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A programming language should (1) allow a zlesr and simple
representation of the sequence in which steps of an algorithm are ?
performed, (2) provide a concise and consistent notation for the
operations occurring in a wide range of processes, (3) permit the

description of a process to be inderendent of the choice of a

[ { - (l
particular representation for the data, (L) allow economy in opera- & [, . L
O Aot 7]
tion symbols, and (5) provide convenient subordination of detail b e (
'\._ Ad tu {:

without loss of detail, y

The sequence of execution of statements will be specified
by their order of listing and by arrows comnecting a statement to

its successor, Eranch points, atvhich alternative successors are

chosen according to the outcome of a comperison between a pair of
quantities, will be represented by a colon placed between the com=
pared quantities, and by a label attached to each arrow showing
the relation under which it is followed. Any well=defined rela-
tion may be employed, e.g., equality, inequality, or set member-
shin...The,conditions gt _eacb brapeh voink pust. he. exhaustive._and
pared quantities, and by a label attached to each arrow showing
the relation under which it is followed. Any well=defined rela=
tion may be employed, e.g., equality, inequality, or set member-
ship, The conditions at each branch point must be exhaustive, and
the listed successor is associated with all conditions not included
in the labeled arrows,

Commonly occurring ormerations to be defined include the
£loor ij (largest integer not exceeding x), the ceiling [x],
and the residue of x modulo m, to be denoted by |x,m|. The common

logical operations and, or, and not will be denoted by A,V and ~,



and will be augmented by the relational statement (x2y) defined

as follows, If x and y are any quantities and # is any binary

relation defined upon them, then (x2y) is a logical variable whose
value is O or 1 according as x does or does not stand in the rela-
tion # to y. For example, the absolute value of x may be defined

as follows:
x| = x(1=2(x < 0)).,

To illustrate the use of the floor and ceiling operations, contider
a rectangular array of dimension a X b whose cells listed in orcsr
by rows (0,1,.044b=1,b,b41l,.,..,ab=1) are denoted by x and in orde-
by column are denoted by y. Then

x=bX|yal + |y +a]
and

y=aX|yb| +|x + 1] .
by rows (0,1,...,b=1,bsb+1l,...,ab=1) are denoted by x and in orde~
by column are denoted by y. Then

x=bXl|yal + |y +a]

and
y=aX|yb| +|x 1] .

These are the transformations used in determining accessitility in
a serial-parallel memory of a bands with b slots per band. They

may be derived from the identity
y = aXx ly-:— aJ + lysel

H‘he description of a process can be made independent of its

representation by defining certain fundamental operations upon finite



ordered sets. The element of a finite simply=ordered set B of

dimension (number of elements) v(B) can be indexed by the integers

1,2,,4.,v(B) such that Bi is the ith element of the set. The _1::31

successor of an element x of B will then be denoted by x % k and

defined as the element Bj’ where j m (i+k)(mod v(B)), and B, X
The kt‘h predecessor is defined analogously and denoted by x %3 k.
If B is the set of integers, the symbol B may be elided, and if

k = 1 it may be elided ~ hence if k denotes the kth successor of the

integer i, and i} denotes the integer 1 + 1,

The successor operation defined upon an element of B can
be extended to any subset C of B as follows: C 11; k denotes the set
D such that D, = C 1 k. IfC and B are identical, the operation

iB
is called left rotation and is denoted by C{ k. Rotation is ex-

tended analogously to vectors,
Two sets A and B are equal (A = B) if they contain the same

elements; but are identical (A ® B) only if they also have the sane

AvmAar Qirma Tl a madifinatdane dn +ha etandavd Aafinitdiane Af Sntan.

D such that Di = C 1B k. If C and B are identical, the operation

is called left rotation and is denoted by C 1‘ k. Rotation is ex-

tended analogously to wvectors,
Two sets A and B are equal (A = B) if they contain the same
elements; but are identical (A ® B) only if they also have the sane
order. Simple modifications in the standard definitions of inter-
section and union provide a closed system for ordered sets. To
achieve economy of operation symbols, intersection and union are de-
noted by A and V, alrcady used for the analogous logical operations
and, and or. Potential ambiguity is avoided by using distinctive 1w,
Al s

N
-y
L ]

o,
po

symbols for each class of operand; italics for single variables,

l 1w

lower case boldface italics for vectors, upper case boldface italics

for matrices, and ordinary Roman characters for litersls, i.e., for



A second set of indices; called contracurrent indices

will be assigned to the elements of any set A. These indices run
from =v(A) to =1, The kth element may therefore be denoted al-
ternatively by A, or A-j’ where j+k = v(A)s In particular, the
terminal elements may be denoted by Al and Abla Contracurrent
indices will also be employed for vectors and matrices.*

A set obtained from a set B by deleting the first i and

the last J elements is called a solid subset or an infix of B,

An infix C of B is also called a prefix of B if C, = Bl’ or a

1

suffix if C | = B-

1 The statement

10

c <5 (o)}

specifies C as the infix of B having terminal elements x and y.
The symbol B may be elided if B is the set of integers.
Program 1. illustrates the conventions introduced thus far,

If q%‘}s the suit and§7§ the denomination of the jth card in a

Y {(x,Y)}

specifies C as the infix of B having terminal elements x and y.
The symbol B may be elided if B is the set of integers.
Program 1. illustrates the conventicns introduced thus far,

If 3% 4s the suit and ©'2 the denomination of the 3'! card in a

J
hand of thirteen playing cards, and if

D= {deuce,trey, oo w,king,ace}

is the set of denominations, then the quantity q determined by the

program is the length of the longest run in any one suit. A left-

3
In certain work, notably in switching theory and in the use of
positional rerresentations (e.g., column sorting) there is some ad-
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pointing arrow associates the‘specigzing quantity on the right of
each statement with the specified quantity on the left. The arrow
is used instead of the sign of equality becaunse it eliminates
ambiguity and rescrves the sign of equality as a relation to be
used in relational statements only.

Significant subordinstion pf detail can be achiewved by
generalizing each operation defined upon simple varietles %o
structured arrays such as vectors and matrices, For exampie, if
and - are logical vectors (i,e‘, each component is a logical

variable), then
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The application of any assccistive binary operatior < to
all :omponents of a vector .« is denoted by ©/:, Thus *X/. is the
product and $£k is the sum of all components of =, The latter will
also be denoted by u(r) and te called the waight of %, The usual
notatinns for matrix algebra are retained, i,e., :7% for a scalar
rroduct, and ¥ for a product of matrices. It is clear that
¥ gcJGaij and that o(:f k) = <=} for all k,

Oreek symbols (in the approsriate tyre face) will be used

for specially defined quantities. Timus, the unit vectors = are

* z

logical vectors such that ( 5l}j = 1 Af and onlv if = £ The

full vector % is the negation of the zers vector. The vrefix vector

aa is a logieal vector of weight i whose first j components are

. o J . . ; : .
unity. The suffix vector =¥ is defined analogously. The identiy

i

1€

permutation vector - is defined by the relation ‘j « J.
dimension of a unit, suffix, prefix, or identity cermutation vector

is normally defined implicity by the compatability requirements
.~ e = - .

J © e GAYENE W BT — ] e —- e

full vector % is the negation of the zero veetor. The prefix veector

e = Rt g At TR Y S VY

J . . . . .
a¥ is 1 logical vector of weight i whose first j components are

%
>

. . i o : s .
unity. The suffix vector v is defined analogously. The identiy

iy

permutation vector - is defined by the relation ‘j « J. ‘he

dimension of a unit, suffix, prefix, or identity pcermutation vector
is normally defined implicity by the compatability requirements
of associated operators and operands. The scalar zero, vecter zerc,
and matrix zero will all be denoted by O,

The conventiocnal vector praduct of two space vectors (ta
be denobed by = >y) will illustrote “he use of thz forepoing nota-

tion. It can be defined as

"R N P NETEE S S S



A trivial formal manipulation shows that ..o s ={i x 7). The

orthogonality theorem :(xx¢) = O can be established as follows:

wxx ) @ (G X ] = Py?) =0z X xfxy]

]

x X x}x 1)

e o xtx N = x =z IxsD)

- O(l”‘l,x S XI‘;l? ~ X l X'T)

Since the X operstor is commutative, and since , | 2 = - " for a
vector of dimension three, ths final expressicn is equal ic zero
and the theore% is established, Further theorems concer: ine the
magnitude of : .; -, the Your=vector prodcuct, and tre box product
foliow by similarly simpie formal nmanipuizticn,

Individual compeonentes of structured opzrands cin ve

L , . , . th
selected by suoscripte and superscrirts - -, for the 1™ component
o

i
of the veetor , =~ for the

| S
-

rou veetor of a matrix: , , for
BB ) . 3 . RS 1 ¢ .
adhc © vnéorem 15 'eswan.Iisnda, ruronér tnebrems’ contdert ins Lne
magnitude of . .: -, the Your-vector product, and tre box prodict
foliow by similarly simpile formal manipuizticn,
Individual components of structured oparands cen be

L , . . . .th .
selected by suoscripte and superscrigts -~ -, for the 17 component

i
i v t‘h . + N 4‘1
of the veector , <7 for vthe i~ row vector of a matrix:,  , for
th . _ 5 S < B -
the J° column vector, and ', for ths 1J" element, More genasrally,

it is necessary to specifly selected svbsets of the comporents,
Since the selection is, for each compcnent, a binary ope:ation, it
can be srecified by an associated logical vector of the same
dimension., Thusk for an arbitrary vector < and corpatibie logical

vector u (thet is, v(:) = v(.)), the stetement

e s
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implies that the :: is obtained by suppressing from » those com=
ponents 1 for which = 4" 0, The operation "1/ is called compression

of :_ by.. For example, if v =« (1,0,0,0,1,1), and

e ((@D,@,®,@Q,@,@® Htenuta(®,®,QP )
Clearly, v(v/=) mc(:). Set compression is defined analogously.

Two types of compression must be defined for matrices;

row comp:ression, defined by

v @lﬁ-i = ':.?/"fi s is {(1, n())} s

and column compression, defined by

BtV SN TR ie {(1,”(‘?“} .

J

For example, if the matrix i represcnts a ledger of ()

bank accounts, with the column vectors . and T:‘L denoting

1?93 ‘5\33
name, account number, address, and balance, respectively, then the

and column compression, defined by

- //‘@J - ,/:j . j & {(],v())} °

For example, if the matrix i represcnts a ledger of ()
bank accounts, with the column wvectors . 10 ,'“2, 3

name, account number, address, and balance, respectively, then the

s and }:'zl denotiag

operation of preparing a list © of the name, account number, and
balance, for all accounts whose balance exceeds 1000 can be com=

pletely prescribed as follows,

fam= () >2000 ) / Ty .



The expansion of a vector . »y a logical vector: is de=

noted by ¢ and &s defined as follows,

sa= W\x &P v/s =2 and T/ om0,

Tt is necessary thet o(u) = v(:). Clearly v(z) = v(y). Row ex~
pansion (denoted by -\:) and column expansion ( \*) are defined
analogously,

The compress and exvand operations provide a powerful ex-
tension of ordinary matrix algebra. For example, any numerical

vector can be decomposed according to the identity
< owuN /e eu\/e .

Matrices can be decomposed similarly. Moreover, the conventicnal
operations on paritioned matrices can be generalized in a system=-

atic manner, A few of the more importent identities are, for

exammle ¢

Matrices can be decomposed similarly. Moreover, the conventicnal
operations on paritioned matrices can be generalized in a system-
atic manner, A fewv of the more important identities are, for

example:

Gy = 2N,
(ALE = (YY),

Y e /)T CLVCTY
o/ Gy) = n(:/x) .,
uf Gy) = (hidy
G/ G = ua DA .



Maximizetion over those components of x for which P = 1

will be denoted by uf:c., More precisely,

Y u[}:

specifies a logical vector v such that v/x = m: and that (T/¢) j<m
for je {(l,v ) )} » GCraphically, - is obtained by lowering a
hbrizontal line over a plot of : until it touches the largest com-
ponent, and then marking with a 1 all components of = touched
by the line. Thus if - = (6,3,=8,6,6), then - =:f: » (1,0,0,1,1),
ofc w (6,6,6), and (v/: )y = 6. Minimization is denoted analogously
by zzl.:fo The minirum over slipositive values of ;1 may be denoted,
for examrle, by { > O)l_::, and f or the present example
¢ > 0)|: = (9,1,0,0,0).

Program 2 illustrates the use of this notation in a com=

plete description of the Simplex algerithm for linear programming.

i/7 ® 0,040/, DA (/7 )y = O, Mimmlzation 1S denoved analogousiy
by ‘:.'r.l"?io The minimum over alipositive values of :: may be denoted,
for examrle, by (. > O)I_::, and f or the present example

= > O)I.:f»: w (0,1,0,0,0).

Program 2 illustrates the use of this notation in a com=
plete description of the Simplgx algerithm for linear programming,
The vector ; determined is the optimal solution of the fellowing
system; maximize =v subject to the constraints (y'<i) =, and
(s >0) = = . The logical vector u: is assumed to be given initially
and specifies the current feasible basisj ;y is the corresponding
vector of non=-zero variables., A power of a matrix is denoted by

a superscript enclosed in square brackets,



D = (u/a) ["1]
x = Tb

¥y u\x

P «TA

g - o=(a/c)r

A sl rg

Ja—(/1)y

8:’:0

( >0) « ¢

y ¥
i e 7
i
%
<
T v = kN e §
3,
Y
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y'is optimal solution

solution wabmirded

¥'is optimal solution

solution wabmirded



The operations occurring in Program 2 can be used in &

formal analysis of its behavior. For example,
! .
oo m o f((S1) L]] 1) = G:/8) Fai] (u/2) =

and © therefore contains an ident.:, -~*rix . in the columns corres-

ponding to the feasible basis ::. Morecver, since
g oo o= (n/2)r 0,
then
fiw wfessf (ofc)io foo(f V) moifee(uf) Tom O
Hence the components of the modified cost function ;. are zere for

all included vgriables, as desired,

The base ©© value of the vector = is denoted by '] and

defined as the value of i in the mixed base number system defined

,L/r £ ‘v‘]/ﬁ“"l,’,{/ (‘;,“/C;‘),l_" = /-(/’)(/) u".;/u“m{;l/i,,) e O,

Hence the components of the modified cost function .. are zerec for
all included vgriables, as desired,

The base - value of the vector = is denoted by '] and

defined as the value of :; in the mixed base number syster defined

by the radices !:»1,"92,'...7,?.‘1 More precisely, i|: =i:; where

-1°
ty=landz o= /(. 21), for i e {(2,\:(&..»))} o If, for example,
hwm (7,24,60,60), and = denotes elapsed time in days, hours, mimtes,
and seconds, then uj:x denotes the e¢lapsed time in seconds. In
particular, 10€|x denotes the value of x in the decimal system,
and y€f: denoteé the polynomial in y whose coefficients are the

components of :i,

.. 24 a2 w w e = T JPURR. S
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such that v(U) = ny,p(U) = {1og2(n+1)1 , anc 24U, = J. The it,h
o}

parity check group then includes the corponents of the vector “t'ﬁfi/:ir
and Program 3 describes the determinatic~ of the corrected value
v of the code i, An even-parity code is issumed, i.e., legitimate
code points satisfy even-parity for ail ¢. :ck grhwps,

For non-numeric vectors, the ex und and ‘ompress operations

do not suffice. The mesh of = and v on » i: defined as follows:

9 4—\;: $il ,;.»\<=$ Tz oand ofwmy °

Clearly, v(:) = v(u), v(.g) w0 (7), and v{) = (.}, If, for < warple,

c = (@, ) @ )y ¥ = (@, @ s ), 8nd \ = (0,1,1,1,7,0), then
L O.6.6 GO

The mask of  and » on . is defined as follows:
VAT LY g Vi< ) = v\-u';, V\..;/ B\ pe @UU VL) R My lig L4 nTETDLE,

_— (O . O Yo ¥ = ( O @ ), and v = (0,1,1,10,0), then
RN IOXOXOIOICION

The mask of - and v on . is defined as follows:

”

poe—fo i /e s T and S = L

Clearly,
\f ,y\ Com /‘\ P J\/ N
/‘; ARS ;‘k/ & \:‘/3':’ a9 ll/:’\ 9
and






Analogous colunn mask, row mask, column mesh, and row mesh

operations are defined upon matrices,
If two sets A and B are equal (but not necessarily identiecal),
one is #aid to be a permutation of the other, and there exists a

vector p such that

Moreover, the components of :; are some pernutation of the integers

1,2,,..5v(B), and & is called apermutation vector, If By~ A for

some permutation vector, then B may be denoted by A‘_o :
Permutation will be extended analogously' to vectors and

matrices, For example, fi denotes an slementary similarity transe

formation on the square matrix X, It is easily shown that

SOmMmEe peIrmuiLudLlion vecuvor, ULICIl D May 0O« Uuelioveu Dy A o

Permutation will be extended analogously to vectors and
matrices, For example, ,‘r denotes an elementary similarity trans-

formation on the square matrix ¥, It is easily shown that

and the permutations » and 7 are then said to be inverse. Clearly
(:cp) = x for any pair of inverse vectors p and o

| Any biunique mapping from an element b of an arbitrary set
B to a correspondent a of an arbitrary set A can be represcnted

by a perrmtation vector p» such that B

4 meps into A}? o« If, for example,

i
A= {apple, booty, dust, eye, night.} »

B= {Apfel, Auge, Beute, Nacht, Staub} s



Program i describes a mapping from the argument b €B to the
function ag A prescribed by the vector ps The process consists of
three steps, the ranking of b in B, the pernutation of the index }
by p, and the selection of the correspondent Avw « Since any set
can be considered as a vector, the process can bg expre ssed more
concisely in terms of vector operations as shown in Program 5, The

expression . (B) denotes the identification vector of the set B,

defined as the set considered as a vector, i,e.,

b*“«\,(B)@:';iﬁBi o

A matrix whose rows gnd columns are all permutation vectors

3
will be called a permutation matrix, A permutation matrix can clearly

repregent the operations in an abstract group., The group is Abelian
if and only if the matrix is symmetric.
A vector is frequently represented (stored) in a serial=

access file in which the components are made available only in

3%
will be called a permutation matrix, A permutation matrix can clearly

represent the operations in an abstract group. The group is Abelian
if and only if the matrix is symmetric.

A vector is frequently represented (stored) in a serial=-
access file in which the components are made available only in
their natural sequence. To describe algorithms upon vectors so
represented, it is convenient to introduce speical notation for a

file as follows, A file b of length n 1is a representation of a

vector ¥ of dimension n arranged as followss

'}\(1)9:&1,7\(2) ,;:2,...a,l(n)gxz:ng')\(n-i-l} o

*This is a departure from conventional usage in which a permutation
matrix is a logical matrix whose application corresponds to the
application of a permutation wector,
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The operation of transferring a component from a file to specify

a quantity y is called reading the file and is denoted by y *— >,
The transfer is terminated by the occurrence of a partition symbel,
and if this symbol is A(J) the file is then said to be in position
Je A file may either te rcad forward (denoted by O‘P )} or tackward
(denoted by 113 )o If a file originally in position j is read

forward it transfers the component and stops in position (J«l1),

®y
J e {(1,n)} o A file read backward from position j1 transfers
the component 3 and stops in position 3s 3 a{(l,n)} °

The position of a file b will be denoted by n(d ). Thus
the statement y <— w(d ) specifies y as the positiorn :. $ , whereas
w( b)a— 2 positions the file to 2. In particular, n(d ) =1 denotes
the rewinding of the file, ard either n($ ) «—(n+l) or (using contrae=
current indexing on the (n+l) positions) w($ ) «— -1 denote position-
ing to the end of the file., Any file for which the general position-

ing operation n() )=~ z is to be avoided as impossible or inefficient

- - ’

m( p)a— z positions the file to 2. Iin particular, w(d )1 denotes
the rewind of the file, and either n(p ) «— (n+l) or (using contrae
current indexing on the (n+l) positions) w($ ) «— -1 denote position-
ing to the end of the file., Any file for which the general positione
ing operation n() )=~ z is to be avoided as impossible or inefficient

is called a serial or serial-access file.

A file may be produced by a sequence of recording statements,

e tT————aD
either forward:
0@ "“‘xi’ :i“ l,z,noo,n 3
or backward
14"-‘351, i' n’n"l,ooc,l o



As in reading, each forward (backward) record operation increments
(decrements) the position of the file by one., A filewhich is
only recorded turing a process is called an output file of the pro-
cess; a file which is only read is called an input file.

Each partition symbol may assume one of several values,
Xo,ll,...,lp, the partitions with larger indices demarking larger

subgroups within the file, Thus if each component xj were itself

a vector yj(ioe,,a: is a matrix), then the last component, of each
y'j might be followed by the partition xl, while the remaining come

ponents would each be followed by A The last component of the

00

entire array might be followed by a partition A In recording an

2.
item, the associated partition is indicated by listing it after

the item (e.g.,p - y,xz), except that the partition A. is usually

0
elided. The indicated partition then follows or precedes the
associated item in the file according as the recording is forward

or backward.

entire array might be followed by a partition A In recording an

20
item, the associated partition is indicated by listing it after

the item (e.g.,p - y,kz), except that the partition ). is usually

0
elideds The indicated partition then follows or precedes the
associated item in the file according as the recording is forward
or backward,

The indication provided by the distinct parition symbols
is used to control an immediate (p+l)-way branch in the program |
following each read opezation, The branch is determined br the
partition symbol which terminates the read.

Different files occurring in a process will be distinguished
by righthand subseripts and superscripts, the latter being generally

reserved to denote major classes of files (e.g., input and cutput),

. me ™ ° 2 @ -~ * - « N ee
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File notation is‘particuiarly useful in the description
of sorting algorithms and of algorithms emplioying so-called "pushe

down stores.”



