/*ident "@(#)cls4:lib/task/task/task.c 1.8" */ /******************************************************************************* C++ source for the C++ Language System, Release 3.0. This product is a new release of the original cfront developed in the computer science research center of AT&T Bell Laboratories. Copyright (c) 1993 UNIX System Laboratories, Inc. Copyright (c) 1991, 1992 AT&T and UNIX System Laboratories, Inc. Copyright (c) 1984, 1989, 1990 AT&T. All Rights Reserved. THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE of AT&T and UNIX System Laboratories, Inc. The copyright notice above does not evidence any actual or intended publication of such source code. *******************************************************************************/ #include #include "hw_stack.h" #include task* task::txsk_chxin = 0; team* task::team_to_delete = 0; #define ABSV(x) ( (x) > 0 ? (x) : -(x) ) const int NEW_CHILD = 1; int _hwm; HW_REGS New_task_regs; /* hardware regs for activating new child * in task::task frame */ // a team is a collection of tasks that share one stack class team { friend class task; int no_of_tasks; task* got_stack; int* stack; int size; // of the stack team(task*, int =0); // stacksize == zero ==> using the main stack ~team() { delete stack; } }; team::team(task* t, int stacksize) { no_of_tasks = 1; got_stack = t; if (size = stacksize) { stack = new int[stacksize]; while (stack == 0) object::task_error(E_STORE, (object*)0); if (_hwm) { for (int x = 0; x < stacksize; x++) { stack[x] = UNTOUCHED; } } } } static void usemainstack() /* fudge to allow simple stack overflow check */ { int* sp = TOP(); if (_hwm) { /* WARNING: This function used to declare an array of * SIZE+100 and set each element to UNTOUCHED instead * of using the following method. But then when compilers * inlined this function it caused each new task's stack * to overflow on initialization, because the task::task * stack frame was SIZE+100 larger. */ // start with next word after "sp" for (int i = 2; i < SIZE+100; i++) { *(STACK_LAST_WORD_P(sp, i)) = UNTOUCHED; } } else { #ifndef i386 *(STACK_LAST_WORD_P(sp, 0)) = 0; #endif } } void copy_stack(register int* f, register int c, register int* t) /* copy c words down from f to t do NOT attempt to copy "copy_stack"'s own stackframe */ { COPY_STACK(f,c,t); } /* swap_stack copies contents of parent stack (starting at pa_fp) * to child stack. Adjusts pointers in saved ta_fp frame of child stack * (to point to places in child stack). * Returns distance from parent stack to child stack. */ int task::swap_stack(int* ta_fp, int* pa_fp) { int size = ACTIVE_STK_SZ(pa_fp, TOP()); if (size > t_stacksize) { task_error(E_STACK, this); } copy_stack(pa_fp, size, t_basep); /* distance from old stack to new */ register int distance = pa_fp - t_basep; /* now doctor the new frame */ #if defined(vax) || defined(PROC_3B) OLD_AP(ta_fp - distance) = int((int*)OLD_AP(ta_fp) - distance); #endif OLD_FP(ta_fp - distance) = int((int*)OLD_FP(ta_fp) - distance); return distance; } inline void task::settrap() { if (t_team->size) { // Don't set trap for main task t_trap = *(STACK_LAST_WORD_P( STACK_BASE(t_team->stack, t_stacksize), t_team->size)); } } inline void task::checktrap() { if (t_team->size // Don't test for main task && t_trap != *(STACK_LAST_WORD_P( STACK_BASE(t_team->stack, t_stacksize), t_team->size))) { task_error(E_STACK, this); } } extern "C" { /* swap and sswap are assembly language functions */ extern task* swap(task*, task*, int, int); extern task* sswap(task*, task*, task*, int, int); } inline void task::restore(task* running, int is_new_child) /* * Call assembly function swap or sswap to do a task switch. * Swap suspends "running" task by saving current hardware state (fp, etc) * in running->t_framep, etc., * and makes "this" task run after suspension by returning from the frame * denoted by "t_framep." * * swap does a normal return--must be the last thing called here. * swap for a new child task will not return through restore, * but will return from task::task(). * * sswap saves running's hw state, copies out the target stack, * copies in to_run's stack from the save area before "swap"ing * It is equivalent to two "copystack"s in the middle of "swap". * sswap for a new child copies out the parent stack, but does not need * to restore hw_state of child--it's already in place, and * WILL return through restore, unlike swap. */ { task* prevOnStack; // running might have been TERMINATED int is_terminated = 0; if ((running == 0) || (running->s_state == TERMINATED)) { is_terminated = 1; } else { running->checktrap(); } if ((t_mode == SHARED) && this != (prevOnStack = t_team->got_stack)){ t_team->got_stack = this; // assuming sswap will get space. sswap(running, prevOnStack, this, is_new_child, is_terminated); } else { // DEDICATED or (SHARED && this already on target stack) swap(running, this, is_new_child, is_terminated); } //sswap and swap for old task return here. // This code is not needed for a new child, because a terminated // parent cannot create a new child. if (team_to_delete) { delete team_to_delete; team_to_delete = 0; } // WARNING! No new code here. } task::task(char* name, modetype mode, int stacksize) /* executed in the task creating a new task - thistask. 1: put thistask at head of scheduler queue, 2: create new task 3: transfer execution to new task derived::derived can never return - its return link is destroyed if thistask==0 then we are executing on main()'s stack and should turn it into the "main" task */ { register task* running; register int* ta_fp = (int*)FP(); // fp for task::task() register int* ta_ap = (int*)AP(); // ap for task::task() register int* de_fp = (int*)OLD_FP(ta_fp); // fp for ctor of class // derived from class task register int* de_ap = (int*)OLD_AP(ta_fp); register int* pa_fp = (int*)OLD_FP(de_fp); // parent fp // (caller of derived ctor) t_name = name; t_mode = (mode) ? mode : (modetype) DEFAULT_MODE; t_stacksize = (stacksize) ? stacksize : SIZE; t_alert = 0; s_state = RUNNING; t_next = txsk_chxin; txsk_chxin = this; th = this; /* fudged return value -- "returned" from swap */ switch ((int)thxstxsk) { case 0: /* initialize task system by creating "main" task */ thxstxsk = (task*) 1; thxstxsk = new task("main"); break; case 1: /* create "main" task */ usemainstack(); /* ensure that store is allocated */ //set base pointer assuming a static task (Interrupt_alerter) //at this point stack has 6 frames for: //main, _main, , Int::Int, task::task, task::task //NOTE: This sets basep to be the fp saved in _main's stack //frame (fp for main). Depending on layout, may not include //main's save area. This shouldn't matter. #ifdef i386 t_basep = (int*)OLD_FP((int*)OLD_FP(pa_fp)); #else t_basep = (int*)OLD_FP((int*)OLD_FP((int*)OLD_FP(pa_fp))); #endif t_team = new team(this); /* don't allocate stack */ t_team->no_of_tasks = 2; /* never deallocate */ return; } // thxstxsk is parent task /* return pointer to "child" */ thxstxsk->th = this; thxstxsk->insert(0,this); switch (t_mode) { case DEDICATED: { t_team = new team(this,t_stacksize); t_basep = STACK_BASE(t_team->stack, t_stacksize); // initialize child's stack int distance = swap_stack(ta_fp, pa_fp); // save hardware state of this frame in "this" (child) t_framep = ta_fp - distance; t_ap = ta_ap - distance; settrap(); // save all current and saved hw regs in New_task_regs, // so when child begins execution, it will have hw regs // as the derived constructor had them set. SAVE_CHILD_REGS(&New_task_regs); thxstxsk->fudge_return(ta_fp); running = thxstxsk; // running = parent thxstxsk = this; restore(running, NEW_CHILD); // no return for child; // parent will return // Needed on some machines to reset sp on fudged stack FUDGE_SP(de_ap, de_fp); // Can't access arguments on 3B now // (except arg1, implicit "this") return; // On 68k, return through fudge_sp() } case SHARED: thxstxsk->t_mode = SHARED; /* you cannot share on your own */ t_basep = pa_fp; t_team = thxstxsk->t_team; t_team->no_of_tasks++; t_framep = ta_fp; t_ap = ta_ap; settrap(); running = thxstxsk; // running == parent thxstxsk = this; restore(running, NEW_CHILD); // both parent & child will // return if (running == thxstxsk) { // parent running->fudge_return(ta_fp); // Needed on some machines to reset sp on fudged stack FUDGE_SP(de_ap, de_fp); // Can't access arguments // on 3B now (except arg1, // implicit "this") // On 68k, parent returns through fudge_sp() } return; default: task_error(E_TASKMODE, this); } } void task::resume() { task* running = thxstxsk; thxstxsk = this; restore(running); } void task::cancel(int val) /* TERMINATE and free stack space */ { if (this->s_state != TERMINATED) { sched::cancel(val); if (_hwm) t_size = curr_hwm(); if (t_team && (t_team->no_of_tasks-- == 1)) { if (this != thxstxsk) { delete t_team; } else { // don't delete current stack! // delete will be called from task::restore // immediately after task switch assert(team_to_delete == 0); team_to_delete = t_team; } t_team = 0; // no further access to deleted team } } } task::~task() /* free stack space and remove task from task chain */ { if (s_state != TERMINATED) task_error(E_TASKDEL, this); if (this == txsk_chxin) txsk_chxin = t_next; else { register task* t; register task* tt; for (t=txsk_chxin; tt=t->t_next; t=tt) if (tt == this) { t->t_next = t_next; break; } } if (this == thxstxsk) { delete (int*) thxstxsk; /* fudge: free(_that) */ thxstxsk = 0; schedule(); } } void task::resultis(int val) { cancel(val); if (this == thxstxsk) schedule(); } void task::sleep(object* t) { if (t) t->remember(this); if (s_state == RUNNING) remove(); if (this == thxstxsk) schedule(); } void task::delay(long d) { insert(d,this); if (thxstxsk == this) schedule(); } long task::preempt() { if (s_state == RUNNING) { remove(); return s_time - get_clock(); } else { task_error(E_TASKPRE, this); return 0; } } char* state_string(sched::statetype s) { switch (s) { case sched::IDLE: return "IDLE"; case sched::TERMINATED: return "TERMINATED"; case sched::RUNNING: return "RUNNING"; default: return 0; } } char* mode_string(task::modetype m) { switch(m) { case task::SHARED: return "SHARED"; case task::DEDICATED: return "DEDICATED"; default: return 0; } } void task::print(int n, int baseClass) /* "n" values: CHAIN, VERBOSE, STACK */ { if (!baseClass) printf("task\n"); char* ss = state_string(s_state); char* ns = (t_name) ? t_name : ""; printf("task %s ",ns); if (this == thxstxsk) printf("(is thistask, %s) ", ss); else if (ss) printf("(%s) ",ss); else printf("(state==%d CORRUPTED) ",s_state); printf("\tthis = %x:\n", this); if (n&VERBOSE) { char* ms = mode_string(t_mode); if (ms == 0) ms = "CORRUPTED"; printf("\tmode=%s t_alert=%x t_next=%x", ms, t_alert, t_next); printf((s_state==TERMINATED) ? " result=%d\n" : " s_time=%d\n", s_time); } if (n&STACK) { printf("\tstack: "); if (s_state == TERMINATED) { printf("deleted. "); if (_hwm) { printf("hwm size=%d, ", t_size); printf("hwm address=%x",STACK_LAST_WORD_P(t_basep,t_size)); } printf("\n"); } else { register int* b = t_basep; printf("\tsizes:\t"); register int sz; if (this==thxstxsk) { // figure out real current size sz = ACTIVE_STK_SZ(b,TOP()); } else { // approximate at last switch sz = t_mode==DEDICATED ? ACTIVE_STK_SZ(b,t_framep) : t_size; } printf("max=%d, current=%d",t_stacksize, sz); if (_hwm) printf(", hwm=%d",curr_hwm()); printf("\n\t\taddresses:\t"); printf("t_basep=%x, t_framep=%x\n",b,t_framep); printf("\t\t\t\tmax=%x", STACK_LAST_WORD_P(b,t_stacksize)); printf(", current=%x", STACK_LAST_WORD_P(b,sz)); if (_hwm) printf(", hwm=%x", STACK_LAST_WORD_P(b, curr_hwm())); printf("\n"); } } if (n&CHAIN) { sched::print(n, 1); // call sched::print here to keep // output for same object together // Start at beginning of task chain, and print all tasks task *tp = get_task_chain(); if (tp == this) { tp = tp->t_next; // just printed, skip it } else { printf("\nChain of all tasks:\n"); } for (; tp; tp = tp->t_next) { printf("Next task on chain of all tasks is:\n"); tp->print(n & ~CHAIN); } } else { sched::print(n, 1); } } int task::curr_hwm() { int* b = t_basep; int i; for (i=t_team->size; 0pending()) sleep(ob); } int task::waitlist(object* a ...) { return waitvec(&a); } int task::waitvec(object** v) /* first determine if it is necessary to sleep(), return hint: who caused return */ { int i; int j; register object* ob; for(;;) { for (i = 0; ob = v[i]; i++) { if (!ob->pending()) goto ex; ob->remember(this); } if (i==1 && v[0]==(object*)this) task_error(E_WAIT, this); sleep(); } ex: t_alert = ob; for (j = 0; ob = v[j]; j++) ob->forget(this); return i; } Interrupt_alerter interrupt_alerter;