Return to

The Description of Finite Sequential Processes

A paper presented at the
4th London Conference on Information Theory
August, 1350

The economical execution of full memoried algorithms provided by the automatic computer has greatly increased the use of complex algorithms in information theory and other fjeld: This increased use has in tum genearted arsed for consists and powerful programing languages for the duseridoton ard evayrow or complex algorithms. A programmes language is commonly chanaem.

The economical execution of full, mes tied algorithm mos provided by the automatic computer has greatly increased tho use of complex algorithms in information then ry and other field: This increased use has in tum generated a reed for consists, and powerful programing Languages for the description ard evazrex or complex algorithms A programming language is commonly cha ane en imbed as problem oriented m machineorientec, wording as it s intended mainly for the description and analysts of algorif mat of crime for their execution. The language outlined in the present pase was developed primarily for description and analysis, but suse lends itself well to execution. The present emphasis is on description and analysis.

A programing language should (1) allow a clear and simple representation of the sequence in which steps of an algorithm are? performed, (2) provide a concise and consistent notation for the operations occurring in a wide range of processes, (3) permit the description of a process to be independent of the choice of a particular representation for the data, (4) allow economy in opera- $a_{2} L_{2}: C$ tion symbols, and (5) provide convenient subordination of detail without loss of detail.

The sequence of execution of statements will be specified by their order of listing and by arrows connecting a statement to its successor. Eranch points, athich alternative successors are chosen according to the outcome of a comperison between a pair of quantities, will be represented by a colon placed between the como pared quantities, and by a label attached to each arrow showing the relation under which it is followed. Any well-defined relac tion may be employed, e.g., equality, inequality, or set membershine..The, conditions_at_eagb branch point pust_be exbaustive .and pared quantities, and by a label attached to each arrow showing the relation under which it is followed. Any well-defined relao tion may be employed, e.g., equality, inequality, or set membership. The conditions at each branch point must be exhaustive, and the listed successor is associated with all conditions not included in the labeled arrows.

Commonly occurring operations to be defined incluce the floor $\lfloor x\rfloor$ (largest integer not exceeding x), the ceiling $\lceil x\rceil$, and the residue of x modulo m, to be denoted by $|x, m|$. The common logical operations and, or, and not will be denoted by \wedge, ν_{s} and ${ }^{-}$,
and will be augmented by the relational statement ($x ; y$) defined as follows. If x and y are any quantities and n is any binary relation defined upon them, then ($x R y$) is a logical variable whose value is 0 or 1 according as \mathbf{x} does or does not stand in the relation $i t$ to y 。 For example, the absolute value of x may be defined as follows:

$$
|x|=x(1-2(x<0))
$$

To illustrate the use of the floor and ceiling operations, consider a rectangular array of dimension $a \times b$ whose cells listed in oras by rows ($0,1, \ldots, b-1, b, b+1, \ldots, a b-1$) are denoted by x and in orde by column are denoted by y. Then

$$
x=b \times|y, a|+\lfloor y \div a\rfloor
$$

and

$$
y=a \times|y, b|+\lfloor x \div b\rfloor .
$$

by rows ($0,1, \ldots, b-1, b, b+1, \ldots, a b-1$) are denoted by x and in orde by column are denoted by y. Then

$$
x=b \times|y, a|+\lfloor y \div a\rfloor
$$

and

$$
y=a \times|y, b|+\lfloor x \div b\rfloor
$$

These are the transformations used in determining accessibility in a serial-parallel memory of a bands with b slots per band. They may be derived from the identity

$$
y=a \times\lfloor y \div a\rfloor+\left|y_{g} z\right|
$$

The description of a process can be made independent of its representation by defining certain fundamental operations upon finite
ordered sets．The element of a finite simply＝ordered set B of dimension（number of elements）$\nu(B)$ can be indexed by the integers $1,2, \ldots \ldots, v(B)$ such that B_{i} is the $i^{\text {th }}$ element of the set．The $k^{\text {th }}$ successor of an element x of B will then be denoted by $x_{B}^{\uparrow} k$ and defined as the element B_{j} ，where $j(i+k)(\bmod v(B))$ ，and $B_{i}=x_{0}$ The $k^{\text {th }}$ predecessor is defined analogousiy and denoted by $x_{B}^{\downarrow} k_{\text {。 }}$ If B is the set of integers，the symbol E may be elided，and if $k=1$ it may be elided－hence $i \uparrow k$ denotes the $k^{\text {th }}$ successor of the integer i_{8} and $i \uparrow$ denotes the integer $i+I_{0}$

The successor operation defined upon an element of B can be extended to any subset C of B as follows：$C \uparrow_{B} k$ denotes the set D such that $D_{i}=C_{i} \uparrow_{B} k_{0}$ If C and B are identical，the operation is called left rotation and is denoted by $C \uparrow k$ 。 Rotation is ex－ tended analogously to vectors．

Two sets A and B are equal $(A-B)$ if they contain the same elements，but are identical $(A \equiv B)$ only if they also have the sane andan Cimmia madifinatinno in tha otamanad dafinitimne of intan．－ D such that $D_{i}=C_{i} T_{B} k_{0}$ If C and B are identical，the operation is called left rotation and is denoted by $C \uparrow k$ 。 Rotation is ex－ tended analogously to vectors．

Two sets A and B are equal $(A-B)$ if they contain the same elements，but are identical（ $A \equiv B$ ）only if they also have the sane order．Simple modifications in the standard definitions of inter－ section and union provide a closed system for ordered sets．To achieve economy of operation symbols，intersection and union are dew noted by \wedge and \vee ，already used for the analopous logical operations and，and or．Potential ambiguity is avoided by using distinctive symbols for each class of operand；italics for single variables， lower case boldface italics for vectors，upper case boldface italics for matrices，and ordinary Roman characters for literals，$i_{0} e_{0,}$ for

A second set of indices, cailed contracurrent indices will be assigned to the elements of any set A_{0}. These indices mun from $-\nu(A)$ to -1 . The $k^{\text {th }}$ element may therefore be denoted alo ternatively by A_{k} or A_{-j}, where $j+k=v(A)$. In particular, the terminal elements may be denoted by A_{1} and A_{2}. Contracurrent indices will also be employed for vectors and matrices."
A set obtained from a set B by deleting the first i and the last j elements is called a solid subset or an infix of $B_{\text {。 }}$ An infix C of B is also called a prefix of B if $C_{1}=B_{1}$, or a suffix if $C_{-1}=B_{-1}$. The statement

$$
C \leftarrow \underset{B}{\leftarrow}\{(x, y)\}
$$

specifies C as the infix of B having terminal elements x and y The symbol B may be elided if B is the set of integers.

Program J. illustrates the conventions introduced thus far. If $\mathrm{H}_{\mathrm{a}}^{1}$ is the suit and ${ }_{j}^{2}$ the denomination of the $j^{\text {th }}$ card in a

$$
C \leftarrow \underset{B}{\leftarrow}\{(x, y)\}
$$

specifies C as the infix of B having terminal elements x and y. The symbol B may be elided if B is the set of integers.

Program J. illustrates the conventions introduced thus far. If ${ }^{1}$ is the suit and y_{j}^{2} the denomination of the $j^{\text {th }}$ card in a hand of thirteen playing cards, and if

$$
D \equiv\{\text { deuce }, \text { trey }, \ldots . . \text { king, ace }\}
$$

is the set of denominations, then the quantity q determined by the program is the length of the longest run in any one suit. A left.

[^0]
pointing arrow associates the specifying quantity on the right of each statement with the specified quantity on the left. The arrow is used instead of the sign of equality because it eliminates ambiguity and rescrves the sign of equality as a relation to be used in relational statements only.

Significant subordination of detail can be achieved by generalizing each operation defined upon simple variables so structured arrays such as vectors and matrices. For example, in and are logical vectors (ie., each component is a logical variable), then
and

$$
\left.\begin{array}{l}
\leftarrow V{ }_{i}=i_{i} V_{i} \\
\leftarrow \wedge{ }_{i}=\hat{i}_{i} \quad s
\end{array}\right)
$$

$$
\text { ie }\{(1, v(i)\}
$$

and

$$
\because \longleftarrow V V_{i}=V_{i}
$$

Moreover, if x and y are numerical vectors, then

$$
\begin{aligned}
& \leftrightarrow x+y r_{i}=z_{i}+y_{i} \\
& \because \leftrightarrow \times \quad \Longleftrightarrow{ }_{i}={ }_{i} \times{ }_{i} \\
& \because \leftarrow \ddot{i}_{i} \div{ }_{i}
\end{aligned}
$$

The application of any associative binary operation t all components of a vector x is denoted by \odot / \approx. Thus x / α is the product and ${ }^{*} / x$ is the sum of all components of $:$. The latter will also be denoted by $\sigma(r)$ and be called the weight of x. The usual notations for matrix algebra are retained, ide. $\overline{\text { f }}$ for a scalar product, and \bar{x} for a product of matrices. It is clear that $y=O(x \times y)$ and that $\sigma(K \uparrow k)=\sigma(a)$ for all k_{0}

Greek symbols (in the appropriate two face) will be used for specially defined quantities. Thus, the unit vectors * are
 full vectors is the negation of the zero vector. The prefix vector a^{j} is a logical vector of weight f whose first j components are unity. The suffix vector ${ }^{\frac{1}{2}}$ is defined analogously. The Identity permutation vector ; is defined by the relation ${ }^{j} j * j$. We dimension of a unit, suffix, prefix, or identity permutation vector is normally defined implicity by the compatibility requirements full vector sis the negation of the zero vector. The refix vector a^{j} is a logical vector of weight f whose First f components are unity. The suffix vector ${ }^{j}$ is defined analogously. The Identity permutation vector ; is defined by the relation ' $j * j_{k}$ The dimension of a unit, suffix, prefix, or identity permutation vector is normally defined implicity by the compatibility requirements of associated operators and operands. The scalar zero, vector zee, and matrix zero will all be denoted by 0 .

The conventional vector product of two space vectors its be denoted by $x y$) will illustrate the use of the foregone note tron. It can be defined as

A trivial formal manipulation shows that $x a-(x, y)$. The orthogonality theorem $x(x, y)=0$ can be established as follows:

$$
\begin{aligned}
& =c((\pi \times x \uparrow \times \downarrow) \downarrow-\pi \times \downarrow \times \uparrow) \\
& =c(\downarrow \times x \downarrow 2 \cdots x \vee x+1) .
\end{aligned}
$$

Since the x operetor is comutative, and since : $\downarrow 2$ "for a vector of dimension three, the firal expression is equal to zero and the theorem is established. Further theorems concem ing the magnitude of $:$, the rour vector product, and the boy prodict follow by similarly simpie formal manipulation,

Individual components of structuree operands cen be selected by suoscripte and superscripts on for the $i^{\text {th }}$ component of the vectur, i^{i} for the $i^{\text {th }}$ row vector of a natrix y for
 magnitude of \therefore, the rour vector product, and the boy prodret follow by similarly simpe formal manipulation.

Individual components of structured operands a n be selected by subscripte and superscripts on for the $i^{\text {th }}$ component of the vectur, ifor the $i^{\text {th }}$ row vector of a natrix: y for the $j^{\text {th }}$ column vector, and \int_{j}^{i} for the $i j^{\text {th }}$ element, More generamy, it is necessary to specify selected subsets of the compor ents. Since the selection is, for each compcnent, a binary opeation, it can be snecified by an associated logical vector of the cane dimension。 Thusk for an arbitrary yector x and compatible apical vector: (thet is, $v(\%) \sim())$, the statement
implies that the $:$ is obtained by suppressing from those components x_{i} for which ${ }_{i}=0$. The operation $1 / x$ is called compression of by . For example, if $u=(1,0,0,0,1,1)$, and
 Clearly, $v(v / x)=\sigma(i)$. Set compression is defined analogously。

Two types of compression must be defined for matrices; row compression, defined by

$$
z \leftarrow / \Longleftrightarrow x^{i} \quad, \quad i=\{(1, \mu())\}
$$

and column compression, defined by

$$
\Rightarrow{ }_{j}=1 / j, \quad j \in\{(1, v())\}
$$

For example, if the matrix represents a ledger of ${ }_{\mu}()$ bank accounts, with the column vectore $y_{1}, y_{2}, 3$ and v_{4} denotize nume, account number, acidress, and balance, respectively, then the and column compression, defined by

$$
\Leftrightarrow \mathfrak{j}=\mathfrak{j}, \quad j \in\{(1, v())\}
$$

For example, if the matrix represents a ledger of μ^{2} () bank accounts, with the column vectore $y_{1},{ }_{2}, 3$ and ${ }_{4}$ denoting nume, account number, acidress, and balance, respectively, then the operation of preparing a list of the name, account number, and balance, for all accounts whose balance exceeds 1000 can be completely prescribed as follows.

$$
\because(4>1000) /(-3 /)
$$

The expansion of a vector by a logical vector: is dew noted by frand is defined as follows.

$$
z \leftarrow u \mid x \longleftrightarrow v /=z \text { and } \bar{z} / \because=0
$$

It is necessary thet $O(v)=v(n)$. Clearly $v(m)=v(u)$. Row expansion (denoted by 1) and column expansion (i) are defined analogously.

The compress and expand operations provide a powerful ex tension of ordinary matrix algebra. For example, any numerical vector can be decomposed according to the identity

$$
x=\overline{7} / 5+4 / 1
$$

Matrices can be decomposed similarly. Moreover, the conventional operations on paxitioned matrices can be generalized in a systems atic manner. A fev: of the more importent identities are, for examnle:

Matrices can be decomposed similarly. Moreover, the conventional operations on paxitioned matrices can be generalized in a system* atic manner. A fev: of the more importent identities are, for example:

$$
\begin{aligned}
& (a / n=x(0) \quad, \\
& \text { (ax) - (V) , } \\
& \mathrm{xy}=(3 /)(\mathrm{I} / \mathrm{x})+(\mathrm{K})(/ / \mathrm{y}), \\
& \mathrm{v}: /(\mathrm{zy})=\mathrm{x}(\mathrm{Li}) \quad, \\
& u /(X)=(u / z)_{x}, \\
& (u / v) /(n / X)=(u \wedge) /:
\end{aligned}
$$

Maximizetion over those components of x for which $=1$ will be denoted by $u[x$ ．More precisely，

$$
\eta<-u\lceil x
$$

specifies a logical vector such that $v / x=m \in$ and that $(V / a)_{j}<m$ for je $\{(1, v(\underset{)}{ })\}$ ．Graphically，is obtained by lowering a horizontal line over a plot of x until it touches the largest com ponent，and then marking with a 1 all components of x touched by the line．Thus if $=(6,3,-8,6,6)$ ，then $\quad=(1,0,0,1,1)$ ， ／$m(6,6,6)$ ，and $(/)_{1}$ 6．Minimization is denoted analogously by $[\mathrm{C}$ 。 The minimum over alipositive values of may be denoted， for examrle，by $(>0)[\%$ and f or the present example $(x>0)$ ．$=(0,1,0,0,0)$ 。

Program 2 illustrates the use of this notation in a come plete description of the Simplex algorithn for linear programming． $15(0,0,0)$ ，and $(\%) / 1=0$ ．minmization is denoted analogousiy by $[$ ．The minimum over alipositive values of $:$ may be denoted， for examle，by $(>0)[\%$ and f or the present example $(x>0) L(0,1,0,0,0)$ 。

Program 2 illustrates the use of this notation in a comm plete description of the Simplex algorithr for linear programming． The vector y determined is the optimal solution of the following system；maximize of subject to the constraints（ \leq ）and $(y \geq 0)=$ ．The logical vector u is assumed to be given initially and specifies the current feasible basis；x is the corresponding vector of non－zero variables．A power of a matrix is denoted by a superscript enclosed in square brackets．

The operations occurring in Program 2 can be used in a formal analysis of its behavior. For example,

$$
\because / p=/((x / \lambda)[-1] x)=(0 /+3)[-1](\alpha / 0)=1
$$

and otherefore contains an ident........ in the columns corres. ponding to the feasible basis?. Moreover, since

$$
0-(n / s),
$$

then

$$
1 / 1=1 / 1-1(1 / 0)=1-(1 / 1)(1)=1 / 0)=0
$$

Hence the components of the modified cost function are zero for all included variables, as desired.

The base $:$ value of the vector x is denoted by 1 and defined as the value of i in the mixed base number systen defined

Hence the components of the modified cost function are zero for all included variables, as desired.

The base \square value of the vector x is denoted by \mathcal{L} and defined as the value of $: i$ in the mixed base number systen defined by the radices ${ }_{1},{ }_{2}, \ldots, 1$ More precisely, 1% wnere where ${ }_{-1}=1$ and $z_{-i}=x /\left(s^{i-1} /\right)$, for $i \varepsilon\{(2, v(b))\}$. If, for example $0=(7,24,60,60)$, and z denotes elapsed time in days, hours, minutes and seconds, then 1 denotes the elapsed time in seconds. In particular, $10 \varepsilon \perp$ denotes the value of x in the decimal system, and $y \varepsilon \perp$ denotes the polynomial in y whose coefficients are the components of $\%$
such that $v(V)=n, p(U)=\left\lceil\log _{2}(n+1)\right\rceil$; and $2 U f=j$ the $i^{\text {th }}$ parity check group then includes the components of the vector $\mathrm{v}^{1} / \mathrm{x}$ and Program 3 describes the determinatic: of the corrected value 7 of the code x_{0} An even-parity code is assumed, ide., legitimate code points satisfy evenoparity for ail cock groups.

For non-numeric vectors, the ex and and impress operations do not suffice. The mesh of and y on is defined as follows:

$$
s \leftrightarrow|x, y| \Longleftrightarrow-/ x=\text { and } /: v \quad 0
$$

Clearly, $\nu(u)=v(a), v(i)=\sigma(0)$ and $\nu()=\sigma(\omega) \quad f_{s}$ for ample, $x=(m),(a),(y), y=(0),(n),(d)$, and $i=(0,1,1,2,0), t^{2}$, en

$$
1, \cdots((0),(0),(a),(\square))
$$

The mask of x and y on: is defined as follows:
 $\approx=(\mathrm{m}),(\mathrm{a},(\mathrm{y}), y=(\mathrm{O},(\mathrm{n}),(\mathrm{d})$, and $i=(0,1,1,2,0)$, then

$$
1,,((\mathrm{r}),(0),(\mathrm{n},(\mathrm{a},(\mathrm{y}))
$$

The mask of x and y on is defined as follows:

$$
=4,1 \Longleftrightarrow-1 \%=-1 / \text { and } N=1,=
$$

Clearly,

$$
\begin{aligned}
& \mid x, j=/ i n, n, d,
\end{aligned}
$$

and

Program 3

Program 3

Analogous column mask, row mask, column mesh, and row mesh operations are defined upon matrices.

If two sets A and B are equal (but not necessarily identical), one is aaid to be a permutation of the other, and there exists a vector p such that

$$
B_{i}=A_{p_{i}}
$$

Moreover, the components of p are some permutation of the integers $l_{9} 2, \ldots, \nu(B)$, and p is called apermutation vector. If $B_{i} * A_{i}$ for some permutation vector, then B may be denoted by $A_{.}$.

Permutation will be cextended analogously to vectors and matrices. For example, $\mathrm{X}_{\mathrm{p}}^{p}$ denotes an elementary similarity transe formation on the square matrix $X_{\text {. }}$. It is easily shown that

some permububion vecuorg unen d may de uenulea dy a. o
Permutation will be cextended analogously to vectors and matrices. For example, ${ }_{p}^{p}$ denotes an elementary similarity transe formation on the square matrix $X_{\text {. }}$. It is easily shown that

and the permutations and are then said to be inverse. Clearly $\left(x_{p}\right)=x$ for any pair of inverse vectors p and y_{0}

Any biunique mapping from an element b of an arbitrary set B to a correspondent a of an arbitrary set A can be represented by a permutation vector p such that B_{i} maps into $A_{F_{j}}$. If, for example, $A \equiv\{$ apple, booty, dust, eye, night $\}$, $B \equiv\{$ Apfel, Auge, Beute, Nacht, Staub $\}$

Program 4 tiescribes a mapping from the argument $b \& B$ to the function acA prescribed by the vector p. The process consists of three steps, the ranking of b in B, the permatation of the index f by p, and the selection of the correspondent A, Since any set can be considered as a vector, the process can be expressed more concisely in terms of vector operations as shown in Program 5o The expression: (B) denotes the identification vector of the set B, defined as the set considered as a vector, i。e.s

$$
\mathrm{v} \not(\mathrm{~B}) \Longleftrightarrow b_{i}=B_{i}
$$

A matrix whose rows and columns are all permutation vectors will be called a permutation matrix,* A permutation matrix can clearly represent the operations in an abstract group. The group is Abelian if and only if the matrix is symmetric.

A vector is frequently represented (stored) in a serial access file in which the components are made available only in will be called a permutation matrix,* A permutation matrix can clearly represent the operations in an abstract group. The group is Abelian if and only if the matrix is symmetric.

A vector is frequently represented (stored) in a serial access file in which the components are made available only in their natural sequence. To describe algorithms upon vectors so represented, it is convenient to introduce speicel notation for a file as follows. A file p of length n is a representation of a vector x of dimension n arranged as follows:

$$
\lambda(1), x_{1}, \lambda(2), x_{2}, \cdots, \lambda(n), n_{n}^{2} \lambda(n+1)
$$

[^1]

Program 4

Program 5

The operation of transferring a component from a file to specify a quantity y is called reading the file and is denoted by $y \leftarrow p_{0}$ The transfer is terminated by the occurrence of a partition symbol, and if this symbol is $\lambda(j)$ the file is then said to be in position j. A file may either be read forward (denoted by $0_{0} p$) or backward (denoted by ${ }_{1} p$). If a file originally in position j is read forward it transfers the component X_{j} and stops in position (j+1), j $\varepsilon\{(1, n)\}$. A file read backward from position $j+1$ transfers the component x_{j} and stops in position $j, j \varepsilon\{(1, n)\}$ 。

The position of a file D will be denoted by $\pi(\phi)$. Thus the statement $y \leftarrow \pi(D)$ specifies y as the positior. $\therefore \phi$, whereas $\pi(D) \leftarrow 2$ positions the file to z. In particular, $\pi(\phi) \leftarrow 1$ denotes the rewinding of the file, and either $\pi(\phi)-(n+1)$ or (using contram current indexing on the ($n+1$) positions) $\pi(\phi)--1$ denote position ing to the end of the file. Any file for which the general positiono ing operation $\pi(D) \leftarrow z$ is to be avoided as impossible or inefficient $\pi(D) \leftarrow 2$ positions the file to z 。 In particular, $\pi(\phi) \leftarrow 1$ denotes the rewinding of the file, and either $\pi(\phi)-(n+1)$ or (using contrac current indexing on the ($n+1$) positions) $\pi(\phi)--1$ denote position ing to the end of the file. Any file for which the general positions ing operation $\pi(D) \leftarrow z$ is to be avoided as impossible or inefficient is called a serial or serial-access file.

A file may be produced by a sequence of recording statements, either forward:

$$
0_{0}^{\geqslant} \leftarrow x_{i}, \quad i=1,2, \ldots, n \quad,
$$

or backward

$$
I^{\phi \leftarrow x_{i}, \quad i=n, n-1, \ldots, 1 .}
$$

As in reading, each forward (backward) record operation increments (decrements) the position of the file by one. A file which is oniy recorded buring a process is called an output file of the prom cess; a file which is only read is called an input file.

Each partition symbol may assume one of several values, $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{p}$, the partitions with larger indices demarking larger subgroups within the file. Thus if each component x_{g} were itself a vector $\mathcal{J}^{j}\left(i_{0} e_{0}, x\right.$ is a matrix), then the last component of each y^{j} might be followed by the partition λ_{1}, while the remaining come ponents would each be followed by λ_{0}. The last component of the entire array might be followed by a partition λ_{2}. In recording an item, the associated partition is indicated by listing it after the item (e.g., $p \longleftarrow y_{3} \lambda_{2}$), except that the partition λ_{0} is usually elided. The indicated partition then follows or precedes the associated item in the file according as the recording is forward or backward. entire array might be followed by a partition λ_{2}. In recording an item, the associated partition is indicated by listing it after the item (e.g., $p \longleftarrow y, \lambda_{2}$), except that the partition λ_{0} is usually elided. The indicated partition then follows or precedes the associated item in the file according as the recording is forward or backward.

The indication provided by the distinct parition symbols is used to control an immediate ($\mathrm{p}+1$) way branch in the program following each read opezation. The branch is determined br the partition symbol which terminates the read.

Different files occurring in a process will be distinguished by righthand subscripts and superscripts, the latter being generally reserved to denote major classes of files (e.g., input and output).

File notation is particularly useful in the description of sorting algorithms and of algorithms employing so-called "pushdown stores."

[^0]: *In certain work, notably in switching theory and in the use of positional renresentations (e.g., column sorting) there is some ado

[^1]: *This is a departure from conventional usage in which a permutation matrix is a logical matrix whose application corresponds to the application of a permutation vector.

