
CenterLine-C++
 Programmer’s Guide and Reference

Version 2

CenterLine Software, Inc.
10 Fawcett Street

Cambridge, Massachusetts 02138

CenterLine Software, Inc. reserves the right to make changes in
specifications and other information contained in this publication
without prior notice. The reader should in all cases consult
CenterLine Software to determine whether any such changes have
been made.

This Manual contains proprietary information that is the sole
property of CenterLine Software. This Manual is furnished to
authorized users of CenterLine-C++ solely to facilitate the use of
CenterLine-C++ as specified in written agreements.

No part of this publication may be reproduced, stored in a retrieval
system, translated, transcribed, or transmitted, in any form, or by
any means without prior explicit written permission from
CenterLine Software.

The software programs described in this document are copyrighted
and are confidential information and proprietary products of
CenterLine Software.

CenterLine, CodeCenter, ObjectCenter, and ViewCenter are
trademarks of CenterLine Software, Inc.

Motif is a trademark of The Open Software Foundation, Inc.

Sun, Sun-2, Sun-3, Sun-4, Solaris 2, Sun386i, SunCD, SunInstall,
SunOS, NFS, SunView, ToolTalk, and OpenWindows are
trademarks of Sun Microsystems, Inc.

SPARC is a registered trademark of SPARC International, Inc.
Products bearing the SPARC trademark are based on an architecture
developed by Sun Microsystems, Inc. SPARCstation is a trademark
of SPARC International, Inc. licensed exclusively to Sun
Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System
Laboratories in the U.S.A. and other countries.

X Window System and X11 are trademarks of the Massachusetts
Institute of Technology.

This book was written, illustrated, and produced using
FrameMaker workstation publishing software.

© 1993 CenterLine Software, Inc. All rights reserved.
Printed in the United States of America.

This book was written, illustrated, and produced using
FrameMaker workstation publishing software.

Some parts of this manual are based on information in AT&T C++
Language System documents.

CenterLine-C++ Programmer’s Guide and Reference iii

Distribution The CenterLine GNU Debugger and the CenterLine C Preprocessor
are free; this means that everyone is free to use them and free to
redistribute them on a free basis. They are not in the public domain;
they are copyrighted and there are restrictions on their distribution,
but these restrictions are designed to permit everything that a good
cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of the CenterLine
GNU Debugger or CenterLine C Preprocessor that they might get
from you. The precise conditions are found in the GNU General
Public License that appears in Appendix A.

If you have access to the Internet, you can get the latest distribution
version of the CenterLine GNU Debugger or the CenterLine C
Preprocessor via anonymous login from the following host:

ftp.centerline.com

The following file on that host contains the source for the
CenterLine GNU Debugger:

/pub/TOOLS/PDM.TAR.Z

The following file on that host contains the documentation for the
GNU Debugger:

/pub/Doc/gdb-info

The following file on that host contains the source for the
CenterLine C Preprocessor:

/pub/TOOLS/CLPP.TAR.Z

If you do not have access to the Internet, send mail to CenterLine,
and we will send you instructions on how to obtain a copy. The
address is as follows:

CenterLine Software, Inc.
10 Fawcett Street
Cambridge, Massachusetts 02138

CenterLine-C++ Programmer’s Guide and Reference v

About this manual

About this manual

What this manual is
about

This manual is a guide to using the CenterLine-C++ compilation
system and pdm, our process debugger. It also contains reference
information for the debugger commands.

What you should
know before
starting

We designed this book for readers who are familiar with the C++
programming language, an operating system like UNIX , and a
graphical user interface based on either Motif or OPEN LOOK .

This manual does not describe the C++ language in detail. For a
complete description please refer to the AT&T C++ Language System
Product Reference Manual, which we provide with CenterLine-C++.

We’ve listed several other books about C++ and object-oriented
programming in “Suggested reading”on page vi.

For more
information

The C++ language supported by CenterLine-C++ at the time of
release of this manual is Release 3.0.2 of the AT&T C++ Language
System. Check the Release Bulletin or Platform Guide accompanying
your software for the version supported by your software. The
CenterLine-C++ documentation includes two manuals shipped by
AT&T:

• The AT&T C++ Language System Product Reference Manual
provides a complete definition of the C++ language supported
by Release 3.0 of the C++ Language System.

• The AT&T C++ Language System Library Manual describes the
class libraries shipped with Release 3.0.

We also provide some sections of the AT&T C++ Language System
Release Notes and AT&T C++ Language System Selected Readings
online, together with README files provided by AT&T. You can
view these files using the Man Browser, which is described in
“Using the Man Browser”on page 122. You can also find them in
this directory:

full_path/CenterLine/clc++/docs

where full_path represents the path to your CenterLine directory.

The CenterLine-C Programmer’s Guide and Reference describes the
CenterLine-C compiler.

About this manual

vi CenterLine-C++ Programmer’s Guide and Reference

Installing and Managing CenterLine Products describes how to install
CenterLine-C++ and administer it, including how to reserve licenses
for particular users.

See your Platform Guide for system requirements and other
information specific to your platform.

See the Release Bulletin for information generated too late to be
included in the other manuals.

Suggested reading You may find these books discussing C++ and object-oriented
programming useful:

The Annotated C++ Reference Manual, Ellis & Stroustrup,
Addison-Wesley 1991, 0-201-51459-1.

The C++ Programming Language (2nd. edition), Stroustrup,
Addison-Wesley 1991, 0-201-53992-6.

A C++ Primer (2nd Edition), Lippman, Addison-Wesley 1991,
0-201-54848-8.

C++ Programming Guidelines, Plum & Saks, Plum/Hall Publishers
1991, 0-911-537-10-4.

C++ Programming Style, Cargill, Addison-Wesley 1992, 0-201-56365-7.

C++ Strategies and Tactics, Murray, Addison-Wesley 1992,
0-201-56382-7.

Effective C++, Meyers, Addison-Wesley 1992, 0-201-56364-9.

The C++ Answer Book, Hansen, Addison-Wesley 1989, 0-201-11497-6.

A C++ Toolkit, Shapiro, Prentice Hall 1991, 0-13-127663-8.

Advanced C++ Programming Styles and Idioms, James Coplien,
Addison-Wesley 1992, 0-201-54855-0.

An Introduction to Object-Oriented Programming, Budd,
Addison-Wesley 1991, 0-201-54709-0.

Object-Oriented Design with Applications, Booch, Benjamin Cummings
1991, 0-8053-0091-0.

Object-Oriented Programming Using C++, Pohl, Addison-Wesley 1993,
0-8053-5382-8.

Object Orientation: Concepts, Languages, Databases, User Interfaces,
Khoshafian & Abnous, John Wiley 1990, 0-471-51801-8.

CenterLine-C++ Programmer’s Guide and Reference vii

About this manual

Documentation
conventions

Unless otherwise noted in the text, we use the following symbolic
conventions and terminology:

literal names Bold words or characters in command
descriptions represent words or values that
you must use literally. Bold words in text
also indicate the first use of a new term.

user-supplied values Italic words or characters in command
descriptions represent values that you must
supply. Italic words also indicate emphasis.

sample user input In interactive examples, information that
you must enter appears in this typeface.

output/source code Information that the system displays
appears in this typeface.

... Horizontal ellipsis points indicate that you
can repeat the preceding item one or more
times.

<<none>> In a “Description” section, indicates how a
command performs with no arguments.

Display a menu For pull-down menus, move the mouse
pointer over the menu title and press the
Left mouse button (Motif GUI) or the Right
mouse button (OPEN LOOK GUI). For
pop-up menus, press the Right mouse
button.

Select a menu item Drag the mouse pointer to the specified
menu item and then release the mouse
button.

Select a button Move the mouse pointer over the button
and click the Left mouse button.

Select text Press the Left mouse button and drag the
mouse pointer over the specified text.

Examples directory We provide a set of examples that we use throughout this manual.
To install the examples, use the c++examples command as
described in “Setting up the examples directory”on page 9.

CenterLine-C++ Programmer’s Guide and Reference ix

Contents

Contents
About this manual v

Chapter 1 Introduction to CenterLine-C++ 1

Introduction to CenterLine-C++ 3

Chapter 2 Compiling with CenterLine-C++ 11

Invoking CC 13

Phases of the CenterLine-C++ compilation system 14

CC command-line switches 16

Using gprof to generate profiling information 20

Precompiled header files 21

Demand-driven code generation 27

Using libraries and header files 29

Environment variables used by CC 34

Chapter 3 Preprocessing 37

The CenterLine-C++ Preprocessor 39

Header file inclusion 41

Macro definition and expansion 43

Conditional compilation 48

Line control 51

Reporting diagnostic messages 51

Implementation-dependent behavior 52

Preprocessor switches 52

Chapter 4 Using Templates 55

Using templates 57

Basic concepts and syntax 58

Using templates with CenterLine-C++ 63

The instantiation process 67

Contents

x CenterLine-C++ Programmer’s Guide and Reference

Coding conventions 70

Lookup schemes 73

Map files 75

Switches for templates 78

Usage scenarios 80

Specializations 85

Examples 87

Avoiding the most common pitfalls when using templates 91

Troubleshooting 92

Tools 95

Summary of terminology 97

Chapter 5 Introduction to the Debugger: A Tutorial 99

Debugging basics 101

Correcting compiler and make errors 107

Debugging a corefile 110

Chapter 6 Debugging with CenterLine-C++ 117

Selecting an editor to use with the debugger 119

Starting up the debugger 120

Finding out more about the debugger 122

Using menus and text fields 125

Copying and pasting text between windows 128

Invoking Workspace commands 130

Invoking shell commands 134

Using aliases for Workspace commands 135

Editing Workspace input 136

Loading files for debugging 141

Listing source code 142

Editing source code 144

Building and reloading executables 146

CenterLine-C++ Programmer’s Guide and Reference xi

Contents

Finding and fixing errors 147

Setting breakpoints and watchpoints 149

Setting actions 154

Examining and deleting debugging items 157

Using Workspace break levels 159

Running, continuing, and stepping 162

Moving in the execution stack 165

Examining data structures 168

Handling signals 176

Debugging an executable with a corefile 177

Debugging a running process 181

Debugging machine instructions 185

Saving your debugging session 189

Customizing your startup file 190

Customizing buttons and commands 192

Customizing environment variables 199

Quitting from the debugger 200

Chapter 7 Command Reference 201

alias 203

assign 204

attach 205

build 206

catch 207

cd 209

cont 210

contents 211

debug 212

delete 214

detach 215

display 216

Contents

xii CenterLine-C++ Programmer’s Guide and Reference

down 217

dump 218

edit 219

email 220

file 221

gdb 222

gdb_mode 223

help 224

history 225

ignore 226

list 228

listi 230

make 231

man 232

next 233

nexti 234

print 235

printenv 236

quit 237

rerun 238

reset 239

run 240

set 242

setenv 243

sh 245

shell 246

source 247

status 248

step 249

stepi 250

CenterLine-C++ Programmer’s Guide and Reference xiii

Contents

stepout 251

stop 252

stopi 254

unalias 255

unsetenv 256

up 257

use 258

whatis 259

when 260

where 262

whereami 263

whereis 265

Appendix A GNU General Public License 267

Index 277

Contents

xiv CenterLine-C++ Programmer’s Guide and Reference

List of Tables
 Table 1 CC Command-Line Switches 16

 Table 2 Environment Variables Used by CC 34

 Table 3 Preprocessor command names 40

 Table 4 Macros Recognized by CenterLine-C++ 47

 Table 5 clpp Preprocessor Switches 52

 Table 6 Template Instantiation Switches 78

 Table 7 Pop-up Menus 125

 Table 8 Emacs Keyboard Shortcuts in Text Fields 127

 Table 9 Workspace commands by function 130

 Table 10 Syntax for Repeating Previous Input 136

 Table 11 Line Editing Commands 137

 Table 12 Shells Used with the run Command 240

List of Figures
Figure 1 CenterLine-C++ Processes 8

Figure 2 Instantiation and Declaration:
 From Template to Class to Object 59

Figure 3 From List Class Template to A_Bank Class Object 60

Figure 4 From Function Template to Function Call 62

Figure 5 Steps in the Template Instantiation Process 69

1 Introduction to
CenterLine-C++

This chapter introduces you to CenterLine-C++.
We cover the following topics:

• Invoking CC and the debugger
• Version of C++ supported
• Our underlying C compiler
• Runtime libraries and header files
• Our process debugger
• CenterLine-C++ processes
• Setting up the examples directory

CenterLine-C++ Programmer’s Guide and Reference 3

Introduction to CenterLine-C++

Introduction to CenterLine-C++
CenterLine-C++ is a complete compilation system and debugger for
C++ and C. It uses the CenterLine-C++ preprocessor, clpp, for
preprocessing, the AT&T C++ Language System translator, cfront, for
syntax and type checking, and clcc, the CenterLine-C compiler, for
code generation.

CenterLine-C++ contains the C++ compilation system that we
provide with our comprehensive C and C++ development
environment, ObjectCenter. CenterLine-C++ also contains pdm, the
symbolic debugger used in ObjectCenter’s process debugging mode.
The pdm debugger is used for debugging fully linked executables
and has features similar to debuggers like gdb and dbx. It has a set
of graphical browsers to make debugging and rebuilding your
programs easier.

Invoking CC
and the debugger

To invoke the compiler, use the CC command on the command line
or in a makefile:

% CC my_program.C

To invoke the graphical user interface to the debugger, use the
centerline-c++ command:

% centerline-c++

Both of these commands can be invoked with various switches and
arguments. For more information about CC, see Chapter 2,
“Compiling with CenterLine-C++,” on page 11 and for more
information about centerline-c++, see Chapter 5, “Introduction to the
Debugger: A Tutorial” on page 99.

Introduction to CenterLine-C++

4 CenterLine-C++ Programmer’s Guide and Reference

Advantages of
using
CenterLine-C++

Using CenterLine-C++ instead of another C++ compilation system
offers the following advantages:

• CenterLine-C++ lets you avoid unnecessary recompilation of
common header files, which can save significant compilation
time. See “Precompiled header files” on page 21 for more
information about using this feature.

• CenterLine-C++ allows you to generate only the code that is
actually used. Using demand-driven code generation produces
smaller object modules. Smaller modules take up less disk
space, link faster, and load into a debugger faster. See
“Demand-driven code generation” on page 27 for more
information.

• Object files compiled using CenterLine-C++ contain more
debugging information, allowing improved debugging of object
code.

• CenterLine-C++’s translator places more reliable line number
information in object files.

• CenterLine-C++ places header-file dependency information in
object files. This may not happen with other C++ translators.

This means that if a header file is changed and you issue make,
affected object files will be automatically recompiled if they
were initially compiled using CenterLine-C++’s translator. If
you had used another C++ translator, they might not be
recompiled.

Version of C++
supported

CenterLine-C++’s translator is compatible with the C++ translator
as defined by Release 3.0.2 of the AT&T C++ Language System. The
AT&T C++ Language System Product Reference Manual, which is
supplied with CenterLine-C++, provides a full description of the
C++ language.

New support for
templates

The major new feature introduced since Release 2.1 is the
implementation of template classes and functions. Bjarne
Stroustrup originally presented the template design in Parameterized
Types for C++ at the USENIX C++ Conference in Denver in October
1988. The current implementation conforms to the draft submitted
to and preliminarily accepted by the ANSI C++ standards
committee. For more information about templates, see Chapter 4,
“Using Templates” on page 55.

CenterLine-C++ Programmer’s Guide and Reference 5

Introduction to CenterLine-C++

Additional new
features

Other new or enhanced features introduced in this release include
the following:

• This release completes the implementation of true nested scopes
introduced in Release 2.1.

• Constructors that can be called with no arguments by virtue of
having default arguments can now be considered default
constructors.

• Overloaded prefix and postfix increment and decrement
operators are correctly handled.

• The extension of the dominance rule to data and enumerators as
well as functions is implemented.

• The use of constructor syntax for built-in types and protected
derivations is implemented.

• The following implementation details have been reworked: the
front end symbol table, type checking, function matching,
operator overloading, and user-defined conversions.

This release is source- and link-compatible with Release 2.0 and
Release 2.1 of the AT&T C++ Language System.

For more information about compatibility with previous releases of
the translator and future compatibility, see the AT&T C++ Language
System Release 3.0.2 Release Notes. Relevant sections of this document
are available online using the Man Browser, which is described in
“Using the Man Browser” on page 122. You can also access them
directly in the CenterLine/clc++/docs directory.

Our underlying C
compiler

The CenterLine-C compiler (invoked with clcc) is an ANSI C
optimizing compiler designed to achieve small code size,
high-speed code execution, and fast compilation. The compiler is
also compliant with K&R C (Kernighan & Richie C, also called
Classic C) and is link-compatible with Sun/SPARC and HP
compilers. We supply a C library and header files that conform to
the ANSI C standard. For more information about the CenterLine-C
compiler, see the CenterLine-C Programmer’s Guide and Reference,
which is supplied with CenterLine-C++.

You can choose to use your own C compiler by setting the value of the
environment variable ccC, described in “Environment variables used
by CC” on page 34.

Introduction to CenterLine-C++

6 CenterLine-C++ Programmer’s Guide and Reference

Run-time libraries
and header files

We provide static, shared, and profiling versions of the C++
run-time library, libC, that is supplied with the AT&T C++
Language System. We also provide the complex mathematics
library, libcomplex. We do not supply the AT&T task library.

We discuss the location of these libraries and how to link to them in
“Using libraries and header files” on page 29. The libraries are
described in detail in the AT&T C++ Language System Library Manual,
which we provide with CenterLine-C++.

The CenterLine-C ANSI C library is installed in
CenterLine/clcc/arch-os/lib/libc.a, and is described in the CenterLine-C
Programmer’s Guide and Reference.

Our process
debugger

CenterLine-C++’s process debugger, pdm, enables you to examine a
program while it executes. You can use the debugger to debug an
executable file, a corefile, or a running process. When you invoke
the debugger, you can choose a Motif or OPEN LOOK graphical
user interface. You can also use a command-line (ASCII) interface.

Here are some of the tasks you can perform using pdm:

• Edit source code using integrated vi and GNU Emacs text
editors

• Set breakpoints, conditional breakpoints, and action points

• Enter debugging commands in a Workspace that also supports
evaluation of simple expressions and tcsh and Emacs features

• Find and fix compiler and make errors using the Error Browser

• Understand unfamiliar code by looking at the graphical
representation of its data structures in the Data Browser, which
also provides information updates during execution

• Add custom buttons and commands to the user interface

For a sample debugger session, see Chapter 5, “Introduction to the
Debugger: A Tutorial,” on page 99 and for how to perform debugging
tasks, see Chapter 6, “Debugging with CenterLine-C++” on page 117.

CenterLine-C++ Programmer’s Guide and Reference 7

Introduction to CenterLine-C++

Introduction to CenterLine-C++

8 CenterLine-C++ Programmer’s Guide and Reference

CenterLine-C++
processes

CenterLine-C++ consists of several separate processes, as shown in
Figure 1:

• The CenterLine Message Server (CLMS) is a multicast message
delivery service for exchanging data among the other
CenterLine processes.

• The graphical user interface (GUI) is a set of browser windows
for debugging your program. The browser windows include the
Main Window, Data Browser, Error Browser, and Man Browser.
You can select either a Motif or OPEN LOOK GUI.

• The CenterLine Engine is the debugger itself (pdm), which
operates on externally linked executables.

• The Edit Server translates edit requests and responses between
the debugger and your editor. CenterLine-C++ includes edit
servers for both vi and emacs.

• The compiling system processes compile C++ code. For an
overview of the phases of the CenterLine-C++ compiling
system, see page 14.

Figure 1 CenterLine-C++ Processes

compiling system
processes

edit server process
(emacs or vi)

CenterLine Engine
process

Error

Data

Man Browser

Browser

Browser

user interface
process Main

Window
(GUI)

clms process

CenterLine-C++ Programmer’s Guide and Reference 9

Introduction to CenterLine-C++

For information on managing CenterLine-C++ processes, refer to
Installing and Managing CenterLine Products and the clms, clms_query,
and clms_registry entries in the Man Browser.

Setting up the
examples directory

We provide a set of examples that we use throughout this manual.
To create the examples directory in your home directory, invoke the
c++examples command as follows:

% cd
% c++examples

If the operating system does not find the c++examples command, then
the CenterLine/bin directory is not in your path. Ask your system
administrator where the CenterLine/bin directory is on your system.

The c++examples command creates a directory called
c++examples_dir in the current directory and copies the examples
files to the new directory. We supply a Makefile that you can use to
make the examples that we use in Chapter 5, “Introduction to the
Debugger: A Tutorial” on page 99.

2 Compiling with
CenterLine-C++

This chapter describes how to invoke the
CenterLine-C++ compilation system and lists the
command-line switches that you can use with CC.
It also covers the following topics:

• Phases of the C++ compilation system

• Using gprof to generate profiling information

• Precompiled header files

• Demand-driven code generation

• Using libraries and header files

• Environment variables used by CC

CenterLine-C++ Programmer’s Guide and Reference 13

Invoking CC

Invoking CC
The CC command invokes the CenterLine-C++ compilation system.
This is the syntax of the CC command line:

CC [switches] filename ...

The installation process installs the CC command in the directory
CenterLine/bin, which could be anywhere on your system. See your
system administrator if you don’t know where CenterLine/bin is on
your system.

For example, this command line compiles my_prog.C with debugging
information (with the -g switch) and produces an executable with the
default name a.out. The -I and -L switches direct the preprocessor to
search for header files in the directory /usr/include/X11R5 and the
linker to link in the library in /usr/lib/X11R5.

% CC -g -I/usr/include/X11R5 -L/usr/lib/X11R5 my_prog.C

Getting information
about CC

Table 1 on page 16 lists the switches you can use with CC. You can
also find this information by typing the following command at the
shell prompt:

% man CC

The CenterLine installation process installs manual pages in the
CenterLine/man directory. If the man command does not find the
CenterLine manual page for CC, CenterLine/man may not be in the
man command’s search path. Ask your system administrator, or, if
your UNIX system supports the MANPATH environment variable,
add the CenterLine/man directory to the variable. For example:

% setenv MANPATH ${MANPATH}:dir/CenterLine/man

where dir is the path to your CenterLine directory.

File suffixes The CC command accepts input files ending in .c, .C, .cpp, .cxx, .cc,
or .i. It assumes the .i files are the output of the preprocessor. CC
also accepts .s and .o files and passes them on to the C compiler.

Phases of the CenterLine-C++ compilation system

14 CenterLine-C++ Programmer’s Guide and Reference

Phases of the CenterLine-C++
compilation system
The CC command invokes a command-line parser and a driver. The
driver invokes the other components of the CenterLine-C++
compilation system:

• The CenterLine ANSI C preprocessor, clpp, produces a
preprocessed version of your program in a temporary file with
the suffix .i. The preprocessor is described in more detail in
Chapter 3, “Preprocessing.”

• The translator, cfront, performs syntax and type checking on the
.i files produced by the preprocessor and produces temporary C
versions of the files with the suffix ..c. (On some platforms, the
files have the suffix .i.) cfront also creates a temporary map file
containing data type information, and produces additional
symbol table information for debugging purposes if you used
the -g switch.

• If your code uses C++ templates, the compile-time template
processor, ptcomp, merges the map file created by cfront into
the template repository. For more information about templates,
refer to Chapter 4, “Using Templates.”

• The CenterLine-C compiler, clcc, generates assembly code in a
temporary assembly source file with the suffix .s.

• The assembler provided with your platform, as, compiles the C
assembly code into object code with the suffix .o.

• The link-time template processor, ptlink, retrieves information
from the template repository and may create additional object
files in the repository if templates need to be instantiated.

• The linker provided with your platform, ld, produces an
executable, called a.out by default, that includes start-up
routines and C and C++ library routines. (Startup routines are in
/lib/crt0.o on most platforms.)

NOTE You can use ANSI C preprocessing features such as
token pasting and string literal expansion whether
or not you choose to generate ANSI C code.

CenterLine-C++ Programmer’s Guide and Reference 15

Phases of the CenterLine-C++ compilation system

• Depending on your platform, patch or munch links constructors
and destructors of nonlocal static objects in the executable or
shared library.

• Diagnostic messages are filtered through c++filt, which decodes
(“demangles”) tokens which look like C++ encoded symbols.

By default, CC invokes the CenterLine-C++ preprocessor, clpp, and
the CenterLine-C compiler, clcc, if it is supported on your platform.
You can use a different C compiler by setting the value of the
environment variable ccC, as described in “Environment variables
used by CC” on page 34.

You can use a different preprocessor by setting the value of the
environment variable cppC. You can also override the value of the
cppC environment variable with the -Yp command-line switch.

Examining your
code at each phase
of compilation

CC provides several command-line switches that let you view the
output of various stages of the compilation system.

• The -P switch runs only the preprocessor on the code and saves
a copy of the output without #line directives in a file with the .i
suffix.

• Alternatively, the -E switch, used with the -.suffix switch, runs
only the preprocessor and saves a copy of the preprocessed file
with #line directives in a file with the suffix you specify. If you
don’t use -.suffix, the result of preprocessing is sent to standard
output.

• CC places a temporary copy of the C code generated by the
preprocessor and translator in a file with the suffix .c in the
/usr/tmp directory. The +i switch saves a copy of this file
(without #line directives) in the current directory with the name
file..c (note there are two dots before the c suffix). The +i switch
does not interrupt processing.

• Alternatively, the -F switch, used with the -.suffix switch, runs
only the preprocessor and translator on your code and saves the
ouput in a file in the current directory with the name file.suffix. If
you don’t use -.suffix, the result of preprocessing is sent to
standard output.

• The -S switch (a C compiler switch) saves a copy of the
assembly source file in a file with the .s suffix, but does not
assemble the code.

CC command-line switches

16 CenterLine-C++ Programmer’s Guide and Reference

By default, CC places temporary files generated in the course of
compilation in the /usr/tmp directory. You can override this default by
changing the value of the TMPDIR environment variable. Setting
environment variables is described on page 34.

CC command-line switches
Table 1 describes the switches to the CC command.

NOTE In addition to the switches in Table 1, CC
accepts other switches and passes them on to
the C compilation system tools. See the clpp
manual page or Table 5 on page 52 for
preprocessor switches, the clcc manual page
for C compiler switches, and the ld manual
page for link editor switches.

Table 1 CC Command-Line Switches

Name of Switch What The Switch Tells CC to Do

-C Do not discard comments; pass them through to the output file.

-dd=[on|off] Use demand-driven code generation exclusively (-dd=on); this is the
default setting. See the “Demand-driven code generation” section on
page 27 for more information.

-dryrun Show but do not execute the commands constructed by the
compilation driver.

-ec string Pass string to the C compiler. Be sure to use double-quotes if
necessary to pass spaces or other characters significant to the shell.
For example, -ec -fsingle passes -fsingle to the C compiler.

-el string Pass string to the linker. Be sure to use double-quotes if necessary to
pass spaces or other characters significant to the shell. For example,
-el "-a archive" passes -a archive to the linker.

-E Run only the preprocessor on the C++ source files and send the
result to standard output.

CenterLine-C++ Programmer’s Guide and Reference 17

CC command-line switches

-F Run only the preprocessor and cfront on the C++ source files, and
send the result to standard output. The output contains #line
directives.

-flags_cc=string Pass string to the C compiler. The -ec switch now provides similar
functionality. The -flags_cc=string switch is provided for backwards
compatibility with previous versions of the CenterLine-C++
compiler.

-flags_cpp=string Pass string to the C preprocessor. For instance, if you want to use the
pre-ANSI rather than the ANSI C preprocessor, use the following
form of this switch: -flags_cpp=-traditional. Be sure to use
double-quotes if necessary to pass spaces or other characters
significant to the shell.

-g Produce additional symbol table information for debugging
purposes.

-gdem Demangle struct member and local variable names except where
ambiguous.

-hdrepos=directory Use directory as a repository for precompiled header files, and look
in directory for the filename (precompiled header information file)
used with +k[=filename]. See the “Precompiled header files” section
on page 21 for more information.

-ispace Causes less inlining by decreasing inline cutoff. This in general
decreases program speed but makes the program smaller. Inlining
of very small inline functions continues to be done.

-ispeed Causes more inlining by increasing inline cutoff. This in general
increases program speed at the expense of increased space.

-ncksysincl Do not check timestamps of files included with angle brackets (< >)
when determining if a precompiled header file is out of date. See the
+k switch (below) and also the “Precompiled header files” section
on page 21 for more information.

-nCenterLine Generate code without CenterLine extensions, including
demand-driven code generation, CenterLine built-in
functions, and CenterLine debugging information.

Table 1 CC Command-Line Switches (Continued)

Name of Switch What The Switch Tells CC to Do

CC command-line switches

18 CenterLine-C++ Programmer’s Guide and Reference

-pg Enable profiling. When you use the -pg switch, CC sets the value of
the LIB_ID environment variable to C_p so that your code explicitly
links to the profiling version of the C++ library, which is named
libC_p.a. See the “Using gprof to generate profiling information”
section on page 20 for more information. NOTE: CC does not change
the value of LIB_ID if it has been explicitly set by the user.

-pta, -ptdpathname
-ptf, -pth, -pti
-ptk, -ptmpathname
-ptn, -ptopathname
-ptrpathname, -ptt
-pts, -ptv

These switches affect the template instantiation process. See Table 6
on page 78 for more information about these particular switches,
and see Chapter 4, “Using Templates” for more information about
templates generally.

-set_lib_id=value Set the value of the LIB_ID environment variable to value. See
Table 2 on page 34 for more information about LIB_ID.

-.suffix When used in combination with -E or -F, place the output from each
input file in a file with the specified suffix in the current directory.

-v Verbose mode. Print the command line for each process as it begins
to execute.

-Yp,pathname Use pathname as the location of the C preprocessor. This
switch overrides the value of the cppC environment variable. The
default value of cppC is $CCROOTDIR/clpp.

+a[0|1] The C++ compiler can generate either ANSI C or K&R C
declarations. The +a switch specifies which style of declarations to
produce. The default, +a0, causes the compiler to produce K&R
C-style declarations. The +a1 switch causes the compiler to produce
ANSI C-conforming declarations. Note that this switch affects only
the compiler. The clpp ANSI C preprocessor provides ANSI
preprocessing features whether or not you use the +a switch.

+d Do not inline-expand functions declared inline.

+e[0|1] Only to be used on classes for which virtual functions are present,
and all the virtual functions are either inline or pure. In this
circumstance, this switch optimizes a program to use less space by
ensuring that only one virtual table per class is generated.
Specifically, +e1 causes virtual tables to be external and defined. The
+e0 switch causes virtual tables to be external but only declared. CC
ignores this switch for any class that contains an out-of-line virtual
function.

Table 1 CC Command-Line Switches (Continued)

Name of Switch What The Switch Tells CC to Do

CenterLine-C++ Programmer’s Guide and Reference 19

CC command-line switches

Concatenating
switches

You can concatenate some switches, but only the last switch in a
concatenation can take an argument.

+i Leave the intermediate ..c files in the current directory during the
compilation process (note that there are two dots before the c suffix).
These files do not contain any preprocessing directives, although the
files passed to the C compiler do. When templates are used, it causes
the instantiation system to leave ..c files in the template repository
(by default, ptrepository).

+k[=filename] Save and restore header files from a repository; if filename is
provided, use it to determine which header files to save and restore.
By default this switch is not set, meaning do not save and restore
header files from the repository. See the -ncksysincl switch
elsewhere in this table, and also see the “Precompiled header files”
section on page 21 for more information.

+p Disallow all anachronistic constructs. Ordinarily the translator
warns about anachronistic constructs; under +p (for “pure”), the
translator will not compile code containing anachronistic constructs.
See the AT&T C++ Language System Product Reference Manual for a
list of anachronisms.

+V Cause calls to operator new to behave as in standard versions of
cfront 3.0. This is the default behavior unless you compile with -g.
Note however that if you specify -g (without +V) CC generates calls
to centerline_new and/or centerline_vec_new to enable additional
run-time error checking. These calls will generate errors if your code
is not linked with the CenterLine C++ library. Use +V when you
specify -g if you must link your code with other C++ libraries or if
you plan to export library code to other users.

 +w Warn about constructs that are likely to be mistakes, be nonportable,
or be inefficient. Without the +w switch, the compiler issues
warnings only about constructs that are almost certainly errors.

+xfile Read a file of size and alignments created by compiling and
executing szal.c. The form of the created file is identical to the
entries in size.h. This option is useful for cross compilations and for
porting the translator.

Table 1 CC Command-Line Switches (Continued)

Name of Switch What The Switch Tells CC to Do

Using gprof to generate profiling information

20 CenterLine-C++ Programmer’s Guide and Reference

Position-
independent
switches

Some switches are “positionally independent”; that is, they apply to
all files on the CC command line. For example, the following
switches (some of which are CC switches, some of which are passed
to the compiler, preprocessor, or linker) can be placed anywhere on
the command line:

+a, -dryrun, -v, -E, -F, -C, -P, -S, -c, -I, -D, -U, -Yp, and -g

The following switches apply only to the files following them on the
command line:

+d, +p, +w

For example, these two CC command lines are equivalent:

CC +d -v -g -I/my_include_dir test.C
CC +d test.C -vgI/my_include_dir

In the following sections, we describe the switches used to generate
profiling information, to reuse precompiled header files, and to
generate only code that is needed (demand-driven code generation).
The switches used for template instantiation are described in more
detail in Table 6 on page 78.

Using gprof to generate profiling
information
CenterLine-C++ supports profiling with C++ source files, and it also
provides a profiling version of the standard C++ library in libC_p.a.
Here are the steps you must take to get profiling information on an
executable file.

1 First, create the executable file with profiling enabled. To enable
profiling, use the -pg switch with the CC command. Using the
-pg switch causes the LIB_ID environment variable to be set to
C_p, so that a profiling version of the library is linked in
automatically. It also passes the appropriate switch to the linker
so that it links in a static library. For example:

% CC -pg -c main.C
% CC -pg -o myexec main.o

CenterLine-C++ Programmer’s Guide and Reference 21

Precompiled header files

2 Next, run the executable. When you run an executable you
created with -pg, your program generates a profiling file, which
by default is named gmon.out.

% myexec

3 To access the information in gmon.out, process the gmon.out
file with gprof. We recommend that you also use c++filt to
restore the names in gmon.out to the ones you used in your
C++ code; if you don’t use c++filt, you’ll see the mangled
names generated by the C++ translator instead.

% gprof myexec gmon.out | c++filt > myfile.gprof

See the UNIX manual page for the gprof command for more
information.

Precompiled header files
CenterLine-C++ provides a facility that keeps track of header files
that have been compiled to avoid recompiling them unnecessarily
on subsequent compilations of the same program, or any program
with the same header files. You use the following switches to take
advantage of the precompiled header file facility:

-hdrepos =dir_name Use dir_name as a repository, and look in
dir_name for the filename specified with
+k=filename.

+k[=filename] Save and restore compiled header files
from a repository. If a filename is provided,
use it to determine which header files to
save and restore. By default, this switch is
not set.

-ncksysincl Do not check timestamps of files included
with angle brackets (< >) when
determining if a precompiled header file is
out of date.

Precompiled header files

22 CenterLine-C++ Programmer’s Guide and Reference

Using +k to reduce
compilation time

You can use the +k switch with CenterLine-C++ to decrease
compilation time for large programs with multiple header files
where the header files have not changed between compiles. Using
+k tells the C++ compiling system to use its save-and-restore
mechanism for compiling header files. This mechanism saves and
reuses an image of previously compiled code for header files used
by your program.

When you use the +k switch with CenterLine-C++, the compiling
system saves the state resulting from the initial compilations of
ordered lists of header files in a repository (by default,
./hdrepository) and restores that state on subsequent compilations
of the same program or any program with the same ordered list of
header files. This save-and-restore mechanism means that the first
compilation of a program takes longer than it would otherwise, but
subsequent compiles take significantly shorter time.

Specifying an
information file

You can specify a precompiled header information file that
contains information needed to restore the image of the compiled
files. Each line in the information file should contain a list of
filenames followed by an optional specification for a repository.
Here’s the format:

this is a comment line
filename1 filename2 ... filenameN [-hdrepos repository_path]

where filename1, filename2, ..., and filenameN are header files enclosed in
either angle brackets (< >) or double quotation marks (" "). Use the
sign to indicate a line with a comment.

For an example of an information file, see page 23.

NOTE The switches that control the precompiled
header file mechanism are effective only with
CenterLine-C++’s native C preprocessor, clpp.
This means, for instance, that these switches
will not work correctly if you change to
another preprocessor by setting the cppC
environment variable or using the -Yp
command-line switch.

CenterLine-C++ Programmer’s Guide and Reference 23

Precompiled header files

CenterLine-C++ looks in the information file for the longest list of
leading header files that matches the list at the beginning of each
source file. Whenever CenterLine-C++ finds a match, it restores the
files on the list from the repository instead of recompiling them.

The mechanism for saving and restoring header files requires that
the #include directives specifying header files to be precompiled are
the first items in the source file. This list of #include directives for
the files may be preceded by and interspersed with semantically
meaningless items such as comments, whitespace, and #line
directives.

Using +k without an
information file

If you do not specify a precompiled header information file,
CenterLine-C++ interprets the initial text of each source file as a list
of header files; as soon as CenterLine-C++ discovers text in the
source file that is not whitespace, a comment, or a #include
directive, it ends its list of header files for that source file.

Supplying the
information file

Suppose you specify a precompiled header information file as
follows:

<stdio.h> <string.h> "my_hdr1.h" -hdrepos /proj/my_repos
<stdio.h> <string.h> "my_hdr2.h" -hdrepos /proj/my_repos
<stdio.h>

Furthermore, say the beginning of your source file is as follows:

#include <stdio.h>
#include <string.h>
#include "my_hdr1.h"
#include "my_hdr3.h"

NOTE You can take optimal advantage of
CenterLine-C++’s precompiled header file
mechanism by making sure that all the source files
in your project contain an initial list of header files
that match exactly in their order of inclusion.

Alternatively, you can set up one "mega-include"
file that contains only the list of #include
directives for the necessary header files; then make
sure that all project files #include that one
"mega-include" file.

Precompiled header files

24 CenterLine-C++ Programmer’s Guide and Reference

In this example, the compiling system saves the initial compilation
results for stdio.h,string.h, and my_hdr1.h in the /proj/my_repos
repository. When another compile is needed, the compiling system
restores these compilation results from the repository and recompiles
only my_hdr3.h.

Suppose you used the same precompiled header information file as in
the preceding example but, instead of the preceding source file, you
had a source file that begins as follows:

#include <stdio.h>
#include <string.h>
#include "my_hdr3.h"

In this example, the compiling system saves and restores the initial
compilation results for stdio.h only. This is because there is no match
in the precompiled header information file for any sequence of files
except a sequence containing only the first one, stdio.h.
CenterLine-C++ saves the initial compilation results for stdio.h and
restores them as needed for later compilations; the string.h and
my_hdr3.h header files would be recompiled during every
recompilation of this source file.

Out-of-date
compilations

CenterLine-C++ treats a previous compilation as out-of-date if it
discovers anything that would cause the output of the C++
translator to differ, such as any of the following:

• Changes to the included files.

• If you change the arguments to any CC switch, such as -D, -U,
-I, or -dd={on|off}, that affects the generated C source code, it
causes the precompiled header mechanism to treat any files in
the repository as outdated. As a result, CenterLine-C++
recompiles and saves the state of the newly compiled files rather
than restoring an earlier state from the repository. Switches
passed on to the C compiler or ld do not have this effect.

• Adding a comment causes the output of the translator to vary,
so it causes a recompilation.

• When the time of the machine on which CC is executing is later
than the time of the machine that the repository is written to,
CC issues this warning:

Repository file filename newer than current time,
check machine times.

CenterLine-C++ Programmer’s Guide and Reference 25

Precompiled header files

If this happens, CC does not restore the state of the earlier
compilation. Instead it recompiles and saves the state of the new
files and continues without error.

A header-file
skipping example

If you have written any X Window System applications, you are
probably well aware of the number and size of the header files
involved. This example uses a module called x.C in the examples
directory. If you haven’t set up the examples directory yet, refer to
“Setting up the examples directory” on page 9.

To begin, cd to the directory containing the examples and look at the
header files in x.C:

% cd c++examples_dir
% head -18 x.C

Notice that x.C includes seven global header files and two local header
files. In general, we recommend using global header files for header
skipping rather than local header files.

To set up header-file skipping, you can create a skip information file
that provides the information needed for the translator to restore the
image of the compiled files. This information includes the names of
the header files to be skipped and the repository in which the
precompiled versions should be stored. The header files are listed in
the exact order that they are included in the source file because the
translator looks for the complete pattern when skipping header files.

To avoid your having to type in the contents of the skip information
file, we have supplied it in the c++examples_dir directory. To view it:

% more skip

Notice that the file has a single line containing the name of the first six
global header files, separated by spaces, in the exact order they appear
in x.C (we show it here on two lines). At the end of the single line is
the -hdrepos switch and SR, the name of the repository directory
which will store the precompiled versions.

<X11/Xlib.h> <X11/Xutil.h> <X11/Xos.h> <X11/Xproto.h>
<stdio.h> <iostream.h> -hdrepos ./SR

Precompiled header files

26 CenterLine-C++ Programmer’s Guide and Reference

Recompiling with
header-file skipping

Now that you’ve set up the skip information file, you can recompile.
Although you can recompile x.C manually by using CC with the
+k=filename switch, we have supplied a special makefile target,
skipping, for doing this. The skipping target recompiles x.C without
header-file skipping and then with header-file skipping, and it also
displays the time elapsed during each compile so you can see the
speed improvement.

To recompile x.C, do the following:

% make skipping

You should see a series of four timestamps and three compiles. The
first compile does not use header-file skipping, the second creates the
repository for the precompiled header files, and the last compiles
using header-file skipping.

In the following sample run, the normal compilation took 41 seconds
and the compilation with header-file skipping took 25 seconds. The
initial creation of the header-file repository took 95 seconds. You may
get different results based on the configuration of your network and
system.

....

...
Fri Jan 15 17:06:44
normal compile
...
Fri Jan 15 17:07:25
create header file skipping repository
...
Fri Jan 15 17:09:00
with header file skipping

}
Fri Jan 15 17:09:25

With more complex programs that use large numbers of header files,
the speed improvement can be more dramatic.

Restrictions Precompiled header information files can be quite large. For
instance, the file for stdio.h is about 300 kilobytes; others are much
larger.

Uses of __DATE__, __TIME__, and __FILE__ within a precompiled
header file will not be caught and will contain the values of the initial
compilation. Note that __FILE__ can be different for the same file
based on the directory where the compilation occurs.

} 41 seconds

}
}

95 seconds

25 seconds

CenterLine-C++ Programmer’s Guide and Reference 27

Demand-driven code generation

If you specify a repository with the -hdrepos switch, you cannot use
the precompiled header mechanism to save and restore nested header
files enclosed in quotation marks rather than angle brackets.

For instance, suppose main.C contains the following:

#include "A.h"

and A.h, in turn, contains:

#include "B.h"

In this case, you cannot use the -hdrepos switch to compile main.C,
although you can use the +k switch without -hdrepos.

Demand-driven code generation
Demand-driven code generation is the process of selectively
generating code according to whether the code is actually used. The
CenterLine-C++ translator supports demand-driven code
generation with the -dd=on and -dd=off switch to the CC
command.

For example, if you use only one class in a class library,
CenterLine-C++ generates only the code for the class you used with
-dd=on. With -dd=off, the compiling system generates code for all the
classes in the library.

Switches for
demand-driven
generation

These switches turn demand-driven code generation on and off.

-dd=off Generate all code, whether or not it is used; do not use
demand-driven code generation.

-dd=on
(the default
setting)

Use demand-driven code generation exclusively.
Generate only the code that is actually used in the
module that is being compiled.

In the case of functions, generate code for any
definitions that might be used externally, even if they
are not used in the particular module being compiled.

In the case of classes, omit the class definition from the
generated code if the class is not used.

Demand-driven code generation

28 CenterLine-C++ Programmer’s Guide and Reference

Using
demand-driven
code generation

You can use the -dd=on and -dd=off switches on the CC command
line:

% CC -dd=on -g my_source.C

or in makefile target rules for generating object code from C++ source
files:

CC_SRCS = file1.C file2.C file3.C file4.C
CC_OBJS = ${CC_SRCS:.C=.o}
.SUFFIXES: .C .o
.C.o:

CC +d -dd=off -g -c $<

If you’re debugging your code, you can use -dd=on to save the space
that debug information for unused declarations and inline function
definitions would use. Use -dd=off if you want access to all the types
and inline functions that you might like to use.

Advantages of
demand-driven
code

There are several advantages to using demand-driven code
generation when you compile your C++ files.

• Demand-driven code generation decreases the number of
debugging symbols that are generated by the C++ translator.
This in turn reduces the size of object modules built by the
CenterLine-C++ language system.

• Generating fewer debugging symbols also means that the C++
translator produces a smaller C language file, so that
compilation by the C compiler is faster.

• Using demand-driven code generation reduces the amount of
executable code generated for inline functions when compiling
with the +d switch. The +d switch to the CC command specifies
that inline functions not be expanded inline. If you compile with
+d and -dd=on, CC will insert, as static functions, only those
inline function definitions needed by the module.

CenterLine-C++ Programmer’s Guide and Reference 29

Using libraries and header files

Using libraries and header files
In this section we discuss the libraries and header files that we
provide with CenterLine-C++ and how you access these libraries
and the system libraries provided with your operating system.
CenterLine-C++ automatically links in the standard libraries.

Search paths for
libraries

CenterLine-C++ uses the same rules to search for libraries as your
system’s ld command. Here’s a summary of the order in which
directories are searched:

• If you specify a directory on the command line with the -Ldir
switch to ld, the directory specified by dir is searched before the
default directories.

If you specify a library with the -l command-line switch, you
can specify the directory to search for the library with the -L
switch. The -L switch must precede the -l switch on the
command line. For example,

% CC -L/usr/lib/X11R5 -lX11 x.C

• You can use an environment variable to specify a colon-
separated list of directories to search for libraries. These
directories are searched after any directories specified on the
command line with -L. The name of this environment variable is
platform-specific; for example it is called LD_LIBRARY_PATH
on Sun systems, and L_PATH on HP systems.

• Finally, CenterLine-C++ searches in the standard directories,
/lib, /usr/lib, and, on some platforms, /usr/local/lib.

You can also use an environment variable (LD_OPTIONS on Sun
systems, LDOPTS on HP systems) to specify a default set of ld
switches. These switches are passed to ld as though they were entered
first on the command line.

Search paths for
header files

You can modify the search path used to locate #include files with
the -I preprocessor switch. The preprocessor first searches in the
directory containing the source file (for header files enclosed in
quotation marks), then in the directories named with -I, if any, and
finally in the system include directories. See “Locating header files”
on page 41 for more information.

Using libraries and header files

30 CenterLine-C++ Programmer’s Guide and Reference

System libraries
and header files

You can access the system libraries provided with your platform by
using header files that declare interfaces to those libraries. These
header files are usually installed in the directories /usr/include or
/usr/local/include, both of which are usually in your standard
search path. System libraries usually reside in the directories /lib or
/usr/lib.

To use a function from a system library that’s declared in
/usr/include/system_header.h, put this directive in your code:

#include <system_header.h>

CenterLine-C++ will include /usr/include/system_header.h unless it
encounters a file of the same name earlier in its search path.

Run-time libraries The following run-time libraries are provided with CenterLine-C++:

• libC.a, the standard C++ library

• libcomplex.a, the complex mathematics library

• libc.a, the CenterLine-C ANSI C library

To use the functions declared in any of these libraries in your code,
you must include the corresponding header files in your code. You
may also need to explicitly link in the library when you compile
your code, as described in “Linking to the complex mathematics
library” on page 33.

The standard C++
library

The standard C++ library, libC.a, includes the C++ iostream library
and functions that handle error reporting and stack and vector
types, run-time memory management, and invocation of static
constructors and destructors.

The C++ iostream package is declared in iostream.h and other header
files as shown in “The iostream header files” on page 33. It consists of
several base classes that provide input/output conversion and
buffering, together with derived classes that support additional
features including formatted I/O to and from files, I/O through file
descriptors, and “in-core” formatting, that is, storing and fetching
from arrays of bytes.

NOTE We do not support the AT&T C++ Language
System task library.

CenterLine-C++ Programmer’s Guide and Reference 31

Using libraries and header files

The AT&T C++ Language System Library Manual, which is provided
with CenterLine-C++, contains examples of using the iostream
package and manual pages for the iostream library. You can also view
manual pages by entering the man command, for example

% man ostream

The other functions provided by libC.a are declared in generic.h,
new.h, vector.h, and other header files. The generic.h header file
contains a set of simple macros used to create “pseudo-templates”
before templates became part of the C++ language.

The complex
mathematics library

The complex mathematics library implements the data type of
complex numbers as a class, complex. The class overloads the
standard input, output, arithmetic, assignment, and comparison
operators, and the standard exponential, logarithmic, power, square
root, and trigonometric functions. These functions are declared in
the complex.h header file.

The AT&T C++ Language System Library Manual, which is provided
with CenterLine-C++, contains manual pages for the complex
mathematics library and examples of its use. You can also view
manual pages by entering the man command, for example

% man cartpol

The ANSI C library The CenterLine-C Programmer’s Guide and Reference describes the
ANSI C library that we provide with CenterLine-C. This library is
used only if you compile with the CenterLine-C -ansi switch. If an
ANSI C-compliant C library is provided with your operating system
software, we do not provide the ANSI C library.

The C header files that we provide with CenterLine-C are installed in
the directory CenterLine/clcc/arch-os/inc, where CenterLine is the
directory in which CenterLine software is installed, and arch-os is the
directory specific to your operating system. You can view manual
pages for C functions by entering the man command, for example

% man acos

Shared libraries CenterLine-C++ supports shared libraries on all systems that
provide them. A shared library, also referred to as a dynamic
library, is a shared object file that is used as a library. Libraries
whose names have a .a suffix are referred to as static or archive

Using libraries and header files

32 CenterLine-C++ Programmer’s Guide and Reference

libraries. The suffixes of shared library names are platform
dependent. Examples are .so and .sl. If CenterLine-C++ finds both a
static and a shared library in the same directory, it uses the shared
version.

At run time, a shared object can be linked to more than one
executing program; all executing programs share access to a single
copy of the object. Thus, using shared libraries can represent a
significant savings in storage, but it may also reduce speed of
processing.

Using C++ header
files

The C++ header files that we provide with CenterLine-C++ are
installed in the directory CenterLine/clc++/arch-os/incl, where
CenterLine is the directory in which CenterLine software is
installed, and arch-os is the directory specific to your operating
system and machine architecture. Many of these files are standard
UNIX system header files with argument types added to the
function declarations. If the system header files distributed with
your operating system support C++ constructs, the CenterLine
directory does not contain redundant files.

CenterLine-C++ automatically links libC and libc with every C++
program. To use a function from one of these libraries, you need
only include the appropriate header files in your code. For example,
if you want to use the cout function, use the following #include
directive:

#include <iostream.h>

The iostream header
files

C++ does not have built-in input and output statements, but the
iostreams package provides functions that allow you to use any
number of input and output streams. The iostreams package is the
major component of the C++ library, libC, which is linked in
automatically by CC.

You do not have to link to the library explicitly to use iostreams
functions. However, you must include iostream.h for any file that uses
C++ I/O streams. For many programs, you need only include
iostream.h. The stream.h header file is included for backwards
compatibility with earlier releases of the C++ compilation system.

CenterLine-C++ Programmer’s Guide and Reference 33

Using libraries and header files

These are the iostream header files:

Linking to the complex
mathematics library

You must compile and link to the complex mathematics library
explicitly. To use the complex mathematics library in your
application, you must specify -lcomplex on the CC command line:

CC -lcomplex my_appl.C

and you must include this directive in your code:

#include <complex.h>

Profiling version of
run-time library

CenterLine-C++ provides a profiling version of the C++ library,
libC_p.a. CC links to a profiling version of the library automatically
when you generate profiling information for your program with the
-pg switch. See “Using gprof to generate profiling information” on
page 20 for more information.

fstream.h Declares iostreams specialized to files.

iomanip.h Declares predefined manipulators and macros
that change the format state, for example the field
width and fill character, of the streams that they
are in.

iostream.h Declares basic iostream features, including cout,
cin, and cerr.

stdiostream.h Declares iostreams and streambufs specialized to
interact with a stdio FILE and used for C and C++
interaction.

stream.h Includes iostream.h, fstream.h, stdiostream.h,
and iomanip.h, and used for backwards
compatibility with earlier versions of C++.

strstream.h Declares iostreams and streambufs specialized to
arrays.

Environment variables used by CC

34 CenterLine-C++ Programmer’s Guide and Reference

Environment variables used by CC
The CC script uses environment variables to locate files it needs to run
and for other environmental information. See Table 2 for a list of the
environment variables used by CC.

You can override the values of these environment variables by
setting them to different locations.

For example, if you are using a different C compiler, you could issue
this command (from the C-shell):

% setenv ccC /usr/my/cc

This sets /usr/my/cc as the C compiler, instead of the default cc.

If you are using the Bourne shell, you can set and export the variable
like this:

% ccC=/usr/my/cc; export ccC

Table 2 Environment Variables Used by CC

Name of Environment Variable Default Value Meaning

AON +a0
K&R (+a0) or ANSI(+a1) C style
declarations

CLCCDIR <set via install> Directory containing clcc

CCLIBDIR <set via install> Directory containing C++ libraries

CCROOTDIR <set via install> Directory containing cfront, c++filt,
CC, patch, ptcomp, ptlink, etc.

CENTERLINE_CC_VERBOSE 1 Displays messages to aid in setting
the ccC environment variable
correctly

CL_REPOS_LOCK_MAX_WAIT 7200 Total number of seconds to wait for
a precompiled header file lock

CL_REPOS_LOCK_STALE_TIME 1440 Minutes since last modification
time of a precompiled header file
lock before it is deleted

CenterLine-C++ Programmer’s Guide and Reference 35

Environment variables used by CC

CLcleanR $CCROOTDIR/skip/cleanr Precompiled header repository
cleanup

CPLUS -Dc_plusplus=1 1.2 cpp C++ constant for backward
compatibility

CPPFLAGS Platform-specific flags,
including -Amachine -C
-lang-c++
-DCENTERLINE_CLPP=1

Flags to the preprocessor.
NOTE: -DCENTERLINE_CLPP=1
is undefined if you override the
value of the cppC environment
variable

DEMANGLE 1 1 enables C++ link-time error
message demangling

FS 0 1 if -fs switch is available

I <set via install> Directory for C++ include files

LIBRARY -l$LIB_ID Standard C++ library name

LIB_ID C Modify LIBRARY; the full path will
be $CCLIBDIR/lib${LIB_ID}.a

LINE_OPT <unset> Set to "+L" to generate source line
number information using the
format "#line %d" instead of
"# %d"

LOPT -L cc switch for linker library directory

LPPEXPAND "-l++" Specifies the string the command
line argument "-l++" expands to

NM nm Location of nm

NMFLAGS <unset> Extra switches for nm

PTHDR .H, .h, .HH, .hh, .HXX, .hxx,
.hpp

List of header file suffixes ptlink
uses to look up template type
declarations

PTSRC .C, .c, .CC, .cc, .CXX, .cxx,
.cpp

List of source file suffixes ptlink
uses to look up template type
definitions

Table 2 Environment Variables Used by CC (Continued)

Name of Environment Variable Default Value Meaning

Environment variables used by CC

36 CenterLine-C++ Programmer’s Guide and Reference

PTOPTS <unset> Default switches to be passed to the
template instantiation system

TMPDIR /usr/tmp Directory used as root of temporary
file directory for C++ compilation

ccC $CLCCDIR/clcc -w The C compiler (the value of ccC
defaults to the native C compiler if
clcc is not available)

cfrontC $CCROOTDIR/cfront The C++ translator

cPLUS -D__cplusplus=1 2.0 cpp C++ constant for ANSI C
conformance

cplusfiltC $CCROOTDIR/c++filt C++ link error message filter

cppC $CCROOTDIR/clpp The C preprocessor

munchC $CCROOTDIR/munch The munch executable

patchC $CCROOTDIR/patch The patch executable

ptcompC $CCROOTDIR/ptcomp The ptcomp executable

ptlinkC $CCROOTDIR/ptlink The ptlink executable

skippp $CCROOTDIR/skippp The precompiled header
preprocessor

Table 2 Environment Variables Used by CC (Continued)

Name of Environment Variable Default Value Meaning

3 Preprocessing

This chapter describes the CenterLine-C++
preprocessor. We cover the following topics:

• Header file inclusion
• Macro definition and expansion
• Conditional compilation
• Line control
• Reporting diagnostic messages
• Implementation-dependent behavior
• Preprocessor switches

CenterLine-C++ Programmer’s Guide and Reference 39

The CenterLine-C++ Preprocessor

The CenterLine-C++ Preprocessor
A preprocessor manipulates the text in your source file and produces
input to the compiler. This chapter describes the preprocessor
distributed with CenterLine-C++.

Getting information
about clpp

The CenterLine ANSI C preprocessor, clpp, is based on the GNU-C
Compatible Compiler Preprocessor. We have enhanced it to handle
CenterLine’s precompiled header file facility, described on page 21.
For usage information and a listing of preprocessor switches, issue
the man command at the shell:

% man clpp

The CenterLine installation process installs manual pages in the
/CenterLine/man directory. If the man command does not find the
CenterLine manual page for clpp, CenterLine/man may not be in the
man command’s search path. Ask your system administrator, or, if
your UNIX system supports the MANPATH environment variable,
add the CenterLine/man directory to the variable. For example:

% setenv MANPATH ${MANPATH}:dir/CenterLine/man

where dir is the path to your CenterLine directory.

What is clpp? The clpp preprocessor is a macro processor that is used
automatically by the C compiler to transform your program before
actual compilation. It is called a macro processor because it allows
you to define macros, which are brief abbreviations for longer
constructs.

The preprocessor always does the following:

• Replaces C and C++-style comments with single spaces

• Deletes all backslash-newline sequences

• Expands all predefined macro names

The CenterLine-C++ Preprocessor

40 CenterLine-C++ Programmer’s Guide and Reference

In addition, the preprocessor provides the following optional
facilities:

• Header file inclusion

• Macro expansion

• Conditional compilation

• Line control

Preprocessor directives implement each of these facilities.

Preprocessor
directives

Preprocessor directives always begin with the # sign, optionally
preceded by space and tab characters, followed by an identifier
called the command name. They can appear anywhere in your code
and can be continued over several lines by placing a backslash (\) at
the end of the line to be continued.

There is a fixed set of command names, as shown in Table 3. We
discuss each of the facilities these commands are used for in the rest
of the chapter.

Table 3 Preprocessor command names

Preprocessor command name Used for:

#include, #include_next Header file inclusion

#define, #undef Macro definition and expansion

#if, #else, #elif, #endif
#ifdef, #ifndef

Conditional compilation

#line Line control

#error, #warning Reporting diagnostic messages

#pragma Implementation-dependent behavior

CenterLine-C++ Programmer’s Guide and Reference 41

Header file inclusion

Header file inclusion
Use the #include directive to include the contents of other files,
usually header files, before your file is compiled. When the
preprocessor encounters a #include directive, it scans the file
specified for input before continuing.

Locating header
files

How the preprocessor locates the file depends on which of three
forms the command argument takes:

#include <filename> Searches for the system header file called
filename, first in the list of directories you
specify on the command line with the -I
switch, then in a standard list of system
directories.

#include "filename" Searches for your own header file called
filename, first in the directory of the current
input file, then in the same directories used
for system header files.

#include identifier Expands any macros contained in identifier,
then completes the header file search as
above. The search path depends on whether
the resulting expansion is enclosed in angle
brackets or double quotes. This is
sometimes called a computed #include.

One use of this computed #include might be to include a site-specific
version of a header file. The following example uses macro expansion
and conditional compilation, which are described in the next two
sections. This sequence of directives causes the preprocessor to
include a different version of a header file called my_args.h at the site
called paris:

#ifdef paris
#define my_args "my_args.paris.h"
#else
#define my_args "my_args.h"
#endif
#include my_args

NOTE CenterLine-C++ provides a facility that keeps track
of header files that have been compiled to avoid
recompiling. See page 21 for more information.

Header file inclusion

42 CenterLine-C++ Programmer’s Guide and Reference

Nested #include
directives

The files that you include with the #include directive can
themselves contain #include directives. The clpp preprocessor
supports approximately 198 levels of nesting.

Substituting other
header files with
#include_next

If your program relies on a system header file that doesn’t behave
the way you need it to on all the platforms your program supports,
you can write a local version of the header file that adds to the
system header file.

You can use the #include_next command to ensure that the
preprocessor finds first your local version of the header file, then the
system version. The #include_next command behaves like the
#include command, but it begins its search for the header file in the
next directory on the search path after the directory that contains the
current file.

For example, if you want to modify the errno.h system header file,
use this directive in your program:

#include <sys/errno.h>

In the local version of the header file, use this directive

#include_next <sys/errno.h>

Use the -I switch to the CC command to specify the directory that
contains the local version of the header file, for example
-I/usr/local/include. In this example, the preprocessor first finds the
local version of the errno.h header file. When it encounters the
#include_next command, it searches for the next header file in its
search path called errno.h and finds and includes the system
header file.

CenterLine-C++ Programmer’s Guide and Reference 43

Macro definition and expansion

Macro definition and expansion
The preprocessor expands predefined macros and macros that you
define using the #define directive. We cover the following topics in
this section:

• Defining simple macros

• Defining macros with arguments

• Specifying string literals

• Concatenating tokens

• Differences between ANSI C and K&R C

• Predefined macros

Simple macros The simplest macro definition has this syntax:

#define macro_name macro_body

This form is most often used to define a constant; for example, if
your program includes a header file that contains this directive:

#define LENGTH 600

the preprocessor replaces each occurrence of LENGTH in your
program with 600. The macro definition remains in force until the
end of the translation unit, or until it is undefined with an #undef
directive.

You can define a macro that refers to another macro. For example:

#define WIDTH 2*LENGTH

This is not equivalent to defining WIDTH to equal 1200, because the
preprocessor doesn’t replace WIDTH with 2*LENGTH until you use
WIDTH.

In C++, you can use a const declaration instead of a macro, for
example

const int LENGTH=600;

Using const has the advantage of making LENGTH available to a
symbolic debugger. Also const values can have type and scope like
variables.

Macro definition and expansion

44 CenterLine-C++ Programmer’s Guide and Reference

Macros with
arguments

You can define a macro that accepts arguments. The syntax is as
follows:

#define macro_name(arg1, arg2,...argn) macro_body

The opening parenthesis must follow the macro name immediately
with no white space, otherwise the preprocessor interprets the white
space as the macro body. The arguments can be any valid identifiers,
separated by commas and optional white space. Here’s an example:

#define min(a,b) ((a) < (b) ? (a) : (b))

The parentheses around the macro body are not required, but we
recommend that you use them to avoid problems that can occur due
to C’s operator precedence rules.

To use the macro, specify its name followed by a list of arguments in
parentheses, separated by commas. The number of arguments you list
must match the number in the macro definition.

In C++, you can replace a macro like this with an inline or template
function, which has the advantage that the function name will be
available to a symbolic debugger. For example, this inline function
replaces the min macro defined above:

inline int min(int a,int b)
{

return ((a) < (b) ? (a) : (b))
}

Using an inline or a template function instead of a macro also allows
the C++ compiler to perform type checking on any call to the function.

Specifying string
literals

You can turn a macro argument into a string literal by preceding it
with a # token (sometimes called the stringizing operator). This
example defines and uses a macro called print_name:

#include <iostream.h>
#define print_name(name) cout << "My name is" #name "\n"

main () {
print_name(Anita);
}

CenterLine-C++ Programmer’s Guide and Reference 45

Macro definition and expansion

After preprocessing, main() looks like this:

main () {
cout << "My name is" "Anita" "\n"
}

The preprocessor later concatenates adjacent strings, so the output of
the program is this:

My name is Anita

Concatenating
tokens

If the ## operator appears between two tokens in the macro body,
the preprocessor first replaces the tokens if they are parameters,
then removes the ## token and any white space surrounding it.

For example, suppose you define this macro:

#define size(name,no) new ## name = no * old ## name

If you use the size macro as follows:

size(Length,3)

You get the following expansion:

newLength = 3 * oldLength

ANSI C differences
in macro expansion

There are several differences between the ways ANSI C style
preprocessors such as clpp and pre-ANSI preprocessors handle
macro expansion. If you’re using legacy code or pre-ANSI C header
files you may encounter these differences. The Annotated C++
Reference Manual, in its commentary on preprocessing, describes
differences in detail. (See ”Suggested reading” on page vi for
publication details.)

Here’s a simple example to illustrate how clpp and pre-ANSI
preprocessors handle strings, character constants, and concatenation.
Suppose you have this code:

#define old_string(x) "x"
#define old_char(y) 'y'
#define old_join(m,z) m/* */z

#define new_string(a) #a
#define new_join(c,d) c##d

Macro definition and expansion

46 CenterLine-C++ Programmer’s Guide and Reference

main() {

old_string(this is my string);
old_char(this is my char);
old_join(con,catenated);

new_string(this is my string);
new_join(con,catenated);
}

The “old” macros produce the desired result if you use a pre-ANSI
preprocessor, the “new” macros if you use clpp or another ANSI C
preprocessor. There is no ANSI C equivalent to the “charizing” feature
provided with some pre-ANSI preprocessors, which replaces the
contents of character constants with the spelling of their formal
arguments.

A traditional preprocessor produces this output:

"this is my string";
'this is my char';
concatenated;

#this is my string;
con##catenated ;

Here’s the result when you use clpp:

"x" ;
'y' ;
con catenated ;

"this is my string" ;
concatenated ;

Predefined macros CenterLine-C++ predefines the macros listed in Table 4. These
macros cannot be undefined or redefined, except as noted in the
table.

The __LINE__ and __FILE__ macros can be set by the #line
directive, as described in ”Line control” on page 51.

To allow conditional compilation for source files that are compiled by
both the C++ translator and the C compiler, CenterLine-C++
predefines the macros __cplusplus and c_plusplus. These macros are
predefined to the value 1. The c_plusplus macro is included only for
backward compatibility with AT&T C++ 1.2 source code. When
writing new code, use the __cplusplus macro instead of c_plusplus.

CenterLine-C++ Programmer’s Guide and Reference 47

Macro definition and expansion

Refer to the CenterLine-C Programmer’s Guide and Reference or the clcc
manual page for a list of the predefined macros recognized by the
CenterLine-C compiler.

a. This macro is defined by C compilers and interpreters that conform to the ANSI standard.
On some platforms, such as Solaris 2.x, it can be defined as 0, and on others it can be
undefined.

Table 4 Macros Recognized by CenterLine-C++

Name of Macro Macro Definition Additional Information

__FILE__ Name of the file being read. Also predefined by cc.

__FUNC__ Name of the function being
read.

We do not recommend that you
use this macro, since it is not
available in other C++ or C
implementations.

__LINE__ Line number of the file being
read.

Also predefined by cc.

 __DATE__ Date the file was read ("Mmm
dd yyyy").

Defined only if the preprocessor is
in ANSI C mode.

__TIME__ Time the file was read
("hh:mm:ss").

Defined only if the preprocessor is
in ANSI C mode.

__STDC__ Defined as 1.a Defined only if the preprocessor is
in ANSI C mode.

__cplusplus Always defined as 1. Defined as 1 whether using a K&R
C or ANSI C preprocessor.

c_plusplus Always defined as 1. Defined as 1 whether using a K&R
C or ANSI C preprocessor.

Conditional compilation

48 CenterLine-C++ Programmer’s Guide and Reference

Conditional compilation
Conditional compilation allows your program to behave differently
depending on the conditions under which it is compiled.
Conditional commands are most often used in three situations:

• When portions of the code differ depending on the platform on
which the code will run. For example, library routines may vary
among operating systems.

• When the same source file can be compiled into two or more
applications.

• When a section of the code is obsolete, but you want to retain it
in the source file for future reference.

Conditional directives begin with the #if, #ifdef, or #ifndef
commands and end with #endif. They can also contain #else and #elif
commands.

Conditional syntax Conditional directives that begin with the #if command have this
syntax:

#if exp1
text_if_exp1_true
[#elif exp2
text_if_exp2_true]...
[#else [/* not exp1 and not exp2*/]
text_if_exp1_and_exp2_false]
#endif [/* exp1 */]

The text following the first expression (exp1, exp2,...) that evaluates to
nonzero is preprocessed and the remaining conditional directives are
ignored. If none of the expressions following the #if and #elif
commands are nonzero, the text following the #else command, if any,
is preprocessed.

CenterLine-C++ Programmer’s Guide and Reference 49

Conditional compilation

The optional comments after the #else and #endif commands make it
easier to read nested conditional directives.

Limitations on the
content of expressions

The expression you use in a conditional directive must be a C
expression of integer type. It can contain integer constants, character
constants, arithmetic operators, identifiers, and macro calls.

You cannot test the size of a variable or data type. The preprocessor
doesn’t understand “sizeof” operators, “enum”-type operators,
typedef names, or type keywords. In this example, BUFSIZE must
be a macro:

#if BUFSIZE == 1020
...
#elif BUFSIZE == 2040
...
#else /* BUFSIZE != 2040 & BUFSIZE != 1020/
...
#endif /* BUFSIZE == 1020 */

NOTE In K&R C, #else and #endif can be followed by
tokens, so that, for example, the following is a legal
directive in K&R C:

#if KERNEL
...
#endif KERNEL /* legal in K&R C */

For full ANSI C compliance, only comments can
follow #else and #endif statements:

#endif /* KERNEL */

NOTE The preprocessor treats all identifiers that are not
macros as 0. Also, the way it interprets character
constants depends on the conventions of the
machine and operating system on which the code
is running.

Conditional compilation

50 CenterLine-C++ Programmer’s Guide and Reference

Using #ifdef and
#ifndef

You can use #ifdef or #ifndef with a macro name if a section of your
code is relevant only under certain conditions. You can use a
predefined macro or a macro you have defined yourself.

For example, if your program has sections that differ according to
whether or not it’s compiled in a UNIX environment, you could use
this directive:

#ifdef unix
.
<code to be compiled if unix is defined>
.
#else /* not unix */
.
<code to be compiled if unix is not defined>
.
#endif /* unix */

The commands #if defined and #if !defined are equivalent to #ifdef
and #ifndef, but they enable you to combine two conditions in one
line. For example:

#if defined (_sparc_) || defined (_hp_)
.
<code to be compiled if _sparc_ or _hp_ is defined>
.
#endif

The parentheses surrounding the macro name are optional.

Retaining obsolete
code

If you want to refer to a section of your program that you’ve
changed, but you no longer want it compiled, you can retain it in
your source code and use a conditional directive that always
evaluates to false:

#if 0
.
<obsolete code>
.
#endif

CenterLine-C++ Programmer’s Guide and Reference 51

Line control

Line control
The output from the preprocessor is a combination of your input files
and any files you included with #include. The included files and any
conditional directives and macros you use cause the line numbers in
the preprocessor output to be different from those in the original
source file.

To enable error or warning messages to indicate at what line, and in
which file, inconsistencies are detected, the preprocessor uses the
__LINE__ and __FILE__ predefined macros. They expand,
respectively, to the current input line number and the file being
preprocessed. After a #include directive, the __FILE__ macro contains
the name of the included file, until processing resumes on the file
containing the #include directive.

A #line directive changes the contents of the __FILE__ and __LINE__
macros. This is useful if the original source file is processed by another
program, such as a parser generator, and the output from that
program becomes the input to the preprocessor. The parser generator
can insert #line directives into its output so that the output from the
preprocessor can refer to the original filename and line number.

For example, the following directive sets the __LINE__ macro to 15
and the __FILE__ macro to my_file:

#line 15 my_file

Reporting diagnostic messages
The #error directive causes the preprocessor to report a fatal error. The
text following the #error directive is the error message. For example,
if your program requires a particular condition to be true, you could
test for the condition and generate an appropriate message.

Here’s an example:

#if SIZE != 1000
#error "SIZE must equal 1000"
#endif

The #warning directive causes the preprocessor to print a diagnostic
message, but it does not interrupt processing.

Implementation-dependent behavior

52 CenterLine-C++ Programmer’s Guide and Reference

Implementation-dependent
behavior
The ANSI standard provides a preprocessor directive of the form
#pragma token-string. Its effect is determined by the implementation,
and it is ignored if the implementation does not recognize
token-string.

The clpp preprocessor ignores all #pragma directives and passes them
on to the C compiler. Refer to the CenterLine-C Programmer’s Guide and
Reference for more information about the #pragma directives
recognized by clcc.

Preprocessor switches
Table 5 shows the switches accepted by the clpp preprocessor. Some
of these switches can be used on the CC command line, but others
must be passed to the preprocessor from the CC command line with
the -flags_cpp= switch. Here’s an example:

% CC -flags_cpp="Wtraditional -pedantic" my_prog.C

This command line generates warnings if your code violates certain
pre-ANSI (-Wtraditional) or ANSI semantics (-pedantic).

Table 5 clpp Preprocessor Switches

Switch Meaning

 -C Do not discard comments; pass them through to the output file. Comments
appearing in arguments of a macro call will be copied to the output before the
expansion of the macro call.

-Dname Predefine name as a macro, with definition 1.

-Dname=definition Predefine name as a macro, with definition definition. There are no restrictions on
the contents of definition, but if you are invoking the preprocessor from a shell or
shell-like program you may need to use the shell’s quoting syntax to protect
characters such as spaces that have a meaning in the shell syntax. If you use
more than one -D for the same name, the rightmost definition takes effect.

CenterLine-C++ Programmer’s Guide and Reference 53

Preprocessor switches

-dD Write to standard output your #define commands and the result of
preprocessing. Do not list predefined macros.

-dM Write to standard output the #define directives for all the macros defined
during the execution of the preprocessor, including predefined macros. This
gives you a way of finding out what is predefined in your version of the
preprocessor. Assuming you have no file test.h, the command touch test.h; clpp
-dM test.h will show the values of any macros predefined on your platform.

-H Writes the name of each header file used to standard output.

-Idirectory Add directory to the end of the list of directories to be searched for header files.
This can be used to override a system header file, substituting your own version,
since these directories are searched before the system header file directories. If
you use more than one -I switch, the directories are scanned in left-to-right
order; the standard system directories come after.

-I- Any directories specified with -I switches before the -I- switch (note the hyphen
after -I) are searched only for the case of #include "file"; they are not searched for
#include <file>. If additional directories are specified with -I switches after the
-I-, these directories are searched for all #include directives. In addition, the -I-
switch inhibits the use of the current directory as the first search directory for
#include "file". Therefore, the current directory is searched only if it is requested
explicitly with -I. Specifying both -I- and -I allows you to control precisely
which directories are searched before the current one and which are searched
after.

-imacros file Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the only
effect of -imacros file is to make the macros defined in file available for use in the
main input. The preprocessor evaluates any -D and -U switches on the
command line before processing -imacros file.

-include file Process file as input, and include all the resulting output, before processing the
regular input file.

-lang-c
-lang-c++

Specify the source language. -lang-c++ includes additional default include
directories for C++ and enables the preprocessor to handle C++ comment
syntax.

-M Lists dependencies of the source file on standard output. The preprocessor
writes one make rule containing the object file name for the source file, a colon,
and the names of all the files included with #include. If there are many included
files then the rule is split into several lines. This feature is used in automatic
updating of makefiles.

Table 5 clpp Preprocessor Switches (Continued)

Switch Meaning

Preprocessor switches

54 CenterLine-C++ Programmer’s Guide and Reference

-MM Same as -M, except that only the files included with #include "file"are listed.
System header files included with #include <file> are omitted.

-nostdinc Do not search the standard system directories for header files. Only the
directories you have specified with -I switches (and the current directory, if
appropriate) are searched.

-P Inhibit generation of #-lines (lines beginning with the # sign and containing
line-number information) in the output from the preprocessor. This might be
useful when running the preprocessor on something that is not C code and will
be sent to a program which might be confused by the #-lines. When used on the
CC command line, runs only the preprocessor and sends output (without
#-lines) to a file with the suffix .i.

-pedantic Issue warnings required by the ANSI C standard in certain cases such as when
text other than a comment follows #else or #endif.

-pedantic-errors Same as -pedantic, except that errors are produced rather than warnings.

-traditional Use pre-ANSI C rather than ANSI C style preprocessing.

-trigraphs Process ANSI standard trigraph sequences. These are three-character
sequences, all starting with ??, that are defined by ANSI C to stand for single
characters. For example, ??/ stands for \, so ??/n is a character constant for a
newline, \n.

-Uname Do not predefine name. If both -U and -D are specified for one name, the name is
not predefined.

-undef Remove initial definitions of nonstandard macros.

-Wall Request both -Wtrigraphs and -Wcomment (but not -Wtraditional).

-Wcomment
-Wcomments

Warn whenever a comment-start sequence (/*) appears in a comment. (Both
forms have the same effect).

-Wtraditional Warn about certain constructs that behave differently in traditional and ANSI C.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are enabled).

Table 5 clpp Preprocessor Switches (Continued)

Switch Meaning

4 Using Templates

This chapter provides an introduction to using
templates with CenterLine-C++. It includes a
description of the instantiation process and the
switches used for instantiation, some usage
scenarios, and troubleshooting tips.

CenterLine-C++ Programmer’s Guide and Reference 57

Using templates

Using templates
Templates are the mechanism in C++ for supporting parameterized
types.

Parameterized types allow you to implement generic code for a type
and then implement that type with different parameters.

For example, you can define a general container type such as List or
Set as a template, and specify the type of the elements in the container
as a type parameter. Thus you could define a Set template and specify
its type parameters as int, Button, or cookbook. As a result, the
compiler could automatically create a Set of ints, a Set of Buttons, or
a Set of cookbooks.

In case you are not familiar with templates, we provide some
background information about how they are defined by the C++
language and how they are implemented in CenterLine-C++. In the
rest of this chapter, we discuss the following aspects of templates:

• Basic concepts and syntax

• Using templates with CenterLine-C++

• The instantiation process

• Coding conventions

• Lookup schemes

• Map files

• Switches for templates

• Usage scenarios

• Specializations

• Examples

• Common pitfalls

• Troubleshooting

• Tools

• Summary of terminology

Basic concepts and syntax

58 CenterLine-C++ Programmer’s Guide and Reference

For more language information about templates, see the AT&T C++
Language System Product Reference Manual. For more implementation
information, see “Template Instantiation in C++ Release 3.0.2”, an
excerpt from the AT&T C++ Language System Selected Readings, which
is available online in the following file:

CenterLine/clc++/docs/cfront3.0.2.templ_inst

If you are using the GUI, you can also view it in the Man Browser by
selecting the “Template Instantiation” topic in the AT&T
Documentation category. For more information about the Man
Browser, see “Using the Man Browser” on page 122.

Basic concepts and syntax
There are two kinds of templates in C++: class templates and
function templates. A class template allows you to define a pattern
for class definitions; generic container classes are good examples of
class templates. A function template defines a pattern for a family of
related overloaded functions; the function template lets one or more
of the function parameters be a parameterized type. In the next two
subsections, we describe class templates first, and then function
templates.

Class templates In C++, you use a class declaration to specify how to construct an
individual object. Similarly, you use a class template to specify how
to construct an individual class.

Once you have specified a class template completely, the C++
language system can use the template to generate a template class,
which is just like any other class. Whenever you declare an object of
the template class, the language system uses the template class to
create an individual object.

Creating the class from the template is called instantiating the
template. See Figure 2 for a conceptual illustration of the relationship
between a class template, an individual class (template class)
instantiating the template, and declaring an object of the template
class.

CenterLine-C++ Programmer’s Guide and Reference 59

Basic concepts and syntax

Say, for instance, you wish to create a bank that is a list of accounts.
You want the bank to be an object just like any other class object in
C++. You can use templates to create the bank by writing code that
follows these steps:

1 Create a class template for lists in general; let’s say you name it
List, and you want it to work for all types T:

template <class T> class List
{
private:
 T *data;
 List *next;
public:
 List(); // construct a List

 List(T& type); // constructor of a List, given a T

 List *nextLink();// return a pointer to the next
 // item in the linked list

 void setNext(T newData); // add an item containing
 // newData to the list

 T *thisData(); // return this List’s data
}

Figure 2 Instantiation and Declaration:
From Template to Class to Object

class template

template class

class object

instantiation

declaration

Basic concepts and syntax

60 CenterLine-C++ Programmer’s Guide and Reference

Make sure that you have defined the account type (in another
file) that you want to use as the parameterized type T with List:

class account
{
.
.
.
};

2 Declare an object of the template class from the template, using
an account as the parameterized type, and construct an
individual bank object:

account my_checking;
List<account> A_Bank(my_checking);

3 Now you can add accounts to the bank by using a
List<account> member function:

account your_checking;
A_Bank.setNext(your_checking);

See Figure 3 for a conceptual illustration of the instantiation and
declaration of a class template in the bank example.

Figure 3 From List Class Template to A_Bank Class Object

class template

template class

class object

instantiationList

List<account>

A_Bank

declaration

CenterLine-C++ Programmer’s Guide and Reference 61

Basic concepts and syntax

Function templates C++ allows you to overload functions — that is, you can give many
functions the same name as long as each function definition is
distinguished by the number and/or type of its function arguments.
You can think of a function template as a shorthand way to define a
set of overloaded functions.

For instance, suppose you wish to define a set of overloaded
functions so that each function returns the larger of its two
arguments. The simplest form of such a function is max(int, int):

int max(int a, int b) { return (a > b) ? a : b; }

In addition to comparing integers, you also want to overload max to
compare two classes of type Circle as well as comparing variables of
the built-in types float and char:

Circle max(Circle a, Circle b){ return (a > b) ? a : b;}
float max(float a, float b) { return (a > b) ? a : b;}
char max(char a, char b) { return (a > b) ? a : b; }

Clearly each of these functions requires a definition of the greater-than
operator (>); this definition is part of the language definition for int,
float, and char, but must be defined specifically for the Circle class.

Here’s an example of a function template that defines the same pattern
as the preceding set of overloaded max functions:

template <class T> T max(T a, T b)
{ return (a > b) ? a : b; };

The data type for the max function template is represented by the
template argument: <class T>. Once you define this function
template, you can use the max function with any data type for which
the operator > is defined.

 See Figure 3 for a conceptual illustration of the instantiation and use
of the max function template with Circle as the parameterized type.
Note that the Circle(max) function is generated implicitly by the
compiler.

Basic concepts and syntax

62 CenterLine-C++ Programmer’s Guide and Reference

Once you write the function template for the max function, using T as
the parameterized type, your application can make a function call
such as max(A,B). Then, CenterLine-C++’s automatic template
instantiation system implicitly creates the instantiated template
function needed to implement the max function call. (It does not create
a physical copy of the instantiated template function.)

In the case illustrated in Figure 3, the parameterized type in the
function call is Circle, so the instantiated template function returns a
Circle and takes Circles as arguments.

Figure 4 From Function Template to Function Call

function template

call to template function

template <class T>
T max(T a, T b)

{ return (a > b) ? a : b; }

implicit instantiation of template function

{ return (a > b) ? a : b; }

Circle max (Circle a, Circle b)

Circle A(5);
Circle B(6);
Circle C = max(A, B);

CenterLine-C++ Programmer’s Guide and Reference 63

Using templates with CenterLine-C++

Using templates with
CenterLine-C++
In this section we present an overview of the use of templates with
CenterLine-C++; we do so by focussing on another example of a
simple class template. Later in the chapter we describe the
instantiation process and coding conventions in more detail. The
three files used in this example, Vector.h, Vector.c, and
appVector.C, are available online in the examples directory. See
“Setting up the examples directory” on page 9 for how to install the
examples directory.

Declaring a
template in a .h file

Suppose that you want to use one-dimensional arrays, or vectors,
that grow dynamically as new elements are added and that can
contain different types as elements. You might declare a vector class
template as follows:

template <class T> class Vector
{

T* data;
int size;

public:
Vector();
T& operator[](int);

};

This class template declaration has two private data members, data
and size, and two public functions, operator[] and the constructor.
There is one argument T to the template.

We put the template declaration of Vector in a file named Vector.h.
As its suffix indicates, Vector.h is a header file. In the rest of this
discussion, we will refer to it as the template declaration file.

NOTE The template instantiation system allows you
to use filenames with different suffixes. See the
"Dynamic extension lookup" section on page
73 and the "Map files" section on page 75 for
details on how to do so correctly.

Using templates with CenterLine-C++

64 CenterLine-C++ Programmer’s Guide and Reference

Specifying a
template
implementation in a
.c file

By convention, if the declaration file is named Vector.h, we put the
implementation of the Vector template in a file named Vector.c.
This file is generally referred to as the template definition file. You
can use other suffixes for the template definition file, but the name
(in this case Vector) must be the same as that of the template
declaration file.

Here’s a possible implementation for Vector:

template <class T> Vector<T>::Vector()
{

// start off with 3 elements
size = 3;
data = new T[size];

}

template <class T> T& Vector<T>::operator[](int n)
{

int os;
int i;
T* newdata;
// grow if have to
if (n >= size)
{

os = size;
while (size <= n) size *= 2;
newdata = new T[size];
for (i = 0; i < os; i++)

newdata[i] = data[i];
delete [] data;
data = newdata;

}
// return reference to data slot
return data[n];

}

Note that the code in Vector’s declaration and implementation is
parameterized — it uses a type that is unknown but represented by T.
Also, note that the .c file does not include the .h file. The automatic
instantiation system will locate Vector.c according to the rules
described in “Dynamic extension lookup” on page 73.

CenterLine-C++ Programmer’s Guide and Reference 65

Using templates with CenterLine-C++

Specifying a
template class in
an application

We put a simple application that uses the Vector template in
appVector.C:

#include <iostream.h>
#include "Vector.h"

main()
{
Vector<int> v;
int i;

// put data in the vector
for (i = 1; i <= 5; i++) v[i] = i * i;

// display data in the vector
for (i = 1; i <= 5; i++)

 cout << i << "" << v[i] << \n";
}

This application using the Vector template specifies Vector<int>; that
is, it substitutes type int for the T in the declaration and
implementation of the template. Vector<int> is an example of a
template class — a template with particular arguments — where <int>
is a template argument.

Compiling the
application

Compile this application with the -ptv switch so that you can see
what the compile-time (ptcomp) and link-time (ptlink) template
processors are doing. The instantiation process is described on
page 67.

% CC -ptv appVector.C
CC appVector.C:
CC[ptcomp] locked repository [1] ...
CC[ptcomp] read raw cfront information [0] ...
CC[ptcomp] read old map file [0] ...
CC[ptcomp] made list of unique filenames in new map file [0] ...
CC[ptcomp] deleted old map file entries [0] ...
CC[ptcomp] added in new map entries [0] ...
CC[ptcomp] wrote new map file [1] ...
CC[ptcomp] unlocked repository [0] ...

/* compiler output deleted */...

CC[ptlink] locked repository [0] ...
CC[ptlink] read name map file list [0] ...
CC[ptlink] read in all objects and archives [1] ...
CC[ptlink] finished link simulation to pick up undefineds [0] ...
CC[ptlink] made list of unique template class names [0] ...

Using templates with CenterLine-C++

66 CenterLine-C++ Programmer’s Guide and Reference

==========left to do==========
Vector<int>

CC[ptlink] now looking at template Vector<int> [0] ...
CC[ptlink] wrote instantiation file Vector__pt__2_i.c [0] ...
CC[ptlink] rebuilt header file cache [1] ...
CC[ptlink] did dependency check on Vector__pt__2_i.c (missing object)
[0]...
CC[ptlink] CC line is:

/* compiler output deleted */...

CC[ptlink] compiled Vector__pt__2_i.c [7] ...
CC[ptlink] added symbols from Vector__pt__2_i.o to symbol table [0] ...
CC[ptlink] finished link simulation to pick up undefineds [1] ...
CC[ptlink] unlocked repository [0] ...

The CC command compiles appVector.C and goes on to create an
object file for the template class with the parameters specified in
appVector.C. The object file instantiating Vector<int> contains the
template class members Vector<int>::Vector() and
Vector<int>::operator[](int). This process is called instantiation.

You may get syntax errors at this stage if CenterLine-C++ finds errors
in your template definitions. Make corrections in the .c file that
implements the template containing the error, in this case, the Vector.c
file, rather than in your application file.

For instance, if you get an error message indicating “missing template
arguments”, you may have forgotten to specify the parameter for a
template in your template definition file. This could be a matter of
simply remembering to write <T> after the template name.

After you successfully compile and link your program, you can run it.
Here are the results when you run appVector.C:

% a.out
1 1
2 4
3 9
4 16
5 25

CenterLine-C++ Programmer’s Guide and Reference 67

The instantiation process

The instantiation process

CenterLine-C++ stores the files it needs for template instantiation in
the template repository. The repository is a directory that can
contain a .o file, which is the template instantiation object file, along
with a .c (instantiation source file), a .cs (checksum file), a .he file
(contains information about header file dependencies—see page 83)
and the default name mapping file, defmap.

By default, the repository is created in the current directory and called
ptrepository. (You can specify a different name and location with the
-ptr switch.)

The name mapping file contains information about templates,
including the names of the files where the templates are declared and
instantiated. See the "Map files" section on page 75 for more
information. You may find it helpful to look at the contents of each of
the files created in the repository directory before you read the
following discussion of the instantiation process.

The following steps summarize the instantiation process. For a more
detailed explanation, see “Template Instantiation in C++ Release
3.0.2”, an excerpt from the AT&T C++ Language System Selected
Readings, which is available online as described on page 58.

1 At compile time, references to templates are compiled normally
into external unresolved symbols, but nothing is instantiated.
ptcomp logs every template that is declared in the default name
mapping file, defmap. Every class, union, struct, or enum that
is declared is also logged. The entry includes the type name and
the basename (not the full pathname) of the file in which the
declaration appears.

2 At link time, ptlink looks at all the files and archives, and the
current repository, to determine whether there are any
referenced template symbols that are unresolved. It checks
header dependency (.he) files to make sure that any
instantiations in the repository that are out of date are not used.
If there are no unresolved symbols, the link is made.

NOTE In most cases, you can use templates without
knowing the details of the instantiation process.
However, if you’re interested, read this section for
more details.

The instantiation process

68 CenterLine-C++ Programmer’s Guide and Reference

3 If there are unresolved symbols, ptlink builds a list of class
templates and function templates that must be instantiated. For
each template, ptlink looks at the name mapping file to find the
template declaration and definition files and the argument
declaration files for all of the template arguments. The -I path
that was passed to the compiler is used to find each of the files.

The template definition file (that is, the file containing the
implementation of the template) is assumed to be a file with the
same name as the template declaration file, except that it has a
different suffix. The mechanism for looking up the template
types is described on page 74.

If ptlink can’t find any of the files, it issues an error message
and the link fails.

4 ptlink uses the template declaration file, the template definition
file, and the argument declaration files to build a temporary
instantiation file. It then calls the C++ compiler to instantiate the
template. The compiler only generates code for a specified list of
symbols. If this is a class template, only the members that were
needed are instantiated. The resulting object file is added to the
repository.

5 If more template classes or functions need to be instantiated,
Steps 3 and 4 are repeated.

6 When all the necessary templates have been instantiated, ptlink
checks whether any of the new instantiations refer to new
symbols and goes back to Step 2 if necessary.

7 Finally, ptlink produces a set of object files containing the
instantiations that are passed to the actual link step.

See Figure 5 for a simplified conceptual illustration of the instantiation
process.

CenterLine-C++ Programmer’s Guide and Reference 69

The instantiation process

Figure 5 Steps in the Template Instantiation Process

no

no

no
Get template

Get parameter
declarations

Find or generate
instantiation
source code

Include the required

(.c, .C, .cxx, .CXX,

Does the
repository have

an up-to-date version
of the required
instantiation?

instantiation file

Get templateyes

Are any
instantiations

required?

yes

Exit instantiation
process

Compile
instantiation
source code

in the executable

.
implementations

.cc, .CC, or .cpp files)

(.h,..H, .hxx, .HXX,
.hh, .HH, or .hpp files)

declarations

Log template references
in defmap file

Coding conventions

70 CenterLine-C++ Programmer’s Guide and Reference

Coding conventions
By default, CenterLine-C++ uses certain conventions for the
structure of application files that use templates; they are the same as
the conventions used by the AT&T C++ language system on which
CenterLine-C++ is based.

Argument
declaration files

By convention, an argument declaration file is used to declare types
used as arguments to a template. For example, A and B are the
argument types for the template class Vector<A,B**>. Fundamental
types, such as int or unsigned short*, are defined by the language
and require no special declarations.

An argument type should be declared in a single header file that is
self-contained or that includes other headers that it needs. If this is
not possible then you must write a map file; see the "Map files"
section on page 75.

You can define more than one type in the same header. An example of
a self-contained header would be:

#ifndef INCL_A
#define INCL_A
class A {

int x;
public:

void f() {}
void g() {}

};
#endif

while one with other #include directives might look like the
following:

#ifndef INCL_B
#define INCL_B
#include "Point.h"
class B{

Point p[10];
public:

void rotate(int);
};
#endif

CenterLine-C++ Programmer’s Guide and Reference 71

Coding conventions

Include guards INCL_A and INCL_B are include guards, used to prevent the same
file from being included more than once. We recommend that you
use include guards when writing template header files.

The compiler extracts type information from headers and
remembers it so that the instantiation process can get it back when
needed. If you use a template with arguments that are not
fundamental types and have not been declared in an argument
declaration file, the arguments can only be pointer or reference
types, for example Vector<A*, B&>.

Template
declaration files

Use a template declaration file to declare a template. Its structure
mirrors that of a class declaration. For example, a declaration file
could contain:

template <class T> class AAA {
T x;
int y;

public:
void f();
void g(T&);

};

For function templates, use a forward declaration:

template <class T> void sort(T*, int n);

When it finds a forward declaration, CenterLine-C++ creates a map
file entry. This map file entry tells the instantiation system that an
unresolved symbol might represent a template that needs to be
expanded.

Like argument declaration files, a template declaration file should
#include any header files it needs for the types it uses. However,
header files for types used as template arguments or the definition of
the template itself should not be included, since these are handled
automatically by CenterLine-C++’s instantiation system. This means
you should #include only the template declaration file (Vector.h in
our earlier example) in the application file; do not include the
definition file (Vector.c in our example) in the application. Also, do
not include the template declaration file in the template definition file.

Coding conventions

72 CenterLine-C++ Programmer’s Guide and Reference

Template definition
files

A template definition file contains the implementation of a template:
the definitions of member function templates and initializers for
static members of the template. The definition file has the same
name as the template declaration file, but with a different suffix. See
“Dynamic extension lookup” on page 73 for a list of suffixes.

If the template declaration from the previous section is in AAA.h:

template <class T> class AAA {
T x;
int y;

public:
void f();
void g(T&);

};

Then the definition file, AAA.c, would be as follows:

template <class T> void AAA<T>::f() { /* ... */ }
template <class T> void AAA<T>::g(T&) { /* ... */ }

In general, a definition file should not include the declaration file that
matches it, nor the argument declaration files that declare any
template argument types, unless you use include guards consistently
as recommended on page 71. Including a guarded template definition
file in a template declaration file will cause the definition file to be
typechecked at application compile time, at the expense of slower
compiling.

There must be a definition file for every declaration file, or a map file
that overrides the standard convention. User-defined map files are
described in “Specifying user-defined map files” on page 77. If a
template definition file does not exist along the -I path,
CenterLine-C++ issues a warning and does not include the file. All
other missing files will cause a preprocessor error at instantiation
time.

NOTE Use a definition file only to define templates in
the corresponding declaration file. Information
not related to template data or function
definitions could be unnecessarily duplicated
as part of the instantiation process for the
templates, and therefore cause duplicate
symbol errors when linking.

CenterLine-C++ Programmer’s Guide and Reference 73

Lookup schemes

Inline functions Inline template member functions are treated similarly to their class
counterparts, except that they must currently be defined in the
template declaration as shown in this example: they cannot be
defined separately in the definition file.

template <class T> struct A {
void f() { /* ... */ }
};

If they are defined outside of the class body, but within the declaration
file, inline template member functions will not be expanded inline.
Instead, CenterLine-C++ generates and calls a static function.

Lookup schemes
In this section we summarize the schemes used for type and file
lookup.

Type lookup When ptlink does instantiation, it first makes a list of all the types
used in the template class arguments. For example, if you have a
function like this:

A<B,C>::func(D,E)

ptlink adds the types A, B, and C to the list and retrieves their
declaration and implementation files. D and E are not added to the
list. For function templates, the type name added to the list is the
function name without arguments.

Dynamic extension
lookup

In the examples we’ve used so far in this chapter, implementations
of templates have been stored in template definition files with the .c
suffix, and template declaration files have had a .h suffix. When you
use other suffixes, ptlink must somehow determine what file to
include in the instantiation file.

There are two kinds of file lookup: finding the header files that
describe template arguments and finding the template types
themselves.

Lookup schemes

74 CenterLine-C++ Programmer’s Guide and Reference

Finding template
parameters

The instantiation system looks for header files that describe
template parameters (argument declaration files) in the map file. If it
finds a header file for the type in the map file, it uses it. If not, it
generates a forward declaration for the type in the instantiation file.

Finding template types To find template types, the instantiation system must locate both the
declaration and definition (implementation) files. To do this it uses
the following procedure:

1 If there are both @dec (for declaration) and @def (for definition,
or implementation) entries in the map file they are used.

2 If there is exactly one of @dec and @def in the map file, it is
used to supply the basename, and then the -I settings are
iterated over as an outer loop, and one of the following is used
as the inner loop; either

{".h", ".H", ".hxx", ".HXX", ".hh", ".HH", ".hpp"}

if the declaration file isn’t in the map file, or

 {".c", ".C", ".cxx", ".CXX", ".cc", ".CC", ".cpp"}

if the definition file isn’t in the map file. The first file that is
found is used. This algorithm means that ptlink will attempt to
exhaust all extensions in each -I directory before moving to the
next. If no file is found ptlink goes to the next step.

The list of suffixes is set by CenterLine-C++ to the default values
shown above, or you can set them to the values you choose
using the PTHDR and PTSRC environment variables. For
example:

export PTHDR=".h,.H" (SysV)

setenv PTHDR ".h,.H" (BSD)

ptlink ignores any item in the set of suffixes and issues a
warning if it does not begin with a dot or has more than four
total characters.

3 If there are no @dec nor @def entries in the map file, then the
file basename for a template type T will be T. The algorithm in
Step 2 is applied independently to get the declaration and
definition file names. If ptlink cannot find either the definition
or the declaration file names, it issues a warning and does not
include a header file in the instantiation file.

CenterLine-C++ Programmer’s Guide and Reference 75

Map files

Map files
Whenever you compile a source file that uses templates,
CenterLine-C++ creates or updates a name mapping file in the
repository. A map file contains mappings from type and template
names to the source files that contain them. A map file entry is the
only way that CenterLine-C++ can determine if an unresolved
symbol might represent a template needing expansion.

The default map file The default name for the current name mapping file is defmap; the
preceding version is named defmap.old. This map file is maintained
by CenterLine-C++, and you should not edit it. You can override the
defmap file by specifying a user-defined name mapping file, as
described on page 77.

Map files for the
Vector example

Here’s a portion of the defmap file after we linked the Vector
example:

@tab
appVector
Vector__pt__2_i
@etab
...
@dec Vector @0 @1
"Vector.h"
...

The first few lines, bounded by @tab and @etab, are the string table,
which is used by the instantiation system to compress the defmap file.

The entry beginning with @dec shows that type Vector is declared in
Vector.h. If you look at the whole file, you will see that there is no
@def entry specifying where Vector is defined (implemented). The
instantiation system uses the algorithm on page 74 to locate the
implementation for Vector in Vector.c.

In these lines:

@dec Vector @0 @1
"Vector.h"

Map files

76 CenterLine-C++ Programmer’s Guide and Reference

@0 refers to the first item in the string table, appVector, and @1 to the
second item, Vector__pt__2_i, which is the name-mangled form of the
name of the template class, Vector<int>. The lines indicate that Vector
is declared in Vector.h and the type is valid for appVector (in both
source and object form) and the template class Vector<int>.

Sharing a
repository Application file names are recorded in the name mapping file to

handle the case where distinct applications share a repository. For
example, suppose the Vector application and a banking application
shared a repository. The string table at the top of the shared name
mapping file might look like the following:

@tab
banking
account
appVector
Vector__pt__2_i
longVector
Vector__pt__2_l
@etab

Here’s the demangled version of this string table, which has six items.

$ c++filt defmap
@tab
banking
account
appVector
Vector<int>
longVector
Vector<long>
@etab

The string table is followed by lines that look like this:

@dec List @0
"List,h"
@dec account @0 @1
"account.h"
@dec Vector @2 @3 @4 @5
"Vector.h"

These @dec lines indicate that the List type is valid for the banking
application, the account type for both the banking and account
applications, and the Vector type for the appVector and longVector
applications and also the Vector<int> and Vector<long> template
classes.

CenterLine-C++ Programmer’s Guide and Reference 77

Map files

Encoding of
functions in map
files

In map files, operator function templates are encoded as described
in Section 7.2.1c in The Annotated C++ Reference Manual (see
“Suggested reading” on page vi for publishing details). For
example, operator << is encoded as __ls. Also, function template
types are recorded without parameter information; as a result they
appear as a single map file entry.

Specifying
user-defined map
files

You can specify additional name mapping files by naming them
nmapname and placing them in the repository; user-specified files
take precedence over the default files and are considered in
alphabetical order. For example, suppose you create your own map
files, nmap001 and nmap2; CenterLine-C++ looks at nmap001
before nmap2 before defmap.

You can create user-specified map files to override the lookup
mechanism described in “Lookup schemes” on page 73.

Example of overriding
default filenames

For instance, suppose you wanted to use the implementation of
Vector that’s in Vector.newc as your “standard” definition, rather
than the code in Vector.c. Then you could create a new mapping
file, naming it nmap1, for instance, adding the specification for @def:

nmap1:

@def Vector
"Vector.newc"

Specifying application
files in map files

Note that a map file entry does not have to specify application files;
an entry without any applications serves as a last resort if the type
cannot otherwise be found. Typically, application files are recorded
to handle the case where there are distinct applications sharing one
repository. Also, you don’t have to use @0, @1 and so on as shown
in “Sharing a repository” on page 76; you can spell the application
name out. For example, instead of this:

@dec account @0 @1

you can write this:

@dec account banking account

Switches for templates

78 CenterLine-C++ Programmer’s Guide and Reference

Switches for templates
Table 6 describes the switches used by the CenterLine-C++ template
instantiation system.

Table 6 Template Instantiation Switches

Name of
Switch

What the Switch Does

-pta Directs CenterLine-C++ to instantiate the whole
template, rather than only those members that are
needed.

-ptdpathname Dumps list of instantiation objects to a file if any were
recompiled or if the file does not exist. Also bypasses
actual link step. Can be used with -pti in makefiles of this
form:

appl: appl.o ilist
CC -pti -o appl ‘cat ilist‘ appl.o

appl.o: appl.c Vector.h A.h C.h
CC -c appl.c

ilist: always
CC -ptdilist appl.o

always:

-ptf Forces CC to instantiate templates when the source file is
compiled, instead of later, even if the program consists of
more than one file. We do not recommend that you use
this switch with applications that comprise more than
one file.

-pth Forces repository names to be less than 14 characters
even if the operating system supports long names. This is
useful in building archive libraries.

-pti Ignores ptlink pass.

-ptk Forces ptlink to continue trying to instantiate even after
instantiation errors on previous template classes.

-ptmpathname Have ptlink dump out a “link map” showing what
actions the link simulator took.

CenterLine-C++ Programmer’s Guide and Reference 79

Switches for templates

-ptn Changes the behavior of one-file programs to work like
multi-file programs. If you do not set this switch for a
one-file program, then by default, all templates are
instantiated. See “Simple programs” on page 80 for more
information.

-ptopathname Consider instantiation modules in pathname to be out of
date, and regenerate and compile. No checking is
performed.

-ptrpathname Specifies pathname as a repository. By default, pathname is
./ptrepository. You can specify more than one repository
by using the switch more than once; use the switch for
each repository. If multiple repositories are specified,
only the first is writable; the others are used to retrieve
instantiation modules rather than store them as written.
For example, -ptr might refer to a central project
directory or a class library repository.

-pts Splits instantiations into separate object files, with one
function per object (including overloaded functions), and
all class static data and virtual functions grouped into a
single object.

-ptt Use timestamps to determine when instantiations must
be compiled. This switch is on by default.

-ptv Specifies verbose mode for template instantiation;
CenterLine-C++ announces each step in the instantiation
process. This is especially useful when you’re learning
about templates.

Table 6 Template Instantiation Switches (Continued)

Name of
Switch

What the Switch Does

Usage scenarios

80 CenterLine-C++ Programmer’s Guide and Reference

Usage scenarios
This section describes various types of projects and the instantiation
schemes that correspond to each.

Simple programs By default, a one-file program that is to be compiled and linked
causes CenterLine-C++to instantiate everything it can into the object
file for the program. This means that the link-time instantiation
system is bypassed, if all the templates and parameter types are
found within the program itself. This behavior can be disabled using
the -ptn switch.

Small and medium
projects

By a small project we mean a project that has one programmer and
uses one directory. Suppose that such a project needs some
templates from a directory of template headers named
/usr/template/incl. You could issue the following commands to
accomplish this:

% CC -I/usr/template/incl -c file1.c

and at link time:

% CC -I/usr/template/incl file1.o file2.o -o prog

The repository used in this example would be the default,
ptrepository.

If there is more than one project in a directory, it is better to use an
explicitly named repository as a means of better separating one project
from another. For instance, the following commands establish rep1 as
a user-specified repository:

% mkdir rep1
% CC -I/usr/template/incl -ptrrep1 file1.c

Repository
permissions

When CenterLine-C++ creates the default repository, it gives it the
same permissions as its parent directory, and files that are created in
the repository have that same access.

This means that, if you want a repository to be shareable, you might
have to change its permissions using chmod:

% chmod 775 ptrepository

CenterLine-C++ Programmer’s Guide and Reference 81

Usage scenarios

Alternatively, you can create the repository in a directory with the
desired permissions.

CenterLine-C++ deletes files in the repository before rewriting them,
so if a repository has files in it and then the repository’s permissions
are changed, no access problems will come up.

Another approach is for team members to set the default creation
mask at the shell level:

%sh umask 002

Large projects and
multiple
repositories

A large project often has a centralized set of source, library, and
object files along with a local work area for each programmer. The
best model for this kind of project is the use of multiple repositories.
CenterLine-C++’s instantiation system looks first in your local
repository and then the central one, both for map files and
instantiation objects.

With such a scheme, you might issue a command such as the
following:

% CC -I/usr/jones/tincl -I/usr/proj/tincl\
-I/usr/jones/incl -I/usr/proj/incl\
-ptr/usr/jones/rep -ptr/usr/proj/rep file.c

Given the preceding command, when it instantiates templates used in
file.c, CenterLine-C++ uses the following repositories:

• /usr/jones/rep (to write instantiation modules as well as retrieve
them)

• /usr/proj/rep (to retrieve existing instantiation modules)

Repository
management

CenterLine-C++’s instantiation system adds to the repository but
does not delete from it (except when it rewrites files). You may want
to monitor the size of repositories periodically and delete obsolete
files and repositories.

Usage scenarios

82 CenterLine-C++ Programmer’s Guide and Reference

Sharing code and
using archives

Instantiations in a repository are simply object files; you can easily
export them into an archive. For example, with the default
repository one can say:

 $ ar cr projlib.a ./ptrepository/*.o

Such an archive may or may not be useful to other projects. By default,
the system instantiates only what an application needs, and thus the
object files will not contain all members of template classes. Another
project with different needs might not be able to use such objects.

You can solve this problem by using the -pta switch, which tells
CenterLine-C++ to instantiate everything; however, this solution
wastes binary size. A reasonable strategy might be to use -pta initially
and turn it off later in a project cycle.

You can also use the -pts switch to split up instantiations into separate
object files for each function. This reduces problems resulting from
object files clashing because they contain different but overlapping
subsets of symbols.

Libraries By library we mean a collection of object files, also known as an
archive. Suppose you have a library that uses templates, but end
users of the library do not know or care about templates. You can
avoid the instantiation process for those users by forming the
closure of the library; forming closure means instantiating
everything into object files and adding the objects to the library.

For example, if you wanted to form closure for a library named
/usr/proj/lib.a, you could say:

$ mkdir scratch
$ cd scratch
$ ar x /usr/proj/lib.a
$ CC -I/usr/proj/tincl -I/usr/proj/incl -pts *.o
$ rm -f /usr/proj/lib.a
$ ar cr /usr/proj/lib.a *.o ./repository/*.o

Use the -pts switch with CC to split the instantiations into separate
files.

When you follow the preceding example, you may get a link error that
you can ignore; it occurs because the code does not have a main().

CenterLine-C++ Programmer’s Guide and Reference 83

Usage scenarios

Link-simulation
algorithm

The ptlink link-simulation mechanism is designed to support
archive libraries with partially-instantiated template classes in them,
by using functions found in libraries whenever possible. The
algorithm is as follows:

1 Standalone objects are always “linked,” and objects encountered
as the link simulator traverses the archive are linked if symbols
from them are needed.

2 For each text. data, or bss1 symbol in the library object to be
added, ptlink checks to see if the symbol is already in the link
simulator symbol table and if it is already defined to the correct
type. If there are no symbols already defined, the object can be
linked.

3 If one or more symbols is already defined, then each text, data,
or bss symbol that was previously undefined is marked as
undefined and undefinable. No future object can resolve the
symbol. This step is necessary to preserve archive semantics.

Note that object filenames in the repository may be longer than the 14
characters that ar will handle. You can use the -pth option to limit
names to 14 characters when you compile, or rename object files; a tool
for this purpose is described in the "Tools" section on page 95.

Dependency
checking

The template instantiation system has the following scheme for
checking whether instantiated objects are out-of-date.

CenterLine-C++ compares the timestamps of #include declaration
files in the instantiation file with the timestamp of the instantiation
object. To handle nested #include directives, CenterLine-C++
creates a cache, which it stores in the repository with a .he
extension. For example, the cache for the Vector example is in
Vector__pt__2_i.he.

The first line of the .he file shows the -I and -D switches used with
CC. Subsequent lines contain the names of all header files. An object
file is considered out-of-date if it is older than any of the headers on
the list, or if the -I and -D switches have changed.

1. The bss section of an object file contains uninitialized data. See your system manual page
for nm for more information.

Usage scenarios

84 CenterLine-C++ Programmer’s Guide and Reference

Forcing reinstantiation Sometimes it is desirable to get around dependency checking. To
force reinstantiation, you can enter the following:

% touch template_name.suffix

where template_name.suffix is the name of the template definition file
containing the implementation of the template you want to force to
reinstantiate.

Alternatively, you can delete all object files in the repository; however,
this works only if your makefile has an explicit dependency on the
template instantiation file.

Compiling and
linking

All switches that apply to the creation of an executable must be on
the CC command line, whether they pertain specifically to
compiling, linking, to both, or to the template instantiation process.

For instance, some of the switches that pertain to linking are as
follows:

-Llibrary_dir -llibname -o executable_file_name

Some switches related to compiling are as follows:

-DNAME1 -I/header/file/directory -UNAME2 -O

Some switches are used by both the linking and compiling phases;
typically these switches relate to debugging:

-g +d

Using CC with
templates in header
files

Template instantiation with CC combines compiling and linking
into one operation. When you compile source files that refer to
templates, you do something like this:

% CC -g +d -DTHIS -DTHAT -I/some/directory -c app.C

In this example, all the header files are found if they exist in the
current directory or in /some/directory.

CenterLine-C++ Programmer’s Guide and Reference 85

Specializations

But these header file directories and macro definitions are not saved
with the object module. So your code will generate unresolved
template references if your templates depend on header files in
/some/directory and you try to do the following to link:

% CC -g -o app app.o ...

The original switches used in compiling app.o are not available. The
only flags available when compiling template instantiations are
those given on the CC command line when you link.

In this case, to make header files work with CC you must do
something like the following:

% CC -g -DTHIS -DTHAT -I/some/directory app.o ...

Using automatic
tools and make

In some cases you may want to separate instantiation from the
linking phase. You can do this using the -ptd switch, which
performs instantiation without linking, and the -pti switch, which
bypasses the instantiation step. Part of a makefile that uses this
construction is shown in the -ptd entry in Table 6, "Template
Instantiation Switches," on page 78.

When you compile an application that uses templates, you need to
specify the file that contains the template implementation (the
template definition file) as a dependency in your makefile. And, if you
use automatic tools that check for dependencies, you have to
manually indicate that template definition files are dependencies.

Specializations
A specialization is a means of overriding the standard version of a
template class or a particular member of the class. Typically you use
specializations to improve performance, or to reuse most of the code
for a given template while providing your own version of a
particular member function.

To use a specialization, first compile the source file containing the
specialization with the -c switch, then link the resulting .o file with
your application.

Specializations

86 CenterLine-C++ Programmer’s Guide and Reference

A specialization
example

For instance, suppose you want to use the appVector.C application
described in “Using templates with CenterLine-C++” on page 63.
However, you want to override the implementation code in Vector.c
for the case of integers as the parameterized type.

Here’s the template implementation in Vector.c as we described it
earlier:

template <class T> Vector<T>::Vector()
{

size = 3;
data = new T[size];

}

In this case, suppose the source code for the specialization is in a file
named spec_vec.c:

#include <iostream.h>
#include "Vector.h"
Vector<int>::Vector()
{
 size = 3;
 data = new int[size];
 // add initializer and output for specialization

for (int i=0; i<size; i++) data[i]=0;
cout<< "this is a specialization for Vector" << endl;
}

Notice that the specialization does not contain template <class T>.
Also, we modified the definition of the constructor by adding a for
loop initializing the array along with a call to cout.

For convenience, here’s the application, as we described it earlier:

#include <iostream.h>
#include "Vector.h"

main()
{
Vector<int> v;
int i;

// put data into vector
for (i = 1; i <= 5; i++) v[i] = i * i;

// display data in vector
for (i = 1; i <= 5; i++)

cout << i << " " << v[i] << "\n";
}

CenterLine-C++ Programmer’s Guide and Reference 87

Examples

To compile and link this application with the specialization:

% CC -c spec_vec.c
% CC appVector.C spec_vec.o

The compiled specialization must be placed on the link line to prevent
the general versions from being instantiated at link time.

The program’s output is as follows:

% a.out
this is a specialization for Vector
1 1
2 4
3 9
4 16
5 25

Static template
class data members

Specialization of static template class data members is done in a
similar way. For instance, a template declaration such as the
following provides a general template initializer:

template <class T> int A<T>::x = 97;

To specialize this, you could say:

int A<int>::x =52;

somewhere in the application.

Examples
This section describes a few more small sample cases.

Single file In the simplest case, the template definition and the application
code that uses it are all in the same file, userapp.C:

#include "String.h"
template <class T> class Stack {

T* head;
public:
 Stack() : head(0) {}
 T pop();
 void push(T&);
};

Examples

88 CenterLine-C++ Programmer’s Guide and Reference

template <class T>
T Stack<T>::pop()
{ /* ... */ }

template <class T>
void Stack<T>::push(T& arg)
{ /* ... */ }

main()
{
Stack<String> s;
/* Code that uses push and pop */
}

To execute this code in CenterLine-C++, do the following:

% CC userapp.C

In this case, the instantiation is completely automatic; you need do
nothing further to instantiate the Stack class template used in main().

When userapp.C is compiled, the push and pop references are
compiled as normal function calls. No reference to
Stack<String>::Stack() is generated because it is inline. The name
mapping file is updated to show the declaration of templates and
classes:

@dec String userapp
"String.h"
@dec Stack userapp
"userapp.c"

Separate
compilation

The next example is more typical than the preceding one. The
template is declared in a declaration file (Stack.h), the
implementations are provided in a separate definition file (Stack.c),
and the application is in a third file (userapp.C):

Stack.h:

template <class T> class Stack
{
T* head;
public:
 Stack() : head(0) {}
 T pop();
 void push(T&);
};

CenterLine-C++ Programmer’s Guide and Reference 89

Examples

Stack.c:

template <class T>
T Stack<T>::pop()
{ /* ... */ }

template <class T>
void Stack<T>::push(T& arg)
{ /* ... */ }

userapp.C:

#include "String.h"
#include "Stack.h"

main()
{
Stack<String> s;
/* Code that uses push and pop */ }

Here, the scenario is the same as in the preceding example, except that
CenterLine-C++ gets the template declaration and definition from
different files — Stack.h and Stack.c, instead of userapp.C. Keep in
mind that Stack.c must be available along the -I path in order for the
instantiation to succeed.

Here are the implementation details for the last example:

1 When you compile userapp.C, the references to
Stack<String>::push(String&) and Stack<String>::pop() are
considered normal function calls. Since Stack<String>::Stack()
is inline, no reference to that function is generated.

2 CenterLine-C++ determines that the following functions must
be instantiated:

Stack<String>::push(String&)
Stack<String>::pop()

3 CenterLine-C++ checks the repository for a file that contains
these instantiations. If there is one that is up-to-date,
CenterLine-C++ adds that file to the list of files to be linked and
compiled, if necessary, and goes on to Step 5.

NOTE Given the correct setup of files and -I path, the
instantiation process in all these examples is
automatic. The following paragraphs describe
the details of what goes on “behind the
scenes” in the last example.

Examples

90 CenterLine-C++ Programmer’s Guide and Reference

4 If the repository does not contain an up-to-date file with these
instantiations, they are instantiated. Both members of
Stack<String> will be instantiated into the same source
instantiation file.

According to the defmap, the template declaration file is
Stack.h. The template definition file has the same name as the
template declaration file, except that the suffix is changed to .c,
so, in this case, the template definition file is Stack.c.

Also, according to the defmap, the parameter declaration file is
String.h.

CenterLine-C++ instantiates Stack<String> by building an
instantiation source file that contains the definitions of
Stack<String>::push(String&) and Stack<String>::pop(), plus
any virtual functions in Stack<String>.

5 CenterLine-C++ compiles the instantiation source file, if
necessary, and stores the resulting object file in the repository.

6 CenterLine-C++ checks for any further new instantiations
needed; if there are, CenterLine-C++ repeats the preceding
process, starting with Step 2.

7 If CenterLine-C++ is satisfied that all required instantiation files
are available, it calls the linker to complete the link.

Specialization at
link time

It is legal for a special case of a template member to be discovered at
link time. For example, given the files shown in “Separate
compilation” on page 88, suppose this additional file were provided
at link time:

stringpop.c:

#include "String.h"
#include "Stack.h"
/* Special case version of Stack<String>::pop */

void Stack<String>::pop()
{ /* ... */ }

This implementation of Stack<String>::pop() is used instead of the
one in the template definition file, Stack.c, so CenterLine-C++
determines that only Stack<String>::push(String&) needs to be
instantiated.

CenterLine-C++ Programmer’s Guide and Reference 91

Avoiding the most common pitfalls when using templates

Avoiding the most common pitfalls
when using templates
Templates are probably easier to use than most people expect; once
you set up your files correctly, the entire process can be handled
automatically by CenterLine-C++.

Here we reiterate a few points made earlier in the section on
templates; these tips might help you avoid some mistakes often made
by new users of templates.

• Do not compile the file containing your template
implementation (the template definition file), and do not
include it in your application file. Doing so interferes with
CenterLine-C++’s automatic instantiation process.

• Use default naming conventions for your files, that is .h and .c
or .H and .C for declaration/definition file pairs, unless you
need to use other suffixes.

• Do not include a template declaration file in the template
definition file, unless you use include guards, and do not use
the template definition file to define anything except templates.

• Use include guards to prevent redundant compilation of
declaration (header) files.

• Do not edit the defmap or any instantiation files generated by
CenterLine-C++. If necessary, create an nmap file to override
the default rules for finding template files.

• Do not specify any files to be included in the repository to the
linker explicitly; allow the automatic instantiation process to do
any linking related to templates.

• Keep in mind that you might get syntax errors during the final
linking phase, since templates are instantiated later. If you do
get syntax errors at the instantiation phase, edit only the
template definition file, not your application file.

For instance, if you get an error message indicating “missing
template arguments”, you may have forgotten to specify the
parameter for a template in your template definition file. This
could be a matter of simply remembering to write <T> after the
template name.

Troubleshooting

92 CenterLine-C++ Programmer’s Guide and Reference

Troubleshooting
This section is based on information from AT&T about cfront. It
describes possible difficulties you might encounter.

Network
timestamps

If you have a network of workstations, timestamps may not be
synchronized, in which case dependency checking will not work
correctly. This problem must be solved by system administration.

External name
length limitations

Symbol names in object file symbol tables must fully describe the
template class used by a given function or data item. The
instantiation process cannot resolve symbol names correctly if the
system imposes a name length limit of 8 or 32 characters. Using a
typedef to shorten a long name will not solve this problem because
the typedef name is expanded to the underlying types when
external names are encoded.

Map file problems If you have many programs in the same directory using the same
type name, for example, test cases using the type T, the default map
file will become very large. You can compress the file by using a
string table, as described in “Sharing a repository” on page 76.

Some out-of-date information is deleted when a file is recompiled, but
some garbage slowly accumulates in map files.

Violation of the one
definition rule

Because of separate compilation, the C++ compiler will accept usage
such as:

// file 1 struct A {};
// file 2 template <class T> struct A {};

even though this violates the rule that there must be only one
definition of each object used in a program. Because type mapping
information is collected into one file, the instantiation system will
catch many such errors. The form of the error is:

fatal error: type A defined twice in map files

CenterLine-C++ Programmer’s Guide and Reference 93

Troubleshooting

Picking up the
wrong versions of
headers

Some source code control and configuration management systems
support named versions of source files and headers, and program
compilation is done with particular sets of versions of files (a
configuration). Template instantiation does not cause any problems
with this, but you must ensure that the same versions of files are
specified via -I at link time as are given at compile time.

Replaying source
files

If a source file looks like this:

// main.c
#include <Vector.h>
struct A {};
main()
{
Vector<A> a;
a.f();
}

and Vector.h does not have include guards, then it will be included
twice, once to get at the type Vector and once as an indirect result of
including main.c to get at the type A.

The workaround for this is either to use include guards or else
completely define the types in header files or in main.c.

Function templates A function template is encoded just like a C++ function. At
instantiation time, there is no way to tell them apart. Therefore, the
instantiation system tries to instantiate function templates only if an
entry is found for them in the map files. This entry will not be there
unless a forward declaration, such as

template <class T> void f(T);

has been seen.

Another problem occurs if only a function definition is given in a
single-file application, and then -ptn or -c is used to tell the
instantiation system not to instantiate:

template<class T> void f(T) {}
main()
{
f(37);
}

$ CC -ptn prog.c

Troubleshooting

94 CenterLine-C++ Programmer’s Guide and Reference

Because there is no declaration, no entry is made in the map file,
resulting in an unresolved global f(int) at link time. The workaround
is to use a declaration or -ptf, or do not use -ptn for multi-file
applications.

Specializations of function templates and parameter matching can
present another problem. Given this function template:

template <class T> void f(Vector<T>&);

and this declaration of a specialization:

void f(char*);

If the specialization is not defined anywhere, the pre-linker will find it
to be unresolved. The pre-linker will then look for f in the map files
and find it, and attempt to instantiate the f(Vector<T>&) template
with a char* argument.

Static data member
initialization

The instantiation system considers that the tentative definition
(global common) that the C++ compiler emits for each static data
member of a template class represents an undefined external symbol
that must be defined and initialized somewhere.

For example:

template <class T> struct A {
 static int x;
};

by itself would result in an unresolved external.

This usage follows the C++ standard, but the C++ compiler has not
enforced it up to now. An initializer might look like this:

 template <class T> int A<T>::x = 47;

 or this:

 int A<char*>::x =89;

The first of these is a general template initializer, the second a
specialization.

CenterLine-C++ Programmer’s Guide and Reference 95

Tools

Type checking of
template members

By default, only members of a template class that are used are
instantiated. Other members are not typechecked and therefore
legally could contain errors.

All virtual functions are instantiated because there is no way to tell
whether they are needed.

If you use the -pta or -ptf switch, CenterLine-C++ will try to
instantiate all members of needed template classes, with potential
errors.

Renaming object
files

The basename of an object file is used to validate type entries in map
files. If the name changes, the type entry will be invalid unless other
object files specified along with the renamed one are also found on
the basename list in the map file.

The simplest solution to this problem is to write a map file with a
type entry with no list of basenames (see “Specifying application
files in map files” on page 77).

Debug formats and
large binaries

The instantiation system creates one object file for each template
class. With some debug formats, the linker does not merge
duplicated strings and other debug information occurring in several
object files. This can cause a large increase in binary size. The
problem has no easy solution.

Tools
This section describes tools provided as part of the AT&T C++
Language System that we include with CenterLine-C++. They are in
the following locations:

CenterLine/clc++/arch_os/pt/tool1

CenterLine/clc++/arch_os/pt/tool2

Because the template instantiation repository is a UNIX directory
and the files in it are not special in any way, it is possible to use
standard utilities in various ways to get at information.

Tools

96 CenterLine-C++ Programmer’s Guide and Reference

For example, consider a system that has only 14-character filenames.
Hash codes are used to name files in place of complete mangled
names, and it would be nice to come up with a correspondence list
showing the mapping between hash codes and template names.

A shell script to do this is tool1:

#!/bin/sh

display the template class for each instantiation
file in the repository

PATH=/bin:/usr/bin:/usr/ucb

pn=‘basename $0‘
rep=$1
if ["$rep" = "" -o ! -d "$rep"]
then echo "usage: $pn repository" 1>&2

exit 1
fi
cd $rep
ls *.c |
while read fn
do

n=‘sed -n ’1s/^⁄* ‹.*›*⁄$/\1/p’ $fn‘
echo "$fn --> $n"

done

exit 0

Another tool, tool2, can be used to package the object files in a
repository into an archive, with renaming to short names for ar:

#!/bin/sh

export contents of repository into an archive

PATH=/bin:/usr/bin:/usr/ucb

pn=‘basename $0‘

t=/tmp/$pn.$$
trap "rm -rf $t; exit 2" 1 2 3 15
rm -rf $t
mkdir $t

if [$# -ne 2 -o ! -d "$1"]
then

echo "usage: $pn repository archive"
exit 1

fi

n=1
for i in $1/*.o

CenterLine-C++ Programmer’s Guide and Reference 97

Summary of terminology

do
cp $i $t/${n}.o
n=‘expr $n + 1‘

done

rm -f $2
ar cr $2 $t/*.o
if [-x /bin/ranlib -o -x /usr/bin/ranlib]
then

ranlib $2
fi

rm -rf $t

exit 0

Summary of terminology
For your convenience, we summarize some of the terminology
related to templates as used in CenterLine-C++. Terms are listed in
alphabetical order.

argument declaration
file

A file containing the declaration of a class, struct, union, or enum
type.

defmap The default name for the name mapping file.

header cache A header dependency file with the suffix .he in the repository,
which is used to store the list of headers needed by each
instantiation.

name mapping file A file in the repository that contains information needed to define
and instantiate templates, including where each named type used in
a template instance is declared.

repository A special directory created by CenterLine-C++ the first time a file
containing a template declaration or a template instance is
compiled. If an application does not use templates, then no
repository is ever created. By default, this directory is created in the
working directory and is called ptrepository.

specialization A user-supplied definition or implementation of a template class or
function that overrides the default instantiation.

Summary of terminology

98 CenterLine-C++ Programmer’s Guide and Reference

template declaration A declaration of a class template or a function template. It starts
with the keyword template.

// class template
template <type T> class Stack {member(T);...};

// function template
template <type T> void print(T);

template definition A definition of the member functions and initializers for static data
members of a class template, or of a function template.

// template member function definition
template <type T> class Stack<T>::member(T) { ...}

// template function definition
template <type T> print(T) { ... }

template definition file A file that contains definitions (implementations) for some or all of
the needed member functions of a class template, or the definition of
a function template.

template instance A specific instance of a template. It can be any of the following:

• A template class implicitly declared by using a template class
name:

Stack<int> // template class

• A template function explicitly declared:

void print(int); // template function

• A template function implicitly declared by calling it or taking its
address:

print(5); // also a template function

template instantiation An automatically generated definition of of a template function
instance, or of the member functions of a template class instance.

5 Introduction to the
Debugger: A Tutorial

This chapter provides a tutorial for newcomers to
the CenterLine-C++ debugger, pdm. The tutorial
guides you through a sample session that includes
the following activities:

• Debugging basics
• Correcting compiler and make errors
• Debugging a corefile

CenterLine-C++ Programmer’s Guide and Reference 101

Debugging basics

Debugging basics
The CenterLine-C++ debugger is a symbolic debugger for debugging
fully linked executables. Although the CenterLine-C++ debugger is
similar to debuggers like gdb and dbx, it provides a graphical user
interface with an integrated set of graphical browsers for examining
and debugging your code more efficiently.

The CenterLine-C++ debugger is also known as pdm, which stands
for process debugging mode. Although CenterLine-C++ supports
only this single mode of debugging, other CenterLine products
support multiple debugging modes.

This chapter provides a tutorial to guide you through a sample
debugging session. You learn how to correct compiler and make errors
and debug a corefile. For detailed information about debugging tasks,
refer to Chapter 6, “Debugging with CenterLine-C++,” on page 117.

Specifying your
editor

There are many places in the debugger where you can invoke your
editor. Before you start the debugger, you can use the EDITOR
environment variable to specify either vi or emacs as the editor for
the debugger to invoke. The debugger uses vi as the default unless
you specify emacs.

If you specify emacs, note that the debugger supports only GNU
emacs, and the version of GNU emacs must be capable of running
as an X Window System client.

Setting up the
Bounce program

To explore the debugger, the tutorial uses a simple program named
Bounce. The Bounce program creates a new window and bounces a
rectangle within the window. The existing program has two
different problems that you will fix.

If you have not set up the CenterLine-C++ examples directory yet,
refer to “Setting up the examples directory” on page 9 for instructions.
Change to the examples directory:

To specify GNU Emacs as the editor for the debugger to invoke,
use the following shell command before you start the debugger:

% setenv EDITOR emacs

% cd c++examples_dir

Debugging basics

102 CenterLine-C++ Programmer’s Guide and Reference

The c++examples_dir directory contains files for several programs,
including the Bounce program. Bounce consists of the following
subset of files in c++examples_dir:

Starting the
debugger

To start the debugger, use the centerline-c++ command with a
switch specifying the user interface you prefer:

If you omit the switch specifying Motif or OPEN LOOK, the debugger
uses the default GUI, which is platform-specific. The default GUI for
Sun SPARC machines is the OPEN LOOK GUI; for other architectures,
the default is the Motif GUI. Illustrations in this tutorial show the
Motif GUI.

NOTE When you set up the examples directory,
CenterLine-C++ modifies the makefile in it to
include the absolute pathname to the CC and clcc
commands on your system. Because of this, we
recommend that you start the debugger from the
same host where you set up the examples directory.
Otherwise, you may not be able to run the tutorial
successfully until you edit the CXX and CC
variables in the makefile yourself.

Makefile mainfixed.C shapes.C table.h x_image.h

link.C rect.C shapes.h x.C link.h

rect.h skip x.C.orig main.C shapelst.C

x.h main.C.orig shapelst.h table.c xfixed.C

NOTE Before you invoke the debugger, be sure to set up
your DISPLAY environment variable according to
usual X Window System conventions. For
example, if your host is named baxter:

% setenv DISPLAY baxter:0

% centerline-c++ -motif

Or

% centerline-c++ -openlook

CenterLine-C++ Programmer’s Guide and Reference 103

Debugging basics

The centerline-c++ command is installed in a CenterLine/bin
directory, which could be installed anywhere on your system. If
CenterLine/bin is not in your path or if you need to know the absolute
path for CenterLine/bin, see your system administrator.

The Main Window When you start the debugger, it displays an icon and then a
Welcome to CenterLine-C++ window. The debugger then opens the
Main Window, as shown in the following illustration:

Source area

Workspace

Button panel

Menu bar

Debugging basics

104 CenterLine-C++ Programmer’s Guide and Reference

The Main Window provides a central work area and contains four
main regions: the Menu bar, Source area, Button panel, and
Workspace.

• In the Menu bar, you can select commands for executing and
examining programs.

• In the Source area, you can list source code and manipulate
debugging items. For example, you can set and delete
breakpoints and actions in the Source area.

• In the Button panel, you can use buttons to execute and examine
programs.

• In the Workspace, you can enter debugging commands and
view the results. The Workspace is a command processor that
allows you to enter debugging commands directly and to pass
shell commands to a subshell.

In general, the same features are available either by using menus,
buttons, and other graphical elements of the GUI or by entering
commands directly in the Workspace. You can choose whichever
means of access is most convenient for you. In this tutorial, we show
you several different ways of entering the same command

The Main Window also acts as a hub for the debugger’s graphical
browsers. You can open these browsers with the Windows menu, and
each of the browsers also has a similar Windows menu. You’ll learn
more about the browsers later in the tutorial.

Getting help The debugger offers multiple sources of help: context-sensitive help,
a Help menu, Workspace help, and the Man Browser.

Using
context-sensitive help

The debugger provides an extensive system of context-sensitive
help to assist you in using the product. To get information on any
graphical object, move the cursor over the item or region and press
the F1 or Help key. A Help window appears describing the object.

CenterLine-C++ Programmer’s Guide and Reference 105

Debugging basics

For example, in the Main Window, if you move the mouse pointer
between the menu bar and the Source area and press F1, you see the
following help topic:

You can also explore the See Also and Navigate menus. To dismiss the
Help window, select the Done button.

Using the Help menu In addition to context-sensitive help, the debugger offers help on a
range of topics. You can access this help through the Help menu in
the Main Window or any of the browsers. For example, the On
Window help topics gives an overview of each of the debugger’s
primary windows. Before moving on, you might want to spend
some time familiarizing yourself with the topics covered in the Help
menu.

Using Workspace help In the Workspace, the help command displays quick usage
information about debugging commands. For example, to get a
usage summary for the email command, enter the following in the
Workspace:

Using the Man
Browser

For in-depth information on topics, the Man Browser displays
reference information on each Workspace command as well as shell
commands and X resources. You can open the Man Browser from
any primary window by displaying the Windows menu and
selecting Man Browser.

You can also open the Man Browser by typing this in the Workspace:

pdm -> man topic_name

pdm -> help email

Accesses a history
of previously
displayed topics

Displays topics
related to the
current topic

Debugging basics

106 CenterLine-C++ Programmer’s Guide and Reference

Managing windows If you have finished using a window, select the Dismiss or Cancel
button to close the window. Resize a window or use the horizontal
and vertical scroll bars to view any graphical code representation
that is too large to fit in the window.

Using the Run
Window

Use the Run Window to view the output from and enter the input to
programs that you are running in the debugger. The Run Window,
an xterm window, is the first window to appear (it is iconified)
when you start up the debugger.

Quitting the
debugger

You can exit from the debugger at any time by selecting Quit
CenterLine-C++ from the CenterLine-C++ menu in the Main
Window or entering quit at the Workspace prompt.

CenterLine-C++ Programmer’s Guide and Reference 107

Correcting compiler and make errors

Correcting compiler and make
errors
You can build and run programs from the debugger to take advantage
of its Error Browser and seamless integration with your text editor. As
your first step in exploring the Bounce program, you build it. To do so,
use the UNIX make utility from the Workspace. As the debugger
builds the Bounce program, it echoes the commands executed. For
CC, the debugger echo the switches passed to the C++ translator:

Examining errors in
the Error Browser

The Workspace output shows that the build results in four errors
(three from the compiler and one from make) and two warnings.
Notice that the Error Browser button in the Main Window indicates
there are errors in the Error Browser..

pdm 1 -> make tutorial
CC -I/usr/include/X11R4 -I/usr/include/X11R5 ... +d -g -c x.C
CC +C +d x.C:
“x.C”, line 261: error: syntax error -- did you forget a ’;’?
“x.C”, line 261: error: MAX_ITERS’s definition is nested (did you forget
a ‘‘}’’?)
“x.C”, line 261: error: uninitialized const MAX_ITERS
“x.C”, line 261: warning: result of / expression not used
“x.C”, line 261: warning: MAX_ITERS used but not set
3 errors
*** Error code 1
make: Fatal error: Command failed for target ‘x.o’
pdm 2 ->

NOTE If the make command cannot find the CC or clcc
commands, check the values of the CXX and CC
variables in the makefile and edit them as needed.

If the make command fails because your system
doesn’t have the X11 header files and libraries
installed in the expected places, you need to edit
the CL_INCS and CL_LIBS variables in the
makefile.

Error Browser
button

Correcting compiler and make errors

108 CenterLine-C++ Programmer’s Guide and Reference

To examine these errors in more detail, open the Error Browser:

The Error Browser displays a folder containing four make errors and
two make warnings. To examine the errors:

The Error Browser displays the error messages, as shown in the
following illustration.

Editing the source
code to fix the error

When you open a folder or select a message in the Error Browser,
the Source area in the Main Window lists the source file causing the
error (x.C) and indicates the line that caused the error (line 261). In
this case, the line defines a symbolic constant, but it is missing an
assignment operator (=).

In C++, you can replace many #define preprocessor directives with
constants. For example:

#define MAX_ITERS 600/WIDTH /* C version */

const int MAX_ITERS = 600/WIDTH; // C++ Version

1 In the Main Window, click on the Error Browser button.

2 Position the Error Browser so you can see the Main Window
at the same time.

In the Error Browser, click on the Folder symbol.

Folder symbol

Document symbol

Selected message

CenterLine-C++ Programmer’s Guide and Reference 109

Correcting compiler and make errors

In this case, the assignment operator was omitted when the line was
changed.

To invoke your editor on the source file:

Your editor opens x.C and positions the cursor at line 261. From your
editor, do the following:

Building and
running the fixed
program

Now that you’ve fixed the error, go to the Main Window and
rebuild the tutorial target from the Workspace.

The Error Browser button indicates that there are no messages, and the
messages are cleared from the Error Browser. The Bounce program
compiles without errors. You can dismiss the Error Browser:

Although the Bounce program compiles, it still has a problem that will
generate a segmentation fault. To run the program and dump a
corefile, use the following commands in a separate shell. (The corefile
is about 8.5 MB in size.)

In the Error Browser, click on the Document symbol next to the
first error.

1 Add an = between MAX_ITERS and 600/WIDTH.

2 Save the file.

3 Close the editor.

pdm 2 -> make tutorial

Select the Dismiss button.

If you use the C shell on a Sun platform, you might need to
use this command to allow the whole corefile to be dumped.

% unlimit coredumpsize

To generate the corefile:

% cd ~/c++examples_dir
% tutorial
Segmentation fault (core dumped)

Debugging a corefile

110 CenterLine-C++ Programmer’s Guide and Reference

Debugging a corefile
You can debug the Bounce program and the corefile it dumped in the
debugger. To do so, issue the following command in the Workspace:

The Workspace indicates the line of source code that generated the
segmentation fault. The Source area displays shapes.C and uses the
Execution symbol to indicate where execution stopped:

Setting breakpoints To examine how the Bounce program executes before the
segmentation fault occurs, you can move up the execution stack to
see where the DrawableShape::bounce() routine is called:

pdm 3 -> debug tutorial core
Debugging program ‘tutorial’
Core was generated by ‘tutorial’.
Program was terminated with signal 11, Segmentation fault.
#0 0x326c in DrawableShape::bounce (this=0x0) at shapes.C:112

112 doDraw();
pdm 4 ->

In the Button panel, click on the Up button.

Execution symbol

CenterLine-C++ Programmer’s Guide and Reference 111

Debugging a corefile

The Source area now displays main.C and uses the Scope symbol to
show the current location in the call stack.

Whenever you list a new file, the debugger adds it to the List menu,
which makes it convenient to navigate among your source files.

To examine data structures at the current location in the call stack, you
can set a breakpoint in main.C before the program calls the bounce()
function. To set the breakpoint:

The Breakpoint symbol appears next to the line number, and the
Workspace indicates that debugging item 1 has been set.

To run the Bounce program:

The Run Window opens, and the Bounce program executes until it
reaches the breakpoint. In the Main Window the Execution symbol
moves to line number 15, and a break level is generated in the
Workspace.

pdm (break 1) 4 ->

In the Source area, click on line number 15 in the left margin.

In the Button panel, click on the Run button.

Scope symbol

List menu

Debugging a corefile

112 CenterLine-C++ Programmer’s Guide and Reference

Finding the error
with the Data
Browser

While at a break level, you can use the Data Browser to examine the
state of any data structure that is currently in scope. To begin,
examine P1:

The Data Browser opens and displays a graphical data item for the
point object called P1. The Workspace indicates that debugging item 2
is set. The breakpoint is debugging item 1, and the “display” is
debugging item 2.

Since P1 looks correct, now examine the rectangle *r. To do so, position
the Main Window so it does not overlap the Data Browser. Then, in the
Main Window, type following in the Workspace:

1 Select the text string P1 on line 11.

2 Display the Examine menu and select Display<Selection>.

pdm (break 1) 4 -> display *r
Cannot access memory at address 0x0.
Disabling display 3 to avoid infinite recursion.

CenterLine-C++ Programmer’s Guide and Reference 113

Debugging a corefile

The Data Browser does not display the data item for *r. Since the
rectangle cannot be displayed, examine the pointer to it:

The data item for r contains a pointer box with an X through it, which
indicates r is a null pointer. Thus, line 15 dereferences a null pointer,
which causes the segmentation fault.

To dismiss the Data Browser:

Fixing the error and
running the
program

To fix the error, invoke your editor on main.C:

Your editor opens main.C and positions the cursor at line 15. If you
examine the declaration for *r, notice that it has been initialized to 0,
but the rectangle has not been created before it is bounced. To create
the rectangle, do the following in your editor:

1 Select the text string r on line 13.

2 From the Data Browser, display the Graph menu and select
New Expression <Selection>.

Select the Dismiss button.

1 In the left margin of the Source area, move the mouse
pointer over number 15.

2 Press the Right mouse button to display the pop-up menu
and select Edit line 15.

1 Insert the following line before line 15 (line 15 contains
r->bounce();):

r = new Rectangle(P1, P2);

2 Save the file and quit from the editor.

Null pointer symbol

Debugging a corefile

114 CenterLine-C++ Programmer’s Guide and Reference

To rebuild and reload the Bounce program:

To verify that your fix is correct:

pdm (break 1) 5 -> make tutorial
...
pdm (break 1) 6 -> debug tutorial
debug: Deleting all debugging items.
Debugging program ‘tutorial’ (previous program ‘tutorial’)

1 In the Main Window, set a breakpoint on the line:

sleep(2);

2 Click on the Run button.

The Bounce window appears and a rectangle bounces in it.

CenterLine-C++ Programmer’s Guide and Reference 115

Debugging a corefile

To examine the pointer again:

The Data Browser displays the data item for the Rectangle, as shown
in the following illustration:

To continue execution of the program:

The Bounce program completes successfully. You have now
completed the tutorial.

pdm (break 1) 7 -> display r
display (6) set on expression‘r::r’.
pdm (break 1) 8 -> display *r
display (7) set on expression‘*r::r’.

In the Main Window’s Button panel, click on Continue.

6 Debugging with
CenterLine-C++

This chapter contains tasks that you can perform
with the CenterLine-C++ debugger, pdm.

Some of the tasks refer to the CenterLine-C++
online code examples. If you have not yet set up the
CenterLine-C++ examples directory, refer to
“Setting up the examples directory” on page 9 for
instructions.

CenterLine-C++ Programmer’s Guide and Reference 119

Selecting an editor to use with the debugger

Task: Selecting an editor to use with the debugger

Once you select an editor to use with the debugger, you use it for the
duration of your session. You cannot change editors within a
debugging session.

The vi editor If you use the vi text editor, you’re all set. By default, the debugger
uses vi.

The GNU emacs
editor

If you use the GNU emacs editor, set the EDITOR environment
variable before you start the debugger:

% setenv EDITOR emacs
% centerline-c++

See also "Editing source code" on page 145

edit on page 219

NOTE The debugger supports only GNU emacs, and the
version of GNU emacs must be capable of running
as an X Window System client.

Starting up the debugger

120 CenterLine-C++ Programmer’s Guide and Reference

Task: Starting up the debugger

You start up the debugger by invoking the centerline-c++ command
at the shell:

centerline-c++ [switches] [a.out [core | process_id]]

The centerline-c++ command is installed in a CenterLine/bin
directory, which could be installed anywhere on your system. If
CenterLine/bin is not in your path or if you need to know the absolute
path for CenterLine/bin, see your system administrator.

When the debugger starts, it displays a welcome dialog and then the
Main Window.

Specifying files and
processes to be
debugged

Use one of the following arguments with the centerline-c++
command:

executable Loads a fully-linked executable for
debugging.

executable core Loads a fully-linked executable and a core
file generated by the executable.

executable process_id Loads a fully-linked executable and
attaches to a process that is running the
executable.

You can also load a file for debugging after you start the debugger. See
"Loading files for debugging" on page 142 for details.

Specifying the user
interface

Use one of the following switches with the centerline-c++ command:

-motif Motif GUI, which is the default on all
platforms except for Sun.

-openlook OPEN LOOK GUI, which is the default on
Sun systems.

-ascii Nongraphical user interface that has a
single work area, the Workspace.

CenterLine-C++ Programmer’s Guide and Reference 121

Starting up the debugger

If you prefer to use a user interface that differs from the default for
your platform, you can set an X Window System resource to do so. By
setting an X resource, you don’t need to specify the -motif or
-openlook command-line switch with centerline-c++. For example, to
choose Motif as the default user interface, add the following resource
to your X resources file:

CenterLine-C++*Model: Motif

To choose OPEN LOOK as the default, add one of the following
resources to your X resources file:

CenterLine-C++*Model: openlook
CenterLine-C++*Model: openlook2d
CenterLine-C++*Model: openlook3d

Startup file You can customize the debugger at startup with the .pdminit file.
See "Customizing your startup file" on page 191 for more
information.

See also centerline-c++ in the Man Browser

debug on page 212

"Loading files for debugging" on page 142

"Customizing your startup file" on page 191

NOTE Before running the Motif or OPEN LOOK version
of the debugger, make sure to set your DISPLAY
environment variable to the display on which you
want to use the debugger. Otherwise, the debugger
may display on another machine or exit with an
error.

Finding out more about the debugger

122 CenterLine-C++ Programmer’s Guide and Reference

Task: Finding out more about the debugger

To find out more about the debugger, you can use the help command
and Man Browser. If you run into problems, you can also send email
to CenterLine with the email command.

Using the help
command

For a brief description of any Workspace command, use the help
command. For example:

pdm -> help debug
debug - Print the name and args of the program being debugged
debug prog [core | pid] - Begin debugging <prog>

 Access core file if specified, otherwise attach
 to the running process specified by pid

pdm -> help email
email - send e-mail to CenterLine Software
email file - send file to CenterLine Software

Using the Man
Browser

The Man Browser provides detailed information about Workspace
commands, shell commands, and other topics (such as X resources).
You can display the Man Browser using two different methods:

• From any primary window in the debugger, display the
Windows menu and select Man Browser.

• In the Workspace, use the man command and specify the
Workspace command as an argument:

pdm -> man command

Once you display the Man Browser, you can select different topics in
it and find related topics using the following methods:

NOTE The man command can handle only Workspace
commands as arguments. To display the Man
Browser entries for shell commands or conceptual
topics, open the Man Browser from the Windows
menu and use the Categories and Topics lists, as
shown in the illustration on page 124.

CenterLine-C++ Programmer’s Guide and Reference 123

Finding out more about the debugger

• To select a different topic in the Man Browser, select an item in
the Categories list and an item in the Topics list. You can also
type the topic name directly into the New Topic text field.

• To find a topic that is related to the currently displayed topic,
display the See Also menu in the menu bar and select an item
from the menu.

There is also a pop-up See Also menu. To display it, move the
mouse cursor over the displayed topic and press the Right
mouse button.

Finding out more about the debugger

124 CenterLine-C++ Programmer’s Guide and Reference

The following illustration shows the Man Browser.

Although the Man Browser doesn’t provide a facility for printing
topics, you can print the topics using a shell. To do so go to the docs
directory and use the print command available with your operating
system (such as lpr):

% cd CenterLine/clc++/docs
% lpr filename

CenterLine-C++ Programmer’s Guide and Reference 125

Finding out more about the debugger

Sending email to
CenterLine

If you encounter a problem or have a suggestion, you can send
email to CenterLine without leaving the debugger. You can send
email using two different methods:

• In the Main Window, display the CenterLine-C++ menu and
select Send Email.

• In the Workspace, enter the email command.

In the Send Email dialog, enter the text of your message in the text box
and if applicable, select the Include File button to include a sample
program or session log. When you are satisfied with the message,
select the Send button.

See also email on page 220

help on page 224

man on page 232

Using menus and text fields

126 CenterLine-C++ Programmer’s Guide and Reference

Task: Using menus and text fields

Using the
PRIMARY text
selection as input
to a command

Any menu command that has <Selection> as part of its name, such
as Display <Selection>, uses the PRIMARY text selection as its
input argument without prompting you for confirmation. The
PRIMARY text selection is the selection created when you select a
range of text by dragging with the Left mouse button.

Before you choose a menu command, be aware of any text that you
may have selected in the debugger or other X application windows.
The debugger uses this text as input to the command unless you
explicitly select text to be used instead.

If desired, you can customize the debugger so that it displays the
PRIMARY text selection in a dialog box for you to confirm. Once you
select the OK button in the dialog, the debugger uses the text as input
to the menu command. To do so:

1 Add the following line to your .Xdefaults file.

CenterLine-C++*ConfirmSelnUse: True

2 Load your .Xdefaults file into the X resource database with the
xrdb command.

% xrdb ~/.Xdefaults

3 Start the debugger with the centerline-c++ command, as
described in "Starting up the debugger" on page 120.

Using pop-up
menus

The debugger provides pop-up menus in most of its windows.

Table 7 Pop-up Menus

Location Menu How to Display It

Source code in the Source area
of the Main Window

File Options menu Press the Right mouse button.

Line numbers in the Source area
of the Main Window

Line Number Options
menu

Move the mouse pointer over a line
number and press the Right mouse
button.

CenterLine-C++ Programmer’s Guide and Reference 127

Using menus and text fields

The following illustration shows the Expression Options menu.

Workspace in the Main Window Workspace Options menu Press the Right mouse button.

Source area or Workspace in
Main Window

Expression Options menu Select an expression or identifier or
move the mouse pointer over an
expression or identifier. Then, hold
down Shift and press the Right mouse
button.

Title of data item in Data
Browser

Data Item menu Move the mouse pointer over the title
of a data item and press the Right
mouse button.

Reference entry in Man Browser See Also menu Move the mouse pointer over the
reference entry and press the Right
mouse button.

Table 7 Pop-up Menus

Location Menu How to Display It

Press Shift plus
Right mouse button
to display the
Expression Options
menu

Using menus and text fields

128 CenterLine-C++ Programmer’s Guide and Reference

Using shortcuts for
Expression
Options menu

You can use the following shortcuts instead of selecting the whatis
or print menu commands from the Expression Options menu. First,
select an expression or identifier, or move the mouse pointer over an
expression or identifier, making sure nothing else is selected.

• To issue the print command, hold down the Shift key and press
the Left mouse button.

• To issue the whatis command, hold down the Shift key and
press the Middle mouse button.

Editing text fields
in dialogs and
windows

All text fields in the debugger support the subset of emacs keyboard
shortcuts shown in Table 8.

To change these shortcuts, refer to X resources in the Man Browser.

See also "Copying and pasting text between windows" on page 129

Table 8 Emacs Keyboard Shortcuts in Text Fields

Shortcut Meaning

Control-a Move to the beginning of the line.

Control-e Move to the end of the line.

Control-b Move backward one character.

Control-f Move forward one character.

Meta-b Move backward one word.

Meta-f Move forward one word.

Control-n Move to the next line.

Control-p Move to the previous line.

Control-d Delete the next character.

Control-u Delete to the beginning of the line.

Control-k Delete to the end of the line.

Control-w Delete the previous word.

CenterLine-C++ Programmer’s Guide and Reference 129

Copying and pasting text between windows

Task: Copying and pasting text between windows

You can copy and paste between any debugger window in Motif and
other Motif applications and between any debugger window in OPEN
LOOK and other OPEN LOOK applications. To do so, use the
standard copy and paste methods for Motif and OPEN LOOK.

Since Motif applications (and X applications that use the MIT Athena
widget set) use the PRIMARY selection and OPEN LOOK applications
use the CLIPBOARD selection, copying and pasting between
dissimilar GUIs can require additional steps.

Copying the
PRIMARY selection
from OPEN LOOK

To copy and paste the PRIMARY selection from any window in the
OPEN LOOK debugger to an xterm:

1 Select the text from the debugger. This copies the text to the
PRIMARY selection.

2 Move the mouse pointer into the xterm window and press the
Middle mouse button to paste the PRIMARY selection.

Using the
CLIPBOARD
selection with xterm

By default, xterm uses the PRIMARY selection rather than the
CLIPBOARD selection. To customize xterm so it can use either type
of selection:

1 Define the Copy and Paste keys by adding the following lines to
your .Xdefaults file:

! copy and paste from an xterm to/from CLIPBOARD
XTerm*vt100.translations: #override \n\
<Key>L6: start-extend() select-end(CLIPBOARD) \n\
<Key>L8: insert-selection(CLIPBOARD) \n

This example uses the standard key bindings for Copy and
Paste (the L6 and L8 keys on a Sun keyboard), however you can
substitute different key bindings if desired.

2 Load these definitions into your X resource database with the
UNIX xrdb command:

% xrdb ~/.Xdefaults

NOTE This task applies only to users of the OPEN LOOK
version of the debugger.

Copying and pasting text between windows

130 CenterLine-C++ Programmer’s Guide and Reference

To copy text from an xterm to the OPEN LOOK debugger, or from the
OPEN LOOK debugger to an xterm:

1 Select the text from the first window, which copies the text to
the PRIMARY selection.

2 Press the Copy key, which copies the PRIMARY selection to the
CLIPBOARD selection.

3 Move the mouse pointer into the second window and press the
Paste key to paste the CLIPBOARD selection.

Pasting the
PRIMARY selection
in OPEN LOOK

By default, the OPEN LOOK version of the debugger uses the
CLIPBOARD selection when pasting. If you try to paste a
nonexistent CLIPBOARD selection, however, the debugger pastes
the PRIMARY selection. To customize the debugger so it can paste
either type of selection:

1 Add the following lines to your .Xdefaults file:

! copy and paste from PRIMARY selection as in
! many X applications
*OI*OI_multi_text.Translations:#override\n\
Shift <Key>L8:insert_selection(PRIMARY)\n
*OI*OI_entry_field.Translations:#override\n\
Shift <Key>L8:insert_selection(PRIMARY)\n

This example uses the Shift key and the standard key binding
for Paste (L8 key), however, you can substitute different key
bindings if desired.

2 Load these definitions into your X resource database with the
UNIX xrdb command:

% xrdb ~/.Xdefaults

3 To paste the PRIMARY selection into the debugger, press Shift
and the Paste key.

CenterLine-C++ Programmer’s Guide and Reference 131

Invoking Workspace commands

Task: Invoking Workspace commands

You can enter commands in the Workspace at the debugger’s prompt:

pdm ->

The pdm prompt stands for process debugging mode. Although the
CenterLine-C++ debugger supports only this single mode of
debugging, other CenterLine products support multiple modes. The
pdm prompt is shared by all CenterLine products that support process
debugging mode.

Workspace commands take the following form:

command_name [switches] [arguments]

To cancel a Workspace command, press Control-c.

Getting help on
commands

For a complete list of all the commands that you can enter in the
Workspace, enter the help command with no arguments. Table 9
outlines the Workspace commands that you use for key debugging
tasks.

For information on specific commands, you can:

• Refer to Chapter 7, “Command Reference,” on page 201.

• Open the Man Browser. To do so, in any primary window,
display the Windows menu and select Man Browser.

• Use the help command with the command name as an
argument to display a brief description of the command.

pdm -> help command

• Use the man command with the command name as an
argument to display detailed information about the command.

pdm -> man command

Invoking Workspace commands

132 CenterLine-C++ Programmer’s Guide and Reference

Invoking
commands from a
file

You can use the source command to execute Workspace commands
from a file:

pdm -> source file

Using gdb
commands

The GNU Debugger, gdb, is a popular source-level debugger
available from the Free Software Foundation. The debugger
provides access to gdb, but CenterLine does not provide support for
this feature.

You can enter individual gdb commands with the gdb command:

pdm -> gdb command

You can also invoke gdb in the Workspace with the gdb_mode
command:

pdm -> gdb_mode
(gdb)

Table 9 Workspace commands by function

Function Commands

Loading files build, debug, make, source, attach, detach

Handling files list, edit, use, cd, file

Execution run, rerun, cont, step, next, stepout, reset

Debugging delete, status, stop, when

Location up, down, where, whereami

Information contents, help, man, print, whatis, whereis, dump, display

Customization alias, unalias

Signals catch, ignore

Session quit, setenv, unsetenv, printenv, gdb, gdb_mode

Miscellaneous sh, shell, email, assign, set

Machine level debugging nexti, stepi, stopi, listi

CenterLine-C++ Programmer’s Guide and Reference 133

Invoking Workspace commands

Enter the pdm command to return to the debugger. The debugger
does not restart a new session; it continues numbering history entries.
When you display your command history (as described in
“Displaying and manipulating your input history” on page 137), any
gdb commands you entered in gdb mode are also included in the list.

For more information about gdb, use the help command while in gdb
mode or refer to the documentation that is available using anonymous
ftp, as described in “Distribution” on page iii.

Examples To try out the following examples, you need to set up and load the
bounce program.

To begin, use the cd command to change to the examples directory:

pdm -> cd ~/c++examples_dir

Use the make command to build the bounce program.

pdm -> make bounce

To load the bounce executable into the debugger, use the debug
command:

pdm -> debug bounce

You can use the whatis command to display the use of a name. To
see the declaration for the function DrawableShape::bounce(), you
can type:

pdm -> whatis DrawableShape::bounce
char DrawableShape::bounce(void);

To list the file xfixed.C, in the Source area, you can type:

pdm -> list xfixed.C
Listing file ’c++examples_dir/xfixed.C’, line 1

As you can see from browsing in the Source area, the xfixed.C file
provides the interface between the bounce program and the X
Window System.

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

Invoking Workspace commands

134 CenterLine-C++ Programmer’s Guide and Reference

See also "Using aliases for Workspace commands" on page 136

"Saving your debugging session" on page 190

"Customizing your startup file" on page 191

gdb on page 222

gdb_mode on page 223

source on page 247

CenterLine-C++ Programmer’s Guide and Reference 135

Invoking shell commands

Task: Invoking shell commands

The debugger provides two ways to invoke shell commands:

• Passing commands to a subshell

• Invoking a shell

Passing commands
to a subshell

Use the sh command to execute a command in a Bourne subshell
(/bin/sh), where argument is the command to be passed to the shell:

pdm -> sh argument...

Use the shell command to execute a command in your default subshell,
which is specified by your SHELL environment variable:

pdm -> shell argument...

Invoking your
default shell

Use the sh or shell commands without arguments to invoke the
Bourne Shell or your default shell (respectively):

pdm -> sh
#
pdm -> shell
baxter 1 %

To exit from the shell, use the exit shell command. You can also use the
pdm shell command, but it starts a new session, numbering history
entries from 1.

Example Although you can search for strings in the Source area (use Find
from the pop-up menu in the Source area), you might prefer to use
the grep command to search a large number of files:

pdm 2 -> cd ~/c++examples_dir
pdm 3 -> sh grep ’bounce’ *.[cC]
main.C:r->bounce();
mainfixed.C:r->bounce();
shapes.C:void DrawableShape::bounce()
x.C: * Open the basic bounce window *
x.C: * Unmap and close the bounce window *
xfixed.C: * Open the basic bounce window *
xfixed.C: * Unmap and close the bounce window *

Using aliases for Workspace commands

136 CenterLine-C++ Programmer’s Guide and Reference

Task: Using aliases for Workspace commands

Using aliases At startup, the debugger automatically creates aliases for the shell
commands pwd and ls. To see all the aliases currently defined, use
the alias command with no arguments:

pdm -> alias
ls sh ls
pwd sh pwd
n next
s step

Creating aliases To create an alias, use the alias command, where alias_name is the
name of the alias and command is the command to be executed:

pdm -> alias alias_name command

To save aliases across sessions, see "Customizing your startup file" on
page 191.

Examples To create an alias that sends a file to the printer, and then print the
file ~/c++examples_dir/main.C:

pdm 25 -> alias lpr sh lpr
pdm 26 -> lpr ~/c++examples_dir/main.C

The following aliases provide keyboard shortcuts for common
Workspace commands:

alias c cont
alias p print
alias d delete
alias l list
alias st status
alias w where
alias q quit

See also alias on page 203

unalias on page 255

CenterLine-C++ Programmer’s Guide and Reference 137

Editing Workspace input

Task: Editing Workspace input

The Workspace supports a range of input features, such as command
history, name completion, and in-line editing. These features are based
on similar ones found in the tcsh shell (an extended version of the csh
shell) and the emacs editor.

The Workspace
Options menu

The Workspace provides a pop-up menu, the Workspace Options
menu, with commands for editing, clearing, and saving the
Workspace. To display the menu, move the mouse pointer in the
Workspace and press the Right mouse button.

Evaluating
variables and
expressions

You can evaluate the value of variables and expressions (providing
they are in scope) in the Workspace. For example:

pdm (break 1) 42 -> P1 = P2
(struct Point) = {

int x = 64;
int y = 20;

}

Displaying and
manipulating your
input history

Use the debugger’s history command to display previous input:

pdm -> history

The Workspace features a history mechanism modeled after the csh
and tcsh shells. As in the csh shell, you can execute previous lines of
input using a history character followed by an argument. The
debugger’s history character is #, while the csh shell’s history
character is !. Table 10 summarizes the syntax for repeating previous
input.

Table 10 Syntax for Repeating Previous Input

Task Syntax

Display the previous input line in the history list <Control-p>

Display the next input line in the history list <Control-n>

Display, searching backward in the history list, the next input
line that begins with text

text<Control-p>

Editing Workspace input

138 CenterLine-C++ Programmer’s Guide and Reference

Line editing The Workspace supports line editing of input similar to that
available in the emacs editor. Table 11 outlines the line editing
commands available.

Display, searching forward in the history list, the next input line
that begins with text

text<Control-p>

Repeat most recent line of input ##<Return>

Display most recent line of input so you can edit it ##<Space>

Repeat a particular line of input
By matching the text at the beginning of the input line
By matching the input line number
By specifying the nth previous input line

#text
#n
#-n

Expand the last token of the previous input line #$<Space>

Expand all but the first token of the previous input line #*<Space>

Expand the nth token on the previous input line, where tokens
are numbered beginning at 0

#:n<Space>

Table 11 Line Editing Commands

Key Sequence Action

Control-a Moves the cursor to the beginning of the line.

Control-e Moves the cursor to the end of the line.

Control-f Moves the cursor forward one character.

Control-b Moves the cursor backward one character.

Esc-f Moves the cursor forward one word.

Esc-b Moves the cursor backward one word.

Control-d Deletes the next character.

Control-h Deletes the previous character.

Control-k Deletes characters from the cursor until the end of the line.

Table 10 Syntax for Repeating Previous Input (Continued)

Task Syntax

CenterLine-C++ Programmer’s Guide and Reference 139

Editing Workspace input

Using name
completion

The Workspace provides name completion for all commands.

In addition, for commands that take a program symbol (such as a
variable, function, or object) as an argument, the Workspace provides
name completion for these symbols. This feature can be useful if you
suspect there are overloaded functions in the code that you are
debugging. You complete commands by entering some text and
pressing the Tab key twice:

pdm -> text<Tab><Tab>

Control-u Deletes the line.

Esc-d Deletes the next word.

Esc-Delete Deletes from the cursor to the beginning of the previous word.

Control-p Displays the previous input line in the history list.

Control-n Displays the next input line in the history list.

Esc-< Displays the first input line in the history list.

Control-t Transposes the previous two characters.

Esc-t Transposes the words on either side of the cursor.

Control-v char Inserts the key sequence char as text without interpreting key definition. You can
use this to insert control characters.

Control-y Pastes the text that was previously deleted.

Control-j Executes this line.

Control-l Skips a line.

Esc-u Changes the next word to uppercase.

Esc-l Changes the next word to lowercase.

Esc-c Capitalizes the next word.

Control-_ Undoes the last edit.

Table 11 Line Editing Commands (Continued)

Key Sequence Action

Editing Workspace input

140 CenterLine-C++ Programmer’s Guide and Reference

You complete symbols by entering the command (only commands
that takes a program symbol as an argument), entering some of the
symbol name (text), and pressing the Tab key twice:

pdm -> command text<Tab><Tab>

If the completion is ambiguous, the unambiguous portion is
completed and all possible matches are listed.

Redirecting output Just as you can redirect output of commands at the shell, you can
redirect the output of a subset of the Workspace commands with the
following symbols:

#> file Redirects the command output to file.
Overwrites file if it exists.

#>> file Appends the command output to the
contents of file.

Note that the debugger’s redirection symbols start with #.

Examples This section provides a variety of examples of editing Workspace
input.

The following example shows how to use Control-p and ## to repeat
previous Workspace input:

pdm 4 -> cd ~/c++examples_dir
pdm 5 -> make bounce
pdm 6 -> debug bounce
pdm 7 -> <Control-p><Control-p> expands to...
pdm 7 -> make bounce
pdm 7 -> make bounce
pdm 8 -> ##<Space> expands to...
pdm 8 -> make bounce

The next example builds on the previous one and shows how to match
text or line numbers as a method for repeating previous Workspace
input:

pdm 9 -> #5<Space> expands to...
pdm 9 -> make bounce
pdm 10 -> #-4<Space> expands to...
pdm 10 -> debug bounce
pdm 11 -> #de<Space> expands to...
pdm 11 -> debug bounce

NOTE You cannot redirect output for the following
commands: run, step, next, cont, reset.

CenterLine-C++ Programmer’s Guide and Reference 141

Editing Workspace input

To expand tokens from the previous line of input:

pdm 10 -> make static
pdm 11 -> debug #*<Space> expands to...
pdm 11 -> debug static
pdm 12 -> make static bounce bounce_fixed
pdm 13 -> debug #:2<Space> expands to...
pdm 13 -> debug bounce

To list the C source files in your current working directory using Shell
metacharacter expansion, issue the following Workspace command:

pdm -> ls *.c
Vector.c table.c

To redirect the output of the printenv command to the file my_vars:

pdm -> printenv #> my_vars

To use command and name completion to list the source file
containing the doDraw() routine:

pdm -> lis<Tab><Tab> completes to...
pdm -> list do<Tab>Tab> ambiguous, completes to...
doDraw__13DrawableShapeFv do_ipfx__7istreamFi

do_opfx__7ostreamFv
pdm -> list doD<Tab>Tab> completes to...
pdm -> list doDraw__13DrawableShapeFv
Listing file ‘c++examples_dir/shapes.C’, line 89

See also "Invoking Workspace commands" on page 131

"Saving your debugging session" on page 190

Loading files for debugging

142 CenterLine-C++ Programmer’s Guide and Reference

Task: Loading files for debugging

You can load the following files for debugging

• A fully-linked executable

• A fully-linked executable and a corefile generated by it

• A fully-linked executable and a process running that executable

Each time you debug an executable, the debugger unloads the
previously loaded executable.

Loading an
executable

Enter the following command, where executable is the name of the
fully-linked executable:

pdm -> debug executable

Loading an
executable with a
corefile

Enter the following command, where executable is the name of the
fully-linked executable and core is the name of its associated corefile:

pdm -> debug executable core

Loading an
executable with a
running process

Enter the following command, where executable is the name of the
fully-linked executable and process_id is the process ID of the
process running the executable:

pdm -> debug executable process_id

When you load an executable with a process ID, the debugger attaches
to the process. To detach from the process, use the detach Workspace
command.

See also "Debugging an executable with a corefile" on page 178

"Debugging a running process" on page 182

debug on page 212

CenterLine-C++ Programmer’s Guide and Reference 143

Listing source code

Task: Listing source code

Displaying source
code in the Source
area

You can list source code in the Source area of the Main Window in a
number of different ways:

The following illustration shows the Source area.

You can also use the listi Workspace command to display machine
instructions in the Workspace.

Main Window Select the filename (as text) from a debugger
window or another X application window. Then,
from the Examine menu, select List <Selection>.

From the List menu below the Source area, select
a previously listed file or select New File, which
opens a file selection dialog box.

Select the function (as text) or move the mouse
pointer over the function. Display the
Expressions Options menu by pressing the Shift
key and the Right mouse button, and select the list
command.

Use the list Workspace command.

Error Browser Select a warning or error message.

Line numbers

Source code

Launches text editor
on displayed file

Displays different file

Listing source code

144 CenterLine-C++ Programmer’s Guide and Reference

Displaying the
source files for
current executable

To display all the known source files for the current executable that
is loaded in the debugger, use the contents command with the all
argument:

pdm -> contents all

The contents command lists only the files that were compiled with
debugging information (the -g switch).

Displaying the
functions defined
in a source file

You can also display the objects or functions that are declared or
defined in a particular source file. To do so, use the contents
command and specify the filename as an argument:

pdm -> contents filename

Occasionally, the contents filename command displays only a partial
list of the objects declared or defined in filename.

Example The following example uses the contents command with the Bounce
program:

pdm -> cd ~/c++examples_dir
pdm -> make bounce
pdm -> debug bounce
pdm 25 -> contents xfixed.C
Contents of source: xfixed.C
char __std__xfixed_C_openWindow_();
char __sti__xfixed_C_openWindow_();
char closeWindow(void);
char drawCenterLine(void);
char drawCircle(short, short, short, int);
char drawRect(int, int, int, int, int);
char makeFilled(void);
char openWindow(int, int, int, int);

See also contents on page 211

list on page 228

listi on page 230

CenterLine-C++ Programmer’s Guide and Reference 145

Editing source code

Task: Editing source code

You can edit source code by:

• Invoking your editor from the debugger

• Attaching an existing editing session to the debugger (GNU
emacs only)

Invoking your
editor from the
debugger

You can invoke your editor in a variety of different ways:

The following illustration shows the Edit symbol, which provides a
convenient way to edit files from the Main Window and Error
Browser:

When you quit from the debugger, it removes any text editor windows
along with all debugger windows.

Main Window Select the filename (as text) from a debugger
window or another X application window. Then,
from the Examine menu, select Edit <Selection>.

Select the Edit symbol below the Source area.

From the Source area pop-up menu, select Edit.

From the Line Number Options pop-up menu at
the left of the Source area, select Edit.

Select the filename (as text) or move the mouse
pointer over the filename. Display the
Expressions Options menu by pressing the Shift
key and the Right mouse button and select the
edit command.

Use the edit Workspace command.

Error Browser Select the Edit symbol at the left of a warning or
error message.

Edit symbol

Editing source code

146 CenterLine-C++ Programmer’s Guide and Reference

If you use the emacs editor and lower or iconify the window between
edits, the debugger cannot always raise or deiconify the emacs
window.

Connecting GNU
Emacs to the
debugger

To connect an existing GNU Emacs session to the debugger:

1 Put the following lines of ELISP code in your .emacs startup file.
In this example, replace directories with the absolute path to your
CenterLine directory and arch-os with your platform-specific
directory, such as sparc-sunos4 or sparc-solaris2.

(setq load-path (cons "directories/CenterLine/lib/lisp" load-path))
(setq exec-path (cons "directories/CenterLine/arch-os/bin" exec-path))
(require ’clipc)

The exec-path line tells Emacs which directories to search when
executing a binary. The emacs edit server uses the
clms_query -b command to get the correct session ID, and if it
cannot locate the clms_query binary, the connection fails.

2 Load the ELISP lines in your current Emacs session. To do so,
select these lines of ELISP and evaluate the region in Emacs
(M-x eval-region).

3 Establish a connection to the debugger by using the Emacs
command M-x cl-edit.

The next time you invoke Emacs, the ELISP lines are automatically
loaded from your .emacs startup file. You just need to establish a
connection with M-x cl-edit.

When you quit from the debugger, any Emacs windows that you
connected to it remain open.

See also edit on page 219

"Selecting an editor to use with the debugger" on page 119

CenterLine-C++ Programmer’s Guide and Reference 147

Building and reloading executables

Task: Building and reloading executables

Using make in the
Workspace

For your convenience, you can use the make command in the
Workspace to rebuild your fully linked executable. The make
command behaves the same way in the Workspace as it does in a
shell.

To build your default target:

pdm -> make

To build a specific target:

pdm -> make target...

You can also use other make options. For a complete list of options,
refer to the make manual page that was supplied with your operating
system.

Loading rebuilt
executables

To load rebuilt executables into the debugger, you can either:

• Select the Build button in the Button panel of the Main Window

• Use the build command:

pdm -> build

If the executable has not changed since it was last loaded, pdm does
not reload it.

NOTE The directory containing the make command,
which varies from platform to platform, must be in
your PATH environment variable. For example, on
the sparc-solaris2 platform, make is installed in
/usr/ccs/bin.

Finding and fixing errors

148 CenterLine-C++ Programmer’s Guide and Reference

Task: Finding and fixing errors

Two types of errors can occur when you use the debugger:

• As you compile and build your program, the Error Browser
button in the Main Window indicates when compiler and make
errors occur. You can fix these kinds of problems immediately
using the Error Browser.

• As you execute and debug your program, the Workspace
indicates when errors or signals occur. The Workspace creates a
break level when your program generates a signal. You can
work at the break level to learn more about the problem before
fixing it.

pdm 3 -> run
Program received signal 10, Bus error
pdm (break 1) 3 ->

Fixing compiler
and make errors

To fix compile-time errors:

1 To open the Error Browser, click on the Error Browser button in
the Main Window.

Error Browser
button

Button panel

Selected folder
Selected error

Edit symbol

CenterLine-C++ Programmer’s Guide and Reference 149

Finding and fixing errors

2 To display the error, select the folder for the file.
If the debugger can associate an error with a specific file, then
the messages appear under the folder for that file. Messages that
are not associated with a particular file are listed under a folder
labeled MAKEn, where n is a unique number.

3 To display the code in the Source area, select the message. The
line causing the error is highlighted in the Source area.

4 To edit the code, select the Edit symbol to the left of the message.

5 Fix the problem in your text editor and save the file.

6 Rebuild your executable with the make command.

7 Click on the Build button to load the new version of the
executable.

Fixing errors that
occur during
execution

To fix run-time errors:

1 Examine your program at the break level. Refer to "Using
Workspace break levels" on page 160.

2 Edit the code. Refer to "Editing source code" on page 145.

3 Fix the problem in your text editor and save the file.

4 Rebuild your executable with the make command:

pdm -> make target

5 Click on the Build button to load the new version of the
executable.

Removing errors
from the Error
Browser

To remove messages from the Error Browser:

1 Open the Error Browser.

2 Select the folder for the file.

3 Select the message.

4 Select the Remove Selected button in the Button panel.

Example “Correcting compiler and make errors” on page 107 provides an
example of using the Error Browser.

See also "Editing source code" on page 145

"Using Workspace break levels" on page 160

"Moving in the execution stack" on page 166

Setting breakpoints and watchpoints

150 CenterLine-C++ Programmer’s Guide and Reference

Task: Setting breakpoints and watchpoints

You can set breakpoints, which always stop execution, conditional
breakpoints, which stop execution only if a condition is true, and
watchpoints, which stop execution when the value of an expression
changes.

When you set a breakpoint:

• The debugger creates a debugging item. Debugging items are
numbered from 1 to n and include breakpoints, action points,
and data structures that are displayed in the Data Browser. You
can display the current list of debugging items and delete either
specific debugging items or all debugging items. For more
information, refer to "Examining and deleting debugging items"
on page 158.

• The Source area displays a Breakpoint symbol to the left of the
line number:

When execution reaches a breakpoint, the debugger stops execution,
creates a break level in the Workspace, and lists the current line of code
in the Source area.

Setting breakpoints
at a line number or
in a function

You can set breakpoints at a line number or in a function. From the
Main Window, you can use the following methods to set
breakpoints:

• Select the line number.

Breakpoint symbol

CenterLine-C++ Programmer’s Guide and Reference 151

Setting breakpoints and watchpoints

• Display the Debug menu and select Set Breakpoint. If you want
to set a breakpoint at a location, specify the filename and line
number in the dialog box. If you want to set a breakpoint at a
function, specify the function name in the dialog box. The
following illustration shows the Set Breakpoint dialog.

• Display the File Options pop-up menu and select Set
Breakpoint. If you want to set a breakpoint at a location, specify
the filename and line number in the dialog box. If you want to
set a breakpoint at a function, specify the function name in the
dialog box.

• Display the Line Number pop-up menu and select Set
Breakpoint Here.

• Use the stop command:

pdm -> stop at line
pdm -> stop in function

To set a breakpoint on the line where execution is currently stopped,
use the stop command with no arguments:

pdm -> stop

Setting conditional
breakpoints

You can use the stop command to set conditional breakpoints by
specifying a boolean expression as the condition.

• To set breakpoints on the line where execution is currently
stopped.

pdm -> stop if cond

Setting breakpoints and watchpoints

152 CenterLine-C++ Programmer’s Guide and Reference

• To set breakpoints on a specific source line:

pdm -> stop at line if cond

• To set breakpoints in a specific function:

pdm -> stop in func if cond

Setting breakpoints
in shared libraries

To set a breakpoint in a C library function, such as printf():

1 Set a breakpoint in main():

pdm -> stop in main
stop (1) set at “main.C”:n, main().

2 Run the executable:

pdm -> run
Executing: program

3 Set the breakpoint in the C library function:

pdm (break 1) -> stop in function
stop (2) set at 0xf76c9514, function().

4 Continue execution to reach the breakpoint:

pdm (break 1) -> cont
Stopped in function: ‘function’. No source file info.

You can then use machine debugging commands to examine the C
library function. Refer to "Debugging machine instructions" on page
186 for more information.

Once you set a breakpoint in a C library function this way, the
debugger retains the breakpoint in subsequent runs of the program.

Setting breakpoints
in machine code

If you are debugging code that has not been compiled with the -g
switch, you can set breakpoints in machine code. With the stopi
command, you set breakpoints on the current line where execution
is stopped or at a specific address:

pdm -> stopi
pdm -> stopi at address

For more information, refer to "Debugging machine instructions" on
page 186.

CenterLine-C++ Programmer’s Guide and Reference 153

Setting breakpoints and watchpoints

Setting breakpoints
in inline functions

To set a breakpoint in an inline function, you must compile the
executable with the +d switch, which does not expand inline
functions as inline but as static functions.

Setting watchpoints You can use the watch expr command in gdb to set watchpoints. For
more information about using gdb in the CenterLine-C++ debugger,
refer to gdb on page 222 and gdb_mode on page 223.

Example In this example, you set a conditional breakpoint in the Bounce
program.

1 Build and load the Bounce program:

pdm -> cd ~/c++examples_dir
pdm -> make bounce
pdm -> debug bounce

2 List shapes.C:

pdm -> list shapes.C

3 In the Source area, scroll to the DrawableShape::drawMove
function on line 102.

4 In the Workspace, set a breakpoint in this function that occurs
only if the value of count is 250:

pdm -> stop in DrawableShape::drawMove if count == 250
stop(1) set at “shapes.C”:104, DrawableShape::drawMove(int).

5 Run the Bounce program by selecting the Run button in the
Button panel. The Bounce window appears, and the Rectangle
bounces. When the breakpoint is reached, the rectangle stops
bouncing and a break level is generated in the Workspace.

6 Check the value of the count variable:

pdm -> print count
(int) 250

7 Continue execution of the Bounce program by selecting the
Continue button in the Button panel.

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

Setting breakpoints and watchpoints

154 CenterLine-C++ Programmer’s Guide and Reference

See also stop on page 252

stopi on page 254

"Setting actions" on page 155

"Examining and deleting debugging items" on page 158

"Using Workspace break levels" on page 160

CenterLine-C++ Programmer’s Guide and Reference 155

Setting actions

Task: Setting actions

You can set an action on a line or in a function with the when
command. An action performs a set of Workspace commands when
execution reaches the line or function. To set an action:

1 Enter the when command with the desired arguments in the
Workspace:

pdm -> when ...sets action on current line
pdm -> when at line ...sets action on line
pdm -> when in func ...sets action in function

2 Optionally, add a boolean condition to the arguments. This
boolean condition must be met for the action to be carried out:

pdm -> when if cond
pdm -> when at line if cond
pdm -> when in func if cond

3 Enter one Workspace command per line at the when prompt:

pdm -> when [arguments]
when -> command
when -> command
when -> ...

4 Since all actions include an implicit breakpoint (stop command),
add the cont command as the last command if you want your
program to continue execution after carrying out the action:

pdm -> when [arguments]
when -> command
when -> ...
when -> command
when -> cont

5 End the action by entering a period (.) or end as the last
command or by pressing Control-d.

When you set an action, the debugger creates a debugging item and
displays the action symbol to the left of the line number in the source
area:

Action symbol

Setting actions

156 CenterLine-C++ Programmer’s Guide and Reference

When an action is triggered during execution of your program, the
debugger displays the Execution symbol on the line in the Source area,
stops execution of the program, creates a break level, and evaluates
the commands in the action.

Example In this example, you set two different kinds of actions in the Bounce
program.

1 Build and load the Bounce program:

pdm -> cd ~/c++examples_dir
pdm -> make bounce
pdm -> debug bounce

2 List mainfixed.C:

pdm -> list mainfixed.C

3 Set an action on line 15 that prints the value of *r, which is the
rectangle being bounced.

pdm -> when at 15
when (1) set at “mainfixed.C”:15, main().
Type commands to be executed (one per line). Finish
by typing a single “.” or “end”
when -> print r
when -> cont
when -> .
pdm ->

4 Set another action in the DrawableShape::drawMove function
that increments the count variable when it reaches 300:

pdm -> when in DrawableShape::drawMove if count ==
300
when (2) set at “mainfixed.C”:15, main().
Type commands to be executed (one per line). Finish
by typing a single “.” or “end”
when -> dump
when -> cont
when -> .
pdm ->

5 Select the Run button in the Button panel.

As the Bounce program executes, it carries out the action.

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

CenterLine-C++ Programmer’s Guide and Reference 157

Setting actions

See also "Examining and deleting debugging items" on page 158

"Using Workspace break levels" on page 160

when on page 260

Examining and deleting debugging items

158 CenterLine-C++ Programmer’s Guide and Reference

Task: Examining and deleting debugging items

Each time you set a breakpoint, set an action point, or display a data
structure, the debugger sets a debugging item.

You can examine debugging items to see everything that affects the
execution of your program. Although you might not think that data
items affect execution of your program, they actually do. At each
break in execution, the debugger updates all data items. For more
information, refer to “Updating data items” on page 172.

Examining
debugging items

You can use two different methods to examine debugging items:

• Display the Examine menu and select Status.

• Enter the status command in the Workspace.

With either method, the Workspace lists all the debugging items:

pdm (break 1) 6 -> status
(5) stop at “main.C”:17 /* main() */
(6) display r::r
(7) display *r::r

Deleting debugging
items

You can delete debugging items in a variety of different ways:

Main Window From the Debug menu, display the Delete
submenu, which displays all debugging items
currently defined. Select the item to be deleted.

Source area Select the Breakpoint symbol itself.

or

Display the File Options pop-up menu and then
the Delete submenu. Select the item to be deleted.

Workspace Display the Workspace Options pop-up menu
and then the Delete submenu. Select the item you
want to delete.

or

Use the delete command.

CenterLine-C++ Programmer’s Guide and Reference 159

Examining and deleting debugging items

Example If you have some debugging items set, you can delete all debugging
items as follows:

1 Display the Debug menu and then the Delete submenu, which
lists all current debugging items.

2 Select Delete All Debugging Items.

 See also delete on page 214

status on page 248

Data Browser Select the data item and click on the Remove
Selected button in the button panel.

or

Select the data item. Display the Graph menu and
select Remove Selected.

or

Select the Clear button to remove all data items.

Using Workspace break levels

160 CenterLine-C++ Programmer’s Guide and Reference

Task: Using Workspace break levels

Generating a break
level

When your program begins executing in the debugger, it is at the
top level of execution in the Workspace. To create a different level of
execution, called a break level, you can interrupt your program’s
execution in one of the following ways:

• Press Control-c while your program is executing.

• Set a breakpoint before running your program. When execution
reaches a breakpoint in the program, a break level is created.

• Cause a signal to occur while your program is executing. If the
signal is not handled by your program, a break level is created.

The current break level is indicated by the Workspace prompt:

pdm (break 1) 8 ->

Examining your
program at a break
level

Working at a break level allows you to preserve the flow of
execution at one point, work with a different flow of execution, and
then return to continue the previous flow of execution.

You can use the following Workspace commands to explore your
program at a break level. Many of these commands are available from
the Examine menu, Execution menu, and Button panel in the Main
Window.

cont Continues execution from a break location.

delete Deletes an existing debugging item on the
current line.

down Moves the current scope location down the
execution stack.

dump Displays all local variables.

edit Invokes your editor, positioned at the
current line.

file Displays and sets the current list location.

NOTE In the debugger, there is only one break level.

CenterLine-C++ Programmer’s Guide and Reference 161

Using Workspace break levels

next Executes the next line; does not enter
functions.

print Prints the value of variables or expressions.

step Steps execution by statement, entering
functions.

stepout Continues execution until the current
function returns.

stop Sets a breakpoint.

up Moves the current scope location up the
execution stack.

whatis Displays all uses of a name for a function,
data variable, tag name, enumerator, type
definition, or macro definition.

when Specifies statements to execute when
execution triggers the action.

where Displays the execution stack.

whereami Displays the current break and scope
locations.

whereis Lists the defining instance of a symbol. If
the symbol is an initialized global variable,
whereis also indicates the location at which
it is initialized.

For detailed information on how to use each of these commands, see
the Man Browser or Chapter 7, “Command Reference,” on page 201.

While at a break level, you can examine the state of data structures that
are currently in scope by using the Data Browser. For more
information, refer to "Examining data structures" on page 169.

Using Workspace break levels

162 CenterLine-C++ Programmer’s Guide and Reference

Changing locations
in break levels

While at a break level, the debugger maintains several distinct
locations. A location is a specific line number of a source file.

Break location The location at which execution was
stopped and is resumed when you
continue. The values of program variables
are determined by their scope at the break
location. The break location is indicated in
the Source area by the Execution symbol:

Scope location The current location in the call stack. When
a break level is created, the scope location is
set to the break location. The scope location,
however, can change in response to your
actions at a break level. For example, you
can use the up and down commands to
move between stack frames in the execution
stack. The scope location is indicated in the
Source area by the Scope symbol:

Source location The default location used by commands
that handle source code files, such as list
and edit. When a break level is created, the
source location is set to the break location.
When the scope location changes, the
source location is set to the new scope
location. The file and list commands also
change the source location.

Examples See "Moving in the execution stack" on page 166 and "Examining
data structures" on page 169 for examples of how you can use
Workspace break levels.

See also "Running, continuing, and stepping" on page 163

"Moving in the execution stack" on page 166

"Examining data structures" on page 169

Execution symbol

Scope symbol

CenterLine-C++ Programmer’s Guide and Reference 163

Running, continuing, and stepping

Task: Running, continuing, and stepping

Running your
program

You can run your program using any of these methods:

• Display the Execution menu and select Run.

• Select the Run button in the Button panel.

• Issue the run command in the Workspace:

pdm -> run
pdm -> run arguments

With any of the methods, the debugger executes main() after
initializing all variables and processing any command-line
arguments. If you specify arguments with the run command, the
debugger uses these arguments each subsequent time you use the
Run menu command, Run button, or the run command without
arguments.

You can use the rerun command to run your program with different
arguments instead of passing different arguments to run. For
example, if you were testing your program with two different files as
input arguments, you could issue run file1 and rerun file2 and then
alternate between run and rerun as needed.

Continuing from
the break location

If your program is stopped, you can continue execution using one of
the following methods:

• Display the Execution menu and select Continue.

• Select the Continue button in the Button panel.

• Issue the cont command in the Workspace.

The cont command has additional arguments for continuing from a
specific line number or with a specific signal. For more information,
refer to cont on page 210.

Running, continuing, and stepping

164 CenterLine-C++ Programmer’s Guide and Reference

Resetting to the top
level

To transfer control from the break level to the top level, issue the
reset command from the Workspace:

pdm -> reset
Resetting to top level.

There are two other situations where control is transferred from the
break level to the top level:

• If you rebuild your executable with the make command, and
then reload the new executable with the build command, the
debugger resets to the top level.

• If you delete all breakpoints and then continue execution with
the cont or run commands, the program runs to completion,
and control returns to the top level.

Stepping through
your program

You can step through your program from a break level by using the
step, next, and stepout commands in the Workspace. The step and
next commands are also available on the Execution menu and in the
Button panel.

• The step command continues execution until the next statement
is reached. If execution is stopped on a line containing multiple
statements, step executes the next statement only. Also, step
enters functions. To step through more than one statement, you
can pass a numeric argument to the step command:

pdm -> step n

• The next command executes all statements on the current source
code line. It does not enter functions with one exception—if the
function contains a breakpoint that is triggered, next enters the
function and stops at the breakpoint. To step through more than
one line, you can pass a numeric argument to the next
command.

pdm -> next n

• The stepout command continues execution until the current
function returns. This command can be useful if you
accidentally entered a function by using step instead of next.

pdm -> stepout
Run till exit from #n function at filename:line

CenterLine-C++ Programmer’s Guide and Reference 165

Running, continuing, and stepping

When you step through your program, the Execution symbol in the
Source area shows the current line. In addition, data items in the Data
Browser are automatically updated at every break in execution (see
"Examining data structures" on page 169).

See also "Debugging machine instructions" on page 186

cont on page 210

next on page 233

rerun on page 238

reset on page 239

run on page 240

step on page 249

stepout on page 251

NOTE If you are stepping through your code and have
many data items displayed in the Data Browser,
the time spent in updating the data items at each
break in execution can degrade performance. You
can improve performance by minimizing the
number of items you have displayed, or by
dismissing the Data Browser.

Moving in the execution stack

166 CenterLine-C++ Programmer’s Guide and Reference

Task: Moving in the execution stack

The execution stack consists of all the functions that are in the process
of execution. Each function has a stack frame. Stack frames are
numbered, beginning at 0, as they are placed on the execution stack.

Displaying the
execution stack

To display the stack, use the where command:

pdm (break 1) -> where

The execution stack is displayed starting from the location where
execution has stopped in the current break level. For example, in the
following stack, execution is stopped in makeTable (#0).

#0 makeTable (rows=0x8ae0, cols=0x8ed0, length=500, width=600, height=600,
 iwidth=64, iheight=20, margin=0) at table.c:45
#1 0x3258 in DrawableShape::createTable (this=0x8ab0) at shapes.C:132
#2 0x30bc in DrawableShape::doDraw (this=0x8ab0) at shapes.C:89
#3 0x31d0 in DrawableShape::bounce (this=0x8ab0) at shapes.C:112
#4 0x2b90 in main () at mainfixed.C:15

Moving in the
execution stack

When a break level is generated, the break location and the scope
location are identical—all variables, types, and macros are scoped to
the point at which execution was interrupted. You can change the
scope location to another function on the execution stack with the
up and down commands.

When you issue up or down to move in the execution stack, the
debugger displays the scope location (now different from the break
location) in the Source area using the Scope symbol.

With the up command, you move to the stack frame with the next
higher number. If the scope location is currently at #1, issuing up
moves to #2. The converse is true with the down command; it moves
the scope location to the next lower numbered stack frame.

Scope symbol

CenterLine-C++ Programmer’s Guide and Reference 167

Moving in the execution stack

Displaying the
current stack
location

The whereami command shows where you currently are in the
execution stack. The whereami command displays the scope
location in the Source area (scrolling the display if necessary) and, if
the scope location is different from the break location, displays the
break location in the Workspace.

Example In this example, you examine the execution stack of a simple
program that contains a static constructor, the static.C program,
which is provided in the c++examples_dir directory.

1 Change to the CenterLine-C++ examples directory:

pdm -> cd ~/c++examples_dir

2 Build, load, and list the static.C program by issuing the
following commands in the Workspace:

pdm -> make static
...
pdm -> debug static
Debugging program ‘static’
pdm -> list static.C
Listing file c++_examples/static.C, line 1

3 Select the line number on lines 7 and 8 to set breakpoints on
those lines.

4 Select the Run button in the Button panel.

The static program executes and stops in main on line 8.

5 To examine the stack, use the where command:

pdm (break 1) 20 -> where
#0 main () at static.C:8

6 Select the Continue button in the Button panel.

The program stops on line 7 at the static constructor foo.

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

Moving in the execution stack

168 CenterLine-C++ Programmer’s Guide and Reference

7 Examine the stack again.

pdm (break 1) 8 -> where
#0 __sti__static_C_main_ () at static.C:7
#1 0x2354 in _main ()
#2 0x22a0 in main () at static.C:8

As you can see, the top-most function (#0) in the execution stack
is the static constructor.

8 Move up the stack to the static constructor:

pdm (break 1) 22 -> up
Scoping to _main() at “??”, pc = 2354
pdm (break 1) 23 -> up
Scoping to main() at “static.C”:8
pdm (break 1) 24 ->

The Main Window shows that the scope location is now
different from the break location:

9 To display this same information in the Workspace, use the
whereami command:

pdm (break 1) 10 -> whereami
Break Location: __sti__static_C_main_() at
“static.C”:7
Scope Location: main() at “static.C”:8

See also down on page 217

up on page 257

where on page 262

whereami on page 263

Break location

Scope location

CenterLine-C++ Programmer’s Guide and Reference 169

Examining data structures

Task: Examining data structures

Once you have loaded your executable into the debugger or are
executing it in the debugger, you can examine data structures. You can
only examine data structures that are currently in scope:

• When your program is at the top level, you can examine only
global data.

• When your program is at a break level, you can examine global
and local data. For example, you can use the whatis command,
the print command, the dump command, and the Data Browser.

Each time you display a data structure in the Data Browser, the
debugger sets a debugging item. For more information about
debugging items, refer to "Examining and deleting debugging items"
on page 158.

Displaying data
structures in the
Workspace

To display all uses of a name for a function, data variable, tag name,
enumerator, type definition or macro definition, use the whatis
command:

pdm -> whatis name

To display the defining instance of a symbol, use the whereis
command:

pdm -> whereis name

If the symbol is an initialized global variable, whereis also displays
the location at which the variable is initialized.

To display the name and value of each variable that is local to the
current scope location, use the dump command:

pdm -> dump

To print the value of a specific variable, use the print command:

pdm -> print variable

You can improve performance when displaying data structures by
setting the class_as_struct option as described on page 192.

Examining data structures

170 CenterLine-C++ Programmer’s Guide and Reference

Assigning values
to variables

You can use the assign and set commands, which are functionally
equivalent, to evaluate an expression and assign it to a variable. By
assigning a value to a variable in the Workspace, you can directly
manipulate values in code that you are debugging. The assign and
set commands take the following form:

pdm -> assign variable = expression
pdm -> set variable = expression

Displaying data
structures in the
Data Browser

You use the Data Browser to display a graphical representation of
any data structure. This graphical representation is called a data
item. To display the data item for a data structure, you can:

Main Window From any debugger window, select a variable that
is currently in scope. Display the Examine menu
and select Display<Selection>.

Data Browser Display the Graph menu and select New
Expression. In the dialog box, enter the variable or
expression and select the Data Browse button.

Workspace Use the display command.

CenterLine-C++ Programmer’s Guide and Reference 171

Examining data structures

The following illustration shows the Data Browser with two data
items displayed in the Data area: a pointer and the structure it
references.

As you can see from the figure, a pointer is indicated by a pointer box,
which has different fills to indicate whether you can dereference it:

• If the box is empty, you can dereference the pointer.

• If the box is filled, the pointer has been dereferenced and a line
connects to the referenced data item. A dotted line (not shown
in the figure) connecting two data items indicates a pointer that
points to data inside a structure rather than to the top of the
structure.

• If the box contains an X, the pointer is invalid (null). This type of
box is not shown in the figure.

Structures and arrays are indicated by folders, which you can select to
display their contents.

Pointer box has been
selected to dereference

Folder can be selected
to display contents of
structure or array

Data area

pointer

Empty pointer box can
be selected to dereference
pointer

Examining data structures

172 CenterLine-C++ Programmer’s Guide and Reference

Updating data items When data has changed, data items are automatically updated at
every break in execution and each time you use the assign and set
commands in the Workspace.

Working with data
items

You can display as many data structures as you want in the Data
Browser. If you display a number of data items, you can use the
scrollbars to view them.

You can select data items and manipulate them with menus. To select
a data item, click the Left mouse button on it. The data item should
have a bolder outline when it is selected. In addition to selecting items
individually, you can select groups of them by dragging the mouse
pointer to enclose the desired items with a bounding box. You can also
move selected items by dragging them where you want them.

The Data Browser provides three menus for manipulating selected data
items: the Graph menu, the View menu, and the data item pop-up
menu. To display the data item pop-up menu:

1 Move the mouse pointer over the title bar of a data item.

2 Press and hold the Right mouse button.

You can manipulate data items in a number of different ways:

Select Selects one or more data items, depending
on the scope specified (Ancestors, Parents,
Children, Descendants).

Unselect Unselects one or more data items,
depending on the scope specified
(Ancestors, Parents, Children,
Descendants).

Iconify Displays only the name and not the content
of the data structure.

Deiconify Reverts to displaying both the name and
content of the data item (its original size
before you iconified it).

NOTE If you are stepping through your code and have
many data items displayed in the Data Browser,
the time spent in updating the data items at each
break in execution can degrade performance. You
can improve performance by minimizing the
number of items you have displayed, or by
dismissing the Data Browser.

CenterLine-C++ Programmer’s Guide and Reference 173

Examining data structures

Raise Moves the data item in front of all other
data items.

Lower Moves the data item behind all other data
items.

Zoom Opens all folders in the data item and
resizes it.

Shrink Closes all folders in the data item.

Remove Removes the data item.

Properties Changes the way the data item is displayed.

Changing the
properties of a data
item

You can change the properties of a data item to display the data
structure differently. To do so:

1 Select the data item.

2 Display the Properties menu and select Item Properties.

The Properties dialog box appears:

3 If you prefer to display the address as an integer instead of in
hexadecimal (default), select the Address as Integer radio
button.

4 If you want to display this data structure using a different data
type, enter it in the Show as this type field.

Scope of change

Fields displayed

Data type

Address

Examining data structures

174 CenterLine-C++ Programmer’s Guide and Reference

5 If you want to hide any of the fields in the data structure,
deselect the button beside each field in the list of displayed
fields.

6 If you want to apply your changes to all data items with this
same data type, select the All Instances of This Type button.

7 Select the Apply button.

If you make a mistake, you can select Revert to revert to the last
settings that were applied or Current Default to revert to the
default settings for this kind of data type.

Customizing the
Data Browser

As an alternative to using scrollbars, you can customize the Data
Browser to use a panner. A panner contains a canvas representing
all the data items you have displayed and a viewport that represents
what is currently shown in the Data area:

To use a panner, put the following resource in your .Xdefaults file:

CenterLine-C++*usePanner: True

Viewport

Canvas

Item Symbols

Represents all

Represents the portion of
the items displayed in the
window

Represent the items in the window

the items
Drag the viewport to “pan”
the items

CenterLine-C++ Programmer’s Guide and Reference 175

Examining data structures

Examples In this example, you learn how to display an array of characters in
the Data Browser.

1 Go to the CenterLine-C++ examples directory and make the
chararray target:

pdm -> cd ~/c++examples_dir
pdm -> make chararray

2 Load chararray.

pdm -> debug chararray

3 Set a breakpoint on line 6 (return 0;).

4 Select the Run button.

5 Display the fourth element (3) in the array with the display
command:

pdm -> display charray[3]
display(1) set on expression ‘charray[3]’

6 In the Data Browser, select the data item, display the Properties
menu, and select Item Properties.

7 Change the Show as this type field from char to char[4].

8 Press Return or select the Apply button.

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

Examining data structures

176 CenterLine-C++ Programmer’s Guide and Reference

9 Repeat Steps 6, 7, and 8, but change the type to unsigned
char[4].

10 In the Main Window, select the Continue button to complete
execution of the program.

See also "Examining and deleting debugging items" on page 158

assign on page 204

display on page 216

dump on page 218

print on page 235

set on page 242

whatis on page 259

whereis on page 265

CenterLine-C++ Programmer’s Guide and Reference 177

Handling signals

Task: Handling signals

By default, the debugger passes the following signals to your program
and catches all other signals.

SIGALRM
SIGURG
SIGCONT
SIGCHLD
SIGPOLL
SIGVTALRM
SIGPROF
SIGWINCH

Passing signals to
your program

To ignore a signal and pass it to your program:

1 Make sure your program defines a handler for the signal.

2 Issue the ignore command and specify the signal name or
number.

pdm -> ignore {signal_number | signal_name}

To display the signals currently being ignored, issue ignore without
arguments.

Catching signals To catch a signal, issue the catch command and specify the signal
name or number.

pdm -> catch {signal_number | signal_name}

When the debugger encounters a signal that is currently being caught,
it stops execution of your program and generates a break level.

To display the signals currently being caught, issue catch without
arguments.

See also "Debugging an executable with a corefile" on page 178

catch on page 207

ignore on page 226

Debugging an executable with a corefile

178 CenterLine-C++ Programmer’s Guide and Reference

Task: Debugging an executable with a corefile

Generating corefiles When you run your program with the debugger and a signal occurs,
a corefile might or might not be generated, depending on how the
debugger handles the signal. If you run your program from the
debugger and it catches the signal, a corefile is not generated. If the
debugger ignores the signal and passes it to your program, a corefile
is generated. For more information on signals, refer to "Handling
signals" on page 177.

You can also generate a corefile by running your program from the
shell.

Loading corefiles You can load a corefile using the debug command or the
centerline-c++ shell command (when you start up the debugger).
Refer to "Starting up the debugger" on page 120 and "Loading files
for debugging" on page 142 for information on loading corefiles.

When you load an executable along with a corefile into the debugger,
the Execution symbol in the Source area indicates the source line at
which execution stopped, and the Workspace indicates the signal that
caused the program to terminate.

Debugging corefiles When you have loaded a corefile, you can examine all portions of
the program up to the source line marked by the Execution symbol.
You can examine data as well as the execution stack.

You cannot, however, continue execution of the program or single
step. If you run the program while a corefile is loaded, the debugger
discards the corefile and runs the executable instead. To examine the
corefile again, you must reload it along with the executable.

CenterLine-C++ Programmer’s Guide and Reference 179

Debugging an executable with a corefile

Example In this example, you generate a corefile and examine it with the
debugger.

1 Go to the CenterLine-C++ examples directory and make the
tutorial_core target:

pdm -> cd ~/c++examples_dir
pdm -> make tutorial_core

2 Load tutorial_core and run it.

pdm -> debug tutorial_core
pdm -> run
Executing c++examples_dir/tutorial_core

Program received signal 11, Segmentation fault
pdm (break 1) ->

Since the debugger generated a break level, it has caught the
SIGSEGV signal, and a corefile was not generated.

3 Ignore the SIGSEGV signal and rerun the program to generate
the corefile:

pdm (break 1) -> ignore 11
pdm (break 1) -> run
Restting to top level.
Executing c++examples_dir/tutorial_core
Program terminated with signal 11, Segmentation fault
The inferior process no longer exists.
Resetting to top level.
pdm ->

4 Load tutorial_core and the corefile:

pdm -> debug tutorial_core core
debug: Deleting all debugging items.
Debugging program ‘tutorial_core’ (previous program ‘tutorial_core’)
Core was generated by ‘tutorial_core’.
Program terminated with signal 11, Segmentation fault.
#0 DrawableShape::bounce (this=0x0) at shapes.C:112

112 doDraw();

The debugger checks the executable against the corefile to make
sure that they match, displays the Execution symbol on the
source line that generated the signal, and indicates the signal
that generated the corefile.

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

Debugging an executable with a corefile

180 CenterLine-C++ Programmer’s Guide and Reference

5 To display all local variables in DrawableShape::bounce(),
display the Examine menu and select Dump. The Workspace
indicates there are no local automatic variables.

6 To move up in the execution stack and examine main(), select
the Up button in the Button panel. The Source area displays the
Scoping symbol on line 15.

Execution symbol

Corefile generated
by executable

CenterLine-C++ Programmer’s Guide and Reference 181

Debugging an executable with a corefile

7 To display the execution stack:

pdm -> where
#0 DrawableShape::bounce (this=0x0) at shapes.C:112
#1 0x2b74 in main () at main.C:15
pdm ->

8 To display all local variables in main(), display the Examine
menu and select Dump. The Workspace displays P1, P2, and r:

pdm -> dump
Formals of ‘main’:
No Formals
Automatics of ‘main’:
P1 = (struct Point) = {
 int x = 50;
 int y = 50;
 }
P2 = (struct Point) = {
 int x = 64;
 int y = 20;
 }
r = (struct Rectangle *) 0x0
_result = (int) 0

See also "Starting up the debugger" on page 120

"Loading files for debugging" on page 142

"Using Workspace break levels" on page 160

"Examining data structures" on page 169

"Handling signals" on page 177

Debugging a running process

182 CenterLine-C++ Programmer’s Guide and Reference

Task: Debugging a running process

The debugger can run one process under its control. You can run an
executable that you have loaded with the debug command, or you can
attach to a running process. You cannot do both simultaneously.

Attaching to
processes

You can attach to a running process in several different ways:

• Start the debugger with the centerline-c++ command and
specify the process ID of a running process along with its
corresponding executable. Refer to "Starting up the debugger"
on page 120 for information.

• Load an executable for debugging with the debug command
and specify the process ID of a running process along with its
corresponding executable. Refer to "Loading files for
debugging" on page 142 for information.

• Use the attach command and specify the process ID of a
running process. The running process can match the executable
that is loaded or be an unrelated process.

pdm -> attach process_id

When you attach to a process, the debugger suspends its execution, as
if the process were at a breakpoint. The kind of debugging you can
perform depends on whether the process was compiled with -g and
the point during execution at which you attach to the process.

• If the process was not compiled with -g, you can only use
machine debugging to debug the process. For more information,
refer to "Debugging machine instructions" on page 186.

• If you attach to the process at a point where it is executing in
code that was not compiled with -g (such as system libraries),
you can only use machine debugging techniques until you enter
a routine that was compiled with -g. Refer to "Moving in the
execution stack" on page 166 and "Debugging machine
instructions" on page 186 for more information.

• If you attach to a process that was compiled with -g, you can use
all the features of the debugger to debug it.

CenterLine-C++ Programmer’s Guide and Reference 183

Debugging a running process

If you use the step command after attaching to a program that was not
compiled with -g (or a program that is currently executing in a routine
that was not compiled with -g), execution continues until the current
function completes because there is no source line information. To
single step an instruction, you must use the stepi command.

If you issue the run command while the debugger is attached to a
process, the debugger terminates the process and runs a new process
with the executable that was previously loaded with the debug
command.

Detaching from
processes

To detach a process from the debugger’s control, use the detach
command:

pdm -> detach

The process continues executing until completion. You can now
attach to or run a different process.

Debugging multiple
processes

The CenterLine-C++ debugger does not have any special support
for debugging multiple processes. We recommend that you use
ObjectCenter to debug multiprocess programs. It provides a built-in
macro for invoking an additional ObjectCenter process when
forking a child process.

Example In this example, you run a process from a shell and attach to it with
the debugger.

1 Go to the CenterLine-C++ examples directory and make the
tutorial_attach target:

pdm -> cd ~/c++examples_dir
pdm -> make tutorial_attach

2 Load tutorial_attach.

pdm -> debug tutorial_attach

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

Debugging a running process

184 CenterLine-C++ Programmer’s Guide and Reference

3 From a shell, run the tutorial_attach program in the
background, and notice the process ID that is assigned to it.

% tutorial_attach &
[n] process_id

4 From the debugger, attach to the process ID that was assigned
to tutorial_attach.

pdm -> attach process_id
Attaching program ‘c++examples_dir/tutorial_attach’, pid process_id
Reading symbols from libX11.so.4.3...done.
Reading symbols from libC.so.2.0...done.
Reading symbols from /libc.so.1.6...done.
Stopped in function: ‘sigpause’. No source file info.
pdm (break 1) ->

The debugger stops the process and creates a break level. In this
case, tutorial_attach was executing in sigpause, which is a
library routine that was not compiled with -g.

5 To display the current execution stack:

pdm (break 1) -> where
#0 0xf76b2898 in sigpause ()
#1 0xf76c965c in sleep ()
#2 0x2b90 in main () at mainwait.C:16

The stack shows that execution was stopped in the sigpause
routine, which was called from the sleep routine. Line 16 of
mainwait.C called the sleep routine.

6 To move the scope location to mainwait.C, use the up command:

pdm (break 1) -> up
Scoping to sleep() at “??”, pc = f76c965c
pdm (break 1) -> up
Scoping to main() at “mainwait.C”:16

The Source area now displays the source code for mainwait.C,
and the Scope symbol points to line 16.

7 To continue execution until sleep returns to main, you can use
the step command. When you use the step command in
routines that were not compiled with -g (and do not have

CenterLine-C++ Programmer’s Guide and Reference 185

Debugging a running process

debugging symbols), the debugger continues execution until the
function returns.

pdm (break 1) -> step
Current function has no line number information.
Single stepping until function exit.
Stopped in function: ‘sleep’. No source file info.
pdm (break 1) -> step
Current function has no line number information.
Single stepping until function exit.

After a short pause, the Execution symbol appears at line 18 of
mainwait.C.

8 To detach from the process:

pdm (break 1) -> detach
Detaching program: c++examples_dir/tutorial_attach pid process_id
pdm (break 1) ->

The process continues execution. The bounce window appears,
and a rectangle bounces in it.

9 Reset the Workspace:

pdm (break 1) -> reset
Resetting to top level.
pdm ->

See also attach on page 205

detach on page 215

Debugging machine instructions

186 CenterLine-C++ Programmer’s Guide and Reference

Task: Debugging machine instructions

If a program or library was not compiled with -g, you can still debug
its machine instructions using the listi, stopi, stepi, and nexti
commands.

Listing machine
instructions

Use the listi Workspace command to list machine instructions in the
Workspace. You can list machine instructions for:

• The current program counter (PC) address (if at a break level)

• A hexadecimal or octal address

• A range of hexadecimal or octal addresses

• A line number (if the executable was compiled with -g)

• A range of line numbers (if the executable was compiled with -g)

• A function

• An address expressed as a function name and offset

For example, if execution is stopped on the line that declares the main
routine in the Bounce program, you can list the Assembler instructions
for that source line in several different ways:

pdm -> listi (Current PC)
0x2b38 9 int main(void)
0x2b38 <main+8>: call 0x3430 <_main>
0x2b3c <main+12>: nop
pdm -> listi 0x2b38 0x2b3c (Range of addresses)
0x2b38 9 int main(void)
0x2b38 <main+8>: call 0x3430 <_main>
0x2b3c <main+12>: nop
pdm -> listi 9 (Source line number)
0x2b38 9 int main(void)
0x2b38 <main+8>: call 0x3430 <_main>
0x2b3c <main+12>: nop

NOTE To debug machine instructions, you need to be
familiar with the Assembler instructions for your
platform’s CPU as well as the registers used. Refer
to the “Run-Time Organization” section of your
CenterLine-C++ Platform Guide and the
programming guide for your CPU.

CenterLine-C++ Programmer’s Guide and Reference 187

Debugging machine instructions

Refer to listi on page 230 for complete syntax.

If the routine that you are listing has been compiled with -g and you
list it with listi, the Workspace lists the source code interleaved with
the Assembler code. For example:

0x2b38 9 int main(void)
0x2b38 <main+8>: call 0x3430 <_main>
0x2b3c <main+12>: nop

0x2b40 11 Point P1(50, 50);
0x2b40 <main+16>: add -16, %fp, %i4
0x2b44 <main+20>: mov %i4, %o0
0x2b48 <main+24>: mov 0x32, %o1
0x2b4c <main+28>: call 0x2c80 <__ct__5PointFiT1>
0x2b50 <main+32>: mov 0x32, %o2

0x2b54 12 Point P2(64, 20);
0x2b54 <main+36>: add -24, %fp, %i0
0x2b58 <main+40>: mov %i0, %o0
0x2b5c <main+44>: mov 0x40, %o1
0x2b60 <main+48>: call 0x2c80 <__ct__5PointFiT1>
0x2b64 <main+52>: mov 0x14, %o2

If the routine was compiled without -g and you list it with listi, the
Workspace lists only the Assembler code. For example:

0x2b38 <main+8>: call 0x3430 <_main>
0x2b3c <main+12>: nop
0x2b40 <main+16>: add -16, %fp, %i4
0x2b44 <main+20>: mov %i4, %o0
0x2b48 <main+24>: mov 0x32, %o1
0x2b4c <main+28>: call 0x2c80 <__ct__5PointFiT1>
0x2b50 <main+32>: mov 0x32, %o2
0x2b54 <main+36>: add -24, %fp, %i0
0x2b58 <main+40>: mov %i0, %o0
0x2b5c <main+44>: mov 0x40, %o1
0x2b60 <main+48>: call 0x2c80 <__ct__5PointFiT1>
0x2b64 <main+52>: mov 0x14, %o2

Setting breakpoints
in machine
instructions

To set breakpoints on machine instructions, you can use the stopi
command:

pdm -> stopi at address

When the byte at the specified address is modified, the debugger stops
execution of the program. The address can be specified in hexadecimal,
octal, or as a function plus offset.

Debugging machine instructions

188 CenterLine-C++ Programmer’s Guide and Reference

Stepping through
machine
instructions

Use the stepi and nexti Workspace commands to step through
machine instructions. stepi enters functions when they are called,
but nexti does not enter functions.

If desired, you can step through more than one instruction at a time by
specifying number as an argument to stepi or nexti:

pdm -> stepi number
pdm -> nexti number

Example In the following example, the Bounce program has a bug in it, but it
has not been compiled with -g, so you must debug it at the machine
level. This example shows the machine instructions for the Sun
SPARC platform; the machine instructions for other platforms differ.

1 Go to the CenterLine-C++ examples directory and make the
tutorial_corenog target:

pdm -> cd ~/c++examples_dir
pdm -> make tutorial_corenog

2 Load tutorial_corenog and run it.

pdm -> debug tutorial_corenog
pdm -> run
Resetting to top level.
Executing: c++examples_dir/tutorial_corenog

Program received signal 11, Segmentation fault
pdm (break 1) ->

Since the debugger generated a break level, it has caught the
SIGSEGV signal, and a corefile was not generated.

3 Ignore the SIGSEGV signal and rerun the program to generate
the corefile:

pdm (break 1) -> ignore 11
pdm (break 1) -> run
Restting to top level.
Executing c++examples_dir/tutorial_corenog

Program terminated with signal 11, Segmentation fault
The inferior process no longer exists.
Resetting to top level.
pdm ->

NOTE If you have not yet set up the CenterLine-C++
examples directory, refer to “Setting up the
examples directory” on page 9 for instructions.

CenterLine-C++ Programmer’s Guide and Reference 189

Debugging machine instructions

4 Load tutorial_core and the corefile:

pdm -> debug tutorial_corenog core
debug: Deleting all debugging items.
Debugging program ‘tutorial_corenog’ (previous program ‘tutorial_corenog’)
Core was generated by ‘tutorial_corenog’.
Program terminated with signal 11, Segmentation fault.
#0 DrawableShape::bounce (this=0x0) at shapes.C:112

112 doDraw();
pdm 7 ->

The debugger checks the executable against the corefile to make
sure that they match, displays the Execution symbol on the
source line that generated the signal, and indicates the signal
that generated the corefile.

5 To show the instruction that generated the signal, use the listi
command without any arguments, which displays the
instruction at the current PC:

pdm -> listi
0x2da0 <bounce__13DrawableShapeFv+12>: ld [%i0], %g1

6 To see where the DrawableShape::bounce routine is called
from main, move up the execution stack and display the current
PC with the listi command:

pdm -> up
Scoping to main() at “mainorig.C”:15
pdm -> listi
0x29ac <main+60>: call 0x6184 <_GLOBAL_OFFSET_TABLE_+296>

See also "Listing source code" on page 143

"Setting breakpoints and watchpoints" on page 150

"Running, continuing, and stepping" on page 163

listi on page 230

nexti on page 234

stepi on page 250

stopi on page 254

Saving your debugging session

190 CenterLine-C++ Programmer’s Guide and Reference

Task: Saving your debugging session

You can save a record of your debugging session in three different
ways:

• Save your input history using the history command

• Save your complete debugging session, including input and
output

• Save the input and output displayed in the Run Window

By default, the Workspace transcript is limited to 2000 lines, which
limits the size of your input history or session transcript. To change the
size of the Workspace transcript, use the
CenterLine-C++*workspaceTranscriptSize resource. See the
X resources entry in the Man Browser.

Displaying and
saving your input
history

To save your current input history in a file, redirect the output of
history to a file:

pdm -> history #> filename

Saving your
debugging session

To save your debugging session:

1 In the Workspace, display the Workspace Options pop-up
menu and then the Save Session to submenu.

2 Select either clc++.script or Other file. If you select the latter,
you specify the file in a file selection dialog box.

Saving the
contents of the Run
Window

To create a log in your current working directory of the contents of
the Run Window during your debugging session, put the following
resource in your X resources file. The filename of the log file is
XtermLog.pid, where pid is the process ID of the clxterm process (the
process that controls the Run Window).

CenterLine-C++*RunWindow.logging: on

See also history on page 225

centerline-c++ in the Man Browser

X resources in the Man Browser

CenterLine-C++ Programmer’s Guide and Reference 191

Customizing your startup file

Task: Customizing your startup file

The CenterLine-C++ debugger provides system-wide and local
startup files that you can use for setting search paths and aliases at
startup.

Setting up your
.pdminit file

You can use the .pdminit startup file to set up aliases and search
paths to be used across debugging sessions. When you start the
debugger, it searches directories in the following order for a
.pdminit file:

• Your current working directory. You can have different
.pdminit files for use with different projects, providing the
projects are stored in different directories.

• Your home directory.

To set up your .pdminit file:

1 Create a text file named .pdminit in your current directory or
your home directory.

If desired, you can give the file a different name from .pdminit.
If you do, start the debugger with the -s startup_file switch and
specify the pathname of the file. See “Selecting specific startup
files from the command line” on page 192 for details.

2 Add alias commands for all the aliases you want to use across
debugging sessions.

alias name command

For more information on aliases, refer to "Using aliases for
Workspace commands" on page 136.

3 Add a use command for all the directories that the debugger
should search through when loading (debug command), listing
(list command), or editing (edit command) an executable.

use directory...

4 Start pdm. It executes the commands in the .pdminit file.

Customizing your startup file

192 CenterLine-C++ Programmer’s Guide and Reference

Selecting specific
startup files from
the command line

When you start the debugger with the centerline-c++ command,
you can use the following switches to select or ignore specific
startup files:

-s[=filename] If filename is supplied, it is read instead of
the local .pdminit file. If filename is not
supplied, the debugger ignores the local
.pdminit file.

-S[=filename] If filename is supplied, it is read instead of
the system-wide .pdminit file. If filename is
not supplied, the debugger ignores the
system-wide .pdminit file.

Setting the
class_as_struct
option

By default, pdm distinguishes between member functions and data
members when it processes classes. You can improve performance
by setting the class_as_struct option, which causes pdm to treat
member functions and data members as data fields as in a C struct.

To make this the default behavior, add this line to your .pdminit file:

setopt class_as_struct

You can also use this command in the Workspace; if you do, it will take
effect the next time you issue the debug command. To list current
option settings, use the printopt command, and to set the
class_as_struct option to false, enter this command:

unsetopt class_as_struct

Example Here is a sample .pdminit file:

/* Define aliases for common commands. */

alias s step
alias n next

/* Specify search path. */

use . ../test ../src

See also alias on page 203

use on page 258

centerline-c++ in the Man Browser

CenterLine-C++ Programmer’s Guide and Reference 193

Customizing buttons and commands

Task: Customizing buttons and commands

You can customize the menus in the Main Window in the following
ways:

• Add, change, or delete buttons in the Button panel

• Create new menu items for your own custom commands

The debugger stores information about customized buttons and menu
items in the file .clc++usrcmd. The debugger automatically generates
this file and saves it in your home directory at the end of your session.
Although .clc++usrcmd is an editable ASCII file, we recommend that
you do not edit it.

Adding new buttons You can add a button for any menu command already available in
the Main Window. To add a button for any other command, such as
a Workspace command, you need to create a custom command first,
as described in “Creating new menu items for custom commands”
on page 195. Once a menu command is available, follow these steps
to create a button for it:

1 Display the CenterLine-C++ menu and then the Button Panel
submenu.

2 Select Add Menu Items to Panel.

The debugger opens the Add Menu Cell to Button Panel dialog
and places the Main Window in copy mode, as shown in the
following illustration:

Customizing buttons and commands

194 CenterLine-C++ Programmer’s Guide and Reference

3 Display the desired menu in the menu bar and select the menu
item for which you want to create a button.

The Label text field displays the name of the button, and the
Position text field displays the position, which defaults to 0 (the
leftmost button in the button panel).

4 If desired, edit the Label and Position text fields.

5 Select the Apply button.

The new button appears at the specified position on the Button
panel.

6 When finished, select the Done button.

Changing the name
and position of
buttons

To change the name and position of a button:

1 Display the CenterLine-C++ menu and then the Button Panel
submenu.

2 Select Customize Button Panel.

The debugger opens the Customize Buttons dialog, as shown in
the following illustration.

NOTE You cannot select a menu item that appears on a
submenu.

CenterLine-C++ Programmer’s Guide and Reference 195

Customizing buttons and commands

3 Select the desired button in the scrolling list.

4 Edit the Button Label and Button Position text fields.

5 Select the Change button.

6 When finished, select the Done button.

Deleting buttons To delete a button:

1 Display the CenterLine-C++ menu and then the Button Panel
submenu.

2 Select Customize Button Panel.

The debugger opens the Modify Buttons in Button Panel dialog.

3 Select the desired button in the scrolling list.

4 Select the Delete button.

5 When finished, select the Done button.

Creating new menu
items for custom
commands

You can create custom commands that appear on the User Defined
submenu of the CenterLine-C++ menu.

1 Display the CenterLine-C++ menu and then the User Defined
submenu.

2 Select Add/Change/Delete.

The debugger opens the User Defined dialog, as shown in the
illustration on the next page. .

3 Enter the name of the custom command in the Label text field.

4 If you want to add a button to the button panel for this
command, select the Create Button button. You also need to
specify the row and column position of the button if the default
(row 0, column 0) isn’t suitable.

Customizing buttons and commands

196 CenterLine-C++ Programmer’s Guide and Reference

5 Decide whether your command will use Workspace commands
(default) or shell commands.

If the latter, select the Shell button. You also need to specify the
following items.

• The shell you want the debugger to fork when you invoke
this custom command.

• Whether you want the debugger to wait for all the shell
commands in the definition to terminate before continuing
its own process.

• Whether you want the shell output to use a terminal
emulator. If so, you specify which one to use. If you do
choose not to use a terminal emulator, your commands will
not be able to perform any input or output. Use this choice
only if your commands do not do any input and if you do
not want to see any command output.

CenterLine-C++ Programmer’s Guide and Reference 197

Customizing buttons and commands

6 Enter the definition for the command in the Definition text box.
You can enter as many commands as you like.

For custom Workspace commands, on each line in the Definition
area, put any input that the Workspace will accept on a single
line. You cannot use a backslash (\) to escape the newline
character.

For custom shell commands, put any input that the specified shell
will accept.

When you define a custom command, you can use the following
variables:

$pwd The debugger’s current working
directory.

$filename The filename of the file in the Source
area, relative to the debugger’s current
working directory.

$filepath The absolute filename of the file in the
Source area.

$selection The X11 PRIMARY selection,
interpreted as a string. The X11
PRIMARY selection is the range of text
that you drag to select. If the selection is
not available or is empty, $selection is
replaced with an empty string.

$clipboard The X11 CLIPBOARD selection. The X11
CLIPBOARD selection is the range of
text that you drag to select and then
press the Copy key or use the Copy
menu item (usually in OPEN LOOK
only). If the selection is not available or
is empty, $clipboard is replaced with an
empty string.

$first_selected_line The line number (numbered from 1 to
n) of the first line of the current text
selection in the Source area of the Main
Window.

Customizing buttons and commands

198 CenterLine-C++ Programmer’s Guide and Reference

If there is no text selection in the Source area, the
$first_selected_line, $first_selected_char, $last_selected_line,
and $last_selected_char return 0.

Modifying custom
commands

To modify a custom command:

1 Display the CenterLine-C++ menu and then the User Defined
submenu.

2 Select Add/Change/Delete.

The debugger opens the User Defined dialog.

3 Select the command from the scrolling list.

4 Make the changes desired.

5 Select the Change button.

6 When finished, select the Done button.

$first_selected_char The character position (numbered from
1 to n, with tabs being a single
character) of the first character that is
selected in $first_selected_line.

$last_selected_line The line number (numbered from 1 to
n) of the last line of the current text
selection in the Source area of the Main
Window.

$last_selected_char The character position (numbered from
1 to n, with tabs being a single
character) of the last character that is
selected in $last_selected_line.

NOTE If the current X11 selection contains newlines, the
$clipboard and $selection variables expand to
multiple lines. You cannot use multiple lines for
customized Workspace commands. Multiple lines
might also interfere with customized shell
commands.

CenterLine-C++ Programmer’s Guide and Reference 199

Customizing buttons and commands

Deleting custom
commands

To delete a custom command:

1 Display the CenterLine-C++ menu and then the User Defined
submenu.

2 Select Add/Change/Delete.

The debugger opens the User Defined dialog.

3 Select the command from the scrolling list.

4 Select the Delete button.

5 When finished, select the Done button.

Example To add a button for the Quit menu command:

1 Display the CenterLine-C++ menu and then the Button Panel
submenu.

2 Select Add Menu Items to Panel.

The debugger opens the Add Menu Cell to Button Panel dialog
and places the Main Window in copy mode.

3 Display the CenterLine-C++ menu and select the Quit
CenterLine-C++ menu item.

The Label text field displays the name of the button, and the
Position text field displays the position, which defaults to 0 (the
leftmost button in the button panel).

4 Change the button label in the Label field to Quit.

5 Select the Apply button.

6 Select the Done button to close the dialog.

7 Select the Quit button in the Button panel to test the new button.

See also X resources in the Man Browser

Customizing environment variables

200 CenterLine-C++ Programmer’s Guide and Reference

Task: Customizing environment variables

To display, set, and unset the environment variables that are used by
your program, you can use the printenv, setenv, and unsetenv
commands in the debugger. They are analogous to the similarly
named csh commands.

These commands affect only your program’s environment variables;
they do not affect the environment variables used by the debugger.

printenv Displays the values of environment
variables.

setenv Sets the value of an environment variable.

unsetenv Unsets an environment variable.

printenv displays the default values of the environment variables,
which are the values that your program inherits each time it starts. If
your program alters an environment variable with the putenv()
library function, the change is not shown by the printenv command.

For example, you can display and set the current setting for the
SHELL environment variable in the following way:

pdm -> printenv SHELL
SHELL=/usr/local/bin/tcsh
pdm -> setenv SHELL /bin/sh
pdm -> printenv SHELL
SHELL=/bin/sh

See also printenv on page 236

setenv on page 243

unsetenv on page 256

CenterLine-C++ Programmer’s Guide and Reference 201

Quitting from the debugger

Task: Quitting from the debugger

You can exit from the debugger using one of the following methods:

• Display the CenterLine-C++ menu in the Main Window and
select Quit. In the dialog box, select Quit to exit.

• Enter the quit command in the Workspace.

7 Command Reference

This chapter contains an alphabetical reference to
commands available in pdm, the CenterLine-C++
symbolic debugger.

CenterLine-C++ Programmer’s Guide and Reference 203

alias

alias
creates an alias for a command

Command syntax alias
alias name
alias name text

Description << none >> Lists all aliases currently set.

name Lists the text value for the specified alias
name.

name text Sets the name string to the value of the text
string.

Usage Use the alias command to create an alternative name for
CenterLine-C++ commands. When an alias is detected at the
beginning of a command line, its text is used in place of the name.
Use aliases to create shortcuts for frequently used commands.

Default aliases In addition to aliases that you can create, CenterLine-C++ comes
with several default aliases, such as ls and pwd. When you issue the
alias command without arguments, the default aliases are displayed
along with any that you have defined. For example:

-> alias s step

-> alias

ls sh ls

pwd sh pwd

s step

See also unalias

“Using aliases for Workspace commands” on page 136

“Customizing your startup file” on page 191

NOTE To save an alias permanently, place its
definition in your .pdminit file.

assign

204 CenterLine-C++ Programmer’s Guide and Reference

assign
assigns a value to a variable

Command syntax assign variable = expression

Description variable = expression Evaluates an expression (second argument)
and assigns the value of the expression to a
variable (first argument).

Usage Use the assign command to evaluate an expression and assign its
value to a variable. Assigning a value to a variable in the Workspace
allows you to either directly manipulate values in code that you are
debugging or to set values for code you are creating in the
Workspace. The assign and set commands are functionally identical.

See also print, set

“Examining data structures” on page 169

CenterLine-C++ Programmer’s Guide and Reference 205

attach

attach
attaches to a running process

Command syntax attach process_id

Description process_id Attaches CenterLine-C++ to the running
process identified by process_id. You can
attach to only one process at a time.

Usage When you attach to a running process, CenterLine-C++ stops the
process. You can then examine and modify the process with any
CenterLine-C++ command. If you want the process to continue
running, use the cont command. Use the detach command to release
a process from CenterLine-C++’s control.

If you try to attach a process while you are already attached to
another process, CenterLine-C++ prompts you to detach before
attaching.

You can use the attach command in combination with debug to attach
an executable file to an already running process. That is, you can use
the following two commands:

(pdm) 1 -> debug my_a.out
(pdm) 2 -> attach my_process_id

instead of the following:

(pdm) 2 -> debug my_a.out my_process_id

See also debug, detach

“Debugging a running process” on page 182

NOTE If you use the run command while you have
an attached process, you kill that process.

build

206 CenterLine-C++ Programmer’s Guide and Reference

build
reloads the program currently being debugged if it is out
of date

Command syntax build

Description << none >> Reloads the executable (for instance, a.out)
if the executable is newer than the current
one.

Usage Use the build command to reload the file that you are debugging
after you have recompiled it.

See also debug, make

“Building and reloading executables” on page 147

CenterLine-C++ Programmer’s Guide and Reference 207

catch

catch
traps signals before they reach the program

Command syntax catch
catch signal_name
catch signal_number

Description << none >> Lists the unprefixed names of the signals
that are currently caught.

signal-name Enables trapping for the designated signal
and generates a break level whenever the
signal is generated.

signal-number Enables trapping for the designated signal
and generates a break level whenever the
signal is generated.

Usage Use the catch command to trap signals before they reach the
program; each signal is either caught or ignored by CenterLine-C++.
Once a signal is trapped, CenterLine-C++ generates a break level.

You can use the cont command to pass the signal number to your
program.

Signal numbers To obtain the number for a signal, consult the UNIX reference
manuals for your system.

Signals caught To view a list of the signals caught for your platform, use the catch
command without any arguments.

Signal name With the catch command, the signal name can be in uppercase or
lowercase letters, and it can be used with or without the prefix
“SIG”. For example, the following commands are equivalent:

-> catch SIGALRM
-> catch sigalrm
-> catch ALRM
-> catch alrm

catch

208 CenterLine-C++ Programmer’s Guide and Reference

Restrictions Control-z during execution or in the Run Window is always
handled as a signal-deliver, generating an error if not trapped by the
user program.

Ignoring SIGINT causes SIGQUIT to perform interruption duties.
Ignoring both of them interferes with stopping execution.

The signals SIGTTIN and SIGTTOU will never suspend execution; if
not trapped and ignored they will generate an error.

See also cont, ignore

“Handling signals” on page 177

CenterLine-C++ Programmer’s Guide and Reference 209

cd

cd
changes the current working directory

Command syntax cd
cd pathname

Description << none >> Changes the working directory for
CenterLine-C++ to your home directory.

pathname Changes the working directory for
CenterLine-C++ to the designated
pathname. UNIX wildcards are allowed.

Usage To facilitate loading and saving files, use the cd command to change
the current working directory for CenterLine-C++.

See also use

cont

210 CenterLine-C++ Programmer’s Guide and Reference

cont
continues execution from a break level

Command syntax cont

cont at line

cont at line sig signum

cont sig signum

cont skip count

Description << none >> Continues execution of the program from
the current break level.

at line Continues at location specified by line.

at line sig signum Continues at location specified by line with
signal specified by signum. This means the
signal is delivered to your program, which
must handle it.

sig signum Continues with signal specified by signum.

skip count Continues, ignoring breakpoint for count
iterations.

Usage Use the cont command to continue execution of the program from a
break level.

Restrictions You cannot continue from all errors by supplying a continuation
value to cont.

See also step, stepout, stop, where, whereami

“Using Workspace break levels” on page 160

“Running, continuing, and stepping” on page 163

CenterLine-C++ Programmer’s Guide and Reference 211

contents

contents
lists source files for the current debug file

Command syntax contents
contents all
contents file

Description << none >> Returns the pathname of the a.out file
currently loaded.

all Lists known source files for the a.out file
currently being debugged.

file Lists the functions defined in the source file
named file.

Usage Use the contents command to display information about files in the
executable that you are currently debugging. The contents
command lists only the files that were compiled with debugging
information (the -g switch).

Restrictions The following restrictions apply:

• The contents all variation does not display files compiled
without debugging information.

• The contents file variation may return only a partial list of
objects declared or defined in file.

See also build, make

“Listing source code” on page 143

debug

212 CenterLine-C++ Programmer’s Guide and Reference

debug
loads an executable file, a corefile, or a process for
debugging

Command syntax debug

debug executable

debug executable corefile

debug executable process_id

Description << none >> Displays the name and arguments of the
program being debugged.

executable Loads the symbol table for executable, which
is the name of the executable program to be
debugged.

executable corefile Loads the symbol table from the executable
program (executable) and sets up
CenterLine-C++ to work with the corefile
along with the executable program. The
corefile contains a literal copy of the contents
of memory at the time that the operating
system aborted a program.

executable process_id Loads the symbol table from the executable
file and attaches to the running process
identified by process_id. The process can be
running inside or outside of
CenterLine-C++.

Usage Use the debug command to load the files required for the following
kinds of source-level and machine-level debugging:

• Debugging a fully linked executable program

• Debugging a fully linked executable program along with a
corefile

• Debugging a running process

CenterLine-C++ Programmer’s Guide and Reference 213

debug

Using the -g switch The information in the symbol table in an executable file varies
according to whether or not you used the -g switch when you
compiled the object modules that you linked to create it. Modules
that are not compiled with -g contain the information for
machine-level debugging only, plus information about the
hexadecimal address of external symbols. Modules compiled with
-g, in contrast, contain full source-level debugging information.
Also, if you strip debugging information from an executable file, you
are limited to machine-level debugging without any knowledge of
external symbols.

Using run after debug After you use debug to load a program, use run to start it running.
This causes CenterLine-C++ to create a process and make that
process run your program. You can then use any CenterLine-C++
command to debug the program.

If your program crashes and creates a corefile, you can use debug to
load the corefile created when it crashed.

Attaching to a process When you attach to a running process, the first thing that
CenterLine-C++ does is to stop the process. You can then examine
and modify the process with the commands available in
CenterLine-C++. If you want the process to continue running, use
the continue (cont) command. Use the detach command to release a
process from CenterLine-C++’s control.

You can use the attach command in combination with debug to attach
to an already running process. That is, you can use the following two
commands:

pdm 1 -> debug my_executable
pdm 2 -> attach my_process_id

instead of the following:

pdm 3 -> debug my_executable my_process_id

See also attach, detach

“Starting up the debugger” on page 120

“Loading files for debugging” on page 142

“Debugging an executable with a corefile” on page 178

“Debugging a running process” on page 182

NOTE If you use the run command while you have
an attached process, you kill that process.

delete

214 CenterLine-C++ Programmer’s Guide and Reference

delete
deletes debugging items

Command syntax delete all
delete number ...

Description all Deletes all debugging items everywhere.

number... Deletes the specified debugging item.

Usage Use the delete command to delete a breakpoint, action, or display.

To obtain the number of a debugging item, use the status command.

Zombied items If delete is called on a debugging item currently active on the
execution stack, the item will be zombied (marked for deletion)
instead of being deleted immediately. A zombied item is deleted
once it has completed executing.

See also display, status, stop, when

“Setting breakpoints and watchpoints” on page 150

“Setting actions” on page 155

“Examining and deleting debugging items” on page 158

“Using Workspace break levels” on page 160

CenterLine-C++ Programmer’s Guide and Reference 215

detach

detach
detaches from a running process

Command syntax detach

Description

Usage Use the detach command to release a process from
CenterLine-C++’s control. Detaching a process continues its
execution.

After you use the detach command, a process is completely
independent of CenterLine-C++, and you can use attach with
another process, or start a process with run.

See also attach, debug

“Debugging a running process” on page 182

<<none>> Detaches CenterLine-C++ from the running
process that was attached using
CenterLine-C++’s attach command.

NOTE If you use the run command while you have
an attached process, you kill that process.

display

216 CenterLine-C++ Programmer’s Guide and Reference

display
displays the value of a variable or expression

Command syntax display expression
display variable

Description expression Invokes the Data Browser, which creates a
new display item each time you invoke the
display command. The display item
graphically displays the value of the
variable or expression.

variable Displays the value of the designated global
or local variable whenever execution is
stopped.

Usage Use the display command to display the value of an expression or a
variable. CenterLine-C++ displays the value whenever your
program is stopped, including during single-stepping.

Local variables The argument to display may contain references to local variables
that are currently in scope. If execution later stops at a point where
these variables are no longer in scope, the display will either
generate an error (Workspace) or show the variable with the text in
a dimmed or "greyed out" state (Motif or OPEN LOOK).

Manipulating display
items

Display items can be deleted with the delete command and
examined with the status command.

See also delete, dump, print, status, whatis, whereis

“Examining and deleting debugging items” on page 158

“Examining data structures” on page 169

CenterLine-C++ Programmer’s Guide and Reference 217

down

down
moves down the execution stack

Command syntax down
down number

Description << none >> Moves the current scope location down one
level on the execution stack. Source panel
shows file scoped to location and highlights
it with an arrow.

number Moves the current scope location the
specified number of levels down on the
execution stack.

Usage Use the down command to move the current scope location down
the execution stack, away from the top level of the Workspace and
toward the current break level.

The scope location is the point at which all variables, types, and
macros are scoped. When a break level is generated, the scope location
is set to the point at which execution was interrupted.

When at a break level, the where command can be used to display the
execution stack. The whereami command can be used to display the
break location and the current scope location.

See also cont, reset, up, where, whereami

“Using Workspace break levels” on page 160

“Moving in the execution stack” on page 166

dump

218 CenterLine-C++ Programmer’s Guide and Reference

dump
displays all local variables

Command syntax dump
dump function
dump text

Description << none >> Displays the name and value of each
variable local to the current scope location.

function Displays the name and value of each
variable local to the specified function.

text Displays the name and value of each
variable contained in an arbitrary text string.

Usage Use the dump command to display the names and values of local
variables.

Typically you use the text argument by selecting a range of text, then
issuing the dump command. CenterLine-C++ displays the name and
value of each of the variables contained in the text string.

See also display, print, whatis, whereis

“Using Workspace break levels” on page 160

“Examining data structures” on page 169

CenterLine-C++ Programmer’s Guide and Reference 219

edit

edit
invokes your editor at a specified location

Command syntax edit
edit file
edit "file":line
edit function
edit line number

Description << none >> Loads the current file into your editor,
positioned at the current list location.

file Loads the specified file into your editor,
positioned at the top of the file.

"file":line Loads the specified file into your editor,
positioned at the specified line in the file.

function Loads the file containing the specified
function definition into your editor,
positioned at the start of the function.

line number Loads the file specified by the current list
location into your editor, positioned at the
specified line number.

Usage Use the edit command to facilitate quick debug-edit-run turnaround
times by invoking your editor to edit a file at a specified location. In
all cases, once the editor is invoked, the current list location is set to
the file and line number edited.

See also “Selecting an editor to use with the debugger” on page 119

“Using menus and text fields” on page 126

“Copying and pasting text between windows” on page 129

“Editing Workspace input” on page 137

“Editing source code” on page 145

email

220 CenterLine-C++ Programmer’s Guide and Reference

email
sends electronic mail to CenterLine Software

Command syntax email

Description << none >> Opens the email dialog box.

Usage To report bugs or offer suggestions, use the email command to send
an electronic mail message to CenterLine Software. When you send
a bug report, include examples of the source code that produced the
problem, if possible.

When you issue the email command, you can use the UNIX mail(1)
electronic mail utility’s escape sequences.

See also “Finding out more about the debugger” on page 122

CenterLine-C++ Programmer’s Guide and Reference 221

file

file
displays and sets the current list location

Command syntax file
file filename

Description << none >> Displays the name of the file containing the
current list location.

filename Sets the current list location to the top of the
specified file.

Usage Use the file command to display and set the current list location.
Commands such as edit, list, and stop use the list location as the
default location unless specifically overridden by an argument.

The file command changes which static variables are visible at the top
level in the Workspace.

See also edit, list, stop

“Using Workspace break levels” on page 160

gdb

222 CenterLine-C++ Programmer’s Guide and Reference

gdb
executes a gdb command

Command syntax gdb gdb_command [argument] ...

Description gdb_command [argument] Executes gdb_command [argument] as if it
were typed to a gdb command prompt.

Usage The gdb command allows you to stay in CenterLine-C++ and
execute gdb commands. For instance, the following invokes break, a
gdb command, with 20 as the argument:

pdm 1 -> gdb break 20

For more information on gdb commands, you can use the gdb help
command:

pdm 1 -> gdb help

Documentation on gdb is available from CenterLine by using
anonymous ftp. For information, refer to “Distribution” on page iii.

See also gdb_mode

“Invoking Workspace commands” on page 131

NOTE Although we provide access to native gdb
commands as a convenience, we do not
provide any additional support for native gdb
commands.

CenterLine-C++ Programmer’s Guide and Reference 223

gdb_mode

gdb_mode
invokes gdb

Command syntax gdb_mode

Description << none >> Invokes gdb.

Usage Use the gdb_mode command when you want to issue a series of
gdb commands without prefacing every command with the gdb
command.

To use gdb along with pdm, issue the gdb_mode command in the
CenterLine-C++ Workspace:

pdm 1 -> gdb_mode
(gdb)

At the (gdb) prompt, you can use only the gdb command set:

(gdb) break 20
(gdb) when
Undefined command: "when". Try ”help”.

You can get back to the pdm debugger by typing the following
command:

(gdb) pdm
pdm 2 ->

For more information on gdb commands, you can use the help
command while in gdb mode.

Documentation on gdb is available from CenterLine by using
anonymous ftp. For information, refer to “Distribution” on page iii.

See also gdb

“Invoking Workspace commands” on page 131

NOTE Although we provide the gdb_mode
command as a convenience, we do not provide
any technical support for gdb.

help

224 CenterLine-C++ Programmer’s Guide and Reference

help
displays usage information about commands

Command syntax help
help command

Description << none >> Lists the names of CenterLine-C++
commands by category.

command Displays a summary of syntax and usage
information for the specified command.

Usage Use the help command for quick online help for CenterLine-C++
commands.

See also man

“Finding out more about the debugger” on page 122

CenterLine-C++ Programmer’s Guide and Reference 225

history

history
lists previously entered input

Command syntax history
history number

Description << none >> Displays all input lines previously entered
from the Workspace.

number Displays the specified number of input lines
entered from the Workspace.

Usage Use the history command for easy recall of previously issued
commands and to monitor the debugging sequence leading to a
given state.

Use ## to repeat the immediately previous command, and use
#history_line_number to repeat the command specified by
history_line_number.

Pressing Control-p scrolls backward through the history list. Pressing
Control-n scrolls forward through the history list.

To save the list of input lines entered from the Workspace in a file, use
the following command:

-> history #> file_name

See also “Saving your debugging session” on page 190

ignore

226 CenterLine-C++ Programmer’s Guide and Reference

ignore
allows signals to pass directly to the program

Command syntax ignore
ignore signal-name
ignore signal-number

Description << none >> Lists the unprefixed name of the signals
that are currently ignored.

signal-name Disables trapping for the designated signal,
allowing the signal to pass directly to the
program, which can execute a signal
handler if it has been specified.

signal-number Disables trapping for the designated signal,
allowing the signal to pass directly to the
program, which can execute a signal
handler if it has been specified.

Usage Use the ignore command for any signal that you want to pass
directly to the program. Once an ignored signal is passed to the
program, the program executes any signal handlers specified for it.

Signal numbers To obtain the number for a signal, consult the UNIX reference
manuals for your system.

Signal names With the ignore command, the signal name can be in uppercase or
lowercase letters, and it can be used with or without the prefix
“SIG”. For example, the following commands are equivalent:

-> ignore SIGHUP
-> ignore sighup
-> ignore HUP
-> ignore hup

Signals ignored To obtain a list of signals ignored on your platform, type the ignore
command without any arguments.

NOTE Even if a signal is ignored, it interrupts system
calls, such as select(), that are interruptible.

CenterLine-C++ Programmer’s Guide and Reference 227

ignore

Restrictions When a signal is caught and a break level is generated, the signal is
consumed. Ignoring the signal at the break level and continuing
execution will not regenerate the signal and pass it to the program.

Control-z during execution or in the run window is always handled
as a signal-deliver, generating an error if not trapped by the user
program.

Ignoring SIGINT causes SIGQUIT to perform interruption duties.
Ignoring both of them interferes with stopping execution.

The signals SIGTTIN and SIGTTOU will never suspend execution; if
not trapped and ignored they will generate an error.

See also catch

“Handling signals” on page 177

list

228 CenterLine-C++ Programmer’s Guide and Reference

list
displays source code lines

Command syntax list
list file
list "file":line
list function
list line_number
list start_line end_line

Description << none >> Lists source code starting at the current list
location.

file Lists source code starting at the top of the
specified file.

"file":line Lists source code starting at the specified
line number in the specified file.

function Lists source code starting at the top of the
specified function.

line_number Lists source code starting at the line number
specified.

start_line end_line Lists source code starting at the line number
specified by start_line and ending at the line
number specified by end_line.

Usage Use the list command to display specific lines of source code
relative to the current list location. The list location is set by the
following events:

• When a file is loaded, it is set to the first line.

• When a break level is entered, it is set to the break location.

• When the list command is used, it is set to the last line
displayed.

You can also set the list location using the file command.

CenterLine-C++ Programmer’s Guide and Reference 229

list

If you use the list command and specify a static function for the
function argument, you may receive an error in certain situations.
However, if you first use the whatis command and specify the static
function as an argument, the debugger loads additional symbols.
Then, you can use the list command with the static function to load
the source code in the Source area.

See also display, edit, whatis, whereis

“Listing source code” on page 143

listi

230 CenterLine-C++ Programmer’s Guide and Reference

listi
displays machine instructions

Command syntax listi

listi addr

listi addr1 addr2

listi line

listi line1 line2

listi func

listi func + offset

Description <<none>> Displays machine instructions at current
program counter address.

addr Displays machine instructions at addr. The
value of addr can be a hexadecimal or octal
number.

addr1 addr2 Displays machine instructions between
addr1 and addr2. The values of addr1 and
addr2 can be hexadecimal or octal numbers.

line Displays machine instructions at line in
current file. The value of line must be a
decimal number.

line1 line2 Displays machine instructions between
line1 and line2. The values of line1 and line2
must be decimal numbers.

func Displays machine instructions for func.

func + offset Displays machine instruction at the address
equal to the address of func plus offset.

See also list, nexti, stepi, stopi

“Listing source code” on page 143

“Debugging machine instructions” on page 186

CenterLine-C++ Programmer’s Guide and Reference 231

make

make
invokes the UNIX make command

Command syntax make
make target ...

Description << none >> Calls the UNIX make command using the
default target. Shows make errors in the
Error Browser.

target ... Calls the UNIX make command using the
target argument as its target.

Usage The CenterLine-C++ make command has the same effect as using
the make command in the shell. The Error Browser displays any
make errors.

See also build, contents

“Building and reloading executables” on page 147

“Finding and fixing errors” on page 148

man

232 CenterLine-C++ Programmer’s Guide and Reference

man
displays information about CenterLine-C++ commands

Command syntax man
man command

Description << none >> Invokes the Man Browser.

command Invokes the Man Browser, and opens the
entry for the specified command.

Usage Use the man command to get online information for
CenterLine-C++ commands.

See also help

“Finding out more about the debugger” on page 122

CenterLine-C++ Programmer’s Guide and Reference 233

next

next
executes source code by line; does not enter functions

Command syntax next
next number

Description << none >> Executes an entire line, regardless of the
number of statements on the line, and then
stops execution. Displays a solid arrow
pointing to the current execution line in the
Source area.

number Executes the specified number of lines, and
then stops execution.

Usage Use the next command to execute your code line by line without
going into functions that are called.

The next command does not stop inside object code functions that
do not have debugging information (functions compiled without the
-g switch).

See also nexti, step, stepout

“Using Workspace break levels” on page 160

“Running, continuing, and stepping” on page 163

nexti

234 CenterLine-C++ Programmer’s Guide and Reference

nexti
executes machine code by line; does not enter functions

Command syntax nexti
nexti num

Description <<none>> Executes the next line of machine code, but
does not enter functions.

num Executes num machine instructions, not just
the last one, but does not enter functions.

See also listi, next, stepi, stopi

“Using Workspace break levels” on page 160

“Running, continuing, and stepping” on page 163

“Debugging machine instructions” on page 186

CenterLine-C++ Programmer’s Guide and Reference 235

print

print
prints the value of variables and expressions

Command syntax print expression
print variable

Description expression Evaluates the specified expression and
displays the resulting value.

variable Displays the value of the specified variable.

Usage Use the print command to check the current value of variables and
expressions. CenterLine-C++ prints their values in the Workspace.

-> print r
(struct Rectangle *) 0x8a98

The value of a variable or expression can also be displayed without the
print command. This is accomplished by evaluating the variable or
expression directly in the Workspace:

-> print 123+456
(long) 579
-> 123+456
(long) 579
->

See also assign, display, dump, list, whatis, whereis

“Using Workspace break levels” on page 160

“Examining data structures” on page 169

printenv

236 CenterLine-C++ Programmer’s Guide and Reference

printenv
displays the system environment

Command syntax printenv
printenv variable

Description << none >> Lists all currently defined environment
variables.

variable Displays the value of the specified
environment variable, if that variable is
currently defined.

Usage Use the printenv command in conjunction with setenv and
unsetenv to manipulate the variables in the program’s system
environment. The printenv command is similar to the shell
command with the same name.

Warnings The printenv command displays the default values of the
environment variables, which are the values that your program
inherits each time it starts. Therefore, if a program has added any
environment variables, for instance with the putenv() library
function, the changes will not be shown by the printenv command.

If setenv or unsetenv is called from a break level, they will alter the
value of the global environ variable, but not the envp parameter
passed to main(). (This problem also occurs with the putenv()
function.)

Changing the EDITOR or DISPLAY shell variables with these
commands will not affect which editor or display screen
CenterLine-C++ uses.

See also setenv, unsetenv

“Customizing environment variables” on page 200

CenterLine-C++ Programmer’s Guide and Reference 237

quit

quit
quits CenterLine-C++

Command syntax quit

Description << none >> Exits CenterLine-C++ and returns you to
the shell.

Usage Use the quit command to exit CenterLine-C++ and return to the
shell. Before exiting, CenterLine-C++ notifies you if there are any
active editing jobs.

See also “Quitting from the debugger” on page 201

rerun

238 CenterLine-C++ Programmer’s Guide and Reference

rerun
executes main() with new arguments

Command syntax rerun
rerun argument ...

Description << none >> Clears any old command-line arguments,
initializes all variables, and then executes
main().

argument ... Clears any old command-line arguments,
initializes all variables, processes the new
command-line arguments (argument ...), and
then executes main().

If you issue a rerun command while you
are at a breakpoint, CenterLine-C++ restarts
and prompts you before resetting the break
level.

Usage Use the rerun command to execute main() with new arguments.

Arguments must be delimited by spaces. To include spaces in an
argument string, precede each space with a backslash (\) character.
Calling a program with rerun produces the same results as calling an
executable program from the shell.

Restrictions In the Workspace, to pass an argument with a space in it to main(),
you must escape it with a backslash. Enclosing the argument in
quotation marks, which works in a UNIX shell, does not work in the
Workspace. For example, to call main() with two arguments, the
first one containing the string first arg, and the second argument
containing the number 3, call rerun as follows:

-> rerun first\ arg 3

In contrast, you can use double quotes just as you do in a UNIX shell
when you supply arguments for the Run dialog box.

See also run

“Running, continuing, and stepping” on page 163

CenterLine-C++ Programmer’s Guide and Reference 239

reset

reset
returns to a previous break level

Command syntax reset

Description << none >> Returns execution to the top level of the
Workspace.

Usage Use the reset command to return to a previous break level without
continuing execution from the current break level. When you issue
the reset command the executable is killed and its resources are
freed.

See also cont, stop, where, whereami

“Running, continuing, and stepping” on page 163

run

240 CenterLine-C++ Programmer’s Guide and Reference

run
executes main() with arguments

Command syntax run
run argument ...

Description << none >> Initializes all variables, processes any
command-line arguments from the
previous call to run or rerun, and then
executes main().

argument ... Clears any old command-line arguments,
initializes all variables, processes the new
command-line arguments (argument ...), and
then executes main().

When you run your program in CenterLine-C++, its output goes to the
Run Window.

Any arguments that you supply with the run command are first
passed to a shell, which expands wildcard characters, substitutes
variables, and redirects I/O, and then passed to main(). The value of
the SHELL environment variable, as outlined in Table 12, specifies the
shell to be used for processing these arguments..

a. This avoids a problem with tcsh, where the first file descriptor that the user
program gets is 6 instead of 3.

b. This keeps the shell from reading your startup file and improves speed.

Table 12 Shells Used with the run Command

Value of SHELL Environment
Variable

What CenterLine-C++ Does

No SHELL environment variable Uses /bin/sh

/bin/tcsh Uses /bin/csh instead of /bin/tcsha

/bin/csh Uses /bin/csh with the -f flagb

All other values not listed Invokes shell with the -c option.

CenterLine-C++ Programmer’s Guide and Reference 241

run

Usage Use the run command to execute main() after initializing all
variables and processing any command-line arguments.

If you issue a run command while you are at a breakpoint,
CenterLine-C++ restarts and informs you that it is resetting the break
level.

How CenterLine-C++
interprets the
command

Both run and rerun construct arguments for main() from the
command line. If run is called without any arguments, it uses the
command-line arguments from the most recent call to either run or
rerun. If rerun is called without any arguments, it calls main()
without any arguments.

Passing arguments
containing spaces

In the Workspace, in order to pass an argument with a space in it to
main(), you must precede the space with a backslash. Enclosing the
argument in quotation marks, which works in a UNIX shell, does
not work in CenterLine-C++.

For example, to call main() with two arguments, the first one
containing the string first arg, and the second argument containing
the number 3, call run as follows:

-> run first\ arg 3

In contrast, you can use quotation marks just as you do in a UNIX shell
when you supply arguments for the Run dialog box.

See also rerun

“Running, continuing, and stepping” on page 163

set

242 CenterLine-C++ Programmer’s Guide and Reference

set
assigns a value to a variable

Command syntax set variable = expression

Description variable = expression Evaluates expression and assigns its value to
variable.

Usage Use the set command to assign a value to a variable. The specified
variable can be a variable defined in either the program or the
Workspace.

See also assign

“Examining data structures” on page 169

CenterLine-C++ Programmer’s Guide and Reference 243

setenv

setenv
adds a variable to the system environment

Command syntax setenv
setenv variable
setenv variable value

Description << none >> Lists all defined environment variables and
gives their current values. This is equivalent
to calling printenv without an argument.

variable Defines variable and sets its value to the
empty string. If the specified variable
already exists, its value is reset to the empty
string.

variable value Defines variable and sets it to the value
specified by value. If variable already exists,
its value is reset to value.

Usage Use the setenv command to manipulate the variables in the
program’s system environment. The setenv command is analogous
to the shell command of the same name.

These commands affect only your program’s environment variables.
They do not affect the environment variables used by CenterLine-C++
to control its own operations.

The environment is an array of strings that is made available to the
program through the global environ variable and the envp parameter,
which is passed as the third argument to the main() function. By
convention, each string has the format name=value, where the value
part is optional.

Warnings Be careful when checking the current values for environment
variables. The printenv and setenv commands, when issued with no
argument, display the default values of the environment variables,
which are the values that your program will inherit each time it
starts.

setenv

244 CenterLine-C++ Programmer’s Guide and Reference

If setenv or unsetenv are called from a break level, they will alter the
value of the global environ variable, but not the envp parameter
passed to main(). This problem also occurs with the putenv() function.

Changing the EDITOR or DISPLAY shell variables with these
commands will not affect which editor or display screen
CenterLine-C++ uses.

See also printenv, unsetenv

“Customizing environment variables” on page 200

CenterLine-C++ Programmer’s Guide and Reference 245

sh

sh
executes a Bourne subshell

Command syntax sh
sh argument ...

Description << none >> Executes a Bourne subshell, setting no
switches and passing no arguments.

argument ... Executes a Bourne subshell, setting the -c
switch and passing the specified arguments.

Usage Use the sh command to execute a Bourne subshell. This can be used
to execute UNIX commands from the Workspace:

-> sh rm my_file

See also shell

“Invoking shell commands” on page 135

shell

246 CenterLine-C++ Programmer’s Guide and Reference

shell
executes a subshell

Command syntax shell
shell argument ...

Description << none >> Executes the default shell specified by the
SHELL environment variable. Sets no
switches and passes no arguments.

argument ... Executes the default shell specified by the
SHELL environment variable. Sets the -c
switch and passes argument to the shell. You
can have more than one argument.

Usage Use the shell command to execute the shell specified by the shell
option. This can be used to execute UNIX commands in the
Workspace.

See also sh

“Invoking shell commands” on page 135

CenterLine-C++ Programmer’s Guide and Reference 247

source

source
reads CenterLine-C++ commands from a file

Command syntax source file

Description file Reads CenterLine-C++ commands from the
specified file.

Usage Use the source command to read CenterLine-C++ commands from a
file.

CenterLine-C++ uses source to read the system-wide startup file and
the .pdminit file in your home or current directory when you start
CenterLine-C++.

Example The following example indicates how to use source with a file
containing aliases:

% cat aliases
alias p print
alias s step
alias n next
alias ls sh ls
% centerline-c++
.
.
.
-> source aliases
-> p 123+456
(long) 579
->

status

248 CenterLine-C++ Programmer’s Guide and Reference

status
lists debugging items (actions, breakpoints, and
displayed items)

Command syntax status

Description << none >> Lists all currently set debugging items.

Usage Use the status command to list all breakpoints, actions, and
displays. This listing displays the debugging item number needed
for the delete command.

Zombied items If the delete command has been invoked on a debugging item that
is currently active on the execution stack, status reports the item as
zombied. When execution continues, the zombied item will be
deleted once it has completed executing, and status will no longer
list it.

See also delete, display, stop, when

“Setting breakpoints and watchpoints” on page 150

“Setting actions” on page 155

“Examining and deleting debugging items” on page 158

“Examining data structures” on page 169

CenterLine-C++ Programmer’s Guide and Reference 249

step

step
steps execution by statement, entering functions

Command syntax step
step number

Description << none >> Executes a single statement and then stops
execution. Updates the Source area to
display the new line of execution.

number Executes the specified number of
statements and then stops execution.

Usage Use the step command to single-step through your program, going
into functions when they are called. If a line contains multiple
statements, execution moves to the next statement on the line.

Restrictions The step command does not stop inside object code functions that
do not have debugging information (functions compiled without the
-g switch).

The step command does not stop in functions that initialize statics.

See also next, stepout, stepi

“Using Workspace break levels” on page 160

“Running, continuing, and stepping” on page 163

stepi

250 CenterLine-C++ Programmer’s Guide and Reference

stepi
steps execution in machine instructions by statement,
entering functions

Command syntax stepi
stepi number

Description << none >> Executes a single machine instruction and
then stops execution.

number Executes the specified number of machine
instructions and then stops execution.

Usage Use the stepi command to single-step through the machine
instructions in your program, going into functions when they are
called. If a line contains multiple statements, execution moves to the
next statement on the line.

See also listi, nexti, step, stopi

“Using Workspace break levels” on page 160

“Running, continuing, and stepping” on page 163

“Debugging machine instructions” on page 186

CenterLine-C++ Programmer’s Guide and Reference 251

stepout

stepout
continues execution until the current function returns

Command syntax stepout

Description << none >> Continues execution until the current
function returns and then stops execution at
the next statement in the calling function.

Usage Use the stepout command to move execution to the point where the
current function returns. This command is particularly useful if you
inadvertently step into a function and want to continue stepping
through the calling function.

See also next, step

“Using Workspace break levels” on page 160

“Running, continuing, and stepping” on page 163

stop

252 CenterLine-C++ Programmer’s Guide and Reference

stop
sets a breakpoint

Command syntax stop
stop if cond
stop at line
stop at line if cond
stop in func
stop in func if cond

Description << none >> Sets a breakpoint at the current location.
Displays a stop sign next to the line
containing the breakpoint in the Source area.

if cond Creates a break level and stops execution if
cond is true, where cond is a Boolean
expression.

at line Sets a breakpoint at the specified line in the
current file.

at line if cond Sets a breakpoint at the specified line in the
current file if cond is true, where cond is a
Boolean expression.

in func Sets a breakpoint at the first line of the
specified function.

in func if cond Sets a breakpoint at the first line of the
specified function if cond is true, where cond
is a Boolean expression.

Usage Use the stop command to set a breakpoint in your program’s code.
When the breakpoint is encountered, execution is interrupted and a
break level is created. To continue execution after the breakpoint,
use the cont command.

You can also set a conditional breakpoint with the when command. To
remove a breakpoint, use the delete command. To view a list of all
breakpoints, use the status command.

CenterLine-C++ Programmer’s Guide and Reference 253

stop

See also cont, delete, status, stopi, when

“Setting breakpoints and watchpoints” on page 150

“Setting actions” on page 155

“Examining and deleting debugging items” on page 158

“Using Workspace break levels” on page 160

stopi

254 CenterLine-C++ Programmer’s Guide and Reference

stopi
sets a breakpoint at a machine instruction

Command syntax stopi
stopi [at] address

Description << none >> Sets a breakpoint on the current location’s
address.

[at] address Sets a breakpoint on the specified address.
Stops execution whenever the byte at the
specified address is modified. The address
argument must be specified as a numeric
string.

See also listi, nexti, stepi, stop

“Setting breakpoints and watchpoints” on page 150

“Setting actions” on page 155

“Examining and deleting debugging items” on page 158

“Debugging machine instructions” on page 186

CenterLine-C++ Programmer’s Guide and Reference 255

unalias

unalias
removes an alias for a command

Command syntax unalias name

Description name Deletes the the alias specified by name.

Usage Use the unalias command to delete an alias that you no longer want
to use.

Example If you have an alias named p that invokes the print command, you
can delete the alias with the following command:

pdm -> unalias p

See also alias

“Using aliases for Workspace commands” on page 136

unsetenv

256 CenterLine-C++ Programmer’s Guide and Reference

unsetenv
removes a variable from the program’s environment

Command syntax unsetenv variable

Description variable Removes the definition of variable from the
system environment.

Usage Use the unsetenv command to remove a variable from the
program’s system environment. The unsetenv command is
analogous to the similarly named shell command.

The unsetenv command affects only your program’s environment
variables. It does not affect the environment variables used by
CenterLine-C++ to control its own operations.

The environment is an array of strings that is made available to the
program through the global environ variable and the envp parameter,
which is passed as the third argument to the main() function. By
convention, each string has the format name=value, where the value
part is optional.

Warnings If unsetenv is called from a break level, it will alter the value of the
global environ variable, but not the envp parameter passed to
main(). This problem also occurs with the putenv() function.

Changing the EDITOR or DISPLAY shell variables with unsetenv
does not affect which editor or display screen CenterLine-C++ uses.

See also printenv, setenv

“Customizing environment variables” on page 200

CenterLine-C++ Programmer’s Guide and Reference 257

up

up
moves up the execution stack

Command syntax up
up number

Description << none >> Moves the current scope location up one
level on the execution stack. The Source
area shows file scoped to location and
highlights it with an arrow.

number Moves the current scope location the
specified number of levels up the execution
stack.

Usage Use the up command to move the current scope location up the
execution stack, toward the top level of the Workspace and away
from the current break level.

The scope location is the point at which all variables, types, and
macros are scoped. When a break level is generated, the scope location
is set to the point at which execution was interrupted.

When at a break level, use the where command to display the
execution stack. Use the whereami command to display the break
location and the current scope location.

The cont command can be used to continue execution, and the reset
command can be used to return to a previous break level or to the top
level of the Workspace without continuing execution.

See also cont, down, reset, where, whereami

“Using Workspace break levels” on page 160

“Moving in the execution stack” on page 166

use

258 CenterLine-C++ Programmer’s Guide and Reference

use
displays or sets the directory search path

Command syntax use
use pathname ...

Description << none >> Displays the current directory search path.

pathname ... Sets the list of directories to be searched to
the specified pathname. If more than one
pathname is listed, they must be separated
by spaces. The directories can be specified
as absolute or relative pathnames.

Usage Use the use command to set the list of directories to be searched
when a filename is given to the debug, edit, and list commands.

The use command does not provide a search path for loading
#include files.

See also cd, debug, edit, list

“Customizing your startup file” on page 191

CenterLine-C++ Programmer’s Guide and Reference 259

whatis

whatis
lists all uses of a name

Command syntax whatis name

Description name Displays all uses of the specified name as a
function, variable, class/struct/union tag
name, enumerator, type definition, or
macro definition.

Usage Use the whatis command to display all uses of an identifier name.
An identifier name is a name for a function, variable, enumerator,
class/struct/union tag name, type definition, or macro definition.

CenterLine-C++ first displays all uses of the name within scope at the
current scope location, followed by all uses of the name not within
scope. The order of the listing represents the order in which the
specified name is resolved when it is used.

Example In the following example, Rectangle is a struct:

pdm 8 -> whatis Rectangle
struct Rectangle {
struct __mptr *__vptr;
struct Shape OShape;
struct Point origin;
int filled;
short *row;
short *col;
struct Point extent;

};

See also dump, display, help, list, man, print, whereis

“Using Workspace break levels” on page 160

“Examining data structures” on page 169

when

260 CenterLine-C++ Programmer’s Guide and Reference

when
executes specified commands

Command syntax when
when if cond
when [at] line
when [at] line if cond
when in func
when in func if cond

Description << none >> Executes commands at current location.

if cond Executes commands at current location if
cond is true, where cond is a Boolean
expression.

[at] line Executes commands when the specified line
in the current file is reached.

[at] line if cond Executes commands when the specified line
in the current file is reached if cond is true,
where cond is a Boolean expression.

in func Executes commands at the first line in the
specified function.

in func if cond Executes commands at the first line in the
specified function if cond is true, where cond
is a Boolean expression.

Usage Use the when command to set debugging actions.

After you issue the when command, CenterLine-C++ prompts you
for the commands to be executed. These commands can include
calls to functions that are defined in the program.

By default, CenterLine-C++ remains stopped after executing the
commands specified with when. If you want your program to
continue after executing the commands, you must specify the cont
command as the last one.

CenterLine-C++ Programmer’s Guide and Reference 261

when

Example Here is an example of how to use the when command:

pdm 4 -> when at 5 if i == 100

Then type commands to be executed (one per line). Typing "." or "end"
completes the sequence.

when -> printf("in func : %d\n", i);
when -> i = 200;
when -> cont
when -> .
pdm 5 ->

See also “Setting breakpoints and watchpoints” on page 150

“Setting actions” on page 155

“Examining and deleting debugging items” on page 158

“Using Workspace break levels” on page 160

where

262 CenterLine-C++ Programmer’s Guide and Reference

where
displays the execution stack

Command syntax where
where number

Description << none >> Displays a traceback of the execution stack,
starting from the location where the
execution has stopped.

number Displays a traceback of only the specified
number of functions on the top of the
execution stack. The most recent routines
called are at the top of the stack.

Usage Use the where command to display a traceback of the execution
stack.

When execution is stopped, it is often useful to see a full stack trace
with arguments. The where command displays the formal parameters
of functions that contain debugging information.

See also cont, down, up, whereami

“Using Workspace break levels” on page 160

“Moving in the execution stack” on page 166

CenterLine-C++ Programmer’s Guide and Reference 263

whereami

whereami
displays the current break and scope locations

Command syntax whereami

Description << none >> Displays the current break and scope
locations.

Usage Use the whereami command to list the current break location and
the current scope location. This is particularly useful for finding
where you are once you have moved up or down the execution
stack while at a break level.

Break location The break location is the point at which execution stopped when the
break level was entered.

Scope location The scope location is the point to which variables, functions, and
types are scoped. When a break level is entered, it is set to the break
location. It can be changed to different locations on the execution
stack with the up and down commands.

Display of locations If you have not moved up or down in the execution stack while at a
break level, the scope location and the break location are the same.
The whereami command displays that location in the Source area,
scrolling the display if necessary.

If you have moved up or down in the execution stack, the scope
location is displayed in the Source area and the break location is
shown in the Workspace.

NOTE If the whereami command appears not to
respond as you expect, keep the following in
mind:

• The break location is only displayed in the
Workspace when the break location is
different from the scope location.

• The Source area will only change if the
current scope location is not already
displayed there.

whereami

264 CenterLine-C++ Programmer’s Guide and Reference

See also cont, down, up, where

“Using Workspace break levels” on page 160

“Moving in the execution stack” on page 166

CenterLine-C++ Programmer’s Guide and Reference 265

whereis

whereis
lists the locations where a name is declared or defined

Command syntax whereis name

Description name Lists the locations where a name is declared
or defined; lists only global and top-level
static declarations.

Usage Use the whereis command to list locations where a symbol is
declared or defined as a global or top-level static.

Example In the following example, the name Point is declared in three files.

pdm (break 1) 83 -> whereis Point
File shapes.C:
struct Point {
 int x;
 int y;
};

File rect.C:
struct Point {
 int x;
 int y;
};

File main1.C:
struct Point {
 int x;
 int y;
};
pdm (break 1) 84 ->

See also list, display, whatis

“Using Workspace break levels” on page 160

“Examining data structures” on page 169

Appendix A

GNU General Public License

This appendix contains the GNU General Public
License, which applies to the CenterLine GNU
Debugger (pdm) and the CenterLine C
preprocessor (clpp).

CenterLine-C++ Programmer’s Guide and Reference 269

GNU General Public License

GNU General Public License
 GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass
Ave, Cambridge, MA 02139, USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors’ reputations.

GNU General Public License

270 CenterLine-C++ Programmer’s Guide and Reference

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION AND MODIFICATION

1 This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running
the Program). Whether that is true depends on what the
Program does.

2 You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence
of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in
exchange for a fee.

3 You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and
copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these
conditions:

CenterLine-C++ Programmer’s Guide and Reference 271

GNU General Public License

 a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program or
any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

 c) If the modified program normally reads commands
interactively when run, you must cause it, when started running
for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement,
your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is
to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4 You may copy and distribute the Program (or a work based on
it, under Section 2) in object code or executable form under the
terms of Sections 1 and 2 above provided that you also do one of
the following:

 a) Accompany it with the complete corresponding
machine-readable source code, which must be distributed under

GNU General Public License

272 CenterLine-C++ Programmer’s Guide and Reference

the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the
offer to distribute corresponding source code. (This alternative
is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the
work for making modifications to it. For an executable work,
complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the
executable. However, as a special exception, the source code
distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5 You may not copy, modify, sublicense, or distribute the
Program except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies,
or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full
compliance.

6 You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any

CenterLine-C++ Programmer’s Guide and Reference 273

GNU General Public License

work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based
on it.

7 Each time you redistribute the Program (or any work based on
the Program), the recipient automatically receives a license from
the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8 If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have
made generous contributions to the wide range of software
distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is
believed to be a consequence of the rest of this License.

9 If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,

GNU General Public License

274 CenterLine-C++ Programmer’s Guide and Reference

the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

10 The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which
applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If
the Program does not specify a version number of this License,
you may choose any version ever published by the Free
Software Foundation.

11 If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to
the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the
free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

 NO WARRANTY

12 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

CenterLine-C++ Programmer’s Guide and Reference 275

GNU General Public License

13 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW
OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Applying These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey
the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

ONE LINE TO GIVE THE PROGRAM’S NAME AND AN IDEA OF WHAT IT DOES
Copyright (C) 19YY NAME OF AUTHOR

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

GNU General Public License

276 CenterLine-C++ Programmer’s Guide and Reference

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’. This is free software, and you are welcome to
redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a “copyright disclaimer” for the program,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (which makes passes at compilers) written
by James Hacker.

SIGNATURE OF TY COON, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

CenterLine-C++ Programmer’s Guide and Reference 277

Index

Index

Symbols

character
in numbering of stack frames 165
in Workspace history mechanism 136

operator 44
character in Workspace 137, 225
operator 45
#> redirection character in Workspace 139, 225
#>> redirection character in Workspace 139
\ character, with arguments to main() 238

A

+a switch 18
about this manual v
actions

deleting 157, 214
listing 157, 248
setting 154, 260
See also breakpoints

Add Menu Items to Panel command 192
addresses

displaying in Data Browser 172
listing machine instructions at 185
setting breakpoints on 151, 186, 254

advantages
of demand-driven code generation 28
of using CenterLine-C++ 4

alias command 135, 190, 203
aliases

creating 135
default 203
in startup file 190
removing 255

ANSI C
C compiler 5
comments in conditional directives 49
macro expansion 45
preprocessing features available 14

AON environment variable 34
application files, specifying in map files 77
appVector.C example 63
ar, archiving repository object files with 82, 96
argument declaration files for templates 70
arguments

changing, and precompiled headers 24
clearing, with run 241
new, with rerun 162, 238
retaining, with run 162, 241
spaces in 241

arrays, representation in Data Browser 170
Ascii CenterLine-C++ 120
assign command 169, 204
AT&T translator compatibility 4
attach command 181, 205
attaching, to processes 120, 141, 181, 205, 212
audience, for manual v
automatic instantiation, See templates
automatic tools provided with templates 85

B

backslash character (\), with arguments to
main() 238

bank example and template classes 59
Bounce program

actions 155
conditional breakpoints 152
debugging a running process 182
debugging corefile 178
debugging machine code 187
tutorial 99–115

Bourne subshell, executing 134, 245

Index

278 CenterLine-C++ Programmer’s Guide and Reference

break levels 147, 149
continuing from 162
creating 159
examining data at 160, 168
returning to previous 163, 239
using 159

break location
definition 161
displaying 161, 263

breakpoints
deleting 157, 214
listing 157, 248
setting in machine code 186, 254
setting in source code 111, 149, 252
See also actions

build command 146, 206
Button panel, definition 103
buttons

adding 192
changing name and position 193
customizing 192
deleting 194

C

..c files, saving a copy 15
C compiler 5

changing with ccC 34
-c switch, and template specializations 85
C++

books about vi
new features 4—5
templates, See templates
version supported 4

C++ translator compatibility 4
c++examples command 9
c++filt

and diagnostic messages 15
restoring names in gmon.out 21

-C, preprocessor switch 52
c_plusplus macro 46, 47

cache, of headers for templates 83
cancelling Workspace commands 130
catch command 176, 207
CC

environment variables 34
invoking 13
template instantiation 85

ccC environment variable 34, 36
CCLIBDIR environment variable 34
CCROOTDIR environment variable 34
cd command 209
CenterLine

directory 120
Engine 8
GNU debugger license 267
Message Server 8
preprocessor 39
preprocessor license 267
usage 39

CenterLine-C++
advantages 4
compiler switches 16
components 3
compiling 11
debugger command reference 201
debugging with 117
phases 14
preprocessing 37
using templates with 55

centerline-c++ command 102, 120
cfront, what it does 14
cfrontC environment variable 36
changing

current working directory 209
custom commands 197
default environment settings 34

chararray.c example program 174
CENTERLINE_CC_VERBOSE environment

variable 34
CL_REPOS_LOCK_MAX_WAIT environment

variable 34

CenterLine-C++ Programmer’s Guide and Reference 279

Index

CL_REPOS_LOCK_STALE_TIME environment
variable 34

class
static data members 87
templates 58
See also templates

class_as_struct option 191
clc++.script file 189
.clc++usrcmd file 192
clcc

features 5
what it does 14

CLCCDIR environment variable 34
CLcleanR environment variable 35
clearing the Workspace 136
CLIPBOARD text selection 128, 196
$clipboard variable 196
clms process 8
clpp 39

commands 40
switches 52
usage 39

code, obsolete, retaining 50
command-line switches

CC 16
concatenating 19
preprocessor 52

commands
alphabetic reference 203–275
centerline-c++ 102
conditionalizing execution in pdm 260
creating aliases for 135
gdb 131
help 105
help on 130
invoking from file 131
not supporting redirection of output 139
quit 106
shell commands 134
text as input to 125
Workspace 130

in actions 154

customizing 192, 195
displaying information about 232
reading from a file 247
requesting help about 224

-Comment[s], preprocessor switch 54
comments in conditional directives 49
compatibility, C++ translator 4
compilation, separate, and templates 88
compilation time

reducing with -ispeed 17
reducing with +k 22

compiler
CenterLine-C compiler 5
changing default C compiler 34
errors, fixing 147
phases 14

completion of names in Workspace 138
complex mathematics library 31
complex.h header file 31
computed #include 41
concatenating

switches 19
tokens 45

conditional breakpoints
definition 149
setting 150, 154
See also actions

conditional compilation 46, 48–50
conditional directives

comments in 49
limitations 49
syntax 48

const, using instead of macro 43
constructors, static 166
cont command 162, 210

in actions 154
contents command 143, 211
continuing execution 162, 210
Control-c

for cancelling Workspace entries 130
for creating break level 159

Index

280 CenterLine-C++ Programmer’s Guide and Reference

conventions
for template files 70
typographic, in this manual vii

copying text 128
corefile

debugging a 110, 177
generating 177
specifying as debugging target 120, 141, 177,

212
CPLUS environment variable 35
cPLUS environment variable 36
cplusfiltC environment variable 36
__cplusplus macro 47, 46
cppC environment variable 36
CPPFLAGS environment variable 35
current working directory, changing 209
custom commands

deleting 198
modifying 197

customizing
buttons and commands 192
command for a shell command 195
Data Browser 173
dialog boxes that use PRIMARY text

selection as input 125
environment variables 199
Workspace commands 195

D

+d switch 18
-D switch

shown in template header cache 83
-D, preprocessor switch 52
data

examining 168
updating in the Data Browser 171

Data Browser
changing properties of data items 172
customizing 173
dereferencing pointers 113, 170

following linked lists 170
manipulating structures in 171
navigating in the Data area 171
null pointers in 170
opening 112, 216
pop-up menus 126
removing items 172
structures, representation in 170
using 169

data items
changing properties of 172
definition 169
deleting 158, 172, 214
listing 157, 248
representation of pointers in 170

__DATE__macro 47
and precompiled header files 26

date, See timestamps
-dD, preprocessor switch 53
-dd=off, -dd=on switches 16, 27
debug command 212
debugging

and binary size with templates 95
an executable with a corefile 177
machine instructions 185
producing symbol table information

with -g 17
a running process 181

debugging items
creation 154
definition 149
deleting 214
listing 157, 248

@dec, @def entries in map file 74
declaration file, See template declaration file 71
default map file, overriding 77
#define directive 43
defmap file 67

defined 97
don’t edit 91
for Vector example 75

delete command 157, 214

CenterLine-C++ Programmer’s Guide and Reference 281

Index

deleting
breakpoints and actions 157
buttons 194
custom commands 198
data items 158
debugging items 157, 214
environment variables 199

demand-driven code generation 27
advantages 28
in makefile target rules 28

DEMANGLE environment variable 35
dependencies

compiling 85
templates 83, 85

dereferencing pointers, in the Data Browser 113,
170

detach command 141, 182, 215
directories

changing 209
displaying search path 258
setting search path 190, 258

display command 169, 216
DISPLAY environment variable 102, 121
displaying

a menu vii
classes as structs 191
environment variables 199, 236
execution stack 165
machine instructions 230
source code 142

interleaved with machine code 186
source files 143
static constructors and destructors 166

-dM, preprocessor switch 53
documentation

conventions vii
related v

down command 165, 217
-dryrun switch 16
dump command 168, 218
dynamic extension lookup, and templates 73
dynamic libraries, See shared libraries

E

+e switch 18
-E switch 16
-ec switch 16
edit command 144, 219
editing

Edit Server 8
EDITOR environment variable 101, 119
invoking your editor 109, 144
selecting an editor 101, 119
source code 219
text fields 127

-el switch 16
emacs

editing source code 144
keyboard shortcuts available in Workspace

137
selecting to use with CenterLine-C++ 101,

119
shortcuts supported in text fields 127

email command 124, 220
encoding, of functions in template map files 77
environment variables

AON 34, 35
changing default 34
creating 243
DISPLAY 102, 121
displaying 199, 236
EDITOR 101, 119
LD_LIBRARY_PATH 29
LD_OPTIONS 29
LD_PATH 29
LDOPTS 29
PATH 146
removing 199, 256
setting and exporting 34
setting values of 199
used by CC 34

#error directive 51

Index

282 CenterLine-C++ Programmer’s Guide and Reference

Error Browser
Edit symbol 144
opening 108
removing errors from 148
using 147

errors
finding and fixing 147
removing from Error Browser 148
and templates 92

evaluating
actions 155
expressions 242
expressions and variables 136

examples
Bounce program

actions 155
conditional breakpoints 152
debugging a running process 182
debugging corefile 178
debugging machine code 187

chararray.c program 174
installing 9
installing with different host than when

using 102
precompiled header files 25
skipping 25
static.C program 166
template examples

separate compilation 88
separate compilation and specialization

90
specialization 86
Vector 63

tutorial 99–115
Vector example 63

executables
attaching to a running executable 120, 141
building and reloading 146
displaying source files for 143
reloading 206
specifying as debugging target 120, 141, 212
viewing contents of 211

execution
continuing 162, 163, 210

until function returns 251
displaying location in 263
specifying arguments 241
specifying new arguments 238
stepping 163, 233, 249

through machine code 234
with arguments 240

Execution icon 161
execution stack

definition 165
displaying 165, 262
moving in 165, 217, 257

exiting CenterLine-C++, See quit command
expressions

displaying values of 216, 235
evaluating 136, 204, 242

F

-F switch 17
__FILE__ macro

and precompiled header files 26
file command 221
file suffixes, accepted by CC 13
__FILE__ macro 47, 51
$filename variable 196
filenames, conventions for template files 70
$filepath variable 196
files

clc++.script 189
.clc++usrcmd 192
displaying files associated with executable

143
editing 219
invoking Workspace commands from 131
listing

source code 228
source files for an executable 211

CenterLine-C++ Programmer’s Guide and Reference 283

Index

.pdminit 191
reloading 206
setting list location 221

finding
errors 147
header files 41
manual pages 39

$first_selected_char variable 197
$first_selected_line variable 196
-flags_cc switch 17
-flags_cpp switch 17
forward declarations for function templates 71
FS environment variable 35
__FUNC__ macro 47
function templates

declaring 71
defined 61
troubleshooting 93

functions
displaying

all local variables 168, 218
all uses of 168
those defined in source file 143

editing 219
entering when single stepping 163, 187, 249
listing machine code for 185, 230
listing source code for 228
not entering when single stepping 187, 233
on execution stack 165
returning from 163, 251
setting

actions in 154, 260
breakpoints in 149, 152, 252
conditional breakpoints in 151, 252

G

-g switch 17
gdb command 131, 222
gdb_mode command 131, 223
-gdem switch 17

generic.h 31
gmon.out file 20, 21
GNU Debugger

license 267
using 131, 222, 223
watchpoints in 152

GNU Emacs
connecting to pdm 145
editing source code 144
selecting to use with CenterLine-C++ 119

GNU Preprocessor license 267
gprof and profiling 20
GUI

customizing, See X resources
selecting 102, 120

H

-H, preprocessor switch 53
-hdrepos switch 17, 21

and nested header files 27
header cache, for templates 83
header files

including 41
locating 41
nested, and -hdrepos 27
precompiled 21
provided 6
save-and-restore mechanism 22
skipping See precompiled header files
system 30
using correct, and templates 93

help command 105, 122, 131, 224
history command 136, 189, 225

I

+i switch 19
I environment variable 35

Index

284 CenterLine-C++ Programmer’s Guide and Reference

-I, preprocessor switch 53
modifying search path 29
shown in template header cache 83

-I-, preprocessor switch 53
icons, in Source area 161
#if defined directive 50
#ifdef, #ifndef directives 50
ignore command 176, 226
#include directive 41

computed #include 41
nested

level supported 42
and templates 83

and precompiled headers 23
include guards 71

source file replaying 93
-include, preprocessor switch 53
#include_next directive 42
including same file twice, avoiding with include

guards 71
information file for precompiled headers

specifying 22
supplying 23
using +k without 23

initialization
static data members 94

inline cutoff
decreasing with -ispace 17
increasing with -ispeed 17

inline functions
and demand-driven generation 28
how handled when loaded 152
setting breakpoints in 152
in templates 73
using instead of macro 44

input history
displaying 225
displaying and saving 189
moving through 225

input, Workspace
editing 137
repeating previous 136

installing examples 9
instantiation

class, definition 58
function template 61
repository 67
separating from linking 85
See also templates

invoking
CC 13
centerline-c++ 102

iostream.h 30
including 32

iostreams header files 32
-ispace switch 17
-ispeed switch 17

K

+k switch 19, 21
using without information file 23

L

L_PATH environment variable 29
$last_selected_char variable 197
$last_selected_line variable 197
lazy generation, See demand-driven code

generation
LD_LIBRARY_PATH environment variable 29
LD_OPTIONS environment variable 29
LDOPTS environment variable 29
LIB_ID environment variable 35
libc.a 20, 33

finding reference information 6
location 6
provided with CenterLine-C++ 30, 31

libC_p.a 20, 33
provided with CenterLine-C++ 30

libcomplex.a, provided with CenterLine-C++ 30,
31

CenterLine-C++ Programmer’s Guide and Reference 285

Index

libraries
linking to 33
locating 29
making, of templates 82
profiling 20, 33
provided with CenterLine-C++ 6
shared 31, 151
system 30

LIBRARY environment variable 35
license, product, for more information vi
limitations

level of nested #include directives 42
name length and templates 92
on content of conditional expressions 49
precompiled header files 24

#line directive 51
line control 51
line editing in Workspace 137
__LINE__ macro 47
LINE_OPT environment variable 35
link simulation, templates 83
linked lists, following in the Data Browser 170
linking to libraries 33
list command 142, 228
list location, setting 221, 228
List template class 59
listi command 142, 185, 230
listing

debugging items 248
locations where a name is declared or

defined 265
machine code 185, 230
source code 142

__LINE__ macro 51
loading, executables and corefiles with debug

command 141, 212
locating

header files 41
libraries 29
manual pages 39

logging, a record of your debugging session 189

lookup schemes, templates
dynamic extension 73
type lookup 73

LOPT environment variable 35
LPPEXPAND environment variable 35
ls command 135

M

-M, preprocessor switch 53
machine code

debugging 185, 212
displaying 142, 230
interleaved with source code 186
listing 185
setting breakpoints 186, 254
setting breakpoints in 151
stepping 187, 234, 250

macros
expansion 43
predefined 46
referring to another 43
simple 43
with arguments 44

-macros, preprocessor switch 53
mail, sending to CenterLine Software 124, 220
Main Window

components of 103
displaying data structures from 169
displaying source code 142
Edit symbol 144
Error Browser button 108, 147
pop-up menus 125

make command 146, 231
errors 107, 147
and templates 85

Man Browser
opening 232
pop-up menus 126
using 105, 122

man command 105, 122, 131, 232

Index

286 CenterLine-C++ Programmer’s Guide and Reference

mangling names in template map files 77
manual pages, finding 13, 39
manual, about this v
map files 75–77

name mangling 77
overriding default 77
problems 92
user-defined 77

menus
customizing 194
Help 105
using 125

messages
errors with templates 92
See also Error Browser

missing template arguments 66
-MM, preprocessor switch 54
-motif command-line switch 120
Motif GUI, specifying as GUI for pdm 102, 120
multiple processes, debugging 182
munchC environment variable 36

N

name completion in Workspace 138
name mangling in template map files 77
name mapping file

contents 67
defined 97
See also map files

names
displaying all uses of 168, 259
listing where declared 265

-ncksysincl switch 17, 21
nested #include directives, limit 42
new C++ features 4
next command 163, 233
nexti command 187, 234
NM environment variable 35

nmap files
creating 77
order searched 77

NMFLAGS environment variable 35
-nostdinc, preprocessor switch 54
null pointers, in Data Browser 113, 170

O

object filenames, in map files 95
objects, displaying objects defined in source file

143
obsolete code, retaining 50
one definition rule violation 92
OPEN LOOK GUI

copying and pasting text 128
custom commands for CLIPBOARD

selection 196
specifying as GUI for pdm 102, 120

-openlook command-line switch 120
options, See customizing
output in Workspace, redirecting 139
overriding

default environment settings 34
default map file 77

P

+p switch 19
-P, preprocessor switch 54
panner, definition 173
parameterized types, See templates
pasting text 128
patch, what it does 15
patchC environment variable 36
PATH environment variable 146
pdm

basics 101–106
debug command 141, 212
help on 122

CenterLine-C++ Programmer’s Guide and Reference 287

Index

path for startup command 103
quitting 200
starting 102, 120
tutorial 99–115

.pdminit file 191
-pedantic, preprocessor switch 54
-pedantic-errors, preprocessor switch 54
performance

advantages of demand-driven code
generation 28

improving when stepping through code 164
-pg switch 18

and profiling 20
phases of compiler 14
pointers, representation in Data Browser 170
pop-up menus, using 125, 136
precompiled header files 21

and __DATE__ 26
and __FILE__ 26
and __TIME__ 26
and lock time 34
changing arguments 24
example 25
information file 22
restrictions 24
switches valid only with clpp 22
using global not local files 25

predefined macros 46
preprocessing 37–54

commands 40
switches 52

PRIMARY text selection 125, 128, 196
print command 127, 168, 235
printenv command 199, 236
printing

Man Browser documents 124
values of variables 127, 235

processes, attaching to 120, 141, 181, 205, 212
profiling

and libC_p.a 20
information, generating 20
versions of libraries 33

programs
passing signals to 176
rerunning without arguments 241
running 240

See also execution
stepping through 163

properties, of data items 172
-pta command-line switch 78

and type checking template members 95
ptcomp, what it does 14
ptcompC environment variable 36
-ptd command-line switch 78

separating instantiation from linking 85
-ptf command-line switch 78

and function templates 94
and type checking template members 95

-pth command-line switch 78
PTHDR environment variable 35, 74
-pti command-line switch 78

separating instantiation from linking 85
-ptk command-line switch 78
ptlink

dumping a link map 78
file lookup 73
forcing to continue on error 78
link-simulation algorithm 83
viewing messages from 65
what it does 14

ptlinkC environment variable 36
-ptm command-line switch 78
-ptn command-line switch 79

problems with multi-file applications 94
PTOPTS environment variable 35, 36
-ptr command-line switch 79
ptrepository 67
-pts command-line switch 79
PTSRC environment variable 35, 74
-ptv command-line switch 79
-ptx switches 18
pwd command 135
$pwd variable 196

Index

288 CenterLine-C++ Programmer’s Guide and Reference

Q

quit command 106, 200, 237

R

reading, suggested vi
redirecting output from Workspace 139
reducing compile time, See precompiled header

files
reinstantiation, of templates, forcing 84
related documentation v
releasing a process 215
reloading, executables 146, 206
removing

environment variables 199, 256
errors from Error Browser 148
See also deleting 214

renaming object files 95
repository

defined 97
filename length 83
multiple 81
permissions 80
sharing 80
template, contents 67

repository, See also precompiled header files,
templates

rerun command 162, 238
reset command 163, 239
restrictions

precompiled header files 24
retaining obsolete code 50
run command 162, 240

arguments to main(), spaces in 241
using the \ character with 241

Run Window
saving contents of 189
using 106

running programs 162
a step at a time 163
after attaching to a process 182
using command-line arguments 241

running programs, See also execution

S

-s switch, of centerline-c++ command 190
Save Session To command 189
save-and-restore mechanism, and header files 22
saving

aliases 203
contents of Run Window 189
copy of generated C file 15
generated C file 15
transcript of a session 189
Workspace input 189

scope location
changing 165, 217, 257
definition 161
displaying 160, 166, 263

all local variables 168
script file, reading 247
search paths

displaying and setting 258
for header files 29
for libraries 29

selecting menu items, buttons, or text vii
$selection variable 196
Send Email command 124
separate compilation and templates 88
set command 169, 242
-set_lib_id switch 18
setenv command 199, 243
setting

actions 154, 260
breakpoints 111, 149
breakpoints in machine code 186, 254
conditional breakpoints 150, 154

CenterLine-C++ Programmer’s Guide and Reference 289

Index

value of a variable with assign command 204
values of environment variables 34, 199
watchpoints 152, 260

setting up examples 9
sh command 134, 245
shared libraries 31

and ptlink 83
setting breakpoints in 151

sharing code, and templates 82
sharing template repositories 80
shell command 134, 246
shell commands

customizing 195, 196
using 134

shortcuts
for pop-up menus 127
using alias command 203

signals
continuing execution with 210
creating break levels 159
generating corefile 177
ignoring 176, 226
in Workspace 147
trapping 176, 207

size of program, decreasing with -ispace 17
skipping header files, See precompiled header

files 25
skippp environment variable 36
Source area

definition 103
displaying source code 142
pop-up menu 125

source code
editing 144, 219
interleaved with machine code 186
listing 228
setting actions in 154
setting breakpoints in 149
setting conditional breakpoints in 151

source command 131, 247
source file replaying, and templates 93

source location, definition 161
spaces, in arguments to main() 241
specialization 85–87

defined 97
link time, example 90
and function templates, troubleshooting 94

specifying
application files in map files 77

speed, increasing
with demand-driven generation 28
with -ispeed 17
with +k 22

spot help, using 104
stack frames 165
starting pdm 102, 120
startup files, customizing local 191
static constructors, example of 166
static template class data members 87

initialization 94
specialization 87

static.C example program 166
statics, initialized 249
status command 157, 248
__STDC__ macro 47
step command 163, 249
stepi command 187
stepout command 163, 251
stepping 162, 163

and attaching to processes 182
and entering functions 249
improving performance when 164
machine code 187, 250
without entering functions 233

stop command 150, 252
stopi command 151, 186, 254
streams header files 32
string literals, specifying 44
string table, in template map file 76
stringizing operator 44
structures, representation in Data Browser 170

Index

290 CenterLine-C++ Programmer’s Guide and Reference

subshell, executing 134
Bourne 245
for user-defined commands 195
specified by SHELL environment variable

246
-.suffix switch 18
suffixes

for template files 70
used for template lookup 74

suffixes, accepted by CC 13
suggested reading vi
switches

command-line switches 11
concatenating 19
for centerline-c++ command 120
preprocessor 52
used with template instantiation 78

symbol table 213
symbols

displaying all uses of 259
in Source area 161
listing where declared 265

syntax
of conditional directives 48
templates 58

T

@tab in template map file 76
Tab-Tab sequence for completing commands and

names 138
template declaration

defined 98
examples 63, 71, 88
file not included in template

definition file 71, 91
template definition

contents of file 72
defined 98
definition and application in same file 87
don’t include file in application 72

examples 64, 72, 89
naming 72

template implementation, See template definition
templates 57–98

argument declaration files 70
avoiding problems 91
bank class example 59
basic concepts and syntax 58
class 58
coding conventions 70
common pitfalls 91
conventions for filenames 70
declaration See template declaration
definition, See template definition
dependency checking 83, 85
dynamic extension lookup 73
examples 87
filenames 70

length restriction 83
files suffixes 73
for more information 58
forcing reinstantiation 84
function

declaring 71
defined 61
instantiation 61
troubleshooting 93

header cache 83
implementation, See template definition
inline functions 73
instance, defined 98
instantiation 58

defined 98
detailed description 67–69

libraries of 82
link-simulation algorithm 83
lookup schemes 73
multiple repositories 81
problems, avoiding 91
repository 67
repository permissions 80
single file example 87

CenterLine-C++ Programmer’s Guide and Reference 291

Index

specialization 85–87
specialization at link time 90
static data members 87
suffixes 73
summary of usage 63–98
switches affecting 78
template function, using instead of macro 44
terminology 97–98
tools provided with 95
type checking 95
type lookup 73
usage scenarios 80–90
usage, detailed description 63–66

temporary files generated by CC,
changing directory 16

terminal emulator, in
user-defined commands 195

terminology, templates 97–98
text fields, editing 127
text selection 125, 196–197
__TIME__ macro, and precompiled

header files 26, 47
timestamps

and instantiation system 83
and template troubleshooting 92

tips, using templates 91
TMPDIR environment variable 16, 36
tokens, concatenating 45
tools, used with templates 95
top level

definition 163
examining data structures 168
returning to 239

-traditional, preprocessor switch 54
translator, what it does 14
trapping signals, See catch
-trigraphs, preprocessor switch 54
troubleshooting

avoid multiple-line selections for customized
commands 197

finding and fixing errors 147

improving performance when stepping
through code 171

using templates 91
type checking template members 95
type lookup, and templates 73
types, parameterized, See templates
typographic conventions vii

U

-U, preprocessor switch 54
UI, customizing, See X resources
unalias command 255
-undef, preprocessor switch 54
unmangling names, with -gdem 17
unsetenv command 199, 256
up command 165, 257
updating data, in the Data Browser 171
usage, templates 63–66, 80–90
use command 190, 258
user-defined

commands and menus 194
map files for templates 77

using +k without information file 23

V

+V switch 19
-v switch 18
variables

assigning values 169, 242
displaying all uses of 168, 259
displaying values of 216, 218, 235
environment, used by CC 34
evaluating 136
in user-defined commands 196
printing value of 127, 168
setting with assign command 204
See also environment variables

Index

292 CenterLine-C++ Programmer’s Guide and Reference

Vector example 63
defmap file for 75
specialization 86

vi
editing source code 144
selecting to use with

CenterLine-C++ 101, 119
violation, one definition rule 92

W

+w switch 19
-Wall, preprocessor switch 54
#warning directive 51
watch command 152
watchpoints

definition 149
setting 152, 260

whatis command 127, 168, 259
when command 154, 260
where command 165, 262
whereami command 166, 263
whereis command 168, 265
Windows menu, definition 104
Workspace

clearing 136
commands

aliases 135
customizing 195
displaying information about 232
list of, by function 130
specifying in actions 154
using 130

completing names in 138
definition 103
displaying data structures in 168
displaying input history 225
number of lines in transcript 189
pop-up menu 126, 136
redirecting output in 139
repeating previous input 136

requesting help about 105, 224
saving input history 189
saving transcript of session 189
signals 147
using break levels 159
using make in 146

-Wtraditional, preprocessor switch 54
-Wtrigraphs, preprocessor switch 54

X

X resources
for changing number of lines in Workspace

189
for panner in Data Browser 173
for saving contents of Run Window 189

X11 header files and libraries, in Bounce program
107

xterm, customizing for use with CLIPBOARD
selection 128

Z

zombied debugging items 214, 248

