a label which gives the nesting level (20) fof
the header. Every node now has a fixed level. Thia level is used as
the second subecript for all references to DELTA, G, RHO, and 1 in the
fixed part code defined by the node. WNode (1) in Figure 3-5 1s the

header node.

3.4.3 Raveled Nesting

The ravel operation of APL may reduce two dimensfons to one. This is

shoun in a stream generator graph by labeling the edge connecting the

two nodes {(drawn instead of as 3 single 1ine). (The control
structure represented does not change.) Both nodes are considered to be
at the same level. The loop limit for a raveled structure is the

product of the limits for the nodes. In Figure 3-6 nodes (2) and (3)

form a raveled structure.

3.4.4 Splice Order

The stream generator graph does not have a distinct edge associated with

each splice and splice numbers are not shuwn. They may be calculated as

follows:

1. Starc at the header of ladder Ll and with a current splice number of

0.

2. Traverse the tree In root-right-left~root-order. (All nodes except

leaves are visited twice, and all edges are traversed twice - once

backwards.)

B aGanind Sanndiedetal
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AN

j (\_____#_Dm,

Figure 3-5 - Nesting Graph

o
E——

Figure 3-6 - Raveled Nesting
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3. When av edge is traversed, the current splice number is incremented
and the new value 1s assigned to that position and direction (of the

traversal, not of the edge) of the ladder structure.

4. When a leaf node 13 reached, the current ladder nuaber is
incremented and the new value 18 assigned to the body of the
(innermost) loop which ie controled by the fixed part defined by

that anode.

5. The process is theo repeated for each ladder in order.

Figure 3-7 shows the splice order for a ladder of depth 2.

When the graph 18 not a straight lioe, the sub-trees are executed
in right to left order for each step of the loop defined by the node
with multiple sons. For each step (a slngle execution of the body of
the loop) of any node, the list of splices executed instide, with

duplicates removed, will be sorted in increasing order.

The ladder structure defines an infinite loop. However the
tnstruction "EVOKE Interpreter” will aluays occur in the highest
nuwbered splice of some ladder in the network, and the co-routine
connectione will guaraotee that no header node at level 0 executes more

than one atep.
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3.4.5 Co-routine Graph

The ladders in a stream generator are linked together using the EVOKE
fuaction. The ladders are co-trouttnea, When a ladder 1e evoked, 1ita
execution 19 resumed from the point after the last EVUOKE it executed
(ladders start at the beginning of Splice 1). However, the control
dependency relatloaship 18 that of non-recursfve subroutines. A ladder
vill alvays execute san EVOKE of the ladder that evoked it. This
fnatructlon will be the final instruction of a splice which is travereed
in ¢n upvards direction. (A ladder eveked will execute one step at some
level and return.) The compller will replace a string of succesafve

EVOKEs by one equivalent EVOKE,

The linkage structure may be shown graphically by adding evocation
edges to the stream generator graph. They are directed edges leading
from the node defining the loop containilng the EVOKE to the node
deftning the loop cude# by the return. They will be laheled (drawn as
------- ) to distinguish them from the edges indicating nesting
which are drawn ag solid lines. We call the source of an evocation edge
a "cholce" node Lf more than one such edge lecaves it. The nodes entered
are called "target” nodes. In Figure 3-8 we see a ladder network in
which the eplice code for the loop defined by node (1) contalna an EVOKE
of the ladder containfng node (2), and the last iInstruction of the
splice code of the loop defined by node (2) is en EVOKE of the ladder

containing node (I).
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Figure 3-7 - Splice Order

Figure 3-8 ~ Evocation Graph
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3.4.6 Control Structure Sanity

A,[1)8,(2)C

The streaw generator description wechanism described above e too

poverful in that it will allow the specification of patterns of countrol

vhich can not actually be executed. To eliminate some of the danger and

to give 8 clearer picture of the way the stream generators will be used,

a set of restrictions on the graph structure 18 giveon:

The header node of ladder L] which fa the starting point of the
ladder network must be at level 0. The "EVOKE Interpreter"
Instruction which ends the execution of the network must be the last
fostruction of the last (highest number) splice. The header node of

ladder L1 18 called the "entry point” of the stream generator.

1f the trees defined by header and loop nodes and neating edges (the
ladders of the network) are considered to be single nodes of a super
graph, the evocation edges define a directed graph. Since each
ladder returns to the ladder that started it by evoking explicitly a
particular ladder, a tadder may be evoked from only one place. As a
result the graph defined by the evocation edges is a tree. Figure

3-9 shows the graph and super tree for A,.[11(8.(2)C).

The co-routlne facility fe used only to syanchronize two ladders
(only one evocation edge leaves the super node) or to select one of
two possible calculations to do in conjunction with that step of the
evoking ladder. 1In that case two evocation edges leave the super
node. However the splice code must guarantee that only one 1»
executed for each step of the loop contalnleg the EVOKEs. Thie will

be accoaplished by putting them in opposite branches of an
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Figure 3-9 - The Super Tree
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If-Then-Else statement. (The above also means that the two

evocatfion edges will leave the same loop node in the actual graph.)

4. Except ae veeded to implement reshape, evocatioa edges will not

connect (synchronlze) nodes (loops) having different levels.

S. A "etep” of a raveled structure 18 a step of the inner-most loop.
Therefore, since evocation edges synchrouize steps, they may not

counect to a node from which a raveled nesting edge leaves.

These restrictions are not checked and eaforced by any part of the
compiler. Rather they served as guldelines for the writing of the
actual procedures used to bulld stream generatogs (described fo Chapter

4). Figure 3-10 shows violations of the last two rules,

In a ladder network meeting tliese restrictions, {t is possible to
determine for any given loop X what other loops In the network have been
entered but not completed when X 18 éxecuted. That sequence of nodes
called the "control path” leading to X {8 fdentiffed by the following

procedure:

1. The sequence fs initialized to contain X.

2. 1f the flrut node in the sequence is not a header (root) node, then
put fta father at the beginning of the sequence, and repeat this

atep.

3. If the first node iu the sequence is a header node but not the entry
point, put the source of the evocation entering that ladder at the

beglnaing of the sequence, and return to step 2.
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This pattera ie not allowed

but reshaping V into M requires

This pattern is not allowed (’j

but ravel will be represented by

)
.

Figure 3-10 - Control Structure Errors
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All control pathe start at the entry point. We define the "separation
point" of two control patha to be the last node common to both

sequences. Figure 3-11 shows an example control path.

3.4.7 loop Indices

The assignwent of the vow of 1 to be used in a glven ladder fixed part

is made by the compiler based on the graph structure. The rules are:

1. The same row of | will not be used in tvo different ladders (nodes

of the super tree).

2. One sou of each non-leaf node in a nesting tree will use the same
row of 1 as the father. (This is slmply to reduce the number of

cows used.)

3. Other nesting sons will uee different rovs of 1 than the father.
Stnce two nodes are in the same ladder {f conaected by a nesting edge,

ao conflicte can arise. -

J.4.8 loop Limit

The value used to control the number of tiwmes a loop executes is defined
by a label on the graph node for that loop and has one of the following

forms:

1. aAl ~ The loop liwit ts (pA)(I].
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Figure 3-11 - Coatrol Path (*) to Node X
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2. enA‘ -~ The loop limit is the current value of the index of the loop

assoclated with the lth dimcnsion of A in the code for expreasion e.

3. o018 - the loop limit te given by the scalar value of node & of the

parse tree of the APL expression.

4. pe, - the loop limit is eet from the current value of the index (+1)

[}

whenever the node labeled el reaches its limit. (This {8 used for
compression. The comptessed dimensfon of the result ends when the

compressor does.)

or an expression combining these galues uvaing +,- ,b N , and scalar
constants. The value specified will be stored in the row of RHO

matching the row of I selected for that loop.

3.4.9 Array Storage Polnters

A unique element of PI and row of G i8 assocfated with each array
accessed by a ladder neework. The following labels indicate that the
ladder fixed part they define Increments the PI assoclated with the
variable named, and specify the dimension of the array which defines

that eantry in G.

L. A - The lvop advances the PI pointfng to A the amount correspondiog

to fncrementing the l(h subscript. A is referenced.

2. A‘- ~ The loop advances the PI polinting to A‘'the amount

th
corresponding to incrementing the 1 subscript. A is asaigned to.
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3. _A‘ -~ The PI pofnting to A {8 backed up to the firet position of the

th
i ' dimension (to permit repeated access).

4. \041 ~ The pointer takes on successive values of 1(pA)[1) (If

possible the loop index will be used.)

5. s - The polnter takes on successive values of

t <result of parse tree node a>.

Since there {s a one-to-one association between array names and
pointers, the array name (un-subscripted) will replace the notation (PI)

in splice code to Iindicate access to array elements.

When an sssignment occurs inside an expression, all references to
that variable appearing to the left of the assignment operator are
considered to refer to a different variable (may be a different area in
memory). A distince name will be used in stream gencrator labels. If
the same array vame appears more than once in an expression, local
aliases will be assigned to permit the use of different polnters. An
in-line assignment will be assumed to be two occurreuces of the array
name (one for the aseignment, and one for the use of the value). The
use of an alias will be Indicated in our examples by following the
original variable name by "°". The compiler will merge aliases if tt

detects synchronfzed access to the same storage.
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3.4.10 Storage Spacing

There will be a rovw of G corresponding to each item of PI. The ordering

of the values 1o a rovw of G depends om the positions of labela fa the

stream generator graph.

3.4.01 Address Increments

There will be a row of DELTA corresponding to each item of PI. The
value of DELTA is calculated from G, RHO, and the nesting relations
given by the graph. The calculation is described in detail in Appendix

c.

3.4.12 Address Calculatton

In addition to the simple selection operators which may be affected by
changes to the BETA, RUQ, and G of the 1ladder fixed part, there are two
APL sclcction uperators which must be tmplemcnted using splice code to
calculate addresses. These are rotation and general subscription.
Since we vant the address generation process to be completely described
by the labels on the nodes of the stream generator graphs, new labels
are defined below whiich fndicate that the appropriate address
computation occurs at the beginning of the loop defined by the graph

node. They are:

1. A‘(el - the pointer to A 18 adjusted to point to the element whoae
lth coordinate 18 equal to the current value of the expresdion

defined at node e of the parse tree of the APL expression. A is
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referenced.

2. eiﬂi - the pofnter to A fe adjustcd to account for the rotatlion of

th
the 1  coordinate of A specified by the expresston e. A is

referenced.

3. A!(a)o - the polnter to A is adjuated to point to the element whose
i coordinate is equal to the current value of the expression *
defined at node e of the parse tree of the APL expression. A {s

asaigned to .

e041< - the pointer to A is adjusted to account for the rotation of

th
the {  coordinate of A specified by the expression e. A is

assigned to.

Both rotation and subscription employ simflar splice code. The previous
value of the subscript {s kept as an ftem of T and the multiple of the
item of G asmociated with Ai necessary to wove to the new subscript
position will be added to PI at each step.  The ladder fixed part will
have removed the effect of facrementation in lower level loops fa a

eimilar fashion to the action indicated by the label 4
.«

3.4.13 Special Labels

In order that the graph representation alone, without splice code, be
aufficient for analysis necded to eliminate unnecessary teasporary
storage, labels for two special arrays aud a eet of functions which

modify the weaning of labels are deflined:
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I. ZERO - repreaents an arvay of unspecified sfze containing the

numeric value zero.

2. BLANK - represcnts an array of unspecified size containing the
character value blank. The compiler wlil not actually generate code

to access stored valuecs vhea ZERO or BLANK are used.

3. e, - a functfon which marks its left operand ae the source of the
th

1 dimension of the result (subscript is omitted for a scalar) of

the expression deflined by node e of the parse tree. A node eo

labeled 1s a "result node" for e. The nodes on a control path to a

result node acre called "active".

4. n\c‘ - a functliocn with the sanc meaning as above which also
Indicates that the calculation depends on n previous values of

reault. (fixes order)

5. «/ - a function which signale that the labels modified contribute to
the expression for e. The node does not produce a dimension of the

result, and 1ts loop must be completed befoce values are avallable.

6. SKIP - a functlon that indicates that all computation is omitted
from {ts left vperand and only pointer movement Is done. Since no

values are produced, any result labels are resmoved from the operand

of SKIP

The set of labels of a node will be given as a text string which should

be parsed as an APL expression, with the exception that the symbol *,*

is used as a list element eeparator and has a precedence lower tham all
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other operators, including function application.

3.4.14 Address Generatlon Sanity

The stresm generator description method described above {s too powerful
in that it will allow the specifications of ladders which do not
generate valid address sequences. In particular an item of PI
assoclated with a given arvay is only valid 1f a loop associated with
each dimension of the array has been eutered and not exfted. To
elinlnate some of the danger and to glve a clearer picture of the way
the stream gencrators will be used, a set of restrictions on the
labeling is given: (exawmples of violations of these restrlctions appear

fa Figure 3-12)

-

. Pointers will only be used at the highest level at which they are
valid. This means that they will only appear in a splice leading
down from, or up to, a fixed part whose graph node is labeled to
indicate that that loop changes the polanter. The pointer fs valid
deeper in the nesting structure but the same value would be fetched
repeatedly, so it should be moved into a register at the higher

level.

2. Any label lndicating pointer movement for reference (A|.Al[e]. or
e&ﬂ‘) must appear on a control path to a leaf on which must be found
one and only one such for each dimension of A. (Aliases generated
because of multiple references to the eame array io the APL are

considered dietinct.)
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Any label indicating pointer movewent for assignment (A".A‘[e]*. or
e(ﬂl‘) wust appear on a control path to a leaf on which must be

found one and ouly one such for each dimension of A.

Tvo labels for the eawe dimension of a glven array reference or
assignment @ust be at the same level. Labels for two dimensions may
be at the same level ooly L€ they are In the same node. The
ordering along the coatrol path and the ordering by level must

agree.

1f the same control path to & leaf holds both an assfgnment and a
reference to the same areca of storage, the assignment and reference
for each dimension must be at the sawe level. The assignment label
for a dimenslon must not be later along the control path than the

refevence to that dimenstion.

If the separation of two different control paths which define an
assignment and a reference to the same area of storage occur at a
node with multiple neating, the assignwent must be in the right
branch {executes firet). If it occurs at a choice node, the

asaignment must be in the ladder contalning the choice.

The address calculation algorithm assumes that there are no repeata
in the address sequence. [f the control structure specified by the
stream generator graph make repeated passes over an array or part of
an array, the address pointer must be reset. The reset operation is
indicated f{n the graph by labeles of the foram _Al' The graph
specifies a repetition if the control path to the lowest node

associated with the given reference or sssignment contains any loop

109
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nodes not labeled to be part of that operation., The reset aperation

must be placed on all the nodes in the gap.

1f a node coantains an address computation tabel referencing the
result of parse tree node e, then a value of the expression must be
available at that point. This will be true L€ the costrol path to

the node has on it labels for each dimension of e.

The control path leading to a node labeled with epA‘ must contaio a
node labeled with elA ¢

The restrictions of uniqueness and distinct levels which apply to

addrese generation labels also are taposed on the labels for e.

As was the case for the control structure rules, no part of the compller

checks and enforces all of these restrictions. Rather they served as

guidelines for the writing of the actual procedures used used to bulld

stream generators {see Chapter 4).
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(i? (misding level)

(duplicated mwotion)

(order confifct)

(i) (order conflict)

CEP*{‘ZD
Calt )

Flgure }-12 - Addresa Generation Ervors
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must be changed
to

oust be changed to

Figure 3-12 - Address Generatlon Errors
(cont.)
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3.4.15 Loop Limit Validity

When a cholce node selects between alternative targete, the number of
alternatives must equal the number of cholcea. The alternatives must
also match in alze at the other levels. In addition, aince the
increment DELTA at one level {3 calculated on the asaumption that all
lower levels exhaust their corresponding array dimensions, the effective
loop liwite must match the size of the array. Thue we require: (see

examples in Figure 3-13)

1. If tvo loop limit labels appear on the dame node, they must agree.
(If not based on the same array, conformability requirements from

constraint propagation may be used to establish equality.)

2. 1If evocation edges leave a node, the loop 1imit of the choice node

must equal the sum of the limite of the target nodes.

3. 1If the contro)l path connecting two active nodes at the eame level
does not pase over an evocation edge at that level, the loop limits

of the tvo uodes aust be equal.

4. The sum of the loop limits of all nodes containing pointer tncrement
labele for a given array dimensfon muat equal the length of that
dimcnsion. 1f there cxists more than one node incrementing a single
pointer, the control paths leading to those nodes must separate at
either a node with multiple nesting which 1s thelr father or at a

cholce node which {s at thelr common level.

These requirements are checked explicitly (described in Chapter 4).
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G- (G2

PA = limit (1) = Matt (2) + Moit (3)

1imit (1) must equal limit (2)
but limit (3) need not equal llmit (4)

Figure 3-13 - Loop Limlt Eerrors
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3.4.16 Sequencing Correction

When the pointer movemcnt for one dimenslon of an array 1s accomplished
in more Lhan one node, the standard ladder fixed parts will not produce
the correct address sequence because at both the first and the last
(test fafils) steps of a loop the pointers are not incremented.
Therefore at the transition between two nodes moving the same pointer
one Increment w11} be omitted. It must be done in the separation node
before the first execution of the second option to execute. Pointer
resct applied to pointer wmotfon in a different ladder will require the

same correctlion.

3.4.17 Examples

The stream generator graphs for two of the examples presented earlier
are shown below. In these drawings we have included only those result
labels which are necded to show special properties of nodes (/ \) and
relatfonships between thewm., This was done to save space and avoid
clutrer. In Appendices F and G graphs with all labels shown are

presented. An laspectfon of those drawlngs will quickly reveal why

labels are owmitted here. The procedure used to generate these graphs e

described in Chapter 4.

3.4.17.1 Filterlng - The stream generator for the filtering example -

B+(v/A)Y/(11EVA O A+~CAD ia deacribed by:
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CD Q )
@;).u,'a'z Dl-‘uQ o,(nl.cl-.qo‘.‘09~«-< SKIF Ey.q)
@:2hn‘z-eiz ) Cowmz*.m:.ocvremz) C SKIP €2 Q€2 ’

2:7{1)+0

N

I:BeEVA 3 AT 21+CAD
1)+ 2IvT( 1]

4:1f TL1] then EVOKE L2
else EVOKE L3

in the new notatfon.

3.4.17.2 Merging ~ The merging example S++/+/8.,C,[1]D now appears as:

116
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<network> tim<ladder> | <network>";"<ladder>;
<ladder> 1:=LADDER <ladder #>":"<statement>;
<gtatement> ii=<cond statemeat> |

e

~

—
’\\I. 1€9C1- 985>, 50cy ) ‘ V/51¢0Dg. 4Cg) . 0dCy

<assfign statement> |
<iuit scatement> |
<loop astatement> |
<switch statemeant> |
<empty>|
(<statement list>);
<statement lis8t> ::-<statement> | <statement list>";"<statement>;

<cond etatement> ::=<temporary>"="'">"<gtatement> |

<tewporary>'="">"<statement>ELSE<statement>;

. —_ -
\:"57"‘52 > ‘ 17°02.99C3 ) ( /e 08y ) 37402.9402
S /

. R <aselgn etatement>::ecvar>_cexpr>;
L1 10:712)+0 <expr> t tm<var><dop><expr> |
< tant><dop>< >
2712000 Hir(23ecin 2] <mopaconper | Pt |
< c>)
3:702}+047(2) 1370218111 2) iv::f ] '
. . s ; . <constant>;
6: 70218011 2) 13:101)en200111) <var> ti=<memeory> | <temporary> |
1270 T2 170 1] <pointer> | <base> |

dudex> | <limie> |
<step> | <spacing>;
which is a conasiderable simplification. <init atatement> S=INIT <pofnter # 1ist>:
<loop statement> ::=REPLAT <statcment> AT <level #>
USING <index #>
<stepping list>;
3.5 COMPILER OBJECT CODE <atepping list> $:=MOVING <pointer #> |
<stepping list>,<pointer #>
<ewpty>;

The object language of the compiler has been designed to simply and <svitch statement>::=CVOKE<ladder #5;

effictently implement the control structures given by the graph

<memory> timf<pointers);
<temporary> si=T{<register 4>);
representation and to be easily translatable into machine code for the <pointer> <Pl{<pointer #>]
N <base> =BETA [<polnter #>);
ladder machine designed by Charles Minter (see Appendix E for a <Index> <H(<index #>,<level #>];
<limit> =RUV {<index #>,<level #>);
description of the ladder machine and an example program). A BNF <step> DELTA[<polnter #>,<level #];
definition of the syntax follows: <spacing> ii=Gl<polnter >, <level £>];
<mop> srmal-Ixl el LEsl @l "] o] 1]~
<dop> sev| =X)L sl @)™ "l of t]
Alvinivl<isl=| 20> =

<ladder F>::=<level ¥>::=<pointer #>::=<reglater #>::e<limit #>
tim<constant>::=<unsigned integer>
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The semantics of the language are defined informally below with
reference to the existing languages IMP-10 [5) and APL. With the
exception of the APL operators the language 18 an extension of IMP-iQ
and programs which use only the standard arithmetic operations will
compile fnto PDP-10 machine code. Appendix D shows the IMP extensions
pecessary and a sample of IMP-10 compiler output for stream generator

code.

I. the operators (mop and dop) are equivalent to the correasponding

scalar operators of APL.

2. _ is scalar sesignment. (Algol :e)

3. => is the IMP conditional. (Algol IF .... NE O THEN ......)

4. The init statement {s expanded to:

Pi[<pointer #>) BETA{<pointer #>]

for each element of its polater # list. An init statement must be

executed for a pointer before that pointer ie referenced.

5. The loop statcwent is expanded to:

T{<iadex #>,<level 1) 0;
<unique label>:catatewnent>
I(<index #>,<level #>] If<index #>,<level #>)+1;
Il<tndex #>,<level #>) LT RUO{<index #>,<level #>] "=""'>®
(Pl{<pofnter #>] Pl{<pointer #>}+DELTA[<pointer #>,<level #>];
«s+ { repeat for each item in stepplng list )
GOTO <unique label>);

which can not be written directly. The index #°s and level #°a have

values given in the USING and AT clauses of the loop statement.
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6. Each ladder atores a separate program counter. An EVOKE statement
wakea the designated ladder active (that ladder # wmust appear as a
label). All program counters start at the beginning of each ladder

and execution starte with an fwmplied EVOKE 1.

7. Control, upon reaching the end of a ladder, returns to the

beginning.

8. The construct [...} 1s an indirect reference to the wemory which

holds array elements.

All features not described should be considered as IMP-10 extended to
handle watrices. We assume that the operands and the values for BETA,

RHO,DELTA, and G have beea pre-loaded.






CHAPTER 4

BUILDING STREAM GENERATORS FOR APL EXPRESSION

The translation of an APL expression into a stream genevator takes place
ifn three steps. First, strean genératora. which have the maximum
control and pointer flexibillty and temporary storage which may be
tequired, are geuerated using the graph representatfon. Second,
transforwmattons are applied to the graph In order to eliwinate control
overhiead and uanecessary storage. Finally, the graphical representation
is translated into the matching program. Figure &-1 18 a flow chart for
the translator. For the purposes of describing the translator in this
thesis, we have presented several components of it as intecrpreters of a
coamand language. We then give the "program” to be executed in
different situations. Such an approach could, but need not, be used in

a machioe fmplewentation.

4.1 GRAPH TRANSFORMATION

The flrst twvo steps involve transformations of stream generator graphs.

To siwplify the description we define below a set of atandard operations
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(commanda). The definitions of the operations are given in termes of the
structure of the graphs. Wheo a node moves, ite labels move with it.
These operations (except Overlay) assume that the graphs which they

transform have the following properties:

I. Only the entry poiant of the graph may have wore than one ncsting
son, and the control path to any result node must include the
left-most son of the entry point. We are building a control
astructure vhich does a successloan of complete operations at the

highest level. The laast one produces the result.
2. 1lf a node has evocatlon edges leaving it, it has no nesting eonse.
3. All header nodes are at level O.

4. All result nodes are in leaves of the super (evocation) tree.

The operations (except Overlay) preserve these properties 1f they hold
for their fnput. Since they hold for ladders created to access an
array, they will be preserved until the flpal stages of the fmprovement
of the stream generator, at which time Overlay may be applied as the

last use of these operatlons.

A stream generator graph having these properties may be partitioned
into the entry point and one or more "sub-graphs". Two nodes are in the
same sub-graph if and only 1f the control path to both of thes includes
the same nesting son of the entry point. A sub-graph is active 1f {1t

containe result nodes.
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4.1.1 Commands

The compiler will process the graph uaing the operations given below.
The steps carried out for each command are given and many are
fllustrated by examples. In the examples, the graphs have been edited

to remove labels not needed to {dentify result nodes.

Certain of these operations are not applicable in all cases. 1If an
operation can not be correctly applied, it is satd to "fafl". When
failure occurs, the graph 1s restored to its state before the operation
wae fovoked. Fallure of a command 18 reported to whatever process

invoked {t.

4.1.1.1 Adjust - A stream generator graph A is "adjusted to fit" a

ladder B by changing loop limits in A {f necessary so that:

l. For each node in B, the node in the entry ladder of A at the

same nesating level has the same limit.

2. Graph A meets the requirements for the relattoa between the
1imite of chalce nodes and their targets given in Sectlon

3.4.15.2.

Graphs which have been adjusted may be in violation of the
restrictions glven in Sections 3.4.15.3 and 3.4.15.4 which specify
the correct relation between loop limits of nodes at the same level
and between loop limits and acray sfzes. Sébsequenl compands may
correct the situation, but when Adjust is used (in Herge below), the

command Check wuat be executed at the end of proceasing to verify
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that the final graph is correct. The command: Herge a and b (as in X+¥,Z)

4.1.1.2 Check - Check does not alter a graph. It verifies that loop
limits meet the reatrictions given in the three sections mentioned
above. [If the restrictions are violated, then the commund using
Check falls. Figure 4-2 shows examples for Adjust and how it can

cause Check to fall.

4.1.1.3 Overlaying - When tvo stream generators with the same structure
are operatling (or can operate) in synchronfzation, 1t fe desirable
to use the same control structure for both. Thie will be
accomplielied by overlaylag the two generatore. Two grapha (or

sub-graphs) may be completely overlayed if:

1. The two graphs are isomorphic. Since (pX)=(pY)+pZ ie true by conformability, Check will succeed after

Overlay. However the command: Merge b and d (ss in (V/A)+(W/F) )

a) (‘o ) (U .
nesting, or evocation), the level, and the right-to-left order ( 'I’ ¥
R G e
of multiple edges leaving & node. - ("“ Llﬂ**’ (—*SLL' ‘—5) “

3

2. The equating of nodes of the tsomorphism preserves not only

adjacency but also the type of connection (neceting, raveled

3. The loop limite for each equated palr of nodes agree. requests that d be adjusted to fit the active ladder for b (1). This

weans that the limite for node | and node 2
4. 1f tuo choice nodes are equated, they must both make the same pust agree, but

conformability requires nodes 1 and 3 to have the same limit. Thus
selection at each etep.

Check will fail.
Because of the requirement of preserving right-to-left order of
edges, the overlay process faovolves only a single simultaneous Figure 4-2 ~ Adjust and Check

traversal of each graph (tree). A slaople interpretation of the

first two requirements is that the pictures of the two graphs must
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look the same. Obviously this operation will not change the nesting

pattern or change header level.

It 1e also possible to do a partial overlaying in two cases

which do not permit complete overlaying. They are:

1. 1If complete overlaying would combine two choice nodes with
different selection patteras, the nodes may be combined, but
overlayfng stops with that node. Both sets of evocation edges

leave the new node.

2. 1f two nudes can not be overlayed because of count or addreesing
restrictions or because one ta a raveled structure and they are
nesting sons of nodes that can, they may become separate nesting

sons of the combined father. Overlaying stops at this division.

The last form of incomplete overlaying can create multiple
nesting at any point. However [t {a performed only during the fioal
stage of the Improveacnt process. The merging operation (below)

vhich uses Overlay requeste complete overlay only.

4.1.1.4 Transpose - Several APL operators (ex. Transpose) require the

perouting of the order of nesting of the nodes labeled to be part of
aa operand. When this is done, it 19 neceesary to also move the
other active nodes. Transpoeing a stream generator graph ls

accomplislied using the procedure given below which is 1llustrated in

Figure 4-3.
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1. The active eub-graph 1s detached from the entry point and

transformed as epecified In steps 2 thru 5.

2. The neating edges connecting active nodes are broken,

3. All active nodes at each level are moved to the specified new

level as a unit.

4. Each set of nodes formerly connected by nesting edges are
teconnected in thelr nev order. 1If gaps exist In the nesting,
nev (unlabeled) nodes are createcs. (Gaps will be created when a
node which has no nesting sona is woved below a level formerly

beneath 1it.)

5. 1f nodes become inactive due to transposition they are
discarded. (They will have been generated earlier to fill a

gap-)

6. The transformed sub-graph ia then reconuccted to the entry

point. Right to left order will be preserved.

The above procedure 18 only correct {f there is not multiple active
nesting. This transforwmation will preserve that status. It will
also leave all level 0O header nodes at that level siace level 0 s

not subject to transpositioan.

.1.5 Reversal - Several APl operators (ex. reverse) require that

the processing of a given dimension of a stream Zenerator be
reversed. This fe done by reversing all pointer fncrement labels fn

active nodes at the specifled level. There are 2 special cases.
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for
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Transpose cowmand - after steps | and 2:
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¢ 1)3 C?’“ I

L3 ¥ - neu node

Figure 4-3 - Transpose
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I. The operation may not be applied to a node coataining the label

functions / or \,

2. If reversal is applied to a raveled structure, all nodes

comprising the structure must be reversed.

4.0.1.6 Merging -~ The generation of the stream generator graph for an
operatfon which requires synchronized access to iteé two conformable
operands (ex. dyadic scalar operations) requires merging the entry
points and the active sub-graphs of the two operands (inactive
sub-graphs are first discoanected). There are ) cases, each

described below and illustrated in Figure 4-4.

1. 1If in each graph the result nodes are in the ladder containing
the entry point (ex. A+B ), the two graphs are completely

Overlayed 1f poastible.

2. 1f one graph has result nodes in a different ladder from the
entry {(control path uses evocation edges) (ex. 44(C,D) ), each
ladder containing result nodes is detached and completely
Overlayed (Lf possible) with a py of the graph for the other
operand which has been Adjusted to fft. The resultlog ladders

are re~connected and the whole Checked.

3. 1f both operands have evocation edges as part of the control
path to a result node (ex. (A, L118)4C.[21) ) then we select
the operand fa which the first such occurs at the highest level

(eclection can be arbltrary if levele are equal). Each ladder
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containing result nodes {8 replaced by a copy of the the graph Case |: for Mergting

a and b

+
for the other operand which has been Adjusted to fit the ladder requires [}
N only a
it replaces. . B
by

siaple B,
. ) overlaylng Cﬂlﬂ)
For each graph B which replaced a ladder A, we detach each l

S

- 2 ) (Cezez )
ladder in B containing result nodes and completely Overlay it ! -———lD (———’————
(if possible) with a copy of A which has been Adjuated to flt. Case 2: for
The results are reattached, and the whole is Checked. . . o q{> . ,
— S el
o " Shk GHINID St o )
The inactive sub-graphs of each operand are then attached to the

header of the merged active structure (to the right). If elther Merging a and b requires copying the ladder for a

+
Check or Overlay fails then Merge fatils. /\
b),{11 ' ~
LN ) g.) ()

This procedure will not create multiple active nesting since

complete overlaying can not cause new mesting. Since ladder (—iﬁl}—__—{ bomome A s )

structures are moved intact, headers will atay st level 0 1if at that Case 3: for

.
level 1o both operands. . é} g) g‘l . )
4

T B ( - - )

4.1.1.7 Nesting - Certala APL operators (ex. outer product) require a o) b1 n_ S Q N S

stream generator which accesses one operator {nside the inner-most ( [ ¥ ‘)'"'L_ -"( -02 ) ( .L_) L_*z ‘)

loop accessing the other. The generation procedure which {s ashown

Merging a and b requires copyfng both a and b

ia Figure 4-5 is: N
aA.[l] by, (2]
1. The active sub-graph for the operand to be nested under the \
/ \ /! ‘\
other {e detached. ’ )

2. A copy of {t 1a attached to each result node of the other stream

generator which is at the end of an sctive control path.

Ftgure 4-4 - Merging
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3. If the newly positioned sub-graph contatns any header nodes, new
empty nodes are inserted between each header and its nesting son
until nodes which had equal nesting level in the origtnal
sub-graph are agaln at the same level. If a new node is a
nesting ancestor of a node modlfted by SKIP, then that modifier

le placed on the new node.

4. The header of the lower operand 13 combined with the header of
the upper.  Any eub-graphse nested below that header become sons
of the coobined header (on the right).

The result of this procedure f;r nesting will have all fts header

nodes at level 0 {f 80 positioned in hoth operands. Since the new

nesting connections are made to nodes with no active sons, and only

ane connectlon {9 made, no multiple active nesting can be created.

4.1.1.8 Alternatives < The APL operations which require the selection
of one of two possible sources for the result (ex. expanaion) are
lmplemented using co-routine evocatfon. New evocation edges are
sdded, rvaning from the lowest reault node(s) of the graph which
wakes the sclection, to the active node In the entcy ladder of each
alternative which ta at the level of the operativn. The procedure

18 1llustrated fn Figure 4-6. There are 2 special caaes:

I.  If the node from which the evocation edges leave is above the
tevel of the operation (as 1n V\[n J4 where n t8s not highest
dtmenaion of A), it will be nested under new ewpty nodes until

at a matching level.
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for: Nests b under a

and for:

G ? Q9

Ca D D D s VD s NS

Nests a under ¢

after stepa ) and 2:

Flgure 4-5 - Nesting
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2. If one of the alternatives doce not have an active node ta the

entry ladder at the level of the operatton (as in A,[2)8,[1)C -

see Flgure 4-7), no legal connection can be made.

The Evocation

Order demou described fn 4.1.2 muat first be applfed. It will

guarantee that the new destinatlon for the evocation edge has a

proper target.

Thie operation will fatl 1f an alternative contalne inactfive target

nodes at the level of the operation (ie, the result of a compression

may not be compressed over the same dimension without being stored)

unless the operation is being used to represent catenation (see

Appendix G - Example 4).

The creation of alternatives has no effect on nesting etructure

or Weader levels.

There will be nodes nested below the chofce node

only if 1t {8 poassible to have an inactive node nested below a

result node (which has been ruled out).

These operations will be used both to create and fmprove stream

generators.

Ve show fn Appendix C that reversing or transposing a

sub-graph of the entry potnt will not change the contents of storage.

Hone of these operations wiil create multiple active nesting or

pull header nodes down from level 0.

New nesting connections are wade

only to the entry pofnt and at the lowest result node of a ladder.

Multiple nesting will only be created at the entry point unless an

lnactive sub-graph hangs below a lowest result anode.
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for:

/N 9

(:::lx

the Alternative command produces:

and for:

[2)

the result is:

Figure 4-6 - Alternatives
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4.1.2 Dewmons

Falthful application of the above procedures can yield graphs not suited
for later phases fn the compllatlion. To avoid this the following

transformations will be carried out whenever applicable.

6.1.2.1 Addresas Calculation - If nodes contalning address calculations
are woved by a traasposition, the address calculation will be moved,
if necessary to the location where the subscript is avallabie (sce

Section 3.4.14.8).

4.1.2.2 Empty Nodes - If empty nodes are created, they must be assigned
loop limlts wecting the requirements for loop: limit validity given

in Section 3.4.15.

4.1.2.3 Pointer Reset - When graphs ate transposed or nested, pointer
reset labels must be added as required by Section 3.4.14.9, and

removed when they are not required.

4.1.2.4 Redundant Choices - If a control path passus through two cholce
nodes, and 1f the branch selected by the first determfnes the branch
which will be selected by the second, the branchs which may not be
sclected can be deleted. If that results in a cholce haviag only
one branch, the rewaining alternative can be overlayed with the
chofice. An example 18 (A,B)44,C. We saw in Figure 4-4 how Merging
the results of two Alternative operations generates a graph with two
choice nodes on each control path to a result node. In this case

they are at the same level and tdentical.
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4.1.2.5 Evocation Order - The co-routine patterw described in Chapter 3

requires that 1f an evocation ecdge enters a ladder, 1t connects to a
node at the same level as the source of the edge. The above
transformations may produce a graph which does not have a suitable
target for a subsequent operatfon. If so, the stream generator must
be transformed to create one. The procedure which operates at the
level of the super tree defined by the evocation edges is: (see

Figure 4-7 which shows the example 4.[21,8,[1])0)

-

« Locate a node with a son which does not contain a legal target.

2. Break the connections into the father and into and ocut of the

aon.

3. Put the son in place of the father, and in the place of each
grandson attach a copy of the father (including any descendauts

not detached).

4. Attach each grandson to the remaining broken link on the

appropriate copy of the original father.

5. Repeat uatil the super graph is ordered.

When the evocation edges are broken and reconnccted the cholce aodes
rewmain the same and the targets become the nodes at the matching
level. This procedure has no effect on nesting structure or header

level.

4.1.2,6 Scalar Operands - If an operand of a dyadic operatiou I8 a

ecalar, its header is werged with the header of the other operand.
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the graph:
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Figure 4~7 - Evocation Order Demon
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Labels to reference that scalatr are placed on all the result nodes

of the other operand.

4.1.2.7 Repeated Calculatfons - If an operatfon will build a graph

which has, or could have, after transposition, nodes of one operand
nested below nodes not of that operand, end tf the labels modified
to be the result of that operand are not simple polnter movement
reference only, then labels specifylng assignment to a temporary

array are added to each wmodified node and they become the rvesult.

4.1.2.8 1In-Line Assignment - 1f, in the graph for an operand. the

modiflers indicating which labels represent the result of that node
of the parse tree are applied only to simple pointer increment
assignment labels, and tf the operation is not assignment, the
atored quaontity will be used as the operand. The chauges wade to
the graph are detailed in the section of Appendix F describlng the
assignment operation. (Note: This {nterpretation of assignmeunt
implies that the vslue of an assignment to part of an array is the
right operand of the assignment. It also forces shape

conformability.)

Thie operation nests an active structure under the eantry polnt,
but it also removes the result labels from the old sub-graph. Thus
the result will not have multlpie active nesting. The new active
sub-graph hae no multiple nesting and contalns no inactive nodes.

Header level is not affected.

The last two demons reflect that one intent of the gencration process fe

to leave maxiuum flexibility for the {mpraver by including all tcwporary
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storage that could possibly be needed.

generate temporaries, only elfminate them.

4.2 CREATION OF STREAM GENERATORS

14l

The improver will never need to

The f{nput to the translator is the parse tree with its assoclated

predictions an? requirements.

The parse tree will be traversed in

right-left-root order. 1f, during the processing of a node for an

operator, teaporary storage is created to hold the result; or if an

operand must be placed in a temporsry before the operation can be

applied, the parse tree will be modified to reflect the changes

\\
' =
I\

\
\

-

vhere b and ¢ are new parse tree labels.

each operand or operator is given below.

The actlon to be taken for

Examples of the graphs

produced for each operator are shown in Appendix F. Figure &4-8 shows &

flowchart of the processing of an operator.

4.2.1 Operands

¥hen a leaf node (storage reference) 18 encountered, it is handled ase

follows:

4.2.1.1 Arrays - 1f the varfable (or conatant) fe an arcay, the graph

is a header node over loop nodes nested to a depth equal to the rank
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of the array. Each loop node 1s labeled with e‘A "04" This is &

single ladder vwith no multiple nesting or inactive nodes.

4.2.1.2 Scalars - If the variable is s scalar, the graph is only a

header node.

Each ladder created is based on an array. New ladders will be generated

for operations only when a new temporary array e created.

4.2.2 Functioms
User written functions may be handled In one of two ways:

4.2.2.1 Separate Unit - If earller phases of the comptler have
separated the functfon call into a separate compiled unit, that call
18 not compiled, but serves to {nstruct the {nterpreter to complile

(1t necessary) and execute the function body.

4.2.2.2 Stream Generator Subroutine - If eaclter analysis has
deteratned that a previously compiled function may be included in
the calling compiled unit, it will appear in the parse tree as an
operator of approprlate valence. The command program for procesaing

this operator is:

for each operand of the function do
(build a simple ladder with shape of operand;
label the unew ladder to asslgn to a temporary;
execute Merge command between new ladder and operand);
builld a simple ladder with shape of result;
label it to assign to a temporary
and as result of the function callj
Overlay entry points of operund and result ladders
with result as left-most aub-graph
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The result sub-graph represente the action of the functlon which is
actually connected to the calling etream generator by evoking it
from the entry point. Sfince that ladder does not sctually exist, {t

can never be overlayed.

When a function is compiled a preamble is generated containing
instructions to be followed by the interpreter in performing validity
checks and Joftlalfzatfon. The preamble also lists all global varfables
appearing in the function together with the constraints that must be
fwposed upon or between the global variables and operands of the

function.

4.2.3 Monadic Uperators

When a monadic branch node (monadic operator) is traversed, the graph of
the result is built by transforming that of the operand. The
transformations applied for each operator are given in Appendix F (with

exawmples).

Reduction is the only operation which can create an fnactive node
in a ladder containing result nodes. Since the result of a reduction is
always placed In storage, when this si.eam generator is used for an
operand, the In-line Assignment demon will create a new active sub-graph
which conl;!na only rcsult nodes. Thus when the transformatioan
operations are applied no result node for a wonadic operation may have
an Inactive nesting son. Therefore no multiple nesting can be created

by a wonadlc operation except at the entry point. Since the graphs

produced for operands have headere at level 0 and no wmultiple nesting,
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and the transformations preserve these properties, they hold for the

resulte of monadlc operations.

4.2.4 Dyadic Operators

The graph for the result of a dyadic operation ie built up from those of
the operands. The procedure used for each APL operator is given in

Appendix F (with examples).

The dyadic operations create inactive nodes only through use of the
wonadic operation reduction which, as seen above, does not cause
violatfon of the nesting restrictidns. Therefore, like the monadic
operations, they create multiple nesting only at the entry point. Also
the ladder contalning the result nodes used for the choice in the
alternative operation will have only reeult nodes. Since the
alternative operation uses the lovest result node as the cholce node, no
nodes will be nested under it. Thus the dyadic operation will also

preserve the desired properties.

4.3 ELIMINATIUN OF UNNECESSARY CALCULATIONS

Compression and the selection operators (except transpoattion without
diagonalization) discacd part of their right oper;nd. If the value is
used nowhere else it shiould not be calculated. During the course of
stream generator creation the selectfon operations were applied to the
stream generators for thelr right operands, but the In-line Assignment

prevents any operation from affecting the calculation of a value which
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Now, after the completion of the generation phase, 1{f all
references to any given dimension of an array which 1s local to the
stream generator are affected by the same selection operator, theu the
equivalent operation will be applied to the sub-graph of the entry node
which is active for the gencration of that arcay. When the operation is
not directly applicable (would generate temporary storage), it is
abandoned. If the application 18 succer~ful, then the selection
operation is removed from all the labels for the array. Ome application
of this transformation may create more opportunities to apply fit.
However, since operations are moved towards the leaves of the parse
tree, the process will terminate. Flgure 4-9 1s a flowchart for this

phase of the compiler.

The "reject" side of the alternative construction used to fmplement
compreasion does only pointer movement for the source(s) of the right
operand. If the right operand is an expression which has not been put
in temporary storage, calculation of unnceded elements will be skipped.
Lf the right operand had been stored, only the final reference to the
stored value ts skipped. However, the compiler attempts to eliminate
temporary storage by moving the calculation to polnt of use. I the

case of compression, a side cffect will be the elimination of unaceded

calculstions.
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4.4 REDUCTION OF TEMPORARY STORAGE

The primary recason for tranelating APL into stream generators is to
factlitate the elimination of unnecessary temporary storage. The stream
genecator graph reveals the order (n which intermedfate results are
generated and used. It also contains the inforwatfon needed to
determine alternate ordera. The i{deal situation {3 a stream genetator
in which the order of gencration and use match for all intermediate
values., When this occurs no temporary storage is required. The
compiler will attempt to find the orde which comes closest to this
jdeal. During this process a constraint is Imposed that no calculations
will be repeated in order to reduce storage. The task of determining
the best ordering le complex because the constraint of no repeated
calculatlous requires that certain operations be done in one particular
order (ex. Scan), and because certain operations requtre fnternal

temporary storage unless done in a specific order (ex. Reduction).

1€ the level 0 header which 1s the entry point of the streanm
gunerator has wore than one nesting son, each sub-tree cxecutes
fndependeatly in successlion, communicating array data only via mecmory.
The creatfon rules have produced a graph fn which the entry point is the
only node with more than one nesting son. They have also produred a
configuration fn which a successful application of the commands
transpose or reverse to the generation of an array (result labels for
that parse tree node used to determine active sub-graph) will not change
the result in etorage (see Appendix C). These two operations which we

call “reordering” may thus be applied to the stream generator as uneceded.
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The elimination of temporary storage requires that the stream
generator be transformed so that the calculations are done in
synchronization instead of in sequence. The desired transformation is
to overlay all the sub-graphs of the entry point. When overlaying is
blocked only by the presence of raveled nesting, two eub-graphs may be

synchronfized as co-routines using evocatton.

The compiler attempts to select the order for each sub-graph which

pernits the maximum overlay. Storage may be eliminated in the following

casep:

}. Both aesignment and all referedces to an array dimension are in the

same node.

2. The assignment to an array dimension fs Iin a choice node and the

only references are in all the targeta.

3. The assignment and reference of the entire array are at matching

levels of two ladders synchronized by evocation.

If an array ts used in a node where none of the above apply, or if there
exiot a node where the storage i3 wodified by / or \, then storage of

that array may not be elimtnated lower in the graph,

The most stralghtforward approach to picking an order for each
sub-graph would be to try all possible combinations of ordering and
select the one requiring the wminimum storage. Unfortunately that
approach requires the examination of a number of cases that grows

exponentially with the number of sub-graphs. The sectione below
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describe a procedure which 1s not guaranteed to generate an optimal
ordering, but it is cowmputationally feasible (time) and has proved to

pecrform well.

4.4.1 CGCeneration And Use

The determination of best order for each sub-graph 1s simplified by the
use of an alternate representation for the generation and use of arrays.
We draw a graph in which each node represeats one of the sub-graphs of
the entry point of the stream generator graph. The nodes are labeled
with the names of the arrays (or scalars) assigned to by that sub-graph.
If one sub-graph uses a value generated by snother, a directed edge is
drawn from generation to use in the new graph. The edge is labeled with
the name of the array (or scalar). If a node has out-degree 0, the
values it assigns are not referenced in this stream generator. If the
arrays (and scalars) generated are local to the stream generator, the
node (and the associated sub-graph) are deleted (only functions without

side-effects have been included in larger stream generators).

Each edge indicates a possible storage savings to be obtained by
overlaying the sub-graphs represcated by the two nodes connected by that
edge. Thus we first eliminate edges connecting sub-graphs which we can
determine can not be overlayed (the complexity of the recognition
process is discused below). This occurs in the following situations:

(conaidered in order listed)

l. Required Storage - Storage of a generated array is required if:
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1. A use of that array is subscripted or rotated.

2. A dimension of the use 18 wodiffed by a selection operator.

3. Two dimensfons of the use are in the same node (diagonalized)

4. Two uses of the same array in one sub-graph (aliases) are not in

the same order at the same levels.

When an array 18 used {n that way, edges for that array entering
that aode conuect two nodes which may not be overlayed. Those edges

are deleted.

Scalars - A sub-graph generating a scalar intersediate result in a
register must complete before the value may be used. Thus edges

representing a scalar are deleted from the graph.

Alternatives - If both the generatlon and use of an array are in
ladders which acre alternatives selected by a cholce node (reached
via evocatlon edges), and 1f the alternative 1s not implementing the
coupression operator, .then overlaying {8 posaible (see definition)
only {f the choices tn the two sub-graphs are identical. Otherwise
overlaying te lmpussible, and the connecting edge 18 removed from
the graph.

In the case of compression it way be possible (see Section
4.5.1) to wove an array use from the alternatives into the cholice
ladder. 1If this occurs, overlaying fe possible. Thus edges

represeating that situation are retained.
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4. Order Conflict - Any path through the graph defines a function which
waps cach ordering of the node at the beginning of the path to that
ordering(s) of the node at the end of the path which causes
generation and use to be synchronized. 1f there exists a node with
out-degree greater than I, and {f paths which leave that node along
different edges rejoin, the ordering functions defined must be
consfstent. If this 18 not true, efther the fork or jola must be

eliminated.

5. Repcated Use - 1f one use is nested under another, no order exists

which permits both to be completely overlayed with fts gencration.

6. Required Sequencing - 1f two nodes may not be overlayed, this may

block the overlaying of other pairs of nodes in three circumstances:

1. A node which depends (path exists) on both may be overlayed with

neither.
2. A node depended on by both may be overlayed with nefther.

3. Two nodes which may not be overlayed may not be overlayed with

the same node.

When a cholce exists as to which edge in the graph to eliminate, the one
representing the smallest quantity of temporary storage is sclected (le
- best {8 a global array - next the smallest temporary). If any edge
for a given arvay hae been eliminated, that array must be stored, and It

1o cousidered global io any further processing. As a final step, all



BUXLDING STKEAM GENERATORS FOR APL EXPRESSION 153

edges for arrays coansidered to be global are ellminated. Thue the
procedure that selects sub-graph orderings will only attewpt to match
generation/use order when storage savinge are possible. Figure 4-10

shows an exomple of this process.

betectton of order conflict or required scquencing may require
traciug all pathes from each node, and in worst case could could require
time proportional to the square of the nuaber of nodes. The other caves
depend oo properties of single nodus or edges (nuaber of edges bounded

by square of number of nodes or by sfze of original fuaction).

4.4.2 CGraph Order For Maxiamum Overlay

The removal of edges may have divided the generation/use graph into
several uncoannected components. Each will be processed separately in
vhat follows. Each edge rewalning indicates the posaibility of

eliaination of temporary etorage via one of four patterns of overlayling.

{. The geaeration and use are both in the entry ladder, and are

overlayed.

2. {oples of the eutry ladder contalning the generatloan (adjusted to
fit) are overlayed with the ladders of use to thelr position as
alternatives. (HBecause of the ln-line assignwent demoa, sn entry

ladder which {s a genecation will not have alternatives.)

3. The e¢atry ladders of coples of the sub-graph containing a use are

overlayed with the alternatives coatatafng the generation.
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4. When the cholices are identical, two sub-graphs with the generation

and use in alternatives are overlayed.

An edge may represent one of two eituations:

I. The storage way be ellminated by overlaying the stream generator as

currently ordered.

2. The storage may not be eliminated because use and generatfon are ia

different orders. Reordering the sub-graph corresponding to efther

node will correct this eituation.

The end result of thie algorithm {6 a graph wtth only edges of type 1.
However, that is not sufflicient to eliminate unnecessary storage. There

are 2 cases which require a sub-graph to have a particular order before

storage wiy be eltwinated. These are:

l. The storage may not be elfminated when generation occurs below a
node labeled with / or \ (/(n] "oc \(n} where n {8 not lowest

dimension will require storage unless transposed),

The storage may not be eliminated {f use s repeated (nested under
another array -~ B In Ao, +8 or nested under a dummy node which was

created for an alternative operation - ¥ {n V/[n)A where n 18 not

highest dimension).

When the same array Ls used in both the choice and target laddere of a

compression, stocage of that arcay can oaly be eliminated at or above

the level of the cholce. However, we have not {ncluded compressing the
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lowest dimension as one of the requirements since 1t conflicts with the

elimination of repeated use of the left operand. Since we can use the

storage allocated for the final result to hold candidate components,
this is not a serfous problen.
In addition there will be sub-graphs (produced to handle reshape)

which can not be reordered.

The algorithm preseanted below glves priority to satisfying the
requirements indicated by edges and will, if necessary, lcave the
requirements {ndicated by nodes unsatisfted. Node requiremcnts are
relaxed in a fixed order depending on the operation that vas the source
of the requirement. They ate never retnstated even {f the higher
priority requirement with which they conflicted is later ecllminated.

Requtrements are relaxed in the order given below:

Il. Reshape lnput - The monadic reshape operation generates a sub-graph
which may not be reordered. If that causes an order mismatch along
an edge entering the reshape node when all node requirements are

honored, the edge 1s dcleted. (The node requirement is absolute).

2. Repeated Use - The preference to avold repeated use will be the next
one abandoned. 1f saving storage 1s critical, values used

repcatedly may be calculated repeatedly.

3. Reduction and Scan - The preference that the dimension reduced or
scanned be the lowest one is the last abandoned since the resulting
storage may not be avolded. However, no examples have been seen i
which the atorage of internal intermediate results required when the

preference 18 not honored exceed the storage resulting from mismatch
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of geaneration and use.

4. Reshape Output - If, after all node requirements are relaxed, an

edge conflict fnvolves an edge leaving a reshape node, the ecdge is

deleted.

The compiler proceeds as follows:
1. Visit each node of Generation/Use graph and establish preferences.

2. Vislt each each node which has a pruference in order of decreasing
privrity, and trdce each path leaving that node. If a node with a
conflicting prefereace is reached, the preference with the lower
priority is abandoned. 1If a node with no preference is reached, a

preference ie established.

3. 1f a node nov existe with no preference, select one with in-degree
0. Select an ordering and trace all pathis leaving the node. 1f
conflicts with a preference ave discovered, select a new ordering
und repeat. If oo conflicts are found, establish this order as a
prefereace for all nodes oo the path. Thie step Is repeated until

all nodes have an order preference.

Figure 4-11 13 a fluw chart of the ordering procedure.

This procedure which establishes preferences explores the whole graph
starting from each node. Thus it may require time proportional to the
square of the number of nodes. The final order selection traces the
graph for each alternative tried. The nuwber of alternatives te given

by nl where a is the depth of the graph (highest arcay raak which
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rarely exceedsa 4).

1o Chapter 5 the performance of the compiler for a set of examples
fe discussed. The action of the above procedure for one example fis

shown in Appendix G.

4.5 ELIHINATION OF EXTRA CONTROL STRUCTURE

Ouce unnecessary tewporary etorage haa beea eliminated, the compiler

will attempt to creduce overhead and code size by simplifyiung the control

structure.

4.5.1 Syacronizatlon Within Sub-graphs

The alternative construction produces a stream generatoer in which the
nodes above the level of the cholce in the cholce ladder and the
alternatives are synchronized. Unless a level consists of a raveled
structure, all pointer movement can be done in the cholce ladder. Since
having three loops doing the work of one is undesirable, the polinter
movewent labels are moved. All nodes now without pointer movement
labels and not nestced under nodes with them are removed. Thias operatfon
will create header nodes at a level greater than 0. The pointer

tnitlatizat lon operations are moved into the cholce ladder.

If the cholce node was created to execute a catenation, it exhausts
first one alternatlve than the other. The same access pattern cam be
obtained with less overhcad by making the two target nodes nesting sone

of the father of the cholce. The choice node 1e deleted. The merging
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example of chapter 3 shows this transformation.

1f the choice node was created to execute a compression, the
pointer wovement labels for the right opersnd may be moved froa the

target into the chotlce 1if either:

-

. The target nodes are at the lowest level of the alternatives.

2. The choice node contains a pointer movement label for the same array
(different alias). The labels must be exactly identical. When the
movement label 18 removed from am active target, it must be replaced

with a pointer reset label.

1f the target node modified by SKIP now has no pointer movement labels,

that alternative way be eliminated.

Figure 4~12 showe examples of the above transformations.
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4.5.2 Lloop Jamwing

The loop control required by the stream generaturs may be reduced o the

following situations: (see Flgure 4-13)

. Two eub-graphs match in shape and can be fully or pairtially
averlayed without resultlog in vreferecace to an array before
assignment (the order of reference and assignment aloog the cuntrol

paths of the resulting stream generator wust be checked).

2. If in all laddecs cumpriaing a sub-graph of the eatry poiut two
adjacent levels use the same DELTA value for all polnters, and 1f
thece 18 no splice code in the ladder ralls connecting the two

levels, the two levels can be collapsed iato one.

The translation iato scream generators has constderably staplified the
problem of recognizing the opportunity to apply these two

transformations.

4.5.3 Allas Eljmiunation

Given two pointers 4 and 4° which refer to the same array, 1f for each
occurrence of A'j A’ is preseat in the saxe form on the same node, A’

way be eliminated. Only one poianter i{s needed.
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4.5.4 Tight Linkage Of Called Functions

1f a function which has been linked into s compiled unit accesses its

arguments (results) in the eame order that it is generated (used), and
1f there are no repeats, then the two access points may be linked with
an evocation edge. A different version of the complled routise, which

was created to expect that quantity to be in a register, will be used.

4.5.5 Subroutines

If the stream genevator contains identical sub-graphs (created by
copyiug), one copy may be created (with combined limits). 1t wlll be
evoked from esch node formerly adjacent to one of the original coples.

The evocatfon edges will oo longer define a tree.



CHAPTER S

THE EXECUTION OF STREAM GENERATORS

The previous sectione have described a procedure for translating APL

Into stream generators. Now we will examine the actual execution of

stream generators and evaluate them based on the following criteria:

1. the asmount of etorage used,

2. the size of the code generated,

3. the speed of execution.

Our primary concern 18 with the amount of storage required. The other

tactors are consldered to demonstrate the feasibilicy of this method for

executing APL.

5.1 EXECUTION ENVIRONMENTS

Examinatton of code alze and execution time vequire the specificatioan of

exactly how the stream generators will be executed.

- 165 -
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5.1.1 Traasslatjon Into Machine Language

The object code of the compiler can be translated iato wachine code for
the Digital Equipment Corporation PDP-10 using an extendud versioun of
the compfler for the IMP-10 language. The examples below will shuw that
this appruach is feasible. However, three problems suggest that this

approach is not the ideal oue:

1. Most of the APL scalar operations would have to be interpreted. 1€
the arithmetic operations are to be Independent of aumber

representation, then all must be interpreted.

2. The control structure will make very heavy use of short patterns of
inscruccionsa. The lack of single instructions to perform these

functions increates code size and slows execution.

3. The control parameters I, RHO, DELTA, and G and the pointers PI and
BETA are used frequently, but are too numerous to keep in reglsters.

The high rvate of mewmory access will slow execution.

Because of chese factors and the overhead of compllation, no speed
advantage wil} be clalmed for a compiler translating into machine code.
Only the size of the object module will be considered in order to
demonstrate that the storage economy obtained by using the compiler does
not require epectal hardware.

An example of the machine language representation for a strean
geanerator 15 given in Appendix D. That example assumes that all nuabers
are represented as iategersa. It uses machine instructions for the

ecalar operations.

B T
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5.1.2 The Ladder Machine

A better euvironment for the execution of a stream generator is provided
by an auxiliacy processor - the ladder machine. Charles Hinter {17} has
designed tvo verstons of a processing unit designed to execute networks
of ladders as concelved by Perlis {19). With ainor modifications they
are also well suited for the executlon of stream generators. The ladder
wachine keeps all control parameters in fast local memory. Access to
watn memory 18 required only to fetch or store array values (Splice code

{eiy).

In Minter’s design the ladder machiine executes independently of the
makln CPU., When the ladder machine {s executing a atream generator, the
main CPU may do other unrelated processing. An alternate approach more
sulted to a smaller machine would be to provide the ladder machtine
capabilitiee as an extension (micro-programmed) to the instructlon set

of the single CPU.

The wodifled ladder wmachine upon which our estimates of code size
and speed are based is described in Appendix E . An exawmple of the
ladder code representation {3 given. The stream generator is the same
as the one whose PUP-10 machine code representation 18 shown fo Appendix

D.

Minter wrote a translator which produced code for his ladder
machiine. Since the ladder 18 basically a hardware repredeatation of the
array accessing method employed by Abrams, Minter’s translator produces
code which reflects the transformations Abrams called "beating and

dragging"”. Using this translator and a simulator for hies ladder
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machine, Minter obtalned the following comparisons:

1. For the simple expression A«B:

1. The time to compile the expression and load the ladder machiae
would be twice that required to set up for fnterpretative

execut fon.

2. The time required to load the ladder machine with the results of
a previous compilation is half that required to set up for

interpretative execution.

3. If the expresaion must be compiled, the ladder machine will be
slower than the Ilnterpreter for A and B with less than 50

elements.

2. Minter’s moderate-performance ladder processor executing with a DEC
PDP-11 host CPV will execute +/(1200)€1200 approximately &4 times

faster than a 1BM 370/158 running APL.SV.

In the examples given later {n this chapter, we will compare the speed
of the ladder machine code produced by Minter’s trauslator with the
speed of the code produced by this compiler. In making that comparison,
we will assume that the game hardware 18 used to execute the output of

both translators.
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5.2 TRANSLATION EXAMPLES

la the sections below we present the output of the compller for each of

a set of examples. The output 18 analyzed to detecmine;

I. The aize of the object module if translacted into PDP-10 machine code

{see Appendix D).

2. The size of the object module if translated fnto ladder machine code

(see Appendix E ).

J. The aumber of array elcment loade and stores executed (given the

alzes of input).

4. The smouant of temporary storage used (glven the sizes of input).

The last two weasures will be compared agalnst the same values obtatned

based va the folloviog methods of executing APL:

l. a nalve fnterpreter which performa each operation separately,

putting each Intermediate result faco temporary storage.

2. A compiler which compiles on a line by line basis and fncorporates
the work of Abraws. The HP-3000 APL compiler [13] and the APL

translator developed by Minter are examples of such a compiler.

The stream generators and the final object code for each example are

given 1n Appendix G.

THE EXECUTION OF STREAM GENERATORS 170

5.2.1 Example } - Prime Numbera

The expression S++/2=4/11]0=(WN)e. (1N will calculate the number of
primes less thaan or equal to N. It 48 an excellent example of an
cxpression which generates a large ilatermediate result oa the way to a
small answer, and it has been analyzed by several authors {1} [Weg] (8]
(49). It cowpiles into 37 PDP-10 instructions or 16 ladder

inetructiona.

For B = 10, the expression perforus aa follows:

Array Element References Teamporary Storage
Naive Interprecer 570 220
HP-3000 Cowpiler 0 0
Stream Generator (1} 0

Results similar to that obtained using stream generators were obtained
by Wegbright (Wegl. Dantels (8) proposed to go furcher by considering
mathematical properties of the operators. The space requirements when
this expresaion fs interpreted grow a8 N«2 and will limit N sconer than

excessive execution time.

5.2.2 Example 2 - Rowman Numbers

The expression Re( ,((7p5 2)1N)e.2:4)/ .84 Tp*MDCLAVI' couverts an integer
(N) fato its representation in Rowan nuwerals. It compliles {nto 68

POP-10 tnetruccions or 31 ladder instructions.

When the result contains 7 characters, the executioa of this

expreession requiree:
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Array Element References Temporary Storage
Naive luterpreter 213 14
HP-3000 Compller 165 10
Stream Generator 28 7

The stream generstors performance 18 similar to that described for this

exacple in Daniels [8).

5.2.3 Fxample 3 - I Choose N

The function

D+ J CHOOSE A;BiCiN;V

(1) Neiltp A

(2] BN, W~J'N)p2 1 381 2 2 3Q({WN)e.=1N)e.vA
{3} veus

(4] Ce((rpV)=vaV)/B

(51 pe(d+1)=v/013C)/C

takes as fte argument A a boolean matrix each column of which has J
elements equal to . Each column is unique and together they give all
the wvays of choosing J elements from N. The output of the function D is
the same information for J+l. The function makes N coples of each
column of the fnput and forces "on" (1) a different position in each

copy. It then discarde all duplicate columnas and those which stil}l have

only J t's.

The stream generator (see Appendix G) reveals the characteristics
of the function., It will run without conformability checking (no fixed
loop limit label appears on the same node as a variable label). Each
coluan of A is used once (the label Az appears only once and at level

1). That column 18 used repeatedly ( the label A| appear below a
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pointer reaet label for A) to generate candidates for columns of the
output. This wmeane that each column must be in memory, but the function
could be entered repeatedly (as a co-routine since V accumulates) once
for each input column. If we wished to go directly from J to J42, two
copies of this etream generator could be strung together eliminating the

storage of all but a single column of the matrix for J¢l.

It compiles fnto 206 PDP-10 {nstructions or 96 ladder {nstructions.

For N = 10 and J = 5 this function requires:

Array Element References Temporary Storage
Nalve Interpreter 7,318,578 217,200
11P-3000 Coupller 6,533,604 50,460
Stream Generator 6,414,660 2,530

The execution time 18 dominated by that required to execute V1V which is
of order 0.5x(NxJ!N)}+2 (6,350,400). A compiler, which could recognize
that the process of locating duplicate entries ln a vector (V) could be
speeded up considerably by maintaining V in sorted order and {nserting
each new value 1f unique, could produce wuch more efficient code.
ovever, that level of sophistication vas not considered in the design

of this compller.

The function gencrates a large uwumber of candidates for fuclusion
in its output and thea tests each one to determine {f they really belong
in the output, As scen above, the execution of such a function may
require a compiler which can execute the function without ever storing
all the candidates at one time. This 1s especfally true If execution s

to take place on a semall machine with a limited workepace and oo virtual
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storage. The value of a etream generator compiler depends conasiderably
on the prevaleace of thia style of prograwming 1a APL.. My twpression,
based on the prograws writea by the introductory prograeuming classes
tought by Professor Peclis at Yale, 1s that this couwpiler is nceded.
Hovever, the detatled fnvescigatioun of a large sample of prograams

neccessary to confirm that fwpressfon has not been done.

It 18 also not claar to what exteat gaine made by the coupiler
depend on a failure by the user Lo properly analyze the problem.
However, the aaswer to that question for thie particular problea is
suggested by the function below:

X+N CHOOSE YiD;T ;M1 ;M2

(1) 7v2+40, -1

[2]  M2eMia~\[1IM1 O M1+0=Te, |¥

[3)  De(,M2)/.1 2 18Fe .41 1 24Te. xM2

fu)  x«(0=2iD)/D

[s1 QO«Wp2)vD
which {8 also a solution. This functlon makes a copy of each iaput
column for each O preceding the firsc | in that coluwn. It then turaos
“on" (1) a different one of those 0°s in each copy. No duplicates are
created and all columns have J+l 17s. The old result is stored with
each column couverted to a single number. Since a column starting with
I does not contribute to the new value, odd entries are discarded. The
executlon time of the new version {s of ocder NxJ!N lnstead of (NxJIN)x2
for the original. HMHowever, the nalve Interpreter and the WP-3000
compiler would store at least an extra 633,040 and 5,440 elements
respectively when N=i0 and J=5. My conjecture, supporcted by this
example, 1s that uder cleverness has more effect on speed than space

(provided he adheres to the loop-free astyle of programming).
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5.2.4 Example 4 - Syambol Table Update

The function

SIN X;Y
(1) Y+, ~Xea
{21 a4/ x
{31 Be«(B,Y/,0)+X=4

uses global variables A and B which are respectively a vector of single
character sywbols and a count of the number of times each symbol has
been encountexed. The function argument X is a character. It will be
appended to A if required and the matching ftea of B will be updated or

created.

It compiles into 85 PDP-10 fnstructions or 48 ladder instructiouns.

Wien A has 10 elewments and X 18 a new element, this function requires:

Arvay Elewment Refereuces Tewporary Storage
Naive laterpreter 137 22
H#P-3000 Compiler 107 |9
Stream Generator 42 0

5.2.5 Exawple 5 - String Search
The two line APL expression:
D+(BICe . +7141pA)A. =AY /C O C+(B=1114)/ 0B

ecarches a string b for occurrences of etring A and puts all starting

poaitions iato D.
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It compiles ianto 110 PDP-10 instructions or 54 ladder instructions.
When A te 10 characters long, its f[iret character occure 10 times in B
which is 100 charactere long, and A occurs once in B, the expression

requires:

Array Elewment Refereuces Temporary Storage
Naive Iunterpreter 1181 z10
#P-3000 Compitier 951 210
Stream Generator 3ol 210

5.2.6 Example 6 - Selectioco

The APL expression A+5 5¢B+CtD which was used in chapter ) to introduce
muleiple array ladders will compile into 45 PDP-10 instructions or 25
laddec instructions. When the inpute are 10 by 10 matrices, this

expresalon requires:

Arxay Element References Temporary Storage
Naive Interpreter 650 200
HP-3000 Compiler . 100 0
Stceam Generator 100 0

5.2.7 Example ] ~ Tranapnsitien

The expresaton S+x/1/[1)4:8 which was used in chapter 3 to shov the
toportance of re-ordering calculations cowplles into 38 PDP-LO
instructions or 20 ladder inatructfions. Whea the inputa are 10 by 10

matcrices thie expressiun requires:
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Array Element References Temporary Storage
Naive Interpreter 420 110
HP-3000 Compiler 200 0
Stream Generator 200 0

5.2.8 Example 8 - Filtering
The two line expression
Be(v/A)/[1)EVA O A<CAD

vhich was used 1n chapter 3 to imtroduce the use of co-routines compiles
tnto 133 PDP-10 instructions or 74 ladder instructions. When the inputs

are 10 by 10 matrices snd 5 rows survive, this expression requires:

Array Element References Temporary Storage
Naive Interpretec 870 210
HP-3000 Compiler . 7.0 .2IO
Stream Generator 450 10

5.2.9 Example 9 ~ Merging

The cxpressfon S«+/+/8,C,111D vhich was used in chapter ) to demonsirate
the need for multiple ncsting compiles into 86 PDP-10 instructions or 47
ladder fnstructions. When B 18 a 10 by $ watrix and C and D are 5 by 5

matrices this expression requires:
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Array Element References Temporary Stogage
Nafve Interpreter 320 160
P -3000 Compller 300 150
Strcam Generator 100 0

5.2.10 Suwmary

5.2.10.1 Code Size - The table shows the stze (in bytes) of the 3
representations for an APL expreesion and gives the blow-up caused by

translating the original APL:

Example APL Ladder Code’ ‘Blow-up PDP-10 Code Blow-up
1 21 64 3.0 185 8.8
2 37 124 3.4 340 9.2
3 82 384 4.7 1030 12.6
4 30 192 6.4 425 14.2
5 38 216 5.7 550 14.5
6 11 100 9.1 225 20.5
7 12 80 6.7 190 15.8
8 20 296 14.8 665 33.3
9 13 188 14.5 430 33.1

e Tleo

Consfdering the concisencss of the AFL notation, the blow-up factor is
reasonable. Far comparison Algel 60 programs for the algoritha (both
before and after the transformations made in producing the stream

generator) of example 3 comptled into 230 and 158 words, respectively,

of PDP-10 code (vs. 206 PDP-10 worde for etream gemerator). (1 found
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the Algol versions harder to wrfte than the APL.) An object module of
206 PDP-10 words for the function of example 3 (the largest) s
certainly of tolerable size. A workspace contaialng 20 such functions
would require approximately 4K(octal) words of PDP-10 uweamory for storage
of ladder code. Thar size seems a reasonable cost for the 20 such

powecful fuanctions.

The last two examples, which experfeanced the largest blow-up, were
those in which wultiple coples of a ladder referencing one array wvece
created ae the stream generalors were bullt, and then not eliminated as

they were fuproved.

5.2.10.2 Array References (Time) ~ The table below show the laprovement
in oumber of references to array clewents obtained by using the stceam

generators: (100X improvement weans all references were eliminated)

Exawple ve, Interpreter ve. HP-3000 Compller
3 1002 134
2 903 841
3 13% Y34
4 70 612
5 5% 692
6 852 01
7 332 [th4
8 952 941
9 692 671

T Tar
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The cowpartson with the HP-3000 compiler gives an approximate indication
of the speed difference between a ladder machine running code produced
by this compller and a ladder machine running code produced by Minter’s

(Abrams based) traanslator.

5.2.10.3 Temporsry Storage - The table below shows the fmprovement in
the amount of temporary storage obtained when the etreamw generators are

used: (100X fmprovement means no temporary aturage)

Example ve. Interpreter ve. HiP-3000 Compiler
1 100% (114
2 9tx 90X
3 991 95%
4 100x 100%
S 1002 100X
6 1002 0x
7 100X 0x
8 961 962
9 1002 100X

e 65t

The streaming technique is effective, and including additional operators
over those handled in the HP-3000 compiler does make s significant

difference.
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5.3 COMPILER OVERHEAD

Minter included in his performance estimates an allowance for the time
taken to generate ladder code. In order to compare the compilation
method he {mplemented with the one described here, we maust estimate the
cost of the extra processaing required in the creattion of stream

generators. The extra work appears tn three places.

5.3.1 Data Dependency

The data dependency analysis needed to identify temporary storage
within a compiled unit ie, 1n the sirple form described in chapter
2, a trivial book-keeping operation during a traversal of the parse
forest. In the examples shown {t 16 not required, since each

example consists of only one compiled unit,

5.3.2 Coustralut Propagation

Mintec’s compiler implicitly prupagates predictions upwards tn the
parse tree durlng the gencratton of ladder code. In all of the
examples given, with compilation taking place at first execution,
the upwards propagation produced all the information necessary for
compilation and the propagation phase ended after perforoming an

equivalent amount of work.

5.3.3 Stream Generator Refinement

Most of the compiler algorithms have been described in terms of
actions iuvolving the visiting of nodes of varfous graph structures.

Using number of nodes visited as rough estimate of execution time,
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the stream generator refincment phase of translation of Exawple 3
requires approximately 80X as wuch time a8 the remalnder of the
compilation common to both comptlers. The nuwber of nodes viasited
18 reduced considerably by the fact that (as in all other examples)
the first ordering considered (preferences satisfied) ylelded the

wax luum possible overlay.

Accurate performance estimates awalt the implementation in production
form of the translatocs from both Minter’s and this thesis. llowever the
examples 6uggest that a reasonable estimate is chat the stream generator
coumpiler would require twice the lee to generate a block of code for
the ladder machine. This raises the estimated array size needed, before

compilation is faeter than laterpretation, to 125 elewenta.






CHAPTER 6

CONCLUSIONS

6.1 THE COMPILER

The results presented 1n chapter 5 suggest that the cowpiler presented
in this thesis can and should be jmplewcnted. However, the coat of the
final processing needed to reduce temporary storage is sufficieatly high
to preclude ita application in all cases. The stream generator output
by the creation phame requires very Jittle fucther processing to be
executable., [If the cowpiled code will not be used agailn, and if the
atorage required is available, lumedlate (but alower) execution may be
more uvfflcient. But in those sltuations (production and/or space
limited software) which need the full comptler, the difference in

executlon time performance will often be critical.

APl expressions wmay be divided tnto three classes:

1. Expressione which are executed cfficleantly even by a nalve systea
(FORTRAN written 1in AFL). For such expressions, a naive system 18
preferable, eince the compiler achieves no gain in pecformance to

offeet the increased overhead (except when compiled code 18 used
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crepeatedly).

2. Expressions which require the processing of this compiler for

efficient execurion (such as example 3 of chapter 5).

3. Expressions which are beyond help from this system. (The expression
Set/x/{QAV+A C A<V1e.iV2 wil]l require storage of A unless efther
each element of A 18 calculated twice or the calculation of A is
done ia u order which 18 not ravel order for 4 or 84. This cowpiler

would store A).

This work will be truly valuable only §f a signtficant percentage of APL
expresstons being written fall into class 2. We do not have any
experimental evideace concerning that question. However, the style of
APL programming advocated by Perlfis in (20) and demonstrated in (21)
certalnly decreases the size of class 1, and scems to result in
consistency of orderings of access to arrays. That consistency perwits

optimization.

Exact jnformation on the performance and applicability of this
design (loncludiog data oa cthe trade-off described asbuve) will not be
avatlable unttl cthe design is fmplenented a8 part of a complete APL
system. The Hewlett Packard HP-3000 APL system would provide an ideal
base for the implementation. The controller which minages the
interaction of the incremental expressioa compller and the interpreter
existe. Also the current output of the compiler is code for a virtual
wachioe. That machine could be changed to be a ladder machine without

requiring & major restructuring of the compller.
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I estimate that a man-year of effort would be required to add the
features of this design to the HP-3000 system. Once in operation, the
compller could collect data about its own effectiveness. A comwplicating
factor in any such favestigation would be the tendency of users to
adjust their programming style to match what executes efficiently. An
analysle of current APl usage aight not show the style of progremming
(heavy use of outer~product and compression) for which the compiler
makes the most difference eimply because the nalve execution is

fatolerably inefficient (or impossible).

6.2 FUIURE WORK

The curreant design limits the size of compiled units by assuming that

1. Every labeled statement (potential Goto target) wuet begin a new

compiled unit,

2. No tvo functions which use the ssme global variables may be part of

a single compiled unic.

The work of lones and Muchnick {14} and Kaplan and Ullman (15) suggests
an approach which may make it possible to exactly identify those places
in the APL functlon at which bindings might become invaltd. This would

be 2 valuable addition to the compiler.

A second open question {s the relation between this work and the
execution of APL on pdarallel or pipeline machines. The stream generator

graph dvea identify the level of loop nesting below which all steps sre
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tndependent and thus could be performed in parallel. The astream
generator graph and the ladder structure also define a repeated sequence
of operations which could be pipe-lined. However, as mentioned 1n the
dlacussion of APL emulators, there eeems to be a conflict between
atorage economy and parallelism. This time/space trade-off should be

investigated.
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mloMs

Al IDLOMS

The constructs which cthis compller recognizes as idioms are llsted
below. Maay of them are the result of unusual propertles of the the APL
operators v, [, and L. The operator 1 1s the only APL operator which
selects as {ts result the firet quantity meeting some crltertfa. The
operators | and | dtffer €rom all the other dyadic acalar operators in
that they select one of their operanda inetead of combining them.

In the tdiom descriptione that follow the variable V 18 a vector and

the variable S 16 a scalar.

A.l.1 Niladic

A.l.1.1 Rank - ppA - Rank 18 a scalar constant cowputed at compile

time.

A.1.1.2 1lndices Of Array - v4(pA)[1] or 110V - This idlom generates a

vector whose length (given by shape of A) 1e precalculated by the

interpreter.
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A.1.2 HMomadic

A.1.2.1 Self Indexing - ViV - The result of thils expression is the
position of the first occurrence Lo V of each elcment of V.
Norwally execution of 1 requires a search of the left operand for
each item in the right operand. However, whea the operands are the
same, only the part of the left operand at and before the current
poeition In the right operand need be examined. This permits the

idiom to be executud as the ftems ot V are calculated.

A.1.2.2 Extreamum Positfon - VAif/V or Val/V - The results of these
expreesions are the positions of the maximum and winimum elements of
V respectively. Normal processing would result in two passes over
V. Since the pass that finds the maximum (minimum) can also

remember its location, only one {s needed.

Ac1.2.3 Span - [/Ve. -V - This expression calculates the differeuce
between the largest and smallest elcments of V by performing all
possfble subtractions and taking the maxivum. The same resulc is
obtained from ({/V)-L/V. We also recognize that both the maximum
and minlmum can be found in a single pass over V. The graph is the

same as for the reduction of V.

A.1.3 Dyadtc

A.1.3.1 End Around ~ 19V,5 or 145,V - These expressions are equivalent

to simple catenation im the reverse order.
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A.1.3.2 Flrst-found - L/V11V2 - This expreseton gives the firet
positton in VI of whichever element of V2 first occurs. Noraal
translation vould result in a pass over VI for each element of V2.
A better way 1s to test each element of V1 againet all of V2,

stopping at the firat match.

A.1.3.3 Bounded Extremum - | /S.,V or [/S,V - The scaler S 1s used

instead of the normal tdeantity value for the reduction of V.

A.1.3.4 Take-till - (V15)itV-~ The result of this expression is V up to
and including the ffrst occurrence of S. It can be executed as a
single pass over V which {a equivalcot to compression of V. Thus

the expression can be executed as V fs calculated.

A.1.3.5 Delay - S, 14V or 145,V - These expressions can be executed
vith a paes over V which saves the current value in a regtster for

delayed access.

A.1.3.6 Select Index - A(V/1pA] - This conatruct ts compiled as V/A,
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CONSTRAINT PROPAGATION

B.l CUNSTRAINT PROPAGATION PROCEDURE

The constralnt propagatlon procedure operates on the parse tree of the
APL function. The function has been sub-divided into complled unite
which have no internal control structure, and each block is analyzed

indepeadently. Thus no flow analysis 1s involved.

B.1.l Node Properties

The procedure 18 conceraed with 4 characteristics of the value produced

at each node of the parse tree:

l. HRank (nuaber of dimensions - a non-negative integer)

2. Type (numeric, boolean, numeric-or-boolean, or character)

3. leagth (of each dimension ~ a non-aegative integer)

4. Value (scalars and vectors only)
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The fnformation regarding the result of a node 18 deftaed to have a
"position” in the parse tree. It 18 located on the edge entering
(leading downwards futo) the aode. We assume an imaginary edge entecing
the root of the tree 8o as to provide a location for the information
about the final value of the expresaion. For any node we can refer to

information located:

L. Above ft. (propercics of the result of that node)

2. To the right. (properties of right operaad)

3. To the left. (properties of left operand)

In the caese of wonadic operators or operands, some of the positions (le.
left for a monadic operator, and left and right for a leaf) will not

exist.

Knowledge of a propecty (or a requirement for that kaowledge) is
represeated by the appearance of an expression fn the slot for that
property at the appropriate position. In the case of leagth and value,
a vector of separate expresslons way be required. The expressions have

the form given by:
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<high ltmte> t3m "<"<constant>)
"<M<constant>;

<low limit> t3m "2"<constant>|
">"<constant>;

<range> tt= <high limit> a <low Hait>;

<property term> ti= <constaat>|

<high limit>}
<low llmit>}
<range>;
<property value> i:= <property term>|
<variable>|
<property terw> N <varlable>;

The limit operators may only appear in expressions for rank and length.

The property values define sets of possible values for the property
(only oune element for type and value properties). The constants define
one element sets containing themselves. The limit operators (5,< ,2,
>) define sets which contain all the posslble rank or length values
which have the tndicated arithmetic relatioaship with some element of
the operand set. Since the legal values of rank and length form a
finite set (non-negative Integers bounded by an arbitrary maximuam such
as machine size), all property value sets are finite. The "n" operator
is sct intersection. The compile-time variables used in these
expressions represeat fuformation which has been (or will be) derived
from the current values of the AlL variables appcaring at a parse tree
leaf. They will not appear in the expresston for the value of a
property which has been completely deterwined by syntax reetrictiome

and/or values of constants.
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B.1.2 Property List

The constraint propagation algorithm keeps a list of {nformation known
about the expression belng processed, but not yet represented in the
parse tvee. At each step an ftem from the head of the list 1is
transfered to the proper position. The eatries fin the list have the

form givea by:

<propagation value> ::= <property value>|
(<property value>) "+" <constant>|
(<property value>) "-" <constant>|
(<property value>) "+" (<property value>)
(<property value>) "+" (<property value>)
"*4+" <constant>)
(<property value>) "+" (<property value>)
"M <constant>|
{<property value>)|
(<property value>)|
(<property value>)]
"2 (cproperty value>);

"wen
"wen

"o

The operators "+" and "-" produce the set consisting of those elements
generated by taking the outer product of the two sets using the
indicated arithmetic operator and elimirating all values which are not
possible elements. These operators are used in expressions for rank and

length fnformation only.

These expressions give the largest property value set which way
exist for a glven position efither absolutely (a property term) or in
terms of the property values of other positions. The propagation values
countain comnstructs which are not allowed in a property value. When a
propagation value 18 taken off the list, evaluatcd and placed in the
glven position a8 a property value, a new varlable 18 created to

represent that part of the propagation expressfon. The value of a
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varfable will be given as an expression of the form defined by:

<variable sum>
<variable atom>

<variable> + <variable>;
(<varfable sum>)|

{<varlable suw> + <coustant>)|
(<variable sua> - <constant>)]
(<variable atom>)|

<variable>;

“<" <variable atow>|

<vactable atom>|

<varlable atouw>}

<variable atow>;

<varlable liwmit> iiw

'
wen

"on

<varlable term> tim (<varlable limit>)|(<variable terw>)}
<variable atow>;

<vartable expr> 11w <varlable tecm>|(<variable expr>)
<variable expc> n <varjable term>;

<varfable value> iim <variable expr>j

<variable expr> 0 <property value>;

wvhere the sum and limit forms are used for rank and length iuformatioa

only.

Items on the list come from two sources.

B.1.2.1 Generated Information - Liet items are generated by the
algorictha based on properties of the operatars or operands at fodividual

nodes of the parse tree. These ttems are:

I. Property tems derived from constants.

2. Property terms derfved from the propertice of operators.

3. Varlable names generated to be the property values of leaf nodes
which are APL varitables, not constants. The varlables are assigned
to represent raank, type, and length of all leaf nodes and the value
of a leaf known to be a scalar. If two leaves refer to the same APL

variables, the same compile-tine variablce will be aseigned
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.4. Property terms derived from the current values of the APL varfables.

They are the current values of the compile-time variabies defined

above.

5. Variable names generated to represent a property value which wust be

kuown by the compiler.

Chapter 2 haa discussed the order of generatfon and the significance of

thegse items.

B.1.2.2 Propugated Information - We call two positfons in the parse
tree “adjacent” {f the two edges directly connect to the same parse tree
node. In a binary tree a set of properties (an edge) way be adjacent to
a maximum of 4 others. The operator at the node which provides the
connection defines relations between adjacent sets of properties. These

relations are given in section B.2.

For each operator there 18 a set of propagation expressions which
give (as propagation values) the maximum property value set for a given
slot in terms of adjacent property values. An expression eay be used
only 1f all fts cumponcats sce deftned. Some require the property tera

of a given component to have a particular value.

1f the tranafer of a liet ftem into lts positfon in the parse tree
results in new inforwatloa being added to the property value at that
positfon, both ends of the edge for the position affected are examined
to determine Af fnformacton about adjaceat positions is fmplied. If it

{a, the propagation expression ia added to the tatl of the list. We
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define wev information to mean:

t. The appearance of a variable in a property value which was formerly

empty or contained only a property term. Thia cen happen only once

for each property and position.

2. The number of items 1in the set defined by the property term hae
decreased. When the property value also contalne a variable, we
imnediately place on the list propagation values consisting of the
nev property term for every position where the property value also
contains that variable. Normal propagation 18 only considered

towards adjacent positlons not using that varfable.

An item on the propagation list 1s tagged with the name of the position
generating it as well as the position to which 4t 8 to be applied.
When an ftem is applied it will never generate a nevw liet item

propagating that change back to its saurce.

When propagation values are placed in the list, the property values
are cepresented by name (property and position). When these expressiona
reachh the head of the list, the actual expressions are substituted for

the names.

B.1.3 Property Insertion

When a list ftem is processed for insertion of 1ts informatfon into the

parse tree, the following steps are taken:
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5.

7.

The propagation value fs joined to the property value for the slot

using the n operator.

All vartablea appearing in the new expression are replaced by the
expression given by

“(<the variable> n <vartable value for the variable>)”. This process
is repeated for any new varlable which appears. (Note: this requires
marking of expanded varlables so as to avoild fnfinite expansion.

The system remembers which terms of ;he result were present before

expansion and the vartable from which others were derived.

The resulting expression is simplified as described in section
B.1.5, and will have the form:
<expanefon> i:= <property term> | <varlable expr>|

<property term> n <variable expr>|
<expansfon> n <varfable>;

1f two varlables appear in the expanslon, the two variables are
equated by replacing all occurrences of one (choice arbitrary) with

the other.

If the expanslon contains a vaciable expression but no varfable a

new variable 1s created and joine’ to the expansioan.

The new property value is the unfon of the property term and

variable from the expansion.

The new value of the varlable conslsts of the union of all
components of the variable expression marked as coming from the

original expreession or from the expansion of that variabie
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(1ncluding any oame equating).

1f at any polat ta the process a coantradiction appears (ex.
{ >5) 0 (<5) or X & (<(X+Y)) ), ft indicates an error in the APL

expression. Constraint propagation is abandoned.

An example is shown in Flgure B-l. The first page shows the lisc
ftews in the order they were applied to the parse tree. Indented
entrles indicate an ftem which was geaerated by a constralut propagation
rule and added to the end of the list when the item immediacely above It
was applied. The application of a generated ftem 18 marked with a "*°,
The other list ttems reflect inforwmation known about individual nodes.

The second page shows the final property values aad their significance. 5: Type 1s numerlc

1: Type is numeric

7: Type is numerlc
6: Type s Numeric
4: Rank is )
4: Type 1s boalean
i Type 1s boolean
: Type is nuweric

3: Type is oumeric
: Rank is 0

3: Rank is |}
l: Type is T

~

5: Type is T
3: Type is T
2: Type is T

L: Raok is X
S: Rank 18 X
3: Rank 1s X
4: Rank 18 X
6: Rank is A
I: Length ts D
5: Leagth 18 SD
6: Type is R
7; Type 18 R

7
LI

LEH
%3

*5

2
*5;

4
k5

*4
47;
LY H
L B
LI K]

Length ts D

4; Leagth is D
Length 19 B, C
Type i3 numeric

Traumecic

Type 13 numeric
Rank 1s 1

Xel

Type 16 T

7: Type is T
Type 1s T
Rank i3 X

7:Rank is AtX
Rank is X
length is Ee<D

7: Length is B, C, E
Length is D
Type 18 T
Rank (s YvA4X
Length 18 B, C, E
Type is R

R 18 replaced by T

Figure B-l - Conatratnt Propagation - List Items
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While the notation used 18 non-standard, the objects described are

Raok - Y finite sets of the non-negative integers. We take advantage of the well
Type - T
Length - B,C,E known properties of such objects to establish that:

Rank - A
Type - T
Length - B,C

Rank - X 1. <limit op 1> (<liamit op 2> <set>) equals <linft op 3> <set> for all
ank -

:YPet; T e possible combinatfons of op | and op 2.

ength -

2. (<limit op 1> <set 1>)+(<limit op 2> <set 2>) equals elther

<limit op 3> (<set l>+<set 2>) or .limft op 3> «<set 1 or 2>.

Rank ~ X Rank - X
Type - Bool. Type ~ T 3. (<liwit op 1> <set 1>)+<aset 2> equals <limit op 2>(<met I>+<set 2>).
Length - D Length - D

B

4. (<set 1> n <aset 2>)+<set 3> equals

Rank - X Rank -~ 0 (<set I>+<set 3>) n (<set 2>+<set 3I>)
Type - T Type - numeric
l.ength - D

Figure B-2 shows all actual cowbinations. These transformations wili
convert the formula produced in step 2 of the procedure given above to a
legal expanaion. The compiler builds the expressions internally as a

T = numeric - type check for B and A string of tokens in Polish postfix form. Thus the transformations are

=1 - rank check for B done as silmple string pattern matching and replacement.
E=- <D - leagth of result of compresalon .48 not fixed so

fnterpreter parameter calculation will be interleaved with

stream generator calculations

Y=A+1] - rank of A is not fixed by syntax, and wmust be known for

compilation

Figure B-1 - Constralnt Propagation - Final Reeults
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<(<X) => <(X-1) <(2X) => wno restriction * B.1.5 Termination For Constraint Propagation
<«(sX) => <X <(>X) => no reetriction *

The constraiant propagation procedure terminates when the list of iteams
$(<X) => <X $(2X) => no restriction

to be put into parse tree positions is empty. It 13 clear that the
$(sX) => sX $(>X) => no restriction

process will terminate. A new list item is generated only when the sct
z(2X) => 2K 2(<X) => o restriction

for some property value decreases in size. Since all sets are finlce,
2(>X) => »>X 2(sX) => no restriction

this proceds can not continue indefinitely. What must be evaluated more
>(2X) w=> >X >(<X) «> >0

carefully 1s the possibility of decreasiong the sfze of a very large set
>(>X) => >(Xtl) >(sK) => >0

in tiny steps resulting In execution time not given as a functlon of
(* - we Ignore the fact that this set may not coantain
parse tree sfize. MHowever it cam be shown that this is uot possible. A
the largest element of the set of possible values)

. change to the property value at one position in the parse tree may
(<K) + (<Y) => <(X+¥-1) (2X) + (<Y) => 2x result in changes at four other adjacent positions. We caa lmagine
(<X) + (SY) => <(X+Y) (2X) + (sY) => 2x wmarkers moving on the parse tree outwards from an initial poiat of
(<X) + (2Y) => 2¥ (2X) + (2Y) => 2(X+Y) distubance. A wmarker may split into 3} at every property positioan.
(<X) + (>Y) => »>Y (2X) + (>X) => >(X+Y) However, since we do not allow a change to propagate back to the
(SX) + (<Y) => <(X+Y) OX) + (<Y) => >X position that caused it, no marker may retrace a path it or 1ts
(SX) + (SY) => <(X+Y) OX) + (sY) => >X iumediate ancestor has followed. Since the graph (tree) has no cycles,
(SX) + (2Y) => 2% (X)) + (RY) => >(X+Y) no marker can get back to the initial position.
(sX) + (>Y) => >Y (X) + (>Y)  => >(X+Y+l)
Thus each position in the parse tree ts affected at most once for
(>X) + ¥ => >(X+Y} every new item of information introduced. These items of information
(2X) + Y = 2(X+Y) cowe from the nodes of the parse tree in the form of syntax restcictions
(SX) + ¥ > (S(X+Y)) n (2Y) and operand properties. Each node generates a waximum of one item for®
(<X) + Y = (<(X+Y)) n (2Y) each property of each of the three posicions surrounding ir. Mo slow
* refinement occurs. Thus the number of steps of comnstralat propagation

18 of order N»2 where N is the size of the parse tree.
Flguce B~2 - Set Algebra
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B.2 SYNTAX CONSTRAINRTS

This section lists the syntax constraints and propagation rules used by
the constraint propagation. In these rules we use two letter varlable
names to refer to properties. The first letter gives the property

{ T(ype), R(ank), L(ength), and V(alue) ). The second gives the
positton ( R{ight), L(eft), and A(bove) ). The positions are in

relation to the operator which establishes each set of rules.

B.2.1 HMonadic Operators
B.2.1.1 Honadic Arithmetic Operatfons - + - x ¢+ [ | r @ | ! O

TA := numeric

TR :~ numeric-or-boolean

RA := RR

1A :~ LR

Lf VR fa constant then VA 1= op VR
BR := RA

IR := LA

B.2.1.2 Not - ~

TA := boolean

TR := boolean

RA := RR

LA := LR

if VR fs constant then VA :e~ VR
RR := RA

LR := LA

B.2.1.3 Sfze - Monadic p

RA =1

TA := numeric
LA := RR

VA LR

RR LA

[T

CONSTRAINT PROPAGATION

B.2.t.4
RA
TA
RR

TR
LA

B.2.1.5

RA
TA

if

B.2.1l.7

TA

RA :

RR

RA

TR

RR :
1A @

LR

TA ¢

TR

B.2.1.8
RA
RA

TA
1A

Index Generator — monadtic 1

i= 1

= numeric

=0

i= numeric-or-boolean
1« VR

Ravel

= 1

t~ TR

t= x/ LR

RR < 2 thea VA = VR

Reduction

i= as required by operation

1= >0

:= as required by operation

i= RR - 1

i~ LR with reduced dimension removed
t=m RA + |

. 1= RA for un-reduced dimensions

:= as required by operator

i= as required by operator

Reverse

1= >0
1= >0
:= RR
;= TR
s« LR

204
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RR ;= RA if
TR ;= TA , i€
LR :e (A 1f
if
it
if

B.2.2 Dyadic Operators

B.2.2.1

TA
TR
TL
1€
43
i€
i€
tf
if
1€
if
if
if

B.2.2.3

TA
TL
TR
it
1f
if
113

Dyadic Artthactfic Operators - + - x ¢+ { [ @ | ! O

B.2.2.4

i= numeric
s= nuweric-ocboalean TA
i= auacrfc-or-boolean TR
RR > 0 then RA :~ RR else RA ;= RL TL
RR > 0 then LA 3= LR it
RL > O then RA := RL it
RL > 0 then LA := LL if
RL = 0 and RR = 0 then 1A := ) if
VR 1s constant and VL te constant then VA i= VL op VR 1t
KRR > 0 then RR te RA . it
RR > 0 then LR := LA ’ 1f
RL > 0 then RL := RA if
RL > O thea LL := LA 1f

1
Dyadic Logtical Operators — A Vv a w

B.2.2.5

i= boolean
i= boulean TA
i= buoleun RA
RR > 0 then RA := RR else RA := RL 1A
KR > 0 then LA := LR TR
RL > 0 thea RA = RL LL
RL > 0 thea 1A :« LL
RL = 0 and RR = 0 then LA 1=}
VR is constant and VL 18 conatant then VA := VL op VR
RR > O thea RR ;= RA B.2.2.6
RR > O then LR := LA
KL > O then RL := RA RA
RL > O then LL := LA it

TA

LA

tf
Dyadtic Equality Operators - = = TA

LA
:= boolean it
i= TR LA
i= TL 1€
RR > 0 then RA := RR else BA := RL L
RL > 0 then LA := LR it
RL > 0 theo RA ;= RL ™
RL > 0 then LA := LL

RL = 0 and RR = 0 then LA := |}

VR 18 constant and VL 1e constant then VA := VL op W
RR > O then RR i« RA

RR > 0 then LR ;= LA

RL > 0 then RL i~ RA

RL > 0 then LL := LA

byadic Relatjonal Operators - < £ 2 >

i= boolean

i= pumecic-or-boolean

ta numecic-or-boolean

RR > O then RA ;= RR elgse RA i~ RL
RR > 0 thea 1A = LR

RL > 0 then RA := RL

RL > O then LA := LL

RL = 0 and RR = 0 thea LA 3= |

VR 1s constunt and VL 18 constant thea VA := VL op VR
RR > O then KRR ;e RA

RR > 0 then LR := LA

RL > 0 then RL := RA

RL > 0 then LL := LA

Reshape - dyadic p

= TR
i= LL
i= LV
= TA
i= RA

Catenation - dyadtc ,

s >0

RR > O then RA := RR

i= TR

t= LR except for diwension catenated
RL > O then RA = RL

= T

;= LL except for dimension catenated
RR = 0 and RL = O thea RA := ]

:« LL + LR for catenated dimension
RL > 0 then RL := RA

1= TA

RR > O thea RR := RA

i= TA
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B.2.2.7 Indexing - [ ]}

RA := >0

RR := >0

TL :+= numeric-or-boolean
TA := TR

RA := +/ RL

H

1= LL

RR := < RA

i= TA

LL := LA

RR := pumber of subscripts

TR

B.2.2.8

Iner Product

TA := as required by left operator
TR := as required by right operator
TL :» as required by right operator

{f RR = 0 xor RL = 0 then RA := RR + RL - |
tf RR > 0 and RL > O then RA := RR 4+ AL - 2

1f RR = 0 and RL ~ 0 then RA := O

LA

= TLILL, IR

1€ RR > 0 and RL > O then

last position of LL := first position of LR

1f RR > 0 and RL > O then

first position of LR t= last position of LL

B.2.2.9 Outer Product

RA := >0

= as required by operator
t= as required by operator
TL := as required by operator
i= RL 4+ RR

:= LL,LR

RR := <RA

RL := <RA

TA
TR

RA
LA

B.2.2.10 Take

RA

i= >0

RR := >0

1= <2

TL := numeric-or-boolean

RA

:= RR
= LL

RR t= RA
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LA 1= | vL
LA 1« <LR
ILL := RA

B.2.2.11 Drop

RA := >0
RR ;= >0
RL ;= <2
TL := numerfic-or-boolean
RA := RR
RA := LL
RR := RA
LA := an
LL := RA

B.2.2.12 Transpose

RA := >]

RR = 5]

RL :=

TL := numerfc

RA := s RR

TA := TR

RA := maximum of VL
RR := > RA

LL := RR

RR := L)L

B.2.2.13 Rotate

RA := >0

RR := >0

TL numeric-or-boolean
RA := RR

TA := TR

LA := LR

RR := RA

TR := TA

LR := LA

RL 1= RA - |

RA := RL + |

LL := LA without totated dimenston
LA except rotated dimension := LL
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B.2.2.14 Coampress

RA := >0

RR := >0

RL = |

TL := booleaa

RA = RR

RR := RA

TA := TR

TR := TA

LA = LR except for compressed diwension
A :« < LR for cowpressed dimension

IR except for compressed dimension = LA
IR ;= - LA for compressed dimension

L := LR for compressed diwmension
coupressed dimension of LR := LL

B.2.2.15 Expand

RA := >0

RR ;= >0

TL := boolean

RL = |

TA := TR

TR = TA

LA := LR for un-expanded diwensions
LA ;= LL for expauded dimension
unexpanded dimensions of LR := LA
LL := LA for expanded dimension

B.2.2.16 Index

TA := numeric
RL := 1

RA := RR

LA i= LR

RR := RA

LR := LA

TL := TR

TR := TL

B.2.2.17 Mcuwbership

TA ;= boolean
RA := RL
LA ;= LL
RL := RA
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LL := LA
TR := TL
TL := TR
B.2.2.18 Decode
TA i= as required by left operator

TL
if

if
LA
if

if

B.2.2.19

:= as required by right operator
i= as required by right operator

RR = 0 xor RL = O then RA i« RR + RL - |
RR > 0 and RL > O then RA := RR + RL - 2
RR = 0 and RL = O chen RA := 0

s= T14LL, }iLR
RR > 0 and RL > 0 then

last position of LL := firet position of LR
RR > 0 and RL > O them

firet posicion of LR ;= laat position of LL

Encode

numeric

numeric or boolean
numeric or boolean
s= RL + RR

i= LL,LR
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JRHOLT (c-2)

Since each subscript 1(k) may legally range from O to RHO{k]

tndependencly, J way have values ranging from 0 to " 1+x/RHO.

APPENDIX C

C.l.1! Storage Spacing - G
ARRAY ADDRESSING WITH LADDEKS

So that the APL opervatore which muet accesa the array as a vectar in
ravel order do not require recopying of the data, we want to use values

of BETA and G such that the equation:

This appendix describes the procedures used to calculate the array

PI+BETAR+J*GR (€~
accesssing parameters used by the ladders of the stream generators. It
iy largely a reforuwulation of similar preseatations by Perlis [19) and will generate the sawe value of PI ae equatica C-1. If we set BETA to
particularly Mtnter (17). be equal to BETAR, then the equality required is:
(+/1:G)=J~GR (C~4)

C.1 ADDKRESS SEQUENCING
Replaciang J by the equation which calculates 1t value gives:
The storage locatfons for the elements of an array are glven by equation

(1/I%G)=(RHOLI ) *GR (C-9)
3-1:

in which the Decode operation can be expanded according to ita
BIBETAY+ [ [2G (€-1)
definittion to give:

The ecoantics of AFL fmpose am ordering - ravel order - which orders

(o /IxG)Y=( 4 /I s\ 1, DURHOIXGR (C-6)
array elements with right-wost subscript varying wost rapidly. This le
the same order obtained by considering the subacripts aa “digics” {a a 1f we apply the distributive law we obtain:
nuaber and ordertny the subscripts according to thelr value as single
(+/I%G)Y=¢ /T x(GRxpx\ 1,014 RHO) (C-17)

aumbers. If we use equation 3-2 to calculate the numbers J, thean:

which will obviously be satisfied if we set G as fallows:

- 2 -
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G GR=px\1,$11RHO (C-8)

If R 1ls the number of addreseable memory units ueed to store an ftew of
the array (may not be smaller), then the array is atored in ravel order

in consecutive locations.

€.1.2 Pointer Incrcment ~ DELTA

Flgure 3-1 t8 a flowchart of the fixed part of a ladder. Each time
control reaches the arc labeled “PI VALID”, I will have a legal
subscript value. All items of the initial I will be zero (the downwards
path from the start box includes statements which clear 1), and
succesulve valuves will be i0 ravel order (the right-moat eubacript is
advanced fn the bottom loop and thus wmost rapidly). It is obvious from
the flowchart that after execution of the arc labeled "PI VALLID" only
one horfizontal rung will be executed before the bottom arc is
re-vntered. Therefore one ftem from the vector DELTA ie added to PI at
each step. Equation C-1 defines the relation we want to hold between I
and Pl each time control reaches the bottom of the ladder., A valuas for

DELTA must be found which generates the required scquence.

1f the horizontal rung last executed was at level k, then 1{1} = O
for 1 > kx (1(k¢l) s cleared on the downwards path from level k). If
1{k) does not have its maximum value, then the next time the increment
and test at level k 18 executed the horfzontal branch at level k {8
executed. On return to the bottom of the ladder, I{l} = 0 for 1 > k,
and 1{}], (3} < k) are unchanged. Only l{k}, which has been tncreased by

1, 1s different. By equation C-1 the change in Pl must equal G(k].
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If we assume control has reached the battom of the ladder after
executing rung J, then I{j+l}) 48 zero. Control will reach rung } sgain
only when the test at level j+I falla. This will occur on the
RHO!]#llat execution of the increment and test at level j+l. The first
RHO[J+1]-]1 times the test executes, it succeeds and the rung at level
Jt) i8 executed. A8 we saw above, Pl will have been incremented by
Gij+l}. That increment consists of DELTA[}+1} plus the effect of lower

levels which we will call LOW([k+1). By this defioition the equation
G = DELTA+LOW (€-9)

holds. At the RllOlelat execution of the increment and test at level
j+1 the test faile and rung J executes resultiong in a change to Pl of
DELTA{)J)} + LOW{}+1}. Since the total change to PI after the second

execution of rung {8 shown above to equal G(}], the relation:

GL3) = DELTAL §1+LONT )+1)
+GL3+1 "1+ RHOL §+1) (c-10)

wmust hold. Using equation C-9 to eliminate LOW and eimplifying we

obtain a recurrence relation for DELTA:

DELTAU3)+G §1+DELTAL §+1)
-RHOL 3+ 1 IxGE 341 ] (C-11)

Since LOW({n} 18 obviously zero when n 18 the depth of the ladder, thum
DELTAn 1+G(n1 (C-12)

provides an lnitial value and we can calculate DELTA. A wmore cigorous

derivation of this result is presented by Minter {17).
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C.2 THE SELECTION OPERATORS

The operations Take, Drop, and Subecription by a vector of the form
AtB1( require only changes to the address generation pacrameters. The

formulae for calculatiag thie new values are given below.

C.2.1 Take

When the Take operation with T as the vector left operand 18 applied to
an array, the posftion tn the old acrray corresponding to subacript 1T of

the new array 1s gilven by: *
T<ITy(RHU-T)=1<0 {(C-~13)

The new addressling parametere must generate the same value of PI for
each subscript 1T as are generated using the I calculated above and the

old values of BETA and G. This requires that:
CHETAT v /GTxIT)=BETA v+ /G*IT+(RHO-T)*xT<0 (C-14)
be true for all legal IT. 1t will be true 1f:

BETAT< BETA + 4 /G<( RHO-T) xT<0 (C-15)
GT+G

are used to calculate the new values., The size of the result has also

changed requiring:

RHOTT (C-16)

New values for DELTA are then calculated using the formulae derived in

C.l.2.
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C.2.2 Drop

When the Drop operation with D as the vector left operand is applied to
an array, the pcsitlon {fu the old array corresponding to subscript 1D of

the new array is given by:

I~iptolD (C-17)

The new addressing paraweters must generate the same value of PI for
each subscript 1D as are generated using the I calculated above and the

old values of BETA and G. Thia requires thati

(BETAD ¢ /GO ID) =BETA+ + /G*IDxA D (C-18)

be true for all legal ID. It will be true {f:

BETAD<BETA+1+ /G»O( D (C-19)
GD+G

are used to calculate the new values. The size of the result has also

changed requirting:

RHOD«RHO-|D (C-20)

New values for DELTA are thea calculated valng the forwulae derived fn

C.1.2.

€C.2.3 Subscription

When the array is subecripted and the subscripc in positiva k {as given
by A(k}+B(k] x:C(k]) (ser Afk}<0, Bfk)«l, and C{k)-RHO(k} for thoee

dimenstions not subscripted), the poeition ia the old array corresponding

W Y e gy - w—n
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to subscript IS of the new arrvay e given by:

1+A+Bx[S (C-21)

The new addressing parameters must generate the same value of Pl for
each subsccipt IS as are generated using the I calculated above and the

old values of BETA and G. Thia requires that:

(BETAS+ 4 /G5=<15)=BETA++ /G*A4B<IS (Cc-22)

be true for all legal IS. 1t will be true {f:

BETAS«BETA++/G*A (C-23)
GS5G=8

are used to calculate the new valuea. The size of the result has also

changed requiring:

RHOS<C (C-24)

New values for DELTA are then calculated using the formulae derived in

C.1.2.

C.3 RE-ORBLRING

The other two operatlons which require only changes to the address
generation parameters are transpose and reversde. The same
transformations are used during the generation and improvement of stream

generators to change the order in which array items are acceesed.

ARRAY ADDRESSING WITH LADDERS 2i8
C.3.1 Transpose

When the Tranapose operation with TR as the vector left operand is
applied to an array, the position in the nev array corresponding to

subacript 1 of the old array is given by:
ITR<I[TR] (€C-25)

The new addressing parameters must generate the same value of Pl for
each subscript ITR as are generated using T and the old values of BETA

and G. This requires that:
(BETATR++ /GIR*TUTK V) =BETA+4 /5] (C-2¢)
be true for all legal I. It will be true if:

BETATR«+ BETA (€-21)
GTR+GL TR)

are used to calculate the new valuea. The efze of the result has also

changed requiring:
RHOTR« RHOUTR } (C-28)

New values for DELTA are then calculated using the formulae derived in

c.l1.2.

€.3.2 Reverse

1f the reversal operation is applied to an array, and {f the boolean
vector R 1s true for each position corresponding to a dlamension which 18

reveraed, the position in the old array corresponding to subscript IR of
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the pew array fs givea by:
[« [RVRRHO-142xI K (C-29)

The aew addresslog parameters must generate the same value of PI for
each subscript IR as are generated usiog I and the old values of BETA

and G. Thts requires that:
(BETAR+ v JGRTR)=BETA v+ [GxIR+R%RHO-1+2xIR (C-30)
be true for all legal I. It will be true {f:

BETAR«BETA ++ /GxR*RHO-1 . (€-31)
GReG-2xR*G
are used to calculate the new values. The size of the result has not

changed 60 that:
RHOR<RHO (C-32)

New values for DELTA are then calculated using the formulae derived ia

C.1.2.

C.4 STREAM GENERATORS

The procedure described ln chapter 4 which creates stream generators
from APL expressions wae deslgned so that only the entry polint of the
graph could have more than one uesting son. 1t also produces a graph
with all the hcader nodes at level 0. Thus each sub-graph hanging below
the entry point contatns only one or more (1f connected by evocation

edyes) simple ladders with the address generatfon mechanism described
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above.

C.4.1 Address Calculation

The labels on the stream generator graph nodes specify the addressing

deaired aa follows:

-

. 1f a node 18 labeled with a pointer wovement label (4‘ or Al') the
value of G assigned to that nade will be that givea for the tth

dimenalion of A.

2. If a node is labeled with a pointer veset or address calculation

label, the correspouding item of G is zero.

3. If the array name in a label 18 modified by ¢ the corresponding item

of G is negated.

4. The values of RHO to be used in the calculatfioa of BETA and DELTA
are taken from the leugth of the array dimension specified by the

label {(not from loop limit label).

The calculation of BETA and DELTA procced as specified earlier.

C.4.2 Re-ordering

The sub-graphs of the entry node of a stream generator communicate oaly
via regiaters (scalars) and wemory (arrays). Each sub-graph executes to
complerton before the next is started. Thua the order that calculated

valuee are placed into storage is not important. Only the final
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position in memory of each item watters.

The transposition and reversal operationa described in chapter 4
are applled to all arrays beilng accessed by that ladder. It is obvious
from the preceeding sections that elements of two arrays with the same I
wvill have the same 1TR or IR after re-ordering. Thus for those operator
which calculate each element independently, the current operand values
contributing to a given position fn the recsult will be the same after

re-ordering.

Of those AVL operations which are compiled into etream generators
the ones for which each position 13 not independent are reduction and
scan (and others defined in tcrms of those which include innec-product,
encode, decode, and membership). Both require sequential access along
one diwension ia a fixed direction, and accuwulate a value. When these
operators ave translated into stream generators, temporary storage for
the runalong values is provided. Thus the dimension being reduced or
scanned may be at any level (ladder may be transposed), but it may not
be reversed. The definition of reversal does not permit that operation
to be applled to a graph node labeled (/ or \) as being reduced or

scanned. Therefore legal re-orderings will not affect final array

content.



APPENDLIX D

STREAM GENEBATORS AS IMP-10

The liscting below {u the (c¢dlited) lisciag output of the IMP-10 cowpiler

produced during the final compilation into machine code of the stream

generator description representing the APL expressaion

FaAe-/(-/B2yC)s .- -/D'E . A cowmplete deacription of the language and the

extension mechaulsm may be found ia (S5].

™Me 1.6 1-SLp-74 STREAM.110([50, 130}

¢

[
{SCURLDY 1S RECISTER, KESERVED;
{SLNKRG! 1S 33 LONG; ¢ 32 LADDERS POSSIBLES
<ST>::=LADDER <EXP,A>’:"<ST,B>
;:=LOCAL. SL,EL IN "l$LNKRC!lA)_L0ﬁ(SL);
GO TO EL;SL:B;
GO TO SL;
EL:0";
<ST> si= EXIT  ::= "DATA(0470000000128)";
<ST>: :=EVOKE <EXP,A>
:i=LOCAL L IN "ISLNKRC![ISCURLD!I_LOC(L);
ISCURLD!_A;
GO TO (I$LNKRG![ISCURLDLY];
L:0";
<ST>: :=BEGIN: :=LOCAL EL IN
"ISCURLDI_O;CO T0 EL;
{$INTER) EVOKE t;EXIT;

COOLOOOOOODOOOOOROOODOD
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LADDER LABEL, EVUKE STATEMENT, AND CO-ROUTINE INITIALIZATION

STREAM GENLRATURS AS IMP-10

PO OO DO OO P DO OCOOOCLOOCORLOOODODODOOOCODODOOOOODDODCC
-

EL:O";

<ST>::=END::="GO TO I§$INTERI";

'

INIT STATEMERT

[

<PTL>: :m<EXP,B>::="P1(B]_ BETA[B)";

<PTh>: 1 =<PTL,A>, <EXP B> "A;?l[ﬂ]_pETA[B]";
<ST>:;=INET <PTL,A>::~"A";

¢

MATRICES WITH 5 COLUMNS
!
<ST»>» <VBL,A> 1S <EXP,I> BY 5

“A 1S 145 LONG";

<VBL, A> [<LXP, 1>, <EXP, J>)

"ALLOCOM, JOREG)™ => “A{S*L]{J)" ELSE
AL, JOUOK)" => “A(J)[Ea5)}"

ELSE "A{J+145)%;

<VBL>

'
REPEAT STATEMENT

1SLEVI IS REGISTER, RESERVED;
<INCL>: i =MOVING <EXP,B>
1:="PI{B)_P1{B)+DELTA(B, I SLEVI}";
<INCL>; t=<INCL,A>,<EXP,B>
::-“A;rlIB|~PIIB]QDELTA1B.RSLEVII“;
<ST>: :=REPEAT <ST,A> AT <EXP,B>

USING <EXP,C>

<INCL,E>
$:= LOCAL RL 1IN
"I, B)_0;

RL:A;1SLEVY B;
(HIC, ESLEVY) _T{C,ISLEVI)+1) LT RHO(C,iSLEVL]=>
(E;GO TO RL)";
<ST>: i=REPEAT <5T,A> AT <EXP,B>
USING <EXP,C>
::= LOCAL RL 1IN
“I1{C,B} 0;
RL:AGISLEV! B;
(L{C,ISLEVE] T{C,4SLEVI)+1) LT RHO[C, !SLEV!)w>
‘ Gu TO RL";
AARARKRARAKA LOCAL STORAGE AAAARAAKARAAMAR
[
T IS 17 LONG; #16 REGISTERS#
PL IS 17 LONG;#16 POINTERS#
1 IS 17 BY 5; #16 INDICES - 4 LEVELSS
# (THOSE BELOW ACTUALLY DEFINED BY DATA STATEMENTS)
BETA 1S 17 LONG; 16 POINTER INITIAL VALUES
DELTA IS \7 BY §; 16 INCREMENTS - 4 LEVELS
RHO IS 17 8Y 5; §6 LIMITS - 4 LEVELS

AARKARARAN ARRAY STORAGE AAAARKARAAARAARAA
’
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E 5 LONG;
,E ARE 125 LONG;

Akanahas CONTROL PARAMETERS ARARARAARANAA

BETA: DATA(O,A,B(104],C(104],D(124]),E(124],F);
RHO: DATA(0,5,5,5,5,

0,0,0,0,5);
DELTA:DATA(O,1,0,0,0,

0,34,29,-21,-1,

0,34,29,-21,-1,

0,124,~1,~1,-1,

0,124,-1,-1,-1,

0,1,0,0,0));

[

AkakakArA CO-RUUTINE INLTIALEZATION #ak&s

[}

BEGIN;

!

Ahkah  STREAM GENERATOR CODE ARRAAAARAAARARANRAAR
(]

’

APL - F_A+—/(~/B4C)+.~~/D4E

£~

DER 1:(INIT 1,2,3,4,5,6;
REPEAT(T(1}_0;
REPEAT(T(2)_0;
REPEAT(T[3)_0;

AT 4 USING 1
MOVING 4, 5;
Ti4)_0;

apee»ouna-—ocooocoocoo--~—~—-—ocoooc

AT 4 USING 2
MOVING 2, 3;
T{2)_(T14)-T(3})+T(2])
AT 3 USING 1}
HOVING 2, 1, 4, 5%
TiH)_T(2)-T(1])
AT 2 USING |
MOVING 2, 3, 4, 5@
{PL{6]))_(PI{1L1}+T[1))
AT | USING 1
MUOVING 1, 2, 2, &, 5, &;
EVOKE 0);

ARARRARARRARAAARARRARRAAARAARANRRRAARAARAARAAAAANA

OO OO me= = NNNWWW &S

mea » -

NDIXZLILXIXITARZ

A% CODE PRODUCED BY PROGRAM STREAM
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REPEAT(T(3)_(IPL(4))+(PL(5)})-T(3])

REPEAT(T(4)_({PT{2]1+{PE{3}))-T(4))

STREAM GCENERATORS AS IMP-10

000002  SINTER
000006  %L3
000007 2EL2
000012  1SLIS
000027 ZRL12
000031 IRLiO
000013 ZRL8
000035  IRL4
000051  ZIFS
000053  XRL6
00U067  X1F7
000107  XI¥9
000126  XIFil
000152  XIFI3
000155 L4
000157  ELI16

000009 HOVEY 1,0
Q00U JRST LEL2
SINTER:
000002 MUVEL 3. 7.3
000003 HOVEM 3, SLNKRG(1)
000004 MOVEL 1,1
000005 IRST @SLRKRG(1)
L3
000006 CALLI 12
1EL2:
000007 MOVEL 3,15L15
000010 MOVEM 3, SLNKRG+1
000011 JRST XEL16
ISLIS:
000052 MOVE J,BETA+L
000013 MOVEM 3, PI+l
0000i4 HOVE 4,BETA42
000015 MOVEM 4,PL142
000016 MUVE 5,BETA4]
000017 MOVEM 5, P14)
000020 HOVE 6,BETA+4
000021 MUVIM 6, PI+4
000022 MOVE 7,BETA+5
00002) MOVEM 7,PI45
000024 MOVE 10, BETA+6
000025 HOVEM 10, P146
000026 SETZM 116
2RL)2:
000027 SETZM T+)
000030 SETZM 1+7
ZRL1O:
000031 SETZM T+2
000032 SETZH  1+10
XRLO:

000033 SETZH T#3
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000034

000035
0000636
000037
000040
000041
000042
000043
000044
00V04LS
000046
000047
000050

000051
000052

006053
000054
000055
000056
000057
000060
000061
000062
000063
000064
000065
000066

0000617
000070
000074
000072
0600073
000074
000075
000076
00077
000100
0001014
000102
000103
000104
000105
000106

600107
000110
aoolll
000112
000113

IRL4:

XIF5:

2RL6:

XUF2;

IIF9:

SETIM

MOVE
ADL
suss
MUVEL
AULS
CAML
JRST
MUVE
ADDB
MUVE
ADLB
JRST

SLTZM
SETZM

MuVL
AbDD
SusB
MOVEL
AUS
CAML.
JRST
MUVE
ADDB
HOVE
ADDB
JRST

HOVE
sSuB
ADDB
MOVEL
AUS
CAHNL,
JRST
MOVE
ADDB
MHOVE
AbbB
MOVE
ADDB
MOVE
ALDB
JRST

MOVE
suss
HUVEX
A0S
CAML,

it

3,@P1+5

3,8P 144

3,T+3

2,4

4, 145(2)
4,RHO+5(2)
XLFS
4,DELTA$24(2)
4, Ple4
5,DELTA+31(2)
5,P145

RLG

Tve |
1+16

EN 4 8X]
3,60142

3,T+4 .o
2,4

4,1412(2)
4,RH0+12(2)
RIF7
4,DELTA+12(2)
4,PI42
5,DELTA+17(2)
5,PI+)

IRLG

3, T+4

3,T43

3, T2

2,3

4,145(2)
4,RHO+5(2)
XIFY

4, DELTA+12(2)
4,P142
S5,DELTAFI7(2)
5, P14}
6,DELTA®24(2)
6,PLt4

7, DELTA+31(2)
7,PL4¢5

IRLE

3,T+2

3, T+l

2,2
4,145(2)
4,RHO+5(2)
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000114 JRST RiFNL
000115 HOVE 4,DELTA+12(2)
0o0l16 AbnS 4,2142
000117 MOVE 5,bDELTA+17(2)
060120 AbLB 5,PL+3
000121 MOVE 6,DELTA+24(2)
000122 ADDB 6,P1+4
000123 HUVE 7.BELTA+31(2)
0001 24 AbDB 2,PIt5
000125 JRST XRL1O

X1FL):
000126 MUVE 3, T+l
000127 ADD 3,8PE+1
0001430 MOVEH  3,0P1+6
000131 MOVEL 2,1
000132 A0S 3, 145(2)
000133 CaMi. 3, RH0+5(2)
000134 JRST 23
000135 MUVE 3, DELTAS(2)
000136 ADDB I, kit
000137 MUVE 4,DELTA+12(2)
000140 ABDB 4,P142
000141 MUVE 5,DELTA+17(2)
000142 ADDB 3,P143
000143 MUVE 6, DELTA+24(2)
000144 ADDB 6,PI+4
000145 MOVE 7, DELTA431(2)
000146 ADIB" 7,PI45
000147 MOVE 10, DELTA+36(2)
000150 ADDB 10,P1+6
000151 JRST IRLI2

XIF1):
000152 MOVEL 3,XL14
000153 MUVEM 3, SLNKRG(1)
000154 MuVEL 1,0
000155 JRST @SLNKRG(L)

ILi4:
000156 JRST ISL1S

2ELLG:
000157 JRST SINTER

END

112 WORDS QBJECT CODE
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STREAM GENERATORS AS LADDER MACHINE CODE
The remainder holds imatructions.

The instructions executed by the ladder wachine are each single

worda (32 bitse) and coasist of:

1. Two address inetructions for each of the APL monadic scalar
APPENDIX E

operators.
STHEAM GENERATORS AS LADDER MACHINE CODE

MOP regteter ll.reglstet ‘2

2. Three address instructions for each of the APL dyadic scalar
This appendlx describes the version of the ladder machine upon which

operators.
vere based the code Bize and speed estiwates of Chapter 5. The original
destgn by Minter [17) was for a machine to execute the ladder control DOP regiscer ll.regtnter lz.reglater I]
structure defined in Section 3:2. The design sketched below
incorporates changes reflecting the additional features added to the

3. Main mewory load and store ({ndirect using pointers PI).
ladder structure (Sectiom 3.3).

GET register #,pointer #
The local memory of the ladder machine 18 organtzed as 32 bit PUT register 4,pointer #
vords., The first 1144 wvords are reserved for the coatrol variables used
by the compiler object code: (Section 3.5) 4. local memory "load" and “store" (tr: .afer to or from T).

0 - 255 1w T{reglster #) LOAD regilster #,address
296 - SiI is DOELTA[pointer #,level #) STO register #,address
52 - 767 is Glpointer #,level #)

768 - 1023 is Ifindex #,level #)
10264 - 1279 1s RHOfladex #,level §)
1030 - 1191 ts Pl{puinter ¥} 5. Register clear.
1112 - 1143 i BETA(pointer #}
with < reglster # S 255 CLR reglster #
S pointer # S 31
< index # < 3
s level # s 7

- 228 -
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6. Unconditional branch

BR  addrens

~

(T(register #) => GOTO address)

BNE reglster #,address

8. Pointer infrfalization

(PI{pointer ¢#)BETA[polnter #})

IKIT pointer #

AT | USING 1

STREAH GENERATORS AS LADDER MACHINE CODE

LADDER 1:(INIT 1,2,3,4,5,6;
. Conditfonal branch REPEAT(T(1]_0;

REPEAT(T(2]_0;

REPEAT(T(3]_0:

231

The op-code is is B birs wide and addresses occupy 16 bits.

The stream generator for FeA+-/(-/B+C)+.--/D+E is given by:

REPEAT(T(3]_({PT{4)}+(EI{5]))-T(3])

AT & USING |
MOVING 4,5;
T(4) 0;

REPEAT(T [4)_({PL{2}]+(PL(3}])-T(4])

AT 4 USING 2
MOVING 2,3;

TE2)_(T(4])-T(3})+T42]))

AT 3 USING 1
MOVING 2,3,4,5;
TIN_T(2)-T(1))

AT 2 USING 1
HOVING 2,3,4,5;
[PI{6))_[PI{1])+TiL))

9. londex fncrement and teat MOVING 1,2,13,4,5;

EVOKE 0);

(I{index #,level #)I(index #,level #)+1;
I[{fudex #,1evel §] CE RHO[index {#,level {) This translates
=> GOTO addcess).

to this listing
INC findex #,level #,address

Lo0PO:
10. Polnter increment
(PI(pointer #)PI(potater /)+DELTA{polater §,level f)).
STEP pointer #,level # LOOPI:
LOOP2:
1t. Co-routine evocation. LOUP3:
LOOP4:

EVOKE ladder #

into the ladder code given below.

to permit sywbolic addresses.

INIT
INIT
INIT
INIT
INIT
INIT
CLRI
CLR
CLRI
CLR
CLR1
ClLR
CIRE
GET
GET
+
INC
STEP

B W AN ) e N e e O A DS WA e
w

Ve have added labels
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STEP

SKLPi: CLR
CLRI
LOUPS5: GET
CET

NEVOWVMN ST

1NC
STEP
STEP
BR
SKIP2: -
+
1ic
STE¥
STEP
STEP
STEP
BR
SKIPY: -~
INC
STEP
STEP
STEP
STEP
BR
SKEP4:  GET
+
PUT
INC
STEP
STEP
STEP
STEP
stLe
STEP
SKIPS: EVOKE
BR LOOPO

—— LA B R e RO WA

s
-

R

=

Ll

b

>

-

[N VR e i el 8 [V 3 e
e

- w e D
-

:

v e o

AAa 59 fnetructionn nAw
The 32 bit {ostructivns would perailt a STEP ipstruction to specifly up to
4 poincer #°e. However, all ladder code lastruction counts in this

thesis asgume the form of atep used above.






APPENDIX F

STREAM GENERATORS FOR THE APL OPERATORS

F.l DEFINITIONS

The procedure the compiler uses to handle each of the APL operators
which 13 compiled i8 givea together with an examwple for each. The short
APL fragwents which identify the ldiows use che conventlon that § fe a
scalar and V a vector. In these procedures we will use the term

“problem node" to refer to a node with any of the following properxties:
. One or more of the labeles has been modified by \.
2. The node 18 a cholce node.

3. The node 18 part of a raveled structure.

The name wae chosen because such nodes prevent the direct application of

several operationas.
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F.2 THE OPERATORS
F.2.1 Monadic Uperators

When a wonadic branch node (monadic operator) 1s traversed, the graph of

the result fs builc from that for the operand as follows:

F.2.1.1 Scalar Operation
No change 18 made to the graph for the operand. Code foar tne
operation {2 built into the aplice code at.the point(s) where values

are avallable.

F.2.1.2 Take

IF problem nodes are active at dimension affected
THEN (Assign operand into temporary array;
/% Ia-line Assignment deaon acts here &/
apply take to new operand)
ELSE modify labels of active nodes of operand ar level affectvd
with Take;

\ y i

( 3 "l 1qVy ) = t3 5". \'" A/

Fant
but d St (.\) i {a)
, .

Lo ok T

>(IP ul o8 ———— ayp Yi '\-‘N——"‘(C‘ by u-_../l

//a\\*' D Vv o)
— »ﬁ
..u:/ T,

/
(41 StT1.25:T3) Csnr Wy - ng--_(‘ sl Vioevy j---\e;\fl Tie.n: 4y, ¢4 }
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F.2.1.3 Drop

IF problem nodes are active at dimenajon affected
THEN (Assign operand Into temporary arrtay;
/* In-1ine Assigument demon acts here #/
apply drop to new operand)
ELSE wodify labele of active nodes of operand at level affected

with Drop;

F.2.1.4 Reverse

execute Reverse command;
IF FAILURE
THEN (Assign operand into temporary array;
/% In-line Assignment demon acts here &/
apply reverse to new operand);

()

“—ﬂ(::x [(TIRIYATY)
—————

-/

0 (‘2 vy (.62

(=) (+) (=)
I . _L.
(d, OYx‘otY‘}—-a——l\ eviteXy )——--«— /u bxl,qul)

dp P2 29X2

-

STREAM .1 HERAVORS FOR THE APL OFPERATURS

F.2.1.5 Subscription

N
N

'y

IF problem nodes are active at dimensfon affected
THEN (Assign operand into temporary array;
/* In-line Assigument demon actse here */
apply subscription to new operand)
ELSE modify labels of active nodes of operand at level affected
with Subscription;

{2-\3]
JU—"
1

( ¢ | 7

oy
v oo
{o)
N’

(\n‘ C1e2 W3IVgacaelne2IVy )
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F.2.1.6 Transposition

N

b

execute Transpose cowmand;
IF dlagonalization 13 speclfied /* now adjacent */
THEN (IF problem nodes are active at levels affected
THEN (Assign operand {ato temporary array
/* In-lloe Assignment demoa acts here */);
collapse affected levels of each ladder);
In a sfwilac fashlon to the requirement of the re-order operatioa,
the collapse procedure assumes the absence of multiple nesting. It
vill preserve that property. Since no active node has an inactive

6on, the collapse operation will reduce the depth of each ladder in

the active sub-graph of the eatry point uniformly by one.

118 )

N s O )
= I

(::EE:E;;121~,I B1A1.82). eRy

F T T I T T e D e T N R L O R R Lot
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F.2.1.7 Reduction

build a siwple ladder with shape of operand;

label dimensions not belng reduced to assign to a4 tewporary;
label reduced dimension with /;

execute Merge command between new ladder and operand;

For a non-associative operation, the reduced dimension must be
reversed oy alternate operations performed. (For associative
operation this dimension my be altered to match delivery.)

The reduction operation will be most efficient 1f the che
reduction 18 applied to the last dimension. The temporary storage
is not accessed repeatedly, and thus its elimination may be
possible.

N

b +/(1)
\au

42 Az.ehy

cifty dp Tie-a2 n;).qnil/)
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F.2.1.8 Scan F.2.1.9 1lota
build a eimple ladder with shape of operand; add a new (left-most) neatfng eon to the header
label new ladder to assign to a temporary; of the graph for the scalar operand;
label all levels with 1\; label the nevw node as p19,18 and as the nev result;

execnte Merge command between new ladder and operand;

He require that all data scanned be fn the range of the operator as
F.2.1.10 Ravel
well as in 1te domain. Nom-associative operations require special
change nesting edges connecting active nodes at

handliag [16]. levels affected to raveled nesting edges;
build a new ladder with the shape of the result and
The 8scan operation will be most efficient 1f the scan is applied label {t to assign to a temporary and as the result;
create a copy of the new ladder for each result ladder
to the last dimension. The temporary storage is not accessed, and Lo the operand and Adjust to fit;
connect an evocation edge from
thus its elimination may be possible. the lowest active node in each operand result ladder

to the lowest active node in the matching copy of the nev ladder;

31 My.emy
ca(by dy Tae, 0y My). oMy

)
) P
22 M2.em)

$se2(by d2 ¥24.a2 N2).eny

= <y by dy Tpmely a n,,;-‘,\/
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F.2.1.11 Shape
Most uscs of shape become modifiers of wonadic operatfons. If this
has not occurced, the set-up vode will store the vector, and the
stream generator {s a simple reference to that new vector. The
constraint propagation phase will have subdivided the function so
that the information 18 available when the generator fe started. If
the operand I3 not a variable used elsewhere, then only those values

whitch determine atze need be calculuted (may be none).

F.2.1.12 fPuplication !

create a new one level ladder with limic
equal to duplication factor;
Nest operand under new ladder;

b'\ 2 DUPLICATE
\a v

-
G N

b2 a1 Vi-eVy
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F.2.1.13 Reshape

build a new ladder with the shape of the result and
label tt to assign to a temporary and as the result;
create a copy of the new ladder for each result ladder
ia the operund aand Adjusc to fic;
coanect an evocatlon edge from
cthe lowest active node in each operand result ladder
to the lowest active node in the matching copy of the uew ladder;
Neither sub-graph mdy be altered during later processing.

.
\

b T p (xeshaping ¥V to have shape of T)
o

( €2 b2 42 Y2072 "

e o e

F.2.1.14 Scalar Crearton
Splice code in the entry polat will fetch the operand into a
reglster. If the operand of this operation is a parse tree leaf (or
1t1), then the fetch will be done by the loterpreter. All scalar

operands and luterwediate results are kept in reglsters.



STHEAM CENERATURS FUR TIIE APL OPERATORS 243

F.2.1.15 Boolean Creation
The graph for the operand 18 unchanged. Splice code to check value

range will be added to the point where values are avallable.

F.2.1.16 Self Indexing - ViV

Nest the graph for the operand under s copy of itself;
change limit label of lower copy to ele;

Reduce the last dimension;

\

by SELP INDEX
\a v

( o3 Vi-eYs ) c1iby 8y Tie.ay V). eV

c’ag Vi.cievy

F.2.1.17 Extremua Position - Vil /V oc VAL/V

The graph is the same as for the reduction of V.

F.2.1.18 Span - [/Ve.-V

The graph is the same a3 for the reduction of V.
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F.2.1.19 Rank - ppa

Rank 1s a scalar coastant computed at compile time.

P.2.1.20 Indices Of Array - (PA)(1]

The graph i8 a single active node labeled tpA s 04, -

F.2.1.21 Scalar To Vector
create a one level graph to reference the vector;

attach it as the left-most nesting eon of the entry point of
of the graph for tiie right operand;

The remainder of the monadic operators are treated as function calls.



[Erpepr e

STREAM GENERATORS FOR THE APL OPERATORS 245 STREAM GENERATORS FOR THE APL OPERATORS 246

F.2.2 Dyadic Operators F.2.2.2 Subscription

IF subscript is an t vector
The grapb for the result of a dyadic operation 1s built up from those of THEN (attach vight operand to the header of
the left operand as a nevw left-most nesting son;
the operands as follows: apply monadic subscription)
ELSE (IF active audes of cright operand are problea nodes
THEN (Assiga right operand to a temporary;
/* In-1line Asasignment demon acts here &\
subsceipt new right operand)

F.2.2.1 Scalar Operation ELSE (Nest left operand under right operand;
Transpose to bring subscript adjacent to
execute Merge coumand; level subscripted;
1F FAILURE remove npodes belng subscripted;
THEN (Assign operand causing fatlure to temporary; FOR each arcray reference removed DO
/#% In-line Assignmeat demon acts here *\ add a subscription label) to
apply scalar operation) the lowest node of the subscripr);

ELSE build actual calculations into eplice code;
If the result of a subscciprion fa re-ordered, the subscription

At ) labels will have to be woved co the lowest node labeled as
/;/r\\\\ ‘ generating the subscript.
4 b

N
~

Nal ( ALiN;]1 )

c/N as A

cylay Xp.by Yy).@¥y ™ o
) © ©

o et )

SR .
(‘F'll‘“l iMoo 8 H b1 oep wp edi M )
I N

——— T
82 nioamg ) ( OGN ‘";;?”‘j)
~ S
P ——
( 43 A1.343 ) ‘ 3 c2 A2 20eh )

3 L33
N——— e

‘ by a3 my. @Ry '
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F.2.2.3 Rotation
create a one level ladder for IuRri
/% ﬂr 1 rotated dimension of cight operand #\

Rest §t undcr left operand;
Transpose to put new node at level of rotation;
IF active nodes at the rotated level of the right operand
are problem nodes
THEN (Asslgn right operand to temporary
/* In-lloe Assignment demon acts here #*\);
execute Merge command;
IF FAILURE
THEN (Assign operand cauaing faflure to temporary;
/* In-1ine Assignment dcmon acts here *\
exccute Morge command);
remove pointer movement labels for rotated dimeaslon
of right operand;
FOR each label removed DO add a votation label to the
lowest node of left operand;

247

If the result of a rotation le re-ordered, the rotation labels must

be moved to the lowest node of the right operaand,

c (1)
a/v/\

b\ M

¢ ¢ ., 9
(TTLNq« Q‘_"‘ ehy \\ / ‘ O

{ oz

‘E:(A: Vi-athy N2>, Qg

c1 ag oMy eMy )
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F.2.2.4 Compress

1F right operand has choice node at level

of compression and one alternative is inactive

THEN (Assign right operand to a temporary

/% In-11ne Assignment demons acts here *\);

copy the right operand;
label one copy as the result of the compression;
add the modifler SKIP to all

{except header nodes) of the other;
uge the left operand to select betwecen

two Alternatives which are the two coples;
change the limit labels of the target nodes

to be oll; /% 1 labela left operand *\

1 Vi.evy (:—bl LI LIS
L

° ( O
/’""'_"_:}""""‘“‘_“

‘ €1 by Byoemy }

&

—r
*{ €x by n2.qa >

SKIP Hy.qMy

! SKiP M.

L)'

268
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F.2.2.5 Expand

IF right operand has chofce node at level
of expansion and one alternative i3 Inactive
THEN (Assign right operand to a temporary
/% la-lfnc Assignmcot demons acte here *\);
bufld a new ladder with shape of cight operand;
IF right operand is numeric
THEN label new ladder with ZERO
ELSE label new ladder with BLANK;
label right operand and new ladder as result;
uee the left operand to sclect betwcen
two Alterpatives which ace the right operand and
the new ladder;
change the limic label of the target nodee in the new
ladder to be pll; /% 1 labels left operand *\

N

ca1]
ad/c/ﬁ\\:\ M ‘

‘ a1 Vyi.evy ) ( by hy.eny
\U/ ‘ vz Hz-e;j
© :
- x

—_
‘ 1 2EPC.Qay }g ----- 4 ay ViR } “““““ ¢y by My.em
— B -t

~ . t DU
€2 ILFU. oM ) c2 b2 M2.eH2
S — ——
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F.2.2.6 Catenacion

1F right operand has chofce node at level
of compression and one alteraative ls fnactive
THEN (Assign cight operand €o a temporary
/% In-line Assigmuent demons acts here *\);
IF left operand has choice node at level
of cowpression and one alternacive s Inactive
THEN (Assign left operand to a temporary
/% In-line Assignment demons acts here *\);
build a new one level ladder with limft equal to the
eum of the lengtha of the catenated dimension;
the new ladder selects betweea the right and left
operands as Alternatives at level of catenmate;

)

pe
(a2 wzieng
-

) fﬂ)

0
€3 3y A
Jhsmnu— By
. 3
(oo e T S g

B ——

— -
.
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F.2.2.7 lndex

Nest left argument under right operand;
Reduce each dimension derived from left operand;

251

‘ g Y3eedy

by Vysevy

dytcy o3 Tae.bg Yyd.e¥y

@/ay Xy.eXg
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F.2.2.8 Meuwbershlp

Nest right operand under left opecrand;
Reduce each dimension derfved from right operand;

(Inactive nodes may be re-ordered here and in other multiple

reduct foas ueing the same assoclative, commutative operation.)

5 © G
( = \
g Xg.Qi ) By VyeeY
1en LA ‘c,(e, ag Vyeeay Kgbogry )

N

S

‘ dby Ye.evyp )
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F.2.2.9 Outer Product

Neat the cight operaud under the left operand;
label both results as result of operation;

253

G;f
Ty
Cp &g Xp.@Xg

€2 By Vi.@¥y

)
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£.2.2.10 laner Product

perform Outer Product;
Diagonalize the last dimensfon of left operand

with first dimansion of right operand;
Reduce resulting dimenaton;

N
\
<

[ + X
nX/\k;\Y

4 L
(o ()

P T

( vy vioevg ) = - (a,(c, o TieNoied )

Ne——
( L2 ¥2.4V2

Caned
|
ey
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F.2.2.11 Decode
Reverse the last dimension of the left operand;
Scan the last dimension of the left operand;
Reverse the last diucnsion of the left operand;
perform lnner Product;
\\
At
//\
a/L bR
(o R
L {
-:‘llrux’) { bRy eRy) >
N e
S SR (P :}
(/ FrevTy by Rpd.gRy ‘l\dg(ng t,~.0t‘).qonl}

N e
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F.2.2.11 Encode

Reverse the last dimension of che left operand;
Scan the last diwmension of the left operand;
Reverse the last ditwenafon of the left operand;
perform Outer Product;

[

Y
//)\\\\
a/L by R

=

ag Lyg-oty ( by Ry.qRy ) Cc, OYl.ng) ‘hdl(-l Tie-4Lg).0

€z by Ry.eQy

o)
{2 )

Y S

N
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F.2.2.13 Assigomeat Hhen the In-line Assignment demon is applied after an assigament,

relabel the result nodes of the single ladder the actions are:

fur the left operand to assign to the single

array 1t references; build a simple ladder with shape of stored resulr;
label left operand as the result; label to reference that array;
Merge the right and left operands; cransfer modifiers originally from left operand

of assignment to new ladder;

The In-llne Assignment demon will not be applied before assigument. /* ¢ and a fo above *\

Overlay entry points (new ladder oa the left)
If the assignment is to a whole array (replacement), the loop limic

labels of che left operand will be ignored. If the aseignwent la to /°>
a sub-array (left operand Lncludes transposition, subscription, or -
siwple selection), thea llmits wust match. ‘“l“‘ “ """""“)
—
1f a graph is created whiich assigns the sawe value to wore than

one array, temporary storage a‘rrnyu will be eliminated until ouly

one copy of the data is etored. Result labels will be transferred.
N

.

[ )
a /’\b R
o~
(\o (:\
i - r—i—i
C:i_‘_l_iL) Q:ﬁ’h-e?n ) QNCA ap L1t Ry .QRy

Note that the labels from the left operand are placed so as to be
wodified by the result labels of the right operand. I1f L {8 a
tewporary which 18 subsequently auvsigned to a different array, the

iabels LN Ll* would be treplaced by those for the new assignmcat.
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F-2.2.14 Resghape
Dyadic reshape is not compiled, 8o no graph is ever created. The
fatecpreter will remove extra elements or create duplicates from the
stored operand (and 1f wecessary copy the stored operand into actual

ravel order).

¥.2.2.15 Transposition
The right operand becomes the successor of the left operand. If the
vight operand is a siungle ladder, and {f the transposition does not
specify dlagonalfzation (this will be known duce to rank
constralnts), then the interpreter can apply the equivalent of
wonadfic transpose to that ladder by changing address sequence
parameters. Othervise, the right operand wmust be assigned to s

temporary, and monadic transposition applied.

F.2.2.16 Take And Urop
The right operand becomes the successor of the left operand. The

monadfc operation {s then applied to the right operand.

F.2.2.17 buplication
The right operand becomes the successor of the left opersnd. The

monadic operation is then applied to the right operand.

STREAM GENERATORS FOR THE APL OPERATURS

260
F.2.2,18 End-around - “19V.S or 14S,V
The graph {8 equivalent to catemation fn reverse order.
F.2.2.19 First-found - {/Vi\V2
Nest V2 under Vi;
Reduce lower level;
N
c 3, FIRST FOUND
a/L b\ R
o (o (+)

—_— =
( ag Ly.ely ) by “:)
[Se—— ————e

dy <g el Tyt yag (pdieig \
N

i

— ~\
aby Ry.eFy )
::____ e

F.2.2.20 Bounded Extremum - |/5.V or [/S.V

The graph is the eame as for reduction of V,

F.2.2.21 Take-till - (ViS)ty

The graph is that produced for V/V with the clholce node modificd by

\. The header 1s labeled with the parse tree lablel for the leaf S.
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F.2.2.22 Dbelay - $,714¥ or TS,V
This will be graphed ss simple access to entire vector with scaler

reference in header.

F.2.2.23 Select-index - A[V/1pA)

This construct is compiled as V/A.

¥.2.2.24 Successor - O
The two eotry polnts are Uverlayed. The cight to left order of
sub-graphs is preserved within' and betweea the sub-graphs of the two

operands.

All other dyadic operations are consldered to be function calls.

i






APPENDIX G

EXAMPLE STREAM GERERATORS

The stream generators and final object code for the exawples of Chapter
5 are given below. For all except‘exumple 3 ouly the final stream
generator graphs are included below and they have been edited to temove
all parse tree node labels not essential in showing the structure of the

generator. Each stage of stream generator development ia preseanted for

example 3.

G.1 EXAMPLE 1 - PRIME NUMBERS

The expression S¢4/2=+/[1J0z(1N)e.{1N will calculate the nuwber of

primes less than or equal to N.

The stream generator for this expression 1a:

- 261 -
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L e l'__‘l

‘ p/ny -; ‘gra \}
,———___»—._\.
f nsic.onc /)

The object code produced is:

LADDER 1:(T([1)_0;

REPEAT(T{2)_O;
TI_THL 1)
REPEAT(T{4)_0=(1(1,2} IT(3)};

TI2)_T{4]+T[2])

AT 2 USING 1;
T_T()+(T(2)72))

AT )} USING 1;

EVOKE 0)

263

which cowpiles fato 37 PDP~10 instructions or 16 ladder fastructions.

For B = 10, the expression perforuws as follows:

Array Elemeut Refereaces

Naive lanterpreter 570
HiP-3000 Compiler 0
Strean Generator 0

Temporary Storage
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G.2 EXAMPLE 2 - ROUMAN NUMBERS

The expresalon R«(,((7p5 2)7N)o.214)/ Q4 7o 'MOCIAVI® coaverts an fonteger

(N) into ite representation in Roman numerala. The etresm genevator is:

m <." o .L‘..LD
. .

S
.
N
~

~
i by te.dy 14,914 '

The object code produced is:

LADDER 1:(fN IS IN T{L) ¢
INIT §,2;
T2] Tl
REPEAT(T(3}_(e1(1}ilT(2);
Tiz) _Lrpueniiny;
Tl6) _(p1{2});
REPFAT(T(S]_T(3)21(L,2};
T(5} «> EVOKE 2)
AT 2 USING 1)
AT 1 USING 1
MOVING 1, 23
RHO(2,1]) 1(2,1)¢1;
EVUKE 0);
LADDER 2:(INIT 3;
REPEAT((PL(3])_T{4];
EVOKE 1)
AT | USING 2
MOVING 3)

which coampiles into 68 PDP-10 instructiona or 31 ladder instructions.

When the result contatus 7 characters, the execution of this expression

requires:

EXAMPLE STREAM GENERATORS

Arvay Element References

Naive Interpreter 1)
HP-3000 Compiler 165
Stream Generator 28

G.3 EXAMPLE 3 - J CHOOSE N

The fuaction

D+ J CHOOSE A:B;C:N
(1) WNeritp A

Tewporary Storage
14
10

7

{2) Be(N,¥=J'N)p2 1 381 2 2 I&((AN)S0.=1N)e.vA

[3} veus
(8] C+((roV)=VV)/B
{sY pe((Je1)=+/(13C)/IC

takes as its argument A a boolean matrix each column of which has J

265

elements equal to . Each column 18 unfque and together they give all

the ways of choosing J elements from N. The output of the function D is

the same toformation for J+l. The stream generator is:
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¢
0

\-pl f1+.qs81. aly avy.ess. 1Yy (E:ltlll..r; ug Vi1e)."Ti.qan ‘ k2.
i S "

~ TS

——t

(An_g f2e. 800y,
ol

z — o
o3
< ~
S

\
v
\
‘<.
LY TRYTTY

The object code fs:
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LADDER 1:(INIT 1,2,7;
REPEAT(T[1) 0;
REPEAT(EWKE 2;
TEVI_(2xT(L))4T(2); #2484
[PI{4))_T[2}) #T_#
AT 2 USING 1§
MOVING 1;
(PLI2;)_T{1);  #V 4
T(3)_);
RHO[2,2) I(L,0)¢1; & upVl
REPFAT (T[4)_((PI(2}}=T(1]})AT(3);
Ti4) «>(T(3)_0;T(5)_1(2,2))) i
AT 2 USING 2
MOVING 7;
T _TISI=U {0, 1) #hpV)=p
T{4} => EVOKE 3)
AT ) USING |
MOVING I, 2, 7;
RHO(4, 1) _1{4,1]+1; #paad
EVOKE 0);
LADDER 2:(INIT 3;
REPEAT(T(6)_11(3,1); hAe
REPEAT(REPEAT(T(7]_1{3,3); #:iN?
TI2)_(TL6)=T{71)VIPL(3)]);
EVOKE 1)
AT 3 USING 3
MOVING 3 )
AT 2 USING 3
HOVING 3)
AT 1 USIRG 3
MOVING 3);
LADDER 3:(# (J+1) 1S IN T{9)4
INIT S;
REPEAT(T (8} _0;
REPEAT(T(8)_(PI{5)1+T[8]) #+/C4
AT | USING 4
MOVING 1
TI81_T{8)=T{9]);
T{8] => EVOKE 4 ELSE EVOKE 1)
AT L USINC 4
MOVING 5;
RHO[5,1)_L{i5,1)+i);  #paly
LADDER 4: (INIT 4,6;
REPEAT(REPEAT((PL(4))_[P1{6]))
AT 2 USING 5
MOVING 6,4;
EVOKE 1)
AT 1 USING 5
MOVING 6, &)

which compiles fnto 206 PDP-10 tastructions or 96 ladder fmstructious.
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For B = 10 and J = 5 this function requires:

Array Element References

Nalve Interpreter 7,318,578
HP-3000 Compller 6,531,604
Stream Generator 6,414,660

Temporary Storage
277,200
50,400

2,330

Figure G-1 which followe shows each stage of the developmweat of this

result.
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Parse tree:

ap

Conatralut Propagation and Operator Converaioun:
N

s /\p = “\[7-3] (partial ravel)
N

N,N2JIN

1dlom Recognition:

v S = “iur INDEX
/\v v

Figure G-1 - Exanmple 3
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Stages of Stream Generator Creation:
(active sub-graph at each atep oanly)

=,
c: {0.0) e: (o4
i
PO WS, — —
‘ cy tb-a1b > ( oy 1d.@vd >
02 koA £ ;_Ty
—e

(h a1 It!:qnd)

———

£2 2 .
162 24 10 em)

o D

‘ yy Fy oep 23 na.‘aD

‘uw: Fi cy 1b.93 8y nnrb

S
/ B
( g2 f2 €3 .ol Ay —_—
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._J*~;\
43 e1 F1ovhy >

( 94 42 A2.042 )
v (D

T
S -
L TR TUREY 51‘»051\,

N

e Ml

‘ a3 m) iy B2r.q8 /%\
-4 o~

where . =

. Kn +
k L2-
\\(2 I= .;A\\[Q-Cﬂ

\,

$2 94 47 n2.QM2

-
‘ 13 91 ¥y ey 1d.01d ]

to vreflect creation of temporary storage for ravel

Figure G-1 - Example 3 (cont.)
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—— —
p (\).a) [ e °)
- L PR S

ar‘ny B°g.58 ) ' ar'ny B'g.qF" )
s - N\ e - ™
(arl(ng 26y Taveny B72..¢B; ] ("u‘fl Q1 Vie.ng B'2r. g8 )

i

\‘___._ — _____./’ S— -~

where
A Y

. PAS
N N
N
R /\
/P\ > as /T a!>\l.
, \“ 7 .
,’ ’ Y

to reflect creation of T as storage for Decode (reduction)

N

(an(u; avy 3g0.up VipteeVy

. I /
t T4 AP 2FY >

where N
~ \\
-

%)
W NSELF INDEX
=2 au at\ SELF 1¥DEX
4

v

to reflect creation of § as storage for Sclf Index (reduction)

ab: G\J)_ (* (:\j

oy

( 81 "5y ) SKIP B°° . 58;)
2 l _\
( 2 12 8°°2.¢0a >!’--~{‘hq $'3.324 uyv‘).qud-;rl' 9“2,0.5‘

aly 83 8°''3.q98, )

Figure G-1 - Example 3 (cont.)
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-0

abg¢ady azy Ci=.tp B8°°g). .B v91.75, i

ab.adg acz CRe 7 8720, on‘ gq(u‘ 34,33 10V9). 'J’r ~~~~~ -{KIF B2 q..

- (P at: [

By

\
(/ aviagy Cg.9Cy ) ‘ alg ahy U'g.eliy ~;> (\_ av/agy €'3.¢Cy 4/)

Y S

avqtaty wvy Uge.agy C72).eC3

avglewg Uge.n0z C°22.9C2

\\\ av ave +/(1]

(e Yo )

87, €'y efy

‘ SeEP C 'y ¢Cy

SKIP C''2.9al)

S : \)h
aar ez any Dye. - e -
27:¢C 20 qal -

the final graph for ap has the graphs for ac, ah, ad, v, and r
as sub-graphs. (Some result labels will have been removed from
generation sub-graph by lo~line assignment demon.)

Pigure G~1 - Exswple 3 (cont.)

EXAMPLE STREAM GENERATORS 3

Generation/Use Graph

()V—Qﬁ @B‘“\"

ad: preference confiict - elimination of repeated use of T contlfces
with having compression affect lowvest
dimcension.

climination of repeated use of T has higher
priority and ad is re-ordered

ao: preference conflict - elimination of repeated use of U conflicts
with having compression affect lowest
dimeunsion
- ellminaticn of repeated use of U has higher
priority and ao is re-ordered

ah: preference - reduction should affect lowest dinension

r: preference - reduction should affect lowest dimenston
- t is re-ordered

w: preference ~ reductfon should affect lowest dimension

There 18 no conflict between nodes with an order preference. Testing
possible orderings for m reveals that,if w {s re-ordered the graph may

be overlayed to have the following form:

Figure G-1 - Example 3 (coant.)
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G.4 EXAMPLE 4 - SYMBUL TABLE UPDATE
The fuactioa

SYM XY
1) ¥e,~XeA
21 a<Aav/ax
(3] B«(B,¥/.0)eX=A
uses global variables A and B which are respectively a vector of single
character symbols and a count of the number of times each symbol has
been encountered. The function argument X 18 a character. It will be

appeaded to A 1f required and the matching ftem of B will be updated or

created. The stream generator fa:

N

—

/

au(Cy ¢ .03¢,Ry).u

The object code 1a:
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LADDER L:(#X IN T{i]#

INIT 1,2,3,4;

T421_0;

REPFAT({rL{]) _(PL{1})y
TIN_(PL1p)=TI1];
(PL{4])v(PE(2)}+T(3);
T(21_T{2} T{3])

AT 1 USING ]

MOVING t, 2, ), 4;

P3| _PL{YeDELTALY, L)

PLE4] PE{4]IDELTALS, 1]

REPEAT(T{2} => EVOKE 2)

AT | USING 2,

RNOEI, 1T LD, 00405

EVUKFE. 0);

LADDER 2:(#0 IN T()1¢

REPFAT((PI(3)} _T(1};
(PLES))_TIHTIL)={PL{I}});
EVUKE 1)

AT | USING 23

MOVING 3, &)

which compiles fnto 85 POP-10 tnetructions or 48 ladder fnatructions.

Vhea A has 10 elements snd X 18 a nev elewment, this function requires:

Array Element References Temporary Storage
Nalve Interpreter 137 22
HP-3000 Complicer 107 (¥
Stream Generator 42 ]

G.5 EXAMPLE 5 - STRING SEARCH
The twvo live APL exprcssioun:
D+(BICe.+ 141pA1A, 2A)/C O C+(B=1114A)/ 0B

scarchies a string B for occurrenceas of etring A and puts all starting

positiocoe into D. The stream generator ia:
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(‘ Q1 v1 03.@d. "Ry ) ‘ d1 8).1c8y )
‘ v/ ng.c2 1qig. Blod). gAY

Uy Div.eq }

The object code fa:

LADDER 1:(#1¢A IS IN T(i]¢
INIT |
REPEAT(T(2)_1(1,1]; #upBt
T _TEO=(PI(HT;
T(3) => EWKE 2)
AT 1 usinG §
MOVING {;
REO[2, 1} 12, 1)+
EVOKE 0);
LADDER 2:(INIT 2,3;
REPEAT(T{Y) _1;T(4)_0;
REVEAT(T{5)_T{2)41{2,2)-1; #+ 1+1pAl
PL(21_PL{2IHG[2, 1) x(T(5}-T{4});
TI3)_TI3) a (IP112))=1P1(3])))
AT 2 USING 2
MOVING 3;
T(3) => EVOKE 3 ELSE EVOKE 1)
AT | USING 2
MOVING 2, J;
RUG(I, 1) _I(3,i)41);
LADDER 3: (INIT 4;
REPEAT([FL{4])]_T(2);
EVOKE 1)
AT 1 USING 3
HOVING &)

which compiles Into 110 PDP-10 tnetructions or 54 ladder instructions.
When A 18 10 characters long, ite firat character occurs 10 times ln B

which is 100 characters long, snd A occura once in B, the expression
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requires:

Array Element References
Nalve Interpreter 1181
KP-3000 Compiler 951
Stceam Generator 301

G.6 EXAMPLE 6 - SELECTION

The APL expresaion A+5 5tB+C1D which was used

wultiple array ladders 18 translated into:

)

278

Tewporary Storage
210
210

210

ia chapter 3 to introduce

.
(n; Age.518,.3+C4. 310y )

/“'————’4__\

( h2 A2¢.5982.51C2.31D2 )

The object code 1a:

LADDER I:(INIT 1,2,3,4;

REPEAT(REPEAT([PE{L))_[PT{2}}+(PI(3]))+(PX{4}])

AT 2 USING 1
MOVING 1, 2, 3, &)

AT 1 USING |

MOVING 1, 2, 3, &;

EVOKE 0)

which will cowplle 1nto 45 PDP-10 ipetructions or 25 ladder
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inatructions., When the ioputs are 10 by 10 matrices, this expression

requirea;

Array Element References Tewporary Storage
Nalve loterpreter 650 200
HP-3000 Compiler 100 0
Stream Gemerator 100 0

G.7 EXAMPLE 7 ~ TRANSPOSITION

The expreselon S+x/+/[13AiB which was used in chapter 3 to show the

importance of re-ordertug calculations is translated ioto:

‘lgh.ﬂ}

17h3CR2.82).qug

‘ h/(A1.Byd.goy

The object code i8:

LADDER k:(INIT 1,2;

TO_3;

REPEAT(T{2}_0;
REPEAT(T{2]_((PI{1)]+{P1{2)})+T{2])
AT 2 USING | MOVING I, 2;
TOH_TE2)%T(1]))

AT 1 USING 1 MOVING 1, 2;

IS 1S IN T{1}¢

EVOKE 0)



EXAMPLE STREAM GCENERATORS 280

which compiles into 38 PDP-10 {nstructions or 20 ladder iustructions.

When the fnpute are 10 by 10 matrices this expreseion requires:

Array Element Refecrences Temporary Storage
Naive Interpreter 420 110
HP-3000 Cowpiler 200 0
Streamw Generator 200 (1]

G.8 EXAMPLE 8 ~ FILTERING
Tue two lipe expresaion
B+(v/A)/{1)EvA O A<CAD

which was used fo chapter 3 to introduce the use of co-routines is

translated into:

O o CD

PSSR S JRVE—— — ’
(n,(ﬂ,c.zp.“,‘“_2}_—“&“(“.“’«00179-__ SKEF Ex. @l )
SO —————- S — —
——-t —— e .
‘ nzeB2 E2).8" ; cig ’ ' G/ 4R, 102, 4C2). D2 ’ ‘ SkiP £.0€ ’

The object code 1is:

EXAMPLE STREAM GENERATORS

LADDER 1:(INIT 1,2,3,4,5,6

T(2]_0;
REPEAT(T{1]_0;
REPEAT(T{2)_(PI{3)]A(PI{4});
(PLITH_T(2];
T{_rpvri
AT 2 USING |
MOVING 1, 3, 4;
T(1) => EWKE 2 ELSE EVOKE 3)
AT | USING |
MOVING 1, 2, 3;
RHO(I, 1]_1(3, L] +1:RN0(2, 1] _1(2,1)+1;
EVOKE 0);
LADDER 2:(T{2] => PL(S)_PL{SI+DELTA[S,1);
T{2}_1;
REPEAT(REPEAT((P1{2]))_(PL{5))V(PI{6]))
AT 2 USING 2
MOVING 6, 2, 53
EVUEE 1)

AT 1 USING 2

HOVING 6, 2, 5);

LADDER 3:(T{2) => PI{5)_PI{5]4DELTA(S,1};
Ti2)_1; -

REPEAT (REPEAT(0)
AT 2 USING 3
MOVING 5;
EVOKE 1)
AT | USLING 3
MOVING 5)

which compiles into 133 PDP-10 tnstructions or 74 ladder ifnstructions.

When the fnputs are 10 by 10 matrices and 5 rows survive, this

expression requires:

Arvay Element References

Naive futerpreter 870
HP-3000 Compiler 710
Stream Generator 450

Temporary Storage

210

281
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G.9 EXAMPLE 9 - HERGING

The expression S<+/+/8,C,[11D which was used in chapter 3 to demonstrate

the ueed for multiple nesting 18 translacted fato:

——re
‘ 1 he.o

( 3733¢0C3.0650.49C 17536403, #6810, 040}

kyn‘—;-qn’.;» / 47 ¢6B2.@982 J7402. 9402

The object code fsa:

LADDER 1z (INIT 1,2,3;

T{l}_0;

REPEAT(T[2] 0;
REPEAT(T{2)_(P1([2))+T(2))
AT 2 USING |
MUVING 2;
REPEAT(T[2}_{PI(1})+T([2])
AT 2 USHHG 2
HOVING 1
T _T(214Ti1})

AT 1 USING |

MOVING 1, 2;

PLEL)_PI{1)4DELTA(L,1]);

REPEAT(T{2]_0;
REPEAT(T{2}_(PI{3)]}+T(2})
AT 2 USING 1
MOVING 3;
REPEAT(T[2)_{PI{1))+T{2]})
AT 2 USING 2
HOVENG -1 ;
T{1_T{2]1+T(L])

AT | USING 1

MOVING 1, 3;

#T(1) NOW HOLDS S#

EVOKE Q)
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which complles into 86 PDP-10 fnstructions or 47 ladder instructions.
When B 16 @ 10 by 5 matrix and C and D are 5 by 5 wmatrices this

expresslon requires:

Array Elemeat Refereacece Temporary Storage
Nalve Interpreter 320 160
HP-3000 Cowpiler 300 150
Stream Generator 100 0
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