
ccref.book : titlepage 1 Mon Jun 5 15:33:25 1995

CenterLine Software, Inc.
10 Fawcett Street

Cambridge, Massachusetts 02138

CodeCenter Reference

Version 4.1.1

ccref.book : copyright 2 Mon Jun 5 15:33:25 1995

CenterLine Software, Inc. reserves the right to make changes in specifications
and other information contained in this publication without prior notice. The
reader should in all cases consult CenterLine to determine whether any such
changes have been made.

This Manual contains proprietary information that is the sole property of
CenterLine. This Manual is furnished to authorized users of CodeCenter
solely to facilitate the use of CodeCenter as specified in written agreements.

No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means without
prior explicit written permission from CenterLine Software.

The software programs described in this document are copyrighted and are
confidential information and proprietary products of CenterLine Software.

CenterLine and ViewCenter are registered trademarks of CenterLine Software,
Inc. CodeCenter, ObjectCenter, ResourceCenter, and TestCenter are
trademarks of CenterLine Software, Inc.

Motif is a registered trademark of The Open Software Foundation, Inc.

Object Interface Library (OI) is a trademark of ParcPlace Systems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Solaris 2, Sun386i, SunCD, SunInstall, SunOS, NFS,
SunView, ToolTalk, and OpenWindows are trademarks of Sun Microsystems,
Inc.

SPARC is a registered trademark of SPARC International, Inc. Products
bearing the SPARC trademark are based on an architecture developed by Sun
Microsystems, Inc. SPARCstation is a trademark of SPARC International, Inc.
licensed exclusively to Sun Microsystems, Inc.

DeltaSeries, DeltaWINDOWS, and SYSTEM V/88 are trademarks of Motorola,
Inc. in the USA. Motorola is a registered trademark of Motorola, Inc. in the
USA and in other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Co, Ltd. OPEN LOOK is a registered
trademark of UNIX System Laboratories, Inc., a wholly owned subsidiary of
Novell, Inc. X Window System and X11 are trademarks of the Massachusetts
Institute of Technology.

Postscript is a registered trademark of Adobe Systems Incorporated.

Licensed under one or more of U.S. Pat. Nos. 5,193,180 and 5,335,344; other
U.S. and foreign patents pending

© 1986-1995 CenterLine Software, Inc.
All rights reserved.
Printed in the United States of America.

ccref.book : distrib iii Mon Jun 5 15:33:25 1995

Distribution The CenterLine GNU Debugger and the CenterLine C Preprocessor are free;
this means that everyone is free to use them and free to redistribute them on a
free basis. They are not in the public domain; they are copyrighted and there
are restrictions on their distribution, but these restrictions are designed to
permit everything that a good cooperating citizen would want to do. What is
not allowed is to try to prevent others from further sharing any version of the
CenterLine GNU Debugger or CenterLine C Preprocessor that they might get
from you. The precise conditions are found in the GNU General Public
License.

If you have access to the Internet, you can get the latest distribution version of
the CenterLine GNU Debugger or the CenterLine C Preprocessor via
anonymous login from the following host:

ftp.centerline.com

The following file on that host contains the source for the CenterLine GNU
Debugger:

/pub/TOOLS/PDM.TAR.Z

The following file on that host contains the source for the CenterLine C
Preprocessor:

/pub/TOOLS/CLPP.TAR.Z

A version of FSF GNU Emacs compatible with the CenterLine Emacs Main
Window is also available on the same host. For more information, please refer
to the README file in the following directory:

/pub/TOOLS/emacs

If you do not have access to the Internet, send mail to CenterLine, and we will
send you instructions on how to obtain a copy. The address is as follows:

CenterLine Software, Inc.
10 Fawcett Street
Cambridge, Massachusetts 02138

ccref.book : distrib iv Mon Jun 5 15:33:25 1995

ccref.book : refpref v Mon Jun 5 15:33:25 1995

CodeCenter Reference v

Using this book

Using this book

What this manual
is about

This manual is a complete reference to Version 4.1.1 of CodeCenter™.
This alphabetical reference contains entries for topics as well as for
Workspace commands and predefined functions. Some examples of
topics are as follows: ANSI C, built-in functions, commands,
debugging, options, environment variables, C library functions, and X
resources.

Each entry in the Reference that describes a CodeCenter command has
a quick reference check-off box at the top showing the command
modes in which the command is available: component debugging
mode (cdm), process debugging mode (pdm), or both.

For your convenience, the Index in this manual contains entries for the
CodeCenter User’s Guide as well as the Reference.

What you should
know before
starting

We designed this book for readers who are familiar with the C
programming language, an operating system like UNIX , and a
graphical user interface based on either Motif or OPEN LOOK .

Moreover, we assume that readers of the Reference are already familiar
with CodeCenter by having read the CodeCenter Tutorial and/or the
CodeCenter User’s Guide.

For more
information

The Reference does not contain extensive information about using
CodeCenter’s graphical user interface; see the CodeCenter User’s Guide
for this information. The CodeCenter User’s Guide provides a
task-based look at CodeCenter; it explains how to use the graphical
user interface to load, manage, run, and debug programs within
CodeCenter.

We designed the CodeCenter Tutorial as a hands-on introduction to
CodeCenter. It leads you step by step through a CodeCenter session,
using either the Motif or the OPEN LOOK interface.

The CodeCenter Platform Guide describes system requirements and
information specific to a particular platform. The Platform Guide is
available online as an appendix to the Reference.

ccref.book : refpref vi Mon Jun 5 15:33:25 1995

Using this book

vi CodeCenter Reference

Installing and Managing CenterLine Products describes how to install
CodeCenter and administer it, including how to reserve licenses for
particular users.

See the Release Bulletin for information generated too late to be
included in the other manuals.

Documentation
conventions

Unless otherwise noted in the text, we use the following symbolic
conventions:

literal names Bold words or characters in command
descriptions represent words or values that you
must use literally.

user-supplied
values

Italic words or characters in command
descriptions represent values that you must
supply. Italic words in text also indicate the first
use of a new term, or emphasis.

sample user
input

In interactive examples, information that you
must enter appears in this typeface.

output/source
code

Information that the system displays appears in
this typeface.

... Horizontal ellipsis points indicate that you can
repeat the preceding item one or more times.

<<none>> In a “Description” section, indicates how a
command performs with no arguments.

ccref.book : refTOC.doc vii Mon Jun 5 15:33:25 1995

CodeCenter Reference vii

Contents

Contents
Using this book v

action 3

alias 8

ANSI C 12

assign 17

attach 18

build 19

built-in comments 21

built-in functions 22

built-in macros 23

catch 25

cc and other C compilers 27

cd 30

CenterLine API 32

centerline_getopt() 34

centerline_malloct() 35

centerline_[open | get | next | close]_sym 36

centerline_true() 39

centerline_typeof 40

centerline_unset() 42

centerline_untype() 43

clcc 45

clezstart 46

C library functions 58

CLIPC 59

codecenter 63

commands 71

config_parser 77

ccref.book : refTOC.doc viii Mon Jun 5 15:33:25 1995

Contents

viii CodeCenter Reference

cont 80

contents 82

debug 84

debugging 87

delete 96

detach 97

display 98

down 100

dump 101

edit 102

edit server 104

emacs integration 105

email 109

english 111

environment variables 112

fg 114

file 115

gdb 116

gdb_mode 117

help 119

history 120

ignore 121

info 123

instrument 125

keybind 130

link 139

list 141

listi 144

load 145

load_header 157

ccref.book : refTOC.doc ix Mon Jun 5 15:33:25 1995

CodeCenter Reference ix

Contents

make 161

man 171

memory leak detection 172

next 174

nexti 176

options 177

pdm 198

performance 207

porting 213

preprocessed code 214

print 223

printenv 225

printopt 226

process debugging mode 227

properties 228

proto 230

quit 232

reinit 233

rename 234

rerun 235

reset 237

revision control system support 238

run 239

save 243

set 245

setenv 246

setopt 248

sh 250

shared libraries 251

shell 253

ccref.book : refTOC.doc x Mon Jun 5 15:33:25 1995

Contents

x CodeCenter Reference

source 254

start 256

status 258

step 259

stepi 261

stepout 262

stop 263

stopi 266

suppress 267

suspend 270

swap 271

thread 273

thread support 276

threads 277

touch 280

trace 283

unalias 284

uninstrument 285

unload 286

unres 288

unsetenv 289

unsetopt 290

unsuppress 291

up 293

use 294

user-defined commands 296

whatis 297

when 298

where 300

whereami 302

ccref.book : refTOC.doc xi Mon Jun 5 15:33:25 1995

CodeCenter Reference xi

Contents

whereis 304

window managers 305

Workspace 306

xref 321

X resources 323

Appendix A GNU General Public License 363

Index 373

ccref.book : refTOC.doc xii Mon Jun 5 15:33:25 1995

List of Tables

xii CodeCenter Reference

List of Tables
Table 1 Predefined Comments Used to Suppress Load-Time

Errors 21

Table 2 Macros Recognized by CodeCenter 23

Table 3 EZSTART Options 46

Table 4 EZSTART Messages 49

Table 5 EZSTART Links for Tools 52

Table 6 Command-Line Switches Supported by CodeCenter 65

Table 7 Switches to Specify Graphical User Interface from Command
Line 69

Table 8 Brief Description of CodeCenter Commands 72

Table 9 Default C Compiler Configurations Supported by
CodeCenter 79

Table 10 Six Debugging Scenarios Showing Trade-Offs for Loading
Source vs. Object Code 88

Table 11 Kinds of Debugging Supported by CodeCenter 90

Table 12 Commands as Arguments for the keybind Command 132

Table 13 Key Functions Available for the keybind Command 133

Table 14 Key Functions for Arrow Keys with the keybind
Command 138

Table 15 CodeCenter’s Search Path for Libraries 152

Table 16 Meaning of Special Characters in CL Targets 167

Table 17 CodeCenter Options Summarized According to Functional
Category 178

Table 18 CodeCenter Options 184

Table 19 Differences in CodeCenter Commands by Mode 200

Table 20 Performance Characteristics of Source and Object Code 208

Table 21 Error-Checking and Debugging Capabilities in Source and
Object Code 209

ccref.book : refTOC.doc xiii Mon Jun 5 15:33:25 1995

CodeCenter Reference xiii

List of Tables

Table 22 Performance Gains for Large Projects 210

Table 23 Project Properties and Their Corresponding CodeCenter
Options 228

Table 24 Shells Used in Process Debugging Mode (pdm) with the run
Command 242

Table 25 Syntax for Expansion of Tokens in Workspace Input 309

Table 26 Syntax for Expansion of Environment Variables and Options
in Workspace Commands 310

Table 27 Frequently Used Line-Editing Commands in
CodeCenter 312

Table 28 CodeCenter X Resources and Their Possible Values 326

Table 29 OI_entry_field Translation Functions 335

Table 30 OI_multi_text Translation Functions 339

Table 31 Component and Object Names Used to Set X Resources 346

Table 32 Elements of the OI Resource Stack Used to Specify X
Resources 348

Table 33 X Resources for User-Defined Commands 352

Table 34 Special Words Used in the command Resource 354

Table 35 Values for Revision Control Commands Using
*ProjectBrowser.RevisionControl 357

Table 36 Settings for X Implementations 360

Table 37 DynaText Settings and Descriptions 361

ccref.book : refTOC.doc xiv Mon Jun 5 15:33:25 1995

List of Figures

xiv CodeCenter Reference

List of Figures
Figure 1 The CenterLine API and CenterLine Engine 32

Figure 2 Dedicated and Shared Application Services 59

Figure 3 A Sample CLMS Session 60

Figure 4 Preprocessor Input and Output in CodeCenter 214

List of Tips
When does the ansi option take effect? 13

When does the load_flags option have precedence? 149

Specifying the search path for loading libraries and #include files 154

ccref.book : AR1action 1 Mon Jun 5 15:33:25 1995

Alphabetical Reference

ccref.book : AR1action 2 Mon Jun 5 15:33:25 1995

ccref.book : AR1action 3 Mon Jun 5 15:33:25 1995

CodeCenter Reference 3

action

action

sets a debugging action

Command syntax action

action [at] "file":line

action [at] line

action [in] function

action [on] address

action [on] lvalue

action [on] variable

Description

cdm pdm

✔

<< none >> Executes the defined action at every executable
line of loaded source code. This does not apply to
statements executed directly in the Workspace or
statements in object code.

[at] "file":line Executes the defined action when program
execution reaches the specified line in the
specified file.

[at] line Executes the defined action when program
execution reaches the specified line in the current
file.

[in] function Executes the defined action whenever the
specified function is entered.

[on] address Executes the defined action whenever the byte at
the specified address is modified, except for
statements in object code. The address argument
must be a hexadecimal value.

ccref.book : AR1action 4 Mon Jun 5 15:33:25 1995

action

4 CodeCenter Reference

Options The following CodeCenter options affect the action command:

See the options entry for more details about each option.

Usage Use the action command to specify a debugging action, written in
C code, that is executed when program execution reaches a specified
location or changes a specified value. The action command allows you
to customize and extend CodeCenter’s built-in debugging facilities.
For example, using action you can design conditional breakpoints.
Actions can be listed with the status command and deleted with the
delete command.

NOTE Use the when command instead of action when you
are in process debugging mode.

[on] lvalue Executes the defined action whenever the
referenced address, such as a dereferenced
pointer, is modified.

[on] variable Executes the defined action whenever the
specified variable is modified.

list_action (Ascii CodeCenter only)

Displays actions that execute everywhere when
listing the source line at which they were
triggered.

save_memory Actions cannot be set on dynamic memory if
save_memory is set.

ccref.book : AR1action 5 Mon Jun 5 15:33:25 1995

CodeCenter Reference 5

action

Triggering actions
from the Workspace
or from actions

A function defined in the Workspace that changes the value of the
target triggers the associated action in the same way that a function in
your program would. For example, in the following sequence the call
to set_x() triggers the action set on x:

-> int x;
(int) 0
-> load_header stdio.h
Loading: -I. /tmp/OC.afd/stdio.h
-> action on x
Enter body of action. Use braces when entering
multiple statements.
action -> printf(“triggered on x\n”);
action (1) set on address 0x1b12e0.
-> void set_x() { x=814; }
-> set_x();
triggered on x
(void)

NOTE The output from the printf statement in the action
appears in the window where you started CodeCenter.

However, actions are not triggered by statements under the following
conditions:

• Actions are not triggered when the value of the target is
changed by an immediate statement in the Workspace. For
example, in the following sequence the statement x = 5 does not
trigger an action on x:

(break 1) -> action on x
Enter body of action. Use braces when entering
multiple statements.
action -> printf("triggered on x\n");
action (2) set on address 0x16db48.
(break 1) -> x = 5;
(int) 5

ccref.book : AR1action 6 Mon Jun 5 15:33:25 1995

action

6 CodeCenter Reference

• Actions are not triggered when the value of the target is
changed within an action itself; that is, actions are not recursive.

For example, in the following sequence, although the call to
set_x2() does trigger an action on x, incrementing x within the
action does not trigger a second action:

(break 1) -> action on x
Enter body of action. Use braces when entering
multiple statements.
action -> {
action +> printf("triggered on x\n");
action +> ++x;
action +> }
action (2) set on address 0x16db48.
(break 1) -> void set_x2() { x = 7;
(break 1) +> printf("in setx_2()\n");}
(break 1) -> set_x2();
(void)

Given the preceding actions and function call, the following
appears in the Run window:

triggered on x
 in setx_2()

Setting actions on
object code

In addition to defining actions on source code, you can define actions
on code that is loaded in object form. If the object code contains
debugging information from the compiler (that is, if the object code
was compiled using the -g switch and was loaded into CodeCenter
without the -G switch), then you can set an action at a line, at a line in
a specified file, or in a function. Actions cannot be set on an address,
lvalue, or variable in object code.

If the object code does not contain debugging information (either the
object code was compiled without the -g switch or was loaded into
CodeCenter with the -G switch), then actions can be set only on a
function name.

Blocks Each debugging action consists of one or more C statements. If the
action comprises more than one statement, use braces to make the
action a single block of C code.

Variables and
parameters

A debugging action can use any variables that are in scope at the
location where the action is set.

ccref.book : AR1action 7 Mon Jun 5 15:33:25 1995

CodeCenter Reference 7

action

Formal parameters and automatic variables may be used only if the
action is set at a specific location within a file, as opposed to being set
on a variable or an address.

print command You cannot use the CodeCenter print command in an action; instead,
use the printf() function.

Setting watchpoints The following action, set on line 10 of main.c, will print the value of
total when execution reaches that line. If total is 0, then execution is
halted by a call to centerline_stop(), a function that is equivalent to the
CodeCenter stop command issued without arguments.

-> action at 10
Setting action at "main.c":10, main()
Enter body of action. Use braces for multiple
statements.
action -> {
action +> printf("total = %d\n", total);
action +> if (total == 0) centerline_stop("");
action +> }
action (1) set at "main.c":10, test().
->

Note that braces make the multi-statement action a single block.

NOTE When you save your project to a project file, actions
may not be saved in the form in which you entered
them. For example, if you set an action on a function,
the action is set on the file and line number at which
the function occurs rather than on the function name.
As a result, actions may not behave in the way you
expect them to when you reload your project.

Restrictions Actions set on addresses that are modified while executing in object
code are not performed.

See Also built-in functions, delete, status, stop, when

ccref.book : AR1action 8 Mon Jun 5 15:33:25 1995

alias

8 CodeCenter Reference

alias

creates an alias for a command

alias

 alias name

alias name text

alias name text alias_args

Description

Usage Use the alias command to create an alternative name for CodeCenter
commands. When an alias is detected at the beginning of a command
line, its text is used in place of the name. Use aliases to create shortcuts
for frequently used commands.

Default aliases In addition to aliases that you can create, CodeCenter comes with
several default aliases, such as ls and pwd. When you issue the alias
command without arguments, the default aliases are displayed along
with any that you have defined. For example:

-> alias s step
-> alias
ls sh ls
pwd sh pwd
assign print
set print
s step

cdm pdm

✔ ✔

<< none >> Lists all aliases currently set.

name Lists the text value for the specified alias name.

name text Sets the name string to the value of the text string.

name text alias_args Sets the name string to the value of the text string
and defines arguments for the alias. (cdm only)

ccref.book : AR1action 9 Mon Jun 5 15:33:25 1995

CodeCenter Reference 9

alias

NOTE To save an alias permanently, place its definition in
your .ccenterinit file.

Alias argument
symbols

To specify arguments for an alias, use the following symbols in the
definition of the alias:

#: n The nth argument on the command line.
Arguments are numbered starting with 0, which is
the alias name.

#: ^ The first argument on the command line—same as
#:1, the argument that follows the alias name.

#: * or #* All arguments on the command line except the 0
argument, the alias name itself.

#: $ Last argument on the command line.

#$ Same as #: $ unless it matches one of the patterns
listed next.

#$identifier Substitutes the value of the CodeCenter option, if
one exists, with the specified name; otherwise,
substitutes the value of the named environment
variable.

For example, #$path substitutes the value of the
CodeCenter path option, if it is set. Similarly,
#$HOME substitutes the current value of the
HOME environment variable.

#$environ_var Substitutes the value of the named environment
variable. For example, including #$HOME
substitutes the current value of the HOME
environment variable.

#${option} Substitutes the named CodeCenter option value.
For example, #${load_flags} substitutes the
loading switches that you have set in CodeCenter.

ccref.book : AR1action 10 Mon Jun 5 15:33:25 1995

alias

10 CodeCenter Reference

Examples The following examples demonstrate how to define and use aliases
that take arguments.

NOTE If you are defining an alias in the Workspace and the
alias takes arguments, escape the # character with a
backslash (\) so that CodeCenter does not expand the
variable before recording the definition. However, do
not use a backslash to escape the # character in alias
definitions in your .ccenterinit file.

The following alias lists the file hello.c in your home directory.
#$HOME expands to the directory set by the HOME environment
variable.

-> alias l list \#$HOME/hello.c
-> l
Warning: this file is not loaded.
 1: #include <stdio.h>
 2:
 3: main()
 4:
 5: {
 6: printf(“Hello world\n”);
 7: }

You can redefine the alias to list a specified C source file in your home
directory. #:1.c expands to the first argument on the command line.

-> alias l list \#$HOME/\#:1.c
-> l hello

ccref.book : AR1action 11 Mon Jun 5 15:33:25 1995

CodeCenter Reference 11

alias

The alias in the next example adds one or more directories to
CodeCenter’s search path. #${path} expands to the current value of
CodeCenter’s path option, and #* expands to all arguments but the
alias name. In this example we assume that the path option is unset.
We define the addpath alias, and then use it to add first one directory,
and then two more, to the path option.

-> alias addpath setopt path \#${path} \#*
-> addpath ~/c_programs
-> printopt path
path ~/c_programs
string - list of directories to search for source,
object, and library files
-> addpath ~/ctutor_dir ~/tctutor_dir
-> printopt path
path ~/c_programs ~/ctutor_dir ~/tctutor_dir
string - list of directories to search for source,
object, and library files

Use the following form (that is, without the backslashes) to add these
aliases to your .ccenterinit file.

alias l list #$HOME/#:1.c
alias addpath setopt path #${path} #*

Restrictions You cannot use the following form in process debugging mode:

alias name text alias_args

In process debugging mode, the alias command cannot evaluate
another alias. That is, given this syntax:

alias name text

the text string cannot include the name of another alias.

See Also keybind, unalias

ccref.book : AR1action 12 Mon Jun 5 15:33:25 1995

ANSI C

12 CodeCenter Reference

ANSI C
CodeCenter supports both Kernighan and Ritchie (K&R) C and the
ANSI standard C language. The default setting is K&R C.

See the config_parser entry on page 77 for more information about
configuring CodeCenter to emulate a particular C compiler.

In the rest of this entry, we describe the following topics:

• Using the ANSI mode of CodeCenter

• ANSI conventions always in effect

• Known incompatibilities and bugs in CodeCenter’s ANSI
support

• Using function prototypes, including generating them with the
proto command and loading them from libraries

Using ANSI To work with ANSI C code, use the setopt command to set
CodeCenter’s ansi option:

 setopt ansi

With ansi set, CodeCenter loads and runs C code strictly according to
the ANSI standard.

As shown in the following example, CodeCenter with ansi set accepts
constructs not found in K&R C, but found in ANSI C.

-> const int i=4;
Error #733: ’const’ is undefined.
-> setopt ansi
-> const int i=4;
-> i;
(int const) 4

NOTE If you are using ANSI, be sure to read the "Specifying
the search path for loading libraries and #include files"
TIP on page 154.

ccref.book : AR1action 13 Mon Jun 5 15:33:25 1995

CodeCenter Reference 13

ANSI C

TIP: When does the ansi option take effect?

If you forget to set the ansi option when you load an ANSI C
source file, you’ll get errors for code that is ANSI-compliant
and not K&R C. To fix this problem, you must not only set
the ansi option and load the file, you must also explicitly
unload the file with the unload command before you load
the file.

Here’s an example. Suppose your source file named ansi.c
contains the following code:

main()
 {
 const int i =4;
 }

Attempting to load this file generates an error:

 -> load ansi.c
 Loading : ansi.c
 Unloading: ansi.c
 Warning: 1 module currently not loaded.

The error message is as follows:

Line: 3 E#733 ‘const’ is undefined

Now you realize you forgot to set the ansi option, which you
do, but instead of unloading and loading, you simply load; as
a result you get the same error again:

-> setopt ansi
-> load ansi.c
Loading (C): ansi.c
Unloading: ansi.c
Warning: 1 module currently not loaded.

The correct way to cause the ansi option to take effect is to
explicitly unload and then load:

-> unload ansi.c
-> load ansi.c
Loading : ansi.c

The ansi option works in a way that’s similar to the way the
load_flags option works; see "When does the load_flags
option have precedence?" TIP on page 150 for more
information.

ccref.book : AR1action 14 Mon Jun 5 15:33:25 1995

ANSI C

14 CodeCenter Reference

ANSI conventions
always in effect

The following ANSI features are always in effect in CodeCenter, even
if ansi is not set:

• ANSI C function prototypes are always accepted by
CodeCenter; however, in K&R mode they do not force type
coercion. Compare the following results involving the coercion
of an int to a double:

-> unsetopt ansi
-> load -lm
Attaching: /usr/lib/libm.a
-> double sqrt(double);
-> sqrt(3);
Warning #69: Serious type mismatch in call to
function ’sqrt’:
Argument #1 has type (int) but type (double) was
expected.
Defined/declared in “workspace”:13
Linking from ’/usr/lib/libm.a’ Linking
completed.
Linking from ’/usr/lib/libC.sa.1.6’ ... Linking
completed.
(double) 2.523368e-157
-> setopt ansi
-> sqrt(3);
(double) 1.732051e+00

• In CodeCenter, preprocessor directives do not have to start with
the first character of a line. They can begin anywhere on a line,
but the # character that begins the directive must be the first
non-whitespace character.

• CodeCenter ignores #pragma directives in K&R mode, as well
as in ANSI mode.

• The unsigned-suffix is allowed even in K&R mode:

-> unsetopt ansi
-> unsigned int u = 5u;
-> u;
 (unsigned int) 0x5

• In accordance with the ANSI standard, CodeCenter
concatenates adjacent string literals.

• CodeCenter places labels and variables into separate name
spaces. This means that a label and a variable with the same
name can be visible at the same time.

• Union initialization lists are always allowed.

ccref.book : AR1action 15 Mon Jun 5 15:33:25 1995

CodeCenter Reference 15

ANSI C

Known ANSI
incompatibilities
and bugs

This section lists the known incompatibilities and bugs in
CodeCenter’s support of ANSI C. If you discover other problems with
the ANSI support, please contact CenterLine Software (email address:
codecenter-support@centerline.com).

In preparing this list, we assume that all language-related CodeCenter
options are set to their default values, except that the ansi option is set.

Libraries and header
files

CodeCenter loads whatever libraries and #include files you indicate
for it to load—whether or not they are ANSI-compliant and whether
or not you are in ansi mode.

NOTE If you are using an ANSI C compiler, see the
"Specifying the search path for loading libraries and
#include files" TIP on page 154.

Function prototypes In function prototypes with multiple sets of parentheses, only one set
can contain parameter types if you are using the void keyword. For
example, the following function prototypes should work in
CodeCenter but they do not:

-> int (*g(void)) (int);
Error #905: The function parameter list has an
illegal format.
-> int (*g(void)) (int k);
Error #905: The function parameter list has an
illegal format.

The workaround is to use one of the following forms:

-> int (*g()) (int k);
-> int (*g(void)) ();

Scoping rules CodeCenter gives a within-block extern declaration file scope. ANSI
gives it block scope.

International features CodeCenter recognizes wide character constants and wide string
literals, but it treats them as normal character and string constants.
Trigraphs are not implemented.

ccref.book : AR1action 16 Mon Jun 5 15:33:25 1995

ANSI C

16 CodeCenter Reference

Using function
prototypes

One of the big changes in ANSI C is the addition of function
prototypes, which you can use to ensure that functions are being
called with the proper arguments and that return values are being
used properly.

Generating function
prototypes

CodeCenter can automatically generate function prototypes for your
loaded functions, which can be helpful when you are migrating K&R
C applications to ANSI C. To generate prototypes, load your code in
source form, then issue the proto command:

-> load const.c
-> proto const.c
Writing prototypes to a file. Output file name?
const.proto

You can load prototype files just like C source files. To avoid
redefinition errors, load them before the corresponding source files.

Type coercion You can load function prototypes in K&R mode and in ANSI mode.
The only difference concerns type coercion of function arguments.

 In K&R mode, arguments are not coerced, they are only checked; this
means that warning messages might be generated upon a type
mismatch. Prototypes in K&R mode do not affect the meaning of your
program; they only provide extra checking.

In ANSI mode, arguments are coerced; however, following ANSI
specifications, a prototype loaded in one module does not cause
argument coercion in another module. This is a natural consequence
of the C language’s “separate compilation” model.

ccref.book : AR1action 17 Mon Jun 5 15:33:25 1995

CodeCenter Reference 17

assign

assign

assigns a value to a variable

Command syntax assign variable = expression

Description

Usage Use the assign command to evaluate an expression and assign its
value to a variable. Assigning a value to a variable in the Workspace
allows you to either directly manipulate values in code that you are
debugging or to set values for code you are creating in the Workspace.
The assign and set commands are functionally identical.

Direct evaluation You can also assign a value to a variable without using assign (or set),
simply by evaluating an assignment expression in the Workspace. For
example:

-> int i;
-> assign i = 2
(int) 2
-> i = 5;
(int) 5

See Also print, set

cdm pdm

✔ ✔

variable = expression Evaluates an expression (second argument) and
assigns the value of the expression to a variable
(first argument).

ccref.book : AR1action 18 Mon Jun 5 15:33:25 1995

attach

18 CodeCenter Reference

attach

attaches to a running process

Command syntax attach process_id

Description

Usage When you attach to a running process, CodeCenter stops the process.
You can then examine and modify the process with any CodeCenter
commands that are available in process debugging mode. If you want
the process to continue running, use the cont command. Use the
detach command to release a process from CodeCenter’s control. If
you try to attach a process while you are already attached to another
process, CodeCenter prompts you to detach before attaching.

You can use the attach command in combination with debug to attach
an executable file to an already running process. That is, you can use
the following two commands:

(pdm) 1 -> debug my_a.out
(pdm) 2 -> attach my_process_id

instead of the following:

(pdm) 2 -> debug my_a.out my_process_id

NOTE If you leave process debugging mode or use the run
command while you have an attached process, you
kill that process.

See Also debug, detach, pdm, run

cdm pdm

✔

process_id Attaches CodeCenter to the running process
identified by process_id. The process can be
running outside or inside CodeCenter. You can
attach to only one process at a time.

ccref.book : AR1action 19 Mon Jun 5 15:33:25 1995

CodeCenter Reference 19

build

build

reloads all files in the project that have changed

Command syntax build

Description

Options The following CodeCenter options affect the build command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

cdm pdm

✔ ✔

<< none >> Updates your project by looking at all the files
currently loaded and reloading all files that have
changed.

In process debugging mode, CodeCenter reloads
the executable (for instance, a.out) if the
executable is newer than the current one.

auto_compile Automatically compiles missing or outdated
object files. If you invoke a build from the Project
Browser, this option is ignored; missing or
out-of-date files are always recompiled.

ccargs Specifies arguments passed to cc when invoked
from CodeCenter.

make_args Specifies the command-line arguments passed to
the UNIX make command by CodeCenter’s make
command.

make_hfiles Checks header files to determine whether a file
should be reloaded. If you are loading a large
project, setting this option can be time consuming.

ccref.book : AR1action 20 Mon Jun 5 15:33:25 1995

build

20 CodeCenter Reference

Usage Use the build command to keep your project current when you are
working with multiple files.

A source file is reloaded if the source file itself or any of the header files
it includes has been modified since the file was loaded.

An object file that is older than its source counterpart is recompiled,
then reloaded. If an object file has been loaded with debugging
information (compiled with the -g switch) and if the make_hfiles
option is set, CodeCenter also checks header files that the object file
depends on; the object file is recompiled and reloaded if it is older than
any of the header files.

Also, an object file is reloaded if the file has been recompiled since it
was loaded.

Files not loaded The build command also attempts to reload any files that failed to
load previously because they contained an error. The build command
attempts to reload such files each time it is issued until it successfully
loads the file or until the file is explicitly unloaded using the unload
command.

If a file fails to load because the load switches are incorrect, issuing
build will not help, since build uses the same incorrect switches. In
this case, you need to unload and reload the file, using the correct
switches with load.

Recompiling When a recompile is necessary, CodeCenter first looks for a makefile
in the source directory. If there is a makefile, CodeCenter calls make,
passing the value of the make_args option. If no makefile exists in the
source directory, CodeCenter invokes the C compiler directly.

See Also debug, load, make, unload

ccref.book : AR1action 21 Mon Jun 5 15:33:25 1995

CodeCenter Reference 21

built-in comments

built-in comments
See Table 1 for a list of predefined comments that CodeCenter
recognizes and uses to suppress certain kinds of error checking. Use
these comments in source code that would ordinarily cause a
violation that you want to ignore.

Table 1 Predefined Comments Used to Suppress Load-Time Errors

Comment What the Comment Tells CodeCenter To Do

/*VARARGS*/ Allow the following function to take a
variable number of arguments. If you are
using the varargs(3) macro package you need
not use this comment.

/*VARARGSn*/ Suppress reporting of a variable number of
arguments, after n arguments.

/*NOTREACHED*/ Suppress warning that the following
statement cannot be reached.

/*ARGSUSED*/ Suppress warning that formal parameters of
the function are not used.

/*SUPPRESS n*/ Suppress reporting of violation #n. If this
comment appears at the global level of a file,
CodeCenter suppresses the violation for the
entire file. If the comment appears within a
function, the violation is suppressed only for
the following line. See the violations entry in
the Manual Browser for a list of violations
and their numbers.

/*EMPTY*/ Suppress reporting on empty bodies, such as
in if statements and for loops.

ccref.book : AR1action 22 Mon Jun 5 15:33:25 1995

built-in functions

22 CodeCenter Reference

built-in functions
Each CodeCenter command has a C function equivalent that can be
used to call the command from C code. The names for these functions
all begin with a centerline_ prefix. For example, you can call the print
command in your code by calling the function centerline_print(" ").
All such functions return an int value and take a string as an
argument.

Setting
watchpoints

The centerline_stop(" ") call is equivalent to issuing the stop
command with no arguments. It is typically used to create a
conditional debugging action that interrupts execution when a
condition becomes true, as shown in the following example:

-> int i;
-> action
Enter body of action. Use braces when entering
multiple statements.
action -> if (i == -1) centerline_stop("");
action #1 set.
-> status
(1) action /* everywhere */

1: if (i == -1) centerline_stop("");

In addition to the function equivalents for commands, CodeCenter
provides the following predefined functions that you can use in your
programs:

• centerline_getopt()

• centerline_malloct()

• centerline_[open | get | next | close]_sym

• centerline_true()

• centerline_unset()

• centerline_untype()

CodeCenter functions return 0 upon success, except where the nature
of the function requires a different return value scheme, such as with
centerline_getopt(). If an error occurs during execution of an
CodeCenter function, a non-zero value is returned and a message is
displayed in the Workspace or the Error Browser.

See Also centerline_getopt(), centerline_malloct(), centerline_[open | get |
next | close]_sym , centerline_true(), centerline_unset(),
centerline_untype()

ccref.book : AR1action 23 Mon Jun 5 15:33:25 1995

CodeCenter Reference 23

built-in macros

built-in macros
For your convenience, CodeCenter predefines several macros,
including _ _CODECENTER_ _, CODECENTER4.0, CODECENTER,
 and _ _CENTERLINE_ _ to the value 1. You can use these macros to
conditionalize your code so certain code is used only when you are
working in CodeCenter.

For example, your code would look like this:

< program code >
...
#ifdef __CODECENTER__
< code to be run only when in CodeCenter >
#endif
...
< more program code >

NOTE You can also use the centerline_true() built-in function
to determine at run time if your program is running in
CodeCenter.

See Table 2 for a list of these and other macros recognized by
CodeCenter.

Table 2 Macros Recognized by CodeCenter

Name of Macro Macro Definition Additional Information

__CENTERLINE__ Always defined as 1. None.

CODECENTER4_0 Defined as 1 in CodeCenter. None.

CODECENTER Always defined as 1. None.

__CODECENTER__ Always defined as 1 None.

__FILE__ Name of the file being read. Also predefined by cc.

ccref.book : AR1action 24 Mon Jun 5 15:33:25 1995

built-in macros

24 CodeCenter Reference

See Also built-in functions

__FUNC__ Name of the function being
read.

We do not recommend that
you use this macro, since it is
not available in other C
implementations.

__LINE__ Line number of the file being
read.

Also predefined by cc.

 __DATE__ Date the file was read (“Mmm
dd yyyy”).

Defined only if the ansi
option is set.

__TIME__ Time the file was read
(“hh:mm:ss”).

Defined only if the ansi
option is set.

__STDC__ Always defined as 1. Defined only if the ansi
option is set.

 This macro is defined by C
compilers and interpreters
that conform to the ANSI
standard.

Table 2 Macros Recognized by CodeCenter (Continued)

Name of Macro Macro Definition Additional Information

ccref.book : AR1action 25 Mon Jun 5 15:33:25 1995

CodeCenter Reference 25

catch

catch

traps signals before they reach the program

Command syntax catch

catch signal_name

catch signal_number

Description

Usage Use the catch command to trap signals before they reach the program;
each signal is either caught or ignored by CodeCenter. Once a signal
is trapped, CodeCenter generates a break level.

In component mode (cdm), when a signal is caught and a break level
is generated, the signal is consumed. Ignoring the signal at the break
level and continuing execution does not regenerate the signal and pass
it to the program.

However, in process debugging mode (pdm), you can use the cont
command to pass the signal number to your program.

Signal numbers To obtain the number for a signal, consult the UNIX reference manuals
for your system.

Signals caught To view a list of the signals caught for your platform, use the catch
command without any arguments.

cdm pdm

✔ ✔

<< none >> Lists the unprefixed names of the signals that are
currently caught.

signal-name Enables trapping for the designated signal and
generates a break level whenever the signal is
generated.

signal-number Enables trapping for the designated signal and
generates a break level whenever the signal is
generated.

ccref.book : AR1action 26 Mon Jun 5 15:33:25 1995

catch

26 CodeCenter Reference

Signal name With the catch command, the signal name can be in uppercase or
lowercase letters, and it can be used with or without the prefix “SIG”.
For example, the following commands are equivalent:

-> catch SIGALRM
-> catch sigalrm
-> catch ALRM
-> catch alrm

Restrictions Control-z at the command prompt is not interfered with (Ascii
CodeCenter only).

Control-z during execution or in the Run Window is always handled
as a signal-deliver, generating an error if not trapped by the user
program.

Ignoring SIGINT causes SIGQUIT to perform interruption duties.
Ignoring both of them interferes with stopping execution.

The signals SIGTTIN and SIGTTOU will never suspend execution; if
not trapped and ignored they will generate an error.

When an exec() is done within CodeCenter, the inherited signal mask
only includes signals that have been ignored; see the ignore
command. Also, the SIGQUIT, SIGTRAP, and SIGEMT signals are
never present in the inherited signal mask (cdm only).

See Also cont, ignore

ccref.book : AR1action 27 Mon Jun 5 15:33:25 1995

CodeCenter Reference 27

cc and other C compilers

cc and other C compilers
CodeCenter supports both Kernighan and Ritchie (K&R) C and the
ANSI standard C language. The default setting depends on the
underlying compiler in use, which is different for each platform. The
default setting is likely to be one that you are accustomed to on your
platform. See the CodeCenter Platform Guide for details.

If you want to change the default setting, you can use the ansi option
and/or the config_parser command to control the C language
features supported by CodeCenter. See the ANSI C entry on page 12
and the config_parser entry on page 77 for more information.

NOTE If you are using ANSI C and/or a compiler that uses
“non-standard” libraries, be sure to read the
"Specifying the search path for loading libraries and
#include files" TIP on page 154.

In general, CodeCenter accepts exactly the same language accepted by
the typical implementation of the cc command with a few exceptions:

Function
prototypes
always parsed

CodeCenter always parses function prototypes, even when the ansi
option is unset. This means that you cannot use names declared with
typedef as formal parameters.

Typedef name as
a formal
parameter not
allowed

For instance, the following construction is accepted by cc but not by
CodeCenter:

typedef int integer;
/* THIS IS NOT ACCEPTED BY CODECENTER */
float convert(integer)
int integer;
{/* ... */}

When this sample code is loaded into CodeCenter, CodeCenter
generates one of these errors: “Missing a parameter name”,
“Prototype lacks parameters”, or “Illegal parameter list.”

ccref.book : AR1action 28 Mon Jun 5 15:33:25 1995

cc and other C compilers

28 CodeCenter Reference

Empty array
brackets in
structure not
allowed

CodeCenter does not permit empty array brackets in structure
declarations:

struct open_ended {int first; float rest[];};

This construction is not legal C code, and CodeCenter does not accept
it. Instead, CodeCenter generates the error “Structure member
declarations require that all array dimensions be specified.” Some cc
implementations accept such a structure declaration with only a
warning.

NOTE See the CodeCenter Platform Guide for any additional
information about compatibility between CodeCenter
and the C compiler native to your platform.

Intentional bugs There are several bugs in cc implementations that over the years have
crept into a great deal of code and have become de facto features. We
have reproduced three of these bugs in CodeCenter to allow greater
compatibility with existing code; for these bugs, CodeCenter
reproduces the compiler’s behavior described below.

The first two bugs involve lvalues, objects that may be assigned a
value. Many compilers consider the result of a cast to be an lvalue if
the type of the cast and the type of object are both integers or pointers
of the same size.

int *p;
++(int)p; /* Adds 1 (not 4) to ‘p’ */

Nonetheless, according to the ANSI standard, the proper form of the
previous example should be:

int *p;
p = (int *)((char *)p + 1);
 /* Adds 1 (not 4) to‘p’ */

Many compilers allow the result of a conditional expression to be used
as an lvalue, if the expression being tested is a constant. For example:

int i, j;
((1 > 0) ? i : j) = 3;
 /* Assigns to ‘i’ (not ‘j’) */

ccref.book : AR1action 29 Mon Jun 5 15:33:25 1995

CodeCenter Reference 29

cc and other C compilers

Finally, many compilers allow the semicolon after the last field
declaration in a tag definition to be omitted. For example:

struct s
 {
 int i;
 double d /* Missing last ‘;’ */
 };

CodeCenter emulates the compiler’s behavior described in the
examples for these three bugs. In addition, CodeCenter generates
warnings when it detects any of these bugs; however, by default the
warnings are suppressed.

NOTE For a complete list of CodeCenter diagnostic
messages, including those suppressed by default, use
the Manual Browser to view the “violations” topic;
you can invoke the Manual Browser by issuing the
command man violations in the Workspace.

To unsuppress the warnings, use the unsuppress command; see the
unsuppress entry on page 291 for more information.

clcc The CenterLine-C compiler (invoked with clcc) is a CenterLine
product independent of CodeCenter. If it is installed on your
workstation, you can invoke the CenterLine-C compiler from within
or outside of the CodeCenter environment.

See the CenterLine-C Programmer’s Guide for more information about
the CenterLine-C compiler.

gcc On some platforms CodeCenter allows you to load object files
compiled with gcc using the -g compiler switch. See the CodeCenter
Platform Guide for more information about using gcc on your
particular platform.

See Also alias, ANSI C, config_parser, options

ccref.book : AR2cd 30 Mon Jun 5 15:33:25 1995

cd

30 CodeCenter Reference

cd

changes the current working directory

Command syntax cd

cd pathname

Description

Options The following CodeCenter option affects the cd command:

See the options entry for more details about each option. ObjectCenter
does not support this option in process debugging mode (pdm).

Usage To facilitate loading and saving files, use the cd command to change
the current working directory for CodeCenter.

CodeCenter searches the directories specified by the path option for
subdirectories that match the pathname specified with the cd
command.

cdm pdm

✔ ✔

<< none >> Changes the working directory for CodeCenter to
your home directory.

pathname Changes the working directory for CodeCenter to
the designated pathname. UNIX wildcards are
allowed.

path Specifies the search path for loading source and
object files (not for #include files) and for a
matching pathname with the cd command.

ccref.book : AR2cd 31 Mon Jun 5 15:33:25 1995

CodeCenter Reference 31

cd

Here is an example of the use of cd in connection with the path option:

-> pwd
 /my_home_directory
 -> printopt path
 path (unset)
 string - list of directories to search for source,
object, and library files
 -> cd temp3
cd: cannot change to directory ’temp3’.
 -> setopt path ~/temp1/temp2
 -> cd temp3
 wd now: ’/my_home_directory/temp1/temp2/temp3’

See Also use

ccref.book : AR2cd 32 Mon Jun 5 15:33:25 1995

CenterLine API

32 CodeCenter Reference

CenterLine API

Application Program Interface to the CenterLine Engine

You can use the CenterLine API to integrate other tools with
CodeCenter.

The CenterLine Engine is an abstract component of a CodeCenter
environment that provides the following unique features:

• In-depth information about the internals of a program and its
relationships, including data structures and functions

• Real-time execution of code fragments or complete applications
with identification of run-time errors and immediate feedback
on execution results

The CenterLine API is a programming interface to the CenterLine
Engine. Figure 1 shows the relationships between the CenterLine API,
the CenterLine Engine, and other abstract elements of CodeCenter.

The CenterLine API consists of a set of CenterLine Interprocess
Communication (CLIPC) message definitions. CLIPC is the
mechanism used by elements of CodeCenter to exchange information
with one another.

Figure 1 The CenterLine API and CenterLine Engine

Interactive
Workspace

Editors and
Debuggers

Graphical
Interface

Third-Party
Tools

CenterLine API

CenterLine Engine

Code Information Code Execution

ccref.book : AR2cd 33 Mon Jun 5 15:33:25 1995

CodeCenter Reference 33

CenterLine API

The CenterLine/API/doc directory contains detailed documentation
describing CLIPC. The documents are provided in PostScript
format, so you can view them with a PostScript previewer or print
them on a PostScript printer.

See Also CLIPC

ccref.book : AR2cd 34 Mon Jun 5 15:33:25 1995

centerline_getopt()

34 CodeCenter Reference

centerline_getopt()

returns the value of an option

Function syntax char *centerline_getopt(char *option);

Usage Use the centerline_getopt() function to return the value of option in a
string. You can use this function to save the value of an option before
changing it with the setopt command.

See Also built-in functions, printopt, setopt, unsetopt

cdm pdm

✔

ccref.book : AR2cd 35 Mon Jun 5 15:33:25 1995

CodeCenter Reference 35

centerline_malloct()

centerline_malloct()

allocates memory with type checking

Function syntax void *centerline_malloct(unsigned int size);

Options The following option affects the centerline_malloct() function:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the centerline_malloct() function to allocate memory on which
run-time type checking is performed. If the save_memory option is
not set, the standard C library functions malloc() and calloc() use
centerline_malloct() to allocate memory, thereby silently providing
type checking for all allocated memory.

The library functions free(), cfree(), and realloc() can be used with
memory allocated by centerline_malloct().

The centerline_malloct() function returns a pointer to a block of
memory of size bytes. Whenever data is stored in this memory,
CodeCenter notes the type of the data. Later, when the memory is
used, CodeCenter checks that the type used to examine the data is
consistent with the type used to store it.

cdm pdm

✔

save_memory Set this option if memory is scarce or for portions
of a program that allocate very large arrays. If set,
CodeCenter does not use the
centerline_malloct() function.

ccref.book : AR2cd 36 Mon Jun 5 15:33:25 1995

centerline_[open | get | next | close]_sym

36 CodeCenter Reference

centerline_[open | get | next |
close]_sym

accesses symbol information

Function syntax void *centerline_open_sym(char *name, int code);

Returns a handle to a set of symbol bindings that match name. The
value of code must be 3. If code is not 3, the function returns (void *) -1.

void *centerline_get_sym(void *cookie, int code);

Returns a pointer to an appropriate piece of memory, depending on
the following possible values of code

The centerline_get_sym() function also returns (void *) -1 if cookie, as
returned from centerline_open_sym(), is not valid.

cdm pdm

✔

0 Returns a pointer to the character string
corresponding to the name of the symbol.

1 Returns a pointer to the address of the data
associated with the symbol. It will be 0 if the
symbol is not defined.

2 Returns a pointer to a character string that
contains the type declaration of the symbol.

3 Returns a pointer to a character string that
contains the description of the storage class of the
symbol; that is, whether it is static or extern.

other Returns (void*) -1

ccref.book : AR2cd 37 Mon Jun 5 15:33:25 1995

CodeCenter Reference 37

centerline_[open | get | next | close]_sym

void *centerline_next_sym(void *cookie);

Returns the following values:

void *centerline_close_sym(void *cookie);

Returns the following values:

Example Given the name of a symbol, the following code defines a function,
print_address(), that prints the address of a symbol that CodeCenter
has loaded.

#include <stdio.h>

int centerline_open_sym();
int centerline_get_sym();
int centerline_close_sym();

void print_address(char * name)
{

int cookie;
int address;

cookie = centerline_open_sym(name, 3);
if (cookie == 0)
{
 puts("Error: cannot obtain symbol cookie.");
 return;
}

address = centerline_get_sym(cookie, 1);
printf("Address of %s is 0x%08x\n",name,address);
centerline_close_sym(cookie);
return;
}

-1 If cookie is invalid, or if there are no more symbols
associated with cookie.

0 If there are more symbols, increments cookie’s
pointer to the next symbol.

-1 If cookie is invalid, or if there are no more symbols
associated with cookie.

0 If cookie is valid; also frees up memory associated
with cookie.

ccref.book : AR2cd 38 Mon Jun 5 15:33:25 1995

centerline_[open | get | next | close]_sym

38 CodeCenter Reference

Here is an example using the print_address() function from within
CodeCenter:

-> load print_address.c
Loading: print_address.c
-> print_address("hello");
Error: cannot obtain symbol cookie.
(void)
-> extern int i;
-> print_address("i");
Address of i is 0x00000000
(void)
-> int i;
-> print_address("i");
Address of i is 0x4013f478
(void)
-> &i;
(int *) 0x4013f478 /* i */
-> print_address("printf");
Address of printf is 0x403cf3a6
(void)
-> printf;
(int ()) 0x403cf3a6 < 'printf' module "/lib/libc.sl"

ccref.book : AR2cd 39 Mon Jun 5 15:33:25 1995

CodeCenter Reference 39

centerline_true()

centerline_true()

indicates whether CodeCenter is running

Function syntax int centerline_true(void);

Usage Use the centerline_true() function to allow your programs to know at
run time whether they are running in CodeCenter. The function takes
no arguments and returns the value 1.

To use it, create your own function called centerline_true() in its own
source file. Your function must return 0.

int centerline_true(void) { return 0; }

Put that function in a library. When you compile and run the program
from the shell, any calls to centerline_true() will use your version of
the function and return 0. When you are working in CodeCenter and
your program calls centerline_true(), CodeCenter’s built-in function
will be called instead of the function you wrote. This function
returns 1. The built-in function is called even if you have attached the
library containing your own version of centerline_true().

Using this technique, you can test for the return value of
centerline_true(). If it is 0, your program is not running in
CodeCenter; if it is 1, it is running in CodeCenter.

cdm pdm

✔

ccref.book : AR2cd 40 Mon Jun 5 15:33:25 1995

centerline_typeof

40 CodeCenter Reference

centerline_typeof

expression of type int uniquely representing the type of
its argument

Syntax centerline_typeof(argument)

Usage Use the centerline_typeof keyword to obtain a unique integer
representation of the type of an expression. The expression
centerline_typeof(argument) has a value of type int that uniquely
represents the type of argument.

For example, if argument is of type short, the value of the
centerline_typeof expression is always 1, and if argument is of type
float, the value is always 8.

The syntax “centerline_typeof argument” is permitted if argument is a
primary expression. If argument is a type name or an expression
containing one or more operators, it must be enclosed in parentheses.
Whitespace between centerline_typeof and (argument) is permitted.

Example The following sample program shows how the centerline_typeof
keyword is used.

main()
 {
 short s;
 double d;
 extern char * f();
 printf(“centerline_typeof(s) == %d\n”, centerline_typeof(s));
 printf(“centerline_typeof(s) == %d\n”, centerline_typeof(s));
 printf(“centerline_typeof(d) == %d\n”, centerline_typeof(d));
 printf(“centerline_typeof(s + 3) == %d\n”, centerline_typeof(s + 3));
 printf(“centerline_typeof(3.2 + 3) == %d\n”,centerline_typeof(3.2 + 3));
 printf(“centerline_typeof(f) == %d\n”, centerline_typeof(f));
 printf(“centerline_typeof(f()) == %d\n”, centerline_typeof(f()));
 }

ccref.book : AR2cd 41 Mon Jun 5 15:33:25 1995

CodeCenter Reference 41

centerline_typeof

Here’s a sample Ascii CodeCenter session showing the output of the
sample program, program.c:

1 -> load -w program.c
Loading: -w program.c
2 -> run
Executing: a.out
centerline_typeof(s) == 1
centerline_typeof(d) == 9
centerline_typeof(s + 3) == 2
centerline_typeof(3.2 + 3) == 9
centerline_typeof(f) == 26
centerline_typeof(f()) == 21
Program exiting with return status = 0.
Resetting to top level.

ccref.book : AR2cd 42 Mon Jun 5 15:33:25 1995

centerline_unset()

42 CodeCenter Reference

centerline_unset()

marks memory as having unset value

Function syntax int centerline_unset(void *addr, unsigned int size);

Options The following option affects the centerline_unset() function:

See the options entry for more information about the unset_value
option. CodeCenter does not support this option in process
debugging mode (pdm).

Usage Use the centerline_unset() function to mark a region of size bytes
starting at address addr as having unset value. Subsequent attempts to
fetch values from the marked region yield warnings about unset
values.

See Also built-in functions, centerline_untype(), X resources

cdm pdm

✔

unset_value If set to 0, tells CodeCenter not to report variables
used without being set.

ccref.book : AR2cd 43 Mon Jun 5 15:33:25 1995

CodeCenter Reference 43

centerline_untype()

centerline_untype()

marks memory as initialized and valid

Function syntax int centerline_untype(void *addr, unsigned int size);

Options The following option affects the centerline_untype() function:

See the options entry for more information about the unset_value
option. CodeCenter does not support this option in process
debugging mode (pdm).

Usage Use the centerline_untype() function to mark a region of size bytes
starting at address addr as initialized, valid, and untyped. Subsequent
attempts to fetch values from the marked region are accepted and do
not yield unset value, type mismatch, or corrupted value warnings.

The centerline_untype() function works in much the same way as the
touch command, but it is easier to call from a program and, unlike
touch, will not mark invalid memory addresses.

Example You can use the centerline_untype() function to deal with
assignments in compiled code that are later the cause of inaccurate
type mismatch warnings. Insert calls to centerline_untype() after the
memory is referenced.

cdm pdm

✔

unset_value If set to 0, tells CodeCenter not to report variables
used without being set.

ccref.book : AR2cd 44 Mon Jun 5 15:33:25 1995

centerline_untype()

44 CodeCenter Reference

Here is an example:

char *mem_move(dest, src, size)
char *dest, *src;
int size;
 {

char *orig_dest = dest;
#if __CENTERLINE__
int orig_size = size;
#endif

while (--size >= 0)
*dest++ = *src++;
#if __CENTERLINE__
centerline_untype(orig_dest, orig_size);
#endif

return orig_dest;
 }

The value CodeCenter uses to detect memory that has not been set is
controlled by the unset_value option. The default value is 191. You
can change the value with the setopt command.

Restrictions CodeCenter initializes allocated data and local variables to the value
191 in order to perform checks on memory that is used before set. It is
possible for spurious warnings to occur if the value 191 is stored in this
memory while the program is executing within object code. Source
code that uses 191 as a legitimate value will not generate spurious
warnings.

Touching this memory will eliminate these spurious warnings. The
warnings can also be suppressed with the suppress command, and
the default value can be changed by modifying the unset_value
option.

See Also centerline_unset(), X resources

ccref.book : AR2cd 45 Mon Jun 5 15:33:25 1995

CodeCenter Reference 45

clcc

clcc

invokes CenterLine’s C compiler

The CenterLine-C compiler is a CenterLine product independent of
CodeCenter. If it is installed on your workstation, you can invoke the
CenterLine-C compiler from within or outside of the CodeCenter
environment.

For usage information and a listing of the available compiler switches,
issue the UNIX man command in the Workspace:

-> sh man clcc

You can also issue the man command at the shell:

$ man clcc

NOTE If you are using clcc in the CodeCenter environment,
be sure to read the "Specifying the search path for
loading libraries and #include files" TIP on page 154.

See the CenterLine-C Programmer’s Guide for additional information
about the CenterLine-C compiler.

ccref.book : AR2cd 46 Mon Jun 5 15:33:25 1995

clezstart

46 CodeCenter Reference

clezstart

shell command to invoke a utility that helps you load
existing projects into CodeCenter

Command syntax clezstart [switch ...] target ...

where the current directory contains a makefile for target, and switch is
a valid switch to be passed to the make command.

Description The clezstart shell command invokes the EZSTART utility, which
helps you load an existing project into CodeCenter.

EZSTART uses existing makefiles to create another makefile, called
Makefile.cline, which contains exactly the commands needed to load
files into CodeCenter for each target specified on the command line.
The targets for Makefile.cline are typically named target_src and
target_obj.

For instance, if you ordinarily use make to create a target named
my_project, EZSTART helps you create CodeCenter project
components named my_project_src and my_project_obj.

Options See Table 3 for a list of EZSTART options. Set these options by editing
your clezstart_init file.

Table 3 EZSTART Options

Name of Option What It Does

cl_ez_ar If set to a, tells EZSTART to load files for a
library individually. This allows you to swap
individual library modules from object to
source while debugging a library. See the
“Making libraries” section on page 53 for
more information.

ccref.book : AR2cd 47 Mon Jun 5 15:33:25 1995

CodeCenter Reference 47

clezstart

Usage Use clezstart outside the CodeCenter environment to create a new
makefile for your project. Then you can use the make command in the
CodeCenter Workspace along with Makefile.cline to load your
program as a CodeCenter project.

When you install CodeCenter, an EZ directory is created. The
clezstart_init file in the EZ directory contains the environment
variables, macros, and options that EZSTART requires. To modify this
information for an entire system, edit clezstart_init in the EZ
directory. To make local changes, copy the clezstart_init file into the
directory where you plan to use clezstart. The clezstart_init file
contains instructions on how to edit it.

By default, EZSTART recognizes the following tools: cc, CC, gcc, acc,
ld, make, ar, mv, and cp.

Example Here is an example of how to create a CodeCenter project using a
project already existing outside of CodeCenter. See the “Scenarios”
section on page 51 for more examples.

cl_ez_path If set to r, tells EZSTART to generate relative
pathnames for the -I and -L switches for
compilers and linkers. By default, EZSTART
generates absolute pathnames for these
switches. Note that if you set this option to r,
the swap command may not work correctly.

cl_ez_fstat If set to s, suppresses checking on the
existence of files to be loaded. By default,
EZSTART checks to make sure that all of the
files to be loaded really exist and issues a
message in Makefile.cline if they do not
exist; you could get this message if a file is
moved or removed during the build process.

cl_nodebug_target If set to yes, generates a third target named
target_obj_nodebug, which corresponds to
the target_obj target, except that the nodebug
version is generated with the -G switch,
excluding debugging information.

Table 3 EZSTART Options (Continued)

Name of Option What It Does

ccref.book : AR2cd 48 Mon Jun 5 15:33:25 1995

clezstart

48 CodeCenter Reference

Begin by removing all the object files and executables that make up the
targets you want to build. Many people put a clean target in the
makefile for this purpose.

Then invoke clezstart from the directory where you normally execute
make, giving the arguments to clezstart that you normally give to
make.

For example, if you normally say:

$ make myProgram

enter:

$ clezstart myProgram

The clezstart script creates a Makefile.cline file in the directory from
which you executed it. If a Makefile.cline file already exists, the
following message appears:

File Makefile.cline already exists. Will not
overwrite. Rename or remove Makefile.cline.

If necessary, delete or rename the Makefile.cline file and re-execute
clezstart.

Suppose your executable target in the makefile is called myProgram.
There will be two targets in Makefile.cline: myProgram_obj, which
loads all the object files and libraries that go into myProgram, and
myProgram_src, which loads all the source files and libraries required
by myProgram.

In the CodeCenter Workspace, type the following:

 -> make -f Makefile.cline myProgram_obj

and the appropriate object files will be loaded into CodeCenter.

Finally, save your project by using the save command.

ccref.book : AR2cd 49 Mon Jun 5 15:33:25 1995

CodeCenter Reference 49

clezstart

NOTE If, during the make, object files are moved to
directories other than where they were compiled, the
swap command will not work.

Also, you need to set the swap_uses_path and path
options with the use command if the compilation
occurs in a directory not containing the source file, as
in the following example:

cc -c SubDir/x.c

Messages After you run clezstart, you should examine the Makefile.cline file to
see if it contains a message section with messages placed as comments.
These messages indicate possible problems that may be encountered
when using Makefile.cline. See Table 3 for a list of EZSTART
messages and their meanings.

Table 4 EZSTART Messages

Text of Message What the Message Means

In target target: non-existent
file -- file

A file (file) was used during the build
that does not exist after the build has
completed.

In target target: Unable to
determine source(s) for file

An object file was used in the build
but no source file could be
determined. You get this message if
you do not do a complete make clean
before you load the object files, or if
the source for the object file is an
assembler source (.s or .S suffix).

The following command
was captured, but no action
taken: #command

EZSTART encountered a command
that it cannot handle.

ccref.book : AR2cd 50 Mon Jun 5 15:33:25 1995

clezstart

50 CodeCenter Reference

Filename suffixes
interpreted by
clezstart

The clezstart utility interprets filename suffixes as follows:

In target target (_obj & _src):
Load not done, unknown file
type for file

 #<command>

EZSTART could not determine the
type for command, which uses file as
an input, and did not generate a load
in either the _obj or the _src target. To
correct this problem, review the
command and insert the load
commands manually if necessary.

In target target (_obj & _src):
No action taken on the
following command:

command

Although EZSTART captured and
identified command for the specified
target, EZSTART could not determine
what action to take.

Encountered both -Bstatic
and -Bdynamic linking

Both -Bstatic and -Bdynamic
switches were specified in
compilation or link commands.
Check to make sure that they are
properly used in Makefile.cline. See
'Using linker switches' on page 56 for
more information.

file was created multiple
times -- check usage!

EZSTART created file more than once.
It may be that a source file was
compiled more than one time, with
different settings, or ar was used
many times to update a library. Look
for occurrences of file in
Makefile.cline to verify that they are
correct.

.c C or C++ source

.cc C or C++ source

.C C or C++ source

.cxx C or C++ source

.i C or C++ source

Table 4 EZSTART Messages (Continued)

Text of Message What the Message Means

ccref.book : AR2cd 51 Mon Jun 5 15:33:25 1995

CodeCenter Reference 51

clezstart

Scenarios In this section, we describe the following uses of clezstart:

• Building an executable target

• Using with non-standard tools

• Using absolute pathnames

• Building libraries

• Using different make systems

• Using recursive makes

• Adding commands

Building an
executable target

If you are building an executable target and you wish to save time,
instead of removing all the object files, just remove the executable file
and run clezstart. Then the Makefile.cline file will contain two
targets, but they will be the same in most cases; each target will load
the object files and libraries that make up the executable at the highest
level.

Using this method has one possible disadvantage: EZSTART does not
capture the switches used for compiling source to object files.This may
not be a problem for your project, especially if you use a consistent set
of switches, because you can use setopt to set the load_flags option;
see the options entry for more information about load_flags.

If you use additional
tools

As previously mentioned, EZSTART recognizes the following by
default: cc, CC, gcc, acc, c89, clcc, ld, make, ar, mv, and cp. If you use
other tools, and if you do not invoke them by absolute pathname, you
must use a few additional techniques to be successful with EZSTART.

.o Object file

.a library

.so library

.so.* library

.s Assembler source

.S Assembler source

all others Executable (or unknown)

ccref.book : AR2cd 52 Mon Jun 5 15:33:25 1995

clezstart

52 CodeCenter Reference

Suppose you use a compiler other than cc, CC, gcc, or acc. You will
need to create a link in the EZ/tools directory for that compiler.
Alternatively, you can create the link in the directory from which you
plan to invoke clezstart.

For example, if the C compiler you use is called xcc, do the following:

1 Use cd to change to the following directory:

CenterLine/arch_os/EZ/tools

where arch_os designates the name of your particular platform.

2 Issue the following shell command:

$ ln -s ./ezcc xcc

3 Enter the following:

$ clezstart

to start up EZSTART as previously described.

When you use non-standard tools, link them according to the
information in Table 5:

Using absolute
pathnames for tools

If you invoke tools by specifying an absolute pathname, you must also
do the following in order for EZSTART to work correctly:

• Use macros to represent the tool in your makefiles.

• Be consistent with the macro names. For instance, you cannot
use CC for your C compiler in one makefile and MYCC in
another makefile used during the same build.

• Use only one of each type of tool during the build. For instance,
do not use /bin/cc and /usr/local/bin/gcc during the same build.

Table 5 EZSTART Links for Tools

Tool Gets Linked to... Example

 C compiler ezcc ln -s ezcc xcc

 C++ compiler ezCC ln -s ezCC xCC

 linker ezld ln -s ezld xld

 archiver ezar ln -s ezar xar

ccref.book : AR2cd 53 Mon Jun 5 15:33:25 1995

CodeCenter Reference 53

clezstart

• Edit the clezstart_init file to indicate the correct names for the
tools. For example, if you invoke your C compiler as
/usr/local/gnu/bin/gcc and do this through the macro CC, edit
clezstart_init in the following way:

• After you edit clezstart_init, you can execute clezstart as in the
previous scenarios.

• Make sure that you edit lines in clezstart_init for all of the
commands you invoke by absolute path.

Making libraries Often libraries, or archives, are created as part of a build. The default
behavior for EZSTART is to load the library when it is encountered by
name in a command line—that is, as myLib.a, not -lmyLib.

If, however, you are working on debugging libraries, you probably
want to have the individual component files of the library loaded
instead of the library itself. This allows you to swap individual
modules from object to source and back while you are debugging.

If you are sure that all archive commands which are executed during
your build create libraries (not just add to them), you may want to edit
clezstart_init to cause the component files from the libraries to be
loaded into the CodeCenter environment rather than having the
library loaded. In order to do this, set the cl_ez_ar option to a:

 cl_ez_ar=a

Using different make
systems

If you use a program building system other than make, you may still
be able to use EZSTART. You need to edit clezstart_init, changing the
following line:

 clezstart=

to

 clezstart=<your make program>

You must also make a link in the EZ/tools directory to ezmake,
naming the link with the name of your make program.

Previous version of
clezstart_init :

Revised version of clezstart_init:

cl_ezcc= cl_ezcc=/usr/local/gnu/bin/gcc

cl_ezcc_macro= cl_ezcc_macro=CC

ccref.book : AR2cd 54 Mon Jun 5 15:33:25 1995

clezstart

54 CodeCenter Reference

For example, if you use a make program called xmake, do the
following from within the EZ/tools directory:

 ln -s ./ezmake xmake

NOTE If you have recursive invocations of your make
program, and do it by absolute path, you will not be
able to use EZSTART.

Using EZSTART
with recursive makes

If you have a project that requires many invocations of make on
different makefiles, there are at least two ways you can use EZSTART.

In the first scenario, you can do a make clean for the whole system,
then invoke clezstart at the top level. This will produce one
Makefile.cline that will load all of the modules for the targets. This
means that, if you build an object file in one directory from many
smaller .o files in that directory (using the -r switch to ld), the
individual .o files and corresponding source files will be loaded. This
is the most complete and the most time consuming way of getting
Makefile.cline.

A second scenario, if you are building libraries in many of the
subdirectories, is to go to each of those and do a make clean, then
invoke clezstart from that directory. This will create a Makefile.cline
to load the individual components of the library. Next go to the top
level and invoke clezstart; do not do a make clean in the directories
where the libraries were created. Now the libraries will be loaded as
archives, and when you are in CodeCenter and you want to debug the
files from the individual libraries, you can:

1 Unload the library

2 Use cd to change to the directory from which the library is made

3 Enter the following:

-> make -f Makefile.cline library target

to load the individual components into the environment.

Getting additional
information placed
in Makefile.cline

If you use commands such as yacc or lex in your builds, you may be
able to capture the command line and have it placed in Makefile.cline
as a comment in the messages area.

ccref.book : AR2cd 55 Mon Jun 5 15:33:25 1995

CodeCenter Reference 55

clezstart

To do this, you must invoke the tool by name without using an
absolute path—for instance, yacc and not /bin/yacc.

To cause the command line from the tool to be captured:

1 Use cd to change to the EZ/tools directory

2 Enter the following:

 ln -s ./cl_eztool toolname

For each tool or command linked in this way, a message will be placed
in Makefile.cline every time it is invoked, along with the text of the
command line. You can then edit Makefile.cline to supply additional
information.

Restrictions This section lists the known limitations of clezstart.

Changing your
search path during a
build

If the search path is changed during the build process, EZSTART may
not work properly. This is because the scripts that are called reset the
path to the value it had before clezstart was invoked and then call the
real tool.

Some switches may
not translate
correctly

If you use a tool other than one of the defaults recognized by
EZSTART that has different switches on its command line, EZSTART
may not translate the command properly.

In most cases, EZSTART ignores switches that it does not know about.
However, if the switch takes a value that is separated from the switch
by spaces, EZSTART will probably interpret the value as an input file
to the operation. As long as the value does not have the form of a valid
input file, such as foo.c or bar.o, EZSTART will not generate a load
command and will emit a message at the end of Makefile.cline
informing you of the situation.

Some switches not
recognized when
using ar

It is possible that some switches will not be recognized correctly by
EZSTART, depending on how you use ar, which is the UNIX
command for maintaining groups of files into a single archive file.
EZSTART tries to recognize when an archive is being updated or
created. If you extract a file from an archive to be used in your build,
the command will not be recognized.

ccref.book : AR2cd 56 Mon Jun 5 15:33:25 1995

clezstart

56 CodeCenter Reference

Missing object files If you produce an executable file by using a C or C++ compiler and
include source files on the command line, EZSTART will attempt to
load object (.o) files for the _obj target. Most compilers remove these
files automatically in this case. For example, if you have the following
generated by your make:

 cc -o test test1.c test2.c -lm

Makefile.cline will have the following for the target test_obj:

test_obj:
#load test1.o
#load test2.o
#load -lm
#setopt program_name test

Makefile.cline will also have two messages indicating that test1.o
and test2.o do not exist, unless you have suppressed these messages
with the cl_ez_fstat option.

In this case, when you try to make the test_obj target from within
CodeCenter, it fails. You can fix this problem by changing the way the
executable is produced. Use the following two commands:

cc -c test1.c test2.c
ld -o test test1.o test2.o -lm

Requires Bourne
shell

EZSTART requires /bin/sh to be the Bourne shell. If you have changed
it to be some other shell, EZSTART will probably not work. If you have
the Bourne shell in some other location, you can get EZSTART to work
by editing all of the shell scripts in EZSTART and changing the first
line of each to invoke the Bourne shell.

Using linker switches If you use switches like -B more than once on the command line,
CodeCenter uses only one instance of the switch; this means that the
results you get might not be what you expect.

For example, if you have the following:

 cc -o prog prog.o -Bstatic -llib1 -Bdynamic -llib2

 CodeCenter generates the following load lines for the libraries:

#load -Bstatic -Bdynamic -llib1
#load -Bstatic -Bdynamic -llib2

ccref.book : AR2cd 57 Mon Jun 5 15:33:25 1995

CodeCenter Reference 57

clezstart

You might need to edit the Makefile.cline file to correct this to the
following, if it is what you intended:

#load -Bstatic -llib1
#load -Bdynamic -llib2

If you use both the -Bstatic and -Bdynamic options during the build,
a message will be placed in the message file indicating that you should
check the uses. There are cases where the results will not be correct.
For instance, the same library name is used in two different links, one
static and one dynamic.

Creating a file more
than once

If you create a file more than once during the build (perhaps with
different switch settings for a compilation), only the first one will be
captured.

Using -n with
clezstart

Specifying -n on the clezstart command line has no effect.

Updating a library
more than once

If you update an archive more than one time during a build, the results
will not be correct. In order to have EZSTART work properly in this
case, do all updating of the archive with one command.

ccref.book : AR2cd 58 Mon Jun 5 15:33:25 1995

C library functions

58 CodeCenter Reference

C library functions

C library functions replaced by CodeCenter

To do its run-time error checking—such as checking for illegal indexes
into arrays—and to make its environment behave like a standard
UNIX process, CodeCenter replaces many C library functions and
system calls with its own version of them. For some of these functions
you can substitute your own version. See your CodeCenter Platform
Guide for a list of the C library functions replaced by CodeCenter.

Using your own
function

To use your own version of a function, load the function in a source or
object file before linking your program. If your program has already
been linked, you must quit, then start a new CodeCenter session to
substitute your function for one of the CodeCenter replacements.

NOTE To improve performance, you might want to
substitute your own version for any library function; if
you do so, however, you lose the error checking that
CodeCenter provides for that function.

Using libc
versions of these
functions

CodeCenter loads its own version for each of these functions if the
only other version is in a library ending with “libc.a”. If you want to
use the libc version, you must dearchive the function’s module from
libc.a and load it as a .o file, before linking or running your program
in CodeCenter.

ccref.book : AR2cd 59 Mon Jun 5 15:33:25 1995

CodeCenter Reference 59

CLIPC

CLIPC

CenterLine Interprocess Communication

CLIPC is the multi-cast message delivery service for exchanging data
between elements of the CodeCenter environment. CodeCenter
consists of multiple executables that use CLIPC messages to
communicate with one another.

You can use CLIPC to integrate other tools with CodeCenter. Using
CLIPC is similar to using the Sun ToolTalk or HP SoftBench
frameworks. For example, you can use CLIPC to integrate:

• Text editors other than vi and emacs

• A GUI builder

• A bug tracking and reporting system

Overview CLIPC provides an abstract model for designing applications. An
application consists of a set of application services, which can be
dedicated to the application or shared among applications. Figure 2
shows the dedicated and shared services for CodeCenter and an Email
application. In the Figure, the Executive and Compiler Application
Services constitute the CenterLine Engine, which provides
information about program internals and execution.

Figure 2 Dedicated and Shared Application Services

Email
Application

CodeCenter
Application

Service

Shared Services

User Interface

Execut ive

Service

Compiler

Service

Mail Delivery

Service

User Interface

Service

Text Editor

Service

Applica tion

Applica tion

Applica tion

Applica tion

Applica tion

Applica tion

ccref.book : AR2cd 60 Mon Jun 5 15:33:25 1995

CLIPC

60 CodeCenter Reference

CLMS sessions The CLIPC Message Server (CLMS), which is implemented as the
clms process, manages the interprocess communication between all
application services. A CLMS session consists of the clms process and
a set of application service processes that are communicating on
behalf of an application. The clms process and application service
processes exchange CLIPC messages during the session. Both the clms
and application processes are linked with the CLIPC interface library,
a library of C functions for accessing elements of CodeCenter.

Each CLMS session registers with the CenterLine registry service, a
clms_registry process running on one or more server machines in the
network. The registry keeps track of the location and members in each
session in the network domain, so an individual application service
can find its session. Along with the registry, CenterLine provides a
shell command, clms_query, for displaying all the active sessions in a
network. Figure 3 shows a sample session and the registry.

Classes of
application services

CLIPC application services fall into one or more of these classes:

• Message producers send CLIPC request and notification messages.

• Message listeners receive message types for which they have
registered.

• Request handlers receive message types for which they have
registered and send reply messages.

Although only one request handler can register for each message type,
any number of application services can register as listeners.

Figure 3 A Sample CLMS Session

Server machineWorkstation

clms process

User interface process CenterLine executive
(interpreter) process

cc compiler
process

CLIPC
connections

clms_registry process

CLMS session

Network connection

Emacs text editor
process

ccref.book : AR2cd 61 Mon Jun 5 15:33:25 1995

CodeCenter Reference 61

CLIPC

Messages A CLIPC message consists of a name, which identifies its type, an
envelope, which provides delivery instructions, and a body, which
contains the content of the message. CLIPC provides message types
for all elements of CodeCenter but, if desired, you can define new
message types as well.

Message classes CLIPC supports three message delivery classes in the envelope of the
message:

• Requests initiate synchronous communication between a process
that is requesting a service (a message producer) and a process
that provides the service (a request handler).

• Replies confirm that the request handler performed the
requested action for the message producer. Replies can include
return values.

• Notifications indicate significant events, such as startup or
termination of a process, and do not support verification of
delivery. An application service can use a notification to send
data to one or more application services. You can also use
notifications for other purposes, such as implementing
point-to-point links or a synchronous protocol.

Queueing and
deadlock detection

CLIPC supports message queueing, but does not provide deadlock
detection or avoidance. It is up to the application to provide such
mechanisms when necessary.

Viewing CLIPC
messages

CenterLine provides a human-readable message format called message
dump format for reading CLIPC messages. The clms_monitor shell
command displays all message traffic in a CLMS session in message
dump format. This can be useful for debugging your application
service as you integrate it with CodeCenter.

Defining new
message types

If you need to define new message types, use the CLIPC Message
Definition Language, CMDL. CenterLine also provides a tool
(msg_parse) for checking the syntax of message types coded in
CMDL, and a tool (msg_check) for checking instances of messages in
a running CLMS session against known message types.

ccref.book : AR2cd 62 Mon Jun 5 15:33:25 1995

CLIPC

62 CodeCenter Reference

Interface library The CLIPC interface library provides a set of C language functions for
exchanging CLIPC messages with the CenterLine Engine.

The library provides functions for

• Connecting to a CenterLine Engine session

• Registering to receive and handle messages

• Sending and receiving messages

• Allocating, getting, and assigning values to messages

• Memory management

• Diagnostics

Summary To integrate your tool with CodeCenter, you determine what
information needs to be exchanged between the tool and CodeCenter
and design your application service. You determine which existing
CLIPC messages to use and implement them in your code. You use the
CLIPC functions in your code to participate in the CLMS session and
exchange CLIPC messages. To debug your code, you use the
msg_check, clms_monitor, and clms_query shell commands.

See Also CenterLine API

The CenterLine/API/doc directory contains detailed documentation
describing CLIPC. The documents are provided in PostScript format,
so you can view them with a PostScript previewer or print them on a
PostScript printer.

ccref.book : AR2cd 63 Mon Jun 5 15:33:25 1995

CodeCenter Reference 63

codecenter

codecenter

shell command to invoke the CodeCenter programming
environment

Command syntax codecenter [switches]

codecenter [switches] project_file

Description

Usage The CodeCenter startup commands are installed in a CenterLine/bin
directory, which could be installed anywhere on your system. You can
start CodeCenter either by typing the absolute pathname of the
CodeCenter startup command or by putting CenterLine/bin on your
path and just typing the command name:

$ codecenter

See your system administrator if you do not know where
CenterLine/bin is on your system.

switches Use the -ascii, -motif, or -openlook switches to
invoke the Ascii, Motif, or OPEN LOOK versions
of CodeCenter, respectively. By default,
CodeCenter starts in component debugging mode; to
start in process debugging mode, use the -pdm
(process debugging mode) switch.

In component debugging mode, you load all the
parts, or components, of your program, and link
and execute them within CodeCenter. In contrast,
in process debugging mode, you load your
program as a fully linked executable, and you
have the choice of debugging it along with a
corefile, or attaching to another process. See the
pdm entry on page 198.

See Table 6 on page 65 for a complete listing of all
the command-line switches you can use with
CodeCenter.

project_file Start CodeCenter in component mode and load
project_file.

ccref.book : AR2cd 64 Mon Jun 5 15:33:25 1995

codecenter

64 CodeCenter Reference

Startup files When you start CodeCenter in component debugging mode, by
default it reads commands from the system-wide startup file, named
ccenterinit, and from the local startup file, named .ccenterinit, which
is in your home or current directory.

If you start in process debugging mode, CodeCenter reads the
.pdminit file in your home directory instead of .ccenterinit, and it
does not read ccenterinit.

You can use the -s[startup_file] and the -S[startup_file] switches to tell
CodeCenter to read startup_file instead.

Local startup file The .ccenterinit startup file is a text file that can contain any input that
is accepted in CodeCenter’s Workspace. Typically, you use .ccenterinit
to set the values of CodeCenter options and define aliases that are
used across CodeCenter sessions. Since this startup file is read directly
into CodeCenter’s Workspace, it should contain only CodeCenter
commands and code that does not need to be debugged or reloaded.

Because CodeCenter first looks in the current working directory for
.ccenterinit, you can have different .ccenterinit files for use with
different projects, as long as you work in different directories.

System-wide startup
file

The system-wide ccenterinit file is in the CenterLine/configs
directory. Typically, system-wide attributes (such as the directories
that CodeCenter searches for libraries, header files, and so on) are set
in ccenterinit. If you use different directories than the standard
defaults, you need to change the specifications.

You can also use the ccenterinit file to set options and aliases for every
user at your site.

NOTE CodeCenter reads the system-wide ccenterinit file
before the local .ccenterinit file, so any specifications
in the local file override corresponding specifications
in the system-wide file.

Using eight-bit
character sets

CodeCenter supports eight-bit character sets. Add the following two
lines to your local .ccenterinit file so you can use the Meta key to get
the extended character set:

setopt eight_bit
unsetopt line_meta

ccref.book : AR2cd 65 Mon Jun 5 15:33:25 1995

CodeCenter Reference 65

codecenter

To turn on this feature for all users at your site, ask your system
administrator to add these two lines to the global ccenterinit file.

Libraries loaded
when starting

When starting, CodeCenter automatically loads a shared version of
the standard C library, libc. On some workstations, CodeCenter might
load the static (archive) version of this library. See the CodeCenter
Platform Guide for your platform for any further information about
shared libraries.

Switches CodeCenter processes command-line switches in the order in which
they are specified.

You can use many switches with any version of CodeCenter, although
a couple are specific to Ascii CodeCenter, and a few have no effect in
process debugging mode. See Table 6 for an alphabetical listing and
description of the switches available in all versions of CodeCenter. In
addition to command-line switches, CodeCenter supports many
options that you can use to control its features and commands. See the
options reference page for more information.

Table 6 Command-Line Switches Supported by CodeCenter

Name of Switch What the Switch Does Restrictions

-ascii Starts CodeCenter with the character-based rather
than a graphical user interface. Do not use this
switch with -openlook or -motif.

None.

-class_as_struct Disables maximum processing of classes to improve
performance.

No effect in cdm.

-d (load switch) Turns off terminal-dependent output ;
as a result, raw mode input is disabled. This means
you must press the Return key to respond to a
prompt.

Ascii
CodeCenter only.
No effect in pdm
(not
implemented).

-Dname[=def] (load switch) Causes name to become defined as if a
#define directive had occurred. If def is not supplied,
then 1 is used. For more information, see the load
entry on page 145.

No effect in pdm.

ccref.book : AR2cd 66 Mon Jun 5 15:33:25 1995

codecenter

66 CodeCenter Reference

-f log_name Saves a copy of all input typed in the Workspace in
a permanent file called log_name. All input is usually
saved in a temporary log- file that is deleted when
you quit CodeCenter. Note that a space is required
between the switch and the argument for the switch.

None.

-full_symbols Forces the reading of the full symbol table for
maximum information immediately.

No effect in cdm.

-G (load switch) Ignores debugging information,
produced by the -g switch of the compiler, when
loading compiled files. For more information, see
the load entry on page 145.

No effect in pdm.

-Iheader_path (load switch) Adds header_path to the list of
directories to search for files specified by the
#include preprocessor directive. For more
information, see the load entry on page 145.

No effect in pdm.

-i input_file Specifies that CodeCenter’s command input should
be read from input_file, rather than from standard
input. Note that a space is required between the
switch and the argument for the switch.

No effect in pdm
(not
implemented).

-Llibrary_path (load switch) Adds library_path to the list of
directories to search for libraries. For more
information, see the load entry on page 145.

No effect in pdm.

-llib_name (load switch) When a library is loaded using the -lx
format, then a file called libx.a is sought first in the
directories specified by -L options, then in the
standard directories /lib, /usr/lib, and
/usr/local/lib. For more information, see the load
entry on page 145.

No effect in pdm.

-m target Indicates that CodeCenter should perform a make
on target when starting up. This is equivalent to
entering make target as the first statement in the
Workspace. Note that a space is required between
the switch and the argument for the switch.

No effect in pdm
(not
implemented).

Table 6 Command-Line Switches Supported by CodeCenter (Continued)

Name of Switch What the Switch Does Restrictions

ccref.book : AR2cd 67 Mon Jun 5 15:33:25 1995

CodeCenter Reference 67

codecenter

-motif Start CodeCenter with the Motif Graphical User
Interface. Do not use this switch with -openlook or
-ascii.

None.

-no_fork Create a separate Run Window but avoid returning
immediate control to the shell. With -no_fork,
control returns when you enter ^Z in the shell or exit
CodeCenter. Without -no_fork, the shell prompt
comes back immediately.

None.

-no_run_window Avoids creating the separate Run Window and
avoids returning control to the shell. Your program’s
output goes to the shell in which you invoked
CodeCenter. Using the -no_run_window switch
means you are unable to interrupt CodeCenter and
unable to place it in the background. This switch is
intended for debugging applications that need
specific terminal support rather than a generic
terminal such as xterm.

None.

-o output_file Specifies that CodeCenter’s command output
should be written to output_file, rather than to
standard output. Note that a space is required
between the switch and the argument for the switch.

No effect in pdm
(not
implemented).

-openlook Starts CodeCenter with the OPEN LOOK Graphical
User Interface. Do not use this switch with -motif or
-ascii.

None.

-pdm Starts CodeCenter in process debugging mode. See
the pdm entry on page 198 for more information.

None.

-r number Specifies the size of the run-time stack as the number
nested function calls. The default size is
approximately 1000 nested function calls. The
default size may need to be increased when
executing highly recursive programs. Note that a
space is required between the switch and the
argument for the switch.

No effect in pdm.

Table 6 Command-Line Switches Supported by CodeCenter (Continued)

Name of Switch What the Switch Does Restrictions

ccref.book : AR2cd 68 Mon Jun 5 15:33:25 1995

codecenter

68 CodeCenter Reference

NOTE CodeCenter no longer supports the -p switch. By
default, all file descriptors that are open when you
start CodeCenter remain open during your session.

See Table 7 for a list of switches that you can use with the codecenter
command along with the -motif or -openlook switches. These
command-line switches allow you to fine tune your windowing
environment without having to edit any files specifying X resources.

-S [startup_file] If startup_file is supplied, it is read at startup instead
of the default system startup file. Use a hyphen (-) to
indicate no startup file. Note that a space is required
between the switch and the argument for the switch.

No effect in pdm.

-s [startup_file] If startup_file is supplied, it is read at startup instead
of the .ccenterinit file, which is the default startup
file in cdm, or .pdminit, the default in pdm. Use a
hyphen (-) to indicate no startup file. Note that a
space is required between the switch and the
argument for the switch.

None.

-Umacro_name (load switch) Causes the predefined macro_name to
become undefined as if a #undef directive had
occurred.

No effect in pdm.

-usage Displays a table of switch abbreviations and
arguments.

None.

-w (load switch) Suppresses reporting of warnings;
errors are always reported. For more information,
see the load entry on page 145.

No effect in pdm.

Table 6 Command-Line Switches Supported by CodeCenter (Continued)

Name of Switch What the Switch Does Restrictions

ccref.book : AR2cd 69 Mon Jun 5 15:33:25 1995

CodeCenter Reference 69

codecenter

Table 7 Switches to Specify Graphical User Interface from Command Line

Name of Switch and
Arguments, if any

What the Switch Does

-background color
-bg color

Specifies background color.

-config pathname Uses the X resource specifications in pathname instead of the
defaults. See the X resources entry on page 323 for more
information.

-debug Enables protocol error handler. If this switch is specified, any X
protocol error or fatal OITM error causes an error message to be
printed on stderr followed by a core dump. Note that running
CodeCenter with a command line of -debug is different than
compiling with a flag of -debug. If the command-line argument
-debug is not specified, the error messages still print when these
errors occur, but a core dump is not produced.

-display host:dpy.scn Specifies X server to connect to. If -display host:dpy.scn is
specified, the program’s display is targeted for machine host on
the network, on display and screen dpy.scn. If this argument is not
specified, the display is taken from the environment variable
DISPLAY, if it exists; otherwise, the display is targeted for the
originating host, display and screen using unix:0.0.

-fastdraw Tells CodeCenter to sacrifice appearance for faster drawing. If
-fastdraw is specified, the appearance of objects drawn on the
screen will be compromised for faster drawing. This is useful if
your program is displaying on an X terminal over an RS232 line.

-font font_name Specifies default text font for all objects in the GUI.

-foreground color
-fg color

Specifies foreground color.

-iconic Tells CodeCenter to start in iconic state.

-name name_string Specifies name_string as the name for this instance of program. If
-name name_string is specified, name_string will be the value of the
instance portion of the WM_CLASS property for this instance of
the execution of the program. If -title is not also specified,
name_string will be the value of the WM_NAME property, and
will be displayed in the title bar of the main application window
(assuming the window manager uses WM_NAME).

ccref.book : AR2cd 70 Mon Jun 5 15:33:25 1995

codecenter

70 CodeCenter Reference

-ol Tells CodeCenter to use the most appropriate OPEN LOOK
model. If the monitor is monochrome, the 2-D model is used; if
the monitor is color, the 3-D model is used.

-ol2d
-openlook_2d

Tells CodeCenter to use the 2-D OPEN LOOK model.

-ol3d
-openlook_3d

Tells CodeCenter to use the 3-D OPEN LOOK model.

-reverse
-rv

Tells CodeCenter to reverse foreground and background colors.

-xrm‘resource_string:value’ Sets the X resource resource_string in the X resource database to
the value string.

Table 7 Switches to Specify Graphical User Interface from Command Line (Continued)

Name of Switch and
Arguments, if any

What the Switch Does

ccref.book : AR3com 71 Mon Jun 5 15:33:25 1995

CodeCenter Reference 71

commands

commands
CodeCenter provides a complete set of commands that you can issue
from the Workspace in either component debugging mode or process
debugging mode.

Component and
process
debugging modes

In component debugging mode, you load all the parts, or components, of
your program and link and execute them within CodeCenter. In
contrast, in process debugging mode, you load your program as a fully
linked executable, and you have the choice of debugging it along with
a corefile or attaching to another process.

Issuing
commands from
the Workspace

Issue commands from the Workspace by typing them at the
Workspace prompt. When you are in CodeCenter’s default mode,
which is component debugging mode, the prompt is a right arrow:

->

If you are in process debugging mode, CodeCenter lets you know by
adding pdm to the right-arrow prompt:

pdm ->

See the pdm entry on page 198 for more details about debugging in
process debugging mode.

Issuing
commands from
Motif or OPEN
LOOK

Besides using the Workspace to issue commands, you can issue most
commands by using CodeCenter’s Graphical User Interface; see Table
8 on page 72 for information about where you can find each command
in a menu. Consult the User’s Guide for details about using the Motif
or OPEN LOOK versions of CodeCenter commands.

Using commands
as functions in
your code

CodeCenter provides predefined function equivalents of all
commands; you can use these functions in C programs. See the
built-in functions entry on page 22 for more information.

Defining your
own commands

You can define your own CodeCenter commands for use in the
Graphical User Interface; see the X resources entry on page 323 for
more information.

ccref.book : AR3com 72 Mon Jun 5 15:33:25 1995

commands

72 CodeCenter Reference

List of commands
and menus

Table 8 lists the CodeCenter commands, a brief description of each,
and the mode in which they can be used (cdm, pdm, or both).

NOTE See the entry for each command for more details about
that particular command.

Table 8 Brief Description of CodeCenter Commandsa

Command Name cdm pdm Brief Description

action ✔ Sets a debugging action

alias ✔ ✔ Creates an alias for a command

assign ✔ ✔ Assigns a value to a variable

attach ✔ Attaches to a running process

build ✔ ✔ Reloads all files in the project that have changed

catch ✔ ✔ Traps signals before they reach the program

cd ✔ ✔ Changes the current working directory

config_parser ✔ Specifies the compiler configuration to use for
load-time error checking

cont ✔ ✔ Continues execution from a break level

contents ✔ ✔ Lists files in the current project

debug ✔ Loads an executable file, a corefile, or a process for
debugging

delete ✔ ✔ Deletes debugging items

detach ✔ Detaches from a running process

display ✔ ✔ Displays the value of a variable or expression

down ✔ ✔ Moves down the execution stack

dump ✔ ✔ Displays all local variables

ccref.book : AR3com 73 Mon Jun 5 15:33:25 1995

CodeCenter Reference 73

commands

edit ✔ ✔ Invokes your editor at a specified location

email ✔ ✔ Sends electronic mail to CenterLine Software

english ✔ Describes a C type in English

fg ✔ Returns to CodeCenter after suspend

file ✔ ✔ Displays and sets the current list location

gdb ✔ Executes a gdb command

gdb_mode ✔ Changes from pdm mode to gdb mode

help ✔ ✔ Displays usage information about commands

history ✔ ✔ Lists previously entered input

ignore ✔ ✔ Allows signals to pass directly to the program

info ✔ Displays information (address, name, size, and
type) for data at a specific memory location

instrument ✔ Enables run-time error checking for an object file

keybind ✔ Changes bindings used by the in-line editor in the
Workspace

link ✔ Links files from libraries

list ✔ ✔ Displays source code lines

listi ✔ Displays machine instructions

load ✔ Loads source, object, library, and project files

load_header ✔ Loads header files as source

make ✔ ✔ Invokes the UNIX make command to handle
CenterLine (CL) targets

man ✔ ✔ Displays information about CodeCenter and UNIX
items

Table 8 Brief Description of CodeCenter Commandsa (Continued)

Command Name cdm pdm Brief Description

ccref.book : AR3com 74 Mon Jun 5 15:33:25 1995

commands

74 CodeCenter Reference

next ✔ ✔ Executes source code by line; does not enter
functions

nexti ✔ Executes machine code by line; does not enter
functions

print ✔ ✔ Prints the value of variables and expressions

printenv ✔ ✔ Displays the system environment

printopt ✔ ✔ Displays information on CodeCenter options

proto ✔ Generates prototypes for C functions and writes
them to a file

quit ✔ ✔ Quits CodeCenter

reinit ✔ Initializes all global variables

rename ✔ Rename a CodeCenter function

rerun ✔ ✔ Executes main() with new arguments

reset ✔ ✔ Returns to a previous break level (cdm) or to the top
level (pdm)

run ✔ ✔ Executes main() with arguments

save ✔ Saves the current session in a project file

set ✔ ✔ Assigns a value to a variable

setenv ✔ ✔ Adds a variable to the system environment

setopt ✔ ✔ Sets a CodeCenter option

sh ✔ ✔ Executes a Bourne subshell

shell ✔ ✔ Executes a subshell

source ✔ ✔ Reads CodeCenter commands from a file

start ✔ Executes main() without initializing global
variables

Table 8 Brief Description of CodeCenter Commandsa (Continued)

Command Name cdm pdm Brief Description

ccref.book : AR3com 75 Mon Jun 5 15:33:25 1995

CodeCenter Reference 75

commands

status ✔ ✔ Lists debugging items (actions, breakpoints,
displayed items, and traces)

step ✔ ✔ Steps execution by statement, entering functions

stepi ✔ Steps execution in machine instructions by
statement, entering functions

stepout ✔ ✔ Continues execution until the current function
returns

stop ✔ ✔ Sets a breakpoint

stopi ✔ Sets a breakpoint at a machine instruction

suppress ✔ Suppresses reporting of a warning

suspend ✔ Suspends CodeCenter and returns to the shell

swap ✔ Replaces a file or function with its source/object
counterpart

thread ✔ Sets a thread to be the current one or affects the
display of information about a thread

threads ✔ Displays information about threads active at a break
location

touch ✔ Marks memory as initialized and valid

trace ✔ Traces program execution

unalias ✔ ✔ Removes an alias for a command

uninstrument ✔ Disables run-time error checking for an object file

unload ✔ Unloads files

unres ✔ Lists undefined variables and functions

unsetenv ✔ ✔ Removes a variable from the system environment

unsetopt ✔ ✔ Unsets a CodeCenter option

Table 8 Brief Description of CodeCenter Commandsa (Continued)

Command Name cdm pdm Brief Description

ccref.book : AR3com 76 Mon Jun 5 15:33:25 1995

commands

76 CodeCenter Reference

a. The following commands are no longer supported by CodeCenter: jobs, kill, and userprint.

unsuppress ✔ Reactivates reporting of a warning

up ✔ ✔ Moves up the execution stack

use ✔ ✔ Displays or sets the directory search path

whatis ✔ ✔ Lists all uses of a name

when ✔ Executes specified commands under specified
conditions

where ✔ ✔ Displays the execution stack

whereami ✔ ✔ Displays the current break and scope locations

whereis ✔ ✔ Lists the locations where a name is declared or
defined

xref ✔ Cross-references a function or variable

Table 8 Brief Description of CodeCenter Commandsa (Continued)

Command Name cdm pdm Brief Description

ccref.book : AR3com 77 Mon Jun 5 15:33:25 1995

CodeCenter Reference 77

config_parser

config_parser

specifies the compiler configuration to use for load-time
error checking and code generation

Command syntax config_parser

config_parser config

Description

NOTE The config_parser command has no effect on header
files or libraries used by CodeCenter; see the
"Specifying the search path for loading libraries and
#include files" TIP on page 154 for more information
about these specifications.

cdm pdm

✔

<< none >> Displays the C compiler configuration currently
being used for load-time error checking.

config Specifies the C compiler configuration to use for
load-time error checking.

Here are some possible values for config:

suncc Sun’s K&R C compiler

acc Sun’s ANSI C compiler

hpcc Hewlett-Packard’s K&R C compiler

hpc89 Hewlett-Packard’s ANSI C compiler

gcc The GNU C compiler provided by the
Free Software Foundation

clcc CenterLine-C compiler

ccref.book : AR3com 78 Mon Jun 5 15:33:25 1995

config_parser

78 CodeCenter Reference

Usage Most non-ANSI C compilers have differing parsing and code
generation rules for certain C constructs. Moreover, many ANSI
compilers differ in areas where the standard is ambiguous or
implementation-dependent. CodeCenter’s goal is to provide error
messages and generate code that is consistent with your C compiler.
Use the config_parser command to specify the default C compiler
configuration that you want CodeCenter to emulate when you load
your source file.

For instance, if you plan to compile your source code with the
CenterLine-C compiler, you would typically set the compiler
configuration to clcc. Then, CodeCenter would use the same rules as
the CenterLine-C compiler in generating load-time errors.

If a CodeCenter option such as ansi is set, the option takes precedence
over the default configuration. Suppose, for instance, you issue the
config_parser command with config as clcc and set the ansi option.
The resulting configuration enables ANSI mode, even though by
default, the clcc configuration disables ANSI mode. See the following
example:

-> config_parser clcc
-> config_parser
The current base parser configuration is: clcc
NO : ANSI mode
...
-> setopt ansi
-> config_parser
The current base parser configuration is: clcc
YES : ANSI mode
...

NOTE The ansi and the long_not_int options are the only
two CodeCenter options that affect the compiler
configurations displayed or set by the config_parser
command.

See Table 9 for a listing of the default configurations.

ccref.book : AR3com 79 Mon Jun 5 15:33:25 1995

CodeCenter Reference 79

config_parser

Table 9 Default C Compiler Configurations Supported by CodeCenter

Configuration Items Name of C Compiler

suncc acc hpcc hpc89 gcc clcc

ANSI mode NO YES NO YES NO NO

Initialization of automatic
aggregates

NO YES NO YES YES YES

Bitfields are unsigned by default YES YES YES YES NO YES

Type char is unsigned by default NO NO NO NO NO NO

Type long is equivalent to type int YES NO NO NO YES NO

Follow ANSI rules for promoting
arithmetic operands

NO NO NO YES YES YES

Follow ANSI rules for promoting
function arguments

NO YES NO YES YES YES

size_t is type unsigned int NO NO YES YES NO NO

size_t is type signed int YES YES NO NO YES YES

size_t is type unsigned long NO NO NO NO NO NO

size_t is type signed long NO NO NO NO NO NO

ccref.book : AR3com 80 Mon Jun 5 15:33:25 1995

cont

80 CodeCenter Reference

cont

continues execution from a break level

Command syntax cont

cont continuation_value

cont at line

cont at line sig signum

cont sig signum

cont skip count

Description

cdm pdm

✔ ✔

<< none >> Continues execution of the program from the
current break level.

continuation_value When a break level was created because of a
warning or error, substitutes continuation_value
for the expression that caused the error or
warning and continues execution of the
program. Using a continuation value as an
argument allows execution to continue beyond
an expression that generates an error or
warning. (cdm only)

at line Continues at location specified by line. (pdm
only)

at line sig signum Continues at location specified by line with
signal specified by signum. This means the signal
is delivered to your program, which must
handle it. (pdm only)

sig signum Continues with signal specified by signum. (pdm
only)

skip count Continues, ignoring breakpoint for count
iterations. (pdm only)

ccref.book : AR3com 81 Mon Jun 5 15:33:25 1995

CodeCenter Reference 81

cont

Usage Use the cont command to continue execution of the program from a
break level.

Control-d is a keyboard shortcut for calling cont without an argument.

Restrictions You cannot continue from all errors by supplying a continuation value
to cont.

See Also step, stepout, stop, where, whereami

ccref.book : AR3com 82 Mon Jun 5 15:33:25 1995

contents

82 CodeCenter Reference

contents

lists files in the current project or source file

Command syntax contents

contents -ascii

contents all

contents file

Description

cdm pdm

✔ ✔

<< none >> Returns the pathname of the a.out file currently
loaded. (pdm only)

Ascii CodeCenter: Lists all files that you have
attempted to load—both those that loaded
successfully and those that failed to load. (cdm
only)

Motif and OPEN LOOK: Invokes the Project
Browser.

all In addition to all the files that you have
attempted to load, lists library modules that
have been linked during the session. (Ascii
CodeCenter only)

Lists known source files for the a.out file
currently being debugged. (pdm only)

file If the name of a loaded file, lists all objects
declared or defined in the file.

If the name of a static library, lists all modules
that have been linked from the library.

If the name of a shared library, lists all symbols
in the library.

Lists the functions defined in the source file
named file. (pdm only)

ccref.book : AR3com 83 Mon Jun 5 15:33:25 1995

CodeCenter Reference 83

contents

Switches

Usage Use the contents command to display information about files in your
current project. The contents command lists only the files that were
compiled with debugging information (with the -g switch).

Restrictions The contents command does not list project files.

The following restrictions apply in process debugging mode:

• The contents all variation does not display files compiled
without debugging information.

• The contents file variation may return only a partial list of
objects declared or defined in file.

See Also build, load, make, swap, unload

-ascii Motif and OPEN LOOK: Displays the output of
the contents command in ASCII format in the
Workspace. Without this switch, the contents
command invokes the Project Browser in Motif
and OPEN LOOK. (cdm only)

ccref.book : AR3com 84 Mon Jun 5 15:33:25 1995

debug

84 CodeCenter Reference

debug

loads an executable file, a corefile, or a process for
debugging

Command syntax debug

debug executable

debug executable corefile

debug executable process_id

Description

Options

These options are only available in process debugging mode.

cdm pdm

✔

<< none >> Displays the name and arguments of the
program being debugged.

executable Loads the symbol table for executable, which is
the name of the executable program to be
debugged.

executable corefile Loads the symbol table from the executable
program (executable) and sets up CodeCenter to
work with the corefile along with the executable
program. The corefile contains a literal copy of
the contents of memory at the time that the
operating system aborted a program.

executable
process_id

Loads the symbol table from the executable file
and attaches to the running process identified by
process_id. The process can be running inside or
outside of CodeCenter.

class_as_struct Disables maximum processing of classes to
improve performance

full_symbols Forces the reading of the full symbol table for
maximum information immediately.

ccref.book : AR3com 85 Mon Jun 5 15:33:25 1995

CodeCenter Reference 85

debug

Usage Use the debug command (in process debugging mode) to load the
files required for the following kinds of source-level and
machine-level debugging:

• Source-level debugging of a fully linked executable program

• Machine-level debugging a fully linked executable program
along with a corefile

• Source-level debugging a running process

These debugging activities are not available with CodeCenter unless
you are in process debugging mode.

Using the -g switch The information in the symbol table in an executable file varies
according to whether or not you used the -g switch when you
compiled the object modules that you linked to create it. Modules that
are not compiled with -g contain the information for machine-level
debugging only, plus information about the hexadecimal address of
external symbols. Modules compiled with -g, in contrast, contain full
source-level debugging information. Also, if you strip debugging
information from an executable file, you are limited to machine-level
debugging without any knowledge of external symbols.

Using run after
debug

After you use debug to load a program, use run to start it running.
This causes CodeCenter to create a process and make that process run
your program. You can then use any CodeCenter commands that are
available in process debugging mode to debug the program.

If your program crashes and creates a corefile, you can use debug to
load the corefile created when it crashed.

Attaching to a
process

When you attach to a running process, the first thing that CodeCenter
does is to stop the process. You can then examine and modify the
process with the commands available in CodeCenter. If you want the
process to continue running, use the continue (cont) command. Use
the detach command to release a process from CodeCenter’s control.

You can use the attach command in combination with debug to attach
to an already running process. That is, you can use the following two
commands:

(pdm) 1 -> debug my_executable
(pdm) 2 -> attach my_process_id

instead of the following:

(pdm) 3 -> debug my_executable my_process_id

ccref.book : AR3com 86 Mon Jun 5 15:33:25 1995

debug

86 CodeCenter Reference

NOTE If you leave process debugging mode or use the run
command while you have an attached process, you
kill that process.

See Also attach, detach, pdm

ccref.book : AR3com 87 Mon Jun 5 15:33:25 1995

CodeCenter Reference 87

debugging

debugging

balancing speed and other trade-offs with various
CodeCenter debugging capabilities

CodeCenter allows you to perform the following kinds of debugging
activities:

• Load-time error checking of source code

• Run-time error checking of source and object code

• Interactive source-level debugging of source, object, library, and
a.out files

• Code visualization through examination of class hierarchies,
individual classes, cross-references and data variables

Different kinds of debugging help you find different kinds of errors.
Also, there are trade-offs with each kind of debugging; for instance,
you get the most thorough error checking when you load source code,
but source code is the slowest to execute in CodeCenter.

We assume that you will use the various kinds of debugging at various
stages of the development process. In the rest of this reference page,
we describe scenarios that illustrate different ways to balance speed of
execution with run-time error checking and debugging capabilities.
We also provide a brief overview of all the debugging activities listed
above, along with performance considerations associated with each
activity.

Loading source
versus object
code versus
executables

Table 10 summarizes the pros and cons for each of six scenarios. Each
scenario balances speed with run-time error-checking and debugging
in a different way. We discuss each scenario in more detail after the
table.

ccref.book : AR3com 88 Mon Jun 5 15:33:25 1995

debugging

88 CodeCenter Reference

Scenario #1:
Maximizing number
of errors reported

Suppose your goal is to catch as many run-time errors as possible, no
matter what the cost in processing speed. In this case, you could load
your program entirely as source code, correcting or suppressing
load-time warnings, then build and run your program.

This scenario costs the most execution time, but it yields the most
complete set of run-time errors. This scenario is really useful only with
small projects. Some projects may be so large that this scenario is not
possible.

#2: Getting fewer
run-time errors but
increasing speed

The second scenario is much more typical for a large C program; we
recommend either this scenario or the third scenario for most
applications.

a. See the “Run-time error checking” section on page 92 for a definition of instrumented object code.

Table 10 Six Debugging Scenarios Showing Trade-Offs for Loading Source vs. Object Code

Files Used in this Scenario Debugging Considerations with this Scenario

Run-Time
Error
Checking

Speed of
Execution

Debugging
Available

1 Load all modules as source files excellent slowest excellent

2 Load 1 or 2 as source files; load the rest
as instrumented object codea

very good somewhat less
than full speed

excellent

3 Load all files as instrumented object
code

good somewhat less
than full speed

good

4 Load all files as regular object code
with debugging information
(compiled with -g switch)

minimal full speed good

5 Load all files as regular object code
without debugging information
(compiled without -g, or loaded with
-G)

none full speed minimal

6 Load the a.out file in pdm none full speed good

ccref.book : AR3com 89 Mon Jun 5 15:33:25 1995

CodeCenter Reference 89

debugging

Let us assume that you cannot afford the execution time to load and
run your program entirely as source code, but you suspect that one or
two source modules are likely to have errors. In this scenario, you load
the suspect modules as source and the other modules as instrumented
object code. Then, when you link and run your program, you will
probably catch many, if not all, run-time errors, and your program’s
execution time will not be nearly as great as in the first scenario.

#3: Increasing
speed even more

To improve speed even more than the second scenario, load your
program entirely as instrumented object code. Your program will run
only slightly slower than the full speed of the machine, and you will
get much, though not all, of the run-time error checking and
debugging capabilities CodeCenter provides. This scenario may be
the most typical and effective way to use CodeCenter for many users.

#4 and #5:
Maximizing speed of
execution

To maximize speed, load your code as regular object code, with or
without debugging information. You will not be able to do any
run-time error checking, but you can do some source-level
debugging—the amount depends on whether you load debugging
information or not.

#6: Fastest startup When startup and execution time are the most important
considerations and run-time error checking and incremental
turnaround times for changes are not important, start your project
using pdm and load your code as an a.out file. This results in
reasonably good debugging facilities and maximum speed of
execution. Using pdm is especially useful for finding bugs quickly in
existing code, rather than for debugging new code as you develop it.

Kinds of
debugging
supported

See Table 11 for a summary of the various kinds of debugging
supported by CodeCenter, the types of files you need to load for each
kind, and the benefits provided by CodeCenter’s various debugging
tools.

ccref.book : AR3com 90 Mon Jun 5 15:33:25 1995

debugging

90 CodeCenter Reference

Table 11 Kinds of Debugging Supported by CodeCenter

Debugging Activity Kinds of Files What CodeCenter Does

Load-time error
checking

source code Issues errors or warnings for the following
conditions:ab

I/O errors
Illegal characters
Illegal constant formats
Illegal escape sequences
Lexical constant overflow
Improper comments
Preprocessing violations
Macro expansion violations
Syntax errors
Illegal statements
Illegal expressions
Undefined identifiers
Unused variables
Improper type specifiers
Illegal bitfield declarations
Declaration violations
Illegal parameter declarations
Initialization violations
Redefinition violations
Linking violations
Variable warnings

Run-time error
checking

source code Issues errors or warnings for the following
conditions:a

Undefined/questionable arithmetic
operations
Undefined/illegal pointer operations
Enumerator warnings
Losing information during
conversions/assignments
Function warnings
Storage warnings

ccref.book : AR3com 91 Mon Jun 5 15:33:25 1995

CodeCenter Reference 91

debugging

a. Use the Manual Browser to see a list of messages in each category; issue the man command in the Work-
space and select the “violations” topic.

b. Use the config_parser command to set the compiler configuration to be used for error checking.

c. See the instrument and uninstrument commands for more information.

Run-time error
checking

source code, regular
object code, and
instrumented object
codec

Issues errors or warnings for the following
conditions:a

Memory allocation warnings

Miscellaneous warnings (bad arguments to
strcpy, strcmp, bzero, longjmp)

Run-time error
checking

source code and
instrumented object
codec

Issues errors or warnings for the following
conditions:a

Using memory that has not been set

Addressing errors (pointer dereference,
alignment, array index errors)

Interactive source-level
debugging

source code, object
code, and a.out
(with core or
process)

Allows you to do all of the following:

• Start your program under varying
conditions that might affect its behavior

• Stop your program on specified
conditions

• See what has happened when your
program has stopped

In component debugging mode, you can also
easily change your program, so you can try
out solutions to problems you discover.

Code visualization
(Cross-Reference
Browser)

source code and
object code

Displays static cross-references for functions
or variables in source and object files.

Code visualization
(Data Browser)

source code, object
code, and a.out

Allows you to examine values of data
variables, including complex pointer
structures.

Table 11 Kinds of Debugging Supported by CodeCenter (Continued)

Debugging Activity Kinds of Files What CodeCenter Does

ccref.book : AR3com 92 Mon Jun 5 15:33:25 1995

debugging

92 CodeCenter Reference

Performance
considerations

In this section we describe the various kinds of debugging activities
shown in Table 11 in terms of performance. For an overview of the
trade-offs between debugging techniques and some additional
performance enhancements, see the performance entry on page 207.

Load-time error
checking

Load-time error checking allows you to discover compile-time errors
in your code as well as hazardous but legal usages of the C language.

If you want to use the load-time error checking features of
CodeCenter, you must load your code as source, even though this
means your code will execute slowly. For load-time error checking, we
recommend that you load in source form only those modules you are
checking specifically for load-time errors; load as much of the rest of
your code as possible in object form.

Run-time error
checking

Run-time error checking allows you to discover errors and warnings
related to memory allocation and usage as well as miscellaneous
problems with enumerators, conversions, function calls, and storage.

As shown in Table 11, the specific run-time errors that CodeCenter can
find in your code depend on whether the code is loaded as source,
regular object, or instrumented object code. By instrumented object
code, we mean object code that has been modified so that it supports
run-time error checking; regular object code has not been so modified.
See the instrument entry on page 125 for more information about the
errors reported for instrumented object code.

Regular object code that is linked and executed within CodeCenter
runs at nearly the full speed of the machine. Instrumented object code
runs somewhat more slowly than regular object code, and source code
runs much more slowly than either regular or instrumented object
code.

So, for maximum speed with run-time error checking, we recommend
that you load in source or instrumented object form only those
modules you are checking specifically for run-time errors; load as
much of the rest of your code as possible in regular object form.

Source-level
debugging

Source-level debugging allows you to examine what is going on in a
program while it executes. This kind of debugging is available in
either of CodeCenter’s two modes, which are component debugging
mode and process debugging mode. In component debugging mode,
you load a program into CodeCenter as any combination of source
code, object code (instrumented or regular), and library files that you
link and execute within CodeCenter. In process debugging mode, you
load your program as a fully linked executable.

ccref.book : AR3com 93 Mon Jun 5 15:33:25 1995

CodeCenter Reference 93

debugging

For maximum speed of source-level debugging, load your files as
regular object code in component debugging mode or as an a.out file
in process debugging mode. In either case, your program will run at
or near the full speed of the machine.

Differences in
source-level
debugging

The debugging features available in CodeCenter vary somewhat
according to whether you have loaded source, object, or a.out files.

Source-level
debugging of a.out
files

As previously mentioned, to perform source-level debugging with
a.out files, you must use CodeCenter’s process debugging mode
(pdm). Most CodeCenter commands are exactly the same, whether or
not you are in process debugging mode, but there are some
differences. See the pdm entry on page 198 for more information.

Also, the debugging information in the symbol table in an a.out file
varies according to whether or not you used the -g switch when you
compiled the object modules that you linked to create it. See the debug
entry on page 84 for more information about loading an a.out file.

Maximizing
debugging capability
with object code

You can load object code with and without debugging information. To
get maximum debugging capability, load object files that have been
compiled with the -g compiler switch.

Source-level
debugging of source
code vs. object code

CodeCenter provides very similar source-level debugging capability
for object code as for code loaded in source form, as long as the object
code is loaded with debugging information. There are, however, a few
differences.

If you load object files with debugging information:

• You cannot use the stepout command when you are stopped in
object code.

• You cannot trace execution through object code as you can in
source code.

• Some forms of the action command have no effect with code
loaded in object form.

In addition, if you load object code without debugging information:

• You can stop on or set an action on a function name, but you
cannot stop on or set an action on a particular line.

• You cannot step through the object code.

ccref.book : AR3com 94 Mon Jun 5 15:33:25 1995

debugging

94 CodeCenter Reference

To examine some variables in object code, you must load the header
file that defines them.

Using object code
without
debugging
information

When a call to an object code function without debugging information
is displayed, the formal parameters for the function are not listed
because they are not known by CodeCenter. You can display the
parameters by specifying a prototype for the object code function.

Debugging
multiple
processes

You can debug multiple processes in CodeCenter. If your program
calls fork(), the child process appears in a separate window and shares
a Run window with the parent process. You can set breakpoints in the
parent and child independently. However, in the child process, your
code must be loaded as source to set breakpoints; the parent process
can be loaded as source or object code to set breakpoints.

If the child process
does an exec

If the child process does an exec and you want to debug the child
program, you must modify the call to exec...() so that codecenter is
executed instead of the child program. Here is an example of a
modified exec:

if (fork() == 0)
{

printf("In the child\n");
#ifdef __CODECENTER__

execlp("codecenter","codecenter","-motif",0);
#else

execlp("child_prog","child_prog",0);
#endif
}

After this code is executed, you can move the mouse to the new
Workspace window, load the source code for the child program you
want to debug, then run it.

NOTE You cannot use object code debugging for the child
program in programs that fork; you can set
breakpoints and step through code only in source code
in the child process.

ccref.book : AR3com 95 Mon Jun 5 15:33:25 1995

CodeCenter Reference 95

debugging

If your program fails
to fork

In order to fork another CodeCenter window, the win_fork option
must be set to TRUE (the default). To check if win_fork is set, enter
this command in the Workspace:

 -> printopt win_fork

 If win_fork is set to FALSE, enter this command to set it to true:

-> setopt win_fork

Failure to fork can also occur because there is not enough swap space
for two copies of CodeCenter.

If you are using fork() followed by exec...(), using vfork() instead will
help. Here is a modification of the above code, which invokes Ascii
CodeCenter instead of the Motif version, as in the previous example:

if (fork() == 0)
{

printf("In the child\n");
#ifdef __CODECENTER__

execlp("codecenter","codecenter","-ascii",
"-i" "/dev/ttyp9", "-o" "/dev/ttyp9",0);
#else

execlp("child_prog","child_prog",0);
#endif
}

The arguments to codecenter are different because a new window is
not being created automatically. The arguments -i device_name and
-o device_name name the devices that CodeCenter will use for its input
and output, respectively. Here, another terminal window was named
to act as the console. Before doing this, you must get the correct name
of the terminal window, then put it to sleep by issuing the following
command:

% sleep 10000

ccref.book : AR3com 96 Mon Jun 5 15:33:25 1995

delete

96 CodeCenter Reference

delete

deletes debugging items

Command syntax delete

delete all

delete "file":line ...

delete number ...

Description

Usage Use the delete command to delete a breakpoint, action, display, or
trace.

To obtain the number of a debugging item, use the status command.

Zombied items If delete is called on a debugging item currently active on the
execution stack, the item will be zombied (marked for deletion) instead
of being deleted immediately. A zombied item is deleted once it has
completed executing.

See Also action, display, status, stop, trace, when

cdm pdm

✔ ✔

<< none >> Deletes all debugging items at the current break
location. (cdm only)

all Deletes all debugging items everywhere.

"file":line... Deletes a breakpoint or action at the specified
location. More than one location can be
specified. (cdm only)

number... Deletes the specified debugging item.

ccref.book : AR3com 97 Mon Jun 5 15:33:25 1995

CodeCenter Reference 97

detach

detach

detaches from a running process

Command syntax detach

Description <<none>> Detaches CodeCenter from the running process
that was attached using CodeCenter’s attach
command.

Usage Use the detach command to release a process from CodeCenter’s
control. Detaching a process continues its execution.

After you use the detach command, a process is completely
independent of CodeCenter, and you can use attach with another
process, or start a process with run.

NOTE If you leave process debugging mode or use the run
command while you have an attached process, you
kill that process.

See Also attach, debug, pdm

cdm pdm

✔

ccref.book : AR3com 98 Mon Jun 5 15:33:25 1995

display

98 CodeCenter Reference

display

displays the value of a variable or expression

Command syntax display expression

display variable

Description

Options The following CodeCenter options affect the display command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

cdm pdm

✔ ✔

expression Ascii CodeCenter: Evaluates the designated
expression and displays its value whenever
execution is stopped.

Motif and OPEN LOOK: Invokes the Data
Browser, which creates a new display item each
time you invoke the display command. The
display item graphically displays the value of
the variable or expression.

variable Displays the value of the designated global or
local variable whenever execution is stopped.

print_pointer Adds diagnostic information to pointer
display.

print_runtime_type Specifies pointer display as run-time rather
than compile-time types.

print_static Tells CodeCenter to display static data
members.

ccref.book : AR3com 99 Mon Jun 5 15:33:25 1995

CodeCenter Reference 99

display

Usage Use the display command to display the value of an expression or a
variable. CodeCenter displays the value whenever your program is
stopped, including during single-stepping.

Local variables The argument to display may contain references to local variables that
are currently in scope. If execution later stops at a point where these
variables are no longer in scope, the display will either generate an
error (Workspace) or show the variable with the text in a dimmed or
"greyed out" state (Motif or OPEN LOOK).

To explicitly display a particular instance of a variable in component
debugging mode, use the scoping syntax to qualify the name. In the
example below, variable node is both a global and a local variable.
Qualifying the name node by the function indicates that the display
should act upon the local instance.

-> display func ‘node

See 'Specifying a variable’s location' on page 314 for more information
about this syntax.

Manipulating display
items

Display items can be deleted with the delete command and examined
with the status command.

See Also delete, dump, info, print, status, whatis, whereis

ccref.book : AR3com 100 Mon Jun 5 15:33:25 1995

down

100 CodeCenter Reference

down

moves down the execution stack

Command syntax down

down number

Description

Usage Use the down command to move the current scope location down the
execution stack, away from the top level of the Workspace and toward
the current break level.

The scope location is the point at which all variables, types, and
macros are scoped. When a break level is generated, the scope location
is set to the point at which execution was interrupted.

When at a break level, the where command can be used to display the
execution stack. The whereami command can be used to display the
break location and the current scope location.

See Also cont, reset, up, where, whereami

cdm pdm

✔ ✔

<< none >> Moves the current scope location down one level
on the execution stack.

Motif and OPEN LOOK: Source panel shows file
scoped to location and highlights it with an
arrow.

number Moves the current scope location the specified
number of levels down on the execution stack.

ccref.book : AR3com 101 Mon Jun 5 15:33:25 1995

CodeCenter Reference 101

dump

dump

displays all local variables

Command syntax dump

dump function

dump text

Description

Usage Use the dump command to display the names and values of local
variables.

Typically you use the text argument by selecting a range of text, then
issuing the dump command. CodeCenter displays the name and
value of each of the variables contained in the text string.

See Also display, info, print, whatis, whereis

cdm pdm

✔ ✔

<< none >> Displays the name and value of each variable
local to the current scope location.

function Displays the name and value of each variable
local to the specified function.

text Displays the name and value of each variable
contained in an arbitrary text string.

ccref.book : AR3com 102 Mon Jun 5 15:33:25 1995

edit

102 CodeCenter Reference

edit

invokes your editor at a specified location

Command syntax edit

edit identifier

edit file

edit "file":line

edit function

edit line number

edit workspace

Description

cdm pdm

✔ ✔

<< none >> Loads the current file into your editor,
positioned at the current list location.

identifier Loads the file containing the defining instance
for the identifier into your editor, positioned at
the location of the definition. (The identifier can
be a variable, typedef, macro, or struct/union
tag. If the defining instance is ambiguous,
nothing is loaded into the editor.)

file Loads the specified file into your editor,
positioned at the top of the file.

"file":line Loads the specified file into your editor,
positioned at the specified line in the file.

function Loads the file containing the specified function
definition into your editor, positioned at the start
of the function.

ccref.book : AR3com 103 Mon Jun 5 15:33:25 1995

CodeCenter Reference 103

edit

Options The following CodeCenter options affect the edit command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the edit command to facilitate quick debug-edit-run turnaround
times by invoking your editor (specified by the editor option) to edit
a file at a specified location. In all cases, once the editor is invoked, the
current list location is set to the file and line number edited.

Use the edit workspace command to save code you define in the
Workspace. During a session, all C definitions you enter are stored in
a Workspace scratchpad. The edit workspace command lets you save
the scratchpad to a file, by default workspace.c, and then edit the file.
For more information, see 'Using the edit workspace command' on
page 320.

See Also edit server

line number Loads the file specified by the current list
location into your editor, positioned at the
specified line number.

workspace Appends all workspace definitions to a file and
invokes your editor on the file.

editor (Ascii CodeCenter only) By default this option is
unset. Set it only if there is no edit server in your
environment. Possible values are vi and emacs.

path Specifies the search path for editing files.

ccref.book : AR3com 104 Mon Jun 5 15:33:25 1995

edit server

104 CodeCenter Reference

edit server
An edit server is a software utility that allows you to attach an editor
to CodeCenter so that, whenever you issue an edit request, the server
automatically invokes an editing session using the attached editor.

CodeCenter provides built-in edit servers for vi and FSF GNU Emacs.
For information about using GNU Emacs with CodeCenter, see the
emacs integration entry on page 105.

ccref.book : AR3com 105 Mon Jun 5 15:33:25 1995

CodeCenter Reference 105

emacs integration

emacs integration
CodeCenter provides two ways to integrate CodeCenter with GNU
Emacs: You can connect your GNU Emacs session to CodeCenter so
that your Emacs session is used when you use the edit command or
select an Edit symbol or button. If you use FSF GNU Emacs 19 or a
later version, you can also invoke CodeCenter from within your
Emacs session and use the Emacs Main Window.

A compatible version of FSF GNU Emacs is available by anonymous
ftp from the host ftp.centerline.com in the /pub/TOOLS/emacs
directory. For more information, refer to the README file in that
directory.

To use either of these features, you must load clipc.el. You can do this
by adding the following lines of ELISP code to your .emacs startup file
after any existing load-path lines:

(setq load-path (cons "path/CenterLine/lib/lisp" load-path))
(load "clipc")

where path is the absolute path to your CenterLine directory.

For example, you might have these lines at the beginning of your
.emacs file:

(setq load-path (cons "/usr/local/emacs/local-lisp" load-path))
(setq load-path (cons "install_path/CenterLine/lib/lisp" load-path))
(load "clipc")

Connecting GNU
Emacs to
CodeCenter

Once you have these lines of ELISP in your .emacs file, you need to
have Emacs load them in your current Emacs session. If you already
have an Emacs session running that you want to connect to
CodeCenter, then select these lines of ELISP and evaluate the region
in Emacs:

M-x eval-region RET

Alternatively, you can load the file clipc with the following Emacs
commands:

M-x load-file RET clipc RET

ccref.book : AR3com 106 Mon Jun 5 15:33:25 1995

emacs integration

106 CodeCenter Reference

If you do not have an Emacs session running, invoke Emacs and these
lines will be read with the .emacs file. Once Emacs has loaded the new
lines of ELISP, you establish a connection to CodeCenter by using this
Emacs command:

M-x cl-edit RET

Emacs Main
Window

If you use FSF GNU Emacs version 19 or a later version, you can
invoke CodeCenter from within Emacs.

Use the Emacs command M-x codecenter to start your CodeCenter
session. Emacs prompts

"Run CodeCenter (like this): path-to/codecenter"

where path-to is the path to your codecenter executable. You can edit
this path if it does not show the executable you want to use. Press
Return to start CodeCenter in component debugging mode, or enter
the -pdm switch to start in process debugging mode. You can also give
the name of a project file as an argument.

CodeCenter starts up in a new buffer called cl-workspace. All the
menus at the top of the Emacs window are replaced with the menus
from CodeCenter's Main Window, except the In/Out and Help
menus.

You can use most of the commands and features available in
CodeCenter to prototype and debug code in this buffer.

Source window When you load your application into CodeCenter, run it, and stop at
a breakpoint or error, the source code is displayed in a separate buffer
above the Workspace. An arrow (=>) indicates the line at which
execution stopped. As you step through your code, a new buffer is
used for each file you step through. You can edit your code directly in
the source window.

Button Panel The Button Panel is available in a separate window. To open it, select
Button Panel from the Browsers menu.

Setting breakpoints,
tracepoints, and
actions

You can set a breakpoint on a line of the code displayed in the source
window, or remove an existing breakpoint, by holding down the
Control key and clicking the left mouse button anywhere on the line.
Lines with breakpoints set on them display in reverse video.

ccref.book : AR3com 107 Mon Jun 5 15:33:25 1995

CodeCenter Reference 107

emacs integration

You can also use the stop, trace, and action workspace commands or
selections from the Debug menu. Debug menu selections that require
an argument bring up a prompt in the minibuffer. Set Action brings up
a new buffer in which you enter the action with one statement on each
line. Type Control-c Control-c to save the buffer and set the action.

Selecting text To select text, hold down the Left mouse button and drag over the item
you want to select as in CodeCenter. You can then select an item from
the Examine menu or the popup Expression options menu. Press Shift
plus the Right mouse button to display the Expression options menu.

Key bindings You can use the following key bindings, as well as others available in
Emacs:

Limitations Some features that are available in CodeCenter's Graphical User
Interface are not available in the Emacs Main Window:

• Line numbers, breakpoint symbols, and the scope arrow in the
source window. We show breakpoints in reverse video.

• User Defined and Button Panel items on the CodeCenter menu.

• The Error Browser button.

Ctrl-c Ctrl-b build

Ctrl-c Ctrl-d display

Ctrl-c Ctrl-n next

Ctrl-c Ctrl-r run

Ctrl-c Ctrl-s step

Ctrl-c Ctrl-c interrupt execution

Tab complete filename

Meta-? list possible completions

Esc-p Scroll backwards through input history

Esc-n Scroll forwards through input history

ccref.book : AR3com 108 Mon Jun 5 15:33:25 1995

emacs integration

108 CodeCenter Reference

Some features described in the Workspace entry are not available or
work differently. You can repeat the previous line of input with ##, or
the nth. previous line with #-n, but the expansion syntax for #$, #*, and
#: described on page 310 is not available. You cannot use the
<ESC><ESC> and <ESC>x sequences for command, name, and
filename completion described on page 312.

ccref.book : AR3com 109 Mon Jun 5 15:33:25 1995

CodeCenter Reference 109

email

email

sends electronic mail to CenterLine Software

Command syntax email

email file

Description

Options The following CodeCenter option affects the email command:

The option is set in the following file:

CenterLine/configs/support-defs

By default the value is as follows:

codecenter_support@centerline.com

NOTE In the Motif and OPEN LOOK versions, the
email_address option has no effect.

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

cdm pdm

✔ ✔

<< none >> Ascii CodeCenter: Invokes the UNIX mail(1)
electronic mail utility.

Motif and OPEN LOOK: Opens the email dialog
box.

file Ascii CodeCenter: Invokes the UNIX mail(1)
electronic mail utility, sending the contents of
the specified bug report file or suggestion file to
CenterLine Software.

email_address Specifies the electronic mail address for the email
command.

ccref.book : AR3com 110 Mon Jun 5 15:33:25 1995

email

110 CodeCenter Reference

Usage To report bugs or offer suggestions, use the email command to send
an electronic mail message to CenterLine Software. When you send a
bug report, include examples of the source code that produced the
problem, if possible.

When you issue the email command, you can use the UNIX mail(1)
electronic mail utility’s escape sequences.

ccref.book : AR3com 111 Mon Jun 5 15:33:25 1995

CodeCenter Reference 111

english

english

describes a C type in English

Command syntax english type_expression

english identifier

Description

Usage Use the english command to clarify a C type expression or to display
a prose description of the type of an identifier.

Example The following example indicates both ways english can be used to
describe a type:

-> char *(*func)();
-> english func
pointer to function returning pointer to char.
-> english char *(*)()
pointer to function returning pointer to char.

See Also help, man

cdm pdm

✔

type_expression Displays a prose description for the type of the
specified type expression.

identifier Displays a prose description for the type of the
specified identifier (variable, function,
struct/union tag, or typedef).

ccref.book : AR3com 112 Mon Jun 5 15:33:25 1995

environment variables

112 CodeCenter Reference

environment variables

What is an
environment
variable?

The environment of a process is an array of strings; each string is
called an environment variable. By convention, each string, or
environment variable, has the following form:

NAME =[value]

For instance, the following string is an environment variable:

EDITOR=vi

The shell makes these strings available to programs through envp,
which it passes as the third argument to main() whenever a program
begins execution. See the UNIX manual pages for environ and execv
for more details.

When you are in a C shell, you can manipulate environment variables
for programs in that shell by using the csh built-in commands setenv
and unsetenv along with the printenv shell command. See the UNIX
manual pages for csh and printenv for more details about these
commands.

Setting and
examining
environment
variables

Similarly, when you are in the CodeCenter environment, you can use
CodeCenter’s printenv, setenv, and unsetenv commands to
manipulate environment variables for programs within CodeCenter:

See the reference pages for printenv, setenv, and unsetenv for more
details about these commands.

These CodeCenter commands affect only the environment variables
for the program you are examining in CodeCenter. They do not affect
the environment variables used by CodeCenter to control its own
operation, nor do they affect the value of environment variables
outside of CodeCenter. To control CodeCenter’s operation, use
CodeCenter’s options.

printenv Displays the values of environment variables

setenv Sets the values of environment variables

unsetenv Unsets environment variables

ccref.book : AR3com 113 Mon Jun 5 15:33:25 1995

CodeCenter Reference 113

environment variables

Environment
variables used by
CodeCenter

For instance, changing the EDITOR, DISPLAY, or PAGER shell
variables with CodeCenter’s setenv command does not affect which
editor, display screen, or paging program CodeCenter uses. To modify
CodeCenter’s behavior, use CodeCenter’s setopt command with the
appropriate option.

Environment
variables in
makefiles

You should be careful about changing the values for any environment
variables that you use in a makefile. If you change the value for an
environment variable from within CodeCenter, you have not changed
its value in the process that is invoked when you use the make
command to recompile your program. This means that you might not
get the results you intend when the make evaluates the environment
variable.

Expanding
environment
variables in
CodeCenter

Use the #$ syntax described in Table 26 on page 310 to expand
environment variables.

CenterLine and
CodeCenter
environment
variables

By convention, environment variables that are specific to the
CodeCenter product have the following prefix:

CODECENTER_

Similarly, environment variables that are specific to all CenterLine
products have the following prefix:

CENTERLINE_

For example, CodeCenter normally displays a message when linking
from a library:

Linking from ... Linking completed.

You can suppress the linking messages by setting the environment
variable CENTERLINE_LINK_SILENT before starting CodeCenter.
This is particularly useful in Ascii CodeCenter when linking from
shared libraries: run-time linking messages will not obscure your
program’s output.

See Also printenv, setenv, setopt, unsetenv, unsetopt

ccref.book : AR3com 114 Mon Jun 5 15:33:25 1995

fg

114 CodeCenter Reference

fg

returns to CodeCenter

Command syntax fg

Description

Usage Use the fg command to return to CodeCenter after being suspended.

See Also quit, save

cdm pdm

✔

<< none >> Returns to CodeCenter after a suspend
command. (Ascii CodeCenter only)

ccref.book : AR3com 115 Mon Jun 5 15:33:25 1995

CodeCenter Reference 115

file

file

displays and sets the current list location

Command syntax file

file filename

Description

Usage Use the file command to display and set the current list location.
Commands such as action, edit, list, and stop use the list location as
the default location unless specifically overridden by an argument.

The file command changes which static variables are visible at the top
level in the Workspace. Another way to view a multi-defined static
variable is to preface the variable name with the function or filename
in which it is defined (for example, `file.c`variable or func`variable).

See Also action, edit, list, stop

cdm pdm

✔

<< none >> Displays the name of the file containing the
current list location.

filename Sets the current list location to the top of the
specified file.

ccref.book : AR3com 116 Mon Jun 5 15:33:25 1995

gdb

116 CodeCenter Reference

gdb

executes a gdb command

Command syntax gdb gdb_command [argument] ...

Description

Usage The gdb command allows you to stay in process debugging mode and
execute gdb commands. For instance, the following invokes break, a
gdb command, with 20 as the argument:

(pdm) 1 -> gdb break 20

NOTE Although we provide access to native gdb commands
as a convenience, we do not provide any additional
support for native gdb commands.

For more information on gdb commands, you can use the gdb help
command:

(pdm) 1 -> gdb help

Documentation on gdb is available from CenterLine by using
anonymous ftp. For information, refer to 'Distribution' on page iii.

See Also gdb_mode

cdm pdm

✔

gdb_command [argument] Executes gdb_command [argument] as if it
were typed to a gdb command prompt.

ccref.book : AR3com 117 Mon Jun 5 15:33:25 1995

CodeCenter Reference 117

gdb_mode

gdb_mode

changes from pdm mode to gdb mode

Command syntax gdb_mode

Description

Usage Use the gdb_mode command when you want to issue a series of gdb
commands without prefacing every command with the gdb
command.

To use gdb along with pdm, issue the gdb_mode command in the
CodeCenter Workspace while you are in process debugging mode:

(pdm) 1 -> gdb_mode
(gdb)

Once you are in gdb mode, you can use only the gdb command set:

(gdb) break 20
(gdb) when
Undefined command: "when". Try "help".

You can get back to process debugging mode by typing the following
command:

(gdb) pdm
(pdm) 2 ->

NOTE Although we provide the gdb_mode command as a
convenience, we do not provide any technical support
for gdb.

cdm pdm

✔

<< none >> Changes from pdm mode to gdb mode.

ccref.book : AR3com 118 Mon Jun 5 15:33:25 1995

gdb_mode

118 CodeCenter Reference

For more information on gdb commands, you can use the help
command while in gdb mode.

Documentation on gdb is available from CenterLine by using
anonymous ftp. For information, refer to 'Distribution' on page iii.

See Also gdb

ccref.book : AR3com 119 Mon Jun 5 15:33:25 1995

CodeCenter Reference 119

help

help

displays usage information about commands

Command syntax help

help command

Description

Usage Use the help command for quick online help for CodeCenter
commands.

See Also english, man

cdm pdm

✔ ✔

<< none >> Lists the names of CodeCenter commands by
category.

command Displays a summary of syntax and usage
information for the specified command.

ccref.book : AR3com 120 Mon Jun 5 15:33:25 1995

history

120 CodeCenter Reference

history

lists previously entered input

Command syntax history

history number

Description

Options The following CodeCenter option affects the history command:

Usage Use the history command for easy recall of previously issued
commands and to monitor the debugging sequence leading to a given
state.

Use ## to repeat the immediately previous command, and use
#history_line_number to repeat the command specified by
history_line_number.

Pressing Control-p scrolls backward through the history list. Pressing
Control-n scrolls forward through the history list.

To save the list of input lines entered from the Workspace in a file, use
the following command:

-> history #> file_name

See Also Workspace

cdm pdm

✔ ✔

<< none >> Displays all input lines previously entered from
the Workspace.

number Displays the specified number of input lines
entered from the Workspace.

line_edit Adds line editing, command completion, and
extensive history capabilities to the Workspace.

ccref.book : AR4ignore 121 Mon Jun 5 15:33:25 1995

CodeCenter Reference 121

ignore

ignore

allows signals to pass directly to the program

Command syntax ignore

ignore signal-name

ignore signal-number

Description

Usage Use the ignore command for any signal that you want to pass directly
to the program. Once an ignored signal is passed to the program, the
program executes any signal handlers specified for it.

Signal numbers To obtain the number for a signal, consult the UNIX reference manuals
for your system.

Signal names With the ignore command, the signal name can be in uppercase or
lowercase letters, and it can be used with or without the prefix “SIG”.
For example, the following commands are equivalent:

-> ignore SIGHUP
-> ignore sighup
-> ignore HUP
-> ignore hup

cdm pdm

✔ ✔

<< none >> Lists the unprefixed name of the signals that are
currently ignored.

signal-name Disables trapping for the designated signal,
allowing the signal to pass directly to the
program, which can execute a signal handler if it
has been specified.

signal-number Disables trapping for the designated signal,
allowing the signal to pass directly to the
program, which can execute a signal handler if it
has been specified.

ccref.book : AR4ignore 122 Mon Jun 5 15:33:25 1995

ignore

122 CodeCenter Reference

Signals ignored To obtain a list of signals ignored on your platform, type the ignore
command without any arguments.

NOTE Even if a signal is ignored, it interrupts system calls,
such as select(), that are interruptible.

Restrictions When a signal is caught and a break level is generated, the signal is
consumed. Ignoring the signal at the break level and continuing
execution will not regenerate the signal and pass it to the program.

Control-z at the command prompt is not interfered with (Ascii
CodeCenter only).

Control-z during execution or in the run window is always handled as
a signal-deliver, generating an error if not trapped by the user
program.

Ignoring SIGINT causes SIGQUIT to perform interruption duties.
Ignoring both of them interferes with stopping execution.

The signals SIGTTIN and SIGTTOU will never suspend execution; if
not trapped and ignored they will generate an error.

When an exec() is done within CodeCenter, the inherited signal mask
only includes signals that have been ignored. Also, the SIGQUIT,
SIGTRAP, and SIGEMT signals are never present in the inherited
signal mask (cdm only).

See Also catch

ccref.book : AR4ignore 123 Mon Jun 5 15:33:25 1995

CodeCenter Reference 123

info

info

displays information (address, name, size, and type) for
data at a specific memory location

Command syntax info address

info lvalue

info variable

Description

Usage Use the info command to display information about the data located
at a specific address. This command is especially useful for
determining what a pointer points to.

If the address refers to allocated data, info displays the size of the
allocated data and, if available, the type of data most recently stored
there. If the address is being watched by a debugging action or the
address contains a bad pointer, then info also indicates this.

cdm pdm

✔

address Displays information for the data at address, which
must be a hexadecimal value.

lvalue Evaluates lvalue and uses the result as an address.
Displays information for the data at the evaluated
address.

variable Displays information for the data at the address
named by a variable.

ccref.book : AR4ignore 124 Mon Jun 5 15:33:25 1995

info

124 CodeCenter Reference

Example In the example below, info is used to display information about a
value stored in a pointer.

-> int i, *ptr;
-> ptr = &i;
(int *) 0x125278 /* i */
->
-> info ptr
address = 0x134662, name = ptr
Size = 4, contains type: pointer
->
-> info *ptr
address = 0x125278, name = i
Size = 4, contains type: int
->
-> info 0x125278
address = 0x125278, name = i
Size = 4, contains type: int
->

See Also display, dump, whatis, whereis

ccref.book : AR4ignore 125 Mon Jun 5 15:33:25 1995

CodeCenter Reference 125

instrument

instrument

enables run-time error checking for an object file

Command syntax instrument

instrument file ...

instrument all

Description

Options If you want CodeCenter to instrument your files automatically as they
are loaded, set the instrument_all option.

The following options affect the instrument command:

cdm pdm

✔

<< none >> Lists names of instrumented files

file ... Adds information to file, making it possible for
CodeCenter to perform certain kinds of run-time
error checking. The file argument can be the name
of any loaded object file or any loaded source file
that might be swapped to an object file. If file is a
source file that is swapped using the swap
command, CodeCenter automatically
instruments the object file when it swaps it with
the source file.

all Instruments all object files currently loaded. This
includes modules linked in from libraries.

instrument_byte Checks for unset memory that is used one byte
at a time.

instrument_space Allocates space for instrumented code
according to the value of this option. By
default, the option is set to 2, which requires an
amount of space equal to approximately half
the text size of your application. If you set this
option to 0, you save space, but you cannot
instrument any object code.

ccref.book : AR4ignore 126 Mon Jun 5 15:33:25 1995

instrument

126 CodeCenter Reference

Using the
instrument_byte
option

By default, CodeCenter fails to report an error for usage of
uninitialized memory when your code accesses such memory one
byte at a time. For instance, consider the following example:

char *cp, *dp;
cp=malloc(10);
dp=malloc(20);
for(i=0; i<10; i++)

dp[i]=cp[i];
/* cp has not been initialized, but

CodeCenter uses it anyway and does
not report memory as used before set */

The for statement in the preceding code causes the system to obtain
one byte of memory at a time to acquire the value of cp[i]. In this
situation CodeCenter does not report the programming error, namely
the use of cp without initializing its value, unless you set the
instrument_byte option.

Usage Use the instrument and uninstrument commands to enable and
disable run-time error checking of loaded object code. Enabling the
run-time error checking of loaded object code is called instrumenting
the file.

NOTE If you are using the Motif or OPEN LOOK version of
CodeCenter, you can use the Project-Wide Properties
window to control instrumentation of your object files.
This window is accessible from the Project Properties
selection off the Project pulldown menu in the Project
Browser.

unset_value Use this value to detect memory that has not
been set. Every byte of memory allocated by
the malloc() functions, as well as memory for
automatic variables, is set to the value of
unset_value. If this option is set to 0 (setopt
unset_value 0), CodeCenter no longer
diagnoses that a variable is used without being
set.

ccref.book : AR4ignore 127 Mon Jun 5 15:33:25 1995

CodeCenter Reference 127

instrument

Kinds of errors
reported

CodeCenter can report the following kinds of errors in instrumented
object code:

Instrumenting static
libraries

You can use the instrument command to instrument an object module
in a static library by using the following syntax:

instrument library_pathname/object_module_name

The module must be linked to your program before you instrument it;
you can accomplish this without running your program by issuing the
link command.

Run-time error
checking in
source or object
code

CodeCenter allows you to perform automatic run-time error checking
on your program with any combination of source code and
instrumented object code. Your decision about how to load your
program for run-time error checking depends on how you want to
balance the trade-offs of speed versus completeness of error checking.

Performance
considerations

Keep in mind the following facts about CodeCenter:

• Source code executed within CodeCenter runs more slowly than
either instrumented object code or regular object code.

• Instrumented object code executed within CodeCenter runs
faster than source code but slower than regular object code.

• Regular object code executed within CodeCenter runs
significantly faster than source code and somewhat faster than

pointer bounds errors CodeCenter checks pointer bounds for
global data and all memory allocated
with malloc(). Note that pointer bounds
checking is not performed for pointers
to automatic variables—that is, for
pointers pointing into the stack.

accessing uninitialized
memory

CodeCenter generates “used before set”
messages; they report memory
allocated with malloc() that is used by
your program without being initialized.
By default, CodeCenter checks for
uninitialized memory on 2-, 4-, and 8-
byte memory references. Note that this
type of checking is not performed for
pointers to automatic variables—that is,
for pointers pointing into the stack.

ccref.book : AR4ignore 128 Mon Jun 5 15:33:25 1995

instrument

128 CodeCenter Reference

instrumented object code. Regular object code runs at the full
speed of the machine.

Unless you want to save memory or loading time, we recommend that
you use the instrument command with object code that was compiled
with debugging information (that is, with the -g option). That way you
can shift easily to other source-level debugging techniques to trace
and correct any run-time errors that are reported.

See the "Loading source versus object code versus executables" section
on page 87 for more discussion of trade-offs in the way you load your
program.

Errors detectable in
source but not in
object code

CodeCenter can detect some errors in programs loaded in source form
that it does not detect in object code, even if you instrument the object
code. Here are some examples.

Some errors in
pointer arithmetic

CodeCenter can detect pointers that are slightly out of bounds in both
source and instrumented object code, but sometimes it can detect
pointers that are significantly out of bounds only in source code.

Suppose you intend to add 62 but you actually add 622 to a pointer
address. The resulting pointer is significantly out of bounds for the
variable you declared it to reference, but it happens to contain a legal
address. If you load your code as source, CodeCenter generates a
warning about the pointer being out of bounds. In contrast, if you load
your code as object code (instrumented or regular), CodeCenter may
not generate any message about the pointer, even though it is no
longer considered valid.

Array index errors CodeCenter detects array index errors in source code, but it cannot
always detect them in instrumented object code. For example,
suppose you declare s1 as follows:

struct S {
 int a;
 char b[4];
 int c;} s1;

Then you make the following assignment:

s1.b[5] = 0; /* this field was declared as b[4] */

If this code is loaded as source, CodeCenter issues a warning for the
out-of-bounds array index, s1.b[5]. In contrast, if this code is loaded as
instrumented object code, CodeCenter does not report an error and
allows the unintentional assignment of 0 to the field s1.c.

ccref.book : AR4ignore 129 Mon Jun 5 15:33:25 1995

CodeCenter Reference 129

instrument

Restrictions This section lists the known restrictions for instrumenting object code.

Spurious warnings If your code causes a bit pattern in memory to match the bit pattern
represented by the value of the unset_value option, CodeCenter
generates spurious “used before set” warnings for your code. This is
not likely to happen. However, if it does happen, you can work
around this problem by doing one of the following:

• Suppress the warning

• Change the unset_value option to another value

CodeCenter sometimes generates spurious warnings in connection
with copies of structures; if you get a “used before set” message on a
line of code containing a copy of a structure, you can probably ignore
the warning.

Shared libraries You cannot instrument object code contained in shared libraries.

Large object files Some object files may be too large to instrument. If you get a message
telling you that your object file is too large, we recommend that you
divide the source code into smaller modules and compile them,
creating more object modules that are smaller than the one that is too
large.

NOTE Refer to the CodeCenter Platform Guide for possible
additional information about instrument that is
specific to your platform.

See Also debugging, uninstrument

ccref.book : AR4ignore 130 Mon Jun 5 15:33:25 1995

keybind

130 CodeCenter Reference

keybind

changes bindings used by the in-line editor in the
Workspace

Command syntax keybind

keybind key

keybind key key_comd args

keybind key key_function

Description

cdm pdm

✔

<< none >> Displays the current key bindings and all
functions that can be bound to keys.

key Displays the key function that the specified key
sequence (key) is currently bound to.

key key_comd args Binds the specified key sequence (key) to the
specified key command (key_comd), along with the
specified arguments (args) that are passed to the
Workspace command line when the key
command is called. See Table 12 for a list of values
for key_cmd.

key key_function Binds the specified key sequence (key) to the
specified key function (key_function). See Table 13
for a list of values for key_function.

ccref.book : AR4ignore 131 Mon Jun 5 15:33:25 1995

CodeCenter Reference 131

keybind

Options The following CodeCenter options affect the keybind command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the keybind command to customize the key bindings for in-line
editing in the Workspace. The default bindings are designed to mimic
the editing commands used with emacs and tcsh.

NOTE The key sequences used for in-line editing are usually
control characters or escape sequences. When
specifying these key sequences to keybind, you must
quote the sequence so that CodeCenter does not
invoke its current binding. You can quote a control or
escape sequence by prefacing it with Control-v, which
is bound to the quote function.

Key commands Use the following syntax for binding commands to keys:

keybind key key_comd args

where key_comd args is one of the values shown in Table 12.

eight_bit Tells CodeCenter to treat input and output as 8-bit
characters.

line_edit Adds line editing, command completion, and
extensive history capabilities to the Workspace.

line_meta Lets all 8 bits pass as input.

ccref.book : AR4ignore 132 Mon Jun 5 15:33:25 1995

keybind

132 CodeCenter Reference

Table 12 Commands as Arguments for the keybind Command

Command Description

shell args Executes a subshell with args as the arguments.The output of the
subshell is displayed on the screen. The name of the subshell to start is
taken from the subshell option.

user args Executes a subshell with args as the arguments. The name of the
subshell to start is taken from the subshell option. The current line of
input is sent as the input stream. The output of the subshell replaces
the current line. This option is useful for adding a preprocessor that
translates a line of input. The example below binds the key Control-m
so that it will send the current line to m4 macro_files, with the
resulting output substituted for the current line:

-> keybind ^V^M user m4 macro_files

Note that the character ^V was used to prevent interpretation of the
^M character.

command args Executes the command args in a subshell with the current line passed
as the arguments to the command. The name of the subshell to start is
taken from the subshell option. The binding for the Esc-x key
illustrates how this is done for the command echo:

/* The shell executes echo */
/* load *.c and the result */
/* is redisplayed */
-> load *.c Esc-x
-> load test.c foo.c bar.c

macro args Inserts args into the current line with full interpretation of all special
characters. The example below binds the key Control-l to echo the
string load .c; the Control-b characters move the cursor back before the
suffix .c.

-> keybind ^V^L macro load .c^V^B^V^B

Note that the character ^V was used to prevent interpretation of the
control character ^B.

alias args Inserts args into the current line with no interpretation of special
characters.

ccref.book : AR4ignore 133 Mon Jun 5 15:33:25 1995

CodeCenter Reference 133

keybind

Key functions Use the following syntax for binding keys used for in-line editing:

keybind key key_function

where key_function is one of the functions listed in Table 13.

Functions that perform an operation on a word, such as
word_delete_prev, recognize any legal C identifier as a word. A legal
 C identifier is a combination of alphanumeric characters including the
_ and $ characters.

NOTE For control-key sequences, press the Control key and
the letter at the same time; for escape sequences, press
and release the Escape key, then press another key.

Table 13 Key Functions Available for the keybind Command

Behavior
Affected

Key Function Default
Key
Binding

Description

Cursor
movement

beginning_of_line Control-a Moves the cursor to the beginning of
the line.

backward_char Control-b Non-destructive backspace.

end_of_line Control-e Moves the cursor to the end of the line.

forward_char Control-f Moves the cursor forward one
character.

backward_word Esc-b Non-destructive backspace over the
previous word.

forward_word Esc-f Moves the cursor past the next word.

reverse_search Esc-r char Searches backward for char. If char is r,
then searches for the same character as
the previous reverse_search or
forward_search. To search for the
character r, reverse_search must be
bound to another escaped letter.

ccref.book : AR4ignore 134 Mon Jun 5 15:33:25 1995

keybind

134 CodeCenter Reference

forward_search Esc-s char Searches forward for char. If char is s,
then searches for the same character as
the previous reverse_search or
forward_search. To search for the
character s, forward_search must be
bound to another escaped letter.

Deleting text delete_or_complete Control-d Deletes the character under the cursor
or performs identifier completion if at
the end of the line. If the word under
the cursor could refer to several
identifiers, the unambiguous portion
is completed, and all possible
identifiers are displayed. If the cursor
is at the beginning of a line, a
Control-d is echoed, causing
execution to continue if CodeCenter
was at a break level.

delete_backward Control-h Destructive backspace.

delete_search Esc-K char Deletes characters from the current
cursor position until character char.

delete_to_end Control-k Deletes characters from the current
cursor position until the end of the
line.

kill_line Control-u Erases the line.

word_delete_prev Control-w Deletes the previous word.

word_delete_next Esc-d Deletes the next word.

Inserting text (Control-@) Esc-y Marks a line in the history list for later
yanking with the history_yank
command.

Table 13 Key Functions Available for the keybind Command (Continued)

Behavior
Affected

Key Function Default
Key
Binding

Description

ccref.book : AR4ignore 135 Mon Jun 5 15:33:25 1995

CodeCenter Reference 135

keybind

tab Control-i Inserts spaces until the next tab stop.
This also expands any history
invocations that were just entered.

next_history Control-n Edits the next (more recent) history
line.

previous_history Control-p Edits the previous (less recent) history
line. If the previous line contains the
same text as the current line, it is
skipped. If the current line contains
some text before this function is
invoked, then only previous lines that
begin with this text pattern are
displayed.

transpose_chars Control-t Transposes the two characters
preceding the cursor.

quote Control-v
char

Inserts char without any key mapping.
This is used to insert control
characters.

yank Control-y Inserts into the current cursor position
the text deleted by the most recently
performed delete_search,
word_delete_next, or
word_delete_prev.

beginning_of_history Esc-a Edits the first line in the history list.

end_of_history Esc-e Edits the last line in the history list.

history_yank Esc-y Inserts the history line marked with
set_mark (Control-@) into the current
line.

Table 13 Key Functions Available for the keybind Command (Continued)

Behavior
Affected

Key Function Default
Key
Binding

Description

ccref.book : AR4ignore 136 Mon Jun 5 15:33:25 1995

keybind

136 CodeCenter Reference

complete Esc-Esc Complete the name under the cursor.
This is similar to pressing Control-d. If
the word under the cursor could refer
to several identifiers, the
unambiguous portion is completed,
and all possible completions are
displayed.

Information explain Control-x Prints the definition of the C identifier
located under the cursor.

help Esc-h Displays help information for the
command located under the cursor. If
the cursor is located at the beginning
of a blank line, then summary help
information is displayed.

man Esc-m Displays the manual page for the
command located under the cursor. If
the cursor is located at the beginning
of a blank line, then a summary
manual page is displayed.

Miscellaneous interrupt Control-c Interrupts reading this line of input.
The entire line buffer is flushed.

reset Control-g Resets the state of the line editor.

execute Control-j Executes this line.

clear_screen Control-l Clears the screen.

execute Control-m Executes this line.

correct_typo Control-o Tries to make sense of previous line of
input.

redisplay Control-r Redisplays the current line.

Table 13 Key Functions Available for the keybind Command (Continued)

Behavior
Affected

Key Function Default
Key
Binding

Description

ccref.book : AR4ignore 137 Mon Jun 5 15:33:25 1995

CodeCenter Reference 137

keybind

suspend Control-z Suspends CodeCenter and returns to
the shell.

quit Control-\ Quits CodeCenter.

prefix Esc Invokes a multi-character key binding.

multi_prefix Esc-[More complicated key bindings,
which are usually used for arrow and
function keys.

number Esc-n Repeats the next command four times.
This is effective for most cursor
movement functions, delete functions,
and search functions.

undo Esc-u Undoes the last non-trivial change.

command echo Esc-x Expands wildcards or shell variables
in the current line of input by sending
them through /bin/sh.

If the line contains a redirection
symbol, the expanded output will get
redirected by the shell.

space space Inserts a space at the current cursor
position. Any history invocations are
expanded.

eof eof Sends an end-of-file.

self_insert self_insert Inserts this character.

bad bad Rings the bell and does not echo the
character.

Table 13 Key Functions Available for the keybind Command (Continued)

Behavior
Affected

Key Function Default
Key
Binding

Description

ccref.book : AR4ignore 138 Mon Jun 5 15:33:25 1995

keybind

138 CodeCenter Reference

Arrow key
functions

See Table 14 for a list of arrow keys and their default key functions.
The arrow keys on most keyboards, including Sun, DEC™ Microvax,
and standard VT™-100 compatible terminals, are supported with
these functions. Also, the default bindings conform to the ANSI
standard escape sequences.

Restrictions It is not possible to rebind the Tab, Space, Meta-Tab, or Meta-Space
keys.

See Also alias

Table 14 Key Functions for Arrow Keys with the keybind
Command

Arrow Key Default Key
Binding

Key Function

Up arrow Esc-[A previous_history

Down arrow Esc-[B next_history

Left arrow Esc-[C backward_char

Right arrow Esc-[D forward_char

ccref.book : AR4ignore 139 Mon Jun 5 15:33:25 1995

CodeCenter Reference 139

link

link

links files from libraries

Command syntax link

link -list

link function

link variable

Description

Switches

Usage Use the link command to search all attached libraries to satisfy
references to undefined variables and functions including templates.
When you issue the run command, CodeCenter automatically invokes
its linking process, if necessary.

NOTE You may have to use the link command several times
to eliminate all unresolved references.

cdm pdm

✔

<< none >> Attempts to satisfy references to all undefined
variables and functions.

function Resolves the undefined variables and functions
used by the specified function.

variable Resolves the undefined variables and functions
used as initialization values for the variable.

-list Echos the library link order to the Workspace. This
switch is useful for diagnosing link-order related
problems in the interpreter. The link command
makes no links when used with the -list switch.

ccref.book : AR4ignore 140 Mon Jun 5 15:33:25 1995

link

140 CodeCenter Reference

By default, CodeCenter displays a message when linking from a
library:

Linking from ... Linking completed.

You can suppress the linking messages by setting the environment
variable CENTERLINE_LINK_SILENT before starting CodeCenter.
This is particularly useful in Ascii CodeCenter when linking from
shared libraries: run-time linking messages will not obscure your
program’s output.

See Also load, unload, unres, xref

ccref.book : AR4ignore 141 Mon Jun 5 15:33:25 1995

CodeCenter Reference 141

list

list

displays source code lines

Command syntax list

list file

list "file":line

list function

list identifier

list line_number

list -number

list start_line end_line

Description

cdm pdm

✔ ✔

<< none >> Lists source code starting at the current list
location.

file Lists source code starting at the top of the
specified file.

"file":line Lists source code starting at the specified line
number in the specified file.

function Lists source code starting at the top of the
specified function.

identifier Lists source code starting at the line where the
definition of the identifier (variable,
typedef,macro, or struct/union tag) begins.

line_number Lists source code starting at the line number
specified.

ccref.book : AR4ignore 142 Mon Jun 5 15:33:25 1995

list

142 CodeCenter Reference

Options The following CodeCenter options affect the list command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the list command to display specific lines of source code relative
to the current list location. The list location is set by the following
events:

• When a file is loaded, it is set to the first line.

• When a break level is entered, it is set to the break location.

• When the list command is used, it is set to the last line
displayed.

You can also set the list location using the file command.

In process debugging mode, if you use the list command and specify
a static function for the function argument, you may receive an error in
certain situations. However, if you first use the whatis command and
specify the static function as an argument, the debugger loads
additional symbols. Then, you can use the list command with the
static function to show the source code in the Source area.

-number (The number argument preceded by a minus sign.)
Lists source code starting at the specified number
of lines before the current list location.

start_line
end_line

 Lists source code starting at the line number
specified by start_line and ending at the line
number specified by end_line.

list_action (Ascii CodeCenter only) Displays actions that
execute everywhere when listing the source lin e
at which they were triggered.

page_list (Ascii CodeCenter only) Sets the number of lines
of source code the list command displays before a
more prompt is issued.

path Specifies the search path for listing files.

tab_stop Specifies the number of spaces to indent per tab
character when listing source code.

ccref.book : AR4ignore 143 Mon Jun 5 15:33:25 1995

CodeCenter Reference 143

list

In Ascii mode, each time list is called, CodeCenter displays page_list
lines of source code. Both Motif and OPEN LOOK offer scrollbars to
continue viewing more lines.

In component debugging mode (not in pdm), you can specify the
location of a variable in one of four ways:

• file`function`variable

• file`line_number`variable

• file`variable

• function`variable

The more prompt
responses for Ascii
CodeCenter listing

In Ascii CodeCenter, the lines listed are followed by a "more" prompt
that accepts the following responses:

In Ascii CodeCenter, signals and errors are noted after the source line
on which they occurred.

See Also display, edit, load, whatis, whereis

h Displays additional responses accepted

q Quits the listing

Return Shows one more line

Space Displays another page_list lines of source code

ccref.book : AR4ignore 144 Mon Jun 5 15:33:25 1995

listi

144 CodeCenter Reference

listi

displays machine instructions

Command syntax listi

listi addr

listi addr1 addr2

listi line

listi line1 line2

listi func

listi func + offset

Description

See Also list, nexti, stepi, stopi

cdm pdm

✔

<<none>> Displays machine instructions at current program
counter address.

addr Displays machine instructions at addr. The value
of addr can be a hexadecimal or octal number.

addr1 addr2 Displays machine instructions between addr1 and
addr2. The values of addr1 and addr2 can be
hexadecimal or octal numbers.

line Displays machine instructions at line in current
file. The value of line must be a decimal number.

line1 line2 Displays machine instructions between line1 and
line2. The values of line1 and line2 must be decimal
numbers.

func Displays machine instructions for func.

func + offset Displays machine instruction at the address equal
to the address of func plus offset.

ccref.book : AR4ignore 145 Mon Jun 5 15:33:25 1995

CodeCenter Reference 145

load

load

loads source, object, library, and project files

NOTE To load an a.out file, use the debug command in pdm.
See the debug reference page for more information.

Command syntax load [switches] file ...

Description

Switches The load command accepts all switches used with the C compiler, but
it acts upon only on the following switches:

cdm pdm

✔

[switches] file ... Loads specified files into CodeCenter. If the
specified files are already loaded, reloads files that
have been modified since they were last loaded.

Files can be source, object, library, and project
files, or template instantiation modules; see
'Files'on page 149 for more details.

-Dname[=definition] Define name as if with a #define directive. If
definition is not supplied, then define name as 1.

-G When loading compiled files, ignore
debugging information produced by the -g
switch of the compiler. This allows you to load
compiled files for which CodeCenter has
trouble reading the debugging information.
Also, you can save memory by loading libraries
that have been debugged with -G; if you use -G
when loading a library, CodeCenter ignores
debugging information when linking from the
library.

ccref.book : AR4ignore 146 Mon Jun 5 15:33:25 1995

load

146 CodeCenter Reference

Options The following CodeCenter options affect the load command.

NOTE Whenever you issue the load command with a
particular file, CodeCenter uses the option values that
were in effect the first time the file was loaded. If you
change the value of an option after loading a file, and
you want that option to affect the file, you must
explicitly issue an unload command for the file and
then reload it. This is true even if the file failed to load
when you issued the load command.

-Idirectory_name Add directory_name to the list of directories to
search for files specified by the #include
preprocessor directive.

When the name of a file is surrounded by
double quotes (" "), the search path is as
follows: first, the directory of the file being
read, then in directories specified by -I, and
finally in the /usr/include directory.

When a filename is surrounded by angle
brackets (< >), the search path is as follows: first
in directories specified by -I and then in the
/usr/include directory.

-Ldir Add dir to the list of directories to search for
libraries.

-lx Search for and load a library named libx.a,
where x is a library name suffix. If shared
libraries are supported by CodeCenter on your
platform, see the CodeCenter Platform Guide for
information about loading them.

-Umacro_name Cause the predefined macro_name to become
undefined as if by an #undef directive.

-w Suppress warnings, but report errors.

If you use -w when loading a library, warnings
are suppressed when modules are linked from
the library.

ccref.book : AR4ignore 147 Mon Jun 5 15:33:25 1995

CodeCenter Reference 147

load

ansi Performs preprocessing and function
prototype conversion in strict conformance
with the ANSI C Standard.

auto_compile Automatically compiles missing or outdated
object files.

batch_load (Ascii CodeCenter only) Suppresses prompts
to the user during loading.

cc_prog Specifies the name of the C compiler that
CodeCenter invokes.

ccargs Specifies arguments passed to the C compiler
when invoked from CodeCenter.

create_file Specifies commands to create a new file when
loading.

echo Echoes the input stream after preprocessing
(similar to the -E compiler switch).

ignore_sharp_lines Causes CodeCenter to ignore #line directives
generated by preprocessors.

instrument_all Automatically instruments files as they are
loaded. See the instrument entry on page 125
for more information.

lint_load Indicates the severity of warnings issued when
loading files, or suppresses warnings if set to 0.

load_flags Specifies the default switches to use if load is
called without any switches. CodeCenter
always uses any -L switches specified in
load_flags.

long_not_int Specifies whether long and int are treated as
the same type.

page_load (Ascii CodeCenter only) Sets the number of
lines of error reports to display before
prompting the user for more.

path Specifies the search path for loading source
and object files (not for #include files).

ccref.book : AR4ignore 148 Mon Jun 5 15:33:25 1995

load

148 CodeCenter Reference

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the load command to load files into CodeCenter or reload files
that have been modified since they were loaded.

Using system-wide
loading switches

When loading files, CodeCenter always uses command-line switches
specified by sys_load_flags. The sys_load_flags option specifies the
directories to search for libraries and system header files as well as
some macros.

CodeCenter’s default values for sys_load_flags are specified in the
system-wide ccenterinit file. The exact values depend on the type of
workstation you are using. To see the values on your system, enter this
command:

-> printopt sys_load_flags

If you have a different library or #include path for cc from that
specified by the sys_load_flags option, you should change the value
of the option either in your personal .ccenterinit file or in the
system-wide ccenterinit file.

Specifying your own
loading switches

CodeCenter always uses all switches specified with
sys_load_flags. In addition, CodeCenter also uses any switches
specified with the load_flags option.

preprocessor Specifies a command to execute in a subshell
before the file is loaded.

proto_path Specifies search path for prototype files.

src_err (Ascii CodeCenter only) Specifies the number
of source lines to be listed for errors and
warnings.

subshell Specifies the shell used to invoke the C
compiler.

sys_load_flags Specifies switches that establish the search
path for system libraries and #include files
when loading source files.

ccref.book : AR4ignore 149 Mon Jun 5 15:33:25 1995

CodeCenter Reference 149

load

Typically, you use the load_flags option to specify any switches
specific to your own work. For example, the following commands
show the use of a macro name, BETA, specific to a project:

-> setopt load_flags -DBETA
-> load xyz.c
Loading: -DBETA xyz.c
->

TIP: When does the load_flags option have precedence?

If you are loading a file for the first time, and if you do not specify
any switches with the load command, CodeCenter uses the
switches specified by the load_flags option.

However, if you are loading a file for the first time and you do
specify any switches with the load command, CodeCenter uses the
switches you specify with load instead of the switches in the
load_flags option.

After the first time you load a file, CodeCenter reuses the switches
it used the first time it loaded the file whenever it attempts to load
that file. For instance, when you reload a file by issuing load in the
Workspace without any switches, CodeCenter reuses the switches
from the first time you loaded the file. Similarly, if you reload the
file by issuing a build command, CodeCenter reuses the switches
from the first time it loaded the file.

Once you have loaded a file, changing the value of load_flags has
no effect on subsequent loads of that file, even if the load_flags
option was applied the first time you loaded it.

If you want to change the switches that CodeCenter uses when
loading a file that has already been loaded, you must do one of the
following:

• Issue the load command in the Workspace using the new
switches. Then CodeCenter will use the new switches every
time it attempts to load the file.

• Change the value of load_flags to specify the new switches,
issue an unload command for the file, and then issue a load
command for the file without specifying any switches. In this
case, CodeCenter uses the switches specified in load_flags.

• Use the file’s property sheet in the Project Browser to change
the options used to load the file.

ccref.book : AR4ignore 150 Mon Jun 5 15:33:25 1995

load

150 CodeCenter Reference

With one exception, any switches you explicitly enter when you issue
load replace all switches you may have specified with load_flags. The
exception is the -L switch in load_flags; CodeCenter always uses -L
switches specified by load_flags.

Here is an example:

-> setopt load_flags -DBETA -w
-> load sample.c
Loading: -DBETA -w sample.c
-> unload sample.c
Unloading: sample.c
-> load sample.c -DDEBUG
Loading: -DDEBUG sample.c

In this example, when we explicitly specify the -DDEBUG switch
when loading the file sample.c, CodeCenter uses -DDEBUG instead
of the -DBETA and -w switches specified by load_flags.

Files Use the load command to load the following kinds of files:

• Source, including preprocessed source files and #include files

• Object

• Library files, including prototype files

• Project

We describe loading each kind of file in the next few sections. See the
performance entry on page 207 for an overview and the debugging
entry on page 87 for a more detailed discussion of trade-offs in the
way you load your program.

Loading source files If you issue load with the name of a source code file when the
corresponding object code file is already loaded, CodeCenter unloads
the object file before it loads the source file.

Loading and using
preprocessor files

CodeCenter uses #line directives to map certain kinds of preprocessed
code to the unpreprocessed code. It therefore allows you to work
directly with input files that are run through preprocessors that
generate C files with #line directives pointing back to the input file.
Such preprocessors include yacc and certain SQL preprocessors.
CodeCenter uses the #line directives to associate lines in the
generated C file with lines in the input file that you wrote.

ccref.book : AR4ignore 151 Mon Jun 5 15:33:25 1995

CodeCenter Reference 151

load

Thus, CodeCenter helps you debug preprocessed code by allowing
you to examine the input to a preprocessor rather than just the output
from it; the input is typically much easier to read than the output. To
work with preprocessor files:

1 Load a file containing #line directives.

2 Work with the input file in your CodeCenter session.

NOTE See the preprocessed code entry on page 214 for more
information about debugging code generated by
preprocessors such as yacc.

Search path for
#include files

To give the search path for #include directories, use the -I switch with
the load command according to the following format:

load -Iinclude_dir1 [-Iinclude_dir2 ...] file

NOTE The path option does not provide a search path for
loading #include files, only for loading source and
object files.

Loading object files You can load object code files that have been compiled with or without
the -g compiler switch that adds debugging information. However, to
have the greatest debugging functionality in CodeCenter, load object
code files compiled with debugging information whenever possible.

NOTE When loading object code into CodeCenter, make sure
that the object code was compiled with the same
release of the operating system that you are using to
run CodeCenter.

If you issue load with the name of an object code file when the
corresponding source code file is already loaded, CodeCenter unloads
the source file before it loads the object file.

If an object code file specified with load does not exist and the
directory that contains the source file contains a makefile, CodeCenter
does a make of the object file. Otherwise, if the source is available,
CodeCenter creates an object file by calling the C compiler.

ccref.book : AR4ignore 152 Mon Jun 5 15:33:25 1995

load

152 CodeCenter Reference

CodeCenter supports the loading of CenterLine-C object files as well
as those generated by your platform’s native C compiler. See the
CodeCenter Platform Guide for your particular platform for information
about any additional object files that CodeCenter may support.

Specifying a
different compiler

When CodeCenter needs to compile a C file, it invokes the compiler
defined by its cc_prog option. If this option is unset (the default),
CodeCenter invokes cc.

If CodeCenter can’t
find the file

If you specify a file with load that does not exist, CodeCenter looks at
the setting of its create_file option. If create_file describes how to
create the specified file, CodeCenter uses those instructions to create
the file, then loads it. For example:

-> ls *.c
backup.c
-> load a.c
Cannot open ’/net/fenway/u1/bobh/code/a.c’.
-> setopt create_file @a.c@cp backup.c a.c
-> load a.c
Cannot open ’/net/fenway/u1/bobh/code/a.c’.
Executing: cp backup.c a.c
Loading: a.c

For more information about create_file, see the options entry on page
177.

Loading libraries Loading a library makes the contents of the library available to
CodeCenter. You can load a library by:

• Specifying the full pathname of the library with the load
command

• Using the -l switch.

This is similar to using the -l switch to cc. See Table 15 for a
listing of the order in which CodeCenter searches directories for
the library.

Table 15 CodeCenter’s Search Path for Libraries

Order Search Path

1 Directories specified on the command line by -Ldir in
the order specified

ccref.book : AR4ignore 153 Mon Jun 5 15:33:25 1995

CodeCenter Reference 153

load

NOTE If shared libraries are supported by CodeCenter on
your platform, see the CodeCenter Platform Guide for
information about loading them.

Some operating systems provide a -u symname option to ld, which
allows you to enter symname as an undefined symbol in the symbol
table. The -u option is typically used to load entirely from a library,
since initially the symbol table is empty and an unresolved reference
is needed to force the loading of the first routine.

CodeCenter does not provide a -u switch for the load command.
Nonetheless, you can force the loading of a first function from a library
in CodeCenter by defining the function as external and making a
reference to it. Here is an example:

1 -> extern void main ();
2 -> main;

a. See the "Specifying the search path for loading libraries and #include files"
TIP on page 154.

2 Directories specified by -L in CodeCenter’s load_flags
option

3a Default system directory specified by the
sys_load_flags option

Table 15 CodeCenter’s Search Path for Libraries

Order Search Path

ccref.book : AR4ignore 154 Mon Jun 5 15:33:25 1995

load

154 CodeCenter Reference

TIP: Specifying the search path for loading libraries and
#include files

If you are using an ANSI compiler, make sure that the path for
the libraries and #include files required for ANSI are specified
either on the load command line or by setting the load_flags
and/or sys_load_flags options. The directories required by
ANSI must be searched before the default system directory
specified by sys_load_flags. You must also explicitly load the C
library.

Similarly, if you use a compiler like clcc that has header files and
libraries in “non-standard” locations, be sure to set the switches
to the load command to specify the correct location to search
before the default system directory specified by sys_load_flags.
You must also explicitly load the C library.

For instance, if you are using clcc as your C compiler and using
-ansi as a compilation mode, you should make the following
specifications:

• Issue the setopt ansi command.

• Set the sys_load_flags option to contain the following as the
first -L specification:

-L/usr/local/CenterLine/clcc/arch_os/lib

where arch_os is the name of your architecture and operating
system.

• Set the sys_load_flags option to contain the following -I
specification before the specification of -I/usr/include:

-I/usr/local/CenterLine/clcc/arch_os/inc

where arch_os is the name of your architecture and operating
system.

• Issue the following command:

->load /usr/local/CenterLine/clcc/arch_os/lib/libc.a

ccref.book : AR4ignore 155 Mon Jun 5 15:33:25 1995

CodeCenter Reference 155

load

NOTE For some of the C library functions, you can substitute
your own version. See your CodeCenter Platform Guide
for a list of the C library functions replaced by
CodeCenter, and the ones that you can replace.

To use your own version of a function, load the
function in a source or object file before linking your
program. If your program has already been linked,
you must quit, then start a new CodeCenter session to
substitute your function for one of the CodeCenter
replacements.

Loading function
prototype files

When working with C files, loading function prototypes allows
CodeCenter to check the number and type of arguments for calls to
functions. Prototype files conventionally end in .proto. If a filename
ends with .proto, load first looks for the file in the current directory,
then looks in the list of directories specified by the proto_path option.

For information about creating your own prototype files, see the
reference page for the proto command.

Loading project files If the first line of the file you specify with load is as follows:

/* CodeCenter Project File */

CodeCenter will invoke source instead of load to retrieve the file’s
contents. This is the way in which CodeCenter loads project files.
When you load a project file, CodeCenter reloads the most recent
version of the source and object files in your project.

NOTE Loading a project file does not unload any modules
that were already loaded. To unload modules before
loading a project file, use the unload command first.

Using shell wildcards The load command takes shell wildcards so you can load groups of
files with one command. For example:

-> ls *.c
abc.c xyz.c
-> load *.c
Loading: abc.c
Loading: xyz.c

ccref.book : AR4ignore 156 Mon Jun 5 15:33:25 1995

load

156 CodeCenter Reference

Using wildcard
expansion

If you use shell wildcards with load, you can also use Esc-x at the end
of a command line to expand these wildcards. The escape sequence
echoes the command line to a subshell that expands any wildcards.
Here’s an example:

-> load *.c f?.o<Esc-x>
-> load abc.c xyz.c f1.o f2.o<Return>
Loading: abc.C
Loading: xyz.C
Loading: f1.o
Loading: f2.o
->

CodeCenter pauses after displaying the expanded command line,
allowing you to edit the command line before executing it.

The sequence Esc-x is one of the key bindings supported by the
Workspace. See the keybind entry on page 130 for more information.

Disabling load-time
error checking with
comments

You can suppress certain kinds of error checking by using predefined
comments in your source code. See the built-in comments entry on
page 21 for more information.

Restrictions Loading an object file without debugging information may cause
spurious warnings since initialized variables can be grouped together
without correct type or size information.

If load rejects an object file that was compiled with debugging
information (for example, due to a type redeclaration), try loading the
file with the -G switch.

Occasionally, linking libraries may produce spurious warnings about
size or type redeclarations.

Trying to reload a file in the Workspace by using load with different
switches does not necessarily cause CodeCenter to reload the file.
Unless the file itself has been modified, CodeCenter considers it
up-to-date and will not reload it. You can work around the problem by
using the unload command and then load with the desired switches.

See Also built-in macros, config_parser, contents, debugging, make, save,
swap, unload

ccref.book : AR4ignore 157 Mon Jun 5 15:33:25 1995

CodeCenter Reference 157

load_header

load_header

loads header files as source

Command syntax load_header [switches] {file.h ...|<file.h>...| "file.h"...}

Description

If there are any switches specified on the load_header line,
CodeCenter searches for header files in the directories specified with
-I on the load_header line, if any, then in the directories specified in
the sys_load_flags option.

If there are no switches specified on the load_header line, CodeCenter
searches for header files in the directories specified in the load_flags
option, then in the directories specified in the sys_load_flags option.

Switches The load_header command accepts all the switches that the load
command accepts. It ignores switches that have no meaning in the
context of loading header files.

Options The load_header command is affected by the same options that affect
the load command. Please refer to the load entry for details.

cdm pdm

✔

[switches] file.h ...
[switches] "file.h" ...

Loads specified header files into CodeCenter,
searching in the current directory first, and
then in the directories specified below.

[switches] <file.h> ... Loads specified header files into CodeCenter,
searching in the directories specified below.

ccref.book : AR4ignore 158 Mon Jun 5 15:33:25 1995

load_header

158 CodeCenter Reference

NOTE Whenever you issue the load_header command with a
particular file, CodeCenter uses the option values that
were in effect the first time the file was loaded. If you
change the value of an option after loading a file, and
you want that option to affect the file, you must
explicitly issue an unload command for the file and
then reload it. This is true even if the file failed to load
when you issued the load_header command.

Usage Use the load_header command to load the definitions from one or
more header files without specifying a path, or to load definitions
from multiple header files into a single module. The definitions are
loaded into the environment in a separate file. The load_header
command replaces the #include syntax used in previous releases of
CodeCenter. See 'Compatibility with previous releases'on page 160 for
more information.

NOTE If the header file you wish to load is in your working
directory or path, you can use the load command to
load it.

The first time you use the load_header command in a CodeCenter
session, CodeCenter creates a directory called OC.pid in the /tmp
directory, where pid is a process id, and creates a file in that directory.
For the rest of the CodeCenter session, load_header uses the same
OC.pid directory.

If you specify only one header file on the command line, CodeCenter
creates a file with the name of the included file. The file contains a
single #include directive. For example:

1 -> load_header <stdio.h>
Loading: /tmp/OC.225d/stdio.h
2 -> sh more /tmp/OC.225d/stdio.h
#include <stdio.h>

ccref.book : AR4ignore 159 Mon Jun 5 15:33:25 1995

CodeCenter Reference 159

load_header

You can load multiple header files into a single module. You will want
to do this if a header file has dependencies on definitions in other
header files. In this case, CodeCenter names the module
_load_header_files__n.h, where n is a unique hexadecimal number.
For example:

-> load_header <math.h> <limits.h> "shape.h"
Loading: -I./tmp/OC.225d/_load_header_files__1.h
-> sh more /tmp/OC.225d/_load_header_files__1.h
#include <math.h>
#include <limits.h>
#include "shape.h"

You can use the Project Browser or the contents command to examine
the contents of the modules. The contents -ascii command lists all
loaded files, and contents -ascii with the name of the module lists all
the symbols defined in the file. For example:

-> contents -ascii
object: centerline
source: workspace
library: /usr/lib/libc.so.1
library: /usr/lib/libdl.so.1
source: /tmp/OC.225d/stdio.h
source: /tmp/OC.225d/_load_header_files__1.h (-I.)

-> contents -ascii /tmp/OC.225d/_load_header_files__1.h
Contents of source: /tmp/OC.225d/_load_header_files__1.h (-I.)
/usr/include/math.h
/usr/include/floatingpoint.h
/usr/include/sys/ieeefp.h
/usr/include/limits.h
/usr/include/sys/feature_tests.h
/net/kotwal/soltest/ctutor_dir/shape.h
union _h_val {...} ;
typedef union _h_val _h_val ;
enum version {...} ;
struct exception {...} ;
...
enum decimal_string_form {...} ;
struct entry {...} ;
int number ;
struct entry *list_head ;

ccref.book : AR4ignore 160 Mon Jun 5 15:33:25 1995

load_header

160 CodeCenter Reference

There are several ways to unload a header file module:

• Highlight its name in the Project Browser and select the Unload
button

• Use the unload command in the Workspace with the full
pathname of the file

• If the module contains a single #include directive, use the
unload command with the filename, for example:

-> unload stdio.h
Unloading: stdio.h

Compatibility with
previous releases

In previous releases of CodeCenter, you could load a header file into
the Workspace by using a #include directive in the Workspace. This
sometimes caused confusing problems.

For example, because definitions were parsed one at a time, if an error
was encountered while parsing a header file, previous definitions
were not undefined. As a result, users often had to issue an unload
workspace command before they could reload a header file.

The Workspace does not match the separate compilation model of C;
to enable the Workspace to function as a debugger, definitions in a
header file included in the Workspace are visible across modules. As a
result, using #include in the Workspace occasionally caused
CodeCenter to pick up incorrect definitions from included files.

For users with existing project files that use the #include syntax, we
have introduced a new option, workspace_include. When this option
is set, you can use #include in the Workspace. We recommend that you
add this line to the beginning of any project file that uses #include:

setopt workspace_include

and this line to the end of the project file:

unsetopt workspace_include

See Also built-in macros, config_parser, contents, debugging, load, make,
save, swap, unload

ccref.book : AR4ignore 161 Mon Jun 5 15:33:25 1995

CodeCenter Reference 161

make

make

invokes the UNIX make command to handle CenterLine
(CL) targets

Command syntax make

make target ...

Description

NOTE Using the make command while you are in process
debugging mode has the same effect as using the
make command in the shell; it does not recognize any
CL target rules. The following description of the make
command applies to component debugging mode only.

Options The following CodeCenter options affect the make command:

cdm pdm

✔ ✔

<< none >> Calls the UNIX make command using the default
target.

Motif and OPEN LOOK: Shows load-time errors
in the Error Browser.

target ... Calls the UNIX make command using the target
argument as its target.

Motif and OPEN LOOK: Shows loadtime errors in
the Error Browser.

cc_prog Specifies the name of the C compiler that
CodeCenter invokes.

ccargs Specifies arguments passed to cc when invoked
from CodeCenter.

ccref.book : AR4ignore 162 Mon Jun 5 15:33:25 1995

make

162 CodeCenter Reference

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the CodeCenter make command to load files into CodeCenter
using makefiles containing CL target rules in addition to the standard
target rules. See the UNIX manual page for make for a list of the
switches you can use.

CodeCenter’s EZSTART utility provides a shortcut for creating CL
targets in makefiles; see the clezstart entry on page 46 for more
information.

What is a CL target
rule?

A standard UNIX make target rule contains shell lines, which are
lines containing shell commands. The syntax for a shell line is as
follows:

<tab>shell command[; shell command ...]

For example, the following is a shell line in a standard UNIX makefile
target:

<tab>echo “starting a standard target”

make_args Specifies the command-line arguments passed to
the UNIX make command by CodeCenter’s make
command.

make_hfiles Checks header files to find out if a file should be
reloaded.

make_offset Specifies the number of characters to skip when
reading shell commands from the make program.

make_prog Specifies the program invoked to make a target
(the default is make).

make_symbol Specifies the string used to denote a CodeCenter
command line in a makefile. By default, the string
is the # character.

subshell Specifies the shell used to invoke the C compiler.

ccref.book : AR4ignore 163 Mon Jun 5 15:33:25 1995

CodeCenter Reference 163

make

A CL target rule is just like a standard target rule except that it contains
one or more CL lines; a CL line is a makefile command line preceded
by <tab>#. CodeCenter handles CL lines as CodeCenter commands. It
passes all other lines to the Bourne shell for execution, just as when
make is used outside of CodeCenter.

The syntax for a CL line in a CL target rule is as follows:

<tab>#CodeCenter command

For example, the following is a CL line in a CL target rule:

<tab>#load a.o b.o

The preceding example has the same effect as the following command
issued in the Workspace:

-> load a.o b.o

NOTE A # character in the first column in a line causes
CodeCenter to treat that line as a comment, so you
must indent the # to indicate that a CodeCenter
command follows. Use the Tab key to indent.

Here is another example of a standard target and the corresponding
CL target:

a_standard_target: a.o b.o
 echo "starting a standard target"
 $(CC) $(CFLAGS) a.o b.o
a_cl_target: a.o b.o
 echo "starting a cl target"
 #load $(CFLAGS) a.o b.o

Designing a CL
target

To design a CL target that you can add to a makefile, think of the
CodeCenter commands that you want your makefile to automate. For
example, if your standard target is the following:

prog: a.o b.o
 echo "starting a standard target"
 $(CC) $(CFLAGS) -o my_program a.o b.o -lm

ccref.book : AR4ignore 164 Mon Jun 5 15:33:25 1995

make

164 CodeCenter Reference

then the equivalent CL target would be the following:

cl_obj: a.o b.o
 echo "starting a cl target"
 #load $(CFLAGS) a.o b.o -lm
 #link
 #setopt program_name my_program

Example The following is an excerpt from a typical makefile that includes two
standard targets used directly by cc (.c.o and all) and two that are
specific to CodeCenter (ccenter_src and ccenter_obj):

This is a comment
a.c, b.c, and c.c are C files

SRCS = a.c b.c c.c
OBJS = a.o b.o c.o
FLAGS = -g -DDEBUG
.SUFFIXES: .c .o
The following is an implicit target that specifies
how to convert a .c file to a .o file. In this case
cc is called with the switches +d, -g, and -c
.c.o:

cc +d -g -c $<

The next target creates an executable named all
from the three files a.o, b.o, and c.o. If any of
the .o files are missing or out of date, they will
be compiled, using the implicit target .c.o

all: $(OBJS)
cc +d -g -o all $(OBJS)

targets specific to CodeCenter ...
note the indented # character

ccenter_src: $(SRCS)
#load $(FLAGS) $(SRCS)

the following loads object files into CodeCenter,
using the implicit target to convert .c to .o

ccenter_obj: $(OBJS)
#load $(FLAGS) $(OBJS)

ccref.book : AR4ignore 165 Mon Jun 5 15:33:25 1995

CodeCenter Reference 165

make

Target rules that call
cc or ld

If an explicit target rule or an implicit suffix rule causes a call to cc or
ld, the corresponding CL target rule should issue the load command
on the same source or object files. Also, you need to supply the same
switches with #load that you would use with cc or ld — for instance,
the -D switch.

CL suffix rules for
loading individual
files

You can add implicit rules specific to CodeCenter for loading
individual files. For example, consider the following makefile
fragment:

FLAGS = -g -DDEBUG
.SUFFIXES: .c .o .src .obj
.c.src:

#load $(FLAGS) $<
.o.obj:

#load $(FLAGS) $<

The first rule specifies that to make a file ending in .src, load a source
file ending in .c. The second rule indicates that to make a file ending in
.obj, load an object file ending with .o.

If you set up your makefile with these implicit rules, you can load
individual source or object files by specifying a file with a .src or .obj
suffix as a target:

-> make a.src
load -g -DDEBUG a.c
Loading: -DDEBUG a.c
-> make b.obj
load -g -DDEBUG b.o
Loading: b.o

Meta-character Before CodeCenter executes rules that begin with a #, it passes them
first through the Bourne shell, just as make does. The subshell
interprets all meta-characters and sends the output back to
CodeCenter.

To avoid the delay when spawning the shell, or to avoid improper
meta-character expansion by the Bourne shell, preface the command
with two # characters. For example, the following rule uses ## to
prevent the Bourne shell from interpreting the left and right
parentheses as meta-characters.

start:
 #load $(FLAGS) $(SOURCES)
 ##printf("All done\n");

ccref.book : AR4ignore 166 Mon Jun 5 15:33:25 1995

make

166 CodeCenter Reference

Other characters See Table 16 for a description of the meaning and usage of various
characters in CL targets.

CL lines that change
directories

If you are designing a CL target that changes the current directory,
keep in mind that the CodeCenter cd command does not affect
subsequent commands in the CL target in the same way that it affects
subsequent commands in a standard target.

In a standard target, since each rule line invokes a new subshell, a cd
shell command affects only subsequent commands on the same line.
For example, in the following standard target, the CC in the second
line of the rule will be invoked from the new_dir directory, while the
pwd in both the first and third lines will be issued in the parent
directory of new_dir:

standard_subs:
 pwd
 cd new_dir; $(CC) -c $(CFLAGS) a.c
 pwd

Since each CL line can have only a single CL command, the CL target
equivalent for this standard target is the following:

cl_subs:
 #pwd
 #cd new_dir
 #load $(CFLAGS) a.o
 #cd ..
 #pwd

The cd new_dir command sets the current directory for the
Workspace until the Workspace directory is explicitly reset by a new
cd command. Therefore, the cd .. command returns the Workspace to
the original directory so that the first and second pwd commands
display the same directory.

CL targets that
invoke make

To invoke make from a CL target, use a shell line and implement the
call using $(MAKE) -$(MAKEFLAGS). The MAKE macro causes the
make utility to be executed immediately so that each lower-level
makefile unwinds in the correct order. The MAKEFLAGS macro
ensures that the proper switches are passed down from CodeCenter.

ccref.book : AR4ignore 167 Mon Jun 5 15:33:25 1995

CodeCenter Reference 167

make

Table 16 Meaning of Special Characters in CL Targets

Character Meaning and Usage

\ character
(backslash)

On CL lines and shell lines in CL targets, use the backslash to escape EOL
in the same way as you do for shell lines in standard targets.

Note that a backslash does not escape a space character on a CL line for
the load command.

@ character Execute but do not echo the current line; this does not apply to nmake.

 Beginning a shell line in a CL target with an @ character does not interfere
with the CodeCenter make command’s implicit use of the -n option. For
example:

any_cl-specific_target: $(X_OBJ)
echo "next line not echoed by UNIX make"
@$(CC) $(CFLAGS) -DX -o xcompile bounce.c\
$(XOBJ) $(XLIBS)

\" characters
(escaped
quotation marks)

Use the double CL target symbol (##) to keep escaped quotation marks
(\") from being stripped.

For example:

##load -DTIME=\"three_bells\" new.c

As shown in the example above, even with escaped quotation marks, you
cannot pass a space character on a CL line for the load command. For
more information, see the entry for “space character” next in this table.

space character On a CL line, a space character cannot be passed in an argument for the
load command. For example, there is no exact CL line equivalent of the
following standard shell line:

$(CC) -DTIME=\"three\ bells\" foo.c.

One workaround is to eliminate the space in the macro definition in the
following way:

##load -DTIME=\"three_bells\" foo.c

This limitation does not, however, apply to passing a space character on
CL lines with CodeCenter commands other than load. For example, the
following CL line is valid:

#setenv TIME three bells

ccref.book : AR4ignore 168 Mon Jun 5 15:33:25 1995

make

168 CodeCenter Reference

NOTE For recursive invocations of make in CL targets,
invoke make only from shell lines. That is, avoid the
following CL line constructions: #make, ##make,
#$(MAKE), and ##$(MAKE). Using these CL line
constructions to invoke make may cause incorrect
recursion and will give unpredictable results.

If both the recursive call and the new target being generated are in the
same directory, then designing these CL targets is straightforward. For
example:

cl_recursive:
 $(MAKE) -$(MAKEFLAGS) CFLAGS=-DFOO stopper
stopper:
 #load $(CFLAGS) a.o

However, if the call and the target are in different directories, you first
use a shell line that both changes the directory and invokes make. For
example, where cl_switch is in the makefile in /dir1 and cl_sub2 is in
the makefile in /dir1/dir2:

cl_switch:
 cd dir2; $(MAKE) -$(MAKEFLAGS) \
 DIR=dir2 cl_sub2

Also, in the CL target for the makefile in the lower-level directory
(here /dir1/dir2), you need to keep the CodeCenter Workspace
synchronized with the current working directory of the shell from
which the recursive make was invoked. Synchronize the Workspace
by using a pair of CL lines that issue the cd command. For example,
with the recursive call to make in the target cl_switch shown above,
the target in the new directory would use cd commands in the
following way:

cl_sub2:
 #cd $(DIR)
 #load $(CFLAGS) a.o
 #cd ..

Debugging CL
targets

Debug a CL target by using the -n switch as an argument to the
CodeCenter make command issued on the CL target you are testing.

When the -n switch is used as an argument, the CodeCenter make
command echoes but does not execute the rule.

ccref.book : AR4ignore 169 Mon Jun 5 15:33:25 1995

CodeCenter Reference 169

make

Using make -n to debug a CL target from the Workspace is similar to
debugging a standard target from the shell using -n with the UNIX
make command. After issuing make -n in the Workspace on a CL
target, check the listing of commands displayed in the Workspace to
see if this is exactly the series of commands you want executed by
CodeCenter.

Loading changes
into CodeCenter

 Use the make command to load your files into CodeCenter at the start
of a session. If you make changes to files that are loaded, use the build
command to check the dependencies and reload all files that are
affected, with the following exceptions:

• If you make changes that affect only a few files, and you know
which files these are, the fastest way to load the changes is with
the load command.

• If you change a makefile in a way that affects any CL targets
used to load files currently in your CodeCenter session, use the
make command.

Compatibility This section describes differences between CodeCenter’s make and
other implementations.

SHELL makefile
variable

With the UNIX make command, the SHELL variable specifies which
subshell is invoked by a standard target. The CodeCenter make
command ignores makefile SHELL variable definitions, such as

SHELL = /bin/csh

To have the CodeCenter make command use a shell other than
/bin/sh, set the shell option and redefine the CodeCenter sh command
in the following way:

-> setopt shell /bin/csh
-> rename centerline_sh centerline_binsh
'centerline_sh' renamed to 'centerline_binsh'
-> int centerline_sh(a) char *a; {
+> centerline_shell(a);
+> }

ccref.book : AR4ignore 170 Mon Jun 5 15:33:25 1995

make

170 CodeCenter Reference

nmake compatibility Using the CodeCenter make command with the AT&T version of the
UNIX make utility (nmake) requires the adaptation of both CL targets
and the CodeCenter environment in several ways. For a detailed
discussion of how to implement these adaptations for nmake, contact
CenterLine Software Technical Support and request the Support Note
Using AT&T nmake with CodeCenter and ObjectCenter.

gmake compatibility Unlike many other versions of the UNIX make utility, GNU make
(gmake) filters out and ignores all lines starting with a TAB#. To use
gmake with the CodeCenter make command, set the make_prog
option to gmake and set the make_symbol option to something other
than the # character; for example, set make_symbol to the ! character.
Then construct CL lines using this alternative CL target symbol.

For example, assume that you make the following settings in the
Workspace or in your startup file:

-> setopt make_prog gmake
-> setopt make_symbol !

Then the CL lines in your CL targets would need to look like the
following:

a_cl_target:
 !load $(CFLAGS) new1.o new2.o

Errors Error messages related to the CodeCenter make command are
displayed in the Error Browser or the Workspace.

Restrictions The makefile option called .SILENT does not work well with
CodeCenter’s make.

CodeCenter does not support the use of CL target rules in pdm.

In most cases, you can use the same switches with CodeCenter’s make
command that you would use with the command outside the
environment, with the following exceptions:

• The -D switch is not compatible with the CodeCenter make
command. Do not use make -D in the Workspace.

• The -s switch is not compatible with the CodeCenter make
command. Do not use make -s in the Workspace.

See Also build, clezstart, contents, load, source

ccref.book : AR4ignore 171 Mon Jun 5 15:33:25 1995

CodeCenter Reference 171

man

man

displays information about CodeCenter
items

Command syntax man

man CodeCenter_item

Description

Usage Use the man command to get online information for CodeCenter
commands and reference topics. All entries in this book, CodeCenter
Reference, are included in the online version. Select Manual Browser
from the Browsers menu or click the "?" button in the Main Window
to view the complete online documentation set.

You can also invoke the Manual Browser from a shell with the cldoc
command.

See Also english, help

cdm pdm

✔ ✔

<<none>> Motif and OPEN LOOK: Opens the online
CodeCenter Reference. If the Reference is already
open, scrolls to the first page.

CodeCenter_item Motif and OPEN LOOK: Opens the online
CodeCenter Reference at the entry for the specified
item. If the Reference is already open, scrolls to
the entry for the specified item.

ccref.book : AR4ignore 172 Mon Jun 5 15:33:25 1995

memory leak detection

172 CodeCenter Reference

memory leak detection

identifying memory leaks

Memory leak detection identifies potential memory leaks by reporting
on the memory that the program allocates while running and fails to
free before exiting.

The memory leak detection report lists leaks by the size of the memory
allocated and identifies the stack trace, indicating where the program
allocated the memory. In addition, it shows the number of times the
leak occurred there.

 Memory leak detection may include pointers to memory that were
not freed because the program was exiting. A rule of thumb is that if
an allocation is reported more than once, it probably is worth looking
at since it may be a real leak.

How to use
memory leak
detection

 To use memory leak detection, follow these instructions:

1 Enter the following in the Workspace in the Main Window of
CodeCenter:

setopt mem_trace n

The letter n represents the maximum number of stack trace
levels to report.

2 Run the program in CodeCenter. Running the program in
CodeCenter creates a file with memory leak detection
information when the program exits.

File with memory
leak information

 For each possible leak, the report file contains two or more lines. The
first line has this format:

nbytes [size, count]

where nbytes is the total number of bytes, size is the memory size
allocated each time, and count is the number of times the potential leak
occurs. Each remaining line contains one level of stack trace in this
format:

 <tab> function <tab> file <tab> line number

ccref.book : AR4ignore 173 Mon Jun 5 15:33:25 1995

CodeCenter Reference 173

memory leak detection

Example of file from
a simple test

Here is a file from a simple test. The file includes a detailed
explanation of the contents of the report.

This file contains a listing of possible memory
leaks : Wed Jan 19 19:00:00 1993
#
There are 7 possible memory leaks, totaling 19 bytes.
The format of this report is as follows:
For each possible leak there are two or more lines. The first
has the format:
nBytes [size, count]
where 'nBytes' is the total number of bytes, 'size' is the
size allocated each time, and 'count' is how many times it was done.
Each remaining line for the leak contains one level of stack trace.
with the format:
<tab> Function <tab> file <tab> line
#
(for as many levels of stack trace as requested).

2 [1, 2]
 main /s/users/smith/Temp/mem2.c 13
2 [2, 1]
 main /s/users/smith/Temp/mem2.c 13
6 [3, 2]
 main /s/users/smith/Temp/mem2.c 13
4 [4, 1]
 main /s/users/smith/Temp/mem2.c 13
5 [5, 1]
 main /s/users/smith/Temp/mem2.c 13

Naming your
memory detection
file

By default, the memory detection file is called mem.leak and appears
in CodeCenter's current directory. You can use a different filename by
setting the environment variable CENTERLINE_LEAK_FILE to the
name you want to use. You must do this before invoking CodeCenter.

Using
CodeCenter's
version of
functions

To use CodeCenter's memory leak detection, you must use
CodeCenter's version of these functions: malloc(), calloc(), realloc(),
and free(). You cannot substitute your own versions of them.

ccref.book : AR5next 174 Mon Jun 5 15:33:25 1995

next

174 CodeCenter Reference

next

executes source code by line; does not enter functions

Command syntax next

next number

Description

Options The following CodeCenter option affects the next command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the next command to execute your code line by line without going
into functions that are called.

The next command does not stop inside object code functions that do
not have debugging information (functions either compiled without
the -g switch or loaded with the -G switch).

In threaded applications, next executes one statement of the specified
thread without entering functions.

cdm pdm

✔ ✔

<< none >> Executes an entire line, regardless of the number
of statements on the line, and then stops
execution.

Motif and OPEN LOOK: Displays a solid arrow
pointing to the current execution line in the Source
area.

number Executes the specified number of lines, and then
stops execution.

src_step (Ascii CodeCenter only) Specifies number of lines
of source code to be displayed after execution of a
statement.

ccref.book : AR5next 175 Mon Jun 5 15:33:25 1995

CodeCenter Reference 175

next

NOTE Debugging of threaded applications is currently only
supported in process debugging mode, and it is not
supported on all platforms. Please refer to the
“Product limitations” section in the “About This
Release” appendix to the online CodeCenter Reference.

See Also nexti, step, stepout

ccref.book : AR5next 176 Mon Jun 5 15:33:25 1995

nexti

176 CodeCenter Reference

nexti

executes machine code by line; does not enter functions

Command syntax nexti

nexti num

Description

Usage Use the nexti command to step through machine instructions in your
program without entering functions.

In threaded applications, nexti executes one statement of the specified
thread without entering functions.

NOTE Debugging of threaded applications is currently only
supported in process debugging mode, and it is not
supported on all platforms. Please refer to the
“Product limitations” section in the “About This
Release” appendix to the online CodeCenter Reference.

See Also listi, next, stepi, stopi

cdm pdm

✔

<<none>> Executes the next line of machine code, but does
not enter functions.

num Executes num machine instructions, not just the
last one, but does not enter functions.

ccref.book : AR5next 177 Mon Jun 5 15:33:25 1995

CodeCenter Reference 177

options

options
Many of CodeCenter’s commands and windowing features are
controlled by options. Most of these options are only available in
component debugging mode. The tables in this entry indicate which
options are available in process debugging mode.

Use the following CodeCenter commands to manipulate options:

NOTE You can also use CodeCenter’s Options Browser to
display and change options. In general, using the
Options Browser is the best and easiest way to set
options. See the User’s Guide for a description of the
Options Browser.

Functional
summary of the
options

See Table 17 for a summarized list of the options arranged according
to the following functional categories:

• Editor control

• Environment control

• Information lookup

• Language control

• Listing control

• Load control

• Make control

• Memory control

• Output control

• Paging control

• Run control

• Window control

• pdm options

setopt Sets the values of options.

printopt Displays the values of options.

unsetopt Unsets the values of options

ccref.book : AR5next 178 Mon Jun 5 15:33:25 1995

options

178 CodeCenter Reference

Since some options apply to more than one category, they are listed
more than once.

NOTE Table 18, later in this entry, lists all CodeCenter
options alphabetically, along with the CodeCenter
commands that are affected by each option, the data
type of the option, the default value of the option, and
a description of what the option does.

Table 17 CodeCenter Options Summarized According to Functional Category

Functional Category Name of Option Brief Description

Editor control

(Ascii CodeCenter
only)

editor Set this option only if there is no edit server
in the environment.

Environment control centerline_path Specifies search path for executables,
documentation files, and other files.

email_address Specifies the electronic mail address for the
email command.

eight_bit Tells CodeCenter to treat input and output
as 8-bit characters.

line_edit Adds line editing, command completion,
and extensive history capabilities to the
Workspace.

line_meta Lets all 8 bits pass as input.

logfile Specifies the name of the file used to record
all Workspace input.

path Specifies the search path for loading source
and object files (not for #include files).

proto_path Specifies the search path for prototype files
supplied by CenterLine.

shell Specifies the shell that is started by the shell
or the #! command.

ccref.book : AR5next 179 Mon Jun 5 15:33:25 1995

CodeCenter Reference 179

options

subshell Specifies the shell used to invoke the C
compiler.

Information lookup support_phone Specifies local customer support phone
number.

version_date Specifies the date that the CodeCenter
software was released.

version_number Specifies the version number of
CodeCenter.

workgroup_id Specifies the workgroup ID for your license
of CodeCenter.

Language control ansi Performs preprocessing and function
prototype conversion in strict conformance
with the ANSI C Standard.

long_not_int Specifies whether long and int are treated as
the same type.

Listing control src_err Specifies the number of source lines to be
listed for errors and warnings (Ascii
CodeCenter only).

src_step Specifies the number of lines of source code
to be displayed after execution of a
statement (Ascii CodeCenter only).

src_stop Specifies the number of lines of source code
to be displayed when a break level is first
created (Ascii CodeCenter only).

Load control auto_compile Automatically compiles missing or
outdated object files.

batch_load Suppresses prompts to the user during
loading.

cc_prog Specifies the name of the C compiler that
CodeCenter invokes.

Table 17 CodeCenter Options Summarized According to Functional Category (Continued)

Functional Category Name of Option Brief Description

ccref.book : AR5next 180 Mon Jun 5 15:33:25 1995

options

180 CodeCenter Reference

ccargs Specifies arguments passed to cc when
invoked from CodeCenter. Note that when
you use make, if the environment variable
CFLAGS is set, it takes precedence over
ccargs.

create_file Specifies commands to create a new file
when loading.

echo Echoes the input stream after preprocessing
(similar to the -E compiler switch).

instrument_all Automatically instruments files as they are
loaded. See the instrument entry on page
125 for more information about
instrumenting.

instrument_byte Checks for uninitialized memory that is
used one byte at a time. See the instrument
entry on page 125 for an example.

instrument_space Allocates memory required to instrument
files. See the instrument entry on page 125.

lint_load Indicates the severity of warnings issued
when loading files. (Same as the -w switch
with the load command line.)

load_flags Specifies the default switches to use if load
is called without any switches.

long_not_int Specifies whether long and int are treated as
the same type.

page_load Sets the number of lines of error reports to
display before prompting the user for more.

path Specifies the search path for loading source
and object files (not for #include files.)

preprocessor Specifies a command to execute in a
subshell before the file is loaded.

Table 17 CodeCenter Options Summarized According to Functional Category (Continued)

Functional Category Name of Option Brief Description

ccref.book : AR5next 181 Mon Jun 5 15:33:25 1995

CodeCenter Reference 181

options

proto_path Specifies the search path for prototype files
that you supply.

src_err Specifies the number of source lines to be
listed for errors and warnings.

subshell Specifies the shell used to invoke the C
compiler.

sys_load_flags Specifies switches that establish the search
path for system libraries and include files
when loading C files.

Make control auto_compile Automatically compiles missing or
outdated object files.

make_args Specifies the command-line arguments
passed to the UNIX make utility by
CodeCenter’s make command.

make_hfiles Checks header files to find out if a file
should be reloaded.

make_offset Specifies the number of characters to skip
when reading shell commands from the
make program.

make_prog Specifies the program invoked to make a
target. (The default is make.)

make_symbol Specifies the string used to denote an
CodeCenter command line in a makefile.
Use only if you also specify old_make.

subshell Specifies the shell used to invoke the C
compiler.

Memory control mem_config Tunes the memory allocator to optimize
memory usage.

mem_trace Specifies the level of memory tracing to
perform.

Table 17 CodeCenter Options Summarized According to Functional Category (Continued)

Functional Category Name of Option Brief Description

ccref.book : AR5next 182 Mon Jun 5 15:33:25 1995

options

182 CodeCenter Reference

save_memory Set this option if memory is scarce or for
portions of a program that allocate very
large arrays.

sbrk_size Specifies the amount of memory that can be
allocated by the sbrk() andbrk() system
calls.

unset_value If set to 0, tells CodeCenter not to report
variables used without being set.

Output control list_action Displays actions that execute everywhere
when listing the source line at which they
were triggered.

print_pointer Adds diagnostic information to pointer
display.

print_string Specifies the number of characters of a
string to print.

tab_stop Specifies the number of spaces to indent per
tab character when listing source code.

terse_suppress Tells the suppress command not to echo the
name of the violation being suppressed.

terse_where Tells the where command not to list the
formal arguments of each function on the
execution stack.

Paging control page_cmds Sets the number of lines of output displayed
before a more prompt is issued.

page_list Sets the number of lines of source code the
list command displays before a more
prompt is issued.

page_load Sets the number of lines of error reports to
display before prompting the user for more.

Table 17 CodeCenter Options Summarized According to Functional Category (Continued)

Functional Category Name of Option Brief Description

ccref.book : AR5next 183 Mon Jun 5 15:33:25 1995

CodeCenter Reference 183

options

NOTE The following options, which were available in
previous releases of CodeCenter, are no longer
available: auto_reload, auto_replace, centerline_port,
debug_child, num_proc, term, win_fork_nodup,
win_project_list, win_message_list.

Run control batch_run Specifies the method for handling run-time
violations.

lint_run Indicates the severity of warnings issued by
CodeCenter during execution.

program_name Specifies the value of the first argument,
argv[0], to main().

Window control win_fork If set, a new window is created when a
program forks. In Ascii CodeCenter,
prompts for a new tty device. All input and
output to this new child process will take
place in the new window.

win_io Directs output to the Workspace if unset.
(We recommend that you keep this option
set for complicated programs that use
curses-style input and output.)

win_no_raise Prevents deiconifying the Run Window
when you issue the run or start command.
The default behavior is to deiconify the Run
Window.

pdm options class_as_struct Disables maximum processing of classes to
improve performance

full_symbols Forces the reading of the full symbol table
for maximum information immediately.

Table 17 CodeCenter Options Summarized According to Functional Category (Continued)

Functional Category Name of Option Brief Description

ccref.book : AR5next 184 Mon Jun 5 15:33:25 1995

options

184 CodeCenter Reference

Table 18 lists all CodeCenter options alphabetically, along with the
CodeCenter commands that are affected by each option, the data type
of the option, the default value of the option, and a description of what
the option does.

Table 18 CodeCenter Options

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ansi Boolean unset (FALSE) load

Perform preprocessing and function prototype conversionin strict
conformance with the ANSI C Standard. See the ANSI C entry on
page 12 for more information about ANSI C and CodeCenter; also
see the config_parser entry on page 77.

auto_compile (Ascii
CodeCenter only)

Boolean set (TRUE) build
load

Automatically compile missing or outdated object files when load
is invoked.

If you invoke a build from the Project Browser, this option is
ignored; missing or out-of-date files are always recompiled.

If a makefile exists, load calls make args file, where args is specified
by the make_args option. If a makefile does not exist, load uses the
command cc args file, where args is specified by the ccargs option.

batch_load (Ascii
CodeCenter only)

Boolean unset (FALSE) load

Do not prompt with options when warnings are encountered
during the loading process. Prompt to continue only if more than
page_load lines of messages are displayed. See the page_load
option.

batch_run Integer 0 rerun
start
run

Proceed as follows when a run-time violation is detected, according
to the appropriate value.

0 Stop and issue a prompt at each run-time warning or error.

1 Record all warnings and continue, but prompt at each error.

ccref.book : AR5next 185 Mon Jun 5 15:33:25 1995

CodeCenter Reference 185

options

2 Record all warnings and continue, record the first error, then
stop execution.

3 Record all warnings and errors and continue. Note that this
setting can be dangerous, since errors can cascade. Do not use
this option when you have unresolved references.

cc_prog String cc load
make

Use the C compiler with the name specified.

ccargs String -g build
load
make

Pass the specified arguments to cc when cc is invoked from
CodeCenter. CodeCenter invokes cc directly, using ccargs, only if it
needs to recompile a file that does not have a makefile; if a makefile
is available, CodeCenter invokes make.

centerline_path String determined
when you start
CodeCenter

none

Use the specified search path for executables, documentation files,
and various other files.

class_as_struct Boolean unset (FALSE) debug

Disables maximum processing of classes to improve performance.
(This option is only available in pdm.)

create_file String with
delimiter

null load

Execute the command specified by string to create a file if load
specifies a file that does not exist. string has the following format:

@file1@command1@file2@command2...@*@commandx

where:

@ is a delimiter. The delimiter can be any character; however,
avoid using the characters * and % since they are
meta-characters for this command. Use the delimiter at the
beginning of the string and between items in the string.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 186 Mon Jun 5 15:33:25 1995

options

186 CodeCenter Reference

file1 is an argument to the load command. If file1 does not exist,
command1 is used to create file1.

file2 is similar to file1. If file2 does not exist and is specified, then
command2 is used to create file2, and so on.

* If the specified file does not match any fileN in string,
commandx is used; the * matches all files. When you specify
commandx, use %s to reference the filename.

For example, the following string is a possible value for create_file:

@foo.c@yacc foo.y
@bar.c@yacc bar.y
@*@co -l %s

Given this value for create_file, suppose you issue the following
command:

load foo.c

If foo.c does not exist, CodeCenter invokes the following
command:

yacc foo.y

Similarly, if the file specified is bar.c, CodeCenter invokes yacc
bar.y.

Suppose the file specified with load is neither foo.c nor bar.c:

load notfoobar.c

In this case, CodeCenter invokes the following command:

co -l notfoobar.c

echo Boolean unset (FALSE) load

Echo the input stream after preprocessing has taken place. This
result is similar to calling the compiler with the -E switch.

editor (Ascii
CodeCenter only)

String vi edit

By default this option is unset. Set it only if there is no edit server in
your environment. Possible values are vi and emacs.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 187 Mon Jun 5 15:33:25 1995

CodeCenter Reference 187

options

eight_bit Boolean unset (FALSE) keybind

Treat input and output as 8-bit characters.

email_address String codecenter_
support@
centerline.com

email

Specify the electronic mail address for the email command. The
option is set in the CenterLine/configs/support-defs file.

full_symbols Boolean unset (FALSE) debug

Forces the reading of the full symbol table for maximum
information immediately. (This option is only available in pdm.)

ignore_sharp_lines Boolean unset (FALSE) load

Ignore #line directives generated by preprocessors. Consequently,
CodeCenter does not maintain any correspondence between a
preprocessor input file and a source code output file that is
currently loaded. This option does not affect object files.

instrument_all Boolean unset (FALSE) load

Automatically instrument files as they are loaded. See the
instrument entry on page 125 for more information.

instrument_byte Boolean unset (FALSE) instrument

Check for unset memory that is used one byte at a time. See the
instrument entry on page 125 for an example.

instrument_space Integer 2 instrument

Allocate space as specified for instrumented object code. The
default value of 2 allows an amount of space approximately 50% of
the text size of your application. If you get a message that more
space is needed, we recommend you increase the value of this
option by 1 until you have allocated enough space. If you set the
value of this option to 0, you save space, but you cannot instrument
any object files.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 188 Mon Jun 5 15:33:25 1995

options

188 CodeCenter Reference

line_edit Boolean set (TRUE) history
keybind

Add line editing, command completion, and extensive history
capabilities to the Workspace. Also, with this option set, some
errors in the Workspace echo a bad input line again to facilitate easy
correction. If unset, key bindings have no effect.

line_meta Boolean unset (FALSE)
except on Sun
workstations,
where the
default is set
(TRUE)

keybind

Let all 8 bits pass as input to CodeCenter. On Sun keyboards, this
allows the meta key (marked ◊ or Left or Right) to be treated as a
Meta key.

lint_load Integer 3 load

Tell CodeCenter to issue load-time warnings at the severity
specified, or to suppress warnings if set to 0. The possible settings
are as follows:

0 suppress all warnings

1 report all violations, including lint-style warnings

lint_run Integer 2 rerun
run
start

Issue run-time warnings at the severity specified. The possible
settings are as follows:

0 suppress all warnings

1 suppress minor warnings (such as type mismatch during
function calls)

2 report all possible violations

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 189 Mon Jun 5 15:33:25 1995

CodeCenter Reference 189

options

list_action (Ascii
CodeCenter only)

Boolean set (TRUE) action
list

Display actions that execute everywhere when listing the source
line at which they were triggered.

load_flags String null load

Use the specified switches as the default switches but only if load
is called without any switches. CodeCenter always uses any -L
switches specified in load_flags. See the "When does the load_flags
option have precedence?" TIP on page 149.

logfile String a temporary
filename

none

Use the specified file to record all your Workspace input. The file is
periodically used by CodeCenter, so be sure not to delete it.

long_not_int Boolean unset (FALSE) load

Treat long and int as different types. If this option is set,
CodeCenter generates warnings for cases in which the size of an
integer might matter. For instance, a warning is generated if a long
argument is passed to a non-prototyped function that expects an
int. Set this option to check code that you are porting to a CPU
where long and int are different sizes.

make_args String build
make

Pass the specified command-line arguments from CodeCenter’s
make command to the UNIX make utility. These could be
arguments such as -DCODECENTER_MAKE or -f filename.

make_hfiles Boolean set (TRUE) build

Check header files to determine whether a file should be reloaded.
If you are loading a large project, setting this option can be time
consuming. This option has no effect in pdm.

make_offset Integer make

Skip the number of characters specified when reading shell
commands from the make program. This option has no effect in
pdm.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 190 Mon Jun 5 15:33:25 1995

options

190 CodeCenter Reference

make_prog String make (UNIX
command)

make

Invoke the specified program to make a target.

make_symbol String # make

Use the specified string to denote a CodeCenter command line in a
makefile. This option has no effect in pdm.

mem_config Integer 16384 none

Tell CodeCenter how much memory to allocate at a time from the
operating system. The default sets memory to twice the average
large malloc() size. Use this option to tune the memory allocator to
optimize memory usage for a particular application.

mem_trace Integer 0 none

Specifies the level of memory tracing to perform. (0 is off). Tell
CodeCenter to write potential memory leak information to a file
called mem.leak in the current working directory when the
application being run exits. All memory that is allocated while a
program is running and not freed before the program exits is
reported. For more information see the memory leak detection
entry on page 172.

page_cmds
(Ascii CodeCenter only)

Integer the size of the
terminal’s screen

none

Set the number of lines of output from commands that are
displayed before issuing a more prompt. If unset, command output
is not paginated.

page_list Integer 10 list

Set list command to display the specified number of lines of source
code before issuing a more prompt. If this option is unset,
CodeCenter does not paginate source code listings.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 191 Mon Jun 5 15:33:25 1995

CodeCenter Reference 191

options

page_load
(Ascii CodeCenter only)

Integer the size of the
terminal’s screen

load

Specify the number of lines of error reports to display before
prompting the user for more. If this option is unset, CodeCenter
displays a screenful. This option is meaningful only if used along
with batch_load.

path String null cd
edit
list
load
swap

Search the directories in the order specified when the affected
commands are invoked. The current directory is always added
implicitly to the end of the path. If this option is unset, which is the
default, CodeCenter searches the current directory. You must also
set the swap_uses_path option for path to affect the swap
command.

Separate the directory names by spaces; you can specify the
directories as absolute or relative pathnames.

The path option does not provide a search path for loading #include
files or libraries — only for loading source and object files and for a
matching pathname with the cd command. To give the search path
for #include directories, use the -I switch with the load command
according to the following format:

-> load -Iinclude_dir1 [-Iinclude_dir2 ...] file.c

See the “Loading libraries” section on page 152 and also the
"Specifying the search path for loading libraries and #include files"
TIP on page 154.

You can set the value of the path option with either the use
command or the setopt command.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 192 Mon Jun 5 15:33:25 1995

options

192 CodeCenter Reference

preprocessor String null load

Execute the specified command in a subshell before loading the file.
The command should have a %s in it, which is replaced by the
name of the file being loaded. The output from the subshell is
loaded. If the command changes the number of lines in the file, then
subsequent references to source lines will not be accurate.

The following example specifies m4 as a preprocessor:

-> setopt preprocessor m4 macro_file %s

print_pointer Boolean set (TRUE) display
print

Display pointers with diagnostic information about what they
point to.

print_string Integer 20 none

Use the number specified as the number of characters of a string to
print. Use an ellipsis (...) following the string if more characters can
be displayed.

program_name String a.out rerun
run
start

Use the value specified as the value of the first argument, argv[0],
to main(). This option is especially useful for X11 applications,
which often rely on the program name for resource setting. In X11,
resources are looked up relative to the program name, which by
default is a.out in CodeCenter. If you want to change the default
program name to the one you usually use to invoke your
application, set the program_name option with the setopt
command.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 193 Mon Jun 5 15:33:25 1995

CodeCenter Reference 193

options

proto_path String none load

Look in the specified directory for prototype files. When loading, if
a file ends in .proto, the directories specified by proto_path are
searched for the named file. The format for this option is a list of
directories separated by spaces. For best results, use absolute
pathnames.

NOTE: CodeCenter no longer provides prototype files; however,
you can use this option to specify the directory containing ones that
you provide yourself.

save_memory Boolean unset (FALSE) action

Have library functions malloc() and calloc() not use
centerline_malloct() to allocate memory. Consequently,
CodeCenter does not use extra memory for run-time type checking
when the program allocates memory. Set this option if memory is
scarce or for portions of a program that allocate very large arrays.

NOTE: When save_memory is set, run-time warnings such as
dynamic type mismatch and dynamic used-before-set are not
reported. Watchpoints and actions cannot be set on dynamic
memory if save_memory is set.

sbrk_size Integer 1048576 bytes none

Use the specified amount of memory as the amount that can be
allocated by the sbrk() and brk() system calls. This option must be
set before a program’s first use of sbrk(); do not make the first
allocation with brk() in CodeCenter.

Programs that use only the malloc() functions are not affected by
this option. Only programs that call the sbrk() system calls directly
are restricted to allocating the amount of memory specified by this
option; these are usually programs that contain their own memory
allocation routines.

The upper limit for this option is usually determined by the amount
of swap space available on the system.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 194 Mon Jun 5 15:33:25 1995

options

194 CodeCenter Reference

shell String CENTERLINE_
SHELL(if it
exists; otherwise
SHELL
environment
variable)

shell

Start up the specified shell when invoked by the shell or the #!
command. At startup, shell is set to the value of the environment
variable CENTERLINE_SHELL, if it exists; otherwise, shell is set
to the environment variable SHELL.

NOTE: This option does not affect the sh command.

src_err (Ascii
CodeCenter only)

Integer 3 load

List the specified number of source lines when an error or warning
is reported.

src_step (Ascii
CodeCenter only)

Integer 1 next
step

Specify number of lines of source code the step and next command
display after stepped execution of a statement.

src_stop (Ascii
CodeCenter only)

Integer 3 stop

Display the specified number of code lines when a break level is
created for the first time.

subshell String /bin/sh load
make

Use the shell specified to invoke the .

support_phone String local customer
support phone
number

none

Specify local customer support phone number.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 195 Mon Jun 5 15:33:25 1995

CodeCenter Reference 195

options

swap_uses_path Boolean unset (FALSE) swap

Use the path option when looking for files.

If this option is unset, which is the default:

The swap command does not look in the directories specified
in the path option to find a file.The swap command looks only
in the same directory as the file being swapped out. If the file
to swap in is in a different directory than the file being
swapped out, the swap fails. If you are swapping from source
to object, CodeCenter has the source file compiled in the same
directory and loads the new object file.

If this option is set, and you are swapping from source to object:

The swap command first looks in the directory of the source
file. If there is no corresponding object file in that directory,
swap then follows the search path set by the path option and
loads the first corresponding object file it encounters. If a
corresponding object file is not in any of the directories
searched, swap has the source file compiled and loads the
resulting object file.

If this option is set, and you are swapping from object to source:

The swap command first looks in the directory of the object
file being swapped out. If there is no corresponding source file
in that directory, swap then follows the search path set by the
path option and loads the first corresponding source file it
encounters.

sys_load_flags String load

Use the specified switches with the load command when loading
files. To establish the search path for system libraries and #include
files, specify the -I and -L switches in sys_load_flags. See the
"Specifying the search path for loading libraries and #include files"
TIP on page 154 for an example. The switches you specify with the
sys_load_flags option are always passed to the load command.

tab_stop Integer 8 list

Indent the number of spaces specified per tab character when
listing source code.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 196 Mon Jun 5 15:33:25 1995

options

196 CodeCenter Reference

terse_suppress Boolean unset (FALSE) suppress

Set the suppress command not to echo the name of the violation
being suppressed.

terse_where Boolean unset (FALSE)) where

Set the where command not to list the formal arguments of each
function on the execution stack.

unset_value Integer 191 instrument

Use this value to detect memory that has not been set.

Every byte of memory allocated by the malloc() functions and by
centerline_unset(), as well as memory for automatic variables, is
set to the value of unset_value. If this option is set to 0 (setopt
unset_value 0), CodeCenter no longer diagnoses that a variable is
used without being set.

If your program happens to set the value of memory to match the
value of this option, CodeCenter probably generates spurious
run-time warnings. One way to eliminate them is to change the
value of unset_value.

version_date String current version
date

none

Display the date the CodeCenter software was released.

version_number String the current
version

none

Display the version number of CodeCenter.

win_fork Boolean set (TRUE) none

If set, a new window is created when a program forks. In Ascii
CodeCenter, prompts for a new tty device. All input and output to
this new child process will take place in the new window.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 197 Mon Jun 5 15:33:25 1995

CodeCenter Reference 197

options

win_io Boolean set (TRUE) none

Directs output to the Workspace. Your output will go to the
Workspace at your next reinit, whether it is an implicit reinit (for
example, when you issue the run command) or an explicit reinit (by
issuing the reinit command). We recommend that you keep the
win_io option set, however, for complicated programs that use
curses-style input and output. Unsetting win_io has the following
limitations:

• Controlling-tty semantics are unavailable in the Workspace.
This means that tcgetpgrp/tcsetpgrp and tty-generated signals
will not work as expected.

• If your program affects the tty mode, it may affect the
Workspace output.

• The tty mode may not be preserved across Workspace
interactions.

For example, when you continue from a breakpoint, the tty settings
may not be the same as when you stopped.

win_no_raise Boolean unset (FALSE) none

Prevents deiconifying the Run Window when you issue the run or
start command. The default behavior is to deiconify the Run
Window.

workgroup_id Integer none

Display the workgroup ID for your license of CodeCenter.

workspace_include Boolean unset (FALSE) none

Enables the use of #include in the Workspace. This option is
provided for backwards compatibility with earlier releases. We
recommend that you use the load_header command to load
definitions from header files.

Table 18 CodeCenter Options (Continued)

Name of Option Type Default Value Commands Affected

What the Option Tells CodeCenter To Do

ccref.book : AR5next 198 Mon Jun 5 15:33:25 1995

pdm

198 CodeCenter Reference

pdm

process debugging mode; used for debugging an
executable file, a corefile, or a running process

Purpose of pdm Using CodeCenter’s pdm, or process debugging mode, allows you to
examine what is going on in a program while it executes. You can use
process debugging mode to debug an executable file (a.out) along
with a corefile or a running process. A corefile contains a literal copy
of the contents of memory at the time that the operating system
aborted a program.

You can use pdm to do the following:

• Start your program under varying conditions that might affect
its behavior

• Stop your program on specified conditions

• See what has happened when your program has stopped

• Change your program, so you can try out solutions to problems
you discover

Note that you cannot use pdm for automatic load-time or run-time
error checking; see the debugging entry on page 87 for an overview of
these other forms of debugging supported by CodeCenter.

Invoking pdm There are several different ways to invoke CodeCenter’s process
debugging mode, depending on whether or not you are already in the
CodeCenter environment.

Outside the
CodeCenter
environment

If you are not already in the CodeCenter environment, you can start
CodeCenter in process debugging mode by using the -pdm switch on
the shell command line:

$ codecenter -pdm

When you start pdm, CodeCenter adds CenterLine/arch-os/lib to your
LD_LIBRARY_PATH environment variable so that it can find required
shared libraries.

ccref.book : AR5next 199 Mon Jun 5 15:33:25 1995

CodeCenter Reference 199

pdm

NOTE The codecenter -pdm shell command invokes the
CenterLine GNU debugger; see 'Distribution'on page
iii for information about acquiring the source for this
tool.

Once you are in process debugging mode, you can invoke the
debugger using the debug command:

(pdm) 1 -> debug my.a.out

See the debug entry on page 84 for more information.

Within the
CodeCenter
environment

If you are already in a CodeCenter session using the Motif or OPEN
LOOK version, you can switch to process debugging mode by
selecting the Restart Session menu choice on the CodeCenter
pulldown menu. A dialog box allows you to restart the environment
in either component debugging mode or process debugging mode.

Whenever you switch to process debugging mode from within the
CodeCenter environment, CodeCenter initializes a CodeCenter
session using the standard startup file (.pdminit); it does not transfer
any information to the new CodeCenter session from the previous
one. For instance, you lose all loaded files, linked libraries, and so on.

As previously mentioned, once you are in process debugging mode,
you can invoke the debugger using the debug command:

(pdm) 1 -> debug my.a.out

NOTE If you are using Ascii CodeCenter and you wish to
switch to process debugging mode, you must start a
new session from outside the environment.

Using pdm vs.
cdm

You can use most CodeCenter commands the same way, whether or
not you are in process debugging mode, but there are a few
differences.

ccref.book : AR5next 200 Mon Jun 5 15:33:25 1995

pdm

200 CodeCenter Reference

NOTE When you are in process debugging mode, you cannot
use the Project Browser or the Cross-Reference
Browser. Also, in pdm, CodeCenter does not support
most options, so the Options Browser is not available.

Commands See Table 19 for a list of CodeCenter commands supported by process
debugging mode along with a description of any differences between
the way each command works in component or process debugging
mode. The shaded areas of the table indicate commands that are not
available in process debugging mode. See the reference page for each
command for more details about the command.

Table 19 Differences in CodeCenter Commands by Mode

CodeCenter Command Check (✓) If
Available in
pdm

Differences between Component Mode
(cdm) and Process Mode (pdm) Use of
Command

action Not implemented in pdm. Use when.

alias ✓ You can use alias [name[text]] in pdm, but you
cannot use the following form in pdm:

alias name text alias_args.

assign ✓ No difference.

attach ✓ Available in pdm only.

build ✓ In pdm, CodeCenter reloads a.out if a.out is
newer than the current a.out.

catch ✓ No difference.

cd ✓ No difference.

config_parser Does not apply to pdm.

ccref.book : AR5next 201 Mon Jun 5 15:33:25 1995

CodeCenter Reference 201

pdm

cont ✓ The pdm, but not cdm, version of the cont
command supports the following syntax:

cont at line

Continue at location specified by line

cont at line sig signum

Continue with last signal encountered

cont sig signum

Continue with signal specified by signum

cont skip count

Continue, ignoring breakpoint for count
iterations

The pdm version of the cont command does
not support the following syntax:

cont continuation_value

contents ✓ The pdm version of the contents command
returns the pathname of the a.out file
currently loaded. The contents filename
variation may return only a partial list of
objects declared or defined in filename.

debug ✓ Available in pdm only.

delete ✓ Available in pdm:

delete n

delete all

Not available in pdm:

delete

delete file:line

detach ✓ Available in pdm only.

Table 19 Differences in CodeCenter Commands by Mode (Continued)

CodeCenter Command Check (✓) If
Available in
pdm

Differences between Component Mode
(cdm) and Process Mode (pdm) Use of
Command

ccref.book : AR5next 202 Mon Jun 5 15:33:25 1995

pdm

202 CodeCenter Reference

display ✓ No difference.

down ✓ No difference.

dump ✓ No difference.

edit ✓ No difference.

email ✓ No difference.

english Not implemented in pdm.

fg Not implemented in pdm.

file ✓ No difference.

gdb ✓ Available in pdm only.

gdb_mode ✓ Available in pdm only.

help ✓ No difference.

history ✓ No difference.

ignore ✓ No difference.

info Not implemented in pdm.

instrument Does not apply to pdm.

keybind Not implemented in pdm.

link Does not apply to pdm.

list ✓ No difference.

listi ✓ Available in pdm only.

load Does not apply to pdm. Use debug.

make ✓ Using the CodeCenter syntax in makefiles has
no effect in pdm.

Table 19 Differences in CodeCenter Commands by Mode (Continued)

CodeCenter Command Check (✓) If
Available in
pdm

Differences between Component Mode
(cdm) and Process Mode (pdm) Use of
Command

ccref.book : AR5next 203 Mon Jun 5 15:33:25 1995

CodeCenter Reference 203

pdm

man ✓ No difference.

next ✓ No difference.

nexti ✓ Available in pdm only.

print ✓ CodeCenter uses different formats in cdm and
pdm for displaying the value of an expression
or variable.

printenv ✓ No difference.

printopt ✓ No difference.

proto Does not apply to pdm.

quit ✓ In pdm you do not have the choice of saving to
a project file.

reinit Does not apply to pdm.

rename Does not apply to pdm.

rerun ✓ No difference.

reset ✓ No difference.

run ✓ No difference.

save Does not apply to pdm.

set ✓ No difference.

setenv ✓ No difference.

setopt ✓ No difference.

sh ✓ No difference.

shell ✓ No difference.

source ✓ No difference.

Table 19 Differences in CodeCenter Commands by Mode (Continued)

CodeCenter Command Check (✓) If
Available in
pdm

Differences between Component Mode
(cdm) and Process Mode (pdm) Use of
Command

ccref.book : AR5next 204 Mon Jun 5 15:33:25 1995

pdm

204 CodeCenter Reference

start Does not apply to pdm.

status ✓ No difference.

step ✓ No difference.

stepi ✓ Available in pdm only.

stepout ✓ No difference.

stop ✓ See the CodeCenter Platform Guide for
information about setting breakpoints in
shared libraries while in pdm.

stopi ✓ Available in pdm only.

suppress Does not apply to pdm.

suspend Does not apply to pdm.

swap Does not apply to pdm.

touch Does not apply to pdm.

trace Not implemented in pdm.

unalias ✓ No difference.

uninstrument Does not apply to pdm.

unload Does not apply to pdm.

unres Does not apply to pdm.

unsetenv ✓ No difference.

unsetopt ✓ No difference.

unsuppress Does not apply to pdm.

up ✓ No difference.

Table 19 Differences in CodeCenter Commands by Mode (Continued)

CodeCenter Command Check (✓) If
Available in
pdm

Differences between Component Mode
(cdm) and Process Mode (pdm) Use of
Command

ccref.book : AR5next 205 Mon Jun 5 15:33:25 1995

CodeCenter Reference 205

pdm

Using gdb in
process debugging
mode

As a convenience, CodeCenter allows you to use gdb commands in
the Workspace when you are in process debugging mode; gdb is the
GNU source-level debugger provided by the Free Software
Foundation.

If you wish to use gdb, you can do any of the following:

• Invoke CodeCenter at the shell prompt with the -gdb
command-line switch in addition to the -pdm switch:

$ codecenter -pdm arg1 ... -gdb argn ...

If you do so, all command-line arguments after the -gdb are
taken to be gdb command-line switches, and any switches
before the -gdb are taken to be pdm switches.

• Issue the gdb command in the Workspace while you are in
process debugging mode; the gdb command takes as its
argument any gdb command:

(pdm) 1 -> gdb break 20

• Issue the gdb_mode command in the CodeCenter Workspace
while you are in process debugging mode:

(pdm) 1 -> gdb_mode

use ✓ No difference.

whatis ✓ No difference.

when ✓ Available in pdm only.

where ✓ No difference.

whereami ✓ No difference.

whereis ✓ No difference.

xref Not implemented in pdm.

Table 19 Differences in CodeCenter Commands by Mode (Continued)

CodeCenter Command Check (✓) If
Available in
pdm

Differences between Component Mode
(cdm) and Process Mode (pdm) Use of
Command

ccref.book : AR5next 206 Mon Jun 5 15:33:25 1995

pdm

206 CodeCenter Reference

Once you are in gdb mode, you can use only the gdb command set.
You can get back to process debugging mode by typing the following
command:

(gdb) pdm

NOTE Although we provide access to native gdb commands
as a convenience, we do not provide any technical
support for gdb.

See Also attach, commands, debug, detach

ccref.book : AR5next 207 Mon Jun 5 15:33:25 1995

CodeCenter Reference 207

performance

performance

performance trade-offs and enhancements

CodeCenter provides two debugging modes: process debugging
mode and component debugging mode. There are performance
trade-offs between the two modes that you need to consider before
starting a debugging session. There are also several ways you can load
your code in a cdm session that affect performance.

Process debugging mode is especially useful for finding bugs in
existing code, rather than for debugging new code as you develop it.
It offers the fastest startup and execution time and reasonably good
debugging facilities.

In component debugging mode you can load source or object code,
you can load your object code with or without debugging
information, and you can "instrument" your object code to add
run-time error-checking capabilities (see the instrument entry on page
125). Which combination of these you choose depends on what your
goals are and how large your project is.

This entry contains the following sections to help you make trade-off
decisions and take advantage of other features you can use to enhance
performance:

• Performance factors for source and object components

• Enhancing performance for large projects

• Additional performance enhancements

For a more detailed discussion of the effects of debugging techniques
on performance, see the debugging entry on page 87.

ccref.book : AR5next 208 Mon Jun 5 15:33:25 1995

performance

208 CodeCenter Reference

Performance
factors for source
and object
components

As described above, when you are in component debugging mode,
you can load several different combinations of source and object code.
Table 20 summarizes the performance characteristics of each source or
object format. The number 1 represents the fastest speed and the least
memory consumption.

Increased paging due to heavier memory usage when loading object
code with debugging information might possibly degrade execution
speed compared to object code without debugging information. You
can solve this by increasing available memory.

As Table 20 shows, regular object code without debugging
information offers fastest speed of setup and execution and least
memory use, while source code takes longest to set up and execute
and requires the most memory. Table 21 shows that source code offers
the best error checking and debugging capabilities while regular
object code without debugging information offers the most limited.
Specific limitations are shown after the table..

Table 20 Performance Characteristics of Source and Object Code

Setup speed Memory use Execution speed

Source code 5 5 3

Instrumented object code with
debugging information

4 4 2

Instrumented object code without
debugging information

3 2 2

Regular object code with
debugging information

2 3 1

Regular object code without
debugging information

1 1 1

ccref.book : AR5next 209 Mon Jun 5 15:33:25 1995

CodeCenter Reference 209

performance

Some specific restrictions are as follows:

Load-time error
checking

The only load-time error-checking of object code with debugging
information performed is consistency checks of declarations and
definitions across modules.

Run-time error
checking

Run-time error checking of uninstrumented object code only covers
certain standard library functions such as malloc() and strcpy().

 Standard
debugging actions

The following standard debugging actions are not available for any
form of object code: tracing, the stepout command, and some forms of
the action command. In addition, you can set breakpoints on
functions in object code without debugging info, but you cannot
perform any other debugging actions.

 Code visualization The only code visualization available for object code without
debugging information is cross-referencing of functions and
definitions for global symbols.

Table 21 Error-Checking and Debugging Capabilities in Source and Object Code

1 = full
2 = some restrictions
3 = limited
4 = minimal

Load-time
error
checking

Run-time
error
chjecking

Debugging Code
visualization

Source code 1 1 1 1

Instrumented object code with
debugging information

4 2 2 2

Instrumented object code
without debugging
information

None 3 3 3

Regular object code with
debugging information

4 4 2 2

Regular object code without
debugging information

None 4 3 3

ccref.book : AR5next 210 Mon Jun 5 15:33:25 1995

performance

210 CodeCenter Reference

The quality of type information available for object code with
debugging information depends on how complete the debugging
information supplied by your compiler is. Code visualization for
object code with debugging information has the following restrictions
for examining some variables:

• No information on type const

• No information on protection level for class members

• References are treated as pointers

To work around these restrictions, load a header file with the
appropriate declarations, or swap one of the object files to source
form.

Enhancing
performance for
large projects

Table 22 summarizes the advantages of the techniques that are likely
to be most helpful with large projects. However, as already discussed,
increased performance in loading, executing, and memory
conservation are all factors that need to be balanced against
debugging capabilities available.

Table 22 Performance Gains for Large Projects

Performance enhancement gained

Technique to use Setup speed Speed of
execution

Memory
conservation

Consolidate object files ✔ ✔

Load object, not source ✔ ✔ ✔

Do not load debugging information ✔ ✔ ✔

Use regular object code, not instrumented
code

✔ ✔ ✔

 Set the save_memory option ✔

ccref.book : AR5next 211 Mon Jun 5 15:33:25 1995

CodeCenter Reference 211

performance

Additional
performance
considerations

In this section we list some additional ways to enhance performance.

Load object code
without debugging
information

Object code with debugging information requires much more
memory and loads more slowly, so if memory or speed are issues, load
object code without debugging information. You can do either of the
following:

• Load an object file that was not compiled with the -g switch.

• Specify the -G switch with the load command to load the object
files even faster. The -G switch makes the loader skip the -g
debugging information in the object file. However, the only
debugging you will be able to do on the resulting object code is
to set breakpoints and actions on a particular function.

Consolidate object
files

You can speed up the load process and conserve memory by
combining many smaller object files into one large object file with the
ld -r linker command. You can use this approach for object files that
you are not changing much.

The loading time for the consolidated object file will be much faster
than the total time for the separate smaller files.

To do this, invoke the UNIX linker as follows:

% ld -r -o all.o file1.o file2.o file3.o ...

This creates one large object file called all.o from the several smaller
files named file1.o, file2.o, and so on. Loading all.o into CodeCenter
is faster than loading the individual object files.

NOTE Due to the way the linker handles debugging
information for consolidated (ld -r) object files, using
debugging items is not as reliable with these files as it
is with other object files containing debugging
information.

The specific switches you use with the ld -r linker command depend
on your platform. For more information, see the UNIX manual page
for the ld command on your system.

Set the
save_memory option

You can conserve memory by setting the save_memory option.

ccref.book : AR5next 212 Mon Jun 5 15:33:25 1995

performance

212 CodeCenter Reference

When the save_memory option is set, global variables and allocated
data take up less memory. This is effective for memory conservation
with applications that have large data structures, such as large arrays
like int a[500000].

You need to set the save_memory option before you load files. Setting
this option reduces run-time violation checking capabilities. For more
information on the save_memory option, see the options entry on
page 177 for more information about options.

Set
instrument_space
option to 0

The instrument_space option specifies the amount of space reserved
for instrumentation of object files. The default value of this option is 2,
which corresponds to an amount of space approximately half the size
of the text space of your application. Setting this option to 0 saves
memory, but removes the ability to instrument the object file.

Setting the
dimButtonsWhen
DebuggerBusy
resource

The dimButtonsWhenDebuggerBusy resource can improve
performance by reducing the X11 server traffic that results from
dimming the control buttons in the GUI. This resource is especially
valuable when running CodeCenter with slow X servers or low-speed
connections such as X over serial lines.

The resource enables you to specify the length of time that the
debugger must be busy before the control buttons on the GUI dim. By
default, the buttons on the GUI dim when the debugger has been busy
for 1.15 seconds:

CodeCenter*dimButtonsWhenDebuggerBusy: 1.15

You can change the value of this resource in the site-wide application
defaults file for CodeCenter, or in your local .Xdefaults file. The value
can be:

• The string Always if you want the buttons to dim as soon as the
debugger is busy.

• The string Never if you never want the buttons to dim.

• Any positive floating-point number, to indicate the number of
seconds you want to elapse before the buttons start dimming.

ccref.book : AR5next 213 Mon Jun 5 15:33:25 1995

CodeCenter Reference 213

porting

porting
See the cc and other C compilers entry on page 27.

ccref.book : AR6prep 214 Mon Jun 5 15:33:25 1995

preprocessed code

214 CodeCenter Reference

preprocessed code
CodeCenter helps you debug preprocessed code by allowing you to
examine the input to a preprocessor rather than just the output from
it; the input is typically much easier to read than the output.
CodeCenter uses #line directives in the preprocessed code to map the
preprocessed code to the unpreprocessed code that you wrote. See
Figure 4 for a conceptual illustration.

Supported preprocessors take an input file that consists of
specifications and/or C code and generate a pure C file from it. The
file contains #line directives referencing the input file.

In other words, you can use CodeCenter to work with files generated
by yacc, certain SQL preprocessors, and some preprocessors
supporting parameterized types.

We discuss the following topics related to preprocessed code:

• Overview

• A sample program

• Loading the preprocessor output file

• Working with the preprocessed code

• Using commands

• Modifying the preprocessor input file

• Having CodeCenter ignore #line directives

• Using preprocessors that do not generate #line directives

Figure 4 Preprocessor Input and Output in CodeCenter

Input file [file.x] Output file [file.c]

.
specifications
.
.
.
C code

.
#line 9 "file.x"
C code
#line 10 "file.x"
C code
C codePreprocessor

ccref.book : AR6prep 215 Mon Jun 5 15:33:25 1995

CodeCenter Reference 215

preprocessed code

CodeCenter uses the #line directives to associate lines in the
generated C file with lines in the file that you wrote.

Overview To work with preprocessor output, load a preprocessed C file that has
#line directives in it along with the unpreprocessed input file used to
create it. Then, for example, you can set breakpoints in the input file
and run the program. CodeCenter stops accordingly and displays the
line in the input file. Similarly, you can make a change to an input file,
issue build, and CodeCenter creates a new output file and loads it.

NOTE You can also work directly with the output file if you
want, just as with any other C file. If you want
CodeCenter to ignore #line directives, see the
ignore_sharp_lines option described on page 187.

The rest of this description uses a C yacc program to illustrate the
process. The techniques are similar with any C preprocessor that
generates #line directives.

A sample program The sample yacc program is a primitive calculator that uses a lexical
analyzer generated by lex. It consists of two files: calc.y and calc.l.

calc.y:

%token INT
%token ADD
%token SUB
%token MULT
%%

lines:
| lines line
{
printf(" Total is %d\n", $2);
printf(" Try another, or ’quit’ to leave.\n");
}
;

line:expr ’\n’
{$$ = $1;}
;

ccref.book : AR6prep 216 Mon Jun 5 15:33:25 1995

preprocessed code

216 CodeCenter Reference

expr:INT {$$ = $1;}
| ADD INT INT {$$ = $2 + $3;}
| SUB INT INT {$$ = $2 - $3;}
| MULT INT INT {$$ = $2 * $3;}
;

%%
#include "lex.yy.c"
main()
{
printf("To add two numbers, type ’add num1 num2’\n");
printf("To subtract two numbers, type ’sub num1
num2’\n");
printf("To multiply two numbers, type ’mult num1
num2’\n");
yyparse();
}

calc.l:

%%
[0-9]+{
yylval = atoi(yytext);
return (INT);
}

\nreturn (’\n’);

add return (ADD);
sub return (SUB);
mult return (MULT);

quit |
q return (0);

. ;

Because yacc generates #line directives in its generated C code, we
will be able to work with calc.y in our CodeCenter session. We will not
have to look at yacc’s generated C code.

However, because some versions of lex do not generate #line
directives in C code, we may not be able to work with the lex
specification in calc.l.

ccref.book : AR6prep 217 Mon Jun 5 15:33:25 1995

CodeCenter Reference 217

preprocessed code

NOTE Some variants of lex generate #line directives in
output files. You can work with input files for such
preprocessors using the procedures described below.

To compile this program outside of CodeCenter, we enter the
following:

% lex calc.l

which produces lex.yy.c as output, and

% yacc calc.y

which produces y.tab.c as output, and

% cc -o calc -g y.tab.c -ly -ll

which produces calc as an executable.

We will debug calc.y, from which yacc generates C code (y.tab.c).

Loading the
preprocessor
output file

To start, you load the output file and any necessary libraries. In the
case of our example, you need to issue the following command in the
Workspace:

-> load y.tab.c -ly -ll

NOTE When you work with a file that has been run through
a preprocessor, you may get many load-time and
run-time warnings. Automatic code generators often
produce code that has poor style by human standards.
You can simply suppress the warnings and continue.

As CodeCenter loads the output file, it uses the #line directives to
relate the output file to any input files; in this case to calc.y. Because
the two files are related through the #line directives in the loaded file,
you can view and manipulate the code through the input file.

Loading object code If you want the generated C code loaded in object form, make sure it
has been compiled with debugging information; the #line directives
that CodeCenter requires are in the debugging information.

ccref.book : AR6prep 218 Mon Jun 5 15:33:25 1995

preprocessed code

218 CodeCenter Reference

If the output file
needs updating

In the following two situations, CodeCenter does not immediately
load the output file:

• If the output file is older than any input file referenced in a #line
directive

• If the output file does not exist

If the output file is
out-of-date

In the first situation, you issue load to load a file containing #line
directives, and the file is older than any of the referenced input files. In
this case, CodeCenter determines that the output file needs to be
updated, and it requires a makefile to do so. The makefile must have
a target that specifies how to create the output file from the input
file(s).

In the case of our calc example, the following target rule would
provide the necessary information:

y.tab.c: calc.y
yacc calc.y

This rule says to create y.tab.c by issuing the command yacc calc.y.

Similarly, if you are using an SQL preprocessor, you would enter in
your make target the shell command you would issue to process the
code containing the embedded SQL.

Here is what happens when you load an output file that is older than
the input file, and there is a make target to build it:

-> sh touch calc.y "update" calc.y
-> load y.tab.c
Loading: y.tab.c
File ‘calc.y’ was modified after ‘y.tab.c’
Executing: make y.tab.c
yacc calc.y
Reloading: y.tab.c

The touch shell command updates calc.y. Then, as CodeCenter loads
the output file y.tab.c, it determines through the #line directives that
there is a dependency on calc.y. Next, since y.tab.c is older than calc.y,
CodeCenter recreates the C file by issuing the command make y.tab.c.

If the output file
does not exist

If you ask to load a source output file that does not exist, CodeCenter
cannot do anything unless you have used the create_file option to
specify how to create the file.

The create_file option takes a string in the following format:

@file1@command1@file2@command2 … @filex@commandx

ccref.book : AR6prep 219 Mon Jun 5 15:33:25 1995

CodeCenter Reference 219

preprocessed code

Note that the string consists of file–command pairs. For example, if
you try to load file1, which does not exist, CodeCenter issues the shell
command command1 to create the file, then loads it.

So, to handle the situation where y.tab.c does not exist, you could
specify the following:

-> setopt create_file @y.tab.c@yacc calc.y

This says to create y.tab.c and issue the shell command yacc calc.y.
Notice the similarity to the specification in the make target rule.

Here is an illustration:

-> unsetopt create_file
-> load y.tab.c
Cannot open ‘/s3/bobh/calc/y.tab.c’.
-> setopt create_file @y.tab.c@yacc calc.y
-> load y.tab.c
Cannot open ’/s3/bobh/calc/y.tab.c’.

Executing: yacc calc.y
Loading: y.tab.c

Working with the
preprocessed
code

Once you have loaded the output file either in source form or in object
form with debugging information, you can work directly with the
input file.

Setting breakpoints You can set a breakpoint and actions on any line in your input file that
is generated into C code. You don’t need to find the line in the
executable code corresponding to the line in the input file. For
example, you can set a breakpoint in calc.y by listing calc.y, and then
clicking with the mouse in the Source panel.

This means you can set a breakpoint and actions on any line in your
input file that is generated into C code. You do not need to find the line
in the executable code corresponding to the line in the input file.

For example, you can set a breakpoint in calc.y by listing calc.y, and
then using the stop command:

-> stop at "calc.y":10
stop (1) set at "calc.y":10, yyparse()

CodeCenter automatically handles the mapping of that line to the line
in the “real” code; in this case, the “real” code is in y.tab.c. Now you
can run the program, and CodeCenter stops where you want.

ccref.book : AR6prep 220 Mon Jun 5 15:33:25 1995

preprocessed code

220 CodeCenter Reference

NOTE You cannot set a breakpoint on a line in the input file
that does not correspond to a line in the output file
through a #line directive.

Stepping through
code

You can also step through code as long as the code you are stepping
through is defined in the input file. In other words, the executable
statement in the output file must be mapped back to the input file
through a #line directive.

If you step into code that was generated by a preprocessor — that is,
an executable statement in an output file that does not have a #line
mapping to an input file — CodeCenter shows you the generated
code.

Using commands If you have loaded an output file with #line directives, CodeCenter
always references the input file when dealing with lines that are
mapped to an input file. For example, the informational commands,
such as where, whereis, and whereami, display the line number and
filename of the input file, if appropriate.

For example, suppose you are stopped at the line where we previously
set a breakpoint in the calc example. If you issue where, you would
see this:

(break 1) 10 -> where
stop #1 set in
yyparse() at "calc.y":10
main() at "calc.y":32
centerline_run((char *) 0x1533f0 "")builtin function

Listing functions Similarly, if you ask to list a function that is defined in an input file,
CodeCenter displays the input file.

Swapping to object
form

You can swap the output file between source and object code using the
swap command. Make sure that the output file is compiled and
loaded with debugging information so the #line directives are
accessible to CodeCenter.

If the object file does not exist or is out-of-date, CodeCenter issues
make to build it.

ccref.book : AR6prep 221 Mon Jun 5 15:33:25 1995

CodeCenter Reference 221

preprocessed code

Modifying the
preprocessor
input file

You can debug and modify the input file just as you can debug and
modify any standard C files. If you make and save a change to the
input file, issue build to update your project. CodeCenter can
determine through the #line directives that the output file needs to be
updated.

-> /* make and save change to calc.y */
-> build
Executing: make y.tab.c
yacc calc.y
Reloading (C): y.tab.c

Keep in mind that CodeCenter requires a specific target in a makefile
to generate an output file. If there is no such target, CodeCenter cannot
update the output file and so it remains out-of-date.

NOTE Always use build (either in the Workspace or in the
Graphical User Interface) to update your project when
you are working with preprocessed files. Using reload
will not work because the input file is not actually
loaded.

Having
CodeCenter
ignore #line
directives

If you want to work directly with the output file, ignoring completely
the input file, you can set the ignore_sharp_lines option:

-> setopt ignore_sharp_lines

With this option set, CodeCenter simply ignores the #line directives
and no longer maintains any relationship between an input file and an
output file. You work with the generated output file the same way you
work with other C files. Your debugging is restricted to the output file.

NOTE The ignore_sharp_lines option applies only to source
code. Object code debugging always uses the
information provided by the compiler.

ccref.book : AR6prep 222 Mon Jun 5 15:33:25 1995

preprocessed code

222 CodeCenter Reference

Using
preprocessors
that do not
generate #line
directives

Some preprocessors, such as some versions of lex, do not generate
#line directives in their output file. If you want to work directly with
input files for such preprocessors, you must create a C output file with
the appropriate #line directives. You can do this by hand, or write a
program, script, or make target that generates the C file from the
input file. You might need to consult a C language reference manual
for the semantics of #line directives.

After you have inserted the required directives, load the output file.
CodeCenter will use the #line directives to do the mapping.

ccref.book : AR6prep 223 Mon Jun 5 15:33:25 1995

CodeCenter Reference 223

print

print

prints the value of variables and expressions

Command syntax print expression

print variable

Description

Options The following CodeCenter options affect the print command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the print command to check the current value of variables and
expressions. CodeCenter prints their values in the Workspace.

-> print r
(struct Rectangle *) 0x8a98

cdm pdm

✔ ✔

expression Evaluates the specified expression and displays
the resulting value.

variable Displays the value of the specified variable.

CodeCenter uses different formats in cdm and
pdm for displaying the value of an expression or
variable.

print_pointer Adds diagnostic information to pointer
display.

print_string Uses the number specified as the number of
characters to print.

ccref.book : AR6prep 224 Mon Jun 5 15:33:25 1995

print

224 CodeCenter Reference

The value of a variable or expression can also be displayed without the
print command. This is accomplished by evaluating the variable or
expression directly in the Workspace:

-> print 123+456
(long) 579
-> 123+456;
(long) 579
->

In component debugging mode (not in pdm), you can specify the
location of a variable in one of four ways:

• `file`function`variable

• `file`line_number`variable

• `file`variable

• function`variable

See Also assign, display, dump, list, whatis, whereis

ccref.book : AR6prep 225 Mon Jun 5 15:33:25 1995

CodeCenter Reference 225

printenv

printenv

displays the system environment

Command syntax printenv

printenv variable

Description

Usage Use the printenv command in conjunction with setenv and unsetenv
to manipulate the variables in the program’s system environment. The
printenv command is similar to the shell command with the same
name.

Warnings The printenv command displays the default values of the
environment variables, which are the values that your program
inherits each time it starts. Therefore, if a program has added any
environment variables, for instance with the putenv() library function,
the changes will not be shown by the printenv command.

If setenv or unsetenv is called from a break level, they will alter the
value of the global environ variable, but not the envp parameter
passed to main(). (This problem also occurs with the putenv()
function.)

Changing the EDITOR or DISPLAY shell variables with these
commands will not affect which editor or display screen CodeCenter
uses.

See Also setenv, unsetenv, environment variables

cdm pdm

✔ ✔

<< none >> Lists all currently defined environment variables.

variable Displays the value of the specified environment
variable, if that variable is currently defined.

ccref.book : AR6prep 226 Mon Jun 5 15:33:25 1995

printopt

226 CodeCenter Reference

printopt

displays information on CodeCenter options

Command syntax printopt

printopt option

Description

Usage Use the printopt command to examine current settings for
CodeCenter options.

To retrieve the value of an option from within a function, use the
CodeCenter function centerline_getopt(). This function returns the
current value of the option as a string. For more information about
CodeCenter functions, see the built-in functions entry on page 22.

See Also built-in functions, centerline_getopt(), setopt, unsetopt

cdm pdm

✔ ✔

<< none >> Displays a list of all CodeCenter options.

option Displays the current value of the specified option
and gives a short description of its function.

ccref.book : AR6prep 227 Mon Jun 5 15:33:25 1995

CodeCenter Reference 227

process debugging mode

process debugging mode
See the pdm entry on page 198.

ccref.book : AR6prep 228 Mon Jun 5 15:33:25 1995

properties

228 CodeCenter Reference

properties

When you use the Motif or OPEN LOOK versions of CodeCenter, you
can use the Project Browser to specify the switches and options you
want CodeCenter to use when it loads a file.

These specifications are known as Properties, and you can set them in
the Project-wide Properties window; select Project Properties in the
Project pulldown menu on the Project Browser to access the
Project-wide Properties window. You can also set Properties for
individual files by selecting Properties in the Project Browser window.

For more information on the options and switches related to
properties, see the load entry on page 145.

See Table 23 for a list of Properties and a brief description of each.

Table 23 Project Properties and Their Corresponding CodeCenter Options

Project-Wide Property Description Corresponding Option

Program Name Specifies the value of the first
argument to main(); that is,
argv[0].

program_name

Search Path for Files If the swap_uses_path option is
set, specifies the order for
searching directories when any
of the following CodeCenter
commands are invoked: cd, edit,
list, load, or swap.

path

Use Search Path When
Swapping

Specifies whether to use the
value of the path option when
the swap command is invoked.

swap_uses_path

Load Flags Specifies the default switches
used if the load command is
called without switches. Do not
specify -w or -G switches here.

load_flags

(exclusive of -G and -w
switches)

ccref.book : AR6prep 229 Mon Jun 5 15:33:25 1995

CodeCenter Reference 229

properties

Assume ANSI C Specifies whether to strictly
conform to the ANSI C standard
for preprocessing and function
prototype conversion.

ansi

Ignore Warnings When Loading Specifies whether to
automatically suppress all
load-time warnings.

-w switch for load_flags

Load Debugging Information Specifies whether to load
debugging information
contained in object files
compiled with the -g switch.

-G switch for load_flags

Instrument Object Files Specifies whether to
automatically instrument each
object file when it is loaded.

instrument_all

Table 23 Project Properties and Their Corresponding CodeCenter Options (Continued)

Project-Wide Property Description Corresponding Option

ccref.book : AR6prep 230 Mon Jun 5 15:33:25 1995

proto

230 CodeCenter Reference

proto

generates prototypes for C functions and writes them to
a file

Command syntax proto all

proto file

proto user

Description

Usage Use the proto command to generate and list function prototypes for
defined C functions. The prototypes that proto generates meet ANSI
C standards. To provide ANSI C prototyping in your C source code,
use an #include statement to include the prototype output file at the
head of your program.

If you do not specify a file when issuing the proto command, proto
prompts for the name of an output file. If the named file exists, you are
asked whether you want to overwrite it, append to it, or choose a new
filename.

cdm pdm

✔

all Generates function prototypes for all functions
currently defined and writes these prototypes out
to a file. Defined functions include functions
defined in the Workspace.

file If the specified file is currently loaded, generates
function prototypes for all the functions defined
in the specified file and writes these prototypes
out to a file.

user Generates function prototypes for all functions
defined in currently loaded files and writes these
prototypes out to a file. Note that functions
defined in the Workspace are not included.

ccref.book : AR6prep 231 Mon Jun 5 15:33:25 1995

CodeCenter Reference 231

proto

Usage The following example shows how proto can be used to create a
prototype file from a group of C source files. If the files foo.c, bar.c,
and bam.c are the source files for a common library mylib.a, a
prototype file for mylib.a can be generated for the .c files as follows:

-> load foo.c bar.c bam.c
Loading (C): foo.c
Loading (C): bar.c
Loading (C): bam.c
 -> proto user
Writing prototypes to a file.
Output file name? mylib.proto
 ->

Assume that foo.c contains the following definition:

int fl_int() {return 3;}

In a new CodeCenter session, you can load the prototype file for mylib
to provide type checking for calls to functions in mylib.a:

-> load mylib.proto
Loading (C): mylib.proto
 -> fl_int(3, 4);
Warning #65: Calling function ’fl_int’ with too many
parameters. Passing 2, expecting 0.
Defined/declared in "mylib.proto":38

Restrictions Due to bugs in some C compilers, types in object file symbol tables are
often wrong. To get the most reliable results from the proto command,
apply proto only to modules loaded in source form.

See Also load, unload

ccref.book : AR6prep 232 Mon Jun 5 15:33:25 1995

quit

232 CodeCenter Reference

quit

quits CodeCenter

Command syntax quit

quit force

quit project

quit project file

Description

Usage Use the quit command to exit CodeCenter and return to the shell.

Before exiting, CodeCenter notifies you if there are any active editing
jobs. If you requested a logfile on the command line when starting
CodeCenter, the name of the logfile is displayed as part of the exit
message.

Restrictions In pdm, you do not have the choice of saving to a project file.

See Also save, suspend

cdm pdm

✔ ✔

<< none >> Exits CodeCenter and returns you to the shell. In
component debugging mode, prompts you first to
save the state of your session in a project file.

force Exits CodeCenter and returns you to the shell. You
are not given an opportunity to save the state of
your session before exiting.

project Exits CodeCenter saving your project in a file
named ccenter.proj. (cdm only)

project file Exits CodeCenter saving your project in a file
named file. (cdm only)

ccref.book : AR6prep 233 Mon Jun 5 15:33:25 1995

CodeCenter Reference 233

reinit

reinit

initializes all global variables

Command syntax reinit

reinit variable

Description

Usage Use the reinit command to reinitialize either a specific variable or
your entire program. By using the reinit command, you either set a
particular variable to its initial value or set all global variables to their
initial values and also free allocated memory, close open files, and set
all signal handlers to their initial values.

If reinit is called from a break level, errors may be introduced when
global variables are reinitialized to their initial values. In addition,
reinit will free allocated memory that might still be used.

To remove definitions of static structures from the Workspace, use
unload workspace instead of reinit.

See Also rerun, run, start

cdm pdm

✔

<< none >> Sets all global variables to their initial values, frees
allocated memory, closes open files, and sets all
signal handlers to their initial values. Freed
memory is not returned to the system; it is marked
as free within CodeCenter, to be reused the next
time you run your program.

variable Sets the specified variable to its initial value.

ccref.book : AR6prep 234 Mon Jun 5 15:33:25 1995

rename

234 CodeCenter Reference

rename

renames a CodeCenter function

Command syntax rename

rename old_name new_name

Description

Usage Use the rename command to change the name of a CodeCenter
function to prevent name conflicts with the variables or functions
defined by the user’s program.

You should rename the conflicting function name before any files are
loaded to avoid accidental use of the CodeCenter function to resolve
external references in user code. The rename command will not
rename a function if it has already been used to resolve a reference
within your program.

Saving a project file, however, does not save any renaming. To
permanently record renamed CodeCenter functions, place the rename
command with old_name new_name arguments in your .ccenterinit file
for each renaming.

See Also alias, keybind, xref

cdm pdm

✔

<< none >> Lists all functions that have been renamed.

old_name new_name Changes the name of a CodeCenter function
(old_name) to the name given as the second
argument (new_name).

ccref.book : AR6prep 235 Mon Jun 5 15:33:25 1995

CodeCenter Reference 235

rerun

rerun

executes main() with new arguments

Command syntax rerun

rerun argument ...

Description

Options The following CodeCenter options affect the rerun command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

cdm pdm

✔ ✔

<< none >> Clears any old command-line arguments,
initializes all variables, and then executes main().

argument ... Clears any old command-line arguments,
initializes all variables, processes the new
command-line arguments (argument ...), and then
executes main().

If you issue a rerun command while you are at a
breakpoint in cdm, CodeCenter restarts and
informs you that it is resetting the break level;
instead, in pdm, CodeCenter prompts you first
before resetting the break level.

batch_run Specifies method for handling run-time
violations.

lint_run Indicates the severity of warnings issued by
CodeCenter during execution.

program_name Specifies value of the first argument, argv[0], to
main().

ccref.book : AR6prep 236 Mon Jun 5 15:33:25 1995

rerun

236 CodeCenter Reference

Usage Use the rerun command to execute main() with new arguments.

Arguments must be delimited by spaces. To include spaces in an
argument string, precede each space with a backslash (\) character.
Calling a program with rerun produces the same results as calling an
executable program from the shell.

Restrictions In the Workspace, to pass an argument with a space in it to main(), you
must escape it with a backslash. Enclosing the argument in quotation
marks, which works in a UNIX shell, does not work in the Workspace.
For example, to call main() with two arguments, the first one
containing the string first arg, and the second argument containing
the number 3, call rerun as follows:

-> rerun first\ arg 3

In contrast, if you are using the Motif or OPEN LOOK versions of
CodeCenter, you can use double quotes just as you do in a UNIX shell
when you supply arguments for the Run dialog box.

See Also reinit, run, start

ccref.book : AR6prep 237 Mon Jun 5 15:33:25 1995

CodeCenter Reference 237

reset

reset

returns to a previous break level

Command syntax reset

reset number

reset -number

Description

Usage Use the reset command to return to a previous break level without
continuing execution from the current break level.

In process debugging mode, when you issue the reset command the
executable is killed and its resources are freed.

Example For example, to return execution from break level 5 to break level 3:

(break 5) 80 -> reset -2
Resetting to break level #2.
(break 3) 81 ->

See Also cont, stop, where, whereami

cdm pdm

✔ ✔

<< none >> Returns execution to the top level of the
Workspace.

number Returns execution to the break level specified by
number. (cdm only)

-number Returns execution to the break level specified by
subtracting number from the current break level.
(cdm only)

ccref.book : AR6prep 238 Mon Jun 5 15:33:25 1995

revision control system support

238 CodeCenter Reference

revision control system support
CodeCenter provides some predefined automatic revision control
system commands. See the X resources entry on page 323.

ccref.book : AR6prep 239 Mon Jun 5 15:33:25 1995

CodeCenter Reference 239

run

run

executes main() with arguments

Command syntax run

run argument ...

Description

Options The following CodeCenter options affect the run command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the run command to execute main() after initializing all variables
and processing any command-line arguments.

If you issue a run command while you are at a breakpoint,
CodeCenter restarts and informs you that it is resetting the break level.

cdm pdm

✔ ✔

<< none >> Initializes all variables, processes any
command-line arguments from the previous call
to run or rerun, and then executes main().

argument ... Clears any old command-line arguments,
initializes all variables, processes the new
command-line arguments (argument ...), and then
executes main().

batch_run Specifies method for handling run-time
violations.

lint_run Indicates the severity of warnings issued by
CodeCenter during execution.

program_name Specifies value of the first argument, argv[0], to
main().

ccref.book : AR6prep 240 Mon Jun 5 15:33:25 1995

run

240 CodeCenter Reference

When you run your program in CodeCenter, it opens a separate Run
Window for output and return control to the shell in which you
invoked CodeCenter. A CenterLine program called clxterm creates
this Run Window, which is a standard version of xterm, the X11
terminal emulator.

To avoid creating the separate Run Window and avoid returning
control to the shell, use the -no_run_window switch to the codecenter
command. With this switch, the program’s input and output goes to
the shell in which you invoked CodeCenter. Using the
-no_run_window switch means you are unable to interrupt
CodeCenter and unable to place it in the background. This option is
intended for debugging applications that need specific terminal
support rather than a generic terminal such as xterm.

To create a separate Run Window and avoid returning immediate
control to the shell, use the -no_fork switch to the codecenter
command. With -no_fork, control returns when you enter the suspend
character (usually ^Z) in the shell or exit CodeCenter. After you type
the suspend character in the shell, you must type bg to enable your
program to perform output again to the Run Window. Without
-no_fork, the shell prompt comes back immediately.

How CodeCenter
interprets the run
command

Both run and rerun construct arguments for main() from the
command line. If run is called without any arguments, it uses the
command-line arguments from the most recent call to either run or
rerun. If rerun is called without any arguments, it calls main() without
any arguments.

Not initializing
variables

Using run or rerun to execute main() forces all global variables to be
initialized. Before executing the program, both commands call reinit,
which initializes all global variables. This may present a problem if
you want to test special cases by setting variables to specific values
prior to execution.

To avoid initializing global variables when executing main(), use the
start command. The start command performs all the functions of run
without calling reinit.

ccref.book : AR6prep 241 Mon Jun 5 15:33:25 1995

CodeCenter Reference 241

run

In the following example, the variable seed is set to a special value
before main() is executed. To avoid having the value of seed reset to 0,
the start command is used instead of run.

-> whatis seed
extern int seed; /* initialized */
-> seed;
(int 7)
-> reinit
-> seed;
(int) 0
-> seed = 7;
(int) 7
-> start
Executing: a.out

Notice that reinit is called before start. It is important that reinit be
called between calls to start to ensure that input/output buffers and
other library data structures are initialized to their correct values.

Setting argv[0] When a program is run from a shell, the value assigned to the variable
argv[0] is the name of the program. The value of argv[0] in the
example below is echo.

% echo abc.C xyz.C

In CodeCenter, the value of argv[0] is set by the program_name
option, for which the default value is a.out. You can change the value
of argv[0] by changing the program_name option:

-> load echo.c
Loading: echo.c
-> setopt program_name echo
-> run this is a test
Executing: echo this is a test
this is a test
Program exiting with return status = 0

Shell used to
process arguments

Any arguments that you supply with the run command are first
passed to a shell, which expands wildcard characters, substitutes
variables, and redirects I/O, and then passed to main(). The value of
the SHELL environment variable, as outlined in Table 24, specifies the
shell to be used for processing these arguments.

ccref.book : AR6prep 242 Mon Jun 5 15:33:25 1995

run

242 CodeCenter Reference

Passing arguments
containing spaces

In the Workspace, in order to pass an argument with a space in it to
main(), you must precede the space with a backslash. Enclosing the
argument in quotation marks, which works in a UNIX shell, does not
work in CodeCenter.

For example, to call main() with two arguments, the first one
containing the string first arg, and the second argument containing
the number 3, call run as follows:

-> run first\ arg 3

In contrast, if you are using the Motif or OPEN LOOK versions of
CodeCenter, you can use quotation marks just as you do in a UNIX
shell when you supply arguments for the Run dialog box.

Running inside or
outside of
CodeCenter

If you want your program to know at run time whether it is running
in CodeCenter, you can use the built-in function centerline_true().

See Also reinit, rerun, start

a. This avoids a problem with tcsh, where the first file descriptor that the user
program gets is 6 instead of 3.

b. This keeps the shell from reading your startup file and improves speed.

Table 24 Shells Used in Process Debugging Mode (pdm) with the
run Command

Value of SHELL Environment
Variable What CodeCenter Does

No SHELL environment variable Uses /bin/sh

/bin/tcsh Uses /bin/csh instead of
/bin/tcsha

/bin/csh Uses /bin/csh with the -f flagb

All other values not listed Invokes shell with the -c option.

ccref.book : AR6prep 243 Mon Jun 5 15:33:25 1995

CodeCenter Reference 243

save

save

saves the current session in a project file

Command syntax save

save file

save project

save project file

Description

Usage Use the save command to save the current session of CodeCenter so
that it can be restored later.

Project files A project file is a text script file that contains the information that
CodeCenter needs to rebuild your project across sessions. It records
the following:

• The files that make up the project

• Which warnings have been suppressed

• The values of the CodeCenter options

• The signals that are caught and ignored

• The debugging items that have been set (such as breakpoints
and actions)

cdm pdm

✔

<< none >> Saves a project file with the default name
ccenter.proj.

file Saves a project file with the specified filename.

project Same as << none >>. Saves a project file with the
default name ccenter.proj.

project file Same as file. Saves a project file with the specified
filename.

ccref.book : AR6prep 244 Mon Jun 5 15:33:25 1995

save

244 CodeCenter Reference

A project file does not specify dynamic run-time information, such as
variable values or break-level location, or information about your
environment, such as the version of CodeCenter you invoked or the
type of workstation or terminal you are using.

NOTE A project file does not save variables or functions
defined in the Workspace.

Loading project files To load a saved project file, use the load command and supply the
name of the file. You can also include the name of a project file on the
command line when starting CodeCenter.

Restrictions Information about open files is not saved with the session. Thus,
saving a session while files are open may create problems when the
session is reloaded, unless the exact same files have been opened
again. Also, open files that are not open in the reloaded session might
be closed improperly and data could be lost.

The state of the terminal is not saved in a project file.

See Also load

ccref.book : AR6prep 245 Mon Jun 5 15:33:25 1995

CodeCenter Reference 245

set

set

assigns a value to a variable

Command syntax set variable = expression

Description

Usage Use the set command to assign a value to a variable.

The specified variable can be a variable defined in either the program
or the Workspace.

A variable can also be assigned a value without the assign or set
commands, simply by evaluating an assignment expression in the
Workspace, as follows.

-> int i;
-> set i = 2
(int) 2
-> i = 5;
(int) 5

See Also assign

cdm pdm

✔ ✔

variable = expression Evaluates expression and assigns its value to
variable.

ccref.book : AR6prep 246 Mon Jun 5 15:33:25 1995

setenv

246 CodeCenter Reference

setenv

adds a variable to the system environment

Command syntax setenv

setenv variable

setenv variable value

Description

Usage Use the setenv command to manipulate the variables in the program’s
system environment. The setenv command is analogous to the shell
command of the same name.

These commands affect only your program’s environment variables.
They do not affect the environment variables used by CodeCenter to
control its own operations.

The environment is an array of strings that is made available to the
program through the global environ variable and the envp parameter,
which is passed as the third argument to the main() function. By
convention, each string has the format name=value, where the value
part is optional.

cdm pdm

✔ ✔

<< none >> Lists all defined environment variables and gives
their current values. This is equivalent to calling
printenv without an argument.

variable Defines variable and sets its value to the empty
string. If the specified variable already exists, its
value is reset to the empty string.

variable value Defines variable and sets it to the value specified
by value. If variable already exists, its value is reset
to value.

ccref.book : AR6prep 247 Mon Jun 5 15:33:25 1995

CodeCenter Reference 247

setenv

You can use CodeCenter’s ability to expand environment variables
and options (described in more detail in the Workspace entry) to add
a string to an existing environment variable. In the following example,
we add /usr/shared/lib to the existing LD_LIBRARY_PATH variable:

-> printenv LD_LIBRARY_PATH
LD_LIBRARY_PATH=/usr/lib:/usr/local/lib
-> setenv LD_LIBRARY_PATH #$LD_LIBRARY_PATH:/usr/shared/lib
-> printenv LD_LIBRARY_PATH
LD_LIBRARY_PATH=/usr/lib:/usr/local/lib:/usr/shared/lib

Warnings Be careful when checking the current values for environment
variables. The printenv and setenv commands, when issued with no
argument, display the default values of the environment variables,
which are the values that your program will inherit each time it starts.

If setenv or unsetenv are called from a break level, they will alter the
value of the global environ variable, but not the envp parameter
passed to main(). This problem also occurs with the putenv() function.

Changing the EDITOR or DISPLAY shell variables with these
commands will not affect which editor or display screen CodeCenter
uses.

See Also environment variables, printenv, setopt, unsetenv

ccref.book : AR6prep 248 Mon Jun 5 15:33:25 1995

setopt

248 CodeCenter Reference

setopt

sets a CodeCenter option

Command syntax setopt

setopt option

setopt option value

Description

Usage Use the setopt command to examine and change CodeCenter options.
You can also use the Options Browser to examine and change options;
see the User’s Guide for more information.

You can use the standard C escape sequences (such as \n for newline)
in option strings. To embed an Escape character, use \e.

cdm pdm

✔ ✔

<< none >> Displays all options and values that are currently
set.

option If the specified option is a Boolean, sets its value to
TRUE.

If the specified option takes a string, sets its value
to the empty string.

If the specified option takes an integer, sets its
value to 1.

option value Sets option to the value specified by value.

ccref.book : AR6prep 249 Mon Jun 5 15:33:25 1995

CodeCenter Reference 249

setopt

You can use CodeCenter’s ability to expand environment variables
and options (described in more detail in the Workspace entry) to add
a string to an existing option. In the following example, we add -L and
-l switches to the existing load_flags option setting to add libnew.a:

-> printopt load_flags
load_flags -DDEBUG -w
-> setopt load_flags #$load_flags -L/my_libs/libdir
-lnew
-> printopt load_flags
load_flags -DDEBUG -w -L/my_libs/libdir -lnew

To retrieve the value of an option from within a function, use the
CodeCenter function centerline_getopt(). This function returns the
current value of the option as a string. For more information about
CodeCenter functions, see the built-in functions entry on page 22.

See Also built-in functions, centerline_getopt(), options, printopt, unsetopt

ccref.book : AR6prep 250 Mon Jun 5 15:33:25 1995

sh

250 CodeCenter Reference

sh

executes a Bourne subshell

Command syntax sh

sh argument ...

Description

Usage Use the sh command to execute a Bourne subshell. This can be used to
execute UNIX commands from the Workspace:

-> sh rm my_file

See Also shell

cdm pdm

✔ ✔

<< none >> Executes a Bourne subshell, setting no switches
and passing no arguments.

argument ... Executes a Bourne subshell, setting the -c switch
and passing the specified arguments.

ccref.book : AR6prep 251 Mon Jun 5 15:33:25 1995

CodeCenter Reference 251

shared libraries

shared libraries

A shared library is a shared object file that is used as a library. At run
time, a shared object can be linked to more than one executing
program; all executing programs share access to a single copy of the
object. Thus, using shared libraries can represent a significant savings
in storage, but may also reduce speed of processing.

CodeCenter supports shared libraries on all systems that provide
them. Shared libraries typically link more quickly than static libraries
in the CodeCenter environment.

CodeCenter does not read any debugging information on shared
libraries in component debugging mode. Without debugging
information on a file, you are unable to perform certain debugging
activities, such as stepping through functions. For information about
what debugging techniques are possible on code without debugging
information, see the debugging entry on page 87.

In process debugging mode, CodeCenter supports full source-level
debugging of shared libraries that were compiled with -g.

Setting
breakpoints in
shared library
functions

Keep in mind that when you are in component debugging mode,
functions in shared libraries are not defined until your program
references them. This means, for instance, that you cannot set
breakpoints on a library function until you have linked or run your
program. In the meantime, you may get messages indicating that the
function is undefined. Here is an example:

Attaching: /usr/5lib/libc.sa.2.6
Attaching: /usr/5lib/libc.so.2.6
-> load ~/c_programs/sample.c
Loading: /s/users/jk/c_programs/sample.c
-> stop in printf
Cannot set stop or action on an undefined symbol:
’printf’.
-> link
Linking from ’/usr/5lib/libc.sa.2.6’ ... Linking
completed.
-> stop in printf
stop (1) set at “/usr/5lib/libc.so.2.6”, function
printf().

ccref.book : AR6prep 252 Mon Jun 5 15:33:25 1995

shared libraries

252 CodeCenter Reference

See your CodeCenter Platform Guide for information about setting
breakpoints in shared library functions while you are in process
debugging mode.

Restrictions in
cross-referencing

Using xref to cross reference symbols in shared libraries is unreliable
and changes depending on the execution state of your program. This
is due to the way that symbols are linked from shared libraries. If you
need accurate cross-reference information, load and link static
libraries.

NOTE See your CodeCenter Platform Guide for more
information about the use of shared libraries on your
particular platform.

ccref.book : AR6prep 253 Mon Jun 5 15:33:25 1995

CodeCenter Reference 253

shell

shell

executes a subshell

Command syntax shell

shell argument ...

Description

Usage Use the shell command to execute the shell specified by the shell
option. This can be used to execute UNIX commands in the
Workspace.

Options The following CodeCenter option affects the shell command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

See Also sh

cdm pdm

✔ ✔

<< none >> Executes the default shell set by the CodeCenter
shell option. In process debugging mode,
executes the shell specified by the SHELL
environment variable. Sets no switches and passes
no arguments.

argument ... Executes the default shell set by the CodeCenter
shell option. In process debugging mode,
executes the shell specified by the SHELL
environment variable. Sets the -c switch and
passes argument to the shell. You can have more
than one argument.

shell Specifies the shell that is started by the shell or the
#! commands.

ccref.book : AR6prep 254 Mon Jun 5 15:33:25 1995

source

254 CodeCenter Reference

source

reads CodeCenter commands from a file

Command syntax source file

Description

Usage Use the source command to read CodeCenter commands from a file.

CodeCenter uses source to read the system-wide startup file and
either the .ccenterinit or .pdminit file in your home or current
directory when you start CodeCenter.

NOTE Any change in the break level causes the source
command to terminate, therefore CodeCenter will stop
executing commands in the file if it encounters a
breakpoint or a run-time violation. In addition,
because the step command causes execution to go up
a break level and then back to the original break level,
CodeCenter will stop reading commands from a
source file after the first step command.

cdm pdm

✔ ✔

file Reads CodeCenter commands from the specified
file.

ccref.book : AR6prep 255 Mon Jun 5 15:33:25 1995

CodeCenter Reference 255

source

Example The following example indicates how to use source with a file
containing aliases:

% cat aliases
alias p print
alias s step
alias n next
alias ls sh ls
% codecenter
.
.
.
-> source aliases
-> p 123+456
(long) 579
->

See Also load

ccref.book : AR6prep 256 Mon Jun 5 15:33:25 1995

start

256 CodeCenter Reference

start

executes main() without initializing global variables

Command syntax start

start argument ...

Description

Options The following CodeCenter options affect the start command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the start command to execute main() without automatically
initializing any variables and to exit without automatically closing
any files on program exit. Use start for creating test situations that
would be wiped out when run or rerun would initialize all variables.

cdm pdm

✔

<< none >> Executes main() without initializing any global
variables. When the program exits, start does not
close any files. Uses any previous command-line
arguments.

argument ... Passes the specified command-line arguments
and then executes main() without initializing any
global variables. When the program exits,
CodeCenter does not automatically close any files.

batch_run Specifies method for handling run-time
violations.

lint_run Indicates the severity of warnings issued by
CodeCenter during execution.

program_name Specifies value of the first argument, argv[0], to
main().

ccref.book : AR6prep 257 Mon Jun 5 15:33:25 1995

CodeCenter Reference 257

start

Arguments must be delimited by spaces. To include spaces in an
argument string, precede each space with a backslash (\) character.

Restrictions In order to pass an argument with a space in it to main(), you must
precede the space with a backslash. Enclosing the argument in
quotation marks, which works in a UNIX shell, does not work in
CodeCenter. For example, to call main() with two arguments, the first
one containing the string first arg, and the second argument
containing the number 3, call run as follows:

-> run first\ arg 3

See Also reinit, rerun, run

ccref.book : AR6prep 258 Mon Jun 5 15:33:25 1995

status

258 CodeCenter Reference

status

lists debugging items (actions, breakpoints, displayed
items, and traces)

Command syntax status

Description

Usage Use the status command to list all breakpoints, actions, displays, and
tracings. This listing displays the debugging item number needed for
the delete command.

Zombied items If the delete command has been invoked on a debugging item that is
currently active on the execution stack, status reports the item as
zombied. When execution continues, the zombied item will be
deleted once it has completed executing, and status will no longer list
it.

See Also action, delete, display, stop, trace, when

cdm pdm

✔ ✔

<< none >> Lists all currently set debugging items.

ccref.book : AR6prep 259 Mon Jun 5 15:33:25 1995

CodeCenter Reference 259

step

step

steps execution by statement, entering functions

Command syntax step

step number

Description

Options The following option affects the step command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the step command to single-step through your program, going
into functions when they are called. If a line contains multiple
statements, execution moves to the next statement on the line.

Threaded
applications

In threaded applications, step executes one statement of the specified
thread. If step skips over a function (in the case of a function without
debug information), LWPs continue to the end of skipped function
calls.

cdm pdm

✔ ✔

<< none >> Executes a single statement and then stops
execution.

Motif and OPEN LOOK: Updates the Source area
to display the new line of execution.

number Executes the specified number of statements and
then stops execution.

src_step (Ascii CodeCenter only) Specifies the number of
lines of source code to be displayed after
execution of a statement.

ccref.book : AR6prep 260 Mon Jun 5 15:33:25 1995

step

260 CodeCenter Reference

NOTE Debugging of threaded applications is currently only
supported in process debugging mode, and it is not
supported on all platforms. Please refer to the
“Product limitations” section in the “About This
Release” appendix to the online CodeCenter Reference
for more information.

Restrictions The step command does not stop inside object code functions that do
not have debugging information (functions either compiled without
the -g switch or loaded with the -G switch).

The step command does not stop in functions that initialize static
variables.

See Also next, stepout, stepi

ccref.book : AR6prep 261 Mon Jun 5 15:33:25 1995

CodeCenter Reference 261

stepi

stepi

steps execution in machine instructions by statement,
entering functions

Command syntax stepi

stepi number

Description

Usage Use the stepi command to single-step through the machine
instructions in your program, going into functions when they are
called. If a line contains multiple statements, execution moves to the
next statement on the line.

See Also listi, nexti, step, stopi

cdm pdm

✔

<< none >> Executes a single machine instruction and then
stops execution.

number Executes the specified number of machine
instructions and then stops execution.

ccref.book : AR6prep 262 Mon Jun 5 15:33:25 1995

stepout

262 CodeCenter Reference

stepout

continues execution until the current function returns

Command syntax stepout

Description

Options The following CodeCenter option affects the stepout command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the stepout command to move execution to the point where the
current function returns. This command is particularly useful if you
inadvertently step into a function and want to continue stepping
through the calling function.

Restrictions The stepout command does not work when you are stopped in object
code in component debugging mode.

See Also next, step

cdm pdm

✔ ✔

<< none >> Continues execution until the current function
returns and then stops execution at the next
statement in the calling function.

src_step (Ascii CodeCenter only) Specifies the number of
lines of source code to be displayed after
execution of a statement.

ccref.book : AR6prep 263 Mon Jun 5 15:33:25 1995

CodeCenter Reference 263

stop

stop

sets a breakpoint

Command syntax stop

stop if cond

stop [at] line

stop at line if cond

stop [in] func

stop [in] func if cond

stop [at] "file":line

stop [on] address

stop [on] lvalue

stop [on] variable

Description

cdm pdm

✔ ✔

<< none >> In process debugging mode, sets a breakpoint at
the current location. Displays a stop sign next to
the line containing the breakpoint in the Source
area.

In component debugging mode, creates a break
level and stops execution immediately; no
breakpoint is set. Useful in the form of its
equivalent CodeCenter function call,
centerline_stop(" ").

Motif and OPEN LOOK: Displays a stop sign next
to any line containing a breakpoint, if the file is
listed in the Source area.

if cond Creates a break level and stops execution if cond is
true, where cond is a Boolean expression. (pdm
only)

ccref.book : AR6prep 264 Mon Jun 5 15:33:25 1995

stop

264 CodeCenter Reference

Options The following CodeCenter options affect the stop command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

[at] line Sets a breakpoint at the specified line in the
current file. In pdm, specifying at is required,
rather than optional.

at line if cond Sets a breakpoint at the specified line in the
current file if cond is true, where cond is a Boolean
expression. (pdm only)

[in] func Sets a breakpoint at the first line of the specified
function. In pdm, specifying in is required.

[in] func if cond Sets a breakpoint at the first line of the specified
function if cond is true, where cond is a Boolean
expression. (pdm only)

[at] "file":line Sets a breakpoint at the specified line in the
specified file. (cdm only)

[on] address Sets a breakpoint at the specified address. Stops
execution whenever the byte at the specified
address is modified.The address argument must be
a hexadecimal value. (cdm only)

[on] lvalue Sets a breakpoint on the referenced address. Stops
execution whenever the referenced address is
modified. The lvalue argument is any C lvalue,
such as a dereferenced pointer. (cdm only)

[on] variable Sets a breakpoint on a variable. Stops execution
whenever the variable is modified.(cdm only)

src_stop (Ascii CodeCenter only) Specifies number of lines
of source code to be displayed when a break level
is first created.

save_memory Using this option means you cannot use stop on
variable.

ccref.book : AR6prep 265 Mon Jun 5 15:33:25 1995

CodeCenter Reference 265

stop

Usage Use the stop command to set a breakpoint in your program’s code.
When the breakpoint is encountered, execution is interrupted and a
break level is created.

In addition to setting breakpoints in source code, you can set
breakpoints in code that is loaded in object form. If the object code
contains debugging information from the compiler (that is, if the
object code was compiled using the -g switch and was loaded into
CodeCenter without the -G switch), then you can set a breakpoint at a
line, at a line in a specified file, or in a function. Breakpoints cannot be
set on an address, lvalue, or variable in object code.

In object code loaded without debugging information (either
compiled without the -g option or loaded with the -G option), you can
set a breakpoint on a function name, but you cannot set a breakpoint
on a particular line of code.

To continue execution after the breakpoint, use the cont command.

You can also set a conditional breakpoint with the action command in
component debugging mode or the when command in process
debugging mode. To remove a breakpoint, use the delete command.
To view a list of all breakpoints, use the status command.

NOTE When you save your project to a project file,
breakpoints may not be saved in the form in which
you entered them. For example, if you set a breakpoint
in a function, the breakpoint is set on the file and line
number at which the function occurs rather than on
the function name. As a result, breakpoints may not
behave in the way you expect them to when you
reload your project.

Restrictions Breakpoints set on addresses that are modified while executing in
object code are not performed.

NOTE See the CodeCenter Platform Guide for information
about setting breakpoints in shared libraries in pdm.

See Also action, cont, delete, status, stopi, when

ccref.book : AR6prep 266 Mon Jun 5 15:33:25 1995

stopi

266 CodeCenter Reference

stopi

sets a breakpoint at a machine instruction

Command syntax stopi

stopi [at] address

Description

cdm pdm

✔

<< none >> Sets a breakpoint on the current location’s
address.

[at] address Sets a breakpoint on the specified address. Stops
execution whenever the byte at the specified
address is modified. The address argument must
be specified as a numeric string.

ccref.book : AR6prep 267 Mon Jun 5 15:33:25 1995

CodeCenter Reference 267

suppress

suppress

suppresses reporting of a warning

Command syntax suppress

suppress num

suppress num [at] line

suppress num [at] "file":line

suppress num [in] directory

suppress num [in] file

suppress num in function

suppress num [in] lib(module)

suppress num [on] identifier

suppress num [on] function

suppress save [file]

Description

cdm pdm

✔

<< none >> Lists all currently suppressed violations.

num Suppresses reporting of the specified
violation everywhere.

num [at] line Suppresses reporting of the specified
violation at the specified line.

num [at] "file":line Suppresses reporting of the specified
violation at the specified line in the specified
file.

num [in] directory Suppresses reporting of the specified
violation in all files in the specified directory
or in any subdirectories of the specified
directory.

ccref.book : AR6prep 268 Mon Jun 5 15:33:25 1995

suppress

268 CodeCenter Reference

Options The following CodeCenter option affects the suppress command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

num [in] file Suppresses reporting of the specified
violation in the specified file.

num in function Suppresses reporting of the specified
violation while in the specified function. The
function name must include the signature for
C++ functions, for example

-> suppress 42 in testfn(void)

num [in] lib(module) Suppresses reporting of the specified
violation in the specified module of the
specified library. For example, the following
suppresses reporting of message 731 in the
library module sel_common.o:

-> suppress 731 in
/usr/lib/libsuntool.a(sel_common.o)

num [on] identifier The identifier argument is any variable,
typedef, struct/union tag, or macro name.
Suppresses reporting of the specified
violation if the violation involves the
specified identifier.

num [on] function Suppresses reporting of the specified
violation when the specified function is
called.

save [file] If a file is specified, writes a list of all
currently suppressed violations in the file. If
a file is not specified, prompts for a filename
before saving.

terse_suppress Tells the suppress command not to echo the name
of the violation being suppressed.

ccref.book : AR6prep 269 Mon Jun 5 15:33:25 1995

CodeCenter Reference 269

suppress

Usage Use the suppress command to suppress the reporting of CodeCenter
violations (warnings and errors). Use the Manual Browser to view the
“violations” topic for a list of the violations that CodeCenter reports;
you can invoke the Manual Browser by issuing the man command in
the Workspace.

Saving and reusing
a set of suppressions

By using suppress with the save file argument, you can save the
suppressed violations to a file and then in another session use the
source command to read in the suppressions from the file.
Suppressions that you use source to read in from a file are added to
any suppressions that are current. Another way to retain a set of
suppressions for later use is to save a project file.

Handling lint
comments

If the comment /*SUPPRESS num [args] */ appears in source code,
static error checking is suppressed for the specified violation. If the
comment appears at the global level of a file, the violation is
suppressed for the entire file. If the comment appears within a
function, the violation is suppressed only for the following line.

See Also source, unsuppress

ccref.book : AR6prep 270 Mon Jun 5 15:33:25 1995

suspend

270 CodeCenter Reference

suspend

suspends CodeCenter and returns to the shell

Command syntax suspend

Description

Usage Use the suspend command to suspend CodeCenter and return to the
shell. The suspend command is useful for creating scripts that will
suspend CodeCenter or for situations when entering Control-z will
not produce a stop signal.

Use fg to return to CodeCenter after being suspended.

See Also quit, save

cdm pdm

✔

<< none >> Suspends CodeCenter and returns to the shell.
(Ascii CodeCenter only)

ccref.book : AR6prep 271 Mon Jun 5 15:33:25 1995

CodeCenter Reference 271

swap

swap

replaces a file or function with its source/object
counterpart

Command syntax swap file

swap function

Description

Options The following CodeCenter options affect the swap command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

cdm pdm

✔

file If the specified file was loaded as source code,
unloads the specified source file and loads the
corresponding object file.

If the specified file was loaded as object code,
unloads the specified object file and loadsthe
corresponding source file.

function Unloads the entire file containing the specified
function and loads the corresponding
source/object counterpart.

path Specifies the search path for loading source and
object files (not for #include files). You must also
set the swap_uses_path option for the path option
to affect the swap command.

swap_uses_path Determines whether the swap command uses the
path option when looking for files.

ccref.book : AR6prep 272 Mon Jun 5 15:33:25 1995

swap

272 CodeCenter Reference

Usage Use the swap command to do either of the following:

• Replace a file or function loaded as source code with the
corresponding object code.

• Replace a file or function loaded as object code with the
corresponding source code.

The swap command with the function argument is particularly useful
for replacing library functions with their source counterparts, when
the library is not a shared library. When a library function is replaced,
only the object module containing the function is replaced, not the
entire library.

You cannot use swap to replace a shared library function with the
corresponding source file. Instead, you must unload the entire shared
library, load the source file, and load the shared library again for the
remaining object files.

Like swap, the load command can also be used to exchange source
and object code.

Restrictions In library files, the names of constituent object files are truncated to 15
characters. When swap attempts to swap a library module with a
truncated name, it displays “Unknown suffix”.

The swap command will not replace a source module with an object
module in a library. To do so, unload the source module (or a function
in it) and load the library, if it is not already loaded, and issue the link
command.

See Also load, unload

ccref.book : AR8thr 273 Mon Jun 5 15:33:25 1995

CodeCenter Reference 273

thread

thread

sets a thread to be the current one or affects the display
of information about a thread

Command syntax thread

thread [tid]

thread -info tid

Descriptiont

Usage Use the thread command at a break location to set a thread to be the
current one or to affect the display of information about a thread.

When you issue the thread -info command to display information
about a thread, CodeCenter displays

• An arrow (->) if the thread is the current thread.

• Thread id (t@number)

The thread id is the thread_t value that thr_create passes back.

• Whether it is bound (b) or active (a)

If the thread is bound or active, the thread is running on a
light-weight process (LWP). A light-weight process is a kernel
thread. For running threads, the LWP id also appears
(l@number).

• Start function

The start function is the function the program passed to
thr_create(). A question mark appears instead of the function
name if the function is unknown.

cdm pdm

✔

<< none >> Returns the identifier (tid) of the current thread.

tid Sets thread tid to be the current thread.

-info tid Gives information about tid, or the current thread.

ccref.book : AR8thr 274 Mon Jun 5 15:33:25 1995

thread

274 CodeCenter Reference

• Thread state

The state of a bound or active thread is the state of its LWP.

• The function the thread is currently executing

You control execution of the current thread with the cont, next, nexti,
step, and stepi commands. You can display a traceback of the thread
execution stack with the where command. The threads command
displays information about all the threads active at a break location.

Example The following extract from a sample run of a threaded application
shows the output of the thread and thread -info commands:

 pdm (break 1) 6 -> thread
 The current thread is t@4
 pdm (break 1) 7 -> thread -info
 > t@4 a l@3 increment() running in increment()

Thread state The thread ...

running Is running when the program reaches the
breakpoint

runnable Is runnable

suspended Is explicitly suspended

zombied Has exited but has not yet joined the main
thread

sleeping Is blocked

sleep on Is blocked on synchron_object, synchron_object
where synchron_object is the address of the
mutex lock or other synchronization object.

unknown Has a state that CodeCenter is unable to
determine

ccref.book : AR8thr 275 Mon Jun 5 15:33:25 1995

CodeCenter Reference 275

thread

This example shows how you can use the thread command to change
the current active thread and then use stepi to step through machine
instructions or step to step through execution. We use the thread -info
command to show the state of the current thread after each step here,
but you can also use the Thread Browser.

pdm (break 1) 16 -> thread
The current thread is t@1
pdm (break 1) 17 -> thread t@4
The current thread is t@4
pdm (break 1) 18 -> stepi

0x106dc 20 for (i = 0; i < INC_COUNT; i++)
0x106dc <increment+4>: clr [%fp + -4]
pdm (break 1) 19 -> thread -info
 > t@4 a l@1 increment() running in increment()
pdm (break 1) 20 -> step
pdm (break 1) 21 -> thread -info
 > t@4 a l@1 increment() running in increment()
pdm (break 1) 22 -> step
pdm (break 1) 23 -> thread -info
 > t@5 a l@3 increment() running in increment()
pdm (break 1) 24 -> step
Stopped in function: `_dynamiclwps'. No source file info.
pdm (break 1) 25 -> thread -info
 > t@3 b l@2 0x0() running in _dynamiclwps()
pdm (break 1) 26 -> step
Single stepping until exit from function _dynamiclwps, which has no line
number information.

Restrictions This command is unavailable on some platforms. Refer to "Product
limitations" in the online "About This Release" document.

See Also cont, next, nexti, step, stepi, thread support, threads, where

ccref.book : AR8thr 276 Mon Jun 5 15:33:25 1995

thread support

276 CodeCenter Reference

thread support

Thread support on Solaris 2

We've added support for threaded applications on the Solaris 2
platform in process debugging mode (pdm), with the ability to debug
threads in executables and a graphical Thread Browser to show the
status of all the threads in your program.

In process debugging mode, the Thread Browser gives you
information about the threads and lightweight processes in your
program. This information includes a list of all threads, and the state
of each thread. The state information includes the function the thread
is executing, the execution state (for example, running, sleeping) of the
thread, and the start function for the thread.

At any given time, the Thread Browser focuses on a single thread or
light-weight process (LWP), known as the "current active entity." You
control execution of the current thread with the cont, next, nexti, step,
and stepi commands. You can display a traceback of the thread
execution stack with the where command. You can also perform these
operations on another thread at the break level by making it the
current active entity. To make another thread the current active thread,
you use the thread command with the new thread number as an
argument.

See Also thread, threads

ccref.book : AR8thr 277 Mon Jun 5 15:33:25 1995

CodeCenter Reference 277

threads

threads

displays information about threads active at a break
location

Command syntax threads

Description

Usage Use the threads command at a break location to examine information
about active threads. All active threads stop when execution reaches a
breakpoint.

When you issue the threads command CodeCenter displays

• On the first line, the process id and the name of the process you
are debugging.

• On each subsequent line, information about an active thread.

The thread line with an arrow (>) is the current thread, referred to as
the current active entity.

Each thread line contains the following information.

• Thread id (t@number)

The thread id is the thread_t value that thr_create passes back.

• Whether it is bound (b) or active (a)

If the thread is bound or active, the thread is running on a
light-weight process (LWP). A light-weight process is a kernel
thread. For running threads, the LWP id also appears
(l@number).

cdm pdm

✔

<< none >> Lists in the Workspace information about the state
of threads at a break location

ccref.book : AR8thr 278 Mon Jun 5 15:33:25 1995

threads

278 CodeCenter Reference

• Start function

The start function is the function the program passed to
thr_create(). A question mark appears instead of the function
name if the function is unknown.

• Thread state

The state of a bound or active thread is the state of its LWP.

• The function the thread is currently executing

You control execution of the current thread with the cont, next, nexti,
step, and stepi commands. You can display a traceback of the thread
execution stack with the where command. To change the context to
another thread or display information about an individual thread, use
the thread command. You can also change the focus to another thread
by clicking the line in the Thread Browser that shows the thread you
want to follow.

Thread state The thread ...

running Is running when the program reaches the
breakpoint

runnable Is runnable

suspended Is explicitly suspended

zombied Has exited but has not yet joined the main
thread

sleeping Is blocked

sleep on Is blocked on synchron_object, synchron_object
where synchron_object is the address of the
mutex lock or other synchronization object.

unknown Has a state that CodeCenter is unable to
determine

ccref.book : AR8thr 279 Mon Jun 5 15:33:25 1995

CodeCenter Reference 279

threads

Example The following example shows sample output of the threads
command from a threaded application. The threads command is
issued before and after the step command is issued. Notice that the >
indicates that t@4 is the current active entity before the step, and t@5
is the current active entity after the step.

 pdm (break 1) 17 -> threads
Proc 6572
 Thread LWP Start State Where
 t@1 a l@1 0x0() running in _alloc_stack()
 t@2 0x0() sleep on 0xef7d8460 in _swtch()
 t@3 b l@2 0x0() running in __sigwait()
 > t@4 a l@3 increment(running in increment()
 t@5 increment(runnable in _setpsr()
pdm (break 1) 18 -> step
pdm (break 1) 19 -> threads
Proc 6572
 Thread LWP Start State Where
 t@1 0x0() sleep on 0xef7d0b08 in _swtch()
 t@2 0x0() sleep on 0xef7d8460 in _swtch()
 t@3 b l@2 0x0() running in __sigwait()
 t@4 a l@3 increment(running in increment()
 > t@5 a l@1 increment(running in increment()
 t@6 increment(runnable in _setpsr()
 t@7 increment(runnable in _setpsr()

Restrictions This command is unavailable on some platforms. Refer to "Product
limitations" in the online "About This Release" document.

See Also cont, next, nexti, step, stepi, thread, thread support, where

ccref.book : AR8thr 280 Mon Jun 5 15:33:25 1995

touch

280 CodeCenter Reference

touch

marks memory as initialized and valid

Command syntax touch address

touch lvalue

touch size at address

touch size at lvalue

touch size at variable

touch variable

Description

cdm pdm

✔

address Marks the data space at address as initialized and
valid. The address argument must be a
hexadecimal value.

lvalue Evaluates lvalue, treats the resulting value as an
address, and marks the data space at that address
as initialized and valid.

size at address Marks the specified number of bytes (size) of data
space at address as initialized and valid. The
address argument must be a hexadecimal value.

size at lvalue Evaluates lvalue, treats the resulting value as an
address, and marks the specified number of bytes
(size) of data space at that address as initialized
and valid.

size at variable Marks the specified number of bytes (size) of data
space for variable as initialized and valid.

variable Marks the data space of variable as initialized and
valid.

ccref.book : AR8thr 281 Mon Jun 5 15:33:25 1995

CodeCenter Reference 281

touch

Options The following CodeCenter option affects the touch command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the touch command to mark memory as initialized and valid in
order to prevent warnings about garbage values and type mismatches
when the memory is used.

If size is not specified, the size of the type of the expression is used.
CodeCenter uses one byte for an address argument.

In the rare case that memory is allocated in your program’s address
space without CodeCenter’s knowledge, use the touch command to
inform CodeCenter that the memory exists. For example, unless you
issue the touch command, CodeCenter cannot determine the memory
allocation for an undocumented system call or other local operating
system modification.

Example The example below shows how touch can be used to suppress type
mismatch warnings. A value is stored as a char, but examined as an
int.

-> int *ptr;
-> ptr=malloc(16);
Warning #608: Questionable argument type:
 (int *) = (int)
(int *) 0x195f48 /* (allocated) */
-> *(char *)ptr =0;
(char) ’\000’
-> *ptr;
Warning #112: Retrieving a <int> from allocated data
at <0x195f48>.
The object stored there is a <char>.
(break 1) -> cont
(int) 12566463
-> touch *ptr
-> *ptr;
(int) 12566463
->

save_memory When save_memory is set, you do not need to use
touch where you otherwise would.

ccref.book : AR8thr 282 Mon Jun 5 15:33:25 1995

touch

282 CodeCenter Reference

Note that this example touches the allocated memory, not the variable
ptr itself. If you want to touch the variable ptr, the command would
be:

-> touch ptr

Sometimes you will want to embed calls to the touch command within
a function. To do that, use the centerline_untype() function.

Restrictions CodeCenter initializes allocated data and local variables to the value
191 in order to perform used before set checks. It is possible for spurious
warnings to occur if the value 191 is stored in this memory while the
program is executing within object code. Source code that uses 191 as
a legitimate value will not generate spurious warnings.

Touching this memory will eliminate these spurious warnings. The
warnings can also be suppressed with the suppress command, and
the default value can be changed by modifying the unset_value
option.

See Also setopt, suppress, centerline_untype()

ccref.book : AR8thr 283 Mon Jun 5 15:33:25 1995

CodeCenter Reference 283

trace

trace

traces program execution

Command syntax trace

trace function

Description

Usage Use the trace command to display each line of source code as it is
being executed. If a function is specified, tracing is limited to that
function.

Statements executed within an action are not traced.

To turn off tracing, use the delete command.

Restrictions You cannot use trace within object code in component debugging
mode.

See Also delete, next, step, stop, status

cdm pdm

✔

<< none >> Displays each line of source code as it is being
executed.

function Displays each line of source code in the specified
function as it is being executed.

ccref.book : AR8thr 284 Mon Jun 5 15:33:25 1995

unalias

284 CodeCenter Reference

unalias

removes an alias for a command

Command syntax unalias name

Description

Usage Use the unalias command to delete an alias that you no longer want
to use.

Example If you have an alias named p that invokes the print command, you can
delete the alias with the following command:

-> unalias p

See Also alias

cdm pdm

✔ ✔

name Deletes the the alias specified by name.

ccref.book : AR8thr 285 Mon Jun 5 15:33:25 1995

CodeCenter Reference 285

uninstrument

uninstrument

disables run-time error checking for an object file

Command syntax uninstrument

uninstrument file ...

uninstrument all

Description

Usage Use the instrument and uninstrument commands to enable and
disable run-time error checking of loaded object code. Enabling the
run-time error checking of loaded object code is called instrumenting
the file.

Performance
considerations

When you disable run-time error checking for a particular module,
that module runs somewhat faster than an object module with
run-time error checking enabled. See 'Run-time error checking in
source or object code'on page 127 and 'Loading source versus object
code versus executables'on page 87 for more information about the
performance trade-offs.

See the instrument entry on page 125 for more information about
instrumenting and uninstrumenting.

See Also debugging, instrument

cdm pdm

✔

<< none >> Prompts you to remove instrument information
from files one at a time.

file ... Removes instrumentation information from file.

all Removes instrumentation information from all
files.

ccref.book : AR8thr 286 Mon Jun 5 15:33:25 1995

unload

286 CodeCenter Reference

unload

unloads files

Command syntax unload

unload all

unload file ...

unload function

unload library

unload library(module)

unload user

unload workspace

Description

cdm pdm

✔

<< none >> Prompts for unloading files one at a time.

all Unloads all files, including all libraries and all
modules linked from libraries.

file ... Unloads the specified files. Takes shell wildcards
so you can unload groups of files with one
command.

function Unloads the file containing the specified function.
If the specified function is linked from a static
library, unloads only the object module containing
the function, not the entire library.

library Detaches the entire specified library and unloads
the individual modules that have been linked in
from that library.

library(module) Unloads the specified module in the specified
library. For example:

-> unload /lib/libc.a(printf.o)

ccref.book : AR8thr 287 Mon Jun 5 15:33:25 1995

CodeCenter Reference 287

unload

Switches

Usage Use the unload command to unload files from CodeCenter.

Because unload automatically resets to the top level of the Workspace
before unloading a file, you cannot unload a file at a break level and
then continue execution.

All functions and static variables defined by the unloaded file become
undefined. Global data variables, macro definitions, classes,
structures, unions, enumerators, enumeration constants, and type
definitions will not become undefined if they are declared or defined
in any other loaded file.

Breakpoints, watchpoints, traces, and actions are deleted if they are set
on variables or functions that become undefined when a file is
unloaded.

When specifying a file as an argument for unload, you can use shell
wildcards to unload groups of files with one command. For example:

-> load str_1.C str_2.C str_3.C main.C
-> unload str*.C
Unloading: str_1.C
Unloading: str_2.C
Unloading: str_3.C

To unload an individual library module, that module must be linked
in.

See Also build, contents, load, make, swap

user Unloads all source and object code files currently
loaded.

workspace Unloads all definitions entered in the Workspace.
Files remain loaded, and libraries remain
attached.

-lx Unloads the specified library libx.a.

ccref.book : AR8thr 288 Mon Jun 5 15:33:25 1995

unres

288 CodeCenter Reference

unres

lists undefined variables and functions

Command syntax unres

unres function

unres variable

Description

Usage Use the unres command to list undefined variables and functions that
are referenced by your program.

See Also link, load, unload, xref

cdm pdm

✔

<< none >> Lists all undefined variables and functions that
are referenced by the program.

function Lists the undefined variables and functions
referenced by the specified function.

variable Lists the undefined variables and functions used
as initialization values for the specified variable.

ccref.book : AR8thr 289 Mon Jun 5 15:33:25 1995

CodeCenter Reference 289

unsetenv

unsetenv

removes a variable from the program’s environment

Command syntax unsetenv variable

Description

Usage Use the unsetenv command to remove a variable from the program’s
system environment. The unsetenv command is analogous to the
similarly named shell command.

The unsetenv command affects only your program’s environment
variables. It does not affect the environment variables used by
CodeCenter to control its own operations.

The environment is an array of strings that is made available to the
program through the global environ variable and the envp parameter,
which is passed as the third argument to the main() function. By
convention, each string has the format name=value, where the value
part is optional.

Warnings If unsetenv is called from a break level, it will alter the value of the
global environ variable, but not the envp parameter passed to main().
This problem also occurs with the putenv() function.

Changing the EDITOR or DISPLAY shell variables with unsetenv
does not affect which editor or display screen CodeCenter uses.

See Also printenv, setenv

cdm pdm

✔ ✔

variable Removes the definition of variable from the system
environment.

ccref.book : AR8thr 290 Mon Jun 5 15:33:25 1995

unsetopt

290 CodeCenter Reference

unsetopt

unsets a CodeCenter option

Command syntax unsetopt

unsetopt option

Description

Usage Use the unsetopt command to examine and change CodeCenter
options. See the options entry for more details about each option.

See Also printopt, setopt

cdm pdm

✔ ✔

<< none >> Displays all options that are unset.

option Unsets the specified option as follows:

If the option takes a string, the option is assigned
the empty string.

If the option takes an integer, the option is
assigned 0.

If the option takes a Boolean, the option is
assigned FALSE.

ccref.book : AR8thr 291 Mon Jun 5 15:33:25 1995

CodeCenter Reference 291

unsuppress

unsuppress

reactivates reporting of a warning

Command syntax unsuppress

unsuppress num

unsuppress num everywhere

unsuppress num [at] line

unsuppress num [at] "file":line

unsuppress num [in] directory

unsuppress num [in] file

unsuppress num in function

unsuppress num [in] lib(module)

unsuppress num [on] identifier

unsuppress num [on] function

Description

cdm pdm

✔

<< none >> Prompts you to reactivate suppressed
warnings one at a time.

num Reactivates reporting of each occurrence of
the specified warning, regardless of whether
you had suppressed it globally or with a
location-specific argument.

num everywhere Reactivates reporting of a warning that you
had suppressed globally (without a
location-specific argument).

num [at] line Reactivates reporting of the specified
warning at the specified line

num [at] "file":line Reactivates reporting of the specified
warning at the specified line in the specified
file.

ccref.book : AR8thr 292 Mon Jun 5 15:33:25 1995

unsuppress

292 CodeCenter Reference

Usage Use the unsuppress command to reactivate the reporting of warnings
and errors, known collectively as violations.

Handling lint
comments

If the comment /*SUPPRESS n*/ appears in source code, static error
checking is suppressed for the specified violation. If the comment
appears at the global level of a file, the violation is suppressed for the
entire file. If the comment appears within a function, the violation is
suppressed only for the following line.

See Also suppress

num [in] directory Reactivates reporting of the specified
warning in all files in the specified directory
or in any subdirectories of the specified
directory.

num [in] file Reactivates reporting of the specified
warning in the specified file.

num in function Reactivates reporting of the specified
warning while in the specified function.

num [in] lib(module) Reactivates reporting of the specified
warning in the specified module of the
specified library.

num [on] identifier Reactivates reporting of the specified
warning if the warning involves the specified
identifier. The identifier argument is any
variable, typedef, class/struct/union tag, or
macro name.

num [on] function Reactivates reporting of the specified
warning when the specified function is
called.

ccref.book : AR8thr 293 Mon Jun 5 15:33:25 1995

CodeCenter Reference 293

up

up

moves up the execution stack

Command syntax up

up number

Description

Usage Use the up command to move the current scope location up the
execution stack, toward the top level of the Workspace and away from
the current break level.

The scope location is the point at which all variables, types, and
macros are scoped. When a break level is generated, the scope location
is set to the point at which execution was interrupted.

When at a break level, use the where command to display the
execution stack. Use the whereami command to display the break
location and the current scope location.

The cont command can be used to continue execution, and the reset
command can be used to return to a previous break level or to the top
level of the Workspace without continuing execution.

See Also cont, down, reset, where, whereami

cdm pdm

✔ ✔

<< none >> Moves the current scope location up one level on
the execution stack.

Motif or OPEN LOOK:The Source area shows file
scoped to location and highlights it with an arrow.

number Moves the current scope location the specified
number of levels up the execution stack.

ccref.book : AR8thr 294 Mon Jun 5 15:33:25 1995

use

294 CodeCenter Reference

use

displays or sets the directory search path

Command syntax use

use pathname ...

Description

Options The following CodeCenter options affect the use command:

See the options entry for more details about each option. CodeCenter
does not support these options in process debugging mode (pdm).

Usage Use the use command to set the list of directories to be searched when
a filename is given to the debug, edit, list, load, or swap commands.
The swap command uses the path set by use only if the
swap_uses_path option is set.

cdm pdm

✔ ✔

<< none >> Displays the current directory search path.

pathname ... Sets the list of directories to be searched to the
specified pathname. If more than one pathname is
listed, they must be separated by spaces. In
process debugging mode they may be separated
by spaces or colons. The directories can be
specified as absolute or relative pathnames.

path Specifies the search path for loading source and
object files (not for #include files). You must also
set the swap_uses_path option for the path option
to affect the swap command.

swap_uses_path Determines whether the swap command uses the
path, which can be set by the use command or by
the path option.

ccref.book : AR8thr 295 Mon Jun 5 15:33:25 1995

CodeCenter Reference 295

use

In component debugging mode, the use command sets and displays
the current value of the path option, which can also be set and
displayed with the setopt and printopt commands, respectively.

Restrictions The use command does not provide a search path for loading
#include files, only for loading source and object files.

To give the search path for #include directories, use the -I switch with
the load command according to the following format:

load -Iinclude_dir1 [-Iinclude_dir2 ...] file...

See Also cd, debug, edit, list, load, printopt, setopt, swap

ccref.book : AR8thr 296 Mon Jun 5 15:33:25 1995

user-defined commands

296 CodeCenter Reference

user-defined commands
CodeCenter allows you to define commands for the graphical user
interface. See the X resources entry on page 323.

ccref.book : AR8thr 297 Mon Jun 5 15:33:25 1995

CodeCenter Reference 297

whatis

whatis

lists all uses of a name

Command syntax whatis name

Description

Usage Use the whatis command to display all uses of an identifier name. An
identifier name is a name for a function, variable, enumerator,
struct/union tag name, type definition, or macro definition.

CodeCenter first displays all uses of the name within scope at the
current scope location, followed by all uses of the name not within
scope. The order of the listing represents the order in which the
specified name is resolved when it is used.

Example In the following example, the name test is used as both a variable and
a macro.

 -> int test;
 -> #define test 100
 -> whatis test
#define test 100
extern int test; /* initialized */
 -> int test2=2*test;
 -> test2;
(int) 200

Because you cannot declare or define variables in the Workspace in
pdm, the preceding example works only in cdm.

See Also dump, display, help, list, man, print, whereis, xref

cdm pdm

✔ ✔

name Displays all uses of the specified name as a
function, variable, struct/union tag name,
enumerator, type definition, or macro definition.

ccref.book : AR8thr 298 Mon Jun 5 15:33:25 1995

when

298 CodeCenter Reference

when

executes specified commands

Command syntax when

when if cond

when [at] line

when [at] line if cond

when in func

when in func if cond

Description

Usage Use the when command to set debugging actions in pdm; use the
action command in cdm. The two commands are very similar.

After you issue the when command, CodeCenter prompts you for the
commands to be executed. These commands can include calls to
functions that are defined in the program.

cdm pdm

✔

<< none >> Executes commands at current location.

if cond Executes commands at current location if cond is
true, where cond is a Boolean expression.

[at] line Executes commands when the specified line in the
current file is reached.

[at] line if cond Executes commands when the specified line in the
current file is reached if cond is true, where cond is
a Boolean expression.

in func Executes commands at the first line in the
specified function.

in func if cond Executes commands at the first line in the
specified function if cond is true, where cond is a
Boolean expression.

ccref.book : AR8thr 299 Mon Jun 5 15:33:25 1995

CodeCenter Reference 299

when

By default, CodeCenter remains stopped after executing the
commands specified with when. If you want your program to
continue after executing the commands, you must specify the cont
command as the last one.

Example Here is an example of how to use the when command:

(pdm) 4 -> when at 5 if i == 100

Then type commands to be executed (one per line). Typing "." or "end"
completes the sequence.

when -> printf("in func : %d\n", i);
when -> i = 200;
when -> cont
when -> .
(pdm) 5 ->

See Also action

ccref.book : AR8thr 300 Mon Jun 5 15:33:25 1995

where

300 CodeCenter Reference

where

displays the execution stack

Command syntax where

where number

Description

Options The following CodeCenter option affects the where command:

See the options entry for more details about each option. CodeCenter
does not support this option in process debugging mode (pdm).

Usage Use the where command to display a traceback of the execution stack.

When execution is stopped in object code, it is often useful to see a full
stack trace with arguments. The where command displays the formal
parameters of source code functions and of object code functions that
contain debugging information.

cdm pdm

✔ ✔

<< none >> Displays a traceback of the execution stack,
starting from the location where the execution has
stopped.

number Displays a traceback of only the specified number
of functions on the top of the execution stack. The
most recent routines called are at the top of the
stack.

terse_where Tells the where command not to list the formal
arguments of each function on the execution
stack.

ccref.book : AR8thr 301 Mon Jun 5 15:33:25 1995

CodeCenter Reference 301

where

In component debugging mode but not process debugging mode, the
formal parameters of object code functions without debugging
information can be displayed by entering the prototype for the
function. After a prototype is entered into the Workspace, all
subsequent stack traces will show the arguments to that function. For
more information on using prototypes, see the proto entry on page
230.

In threaded applications, where shows the stack trace for the current
active thread. To see the stack trace for a different thread, issue the
thread command with the identifier of the other thread as the
argument.

NOTE Debugging of threaded applications is currently only
supported in process debugging mode, and it is not
supported on all platforms. Please refer to "Product
limitations" in the online "About This Release"
document for more information.

Example This example shows the output of the where command in a threaded
application. Here we issue the where command with t@5 the current
thread, then use the thread command to make t@1 the current thread
and issue the where command again:

pdm (break 1) 26 -> thread
The current thread is t@5
pdm (break 1) 27 -> where
#0 0x106e8 in increment () at race.c:20
pdm (break 1) 28 -> thread t@1
The current thread is t@1
pdm (break 1) 29 -> where
#0 0xef7b6848 in _swtch ()
#1 0xef7ba664 in _thr_join ()
#2 0xef7b92b8 in _reap_wait ()
#3 0xef7ba664 in _thr_join ()
#4 0x107b8 in main () at race.c:33

See Also cont, down, options, proto, up, whereami

ccref.book : AR8thr 302 Mon Jun 5 15:33:25 1995

whereami

302 CodeCenter Reference

whereami

displays the current break and scope locations

Command syntax whereami

Description

Usage Use the whereami command to list the current break location and the
current scope location. This is particularly useful for finding where
you are once you have moved up or down the execution stack while
at a break level.

Break location The break location is the point at which execution stopped when the
break level was entered.

Scope location The scope location is the point to which variables, functions, and types
are scoped. When a break level is entered, it is set to the break location.
It can be changed to different locations on the execution stack with the
up and down commands.

Display of locations If you have not moved up or down in the execution stack while at a
break level, the scope location and the break location are the same. The
whereami command displays that location in the Source area,
scrolling the display if necessary.

If you have moved up or down in the execution stack, the scope
location is displayed in the Source area and the break location is
shown in the Workspace.

cdm pdm

✔ ✔

<< none >> Displays the current break and scope locations.

ccref.book : AR8thr 303 Mon Jun 5 15:33:25 1995

CodeCenter Reference 303

whereami

NOTE If the whereami command appears not to respond as
you expect, keep the following in mind:

• The break location is only displayed in the
Workspace when the break location is different
from the scope location.

• The Source area will only change if the current
scope location is not already displayed there.

Display of locations
in Ascii CodeCenter

In Ascii CodeCenter, if you have not moved up or down in the
execution stack while at a break level, the break location and the scope
location are the same. In this case, whereami gives a single listing for
both the break and the scope locations.

Errors and warnings If an error or a warning caused the current break level, whereami
displays the error or warning number. If execution can be continued
from the break level, whereami displays the arguments that can be
passed to the cont command.

See Also cont, down, proto, up, where

ccref.book : AR8thr 304 Mon Jun 5 15:33:25 1995

whereis

304 CodeCenter Reference

whereis

lists the locations where a name is declared or defined

Command syntax whereis name

Description name Lists the locations where a name is declared or
defined; lists only global and top-level static
declarations.

Usage Use the whereis command to list locations where a symbol is declared
or defined as a global or top-level static.

Example In the following example, the name test is used as both a variable and
a macro.

-> int test;
-> #define test 100
-> whereis test
"workspace":2 #define test 100
"workspace":1 int test, defined

NOTE Because you cannot declare or define variables in the
Workspace in pdm, the preceding example works only
in cdm.

See Also list, display, whatis, xref

cdm pdm

✔ ✔

ccref.book : AR8thr 305 Mon Jun 5 15:33:25 1995

CodeCenter Reference 305

window managers

window managers
In general, we recommend that you use mwm, olwm, or olvwm as
your window manager when you are running CodeCenter. Although
you may be able to use other ICCCM-compliant window managers
with some success, CodeCenter does not support other window
managers explicitly.

Actions used to
“Quit”

Some window managers provide two different functions for getting
rid of a window: f.delete and f.destroy. We recommend that you be
careful about distinguishing them.

The f.delete function sends an ICCCM WM_DELETE_WINDOW
message to the selected window, which causes the window to
disappear. The f.destroy function tells the X11 server to sever the
connection to the client owning the selected window, killing that client
process as a result.

Be careful about binding f.destroy to a menu item like “Quit”. If you
do so, and your application is a multi-window application, the whole
application will die. This problem can also result from binding
f.destroy to a “Quit” item in a dialog box or “pinned” menu. In this
case, you should probably use f.delete instead of f.destroy.

Bringing transient
windows to the
front

All of CodeCenter’s non-top-level windows, such as the dialog boxes
and pinnable property sheets, are transient for the top-level window
to which they belong.

As of OpenWindows 3.0, by default, olwm forces all transients for a
given window to appear stacked above that window. If you try to raise
the “parent” window, all the transients are raised too.

This means, for example, that if you request the Contents window
from the Project Browser window, you cannot bring the Project
Browser window to the front.

If you want to change this behavior, put the following line in your
.Xdefaults file:

OpenWindows.KeepTransientsAbove: False

ccref.book : AR8thr 306 Mon Jun 5 15:33:25 1995

Workspace

306 CodeCenter Reference

Workspace
All versions of CodeCenter provide an interactive work area, called
the Workspace, that handles CodeCenter commands and C
statements. See the User’s Guide for basic information about the
Workspace.

Here we describe more advanced CodeCenter features that help you
enter input into the Workspace. We cover the following topics:

• Saving a transcript of your session

• Displaying your input history

• Saving your input history

• Repeating previous input

• Expanding variables in the Workspace

• Using shell meta-characters and operators

• Line editing

• Using name completion

• Redirecting output

• Specifying a variable’s location

• Changing and listing directories

• Entering C++ code in the Workspace

• Unloading the Workspace scratchpad

• Clearing the Workspace

• Using the edit workspace command

Saving a
transcript of your
session

At any point during a CodeCenter session, you can save a transcript
of your Workspace actions in a file. If you do so, the transcript contains
all of your input as well as all of CodeCenter’s output.

To save a transcript, open the Workspace pop-up menu, and select
Save to. You can then either select the default name, which is
~/ccenter.script, or specify a different name by selecting Other file.

ccref.book : AR8thr 307 Mon Jun 5 15:33:25 1995

CodeCenter Reference 307

Workspace

Displaying your
input history

Use CodeCenter’s history command to display previous input:

-> int i;
-> double d;
-> char c;
-> history
 1: int i;
 2: double d;
 3: char c;
 4: history

If you are using the Motif or OPEN LOOK version, you can also
display your previous input in the Workspace by using the
mouse-based scrollbar on the right side of the Workspace panel.

The Workspace features a history mechanism modeled after the csh
and tcsh shells. Similar to the tcsh shell, previous lines of input can be
scanned one line at a time by entering Control-p to scan backward and
Control-n to scan forward.

-> int i;
-> double d;
-> char c;
-> <Ctrl-p>< Ctrl-p> expands to...
-> double d;

You can also type a letter or letters, then press Control-p or Control-n
to scan through command lines that began with those letters. For
example, typing load then pressing Control-p repeatedly scans all the
previous lines that loaded files.

Saving your input
history

CodeCenter saves all Workspace input in a temporary logfile that it
deletes at the end of a session. You can specify the name of the logfile
with the logfile option.

You can tell CodeCenter to keep a permanent logfile by using the -f
command-line switch when starting CodeCenter. For more
information, see the “Switches” section of the codecenter entry on
page 63.

If you did not use the -f switch when starting CodeCenter, you can
still save the contents of the logfile at any point by redirecting the
output of the history command:

-> history #> ccenter_log_name

ccref.book : AR8thr 308 Mon Jun 5 15:33:25 1995

Workspace

308 CodeCenter Reference

The logfile records input only; it does not show CodeCenter’s output.
If you are using Motif or OPEN LOOK, you can record output in a file
as well, by opening the Workspace pop-up menu and selecting Save
to.

You should never edit or modify the logfile during a session;
CodeCenter uses it just for recording input. Changing the logfile does
not affect the state of the Workspace. If you want to modify the
Workspace along with the logfile, it is best to copy the logfile to
another file, edit it, unload the Workspace, and load the edited copy of
the logfile with the source command. See the source entry on page 254
for more information.

Repeating
previous input

As in the csh shell, you can execute previous lines of input using a
history character followed by an argument. CodeCenter’s history
character is # (the csh shell’s history character is !).

Repeating the most
recent line of input

You can repeat the most recent line of input by entering ##<return>,
where <return> represents the Return key. Alternatively, you can enter
##<space> to edit the line before it is re-entered:

-> (123 + 456);
(int) 579
-> ##<space> expands to...
-> (123 + 456);
(int) 579

Revising the most
recent line of input

Entering #^old_string^new_string redoes the most recent line of input,
with the string new_string substituted for the string old_string:

-> (123 + 456);
(int) 579
-> #^123^333<space> expands to...
-> (333 + 456);
(int) 789
->

Repeating a
particular line of
input

You can repeat any line of input using the notation #text, where text
matches the beginning of a previous line of input. You can also repeat
a previous line of input using the notation #n, where n is the number
of the input line to be redone, or #-n, where n is the nth previous
command.

ccref.book : AR8thr 309 Mon Jun 5 15:33:25 1995

CodeCenter Reference 309

Workspace

For example:

-> (123 + 456);
(int) 579
-> (321 + 654);
(int) 975
->
-> #(<space> expands to...
-> (321 + 654);
(int) 975
->
-> #1 <space> expands to...
-> (123 + 456);
(int) 579
->
-> #-3 <space> expands to...
-> (321 + 654);
(int) 975
->

Expanding particular
tokens of previous
input

You can expand selected tokens of the previous line of input, similar
to using the csh shell’s history commands !$, !*, and !:. See Table 25 for
the syntax.

Table 25 Syntax for Expansion of Tokens in Workspace Input

Symbol Expansion

#$<space> Last token of the previous line of input

#*<space> All but the first token of the previous line of
input

#: number<space> The number token on the previous line (tokens
are numbered starting at 0)

ccref.book : AR8thr 310 Mon Jun 5 15:33:25 1995

Workspace

310 CodeCenter Reference

Here is an example:

-> int i, j, k;
-> i = 123 + 456;
(int) 579
-> j #* <space> expands to...
-> j = 123 + 456;
(int) 579
-> k = #:4 <space> expands to...
-> k = 456 ;
(int) 456

Expanding
variables in the
Workspace

You can expand the value of any environment variable or CodeCenter
option in any Workspace command by using the #$ syntax shown in
Table 26.

Table 26 Syntax for Expansion of Environment Variables and
Options in Workspace Commands

Symbol Expansion

#$ identifier Substitutes the value of the CodeCenter option, if
one exists, named identifier; otherwise, substitutes
the value of the named environment variable. For
example, #$path substitutes the value of the
CodeCenter path option, if it is set; #$HOME
substitutes the current value of the HOME
environment variable.

#$(environ_var) Substitutes the value of the named environment
variable. For example, including #$(HOME)
substitutes the current value of the HOME
environment variable. Note that text must be
enclosed in parentheses ().

#${option} Substitutes the named CodeCenter option value.
For example, #${load_flags} substitutes the
loading flags that you have set in CodeCenter.
Note that text must be enclosed in braces { }.

ccref.book : AR8thr 311 Mon Jun 5 15:33:25 1995

CodeCenter Reference 311

Workspace

In the following examples, #$HOME is expanded to the value of the
HOME environment variable.

-> printenv HOME
HOME=/s/users/jk
-> load #$HOME/sample.c
Loading: /s/users/jk/sample.c

In the following example, a directory is added to CodeCenter’s search
path by expanding #${path} to the current value of CodeCenter’s path
option, then specifying the directory to add to the path.

-> printopt path
path /s3/bobh/src
-> setopt path #${path} /s3/bobh/obj
-> printopt path
path /s3/bobh/src /s3/bobh/obj

Viewing the
expansion before
the command is
executed

You can see what the arguments expand to before executing a
command by pressing the Spacebar instead of pressing Return.

Using shell
meta-characters
and operators

The following commands support the shell operators and
meta-character expansion supported by /bin/sh:

• cd

• ls

• load

• make

• sh

• shell

All commands except the unload command attempt to match the
expanded wildcard name to the list of files on the disk. The unload
command tries to match against the loaded filenames.

For example, you can issue the following command in the Workspace:

-> load *.c
Loading: bad_ptr.c
Loading: clean_att.c
Loading: cleanfile.c
Loading: copyfile.c

ccref.book : AR8thr 312 Mon Jun 5 15:33:25 1995

Workspace

312 CodeCenter Reference

Line editing The Workspace supports line editing of input similar to the line
editing available in the emacs editor. See Table 27 for the most
frequently used line-editing commands. Note that not all keyboards
have arrow keys.

For a complete list of the default keyboard bindings for CodeCenter,
see the keybind entry.

Using name
completion

The Workspace provides name completion for commands, names, and
filename patterns.

You complete commands and names by pressing the Escape key twice
without entering text. CodeCenter handles name completion as
follows:

• If CodeCenter cannot complete the name, it sounds the bell.

• If the completion is ambiguous, the unambiguous portion is
completed and all possible matches are listed. For example:

-> int ABC, VAR_1, VAR_2;
->

Table 27 Frequently Used Line-Editing Commands in CodeCenter

Key Action

Control-a Moves the cursor to the beginning of the line

Control-e Moves the cursor to the end of the line

Control-f Moves the cursor forward one character

Control-b Moves the cursor backward one character

Control-d Deletes the character under the cursor

Up arrow Scrolls backward through input

Down arrow Scrolls forward through input

Right arrow Moves cursor forward one character

Left arrow Moves cursor backward one character

ccref.book : AR8thr 313 Mon Jun 5 15:33:25 1995

CodeCenter Reference 313

Workspace

-> A<ESC><ESC> completes to...
-> ABC
+> ;
(int) 0
-> V<ESC><ESC> ambiguous, completes to...
VAR_1 VAR_2
-> VAR_

You complete filename patterns by entering the sequence Esc-x. This
sequence echoes the current input line to the shell specified by
CodeCenter’s subshell option; the default shell is /bin/sh. The
subshell echoes the line, performing all filename pattern expansions in
the process. For example:

-> ls
a.C b.C c.C
-> load *.C<ESC>x expands to...
-> load a.C b.C c.C

Redirecting output Just as you can redirect output of commands at the shell, you can
redirect the output of most CodeCenter Workspace commands with
the following symbols:

Note that the CodeCenter redirection symbols start with #. For
example:

-> printenv #> my_vars

saves the current environment variables in the file my_vars.

NOTE You cannot use the #> syntax to redirect the output of
the following commands: run, step, next, cont, reset.

Symbol Result

#> file Redirects the command output to file. Overwrites file if it
exists.

#>> file Appends the command output to the contents of file.

ccref.book : AR8thr 314 Mon Jun 5 15:33:25 1995

Workspace

314 CodeCenter Reference

To redirect the output of the run command, use the usual shell syntax
for redirection, for example:

-> run > stdout_file (redirect stdout only)
-> run >& output_file (redirect stdout and stderr)

Use the shell syntax to redirect the output of shell commands, such as
ls, for example:

-> ls > listing.output

Specifying a
variable’s location

In certain situations, you must specify the location of a variable to
avoid ambiguity. This is usually required for symbols of the same
name that are defined differently in different files. The location of a
variable can be specified in one of four ways:

• `file`function`variable

• `file`line_number`variable

• `file`variable

• function`variable

Keep in mind that the variable must be in scope or on the stack.

For example, assume file i1.c contains the following top-level
declaration:

int i = 3;

and that i2.c contains the following top-level declaration:

static int i = 1;

With these files loaded, CodeCenter reports on both instances of i:

-> whatis i
static int i;
extern int i; /* initialized */

Because there are two variables named i in your program, you specify
a location when printing either value, in this case the name of the file:

-> ‘i1.c‘i;
(int) 3
-> ‘i2.c‘i;
(int) 1

ccref.book : AR8thr 315 Mon Jun 5 15:33:25 1995

CodeCenter Reference 315

Workspace

Here's another example in which the variable i is defined in two
functions in the same file, test.c. Use the name of the function to
specify the variable's location:

2 -> load test.c
Loading: test.c
3 -> stop in func
stop (1) set at "test.c":18, func().
4 -> run
Executing: a.out
(break 1) 5 -> step
(break 1) 6 -> whatis i
auto int i; /* Defined in 'func'; currently active.
*/
auto int i; /* Defined in 'main'; currently
inactive. */
(break 1) 7 -> func`i;
(int) 3
(break 1) 8 -> main`i;
(int) 2

Changing and
listing directories

The cd command changes the current working directory in
CodeCenter in the same manner as the cd command in the shell.

Also, you can list the current working directory and list files in the
directory by using pwd and ls, two aliases that CodeCenter defines
automatically to execute Bourne subshells. For example:

-> alias
ls sh ls
pwd sh pwd
-> pwd
/usr/fenway
-> cd demo
wd now: /usr/fenway/demo
-> ls
Makefile display.c main.c sort.c sort.h
->

Entering C code
in the Workspace

When you enter C code at the Workspace prompt, the Workspace
becomes a direct connection to the CodeCenter interpreter. This
means that C statements that you type in the Workspace are
immediately interpreted, and expressions are immediately evaluated.
CodeCenter displays the result immediately after you type the input.

CodeCenter maintains a Workspace scratchpad containing C
definitions, which you can reference throughout a session.

ccref.book : AR8thr 316 Mon Jun 5 15:33:25 1995

Workspace

316 CodeCenter Reference

Although you can define functions, variables, and types in the
Workspace, it is not easy to edit and modify the definitions. So it is
better to put code that needs to be modified or debugged in a source
file and then load the source file.

Using multiple-line
statements

C statements you type in the Workspace can span several lines. To
continue the statement on the next line, simply press the Return key at
an appropriate place in the statement. The input prompt changes from
-> to +>, indicating that the Workspace is expecting additional input
to complete the statement or expression:

-> 123 +
+> 456 +
+> 789;
(int) 1368
->

NOTE The +> prompt only appears when the Workspace is
waiting for additional C code. This often happens
when you forget to type a semicolon (;) at the end of a
C statement or expression. To complete the input, type
a semicolon, then press Return.

Defining variables
and types

You can define and use variables and types directly in the Workspace
at any time. To display the type and value of a variable, enter the name
of the variable followed by a semicolon. (This is a shortcut to using
CodeCenter’s print command.)

CodeCenter evaluates the input and returns its type and value. For
statements, the type void is displayed:

-> int i;
-> i = 16;
(int) 16
-> while (i<100)i++;
(void)
-> i;
(int) 100
-> int j;
-> j= i+10;
(int) 110

ccref.book : AR8thr 317 Mon Jun 5 15:33:25 1995

CodeCenter Reference 317

Workspace

For data structures, CodeCenter displays all members:

-> struct mystruct {int i; float f;};
-> struct mystruct struct1;
-> struct1;
(struct mystruct) =
{
 int i = 0;
 float f = 0.000000e+00;
}

For pointers, CodeCenter displays the kind of pointer, the address
being pointed to, and the data being pointed to:

-> char *msg = "hello there";
-> msg;
(char *) 0x173ea8 "hello there"

Defining functions When defining a function in the Workspace, you must specify its
return type and you should specify the types of the parameters when
you declare the parameters. For example, to define a function that
adds two integers, you could enter:

-> int add(int x,int y)
+> { return x+y; }
-> add(3,4);
(int) 7

Calling library
functions

You can execute library functions after the library has been attached.
For instance:

Attaching: /usr/lib/libc.a
-> strlen("hi");
Linking from ’/usr/lib/libc.a’ ... Linking completed.
(int) 2

Declaring types in
the Workspace

If an object code file without debugging information is loaded, no
information about the types of variables or functions is available.

If the type for a variable defined in compiled code is unavailable,
CodeCenter assigns the generic type <data> to the variable. Before
variables of type <data> can be used in the Workspace, you must
declare a type in the Workspace or in a source file.

ccref.book : AR8thr 318 Mon Jun 5 15:33:25 1995

Workspace

318 CodeCenter Reference

Consider the file xyz.c:

int i=4;int test()
{
 return i;
}

If this file is loaded into CodeCenter as an object file compiled with
debugging information, you do not need to declare the type of a
variable or function that is defined in that file before using it; for
example:

-> load xyz.o
-> i;
(int) 4

However, if this file is compiled without debugging information and
loaded into CodeCenter, this happens:

-> load xyz.o
-> i;
Error #739: Variable ’i’ has undefined type (<data>).
->
-> extern int i;
-> i;
(int) 4

If the type for a function defined in compiled code is unavailable,
CodeCenter assigns the generic type <text> to the function.

If the function is called in the Workspace before its type is declared,
CodeCenter gives it the return type int:

-> load xyz.o
-> test;
Error #739: Function ’test’ has undefined type
(<text>).
-> test();
(int) 4
-> test;
(int ()) 0xdc976 < ’test’ module "xyz.o" >

Responding to errors CodeCenter flags errors you make in the Workspace and sets a
breakpoint:

-> extern int j;
-> int i;
-> i = j;
Error #155: Undefined variable: ’j’.
(break 1) ->

ccref.book : AR8thr 319 Mon Jun 5 15:33:25 1995

CodeCenter Reference 319

Workspace

If you want to return to the top level in the Workspace, issue the reset
command.

Using blocks Blocks are useful for ensuring that operations performed in the
Workspace do not produce adverse side effects or conflict with global
variables. All automatic variables declared within the block are local
to the block; that is, they cease to exist at the end of the block. You can
use these variables for storing values and performing calculations
without affecting global variables, even of the same name.

For example:

-> int i = -1;
-> {
+> int i = 0;
+> while(i <= 10) i++;
+> }
(void)
-> i;
(int) -1

CodeCenter does not execute expressions and statements placed
within a block until the block is ended with a closing brace. Values
produced by the expressions and statements within the block are not
displayed. Only the void value produced at the end of the block is
displayed.

Unloading the
Workspace
scratchpad

During a CodeCenter session, all C definitions you enter from the
Workspace are stored in the Workspace scratchpad. You can undefine
all C definitions stored in the Workspace scratchpad by using the
unload workspace command in the Workspace. For example:

-> int add(int x,int y)
+> { return x+y; }
-> add(3,4);
(int) 7
-> unload workspace
Unloading: workspace
-> add(5,6);
Error #733: ’add’ is undefined.

Unloading the Workspace scratchpad does not affect any loaded files
or attached libraries. Workspace input history is also unaffected by
unloading the Workspace scratchpad.

ccref.book : AR8thr 320 Mon Jun 5 15:33:25 1995

Workspace

320 CodeCenter Reference

Clearing the
Workspace

If you are using the Motif or OPEN LOOK versions, you can clear the
Workspace pane by opening the Workspace pop-up menu and
selecting Clear.

Using the edit
workspace
command

Use the edit workspace command to save code you define in the
Workspace. During a session, all C definitions you enter are stored in
a Workspace scratchpad. The edit workspace command lets you save
the scratchpad to a file, by default workspace.c, and then edit the file.

For example, suppose you create a program fragment in the
Workspace. You can create stubs for external functions called by the
code, and then execute your code to test it. After testing, you can use
edit workspace to create a file containing the code you defined in the
Workspace. You can enter your own name for the file or accept the
default, workspace.c.

-> edit workspace
Appending all workspace definitions to a file.
Default filename is "workspace.c" in the current
directory. Please specify a filename, press Return
to accept default, or <CTRL-D> to abort:

If you want to test a particular set of definitions, edit the file so that it
contains the definitions you want to test. Then use the unload
workspace command to unload all the definitions and objects you
created in the Workspace, and use the source command to load the
definitions in your saved file back into the Workspace. Note that the
source command will report errors if you've unloaded any definitions
that the saved file depends on.

If you want to use the new file as source code, add any #include lines
you need and remove any extraneous lines. For example, some
CodeCenter commands, such as whatis, will appear in the file.

NOTE When using code developed in the Workspace,
remember that static functions and variables are
visible at global scope in the Workspace. As a result,
you may have to make static functions externally
visible to use the Workspace sources as a separate file.

ccref.book : AR8thr 321 Mon Jun 5 15:33:25 1995

CodeCenter Reference 321

xref

xref

cross-references a function or variable

Command syntax xref function

xref variable

Description

Usage Use the xref command to cross-reference a specific function or
variable.

The xref command displays static references that exist in source or
compiled code files. A static reference occurs when a function calls
another function or uses a global variable. A static reference also
occurs when a variable uses the address of a function or variable as an
initialization value.

The xref command does not display references that are created
dynamically during execution. For example, xref will not display a
reference when the address of a function is assigned to a pointer and
the function is subsequently called through the function pointer.

Also, a function’s use of its formal parameters or local variables is not
displayed.

cdm pdm

✔

function Lists the functions and variables that reference the
specified function and the functions and variables
that are referenced by it.

Motif and OPEN LOOK versions: Invokes the
Cross-Reference Browser.

variable Lists the functions and variables that reference the
specified variable and the functions and variables
that are referenced by it.

ccref.book : AR8thr 322 Mon Jun 5 15:33:25 1995

xref

322 CodeCenter Reference

The compiler removes information about references between
functions that are in the same object code file. To avoid the possibility
of executing object code that is not fully resolved, CodeCenter creates
implicit references between every function in an object code file. In
Ascii CodeCenter, these references are listed as implied by xref.

Example In the following example, xref displays a reference between ptr and a,
but not between ptr and b.

int a, b;
int *ptr = &a;
void test()
{
ptr = &b;
}

The xref command also displays references between the function
test() and the variables ptr and b.

See Also whatis, whereis

ccref.book : AR9Xres 323 Mon Jun 5 15:33:25 1995

CodeCenter Reference 323

X resources

X resources
Like other X applications, CodeCenter allows you to customize your
Motif or OPEN LOOK Graphical User Interface (GUI) by specifying
the values associated with selected resource variables or by using
object names to change attributes. You can also use X11 resources to
write your own commands.

A complete description of the use of X resources is beyond the scope
of this document. In the next few sections, we describe some of the
most important resources that you can modify. We have organized this
discussion as follows:

• Modifying X resources

• Troubleshooting your .Xdefaults file

• Resource descriptions and examples

• Specifying resources for the Run Window and vi Edit window

• Keyboard editing

• Using component and object names

• Examples of changing fonts in particular components

• Examples of using OI (Object Interface Library) components

• Defining GUI-specific resources

• User-defined commands

• Revision control systems

• X resources for the DynaText online documentation browser

Modifying X
resources

Like most X11 applications, CodeCenter reads an app-defaults file,
which is located as follows:

/dir/CenterLine/c_4.0.0/arch-os/lib/app-defaults/CodeCenter

where dir is the path to your CenterLine directory and arch_os is the
platform-specific directory (such as pa-hpux8 or sparc-sunos4).

ccref.book : AR9Xres 324 Mon Jun 5 15:33:25 1995

X resources

324 CodeCenter Reference

NOTE Be careful about editing the
...lib/app-defaults/CodeCenter file. We recommend
that you save a copy before you edit so that you do
not accidentally lose information about valuable
default settings.

This is the preferred file to use for modifying Xresources. You can also
specify your own settings for the CodeCenter X resources for your
particular machine by editing the .Xdefaults file in your home
directory. After you edit your .Xdefaults file, you can reload your X
resource database by issuing the following command:

xrdb -load ~/.Xdefaults

You can also modify the default settings for the CodeCenter X
resources for your particular machine by creating a file containing the
new information and specifying that file with the -config switch when
you invoke CodeCenter.

You can override some of the resources by starting CodeCenter with
any of the command-line switches listed in Table 7 on page 69.

Syntax for resource
definitions

In general, the format for the CodeCenter resource definitions that you
can modify is as follows:

ResourceName: ResourceValue

where ResourceName can contain various combinations of client
names, object names, and resource variables.

In general, ResourceName begins with the application name, which is
CodeCenter; in some cases, ResourceName begins with a component or
object name.

This format corresponds to the most basic line that you can have in
any X resource definition file. Note that a colon (:) and whitespace
separate the name of the resource from the value of the resource.

Example For instance, the following line specifies that all instances of the
CodeCenter Motif application have a background of LightSteelBlue:

CodeCenter*motif*background: LightSteelBlue

In this example, the ResourceName is CodeCenter*motif*background,
and ResourceValue is LightSteelBlue.

ccref.book : AR9Xres 325 Mon Jun 5 15:33:25 1995

CodeCenter Reference 325

X resources

Similarly, the following specifies that the CodeCenter object called
*window*frontscsreen should have a background of red:

CodeCenter*window*frontscreen.background: red

To choose the Motif user interface style as your default for
CodeCenter, include the following line in your .Xdefaults file or your
CodeCenter application defaults file:

CodeCenter*Model: Motif

Troubleshooting
your .Xdefaults file

Before you run CodeCenter, we recommend that you remove any
global .Xdefaults file settings such as:

*ResourceName : Value

These settings, such as:

*frameWidth : 1
*borderWidth: 1

set the ResourceName to Value for all instances of ResourceName in all
programs that you run, including CodeCenter. In this case, the X
resource specifies the default border width and frame width as 1 for
all applications.

Specifications like these in your .Xdefaults file will cause problems
with CodeCenter. Moreover, it is rarely appropriate to set X resources
for all applications in this way.

Using mwm and
“transient
decorations”

Some window managers accept instructions not to decorate dialog
boxes or other transient pop-ups. Decorating in this context means
providing a border and a move bar; if a dialog box is not decorated it
cannot be resized or moved.

For instance, if you are using the Motif window manager (mwm), the
following entry in your .Xdefaults file instructs mwm not to decorate
dialogs or other pop-up windows:

Mwm*transientDecoration: none

We recommend that you remove this line from your .Xdefaults file.
Otherwise, it will be difficult to use CodeCenter’s dialog boxes, since
you will not be able to move them out of your way while keeping them
on the screen.

ccref.book : AR9Xres 326 Mon Jun 5 15:33:25 1995

X resources

326 CodeCenter Reference

NOTE See the “Bringing transient windows to the front”
section on page 305 for additional information related
to setting X resources.

Resource
Descriptions

See Table 28 for a list of frequently used resources, along with a brief
description of each, and their possible values.

Table 28 CodeCenter X Resources and Their Possible Values

Name of Resource Description Possible Values

CodeCenter*Color*OI_scroll_text
.@text.Background

Sets color resources for scrolling
text objects.

As specified by
XLFD (X11
Logical Font
Description)

CodeCenter*Color*Workspace
.@text.Background

Sets color resources for
Workspace.

As specified by
XLFD

CodeCenter*ConfirmSelnUse By default when an item on a
menu, such as the Examine
menu, is selected, the action is
performed based on the current
selection. Alternatively, the GUI
can present a dialog box showing
the current selection, which you
can edit and then perform the
action requested. If you want this
alternative behavior, set the
value of this resource to True.

True
False (the
default)

CodeCenter*DefaultKey Defines the accelerator key used
to activate the default cell in a
menu. When a cell is found with
an accelerator that matches this
key, the cell is made the default,
and no accelerator label is
displayed for it.

Any valid key

ccref.book : AR9Xres 327 Mon Jun 5 15:33:25 1995

CodeCenter Reference 327

X resources

CodeCenter*dimButtonsWhen
DebuggerBusy

Specifies the length of time that
the debugger must be busy for
the control buttons on the GUI to
dim. The default value is 1.15.
The value of this resource must
be:

• The string Always if you
want buttons to dim as soon
as the debugger is busy

• The string Never if you
never want the buttons to
dim.

• Any positive floating-point
number, to indicate the
number of seconds you want
to elapse before the buttons
start to dim.

Always, Never,
number

CodeCenter*FixedWidthBoldFont Changes the font of top-level
entries.

As specified by
XLFD

CodeCenter*FocusPolicy Specifies the focus policy to use.
By default, the Motif GUI uses
click_to_type, and OPEN LOOK
uses follows_pointer. See the
“Setting the keyboard
input-focus” section on page 330
for more information.

click_to_type
follows_pointer

CodeCenter*Font Changes fonts globally. See the
“Examples of changing fonts in
GUI components” section on
page 348.

As specified by
XLFD

CodeCenter*HelpTranslations Specifies the set of keys eligible
for use as the help key. See the
“Changing the help key” section
on page 331 for more
information.

Any valid
sequence of keys
and action
functions

Table 28 CodeCenter X Resources and Their Possible Values (Continued)

Name of Resource Description Possible Values

ccref.book : AR9Xres 328 Mon Jun 5 15:33:25 1995

X resources

328 CodeCenter Reference

CodeCenter*MainWindow*Examine
MenuUsesPopups

Specifies whether or not the
Print, Whatis, Whereis menu
items on the Examine menu
display their output in the
Workspace (default) or in a
special popup window.

True
 False (the
default)

CodeCenter*Model Specifies the interaction model to
use. The default setting for this
resource is platform-specific. For
instance, Hewlett-Packard
workstations use motif, and Sun
workstations use openlook.

motif
openlook
openlook2d
openlook3d

CodeCenter*MotifPushpin Uses a “screw” to simulate
OPEN LOOK pushpins.

If you want a pushpin on dialogs
in Motif, set this resource to
True.

See the “Adding pushpins to the
Motif GUI” section on page 330
for more information.

True
 False (the
default)

CodeCenter*OI_entry_field.Font Overrides the fonts for all
single-line text entry fields.

As specified by
XLFD

CodeCenter*OI_multi_text.Font Overrides the fonts for all
multiple-line text entry fields.

As specified by
XLFD

CodeCenter*OI_scroll_text.Font Overrides the fonts for all
scrollable text objects.

As specified by
XLFD

CodeCenter*usePanner The Data Browser and
Cross-Reference Browser use a
scrollbar by default. To make
them use a panner instead, set
this resource to True.

True
False (the
default)

Table 28 CodeCenter X Resources and Their Possible Values (Continued)

Name of Resource Description Possible Values

ccref.book : AR9Xres 329 Mon Jun 5 15:33:25 1995

CodeCenter Reference 329

X resources

Examples of
using resources

The examples in this section show you how to use X resources to do
the following:

• Change the font size of text objects in the GUI

• Add pushpins to the Motif GUI

• Set the keyboard input-focus

• Change the help key

CodeCenter*WMIgnoresPPosition Notifies CodeCenter that the
window manager used does not
properly interpret the PPosition
bit in the
WM_NORMAL_HINTS
property. Set this resource if you
are using mwm as a window
manager.

True
 False (the
default)

CodeCenter*workspaceTranscriptSize Specifies the maximum number
of lines available for the
Workspace. The default setting is
2000. Setting the value to 0
means there is no maximum; that
is, the number of lines in the
Workspace can grow indefinitely.

Any integer
greater than or
equal to 0

CodeCenter*XrefBrowser*showReturnT
ype

Specifies whether or not the
Cross-Reference Browser shows
the return type for functions.

True
False (the
default)

Table 28 CodeCenter X Resources and Their Possible Values (Continued)

Name of Resource Description Possible Values

ccref.book : AR9Xres 330 Mon Jun 5 15:33:25 1995

X resources

330 CodeCenter Reference

Changing the font
size of text objects
in the GUI

 You can change the text fonts globally for all objects in the user
interface with the following resources. In this example, the font size is
set to 18 points (180 decipoints).

! Basic fonts for most OI objects

CodeCenter*OI*font:-adobe-helvetica-medium-r-normal-*-*-180-*-*-*-*-*-*
CodeCenter*OI*label.font:-adobe-helvetica-bold-r-normal-*-*-180-*-*-*-*-*
-*
CodeCenter*OI*OI_scroll_menu.@title.font:-adobe-helvetica-bold-r-normal-*
-*-180-*-*-*-*-*-*
! Fonts for OI text objects: you should use a fixed-width font here
CodeCenter*OI*OI_entry_field.font:-adobe-courier-medium-r-normal-*-*-180-
--*-*-*-*
CodeCenter*OI*OI_multi_text.font:-adobe-courier-medium-r-normal-*-*-180-*
-*-*-*-*-*
CodeCenter*OI*OI_scroll_text.font:-adobe-courier-medium-r-normal-*-*-180-
--*-*-*-*
! Special fonts for project and error browsers: use a fixed width font
here too
CodeCenter*FixedWidthBoldFont:-adobe-courier-bold-r-normal-*-*-180-*-*-*-
--*

Adding pushpins to
the Motif GUI

The OPEN LOOK GUI offers you pushpins to keep menus and non-
modal dialog boxes on the screen until you explicitly unpin them.

CodeCenter’s implementation of the Motif GUI provides screws as an
equivalent for pushpins. By default they are not used; but if you run
the Motif version of CodeCenter with any window manager, you can
enable the implementation of screws by including the following line
in your .Xdefaults file:

CodeCenter*MotifPushpin: True

If you include this line, dialog boxes, but not menus, will have a screw
in the lower right corner that you can select. When the dialog is
“screwed in,” it has the same semantics as if it were pinned; it is not
removed when you press the Apply or OK buttons. It is removed
when it is “unscrewed,” or when the Cancel button is pressed.

Setting the keyboard
input-focus

CodeCenter’s GUI provides two choices of keyboard input-focus:
click_to_type and follows_pointer. By setting the GUI to
click_to_type, you instruct the GUI to set keyboard focus when you
click on an item; the focus will not move until you click on the next
item. By setting the focus to follows_pointer, you instruct the GUI to
set keyboard focus to the item under the mouse pointer. With either
focus, you can still use explicit keyboard traversal commands to move
the focus to pushbuttons, menus, and so on.

ccref.book : AR9Xres 331 Mon Jun 5 15:33:25 1995

CodeCenter Reference 331

X resources

By default, the Motif GUI uses click_to_type, and OPEN LOOK uses
follows_pointer.

If you want to specify your preference to be in effect in both the Motif
and OPEN LOOK GUI, put one of the following lines in your X
resources file:

CodeCenter*focusPolicy: follows_pointer
CodeCenter*focusPolicy: click_to_type

A disadvantage to setting the focus policy to follows_pointer is that
you may find that, as you move the mouse pointer from one
CodeCenter window to another, the window under the mouse is
sometimes automatically raised by the window manager (mwm) to
the top; sometimes it is not. You can use the following resource setting
to tell mwm not to raise windows when the mouse moves around the
screen:

Mwm*focusAutoRaise: false.

Changing the
help key

By default, you request context-sensitive help with the Help or F1 key,
depending on your platform. You can change the default setting with
the HelpTranslations resource. For example, to use the F6 key as the
Help key, put this line in your X resources file:

 *OI*HelpTranslations: #override \n\\p <Key>F6: help()\n

Instead of F6, you could substitute any valid key sequence allowed in
an X11 translation setting.

NOTE You cannot change the location of the scrollbar in
CodeCenter using X resources.

Run Window and
Edit window
resources

You can customize the Run Window, generic terminal window, or the
vi editor window with any xterm resource. See the UNIX manual page
for xterm for a complete list of xterm resources.

To specify a resource for the Run Window:

CodeCenter*RunWindow.xterm-resource

ccref.book : AR9Xres 332 Mon Jun 5 15:33:25 1995

X resources

332 CodeCenter Reference

For example, to save the content of the Run Window for your session
to a file called myfile.log in your home directory, set the following
resources:

CodeCenter*RunWindow.logFile: myfile.log
CodeCenter*RunWindow.logging: on

You can also turn logging on and off from the Run Window popup
menu, which is displayed when you press the Left mouse button
while holding down the Control key. If you don’t specify a name for
the log file, the session is saved in a file called XtermLog.xnnnn.

To add a scrollbar to the Run Window with a 500-line scrolling history,
set the following resource (the scrollbar resource is set to true by
default). Note that some xterm resources should be set explicitly for
the vt100 subobject:

CodeCenter*RunWindow*vt100.scrollBar: true
CodeCenter*RunWindow*vt100.saveLines: 500

Set the following resources to change the default font and geometry of
the Run Window:

CodeCenter*RunWindow*vt100.font:
CodeCenter*RunWindow*vt100.geometry: <columns>x<rows>

If you invoke the vi editor from within CodeCenter, you can
customize it with any xterm resource. To do so:

CodeCenter*EditWindow.xterm-resource

When the CodeCenter user interface executes workspace commands,
it uses a terminal to do so. You can customize this terminal with any
xterm resource. To do so:

CodeCenter*Terminal.xterm-resource

Setting window sizes The general syntax for geometry resources is:

object_name.geometry: WxH[+X+Y]

where W and H are the width and height of the window (in either
pixels or characters, depending on the application), and X and Y are
the X and Y coordinates of the upper left-hand corner of the window,
relative to the upper left-hand corner of the screen. You can also use -X

ccref.book : AR9Xres 333 Mon Jun 5 15:33:25 1995

CodeCenter Reference 333

X resources

and/or -Y instead of +X+Y, in which case you’re setting the
coordinates of the lower right-hand corner of the window, relative to
the lower right-hand corner of the screen.

For instance, to make the Edit window 80 columns wide by 60 lines
long, put the following line in your X resources file:

CodeCenter*EditWindow.vt100.geometry: 80x60

Here are some more examples:

CodeCenter*EditWindow.vt100.geometry: 80x40+20+30

This makes the Edit window 80 by 40 characters, 20 pixels from the left
edge of the screen, and 30 pixels from the top.

CodeCenter*RunWindow.vt100.geometry: 80x40+10-10

This makes the Run Window 80 by 40 characters, 10 pixels from the
left edge, and 10 pixels from the bottom of the screen.

Keyboard editing In addition to setting the resources already described, you may want
to modify actions and translations in order to change the default
settings for keyboard editing. Here we document our default settings
and the translations needed to change the Motif defaults.

Default settings By default, these shell-like and Emacs-like keybindings are available
in CodeCenter.

control-a beginning of line

control-e end of line

control-b backward character

control-f forward character

meta-b backward word

meta-f forward word

control-n next line

control-p previous line

control-d delete next character

ccref.book : AR9Xres 334 Mon Jun 5 15:33:25 1995

X resources

334 CodeCenter Reference

In Motif, some windows may use Meta-B and Meta-F as menu
mnemonics, rendering them unavailable in text objects.

Changing Motif
defaults for
keyboard editing

If you are a Motif user and you want to change the default Motif
settings for keyboard editing, you can use the actions and translations
for the OI_entry_field objects shown inTable 29 and for
OI_multi_text objects shown in Table 30.

 For example, to add more emacs keyboard shortcuts, set the
translations for the underlying objects in your X resources file:

CodeCenter*OI_multi_text.Translations: #override \n
 ~Shift ~Meta ~Ctrl <Key>Delete: delete_previous_character()\n
 ~Shift ~Meta ~Ctrl <Key>BackSpace: delete_previous_character()\n

Meta <Key>D: delete_next_word() \n
CodeCenter*OI_entry_field.Translations: #override \n
 ~Shift ~Meta ~Ctrl <Key>Delete: delete_previous_character()\n
 ~Shift ~Meta ~Ctrl <Key>BackSpace: delete_previous_character()\n

Meta <Key>D: delete_next_word() \n

An OI_entry_field object is a region for entering or displaying a single
line of text. Visually, it consists of an optional label followed by the text
entry area. An OI_multi_text object is a viewport onto an underlying
text structure consisting of zero or more lines. You can control the size
of the viewport and manipulate the text displayed in the text object.

control-u delete to beginning of line

control-k delete to end of line

control-w delete previous word

control-a beginning of line

ccref.book : AR9Xres 335 Mon Jun 5 15:33:25 1995

CodeCenter Reference 335

X resources

In Table 29 and Table 30, selection means characters that have been
highlighted and are in the X window selection property, and
start-of-selection means the character position in the OI_entry_field
object in which the selection starts. PRIMARY, SECONDARY and
CLIPBOARD selections are the selections stored in the X properties of
the same names.

Table 29 OI_entry_field Translation Functions

Function Name Description

backward_character() Moves the cursor left one character.

backward_view() Moves the cursor one viewport to the left (if the field is
scrolled).

backward_word() Moves the cursor left one word. A word is delineated
by whitespace.

beginning_of_line() Moves the cursor to the beginning of the entry.

cancel_select() If a selection is in progress using the mouse, deselects
all the currently selected characters and terminates the
selection process.

click_down() Processes button-down event in case click callback is
set. Does not do any selection processing (see
select_start).

click_up() Processes button-up event and dispatches to click
callback if one is set. Does not do any text selection (see
select_end).

copy_clipboard() Copies the currently selected text to the CLIPBOARD
selection.

copy_primary() Inserts the PRIMARY selection at the current insertion
point.

cut_clipboard() Copies the currently selected text to the CLIPBOARD
selection and deletes the PRIMARY selection from its
original source, if possible.

ccref.book : AR9Xres 336 Mon Jun 5 15:33:25 1995

X resources

336 CodeCenter Reference

cut_primary() Inserts the PRIMARY selection at the current insertion
point and deletes the PRIMARY selection from its
original source, if possible.

delete_all_characters() Deletes all characters in the entry.

delete_next_character() Deletes the character to the right of the cursor.

delete_next_word() Deletes from the current insertion point through the
whitespace at the end of the text containing the
insertion point.

delete_previous_character() Deletes the character to the left of the cursor.

delete_previous_word() Deletes from the current insertion point up to, but not
including, the whitespace at the beginning of the text
containing the insertion point.

delete_to_beginning_of_line() Deletes all the characters to the left of the cursor.

delete_to_end_of_line() Deletes all the characters to the right of the cursor.

end_of_line() Moves the cursor to the end of the entry.

extend_start() Moves start-of-selection to the character under the
mouse pointer.

focus_in() Sets input-focus to the object.

focus_out() Gives up input-focus.

forward_character() Moves the cursor right one character.

forward_view() Moves the cursor one viewport to the right (if the field
can be scrolled).

forward_word() Moves the cursor right one word. A word is delineated
by whitespace.

input_character() Inserts character at the cursor position.

insert_mode() Sets the character entry mode to OI_EF_INSERT.

Table 29 OI_entry_field Translation Functions (Continued)

Function Name Description

ccref.book : AR9Xres 337 Mon Jun 5 15:33:25 1995

CodeCenter Reference 337

X resources

insert_selection() Pastes text from the PRIMARY selection at the cursor
position.

key_select() Marks the text from the anchor point to the cursor as
the PRIMARY selection.

move_insertion() Sets the insertion point to the mouse pointer position;
does not clear the current selection if it is in the same
object.

move_selection() If the SECONDARY selection is active for this object,
then copies the SECONDARY selection text to the
cursor location and deletes the original selected text.
Otherwise, if the PRIMARY selection is active for this
object and was set using the mouse, copies the
PRIMARY selection text to the cursor location and
deletes the original selected text.

newline() End of entry. This causes the end-of-entry validation
function to be called. If it returns
OI_EF_ENTRY_CHK_OK, and an object has been
registered via the set_next function, the new object
obtains input-focus. Otherwise, the OI_entry_field
object retains the input-focus.

next_object() Same as newline().

next_tab_group() Transfers the input-focus to the next tab group.

paste_clipboard() Deletes any currently selected text. The contents of the
CLIPBOARD are then inserted in its place. If no text is
currently selected, the contents of the CLIPBOARD are
inserted at the insertion point.

previous_object() Completes the entry as if the Return key had been
pressed and goes to the previous object, if one exists.

previous_tab_group() Transfers the input-focus to the previous tab group.

replace_mode() Sets the character entry mode to OI_EF_REPLACE.

replace_with_default() Replaces the current entry with the default entry.

Table 29 OI_entry_field Translation Functions (Continued)

Function Name Description

ccref.book : AR9Xres 338 Mon Jun 5 15:33:25 1995

X resources

338 CodeCenter Reference

scroll_left() Scrolls the text one full viewport to the left.

scroll_left_edge() Scrolls the text so the extreme left edge is visible.

scroll_right() Scrolls the text one full viewport to the right.

scroll_right_edge() Scrolls the text so the extreme right edge is visible.

secondary_adjust() Extends the selection to the new mouse pointer
position. If Motif is being used, underlines the
selection.

secondary_end() Completes the selection process and saves the selection
in the SECONDARY selection.

secondary_start() Begins selecting text for inclusion in the SECONDARY
selection.

select_adjust() Extends the selection to the mouse pointer location.

select_all() Marks the entire text as the PRIMARY selection.

select_end() Completes the selection process and saves the selection
as the PRIMARY selection. Also, if the time between
press and release is less than 500 milliseconds, calls
click callback if one is registered.

select_start() Begins selecting text for inclusion in the PRIMARY
selection at the mouse pointer location. Moves the
cursor to the pointer position. Saves the time to
determine if a button click occurred.

set_anchor() Sets the anchor for selection at the current insertion
point.

take_focus() Sets the focus to the OI_entry_field object.

toggle_mode() Toggles the character entry mode between
OI_EF_INSERT and OI_EF_REPLACE. The initial
character entry mode is OI_EF_INSERT.

unselect_all() Deselects any currently selected text. Clears the
PRIMARY selection if it is owned by the process.

Table 29 OI_entry_field Translation Functions (Continued)

Function Name Description

ccref.book : AR9Xres 339 Mon Jun 5 15:33:25 1995

CodeCenter Reference 339

X resources

Table 30 OI_multi_text Translation Functions

Function Description

backward_character() Moves the cursor backwards one character. Wraps to the
previous line if necessary. Repositions the text in the
viewport if necessary.

backward_paragraph() Moves the cursor backwards one paragraph. Positions
the cursor at the beginning of the paragraph.
Repositions the text in the viewport if necessary.

backward_word() Moves the cursor backwards one word. Positions the
cursor at the beginning of the word. Repositions the text
in the viewport if necessary.

backward_view() Moves the cursor to the left edge of the viewport. If the
cursor is already at the left edge of the viewport, shifts
the text to display the next view to the left and positions
the cursor at the left edge of the viewport.

beginning_of_file() Moves the cursor to the beginning of the text.
Repositions the text in the viewport if necessary.

beginning_of_line() Moves the cursor to the beginning of the current line.
Repositions the text in the viewport if necessary.

beginning_of_pane() Moves the cursor to the position in front of the first
visible character in the first line currently visible in the
viewport.

cancel_select() Cancels any selection that is in progress. Applies only
while the mouse button is down.

click_down() Starts timing for a mouse button click.

click_up() Ends mouse button click timing and makes click
callback.

copy_clipboard() Copies the PRIMARY selection (the currently selected
text) to the CLIPBOARD selection.

copy_primary() Inserts contents of the PRIMARY selection at the cursor
location.

cut_clipboard() Copies the PRIMARY selection to the CLIPBOARD
selection, then deletes the PRIMARY selection.

ccref.book : AR9Xres 340 Mon Jun 5 15:33:25 1995

X resources

340 CodeCenter Reference

cut_primary() Inserts the contents of the PRIMARY selection at the
cursor location, then deletes the PRIMARY selection.

delete_all_characters() Deletes all the characters on the current line (the one the
cursor is in), but leaves an empty line. Positions the
cursor at the beginning of the line.

delete_next_character() If the cursor is at the end of the line, joins the following
line with the current line; otherwise, deletes the
character to the right of the cursor and closes up the
space.

delete_next_word() If the cursor is at the end of the line, joins the following
line with the current line; otherwise, deletes the word to
the right of the cursor and closes up the space.

delete_previous_character() If the cursor is at the beginning of the line, joins the
current line with the previous line; otherwise, deletes
the character to the left of the cursor and closes up the
space.

delete_previous_word() If the cursor is at the beginning of the line, joins the
current line with the previous line; otherwise, deletes
the word to the left of the cursor and closes up the space.

delete_this_line() Deletes the line the cursor is in and closes up the space.

delete_to_beginning_of_line() Deletes from the beginning of the current line to the
cursor position and closes up the space.

delete_to_end_of_line() Deletes from the cursor position to the end of the current
line and closes up the space.

end_of_file() Moves the cursor to the end of the text. Repositions the
text in the viewport if necessary.

end_of_line() Moves the cursor to the end of the current line.
Repositions the text in the viewport if necessary.

end_of_pane() Moves the cursor to the position after the last character
on the last line currently visible.

Table 30 OI_multi_text Translation Functions (Continued)

Function Description

ccref.book : AR9Xres 341 Mon Jun 5 15:33:25 1995

CodeCenter Reference 341

X resources

extend_start() Begins a PRIMARY selection as for select_start, but
initially includes all text from the mouse pointer to the
cursor.

focus_in() Paints focus indicators to indicate that the object has the
input-focus.

focus_out() Paints focus indicators to indicate that the object does
not have the input-focus.

forward_character() Moves the cursor forward one character. Wraps to the
next line if necessary. Repositions the text in the
viewport if necessary.

forward_paragraph() Moves the cursor forward one paragraph. Positions the
cursor at the beginning of the paragraph. Repositions
the text in the viewport if necessary.

forward_word() Moves the cursor forward one word. Positions the
cursor at the beginning of the word. Repositions the text
in the viewport if necessary.

forward_view() Moves the cursor to the right edge of the viewport. If the
cursor is already at the right edge of the viewport, shifts
the text to display the next view to the right and position
the cursor at the right edge of the viewport.

input_character() Inserts the character at the current cursor position.
Works only for key events.

input_convert() Works only for key events. Passes the key event to the
language server for conversion. When the server is done
converting (this may take several key events), inserts the
result at the cursor position.

insert_mode() Puts the object in insert mode. This means that any
characters inserted are placed at the current cursor
location and are inserted between the two adjacent
characters.

Table 30 OI_multi_text Translation Functions (Continued)

Function Description

ccref.book : AR9Xres 342 Mon Jun 5 15:33:25 1995

X resources

342 CodeCenter Reference

insert_selection(arg) Inserts text from an X selection at the cursor position. If
no arguments are present, the PRIMARY selection is
used. Otherwise, arg is used as the name of the selection
to use.

insert_string(arg) Inserts the string arg at the cursor location. Use “\n” to
indicate newlines and the Tab key (not “\t”) to indicate
tabs when specifying the string arg.

key_select() Puts all the text between the point marked by
set_anchor to the current cursor location in the
PRIMARY selection.

move_insertion() Moves the cursor to the location under the mouse
pointer without clearing the PRIMARY selection.

move_selection() If the SECONDARY selection is active for this object,
then copies the SECONDARY selection text to the
cursor location and deletes the original selected text.
Otherwise, if the PRIMARY selection is active for this
object and was set using the mouse, copies the
PRIMARY selection text to the cursor location and
deletes the original selected text.

newline() If an end-of-entry callback is registered, calls it. If no
end-of-entry callback exists or if the end-of-entry
callback returned OI_mt_entry_chk_ok, then inserts a
new line after the line the cursor is in, and positions the
cursor at the beginning of the new line.

next_line() Moves the cursor to the next line. Repositions the text in
the viewport if necessary.

next_object() Sets the input-focus to the next object in the focus chain
(if any).

next_tab_group() Sets the input-focus to the focus object in the next tab
group (if any).

next_page() Scrolls the text so that the next page towards the end of
the text becomes visible.

Table 30 OI_multi_text Translation Functions (Continued)

Function Description

ccref.book : AR9Xres 343 Mon Jun 5 15:33:25 1995

CodeCenter Reference 343

X resources

open_next_line() Inserts a blank line following the line containing the
cursor. Rearranges the text accordingly.

open_previous_line() Inserts a blank line previous to the line containing the
cursor. Rearranges the text accordingly.

paste_clipboard() Inserts the text from the CLIPBOARD selection at the
cursor location.

previous_line() Moves the cursor to the previous line. Repositions the
text in the viewport if necessary.

previous_object() Sets the input-focus to the previous object in the focus
chain.

previous_tab_group() Sets the input-focus to the focus object in the previous
tab group, if any.

previous_page() Scrolls the text so that the previous page towards the
beginning of the text becomes visible.

process_return() If an end-of-entry callback is registered, calls it. If no
end-of-entry callback exists or if the end-of-entry
callback returned OI_mt_entry_chk_ok, then positions
the cursor at the beginning of the next line. If there is no
next line (that is, the cursor is in the last line of text),
inserts a new line at the end of the text and positions the
cursor there.

replace_mode() Puts the object in replace mode. This means that any
characters input replace the character to the right of the
current cursor location. Any characters input at the end
of the line are appended to the line.

scroll_bottom() Scrolls to the last line of the text.

scroll_down() Scrolls one full viewport towards the end of the text.

scroll_left() Scrolls one full viewport towards the left of the text.

scroll_left_edge() Scrolls to the first character in the line.

scroll_right() Scrolls one full viewport towards the right of the text.

Table 30 OI_multi_text Translation Functions (Continued)

Function Description

ccref.book : AR9Xres 344 Mon Jun 5 15:33:25 1995

X resources

344 CodeCenter Reference

scroll_right_edge() Scrolls to the last character position in the object. This
may be well past the last character in the current line.

scroll_top() Scrolls to the first line of the text.

scroll_up() Scrolls one full viewport towards the beginning of the
text.

secondary_adjust() Adjusts the SECONDARY selection to include all text
from the secondary_start position to the position under
the mouse pointer.

secondary_end() Completes the selection process and saves the selection
as the SECONDARY selection. Also processes
button-up event and calls click callback if one is
registered.

secondary_start() Begins selecting text at the current location under the
pointer for the SECONDARY selection. Underlines the
selected text.

select_adjust() Adjusts the PRIMARY selection to include all text from
the select_start position to the position under the
pointer.

select_all() Puts the entire text in the PRIMARY selection.
Highlights the selection.

select_end() Completes the selection process and saves the selection
as the PRIMARY selection. Also processes button-up
event and calls click callback if one is registered.

select_line() Selects the entire current line as the PRIMARY selection.

select_start() Begins selecting text at the mouse pointer location for
the PRIMARY selection. Highlights the selection. Also
processes button-down event in case click callbacks are
registered.

set_anchor() Marks the current cursor location as the start for a
keyboard-defined selection.

Table 30 OI_multi_text Translation Functions (Continued)

Function Description

ccref.book : AR9Xres 345 Mon Jun 5 15:33:25 1995

CodeCenter Reference 345

X resources

start_input_conversion() Sends all subsequent characters to the input server for
conversion.

stop_input_conversion() Treats subsequent characters normally (quits sending
characters to the input server).

toggle_mode() If the current mode is insert mode, changes it to replace
mode. If the current mode is replace mode, changes it to
insert mode.

take_focus() Sets the focus to the OI_multi_text object.

unselect_all() Unselects any currently selected text.

Table 30 OI_multi_text Translation Functions (Continued)

Function Description

ccref.book : AR9Xres 346 Mon Jun 5 15:33:25 1995

X resources

346 CodeCenter Reference

Using component
and object names

When you specify a resource name, you can use object names as well
as application names. Furthermore, since CodeCenter is built using
the OI (Object Interface) toolkit, its object names include some OI
names as well as names of components specific to CodeCenter. See
Table 31 for a list of object and component names that you can use
when you specify CodeCenter resources.

Table 31 Component and Object Names Used to Set X Resources

General Area of User
Interface

Specific Component of Interface Name of Resource

Main Window Primary Window topApp

Source Panel sourcePanel

Workspace workspacePanel

Breakpoint Icon BreakGlyph

Action Icon ActionGlyph

Breakpoint Location Arrow ArrowGlyph

Scope Location Arrow HArrowGlyph

Data Browser Primary Window DataBrowser

Background Canvas layoutMgr

Data Items dataCell

Resize Corners ResizeLL (lower left)
ResizeLR (lower right)

Pointer Follow Boxes ReferenceGlyph

Cross-Reference
Browser

Primary Window XrefBrowser

Background Canvas layoutMgr

Xref Nodes SCrossCell

Follow Boxes ReferenceGlyph

ccref.book : AR9Xres 347 Mon Jun 5 15:33:25 1995

CodeCenter Reference 347

X resources

Error Browser Primary Window errBrowser

Options Browser Primary Window optBrowser

Project Browser Primary Window projectWindow

Thread Browser Primary Window threadBrowser

OI objects Entry Field OI_entry_field

Entry Field Label OI_entry_field.label

Multi Text OI_multi_text

Scroll Text OI_scroll_text

Sequenced Entry Field OI_seq_entry_field

Seq Entry Field Label OI_seq_entry_field.label

Abbreviated Menu OI_abbr_menu

Button Menu OI_button_menu

Menu Cell OI_menu_cell

Exclusive Check Menu OI_excl_check_menu

Exclusive Rect Menu OI_excl_rect_menu

Poly Check Menu OI_poly_check_menu

Poly Rect Menu OI_poly_rect_menu

Scroll Menu OI_scroll_menu

Static Text OI_static_text

Table 31 Component and Object Names Used to Set X Resources (Continued)

General Area of User
Interface

Specific Component of Interface Name of Resource

ccref.book : AR9Xres 348 Mon Jun 5 15:33:25 1995

X resources

348 CodeCenter Reference

Examples of
changing fonts in
GUI components

Here are specific examples for changing the fonts of the text in some
important components of the GUI:

CodeCenter*DataBrowser*layoutMgr*font: 5x8
CodeCenter*XrefBrowser*layoutMgr*font: 5x8
CodeCenter*workspacePanel*font: 5x8
CodeCenter*sourcePanel*font: 5x8

Examples of
using OI
components

In addition to the general names listed in Table 31, OI adds some
additional names you can use to specify the scope of a resource
setting. These names are part of the OI resource stack, a list of prefixes
that tells CodeCenter to which objects, classes, or applications it
should apply a resource. This list has a default hierarchy of elements,
which is shown in Table 32. They are listed from most general to least
general, from top to bottom.

The most useful of the OI resources are probably the following:

• color vs. monochrome

• openlook vs. openlook3d vs. motif

For instance, you can set a resource only on a color machine as follows:

CodeCenter*color*Background: red

Table 32 Elements of the OI Resource Stack Used to Specify X Resources

Instance Class

Application name Application class

oi OI

color or monochrome Color or Monochrome

screen number (example: screen0) Screen number (example: Screen0)

language (example: defaultLanguage) Language (example: DefaultLanguage)

openlook2d, openlook3d, or motif Openlook or Motif

object hierarchies (instance names) Object hierarchies (class names)

ccref.book : AR9Xres 349 Mon Jun 5 15:33:25 1995

CodeCenter Reference 349

X resources

Similarly, if you want to specify the background resource only on a
color machine in Motif, you could say:

CodeCenter*color*motif*Background: red

Defining
GUI-specific
resources

If you want to define CodeCenter resources differently for OPEN
LOOK vs. Motif, you can specify them uniquely by using the
resources shown in Table 32. The following syntax sets the Resource to
Value for the Motif model:

CodeCenter*motif*Resource : Value

The following syntax sets the Resource to Value for the OPEN LOOK
2D model. (2D is typically used on monochrome machines.)

CodeCenter*openlook2d*Resource : Value

The following syntax sets the Resource to Value for the OPEN LOOK
3D model. (3D is typically used on color machines.)

CodeCenter*openlook3d*Resource : Value

For instance, to set all entry fields’ fonts to 8x10 for the Motif model,
but make them 12x14 for OPEN LOOK3D, specify these two
resources:

CodeCenter*motif*OI_entry_field.font: 8x10
CodeCenter*openlook3d*OI_entry_field.font: 12x14

To set the entry fields’ background to red for all models of
CodeCenter:

CodeCenter*OI_entry_field.background: red

Setting resources
for scrolling text
objects

You can set resources for scrolling text objects such as the Source area.
For example, you can set the background color of all scrolling text
objects to yellow and the foreground to blue with this syntax:

CodeCenter*Color*OI_scroll_text.@text.Background:Yellow
CodeCenter*Color*OI_scroll_text.@text.Foreground:Blue

You can also specify colors in the Workspace with this resource:

ObjectCenter*Color*Workspace.@text.Background: Azure
ObjectCenter*Color*Workspace.@text.Foreground: Ivory

ccref.book : AR9Xres 350 Mon Jun 5 15:33:25 1995

X resources

350 CodeCenter Reference

User-defined
commands

CodeCenter provides two ways to define your own commands:

• Using the User Defined dialog box from the CodeCenter menu
on the Main Window.

• Using X11 resources to add commands to the User Defined
menu in the Project Browser.

NOTE The commands that you define using X resources are
different from the commands that you define using the
User Defined dialog box. In general, we recommend
that you use the User Defined dialog box to create
commands, rather than using X resources. Commands
created using the GUI are stored in your .cctruscmd
file in your home directory. See the CodeCenter User’s
Guide for information about the User Defined
Commands menu.

In this section we describe how to use X11 resources to define your
own commands.

The CodeCenter Project Browser allows you to specify 20 user-defined
commands using X11 resources. Their internal names are UserCmd1
through UserCmd20. CodeCenter uses the internal name to look up
the resources that describe each command. You can name the
commands whatever you want to appear on the pulldown menu.

Examples of
user-defined
commands

To specify a user-defined command, you generally have to write only
two lines per command, one for the label and another for the
command.

For instance, the following two lines in a CodeCenter app-defaults file
will create a user-defined button labeled “Find Locked Files” that runs
listlocks:

*ProjectBrowser.UserCmd1.label: Find Locked Files
*ProjectBrowser.UserCmd1.command: listlocks

If you do not have a CodeCenter app-defaults file and you want to put
this in your .Xdefaults file instead, start each line with “CodeCenter”.
For instance:

CodeCenter*ProjectBrowser.UserCmd1...

ccref.book : AR9Xres 351 Mon Jun 5 15:33:25 1995

CodeCenter Reference 351

X resources

The next two lines will create a second button labeled “List Files” that
will run ls -lg on all of the selected files:

*ProjectBrowser.UserCmd2.label: List Files
*ProjectBrowser.UserCmd2.command: ls -lg $files

And here is one that will run ls -lg on all of the selected sources
instead:

*ProjectBrowser.UserCmd3.label: List Sources
*ProjectBrowser.UserCmd3.command: ls -lg $sources

The next example runs emacs on all of the selected sources. Note that
you can use the useTerminalEmulator resource to avoid running an
extra xterm:

*ProjectBrowser.UserCmd4.label: Edit Sources
*ProjectBrowser.UserCmd4.command: emacs $sources
*ProjectBrowser.UserCmd4.useTerminalEmulator: False

The following example runs listlocks to find all the locked files, and
waits until it is done before allowing the Project Browser to go on. The
example also puts a menu separator bar just before this item.

*ProjectBrowser.UserCmd5.label: List Locked Files
*ProjectBrowser.UserCmd5.command: listlocks
*ProjectBrowser.UserCmd5.waitUntilDone: True
*ProjectBrowser.UserCmd5.addSeparator: True

ccref.book : AR9Xres 352 Mon Jun 5 15:33:25 1995

X resources

352 CodeCenter Reference

X resources for
user-defined
commands

See Table 33 for a description of the resources to use when defining
your own commands.

Table 33 X Resources for User-Defined Commands

Resource Class Resource Name Type

Label label String

This is the string shown in the pulldown menu item for this
command. You should specify this item for each command, but if
you do not, it defaults to the value of the command line itself.

 Command command String

This is the command line you want to execute when the menu item
is selected. The text you supply can include any of the special words
listed in Table 34 on page 354.

 WaitUntilDone waitUntilDone Boolean

A value of True means the Project Browser should wait until the
command has finished before continuing. A value of False means
the Project Browser will spawn the specified command and then
continue immediately. The default value is False, so you only need
to specify this resource if you want the Project Browser to wait.

UseTerminalEmulator useTerminalEmulator Boolean

A value of True means the command must be run in a terminal
emulator window, while a value of False means the command either
does not require a window, or runs in its own window. The default
value is True, so you only need to specify this item if you want to run
a program like emacs that opens its own window.

ccref.book : AR9Xres 353 Mon Jun 5 15:33:25 1995

CodeCenter Reference 353

X resources

TerminalEmulator terminalEmulator String

This string identifies the terminal emulator to use when running the
program. The terminal emulator specification may include the
following special words:

$program Replaced with the pathname of a shell
script that is to be executed. This script
contains the full text of the expanded
command line.

$command Replaced with the text of the command
label as shown in the menu item. This
might be used to set the window title of
the terminal emulator, for example.

If the $program string is not found in the terminal emulator
specification, then the Project Browser automatically appends the
name of the shell script to the end of the string. If you do not specify
a value for TerminalEmulator, a suitable default value will be used,
so you only need to specify this item if you want a custom terminal
emulator applied to a particular command. The default value for the
terminal emulator is:

clxterm -T $command -n $command -sb -sl 1000 -e

You can change the default value by setting the following resource:

CodeCenter*ProjectBrowser.DefaultTerminalEmulator

 AddSeparator addSeparator Boolean

 A value of True means insert a menu separator immediately before
this item in the pulldown menu. A value of False means do not
insert a separator. This is provided so you can build menus that are
divided into categories of related commands, with separators
between them. The default value is False, so you only need to
specify this item if you want a separator.

Table 33 X Resources for User-Defined Commands (Continued)

Resource Class Resource Name Type

ccref.book : AR9Xres 354 Mon Jun 5 15:33:25 1995

X resources

354 CodeCenter Reference

See Table 34 for a list of the special words you can use in a command
Resource.

Table 34 Special Words Used in the command Resource

Area of Interface Special Word What Replaces the Special Word

Project Browser $pwd CodeCenter’s current working directory.

$files A space-separated list of the full pathnames for
all the files that are currently selected in the
Project Browser.

$sources Like $files, except that the names of object files
are replaced with the full pathnames of the
corresponding source files, if the names are
known. If an object file is selected for which the
source file is unknown, nothing is generated for
that file.

$libraries Replaced with a space-separated list of the full
pathnames for all the libraries that are selected
in the Project Browser.

$command Replaced with the text of the command label as
shown in the menu item. When you execute a
user-defined command, the command string is
expanded into a shell script, which is then run
using execvp, so your PATH and environment
variable settings are available from within
user-defined commands.

Main Window $filename The filename of the file in the Source area,
relative to CodeCenter’s current working
directory.

$filepath The absolute filename of the file in the Source
area.

$first_selected_char The position of the first character selected on
$first_selected_line. Character positions are
numbered beginning with 1, and tabs are
considered to be a single character. If no text is
selected in the Source area, this keyword
returns 0.

ccref.book : AR9Xres 355 Mon Jun 5 15:33:25 1995

CodeCenter Reference 355

X resources

$first_selected_line Starting line number of the Source area’s current
text selection. Lines are numbered beginning
with 1. If no text is selected in the Source area,
this keyword returns 0.

$last_selected_char The position of the last character selected on
$last_selected_line. Character positions are
numbered beginning with 1, and tabs are
considered to be a single character. If no text is
selected in the Source area, this keyword returns
0.

$last_selected_line Ending line number of the Source area’s current
text selection. Lines are numbered beginning
with 1. If no text is selected in the Source area,
this keyword returns 0.

Current selection $selection Replaced with the current contents of the X11
PRIMARY selection, interpreted as a string. If
the current selection is not available or is empty,
$selection is replaced with an empty string.

Clipboard $clipboard Replaced with the current contents of the X11
CLIPBOARD selection. If the current selection
is not available or is empty, $clipboard is
replaced with an empty string.

Table 34 Special Words Used in the command Resource (Continued)

Area of Interface Special Word What Replaces the Special Word

ccref.book : AR9Xres 356 Mon Jun 5 15:33:25 1995

X resources

356 CodeCenter Reference

Revision control
systems

To support simple revision control systems, CodeCenter defines four
additional user-defined commands that have standard names. The
internal names for these commands are as follows: CheckIn,
CheckOut, FileHistory, and FileDiffs.

They are exactly like the user-defined commands described in the
preceding section, and they read all of the same resources, but they
have standard values for the label resource so that in general you only
have to specify the command-line text.

For instance, to specify that you want your checkin command to be as
follows:

ci -l

meaning RCS check in, then check out locked, you can say:

*ProjectBrowser.CheckIn.command: ci -l $sources

As a result, a button labeled “Check Files In” will appear. When you
select this button, CodeCenter issues the ci -l files command.

The standard labels are “Check Files In”, “Check Files Out”, “Show
File Histories”, and “Show File Diffs”. You can change them by using
the standard label resource. For instance, the following line:

*ProjectBrowser.CheckIn.label: Check In And Reacquire

changes the label of the CheckIn button.

Higher-level support
for rcs, sccs, and
reserve/replace

For convenience, to eliminate the need to specify four command
settings for the four standard buttons, there is a single resource you
can set that tells the Project Browser to use standard values for the rcs
and sccs commands.

The resource is named *ProjectBrowser.RevisionControl, its type is
String, and its default value is sccs. You can change the default to rcs
or None.

ccref.book : AR9Xres 357 Mon Jun 5 15:33:25 1995

CodeCenter Reference 357

X resources

See Table 35 for a list of the values for the four standard revision
control commands according to the value of this resource.

For example, you can edit your .Xdefaults file, adding one line that
says:

CodeCenter*ProjectBrowser.RevisionControl: rcs

to enable the user-defined commands for rcs; they will appear on the
User Defined menu.

NOTE If you want to set up your own revision control
commands, set the default value of the
ProjectBrowser.RevisionControl resource to None. If
you do so, and you have no other commands defined,
the User Defined menu is removed.Also, the Project
Browser support for sccs assumes you have a sccs
wrapper program. If you don’t have one, you may be
able to get an sccs wrapper program free from BSD
sources off the network (uunet.uu.net).

Table 35 Values for Revision Control Commands Using
*ProjectBrowser.RevisionControl

Revision
Control
Command

Value if Resource Set to
rcs

Value if Resource Set to
sccs

checkout co -l $sources sccs edit $sources

checkin ci -u $sources sccs delget $sources

history rlog $sources sccs prs $sources

diff rcsdiff -c $sources sccs diffs -C $sources

ccref.book : AR9Xres 358 Mon Jun 5 15:33:25 1995

X resources

358 CodeCenter Reference

X Windows and
customization for
DynaText

The DynaText online documentation browser is designed to run with
any ICCCM-compliant window manager and with any X server. Thus,
it should display on most X terminals or on OpenWindows.

Font locations The X Windows system in general looks for its fonts in specific
locations and in locations you can specify. See your X documentation
for details. The DynaText system, built on top of X, will look in the
same places. In addition, DynaText uses a set of its own fonts. These
fonts are located in the following directory:

/path_to/CenterLine/doc/data/Xplatform/fonts

The word platform designates your platform’ s particular
implementation of X, such as 11 for X11.

DynaText ships only a special font for the Table of Contents view (the
“annotation” font for characters like checkmark) and fonts for
equation rendering. If for some reason the annotation font cannot be
found, the Table of Contents view will simply use other symbols.

To make sure your X terminal or display station has access to the
DynaText fonts, you can mount the fonts directory using the UNIX
mount command. If you cannot mount this remote directory on your
local machine, you must install the necessary fonts. Use whatever
technique is available on your display station to install fonts. The BDF
forms, the basic X ASCII font format, can be found in

 /path_to/CenterLine/doc/data/X11/fonts

Most X servers will either read these fonts directly, or provide a
converter from BDF to their proprietary font format.

Font selection Font specification in DynaText deviates a bit from the X paradigm.
Although font specifications in Xdefaults are handled in the standard
manner, font specifications in stylesheets deviate from the standard X
mechanisms. DynaText allows for the specification of fonts by their
components: family, weight, slant, and size.

 One tool you can use when choosing fonts is called xfontsel, provided
on the MIT core distribution tape. This program allows you to select
and view fonts by their components. For example, you can see all of
the available Helvetica-Bold sizes, and view each one individually.

ccref.book : AR9Xres 359 Mon Jun 5 15:33:25 1995

CodeCenter Reference 359

X resources

Font sizes Font sizes under X are a function of several factors: your machine's
screen resolution, the order of font directory names in your font search
path, whether the font exists at the size specified, whether you are
running X11R5 or not, and whether you specify outline fonts or not.

X application
defaults

 All X application defaults for the DynaText system are stored in the
defaults subdirectory of the following directory:

/path_to/CenterLine/doc/data/Xplatform

For example, if you are running the Motif version, your X application
defaults are stored in this directory:

/path_to/CenterLine/doc/data/X11/defaults

Screen
resolution

Prior to X11R5, all X fonts were raster fonts that
were created at each point size for each screen
resolution. For example, there is commonly a
10-point times font for a 75-dpi screen and a
10-point font for a 100-dpi screen. X uses the
closest approximation for screens of different
resolutions, such as 85-dpi.

Font path Even if you have the 100-dpi fonts at all desired
point sizes, if the 75-dpi fonts precede the 100-dpi
fonts in your font path, X will use the 75-dpi fonts.
For resetting your font path to the desired order,
see the X manual page for the xset command.

Nonexistent
point sizes

If the given font does not exist at the specified
point size, X falls back on its default font, usually
courier. X requires that you use an existing point
size in the font.

Proportional
fonts

At X11R5, you can use outline fonts, if they exist
on your system and on your target systems. Using
outline fonts solves the problem of nonexistent
sizes, as the X server will construct the font at the
appropriate size. You must, however, check that
using nonstandard sizes does not adversely
impact rendering performance. X11R5 also allows
you to dedicate one machine on your network as
a font server. See the X11R5 documentation for the
fontserver command.

ccref.book : AR9Xres 360 Mon Jun 5 15:33:25 1995

X resources

360 CodeCenter Reference

Table 36 lists the appropriate settings for your system's user interface.

One group of files in the following directory concerns the DynaText
Browser application:

/path_to/CenterLine/doc/data/Xplatform/defaults/C

The file Dtext.color in this directory contains the color defaults;
Dtext.mono contains the monochrome defaults. Dtext is a symbolic
link to the one currently in effect.

Feel free to change any X settings you wish. Remember, an X
application must apply settings in two steps:

1 Apply the application defaults from

/path_to/CenterLine/doc/data/Xplatform/defaults/C

2 Apply any defaults from your own .Xdefaults file.

Thus, you can modify defaults by changing the system defaults or
your .Xdefaults. See Table 37 more information on the particular
settings available.

Colors Often when working with DynaText you will need to select colors.
This might occur when customizing your X defaults.

If you are running the Motif version, the colors available to you are
stored in this file:

 /usr/lib/X11/rgb.txt

Table 36 Settings for X Implementations

X implementation Setting

Motif user interface with MIT fonts X11

Motif user interface with OpenWindows fonts
(This setting used to be called Xweird.)

Xmol

Motif user interface with HP fonts Xhp

Motif user interface with IBM fonts Xibm

ccref.book : AR9Xres 361 Mon Jun 5 15:33:25 1995

CodeCenter Reference 361

X resources

In addition, you can specify colors using a triplet of rgb (red, green,
and blue) values, preceded by a pound sign. For example #aabb00
specifies the color whose red value is hex aa, blue value is hex bb, and
green value is hex 00.

Any color specification in DynaText can be specified in either of these
two ways: using a string from /usr/lib/X11/rgb.txt, or using an rgb
triplet.

X resource names Table 37 contains examples of DynaText settings. These examples
introduce you to some of the named X objects for which you can
change resources. If you wish, you can experiment with properties
other than geometry. See the following file for documentation of other
properties:

/path_to/CenterLine/doc/data/Xplatform/defaults/C/Dtext

Consult your X Window System documentation for full details on the
syntax of properties and their values.

Table 37 DynaText Settings and Descriptions

Setting Description

*dynatext.geometry: geometry of the main library window

 *dynatext*foreground: foreground of the main library window

*dynatext*background: background of the main library window

*dialog*foreground: foreground of dialog boxes

*dialog*background: background of dialog boxes

*menu_pane*foreground: foreground of popup menus

*menu_pane*background: background of popup menus

*note.geometry: geometry of annotation note

*note*foreground: foreground of annotation notes

*note*background: background of annotation notes

*log.geometry: geometry of message log

*log*background: background of message log

ccref.book : AR9Xres 362 Mon Jun 5 15:33:25 1995

X resources

362 CodeCenter Reference

*log*foreground: foreground of message log

*annotwin.geometry: geometry of annotation manager

*annotwin*foreground: foreground of annotation manager

*annotwin*background: background of annotation manager

*history.geometry: geometry of history window

*history*foreground: foreground of history window

*history*background: background of history window

*raster.geometry: geometry of raster images

*vector.geometry: geometry of vector images

*ftwin_main*toc_scrollwin.height: height of Table of Contents pane in fulltext window

*ftwin_main*toc_scrollwin.width: width of Table of Contents pane in fulltext window

*name_v.geometry: geometry of fulltext view with name name when
orientation is top-bottom

*name_h*foreground: foreground of fulltext view with name name when
orientation is left-right

*name_v*background: background of fulltext view with name name when
orientation is top-bottom

*name_h*background: background of fulltext view with name name when
orientation is left-right

Table 37 DynaText Settings and Descriptions (Continued)

Setting Description

ccref.book : AppA 363 Mon Jun 5 15:33:25 1995

Appendix A GNU General
Public License

This appendix contains the GNU General Public
License, which applies to the CenterLine GNU
Debugger (pdm) and the CenterLine C
preprocessor (clpp).

ccref.book : AppA 364 Mon Jun 5 15:33:25 1995

ccref.book : AppA 365 Mon Jun 5 15:33:25 1995

CodeCenter Reference 365

GNU General Public License
GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass
Ave, Cambridge, MA 02139, USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors’ reputations.

ccref.book : AppA 366 Mon Jun 5 15:33:25 1995

366 CodeCenter Reference

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION AND MODIFICATION

1 This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running
the Program). Whether that is true depends on what the
Program does.

2 You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence
of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in
exchange for a fee.

3 You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and
copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these
conditions:

ccref.book : AppA 367 Mon Jun 5 15:33:25 1995

CodeCenter Reference 367

 a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program or
any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

 c) If the modified program normally reads commands
interactively when run, you must cause it, when started running
for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement,
your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is
to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4 You may copy and distribute the Program (or a work based on
it, under Section 2) in object code or executable form under the
terms of Sections 1 and 2 above provided that you also do one of
the following:

ccref.book : AppA 368 Mon Jun 5 15:33:25 1995

368 CodeCenter Reference

 a) Accompany it with the complete corresponding
machine-readable source code, which must be distributed under
the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the
offer to distribute corresponding source code. (This alternative
is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the
work for making modifications to it. For an executable work,
complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the
executable. However, as a special exception, the source code
distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5 You may not copy, modify, sublicense, or distribute the
Program except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies,
or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full
compliance.

6 You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works. These

ccref.book : AppA 369 Mon Jun 5 15:33:25 1995

CodeCenter Reference 369

actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based
on it.

7 Each time you redistribute the Program (or any work based on
the Program), the recipient automatically receives a license from
the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8 If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have
made generous contributions to the wide range of software
distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is
believed to be a consequence of the rest of this License.

ccref.book : AppA 370 Mon Jun 5 15:33:25 1995

370 CodeCenter Reference

9 If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

10 The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which
applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If
the Program does not specify a version number of this License,
you may choose any version ever published by the Free
Software Foundation.

11 If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to
the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the
free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

12 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU

ccref.book : AppA 371 Mon Jun 5 15:33:25 1995

CodeCenter Reference 371

ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

13 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW
OR AGREED TO IN WRITING WILL ANY COPYRIGHT
HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Applying These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey
the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

ONE LINE TO GIVE THE PROGRAM’S NAME AND AN IDEA OF WHAT IT DOES
Copyright (C) 19YY NAME OF AUTHOR

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

ccref.book : AppA 372 Mon Jun 5 15:33:25 1995

372 CodeCenter Reference

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome to
redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a “copyright disclaimer” for the program,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

SIGNATURE OF TY COON, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

ccref.book : combinedIX.doc 373 Mon Jun 5 15:33:25 1995

Index

This index covers the CodeCenter User’s Guide
(page numbers prefaced with U) and the
CodeCenter Reference (page numbers prefaced
with R).

ccref.book : combinedIX.doc 374 Mon Jun 5 15:33:25 1995

ccref.book : combinedIX.doc 375 Mon Jun 5 15:33:25 1995

CodeCenter Reference 375

Index

Index

Symbols

character
in makefiles R-163
in preprocessor directives R-14

character in Workspace R-120, R-308
#$ characters in Workspace R-309, R-310
#> redirection character in Workspace R-120,

R-313
#>> redirection character in Workspace R-313
#line directives

how used by CodeCenter R-215
ignoring R-187

#-tab characters used to specify CL targets in
makefiles R-163

+> prompt in Workspace R-316
@ character, in CL targets R-167
\ character

in CL targets R-167
with arguments to main() R-236

\" characters, in CL targets R-167
‘ (accent grave) R-314

A

a.out
loading a core file U-85
loading as a target U-85
specifying for targeting U-143
targeting an U-140

accelerator key R-326
accelerators

in Source panel U-166
accent grave R-314
accessing

symbol information R-36
uninitialized memory R-127

action command U-207, R-3

action symbol
in Source area U-113

actions
definition of in Ascii CodeCenter U-207
deleting U-119, R-96
examining U-118
and functions defined in the Workspace R-5
listing R-258
in object code U-109, U-210
setting U-207, R-3, R-298
setting breakpoints U-112, U-114
setting conditional U-116
setting in Ascii CodeCenter U-207, U-208
setting in object code R-6
specifying to execute at every line of program

U-208
addresses

displaying information about R-123
name, size, and type of object in U-167
setting breakpoints on R-266
setting breakpoints on in Ascii CodeCenter

U-207
alias command R-8
aliases

created at startup U-38
creating U-38
customizing Workspace commands U-185
default R-8
defining in startup files U-172
removing R-284
seeing all defined U-38

ansi option U-81, R-12, R-184
ANSI standard C R-12

conformance with R-12, R-184
conventions used even when in K&R mode

R-14
default compiler configurations R-78
tip for loading libraries and #include files

R-154
API, CenterLine R-32
architecture, CodeCenter’s open, integrated U-5
ARGSUSED comment U-188, R-21

ccref.book : combinedIX.doc 376 Mon Jun 5 15:33:25 1995

Index

376 CodeCenter Reference

arguments
clearing, with run R-239
new, with rerun R-236
retaining, with run R-239
spaces in R-242
to command-line switches U-26

argv[0], setting R-241
array index errors R-128
arrow keys

bound to functions R-137
using in Workspace R-312

-ascii (command-line switch) U-25, R-65, R-66,
R-68

Ascii CodeCenter U-10, U-193
accessing U-198
checking load-time errors U-200
checking load-tme warnings U-200
choices in handling

load-time errors U-201
load-time warnings U-200
run-time errors U-203

deleting actions, breakpoints, tracing U-210
differences in use to GUI access U-196
examining actions, breakpoints, tracing

U-210
interactive debugging commands U-205
invoking editor from U-198
object code U-210
project management U-199
quitting U-199
reason to use U-195
responses to the More prompt R-143
run-time error handling in U-202
same functionality as with GUI U-196
setting

actions U-207
conditional actions U-208

setting breakpoints
in shared libraries U-206
in user functions U-206
on addresses U-207

suppressing linking messages U-210, R-140

suspending to return to shell U-199
switching between debugging modes U-198
tracing execution U-209
viewing a project U-199
viewing definitions in loaded files U-199
Workspace in U-195

-ascii switch to contents command R-83
assign command R-17
attach command R-17
attaching, to processes R-17, R-84
auto_compile option R-184
automatic aggregates R-79
automatic variables, displaying U-167

B

background, X resource R-349
-background (command-line switch) R-69
backquote R-314
backslash character (\)

with arguments to main() R-236
batch_load option U-202, R-184
batch_run option R-184
beginning a session U-11
-bg (command-line switch) R-69
bindings, customizing key bindings U-189
bitfields R-79
blocks, specifying in Workspace U-134, R-319
Bourne subshell, executing U-38, R-250
break levels U-120

continuing from U-124
continuing from a run-time error U-125
examining state of your program at U-124
how identified U-123
multiple U-123
resetting from U-125
returning to previous R-237
what you can do in them U-120
when generated U-120

ccref.book : combinedIX.doc 377 Mon Jun 5 15:33:25 1995

CodeCenter Reference 377

Index

break location
definition of U-122
displaying U-128, R-302

breakpoints
conditional, setting U-116
deleting U-119, R-96
examining U-118
in library functions U-111
in object code U-109, U-210
listing R-258
setting U-109

in machine code R-266
in preprocessor input files R-219
in shared libraries R-251
in source code R-263

setting actions U-112, U-113
setting in preprocessor input files R-219
setting in user functions in Ascii CodeCenter

U-206
setting on addresses U-207
setting, in shared libraries in Ascii

CodeCenter U-206
setting, on addresses in Ascii CodeCenter

U-207
symbols in debugging U-111

browse command U-71
browsers

Cross-Reference U-152
Data Browser U-157
Error Browser U-105
Manual Browser U-28
Options Browser U-174
Project Browser U-71, U-149

build command R-19, R-221
compared with load and make R-169

building a project U-77
built-in

CenterLine functions in the C language
U-186

macros R-23
built-in comments R-21
built-in functions R-22

buttons
creating new menu U-178
customizing U-180
deleting menu U-179

C

C code R-12 to R-16, R-21, R-23, R-27 to R-29
C compiler R-152

compatibility R-27
default configurations R-27, R-77
specifying one to use R-185

C interpreter U-8
C language

ANSI R-12
building in CenterLine functions U-186
command-line switches supplied by

sys_load_flags R-148
customizing code to work with CodeCenter

U-186
describing definitions in English R-111
K&R R-12
settings, ANSI U-81

C library
attached automatically U-26, R-65

functions replaced by CodeCenter R-58
C statements, specifying in actions U-114, U-208
calling structure, viewing in the Cross-Reference

Browser U-152
calling up

CodeCenter U-25, R-63
pdm R-198

cancelling a Workspace entry U-36
catch command U-129, R-25
cc U-9

compatibility with R-27
cc_prog option R-152, R-185
ccargs option R-185
ccenter.proj file R-243
.ccenterinit U-26, U-171

ccref.book : combinedIX.doc 378 Mon Jun 5 15:33:25 1995

Index

378 CodeCenter Reference

ccenterinit file U-26, U-171
finding R-64

.cctrusrcmd file U-180, R-350
cd command R-30, R-315

differences between CL and standard targets
R-166

cdm (component debugging mode)
See debugging and component debugging

mode
CENTERLINE_LINK_SILENT R-140
CenterLine API R-32
CenterLine Engine R-32
CenterLine functions

in actions U-187
in source code U-187
prototypes U-186
without command equivalents U-186

CenterLine GNU debugger, license R-363
__CENTERLINE__ macro R-23
CenterLine Message Server (CLMS) U-6
CenterLine preprocessor, license R-363
CenterLine targets, See also CL targets
centerline_

prefix for function names U-186
centerline_ functions, as CodeCenter command

equivalents R-22
CENTERLINE_ environment variable R-113
centerline_*_sym() R-36
centerline_getopt() R-34
centerline_malloct() R-35, R-193
centerline_path option R-185
centerline_print() R-22
centerline_stop() U-208, R-7, R-22
centerline_true() R-39, R-40, R-242
centerline_untype() R-43
CenterLine-C compiler R-45
changing R-146

current working directory R-30
help key R-331
option settings U-175
options,effect of R-146

characters
changing default number of,printed R-192
eight-bit character sets U-190
in CL targets R-167

child process, debugging R-94
CL targets R-163

that invoke make R-166
cl_ez_ar, EZSTART option R-46
cl_ez_fstat, EZSTART option R-47
cl_ez_path, EZSTART option R-47
cl_nodebug_target, EZSTART option R-47
class_as_struct option R-185
-class_as_struct switch R-65
clcc R-45

example of loading libraries when using
R-154

clearing the Workspace U-39
clezstart U-69, R-46 to R-57

establishing a project with U-63
example of usage R-47
scenarios R-51

$clipboard in command resource R-355
CLIPC R-32
CLIPC

CenterLine Interprocess Communication
U-10

CLIPC (CenterLine Interprocess
Communication) R-32, R-59

CLMS (CenterLine Message Server) U-6
CLMS (CLIPC Message Server) R-60
clms_query R-60
clms_registry R-60
code, entering in Workspace U-133
CodeCenter

as a programming environment U-1, U-19
basics U-23
command equivalents R-22
commands,overview R-71 to R-72
customizing U-10, U-26
debugging in, overview R-87 to R-95
directory U-25
environment variables R-113

ccref.book : combinedIX.doc 379 Mon Jun 5 15:33:25 1995

CodeCenter Reference 379

Index

functions R-22
renaming R-234

functions, listed U-186
functions, See built-in functions
invoking R-63
leaving U-45
macros, predefined U-192, R-23
makefiles for R-162
overview U-3
path for startup command U-25
tools available in U-3
X resources in R-323 to R-357

CODECENTER macro R-23
CodeCenter options, See options
codecenter, shell command U-25, R-63 to R-68

command-line switches to specify GUI R-69
command-line switches, general R-65

CODECENTER_ environment variable R-113
__CODECENTER__ macro U-192, R-23
CODECENTER4_0 macro R-23
color

for documentation viewer R-360
X resource R-348

$command in command resource R-354
command file

sourcing U-67
command-line switches U-26

used by CodeCenter R-65
commands

CodeCenter equivalents R-22
conditionalizing execution in pdm R-298
customizing in the Workspace U-185
displaying

history of Workspace commands R-307
function equivalents for CodeCenter

commands R-22
not supporting redirection of output R-313
overview of CodeCenter commands R-71 to

R-72
overview of, in pdm R-199
user-defined R-350
user-defined,examples R-350

Workspace
displaying information about R-171
reading from a file R-254
requesting help about R-119

Workspace commands U-37
comments

to suppress load-time warnings U-188
compatibility

C language R-12
make command, with other implementations

R-169
compilation, automatic R-184
compiler

configurations R-77
default configurations R-78
specifying one to use R-185
See also C compiler

completion of names in Workspace R-312
component debugging mode U-8, R-63
See also debugging

 conditional actions
and breakpoints U-116
setting in Ascii CodeCenter U-208

conditional breakpoints
See actions

conditionalizing code with macros R-23
-config (command-line switch) R-69
config_parser command R-77
configuration, default compiler R-27
constant static pointers to characters R-15
cont command U-124, R-80
contents command R-82
continue button U-124
continuing

execution R-80
from a break level U-124
from a run-time violation U-125

Control key sequences R-132
Control keys, in Workspace R-312
Control-c, cancelling a Workspace entry U-36
conventions, used in this book U-iv
copying and pasting text U-32

ccref.book : combinedIX.doc 380 Mon Jun 5 15:33:25 1995

Index

380 CodeCenter Reference

core file
loading as an a.out U-85
specifying for targeting U-143, R-84
targeting U-140

create_file option R-152, R-185, R-218
creating new menu buttons U-178
cross referencing functions and variables R-321
Cross-Reference Browser U-17, U-152

accessing U-152
changing the number of characters displayed

U-156
displaying of return type U-156
font specifications R-348
and global variables U-152
interpreting reference lines U-154
See also xref
showing further references U-154, U-159
and static references U-152
using the reference area U-155
what it cannot reference U-152

csh shell U-39
customizing

buttons and menus U-178
C language code to work with CodeCenter

U-186
changing CodeCenter option values U-174
CodeCenter U-10, U-169
command for a shell command U-182
connecting your editor to CodeCenter U-184
eight-bit character sets U-190
environment variables U-191
invoking a custom command U-183
keybindings U-189
list of variables in defining a command U-180
menu items U-180
modifying a custom command U-183
preprocessor for the load command U-190
session at startup U-26
startup files U-171
using the Meta key U-190

Workspace commands U-182
with aliases U-185

X resources U-173

D

-D (command-line switch) R-65
-d (command-line switch) R-65
data, updating in the Data Browser U-160
Data Browser U-18, U-157

accessing U-157
changing display properties U-161
changing values of variables in U-158
dereferencing pointers U-158
following linked lists U-158
font specifications R-348
interpreting reference lines U-159
manipulating structures in U-155, U-160
navigating in the Data area U-160
opening R-98
removing items U-159
updating data in U-160
using U-157

data items
deleting R-96
listing R-258

data structures, displaying U-135, R-317
data types, defining in Workspace U-135, R-316
__DATE__ macro R-24
dbx U-9
-debug (command-line switch) R-69
debug command R-84
debugging U-53

a.out files U-139
action symbol in Source area U-113
actions, setting R-3
an externally linked executable file U-13
and performance factors U-50
breakpoint symbols in the Source area U-111
CL target R-168
CodeCenter triggers a breakpoint U-111

ccref.book : combinedIX.doc 381 Mon Jun 5 15:33:25 1995

CodeCenter Reference 381

Index

component debugging U-101
performance factors U-51

component debugging modes U-8
component mode U-8
corefiles R-198 to R-206
deleting

items U-119
differences between debugging modes U-144
examining current debugging items U-118,

U-210
examining items U-118
executable files R-198 to R-206
interactive U-15, U-19

with break levels U-120
with debugging items U-109

interactive debugging in Ascii CodeCenter
U-205

multiple processes R-94
object code U-109, U-122, U-210
overview R-87 to R-95
preprocessed code R-151
process debugging

performance factors U-51
process debugging mode U-8, U-13, U-137

choosing when to use U-139
entering U-141

processes R-198 to R-206
setting

actions U-207
actions at breakpoints U-112
breakpoints U-109

in library functions U-111
conditional actions U-116
tracepoints U-117

setting the action body U-114
stepping through a program U-126
tracing execution R-283
tracing program execution U-117, U-209
types of debugging possible in CodeCenter

U-19

warnings
load time U-19

with actions U-109
with breakpoints U-109
with tracepoints U-109

debugging information
not loading as a technique to improve

performance U-84
debugging items

deleting R-96
listing R-258

debugging modes
component (-cdm) U-25
process (-pdm) U-25

declaring types
in the Workspace U-135

default
C language setting R-12
changing for help key R-331

defaults
changing length of character string R-192
compiler

configurations R-77
settings U-11
shell command U-38

defining U-135
functions in Workspace U-136
types in Workspace U-135

delete command R-96
deleting

debugging items R-96
menu buttons U-179

dereferencing pointers
in the Data Browser U-158

detach command R-97
development, incremental U-130
differences

between cdm and pdm R-199
between debugging modes, trapping signals

R-25
cd command in CL target vs others R-166

ccref.book : combinedIX.doc 382 Mon Jun 5 15:33:25 1995

Index

382 CodeCenter Reference

errors detectable in source but not object code
R-128

object code debugging vs source code R-93
object code vs source code R-127

directories
changing R-30, R-315
displaying search path R-294
listing R-315
setting search path R-191, R-294
specifying for loading header files U-57

disabling run-time error checking for object code
R-285

-display (command-line switch) R-69
display command R-98

options used by R-98
DISPLAY environment variable U-26
displaying

environment variables R-225
input history U-40
length of character strings R-192
machine instructions R-144
options U-174
pointers in Workspace U-135

documentation, overview of, U-iii
documentation viewer

customizing X resources R-358
Xresource names R-361

down command U-127, R-100
dump command U-167, R-101

E

echo option R-186
edit command R-102

options used by R-103
edit server R-104
Edit window

setting resources R-331
setting size R-332

editing U-42
in Ascii CodeCenter U-198
in the Workspace U-39, R-312
invoking your editor U-43
line, keys used in R-131
loading after editing code U-14
need for reloading a file U-73
source code R-102
specifying your editor U-44
ways to invoke your editor U-44
with emacs U-42
with vi U-42

editor
accessing through Error browser U-14
accessing to fix load-time errors U-14
connecting other editors to CodeCenter

U-184
connecting your editor U-184

editor option R-186
eight_bit option R-187
eight-bit character sets U-190, R-64

enabling R-187, R-188
emacs U-39, U-42, R-130, R-312

and other UNIX tools U-9
connecting to CodeCenter
editing source code U-43
features of in CodeCenter U-39
integration R-105
in user-defined command R-352
keybindings R-333

email command R-109
email_address option R-187
embedded SQL, using files containing R-150,

R-214
empty array brackets R-28
empty bodies R-21
EMPTY comment U-188, R-21
english command R-111
environ global variable U-191
environment control options R-178

ccref.book : combinedIX.doc 383 Mon Jun 5 15:33:25 1995

CodeCenter Reference 383

Index

environment variables R-112 to R-113
creating R-246
definition of R-112
displaying R-225
examining U-191
expanding in the Workspace R-310
LD_LIBRARY_PATH R-198
manipulating within CodeCenter U-191,

R-112
removing R-289
setting U-191
specific to CodeCenter R-113
using in aliases R-9, R-310

envp formal parameter U-191
Error Browser U-14, U-93, U-95, U-105
Error Browser button U-92, U-105
error messages

See errors U-93
error-checking

load-time U-7, R-90, R-92
in project management U-51
run-time U-7, R-90, R-92, R-125

overview of U-104
with instrument command U-13

run-time, overview of U-104
errors

accessing uninitialized memory R-127
array index R-128
compiler U-99
definition of U-93
detectable in source but not object code R-128
fixing load-time U-94, U-95
fixing run-time U-106
load-time

checking in Ascii CodeCenter U-200
choices in handling in Ascii CodeCenter

U-201
how handled U-93
in Error Browser U-93

make U-99
pointer bounds R-127
reported in Workspace U-133, R-318

responding to errors reported in Workspace
U-133

running project to find U-103
run-time U-103

in Ascii CodeCenter U-203
in the Error Browser button U-105
types CodeCenter finds U-104

scope of message suppression U-97
seeing load-time U-92

Escape key sequences R-132, R-313
Esc-Esc, sequence for completing commands and

names R-312
Esc-x sequence

to echo Workspace commands to shell R-156
for completing file name patterns R-313

establishing a project
with clezstart U-63
with make U-63
with source U-63

evaluating
an assignment expression R-17
expressions R-245

Examine menu R-326
examining

environment variables U-191
executable files

attaching to a running executable U-85
debugging R-198 to R-206
reloading R-19
specifying an executable target U-85, R-84
targeting an externally linked U-140
viewing contents of R-82

execution
continuing R-80
continuing until function returns R-262
displaying location in R-302
knowing whether running in CodeCenter

R-242
specifying arguments R-242, R-257
specifying how to proceed after violation

R-184
specifying new arguments R-235

ccref.book : combinedIX.doc 384 Mon Jun 5 15:33:25 1995

Index

384 CodeCenter Reference

stepping U-126, R-174, R-259
stepping through machine code R-176
suspending R-270
tracing U-117, U-209, R-283
with arguments R-239
without initializing variables R-256

execution stack
definition of U-127
displaying U-127, R-300
moving in U-127, R-100, R-293

exiting CodeCenter, See quit command
expressions

displaying values of U-165, U-167, R-98,
R-223

evaluating R-17, R-245
EZSTART U-69, R-46

See also clezstart

F

-f (command-line switch) R-66
f.delete function R-305
f.destroy function R-305
F1 (help key) U-27
-fastdraw (command-line switch) R-69
-fg (command-line switch) R-69
fg command R-114
file

reloading after editing U-73
file command R-115
File Contents window, of the Project

Browser U-149
file properties, instrumented versus

uninstrumented U-73
__FILE__ macro R-23
filename suffixes interpreted by clezstart R-50
$filepath in command resource R-354
$files in command resource R-354

files
changing properties for file already loaded

U-82
choosing ways to load files U-55
conditionalizing for debugging U-192
editing R-102
linking R-139
listing

source code R-141
source files for an executable R-82

loading R-145
loading in an existing project U-64
loading singly U-57
properties of files loaded singly U-61
reloading R-19
setting list location R-115
swapping U-75
unloading U-74, R-286
ways to load singly U-57

$first_selected_char in command resource R-354
$first_selected_line in command resource R-355
fixing

compiler errors U-99
load-time errors U-95
load-time warnings U-92, U-94, U-95
make errors U-99
run-time errors U-103, U-106
run-time warnings U-103
static errors U-14, U-87, U-94

focus policy R-327, R-330
-font (command-line switch) R-69
fonts

changing globally R-327
for CodeCenter components R-348
for documentation viewer R-358

-foreground (command-line switch) R-69
fork(), debugging programs that call R-94
format for CodeCenter lines in makefiles R-163

ccref.book : combinedIX.doc 385 Mon Jun 5 15:33:25 1995

CodeCenter Reference 385

Index

Free Software Foundation license R-363
FSF GNU Debugger, See gdb
FSF GNU Emacs, See emacs
full_symbols option R-187
-full_symbols switch R-66
__FUNC__ macro R-23, R-24
function prototypes R-15, R-27

creating R-230
in K&R mode vs. ANSI mode R-16
loading R-155
using in CodeCenter R-16

functions
arrow keys bound to R-137
binding to keys R-132
cross referencing R-321
defining in Workspace U-136, R-317
displaying all local variables R-101
editing R-102
entering when single stepping R-259
equivalent to CodeCenter commands R-22
library, executing R-317
library, replaced by CodeCenter R-58
listed U-186
listing machine code for R-144
listing source code for R-141
not entering when single stepping R-174
returning from R-262
setting actions in R-298
setting breakpoints in R-264
setting conditional breakpoints in R-264
showing all local variables U-167
viewing the calling structure of U-152

G

-G load switch U-60, U-81
-G (command-line switch) R-66, R-145
-g command-line switch U-60, U-109
-G load switch with compiler -g switch U-60
gcc, using with CodeCenter R-29

gdb
in contrast to CodeCenter U-139
using commands in the Workspace R-116,

R-117, R-205
gdb command R-116
gdb_mode command R-117
global variables, initializing R-233
gmake command R-169
GNU Debugger, See gdb
GNU Emacs, See emacs
graphical user interface, See GUI
grave accent R-314
GUI U-29

and visualizing code U-8
choice of three interfaces U-10
command-line switches to specify R-69
fonts for CodeCenter components R-348
set DISPLAY before choosing U-26
setting default style R-325
window managers R-305
 See also X resources

H

header files
checking dependencies U-60
loading R-157
specifying directories when loading U-57
specifying whether checked by make R-189

help U-27, U-28
man Workspace command U-28, R-171
Manual Browser U-28

help command R-119
Help key U-27
help key R-327
Help menu U-27
history command U-40, R-120, R-307

options used by R-120
history file, saving U-39
history, enabling R-188

ccref.book : combinedIX.doc 386 Mon Jun 5 15:33:25 1995

Index

386 CodeCenter Reference

I

-i (command-line switch) R-66
-I switch U-57, R-146, R-154
-iconic (command-line switch) R-69
identifying memory leaks R-172
ignore command U-129, R-121
ignore_sharp_lines option R-187, R-221
importing a project from an existing application

U-68
#include files

search path for R-146
loading R-154
loading with -I R-151
path option does not apply to R-151

incremental development U-130
incremental linking at reloading U-61
info command U-167, R-123
information lookup options R-179
initializing statics R-260
inline editing in the Workspace U-39
input history

displaying U-40, R-120
displaying in Workspace R-307
-f switch U-40
logfile U-40
moving through R-120
Save Session To command U-39
saving U-39, U-40

input, Workspace
editing R-312
repeating previous R-308

instrument all command U-81
instrument command U-13, R-125
instrument_all option R-125, R-187
instrument_byte option R-125, R-126, R-187
instrument_space option R-125, R-187, R-212
instrumenting object code U-72
integrating other software with CodeCenter U-6
integration of other tools with API R-32
intentional bugs R-28
interaction model R-328

interactive testing U-131
interactive debugging U-15, U-19

in project management U-51
interactive prototyping U-130

loading code fragments U-56
international features R-15
interpreter, C U-8
invoking

a custom command U-183
CodeCenter U-25, R-63
make with CenterLine(CL) targets R-161
pdm R-198
your editor U-43

K

K&R C R-12
key bindings

customizing U-189
displaying and changing R-130

keybind command U-189, R-130
options used by R-138

keyboard editing
changing defaults for, in Motif R-334 to R-345
default settings R-333

keys
binding to commands R-131
binding to functions R-132
functions, table of R-133
help R-331

L

-L (command-line switch) R-66, R-146, R-154
-l (command-line switch) R-66, R-146
language control options R-179
$last_selected_char in command resource R-355
$last_selected_line in command resource R-355
lazy generation, See demand-driven code

generation
ld -r U-83

ccref.book : combinedIX.doc 387 Mon Jun 5 15:33:25 1995

CodeCenter Reference 387

Index

LD_LIBRARY_PATH environment varaible
R-198

leak detection R-172
leaving CodeCenter U-45
length of character strings, changing R-192
lex, using R-216
libC.a, attached automatically U-26, U-61, R-65
libc.a, attached automatically U-26, U-61, R-65
$libraries in command resource R-354
libraries

loading R-152, R-154
loading with -G R-145
making with clezstart R-53
shared R-129, R-251
standard R-65
unloading U-75
unresolved references to symbols in U-61

library
attached automatically U-61
functions, executing R-317

Library Contents window, of the Project Browser
U-150

limits, changing character string size R-192
line, continuing a statement on next U-133
#line directives

how used by CodeCenter R-150
ignoring R-221

line editing
keys used in R-131
in the Workspace R-312

__LINE__ macro R-24
line_edit option R-188
line_meta option R-188
lines, interpreting in Cross-Reference Browser

U-154
link command R-139
linked lists, following in the Data browser U-158
linking

automatic incremental at reloading U-61
incremental U-7, U-15
project U-77

suppressing link messages in Ascii
CodeCenter U-210

lint command U-9
lint comments, how CodeCenter handles R-21
lint_load option R-188
lint_run option R-188
list command R-141

options used by R-142
list location, setting R-115, R-142
list_action option R-189
listi command R-144
listing

control options R-179
debugging items R-258
files linked from libraries R-82
loaded files R-82
locations where a name is declared or

defined R-304
machine code R-144
unresolved references U-167

listing source code U-41
in the Workspace U-41
ways to list source code U-42

load command R-145
command-line switches R-148
compared with build and make R-169
customizing the preprocessor for U-190
default switches used by R-189
include files R-151
libraries R-152
options used by R-146
project files R-155
sourcing project files R-155
switches used by R-145, R-157
using preprocessor with R-192
using wildcards with R-155, R-156

load control options R-179
load_flags option U-81, R-189

specifying loading switches for load R-148
load_header command R-157

ccref.book : combinedIX.doc 388 Mon Jun 5 15:33:25 1995

Index

388 CodeCenter Reference

loading
a project file U-65
an existing project U-64
choosing ways to load files U-55
code according to your objectives U-13
code with a makefile U-12
code with a project file U-12
deciding on types of files U-53
executables and corefiles with debug

command R-84
files as a project U-63
files, changing effect of options R-146
files singly U-57
finding warnings and errors U-14
fixing static errors with the Error Browser

U-14
incremental U-7, U-15
object code when source code already loaded

 U-59
object files as a technique to improve

performance U-83
reloading after editing code U-14
source code when object code already loaded

U-59
source vs. object code R-88
speed tradeoffs R-88
types of files according to your objectives U-9
ways to load files singly U-57
your code into CodeCenter U-12

loading switches
system default R-148
user-specified R-148

load-time error checking U-7, R-90
load-time errors

fixing warnings U-92
how errors handled U-93
how warnings handled U-93
suppressing warnings U-188

local variables, displaying U-167
location, of a variable, specifying R-143
logfile U-40, R-307
logfile option R-189

long_not_int option R-189
ls alias U-38

M

-m (command-line switch) R-66
machine code

debugging R-85
displaying R-144
setting breakpoints R-266
stepping R-176, R-261

macros
built-in R-23
specific to CodeCenter U-192, R-23

mail, sending to CenterLine Software R-109,
R-187

Main Window U-11
make command U-9, U-66, R-161

compared with build and load R-169
default command-line arguments R-189
establishing a project with U-63
invoked by load R-151
options used by R-161
specifying which program is called R-190

make_args option R-189
make_hfiles option R-189
make_offset option R-189
make_prog option R-190
make_symbol option R-190
makefile R-164
makefiles for CodeCenter

creating with clezstart R-46 to R-57
format for lines in R-163
meta-characters in R-165
use of # character in R-163

making libraries with clezstart R-53
man command R-171
managing a project U-13
Manual Browser U-28

opening R-171
X resources for R-358

ccref.book : combinedIX.doc 389 Mon Jun 5 15:33:25 1995

CodeCenter Reference 389

Index

mapping
disabling by ignoring #line directives R-187

mem_config option R-190
mem_trace option R-172, R-190
memory

allocated by sbrk R-193
allocating for instrumented code R-125
allocating with type checking R-35
as a performance factor in project

management U-51
initializing R-281
leak detection R-172
marking as initialized and valid R-280
marking as initialized and valid with

centerline_untype() R-43
optimizing R-190
used one byte at a time R-125
using uninitialized R-127
value for unset variables R-126, R-196

menu buttons U-178
deleting U-179

menu items, customizing U-180
message server U-6
messages

CLIPC R-59
diagnostic R-27
errors in the Workspace R-318
EZSTART R-49
object file too large for instrumenting R-129
related to make R-170
spurious R-129
undefined function R-251
used-before-set U-204

Meta key
enabling R-188
using R-64

meta-characters, for CodeCenter makefiles R-165
modifying a custom command U-183
monochrome, X resource R-348
More prompt, responses to R-143

Motif U-10, R-71
changing defaults for keyboard editing R-334
default interface style, setting R-325
X resource R-349
X resources specific to R-349

-motif (command-line switch) R-67
mouse

accelerators in Source panel U-166
actions U-29
shortcuts U-31

multiple processes, debugging R-94
multiple-line statements U-133
mwm R-305, R-325, R-329, R-331

N

-n, switch to make R-168
-name (command-line switch) R-69
name completion in Workspace R-312
names

displaying defining instances of U-166
displaying uses of U-166, R-297
listing where declared R-304

next command U-126, R-174
options used by R-174

nexti command R-176
nmake command R-169
-no_fork switch R-67
-no_run_window switch R-67
NOTREACHED comment U-188, R-21

O

-o (command-line switch) R-67
object code

in Ascii CodeCenter U-210
changing to and from instrumented U-73
debugging U-122, R-93
having type information in the Project

Browser U-151

ccref.book : combinedIX.doc 390 Mon Jun 5 15:33:25 1995

Index

390 CodeCenter Reference

instrumented R-125
speed R-88

instrumenting U-72
setting actions in R-6
uninstrumented R-285
vs. source code, errors detected R-128

object files
consolidating to optimize performance R-211
displaying function parameters when there is

no debugging information R-94
gcc R-29
if loaded with debugging information U-135
if loaded without debugging information

R-317
loading R-145
replacing with source files R-271
setting breakpoints and actions in U-109,

U-210
when reloaded by build R-20
with #line information R-217
without debugging information, using

U-135, R-317
working with, general R-93

obsolete options R-183
OI components R-348
OI names R-346, R-348
-ol (command-line switch) R-70
-ol2d (command-line argument) R-70
-ol3d (command-line argument) R-70
olvwm R-305
olwm R-305
OPEN LOOK U-10, R-71

X resources specific to R-349
openlook, X resource R-348
-openlook (command-line switch) U-25, R-67
-openlook_2d (command-line switch) R-70
-openlook_3d (command-line switch) R-70
openlook3d, X resource R-348
options

alphabetical list R-184
changing settings U-175
customizing menu buttons U-178

displaying U-174
displaying values of R-226
effect of changing R-146
functional summary R-178
instrument_all R-125
instrument_byte R-125
instrument_space R-125
integrating revision control systems U-177
list of U-174
obsolete R-183
saving settings U-176
saving values of U-176
setting values in component debugging

mode U-174
setting values in startup flles U-172
setting values of R-248
that affect loading R-146
unset_value R-126

Options Browser U-174
options, CodeCenter

displaying value of R-34
expanding in the Workspace R-310
unsetting R-290
using in aliases R-9, R-310

options, EZSTART R-46
order, See precedence
output file (from preprocessor)

creating R-218
loading R-217

output in Workspace, redirecting R-313
overview

commands R-71 to R-76
debugging R-87 to R-95

P

page_cmds option R-190
page_list option U-202, R-190
page_load option R-191
panner R-328
path U-80

ccref.book : combinedIX.doc 391 Mon Jun 5 15:33:25 1995

CodeCenter Reference 391

Index

path option R-31, R-151, R-191
not for include files R-151

pdm R-198 to R-206
debug command R-84

-pdm (command-line switch) R-67
.pdminit file U-26, U-171, R-199
performance factors R-127

comparing in component debugging mode
U-53

consolidating object files U-83
in managing a project U-50
in project management U-51
loading object files to improve performance

U-84
not loading debugging information U-84
setting the save_memory option U-84
techniques to improve performance U-83
using uninstrumented object code U-84

pointer bounds errors R-127, R-128
pointers

displaying dereferenced value U-165, U-167
displaying in Workspace U-135, R-317
how displayed R-192
how represented in Data Browser U-158
how represented in the Cross-Reference

Browser U-154,
pop-up menus U-163

saving a transcript of a session U-39
shortcuts U-31

porting, See C compiler compatibility
#pragma directives R-14
precedence

of load switches R-148
of X resources R-348
specifications for loading libraries R-152

predefined, See built-in comments, built-in
functions, built-in macros

prefixes, for X resources R-348
preprocessed code, debugging R-151
preprocessing, echoing input stream R-186

preprocessor input files
modifying R-221
using in CodeCenter R-214

preprocessor option U-190, R-192
preprocessor output files

creating R-218
loading R-217

preprocessors
customizing for the load command U-190
using with CodeCenter R-214

print command U-165, U-167, R-223
options used by R-223

print* command U-165, U-167
print_pointer option R-192
print_string option R-192
printenv command U-191, R-225
printing

length of character strings R-192
values of variables R-223
variable values U-165, U-167

printopt command R-226
process

child, debugging R-94
targeting a running U-140

process debugging mode
process debugging mode (pdm) U-8,

R-198 to R-206
definition R-63
overview of commands R-199

processes
attaching to R-17, R-84
debugging multiple R-94
See also CenterLine API

program name R-192
program_name option U-80, R-192, R-241
programming environment

CodeCenter as a U-1
programming interface R-32

ccref.book : combinedIX.doc 392 Mon Jun 5 15:33:25 1995

Index

392 CodeCenter Reference

programs
rerunning without arguments R-240
running R-239
running without initializing variables R-240
run-time error checking U-104
stepping through U-126
tracing execution of U-117, U-209
See also execution

project
linking R-139
loading R-145
updating R-221

saving, a project file U-64
Project Browser U-16, U-149

examples of user-defined commands R-350
File Contents window U-149
Library Contents window U-150
type information with object code U-151
user-defined commands R-350
viewing project components U-71

project files
definition of R-243
loading U-65, R-145, R-155
saving U-64, R-243

project management U-47
and code comprehension U-51
and interactive debugging U-51
and performance factors U-50
attaching to a running executable U-85
building a project U-77
choosing the type of code to load U-50
choosing ways to load files U-55
component debugging mode

choosing types of files U-53
display a project in Ascii CodeCenter U-199
error-checking U-51
establishing a project U-66
establishing a project with a command file

U-67
establishing a project with make U-66
importing from an existing operation U-68
in Ascii CodeCenter U-199

linking U-77
loading a core file U-85
loading a project file U-65
loading an existing project U-64
loading files as a project U-63
loading files singly U-57
memory as a performance factor U-51
performance factors, comparing in pdm U-53
project as a whole U-77
project properties U-80
properties of files loaded singly U-61
reloading a file after editing U-73
running a project U-78
running part of a project U-78
saving a project file U-64
setting properties U-79

for single components U-76
specifying an executable U-85
speed as a performance factor U-51
swapping files U-75
techniques to improve performance U-83
unloading files U-74
unloading libraries U-75
unresolved references when linking U-77
viewing components with the Project

Browser U-71
viewing project in Ascii CodeCenter U-199
ways to load files singly U-57
why load source, object and library files U-52
why target an executable U-52

promoting arithmetic operands R-79
promoting function arguments R-79
properties R-228

changing for a loaded file U-82
need to reset after unloading and reloading

U-76
project

ANSI U-81
ignore warnings U-81
instrument object files U-81
load debugging information U-81
load flags U-81

ccref.book : combinedIX.doc 393 Mon Jun 5 15:33:25 1995

CodeCenter Reference 393

Index

program name U-80
search path U-80
swap search path U-80

setting for files and libraries U-76
setting project U-79

proto command R-193, R-230
.proto files R-155
proto_path option R-155
prototypes, function

creating R-230
equivalents of CodeCenter commands U-186
loading R-155

prototyping, interactive U-130
pushpins R-328, R-330
$pwd in command resource R-354
pwd alias U-38

Q

quit command U-45, R-228
quitting

Ascii CodeCenter U-199
CodeCenter U-45

R

-r (command-line switch) R-67
rcs R-356
recompiling R-20
recursive makefiles R-166
redirecting output from Workspace R-313

commands not supported R-313
reducing compile time, See skipping header files
references, listing unresolved U-167
reinit command R-233
releasing a process R-97
reloading

automatic incremental linking U-61
executables R-19
a file after editing U-73

removing
environment variables R-289
See also deleting

rename command R-234
rerun command R-235

options used by R-235
reset command U-125, R-237
resetting from a break level U-125
restarting a session, and startup files U-172
returning after suspending R-114
-reverse (command-line argument) R-70
revision control systems R-356
run code to find errors U-103
run command R-239

arguments to main(), spaces in R-242
options used by R-239
redirecting output R-314
run-time errors in Error Browser U-15
using the \ character with R-242

Run Window R-332
logging content R-332
setting size R-332

running
a project U-78
checking if in CodeCenter R-39, R-40
part of a project U-78

running process
specifying for targeting U-143
targeting U-140

running programs
a step at a time U-126
error-checking U-104
knowing whether running in CodeCenter

R-242
stopping as part of an action U-116, U-208
using command-line arguments R-240
without initializing variables R-240
See also execution

ccref.book : combinedIX.doc 394 Mon Jun 5 15:33:25 1995

Index

394 CodeCenter Reference

run-time error checking U-7, R-90, R-125
in Ascii CodeCenter U-202
continuing from a violation U-125
handling violations U-104

run-time stack, specifying switches U-26
-rv (command-line argument) R-70

S

-s (command-line switch) R-68
save command R-243
Save Session To command U-39
Save To command R-308
save_memory option R-193

as a technique to improve performance U-84
saving

a project file U-64
aliases R-9
option values U-176
transcipt of session U-39
Workspace input U-40, R-307

saving option settings U-176
saving your work R-243
sbrk_size option R-193
sccs R-356
scenarios, clezstart R-51
scope location

changing R-100, R-293
changing in break level U-127
definition of U-123
displaying R-302
viewing U-128

screws, in place of pushpins R-330
script file, reading R-254
scrollbar R-328

cannot change location R-331
search path

displaying and setting R-294
#include files R-146, R-154
libraries R-154
specifying in sys_load_flags R-195

select, with the mouse U-29
$selection in command resource R-355
session

beginning U-11
restarting U-172
saving transcript U-39

set command R-245
setenv command U-191, R-246
setopt command R-113, R-248
setting

actions R-298
actions in object code R-6
breakpoints U-109
breakpoints in machine code R-266
environment variables U-191
tracepoints U-117
value of a variable with assign command

R-17
values of options R-248
watchpoints R-7, R-22, R-298
X resources in CodeCenter, example R-324

settings, default U-11
sh command U-38, R-250
shared libraries R-146, R-251

cannot be instrumented R-129
shell command U-38, R-253
shell commands

customizing U-182
redirecting output R-314
sh Bourne shell command U-38
shell default shell command U-38

shell option R-194
shortcuts

pop-up menus U-31
in the Source area U-42
using alias command R-8
Workspace operations U-40

signals
continuing execution with R-80
handling in CodeCenter U-129
ignoring R-121
trapping R-25

ccref.book : combinedIX.doc 395 Mon Jun 5 15:33:25 1995

CodeCenter Reference 395

Index

SILENT, option with make R-170
size_t R-79
$sources in command resource R-354
Source area U-11

font specifications R-348
shortcuts U-42

Source area, how it displays files R-143
source code

editing R-102
listing R-141
loading vs. object code R-88

source command R-254
establishing a project with U-63

source files
conditionalizing for debugging U-192
loading R-145
paginating display of R-190
replacing with object files R-271
when reloaded by build R-20

source location, definition of U-123
sourcing

a command file U-67
project files R-155

space, See also memory
spaces

in arguments to main() R-242
in CL targets R-167
to indent for tab, setting with tab_stop option

R-195
special characters in CL targets R-167
specifying a variable’s location R-314
speed

as a performance factor in project
management U-51

considerations with instrumented object
code R-127

instrumented code vs. other R-88
tradeoffs with various kinds of debugging

R-92
spot help U-12, U-27
SQL, using files containing R-150, R-214, R-218

src_err option R-194
src_step option R-194
src_stop option R-194
stacking windows in user interface R-305
standard libraries, attached automatically U-61,

R-65
start command R-240, R-256

options used by R-256
starting

CodeCenter U-25, R-63
CodeCenter in process debugging mode

R-198
startup files R-64

customizing U-171
customizing global U-171
customizing local U-171
defining aliases U-172
restarting a session U-172
setting option values U-172
specifying with -S R-68

static errors
fixing U-14, U-87
types CodeCenter finds U-90

statics, initializing R-260
status command R-258
__STDC__ macro R-24
step command U-126, R-259
stepout command U-126, R-262

options used by R-262
stepping

and entering functions R-259
in machine code R-261
machine code R-261
through preprocessed code R-220
through a program U-126
without entering functions R-174

stop command R-263
options used by R-264

stopi command R-266
strings

changing default length R-192
number of characters printed R-192

ccref.book : combinedIX.doc 396 Mon Jun 5 15:33:25 1995

Index

396 CodeCenter Reference

subshell option R-194
subshell, executing U-38

Bourne R-250
specified by SHELL environment variable

R-253
support_phone option R-194
suppress command R-267

options used by R-268
suppressing echo of violation name R-196

SUPPRESS n comment U-188, R-21, R-269
Suppressed Messages window U-97
suppressing

error messages U-97
linking messages R-140
load-time warnings U-188
warning messages U-97

suppressing reporting of warnings R-267
using built-in comments R-21
using touch command R-281
with comment /*SUPPRESS n*/ R-292
with -w R-68, R-146

suspend command U-199, R-270
suspending Ascii CodeCenter to return to shell

U-199
swap command R-271

options used by R-271
with instrument R-125

swap_uses_path option U-80, R-195
swapping files U-75
switches

command line U-26
configuration U-25, U-26
-f U-40
for saving input history U-26
for specifying run-time stack U-26
startup U-25
supplied to load R-148
used by build R-20
used by load R-145, R-157
See also options

symbol information R-36
symbol table R-85
symbols

displaying all uses of R-297
displaying defining instance of U-166
displaying uses of U-166
listing where declared R-304

syntax for specifying a variable’s location R-314
sys_load_flags option R-195

T

tab_stop option R-195
target, specifying an executable U-85
targeting

an a.out file U-140
a core file U-140
an externally linked executable U-140
a running process U-140
specifying a core file U-143
specifying a running process U-143
specifying an a.out file U-143

tcsh shell U-39, R-130
technical support

correcting email address U-28
email not being delivered U-28
sending email U-28

terse_suppress option R-196
terse_where option R-196
testing, interactive U-131
text, copying and pasting U-32
__TIME__ macro R-24
top level, returning to R-237
topics, debugging R-87 to R-95
touch command R-280
trace command U-117, U-209, R-283
tracepoints

deleting U-119
examining U-118

ccref.book : combinedIX.doc 397 Mon Jun 5 15:33:25 1995

CodeCenter Reference 397

Index

tracing execution U-117
in Ascii CodeCenter U-209

tracing program execution U-117, U-209
tradeoffs, speed with instrumented object code

R-127
transcript, saving a session U-39
transient windows R-305, R-325
translation functions for Motif keyboard editing

R-335 to R-345
trapping signals, See catch
troubleshooting

+> prompt, #> prompt, *> prompt U-133
.Xdefaults file R-325
avoid multiple-line selections for customized

commands U-182
email not being delivered U-28
files not found U-75
-I switch for loading header files U-81
improving performance when stepping

through code U-160
linking U-77

dealing with unresolved symbols U-77
load_flags option U-57
loading header files U-57, U-81
loading libraries and #include files R-154
load-time error checking—undetected

function argument mismatches U-91
resolving symbolic references to libraries

U-77
setting breakpoints in shared library

modules U-111
spurious used-before-set messages U-107,

U-108
swapping U-75
too many run-time violations U-108

types, declaring in the Workspace U-135

U

-U (command-line switch) R-68, R-146
unalias command R-284
undefined symbols, listing R-288
uninstrument command U-73, R-285
uninstrument command, See also instrument
uninstrumented object code

loading as a technique to improve
performance U-84

UNIX compatibility U-9
Unload button U-75
unload command U-134, R-286
unloading

definitions made in Workspace U-134
files U-74
libraries U-75

unres command U-167, R-288
unresolved variables R-139
unresolved references

and templates U-61
listing U-167
to symbols in libraries U-61
when linking projects U-77

unset_value option U-107, U-204, R-44, R-126,
R-196

specifying value to prevent checking for
unset memory in Ascii CodeCenter
U-204

unsetenv command U-191, R-289
unsetopt command R-290
unsigned char R-79
unsuppress command R-291
up command U-127, R-293
updating data in the Data Browser U-160
-usage (command-line switch) R-68
use command R-294
used-before-set messages U-108, U-204
user interface, See GUI
user-defined commands U-180, R-350

ccref.book : combinedIX.doc 398 Mon Jun 5 15:33:25 1995

Index

398 CodeCenter Reference

V

VARARGS comment U-188, R-21
variables

assigning values R-245
changing values in Data Browser U-158
cross referencing R-321
defining in Workspace U-135, R-316
displaying all uses of R-297
displaying information about R-123
displaying values of U-165, U-167, R-98,

R-101, R-223
expanding in Workspace R-310
initializing R-233
list of in defining a command U-180
location, specifying R-143
setting with assign command R-17
specifying location in Workspace R-314
unresolved R-139
viewing values of U-165, U-167
in Workspace U-135

variables, environment R-112 to R-113
specific to CodeCenter R-113

version_date option R-196
version_number option R-196
vi U-9,R-104
editing source code U-43
visualizing your code U-16, U-147

seeing all the files throught the Project
Browser U-16

seeing data structures through the Data
Browser U-18

seeing the callling structure through the
Cross-Reference Browser U-17

W

-w (command-line switch) U-81, R-68, R-146
warnings

choices in handling
load-time warnings in Ascii CodeCenter

U-200
definition of U-93
fixing load-time U-94, U-95
kinds of, reported for instrumented code

R-127
load-time

checking in Ascii CodeCenter U-200
how handled U-93
in Error Browser U-93
suppressing U-188

preventing, about uninitialized memory
R-281

run-time U-103
continuing past U-106

scope of message suppression U-97
seeing load-time U-92
suppressing load-time U-188

warnings, CodeCenter
reactivating reporting of R-291
reported during execution R-188
suppressing R-267
See also suppressing reporting of warnings

watchpoints R-22
setting R-7, R-298

in Ascii CodeCenter U-207
whatis command U-166, R-297
when command R-298
where command U-127, R-300

options used by R-300
suppressing list of args with R-196

whereami command U-128, R-302
whereis command U-166, R-304
which C compiler, specifying R-185
wildcards, using with load R-155, R-156
win_fork option R-196

ccref.book : combinedIX.doc 399 Mon Jun 5 15:33:25 1995

CodeCenter Reference 399

Index

win_io option R-197
win_no_raise option R-197
window managers R-305
workgroup_id option R-197
Workspace U-11

changing bindings used by the in-line editor
R-130

clearing U-39
commands, displaying information about

R-171
completing names in R-312
displaying data structures in U-135, R-317
displaying input history in U-40, R-120,

R-307
entering code in U-133
errors reported in U-133
evaluating an assignment expression R-17
executing library functions R-317
font specifications R-348
functions defined in, and actions R-5
in Ascii CodeCenter U-195
inline editing U-39
name completion functionality U-39
preprocessing input to U-190
recording of input history R-307
redirecting output in R-313
repeating previous input R-308
requesting help about R-119
responding to errors made in U-133, R-318
saving input history U-40, R-307
saving transcript of session U-39
shortcuts U-40
unloading U-134
using GNU debugger R-205

Workspace commands U-163
customizing U-182
help command U-28
using U-37

Workspace prompt U-133
workspace_include option R-197

X

X resources R-323 to R-357
CodeCenter, description R-326
component and object names R-346
customizing U-173
documentation browser R-358
DynaText R-358
examples of user-defined commands R-350
fonts for CodeCenter components R-348
in user-defined commands R-350
Manual Browser R-358
modifying R-323
OI components R-348
OI names R-346
revision control systems R-356
setting default UI style R-325
specific to Motif vs OpenLook R-349
specifying scope for R-348
troubleshooting .Xdefaults file R-325

X11 U-10
.Xdefaults file

troubleshooting R-325
modifying R-324

XLFD (X11 Logical Font Description) R-327
xref command R-321
-xrm (command-line argument) R-70

Y

yacc files
example R-215
using R-150, R-214

Z

zombied debugging items R-96, R-258

ccref.book : combinedIX.doc 400 Mon Jun 5 15:33:25 1995

