
Extensible Interactive C

Edmond J. Breen

August 16, 2009

2

Contents

Preface v

1 Introduction to EiC 1
1.1 EiC vs C . 2
1.2 Running EiC . 3

1.2.1 EiC immediate instructions . 4
1.2.2 EiC error recovery . 5
1.2.3 Entering multi line commands . 6
1.2.4 EiC on start up . 7
1.2.5 EiC command line switches . 8
1.2.6 EiC history file . 9
1.2.7 EiC non-interactive mode . 10
1.2.8 Embedding or linking to EiC . 13

1.3 The EiC interpreter . 17
1.3.1 EiC commands . 17

2 The EiC Preprocessor 35
2.1 Directives . 35
2.2 The Define Directive . 36

2.2.1 Function Like Macros . 36
2.3 The Undef Directive . 38
2.4 Macro Expansion Rules . 38

2.4.1 The Stringization Operator: # . 39
2.4.2 The Merging Operator: ## . 40

2.5 Predefined Macros . 40
2.6 The Include Directive . 42
2.7 The Conditional Directive . 42

2.7.1 The #ifdef and #ifndef directives 43
2.7.2 The #if directive . 43

i

ii CONTENTS

2.7.3 The #elif directive . 44
2.7.4 The defined operator . 44

2.8 The #error directive . 45
2.9 The #pragma directive . 45
2.10 Syntax of the EiC preprocessor . 46

3 EiC’s C Specifications 49
3.1 Phases of translation . 49
3.2 Translation units . 50
3.3 Tokens . 50
3.4 Identifiers . 51

3.4.1 Identifier restrictions . 51
3.5 Scope Rules . 52
3.6 Name Space . 53
3.7 Comments . 54
3.8 Keywords . 54
3.9 Constants . 55

3.9.1 Integer Constants . 55
3.9.2 Floating Point Constants . 56
3.9.3 Character Constants . 57
3.9.4 String Constants . 58

3.10 External declaration . 59
3.11 Declarations . 60
3.12 Type specifiers . 61

3.12.1 char, short, int and long specifiers 61
3.12.2 The enum type specifier . 62
3.12.3 float and double specifiers . 64
3.12.4 Pointer types . 65
3.12.5 Pointer Qualifiers . 66
3.12.6 Void types . 69
3.12.7 Array types . 69
3.12.8 Structures and Unions . 72
3.12.9 Typedef-name specifier . 78

3.13 Storage Class . 79
3.14 Default storage class and class conflicts . 81
3.15 Type qualifiers . 83
3.16 Variable declaration placement . 84
3.17 Function declarations . 84
3.18 Function types . 86

CONTENTS iii

3.19 Function definition . 86
3.20 Function parameter type list . 88
3.21 Function return type . 89

3.21.1 Function flow-of-control analysis . 90
3.22 Type names . 91
3.23 The address specifier operator @ . 92
3.24 Statements . 92

3.24.1 Compound-statement . 92
3.24.2 Label Statement . 93
3.24.3 Selection Statements . 93
3.24.4 Iteration Statements . 95
3.24.5 Jump Statements . 96
3.24.6 Expression Statement . 97

4 Library support 107
4.1 Standard C libraries . 107

4.1.1 assert.h . 107
4.1.2 ctype.h . 107
4.1.3 errno.h . 109
4.1.4 float.h . 109
4.1.5 limits.h . 110
4.1.6 math.h . 111
4.1.7 setjmp.h . 113
4.1.8 signal.h . 114
4.1.9 stdarg.h . 117
4.1.10 stddef.h . 117
4.1.11 stdio.h . 118
4.1.12 stdlib.h . 127
4.1.13 string.h . 132
4.1.14 time.h . 135

4.2 POSIX.1 library support . 137
4.2.1 dirent.h . 137
4.2.2 errno.h . 139
4.2.3 fcntl.h . 140
4.2.4 limits.h . 141
4.2.5 signal.h . 142
4.2.6 sys/stat.h . 143
4.2.7 sys/types.h . 145
4.2.8 unistd.h . 145

iv CONTENTS

4.3 Implementation library support . 149
4.3.1 stdio.h . 149
4.3.2 dirent.h . 150

5 The Advanced Concepts 151
5.1 EiC modules . 151

5.1.1 Building an eic module . 151
5.1.2 Interpreter’d modules . 151
5.1.3 Module names and assumptions . 152
5.1.4 Building builtin modules . 152
5.1.5 Restrictions for builtin functions . 153
5.1.6 Interfacing to a library of C code 153
5.1.7 Returning pointers . 156
5.1.8 Initialising the module . 157
5.1.9 Multiplexed interfacing . 158
5.1.10 Builtin-module’s makefiles . 159

A Syntax of the EiC language 161
A.1 Syntax Notation . 161

Preface

EiC was developed from a perceived need for a complete interactive C interpreter – or
more correctly, an interactive bytecode C compiler that can also run non-interactively in
batch mode style. The main advantages of this latter mode is that EiC can compile and
run C programs without leaving around executables or object code and that there is no
concern about which platform the code is run on.

EiC is designed to be a production tool, it is not to be viewed as a toy and is certainly
one of the most complete C interpreters built to date. It is suitable as: an aid in teaching
C, for fast prototype of new programs and as a research tool — as it allows the user
to quickly interface and experiment with user supplied, standard ISO C and POSIX.1
functions, via immediate statements, which are statements that are executed immediately.

However, like EiC, this documentation is also at the beta stage; for example, its
library section is still under development and the section on how to extend EiC, by
adding new builtin functionality, has yet to be documented. Therefore, any contributions
or suggestions are certainly welcome, and can be sent to me at Ed.Breen@Altavista.net

Copyright

1. Permission is given to make a personal copy of this material is given to anyone
who is currently using EiC. Redistribution or the making of multiple copies of this
document must be done only with explicit permission from the Copyright holder of
EiC.

2. This document and EiC is provided “as is” and without any express or implied
warranties, including, without limitation, the implied warranties of merchantibility
and fitness for a particular purpose

v

vi PREFACE

Acknowledgements

Thanks to Martin Gonda for his contribution to EiC’s error recovery module; Ross Leon
Richardson’s for permission to incorporate his online quick reference guide to “The C
Standard Library”. Hugues Talbot made early suggestions during EiC’s development.
EiC’s type specifier was modeled from lcc, which is available free of charge (Fraser and
Hanson, 1995). Part of EiC’s runtime library support were derived from the Standard
C library, (C), 1992 by P.J. Plauger, published by Prentice-Hall and are used with per-
mission. Thanks to Eugene D. Brooks III for Beta testing EiC and for motivating and
supporting many new developments within EiC. In particular: pointer qualifiers, pointer
pragma directives and the address specifier @. Thanks to Alf Clement for porting EiC to
the HP platform. Thanks to Jochen Pohl for porting EiC to NetBSD and for contributing
to EiC’s makefile system. Jean-Bruno Richard developed EiC’s initial ‘:gen’ command
and paved the way for getting callbacks to EiC from compiled code working.

Chapter 1

Introduction to EiC

Extensible interactive C, EiC, is a hand crafted, recursive–descent C interpreter. To start
EiC simply enter at the system prompt (%):

% eic

As the name implies, EiC is interactive, but see section § 1.2.7, pg: 10 for running
EiC in batch mode. Basically the user enters commands, or immediate statements at the
interpreter prompt EiC #>, where the hash mark represents the current line number; for
example:

EiC 1> #define PI 3.14159

EiC 2> PI * strlen("Hello, World!\n");

and then EiC will respond with:

43.98226

where strlen, see § 4.1.13, pg: 132, is a standard C function that will return the
number of characters in the argument string "Hello, World!\n":

EiC 3> strlen("Hello, World!\n");

14

In fact, virtually all of the C runtime library and a good proportion of the POSIX.1 libray
are supported by EiC (but see Chapter 4, pg: 107, for details).

To exit EiC simply enter:

EiC 4> :exit

EiC is a bytecode (Budd, 1987) compiler that generates its own internal intermediate
language known as stack code, which is a bit like the Pascal P-code system (Pemberton
and Daniels, 1982). It executes the stack code via its own internal stack machine. The
intermediate code produced from the previous call to strlen is:

1

2 CHAPTER 1. INTRODUCTION TO EIC

0:pushptr 245980 4:stoval

1:bump 1 5:pushint 1

2:checkar 1 1 6:call

3:pushptr 398192 7:halt

While the details of the stack code will not be discussed in this document its usage
means that executed commands generally perform much faster than an interpreter that
uses no intermediate code.

1.1 EiC vs C

Because EiC is interactive it differs from C in several ways. In this section I will outline
what is currently missing from EiC and how EiC differs from ISO C.

Although EiC can parse almost all of the C programming language (Kernighan and
Ritchie, 1988) right up front it is best to mention what is currently lacking or different:

1. EiC is pointer safe. It detects many classes of memory read and write violations
(see § 3.12.7, pg: 71). To help in interfacing compiled library code to EiC, EiC uses
the pointer-qualifiers safe and unsafe, see § 3.12.5, pg: 67.

2. Structure bit fields are not supported.

3. While structures and unions can be returned from and passed by value to functions
it is illegal in EiC to pass a structure or a union to a variadic function (that is, a
function that takes a variable number of arguments):

EiC 1> struct stag {int x; double y[5];} ss;

EiC 2> void foo(const char *fmt, ...);

EiC 3> foo("",ss);

Error: passing a struct/union to variadic function ‘foo’

4. The C concept of linkage is not supported. This is because EiC does not export
identifiers to a linker – as does a true C compiler. EiC works from the concept of
a single translation unit, see § 3.2, pg: 50. However, static global variables remain
private to the file they are declared in, see pg: 80

5. EiC does not parse preprocessor numbers, which aren’t valid numeric constants; for
example, 155.6.8, which is an extended floating point constants will cause an error.

1.2. RUNNING EIC 3

6. EiC supports both standard C like comments /* ... */ and C++ style comments
(see section § 3.7, pg: 54). Also, when EiC is run in script mode (see § 1.2.7, pg: 11)
it treats all lines that start with ‘#’ and which can’t be interpreted as a preprocessor
directive as a comment.

7. There are no default type specifiers for function return values. In EiC it is illegal
to not explicitly state the return type of a function:

foo() { ... } /* error: missing return type */

int foo() { ... } /* correct, return type specified */

8. In addition to function definitions and declarations with an empty parameter list
EiC only supports prototype declarations and definitions:

int foo(); /* Empty parameter list allowed */

int f(value) int value { ... } /* Illegal: old style C */

int f(int); /* Allowed, prototype declaration */

int f(int value); /*Allowed, full prototype declaration */

9. EiC does not support trigraph sequences, wide characters or wide strings: nor does
it support the standard header <locale.h>.

10. EiC’s preprocessor lacks the #line directive.

11. For convenience, EiC allows the #include directive to have an extra form that
permits the parsing of a token-sequence in the form #include filename; that is,
without enclosing double quotes or angled brackets (see section § 2.6, pg: 42).

12. Besides parsing preprocessor directives (Chapter 2, pg: 35) or C statements (Chap-
ter 3, pg: 49), EiC also parses its own internal house keeping language (see section
§ 1.3.1, pg: 17). House keeping commands are communicated to EiC via lines that
begin with a colon.

1.2 Running EiC

To run EiC interactively just enter eic at your system prompt:

% eic

4 CHAPTER 1. INTRODUCTION TO EIC

However, you also need to set the environmental variable HOMEofEiC, this is so that
EiC knows where to find its include files etc. The HOMEofEiC environmental variable must
be set to point to the directory that contains the EiC include directory. For example:
$HOME/EiC or /usr/local/EiC.

In bash, ksh or zsh use:

% export HOMEofEiC=...

In tcsh enter:

% setenv HOMEofEiC ...

where the dots represent the name of the EiC directory
You may wish to include the command in one of your startup scripts such as the

.cshrc or the .bashrc file.

1.2.1 EiC immediate instructions

In interactive mode the user interacts directly with the EiC interpreter. He or She enters
C statements, C declarations, preprocessor directives or EiC interpreter commands at
EiC’s command line prompt:

EiC 1>

The number before the closing angled bracket represents the current line number.
As a user types out an instruction EiC is analysing the input character stream and

is checking for matching brackets. When a closing bracket, either square or curved, is
entered, EiC moves the cursor quickly to its matching opening bracket and back again.
This can be especially helpful when entering commands with complicated and nested
bracketing. However, EiC will produce a beep if an opening bracket cannot be matched
to the current closing bracket.

Each immediate instruction produces a type, even if the type is void; as for example,
C statements, declarations etc. All resulting types and their values are displayed:

EiC 1> 3*55.5;

166.5

EiC 2> "hello, world!";

hello, world!

EiC 3> int i;

(void)

EiC 4> for(i=0;i<10;i++);

1.2. RUNNING EIC 5

(void)

EiC 5> i;

10

EiC 6> struct {int a, b;} ab = { 5,3};

(void)

EiC 7> ab;

{5,3}

EiC 8> ab.a = 3;

3

While arrays are not expanded, the EiC interpreter display routine considers all char
pointers to be valid null-character terminated strings (see section § 3.9.4, pg: 58) and will
display them as a such. However, as a safe guard against runaway sequences it restricts
such print outs to at most 100 characters.

1.2.2 EiC error recovery

It is possible to interrupt the execution of any immediate instruction by pressing control
C:

EiC 9> while(1); /* loop forever or until interrupted by <Ctl>C */

EiC interrupted file ::EiC::, line 9

EiC: error clean up entry pt 0

EiC 10>

The information displayed between line 9 and 10 is informing that EiC was interrupted
at line 9 in file ::EiC::, which is the name of the interpreter’s command line. The next
line of information informs that EiC has entered automatic error recovery and garbage
collection, or clean up at entry pt 0. The various entry points are of no real concern.
Instead, what is interesting is that all new memory allocations, data types, macro defini-
tion etc, will be cleaned up and removed. It is EiC’s way of trying to set its interpreter
back to the state it was before line 9 was entered. In this case there is nothing to clean
up but if on line 9 I had entered say #include foobar.c, which contained errors, then
there could have been potentially thousands of pieces of information to clean up.

While EiC’s clean up operation attempts to regain a previous state, it is not always
100% successful; for example, say I have already included the file foobar.c then I decide
to make some changes to it and then re-include it, but I inadvertently enter a typo, an
error, somewhere in the file foobar.c. EiC will detect the error and when it is finished
translating the entire unit it will trigger the clean up procedure. The clean up operation
will then remove all traces of the contents of foobar.c from the interpreter and the
resulting state will be as if it had never been entered.

6 CHAPTER 1. INTRODUCTION TO EIC

1.2.3 Entering multi line commands

EiC has a command line editor where the user can use the delete key and the left or right
arrow key to aid editing or one or more of the following commands:

printable characters print as themselves (insert not overwrite)

^A moves to the beginning of the line

^B moves back a single character

^E moves to the end of the line

^F moves forward a single character

^K kills from current position to the end of line

^P moves back through history

^N moves forward through history

^H and DEL delete the previous character

^D deletes the current character, or EOF if line is empty

^L/^R redraw line in case it gets trashed

^U kills the entire line

^W kills last word

<LF> and <CR> return the entire line regardless of the cursor position

^A indicates that the control key is held down while simultaneously pressing the A
key, in either upper or lower case.

To input commands into EiC that require multiple lines of code you can just add the
backslash ‘\’ character at the end of each line to be continued. For example:

EiC 1> double sqr(double x) \

EiC 2> {\

EiC 3> return x*x;\

EiC 4> }

However, as EiC does not supply a full screen editor, a second method for entering
multi line commands is to use EiC’s C preprocessor to include a sequence of external
declarations via file inclusion. For example:

EiC 1> #include "examples/sqr.c"

and where the contents of examples/sqr.c is:

#include <math.h>

double sqr(double x)

{

return x*x;

}

1.2. RUNNING EIC 7

1.2.4 EiC on start up

When EiC is launched it automatically looks for a starteic.h file. EiC first looks for
this file in the current working directory then if this fails, it looks in your home directory
and finally if all else fails, it looks in EiC’s system include directory. It is not a big deal
if EiC cannot find a starteic file, however the purpose for this file is to allow you to
specify defaults on EiC start up.

The default system starteic.h, stored in EiC’s include directory should resemble:

#ifndef _STARTEiCH

#define _STARTEiCH

/* ISO STUFF */

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <stdarg.h>

#include <string.h>

#include <math.h>

#include <float.h>

#include <limits.h>

#include <errno.h>

#include <assert.h>

/* POSIX.1 STUFF */

#include <fcntl.h>

#endif /* _STARTEiCH */

The start up procedure allows you to define local defaults within a given directory,
your own global defaults within your home directory, and finally the EiC system defaults.
A possible home directory starteic.h might look something like:

/* include system headers */

#include <starteic.h>

/* standing macros */

#define sys(x) system(#x)

#define pwd system("pwd");

#define ls system("ls");

#define help(x) system("man 3 " #x)

8 CHAPTER 1. INTRODUCTION TO EIC

Note, that lines beginning with ‘:’ are EiC command directives, which are explained
in detail in section § 1.3.1, pg: 17 and that the home directory starteic.h file includes
EiC’s system starteic.h. Therefore, it is assumed that any local starteic.h file would
inturn include this file.

This facility can also be switched off by passing EiC the -N command line switch on
start up, see § 1.2.5, pg: 8.

1.2.5 EiC command line switches

You can also change the default behaviour of EiC on start up, by using one or more of
EiC’s command line swtiches:

EiC

An Extensible Interactive C interpreter

To start eic, type eic.

To exit eic, type :exit.

Usage:

eic [-Ipath] [-Dname[=var]] -[hHvVcCrR] [[file] [fileargs]]

Options:

C preprocessor directives:

-Ipath search for include files in path

-Dname define a symbolic name to the value 1

-Dname=var define a symbolic name to the value var

Note, there is no spaces allowed

EiC directives:

-h -H causes this usage to be displayed

-v -V print EiC’s Log information

-p showline

-P show path of include files

-t -T turns trace on

-c -C turns timer on

-e echo HTML mode

-r restart EiC. Causes EiC to be re initiated

from the contents of EiChist.lst file

-R same as ‘r’, but prompts the user to accept

or reject each input line first

-s -S run silently

-f run in script mode

1.2. RUNNING EIC 9

-n no history file

-N don’t use any startup.h files

-A Non-interactive-mode

file EiC will execute ‘file’ and then stop; for example:

% eic foo.c

fileargs command line arguments, which get passed onto file

This above listing duplicates the response of EiC to:

% eic -h

The showline option is discussed on page 33; the trace option on page 28; the
preprocessor directives on page 26; the -P includes option on page 34; the -c option on
page 33; the -v option on page 34; and the -N option is discussed in section § 1.2.4, pg: 7;
while the -r, -R, -n, -A, -f, file and fileargs options are discussed below.

1.2.6 EiC history file

During an EiC interactive session each command line entered that does not cause an error
is saved in a history file EiChist.lst in the directory that EiC was launched from; that
is, each unique directory used to launch EiC will have its own EiChist.lst file. The
file is normally created new on each start up and the previous contents (if existing) are
ignored. That is, unless the command line switch -r is used:

% eic -r

The switch -r used on EiC start up informs EiC to enter its re-initialization mode and
the commands stored in the file EiChist.lst will be re executed in order of occurrence.
The contents of the file EiChist.lst is then retained and used to from the start of the
history list (discussed on page 27) of the new session. The main purpose for this file is to
provided the user with an automatic method for recording an EiC session and provide a
way to quickly recapture a previous EiC session. Thus, allowing the user to resume from
where he or she left off.

When re-initailizing EiC, it is not always desirable to execute every instruction line
in the EiChist.lst file. You may wish to edit it first to remove or modify certain lines.
To aid in this process it is also possible to re-initialize EiC via the uppercase R switch.
In this case the user is offered the opportunity to either input the current line, Y, to edit
the current line before input, E, or to not include the current line N; for example (where
the contents of EiChist.lst is int a, b, c;):

10 CHAPTER 1. INTRODUCTION TO EIC

% eic -R

...

Re Initiating EiC -- please wait.

Re-enter [int a, b, c;] (Y/N/E)?

The history file mechanism can also be switched off by selecting the -n command line
option on start up:

% eic -n

While the following allows EiC to be re-initialized, it prevents EiC from creating a
new EiChist.lst file:

% eic -rn

The old file EiChist.lst file will be retained and used and no further commands will
be added to the list:

1.2.7 EiC non-interactive mode

There are two modes for running EiC and while this document is primarily concerned with
EiC’s interactive mode, EiC can also be run non-interactively. For example, the following
is used to execute the program examples/hello1.c in EiC’s examples directory:

% eic examples/hello1.c

The above command uses the file option that instructs EiC to load the file hello1.c,
compile it into bytecode, execute it and then to stop. The program, hello1.c, is assumed
to be a self contained C program, which contains the definition of a main function. The
main function is used to establish the start point of the program:

#include <stdio.h>

void message(void)

{

const char *s = "Hello, world!";

puts(s);

}

int main(void)

{

message();

return 0;

}

1.2. RUNNING EIC 11

The entire file, hello1.c, plus all it includes is considered to be a single translation
unit, see section § 3.2, pg: 50. Also, the default procedure for including starteic.h files is
ignored and no EiChist.lst is utilized. The options for modifying EiC’s non-interactive
behaviour is limited to the command line options specified in section § 1.2.5, pg: 8.

It is also possible to write programs that take command line arguments in the usual
C way, as seen from examples/main2.c:

#include <stdio.h>

int main(int argc, char **argv)

{

while(argc--)

printf("%s\n",*argv++);

return 0;

}

The first parameter, which is normally called argc, holds the number of argument
strings passed to the program and is always at least one. The second parameter, which is
normally called argv is an array of unspecified size of pointers to the input strings, which
the first one will be the name of the program being executed:

% eic examples/main2.c 123 hello -Dworld this.and.that

examples/main2.c

123

hello

-Dworld

this.and.that

Running EiC in script mode

In non-interactive mode EiC runs generally like a typical interpreter, accepting input from
a complete C program. However, EiC can also run shell scripts non-interactively. For the
following examples, in this section only, it will be assumed that you are in EiC’s directory
../EiC/module/examples and that eic is installed in /usr/local/bin.

Below is an example of an EiC script, called hello.eic:

#!/usr/local/bin/eic -f

#include <stdio.h>

printf(" ******* Hello from EiC’s script mode. ******\n");

12 CHAPTER 1. INTRODUCTION TO EIC

The -f command-line switch, informs EiC to run in script mode. In script mode, EiC
will treat all lines beginning with # and which cannot be interpreted as a preprocessor
directive (see Chapter 2, pg: 35) as a comment. To run the above script and assuming
that it’s executable (chmod +x hello.eic):

% ./hello.eic

******* Hello from EiC’s script mode. ******

%

Another example of an EiC script is given in script1.eic:

1 #!/usr/local/bin/eic -f

2 #include <stdio.h>

3

4 // example of control of flow

5 int i;

6 int isqr(int x) { return x*x; }

7 for(i=0;i<4;i++)

8 printf("%d^2 = %d\n",i,isqr(i));

9 switch(i) {

10 case 4: printf(" good\n\n"); break;

11 default: printf(" bad\n\n");

12 }

13 // example of some file stuff;

14 // read in some tools

15 #include "tools/nxtString.c"

16 FILE *fp = fopen(_Argv[0],"r");

17 char *p;

18 while((p=nxtString(fp)))

19 printf("%s ",p);

20 fclose(fp);

21 printf("\n\n");

22 // further example of using command line args

23 if(_Argc) { // this is always true

24 int k=0;

25 printf("Processing command line arguments\n");

26 for(k=0;k<_Argc;k++) {

27 printf("%s\n",_Argv[k]);

28 }

29 } else

30 printf("OOPS, an internal error has occurred\n");

1.2. RUNNING EIC 13

An EiC shell script is interpreted from the top to the bottom. First the code is
compiled to byetcode, in its entirety, and then run. After this, control will be parsed
to the main function if it exists. However, it is not illegal to have a script that does
not include the definition of a main function. If the EiC directive :exit (as discussed on
pg: 23) is present in such a script it will cause it to halt at the position :exit is encounted
and nothing will happen other than having the code upto :exit compiled and parsed but
it will not have been executed. Generally, the code for a fuction is not executed until it is
called, see line 8. Command line arguments are passed into to the global variables Argc

and Argv, see lines 16 and 23 to 30. For example:

% script1.eic abc 123 -DHELP

Implies that:

_Argc = 4, _Argv[0] = "sript1.eic"

_Argv[1] = "abc" _Argv[2] = "123"

_Argv[3] = "-DHELP" _Argv[4] = NULL

To alter the behaviour of EiC during script-mode just add the appropriate switch to
the first line of the script, as seen for -f on line 1 above.

1.2.8 Embedding or linking to EiC

To Link against EiC you first need to build the source distribution. Then linking to
EiC from aother programs is done by linking against the EiC libraries (libeic and
libstdClib) in EiC/lib. In the directory EiC/main/examples there is an example pro-
gram called embedEiC.c that links to EiC. Build and run it from the EiC/main/examples
directory by entering (assuming EiC has been installed in /usr/local/EiC):

% gcc embedEiC.c -L/usr/local/EiC/lib -leic -lstdClib -lm

% a.out

For communicating commands to EiC from another program there are two functions
supplied:

int EiC_run(int argc, char **argv);

and

void EiC_parseString(char *command, ...);

The EiC run function is used to run C source files. The EiC parseString function is
used to pass C or preprocessor commands to EiC via a string, such as:

14 CHAPTER 1. INTRODUCTION TO EIC

EiC_parseString("#include <stdio.h>");

EiC_parseString("int a = 10,i;");

EiC_parseString("for(i=0;i<a;i++)"

" printf(\"%%d\\n\",i);");

At present the main facility for sharing data between EiC and other applications is via
the address operator @:

int a @ dddd;

The above defines a to be an integer and is stored at address dddd, which must be an
integral constant. The constant address dddd is not simply an address conjured up. Its
purpose is to enable access to data, or even functions, defined in compiled code.

When applied to function definitions, the limitation at this stage is that the function
must take void arguments and return void:

void foo(void) @ dddd;

The above defines foo to be a builtin function located at address dddd. For example:

int foo[5] = {1,2,3,4,5};

void fooey(void) {printf("fooey called\n");}

....

EiC_parseString("int foo[5] @ %ld;", (long)foo);

EiC_parseString("void fooey(void) @ %ld;", (long)fooey);

Further, int foo[5] @ 1256; defines foo to be an array of 5 ints mapped at the
specified virtual address and the usual pointer safety rules apply; that is, foo[5]; will be
caught as an illegal operation.

Also, you can pass in data to EiC via setting variables and you can get EiC to output
data to a file. In a future release of EiC, more facilities are expected to be added for
sharing data between EiC and its embedding system.

With respect to EiC run, to run the file ”myfile.c” and pass it the command line
arguments ”hello” and ”world”, the following sequence of commands would be used.

char *argv[] = {"myfile.c", "hello", "world"};

int argc = sizeof(argv)/sizeof(char*);

EiC_run(argc, argv);

1.2. RUNNING EIC 15

EiC internet programming

It also possible to run CGI, Common Gateway Interface, scripts via EiC. The function
virtualhtml.eic.cgi in directory EiC/module/cgihtml/cgi-bin is used to demon-
strate this facility:

#!/usr/local/bin/eic -f

:-I/usr/local/EiC/include

#include <stdio.h>

printf("Content-type: text/html\n\n");

printf("<html>\n"

"<head><title> Simple Virtual HTML </title> </head>\n"

"<body>\n"

"<h1>Virtual HTML</h1><hr>\n"

"Hey look, I just created this page virtually!!!\n");

printf("<p>Date: %s
 Current Time: %s\n",__DATE__,__TIME__);

printf("</body></html>\n");

Move the function to your cgi-bin and run it from your browser by entering the following
line in the browser location window and then press enter:

http://www.your_domain/your-cgi-bin/virtualhtml.eic.cgi

The output to the browser window, other than a different date and time, should be:

Virtual HTML

Hey look, I just created this page virtually!!!

Date: Apr 18 1998

Current Time: 14:25:35

You would have noticed on the 2nd line of virtualhtml.cgi the command
:-I/usr/local/EiC/include (see page 26 for details on EiC search paths). This is
informing EiC to add the directory /usr/local/EiC/include to its search path and is
used when looking for include files. The reason this must be explicitly stated in the
script is because each CGI script is run in its own shell, which is owned by httpd or www
depending on how your webserver is setup and therefore, the HOMEofEiC environmental
variable will not have been set (see § 1.2, pg: 3). Note, this instruction is only needed if
EiC is not installed in /usr/local or /usr.

16 CHAPTER 1. INTRODUCTION TO EIC

EiC debugging CGI scripts

To help debug your C-CGI scripts, EiC provides the command line switch -e. It,
among other things, tells EiC to inform Netscape as early as possible that the incom-
ing content-type is text/plain. This turns the browser window into a simple text-like
shell which enables output from EiC to be viewed in the usual way:

#!/usr/local/bin/eic -fe

#include <stdio.h>

printf("Hello, world wide web!\n");

Now, as before, just call the above program, called www1.eic.cgi, from Netscape via:

http://www.your_domain/your-cgi-bin/www1.eic.cgi

The output in your browser’s window should be:

Hello, world wide web!

Note also, if there was a bug or a syntax error in the your cgi-script then EiC diagnostic
messages would have quickly pin-pointed the lines of code causing the problem. All the
debugging facilities of EiC, such as trace (see page 28) and array-bound checking can
now be used to help debug your cgi-scripts and get the C part of your script running
correctly and within the browser environment.

Running EiC interactively, non-interactively

A further method for running EiC non-interactively that is useful for capturing an inter-
active session and can be used for reporting errors encounted during such a session is to
redirect EiC’s standard input to come from a file. The command line switch -A is of use
here as it instructs EiC that all input from stdin should be treated non-interactively, such
as don’t bother performing bracket matching etc. As this mode simulates an interactive
session all commands must be contained on a single line and an explicit :exit must be
used to end the session. It differs from EiC’s script mode (as discussed above) because
each line is compiled into bytecode and run individually; that is, each line is executed as
it is encounted. To input commands that require multiple lines, use either the backslash
character at the end of each line to continue or use file inclusion. An example of such a
script is given in examples/hello.lst:

#include <stdio.h>

#define str(x) #x

1.3. THE EIC INTERPRETER 17

#define xstr(x) str(x)

#define W world!

printf(str(Hello) ", " xstr(W) "\n");

:exit // DO NOT FORGET TO EXIT

And is run via:

% eic -As < hello.lst

The -s switch is used to suppress EiC startup messages. The important point here
is not to forget to add the exit directive, :exit, to finish execution. Otherwise, EiC will
get caught in an infinite loop and you will have to use control Z to pause it and the shell
to kill its process.

1.3 The EiC interpreter

In addition to C preprocessor directives (as explained in Chapter 2, pg: 35) the user can
enter three main types of input as given by the following grammar1:

parse:

:eic-command parse

ext-decl parse

stmt parse

DONE

Note, the phases of EiC’s translations are discussed in § 3.1, pg: 49.

1.3.1 EiC commands

An interpreter directive as opposed to a C statement, a preprocessor directive, or an
external declaration (see below) are communicated from lines beginning with a colon :

followed by an eic-command production such as:

1Appendix A provides an explanation for the notation used to explain the EiC language

18 CHAPTER 1. INTRODUCTION TO EIC

eic-command:

show id

rm item[,item]∗

clear file-name[,file-name]∗

gen header-file [num] [”outfile”]
exit

variables

variables [type-name | tags]
help

history

files [file-name]
reset [here]
- comm-switch [path]
toggle

comm-switch: one of

I R L

toggle:

trace [funcs]
listcode [linenums]
[timer | showline | interpreter | memdump | verbose | includes]

item: one of

identifier constant-expression

path:

any valid directory path

file-name

the name of any included file

For example, you exit EiC by entering :exit. Note, the keywords; that is, the terminal
symbols used in the eic-command productions will not conflict with C identifiers, as the
interpreter distinguishes the difference based upon context of use (see § 3.6, pg: 53). The
eic-command’s are now explained:

show: is used to display type and other information concerning variable and function
definitions and declarations. It also provides a quick way to test for the existence
of a variable. Example:

EiC 1> float (*fval)[5];

(void)

EiC 2> :show fval

fval -> * ARY[5]float

which is read as: fval is a pointer to an array of 5 floats. When show is used to
display a structure or union it reveals the size and the members also:

1.3. THE EIC INTERPRETER 19

EiC 3> struct stag {int x; double da[5];} st;

(void)

EiC 4> :show st

st -> struct: size 44 bytes

x -> int

da -> ARY[5]double

If the structure or union contains nested structures or unions, show only expands
the first level of nesting:

EiC 5> struct { float v; struct stag st;} sr;

(void)

EiC 6> :show sr

sr -> struct: size 48 bytes

v -> float

st -> struct: size 44 bytes

x -> int

da -> ARY[5]double

Show can also be used to look at function declarations and definitions:

EiC 7> int sqr(int x);

(void)

EiC 8> :show sqr

sqr -> dec_Func (

x: int

) returning int

(void)

This is interpreted as: sqr is a function declaration dec Func that receives an
integer argument declared with name x and returns an integer to its caller. The
prefix dec implies that the body of the function has not yet been defined. Con-
verting the declaration into a definition:

EiC 9> int sqr(int x) { return x * x;}

(void)

EiC 10> :show sqr

sqr -> Func (

x: int

) returning int

(void)

20 CHAPTER 1. INTRODUCTION TO EIC

In EiC there are basically two types of functions (see section § 3.18, pg: 86).
There are interpreter functions and there are builtin functions. To distinguish
these forms the show command adds the prefix Builtin to builtin functions:

EiC 11> :show printf

printf -> Builtin Func (

) returning

Notice that the argument list is empty and the returning type is undefined. The
above informs that while the function printf, which is discussed on page 122, is
built into EiC, it has not yet been prototyped. No builtin function can be called
from EiC until its prototype has been processed:

EiC 12> printf("hello\n");

Error in ::EiC:: near line 12: Incorrect function usage: printf

However, this is easily rectified by including the appropriate header file:

EiC 13> #include <stdio.h>

EiC 14> :show printf

printf -> Builtin Func (

fmt: * const char ,

...

) returning int

Now, a call can be made to printf:

EiC 15> printf("hello\n");

hello

6

The 6 is the return value from printf and represents the number of characters
printed.

The show command also helps to promote function documentation: as it displays
the first comment past the line the opening { bracket of the function is on.
Therefore, it provides a simple way of adding function usage. For example,
consider the following function stored in examples/regline.c:

void regline(float *x,float *y, int n,

float *m, float *b)

{

/* In a least square sense, find the equation:

1.3. THE EIC INTERPRETER 21

* y = mx + b; Returns the slope in ‘m’ and

* the offset in ‘b’, from the data given in

* ‘y’ and ‘x’. ‘n’ being the size of the

* arrays ‘y’ and ‘x’.

*/

...

Now from EiC:

EiC 16> #include examples/regline.c

EiC 17> :show regline

regline -> Func (

x: * float ,

y: * float ,

n: int ,

m: * float ,

b: * float

) returning void

/* In a least square sense, find the equation:

* y = mx + b; Returns the slope in ‘m’ and

* the offset in ‘b’, from the data given in

* ‘y’ and ‘x’. ‘n’ being the size of the

* arrays ‘y’ and ‘x’.

*/

Because of semantic reasons the comment considered to be the documenting
comment will be the first comment after the line the opening bracket of the
function is on. If the first comment happens to start on the same line as the
opening bracket it will not be recognised and the next comment (if it exists) will
be used to form the documenting comment. See also the EiC command listcode

on page 29 for further examples of show.

rm: is used to remove mostly variables and functions from EiC’s symbol table. Ex-
ample:

EiC 18> :rm fval

(void)

EiC 19> :show fval

Error in ::EiC:: near line 19: Unknown identifier fval

Here the error is simply informing us that the identifier fval is no longer recog-
nized by the interpreter.

22 CHAPTER 1. INTRODUCTION TO EIC

The operand to the rm operator can also be an integral constant-expression

(see § 3.9, pg: 55). The value of the constant-expression is used when remov-
ing manually memory leaks as reported by memdump. It is an error to attempt
to remove a memory item that is not deemed to be a memory leak or to use an
invalid item number (see memdump page: 32).

clear: is used to remove the contents of entire files from EiC’s symbol tables and memory
pool. This handy operator removes the contents of an entire file before say re-
including it so as to avoid conflicts between variable and function changes that
EiC forbids. Example:

EiC 1> #include "examples/sqr.c"

(void)

EiC 2> :clear examples/sqr.c

The file-name, operand, must match with one of the strings listed by the :files
operator (page: 24). The :clear operator also excepts a comma seperated list
of file names, with no white spaces intervening.

gen: The gen command takes upto three arguments, header-file, num and outfile:

:gen header-file [num] [”outfile”]

The gen command is used for generating EiC interfaces to builtin C code.
It purpose is to allow the easy interfacing of EiC to libraries of C, and this
is covered in more detail in § 5.1.6, pg: 153.

EiC > :gen foo.h

The above would generate the EiC interface to the header-filet foo.h to
stdout.

The outfile is used for redirecting the output from :gen to a file rather than
stdout:

EiC > :gen foo.h "foo.c"

The above would be used to direct the output from :gen to the file foo.c.
Note the outfile argument must be a string; that is, enclosed in double
quotes..

The num option is a constant integer value, and is used to control the level
of multiplexing callback code to generate. The default value for num is 1:

1.3. THE EIC INTERPRETER 23

EiC > :gen foo.h 4 "foo.c"

exit: is used to terminate an EiC session.

status: is used for inspecting the current status of the EiC toggle switches (see
below).

variables: variables is like the show command (page 18), except rather than showing
just one identifier it shows groups of identifiers. However, unlike the show

command it does not expand structures and unions to reveal their members.

Basically, there are three forms of the variables command. When entered
on its own it displays all the declared identifiers. Generally, this will supply
too much information. Therefore, to limit the information produced by
variables it is possible to select various subsets by using one of the two
other forms:

variables [type-name | tags]

type-name: The type-name specifier is discussed in detail in section § 3.22, pg: 91. But
briefly it is used to display various identifier types such as, all the pointers
to integers:

EiC 20> int *p1, *p2, a, b,c;

EiC 21> :variables int *

p1 -> * int

p2 -> * int

See the show command on page 18 for an explanation of such output.

As an example of using variables to view all the functions of a specified
form, consider:

EiC 22> int f(char * s) { return 1;}

(void)

EiC 23> int foo(const char * str);

(void)

EiC 24> :variables int (char *)

f -> Func (

s: * char

) returning int

foo -> dec_Func (

str: * const char

) returning int

system -> Builtin Func (

str: * const char

) returning int

...

24 CHAPTER 1. INTRODUCTION TO EIC

Note, type-qualifiers are not considered in the matching processing and any
matching builtin function will also be displayed.

tags: The tags option is used to display the structure, union (§ 3.12.8, pg: 72)
and the enumeration (§ 3.12.2, pg: 62) tags that have been declared:

EiC 25> struct stag {int x,y;};

EiC 26> enum etag {RED,GREE, BLUE};

EiC 27> :variables tags

etag -> enum

stag -> struct: size 8 bytes

help: is used to obtain a quick reference summary of the EiC interpreter com-
mands:

EiC 28> :help

EiC-COMMAND SUMMARY DESCRIPTION

:-I path Append path to the include-file search list.

:-L List search paths.

:-R path Remove path from the include-file search list.

:clear fname Removes the contents of file fname from EiC.

:exit Terminates an EiC session.

:files Display the names of all included files.

:files fname Summarize the contents of the included file ‘fname’.

:gen fname Generates EiC interface of the included file ‘fname’.

:gen fname "outfile" Places the interface in outfile

:gen 4 fname Generates EiC interface with 4 levels of multiplexing.

:help Display summary of EiC commands.

:history List the history of all input commands.

:includes Display path of include files when loaded.

:interpreter Execute input commands. By default it is on.

:listcode List stack code.

:listcode linenums List stack code with associated line numbers.

:memdump Show potential memory leaks.

:rm dddd Remove memory item dddd, which is a constant integer value.

:rm f Removes f’s definition from the symbol tables.

:show f Shows type or macro definition of ‘f’.

:showline Show input line after macro expansion.

:status Display the status of the toggle switches.

:timer Time in seconds of execution.

:trace Trace function calls and line numbers during code execution.

:trace funcs Trace function calls only during code execution.

:variables Display declared variables and interpreter-ed function names.

:variables tags Display the tag identifiers.

:variables type-name Display variables of type ‘type-name’.

:verbose Suppresses EiC’s copyright and warning messages on start up.

--

files: The files command is used to get a list of the names of all the include files
currently entered into EiC:

EiC 29> :files

::EiC::

1.3. THE EIC INTERPRETER 25

starteic.h

stdio.h

stdarg.h

math.h

...

fcntl.h

sys/fcntl.h

sys/types.h

../doc/regline.c

It is also possible to get a summary of the contents of any particular include file:

EiC 30> :files fcntl.h

FCNTLH_ -> #define FCNTLH_

open -> Builtin Func (

path: * const char ,

access: int ,

...

) returning int

creat -> Builtin Func (

path: * const char ,

amode: usigned short

) returning int

(void)

The contents of an include file is summarised by first displaying the declared
macros followed by the global variables (if any), which are in turn followed by
the function definintions.

reset: The reset operator is used to set EiC to a default internal state. All allocated
memory is freed, the contents of all include files and global variables, included and
declared after the reset point, are removed. All previous global scalar variables
defined prior to the reset point will have their values restored.

The default reset point sets EiC to the point that is equivalent to starting EiC
with the -N command line switch (see, § 1.2.4, pg: 7):

EiC 1> :files

::EiC::

starteic.h

26 CHAPTER 1. INTRODUCTION TO EIC

stdio.h

stdarg.h

sys/stdtypes.h

sys/stdio.h

stdlib.h

...

(void)

EiC 2> :reset

(void)

EiC 3> :files

::EiC::

(void)

It is also possible to define the reset point by using the here operator:

EiC 1> int p = 66;

(void)

EiC 2> :reset here

(void)

EiC 3> p = 88;

88

EiC 4> :reset // set the reset point to the current state.

(void)

EiC 5> p;

66

However, there is no guarantee that the reset state will be restored 100%. This
is because, EiC, at this stage, will not retore the contents of arrays or struc-
ture/union members to their initial values. Also, if a pointer is pointing to some
allocated memory that was allocated before the :reset here command was is-
sued but freed before the :reset command, then the behaviour of that pointer
will be undefined.

comm-switch: the comm-switch production is analogous to what is commonly known as a C pro-
gram’s command–line switch, which is an argument usually preceded by a dash
-. Comm-switches are used to modify the behaviour of EiC and its preprocessor.
The current valid switches are:

I: insert the given path into the preprocessors search list. Used during file
inclusion. Example:

EiC 31> : -I./tests

1.3. THE EIC INTERPRETER 27

Append the directory tests, which is off the currently working directory to
the search list.

R: remove the given path from the preprocessors search list. Example:

EiC 32> :-R ./tests

L: list the current search list. Example:

EiC 33> :-L

The include search list is further discussed in section § 2.6, pg: 42.

history: EiC automatically records each command line as entered from the user in a
history list. The default maximum length of the history list is set at compile
time and is normally 500 lines. Individual lines are of arbitrary length. When
the history list is full old lines are removed from the top while the new command
line entries are entered from the bottom.

The user can go backwards through the history list by either pressing the up
arrow or by pressing control-p; or forward by pressing the down arrow or control-
n. Each line of history can be re-edited and then re-entered by pressing the enter
key, <CR>. The entire current history list is seen via:

EiC 34> :history

float (*fval)[5];

:show fval

struct stag {int x; double da[5];} st;

:show st

struct { float v; struct stag st;} sr;

:show sr

int sqr(int x);

...

:history

Note, the list has been truncated manually.

EiC has several keywords that associate with the toggle production, § 1.3, pg: 17. They
are all toggle-switches that are either turned on or off. That is, they are turned on by
entering their command once and turned off by reentering the same command:

EiC 1> int i;

(void)

EiC 2> :timer // turn timer on

<time taken>: 0

EiC 3> for(i=0;i<100000;++i);

28 CHAPTER 1. INTRODUCTION TO EIC

(void)

<time taken>: 2.6

EiC 4> :timer // turn timer off

The status of all the toggle-switches can be examined by using the EiC command
status (pg: 23). The toggle-switches provide EiC with the following optional features:

trace: The trace facility is a toggle-switch (see below) with an extra production. If on,
trace, traces the function calls and line numbers associated with a given translation
unit and prints this information to the screen. Consider the following nonsensical
piece of code, which is stored (without the line numbers) in the file examples/testtrace.c:

1 int f(void)

2 { int i;

3 for(i=0;i<3;++i)

4 if(i>2)

5 break;

6 return i;

7 }

8 int g(void)

9 { int k = 0,i = 2;

10 while(i--)

11 k += f();

12 return k;

13 }

14 int main(void)

15 { int i = 2;

16 do {

17 int k = g();

18 } while(--i);

19 return 0;

20 }

Now, trace can be used to follow the sequence of program flow:

EiC 1> #include examples/testtrace.c

EiC 2> :trace

EiC 3> main();

[main] 15,17,

[g] 9,10,11,

[f] 3,4,3,4,3,4,3,6,

[g] 11,10,11,

[f] 3,4,3,4,3,4,3,6,

1.3. THE EIC INTERPRETER 29

[g] 11,10,12,

[main] 17,18,17,

[g] 9,10,11,

[f] 3,4,3,4,3,4,3,6,

[g] 11,10,11,

[f] 3,4,3,4,3,4,3,6,

[g] 11,10,12,

[main] 17,18,19,

[::EiC::]

The first line of the response tells us that control started at function main and then
passed through lines 15 and 17 after which, control was passed to function g. In
function g, control passed through lines 9, 10 and 11 before entering function f, and
so on. After leaving function f, on line 6, control was passed back to function g on
line 11, etc. Finally, the trace finished when control was returned back to the EiC
command line. The trace facility can also be used during batch mode operations via
the command line switch -t (see also § 1.2.5, pg: 8):

% eic -t examples/testtrace

...

Clearly, trace can help in debugging programs: it traces the activation and steps
in a sequence of code. It can be used to quickly locate sections of code that are
causing crashes or blockages. However, at times, this amount of information can be
too verbose, and therefore, the trace command has the optional argument funcs:

trace [funcs]

When the extra argument is specified, the trace facility prints out only the names
of the functions entered:

EiC 4> :trace funcs

EiC 5> g();

[g]

[f]

[g]

[f]

[g]

[::EiC::]

EiC 6> :trace // turn trace off

listcode: Listcode will be essentially of interest to those people interested in the bytecode
produced by EiC. If listcode is toggled on then the bytecode for the current com-
mand or translation unit (see § 3.2, pg: 50) will be displayed, non-recursively, to the

30 CHAPTER 1. INTRODUCTION TO EIC

screen. That is, it does not show the code for any associated functions. By default,
listcode is off. For example:

EiC 1> int i;

EiC 2> :listcode // toggle on

0:halt

(void)

EiC 3> i = 5;

0:pushint 5

1:stoint 0 0

2:halt

5

EiC 4> :listcode // toggle off

Listcode also affects the output produced from the EiC command show (see pg: 18).
For example, consider the swap function as stored (without the line numbers) in the
file examples/swap.c:

1 void swap(int *a, int *b)

2 {

3 /* swap the values of a and b */

4 int t = *a;

5 *a = *b;

6 *b = t;

7 }

Now from within EiC:

EiC 5> #include examples/swap.c

EiC 6> :show swap

swap -> Func (

a: * int ,

b: * int

) returning void

/* swap the values of a and b */

EiC 7> :listcode

0:halt

(void)

EiC 8> :show swap

swap -> Func (

1.3. THE EIC INTERPRETER 31

a: * int ,

b: * int

) returning void

/* swap the values of a and b */

0:checkar 1 0 7:drefint

1:rvalptr -1 1 8:refint

2:drefint 9:rvalptr -2 1

3:stoint 0 1 10:bump 1

4:rvalptr -1 1 11:rvalint 0 1

5:bump 1 12:refint

6:rvalptr -2 1 13:eicreturn

listcode, like the trace command (page 28) has an extra form: ‘listcode linenums’.
When used in this form it displays the associated line numbers corresponding to the
bytecode instruction:

EiC 9> :listcode linenums // toggle linenums on

9: 0:halt

(void)

EiC 10> :show swap

swap -> Func (

a: * int ,

b: * int

) returning void

/* swap the values of a and b */

0: 0:checkar 1 0 5: 7:drefint

4: 1:rvalptr -1 1 5: 8:refint

4: 2:drefint 6: 9:rvalptr -2 1

4: 3:stoint 0 1 6: 10:bump 1

5: 4:rvalptr -1 1 6: 11:rvalint 0 1

5: 5:bump 1 6: 12:refint

5: 6:rvalptr -2 1 7: 13:eicreturn

10: 0:halt

(void)

EiC 11> :listcode // toggle listcode and linenums off

32 CHAPTER 1. INTRODUCTION TO EIC

Note, any line number with the value zero represents extra “house keeping” code
added by the EiC interpreter.

memdump: EiC attempts to keep track of all memory dynamically allocated. If EiC cannot
find the owner of a piece of dynamic memory the address and how it was allocated
will show up automatically if memdump is switched on. For example, consider the
following useless piece of code in examples/leak.c:

1 #include <stdlib.h>

2 void leak(void)

3 {

4 char * s = malloc(10);

5 }

The following session provides an example of the usage of memdump:

EiC 9> #include examples/leak.c

EiC 10> :memdump // toggle memdump on

(void)

EiC 11> leak();

(void)

item 3656 Create line 917 file stdlib.c nbytes 10

The above output informs that the memory item number 3656, which maybe
different number during your session of length 10 bytes cannot be associate
with an owner. That is, it is a potential leak. Also, it tells us that the memory
was allocated from line 917 in file stdlib.c rather than from line 4 in file
examples/leak.c. Strickly speaking, it is correct because if we were to look
at line 917 in file stdlib.c we would find that this is where EiC does its
memory allocation for the EiC interpreter.

It is possible to remove leaked memory items via the rm command (page: 21):

EiC 12> :rm 3656

(void)

EiC 13>

Also, note from the following session:

EiC 1> :memdump // toggle memdump on

(void)

EiC 2> char *s = malloc(10);

(void)

item 3611 Create line 781 file stdlib.c nbytes 10

1.3. THE EIC INTERPRETER 33

EiC 3> free(s);

(void)

shows that all memory allocated dynamically in EiC is considered to be a
potential leak – if not freed. This is because EiC does not look at the memory
a pointer is pointing to when assigning homes to dynamic memory items.
Therefore, the usage of memdump should be considered carefully when trying to
determine if a genuine memory leak has occured or not. However, memdump is
still useful as it provides a guide to locating potential memory leaks.

timer: if on, the execution time in seconds of a given translation unit is printed out.
By default, the timer is off. From the following piece of code I get from my
66Mhz 486 PC:

EiC 1> int i; float f,g;

EiC 2> :timer // turn timer on

EiC 3> for(i=0;i<200000;++i) f *=g;

(void)

<time taken>: 8.57

EiC 4> :timer // turn timer off

The timer is handy when attempting to optimise

a piece of code as it measures the actual processor time used.

interpreter: if on then input commands will be interpreter-ed. By default it is on.

showline: if on then the input sequence to the interpreter is displayed. Useful for in-
specting the expansion of macros. By default it is off:

EiC 1> #define help(s) system("man 3 " #s)

(void)

EiC 2> :showline // toggle showline on

(void)

EiC 3> help(printf);

system("man 3 " "printf");

...

EiC 4> :showline // toggle showline off

This facility can also be turned on from the command line using the switch -p:

% eic -p

34 CHAPTER 1. INTRODUCTION TO EIC

verbose: the verbose command is essentially used when running EiC remotely, as it
suppresses EiC’s copyright and warning messages on start up. It can also be
turned on from the command line using the switch -v

% eic -v

includes: If on, the path of include files will be displayed when loaded. This facility can
also be turned on from the command line using the -P switch:

% eic -P

and causes EiC to reveal the paths of all the files it includes.

Chapter 2

The EiC Preprocessor

The EiC preprocessor helps to reduce programming effort and to produce more readable
code as it provides a way to associate constants (see§ 3.9, pg: 55) and other text to
symbolic names. For example, the following definition:

#define PI 3.14159

associates the floating point constant 3.14159 to the symbolic name PI. When ever
the preprocessor sees the name PI it automatically replaces it with the text 3.14159.
This is very useful, because magic numbers, such as 3.14159, are specified in just one
place and can be referred to by name. However, the EiC preprocessor is a lot more
powerful than this and all input into EiC is first passed through EiC’s preprocessor.
It provides for macro substitution, conditional interpretations and file inclusion. While
EiC’s preprocessor commands are, as much as possible, ISO C compliant and as will be
explained below, it lacks:

1. the #line directive,

2. and trigraph sequences.

Other than these omissions, as will now be explained, it is a complete C preprocessor.

2.1 Directives

Preprocessor commands are also called directives and program lines beginning with the
hash mark #, which in turn may be optionally preceded by white space, are interpreted as
preprocessor directives. A line consisting solely of # is ignored. Each preprocessor line is
normally terminated by the end of line character. However, by writing a ‘\’ at the end of
a line that line will be continued onto the next by line splicing, which is also know as line

35

36 CHAPTER 2. THE EIC PREPROCESSOR

continuation. Otherwise, the preprocessor directive will be formed from all characters up
to the end of the current line.

Also, line splicing precedes tokenisation (see below). Lines spliced together will not
contain the backslash character and they will continue from the first nonwhite character
on the next line. If a line ends in a backslash then the following line will never be treated
as a preprocessor directive:

#define DF \

#Doug Funny

2.2 The Define Directive

A preprocessor directive of the form:

#define identifier token-sequence

is a macro definition that will cause the given identifier to be replaced by the given
token-sequence. Commonly used for manifest constants; that is:

#define PI 3.14159

N.B., the same identifier can be defined multiple times as long as the token-sequence
remains the same. Otherwise, it is an error.

2.2.1 Function Like Macros

A preprocessor directive of the form

#define identifier(arg-list) token-sequence

is a macro with arguments; that is:

#define max(a,b) ((a) > (b) ? (a) : (b))

N.B. There can be no space between the identifier and the ’(’. Text inside quotes and
or character constants are not expanded. Also note, that the above macro definition for
max is unsafe since it addresses each argument more than once.

It is advisable that arguments in the definition be protected by parentheses:

#define prod(x,y) ((x)*(y))

to help avoid certain ambiguities:

2.2. THE DEFINE DIRECTIVE 37

#include <assert.h>

...

x = prod(2+4,5); // expands to x = ((2+4)*(5));

assert(x == 30);

...

While the macro assert is explained in section § 4.1.1, pg: 107 its intention should
be clear; that is, it reports an error if its argument resolves to zero.

In a macro call, the number of arguments must match the number of parameters in
its definition. However, a parameter lists can actually be empty:

#define N() 5

A macro can also take an arbitrary statement as an argument:

#define insert(stmt) stmt

#define seq10 insert({int i;for(i=0;i<10;i++); A = i;})

...

int A;

seq10;

assert(A==10);

...

When a macro with parameters is invoked there can be whitespace between its name
and the left parenthesis.

#define BIG max (0 , 100)

assert(BIG == 100);

Therefore, a macro call is defined by an identifier followed by optional white space
followed by (, then the parameters, which are followed by). A macro call can also extend
across multiple lines without the use of the backslash character:

...

assert(7==max(5,

max(6,

7)

)

);

...

While this feature is all well and good if input is coming from a file, since it allows laying
out the code such that visibility is increased - especially if long identifier names are used.
However, EiC will refuse to extend a macro call across multiple lines without the presence
of the backslash character while running interactively:

38 CHAPTER 2. THE EIC PREPROCESSOR

...

EiC > max(5, // Illegal line continuation during macro expansion

The reason for this is that with a complex statement the carriage return may be
pressed without the user realising that he/she has entered an incomplete macro call; the
interpreter won’t flag any warnings because it is just expecting more input. Hence, this
means that the user can lose synchronisation with the interpreter – and without realising
it. Therefore, this feature is made illegal during interactive mode (see also § 1.2.3, pg: 6).

A macro definition can be used to mask a real function by redefining its identifier:

int f(int x) { return x*x;}

#define f(x) ((x)+5)

...

assert(f(5) == 10);

...

However, it is possible to suppress the effect of the macro by enclosing the name of
the function in parenthesis. This works because the name of the function/macro is then
not followed by a left parenthesis:

...

assert((f)(5) == 25);

...

2.3 The Undef Directive

The #undef identifier directive is used to remove a previously defined macro definition:

#define myerr(x) fprintf(stderr,"%s",x)

...

#undef myerr

It is NOT an error to attempt to undef an identifier that has not been defined.

2.4 Macro Expansion Rules

The text to be replaced by a macro is first isolated by removing leading and trailing
white space. For macros with arguments, all arguments are first collected and then each
argument is isolated as just described. Isolated text then undergoes expansion or replace-
ment. After each expansion the resulting text is always rescanned for the occurrence of
new macro identifiers. This allows for the nesting of macros; for example:

2.4. MACRO EXPANSION RULES 39

#define max3(a,b,c) max(a,max(b,c))

will take two expansions to expand:

max3(a,b,c)

max(a,max(b,c))

((a) > (((b) > (c) ? (b) : (c))) ? (a) : (((b) > (c) ? (b) : (c))))

However, once a given identifier has been replaced in a given expansion it is not
replaced if it turns up again during rescanning; instead it is left unchanged:

#define char unsigned char

...

char b = 200; // 8 bit unsigned data

assert(b==200);

...

#undef char

char b = 200; // 8 bit signed data

assert(b == -56);

...

Text surrounded by double quotes or characters surrounded by single quotes are never
expanded; that is, they are protected:

2.4.1 The Stringization Operator: #

A single # preceding a token will be recognized by the EiC preprocessor as the ISO C
stringization operator. Otherwise a single # symbol will only have significance if it is the
first nonwhite character of a line.

The stringization operator influences the replacement process. A token preceded by
will cause the preprocessor to replace both # and the token by a quoted token:

#define S(x) #x

...

S(Hello, world!); // results in "Hello, world!";

During the stringization process, the token-sequence is scanned and a backslash char-
acter is inserted before each double quote or before each backslash character. Also, all
sequences of white space are replaced by a single space character:

assert(strcmp("hello world",S(hello world))==0);

assert(strcmp("\"hello world\\n\"",S("hello world\n"))==0);

assert(strcmp("Its a nice day", S(Its a nice

day)) == 0);

40 CHAPTER 2. THE EIC PREPROCESSOR

While there are many usages for the stringization operator, the most common usage
is to display variables and C statements:

#define ASSERT(x) if(!(x)) puts("error with: " #x)

...

ASSERT(5 == 7); // result: error with: 5 == 7

2.4.2 The Merging Operator: ##

An ISO C preprocessor controls the merging of tokens via the merging operator ##. If a
token sequence contains ##, then the text before ## is merged with the text just after it
and the ## operator along with any white space either side of it is removed:

#define cat(x,y) x ## y

...

cat(Nice,Day); // results in NiceDay;

After each replacement the new token will be rescanned. Also, the ## operator can not
appear at the beginning or end of a token sequence. However, a word of warning: the token
merging operator can produce non-intuitive output; for example, while cat(1,2) creates
12, cat(1,cat(2,3)) creates 1cat(2,3), and this is probably not the original intention.
To achieve the effect of nesting cat macros you need to be a little more cunning:

#define xcat(x,y) cat(x,y)

...

assert(xcat(xcat(1,2),3) == 123);

assert(xcat(1,xcat(2,3)) == 123);

2.5 Predefined Macros

EiC has complied with the ISO standard and has the following five predefined macros
available, and non of which may be redefined:

LINE : resolves to a decimal constant containing the current source-file line number
that is being processed. The first line of a file is always 1.

FILE : resolves to a string literal containing the name of the current file being pro-
cessed.

DATE : resolves to a string literal containing the calendar date,
in the form: Mmm dd yyyy.

2.5. PREDEFINED MACROS 41

TIME : resolves to a string literal containing the current time,
in the form: hh:mm:ss.

STDC : resolves to 1.

The TIME and DATE macros are useful for recording compile dates for program
versions:

printf("build %s, %s",__DATE__,__TIME__);

The FILE and LINE macros are useful for producing diagnostic messages:

#define ASSERT(x) if(!(x))\

fprintf(stderr,"In %s line %d:" #x, __FILE__,__LINE__)

#define location() printf("at line %d\n",__LINE__)

The STDC macro is useful when writing programs that maybe compiled with a
non-ISO C compiler.

EiC also has its own specific predefined macros:

EiC: resolves to 1. Used to isolate EiC specific code within C header files

The following reflects an EiC session:

EiC 1> __TIME__;

17:50:32

EiC 2> __DATE__;

Jul 21 1996

EiC 3> __STDC__;

1

EiC 4> __LINE__;

4

EiC 5> __FILE__;

::EiC::

EiC 6> _EiC;

1

Note, the FILE name for the EiC interpreter is “::EiC::”.

42 CHAPTER 2. THE EIC PREPROCESSOR

2.6 The Include Directive

A preprocessor directive of the form

#include <file-name>

causes the above line to be replaced by the entire contents of the file file-name. The
file is searched for according to the standard search path list (see also discussion on adding
paths to the search list on page 26). A preprocessor directive of the form

#include ‘‘file-name’’

causes the search to begin first in the current working directory and if this fails it
searches for the file in those directories specified via the search path list.

Alternatively, a preprocessor directive of the form

#include token-sequence

causes first the token-sequence to be expanded as is for normal identifier text and
strictly ISO style, one of the two forms, < . . . > or ". . .", should result. However, EiC
first expands the token-sequence and then treats the resulting text as a file-name; that is,
a preprocessor directive of the form

#include file-name

is legal in EiC.

2.7 The Conditional Directive

The Conditional directives provide the preprocessor with the ability to pass or to not pass
various lines of text onto the C parser according to the following syntax:

conditional :
if-line text elif-parts [#else] #endif

if-line:
#if constant-expression

#ifdef identifier

#ifndef identifier

elif-parts:
if-line text

[elif-parts]
if-line:

#elif text

2.7. THE CONDITIONAL DIRECTIVE 43

Like all preprocessor directives, the conditional directives must appear on a line by
themselves. The preprocessor constant-expression differs from that of the C language;
it must resolve to an integral type and be evaluated at compile time. The syntax for
preprocessor’s constant-expression is given below (see § 2.10, pg: 46). Also, all if-line

conditions must be used in conjunction with the #endif directive. There is also the
optional #else directive that can be used to provide an alternative if the initial condition
fails. There is also the #elif directive for when several alternatives are required (see
below).

2.7.1 The #ifdef and #ifndef directives

The conditional directives #ifdef and #ifndef are used to cause different parts of a
program unit to be translated or not, depending upon whether certain identifiers have be
defined or not.

A preprocessor directive of the form

#ifdef identifier

causes the preprocessor to check to see if the identifier has been defined; i.e. via
#define. If so, then the directive is said to be fulfilled and all lines of text up to the next
#else or #endif will be processed. Otherwise, these lines will be skipped. Also lines
located between an optional #else and the #endif will only be processed if the #ifdef

is not fulfilled.
Alternatively, a preprocessor directive of the form

#ifndef identifier

is only fulfilled if the identifier has not been defined.
It is common to use these macros to form a macro, which will ensure that the lines of

text between the #if and #endif are at most considered only once; for example:

#ifndef STDIOH_

#define STDIOH_

... // contents of stdio.h

#endif

2.7.2 The #if directive

The conditional-directive #if also causes different parts of a translation unit to be trans-
lated or not, but rather than be depending upon whether or not an identifier has been
defined, it depends upon the whether that the value of a constant-expression is zero or
not; for example:

44 CHAPTER 2. THE EIC PREPROCESSOR

#if constant-expression

.... //pass these lines of text

[
#else

... //pass these lines of text

]
#endif

Note: the upright square brackets [], are used to denote that the #else directive is
optional.

2.7.3 The #elif directive

The #elif is used when several alternatives are required and are evaluated in order until
one is satisfied:

#if constant-expression

.... //pass these lines of text

#elif constant-expression

... //pass these lines of text

#elif constant-expression

... //pass these lines of text

[
#else

... //pass these lines of text

]
#endif

2.7.4 The defined operator

The defined operator can be used only in a preprocessor constant-expression. It has the
following syntax:

defined-operator :
defined identifier

defined (identifier)

The defined operator evaluates to 1 if the identifier has been defined, else it evaluates
to 0. It has the advantage that it can be used to test for the existence of more than one
identifier at a time:

#if defined(_EiC) && !defined(UNIX)

...

#endif

2.8. THE #ERROR DIRECTIVE 45

2.8 The #error directive

Syntax:

#error token-sequence

The #error directive is usually used to flag that a conditional directive has failed:

#if OS == SUNOS

.... //pass these lines of text

#elif OS == SOLARIS

... //pass these lines of text

#elif OS == ALPHA

... //pass these lines of text

#else

#error "Unknown operating system"

#endif

It causes the preprocessor to output a diagnostic message and which will also undergo
normal macro replacement.

2.9 The #pragma directive

Syntax:

#pragma token-sequence

#pragma

The #pragma directive is vaguely defined in ISO C. Its purpose is to permit implemen-
tation specific C compiler directives or to add new preprocessor features. For instance,
in some implementations it maybe possible to turn on or off certain compiler warning
options using a warning pragma; for example:

#pragma warning +xxx

#pragma warning -yyy

would specify that the xxx warning should be turned on, while the yyy warning should
be turned off. The problem is that different compilers have different pragmas and hence
all unrecognised pragmas must be simply ignored.

In EiC there are only the pointer pragmas and are described in § 3.12.5, pg: 67.

46 CHAPTER 2. THE EIC PREPROCESSOR

2.10 Syntax of the EiC preprocessor

The grammar parsed by EiC’s preprocessor is given below. The productions for identifier,
int-const and char-const plus an explanation of the notation used are given in Appendix A.

The preprocessor constant-expression is subject to normal macro replacement and after
macro expansion, all defined identifiers are replaced by the constant 1, otherwise they are
replaced by the constant 0. Similarly, but before scanning for macros defined identifier

or defined (identifier) are replaced by the constant 1 if the identifier is defined or by 0
otherwise.

pre-command :
#define identifier token-sequence

#define identifier(arg-list) token-sequence

#undef identifier

#include <file-name>

#include “file-name”

#include token-sequence

#error token-sequence

conditional

conditional :
if-line text elif-parts [#else] #endif

if-line:
#if constant-expression

#ifdef identifier

#ifndef identifier

elif-parts:
if-line text

[elif-parts]
if-line:

#elif text

token-sequence:

[token-sequence] #token [token-sequence]
[token-sequence] token##token [token-sequence]
token-sequence token

arg-list:

identifier [, identifier]*

constant-expression:
and1-expr [|| and1-expr]*

and1-expr :
or2-expr [&& or2-expr]*

2.10. SYNTAX OF THE EIC PREPROCESSOR 47

or2-expr :
xor-expr [| xor-expr]*

xor-expr :
and2-expr [^ and2-expr]*

and2-expr :
equal-expr [& equal-expr]*

equal-expr :
rel-expr [== rel-expr]*

rel-expr :
shift-expr [[< <= >= >] shift-expr]*

shift-expr :
ar1-expr [[<< >>] ar1-expr]*

ar1-expr :
ar2-expr [[+ -] ar2-expr]*

ar2-expr :
primary-expr [[* % /] primary-expr]*

primary-expr :
(constant-expression)
int-const

char-const

identifier

[! + - ˜] primary-expr

defined-operator

defined-operator :
defined identifier

defined (identifier)

48 CHAPTER 2. THE EIC PREPROCESSOR

Chapter 3

EiC’s C Specifications

EiC has been hand coded. Its parsing method is LL(N) and its grammar was derived
from the LR grammar presented in Appendix A of (Kernighan and Ritchie, 1988). Here
the EiC programming language and specifications is given as this will, hopefully, allow
for future developments. The syntax notation used when specifying the grammar for the
EiC and C language is described in section § A.1, pg: 161.

3.1 Phases of translation

The input program text is translated by EiC in logically successive phases:

1. Program lines ending in \ are extended onto the next line.

2. Comments are stripped out and are replaced by a single space.

3. The input sequence is then tokenized and any embedded EiC commands will be
carried out inplace and in sequence of occurrence. For example:

#define foo xx

:show foo

The preprocessor #define directive will be processed before the EiC command show,
which will be processed before the macro foo is expanded. The above EiC show
command will result in:

foo -> #define foo xx

49

50 CHAPTER 3. EIC’S C SPECIFICATIONS

which is how EiC specifies that foo is a macro (see the show command on page 18).

4. Any preprocessor directives are next obeyed and macros will be expanded.

5. Escape sequences, character constants and string constants are next recognized and
adjacent string constants separated only by white space are concatenated together.

6. The tokenized input sequence is next translated into byte-code to be executed either
directly or to be stored as function code for linkage to other translation units.

3.2 Translation units

In C, a translation unit consists of one or more definitions or declarations. In EiC, a unit
of input at the EiC command line prompt is consider to be a translation unit. It may
consist of one or more declarations, function definition or immediate statements. Include
files and all they include are generally considered to be part of the same translation unit.
Unless an error has occurred during translation, all translation units will cause execution
to occur – even if the execution consist solely of a single halt byte-code instruction.

Because EiC can run interactively its definition of a translation unit is weaker than
that given for ISO C. With implications that all identifiers defined at level ‘file scope’
with either explicit or implicit external scope are visible to other translation units and
hence from the EiC command line.

When EiC is used to run programs; such as foo.c:

% eic foo.c

foo must contain the definition of a main function, which is used to establish the start
point of the program. The entire file, foo.c, plus all it includes is considered to be a
single translation unit.

In EiC, program modules are linked/brought together to form a larger unit using
the preprocessor #include directive (section § 2.6, pg: 42). See also running EiC non-
interactively § 1.2.7, pg: 10.

3.3 Tokens

A token is a sequence of non-white characters having a collective meaning. The characters
separating the tokens are collectively know as white space, which is composed from:
spaces, tabs, newlines, form feed and or comments. In general, there is a set of strings in
the input for which the same token is produced, as shown in Table 3.3:

3.4. IDENTIFIERS 51

Table 3.1: Token examples
Token string
for-sym for
if-sym if
float-const 0.5, 1.0E-20, 1e-3, etc
char-const ’a’, ’z’, ’\377’, etc

EiC recognizes five major groups of tokens: identifiers (usually abbreviated to id),
keywords, constants (character, string and numeric), operators and punctuation marks.

White space is usually stripped out of the input stream. However, if the input is
coming from the keyboard then the newline character is significant and is replaced by the
terminal DONE. This is equivalent to the end of file mark, EOF, when reading input from a
file.

3.4 Identifiers

An identifier is a name that is formed from a sequence of letters, digits and underscores.
The first character of an identifier must be a letter or an underscore character. In EiC,
syntax is case sensitive and therefore, upper and lower case letters are different. There is
no restriction on the length of an identifier.

id:

letter [letter, digit,]∗

[letter, digit,]∗

letter: one of

a b c d e f g h i j k l m n o p q r s t u v w z y z

A B C D E F G H I J K L M N O P Q R S T U V W Z Y Z

digit: one of

0 1 2 3 4 5 6 7 8 9

3.4.1 Identifier restrictions

The following restrictions are placed on identifier names.

1. An identifier name cannot be the same as a keyword (§ 3.8, pg: 54).

2. All library function identifier names are reserved at all times.

3. All identifiers that begin with an underscore should be considered reserved.

52 CHAPTER 3. EIC’S C SPECIFICATIONS

4. All identifiers that begin with EiC or eic are considered reserved for EiC’s future
developments.

5. All identifiers beginning with is, to, mem, or str and followed by another lower case
letter are considered reserved for ISO C future library implementations.

6. While there is no restriction on the length of an identifier name in EiC, ISO C only
requires that the first six characters of each identifier be unique.

Note, only the first restriction is enforced by EiC – like most other C implementations.
Therefore, it is up-to the programmer to enforce and beware of these other rules and
limitations.

3.5 Scope Rules

Scope rules determine how references to non-local names are handled and the visibility
of local names. In EiC, like ISO C and many other languages such as Pascal and Ada
the lexical scope rule is used. That is, the declaration of a name is handled simply by
examing the program text. The scope of an identifier relates to the portion of program
text in which the identifier is active. The same identifier may be used at different scope
levels for different purposes. The scope of a variable lasts until the end of the block in
which it is declared in. In EiC, blocks are delimited by braces { and }, and have the
general form:

{ declaration-listop statementsop }

Blocks may appear as translation units or anywhere statements can. Delimiters ensure
that one block is either totally separate from another block or is totally nested within
another block. Therefore, it is a simple matter to assign a scope level to a block and
to the identifiers assigned with it. For example: the scope level outside any block or
function parameter–type–list is 1. From the listing below, the identifier x declared on line
1 is outside any block; therefore, EiC will automatically assign it to level ‘file scope’, 1.
This variable is active only on those lines that end with /* scope level 1 */. This is
because it gets masked by the identifier x declared on line 5 and is active only on the lines
ending with /* scope level 2 */. The x identifier declared on line 5 is also masked by
the next identifier x declared on line 8. This latter identifier is active only at scope level
3. In contrast, identifier y declared on line 1 is active or visible from the location of its
declaration to the end of the listing.

1 int x,y; /* scope level 1 */

2 ... /* scope level 1 */

3.6. NAME SPACE 53

3 int foo(void) /* scope level 1, parmater list at level 2 */

4 { /* scope level 2 */

5 float x; /* scope level 2 */

6 ... /* scope level 2 */

7 { /* scope level 3 */

8 int x; /* scope level 3 */

9 ... /* scope level 3 */

10 } /* scope level 2 */

11 ... /* scope level 2 */

12 } /* scope level 1 */

13 ... /* scope level 1 */

Thus, a block can be seen as a form of a name-less, parameter-less function. However,
functions, unlike blocks, can not be nested.

Note: macro definitions are scope less. Macros are always visible and can never be
masked by another identifier or macro. However, a macro can mask an identifier.

3.6 Name Space

In C, identifiers are grouped into at least four name spaces: 1) variables names, 2) struc-
ture, union and enumeration tag names, 3) labels for goto statements and 4) structures
and unions have their own area for member names. However, functions don’t have a
separate name space for parameters or local variables; these variables are handled using
scope rules. Also, the same identifier can exist in different name spaces without causing
conflicts as shown by the following:

struct node {

int node;

} node;

node:

goto node;

The first occurrence of the identifier node is entered into the tag-name space. The
second occurrence is entered into the structure-member name space for the structure node,
which in turn is entered into the variable-name space. The fourth occurence of node is
entered into name space for labels.

Also, in EiC, there is a separate name space for EiC command identifiers. Having
a separate name space for EiC command names allows the use of these names to be
overloaded as identifiers for objects and functions:

54 CHAPTER 3. EIC’S C SPECIFICATIONS

EiC > int show;

(void)

EiC > :show show

show -> int

(void)

Hence, the eic-command show does not get confused with the identifier show.

3.7 Comments

Under standard conditions, EiC just allows two styles of comments: the traditional ISO
C style comment /*...*/ plus the C++ style of comments. A sequence of characters in
the input stream beginning with /* and ending with */ or beginning with // and ending
at the end of the current source line constitutes a comment in EiC. The traditional style
of comment /*...*/ cannot be nested but because the // is not recognized inside the
traditional comment, nesting can be indirectly achieved via:

/*

int any; // this number will hold anything

...

*/

However, the #if 0 ... #endif construct is often a more preferable way of disabling
large sections of code from being translated.

EiC strips out all standard comments automatically from the input stream before pre-
processing and they are replaced by a single space character; for example a/* a comment */b

will be replaced by a b. Comments are not recognized within quotation marks; that is,
a string literal (see § 3.9.4, pg: 58); nor within character literals (see § 3.9.3, pg: 57).
However, both string and character literals can occur within a comment.

Also, when EiC is run in script mode (see § 1.2.7, pg: 11) it treats all lines that start
with ‘#’ and which can’t be interpreted as a preprocessor directive as a comment.

3.8 Keywords

The following identifiers are reserved:

3.9. CONSTANTS 55

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short safe signed sizeof

static struct switch typedef

union unsafe unsigned void

volatile while eiclongjmp eicsetjmp

3.9 Constants

The following constants are recognized by EiC:

constant:

int-const

float-const

char-const

string-const

Also, the value of a numeric constant is always positive. Any minus sign present is not
considered part of the constant: it is part of an unary expression and not of the constant
itself. Below are descriptions and the syntax for the various literal classes recognized by
EiC.

3.9.1 Integer Constants

An integer constant consists of a sequence of digit types. If the sequence begins with zero
then the input number is expected to be in hexadecimal or octal format depending on
whether the next input character is the letter x, X or a digit. Hexadecimal numbers also
include the letters a or A to f or F.

Immediately following the numeric part of an integer literal can be the optional integer
suffix, which consists of u or U to indicate that the number is unsigned and/or l or L to
indicate that the number is long.

The type of an integer literal whether it is long or unsigned will depend on its form
and suffix. Unless otherwise specified, if an int can represent the value of the original
type then it will be converted to an int; A decimal constant whose value exceeds the
largest signed machine integer is taken to be long or unsigned long, which ever fits
first. Likewise, an octal or hex constant that exceeds the largest signed machine integer
is likewise taken as an unsigned int, a long or an unsigned long, which ever fits first.

56 CHAPTER 3. EIC’S C SPECIFICATIONS

int-const:

nonzero-digit digit∗ [int-suffix]
0 hex-octal-const [int-suffix]

hex-octal-const:

hex-const

octal-const

octal-const:

octal-digit∗

hex-const:

[x, X] hex-digit∗

int-suffix:

long-suffix [unsigned-suffix]
unsigned-suffix [long-suffix]

long-suffix: one of

l L

unsigned-suffix: one of

u U

hex-digit: one of

digit A B C D E F a b c d e f

octal-digit: one of

0 1 2 3 4 5 6 7

nonzero-digit: one of

1 2 3 4 5 6 7 8 9

digit: one of

0 1 2 3 4 5 6 7 8 9

The limits on integer constants are stored in the header file limits.h

3.9.2 Floating Point Constants

A floating–point constant may consist of a decimal point, an exponent or both. A float-

suffix can be used to specify the type of the constant: f or F for float; l or L for long
double, which in EiC is identical to double. Unless specified, a floating-point constant
will be of type double:

3.9. CONSTANTS 57

float-const:

digit-seq f-float-const

. digit-seq [exp] [float-suffix]
f-float-const:

. [digit-seq] [exp] [float-suffix]
exp [float-suffix]
float-suffix

float-suffix: one of

f F l L

exp:

[e, E] [sign] digit-seq

sign: one of

+ -

digit-seq:

[digit]+

The floating point limits are stored in the header float.h.

3.9.3 Character Constants

Character constants are represented by one or more characters enclosed in single quotes;
such as, ’\n’ or ’n’. Character constants are of type int. The value of a single character
constant is its ASCII value; for example, ’A’ == 65 and ’B’ == 66. The following set
of control characters is recognized:

new line \n backslash \\
horizontal tab \t question mark \?
veritcal tab \v single quote \’
backspace \b double quote \’’
carriage return \r octal number \000
fromfeed \f hex number \xhh
bell \a hex number \Xhh

As seen from the above table, octal and hexidecimal numbers can also be used to form
character constants; for example, ’\377’ == ’\xff’ == -1:

58 CHAPTER 3. EIC’S C SPECIFICATIONS

char-const:

’c-char+’

c-char:

any character other than a single quote or backslash

escape-sequence

escape-sequence: one of

\n \t \b \r \f \v
\\ \’ \’’ \a \? \0
\00 \000 \xh \xhh \xhhh
\Xh \Xhh \Xhhh

h:

hex-digit

0:

octal-digit

ISO C allows for an extended character set or a wide character set; that is, characters
that cannot be represented by the char type. EiC does not recognize this set of
characters.

♠

3.9.4 String Constants

A string constant is possibly a zero length array of characters enclosed in double quotes.
Its type and storage is initially static char [] that eventually gets cast to char * and
unless it is used as an argument to the sizeof operator. Its syntax is:

string-const:

"[s-char]∗"
s-char:

any character except the double quote, backslash or newline

escape-sequence

The double quote, backslash or newline characters are included into string constants
by using the escape code mechanism:

printf("%s %s","hello","\"hello\"");

prints:

hello "hello"

Adjacent string constants separated only by white space are concatenated prior to
parsing; this is a handy feature as it makes it easy to construct formated output with
added efficiency of just a single function call:

3.10. EXTERNAL DECLARATION 59

puts("this is line 1\n"

"this is line 2");

A string can also be continued via the use of the backslash character \:

puts("this is line 1 \

this is also line 1");

The output from the above call to puts shows that the backslash and the newline
characters are ignored but that the whitespace on the continuation line is not:

this is line 1 this is also line 1

String constants are stored in a null terminated sequential block of characters as seen
for the string “Hello, world!”:

H e l l o , w o r l d ! 0

String constants can be fed into the sizeof operator, which will return the number of
characters spaces assigned to the array; For example sizeof("Hello, world!"); returns
14 and not 13 the number of characters in the array. String constants can be used to
initialize an array of characters or pointers to characters:

char str[] = "this is an array of characters";

char *pstr = "this is a pointer to an array of characters";

Note: sizeof(str) = 31, while sizeof(pstr) = 4, which is the size of a pointer on
my system at the time of writing this document.

Wide strings: EiC does not recognize wide strings; that is, a string constants
prefixed with the letter L.

3.10 External declaration

In the following sections the notion for a definition and a declaration will be presented.
As a word of introduction, a definition is a declaration that reserves storage for a given
C object – otherwise the declaration is just a reference symbol.

C’s external declaration ext-decl consists of a sequence of external declarations that
can be either a C declaration, declaration, or a function definition, func-def; that is:

ext-decl:

declaration

func-def

The discussion of function definitions will be deferred till § 3.17, pg: 84.

60 CHAPTER 3. EIC’S C SPECIFICATIONS

3.11 Declarations

EiC’s syntax for the C declaration has the form:

decl:

decl-spec [init-decl-list]
decl-spec:

storage-class [decl-spec]
type-spec [decl-spec]
type-qual [decl-spec]

init-decl-list:

init-decl [, init-decl-list]∗

init-decl:

declarator [= initialiser]

A C declaration decl begins with one or more specifiers, decl-spec, in any order and
is normally followed by the optional initial declarator list init-decl-list. For example,
consider the following declaration for the identifier cd:

storage−class
︷ ︸︸ ︷

extern

type−spec
︷ ︸︸ ︷

long int unsigned

type−qual
︷ ︸︸ ︷

const
︸ ︷︷ ︸

decl−spec

declarator
︷ ︸︸ ︷

cd[2] =

initialiser
︷ ︸︸ ︷

{25, 55}
︸ ︷︷ ︸

init−decl−list

;

Because of the vast number of data types, constructors and semantics associated with
a C declaration, declarations are by far the most difficult part of the C programming
language to parse. Furthermore, a re-declaration of an identifier is NOT illegal as long as
both declarations remain compatible:

int i,i; // okay, compatible declarations

extern float a[], a[10]; // okay, 2nd declaration adds more info

int i; float i; // error: Ambiguous re-declaration for i

However, according to ISO standards, the re-definition of a function is illegal. If EiC
was to adopt this recommendation, as is, EiC users would have to laboriously remove all
the function definitions from the scope of the EiC interpreter (see § 1.3.1, pg: 21) before
re-including a source file after each editing task. For example, consider the source file
foobar.c, which contains only the function definitions for foo1 and foo2:

EiC> #include foobar.c // first time

EiC> :rm foo1, foo2 // Now, remove foo1 and foo2 from EiC

EiC> #include foobar.c // Next, include foobar.c a 2nd time

3.12. TYPE SPECIFIERS 61

This is obviously problematic, since all the functions defined in foobar.c must be
specified for their removal. Therefore, if all function definitions remain compatible (i.e.,
have the same name, return the same type and accept the same arguments) EiC will
simply warn about each functions redefinition:

EiC> #include foobar.c // first time

EiC> #include foobar.c // 2nd time

Warning: in foobar.c near line 5: Function Re-definition of foo1

Warning: in foobar.c near line 20: Function Re-definition of foo2

Note, that with the preprocessor directive #include, the file name was not surrounded
by quotes or angled brackets, see § 2.6, pg: 42 for an explanation.

3.12 Type specifiers

The C language provides a large number of built in types. Type specifiers attribute
various properties to a C object. There are the following basic data types:

type-spec: one of

void char short int

long float double

signed unsigned

enum-spec

struct-or-union

typedef-name

3.12.1 char, short, int and long specifiers

The char, short, int and long specifiers form what are known as the integral types. A
char or short may be used in place of an integer and in all cases they will be automatically
cast to an integer.

The integral types all have essentially different word lengths and they are signed types;
that is, their values by default will range from negative to positive. The int specifier in
particular is very rubbery. It size can vary in number of bytes and this length will be
machine specific. The Table below provides some basic information regarding EiC integral
types:

62 CHAPTER 3. EIC’S C SPECIFICATIONS

Type Specifier length in bytes Range Example
char 1 -128 to 127 char x;

unsigned char 1 0 to 255 unsigned char x;

short 2 -32768 to 32767 short x; or short int x;

unsigned short 2 0 to 65535 unsigned short x;

int 4 -2147483648 to 2147483647 int x;

unsigned int 4 0 to 4294967295 unsigned x;

long 4 -2147483648 to 2147483647 long x; or long int x;

unsigned long 4 0 to 4294967295 unsigned long x;

Fortunately these limits are specified in the standard C library header file "limits.h"
(see § 4.1.5, pg: 110):

#include <stdio.h>

#include <limits.h>

int main(void)

{

printf(" CHAR_MIN = %12d, CHAR_MAX = %12d\n", CHAR_MIN,CHAR_MAX);

printf(" SHRT_MIN = %12d, SHRT_MAX = %12d\n", SHRT_MIN,SHRT_MAX);

printf(" INT_MIN = %12d, INT_MAX = %12d\n", INT_MIN, INT_MAX);

printf(" LONG_MIN = %12ld, LONG_MAX = %12ld\n",LONG_MIN,LONG_MAX);

printf("UCHAR_MAX = %12d\n",UCHAR_MAX);

printf("USHRT_MAX = %12d\n",USHRT_MAX);

printf(" UINT_MAX = %12u\n", UINT_MAX);

printf(" LONG_MAX = %12d\n", LONG_MAX);

return 0;

}

3.12.2 The enum type specifier

The enumeration specifier allows for the definition of a set of constant integer values to
be easily associated with a set of names. The syntax for the enumeration specifier is:

enum-spec:

enum [id] {enum-list}
enum id

enum-list:

enumerator

enum-list , enumerator

enumerator:

id

id = const-expr

and from which it is easy to see a similarity with the structure or union specifier (see:
§ 3.12.8, pg: 72):

3.12. TYPE SPECIFIERS 63

enum {RED, GREEN, BLUE};

The enumeration specifier associates the manifest constants RED, GREEN and BLUE
with the values 0, 1, and 2 respectively. They are automatically assigned values sequen-
tially starting from zero. The intention here is to make more readable and more easy to
produce code than via the preprocessor #define directive (§ 2.2, pg: 36):

#define RED 0

#define GREEN 1

#define BLUE 2

There is also the optional enumeration tag name and enumeration variables:

enum

tag−name
︷︸︸︷

rgb

constants
︷ ︸︸ ︷

{RED, GREEN, BLUE}

variables
︷ ︸︸ ︷

colour1, colour2;

where the intention is that the tag name will be used to define new variables and the
variables will only be assigned the values RED, GREEN, or BLUE:

enum rgb mycolour, yourcolour;

mycolour = RED;

yourcolour = BLUE;

It is also possible to initialize the enumeration constants to predefined values using a
constant expression of integral type:

enum { RED, GREEN = 13, BLUE };

Now, RED will be assigned 0, GREEN 13 and BLUE 14.
In EiC the enumeration constants are treated as normal integer constant and enumer-

ation variables are treated as plain integers. Further, EiC performs no type checking to
prevent enumerated types and integers types from mixing. Anywhere an integer expres-
sion can be used an enumeration constant or enumeration variable can also be used.

Enumeration tag names occupy a different name space than do normal variable names.
Therefore, such identifiers can be used at the same scope level for other objects without
causing conflicts – although such practices lead to obscure code it is legal:

enum rgb mycolour, yourcolour;

int rgb; /* okay, different name space */

At the same scope level, enumeration constant and variables names must all be unique
and an enumeration constant or variables within an inner block can mask declarations
defined in outer blocks:

64 CHAPTER 3. EIC’S C SPECIFICATIONS

...

int RED = 5;

{

enum {RED = 0, GREEN, BLUE};

assert(RED == 0};

}

assert(RED == 5);

3.12.3 float and double specifiers

The specifiers float and double form the floating point objects. ISO C supports three
types of floating point objects: float, double and long double. EiC handles long

doubles as ordinary doubles.
The float specifier is a single-precision floating point number, while the double spec-

ifier is a double-precision floating point number. Floating point objects are always signed
and they have fractional and exponent parts. Scientific notation for floating types is used:
2.22e5 represents the value 222000, where the ‘e’ or ‘E’ notation indicates how many po-
sitions to move the decimal point left or right depending on the sign of the exponent; for
example, 2.22e-5 represents the number 0.000022. All floating point values are stored in
normalized form. For example, 0.000123 wastes three zeros on the left of the number that
has no meaning except to indicate the position of the decimal point. Normalizing this
number gives 1.23e-4 and can be represent by M × bk, where M represents the mantissa
or significand, bk the exponent and b the radix. However, in C a more extensive model is
used to represent normalized floating point values (see section § 4.1.4, pg: 109).

The floating point equivalent to "limits.h" is the standard C header file "float.h",
which provides for all the values that characterize the floating-point types. But as a
quick, but non-exhaustive, summary: in EiC the floating point objects have the following
specification:

Type Specifier length in bytes Range Example

float 4 1.175494E-38 to 3.402823E+38 float x;

double 8 2.225074E-308 to 1.797693E+308 double x;

long double 8 2.225074E-308 to 1.797693E+308 long double x;

and can be verified via the following code:

#include <stdio.h>

#include <float.h>

int main(void)

{

printf(" FLT_MIN = %E, FLT_MAX = %E\n",FLT_MIN, FLT_MAX);

3.12. TYPE SPECIFIERS 65

printf(" DBL_MIN = %E, DBL_MAX = %E\n",DBL_MIN, DBL_MAX);

printf("LDBL_MIN = %E, LDBL_MAX = %E\n",LDBL_MIN,LDBL_MAX);

return 0;

}

3.12.4 Pointer types

Syntax:

pointer:

* [pointer-qual-list]
* [pointer-qual-list] pointer

pointer-qual-list:

type-qual-list [pointer-qual]
pointer-qual [type-qual-list]

type-qual-list:

type-qual

type-qual-list type-qual

pointer-qual: one of

safe unsafe

type-qual: one of

volatile const

Addresses that are stored in memory are called pointers and the general concept is
simple: a pointer is an integral value containing the address of some other object. It
specifies the memory location where the data associated with the object can be found.
Some people claim that once you have mastered pointers you have mastered C; this is
clearly an oversimplification, but does highlight the importance of understanding pointers.
The declaration:

int *p; /* p is a pointer to an integer */

declares p to be a pointer to an integer.
When working with object addresses, the two important operators are: the address

operator & and the indirection operator *. They are the inverse of each other; that is:

assert(p == *&p);

As seen above, the indirection operator when used in a declaration specifies that the
identifier is a pointer. The number of * used in a declaration determines the level of
indirection; for example, to declare a pointer to a pointer to an int, the token *, must be
used twice (in EiC, there is no limit to the number of indirections that can be applied):

66 CHAPTER 3. EIC’S C SPECIFICATIONS

int **q;

The & can be applied to only variables and array elements. If x is an integer then we can
assign the address of x to p:

p = &x;

Now the indirection operator can be used to obtain the value stored at x, via p:

assert(*p == x);

In general, if p points to object x then *p can appear anywhere it is legal for object x
to appear.

3.12.5 Pointer Qualifiers

EiC has safe and unsafe pointer qualifiers. Pointer qualifiers are designed to allow the
creation of interface routines to embedded C code, which accept as arguments: arrays of
pointers or structures that have pointer members. For example:

int * safe p;

defines p to be a safe pointer and is the standard pointer type in EiC. The default pointer-
qualifier type can be controlled by the use of EiC’s #pragma directive, see § 3.12.5, pg: 67.
The following:

int * unsafe p;

defines p to be an unsafe pointer, which is the standard pointer type in C.
In EiC, all pointers are handled as safe much like all floats are handled as doubles

and chars are handled as ints. Safe pointers are stored with lower and upper bound
information that specify a range of legal values, see also § 3.12.7, pg: 71. Thus, the storage
requirement is obviously greater for a safe pointer than an unsafe pointer.

The following rules apply to EiC pointers. It is illegal to cast between safe an unsafe

pointer addresses:

EiC 1> int * * safe p;

EiC 2> int * * unsafe q;

EiC 3> p = q;

Error in ::EiC:: near line 3: Casting between safe and unsafe address

This is because the storage requirement of a safe pointer is different to that required
for an unsafe pointer. In C, casts are freely allowed between any object pointer and a
void pointer. For example:

3.12. TYPE SPECIFIERS 67

EiC 1> int ***p, **d; void *q;

EiC 2> p = q;

EiC 3> p = d;

Warning: in ::EiC:: near line 3: Suspicious pointer conversion

Therefore, it is legal to cast an usafe or a safe pointer to and from any void pointer.
However, the bounds of a safe pointer will be lost via casting it to an unsafe pointer
and back again. It is also legal to make casts between a safe and an unsafe pointer:

EiC 1> int * safe p;

EiC 2> int * unsafe q;

EiC 3> p = q;

A safe pointer is converted to an unsafe pointer by discarding the additional safe-
pointer information and this is done when the unsafe pointer is written to memory.
Likewise, an unsafe pointer is converted to a safe pointer by setting the safe pointer’s
lower and upper bound values to zero and infinity repectively. Note, casting an unsafe

pointer to a safe pointer does not create a safe pointer.

Pointer Pragmas

The default pointer type qualifier can be controlled via the use of three pragmas that
work on a stack principle:

#pragma push_safeptr // default pointer type will be safe

#pragma push_unsafeptr // default pointer type will be unsafe

#pragma pop_ptr // return to previous pointer type

The default pointer state in EiC is safe; for example:

EiC 1> int *p; // defines a safe pointer

EiC 2> #pragma push_unsafeptr

EiC 3> int *q // defines an unsafe pointer

EiC 4> #pragma pop_ptr // return to previous pointer state

Pointer Arithmetic

If object x is of size s in bytes then adding or subtracting the integral value i to p (i.e.,
p = p ± i) causes i × s to be added or subtracted to or from the value stored at p.

The relationship between arrays and pointers are easily seen via an example:

68 CHAPTER 3. EIC’S C SPECIFICATIONS

int *p, a[100];

p = &a[0]; /* point to the beginning of the block */

assert(*(p+20) == a[20]);

Note: In C, if the resulting pointer, p+x, points outside the bounds of a legal array,
except for the first location beyond the end of the array, the result is undefined. However,
it is also legal for a pointer to point to NULL.

It is common to use the increment,++, or deincrement, --, operator on pointers for
skipping through the values of an array sequentially:

...

p = &a[0];

for(i=0;i<sizeof(a)/sizeof(int);++i)

*p++ = i * i;

assert(a[2] == 4);

Note, while there is no array bounds checking in C and the behaviour of addressing
values beyond the limits of an array is strickly undefined, EiC attempts to be pointer safe
(see section § 3.12.7, pg: 71).

The difference between two pointers, of the same class, will result in an integral value
that represents the number of objects between the two address:

assert((p+1)-p == 1);

In EiC, as for ISO C, the difference is represented as the signed integral type ptrdiff t
defined in stddef.h (section § 4.1.10, pg: 117). It is illegal to add or multiple two pointers
together. An integral value can be subtracted from or added to a pointer but it is illegal
to subtract a pointer from an integral value:

...

int *p, *q;

p+20; /* okay: results in the address of the 21st object*/

20+p; /* okay: results in an address */

p - 10; /* okay: results in an address */

p - q; /* okay: results in an integer */

p * q; /* error: incompatible types */

p+q; /* error: incompatible types */

10 - p; /* error: incompatible types */

Certain conversions are permitted. Pointers can be assigned to pointers of a different
class, but without an explicit cast, EiC will issue a warning and a pointer can be cast
explicitly to an integral value:

int *p; char * c;

3.12. TYPE SPECIFIERS 69

...

p = c; /* warning: Suspicious pointer conversion */

p = (int *)c; /* okay */

printf("%p %ld",p, (long)p);

Any pointer can be compared with the integral value 0 and without the use of a cast:

#define NULL 0

...

if(p == NULL)

...

3.12.6 Void types

The concept of no value, or no argument, is expressed through the use of the void specifier.
For example, a function that returns no value and receives no arguments would be declared
as:

void f(void) { printf("Hello, world!\n");}

Also, in EiC, as for ISO C, there exists the void pointer. A void pointer is a generic
pointer and any pointer to any object may be converted to a void pointer without a cast:

int *p; void * q;

q = p; /* okay */

In EiC, pointers may be assigned to and from void pointers and may be compared to
them without the use of an explicit cast.

3.12.7 Array types

An array is a sequences of objects of the same type. For example, an array of 10 floats is
defined as:

float ar[10];

where the array begins with index zero and its elements are referenced via a primary
expression: ar[0], ar[1], . . . , ar[9] and the subscripts must be of an integral type.
Further, arrays cannot be constructed from void types or functions.

EiC supports multidimensional arrays and there is no artificial limit on the number
of dimensions that can be used nor on the physical size of an array. Array sizes are
only limited by the amount of memory available. Multidimensional arrays are declared
as arrays of arrays (which should not be confused with an array of pointers to arrays):

70 CHAPTER 3. EIC’S C SPECIFICATIONS

int a3d[3][5][10];

The array a3d contains 3 planes of 5 rows of 10 columns of integers. Its type is an array
of 3 arrays of 5 arrays of 10 integers. Array elements are stored in a block of consecutive
storage in row-major form and the last subscript varies the fastest.

It is useful to remember that array names are effectively treated as pointer constants
except when used as an operand to the sizeof operator: a3d will evaluate to the address
of the first element of the array – with type pointer to an array of 5 arrays of 10 integers;
a3d[i] will evaluate to the address of the first element in ith plane – with type pointer
to array of 10 integers; a3d[i][j] will evaluate to the address of the first element in the
jth row of the ith plane – with type pointer to integer; and a3d[i][j][k] will evaluate
to the kth element in the jth row of the ith plane – with type integer.

The sizeof operator when applied to an array returns the size of the entire array in
bytes and not the size of a pointer:

assert(sizeof a3d == 3 * 5 * 10 * sizeof(int));

assert(sizeof a3d[0] == 5 * 10 * sizeof(int));

assert(sizeof a3d[0][0] == 10 * sizeof(int));

assert(sizeof a3d[0][0][0] == sizeof(int));

In general, to obtain the address of individual elements within an array the address
operator & is used and &a3d[i][j][k] will evaluate to the address of the kth element in
the jth row of the ith plane.

In EiC, X[y] is identical to y[X]. This is because the expression X[y] is identical to
*(X+y), which is identical to *(y+X):

assert(a3d[2] == 2[a3d]);

Extending this notation to the next dimension shows that X[y][z] is identical to
((X+y)+z) and so forth.

Incomplete Arrays

In C, an incomplete array is an array whose size is not defined. It can only be referred to
and only the first dimension may be missing. It size must be completed by a definition
or by initialization:

extern int a[]; /* declaration */

int a[5]; /* definition */

int A[][2] = { {0,1}, {1,2}, {2,3} };

int B[] = { 0,1,2,3,4,5,6,7,8,9};

Note, for 32-bit integers, sizeof(A) = 24, sizeof(A)/sizeof(int) = 6, sizeof(B)
= 40 and sizeof(B)/sizeof(int) = 10.

3.12. TYPE SPECIFIERS 71

Array Bound Checking

EiC is pointer safe. This means EiC catches most array bound violations; for example:

EiC 1> int a[10], *p, i;

EiC 2> a[10];

READ: attempted beyond allowed access area

...

EiC 3> p = &a[5];

EiC 4> p[-5];

EiC 5> p[-6];

READ: attempted before allowed access area

...

EiC 6> p[4];

EiC 7> p[5];

READ: attempted beyond allowed access area

...

EiC 8> *(p+100);

READ: attempted beyond allowed access area

...

EiC 9> p = malloc(5*sizeof(int));

EiC 10> *(p+100);

READ: attempted beyond allowed access area

...

EiC 11> for(i=0;i<100;i++) *p++ = i;

WRITE: attempted beyond allowed access area

EiC does this through inheritance. When arrays are allocated or memory is allocated
by malloc etc, the size of the allocated piece of memory is known and retained. This
information is passed along during assignments etc. For example, in the assignment
p = &a[5], p not only gets assigned the address of a[5], it also inherits a’s range.

To detect array bound violations as efficiently as possible, EiC does not concern it self
with the values held or produced by pointers, it worries about address values only when
pointers are either referenced or dereferenced:

EiC 1> int a, *p;

EiC 2> p = &a;

EiC 3> (p+10); // okay, no problems

EiC 4> *(p+10); // but just try to read or write to the address

READ: attempted beyond allowed access area

...

72 CHAPTER 3. EIC’S C SPECIFICATIONS

3.12.8 Structures and Unions

A structure is an instance of a sequence of named data types collected into a template –
analogous to a Pascal record. A union is a data type that is similar to a structure but at
most will contain only on member of its aggregation – it is handy for declaring a variable
that may contain different types at different times. Structures and unions provide the
way of extending the number of data types available.

Syntax:

st-un-spec:

st-un [id] { s-decl-list }
st-un id

st-un: one of

struct union

s-decl-list:

st-decl

s-decl-list st-decl

st-decl:

spec-qual-list spec-declor-list ;

spec-qual-list:

type-spec [spec-qual-list]
type-qual [spec-qual-list]

spec-declor-list:

st-declor

spec-declor-list , st-declor

st-declor:

decl

[decl] : const-expr

The underlined section in the above syntax, indicates that EiC does not support
structure bit fields. The identifier, id, in the structure or union specifier st-un-spec is
the tag name for the structure or union and each tag name must be unique. The scope
of the tag will extend to the end of the block in which it is defined (see § 3.5, pg: 52).
Note, tag names exist in a different name space from other variables. In ISO C, identifiers
are grouped into at least four name spaces: 1) variables names, 2) structure, union and
enumeration tag names, 3) labels for goto statements and 4) structures and unions have
their own area for member names. See § 3.6, pg: 53 for further information.

st−un
︷ ︸︸ ︷

struct

id
︷ ︸︸ ︷

stag {

s−decl−list
︷ ︸︸ ︷

int x; }

variables
︷ ︸︸ ︷

s1, s2 ;

3.12. TYPE SPECIFIERS 73

The above definition declares a structure template, which contains just one member
of type integer named x. Members can be any object type, including other structures or
unions, but they can’t be functions. A given member name may appear only once in any
given structure or union. The above declaration also defines two variables s1 and s2 and
the type specifier struct stag.

The type specifier struct stag can now be used to declare further variables:

struct stag a, b, *c;

where a and b are structure variables; and c is a pointer to a structure of type struct

stag.
If the production st-un id is used without the preceding { st-decl-list }:

struct node;

an incomplete type is specified. A structure or union may not contain a member of
incomplete type; that is an object of unknown size, but they can contain pointers to
incomplete types; one advantage of this is in forward referencing – when for example,
creating linked lists:

struct node {

int a;

struct node * next;

};

A structure or a union without a tag will form a unique type that can only be used
in context of its declaration (however, see also the discussion below concerning structure
and union compatibility):

struct {

struct node *list;

int count;

} head;

Although typedef names will be discussed in detail in § 3.12.9, pg: 78 they are of
interest here because they provide a handy way to form structure or union type specifiers:

typedef struct node {

int a;

struct node * next;

} node;

74 CHAPTER 3. EIC’S C SPECIFICATIONS

The typedef-name node may appear anywhere the type specifier struct node can.
Note, the first occurrence of the identifier node is entered into the tag-name space while
the third is entered into the common variable name space. As these identifies exist in
different name spaces they cause no conflicts (because context can be used to disambiguate
their proper usage):

struct node a;

node b;

The above variables a and b are of the same type.

Structure and Union compatibility

Generally, each declaration for a structure or union type specifier creates a new type,
which is not compatible with any other type specifier. For example, in ISO C, the following
variables x and y are different:

struct {int x, y;} x;

struct {int x, y;} y;

This means that, in ISO C, the following is illegal:

struct {int x, y;} x;

struct {int x, y;} x; // error: re declaration of variable ‘x’.

Because EiC is interactive, it needs to be more flexible than this, so it defines that
two structures or unions to be compatible if they have the same type specifier or if they
contain the same number of members of the same type, with the same names and in the
same order. Hence, the re-declaration of variable x is not considered an error by EiC, and
from the example before the last, the variables x and y are considered to be compatible.
This definition is comparable to the ISO C definition for compatibility of structures or
unions declared in separate source files.

Structure and Union assignment

Structures and unions can form modifiable lvalue expressions (if they have not been
defined as constants or have members which have a const qualifier); that is, they can
appear on the left-hand side of an assignment:

...

typedef struct { int a, b;} ab_t;

ab_t a1, b1;

3.12. TYPE SPECIFIERS 75

const ab_t a;

a = a1; // error: Illegal assignment operation

a1 = b1; // okay: copy the contents of b1 into a1, but b1 and a1

// must be compatible

...

Initialization of Structures

The members of a structure can be initialized from the members of a compatible struc-
ture, ab_t c = a1, or from a brace inclosed list of constant expression initializers in
order of the members: ab_t c = {5,10}. If there are fewer initializers than members,
then the trailing members will be initialized to zero: ab_t c = {5}, is equivalent to
ab_t c = {5,0}.

An array of structures can be initialized:

int f() {return 1;}

int i1 = 1,i2 = 2,i3 = 3;

struct {

int *v;

int (*p)();

}arg[3] = { {&i1,f}, {&i2,f}, {&i3,f}};

The inner sets of braces in this instance could have been dropped. However, the intention
is clearer if they are retained.

Initialization of Unions

A union can be initialized from another compatible union or by a constant expression
but the constant expression initializer must be brace-enclosed and be compatible with the
first member of the union.

union {

char a;

int b;

float c;

}un[3] = { {’a’}, {’b’}, {’c’}};

assert(un[0].a == ’a’ && un[1].a == ’b’ && un[2].a == ’c’);

Note, that assigning to one element of a union makes all other elements have undefined
values.

76 CHAPTER 3. EIC’S C SPECIFICATIONS

Structure and Union member access

The members of a structure or union are referred to by the selection operators . and ->,
which is a minus sign followed by >; for example:

struct {int a,b;} a, *b;

b = &a; // address operation

a.a = 5;

assert(b->a == a.a);

The operators . and -> connects the structure name to a particular member and it
is an error to reference a member of a structure or union that does not appear in the
template of the structure or union.

Since b is a pointer to a structure the dereferenced type is a structure:

assert(b->a == (*b).a);

Structures and unions can be returned from functions:

EiC 1> typedef struct {int a;} a_t;

EiC 2> a_t f(void) { a_t a = {5}; return a;}

EiC 3> f().a;

5

EiC 4> f().a = 5;

Error in ::EiC:: near line 4: Illegal assignment operation

However, as can be seen from the previous example, they are not lvalues since they cannot
appear on the left hand side of an assignment operator. Generally, a.y will form an lvalue
if a is an lvalue and y is not an array identifier. A conditional operator, a comma operator
or even an assignment operator can be used to produce a structure or union that is not
an lvalue; for example:

EiC 1> int i = 2; struct {int a;} a = {15}, b = {69};

EiC 2> (i,b).a; // comma operator

69

EiC 3> (i,b).a = 6;

Error in ::EiC:: near line 3: Illegal assignment operation

EiC 4> (i == 2 ? a:b).a; // conditional operator

15

EiC 5> (i == 2 ? a:b).a = 5;

Error in ::EiC:: near line 5: Illegal assignment operation

3.12. TYPE SPECIFIERS 77

EiC 6> (a=b).a; // assignment operator

69

EiC 7> (a=b).a = 5;

Error in ::EiC:: near line 7: Illegal assignment operation

Structures and Unions as parameters

Structures and unions are passed as arguments to functions by value:

EiC 1> #include <assert.h>

EiC 2> typedef struct {int a;} a_t;

EiC 3> int f(a_t a) { a.a++; return a.a;}

EiC 4> a_t a = {5};

EiC 5> assert(f(a) == a.a + 1);

However, it is generally more expedient, because a copy of the object does not have
to be created, and more commonly practiced to pass structures and unions to functions
by reference using a pointer:

EiC 6> :rm f // remove f, before re declaration of new type

EiC 7> int f(a_t *a) { return a->a;}

EiC 8> assert(f(&a) == a.a);

Structure and Union layout

The members of a structure have addresses offset from the beginning of the structure that
increase in order of declaration. The members of a union all begin at offset 0. Hence, the
size of a union is equal to the size of its largest member. The address of a structure or a
union coincides with the address of the first member:

EiC 1> #include <assert.h>

EiC 2> struct {char a; double x;} a;

EiC 3> char *p = (char *)&a;

EiC 4> assert(*p == a.a);

Often padding may appear between the members. This is know as the alignment
problem; for example:

EiC 5> sizeof(a);

12

EiC 6> sizeof(char) + sizeof(double);

9

78 CHAPTER 3. EIC’S C SPECIFICATIONS

This occurs because on my system doubles must be aligned so that their address is
a multiple of 4. On other systems this maybe 1, 8, etc. Padding can occur anywhere
except at the beginning of a structure. In EiC, the padding occurs between consecutive
members. The alignment of a union or a structure is equal to the maximum alignment of
its members.

3.12.9 Typedef-name specifier

The typedef-name facility introduces synonyms for other type specifiers. It defines identi-
fiers for types.

Syntax:

typedef-name:

id

Declaring an identifier as a type allows that identifier to be used anywhere the original
type-specifier could. However, it can’t be mixed with other type-specifiers:

typedef float A[3]; // A is an array of 3 floats

typedef int B[]; // B is an array of int

A *pa; // pa is a pointer to an array of 3 floats

B *p[2]; // p is a 2-element array of pointers to

// arrays of int of unspecified size

A typedef-name can be masked by the redefinition of its identifier at a higher scope
level and on scope reentry the original typedef-name will again be visible:

typedef short S;

...

{

char *S; // new definition for S okay

...

}

It is illegal to mix a typedef-name with other type specifiers:

typedef char string[80];

unsigned string a; // error: invalid type specification

Typedef-names can be used to specify the return type of a function:

3.13. STORAGE CLASS 79

EiC 1> typedef short (*S)(int x, int y);

EiC 2> S f(void);

EiC 3> :show f

f -> dec_Func (

void

) returning * dec_Func (

x: int ,

y: int

) returning short

The above shows that f is a prototype declaration for a function that has a void

parameter and returns a pointer to a function that returns a short integer and has two
integer parameters named x and y.

3.13 Storage Class

Syntax:

store-class: one of

auto extern register static typedef

In EiC, as for ISO C, it is expected, but not compulsory, that the storage class of
an object precedes other forms of declaration specifiers. Each object can have only one
storage class specifier and with the exception of the storage class typedef, it determines
an identifier’s scope or extent(§ 3.5, pg: 52) and linkage.

auto: Automatic objects are local to the block that they are declared in. All objects declared
within a block have by default automatic storage class unless otherwise specified. It is
an error to declare a variable automatic outside a block – at the level of the function
definition – and redundant to do so within a block.

auto int i; // error: Illegal storage class usage

{

auto int i; // okay

}

register: Automatic objects can be declared as a register, with the intention of being stored
for fast access, but unlike the auto storage class, they can be used in parameters
declarations. However, as EiC’s virtual machine is stack based and not register based,
declaring an automatic object to have storage class register – although allowed –
has no real meaning. According to ISO standards it is illegal to take the address of a
register object and thus EiC enforces this rule:

80 CHAPTER 3. EIC’S C SPECIFICATIONS

{

register int i, *p;

p = &i; // error: cannot apply & to a register

}

extern: When used within a block, extern specifies that the storage for the object is specified
elsewhere and if no external declaration is visible its linkage will be external. Otherwise,
in ISO C, the object will have no linkage and be unique to the block it is declared in,
but in EiC it will still be treated as an external object and which is not private to the
block it is declared in. As an example of how the storage class extern can be used in
both ISO C and EiC, consider the following program:

#include <assert.h>

int i = 5;

void T()

{ extern int i,j; // Note, forward declaration of j

i = 7;

j = 10;

}

int j = 3;

int main(void)

{ assert(i == 5);

assert(j == 3);

T();

assert(i == 7);

assert(j == 10);

return 0;

}

Also, as much as possible, EiC attempts to follow ISO recommendations and therefore
the initialization of an extern variable is allowed:

extern int x = 5; // okay

This forces the reference of x into a true definition. In EiC if no subsequent defining
occurrence appears for an external variable, it to becomes the defining occurrence to
that object.

static: Static objects may appear in declarations local or external to blocks. When used in
the declaration of functions or global variables, static means that these identifiers will
not be exported outside the current linkage unit or block in which they are declared.
Hence, all global variables and functions declared static within an include file are private
to that file, and are only visible within the scope of that file. Therefore, in general,

3.14. DEFAULT STORAGE CLASS AND CLASS CONFLICTS 81

their names will not clash with the names of any global variable visible from the EiC
interpreter. For example, consider the following program in f1.c:

#include <assert.h>

int p = 7;

#include f2.c

int main()

{

setp(33);

assert(getp() == 33);

assert(p == 7);

return 0;

}

where the contents of f2.c are:

/* private methods and data */

static int p;

/* public methods and data */

void setp(int x) { p = x;}

int getp() { return p;}

From the example just given, it is seen that the object int p; in file f2.c does not
confict with the same object int p; previously defined in f1.c. This is because they
are in different storage classes, see § 3.14, pg: 81 for further details on class conflicts.

With respect to automatic objects, defining a local object to be static also has meaning;
as such objects retain their values across exit from and reentry to functions and blocks:

EiC> int i = 10; // global variable

EiC> int f(void) { static int i = 1; return i++;}

EiC> while(i--) printf("%d",f());

results in the output: 12345678910.

typedef: A typedef declaration, attributes a type to an identifier and thereafter, this typedef-

name may appear anywhere the same type specifier may have appeared; see section
§ 3.12.9, pg: 78.

3.14 Default storage class and class conflicts

In ISO, if no storage class is specified for an object or function then the appropriate storage
class will be determined from the current scope level. For all variables and functions

82 CHAPTER 3. EIC’S C SPECIFICATIONS

declared at level file, their default storage class is extern. Wthin a block the default class
for objects is auto, for function prototypes it is extern and parameters, while having
extent within the block belonging to a function, have no storage class.

Because in EiC the concept of linkage is different than that of a true compiler, there
are no default storage specifiers. Within blocks, objects definition remain private unless
specified extern, function declarations are exported to the outer most level and param-
eters are treated as specified for ISO C. Otherwise, all storage classes must be explicity
stated.

The following table shows what EiC deems appropriate with respect to the storage
class of the same object int i declared in two different files, and where file f1.c includes
f2.c after the declaration of object int i:

// file f1.c

int i;

#include f2.c;

// end f1.c

// file f2.c

int i;

// end f2.c

A conflict between the same object or function difinitions declared in different files will
generate an error, if it induces a condition where (1) a single object or function is owned
by two files or (2) a public object or function, projects into the scope of a private object
or function. Function prototypes (declarations) are handled more loosely and can be
mutliply defined in different files. The following table is used to demonstrate the various
conditions that can occur and equally applies to object and function definitions:

f2.c

int i; static int i; extern int i;
f1.c int i; error okay okay

static int i; error okay error
extern int i; okay okay okay

In the third row of the above table, the object int i with no specified storage class
is held constant in file f1.c, while it is varied for three different instances of file f2.c.
When the object has no specified storage class in either file, it is consider an error because
it is introducing a condition of a single object having two owners and this is not allowed.
When it is declared in f2.c as static, there are no problems, because EiC sees two
distinct variables, a private object owned by file f2.c, and a public object owned by file

3.15. TYPE QUALIFIERS 83

f1.c. When the object in file f2.c is declared extern, this is also allowed, because file
f2.c is explicity stating that it does not own the object – so there can be no conflict. The
other rows are interpreted in similar ways. Note however, that when the object is declared
static in file f1.c but has no declared storage class in file f2.c is also error. This is
because the public object in file f2.c is visible within file f1.c and hence is inducing a
situation in that there is two objects of the same type within the same scope, and this in
not allowed either.

If f2.c had been included into f1.c before the declaration of the object int i, the
roles of f1.c and f2.c in the above table would be have been reversed.

3.15 Type qualifiers

Syntax:

type-qual: one of

const volatile

Type qualifiers are used to specify extra information about a type and may appear with
any type specifier.

const: The const qualifier is used to specify that a type is constant and therefore its value is
not to be modified after initialization:

EiC 1> const int a = 5;

(void)

EiC 2> a = 6;

Error in ::EiC:: near line 2: Illegal assignment operation

The variable qualified with const forms a non modifiable lvalue. With respect to
simple assignments, the left operand cannot have a const qualifier. If the left and
right operands are both pointers, the type pointed to by the left operand must be
compatiable with the right operand and also have all the same qualifiers. Therefore,
you can’t assign int const * to int * without a cast:

EiC 3> const int *p;

(void)

EiC 4> int * q;

(void)

EiC 5> q = p;

Error in ::EiC:: near line 5: Assignment loses a const qualifier

84 CHAPTER 3. EIC’S C SPECIFICATIONS

Futher, when dealing with pointers, you have the opportunity to either declare the
pointer constant, or what the pointer is pointing to as constant; for example:

EiC 1> int a, * const p = &a;

EiC 2> const int *q = &a;

EiC 3> :show p

p -> const * int

EiC 4> :show q

q -> * const int

In the former case, p is a constant pointer to an interger. This means that p can’t
change in value, but the value of what it is pointing to can. In the latter case, q is a
pointer to a constant integer. This means that q’s value can change but not the value
it is pointing to. The following helps to highlight the various restrictions imposed by
the const qualifier on p and q:

EiC 5> *p = 33;

33

EiC 6> *q = 44;

Error in ::EiC:: near line 6: Illegal assignment operation

EiC 7> p = q;

Error in ::EiC:: near line 7: Illegal assignment operation

EiC 8> q = p;

4a024

volatile: The volatile qualifier can appear with const and it is used to inform the compiler
that the specified object may have it’s value changed from external sources. In EiC,
the volatile keyword is simply ignored.

3.16 Variable declaration placement

In EiC, you must declare all variables at the beginning of a block or at any position
outside a function block.

Syntax:

{ declaration-listopt statement-listopt }

3.17 Function declarations

In this section I will first present a quick overview to function usage in EiC before looking
at the details.

3.17. FUNCTION DECLARATIONS 85

EiC attempts to be type safe; therefore, in order for EiC to check the validity of a
function call during compilation, it is important that the function prototype be available.
In EiC, the prototype form can be extracted from either the function definition or decla-
ration. Hence, all function declarations must be in prototype form; that is, provide the
name of the function, the types of its parameters and the return type of the function.

The two following prototypes are considered equivalent:

int swap(int *, int *); /* prototype declaration */

int swap(int *a, int *b); /* full prototype declaration */

The latter form is referred to as a declaration in full prototype form, because it includes
the parameter names. However, for convenience and to increase backward compatibility,
EiC, allows one type of non-prototype declaration:

void f(); /* allowable non-prototype declaration */

The above declaration will be compatible with other prototype declarations and def-
initions if: it matches the return type; the arguments declared in the prototype form
will not be subject to typical argument conversions, such as float to double; and the
prototype form does not declare a variadic function:

EiC 1> int round(double x) { if(x>0) return x+0.5; else return x-0.5;}

EiC 2> int sum(int x, int y) { return x + y;}

EiC 3> int foo(float var) { return var;}

EiC 4> int (*pf)(); // declare a function pointer

EiC 5> pf = round;

EiC 6> pf = sum;

EiC 7> pf = foo;

Warning: in ::EiC:: near line 7: Suspicious pointer conversion

EiC deems the assignment on line 7 to be suspicious, because the function foo accepts
an argument of type float, and because all floating point values passed via pf will be
automatically cast to type double. Also, as seen above, allowing a function declaration to
take no variables is different from declaring it to take void. In the latter case, it implies
that the function will accept no arguments; in the former case, it means that the function
will accept any number of arguments, which do not undergo automatic conversion. The
advantage of the former is obvious when working with a function pointer that may point
to various other types of functions – although it does have limitations.

As already stated, before any function can be called from another function, EiC must
have either processed the function’s definition or the prototype form of the function. This
is because there are no implicit parameters in EiC, EiC carries out strict variable type
checking and it verifies all parameter types being passed between functions; for example:

86 CHAPTER 3. EIC’S C SPECIFICATIONS

#include <stdio.h>

void f() { g(); } /* error: unknown identifier g */

void g() { printf("Hello, world!\n"); }

To fix this, two alternatives are possible: 1) place g’s definition before f’s, or 2) add
g’s prototype either before f’s definition or within f:

#include <stdio.h>

void g(void);

void f() { g(); } /* okay, g is now known */

void f2() {void g(); g();} /* okay */

void g() { printf("Hello, world!\n"); }

Choice 1 is okay here, but would fail if the two functions were mutually recursive;
therefore, choice 2 is the more general. However, in EiC there are no private declarations
for functions, as function f2 is implying. In EiC the above definition for f2 is identical
to:

void f2() {extern void g(); g();} /* okay */

Hence, all function declarations within a function are exported to the level of a function
definition.

3.18 Function types

In EiC, there are basically two types of functions: 1) interpreter functions, such as those
supplied by the user and 2) builtin functions, which get linked into EiC at compile time.
Naturally, builtin functions run a lot faster than interpreter functions. All builtin func-
tions must be prototyped, via including the appropriate header file, before they are used,
and as discussed with respect to the EiC show command on page 18.

Although, EiC attempts to make these two forms as invisible to the user as possible,
EiC uses its own runtime stack for processing information and therefore, there is only
one restriction on what can be passed to a function: you can’t pass a structure or union
by value to either a builtin function or to an interpreter function as part of the optional
argument list in a variadic function call (see below).

3.19 Function definition

EiC has a more limited view of a function definition, func-def, and function declaration
than specified by the ISO C standard. The ISO C grammar for a function definition is:

3.19. FUNCTION DEFINITION 87

func-def:

decl-spec decl [decl-list] comp-stmt

decl [decl-list] comp-stmt

The parts of the above grammar that have been underlined are not included in EiC’s
grammar. This means that EiC does not recognize the old style of C function definition
and that all function declaration must explicitly state their return type, which of course
may be void. For example:

EiC> double sqr(double x) { return x*x;}

defines the function sqr to take a double for an argument and to return a double to its
caller. Unlike C, all function definitions must explicitly specify their return type:

product(int x, int y) /* error: implicit return type */

{

return x * y;

}

The correct definition is:

int product(int x, int y) /* explicit return type */

{

return x * y;

}

Currently, C allows for the old C style and the new C style function definitions. With EiC
and C++ the old style is not supported; that is, only the parameter-type-list is parsed:

int product(x, y) /* error: old C style */

int x, y;

{

return x * y;

}

The correct definition is:

int product(int x, int y) /* New C style, parameter-type-list */

{

return x * y;

}

88 CHAPTER 3. EIC’S C SPECIFICATIONS

3.20 Function parameter type list

The parameter-type-list that appears in function definitions and declarations has the fol-
lowing syntax:

parm-type-list:

parm-list

parm-list , ...

parm-list:

parm-decl

parm-list , parm-decl

parm-decl:

decl-spec decl

decl-spec [abs-decl]

The parameter-type-list, is a list of parameter declarations separated by commas. A
parameter declaration must be in prototype syntax: declaring the type of the object and
optionally its name. If the parameter list ends with a set of three ellipses, . . ., then the
function may accept any number of parameters of any type:

int printf(const char * fmt, ...); /* variadic prototype */

However, note that for variadic function declarations and definitions, there must exist
at least one named parameter, and in EiC it is illegal to pass a structure or union by
value as part of the option argument list to a variadic function.

In EiC, as in ISO C, parameters are at the same scope level as the identifiers declared
just after the beginning of the compound statement in the function definition. Therefore,
it is illegal for a parameter name to be redeclared in the opening compound statement
(but within inner blocks it is allowed):

int f(int n)

{

int n; /* error: re declaration of parameter ‘n’ */

...

{

int n; /* okay here */

...

}

}

If a parameter is declared to be an array of type x, it will automatically be cast to be
a pointer to type x. If a parameter is declared to be a function returning type x, it will be
cast to be a pointer to a function returning type x. The following are all legal parameter
and function definitions:

3.21. FUNCTION RETURN TYPE 89

int h(int (*x)(void)) { return (*x)();} /* traditional */

int g(int (*f)(void)) { return f();} /* hybrid style */

int f(int g2(void)) { return g2();} /* modern style */

3.21 Function return type

Functions in EiC, like in C and C++, may return any type, a structure, a union, a pointer,
etc. However, a function may not return an array, another function or an lvalue; that is,
a function call cannot appear on the left side in an assignment expression

f() = x; /* an illegal assignment expression */

The return type of a function is governed by its return statement.

#include <stdio.h>

typedef struct { int a,b; }ab_t;

ab_t * f(void) {

static ab_t ab = {222,333};

return &ab;

}

ab_t g(void) {

static ab_t ab = {444,555};

return ab;

}

int main(void) {

printf("%d %d %d %d\n",

f()->a,f()->b,

g().a,g().b);

return 0;

}

The return value, if possible, will be cast to agree with the return type, otherwise an
error will be flagged. In C, a return statement with no expression causes control to be
returned to the caller, but no useful value. In EiC, a function that does not return void,
will return the last value on the stack, but without the explicit return statement, the
result will most likely be garbage:

int s1(int x, int y) { x + y;} /* okay */

int s2(float x, float y) { x + y;} /* will return garbage */

int s3(float x, float y) { (int)(x + y);} /* okay */

int s4(float x, float y) { return x + y;} /* correct */

90 CHAPTER 3. EIC’S C SPECIFICATIONS

Because the first three functions do not use an explicit return statement, EiC will
issue a warning against their use.

The return type must be in agreement with the return type of the function. If a
function has been declared to return type void, it is an error to attempt to return any
value.

void f() { return 2;} /* error: illegal cast operation */

According to ISO C, the returning of a void statement must be tolerated:

void f() { return ;} /*okay, empty statement evaluates to void*/

It is legal in ISO C for a parameter and or the return type to be a declaration:

void sparm(struct s { int a, b;} ab)

{

printf(" a = %d, b = %d\n", ab.a, ab.b);

}

struct {int a, b;} srtn()

{

static struct {int a, b;} x;

return x;

}

Although the above functions are legal, it’s best to avoid writing such obscure code.

3.21.1 Function flow-of-control analysis

After EiC has compiled a function into bytecodes, it performs a flow-of-control analysis to
check that control does not reach the end of non-void functions – as well as other checks,
such as looking for unreachable code:

int f(int a)

{

switch(a) {

case 1: return 1;

a = 5; /* warning: unreachable code */

case 2: return 2;

case 3: return 3;

}

} /* warning: control reaches end of non-void function ‘f’*/

3.22. TYPE NAMES 91

In the example given above, if the switch statement (see § 3.24.3, pg: 94) had a
default label, which returned control to the caller then control would not have been
detected to reach the end of the function.

3.22 Type names

Syntax:

type-name:

spec-qual-list [abs-decl]
abs-decl:

pointer

[pointer] dir-abs-decl

dir-abs-decl:

(abs-decl)

[dir-abs-decl][[const-expr]]
[dir-abs-decl] ([par-type-list])

A type name is a declaration without an identifier. It represents an abstract data
type. Type names are used to specify various types. For example, in a unary expression,
(§ 3.24.6, pg: 99), when 1) type casting an object or function into another object or
function:

EiC 1> -1;

-1

EiC 2> (unsigned)-1;

4294967295

or 2) as the operand to the sizeof operator:

EiC 3> sizeof(struct {int x, y;});

8

The following lists various example of typenames:

short int a short integer
double * a pointer to a double
float [5] an array of 5 floats
int () a function returning int
int (*)() a pointer to a function returning int
int (char *) a function taking a char pointer and returning an int

Type names are also used by the EiC interpreter for displaying various identifiers
associate with a given type, see the EiC variables command page 23. Type names are
always enclosed in parentheses except when used as an operand to the EiC variables

operator.

92 CHAPTER 3. EIC’S C SPECIFICATIONS

3.23 The address specifier operator @

In EiC, the address of where a variable is located can be specified via the address operator
@:

float f @ dddd;

Defines f to be a variable of type float and which is stored at memory location dddd,
where dddd must be an integral constant. If dddd is not a valid address within the scope
of EiC, then f is undefined.

The constant address dddd is not simply an address conjured by the user. Its purpose
is to enable access to data, or even functions, defined in compiled code.

When applied to function definitions, the limitation at this stage is the function must
take void arguments and return void:

void foo(void) @ dddd;

Defines foo to be a builtin function located at address dddd. For further examples see
discussions on embedding EiC § 1.2.8, pg: 13.

3.24 Statements

EiC supports all the usual C statements.
Syntax:

stmt:

comp-stmt

label-stmt

select-stmt

iter-stmt

jump-stmt

expr-stmt

3.24.1 Compound-statement

A compound statement is used to form a block of code that has a different scope level,
see § 3.5, pg: 52, than its environment and it has the form:

comp-stmt:

{ [decl-list] [stmt-list]}
stmt-list:

[stmt]+

3.24. STATEMENTS 93

Any variable declared in a compound statement is local to that block. If an identifier
declared outside the block is the same as one declared in the block, the inner declaration
will mask the outer. All identifiers defined in a block must be unique. Initialization of
local variables must be explicit and will be performed each time the block is entered.
Initialization of local static variables occurs once and at compile time, see storage class
§ 3.13, pg: 79. A compound statement can appear anywhere a normal C statement can
and it does not require a terminating semi-colon.

3.24.2 Label Statement

The label statement is used to mark a position in the code where control can jump to;
either by a goto or a switch statement.

Syntax:

label-stmt:

id : stmt

case const-expr : stmt

default : stmt

The id label is used to specify the target for the goto jump statement, see: § 3.24.5,
pg: 96, and are used exclusively within the scope of a function. Labels also have their
own name space, so label id values can only potentially conflict with other label values.
No two labels within the same scope can be equal.

The case and the default statements are used exclusively within the switch state-
ment, see section § 3.24.3, pg: 94.

3.24.3 Selection Statements

Program flow can be altered by using one of the selection statements:

select-stmt:

if (expr) stmt

if (expr) stmt else stmt

switch (expr) stmt

If-else statement

The expr in the if statement must be of arithmetic or pointer type. If statements are
normally used to form two way decision statements:

if (expr) stmt1
[else stmt2]

94 CHAPTER 3. EIC’S C SPECIFICATIONS

If the value of expr evaluates to be non zero then program control will pass to stmt1,
else if the optional else statement is present and expr evaluates to zero then control will
pass to stmt2. Otherwise, control will pass to the first statement beyond the if statement.
If-else statements are often nested so as to form a multi-way branch statement:

if(x == 1) printf("A");

else if(x == 2) printf("B");

else printf("C");

Switch Statement

The switch statement is C’s formal multi way decision statement:

switch(expr) {
case const-expr1: stmt1;

[case const-expr2: stmt2;]
[default: stmt3;]

}

It evaluates the expr, which must have integral type, and it compares the value against
each of the case const-expr, which are constant integral expressions that get cast to the
same type as expr. If a match is found, control is passed to that branch in the body of
the switch statement. If no match is found, and there exists a default statement, then
control is passed to it. Otherwise, none of the statements in the body of the switch will
be evaluated.

No two case const-expr can be the same. The body of the switch statement, as shown
above, is usually a compound statement, but it maybe just a single statement. Note also,
the default statement and the case const-expr can occur in any order and that there is
no limit on the number of case const-expr that can be used.

One feature of C’s is that switches don’t break automatically before each case const-

expr. The break or return statements are therefore, often used to terminate execution
of a switch statement. After termination, by either a break statement or completion of
the last statement in the body of the switch, control is passed to the next C statement
beyond the switch.

switch(x) {

default: printf("X");

case 1: printf("A");

break;

case 2: printf("B");

case 3: printf("C");

3.24. STATEMENTS 95

case 4: printf("D");

case 5: printf("E");

}

printf("F");

A value of x equal to 1, entered above, causes AF to be printed. A value of 3 causes
CDEF to be printed, and any value not in the set [1,2,3,4,5], causes XAF to be printed.

3.24.4 Iteration Statements

C provides just three basic kinds of loops:

iter-statement:

while (expr) stmt

do stmt while (expr) ;

for ([expr1] ; [expr2] ; [expr3];) stmt

The conditional expr in each iteration statement must be of arithmetic or pointer type.
With respect to the for loop, the conditional statement is expr2, which is also optional.

While Statement

The purpose of the while statement is to repeatedly execute a statement until the con-
ditional expression evaluates to zero:

int x = 10;

while(x) {

printf("x = %d\n",x);

x = x - 1;

}

Do . . . While Statement

In the while loop, the conditional expression is evaluated before each iteration but in the
do...while loop it is evaluated after each loop

int x = 10;

do {

printf("x = %d\n",x);

x = x - 1;

} while (x);

96 CHAPTER 3. EIC’S C SPECIFICATIONS

For Statement

The most ubiquitous loop in C would have to be the for loop:

for ([expr1] ; [expr2] ; [expr3];) stmt

Where the expressions separated by semicolons can be loosely defined as:

expr1: is usually an assignment expression.

expr2: is a conditional expression.

expr3: usually some form of update or modification rule.

For example:

for(x = 10; x > 0; x = x - 1)

printf("x = %d\n",x);

Which is equivalent to the above while statement; that is:

expr1;

while (expr2) {
stmt;

expr3;

}

When the conditional expression is left out of the for loop it will iterate forever or
until control is transfered out of the loop by one of several forms of jump statements.

3.24.5 Jump Statements

jump-stmt:

goto id ;

continue ;

break ;

return [expr] ;

The goto jump statement is used to redirect program flow to the target identifier,
which must be a label, see: § 3.24.2, pg: 93. The continue and the break statements
may appear only in an iteration statement. While the return statement can appear
anywhere within the body of a function.

3.24. STATEMENTS 97

Continue Statement

In an iteration loop the continue statement forces the start of the next iteration or loop-

continuation of the inner most while, do...while or for loop. In a for loop, the next
iteration resumes only after evaluation of the current iteration expr3:

for(x = 10; x > 0; x = x - 1) {

if(x > 5)

continue;

printf("x = %d\n",x);

}

Only allows the numbers 5,4,3,2 and 1 to be printed out.

Break Statement

The break statement causes termination of the innermost while, do...while or for loop
and it passes control to the statement immediately following the while, do...while or
for loop, see also § 3.24.3, pg: 94.

Return Statement

The return statement is used to return control from the current function back to the
calling function. If an expression follows the return its value is returned also to the
caller. When control reaches the end of a function, which has no return, it forces a
return to the caller, see also § 3.21, pg: 89.

3.24.6 Expression Statement

Most C statements form an expression, and C has a particularly rich set of expression
operators, which are the symbols that are used to represent operations. A missing
expression is called a null statement, and has type void. In this section, the C operators
are discussed along with their precedence.

Precedence, Associativity and nomenclature

In C, each operator has a precedence level, a rule of associativity; that is, order of
evaluation and operand count. Precedence refers to the priority used to decide on how
to associate operands with operators, while associativity refers to the order of evaluation
of a succession of operators of a given type; that is, either from left-to-right or from
right-to-left.

98 CHAPTER 3. EIC’S C SPECIFICATIONS

To summarise, the C operators are listed in decreasing order of precedence (where LR
and RL are used to designate left-to-right or from right-to-left associativity):

Token Associates Expression type

identifiers, literals na primary

f(...) a[k] -> . ++ -- LR postfix

! ~ ++ -- - + * & sizeof RL unary

(type-name) RL cast

* / % LR multication

+ - LR addition

<< >> LR shift

< <= > >= LR relational

== != LR equality

& LR AND

^ LR XOR

| LR inclusive OR

&& LR logical AND

|| LR logical OR

? : RL Conditional

= += -= *= /= %= &= ^= |= <<= >>= RL Assignment

, LR Comma

Below is a brief classification of the operators supported by EiC.

Primary expressions

Syntax:

primary-expr:

id

constant

string

(expr)

Identifiers, numeric constants, string literals, and parenthesised expressions are all
primary expressions. The various constant types and string literals are discussed in section
§ 3.9, pg: 55. The value of an identifier id is determined from its declaration as explained
in section § 3.11, pg: 60. If the identifiers type represents an object, as opposed to a
function, it will form an lvalue. If its type is not qualified with const (§ 3.24.6, pg: 105)
and in the case of a structure or union it does not contain any members qualified with
const, then the lvalue will be modifiable. A parenthesised expression consists of any
expression surrounded by left and right parenthesis.

3.24. STATEMENTS 99

Postfix expressions

The postfix expressions group from left-to-right and they are typically used to form func-
tion calls, subscripting and for structure and union member selection:

postfix-expr:

primary-expr

postfix-expr [expr]

postfix-expr ([arg-expr-list])
postfix-expr . id

postfix-expr -> id

postfix-expr ++

postfix-expr --

() funcname() Function call.

[] The array operator. See section § 3.12.7, pg: 69. The value in the bracket is used
as an index into the array.

. The struct or union address operator, see § 3.12.8, pg: 72.

-> The struct or union indirect selection operator. see § 3.12.8, pg: 72.

++ The postfix increment operator, y = x++, will assign x to y and
then increment x by one. x must be an lvalue.

-- The postfix deincrement operator, y = x--, will assign x to y and
then deincrement x by one. x must be an lvalue.

Unary expressions

The unary-expressions group right-to-left.

unary-expr:

postfix-expr

[++,--] unary-expr

[&, *, +, -, ~, !] cast-expr

sizeof [(type-name), unary-expr]

* The indirection operator yields the type of its operand, which must be a pointer.
The resulting type is either an object or a function designator depending upon the
pointer type.

& The address operator yields the address of its operand, which must be an lvalue

or a function name. The result is a pointer to an object or a function. When the
operand is an array of type T the result is a pointer to an array of T. The address
operator is the inverse of *; that is, x= *&x.

+ The unary plus operator serves no real purpose other than complementing the
negation operator -. However, its operand must be of arithmetic type.

100 CHAPTER 3. EIC’S C SPECIFICATIONS

- The negation operator reverses the sign of its operand, which be of arithmetic
type. The resulting type is also arithmetic. The negative of an unsigned value x

results in an unsigned value, which is computed by subtracting x from its largest
promoted value and adding one.

! The logical not operator, yields the logical negation of its operand. If the operand
is zero, it results in one and vise-a-versa. The operand can have arithmetic or
pointer type but the result will be of integer type.

˜ The one’s complement operator, whose operand must be of integral type. The bits
of the operand are complemented; that is, every one bit becomes zero and every
zero bit becomes one. If the operand is signed, the operator complements the bits
after promoting the operand to its unsigned type.

++ The unary increment operator results in a value which is one greater than its
operand, which must be an lvalue and leaves the operand incremented also. The
operand maybe any arithmetic or pointer type. The result will be same as its
operand but it will not be an lvalue.

-- The unary deincrement operator is the same as the unary increment operator
expect the result and the operand is deincremented by 1.

sizeof() The sizeof operator returns the size in bytes of its operand, which must be a
type-name (§ 3.22, pg: 91) surrounded by parentheses: sizeof(int); or a unary-

expression: sizeof a, where a is a variable.

The return type is an the unsigned integral constant size t as defined in <stddef.h>

(§ 4.1.10, pg: 117). The sizeof(char) is always 1, while the sizeof a structure or
union results in the size of the structure or union in terms of bytes (see Structure
and Union Layout, page 77).

Cast expression

A cast expression is either a unary expression or a type-name enclosed in parentheses
followed by a cast expression.

Syntax:

cast-expr:

unary-expr

(type-name) cast-expr

Cast expressions can be used for type conversions. They are used to cast on type
into another. That is, the following cast-expression operand is converted to the specified
name-type, see also § 3.22, pg: 91.

Multiplication expressions

The multiplication operators group left-to-right.

3.24. STATEMENTS 101

mult-expr:

cast-expr

mult-expr * cast-expr

mult-expr / cast-expr

mult-expr % cast-expr

* The multiplication operator yields the product of two adjacent operands. The
operands must have arithmetic type.

/ The division operator yields the quotient of the left operand divided by the right.
The operands must have arithmetic type.

% The modulo operator yields the remainder of the left operand divided by the right.
The operands must have integral type.

If the right hand operand for either the division or the modulo operator is zero then
the result is undefined.

Additive expressions

The additive operators group left-to-right.

add-expr:

mult-expr

add-expr + mult-expr

add-expr - mult-expr

+ The algebraic addition of two adjacent operands, yielding a sum. If one operator is
a pointer then the other must have integral type and the result will be an address
which is offset from the address operand by the number of objects determined
from the non address operand. Otherwise, both operands must have arithmetic
type.

- The algebraic difference, which subtracts the right operand from the left. If the
left operand is an address operator and if the right operand is another address
operator, which must be of the same type, then the result is a ptrdiff t as
defined in <stddef.h> (§ 4.1.10, pg: 117) and will represent the number of objects
between them – the result will be undefined if they do not point within the same
array. If the right operand is an integral value then the same rules apply as for
addition. Otherwise, both operands must have arithmetic type.

See also section § 3.12.5, pg: 67.

Shift expressions

The shift operators group left-to-right, and they yield the left operand arithmetically
shifted left or right by the number of bit positions determined from the right operand.
Both operand must have integral type:

102 CHAPTER 3. EIC’S C SPECIFICATIONS

shift-expr:

add-expr

shift-expr << add-expr

shift-expr >> add-expr

<< The shift left operator. With each shift, a zero is inserted at the lowest bit that
has been displaced.

>> The right shift operator. With each shift operation, if the left operand is an
unsigned number, then zeros bits as shifted into the highest bits, else if the left
operand is signed the sign bit remains the same – this may vary depending upon
the implementation used to build EiC. Excess bits shifted too far are conceded to
fall off the end.

Relational expressions

The relational operators group left-to-right. They perform a numeric comparison of two
operands yielding either 1 or 0. The operands can be both of arithmetic type or of pointer
type.

rel-expr:

shift-expr

rel-expr < shift-expr

rel-expr > shift-expr

rel-expr <= shift-expr

rel-expr >= shift-expr

Equality expressions

The equality operators group left-to-right. The same rules apply as for the relational

expressions, with the addition that address operators can be compared with the value
zero, or to a void pointer.

equal-expr:

rel-expr

equal-expr == rel-expr

equal-expr != rel-expr

== Yields 1 if the left operand is equal to the right otherwise 0.

!= Yields 1 if the left operand does not equal the right otherwise 0.

3.24. STATEMENTS 103

Bitwise expressions

The bitwise operators group left-to-right. They perform logical operations on the bits of
their operands.

inc-or-expr:

xor-expr

inc-or-expr | xor-expr

xor-expr:

and-expr

xor-expr ^ and-expr

and-expr:

equal-expr

and-expr & equal-expr

| Bitwise inclusive OR.

ˆ Bitwise exclusive OR.

& Bitwise AND.

Logical expressions

The logical operators group from left-to-right. The logical operators test for ones and
zeros and generates either a 1 or a 0. In both cases, short circuit logic is used; that is,
the second operand of the logical operators is evaluated only if necessary.

log-or-expr:

log-and-expr

log-or-expr || log-and-expr

log-and-expr:

inc-or-expr

log-and-expr && inc-or-expr

|| Logical OR. If either operand yields 1, it yields 1, otherwise it evaluates to 0. A
sequence of logical-or expressions will be evaluated from left-to-right until the first
one yields 1. The remaining expressions are guaranteed not to be evaluated.

&& Logical AND. If either operand yields 0, it yields 0, otherwise it evaluates to 1.
A sequence of logical-and expressions will be evaluated from left-to-right until the
first one yields zero. The remaining expressions are guaranteed not to be evaluated.

Conditional expressions

Syntax:

104 CHAPTER 3. EIC’S C SPECIFICATIONS

cond-expr:

log-or-expr

log-or-expr ? expr : cond-expr

The conditional operator is a type of if...else statement, see § 3.24.3, pg: 93, that
can be used to form an rvalue.

if(a == 5)

printf("a = 5\n");

else

printf("a != 5\n");

Is equivalent to:

a == 5 ? printf("a = 5\n") : printf("a != 5\n");

However, unlike a selection statement, the result can form an rvalue:

x = (a==5) ? 20 : 30;

With the conditional expression, if the value of the left most operand evaluates to
none zero then the second operand is evaluated else the third operand is. The result of
this ternary operator depends on the types of the second and third operands and will
be cast to a common type. The result will inherit the qualifiers from both the second and
third operands. If both arms are arithmetic the result is arithmetic. If they are structures
or unions of compatible types the result is a structure or union of that type. If they are
pointers they must be compatible and the result is a pointer. If one is a pointer and the
other is zero then the result will be a compatible pointer. If one operand is a void * then
the other must be a pointer or zero and the result will be a void *.

Assignment expressions

assignment-op:

=

[*, /,%, +, -, >>, <<, &,^,|] =

The assignment expression groups from right-to-left and never forms an lvalue. All
but one of the assignment operators have the form var op= exp, where op is a compound
assignment operator. The resulting type is always same as the left operand. The left
operand must be a modifiable lvalue and will be evaluated only once. Also, any number
of assignment operators may appear in an expression:

a = b = c = d;

3.24. STATEMENTS 105

= Assign the value of the right operand to the left operand. Both operands can be
arithmetic or both can be structures or unions of the same type. It is illegal to
assign a value of a pointer to const X to an object of type pointer to X without
an explicit cast.

*= Assigns the product of the right and left operands to the left operand.

/= Assigns the division of the left operand by the right to the left operand.

% Assigns the remainder of the division of the left operand by the right to the left
operand.

+= Assigns the sum of right and left operands to the left.

-= Assigns the difference between the left and right operand to the left operand..

<< = Assigns the result of shifting the left operand left the number of bits specified by
the right operand to the left operand.

>> = Assigns the result of shifting the left operand right the number of bits specified by
the right operand to the left operand.

&= Assigns the bitwise and of the left and right operands to the left operand.

ˆ = Assigns the bitwise exclusive or of the left and right operands to the left operand.

|= Assigns the bitwise or of the left and right operands to the left operand.

Constant expressions

A constant expression must be able to be evaluated at compile time.
Syntax:

const-expr:

cond-expr

Constant expression are required to form constant initializer expressions, enumeration
constants, array bounds and for case labels. A constant expression may not contain an
assignment, increment, decrement, function call or a comma expressions unless contained
as the operand to the sizeof operator.

If the expression is to be integral its operands must be of integral type or a enumer-
ation constant. Floating point constants can only appear if they are explicitly cast to an
integral type or as an operand to the sizeof operator.

The address constant expression used in intializations can be formed from the null
pointer; from the address of a static or external object or function; or via casts.

106 CHAPTER 3. EIC’S C SPECIFICATIONS

Chapter 4

Library support

4.1 Standard C libraries

This section describes how the standard C library is supported by EiC. Note, any function,
macro or type that is underlined is currently not supported by EiC.

4.1.1 assert.h

The header files <assert.h> defines the following macro:

assert: Synopsis:

#include <assert.h>

void assert(int expression);

If expression is false, a message is printed to stderr and abort is called to
terminate execution. However, EiC does not call abort. The source file and line
number in the output message comes from the preprocessor macros __FILE__

and __LINE__. If NDEBUG is defined when <assert.h> is included, the assert
macro is ignored.

4.1.2 ctype.h

isdigit: Synopsis:

#include <ctype.h>

int isdigit(int c);

Returns 1 if c is in the set ’0’ - ’9’. Otherwise it returns 0.

isupper: Synopsis:

107

108 CHAPTER 4. LIBRARY SUPPORT

#include <ctype.h>

int isupper(int c);

Returns 1 if c is in the set ’A’ - ’Z’. Otherwise return it returns 0.

islower: Synopsis:

#include <ctype.h>

int islower(int c);

Returns 1 if c is in the set ’a’ - ’z’. Otherwise returns 0.

isalpha: Synopsis:

#include <ctype.h>

int isalpha(int c);

Returns a 1 if c is in the set ’A’ - ’Z’ or in ’a’ - ’z’. Otherwise returns 0.

isprint: Synopsis:

#include <ctype.h>

int isprint(int c);

Returns 1 if c is a printable character. Otherwise returns 0.

isalnum: Synopsis:

#include <ctype.h>

int isalnum(int c);

Returns 1 if c is in one of the sets ’a’ - ’z’, ’A’ - ’Z’, or ’0’ - ’9’. Otherwise
returns 0.

isspace: Synopsis:

#include <ctype.h>

int isspace(int c);

Returns 1 if c is in the set ’ ’, ’\t’, ’\n’, ’\v’, ’\f’, or ’\r’. Otherwise returns
0.

toupper: Synopsis:

#include <ctype.h>

int toupper(int c);

If c is a lower case alphabetic character, touppper returns its upper case equivalent,
otherwise it returns c.

tolower: Synopsis:

#include <ctype.h>

int tolower(int c);

If c is an upper case alphabetic character, tolower returns its lower case equivalent,
otherwise it returns c.

4.1. STANDARD C LIBRARIES 109

4.1.3 errno.h

The header <errno.h> contains manifest constants for error codes. The variable errno

is a modifiable lvalue that has type int. It is set to zero on EiC startup, and it is used
to report various runtime errors; for example:

#include <math.h>

#include <errno.h>

#include <assert.h>

int main(void)

{

assert(errno == 0);

sqrt(-3);

assert(errno == EDOM);

}

The <errno.h> files declares the following macros and object.

EDOM: Which stands for domain error. It occurs if an argument is outside the domain
of a function; for example: sqrt(-2).

ERANGE: Which stands for range error and is used for reporting various numerical over-
flow and underflow errors. It occurs if the result of a math.h function (see § 4.1.6,
pg: 111) cannot be represented as a double.

errno: Is a modifiable lvalue with type int that may or may not be a real identifiable
object.

4.1.4 float.h

In C, floating point values are represented in the normalised form:

x = s × be ×
p

∑

k=1

fk × b−k, emin ≤ e ≤ emax

where,

s sign (±1)
b is the base or radix, typically 2, 8, 10 or 16.
e the exponent, a value between a minimum emin and a maximum emax.
p precision (the number of base-b digits in the significand).
fk the significant digits.

The header file <float.h> declares the following macros:

FLT RADIX: radix of exponent representing b.

110 CHAPTER 4. LIBRARY SUPPORT

FLT ROUNDS: Indicates the rounding mode for floats point values:
-1, undetermined
0 toward zero
1 to the nearest
2 towards positive infinity
3 towards negative infinity

FLT DIG: number of digits of precision in a float

FLT EPSILON: smallest number x such that 1.0 + x != 1.0

FLT MANT DIG: the number of base-b digits in the floating-point significand.

FLT MAX: maximum floating-point number

FLT MAX 10 EXP: maximum x such that 10x is representable

FLT MAX EXP: The maximum n such that FLT RADIXn − 1 is representable

FLT MIN: minimum normalised floating-point number

FLT MIN 10 EXP: minimum n such that 10n is a normalised number.

FLT MIN EXP: minimum n such that bn−1 is a normalised number.

DBL DIG: number of digits of precision in a double

DBL EPSILON: smallest number x such that 1.0 + x != 1.0

DBL MANT DIG: the number of base-b digits in the floating-point significand.

DBL MAX: maximum double floating-point number

DBL MAX 10 EXP: maximum x such that 10x is representable

DBL MAX EXP: The maximum n such that FLT RADIXn − 1 is representable

DBL MIN: minimum normalised double floating-point number

DBL MIN 10 EXP: minimum n such that 10n is a normalised number.

DBL MIN EXP: minimum n such that bn−1 is a normalised number.

4.1.5 limits.h

The header file <limits.h> declares the following macros:

CHAR BIT: number of bits in a char

CHAR MAX: maximum value of char

CHAR MIN: minimum value of char

INT MAX: maximum value of int

INT MIN: minimum value of int

LONG MAX: maximum value of long

LONG MIN: minimum value of long

SCHAR MAX: maximum value of signed char

SCHAR MIN: minimum value of signed char

SHRT MAX: maximum value of short

SHRT MIN: minimum value of short

4.1. STANDARD C LIBRARIES 111

UCHAR MAX: maximum value of unsigned char

UCHAR MIN: minimum value of unsigned char

UINT MAX: maximum value of unsigned int

ULONG MAX: maximum value of unsigned long

USHRT MAX: maximum value of unsigned short

4.1.6 math.h

The header <math.h> declares the following macro:

HUGE VAL: A positive double. The largest representable floating point value. Not neces-
sarily representable by a float.

The following functions are defined <math.h>

atan: Synopsis:

#include <math.h>

double atan(double x);

Returns the arc tangent of x.

ceil: Synopsis:

#include <math.h>

double ceil(double x);

Returns the smallest integer greater than or equal to x. The returned value is a double.

cos: Synopsis:

#include <math.h>

double cos(double x);

Returns the cosine of x.

cosh: Synopsis:

#include <math.h>

double cosh(double x);

Returns the hyperbolic cosine of x.

exp: Synopsis:

#include <math.h>

double exp(double x);

Returns the exponential function of x.

112 CHAPTER 4. LIBRARY SUPPORT

fabs: Synopsis:

#include <math.h>

double fabs(double x);

Returns the absolute value of x. The value returned is a double.

floor: Synopsis:

#include <math.h>

double floor(double x);

Returns the largest integer less than or equal to x. The returned value is a double.

sin: Synopsis:

#include <math.h>

double sin(double x);

Returns the sine of x.

sinh: Synopsis:

#include <math.h>

double sinh(double x);

Returns the hyperbolic sine of x.

sqrt: Synopsis:

#include <math.h>

double sqrt(double x);

Returns the square root of x.

tan: Synopsis:

#include <math.h>

double tan(double x);

Returns the tangent of x.

tanh: Synopsis:

#include <math.h>

double tanh(double x);

Returns the hyperbolic tangent of x.

log: Synopsis:

#include <math.h>

double log(double x);

4.1. STANDARD C LIBRARIES 113

Returns the natural logarithm of x.

log10: Synopsis:

#include <math.h>

double log10(double x);

Returns the base 10 logarithm of x.

pow: Synopsis:

#include <math.h>

double pow(double x, double y);

Returns x raised to the yth power.

atan2: Synopsis:

#include <math.h>

double atan2(double x, double y);

Returns the arc tangent of y/x.

4.1.7 setjmp.h

The header <setjmp.h> declares the following macro and type:

jmp buf: An array of type suitable for holding the information needed to restore a calling
environment.

setjmp: Synopsis:

#include <setjmp.h>

int setjmp(jmp_buf env);

The setjmp macro save the calling environment in env. Zero returned from
direct call; non-zero from subsequent call of longjmp.

The following macro function is defined in <setjmp.h>:

longjmp: Synopsis:

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

Restore state saved by most recent call to setjmp using information saved in env. Ex-
ecution resumes as if setjmp just executed and returned non-zero value val. Also,
longjmp(env,0) is equivalent to longjmp(env,1). If the function containing setjmp

has terminated before the longjmp call is made then EiC’s behaviour will be undefined.

An example usage of setjmp and longjmp is:

114 CHAPTER 4. LIBRARY SUPPORT

#include <stdio.h>

#include <setjmp.h>

jmp_buf env;

void dojump() {longjmp(env,1);}

void dosetjmp()

{

switch(setjmp(env)) {

case 0: printf("setjmp return 0\n"); break;

case 1: printf("setjmp return 1\n"); return;

default: printf("error\n"); return;

}

dojump();

}

int main()

{

dosetjmp();

printf("exit main\n");

return 0;

}

Which should output:

setjmp return 0

setjmp return 1

exit main

4.1.8 signal.h

The header <signal.h> declares the following macros:

SIGABRT: abnormal termination

SIGFPE: arithmetic error

SIGILL: illegal function image

SIGINT: interactive attention

SIGSEGV: illegal storage access

SIGTERM: termination request sent to program

The header <signal.h> defines the following macro functions, which can be used to
specify the action for the signal:

4.1. STANDARD C LIBRARIES 115

SIG DFL: specifies the default action for the particular signal.

SIG IGN: specifies that the signal should be ignored.

If a signal cannot honored its call, it returns SIG ERR.

SIG ERR: This macro is used as a return value to indicate an error.

EiC also supports POSIX.1 signals (see § 4.2.5, pg: 142).
The following functions are defined in <signal.h>:

signal: Synopsis:

#include <signal.h>

void (*signal(int sig, void (*handler)(int)))(int);

Install handler for subsequent signal sig. If handler is SIG DFL, implementation-defined
default behaviour is used; if handler is SIG IGN, signal is ignored; otherwise function
pointed to by handler is called with argument sig. signal returns the previous handler
or SIG ERR on error. When signal sig subsequently occurs, the signal is restored to its
default behaviour and the handler is called. If the handler returns, execution resumes
where the signal occurred. The initial state of the signals is implementation-defined.

When you install a signal handler within EiC you will most likely be overriding one of
EiC’s own internal signal handling routines:

EiC 1> #include <signal.h>

(void)

EiC 2> raise(SIGFPE);

EiC maths exception, file ::EiC::, line 2

EiC::Reset Local Stack Pointer

EiC: error clean up entry pt 0,1,2,3,4,

EiC assigns handlers for the following signals: SIGBUS, SIGFPE, SIGILL, SIGINT, SIGSEGV,

SIGUSR1. It does this to keep the flow of an EiC interactive session going. That is, it
prevents your code from causing EiC to abort in an undignified manner. While, in none-
interactive mode it is no big deal if you override one of EiC’s internal signal handlers,
since you are saying that you will be handling that signal, but in an interactive session,
things are different. You load translation units (§ 3.1, pg: 49), execute them, and various
translation units may have no relationship to each other. Therefore, when you assign a
new signal handler you should keep track of the initial one and reset it when appropriate:

EiC 1> #include <signal.h>

(void)

EiC 2> void foo(int sig) { printf("my handle\n"); }

116 CHAPTER 4. LIBRARY SUPPORT

(void)

EiC 3> void (*oldhandle)(int) = signal(SIGFPE,foo);

(void)

EiC 4> raise(SIGFPE);

SIGFPE passed

0

EiC 5> signal(SIGFPE,oldhandle); // reestablish old handle

0x80babe8

EiC 6> raise(SIGFPE);

EiC maths exception, file ::EiC::, line 6

EiC::Reset Local Stack Pointer

EiC: error clean up entry pt 0,1,2,3,4,

raise: Synopsis:

#include <signal.h>

int raise(int sig);

Send signal sig to the program. Non-zero returned if unsuccessful.

As an example program try examples/sig1.c

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

void tick(int i) { printf("tick\n"); return;}

void tock(int i) { printf("tock\n"); return;}

int main()

{

int i = 0, cnt = 1;

while(1) {

signal(SIGINT,tick); // note you must reestablish the handler

sleep(1);

raise(SIGINT);

signal(SIGINT,tock);

sleep(1);

raise(SIGINT);

if(i++==cnt)

break;

}

signal(SIGINT,SIG_DFL); // reset

return 0;

4.1. STANDARD C LIBRARIES 117

}

Which should out put:

%> eic examples/sig1.c

tick

tock

tick

tock

4.1.9 stdarg.h

Defines macros that support functions with variable argument lists.

va list: A type used to hold the information needed by the macros defined in <stdarg.h>.

va start: Synopsis:

#include <stdarg.h>

void va_start(va_list ap, lastarg);

Initialisation macro to be called once, and before any unnamed argument is accessed.
The argument ap must be declared as a local variable, and lastarg is the last named
parameter in the controlling function’s parameter list.

va arg: Synopsis:

#include <stdarg.h>

type va_arg(va_list ap, type);

Produce a value of the type (type) and corresponding to the next unnamed argument. It
modifies the value of ap.

va end: Synopsis:

#include <stdarg.h>

void va_end(va_list ap);

Must be called once, generally after all arguments have been processed, but definetly
before function exit.

4.1.10 stddef.h

The header <stddef.h> declares the following macros and types:

ptrdiff t: An implementation defined signed integral type, which represents the type of
the result of subtracting two pointers.

size t: An unsigned integral type, which is the return type from the operator sizeof.

NULL: Implementation defined null pointer constant.

118 CHAPTER 4. LIBRARY SUPPORT

offsetof: offsetof(type, member-designator)

Expands to type size t, representing the offset in bytes of the structure mem-
ber member-designator from the start of the structure type.

wchar t: An integral type that can represent all values for any extended character in the
set supported by locales.

4.1.11 stdio.h

stdio.h has the following types and macros defined:

FILE: Type which records information necessary to control a stream.

fpos t: Variable used for specification of positions within an opened file.

size t: See <stddef.h> § 4.1.10, pg: 117

stdin: Standard input stream. Automatically opened when a program begins execu-
tion.

stdout: Standard output stream. Automatically opened when a program begins execu-
tion.

stderr: Standard error stream. Automatically opened when a program begins execution.

FILENAME MAX: Maximum permissible length of a file name

FOPEN MAX: Maximum number of files which may be open simultaneously.

TMP MAX: Maximum number of temporary files during program execution.

NULL: See <stddef.h> § 4.1.10, pg: 117

IOFBF:

IOLBF:

IONBF: Macros used for the third argument to function setvbuf.

BUFSIZ: The default buffer size used by setbuf.

EOF: Macro used to indicate the end-of-file.

L tmpnam: Macro that expands to an intergergral constant expression, which is the size
for the array of characters allocated to the default name returned by function
tmpnam.

SEEK SET:

SEEK CUR:

SEEK END: Macros values used by fseek to locate current file seek position with respect
to the beginning of the file, the current file position, or the end of the file
respectively.

The following functions are defined in stdio.h

fopen: Synopsis

#include <stdio.h>

FILE* fopen(const char* filename, const char* mode);

4.1. STANDARD C LIBRARIES 119

Opens file filename and returns a pointer to an opened stream, or NULL on failure. The
stream can be opened with mode:

"a" Append. The file is created if it does not exist.

"w" Write. If the file exists, it is deleted first.

"r" Read. The file must already exist.

"r+" Read and write. The file must already exist.

"w+" Read and write. If the file exists, it is deleted

first.

"a+" Read and append. The file is created if it does not

exist.

"ab" Append binary. The file is created if it does not

exist.

"rb" Open binary file for reading.

"wb" Write binary file. If the files exist, it gets truncated

to zero first.

"ab+" or "a+b" Append binary update.

"rb+" or "r+b" Read binary update.

"wb+" or "w+b" Write binary update.

freopen: Synopsis

#include <stdio.h>

FILE* freopen(const char* filename,

const char* mode,

FILE* stream);

Opens file filename with the specified mode and associates with it the specified stream.
Returns stream or NULL on error. Usually used to change files associated with stdin,
stdout, stderr.

fflush: Synopsis

#include <stdio.h>

int fflush(FILE* stream);

Flushes stream stream. Effect undefined for input stream. Returns EOF for write error,
zero otherwise. fflush(NULL) flushes all output streams.

fclose: Synopsis

#include <stdio.h>

int fclose(FILE* stream);

Closes stream stream (after flushing, if output stream). Returns EOF on error, zero
otherwise.

remove: Synopsis

120 CHAPTER 4. LIBRARY SUPPORT

#include <stdio.h>

int remove(const char* filename);

Removes file filename. Returns non-zero on failure.

rename: Synopsis

#include <stdio.h>

int rename(const char* oldname, const char* newname);

Changes name of file oldname to newname. Returns non-zero on failure.

tmpfile: Synopsis

#include <stdio.h>

FILE* tmpfile();

Creates temporary file (mode ”wb+”) which will be removed when closed or on normal
program termination. Returns stream or NULL on failure.

tmpname: Synopsis

#include <stdio.h>

char* tmpname(char s[L_tmpnam]);

Assigns to s and returns unique name for temporary file.

setvbuf: Synopsis

#include <stdio.h>

int setvbuf(FILE* stream, char* buf, int mode, size_t size);

Controls buffering for stream stream and can only be used after the stream pointer by
stream has been associated initially with an open file and before any read or write oper-
ations are performed. The argument mode determines how stream will be buffered such
as IOLB, IOFBF, IONBF. If buf is non-NULL then setvbuf will assign it as the buffer for
stream otherwise setvbuf will allocate one and the value at size will determine the size
of the buffer.

Returns zero on success or nonzero on error.

setbuf: Synopsis

#include <stdio.h>

void setbuf(FILE* stream, char* buf);

Controls buffering for stream stream. See also setvbuf 120.

fprintf: Synopsis

#include <stdio.h>

int fprintf(FILE* stream, const char* format, ...);

Converts (with format format) and writes output to stream stream. Number of characters
written [negative on error] is returned. Between

4.1. STANDARD C LIBRARIES 121

Flags:

- left adjust

+ always sign

space outputs a space if the first character is not a

sign.

0 zero pad

........ Alternate form: for conversion character o,

first digit will be zero, for [xX], prefix 0x

or 0X to non-zero, for [eEfgG], always decimal

point, for [gG] trailing zeros not removed.

Width:

Period:

Precision:

for conversion character s, maximum characters to be

printed from the string, for [eEf], digits after decimal

point, for [gG], significant digits, for an integer,

minimum number of digits to be printed.

Length modifier:

h short or unsigned short

l long or unsigned long

L long double

Conversions:

d, i int; signed decimal notation

o int; unsigned octal notation

x,X int; unsigned hexadecimal notation

u int; unsigned decimal notation

c int; single character

s char* ; outputs the character of a string

f double; [-]mmm.ddd

e,E double; [-]m.dddddde(+|-)xx

g,G double

p void*; print as pointer

n int*; number of chars written into arg

% print %

Example Uses of of the format string in fprintf:

%3d print in a 3 digit field, right justified

%3.0f print no decimal point and no fraction

%3.1f print 1 digit after the decimal point

%.1f print 1 digit after the decimal point, any width

Between the to specify left adjustment of the field, and two digit strings separated by a
period. The first string specifies minimum field width, and the second string specifies the

122 CHAPTER 4. LIBRARY SUPPORT

maximum number of chars to be printed from the string.

:%10s: :hello, world:

:%-10s: :hello, world:

:%20s: : hello, world:

:%-20s: :hello, world :

:%20.10s: : hello, wor:

:%-20.10s: :hello, wor :

:%.10s: :hello, wor:

printf: Synopsis

#include <stdio.h>

int printf(const char* format, ...);

printf(f, ...) is equivalent to fprintf(stdout, f, ...)

sprintf: Synopsis

#include <stdio.h>

int sprintf(char* s, const char* format, ...);

Like fprintf, but output written into string s, which must be large enough to hold the
output, rather than to a stream. Output is null terminated; that is, the null character.
Return length does not include the null terminating character.

vfprintf: Synopsis

#include <stdio.h>

int vfprintf(FILE* stream, const char* format, va_list arg);

Equivalent to fprintf except that the variable argument list is replaced by arg, which
must have been initialised by the va start macro and may have been used in calls to
va arg. See <stdarg.h>

vprintf: Synopsis

#include <stdio.h>

int vprintf(const char* format, va_list arg);

Equivalent to printf except that the variable argument list is replaced by arg, which
must have been initialised by the va start macro and may have been used in calls to
va arg. See verb+¡stdarg.h¿+

vsprintf: Synopsis

#include <stdio.h>

int vsprintf(char* s, const char* format, va_list arg);

Equivalent to sprintf except that the variable argument list is replaced by arg, which
must have been initialised by the va start macro and may have been used in calls to
va arg. See <stdarg.h>

4.1. STANDARD C LIBRARIES 123

fscanf: Synopsis

#include <stdio.h>

int fscanf(FILE* stream, const char* format, ...);

Performs formatted input conversion, reading from stream stream according to format
format. The function returns when format is fully processed. Returns EOF if end-of-
file or error occurs before any conversion; otherwise, the number of items converted and
assigned. Each of the arguments following format must be a pointer. Format string may
contain:

o Blanks, Tabs : ignored

o ordinary characters : expected to match next non-white-space

o % : Conversion specification, consisting of %, optional assignment

suppression character *, optional number indicating maximum field

width, optional [hlL] indicating width of target, conversion

character.

Conversion characters:

d

decimal integer; int* parameter required

i

integer; int* parameter required; decimal, octal or hex

o

octal integer; int* parameter required

u

unsigned decimal integer; unsigned int* parameter required

x

hexadecimal integer; int* parameter required

c

characters; char* parameter required; up to width; no ’\0’

added; no skip

s

string of non-white-space; char* parameter required; ’\0’ added

e,f,g

floating-point number; float* parameter required

p

pointer value; void* parameter required

n

chars read so far; int* parameter required

[...]

longest non-empty string from set; char* parameter required; ’\0’

[^...]

longest non-empty string not from set; char* parameter

required; ’\0’

%

literal %; no assignment

scanf: Synopsis

124 CHAPTER 4. LIBRARY SUPPORT

#include <stdio.h>

int scanf(const char* format, ...);

scanf(f, ...) is equivalent to fscanf(stdin, f, ...)

sscanf: Synopsis

#include <stdio.h>

int sscanf(char* s, const char* format, ...);

Like fscanf, but input read from string s.

fgetc: Synopsis

#include <stdio.h>

int fgetc(FILE* stream);

Returns next character from stream stream as an unsigned char, or EOF on
end-of-file or error.

fgets: Synopsis

#include <stdio.h>

char* fgets(char* s, int n, FILE* stream);

Reads at most the next n-1 characters from stream stream into s, stopping if
a newline is encountered (after copying the newline to s). s is null terminated.
Returns s, or NULL on end-of-file or error.

fputc: Synopsis

#include <stdio.h>

int fputc(int c, FILE* stream);

Writes c, converted to unsigned char, to stream stream. Returns the char-
acter written, or EOF on error.

fputs: Synopsis

#include <stdio.h>

char* fputs(const char* s, FILE* stream);

Writes s, which need not contain ’\n’ on stream stream. Returns non-
negative on success, EOF on error.

getc: Synopsis

#include <stdio.h>

int getc(FILE* stream);

Equivalent to fgetc except that it may be a macro.

4.1. STANDARD C LIBRARIES 125

getchar: Synopsis

#include <stdio.h>

int getchar();

Equivalent to getc(stdin).

gets: Synopsis

#include <stdio.h>

char* gets(char* s);

Reads next line from stdin into s. Replaces terminating newline with ’\0’.
Returns s, or NULL on end-of-file or error.

putc: Synopsis

#include <stdio.h>

int putc(int c, FILE* stream);

Equivalent to fputc except that it may be a macro.

putchar: Synopsis

#include <stdio.h>

int putchar(int c);

putchar(c) is equivalent to putc(c, stdout).

puts: Synopsis

#include <stdio.h>

int puts(const char* s);

Writes s and a newline to stdout. Returns non-negative on success, EOF on
error.

unget: Synopsis

#include <stdio.h>

int unget(int c, FILE* stream);

Pushes c (which must not be EOF), converted to unsigned char, onto
stream stream such that it will be returned by the next read. Only one
character of pushback is guaranteed for a stream. Returns c, or EOF on
error.

fread: Synopsis

126 CHAPTER 4. LIBRARY SUPPORT

#include <stdio.h>

size_t fread(void* ptr,

size_t size,

size_t nobj,

FILE* stream);

Reads at most nobj objects of size size from stream stream into ptr. Re-
turns the number of objects read. feof and ferror must be used to deter-
mine status.

fwrite: Synopsis

#include <stdio.h>

size_t fwrite(const void* ptr,

size_t size,

size_t nobj,

FILE* stream);

Writes to stream stream, nobj objects of size size from array ptr. Returns
the number of objects written (which will be less than nobj on error).

fseek: Synopsis

#include <stdio.h>

int fseek(FILE* stream, long offset, int origin);

Sets file position for stream stream. For a binary file, position is set to
offset characters from origin, which may be SEEK SET (beginning), SEEK CUR

(current position) or SEEK END (end-of-file); for a text stream, offset must
be zero or a value returned by ftell (in which case origin must be SEEK SET).
Returns non-zero on error.

ftell: Synopsis

#include <stdio.h>

long ftell(FILE* stream);

Returns current file position for stream stream, or -1L on error.

rewind: Synopsis

#include <stdio.h>

void rewind(FILE* stream);

rewind(stream) is equivalent to fseek(stream, 0L, SEEK SET);

fgetpos: Synopsis

#include <stdio.h>

int fgetpos(FILE* stream, fpos_t* ptr);

4.1. STANDARD C LIBRARIES 127

Assigns current position in stream stream to *ptr. Type fpos_t is suitable
for recording such values. Returns non-zero on error.

fsetpos: Synopsis

#include <stdio.h>

int fsetpos(FILE* stream, const fpos_t* ptr);

Sets current position of stream stream to *ptr. Returns non-zero on error.

clearerr: Synopsis

#include <stdio.h>

void clearerr(FILE* stream);

Clears the end-of-file and error indicators for stream stream.

feof: Synopsis

#include <stdio.h>

int feof(FILE* stream);

Returns non-zero if end-of-file indicator for stream stream is set.

ferror: Synopsis

#include <stdio.h>

int ferror(FILE* stream);

Returns non-zero if error indicator for stream stream is set.

perror: Synopsis

#include <stdio.h>

void perror(const char* s);

Prints s and implementation-defined error message corresponding to errno:
fprintf(stderr, "%s: %s\n", s, "error message")

See strerror.

4.1.12 stdlib.h

The header file <stdlib.h> contains the following types and macros:

RAND MAX: Integral constant, which is the maximum value returned from rand.

EXIT FAILURE:

EXIT SUCCESS: Macros defined for successful or unsuccessful program termination.

size t: See <stddef.h> § 4.1.10, pg: 117

NULL: See <stddef.h> § 4.1.10, pg: 117

div t: A structure type as returned by the div function.

128 CHAPTER 4. LIBRARY SUPPORT

ldiv t: A structure type as returned by the ldiv function.

wchar t:

The following functions are defined in the header <stdlib.h>:

atof: Synopsis:

#include <stdlib.h>

float atof(const char *s);

Converts the string of ASCII characters, which represent a decimal number to a float.
The string consists of optional leading spaces or tabs, an optional plus or minus sign
(+ or -) followed by one or more decimal digits. Returns the value of the ASCII number
string. The string passed to atof can contain a decimal point with digits to the right of
the decimal point. It can also take the form of a floating point constant.

atoi: Synopsis:

#include <stdlib.h>

int atoi(const char* s);

Returns numerical value of s. Equivalent to (int)strtol(s,NULL,10).

atol: Synopsis:

#include <stdlib.h>

long atol(const char* s);

Returns numerical value of s. Equivalent to strtol(s, NULL, 10).

strtod: Synopsis:

#include <stdlib.h>

double strtod(const char* s, char** endp);

Converts prefix of s to double, ignoring leading white spaces. Stores a pointer to any
unconverted suffix in *endp if endp is non-NULL. In the case of overflow, HUGE VAL is
returned with the appropriate sign; for the case of underflow, zero is returned. In either
case, errno is set to ERANGE.

strtol: Synopsis:

#include <stdlib.h>

long strtol(const char* s, char** endp, int base);

Converts prefix of s to long, ignoring leading white spaces. Stores a pointer to any
unconverted suffix in *endp if endp is non-NULL. If base between 2 and 36, that base
used; if zero, leading 0X or 0x implies hexadecimal, a leading 0 implies octal, otherwise
a decimal conversion is used. Leading 0X or 0x permitted for base 16. In the case of
overflow, LONG MAX or for the case of underflow LONG MIN is returned and errno is set to
ERANGE.

4.1. STANDARD C LIBRARIES 129

strtoul: Synopsis:

#include <stdlib.h>

unsigned long strtoul(const char* s, char** endp, int base);

As for strtol except result is unsigned long and in the case of overflow ULONG MAX is
returned.

rand: Synopsis:

#include <stdlib.h>

int rand();

Returns pseudo-random number in range 0 to RAND MAX.

srand: Synopsis:

#include <stdlib.h>

void srand(unsigned int seed);

Uses seed as seed for new sequence of pseudo-random numbers. The defautl initial value
for seed is 1.

calloc: Synopsis:

#include <stdlib.h>

void* calloc(size_t nobj, size_t size);

Returns pointer to zero-initialised newly-allocated space for an array of nobj objects each
of size size, or NULL if request cannot be satisfied.

malloc: Synopsis:

#include <stdlib.h>

void* malloc(size_t size);

Returns pointer to uninitialised newly-allocated space for an object of size size, or NULL
if request cannot be satisfied.

realloc: Synopsis:

#include <stdlib.h>

void* realloc(void* p, size_t size);

Changes the size of the object to which p points to size. Contents unchanged to minimum
of old and new sizes. If new size larger, new space is uninitialised. Returns pointer to the
new space or, if request cannot be satisfied NULL leaving p unchanged.

free: Synopsis:

#include <stdlib.h>

void free(void* p);

130 CHAPTER 4. LIBRARY SUPPORT

Deallocates space to which p points. If p is NULL there is no effect; otherwise it must be
a pointer returned by calloc, malloc or realloc.

abort: Synopsis:

#include <stdlib.h>

void abort();

Causes program to terminate abnormally, as if by raise(SIGABRT).

item[exit] Synopsis:

#include <stdlib.h>

void exit(int status);

Causes normal program termination. Functions installed using atexit are called in re-
verse order of registration. Open files are flushed and open streams are closed and con-
trol is returned to environment. The value of status is returned to environment in an
implementation-dependent manner. Zero indicates successful termination and the values
EXIT SUCCESS and EXIT FAILURE may also be used.

atexit: Synopsis:

#include <stdlib.h>

int atexit(void (*fcm)(void));

Registers fcm to be called, in reverse order, when the program terminates or via a call to
Texit. Returns zero on success else a non-zero value is returned.

system: Synopsis:

#include <stdlib.h>

int system(const char* s);

Passes s to environment for execution. If s is NULL, non-zero returned if command pro-
cessor exists; return value is implementation-dependent if s is non-NULL.

getenv: Synopsis:

#include <stdlib.h>

char* getenv(const char* name);

Returns (implementation-dependent) environment string associated with name, or NULL if
no such string exists.

puttenv: Synopsis:

#include <stdlib.h>

int putenv(const char* name);

Accepts a string in the form name=value and inserts it into the system environment list,
and if needed replacing any previous definition.

Returns 0 on success or -1 on error. Errors: ENOMEM insufficient space to allocate new
environment.

4.1. STANDARD C LIBRARIES 131

besearch: Synopsis:

#include <stdlib.h>

void* bsearch(const void* key,

const void* base,

size_t n,

size_t size,

int (*cmp)(const void* keyval,

const void* datum));

Searches base[0]...base[n-1] for item matching *key. Comparison function cmp must
return negative if first argument is less than second, zero if equal and positive if greater.
The n items of base must be in ascending order. Returns a pointer to the matching entry
or NULL if not found.

qsort: Synopsis:

#include <stdlib.h>

void qsort(void* base,

size_t n,

size_t size,

int (*cmp)(const void *a1, const void * a2));

Arranges into ascending order the array base[0]...base[n-1] of objects of size size. Com-
parison function cmp must return negative if first argument is less than second, zero if
equal and positive if greater.

abs: Synopsis:

#include <stdlib.h>

int abs(int n);

Returns absolute value of n.

labs: Synopsis:

#include <stdlib.h>

long labs(long n);

Returns absolute value of n.

div: Synopsis:

#include <stdlib.h>

div_t div(int num, int denom);

Returns in fields quot and rem of structure of type div t the quotient and remainder of
num/denom respectively.

ldiv: Synopsis:

132 CHAPTER 4. LIBRARY SUPPORT

#include <stdlib.h>

ldiv_t ldiv(long num, long denom);

Returns in fields quot and rem of structure of type ldiv t the quotient and remainder of
num/denom respectively.

4.1.13 string.h

The header file <string.h> defines the following types and macros:

size t: See <stddef.h> § 4.1.10, pg: 117

NULL: See <stddef.h> § 4.1.10, pg: 117

The following functions are defined in <string.h>:

strcpy: Synopsis:

#include <string.h>

char* strcpy(char* s, const char* ct);

Copy ct to s including terminating null character. Returns a pointer to s.

strncpy: Synopsis:

#include <string.h>

char* strncpy(char* s, const char* ct, int n);

Copy at most n characters of ct to s. Pad with zeros if ct is of length less than n. Returns
a pointer to s.

strcat: Synopsis:

#include <string.h>

char *strcat(char *s2, const char *s1);

Concatenates the string pointed to by s2 to the string pointed to by s1. The calling
program must assure that s1 has enough space for the concatenation.

strncat: Synopsis:

#include <string.h>

char* strncat(char* s, const char* ct, int n);

Concatenate at most n characters of ct to s. Terminate s with the null character and
returns a pointer to it.

strcmp: Synopsis:

#include <string.h>

int strcmp(const char* s1, const char* s2);

4.1. STANDARD C LIBRARIES 133

Compares two strings. The comparison stops when a null terminator is encountered in
either of the two strings. Returns a 0 if the two strings are identical, less than zero if s2
is greater than s1, and greater than zero if s1 is greater than s2.

strdup: Synopsis:

#include <string.h>

char * strdup(const char* s);

Returns a pointer to a new string which is a duplicate of the string s. Memory for the
new string is obtained with malloc, and can be freed with free.

strncmp: Synopsis:

#include <string.h>

int strncmp(const char* s1, const char* s2, int n);

Compares two strings. The comparison stops when a null terminator is encountered in
either of the two strings or when n number of bytes are compared. Returns a 0 if the two
strings are identical, less than zero if s2 is greater than s1, and greater than zero if s1 is
greater than s2.

strchr: Synopsis:

#include <string.h>

char* strchr(const char* s1, int c);

Return pointer to first occurrence of c in s1, or NULL if not found.

strrchr: Synopsis:

#include <string.h>

char* strrchr(const char* s1, int c);

Return pointer to last occurrence of c in s1, or NULL if not found.

strspn: Synopsis:

#include <string.h>

size_t strspn(const char* s1, const char* s2);

Return length of prefix of s1 consisting entirely of characters in s2.

strcspn: Synopsis:

#include <string.h>

size_t strcspn(const char* s1, const char* s2);

Return length of prefix of s1 consisting entirely of characters not in s2.

strpbrk: Synopsis:

#include <string.h>

char* strpbrk(const char* s1, const char* s2);

134 CHAPTER 4. LIBRARY SUPPORT

Return pointer to first occurrence within s1 of any character of s2, or NULL if not found.

strstr: Synopsis:

#include <string.h>

char* strstr(const char* s1, const char* s2);

Return pointer to first occurrence of s2 in s1, or NULL if not found.

strlen: Synopsis:

#include <string.h>

size_t strlen(const char* s1);

Return length of s1.

strerror: Synopsis:

#include <string.h>

char* strerror(int n);

Return pointer to implementation-defined string corresponding with error n.

strtok: Synopsis:

#include <string.h>

char* strtok(char* s, const char* ct);

A sequence of calls to strtok returns tokens from s delimted by a character in ct. A
non-NULL s indicates the first call in a sequence. Also,ct may differ on each call. Returns
NULL when no such token found.

memcpy: Synopsis:

#include <string.h>

void* memcpy(void* dest, const void* src, int n);

Copy n characters from src to dest. Return dest. Does not work correctly if objects
overlap.

memmove: Synopsis:

#include <string.h>

void* memmove(void* dest, const void* src, int n);

Copy n characters from src to dest. Return dest. Works correctly even if objects overlap.

memcmp: Synopsis:

#include <string.h>

int memcmp(const void* s1, const void* s2, int n);

Compare first n characters of s1 with s2. Return negative if s1 ¡ s2, zero if s1 == s2,
positive if s1 ¿ s2.

4.1. STANDARD C LIBRARIES 135

memchr: Synopsis:

#include <string.h>

void* memchr(const char* s1, int c, int n);

Return pointer to first occurrence of c in the first n characters of s1, or NULL if not found.

memset: Synopsis:

#include <string.h>

void* memset(char* s, int c, int n);

Replace each of the first n characters of s by c. Return s.

4.1.14 time.h

The header <time.h> declares the following macros and types:

clock t: An arithmetic type representing time.

time t: An arithmetic type representing time.

CLOCKS PER SEC: The number of clock t units per second.

struct tm: Represents the components of calendar time:

int tm_sec; /* seconds after the minute */

int tm_min; /* minutes after the hour */

int tm_hour; /* hours since midnight */

int tm_mday; /* day of the month */

int tm_mon; /* months since January */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday */

int tm_yday; /* days since January 1 */

int tm_isdst; /* Daylight Saving Time flag */

The value of tm isdst is positive if Daylight saving time is in effect, zero if not
in effect, negative if information unavailable.

The following functions are defined in <time.h>:

clock: Synopsis:

#include <time.h>

clock_t clock(void);

Returns processor time used by program or -1 if not available.

time: Synopsis:

#include <time.h>

time_t time(time_t* tp);

136 CHAPTER 4. LIBRARY SUPPORT

Returns current calendar time or -1 if not available. If tp is non-NULL, return value
is also assigned to *tp.

difftime: Synopsis:

#include <time.h>

double difftime(time_t time2, time_t time1);

Returns the difference is seconds between time2 and time1.

mktime: Synopsis:

#include <time.h>

time_t mktime(struct tm* tp);

Returns the local time corresponding to *tp, or -1 if it cannot be represented.

asctime: Synopsis:

#include <time.h>

char* asctime(const struct tm* tp);

Returns the given time as a string of the form: Sun Jan 3 14:14:13 1988\n\0

ctime: Synopsis:

#include <time.h>

char* ctime(const time_t* tp);

Converts the given calendar time, tp, to a local time and returns the equivalent string.
Equivalent to: asctime(localtime(tp))

gmtime: Synopsis:

#include <time.h>

struct tm* gmtime(const time_t* tp);

Returns the given calendar time converted into Coordinated Universal Time, or NULL
if not available.

localtime: Synopsis:

#include <time.h>

struct tm* localtime(const time_t* tp);

Returns calendar time *tp converted into local time.

strftime: Synopsis:

#include <time.h>

size_t strftime(char* s,

size_t smax,

const char* fmt,

const struct tm* tp);

4.2. POSIX.1 LIBRARY SUPPORT 137

Formats *tp into s according to fmt.

Notes: Local time may differ from calendar time, for example because of time zone.

4.2 POSIX.1 library support

Here is EiC’s current implementation of the POSIX.1 library. It is by no means complete,
but rather a strict subset. For those interested, the POSIX.1 environment is more formally
presented by (Zlotnick, 1991) or (Stevens, 1992).

The test macro POSIX SOURCE is used and as documented in the IEEE POSIX.1
standard, where the programmer is required to define the POSIX SOURCE feature test
macro to obtain the POSIX.1 namespace and POSIX.1 functionality.

This macro can be defined, at compile time (-D POSIX SOURCE) or by using #define

directives in the source files before any #include directives:

#define _POSIX_SOURCE

#include <stdio.h>

#include <signal.h>

It is only needed for those header shared between POSIX.1 and ISO-C, when the
POSIX.1 features are to be made visible (header files that are underlined are currently
not supported):

ISO-C POSIX.1 IS0-C POSIX.1
assert.h stdio.h stdio.h

ctype.hr stdlib.h

dirent.h string.h

errno.h errno.h sys/stat.h

fcntl.h sys/times.h

float.h sys/utsname.h

grp.h sys/wait.h

iso646.h termios.h

limits.h limits.h time.h time.h

locale.h unistd.h

math.h utime.h

setjmp.h setjmp.h wchar.h

signal.h signal.h wctype.h

stdarg.h

stddef.h

4.2.1 dirent.h

The EiC header file <dirent.h> contains objects, types and functions for reading and
opening directories. To make or remove a directory see section § 4.2.8, pg: 145. Also,

138 CHAPTER 4. LIBRARY SUPPORT

while anyone with the appropriate access permissions may read a directory, only the kernel
can write to a directory. Then <dirent.h> defines the following type and structure:

DIR: A directory stream is represented by the type DIR, which is similar to the
<stdio.h> type FILE (page 118).

struct dirent: While the the dirent structure is implementation dependent, it will contain at
least:

ino_t d_ino; /* inode number of entry */

char d_name[NAME_SIZE + 1]; /* name (null-terminated) */

Note the size of d name is also implementation dependent. The dirent struct

specifies the structure type that is used to hold information about individual
directory entries, such as files etc.

The following functions are defined in <dirent.h>:

closedir: Synopsis:

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dirp);

Closes the directory stream associated with dirp. Returns 0 on success, or -1 on error
and sets errno to EBADF.

opendir: Synopsis:

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *dirname);

Opens the directory stream associated with the directory dirname, and returns a pointer
to the opened stream. The directory will be opened such that, the stream pointer is
positioned at the first entry in the directory. Returns a pointer to the directory on
success, else NULL on error and will set errno to one of: EACESS, EMFILE, ENOENT, ENFILE,
ENOMEM or ENOTDIR.

readdir: Synopsis:

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

Reads the next dirent structure from the stream dirp. Returns a pointer to the associated
struct dirent, else NULL if the end-of-file mark has been reached or on an error, and in
which case it sets errno to EBADF.

rewinddir: Synopsis:

4.2. POSIX.1 LIBRARY SUPPORT 139

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dirp);

Rewinds or resets the directory stream dirp back to the beginning. No error codes used.

4.2.2 errno.h

The header file <errno.h> has already been discussed with respect to the ISO C library
specifications (see § 4.1.3, pg: 109). Here its POSIX.1 additions are report.

The EiC header file <errno.h> defines the following extra macros:

E2BIG: Argument list too long.

EACCES: Permission denied.

EAGAIN: Device or resource unavailable; try again later.

EBADF: Bad file descriptor.

EBUSY: Device or resource busy.

ECHILD: No child processes.

EDEADLK: Resource deadlock would result.

EEXIST: File exists.

EFAULT: Bad address.

EFBIG: File too large.

EINTR: Function interrupted system call.

EINVAL: Invalid argument.

EIO: I/O error.

EISDIR: Is a directory.

EMFILE: Too many open files.

EMLINK: Too many links.

ENAMETOOLONG: File name too long.

ENFILE: File table overflow because of too many open files.

ENODEV: No such device.

ENOENT: No such file or directory.

ENOEXEC: Executable format error, because file is not executable.

ENOLCK: No record locks available.

ENOMEM: Out of memory.

ENOSPC: No space left on device.

ENOSYS: Function not implemented or supported

ENOTDIR: Not a directory.

ENOTEMPTY: Directory not empty.

ENOTTY: Not a typewriter or inappropriate I/O control operation.

140 CHAPTER 4. LIBRARY SUPPORT

ENXIO: No such device or address.

EPERM: Operation not permitte

EPIPE: Broken pipe.

EROFS: Read-only file system.

ESPIPE: Illegal seek operation.

ESRCH: No such process.

EXDEV: Cross-device link; invalid link.

4.2.3 fcntl.h

The EiC header file <fcntl.h> defines the following macros:

O APPEND: If on, set offset to end-of-file before each write.

O CREAT: If file does not exist, the the file is created and with file attribute according to
the value of mode. If files does exist, then this flag has no effect.

O EXCL: Fail if file exists and if O CREAT is also specified. Otherwise, create the file.

O NOCTTY: Not used with regular files.

O NONBLOCK: Not used with regular files.

O RDONLY: Open for read only.

O RDWR: Open for read and write.

O TRUNC: If the file exists, its length will be truncated to zero.

O WRONLY: Open for write only.

O NDELAY: For compatibility with System V.3.

O BINARY: Open file in binary mode. Added for DOS compatibility.

O TEXT: Open file in text mode. Added for DOS compatibility.

The following functions are defined in <fcntl.h>:

creat: Synopsis:

#include <sys/types.h>

#include <sys/stats.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

Creates a new file or rewrites an existing one for writing, as specified by path. Its ac-
cess is specified by mode, which maybe one or a bitwise combination of: S IS[UG]ID,
S ISVTX, S I[RWX](GRP|USR|OTH). It returns a nonnegative file descriptor if successful,
else it returns -1 and sets errno to one of: EACCES, EEXIST, EINTR, EISDIR, EMFILE,
ENAMETOOLONG, ENFILE, ENOENT, ENOSPS, ENOTODIR, or EROFS.

open: Synopsis:

4.2. POSIX.1 LIBRARY SUPPORT 141

#include <sys/types.h>

#include <sys/stats.h>

#include <fcntl.h>

int open(const char *path, int access, ... /* mode_t mode */);

Create or open the file specified by path, with access defined by access, which maybe one
or a bitwise combination of: O APPEND, O CREAT, O EXCL, O NONBLOCK, O NOCTTY, O RDONLY,
O RDWR or O WRONLY. The extra argument mode is used when creating a file with the access
flag O CREAT specified. The mode maybe one or a bitwise combination of S IS[UG]ID,
S ISVTX, S I[RWX](GRP|USR|OTH). Open returns a nonnegative file descriptor if successful,
else it returns -1 and sets errno to one of: EACCES, EEXIST, EINTR, EISDIR, EMFILE,
ENAMETOOLONG, ENFILE, ENOENT, ENOSPS, ENOTODIR, TENXIO or EROFS.

fcntl: Synopsis:

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int filedes, int cmd, ..., /* optional int arg */);

The properties of a file can be changed via the fcntl function. It is used for the following
five purposes:

1. Makes arg be a copy of fd, closing fd first if necessary, when cmd = F DUPFD.

2. Read or set file discriptor flags, cmd = F GETFD or F SETFD.

3. Read or set a file’s status flags , cmd = F GETFL or F SETFL.

4. Read or set the process ID (or process group) of the owner of a socket, cmd =
F GETOWN or F SETOWN.

5. Read or set record locks, cmd = F GETL, F SETLK or SETLKW.

All commands return -1 on error otherwise the return value depends on the input com-
mand: F DUPFD, a new descriptor; F GETFD, the value of the flag F GETFL value of flags
and F GETOWN a positive or negative process ID.

On error, sets errno to one of: EACCESS, EAGAIN, EDEADLK.

4.2.4 limits.h

The header <limits.h> declares the following POSIX.I macros:

ARG MAX: maximum length of argument to the ‘exec’ function

CHILD MAX: maximum number of simultaneous processes per real user ID at any one time

LINK MAX: number of links a file may have

MAX CANON: size of the canonical input queue

MAX INPUT: size of the type-ahead buffer

NAME MAX: maximum number of bytes in a file name, not including null termination.

142 CHAPTER 4. LIBRARY SUPPORT

NGROUPS MAX: maximum number of supplementary group IDs that one process can have.

OPEN MAX: number of files that a single process can have open simultaneously

PIPE BUF: maximum number of bytes written atomically to a pipe

SSIZE MAX: largest value for object of type ssize t

TZNAME MAX: maximum bumber of bytes for the a time zone name.

POSIX ARG MAX: Maximum length of arguments to ‘execve’, including environment.

POSIX CHILD MAX: Maximum simultaneous processes per real user ID.

POSIX LINK MAX: Maximum link count of a file.

POSIX MAX CANON: Number of bytes in a terminal canonical input queue.

POSIX MAX INPUT: Number of bytes for which space will be available in a terminal input queue.

POSIX NAME MAX: Number of bytes in a filename.

POSIX NGROUPS MAX: Number of simultaneous supplementary group IDs per process.

POSIX OPEN MAX: Number of files one process can have open at once.

POSIX PATH MAX: Number of bytes in a pathname.

POSIX PIPE BUF: Number of bytes than can be written atomically to a pipe.

POSIX SSIZE MAX: Largest value of a ‘ssize t’.

POSIX STREAM MAX: Number of streams a process can have open at once.

POSIX TZNAME MAX: Maximum length of a timezone name (element of ‘tzname’).

POSIX QLIMIT: Maximum number of connections that can be queued on a socket.

POSIX HIWAT: Maximum number of bytes that can be buffered on a socket for send or receive.

POSIX UIO MAXIOV: Maximum number of elements in an ‘iovec’ array.

POSIX TTY NAME MAX: Maximum number of characters in a tty name.

POSIX LOGIN NAME MAX: Maximum length of login name

4.2.5 signal.h

The header <signal.h> declares the following POSIX.I macros:

SIGALRM: Alarm clock.

SIGCHLD: Child process terminated or stopped.

SIGHUP: Hangup.

SIGKILL: Kill (cannot be caught or ignored).

SIGPIPE: Write on a pipe with no one to read it.

SIGQUIT: Terminal quit signal.

SIGSTOP: Stop executing (cannot be caught or ignored).

SIGTSTP: Terminal stop signal.

SIGTTIN: Background process attempting read.

SIGTTOU: Background process attempting write.

SIGUSR1: User-defined signal 1.

SIGUSR2: User-defined signal 2.

4.2. POSIX.1 LIBRARY SUPPORT 143

4.2.6 sys/stat.h

The EiC header file <sys/stats.h> defines symbolic constants that are used when speci-
fying the mode t access of files. It defines the following macros and one structure specifier:

S IRGRP: Group read permission.

S IROTH: Other read permission.

S IRUSR: Owner read permission. This is identical to the S IREAD used by DOS.

S IRWXG: Group read, write and execute permission.
S_IRWXG = S_IRGRP | S_IWGRP | SI_XGRP

S IRWXO: Other read, write and execute permission.
S_IRWXO = S_IROTH | S_IWOTH | S_IXOTH

S IRWXU: Owner read, write and execute permission.
S_IRWXU = S_IRUSR | S_IWUSR | S_IXUSR

S ISBLK: Is block special file.

S ISCHR: Is character special file.

S ISDIR: Is directory.

S ISFIFO: Is pipe or FIFO.

S ISGID: set group id on execution

S ISREG: set user id on execution

S IWGRP: Group write permission.

S IWOTH: Other write permission.

S IWUSR: Owner write permission. This is identical to S IWRITE used by DOS.

S IXGRP: Group execute permission.

S IXOTH: Other execute permission.

S IXUSR: Owner execute permission.

struct stat: A file status attributes are easily collected into a structure as specified by struct

stat, which has at least the following members:

mode_t st_mode; /* File mode */

ino_t st_ino; /* File serial number */

dev_t st_dev; /* File system device number */

nlink_t st_nlink; /* Number of links */

uid_t st_uid; /* User ID of the file’s owner */

gid_t st_gid; /* Group ID of the file’s group */

off_t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */

time_t st_ctime; /* Time of last file status change */

/* ... */ /* other possible members */

The following functions are defined in <sys/stat.h>:

144 CHAPTER 4. LIBRARY SUPPORT

chmod: Synopsis:

#include <sys/types.h>

#include <sys/stat.h>

int chmod(const char * path, mode_t mode);

Change access permission of the file specified by path to mode, which maybe one or a
bitwise combination of S IS[UG]ID, S ISVTX, S I[RWX](GRP|USR|OTH). Returns zero on
success or -1 on error and sets errno to one of: EACCESS, ENAMETOOLONG, ENOTDIR, ENOENT,
EPERM OR EROFS.

fstat: Synopsis:

#include <sys/types.h>

#include <sys/stat.h>

int fstat(int filedes, struct stat *buf)

Gets the open file or directory information associate with filedes. It stores the informa-
tion in the stat structure, pointed to by buf. It returns zero on success, else -1 on error
and sets errno to EBADF.

mkdir: Synopsis:

#include <sys/types.h>

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode)

Creates a directory from the given path with access specified by mode, which maybe one
or a bitwise combination of S IS[UG]ID, S ISVTX, S I[RWX](GRP|USR|OTH). Returns 0 on
success, else -1 on error and then sets errno to one of: EACCESS, ENAMETOOLONG, ENOENT
or ENOTDIR.

mkfifo: Synopsis:

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char * path, mode_t mode)

Creates a FIFO name pipe with access specified by mode, which maybe one or a bitwise
combination of S IS[UG]ID, S ISVTX, S I[RWX](GRP|USR|OTH). Returns 0 on success, else
-1 on error and sets errno to one of: EACCESS, EEXIST, ENAMETOOLONG, ENOENT, ENOSPC,
ENOTDIR or EROFS.

stat: Synopsis:

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *file_name, struct stat *buf)

The same as fstat above, but is applied to a file name rather than an already opened file.
Returns 0 on success, else -1 on error and sets errno to one of: EACCESS, ENAMETOOLONG,
ENOENT or ENOTDIR.

4.2. POSIX.1 LIBRARY SUPPORT 145

umask: Synopsis:

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask)

Sets the file mode creation mask for the calling process to cmask. Returns the previous
creation mask. No error codes used.

4.2.7 sys/types.h

The EiC header file <sys/types.h> defines the following object types.

dev t: Device number (major and minor).

gid t: Group ID.

ino t: Numeric i-node value.

mode t: File type and creation mode.

nlink t: Number of links associated with a directory.

off t: For recording file offset position and file sizes.

pid t: Process ID number and process group ID¿

size t: See section § 4.1.10, pg: 117

ssize t: POSIX byte count.

uid t: User IDs.

4.2.8 unistd.h

The EiC header file <unistd.h> defines the following macros:

F OK: Does file exist.

W OK: Writable by caller.

R OK: Readable by caller.

X OK: Executable by caller.

STDIN FILENO: Standard input.

STDOUT FILENO: Standard output.

STDERR FILENO: Standard error output.

The following functions are presently implemented from <unistd.h> by EiC:

access: Synopsis

#include <unistd.h>

int access(const char * path, int mode);

146 CHAPTER 4. LIBRARY SUPPORT

Checks the file pointed to by path for accessibily according to mode, using the real user ID
in place of the effective user ID and the real group ID in place of the effective group ID.
This allows a setuid process to verify that the user running it would have had permission
to access this file. The mode can be F OK, R OK, W OK, or X OK. Returns zero on success
or -1 on failure and sets errno to one of: EACCES, ENAMETOOLONG, ENOENT, or
EROFS.

alarm: Synopsis

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

alarm arranges to have a SIGALRM delivered to the process for the signal SIGALRM after
the specified number of seconds have elapsed. If seconds is zero then no new alarm is
schededuled. In all cases the any previous alarms are cancelled and returns the number
of seconds remaining until any scheduled alarm was due to be delivered. Returns zero if
there is no previously scheduled alarm.

chdir: Synopsis

#include <unistd.h>

int chdir(const char * pathname);

chdir changes the current working directory to the one specified in pathname. Returns on
success, 0 and on error returns -1 and it will set errno to one of: EFAULT ENAMETOOLONG,
ENOENT, ENOMEM, ENOTDIR, EACCES, ELOOP, EIO, EBADF or EACCES

close: Synopsis

#include <unistd.h>

int close(int handle);

Closes the file associated with handle, which may have been obtained from creat, open,
dup, or dup2. Returns 0 on success, else -1 on error and sets errno to one of: EBADF or
EINTR.

dup: Synopsis

#include <unistd.h>

int dup(int filedes);

Duplicates the file handle filedes. The duplicated handle will have the same access mode,
the same file pointer and same open file or device as filedes. Returns the duplicated file
handle, else -1 on error and sets errno to one of: EBADF or EMFILE.

dup2: Synopsis

#include <unistd.h>

int dup2(int oldfiledes, int newfiledes);

4.2. POSIX.1 LIBRARY SUPPORT 147

Duplicates an old file handle, oldfiledes onto an existing new file handle, newfiledes.
The duplicated handle will have the same access mode, the same file pointer and same
open file or device as the old handle. If the file associated with the new file handle is
already opened, it will be first closed. Returns 0 on success, else -1 on error and sets
errno to one of EBADF or EMFILE.

fork: Synopsis

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Creates a child process, which is a copy of the parent. The child gets a copy of the
parent’s data space, heap and stack. While fork is called once, it will return twice: once
to the parent and once to the child. It returns 0 to the child and returns the process ID
of the child to the parent. Both the child and parent continue executing from the place
in the program directly after the call. However, there is no guarantee which process will
commence first. On error, it returns -1 and sets errno to one of: EAGAIN or ENOMEM.

getcwd: Synopsis

#include <unistd.h>

char *getcwd(char *buf, size_t sz);

The getcwd function gets the current working directory’s absolute path and copies it into
the character array buf, and the length of buf is specified by sz. Returns on success buf,
or NULL on error.

getpid: Synopsis

#include <sys/types.h>

#include <unistd.h>

int getpid(void);

Returns the group ID of the calling process. No error indicated or errno designators.

link: Synopsis

#include <unistd.h>

int link(const char *oldpath, const char *newpath);

Creates a link to an existing file or directory specified byoldpath, and give it the name
newpath. It is an error if the newpath already exists. Note, only a superuser process can
create a link to a directory. Returns 0 on success, else -1 on error and sets errno to one
of: EINVAL, EPERM or ESRCH.

lseek: Synopsis

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int filedes, off_t offset, int whence);

148 CHAPTER 4. LIBRARY SUPPORT

Set the file descriptor’s, filedes, pointer to the new position specified by offset, which
will be measured relative to whence. whence can be on of: SEEK SET, SEEK END or
SEEK CUR. Returns on success the resulting position in number of bytes from the be-
ginning of the file, else it returns -1 and sets errno to one of: EBADF, EINVAL or ESPIPE.
Note, lseek(filedes,0,SEEK_CUR) will return the current file pointer location.

pause: Synopsis

#include <unistd.h>

int pause(void);

Causes the program or calling unit to sleep until a signal is received. Returns -1.

pipe: Synopsis

#include <unistd.h>

int pipe(int filedes[2]);

Creates a pipe, with read and write file descriptors stored in filedes[0] and filedes[1] re-
spectively. The output filedes[0] is the input into file filedes[1]. A call to pipe is often
accompanied by a fork, of which the parent process will close the read end of the pipe,
while the child process will close the write end. Returns 0 on success, else -1 on error and
sets errno to one of: EMFILE or ENFILE.

read: Synopsis

#include <unistd.h>

ssize_t read(int filedes, char *buf, size_t count);

Attempts to read count bytes from filedes and will place them in buf. One success,
returns the number of bytes read, on end-of-file zero, otherwise -1 and sets errno to
one of: EACCESS, EAGAIN, EBADF, EINTR, EISDIR, or EFAULT.

rmdir: Synopsis

#include <unistd.h>

int rmdir(const char * path);

Removes the directory specified by path, which must be empty. Returns zero on success,
else -1 on error and errno will be set to one of: EBUSY, EFAULT, ENAMETOOLONG, ENOENT,
ENOMEM, ENOTDIR, ENOTEMPTY, EPERM or EROFS.

sleep: Synopsis

#include <unistd.h>

unsigned int sleep(unsigned int sec);

Puts the current process to sleep for sec seconds. or until a signal arrives which is not
ignored. Returns the amount of time not slept. No error codes used.

unlink: Synopsis

#include <unistd.h>

int unlink(const char *fname);

4.3. IMPLEMENTATION LIBRARY SUPPORT 149

Removes the link, fname from the filesystem. If it is the last link to the that name and
no other process has the file opened, then the file space will also be freed. If there are
no other links and any process still has the file opened then the file space will remain in
existence until the last file descriptor referring to it is closed. Returns zero on success, else
-1 and errno is set to one of: EACCES, EFAULT, EISDIR, ENAMETOOLONG, ENOENT, ENOMEM,
ENOTDIR, EPERM , or EROFS.

usleep: Synopsis

#include <unistd.h>

void usleep(unsigned long usec);

The usleep function when called waits usec microseconds before returning to its caller.
Its accuracy depends on the time needed to actually process the call, but as the value of
usec increase so should its accuracy. 1sec=106usec.

write: Synopsis

#include <unistd.h>

ssize_t write(int filedes, const char *buf, size_t count);

Writes up to count bytes to file descriptor filedes from from buf. Returns the number of
bytes written, zero on end-of-file or otherwise -1 and errno will be set to one of: EAGAIN,
EBADF, EFAULT, EINTR, EINVAL, ENOSPC or EPIPE.

4.3 Implementation library support

In this section, those functions that are not part of ISO C or the POSIX.1 standard are
presented. These functions will typically be found on most UNIX system.

4.3.1 stdio.h

The EiC header file <stdio.h> defines the following extra functions:

pclose: Synopsis

#include <stdio.h>

int pclose(FILE *stream);

popen: Synopsis

#include <stdio.h>

FILE *popen(const char *command, const char *type);

150 CHAPTER 4. LIBRARY SUPPORT

4.3.2 dirent.h

The EiC header file <dirent.h> defines these extra functions:

seekdir: Synopsis

#include <dirent.h>

void seekdir(DIR *dir, off_t offset);

telldir: Synopsis

#include <dirent.h>

off_t telldir(DIR *dir);

Chapter 5

The Advanced Concepts

In this chapter the more esoteric and advanced concepts of EiC will be discussed.

5.1 EiC modules

5.1.1 Building an eic module

There are basically two types of EiC modules. Interpreter’d code modules and mod-
ules which get builtin to EiC (compiled code). The simplist modules to construction are
interpreter’d modules. In a nutshell intepreter’d modules are related groups of EiC/C
functions, which get interpreter’d. Builtin modules are related groups of compiled func-
tions, which have been interfaced to EiC – a process which has now been automated
thanks to work by Jean-Bruno Richard.

One of the nice features of an EiC module, is that once you have a module built
you can add it to another EiC distribution by simply copying it into the ‘EiC/module’
directory and to remove a module you simply remove it from the ‘EiC/module’ directory
– easy as that. For builtin modules, EiC will need to be clobbered and recompiled after
each addition or removal of a builtin module, and this is done from EiC’s source code
directory:

% make clobber

% config/makeconfig

% make install

5.1.2 Interpreter’d modules

Adding an interpreter module is simple, just create a directory for the module in the EiC
directory ‘EiC/module’ and place a copy (not a link) of the ‘EiC/module/Makefile.empty’

151

152 CHAPTER 5. THE ADVANCED CONCEPTS

in your module directory and rename it to Makefile.
‘Makefile.empty’ is a dummy Makefile which is used to prevent the Makefile system

from crashing whenever you rebuild EiC. EiC’s build process expects a Makefile with
various targets in each directory off the ‘EiC/module’ directory.

Once you have setup the directory and added the Makefile, you can start adding your
own code into your module directory. Lets say the new interpreter’d module is called ‘foo’
and you have code files called ‘foo.h’ and ‘f1.c’, these can now be accessed from the EiC
prompt by simply entering:

EiC > #include foo/foo.h

EiC > #include foo/f1.c

Or from any other file, which gets included into an EiC session. This is because the
‘EiC/module’ directory is by default included in EiC’s search list (see pg: 26). Therefore,
any include file that belongs to a module only needs to be referenced relative to its module
directory.

5.1.3 Module names and assumptions

The name given to a module, module name, is important for several reasons, and particu-
larly so for builtin modules. This is because on startup, EiC will expect to call each builtin-
modules initialising function ‘module module name’ (see also pg: 157). This call will be
automatically setup by EiC’s makefile system, using the file ‘EiC/module/modules.calls’.
Entries into this file will de done via each Makefile installed in each builtin module. The
entry for module directory ‘XXXX’ would look like:

#ifndef NO_module_XXXX

module_XXXX();

#endif

The file ‘EiC/module/modules.calls’ is inturn included into EiC’s main function.

5.1.4 Building builtin modules

Building a builtin module is considerably more complex than building an interpreter’d
module. Basically, a builtin module is a set of interface routines that interface EiC to a
library of compiled C code and that also allows compiled C code to make callbacks to EiC.
Callbacks are called from builtin code that take as an argument, a pointer to a function;
such as qsort does.

There are two basic steps to building a builtin module: (1) construct the interface code
files, via EiC’s ‘:gen’ command (see also pg: 22) and (2) construct the Makefile, which

5.1. EIC MODULES 153

is done via a copy and modify approach. It is expected however, that the builder, the
developer, of the interface is knowledgeable about the library being interfaced to and will
take into consideration which callbacks must be multiplexed and will understand EiC’s
pointer qualifiers (see § 3.12.5, pg: 66).

5.1.5 Restrictions for builtin functions

At present EiC will not allow a builtin function to be passed a pointer to a function that
takes a variable argument list. This is becuase EiC needs to be able to construct the
callback code, and to do this it needs to know in advanced what the callback arguments
are.

However, EiC’s can interface to prototypes of builtin routines that accept as an ar-
gument pointers to callback functions which have empty paramater lists: For example,
consider the following interpreter’d functions:

int f0(void) { return 1;}

int f1(double x) { return x + 0.5;}

int f2(char *s) { return strlen(s););

int f3(int x, int y) { return x + y;}

The prototype for a builtin function might be:

int fooey(int x, int f());

It is now possible to pass the address of ‘f0’, ‘f1’, ‘f2’ and ‘f3’ to ‘fooey’. The builtin
function ‘fooey’ would then pass the proper arguments to the appropriate callback func-
tion, possibly based on the value ‘x’, which will also be passed to ‘fooey’.

5.1.6 Interfacing to a library of C code

For the purpose of discussion some example code will be used. First, the interface between
EiC and a library of C code is done via each library’s header file(s). Therefore, the
following header file, foo.h, will be used:

1: /* begin header */

2:

3: extern int GVALUE;

4:

5: extern int foo1(int x, int y);

6: extern int foo2(int z, int (*)(int, int));

7: extern int * foo3(double (*)());

154 CHAPTER 5. THE ADVANCED CONCEPTS

This is a simple header file, which is complicated enough to be interesting and is
used to demonstrate several principles only. On line 3 there is an external variable that
must be shared between the library being interfaced with and the EiC interpreter. Line
5 represents a straight forward function prototype. On line 6 is a little more complicated
prototype, as one of the arguments is a pointer to a function which returns an int and
it accepts two int arguments. The prototype on line 7 is the most complicated in the
example code, as it takes a pointer to a function that receives an empty parameter list.
In C an empty parameter list does not mean that the function accepts zero aguments;
i.e. void. On the contrary, it means it can accept a variable number of arguments from
zero to N. The only thing that is certain is that arguments cannot be widened – double

instead of float, int instead of short etc.
Moving to the directory of interest:

% cd EiC/module/foo

Running EiC and from its command line the following lines are entered:

EiC > #include foo.h

EiC > :gen foo.h "foo.c"

The ‘:gen’ command takes input from ‘foo.h’ and creates an output file ‘foo.c’, which
contains the interfaces. Note the output file must be passed to the ‘:gen’ command as a
string, and if no output file is given the interfaces will be written to stdout.

The first part of file ‘foo.c’ includes several header files:

#include <stdlib.h>

#include <varargs.h>

#include "eic.h"

#include "foo.h"

The varargs.h mechanism is required for passing variable arguments between compiled
C code and EiC, and the header file “eic.h” contains macros and prototypes required to
access EiC’s runtime stack and for generating callbacks .

Next, the interface to ‘foo1’ generated is given:

static val_t eic_foo1(void)

{

val_t v;

v.ival = foo1(arg(0,getargs(),int),

arg(1,getargs(),int));

return v;

}

5.1. EIC MODULES 155

This is the simplest interface, it essentially just collects the arguments passed on EiC’s
stack, via the ‘arg’ facililty defined in the header file “eic.h”, passes these values to the
function “foo1” and it returns the return value, packaged in the union ‘v’ to EiC.

This is then followed by the interface to ‘foo2’:

static void * EiC_Cfunc_0 = NULL;

static int MiddleOne_0(int x0, int x1)

{

setArg(0, EiC_Cfunc_0, int ,x0);

setArg(1, EiC_Cfunc_0, int ,x1);

EiC_callBack(EiC_Cfunc_0);

return EiC_ReturnValue(int);

}

static val_t eic_foo2(void)

{

val_t v;

EiC_Cfunc_0 = arg(1,getargs(),ptr_t).p;

v.ival = foo2(arg(0,getargs(),int),

MiddleOne_0);

return v;

}

The interface to ‘foo2’ is more complex and requirs two functions. At compile time,
EiC creates the callback code for the function being passed. The callback codes gets sub-
stituted for the pointer to the function and a reference to it will be stored in EiC Cfunc 0
and when the interface routine ‘eic foo2’ is called.

Within ‘eic foo2’ the compiled function foo2 is called, passing it a pointer to the proxy
function ‘MiddleOne 0’. The roll of ‘MiddleOne 0’ is to collect the arguments being passed
from ‘foo2’ for the interpreter’d function pointered to by ‘EiC Cfunc 0’, and to return the
return value back to ‘foo2’. ‘MiddleOne 0’ uses EiC’s setArg facility defined in ‘eic.h’ for
passing values from the machines runtime stack to the EiC interpreter’d function (and it
makes no difference if the interpreter’d function being callback is actually another builtin
function). The EiC ReturnValue(type) macro gets the last value stored on EiC’s runtime
stack and casts it to ‘type’, and it is this value that gets returned to its caller.

This all occurs seamlessly to the user; for example:

EiC > int f(int x, int y) { return x + y;}

EiC > foo2(5,f);

156 CHAPTER 5. THE ADVANCED CONCEPTS

On line 7 is the prototype for ‘foo3’ is given:

7: extern int * foo3(double (*)());

The ‘foo3’ function is the most complex funtion in the example code to interface to.
This is because ‘foo3’ receives a pointer to a function, to which inturn accepts a variable
number of arguments and it also returns a pointer, adding another degree of complexity
to the interface. The default interface generated will be:

static void * EiC_Cfunc_1 = NULL;

static double MiddleOne_1(va_alist) va_dcl

{

void Auto_EiC_CallBack(code_t *callback, va_list ap);

va_list ap; va_start(ap);

Auto_EiC_CallBack(EiC_Cfunc_1,ap);

EiC_callBack(EiC_Cfunc_1);

return EiC_ReturnValue(double);

va_end(ap);

}

static val_t eic_foo3(void)

{

val_t v;

EiC_Cfunc_1 = arg(0,getargs(),ptr_t).p;

v.p.ep = v.p.sp = v.p.p = foo3(MiddleOne_1);

return v;

}

This interface works essentially the same way as that for ‘foo2’. The main differences
being that the proxy function ‘MiddleOne 1’ uses the Unix varargs mechanism for passing
variable arguments. However, rather than using the ‘setArg’ mechanism, the function
‘Auto EiC callBack’ is used to get the variable(s) to be passed to the callback function.

5.1.7 Returning pointers

The next thing to notice in ‘eic foo3’ is that it returns a pointer, and therefore, the limits
or range for the pointer values must be set. EiC treats all pointers by default as safe.
The value of a safe pointer (v.p.p) should always satisfy:

5.1. EIC MODULES 157

v.p.ep >= v.p.p && v.p.sp <= v.p.p;

The end point ‘ep’ and the start start ‘sp’ must be set appropriately. The ‘:gen’ com-
mand has no insight into the function being interfaced with, so it must take a conservative
approach. However, if on the otherhand the developer of the interface new that ‘foo3’ was
going to return a pointer to an area large enough to hold ‘N’ ints for example, then the
following change would be appropriate:

v.p.ep = v.p.sp = v.p.p = foo3(MiddleOne_1);

to

v.p.sp = v.p.p = foo3(MiddleOne_1);

v.p.ep = (char*)v.p.p + N * sizeof(int);

For further details on EiC pointers see: § 3.12.5, pg: 66.

5.1.8 Initialising the module

The last part of the file generaterd by ‘:gen’ contains the function ‘module module name’,
where for this example the module name is ‘foo’:

void module_foo()

{

EiC_parseString("int GVALUE @ 0x%p;", &GVALUE);

add_builtinfunc("foo1",eic_foo1);

add_builtinfunc("foo2",eic_foo2);

add_builtinfunc("foo3",eic_foo3);

}

First the initialising function ‘module foo’ setups the shared variables using EiC’s
address operator, as proposed by Eugene Brooks III. Next, each builtin function is added
to EiC’s lookup tables. The first variable passed to the ‘add builtinfunc’ function is the
name of the function that will be seen by the EiC interpreter, and the second argument
is the function that will be actually called.

Also, the ‘module foo’ function is the initialising function for the module ‘foo’ (see also
pg: 152). This is because the module directory name is also ‘foo’. Each builtin modules
initialising function will be called automatically on EiC startup. If there are other header
files in the directory ‘foo’ that must be intialised, then it is expected that developer will
insert calls to these other files within the initialising function module. Although this
feature will most likely be automated in a future release of EiC.

158 CHAPTER 5. THE ADVANCED CONCEPTS

5.1.9 Multiplexed interfacing

There is still the problem of multiplexing that must be addressed; that is, interfacing to
builtin functions that allow the call of different functions according to predefined signals.
At this stage, it is upto the developer of the interface to decide which functions must be
mutliplexed and the level of multiplexing required. For example, consider the problem of
interfacing to a menu function that will call different functions depending on which menu
item is selected. As an example, the interface to ‘foo2’ will be modified for 3 levels of
multiplexing; that is, at any given instant it may make callbacks on anyone of 3 functions:

#define ML_0 3

static int cbs_0 = 0;

static void *EiC_Cfunc_0[ML_0];

static int MiddleOne_0(int x, int x0, int x1)

{

setArg(0, EiC_Cfunc_0[x], int ,x0);

setArg(1, EiC_Cfunc_0[x], int ,x1);

EiC_callBack(EiC_Cfunc_0[x]);

return EiC_ReturnValue(int);

}

static int MiddleOne_0a(int x, int y) { return MiddleOne_0(0, x,y); }

static int MiddleOne_0b(int x, int y) { return MiddleOne_0(1, x,y); }

static int MiddleOne_0c(int x, int y) { return MiddleOne_0(2, x,y); }

static void (*tabFunc_0[])() = {

MiddleOne_0a,

MiddleOne_0b,

MiddleOne_0c,

};

static val_t eic_foo2(void)

{

val_t v;

if(cbs_0 == ML_0) {

fprintf(stderr,"EiC : too many callbacks for foo2\n");

return v;

}

5.1. EIC MODULES 159

EiC_Cfunc_0[cbs_0] = arg(1,getargs(),ptr_t).p;

v.ival = foo2(arg(0,getargs(),int),

tabFunc_0[cbs_0]);

cb_0++;

return v;

}

The variable ‘EiC Cfunc 0’ is now defined as an array of pointers and the ‘Mid-
dleOne 0’ function has been interfaced to via an array of pointers to functions, each
of which will pass the index to the selected callback code stored in the ‘EiC Cfunc 0’
array, as well as the variables passed from ‘foo2’. This is done via the use of the function
array ‘tabFunc 0’. On entry into ‘eic foo2’ a pointer to the callback function is stored in
‘EiC Cfunc 0’ and a pointer to a function stored in the function pointer array ‘tabFunc 0’
is passed to ‘foo2’. In a interactive environment it might also be appropriate to first search
the array ‘EiC Cfunc 0’, to see if the incoming pointer is already stored in ‘EiC Cfunc 0’
and to be able to reset ‘cb 0’ back to zero.

5.1.10 Builtin-module’s makefiles

The next thing that is required when building a builtin module, is a makefile. To construct
the builtin-module’s Makefile, copy the ‘EiC/module/Makefile.builtin’ to the module di-
rectory and rename it to ‘Makefile’. Next only the following variables within the ‘Makefile’
will need to set:

MODULE =

LINK_LIBS =

libSRCS =

libOBJS =

The variable ‘MODULE’ is used to record the module name. The ‘LINK LIBS’ vari-
able should contain the names of the libraries being linked to and any auxially libraries
required. Remember a builtin module is just an interface to a C library. The ‘libSRCS’
variable will contain then names of the C files that where generated by EiC’s ‘:gen’ com-
mand or any other C code. The ‘libOBJS’ variable will be assigned the objects to be
linked into EiC. For our example, the above lines would be changed to:

MODULE = foo

LINK_LIBS = -L/path_2_foo_library -lfoo

160 CHAPTER 5. THE ADVANCED CONCEPTS

libSRCS = foo.c

libOBJS = $(LIB)(foo.o)

The ‘LIB’ variable is a predefined to EiC’s library libeic. If a second interface file was
needed, say fooey, then libSRCS and libOBJS would change to:

libSRCS = foo.c fooey.c

libOBJS = $(LIB)(foo.o) $(LIB)(fooey.o)

Appendix A

Syntax of the EiC language

In this section the grammar for the C part of the EiC language is given. For the purposes
of comparison, the syntax for the ISO C language from (Kernighan and Ritchie, 1988) is
given along side EiC’s. Any part of ISO’s C grammar that is underlined is currently not
supported by EiC. Any part of EiC’s C grammar that is underlined in not supported by
ISO C.

A.1 Syntax Notation

The following notation is used:

1. Non terminals are given in italics.

2. Terminals are given in typewriter font.

3. An item surrounded by upright square brackets [] denotes that the item is optional.
If more than one item is present within a pair of upright square brackets and the
items are separated by commas then the square brackets are used for grouping
purposes. However, if the first token in a set of tokens is a circumflex (ˆ), then the
expression will match any token except those in the set. For example [int, char],
specifies that the input token can be an int or char, while [ˆ (] specifies the input
token can be anything but the left parenthesis. Note however, that square brackets
in typewriter font, [], are terminals.

4. The left side of a production is on a line by itself followed by a colon.

5. The right side, or the definition, of a production, and each definition for each pro-
duction rule, will be placed on a line by itself and below the left side. For example:

161

162 APPENDIX A. SYNTAX OF THE EIC LANGUAGE

left-side:

definition1

definition2

...

definitionn

6. The one of terminology is also used to specify a list of alternatives:

store-class: one of

auto register static

extern typedef

7. a+ is used to denote a sequence of one or more a’s, where a can be anything,
including []; in which case the square brackets are used for grouping purposes.

8. a∗ is used to denote a sequence of zero or more a’s where a can be anything, including
[]; in which case the square brackets are used for grouping purposes.

9. To restate, ISO C productions, or parts thereof, that have been underlined, are not
included in EiC’s C grammar. EiC C productions, or parts thereof, that have been
underlined, are not included in ISO’s C grammar.

EiC LL(2) GRAMMAR ISO C LR GRAMMAR

ext-decl:
decl-spec f-ext-decl

f-ext-decl:
decl ff-ext-decl

;

ff-ext-decl:
comp-stmt

= initialiser fff-ext-decl

fff-ext-decl
fff-ext-decl:

;

, init-decl-list ;

ext-decl:
func-def

declaration
func-def:

decl-spec decl [decl-list] comp-stmt

decl [decl-list] comp-stmt

declaration:

decl-spec [init-decl-list] ;

decl-spec:

store-class [decl-spec]
type-spec [decl-spec]
type-qual [decl-spec]

decl-spec:

store-class [decl-spec]
type-spec [decl-spec]
type-qual [decl-spec]

A.1. SYNTAX NOTATION 163

store-class: one of

auto register static

extern typedef

store-class: one of

auto register static

extern typedef

type-qual: one of

const volatile

type-spec: one of

void char short int

long float double

signed unsigned struct-or-union

typedef-name enum-spec
type-name:

spec-qual-list [abs-decl]
typedef-name:

id

type-qual: one of

const volatile

type-spec: one of

void char short int

long float double

signed unsigned struct-or-union

typedef-name enum-spec
type-name:

spec-qual-list [abs-decl]
typedef-name:

id

enum-spec:
enum f-enum-spec

f-enum-spec:

{ enum-list }
id [{ enum-list }]

enum-list:
enumerator [, enumerator]*

enumerator:

id [= const-expr]

enum-spec:
enum [id] {enum-list}
enum id

enum-list:
enumerator

enum-list , enumerator
enumerator:

id

id = const-expr

init-decl-list:

init-decl [, init-decl-list]*
init-decl:

decl [= initialiser]
decl:

[pointer] dir-decl
pointer:

[* [pointer-qual-list]*] +
pointer-qual-list:

type-qual-list [pointer-qual]

pointer-qual [type-qual-list]

pointer-qual: one of

safe unsafe

init-decl-list:

init-decl

init-decl-list , init-decl
init-decl:

decl

decl = initialiser
decl:

[pointer] dir-decl
pointer:

* [type-qual-list]
* [type-qual-list] pointer

type-qual-list:

type-qual

type-qual-list type-qual

164 APPENDIX A. SYNTAX OF THE EIC LANGUAGE

abs-decl:
pointer f-abs-decl

dir-abs-decl

f-abs-decl:
dir-abs-decl

null

abs-decl:
pointer

[pointer] dir-abs-decl

dir-abs-decl:
(f1-dir-ab f2-dir-abs

array-decl f2-dir-abs

f1-dir-abs:
abs-decl)

ff-dir-decl
f2-dir-abs:

array-decl f2-dir-abs

(ff-dir-decl f2-dir-abs
null

dir-abs-decl:
(abs-decl)

[dir-abs-decl][[const-expr]]
[dir-abs-decl] ([par-type-list])

dir-decl:

id f-dir-decl
(decl) f-dir-decl

f-dir-decl:
array-decl f-dir-decl

(ff-dir-decl f-dir-decl

null

ff-dir-decl:

[parm-type-list])

dir-decl:

id
(decl)

dir-decl [[const-expr]]
dir-decl (parm-type-list)

dir-decl ([ident-list])

parm-type-list:
parm-decl f-parm-type-list

f-parm-type-list:

, ff-parm-type-list
null

ff-parm-type-list:
...

parm-type-list

parm-type-list:
parm-list

parm-list , ...

parm-list:
parm-decl

parm-list , parm-decl

A.1. SYNTAX NOTATION 165

parm-decl:
decl-spec f-parm-decl

f-parm-decl:

pointer ff-parm-decl
ff-parm-decl

ff-parm-decl:

(f-parm-decl)
id f-dir-decl

array-decl f-dir-decl
null

array-decl:

[[const-expr]]

parm-decl:
decl-spec decl

decl-spec [abs-decl]

st-un-spec:

st-un f-st-un-spec

f-st-un-spec:
id [{ s-decl-list }]
{ s-decl-list }

st-un-spec:

st-un [id] { s-decl-list }
st-un id

st-un: one of

struct union

s-decl-list:
[st-decl]+

st-decl:

spec-qual-list spec-declor-list ;
spec-qual-list:

[type-spec]+
[type-qual]+

st-un: one of

struct union

s-decl-list:
st-decl

s-decl-list st-decl

st-decl:
spec-qual-list spec-declor-list ;

spec-qual-list:

type-spec [spec-qual-list]
type-qual [spec-qual-list]

spec-declor-list:

st-declor [,spec-declor-list]*
spec-declor-list:

st-declor
spec-declor-list , st-declor

st-declor:
decl f-st-declor

: const-expr

f-st-declor:
: const-expr

null

st-declor:
decl

[decl] : const-expr

166 APPENDIX A. SYNTAX OF THE EIC LANGUAGE

stmt:
label-stmt

expr-stmt

comp-stmt
select-stmt

iter-stmt

jump-stmt

stmt:
label-stmt

expr-stmt

comp-stmt
select-stmt

iter-stmt

jump-stmt

label-stmt:

label : stmt

case const-expr : stmt
default : stmt

label-stmt:

label : stmt

case const-expr : stmt
default : stmt

expr-stmt:
expr ;

comp-stmt:

{ [decl-list] [stmt-list] }
stmt-list:

[stmt]+

expr-stmt:
expr ;

comp-stmt:

{ [decl-list] [stmt-list] }
stmt-list:

[stmt]+

select-stmt:
if (expr) stmt [else stmt]
switch (expr) stmt

select-stmt:
if (expr) stmt

if (expr) stmt else stmt

switch (expr) stmt

iter-statement:

while (expr) stmt
do stmt while (expr) ;

for ([expr] ; [expr] ; [expr]) stmt

iter-statement:

while (expr) stmt
do stmt while (expr) ;

for ([expr] ; [expr] ; [expr])stmt

jump-stmt:
goto id ;

continue ;

break ;

return [expr] ;

jump-stmt:
goto id ;

continue ;

break ;

return [expr] ;

expr:

assign-expr [, assign-expr]
expr:

assign-expr
expr , assign-expr

assign-expr:

cond-expr [assignment-op assign-expr]
assign-expr:

cond-expr
unary-expr assignment-op assign-expr

A.1. SYNTAX NOTATION 167

assignment-op:
=

[*, /,%, +, -, >>, <<, &,^,|] =

assignment-op:
=

[*, /,%, +, -, >>, <<, &,^,|] =

cond-expr:
log-or-expr [? expr : cond-expr]

cond-expr:
log-or-expr

log-or-expr ? expr : cond-expr

log-or-expr:
log-and-expr [|| log-and-expr]*

log-or-expr:
log-and-expr

log-or-expr || log-and-expr

log-and-expr:
inc-or-expr [&& inc-or-expr]*

log-and-expr:
inc-or-expr

log-and-expr && inc-or-expr

inc-or-expr:
xor-expr [| xor-expr]*

inc-or-expr:
xor-expr

inc-or-expr | xor-expr

xor-expr:
and-expr [^ and-expr]*

xor-expr:
and-expr

xor-expr ^ and-expr

and-expr:

equal-expr [& equal-expr]*
and-expr:

equal-expr

and-expr & equal-expr

equal-expr:

rel-expr [[== , !=] rel-expr]*
equal-expr:

rel-expr

equal-expr == rel-expr
equal-expr != rel-expr

rel-expr:

shift-expr [[>,<,<=,>=] shift-expr]*
rel-expr:

shift-expr
rel-expr < shift-expr

rel-expr > shift-expr

rel-expr <= shift-expr
rel-expr >= shift-expr

168 APPENDIX A. SYNTAX OF THE EIC LANGUAGE

shift-expr:
add-expr [[<<,>>] add-expr]*

shift-expr:
add-expr

shift-expr << add-expr

shift-expr >> add-expr

add-expr:

mult-expr [[+,-] mult-expr]*
add-expr:

mult-expr

add-expr + mult-expr
add-expr - mult-expr

mult-expr:

cast-expr [[*,/,%] cast-expr]*
mult-expr:

cast-expr
mult-expr * cast-expr

mult-expr / cast-expr
mult-expr % cast-expr

cast-expr:

[ˆ (] unary-expr
(f-cast-expr

f-cast-expr:

type-name) cast-expr
expr) r-postfix-expr

cast-expr:

unary-expr
(type-name) cast-expr

unary-expr:

postfix-expr
[++,--] unary-expr

[&, *, +, -, ~, !] cast-expr
sizeof sizeof-ext

sizeof-ext:

[ˆ (] unary-expr
([type-name, unary-expr])

unary-expr:

postfix-expr
[++,--] unary-expr

[&, *, +, -, ~, !] cast-expr
sizeof [(type-name), unary-expr]

postfix-expr:

primary-expr r-postfix-expr
r-postfix-expr:

[expr] r-postfix-expr

([arg-expr-list]) r-postfix-expr
. id r-postfix-expr

-> id r-postfix-expr
++ r-postfix-expr

-- r-postfix-expr

null

postfix-expr:

primary-expr
postfix-expr [expr]

postfix-expr ([arg-expr-list])
postfix-expr . id
postfix-expr -> id

postfix-expr ++

postfix-expr --

A.1. SYNTAX NOTATION 169

arg-expr-list:
assign-expr [, assign-expr]

arg-expr-list:
assign-expr

arg-expr-list , assign-expr

primary-expr:
id

constant

string
(expr)

primary-expr:
id

constant

string
(expr)

const-expr:

cond-expr

const-expr:

cond-expr

constant:

int-const

float-const
char-const

enum-const
typename

constant:

int-const

float-const
char-const

enum-const

170 APPENDIX A. SYNTAX OF THE EIC LANGUAGE

Bibliography

Budd, T. (1987). A Little Smalltalk. Addison-Wesley, Reading, MA, USA.

Fraser, C. W. and Hanson, D. R. (1995). A retargetable C compiler: design and implemenation. Ben-
jamin/Cummings Pub. Co., Redwood City, CA, USA.

Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language. Prentice-Hall, Englewood
Cliffs, NJ 07632, USA, second edition.

Pemberton, S. and Daniels, M. (1982). Pascal Implementation - the P4 Compiler. Eillis Horwood,
Chichester.

Stevens, W. R. (1992). Advanced Programming in the UNIX Environment. Addison-Wesley, Reading,
MA, USA.

Zlotnick, F. (1991). The POSIX.1 Standard: A Programmer’s Guide. Benjamin/Cummings Pub. Co.,
Redwood City, CA, USA.

On line documentation and C sources

• Steve Summit’s Introductory C course:
http://www.eskimo.com/~scs/cclass/cclass.html

• Martin Leslie’s Online C Language Reference:
http://users.southeast.net/~garyg/C_ref/C/c.html

• Ross Richardson’s The C Standard Library:
http://www.infosys.utas.edu.au/info/documentation/C/CStdLib.html

• comp.lang.c Frequently Asked Questions:
http://www.eskimo.com/~scs/C-faq/top.html

• Other Sources, C, Related Languages, Programming Languages:
http://www.lysator.liu.se/c/c-www.html

171

Index

IOFBF, 118
IOLBF, 118
IONBF, 118
POSIX ARG MAX, 142
POSIX CHILD MAX, 142
POSIX HIWAT, 142
POSIX LINK MAX, 142
POSIX LOGIN NAME MAX, 142
POSIX MAX CANON, 142
POSIX MAX INPUT, 142
POSIX NAME MAX, 142
POSIX NGROUPS MAX, 142
POSIX OPEN MAX, 142
POSIX PATH MAX, 142
POSIX PIPE BUF, 142
POSIX QLIMIT, 142
POSIX SSIZE MAX, 142
POSIX STREAM MAX, 142
POSIX TTY NAME MAX, 142
POSIX TZNAME MAX, 142
POSIX UIO MAXIOV, 142

abort, 130
abs, 131
abstract declaration, 91
access, 145
additive expression, 101
address operator, 13, 92
address specifier, 13, 92
alarm, 146
ARG MAX, 141
array

checking, 71
incomplete, 70

array bounds, 68
arrays, 69
asctime, 136
assert, 107

assignment
structures

unions, 74
assignment expression, 104
associativity, 97
atan, 111
atan2, 113
atexit, 130
atof, 128
atoi, 128
atol, 128
auto storage class, 79

besearch, 131
bit fields, 2
bitwise expression, 103
block, 92
blocks, 52
break, 96

statement, 97
BUFSIZ, 118
bytecode, 1, 29, 31, 90

call backs, 152, 154, 155
multiplexed, 158

calloc, 129
cast expression, 100
ceil, 111
CGI

cgi-bin, 15
debugging, 16
programming, 15

CHAR BIT, 110
CHAR MAX, 110
CHAR MIN, 110
character wide, 58
chdir, 146
CHILD MAX, 141
chmod, 144

172

INDEX 173

clearerr, 127
clock, 135
clock t, 135
CLOCKS PER SEC, 135
close, 146
closedir, 138
command line switch

-A, 16
-N, 8
-P, 34
-R, 9
-e, 16
-f, 12
-h, 9
-n, 10
-p, 33
-r, 9
-s, 17
-t, 29
-v, 34

comments, 54
compatible

structures
unions, 74

compound
statement, 92

conditional directives, 42
conditional expression, 103
const, 83
constant expression, 105
constant-expression

preprocessor, 46
constants, 55

character, 57
floating point, 56
integer, 55
string, 58

continue, 96
statement, 97

copyright, iii
cos, 111
cosh, 111
creat, 140
ctime, 136
ctype, 107

DATE , 40

DBL DIG, 110
DBL EPSILON, 110
DBL MANT DIG, 110
DBL MAX, 110
DBL MAX 10 EXP, 110
DBL MAX EXP, 110
DBL MIN, 110
DBL MIN 10 EXP, 110
DBL MIN EXP, 110
debugging programs, 29
declaration, 60
#define, 36
defined, 44
definition vs declaration, 59
dev t, 145
difftime, 136
DIR, 138
directives, 35
div, 131
div t, 127
do while statement, 95
documentation, 20
double, 64
dup, 146
dup2, 146

E2BIG, 139
EACCES, 139
EAGAIN, 139
EBADF, 139
EBUSY, 139
ECHILD, 139
editor, 6

editing commands, 6
EDOM, 109
EEXIST, 139
EFAULT, 139
EFBIG, 139
EiC

command line options, 8
CGI debugging, 16
CGI scripts, 15
embedding, 13
history file, 9
non-interactive mode, 10
script mode, 11
starteic, 7

174 INDEX

EiC command
clear, 22
comm-switch, 26

I, 26
L, 27
R, 27

exit, 23
files, 24
gen, 22
help, 24
history, 27
option

listcode, 29
trace, 28

reset, 25
rm, 21
show, 18
status, 23
toggle

include, 34
interpreter, 33
memdump, 32
showline, 33
timer, 33
verbose, 34

variables, 23
EiChist.lst, 9
EINTR, 139
EINVAL, 139
EIO, 139
EISDIR, 139
#elif, 43, 44
#else, 43
embedding EiC, 13
EMFILE, 139
EMLINK, 139
ENAMETOOLONG, 139
#endif, 43
ENFILE, 139
ENODEV, 139
ENOENT, 139
ENOEXEC, 139
ENOLCK, 139
ENOMEM, 139
ENOSPC, 139
ENOSYS, 139
ENOTDIR, 139

ENOTEMPTY, 139
ENOTTY, 139
ENXIO, 140
EOF, 118
EPERM, 140
EPIPE, 140
equality expression, 102
ERANGE, 109
EROFS, 140
errno, 109
#error, 45
error recovery, 5
escape code mechanism, 57
ESPIPE, 140
ESRCH, 140
EXDEV, 140
exit, 130
exit EiC , 18
EXIT FAILURE, 127
EXIT SUCCESS, 127
exp, 111
expression

additive, 101
assignment, 104
bitwise, 103
cast, 100
conditional, 103
constant, 105
equality, 102
logical, 103
multiplication, 100
postfix, 99
primary, 98
relational, 102
shift, 101
statement, 97
ternary, 104
unary, 99

extern storage class, 80
external

declaration, 59

F OK, 145
fabs, 112
fclose, 119
fcntl function, 141
feof, 127

INDEX 175

ferror, 127
fflush, 119
fgetc, 124
fgetpos, 126
fgets, 124
FILE, 118
FILE , 40

FILENAME MAX, 118
float, 64
floor, 112
flow-of-control analysis, 90
FLT DIG, 110
FLT EPSILON, 110
FLT MANT DIG, 110
FLT MAX, 110
FLT MAX 10 EXP, 110
FLT MAX EXP, 110
FLT MIN, 110
FLT MIN 10 EXP, 110
FLT MIN EXP, 110
FLT RADIX, 109
FLT ROUNDS, 110
fopen, 118
FOPEN MAX, 118
for statement, 96
fork, 147
fpos t, 118
fprintf, 120
fputc, 124
fputs, 124
fread, 125
free, 129
freopen, 119
fscanf, 123
fseek, 126
fsetpos, 127
fstat, 144
ftell, 126
function

builtin, 20, 86
declaration, 84
definition, 86
documentation, 20
interpreter, 20, 86
parameter type list, 88
prototype form, 85
return type, 89

types, 86
variadic, 88

fwrite, 126

garbage collection, 5
getc, 124
getchar, 125
getcwd, 147
getenv, 130
getpid, 147
gets, 125
gid t, 145
gmtime, 136
goto, 53, 93

header
dirent.h, 137, 150
errno.h, 109, 139
fcntl.h, 140
float.h, 109
limits.h, 110, 141
math.h, 111
setjmp.h, 113
signal.h, 114, 142
stdarg.h, 117
stddef.h, 117
stdio.h, 118, 149
stdlib.h, 127
string.h, 132
sys/stat.h, 143
sys/types.h, 145
time.h, 135
unistd.h, 145

history file, 9
EiChist.lst, 9

history list, 27
HOMEofEiC, 4
HUGE VAL, 111

identifier, 51
identifier restrictions, 51
#if, 43
if statement, 93
#ifdef, 43
#ifndef, 43
immediate statement, 4
#include, 42
initialize

176 INDEX

structures, 75
unions, 75

initialize string, 59
ino t, 145
INT MAX, 110
INT MIN, 110
integral type, 43, 61
interface

C code, 153
returning pointers, 156

internet programming, 15
interrupt

immediate instruction, 5
isalnum, 108
isalpha, 108
isdigit, 107
islower, 108
isprint, 108
isspace, 108
isupper, 107
iteration statement, 95

jmp buf, 113
jump statement, 96

L tmpnam, 118
labs, 131
ldiv, 131
ldiv t, 128
libraries

implementation support, 149
POSIX.1 support, 137
standard C, 107

limits.h, 62
LINE , 40

line splicing, 35
link, 147
LINK MAX, 141
linkage, 50

external, 2
localtime, 136
log, 112
log10, 113
logical expression, 103
long double, 64
LONG MAX, 110
LONG MIN, 110

longjmp, 113
lseek, 147

macro expansion, 38
magic numbers, 35
main, 10, 50
malloc, 129
MAX CANON, 141
MAX INPUT, 141
memchr, 135
memcmp, 134
memcpy, 134
memmove, 134
memset, 135
merging operator, 40
mkdir, 144
mkfifo, 144
mktime, 136
mode t, 145
module, 151

building, 151
builtin, 152
initialise, 157
interpreter’d, 151
makefile, 159
multiplexed, 158
names, 152
restrictions, 153

modulo, 101
multiplication expression, 100

name space, 53
NAME MAX, 141
NGROUPS MAX, 142
nlink t, 145
NULL, 117

O APPEND, 140
O BINARY, 140
O CREAT, 140
O EXCL, 140
O NDELAY, 140
O NOCTTY, 140
O NONBLOCK, 140
O RDONLY, 140
O RDWR, 140
O TEXT, 140
O TRUNC, 140

INDEX 177

O WRONLY, 140
off t, 145
offsetof, 118
open, 140
OPEN MAX, 142
opendir, 138
operator, 97
optimise, 33

parameter
structures

unions, 77
pause, 148
pclose, 149
perror, 127
phases of translation, 49
pid t, 145
pipe, 148
PIPE BUF, 142
pointer

arithmetic, 67
builtin, 156
generic, 69
NULL, 69
pragma, 67
qualifier, 66
safe, 2, 66, 68, 71
unsafe, 66
void, 69

pointer type, 65
popen, 149
postfix expression, 99
pow, 113
pp numbers, 2
#pragma, 45
precedence, 97
preprocessor, 35, 47
primary expression, 98
printf, 122
ptrdiff t, 117
putc, 125
putchar, 125
putenv, 130
puts, 125

qsort, 131

R OK, 145

raise, 116
rand, 129
RAND MAX, 127
read, 148
readdir, 138
realloc, 129
reference type, 92
register storage class, 79
relational expression, 102
remove, 119
rename, 120
return, 96

statement, 97
rewind, 126
rewinddir, 138
rmdir, 148
row-major order, 70

S IREAD, 143
S IRGRP, 143
S IROTH, 143
S IRUSR, 143
S IRWXG, 143
S IRWXO, 143
S IRWXU, 143
S ISBLK, 143
S ISCHR, 143
S ISDIR, 143
S ISFIFO, 143
S ISGID, 143
S ISREG, 143
S IWGRP, 143
S IWOTH, 143
S IWRITE, 143
S IWUSR, 143
S IXGRP, 143
S IXOTH, 143
S IXUSR, 143
scanf, 123
SCHAR MAX, 110
SCHAR MIN, 110
scope, 52

lexical, 52
scripts

EiC, 11
SEEK CUR, 118
SEEK END, 118

178 INDEX

SEEK SET, 118
seekdir, 150
selection statement, 93
setbuf, 120
setjmp, 113
setvbuf, 120
shift expression, 101
SHRT MAX, 110
SHRT MIN, 110
SIG DFL, 115
SIG ERR, 115
SIG IGN, 115
SIGABRT, 114
SIGALRM, 142
SIGCHLD, 142
SIGFPE, 114
SIGHUP, 142
SIGILL, 114
SIGINT, 114
SIGKILL, 142
signal, 115
SIGPIPE, 142
SIGQUIT, 142
SIGSEGV, 114
SIGSTOP, 142
SIGTERM, 114
SIGTSTP, 142
SIGTTIN, 142
SIGTTOU, 142
SIGUSR1, 142
SIGUSR2, 142
sin, 112
sinh, 112
size t, 117, 118, 145
sizeof, 100
sizeof operator, 58, 59
sleep, 148
sprintf, 122
sqrt, 112
srand, 129
sscanf, 124
SSIZE MAX, 142
ssize t, 145
stack code, 1
stack machine, 1
stat, 144
statement, 92

break, 97
compound, 92
continue, 97
expression, 97
if, 93
immediate, 4
iteration, 95
jump, 96
label, 93
return, 97
selection, 93
switch, 93, 94

statement do. . . while, 95
statement for, 96
statement null, 97
statement while, 95
static storage class, 80
EiC, 41
STDC , 41

stderr, 118
STDERR FILENO, 145
stdin, 118
STDIN FILENO, 145
stdout, 118
STDOUT FILENO, 145
strcat, 132
strchr, 133
strcmp, 132
strcpy, 132
strcspn, 133
strdup, 133
strerror, 134
strftime, 136
string constant, 58
string wide, 59
stringization operator, 39
strlen, 134
strncat, 132
strncmp, 133
strncpy, 132
strpbrk, 133
strrchr, 133
strspn, 133
strstr, 134
strtod, 128
strtok, 134
strtol, 128

INDEX 179

strtoul, 129
struct, 72
struct dirent, 138
struct stat, 143
struct tm, 135
structure

bit fields, 2
initialization, 75
layout

alignment, 77
switch

case, 93
default, 93

switch statement, 93, 94
syntax

C, 161
preprocessor, 46

syntax notation, 161
system, 130

tan, 112
tanh, 112
telldir, 150
ternary expression, 104
time, 135
TIME , 41

time t, 135
timer, 33
TMP MAX, 118
tmpfile, 120
tmpname, 120
toggle-switch, 27
token, 50
tolower, 108
toupper, 108
translation unit, 50
type names, 91
type specifier, 61
typedef storage class, 81
Typedef-name, 78
TZNAME MAX, 142

UCHAR MAX, 111
UCHAR MIN, 111
uid t, 145
UINT MAX, 111
ULONG MAX, 111

umask, 145
unary expression, 99
#undef, 38
unget, 125
union, 72

initialization, 75
layout

alignment, 77
unlink, 148
USHRT MAX, 111
usleep, 149

va arg, 117
va end, 117
va list, 117
va start, 117
variable

default storage class, 81
extent, 79
placement, 84
scope, 79
storage class, 79
type qualifier, 83

vfprintf, 122
void, 4
void type, 69
volatile, 84
vprintf, 122
vsprintf, 122

W OK, 145
while statement, 95
white space, 50
write, 149

X OK, 145

