
CodeCenter Tutorial

Version 4.1.1
CenterLine Software, Inc.
10 Fawcett Street

Cambridge, Massachusetts 02138



CenterLine Software, Inc. reserves the right to make changes in specifications and other 
information contained in this publication without prior notice. The reader should in all cases 
consult CenterLine to determine whether any such changes have been made.

This Manual contains proprietary information that is the sole property of CenterLine. This 
Manual is furnished to authorized users of CodeCenter solely to facilitate the use of CodeCenter 
as specified in written agreements.

No part of this publication may be reproduced, stored in a retrieval system, translated, 
transcribed, or transmitted, in any form, or by any means without prior explicit written 
permission from CenterLine Software.

The software programs described in this document are copyrighted and are confidential 
information and proprietary products of CenterLine Software.

CenterLine and ViewCenter are registered trademarks of CenterLine Software, Inc. CodeCenter, 
ObjectCenter, ResourceCenter, and TestCenter are trademarks of CenterLine Software, Inc.

All other products or services mentioned in this document are trademarks or registered 
trademarks of their respective holders.

Licensed under one or more of U.S. Pat. Nos. 5,193,180 and 5,335,344; other U.S. and foreign 
patents pending.

© 1986 – 1995 CenterLine Software, Inc.
All rights reserved.
Printed in the United States of America.

The CenterLine GNU Debugger and the CenterLine C Preprocessor are free; this means that 
everyone is free to use them and free to redistribute them on a free basis. They are not in the 
public domain; they are copyrighted and there are restrictions on their distribution, but these 
restrictions are designed to permit everything that a good cooperating citizen would want to do. 
What is not allowed is to try to prevent others from further sharing any version of the CenterLine 
GNU Debugger or CenterLine C Preprocessor that they might get from you. The precise 
conditions are found in the GNU General Public License.

If you have access to the Internet, you can get the latest distribution version of the CenterLine 
GNU Debugger or the CenterLine C Preprocessor via anonymous login from the following host:

ftp.centerline.com

The following file on that host contains the source for the CenterLine GNU Debugger:

/pub/TOOLS/PDM.TAR.Z

The following file on that host contains the source for the CenterLine C Preprocessor:

/pub/TOOLS/CLPP.TAR.Z

If you do not have access to the Internet, send mail to CenterLine, and we will send you 
instructions on how to obtain a copy. The address is as follows:

CenterLine Software, Inc.
10 Fawcett Street
Cambridge, Massachusetts 02138



Using this book
Using this book
CodeCenter is an interactive C programming environment that 
provides two debugging modes: process debugging mode and 
component debugging mode. Component debugging mode includes 
an interactive C Workspace. This guide introduces  you to CodeCenter 
so that you can start using it to enhance or debug your code.

Read this preface before you begin the tutorial for an overview of the 
following topics:

• Using this guide 

• Starting CodeCenter and using its windows

• Finding information online 

• Using the tutorial

• Setting up the tutorial directory

What this guide is 
about

This guide contains a tutorial that introduces you to the CodeCenter 
environment. It also shows you how to load your own code into 
CodeCenter, how to debug, test, and prototype your code, and how to 
set up and customize your environment.

Part I is a tutorial that takes you on a tour of the environment while 
you complete several debugging and code development tasks. 

Part II shows you how to get started with your own code.

We recommend that you read through this introduction for a brief 
overview, and then go on to page 3 to begin the tutorial. We’ve tried to 
make  the  tutorial work the same way on all platforms. However, 
there may  be differences on some platforms. Please read your Release 
Bulletin to see if there are differences before beginning the tutorial.

If you prefer to start  by loading in your own code, go to page 69 after 
reading this introduction.

What you should 
know before starting

This guide doesn’t assume any knowledge of CodeCenter, but it does 
assume that

• You are familiar with the C language. It does not attempt to 
teach C programming.

• You are familiar with UNIX , the X Window System™, and 
either the OPEN LOOK  or Motif  Graphical User Interface.
CodeCenter Tutorial iii



Using this book
Conventions used in 
this guide

This guide uses the following conventions:

• To display a pull-down menu, move the mouse pointer over the 
menu  title and press either the Left mouse button (Motif GUI) or 
Right mouse button (OPEN LOOK GUI).

• To select a menu  item, hold down the same mouse button, drag 
the mouse pointer to the specified menu item, and then release 
the mouse button.

• To select a button, move the mouse pointer over the button and 
click the Left mouse button.

Starting 
CodeCenter

Before you start using CodeCenter, choose the editor CodeCenter 
invokes when you select an edit symbol or enter the edit command, 
and set the DISPLAY variable to the system you will be using.  'Setting 
up your environment' on page 107 describes some other options and 
customizations you may want to set up when you are more familiar 
with CodeCenter.

Specifying your 
editor 

CodeCenter supports vi and FSF GNU Emacs. The default editor is vi. 
To specify GNU Emacs as your  editor,  use the following shell 
command:

% setenv EDITOR emacs

GNU Emacs and vi are the only editors we support. You may be able 
to connect other editors to CodeCenter. See  'Using your own editor' 
on page 115 for more information.

You can also start CodeCenter under the control of FSF GNU Emacs. 
To see how, read the emacs integration entry in the CodeCenter 
Reference. 

Setting your display Before you invoke CodeCenter, be sure to set up your DISPLAY 
environment variable according to usual X Window System 
conventions. For example, if your host is named baxter:

% setenv DISPLAY baxter:0

Invoking CodeCenter You invoke CodeCenter with the codecenter command. 

% codecenter

By default, CodeCenter starts in component debugging mode  with 
the default graphical user interface style for your platform.  The 
illustrations in this guide show the Motif user interface.
iv CodeCenter Tutorial



Using this book
The Main Window When you invoke CodeCenter, you see the Main Window, which acts 
as the hub of the CodeCenter environment. The Main Window 
contains the Source area, which displays your source code, the 
Workspace, in which you enter commands and prototype code, and 
buttons and menus, for fast access to commands and browsers. 
CodeCenter’s graphical browsers open automatically when you enter 
the appropriate commands or make menu selections. You can also 
open any browser or raise it in front of other CodeCenter windows 
from the Browsers menu.

Managing windows If you have finished with a window you have opened, you can select 
the Dismiss button on any primary window or the Cancel button on 
other windows to close the window. You can also use your window 
manager’s controls to iconify Browsers. Resize a window or use the 
horizontal and vertical scroll bars to view any graphical code 
representation too large to fit completely in the window.

Source area

Button Panel

? button for online
documentation

Workspace

Browsers menu
CodeCenter Tutorial v



Using this book
Finding 
information online

The CodeCenter product comes with a complete set of online manuals 
including a User Guide and Reference. There are also several other ways 
to access information online.

Manual Browser and 
"?" button

The Manual Browser contains the full text of the CodeCenter User Guide 
and CodeCenter Reference, information about new features and 
platform-specific differences, and answers to frequently asked 
questions. You can display the Manual Browser using three different 
methods:

• From any primary window in the debugger, display the 
Browsers menu and select Manual Browser.

• Click on the "?" button in the Main Window.

• Issue the  cldoc  command from a shell.

In the left panel of the Library window are one or more collections of 
books. Click on the name of a collection to display the names of books 
in that collection in the Books panel. Open a specific book by 
double-clicking on its name, or by selecting its name and clicking the 
Open button.

The man command You can also invoke the CodeCenter Reference by typing man in the 
CodeCenter Workspace followed by the name of a command. For 
example 

-> man debug

Searching the online 
documentation

You can perform searches from the Library window or from a book 
window. In the book window we’ve provided several search forms to 
simplify searching. Select Forms from the Search menu to see the list 
of forms. To expand or constrain your search, you can also use 
wildcards or Boolean expressions in the standard search form. For 
example:

• To locate all instances of the word profiling, enter profiling in 
the search field. 

• To locate words such as profile and profiles as well, enter profil* 
in the search field. 

• To locate all instances of the word profiling that appear in 
proximity to the word library, enter profiling and library in the 
search field.

• To locate all instances of the phrase "run-time error checking", 
enter run-time error checking in the search field.
vi CodeCenter Tutorial



Using this book
The Dynatext Reader Guide in the doc_info collection describes more 
advanced search techniques.

Moving from place to 
place

Use the Next, Previous, and Go Back buttons to navigate through the 
book. Underlined text is hot—clicking on it scrolls the window to the 
section of the book referenced, or opens a new window if the reference 
is to another book. You can create a history of your movement through 
the book by selecting New Journal from the File menu and selecting 
Start Record in the dialog that pops up. 

Printing and copying Print sections by selecting Print from the File menu and highlighting 
the sections you want to print. Export sections to a file by selecting 
Export from the Edit menu, highlighting the sections you want to 
export, selecting Content as the Export format, providing a filename, 
and clicking the Export button.

Context-sensitive 
help

You can get context-sensitive online help by placing your cursor over 
any item in the graphical user interface and pressing the F1 or Help 
key, or by selecting "On Context" from the Help menu and placing the 
"?" cursor over an item in the interface.

Using the Help menu In addition to context-sensitive help, the CodeCenter GUI also offers 
help on a range of topics. You access this help through the Help menu  
in the Main Window or any of the graphical browsers. 

Workspace help Get quick help on commands and options by entering help followed 
by a command or option name in the Workspace. For example, to get 
a usage summary for the email command:

-> help email

CenterLine manual 
pages

Access CenterLine manual pages for shell commands and library 
functions from a shell with the man command, or from the Workspace 
with sh man, for example

-> sh man cldoc

You may need to set your MANPATH environment variable before 
starting CodeCenter. For example:

% setenv MANPATH path/CenterLine/man:$MANPATH
CodeCenter Tutorial vii



Using this book
How to use the 
tutorial

To explore the CodeCenter programming environment, the tutorial 
uses a simple program named Bounce. The Bounce program creates a 
new window and bounces a rectangle within the window. In the 
tutorial, you will fix some problems, then revise the program so it 
bounces a circle.

The tutorial provides a series of tasks for exploring CodeCenter 
features:

• Debugging a corefile. You use the CodeCenter process 
debugging mode with a fully linked executable.

• Correcting run-time and static errors. You set up a CodeCenter 
project and use component debugging mode to track down a 
run-time error and make the correction.

• Enhancing a program interactively. You use code visualization 
to analyze the structure of the program, dynamic debugging 
items to explore the flow of control in the code, and the 
interpreter for prototyping.

• Loading the Bounce program with the load command. You 
practice loading a program into CodeCenter without a makefile.

The first three tasks are designed to be performed in sequence; 
however,  you can omit the first task if you prefer. The last task can be 
completed independently.  

Setting up the 
tutorial directory

To set up the tutorial directory, go to your home directory and invoke 
the ctutor command, as follows:

% cd
% ctutor

If the operating system does not find the ctutor command, then the 
CenterLine/bin directory is not in your path. Ask your system 
administrator where the CenterLine/bin directory is on your system.

The ctutor command creates a directory called ctutor_dir in the 
current directory and copies the tutorial files to the new directory. The 
ctutor_dir contains the following files:

Makefile circle.c shape.c.dump wait.c

bounce.c main.c shape.c.good x.c

bounce.c.bad rectangle.c shape.h x.h

bounce.h shape.c table.c
viii CodeCenter Tutorial



Contents
Contents
Using this book   iii

Part I Tutorial 1

Chapter 1 Debugging a corefile 3
Getting started 5
Specifying a corefile as a target for CodeCenter 6
Finding and fixing the error that causes the segmentation fault 7
Examining data structures using the Data Browser 9
Building and running the new executable 11

Chapter 2 Correcting run-time and static errors 13
Starting Chapter 2 15
Setting up a CodeCenter project for Bounce 15
Viewing the project components 16
Finding the problem using run-time error checking 18
Swapping a file from object to source form 22
Exploring the code to understand the problem 23
Fixing the error 25
Using load-time error checking to clean up the code 27
Using the Error Browser 28
Saving a project file 30

Chapter 3 Enhancing a program interactively 31
Starting up and loading your project 33
Adding a new module to your project 34
Examining program elements with the Contents window 35
Looking at the program’s structure 36
Listing a function in the Source area 40
Using interactive debugging items to follow execution 41
Calling a function from the Workspace 45
Examining a linked list dynamically 47
Modifying the program 53

Chapter 4 Using the load command 57
Starting Chapter 4 59
Setting options 61
Loading the Bounce program 62
Linking from libraries 64
CodeCenter Tutorial ix



Part II Getting started with your own code 65

Chapter 5 Loading your application 67
Getting ready to load your code 69
Loading your application with the load command 71
Loading your application with CenterLine makefile targets 73
Creating a makefile with the EZSTART utility 77
Saving your project 78
Troubleshooting the load and link commands 80

Chapter 6 Running your application 83
Running your program 85
What is run-time error checking? 86
Adding more run-time error checking to object files 87
Responding to run-time problems 88
Swapping a file from object to source 90
Debugging techniques 92
Rebuilding your project 99
Exploring, enhancing, and testing your application 100
Troubleshooting run-time issues 104

Chapter 7 Setting  up your environment 107
Setting options in the Workspace 109
Saving your option settings 112
Customizing your environment 113

Index   117

List of Tables
Table 1  Resolving load and link Problems   80
Table 2  Types of Run-Time Error Checking   86
Table 3  Troubleshooting Swapping   91
Table 4  Troubleshooting Run-Time Issues   104
Table 5  Additional Workspace Options 111

List of Tips
Saving load-time error messages to a file 81
Exporting the contents of the Project Browser to a text file 105
x CodeCenter Tutorial



Part I: Tutorial

This part of the manual contains a tutorial that 
takes you on a tour of the CodeCenter environment. 
The tutorial has four chapters.

In the first three chapters you set up, debug, and 
enhance a program that bounces shapes. These 
chapters are designed to be completed in sequence:

• Debugging a corefile

• Correcting run-time and static errors

• Enhancing a program interactively

Work through the last chapter to learn how to use 
the load command to get code into CodeCenter.





Chapter 1 Debugging a 
corefile

For the purposes of this tutorial, the Bounce 
program represents code that you have inherited. In 
exploring this program, you will see that the code 
has a range of problems, from glaring to 
inconspicuous. We can use CodeCenter to correct 
these problems.





Getting started
Getting started
To begin the tutorial:

1 If you haven’t already created the tutorial directory, install the 
examples as described in 'Setting up the tutorial directory' on 
page viii.

2 Go to the tutorial directory:

% cd ~/ctutor_dir

Compiling the 
Bounce program 
at the shell

The first step in exploring the Bounce program is simply to run it. This 
involves building the executable by using the UNIX make utility at the 
shell, as follows: 

% make bounce_dump

If the name of the makefile target arouses your suspicions about the 
current state of the Bounce program, you are on the right track.

Running an 
executable that 
dumps core

As it stands, the Bounce program will generate a core dump. To run 
the Bounce program and dump a core file, use the following command 
at the shell: 

% bounce_dump

The Bounce program opens an execution window, draws the first 
rectangle, and then crashes. You should receive a system error 
notifying you of a segmentation fault or bus error and a core dump. 
The size of the corefile for bounce_dump varies from platform to 
platform. On the Sun platform, you may need to issue the following 
command before running bounce_dump:

% unlimit coredumpsize

Starting 
CodeCenter in 
process 
debugging mode

To debug a core file, CodeCenter must be in process debugging mode. 
Enter the codecenter command with the -pdm switch to start 
CodeCenter in process debugging mode:

% codecenter -pdm

The Workspace displays a startup message for process debugging 
mode, and the Workspace prompt (pdm 1 ->) indicates that 
CodeCenter is in process debugging mode.
CodeCenter Tutorial 5



Chapter 1 Debugging a corefile
Specifying a corefile as a target for 
CodeCenter
You use CodeCenter’s process debugging mode to work with a fully 
linked executable such as bounce_dump. Process debugging mode 
allows you to target a fully linked executable in several ways: the 
executable alone, the executable together with a corefile, or the 
executable as a running process. Since you have a corefile for 
bounce_dump, you can target the executable together with the 
corefile, which is an image of the process memory for bounce_dump 
at the point where the fault occurred.

To do this, type the following command: 

pdm 1 -> debug bounce_dump core
Debugging program `bounce_dump’
Core was generated by `bounce_dump’.
Program terminated with signal 11, Segmentation 
fault.
#0  0x23a4 in store_shape (count=0, shape=0xf7fff4f0 
“rectangle”) at shape.c:11
    11          *old = *new;

NOTE The output of commands may vary from platform to 
platform. The examples and illustrations in this guide 
show the output on the Solaris™ 2.3 platform. There 
may be other variations in behavior from platform to 
platform. For more information, please refer to your 
Release Bulletin and the "anomalies" section in the 
Platform Guide appendix for your platform in the online 
Reference.

In response to the debug command, the Workspace displays messages 
about the executable and corefile and identifies the line of code that 
generated the segmentation fault or bus error. The Workspace also 
shows that line 11 generates the error with the assignment *old = 
*new.
6 CodeCenter Tutorial



Finding and fixing the error that causes the segmentation fault
Finding and fixing the error that 
causes the segmentation fault
Process debugging mode is similar to a standard symbolic debugger 
like gdb in following execution, setting breakpoints, stepping through 
code, and printing the values for expressions. CodeCenter places these 
same facilities within its integrated programming environment and 
graphical user interface. For example, in addition to simply printing 
values, you can use the Data Browser to examine graphical 
representations of your data structures. This section shows how you 
can exploit CodeCenter’s capabilities in process debugging mode.

Stopping 
execution at the 
point of the 
segmentation fault

To stop execution at the point of the segmentation fault and see this 
error in context, you simply select the Run button above the 
Workspace. 

The Bounce window appears with a single rectangle in it. Then, 
CodeCenter automatically stops execution at the point of the error, 
shows the corresponding source code in the Source area, and indicates 
where execution stopped with the Execution symbol. CodeCenter also 
generates a break level in the Workspace.

Examining the lines of source code surrounding the error, you can 
recognize that the assignment of *new to *old is misplaced. This line 
should follow the allocation of memory and assignment of values for 
new.
CodeCenter Tutorial 7



Chapter 1 Debugging a corefile
Editing the source 
code

Now that you see that the problem is the misplaced assignment 
*old = *new, you can fix it by invoking your editor on that specific line, 
as follows: 

1 In the Source area, move the mouse pointer over the number 11 
at the left margin. 

2 Press the Right mouse button and select Edit line 11 from the 
pop-up menu.

This opens your editor on the source file, with the cursor placed at the 
beginning of the line containing the error. Fix the error by doing this: 

1 In your editor, move line 11 below line 16 (new->next = 0;). Your 
code should now look like the following:

old = (struct entry *) malloc(sizeof(struct entry));
new = (struct entry *) malloc(sizeof(struct entry));

new->number = count;
strcpy(new->shape, shape);
new->next = 0;
*old = *new;

2 Save this file.
8 CodeCenter Tutorial



Examining data structures using the Data Browser
Examining data structures using 
the Data Browser
Now that you have located and fixed the immediate problem, you can 
use the opportunity to examine various data structures. For example, 
you can examine the formal argument count in the following way: 

1 In the Source area, use the mouse to highlight the string count.

2 In the Main Window, display the Examine menu and select 
Display.

You can repeat these same steps for the string shape.

The Data Browser opens and displays a graphical representation for 
the variables count and shape:

Using spot help to 
understand the 
displayed item

To understand the displayed items shown in the Data Browser, use 
CodeCenter’s spot help: 

Move the mouse pointer over the name shape in the Display area and 
press the F1 key. 

Dereferencing a 
displayed pointer

Since shape is a pointer to char, the graphical item shows a Pointer 
symbol at the right of the value. You can use this box to display the 
dereferenced value: 

At the right side of the shape display item, select the Pointer symbol.

Data type and name

Value

Pointer symbol
CodeCenter Tutorial 9



Chapter 1 Debugging a corefile
The Pointer symbol is filled in; a reference line is drawn from the box 
to a graphical representation for the character pointed to by shape:

To exit the Data Browser, select Dismiss at the bottom of the window.
10 CodeCenter Tutorial



Building and running the new executable
Building and running the new 
executable
To try out the changes you have just made to the code for shape.c, you 
first need to rebuild the executable. We have provided a new makefile 
target that will pick up your changes, give the executable a more 
appropriate name, and remove the previous executable and corefile. 
Before you continue, reset the Workspace to the top level:

pdm (break 1) 2 -> reset

Using the make 
command in the 
Workspace

When CodeCenter is in process debugging mode, the make command 
invokes the UNIX make utility. Rebuild the executable and give it a 
new name by using the following command: 

pdm 3-> make bounce_nodump

Running the fixed 
executable

You now have a new executable named bounce_nodump. Use the 
debug Workspace command as follows to make this executable the 
new debugging target. Then use the run command to execute the 
program. 

pdm 4-> debug bounce_nodump
debug: Deleting all debugging items. 
Debugging program ‘bounce_nodump’ (previous program 
‘/net/paris/kotwal/ctutor_dir/bounce_dump’) 
pdm 5-> run
Executing: /net/paris/kotwal/ctutor_dir/bounce_nodump 
Program exited normally. 
Resetting to top level.

The Bounce program now runs to completion; your correction has 
removed the condition that caused a core dump. However, Bounce 
does not behave as gracefully as you may have hoped; the rectangle 
makes erratic jumps, rather than bouncing in smooth curves. This 
indicates that there is some other problem involved. This problem 
occurs during run time but does not generate a segmentation fault or 
bus error.

You can continue with the next chapter and find and fix the problem, 
but if you want to stop at this point, enter the quit command in the 
Workspace:

pdm 6 -> quit
CodeCenter Tutorial 11





Chapter 2 Correcting run-time 
and static errors

Now that you have the Bounce program executing 
to completion, you need to turn your attention to 
correcting its behavior. For some reason, the bounce 
becomes erratic near the end of the program. 

In this chapter, you will use CodeCenter’s 
component debugging mode to track down a 
run-time error, understand the code, and make the 
correction. Component debugging mode allows you 
to work with a project made up of any combination 
of source, object, and library file components, rather 
than a fully linked executable. 





Starting Chapter 2
Starting Chapter 2
If you didn’t try the first chapter, or if you quit CodeCenter after 
completing it, start CodeCenter in component debugging mode:

% codecenter

If you are continuing from the first chapter, switch CodeCenter from 
process debugging mode to component debugging mode: 

1 In the Main Window, display the CodeCenter menu and select 
Restart Session.

2 Check that the Component Debugger radio button is selected.

3 At the bottom of the dialog box, select Restart Debugger.

In the Main Window, the Workspace prompt no longer includes pdm, 
indicating that CodeCenter is now in component debugging mode. 
When you switch debugging modes, CodeCenter clears the Source 
area.

Setting up a CodeCenter project for 
Bounce
To work in CodeCenter’s component debugging mode, you begin by 
establishing a project. To do this, you load in the source, object, and 
library files related to the application you are working on. 

CodeCenter automatically loads the standard C library (libc). On 
some platforms, CodeCenter loads the shared version of this library.

Using a makefile 
to set up a project

You have several options for loading the files you need for your 
project. For this tutorial, we have prepared a makefile target that will 
take care of loading the proper files to set up your project. To invoke 
it, type the following Workspace command: 

1 -> make bounce_project

The CodeCenter make command uses special makefile rules designed 
to work with CodeCenter. The rules in the bounce_project target load 
in the separate files that constitute the components of the project for 
the Bounce program.
CodeCenter Tutorial 15



Chapter 2 Correcting run-time and static errors
Viewing the project components
CodeCenter lists all the components of the current project in the 
Project Browser. To view the project components, display the 
Browsers menu and select Project Browser. 

The Project Browser shows the components of your project in two 
categories: files (either source or object code) and libraries.

The makefile target loaded all the Bounce program files in object form. 
For the fastest load time, you typically load most files in object form; 
you load a file in source form only while you are actively developing 
that module. Once a file is loaded, you can swap between object and 
source forms at any time.

Files area

Code type Ñ source 
or object code

File status Ñ loaded
or unloaded

Libraries area
16 CodeCenter Tutorial



Viewing the project components
Using spot help to 
understand the 
Project Browser

To understand how to work with files shown in the Files area of the 
Project Browser, you can use CodeCenter’s spot help feature. Move the 
mouse pointer into the Files area and press the F1 key. 

Running the 
program in 
component 
debugging mode

Now that you have established the project for the Bounce program, 
you can run it by doing the following: 

1  At the bottom of the Project Browser, select the Run button.

2  At the bottom of the dialog box, select the Run button.

To put the Project Browser aside while you turn your focus back to the 
Main Window, you can move the Browser to the side or iconify it.

CodeCenter supports two different types of object files: regular and 
instrumented. Instrumented object files have run-time error checking 
enabled in them, which means that error-checking code is inserted in 
the object files in memory. Because all the files of this project are 
currently loaded in regular object form, the program runs in the same 
way and at the same speed as the fully linked executable in process 
debugging mode. 

In the next section, we’ll use instrumented object files.
CodeCenter Tutorial 17



Chapter 2 Correcting run-time and static errors
Finding the problem using run-time 
error checking
To track down the problems with the program’s behavior, you need to 
enable CodeCenter’s run-time error checking. While instrumented 
object code does not offer the full range of error checking that 
CodeCenter provides for source code, it does provide most of the 
run-time error checking and gives execution speed closer to regular 
object code.

NOTE Instrumentation isn’t available on all platforms. For 
details, read the "anomalies" section in your Platform 
Guide, which is usually available as an appendix to the 
online Reference, or check your Release Bulletin. If 
instrumentation isn’t supported on your platform, go 
on to 'Swapping a file from object to source form' on 
page 22.

Instrumenting the 
object files

The first step is to enable run-time checking for the object files in the 
project by instrumenting these files with additional debugging 
information. To instrument all the object files in the current project, 
use the following Workspace command: 

2 -> instrument all
Loading: 
/u6/CenterLine/c_4.0.0/<arch>/misc/ocode/instrument.o 
Instrument: 7 dereferences checked in: main.o
Instrument: 4 dereferences checked in: bounce.o
Instrument: 11 dereferences checked in: shape.o
Instrument: 14 dereferences checked in: table.o
Instrument: 0 dereferences checked in: wait.o
Instrument: 39 dereferences checked in: x.o
Instrument: 2 dereferences checked in: rectangle.o

The Workspace shows each file as it is instrumented and reports the 
number of dereferences checked in for that file. 
18 CodeCenter Tutorial



Finding the problem using run-time error checking
NOTE For the purposes of this tutorial, we use the 
instrument all command. However, this might not be 
the best approach to use when instrumenting your 
own code. For example, if you have many object files 
loaded, you may want to instrument a subset of the 
files. For more information, see the instrument entry in 
the CodeCenter Reference.

The Project Browser shows an I to the left of each filename to indicate 
that these files are now instrumented:

Running the 
Bounce program 
with instrumented 
object code

When you run a program in component debugging mode, 
CodeCenter automatically checks for run-time errors in source files 
and instrumented object files. 

To run the program, select the Run button in the middle of the Main 
Window.

The Bounce program starts running. Because CodeCenter is now 
checking for run-time violations in the instrumented object code, the 
execution is slightly slower than with regular object code.

An I indicates an
instrumented 
object file
CodeCenter Tutorial 19



Chapter 2 Correcting run-time and static errors
After bouncing the rectangle for a while, CodeCenter stops the 
execution of the Bounce program at a different place because it detects 
an error. CodeCenter lists the source file causing the error (bounce.c) 
in the Source area and indicates the line where execution stopped (line 
13) with the execution symbol. 

CodeCenter also updates the Error Browser button in the Source area 
to indicate a run-time error occurred and generates a break level in the 
Workspace.
20 CodeCenter Tutorial



Finding the problem using run-time error checking
Viewing error 
messages in the 
Error Browser

Open the Error Browser by clicking on the Error Browser button. The 
Error Browser displays a folder containing the run-time error. In this 
case, the Bounce program dereferenced a pointer that was out of 
bounds. Click on the Error Folder symbol to view the messages it 
contains.

A run-time error indicates a serious problem in your code, which you 
should correct. This error is an example of the kind of run-time error 
that might not be discovered in process debugging mode, but is 
caught by the CodeCenter automatic run-time error checking in 
component debugging mode .

Error folder symbol

Arrow shows 
current error

Edit symbol

E for error or 
W for warning
CodeCenter Tutorial 21



Chapter 2 Correcting run-time and static errors
Swapping a file from object to 
source form
Using CodeCenter’s run-time error checking with instrumented object 
code, you have located an out-of-bounds error on line 13 of the source 
file for bounce.o. However, to take full advantage of the information 
available through CodeCenter’s interpreter and debugger, you can 
swap this file from object to source form. Since you have narrowed 
your focus down to a single module, the greater error checking for 
source code is well worth the cost of slower execution speed in this 
file. To swap bounce.o to source form, display the File menu in the 
main Window and select Swap.

CodeCenter unloads bounce.o and loads bounce.c. Now with the 
problematic file loaded in source form, you can execute the program 
to get more help in tracking down the problem. 

In the middle of the Main Window, select the Run button.

This time, CodeCenter stops execution at line 13 in bounce.c and, as 
shown below, the Error Browser shows a more informative error 
message that there is an illegal index of 500 into the array col_table. 
The message further notes that the maximum index is 499.
22 CodeCenter Tutorial



Exploring the code to understand the problem
Exploring the code to understand 
the problem
You now have the run-time error located and have the problematic file 
loaded in source form. Now you are ready to investigate the relevant 
code carefully so you can understand how to fix the problem. 

Viewing the 
definition of an 
identifier

CodeCenter provides a quick, point-and-click way to get information 
about the definition of an identifier in your code. CodeCenter then 
displays information about the expression in a pop-up window. To 
view the definition of the identifier col_table at line 13, in the Source 
area do the following: 

1 Select the string col_table by highlighting it or by simply 
moving the mouse pointer over it. 

2 Press and hold the Shift key and click the Middle mouse button.

The Whatis window opens and displays the definition of col_table as 
an array of extern short with 500 elements:

To dismiss the Whatis window, click the Left mouse button.

You can also get this same type of information using the whatis 
command in the Workspace: 

(break 1) 5 -> whatis DECR 
#define DECR (100) 

The whatis command shows that DECR is a #define macro with the 
value 100. 

Viewing the value 
of an expression

You can use a similar point-and-click method to discover the run-time 
value of a variable or an expression. To do this: 
CodeCenter Tutorial 23



Chapter 2 Correcting run-time and static errors
1 Select the string INDEX(count) + DECR by dragging the mouse 
pointer. 

2 Press the Shift key and click the Left mouse button.

The Print window opens and shows that the current value of the 
expression INDEX(count) + DECR is 500:

To dismiss the Print window, click the Left mouse button.

In the same way, you can print the value of each of the components of 
this expression. The value of count is 300 and the value of 
INDEX(count) is 400. 

Based on the values that you have discovered, it becomes clear that the 
index expression INDEX(count) + DECR is coming up with an illegal 
index for col_table because the decrement is being added, rather than 
subtracted. Comparing this index expression with a similar one for 
row_table on the same line highlights the problem.
24 CodeCenter Tutorial



Fixing the error
Fixing the error
Now that you have found the error in bounce.c, you can use 
CodeCenter’s integration with your editor to streamline the process of 
correcting the code. To invoke your editor on the source code 
containing the error, do the following: 

1 At the left margin of the Source area, move the mouse pointer 
over number 13 and press the Right mouse button. 

2 Select Edit line 13.

This opens your editor on the source file, with the cursor 
automatically placed at the beginning of the line containing the error. 
Now do the following to fix the error: 

1 In your editor, change line 13 so that DECR is subtracted, not 
added. The line will then look like the following:

draw_rectangle(col_table[ INDEX(count) - DECR ],

2 In your editor, save the file.

Rebuilding and 
running your 
corrected program

You have changed a source file for a component of your project. You 
now need to bring your project up to date by rebuilding the project: 

In the middle of the Main Window, select the Build button.

CodeCenter incrementally links and reloads only the file that you 
changed rather than all the files. In addition, CodeCenter 
automatically tracks all dependencies. Your correction is now 
integrated into your project and the modified source code appears in 
the Source area. To see if this correction fixes the bounce behavior, do 
the following: 

In the middle of the Main Window, select the Run button.
CodeCenter Tutorial 25



Chapter 2 Correcting run-time and static errors
The Bounce program runs to completion with no run-time violations, 
and the rectangle bounces in a smooth curve all the way, as shown:
26 CodeCenter Tutorial



Using load-time error checking to clean up the code
Using load-time error checking to 
clean up the code
You now have the Bounce program running correctly. However, 
having functionally correct code is not necessarily the same thing as 
having clean code. CodeCenter’s load-time error checking provides a 
powerful tool for automating the code cleanup phase in your 
programming cycle.

Any time you load source code, CodeCenter does extensive lint-style 
checking for correct syntax and code usage. For example, to see if 
shape.c is clean, you would simply swap shape.o from object to source 
form by doing the following:

1 In the Project Browser Files area, select the line containing 
shape.o. 

2 In the middle of the Project Browser, select the Swap button. 

As CodeCenter loads shape.c, it finds load-time violations and signals 
the presence of load-time warnings with the Error Browser button, as 
shown:

Double-click the Error Browser button. This opens the Error Browser, 
with a Messages line for shape.c that shows no errors and one 
warning. 

Error Browser button
in the Project Browser
CodeCenter Tutorial 27



Chapter 2 Correcting run-time and static errors
Using the Error Browser
Click on the error folder symbol to see the warning message: the 
automatic variable temp is not used in the function. 

The Error Browser allows you to work with load-time and run-time 
violations in several ways, such as listing and calling your editor on 
the source code corresponding to a violation message. 

When you open a file of violations in the Error Browser, the first 
violation message is automatically selected. Since shape.c only has 
one message, the warning message you are interested in is already 
selected.

To view the line of source code that corresponds to the warning 
message, look at the line number that is highlighted in the Source area.

Edit symbol
28 CodeCenter Tutorial



Using the Error Browser
Viewing the offending line in context makes it clear that the variable 
temp is simply a relic of earlier coding and should now be eliminated. 
To invoke your editor on the source file containing the violation, select 
the Edit symbol in the Error Browser. 

Your editor may ask you if you want to load the shape.c file from disk 
since it was updated when you built the bounce_project target at the 
beginning of this chapter. Respond yes if prompted by your editor.

Editing your code Your editor is automatically positioned at the source line containing 
the load-time problem. To fix the problem:

1 Delete the string temp from line 8 so the code looks like the 
following:

{
struct entry *new = 0;
struct entry *old = 0;

2 In your editor, save the file.

Reloading the 
corrected code

To update your CodeCenter project, you need to reload shape.c, which 
you have just modified. To reload shape.c, click the Reload button in 
the Error Browser. No new error messages appear in the Error 
Browser, indicating that the source code of shape.c now passes 
CodeCenter’s load-time checking and ensuring that the code is clean.

In some situations, you may want to suppress the reporting of certain 
classes of warnings and save suppressions across sessions or projects. 
You’ll learn about this later, in 'Responding to run-time problems' on 
page 88.
CodeCenter Tutorial 29



Chapter 2 Correcting run-time and static errors
Saving a project file
In the next chapter, you will again be working closely with bounce.c 
and shape.c; therefore, you can simply leave them in source form 
when you save your project. To easily pick up your work in the next 
chapter where you left off, you can save your current setup in a project 
file by doing the following: 

1 In the Main Window, display the CodeCenter menu and select 
Save Project.

2 In the Save Project dialog box, edit the Save to File line to the 
name bounce.proj. 

3 At the bottom of the dialog box, select the Save Project button.

You can also save your project from the Project menu in the Project 
Browser, or with the save command in the Workspace.

Quitting 
CodeCenter

You have now completed the second chapter. Because the next chapter 
involves loading your project file at the start of a session, you need to 
leave CodeCenter at this point. To do so: 

1 In the Main Window, display the CodeCenter menu and select 
Quit CodeCenter. 

2 In the dialog box, select Quit.

As you see in the Quit Verification dialog box, you can save a project 
file when you leave CodeCenter. Since you have just taken care of this 
in the Project Browser, there is no need to save your project again 
when you exit this time.

NOTE The next chapter uses instrumentation, which isn’t 
available on all platforms. For details, read the 
"anomalies" section in your Platform Guide, which is 
usually available as an appendix to the online 
Reference, or check your Release Bulletin. 

If instrumentation isn’t supported on your platform, 
you have now completed the tutorial. You may want to 
go on to 'Loading your application' on page 67 to learn 
how to load your own code into CodeCenter.
30 CodeCenter Tutorial



Chapter 3 Enhancing a 
program interactively

Now that you have the Bounce program executing 
correctly, you can turn your attention to adding an 
enhancement. In this chapter, you will use 
CodeCenter’s component debugging mode to 
explore the code further and enhance the program to 
bounce either a rectangle or a circle, based on a 
command-line argument. 





Starting up and loading your project
Starting up and loading your 
project
You need to start CodeCenter in component debugging mode and 
re-establish the Bounce project that you set up in the second chapter. 
To restart, enter the codecenter command at the shell with the name of 
your project as an argument:

% codecenter bounce.proj

Re-establishing 
your project inside 
CodeCenter

Starting up with your project name as an argument to the codecenter 
command re-establishes your project automatically. If you prefer, you 
can re-establish the Bounce project after starting CodeCenter:

1 Enter the codecenter command at the shell without an argument:

% codecenter 

2 In the Main Window, display the Browsers menu and select 
Project Browser.

3 In the Project Browser, display the Project menu and select Load 
Project. 

4 At the Load From File input line, enter the name bounce.proj. 

5 At the bottom of the dialog box, select Load Project.
CodeCenter Tutorial 33



Chapter 3 Enhancing a program interactively
Adding a new module to your 
project
There is a file in the tutorial directory that provides code for drawing 
a circle, rather than a rectangle. The first step in using this code to 
enhance the Bounce program is to add the file circle.o to the current 
project. To do this: 

1 In the Project Browser, display the Project menu and select Add 
Files.

2 In the Files list of the dialog box, move the mouse pointer over 
the file circle.o and double click the Left mouse button. This 
adds circle.o to your project.

3 To dismiss the dialog box, select Done.

You have added circle.o to your project, and you can now instrument 
it to enable run-time error checking for this file by doing the following: 

1 In the Files area of the Project Browser, select circle.o. 

2  Below the Files area, select the Instrument button.

Understanding the 
programÕs 
structure

Before changing the existing program to incorporate the new module 
to draw a circle, you might want to take advantage of CodeCenter’s 
tools for understanding the underlying structure of the program that 
makes up your current project.
34 CodeCenter Tutorial



Examining program elements with the Contents window
Examining program elements with 
the Contents window
To understand program elements at the file level, CodeCenter has a 
Contents window that gives you various views on the data in a given 
file. You can choose to examine any of the following elements: 
functions, variables, headers, types, or typedefs. For example, you can 
use the Contents window to examine the contents of circle.o, which 
you just added to your project, and compare it with rectangle.o: 

1 In the Files area of the Project Browser, select the filenames 
circle.o. and rectangle.o. You can select more than one filename 
by holding down the Control key while you click on the second 
filename.

2 At the bottom of the Files area, select Contents.

3 Move the two Contents windows so you can see the contents of 
both windows (they may open so one is hiding the other). You 
might also want to resize the windows to get them side by side.

You can see that rectangle.o has one function draw_rectangle(), and 
circle.o has one function draw_circle().

To see the other program elements for each file, you simply change the 
display selection above the Contents area. To view the variables in 
circle.o and rectangle.o, select Variables in each Contents window. In 
the same way, compare the contents for Headers, Types, and 
Typedefs. When you have finished comparing different elements for 
these two files, select the Dismiss button at the bottom of each 
window.
CodeCenter Tutorial 35



Chapter 3 Enhancing a program interactively
Looking at the programÕs 
structure in the Cross-Reference 
Browser
To get a different structural view of the Bounce program, you can use 
the Cross-Reference Browser to view the calling hierarchy and 
references to global symbols in the program. In the Project Browser, 
display the Browsers menu and select Cross-Reference Browser.

The Cross-Reference Browser opens. You can specify any function as 
the focus point for cross-referencing. For example, if you 
cross-reference draw_rectangle(), the Browser will show references 
from functions and global variables that reference draw_rectangle() 
and all functions and global variables that are called by it. To 
cross-reference draw_rectangle() and specify it as the focus function 
for cross-referencing, do the following: 

NOTE Before opening a dialog box, CodeCenter will attempt 
to use the current X11™ selection. If there is a current 
selection in any X window, you may get an error 
message instead of the dialog box. 

If this happens, clear the selection by clicking on white 
space in an X terminal window.

1 In the Cross-Reference Browser, display the Graph menu and 
select Cross Reference Symbol.

2 At the XRef Symbol input line, type draw_rectangle. 

3 Select the Cross Reference button.

As seen in the next illustration, the Reference area of the 
Cross-Reference Browser shows draw_rectangle() as a function 
referenced by do_bounce() and referencing two library functions 
(XFlush() and XDrawRectangle()) and three global variables (display, 
win, and gc). 

If type information is available for a function, the Cross-Reference 
Browser shows the function’s return type; for example, void 
draw_rectangle(). If an object file does not contain type information 
for an item, instead of showing a return type, CodeCenter lists the area 
36 CodeCenter Tutorial



Looking at the programÕs structure in the Cross-Reference Browser
in the object file in which the item is located: <text> or <data>; for 
example <text> XFlush(). If the object file does not contain enough 
information even to determine the location of the item, then the type 
is listed as <extern>.

To compare the reference structure of draw_rectangle() with the 
structure for draw_circle(), do the following: 

1 In the Cross-Reference Browser, display the Graph menu and 
select Cross Reference Symbol.

2 In the input line of the dialog box, type the string draw_circle. 

3 At the bottom of the dialog box, select the Cross Reference 
button.
CodeCenter Tutorial 37



Chapter 3 Enhancing a program interactively
The Reference area shows that draw_circle() references most of the 
same items as draw_rectangle(), but it is not referenced anywhere in 
the program.

The Cross-Reference Browser allows you to trace the calling structure 
by selecting the boxes on the left and right sides of reference items. To 
follow the call structure back from do_bounce(), select the box to the 
left of do_bounce(). 

The do_bounce() function becomes the new focus function and shows 
a reference line coming to it from main(). Use the scrollbars to adjust 
the view in the Reference area.
38 CodeCenter Tutorial



Looking at the programÕs structure in the Cross-Reference Browser
To understand the overall calling structure of the program, you can 
select the boxes to the right of main() and do_bounce(). The box to the 
right indicates what functions or global variables the function 
references. 
CodeCenter Tutorial 39



Chapter 3 Enhancing a program interactively
Listing a function in the Source 
area
Since you have found out that draw_circle() is not being called and 
that draw_rectangle() is a similar function that is called by 
do_bounce(), you might suspect that do_bounce() is also where you 
will want to integrate draw_circle() into the Bounce program. To 
understand the code in do_bounce(), you can first examine it by 
listing it in the Source area, as follows: 

1 In the Reference area of the Cross-Reference Browser, move the 
mouse pointer over the do_bounce() reference item. The mouse 
pointer must be over the white space between the function name 
and the Pointer symbol on the left or right of it.

2  Press the Right mouse button and select List.

The Source area of the Main Window lists the source code for 
do_bounce(). You can also list do_bounce() by typing the following in 
the Workspace.

-> list do_bounce

The source code reveals that there are two places where 
draw_rectangle() can be called. Which call is made depends on the 
value of shape, which is passed in as an argument when do_bounce() 
is called from main(). In main(), shape is set by a command-line 
argument or else defaults to the string rectangle. 
40 CodeCenter Tutorial



Using interactive debugging items to follow execution
Using interactive debugging items 
to follow execution
Now that you have a sense of the calling structure, you can use 
CodeCenter’s debugging features to follow the flow of control 
interactively as the program executes. 

Setting a 
breakpoint

CodeCenter allows you to specify a breakpoint where you want 
execution to stop. To set a breakpoint at the if statement that calls 
draw_rectangle(), do the following: 

1 Move the mouse pointer over the line number 12 at the left of the 
Source area and press the Right mouse button. The pop-up 
menu lists actions on line 12.

2 On the pop-up menu, select Set Breakpoint Here. 

A Breakpoint symbol appears to the left of the line number:

As a shortcut, you can set a breakpoint by selecting the line number in 
the Source area. You can delete a breakpoint by selecting the 
Breakpoint symbol.

Breakpoint symbol
CodeCenter Tutorial 41



Chapter 3 Enhancing a program interactively
Executing to a 
breakpoint

Now when you execute the Bounce program, CodeCenter will stop 
execution at line 12 in bounce.c and establish a break level in the 
Workspace. 

In the middle of the Main Window, select the Run button.

In the Source area, the Execution symbol indicates that execution has 
stopped at the breakpoint on line 12:

Continuing 
execution from a 
breakpoint

By examining the source code at this breakpoint, you can see that this 
is the statement that draws each rectangle that forms the bounce. You 
might, therefore, want to simply move the execution through to this 
point several times to get a sense of where each of these rectangles will 
be drawn. 

To continue execution back to this breakpoint, select Continue in the 
Button Panel in the main Window.

The first rectangle appears in the execution window, and execution is 
again stopped at line 12. 

To have the Bounce program draw a second rectangle, select the 
Continue button again.
42 CodeCenter Tutorial



Using interactive debugging items to follow execution
Single stepping 
execution

To follow execution more closely, you can single step through each 
statement. 

1 In the middle of the Main Window, select the Step button.

The statement at line 12 is executed, and the Execution symbol 
moves to line 13. 

Execution is now at line 13, which is a call to draw_rectangle(). If 
you single step on this statement, you will follow execution into 
the function that is called. 

2 In the middle of the Main Window, select the Step button again.
CodeCenter Tutorial 43



Chapter 3 Enhancing a program interactively
3 To single step through draw_rectangle(), in the middle of the 
Main Window, select the Step button three times.

Execution returns from draw_rectangle(), and the Execution 
symbol is now at line 16 in do_bounce(), as shown:

The next statement is a call to the function store_shape(). Rather 
than single stepping through this function, you can execute it 
and move directly to the next statement in the current function. 

4 In the middle of the Main Window, select the Next button.

In one move, execution has returned from store_shape() and the 
Execution symbol is now at line 17.
44 CodeCenter Tutorial



Calling a function from the Workspace
Calling a function from the 
Workspace
In addition to stepping through the execution path, while at a break 
level you can also follow a new execution path dynamically by calling 
a function from the Workspace. For example, the next statement in the 
execution path is line 17 of bounce.c, a call to do_wait().  But, as an 
experiment, you might want to explore store_shape() instead.  First, to 
set a breakpoint in store_shape() so you can step through the new 
execution path, do the following: 

1 In the Main Window, display the Debug menu and select Set 
Breakpoint.

2 At the Function input line, type the string store_shape.

3 Select the Set Breakpoint button.

The breakpoint is set in shape.c, which is not listed in the Source area.

Second, to call store_shape() from the Workspace and experiment 
with the actual arguments, you enter the following C statement 
(including the semicolon at the end of the line): 

1 In the Workspace, type in the following C statement:

(break 1) 9 -> store_shape(100, "pentangle");

2 Press the Return key to enter this statement at the Workspace.
CodeCenter Tutorial 45



Chapter 3 Enhancing a program interactively
The Source area shows that execution is now stopped at line 7 in 
shape.c, which is the first statement in store_shape():

The Workspace prompt shows that execution is stopped at break 
level 2. This is because the breakpoint at line 7 of shape.c is in a 
different execution path from the one for break level 1 where you 
made the call to store_shape(). 

Execution stopped
in store_shape

A new break level 
in the Workspace
46 CodeCenter Tutorial



Examining a linked list dynamically
Examining a linked list dynamically
Now that you are stopped at the first line of store_shape(), you can use 
the opportunity to examine various data structures dynamically. The 
most significant data structure in store_shape() is the linked list 
pointed to by list_head. To display the head of the linked list 
(list_head), do the following: 

1 In the Source area, select the string list_head on line 18 by 
dragging the mouse pointer from one end of the string to the 
other.

2 Display the Examine menu and select Display.

The Data Browser opens and displays a graphical representation for 
list_head, as shown:

The variable list_head is a pointer, and the display item for it shows a 
Pointer symbol. You can use the Pointer symbol to see the first node in 
the list. In the Data Browser, select the Pointer symbol at the right side 
of the display item’s value field.

Data type and name

Value

Pointer symbol
CodeCenter Tutorial 47



Chapter 3 Enhancing a program interactively
The dereference box is darkened and a reference line is drawn from the 
box to a graphical representation for the struct pointed to by 
list_head.

The struct pointed to by list_head has three elements: number, shape, 
and next. The Folder symbol to the right of the char array shape 
indicates that there are additional subelements that you can view. 

To view the subelements of shape, select the Folder symbol to the right 
of shape.

The Folder symbol opens and the array elements are displayed. Since 
most of the elements are out of sight, you need to zoom the size of the 
graphical item for *list_head and scroll the zoomed item into view 
with the vertical scrollbar. To zoom the size of the graphical item, do 
the following: 

1 In the Data area, move the mouse pointer over the graphical item 
for *list_head and press the Right mouse button. The mouse 
pointer must be immediately to the left or right of the name 
(struct entry) *list_head.

2 In the pop-up menu, as shown, select Zoom with the Right 
mouse button.
48 CodeCenter Tutorial



Examining a linked list dynamically
When you select Zoom, the following happens.
CodeCenter Tutorial 49



Chapter 3 Enhancing a program interactively
You can now see that the shape array contains the string rectangle. To 
save display space in the Data Browser, you can hide the subelements 
once you have viewed them. To hide the subelements in the struct 
*list_head, select the open Folder symbol to the right of shape. This 
closes the folder and removes the array elements from the display. To 
shrink the data item, select Shrink from the pop-up menu, or use the 
resize corners on the data item.

Following the 
linked list

So far you have displayed the pointer to the list and first node of the 
list. To follow the linked list, you simply select the reference box for the 
first node in the same way you did with list_head. To display the next 
node in the linked list, do the following: 

1 In the Data Browser, select the Pointer symbol in the first list 
node.

2 Select the Pointer symbol in the next node.

3 Use the horizontal and vertical scrollbars to bring in view the 
display items you are interested in.

The Pointer symbol for the third node in the list is filled in with the 
Null Pointer symbol, which indicates a null pointer that cannot be 
dereferenced.

Null
Pointer
Symbol
50 CodeCenter Tutorial



Examining a linked list dynamically
Seeing how the 
program uses old 
and new

Do the following to begin stepping through store_shape line by line to 
see the flow of execution:

1 In the Main Window, select the Step button. 

2 Repeat stepping to line 13, beyond the allocation of memory for 
old and new.

You can use the Data Browser to display a graphic representation of 
how the program uses old and new in adding a new node to the list. 
To display the pointers old and new, do the following: 

1 Make sure you have no string selected in the Source area of the 
Main Window.

2 In the Data Browser, display the Graph menu in the menu bar 
and select New Expression.

3 At the input line of the dialog box, type the string old.

4 At the bottom of the dialog box, select the Data Browse button.

5 Repeat steps 2 to 4 for the string new.

6 To dereference each pointer, move the mouse pointer over the 
Pointer symbol and click the Left mouse button.

In addition to the linked list of nodes pointed to by list_head, the Data 
Browser now shows old and new and the newly allocated display 
items they point to. Besides scrolling or resizing the window to get the 
best view, you can also move the displayed items by selecting and 
dragging them with the mouse to new locations.
CodeCenter Tutorial 51



Chapter 3 Enhancing a program interactively
Watching a new 
node get added

By stepping through the rest of the function, you can watch the new 
node being added. To do this: 

1 In the middle of the Main Window, select the Step button. 

2 Repeat this until execution moves to line 26. 

As you step through the function, you can see the values and pointer 
lines being dynamically updated in the Data Browser. To return 
execution to break level 1, select the Step button to continue single 
stepping until execution moves past the closing brace ( } ) of 
store_shape() and returns to the calling function. 

Alternatively, rather than stepping, you can resume execution to the 
previous break level by selecting the Continue button.

Returning to a 
previous break 
level

When execution returns from store_shape(), execution is at line 17 in 
do_bounce, and the Workspace is back at break level 1. This means 
that you are back at the execution path that you left when you called 
store_shape() from the Workspace. You can now resume your original 
path of execution. However, since you changed global data by adding 
a new node to the linked list, you are resuming execution with a 
different program state.
52 CodeCenter Tutorial



Modifying the program
Modifying the program
Now that you have a sense of the calling structure and flow of control 
for the Bounce program, you can make a modification that will 
integrate the function draw_circle() in the new module circle.o. 

Calling your editor 
from the 
Workspace

To extend the Bounce program with a call to draw_circle(), you can 
change the code on line 16 of do_bounce to call draw_circle() instead 
of draw_rectangle(). To modify the code, do the following: 

1 With do_bounce listed in the Source area, move the mouse 
pointer over number 12 in the line number column to the left of 
the code and press the Right mouse button.

2 In the pop-up menu, select Edit line 12.

3 In your editor, change lines 12 and 13 to replace the string 
rectangle with the string circle. The if statement will then look 
like the following:

if (strcmp(shape, "circle") == 0) )

  draw_circle(col_table[ INDEX(count) - DECR ], 
  row_table[ INDEX(count) - DECR ];
else

draw_rectangle(col_table[ INDEX(count) - DECR ], 
  row_table[ INDEX(count) - DECR ];

4 In your editor, save the file.

Rebuilding your 
project

Since you have changed a source file, you need to bring these changes 
into CodeCenter by rebuilding your project. 

In the middle of the Main Window, select the Build button.

Running the 
modified program 
with a 
command-line 
argument

To have the modified Bounce program bounce a circle rather than a 
rectangle, you can delete the breakpoints and run the program using 
circle as a command-line argument. To delete the current breakpoints, 
do the following: 

1 In the Main Window, display the Debug menu and select 
Delete.

2 In the Delete submenu, select Delete All Debugging Items.
CodeCenter Tutorial 53



Chapter 3 Enhancing a program interactively
To run the Bounce program, do the following: 

1 At the bottom of the Project Browser, select the Run button.

2 At the input line of the dialog box, enter the string circle.

3 At the bottom of the dialog box, select the Run button.

You have now finished the enhancement, and the Bounce program 
successfully bounces a circle.

Continuing the 
tutorial

You have now completed the main part of the tutorial. Thus far, we 
have relied on a makefile to load the Bounce program. If you would 
like to practice loading code into CodeCenter without using a 
makefile, go on to ’Using the load command’ on page 57. To try 
loading your own code into CodeCenter, go to ’Loading your 
application’ on page 67.
54 CodeCenter Tutorial



Modifying the program
Leaving 
CodeCenter

If you want to quit CodeCenter now, save your project in case you 
want to revisit the Bounce program for further exploration on your 
own. To leave CodeCenter, do the following: 

1 In the Main Window, display the CodeCenter menu and select 
Quit CodeCenter. 

2 In the Quit Verification dialog box, select the Save Project 
button.

3 In the Save Project dialog box, check that the Save to File input 
line contains the name you want to use for this project file.

4 At the bottom of the dialog box, select the Save Project button.

5 In the Quit Verification dialog box, select the Quit button.
CodeCenter Tutorial 55





Chapter 4 Using the load 
command

In this chapter, we load a version of the Bounce 
program into CodeCenter using the load command.



 



Starting Chapter 4
Starting Chapter 4
To begin this chapter:

1 If CodeCenter is already running, exit your session as described 
in ’Quitting CodeCenter’ on page 30.

2 If you haven’t already created the tutorial directory, install the 
examples as described in 'Setting up the tutorial directory' on 
page viii. 

3 Go to the tutorial directory and invoke CodeCenter:

% cd ~/ctutor_dir
% codecenter

Output when 
loading object 
files

When you load object files in this chapter, the output of the load 
command will depend on whether you have already completed the 
previous chapters. 

If your ctutor_dir directory already contains object files for the source 
files used in this chapter, CodeCenter loads the object files. For 
example:

1 -> load shapes.o
Loading: shapes.o

If the object files don’t exist in ctutor_dir, CodeCenter creates them. 
For example:

1 -> load shapes.o
Cannot open ’/net/test/ctutor_dir/shapes.o’.
No such file or directory
Executing:/net/.../cc /net/test/ctutor_dir/shapes.c
/net/test/ctutor_dir/shapes.c:
Loading: shapes.o
CodeCenter Tutorial 59



Chapter 4 Using the load command
Load errors If CodeCenter finds errors when you load a file, it immediately 
unloads it and reports errors in the Error Browser. For example, there 
are two versions of bounce.c in the tutorial directory. If you try to load 
both of them into the environment, you see output like this:

6 -> load bounce.c.bad
Loading: -I/usr/include/X11R4 -I/usr/include/X11R5 
-I/usr/openwin/include bounce.c.bad
7 -> load bounce.c
Loading: -I/usr/include/X11R4 -I/usr/include/X11R5 
-I/usr/openwin/include bounce.c
Unloading: bounce.c
*** Check error browser for more details. ***
Warning: 1 module currently not loaded.
60 CodeCenter Tutorial



Setting options
Setting options
Before loading files, you need to set the program_name and 
load_flags options. The load_flags option specifies the switches that 
should be appended to the load command when you invoke it 
without any switches. 

Loading files into CodeCenter is analogous to compiling files with 
your compiler. When loading files, you want to pass the same switches 
(such as -I, -D, and -L) that you normally pass to the compiler. If you 
don’t specify the correct switches, CodeCenter may not find the 
correct header files or libraries when loading.

1 Set the program_name option:

1-> setopt program_name bounce

2 Set the load_flags option to include all the switches that are 
passed to the compiler, as specified by $(CFLAGS) in the 
makefile. The -I and -L switches specify the list of directories that 
the load command should search for header files and libraries 
(respectively). The load_flags option saves you from specifying 
these switches each time you load a file in your project. Here are 
some typical values for the load_flags option:

For Sun™ platforms:

2-> setopt load_flags  -I/usr/include/X11R4 
-I/usr/include/X11R5 -I#$OPENWINHOME/include 
-L/usr/lib/X11R4 -L/usr/lib/X11R5 -L#$OPENWINHOME/lib

For HP™ platforms:

2-> setopt load_flags  -I/usr/include/X11R4 
-I/usr/include/X11R5 -I/include -L/usr/lib/X11R4 
-L/usr/lib/X11R5 -L/lib

There are many other options that affect CodeCenter commands and 
windowing options. They’re discussed briefly on page 95, and in more 
detail in the options entry in the CodeCenter Reference.
CodeCenter Tutorial 61



Chapter 4 Using the load command
Loading the Bounce program
We load the files for the Bounce program in several different forms.

Loading object 
files with 
debugging 
information

Begin by loading  the files that you plan to debug as regular object files 
with debugging symbols.

If the object file does 
not exist or is out of 
date

When you load object files, CodeCenter does not use most of the 
switches you specify until the file needs to be recompiled or you swap 
it to source. If CodeCenter cannot find an object file specified with the 
load command or the file is out of date relative to its source file, 
CodeCenter attempts to rebuild the file.

Load the shape.o object file with debugging symbols:

3 -> load shape.o
Cannot open ‘shape.o’
No such file or directory
Executing: make shape.o
cc -g ... shape.c
Loading: shape.o

In this example, a makefile exists in the same directory as the object 
file, so CodeCenter invokes the make utility to compile the object file. 
If the makefile did not exist or could not be found in any of the 
directories specified by the path option, CodeCenter would have 
invoked the compiler directly. 

Load  table.o as a regular object file with debugging symbols:

4 -> load table.o

Loading object 
files without 
debugging 
information

Typically, you load most of the files as regular object files without 
debugging information (with the -G switch). This improves the 
load-time and run-time performance of CodeCenter. You also attach 
the X11 library with the -l switch.

Load the main.o, wait.o, and x.o files and attach the X11 library:

5-> load -G main.o wait.o x.o  -lX11
62 CodeCenter Tutorial



Loading the Bounce program
In the example, you load the X11 library with the -G option even 
though the X11 library doesn’t have debugging symbols. We 
recommend that you load your own libraries with -G unless you are 
specifically debugging the library. 

Loading source 
files

Since Bounce is a small program, you can also load the files that you 
are debugging as source files. With large applications, we recommend 
that you swap an object file with a source file when you are tracking 
down a specific error.

Load bounce.c as a source file:

6 -> load bounce.c
CodeCenter Tutorial 63



Chapter 4 Using the load command
Linking from libraries
When you have loaded all the files you think you need, issue the link 
command to link modules from the libraries.

7 -> link

When you link your project, CodeCenter incrementally links the 
individual library modules as they are needed by your application 
and lists any undefined symbols. In this case, CodeCenter issues this 
message:

Undefined symbols:
extern void draw_rectangle();

You neglected to load the rectangle.o file, so you need to load it and 
link again:

8 -> load rectangle.o
Loading: rectangle.o
9 -> link

NOTE If you are using code that you changed as described in 
’Modifying the program’ on page 53, draw_circle() will 
be undefined and you should load circle.o instead of 
rectangle.o.

The Bounce program is now loaded into the CodeCenter environment. 
You can run the program by selecting the Run button in the Button 
Panel, and you can use the techniques described in the rest  of this 
guide to examine and enhance it.

For complete information on the load and link commands, refer to the 
load and link entries in the CodeCenter Reference.
64 CodeCenter Tutorial



Part II: Getting started with 
your own code

This part of the manual is designed to help you start 
using CodeCenter with your own code. It shows 
you how to

• Load your own application into CodeCenter

• Use CodeCenter’s run-time error checking, 
debugging, prototyping, and testing features

• Set options and customize CodeCenter

All these topics are discussed in more detail in the 
CodeCenter User’s Guide.





Chapter 5 Loading your 
application 

Before you begin debugging your own code, you 
need to set some load options, decide how to load 
your application, and then load your code and link 
in library modules.

This chapter describes:

• Setting load options

• Loading your application with the load
command

• Loading your application with CenterLine 
targets

• Loading your application with the EZSTART 
utility

• Saving a Project file

• Troubleshooting the load and link commands





Getting ready to load your code
Getting ready to load your code
Before you can use CodeCenter for debugging and visualizing your 
code, you need to load your application, and then link in library 
modules. You can load your application using three different 
methods:

• If your application does not use makefiles or is very small, load 
files manually with the load command (page 71).

• If your application uses a simple makefile, add CenterLine 
targets to it and use the CodeCenter make command to load 
your application (page 73).

• If your application uses complex makefiles, use the EZSTART 
utility to create a new makefile with CenterLine targets, and then 
use the CodeCenter make command to build the targets (page 
77).

Performance 
issues

As mentioned in  'Loading the Bounce program' on page 63, whether 
you use the load command or the make command, you can also 
choose to load your application in several different forms. For 
maximum error-checking and debugging, load it as source code. For 
maximum speed, load it as an executable in process debugging mode. 

You can achieve a balance between speed and debugging capabilities 
by using a combination of source code and object code with and 
without instrumentation and debugging symbols. Please refer to the 
performance entry in the Reference for more information. 

Using options to 
set load switches

Before loading your application, you may need to set the 
sys_load_flags and load_flags options to control the switches that are 
passed to the load command. 

The sys_load_flags option specifies site-wide switches. The 
load_flags option specifies default switches passed to the load 
command if the load command is issued without any switches apart 
from -l. 

Setting 
system-wide load 
options

CodeCenter presets the sys_load_flags option to search for files. 
CodeCenter always appends the contents of this option to all load 
commands. 
CodeCenter Tutorial 69



Chapter 5 Loading your application
The value of the system-wide option varies with each platform. To 
verify that your sys_load_flags option contains the correct values for 
your platform, enter this command:

1 -> printopt sys_load_flags

Normally, you use the default value in your system. If you have a 
different library or header file path from that specified by the 
sys_load_flags option, change the value of the option using the setopt 
command:

1 -> setopt sys_load_flags switches

Instead of changing the value of an option, you can also add 
additional switches to the value of an option using the #$ syntax. For 
example, the following command adds -DBeta to the list of switches:

1 -> setopt sys_load_flags $#sys_load_flags -DBeta

Setting the 
load_flags option

You can use the load_flags option to designate any switches specific 
to your own work. For example, a macro used in your project could be 
entered as follows:

1 -> setopt load_flags -DBETA -DDEBUG
2 -> load xyz.c
Loading: -DBETA -DDEBUG -L/usr/include xyz.c

In this example, the -L/usr/include switch was defined in 
sys_load_flags and automatically appended to the switches specified 
by the load_flags option. The load_flags option is automatically 
appended to the load command if you specify only the -l switch on the 
command line. If you specify other switches on the command line, the 
load_flags option is ignored.

The method you choose for loading your application determines 
whether or not you need to set load_flags now. If you don’t have a 
makefile with your application, set the load_flags option to contain all 
switches that apply globally to all the files in your application. If 
you’re using EZSTART or CL targets to load your application, don’t 
set load_flags now. 
70 CodeCenter Tutorial



Loading your application with the load command
Loading your application with the 
load command
If your application doesn’t use makefiles, then use the load command 
directly in the Workspace to load your application. For more 
information on syntax, refer to the load entry in the Manual Browser. 
To load your application:

1 Load the files to be debugged as regular object files with 
debugging information:

21 -> load switches filename.o...

Make sure you load any C modules with the -C switch.

2 Load the rest of the files that constitute your application as 
regular object files without debugging information:

21 -> load -G switches filename.o...

3 Link any attached libraries with the link command:

21 -> link

The following is an example of loading your application without a 
makefile. In the example, the abc.o module is the module being 
debugged, so it’s loaded with debugging symbols.

1 -> ls *.o
abc.o xyz.o
2 -> setopt load_flags -DDEBUG
3 -> load -lm abc.o
Attaching: /usr/lib/libm.so
Loading: abc.o
4 -> load -G xyz.o
Loading: xyz.o
5 -> link

In this example, the setopt load_flags command precedes the load 
command so that the -DDEBUG switch is automatically appended to 
any load command that is issued without any switches or with only 
the -l switch. 
CodeCenter Tutorial 71



Chapter 5 Loading your application
The -DDEBUG switch doesn’t appear in the “Loading:” line because 
it will only be used if the abc.o file needs to be recompiled directly by 
CodeCenter (without using a makefile) or if the file is later swapped 
to source using the swap command. It will not be used if the xyz.o file 
is recompiled because the load_flags option is ignored when the -G 
switch is used on the load command line.
72 CodeCenter Tutorial



Loading your application with CenterLine makefile targets
Loading your application with 
CenterLine makefile targets
If your application uses one or more UNIX makefiles, you can add a 
CenterLine (CL) target that automatically uses the load command to 
load your application. CL targets are designed to work with the 
CodeCenter make command.

NOTE If you have a complex makefile, refer to the make entry 
in the Manual Browser before designing your CL 
target.

To load your application with CL targets, you take these basic steps:

1 Design a CL target that automatically loads and links the object 
files in your application. The files to be debugged should be 
loaded as regular object code with debugging information, and 
the rest of the files as regular object code without debugging 
information.

2 Issue the make command from the CodeCenter Workspace to 
execute the CL target.

Designing CL 
targets

A CL target consists of the following lines:

• A dependency line, which specifies the target’s dependencies

• Shell lines, which specify UNIX shell commands to be executed

• CL lines, which specify Workspace commands to be executed
CodeCenter Tutorial 73



Chapter 5 Loading your application
The example shows a sample makefile that includes a CL target. Refer 
to this sample as you create your own CL targets. The sample makefile 
has the following two targets. The first is a standard C target.

• The first target (all) creates an executable named my_program 
from the three files a.o, b.o, and c.o, which are specified in 
$(OBJS)

• The second target (ccenter_obj), a CL target, loads the objects 
specified in $(OBJS) (a.o, b.o, and c.o) into ObjectCenter with the 
switches specified in $(CFLAGS).

# This is a standard makefile comment
# a.c, b.c, and c.c are C files

CC = clcc
SRCS = a.c b.c c.c
OBJS = a.o b.o c.o
CFLAGS = -g -DDEBUG

# Standard targets
# The following target builds the application 
# “my_program” 

all: $(OBJS)
$(CC) +d $(CFLAGS) -o my_program $(OBJS)

# CL target
# Note the indented # character in CL lines

# The following target loads object files into
# CodeCenter, using the implicit target
# to convert .c to .o
# The first line is the dependency line
# The second line is a shell line
# The remaining lines are CL lines
ccenter_obj:
   echo “Starting a CL obj target”
   #setopt program_name my_program
   #load $(CFLAGS) $(OBJS)
   #link
74 CodeCenter Tutorial



Loading your application with CenterLine makefile targets
To create your CL target:

1 Edit your makefile.

2 Create a dependency line for the CL target.

As shown in the sample makefile, the dependency line for a CL 
target follows the same syntax as that for a standard target. The 
CodeCenter load command automatically follows the implicit 
suffix rules of the standard UNIX make utility for .o and .c files. 
Thus, in this example, the dependencies don’t need to be 
specified.

3 (Optional) Create shell lines for the CL target.

A shell line consists of a Tab followed by any number of shell 
commands, separated by semicolons:

<TAB><shell command [; shell command ...] >

From the perspective of the CodeCenter make command, a shell 
line in a CL target is the same as entering the sh Workspace 
command with the shell line as an argument.

4 Create CL lines for setting any necessary Workspace options, 
such as program_name. (See 'Setting up your environment' on 
page 107 for more information about options.)

If you set the load_flags option in a makefile rule then it will 
affect all the load commands that you issue in the Workspace.A 
CL line begins with a Tab followed by # and any single 
Workspace command:

<TAB>#<CodeCenter command>

Before CodeCenter executes a rule that begins with a #, it passes 
the rule through the Bourne shell, just as make does. Using ## on 
a CL line prevents metacharacter expansion by the Bourne shell. 
Any line with a # character in the first position (without the Tab) 
is treated as a comment. A CL line is equivalent to entering the 
CodeCenter command in the Workspace.

5 Create CL lines for loading the object files that make up your 
application. If necessary, refer to the load entry in the Manual 
Browser for information on syntax and switches. You should 
load most files as regular object files without debugging 
information (load -G) and load the remainder (the modules you 
plan to debug) as regular object files with debugging 
information.
CodeCenter Tutorial 75



Chapter 5 Loading your application
If desired, you can use macros, such as $(OBJS), as arguments to 
the load command. If the object files are out of date, then 
CodeCenter invokes make to rebuild the files before loading. 

In the example on page 74, note that the same set of switches 
used in the standard target, $(CFLAGS), is also included in the 
load command for the ccenter_obj target. In this example, 
$(CFLAGS) contains the -g option, which means that files are 
compiled with debugging information. To ignore the debugging 
information, you need the -G switch with the load command.

6 Create a CL line for linking your application with any attached 
libraries:

<TAB>#link

Using the 
CodeCenter make 
command

Once you have added your CL targets to your makefile, you can use 
the CodeCenter make command on them. The CodeCenter make 
command treats standard targets differently from CL targets.

When you issue the make Workspace command on a standard target, 
CodeCenter invokes the UNIX make utility to build the target. 
CodeCenter simply passes each command line to the Bourne shell for 
execution. The files are linked with the UNIX linker. The application is 
not loaded into CodeCenter.

When you issue make on a CL target, the CodeCenter commands 
specified in the target are executed. All the source files, libraries, and 
object files that are specified in the load command are loaded into the 
environment.

To load your application into the environment, invoke the make 
command on the CL targets that you added to your makefile:

20 -> make CL_target...

If you encounter 
problems

If you have problems designing your CL targets, refer to the make 
entry in the CodeCenter Reference. If you have trouble using the load 
and link commands, refer to the load entry in the CodeCenter Reference 
or ’Troubleshooting the load and link commands’ on page 80.
76 CodeCenter Tutorial



Creating a makefile with the EZSTART utility
Creating a makefile with the 
EZSTART utility
If your application has complex makefiles, consider using the 
EZSTART utility to create a makefile to load your application into 
CodeCenter. 

What is 
EZSTART?

EZSTART uses your existing makefile to generate a new makefile 
(Makefile.cline) containing appropriate CenterLine (CL) targets. 
Each CL target includes the appropriate commands for loading the 
files that constitute the corresponding make target. CL targets are 
designed to work with the CodeCenter make command. 

Leaving your original makefile unchanged, EZSTART monitors your 
existing makefile as it builds your current application once. Since 
EZSTART uses your existing makefile, it will only record information 
about commands that make executes. Based on this build of each file 
in your application, EZSTART constructs the makefile Makefile.cline, 
which contains the equivalent CL targets. Thus, you don’t have to 
change your existing makefile to begin using CodeCenter.

With Makefile.cline, you can use the CodeCenter make command to 
load your files into the environment. Then you can set properties for 
the files, set various options, and save your session as a project file. As 
an alternative, you can customize the targets in Makefile.cline, 
integrate them into your existing makefile, and use the make 
command to establish your project at the beginning of each session.

Using EZSTART To use EZSTART as it is shipped, your application must:

• Use standard tools. By default, EZSTART recognizes only the 
following tools: cc, clcc, CC, gcc, acc, ld, make, ar, mv, and cp.

• Invoke these standard tools without using absolute pathnames. 
For example, your makefile should contain lines like CC = cc 
instead of CC = /bin/cc.

If your application does not meet these criteria the documents listed 
below may help you configure EZSTART to suit your application.

For usage details and troubleshooting information, please refer to the 
README, GETTING_STARTED, and REFERENCE_GUIDE 
documents in the CenterLine/arch-os/EZ directory, the clezstart 
manual page, and/or the “clezstart”  and “I’m having trouble loading 
with make”  entries in the Manual Browser.
CodeCenter Tutorial 77



Chapter 5 Loading your application
Saving your project
By saving your project in a project file or maintaining its state in the 
CL targets in your makefile, you can quickly start up CodeCenter with 
your application. This section describes how to save the state of your 
project in a project file or maintain the state of your project in the CL 
targets in your makefile.

Project files A project file is a text script file that contains the information that 
CodeCenter needs to rebuild your project across sessions. It records 
such information as:

• The files that make up the project and in which form they are 
loaded

• Warnings that have been suppressed

• The values of CodeCenter options

• The signals that are caught and ignored

• The debugging items that have been set (such as breakpoints and 
actions)

A project file doesn’t specify dynamic run-time information, such as 
variable values or break-level location, or information about your 
environment, such as the version of CodeCenter you invoked or the 
type of workstation or terminal you are using.

Saving your 
project file

At any point, you can save the state of your project in a project file. 
During your CodeCenter session, you can load the project file and 
quickly recapture the state of your work.

To save your project file, issue the save command:

56 -> save filename

CodeCenter saves the script in filename. If you don’t provide a value 
for filename, CodeCenter saves the script in ccenter.proj.
78 CodeCenter Tutorial



Saving your project
Loading your 
project file

You can load a project file that you saved in several ways. You can:

• Specify the file when starting CodeCenter:

% codecenter ccenter.proj

• Load the project file from the Workspace:

1 -> load ccenter.proj

• Choose the Load menu item from the File menu in the Main 
Window or Project Browser and supply the name of the project 
file in the dialog box.

When you load a project file, CodeCenter reloads the most recent 
versions of the source and object files in your project.

CL targets A project file is not the only way for you to maintain a project in 
CodeCenter. If desired, you can use the CL targets in your makefile to 
maintain your project. Since you can maintain your CL targets as other 
targets in your makefile change, you may find this model more natural 
for the long term and the project file model more practical for 
short-term tasks involving a subset of your application’s modules.
CodeCenter Tutorial 79



Chapter 5 Loading your application
Troubleshooting the load and link 
commands
The following table gives you general information about finding and 
solving problems while you are loading and linking files. There is 
additional information in the User’s Guide in the “Frequently asked 
questions”  appendix and in the load  and link entries in the Reference. 

Table 1 Resolving load and link Problems

load or link Problem Possible Solutions

The file specified with 
the load command is 
not found

Verify that the path option includes the directory that contains the 
source or object file specified with the load command.

Library not found The path option does not search for header files or libraries. 
Verify that the -I and -L switches set the appropriate search paths 
for header files and libraries (respectively). The -I and -L switches 
can be passed with the load command or set with the load_flags 
and sys_load_flags options.
Set the -I and -L switches to appropriate values. CodeCenter 
searches libraries in the order indicated in the load entry in the 
Manual Browser.
You may need to unload the library and reload it for the load 
command to recognize the new flags.

Unresolved references 
after link

Use the unres command to get the list of unresolved references.
Use the link -list command to check the library link order.
Try issuing the link command a second time. Since CodeCenter’s 
linker makes only one pass, a second link command may resolve 
the references.
Issue the contents command in the Workspace to verify you have 
the correct libraries loaded.
Make sure that the correct -I and -L switches are being included in 
the load command by examining the load commands echoed to 
the Workspace.  Modify your load switches or load_flags option 
appropriately. 
80 CodeCenter Tutorial



Troubleshooting the load and link commands
Explicitly unload files that have been modified or are affected by 
your changes to the load_flags option. To do so, issue the unload 
command:

1 -> unload file

Reload the files with the load command and relink the project 
with the link command.

Source module 
unloaded by 
CodeCenter

This means an error exists in your source file. Check the Error 
Browser to understand the nature of the error.
Make sure that you have included the right switches to locate 
header files by examining the load commands echoed to the 
Workspace.
Invoke the editor if you need to correct a problem in your code. 
Explicitly unload the file in which the violations occurred by 
issuing the unload command in the Workspace.

 1 -> unload file

Load the file again and relink your application.

Object module 
unloaded by 
CodeCenter

If CodeCenter has trouble reading the debugging information, 
you should load your file with the -G switch.

Cannot locate header 
file

Make sure that the correct -I flags are being included from the 
load_flags and sys_load_flags options.

Cannot load library 
file

Make sure that the correct -L flags are being included from the 
load_flags and sys_load_flags options.

Table 1 Resolving load and link Problems (Continued)

load or link Problem Possible Solutions

TIP: Saving load-time error messages to a file

If your application generated a large number of warnings and 
errors in the Error Browser, you may find it useful to save them 
to a file. To do so, either choose Write Messages to File from the 
Other menu in the Error Browser, or enter the following 
command in the Workspace, where source_file is the name of the 
source file generating the errors, and msg_file is the name of the 
text file in which to save the errors:

37 -> load source_file #> msg_file
CodeCenter Tutorial 81





Chapter 6 Running your 
application

This chapter describes:

• Running your program

• Understanding run-time error checking

• Instrumenting your application

• Responding to run-time problems

• Swapping a file from object to source

• Debugging techniques

• Rebuilding your project

• Exploring, enhancing, and testing your 
application

• Troubleshooting run-time issues





Running your program
Running your program

Using the run 
command

When you’ve loaded your application into CodeCenter, run your 
program by using the run command in the Workspace. The run 
command executes your main() function after initializing all variables 
and processing any command-line arguments.You can pass 
arguments to your program with the run command as follows:

 2 -> run argument1 argument2

Naming your 
program

When a program is run from a shell, the value assigned to the variable 
argv[0] is the name of the program. In CodeCenter, the value of 
argv[0] is set to the program_name option, for which the default value 
is a.out. You can change the value of argv[0] by setting the 
program_name option:

 3 -> setopt program_name test

The Run Window CodeCenter starts as a background process, and a new xterm client, 
called clxterm, becomes the Run Window. The Run Window separates 
program input and output from the Workspace. When your 
application runs in CodeCenter, the Run Window becomes the 
standard input and standard output of your program. The clxterm 
client provides all the same menus and features as an xterm client. 
Refer to the UNIX xterm manual page for additional information.

You can direct program output to the Workspace instead of the Run 
Window by setting the win_io option to false with the unsetopt 
command:

 3 -> unsetopt win_io

Detecting memory 
leaks

You can identify potential memomy leaks when you run your 
program by first setting the mem_trace option to the number of stack 
trace levels you want reported. For example, to generate a report with 
three stack trace levels, set the value of the mem_trace option to 3:

% setopt mem_trace 3

When you run your program, CodeCenter creates a report showing 
the number of bytes in each potential leak, the size of the memory 
allocated, and the number of times each potential leak occurred. For 
more information, see the memory leak detection entry in the 
Reference. 
CodeCenter Tutorial 85



Chapter 6 Running your application
What is run-time error checking?
CodeCenter’s run-time error checking detects dynamic violations; that 
is, violations that occur during the execution of a program. These 
errors cannot be detected during compilation or with traditional 
programming tools or debuggers.

CodeCenter does run-time error checking on both source and object 
code. Table 2 compares the kinds of run-time checking done for source 
files, instrumented object files, and object files (instrumented object 
files are explained on page 87). 

Table 2 Types of Run-Time Error Checking

Type of File Run-Time Warnings and Errors Issued

Source files Memory allocation warnings

Miscellaneous warnings (bad arguments to C library functions)

Using memory that has not been set

Addressing errors (pointer dereference, alignment, array index 
errors)

Undefined/questionable arithmetic operations 

Undefined/illegal pointer operations

Enumerator warnings

Losing information during conversions/assignments 

Function warnings 

Storage warnings

Instrumented 
object files (with or 
without debugging 
symbols)

Memory allocation warnings

Miscellaneous warnings (bad arguments to C library functions)

Using memory that has not been set

Addressing errors (pointer dereference, alignment, array index 
errors)

Regular object files 
(with or without 
debugging 
symbols)

Memory allocation warnings

Miscellaneous warnings (bad arguments to C library functions)
86 CodeCenter Tutorial



Adding more run-time error checking to object files
The greatest amount of checking is done for source files (about 80 
checks in all), ranging from undefined or illegal pointer operations to 
storage and function warnings.

The next greatest amount of checking is done for instrumented object 
files (about 10 checks in all), including checks on addressing errors 
and access of unset memory.

The least amount of checking is done for object files; you only get the 
run-time errors that occur in certain C library functions. CodeCenter 
replaces many C library functions and system calls with its own 
versions of them, which contain enhanced error checking. See the C 
library functions section in the Platform Guide appendix to the online 
Reference for more information.

When CodeCenter detects a run-time problem, it:

• Displays a message in the Error Browser.

• Updates the Error Browser button in the Main Window and 
Project Browser.

• Lists the corresponding source file in the Source area.

• Positions the Source area pointer at the line number causing the 
problem (for files loaded as source or object with debugging 
information).

• Generates a break level in the Workspace.

Adding more run-time error 
checking to object files
You can instrument both types of regular object code (with and without 
debugging symbols) to gain the advantages of run-time checking for 
pointer bounds errors and access to uninitialized memory. 

Instrumented object code without debugging symbols runs slightly 
faster than instrumented object code with debugging symbols. 
CodeCenter will detect errors in instrumented object code whether or 
not it has debugging symbols, but it will usually pinpoint the source 
of the error more exactly with debugging symbols.

You can instrument the files you loaded as regular object files with the 
instrument command, or with the Instrument button in the Project 
Browser.
CodeCenter Tutorial 87



Chapter 6 Running your application
Responding to run-time problems
Run-time errors are serious or potentially serious problems and should 
be fixed immediately. Run-time warnings are problems that are not 
serious enough to warrant an error. You can deal with run-time errors 
and warnings in three ways:

• Use CodeCenter’s environment to locate and correct the 
problem.

• Ignore minor warnings and keep them from appearing again.

• Decrease the amount of run-time error checking performed by 
CodeCenter by setting a few options to filter out low-level 
warnings. 

WARNING You can continue from a run-time error. However, 
continuing execution from a run-time error may create 
a non-recoverable internal error.

Using the 
environment to 
detect and correct 
a problem

If the error was detected in source code, use the debugging techniques 
described in 'Debugging techniques' on page 92 to debug your code.

If the error was detected in object code, and you need more 
information to find the problem, you should do the following in 
CodeCenter:

1 Swap the file from object code to source code using the swap 
command as described in 'Swapping a file from object to source' 
on page 90. This enables CodeCenter to perform the most 
run-time error checking possible on your code. 

2 Run your application again to allow CodeCenter to locate the 
exact location of the problem.

3 Use the various debugging techniques described on page 92 to 
debug your code.

Ignoring the 
warnings

You can continue execution after receiving a warning by using the 
Continue menu item or by issuing the cont command from the 
Workspace.

In the Main Window, display the Execute menu and select Continue.
88 CodeCenter Tutorial



Responding to run-time problems
If you don’t want to track certain warnings, you can tell CodeCenter 
to ignore the warning condition from that point on. At any time, you 
can choose to suppress the reporting of particular warnings (but not 
errors). To suppress a warning:

1 Select the warning in the Error Browser.

2 Select one of the suppression scopes from the Suppress menu.

After you suppress a warning, CodeCenter removes it from the Error 
Browser. You can, however, view suppressed warnings from the 
Suppressed Messages window by selecting Open Browser from the 
Suppress menu.

Dealing with large 
numbers of 
run-time warnings

If you receive an overwhelming number of run-time warnings, you 
can set the following options to reduce the amount of run-time error 
checking that is performed on a file:

1 In the Main Window, display the Browsers menu and select 
Options Browser.

2 Display the Option Sets menu and select memory.

3 Set save_memory to True. With this setting, CodeCenter does 
not report run-time warnings on dynamic type mismatches, 
dynamic used-before-set, or corrupted values, and it disables 
watchpoints on variables. CodeCenter continues to check pointer 
bounds.

4 Set unset_value to 0. With this setting, CodeCenter does not 
report that a variable is used without being set, unless the value 
of the variable is 0.

5 Select the Apply button to apply the values.

6 Select the Dismiss button to close the Options Browser.

To turn these run-time checks back on, set save_memory to False and 
unset_value to 191.

NOTE You can also suppress warnings on a per-file basis 
from the Project Browser. Select the file from the Files 
area, and then select the Properties button. In the 
Properties dialog box, select the Ignore Warnings 
When Loading check box and then the Apply button.
CodeCenter Tutorial 89



Chapter 6 Running your application
Swapping a file from object to 
source
You can use the swap command to swap between source and object 
code, replacing a source file with its object counterpart or an object file 
with its source counterpart.You can also select one or more object files 
from the Files area in the Project Browser and select the Swap button 
at the bottom of the Files area.

Typically, you swap a file from object to source when you need more 
extensive error checking on a file. When you’ve completed 
development and testing of a source file and want to improve 
load-time and run-time performance, swap the file from source to 
object. 

Using the swap 
command

If the file you swap is loaded in object form, CodeCenter unloads the 
object file and loads the corresponding source file. After swapping 
your object file to source, you should select the Run button (or issue 
the run command) so CodeCenter can pinpoint the exact location of 
your run-time problem.

Setting the 
swap_uses_path 
option

When you swap an object file, CodeCenter looks for the 
corresponding source file in the same directory in which the object file 
resides. If you have source and object files in different directories, you 
need to adjust the following options:

1 Set the path option to include the directories that contain the 
source files and object files.

2 Set the swap_uses_path option to True. When this option is set, 
CodeCenter searches in the directories specified in the path 
option for the source file.

For example, if you set path to /s3/beth/src:/s3/beth/obj and 
swap_uses_path to True, and then swap a source file or an object file, 
you will see the following result:

24 -> load test.c
Loading : /s3/beth/src/test.c
25 -> swap test.c
Unloading: /s3/beth/src/test.c
Loading: /s3/beth/obj/test.o
26 -> swap test.o
Unloading: /s3/beth/obj/test.o
Loading: /s3/beth/src/test.c
90 CodeCenter Tutorial



Swapping a file from object to source
Troubleshooting 
the swap 
command

Table 3 contains information on possible solutions to swapping 
problems.

Table 3 Troubleshooting Swapping

Error Conditions Possible Solutions

The swap command cannot find the 
source file or object file.

If you are swapping from object to source, determine 
whether the corresponding source file exists and 
include the correct directory in the path option.

Set the swap_uses_path option.

The header files are not found when 
swapping from object to source.

Check the flags used to load the object file. CodeCenter 
uses those flags to load the corresponding source files.

Unload the object file and load it with the correct 
include switches.

Issue the swap command.

Remember that you have the option of loading the 
source file directly into CodeCenter.

The right macros are not defined 
when swapping to a source file.

Unload the file using the unload command and load it 
again with the right flags before issuing the swap 
command.
CodeCenter Tutorial 91



Chapter 6 Running your application
Debugging techniques
CodeCenter provides full interactive debugging for C. In this section, 
we show you some debugging techniques that you can try on your 
application. In addition to using the interpreter in the Workspace, you 
can use an extensive set of debugging commands to:

• Set breakpoints and watchpoints.

• Define actions to execute when particular lines of your code are 
reached during execution, or when particular variables are 
modified.

• Trace execution of your program.

• Step through your program.

Debugging 
commands

In component debugging mode, use the next, step, stepout, cont, up, 
and down commands to explore your application. In process 
debugging mode you can also use stepi and nexti. Consult the 
corresponding entries in the Reference to learn more about these basic 
debugging commands. Keep in mind that most of these commands 
can be used only on object files with debugging symbols or source 
files. If necessary, reload your files with debugging information.

Using the 
interactive 
Workspace

The interactive Workspace provides you with the complete 
programming environment at a breakpoint, not just access to a small 
subset of commands. In addition to CodeCenter commands, you can 
enter any legal source code in the Workspace. Source code entered in 
the Workspace should be terminated by a semicolon (;) to distinguish 
it from CodeCenter commands. When you enter code into the 
Workspace, CodeCenter parses your code like the C compiler. 

The following examples use the Bounce program:

• Use the Workspace to examine any variables within the current 
scope. In the following example, CodeCenter detected a run-time 
error, stopped execution of the program, and generated a break 
level. You can examine the count variable.  

(break 1) 22 -> whatis count
auto int count; /*Defined in ‘do_bounce’; currently 
active */
92 CodeCenter Tutorial



Debugging techniques
• Use the Workspace to define a variable at a breakpoint. The 
following example defines a variable named my_count. 

(break 1) 23 -> count;
(int) 300 
(break 1) 24 -> int my_count = 1; 

• Invoke the function draw at the breakpoint:

(break 1) 25 -> draw(200, 300);
(void) 

• Develop code fragments or functions using all your program 
variables and functions that are in scope. These code fragments 
can be designed to extensively debug and test your code. You 
can also set variables to any value at a breakpoint and then 
continue execution.

NOTE If the input prompt changes to a "+>” while you enter 
code fragments in the Workspace, the Workspace 
expects you to supply additional input. This often 
happens when you forget to type a semicolon (;) at the 
end of a C statement.

For a complete description of Workspace features, refer to the 
Workspace entry in the Reference.

Visualizing data 
structures at run 
time

While you are running your application, you can graphically monitor 
data with the Data Browser. It is particularly useful for viewing 
complex data structures with many levels of indirection through 
pointers. To display the Data Browser, select an identifier or 
expression in your application and use the Display menu item. The 
identifier must be a variable in scope or an expression. If the variable 
contains any pointer boxes, you can select them to dereference the 
pointers. To close the Data Browser, select the Dismiss button.
CodeCenter Tutorial 93



Chapter 6 Running your application
Dynamically 
inserting 
statements in your 
code

You can use the action command or Action dialog box to customize 
and extend the built-in debugging facilities of CodeCenter. The action 
command lets you insert C code or CodeCenter commands into your 
application without actually changing your program.

Print the number of 
times a function was 
called

For example, you can use the action command to calculate the 
number of times a certain function or procedure was called. Try this 
example with a procedure in your application.

1 Define an integer in the Workspace to serve as the global data 
structure, and initialize it to zero. 

12 -> int count;
13 -> count = 0;

2 In the Main Window, display the Debug menu and select Set 
Action.

3 In the Function text field, enter the name of the procedure on 
which to set the action. 

4 In the Action Body text box, enter the following code:

{
printf("Adding on to the count \n”);
++count;
}

5 Select the Set Action button.

6 Rerun your application and watch the "Adding on to the count” 
message appear in the Run Window.

Automatically 
printing data 
structure values

You can set an action at any line in your code or on a function 
definition. By setting the action on a function definition, you can print 
data structure values or the arguments to a procedure. Remember, you 
can specify valid C code or CenterLine commands as part of your 
action.

NOTE Setting actions on a function definition requires the file 
containing the function to be loaded as source or as 
object code with debugging information.
94 CodeCenter Tutorial



Debugging techniques
Setting conditional 
breakpoints

You can set conditional breakpoints using the action command or 
Action dialog box. Use this feature to generate a break level if certain 
conditions are true. Try the following example with your application 
to generate a break level if the variable i is greater than 3.

1 Open the Action dialog box. To do so, in the Main Window, 
display the Debug menu and select Set Action.

2 In the Function text field, enter the name of the procedure on 
which to set the action.

3 In the Action Body text box, enter the following code, except 
replace i with the name of a counter variable that is in scope in 
your application:

{
if (i > 3) (
    centerline_stop(" ")
    centerline_whereami(" ");}
printf("i = %d \n, i); 
}

All CodeCenter Workspace commands, such as stop, have a C 
function equivalent that you can call from C code. The function 
equivalent for any command is the name of the command with 
the prefix centerline_ added to it.

All centerline_ functions take one argument, a string. If the 
CodeCenter command does not take any argument, you need to 
use an empty string as the argument when using the function 
equivalent.

In the example, centerline_stop() is the equivalent for the 
CodeCenter command stop.

4 Select the Set Action button.

5 Rerun or continue the execution of your application to see the 
break level generated.

Getting 
information about 
addresses

You can use the info command to display the name, size, and type of 
the object associated with an address. If the address refers to allocated 
data, info displays the size of the allocated data and, if available, the 
type of data most recently stored there. The info command also 
indicates if the address is being watched by a debugging action or 
contains a bad pointer.
CodeCenter Tutorial 95



Chapter 6 Running your application
Try the following example. Use info to display information about the 
address stored in the variable ptr, which points to the fourth element 
in the array many.

1 -> int *ptr;
2 -> int many[10];
3 -> ptr = &many[4];
(int *) 0x270790 /* many[4] */
4 -> info ptr
address = 0x146c28, name = ptr
Size = 4, contains type: pointer.

NOTE You can use the info command only with source files 
or object files with debugging symbols.

Monitoring a 
memory location 

You can set a watchpoint, which interrupts execution whenever a 
specific address is modified. You can set watchpoints on the addresses 
of global variables, allocated data, formal parameters, and automatic 
variables.

When you use watchpoints, be aware of the following:

• The variables need to be in scope when you set the watchpoints.

• If the watched address is modified within object code, 
CodeCenter does not detect the event, and execution of the 
program is not interrupted.

You use the stop on command to set a watchpoint. Try the following 
example to set a watchpoint on the variable abc:

1 -> int abc;
2 -> stop on abc
stop (1) set on address 0xd9616.

The number of bytes watched equals the size of the type of data. In the 
previous example, four bytes are watched because abc is an int, and 
the size of an int is four bytes.
96 CodeCenter Tutorial



Debugging techniques
To set a watchpoint on the address stored in a pointer, the argument to 
stop should be the value of the pointer. Try this example:

1 -> int *ptr;
2 -> ptr = (int *) malloc(20) ;
(int *) 0x179d8c /* (allocated) */
3 -> stop on *ptr
stop (1) set on address 0x179d8c.

Debugging fully 
linked executables

You can load a fully linked executable or corefile in process debugging 
mode. Working with an executable demands the least amount of 
memory and runs at the full speed of the machine. You can 
immediately locate an error that causes a crash by specifying a corefile 
and also use standard gdb commands for debugging.

Keep in mind, however, that in process debugging mode no load-time 
or run-time error checking is available, and the Cross-Reference and 
Project Browsers are not available to aid you in visualizing functions 
and files in your application.

Start CodeCenter in process debugging mode with the -pdm switch, 
and use the debug command to load your executable:

% codecenter -pdm
(pdm) 1 -> debug a.out

For complete information on process debugging mode, refer to the 
pdm and debug entries in the CodeCenter Reference.

Debugging 
multiple 
processes

CodeCenter provides a unique environment to debug applications 
that have multiple processes. If your program calls fork(), the child 
process appears in a separate window and shares a Run window with 
the parent process. You can set breakpoints in the parent and child 
independently. However, in the child process, your code must be 
loaded as source to set breakpoints; the parent process can be loaded 
as source or object code to set breakpoints. For more information on 
debugging forked processes, refer to the debugging entry in the 
Reference.

Debugging 
threaded 
processes

In process debugging mode, CodeCenter provides the thread and 
threads commands and a graphical Thread Browser. The Thread 
Browser provides you with information about the threads and 
lightweight processes in your program, including a list of all threads, 
and the state of each thread. 
CodeCenter Tutorial 97



Chapter 6 Running your application
For more information about debugging threaded applications, see the 
thread, threads, and thread support entries in the CodeCenter Reference. 
Support for debugging threaded applications is not available on all 
platforms. See the “Product limitations”  section in the online 
CodeCenter Reference for details.

Using Ascii 
CodeCenter

You can use Ascii CodeCenter instead of the graphical version for any 
of the following reasons:

• To run CodeCenter on a nongraphical workstation or over a 
dialup line.

• To gain faster startup time or to reduce the amount of memory 
needed to run CodeCenter.

• To debug GUI programs. By using an ASCII terminal running 
alongside the X server, you can more easily debug programs that 
grab mouse and keyboard I/O.

• To do automated test runs. You can automate program tests by 
using I/O redirection with the run command and setting the 
batch_load option. See the run entry in the Reference for more 
information.

Start Ascii CodeCenter with the -ascii switch:

% codecenter -ascii
98 CodeCenter Tutorial



Rebuilding your project
Rebuilding your project
After you try the debugging techniques on your application and edit 
some of the files that are currently loaded, you need to update your 
project.

To reload all modified files in your project, build your project. You can 
build your project with the build command in the Workspace, the 
Build menu item on the Session menu, or the Build button in the 
Button panel. CodeCenter reloads any files that are out of date.

The build command also attempts to reload any files that failed to 
load previously because they contained an error (files listed in the 
Project Browser as failed). The build command attempts to reload 
such files each time it is issued until it successfully loads the file or 
until you explicitly unload the file using the unload command.

Reloading source 
files

A source file is reloaded if the source file itself or any of the header files 
it includes have been modified since the file was loaded.

Reloading object 
files

An object file that is older than its source counterpart is recompiled, 
then reloaded. Also, an object file is reloaded if the file has been 
recompiled since it was loaded. If there is a makefile in the directory 
containing the source file, CodeCenter issues a make command. If 
there is no makefile in the directory containing the source file, 
CodeCenter directly invokes the C compiler. 

If the object file is loaded with debugging information, CodeCenter 
checks header files that the object file depends on; the object file is 
recompiled and reloaded if it is older than any of the header files.

If you modified an individual file, you can reload it using the load 
command and specifying the name of the file.

Incremental 
linking

When CodeCenter reloads files, it only relinks the files that have 
changed, which significantly reduces the link time. Relinking typically 
takes 2 to 10 seconds, depending on the size and type of the file or files 
that you modified. Incremental linking time is independent of 
application size; the more files in your application, the more time 
incremental linking saves.
CodeCenter Tutorial 99



Chapter 6 Running your application
Exploring, enhancing, and testing 
your application
While CodeCenter provides you a complete environment for 
debugging, its powerful development environment works equally 
well for exploring, enhancing, and testing your existing application 
and developing new applications. You can use CodeCenter for 
prototyping new applications and as a test harness.

Using the 
Workspace for 
interactive 
prototyping

In component debugging mode, in addition to handling CodeCenter 
commands, the Workspace functions as a direct interface to 
CodeCenter‘s interpreter. Because the interpreter implements the full 
C language as defined by Kernighan and Ritchie (K&R) and also offers 
support for the ANSI C standard, you can enter any statement in the 
Workspace to have CodeCenter execute it immediately. Also, when 
you execute code from the Workspace, CodeCenter‘s run-time error 
checker automatically checks it for dynamic problems.

The default for the interpreter (K&R C or ANSI C) depends on the 
underlying compiler you are using, which is different for each 
platform. See the Platform Guide appendix to the online Reference for 
more information. For more information on using ANSI C code, see 
the ANSI C and config_parser entries in the Reference.

Because the Workspace allows you to enter any C statement and 
immediately execute it, the Workspace supports  development 
through interactive prototyping. You can create code fragments or 
define variables, functions, and data structures as you go. For 
example, to define a function that adds two integers, you could enter:

29 -> int add(int x, int y)
30 +> {return x+y;};
31 -> add(3,4);
(int) 7

While this example is extremely simple, you can easily extend this 
same approach to explore something more complex, such as a new 
string comparison routine based on the Boyer-Mohr algorithm. You 
would use the Workspace to interactively try out stepwise refinements 
of your algorithm.
100 CodeCenter Tutorial



Exploring, enhancing, and testing your application
Saving prototyped 
code with the edit 
workspace 
command

You can save code you define in the Workspace with the edit 
workspace command.   During a session, all C definitions you enter 
are stored in a Workspace scratchpad. The edit workspace command 
lets you save the scratchpad to a file, by default workspace.c, and then 
edit the file.

For example, suppose you create a program fragment in the 
Workspace. You can create stubs for external functions called by the 
code, and then execute your code to test it.  After testing, you can use 
edit workspace to create a file containing the code you defined in the 
Workspace. You can enter a name for the file or accept the default.

-> edit workspace   
Appending all workspace definitions to a file.   
Default filename is "workspace.c" in the current 
directory.   
Please specify a filename, press Return to accept 
default, or <CTRL-D> to abort:

Requesting edit of file ’/net/my_proj/workspace.c’, 
line 1 ...   
->

If you want to test a particular set of definitions, edit the file so that it 
contains the definitions you want to test. Then use the unload 
workspace command to unload all the definitions and objects you 
created in the Workspace, and use the source command to load the 
definitions in your saved file back into the Workspace. The source 
command will report errors if you’ve unloaded any definitions that 
the saved file depends on. 

If you want to use the new file as source code, add any #include lines 
you need and remove any extraneous lines. When using code 
developed in the Workspace, remember that static functions and 
variables are visible at global scope in the Workspace. As a result, you 
may have to make static functions externally visible in order to use the 
Workspace sources as a separate file.

You can also save all your inputs in the Workspace at any point by 
redirecting the output of the history command:

30 -> history #> ccenter_log_name
CodeCenter Tutorial 101



Chapter 6 Running your application
The source command reads and executes files containing any legal 
command that can be typed in the Workspace. 

31 -> source command_file

The file command_file must contain valid Workspace commands and C 
code to execute in the Workspace.

Unit testing Constructing a modular, maintainable application is easier if you can 
extract a component from its context in the program, test and refine it 
in isolation, and then merge modifications back into the program. 
CodeCenter‘s interpreter enables you to take this approach.

Using your editor and CodeCenter‘s incremental loader/linker, you 
can create and load a small-to-medium functional unit or a group of 
functional units. Using the Workspace, you can test these units 
individually, as a set, and in interaction with your established project 
components. Once you have tested a unit, you can then integrate it 
into your project.

Loading incomplete 
programs into 
CodeCenter

You can load an incomplete program into CodeCenter. This could be 
a code fragment you are developing as an enhancement to your 
application. By linking, you would find the unresolved symbols. Then 
you could either resolve the symbols by loading other pieces of the 
application that you need, or resolve them artificially by declaring 
them in the Workspace. 

Using the Workspace, you could also resolve undefined function calls 
artificially by declaring function stubs. The same applies to resolving 
data structures by declaring them in the Workspace. You have the 
choice of ignoring the unresolved references and executing only the 
section of code that you want to test.

Invoking individual 
functions from your 
program

You can load a complete program into CodeCenter and invoke 
individual functions from the Workspace, rather than calling the 
function main() and running the entire program. Using this approach, 
you can set a breakpoint in the function that you are executing and 
stop in that function. Then, while you have stopped in the function, 
you can test other types of behavior by executing code fragments that 
simulate the desired behavior. When you are satisfied that the part of 
your program that you are focusing on supports all the different kinds 
of behavior you are interested in, you can integrate that code into the 
application.
102 CodeCenter Tutorial



Exploring, enhancing, and testing your application
System-level 
testing

CodeCenter provides a powerful environment to test your complete 
application.

Running test suites A typical development effort requires programmers to run a test suite 
on code that they modify before checking the code back into their 
version control system. You can automate this process by using the 
source command to run a test suite before you check your file into 
your version control system.

Executing your 
program with 
different test data

You may want to maintain the current state of your program when 
using different test data. When you use run or rerun to execute 
main(), all global variables are initialized because both commands 
call the reinit command before executing your program. If you use 
the start command instead, it performs all the functions of run 
without initializing global variables.

Try the following example. Set the variable seed to a special value 
before executing main(). To avoid having the value of seed reset to 
zero, use the start command instead of run. In the example reinit is 
called before start. The reinit command must be called between calls 
to start to ensure that input/output buffers and other library data 
structures are initialized to their correct values.

9 -> int seed;
10 -> seed = 7;
11 -> whatis seed
extern int seed; /* defined */
12 -> seed;
(int 7)
13 -> reinit
14 -> seed;
(int) 0
15 -> seed = 7;
(int) 7
16 -> start
Executing: a.out
CodeCenter Tutorial 103



Chapter 6 Running your application
Troubleshooting run-time issues
The following table provides information about finding and solving 
problems while you are running, debugging, and enhancing your 
application. In addition to the information in the table, consult the 
“Frequently asked questions” appendix to the online User’s Guide. 

Table 4 Troubleshooting Run-Time Issues

Problem and Issues Possible Solutions

Application working outside 
environment does not work inside 
the environment

If you have run-time errors and warnings in your 
program, please refer to 'Responding to run-time 
problems' on page 88 to resolve run-time issues.

If you have a working application and you just want to 
get your application working in CodeCenter, you 
should refer to the information in 'Dealing with large 
numbers of run-time warnings' on page 89 for ways 
you can scale down the amount of run-time error 
checking performed by CodeCenter.

If your application uses the name of the application 
during execution, you must set the program_name 
option.

Not enough virtual space If you experience slow response time or software 
crashes, you may not have enough virtual space. 
Check your swap space by issuing the appropriate 
command for your operating system in your shell, for 
example pstat -s or /etc/swapinfo.

If you do not have enough swap space and you cannot 
increase it, try to reduce your requirements, for 
example by loading more of your files as object files 
without debugging information (load -G) rather than 
as source files. 

Make sure that the file containing the implementation 
of the constructors and destructors is loaded with the -g 
switch and that it is not loaded with the +d switch. The 
+d switch suppresses the expansion of functions that 
are defined as inline.
104 CodeCenter Tutorial



Troubleshooting run-time issues
External preprocessors CodeCenter supports working directly with input files 
that are run through preprocessors that generate C 
files with the #line directives pointing back to the 
input file. Such preprocessors include YACC, certain 
SQL preprocessors, and preprocessors supporting 
parameterized types.

See the preprocessed code entry in the Reference for 
complete information on this topic.

Cannot declare functions in the 
Workspace

If you declare a function in the Workspace, you must 
include the return type as part of the declaration. For 
example:

6 -> void func1() {
7 +> printf("Hello world\n”);
8 +> }

Table 4 Troubleshooting Run-Time Issues

Problem and Issues Possible Solutions

TIP: Exporting the contents of the Project Browser to a text file

If desired, you can dump the contents of the Project Browser to a file with the following 
Workspace command:

7 -> contents #> filename
CodeCenter Tutorial 105





Chapter 7 Setting  up your 
environment

CodeCenter provides a number of options for 
tailoring the environment to suit your needs. There 
are also several other ways you can customize your 
environment.

This chapter guides you through the basic set of 
options required to set up your environment and 
touches on other customizations, such as 
user-defined buttons, X resources, revision control, 
and editor support.

This chapter describes:

• Setting options in the Workspace

• Saving your option settings

• Customizing your environment





Setting options in the Workspace
Setting options in the Workspace
Many Workspace commands can be controlled by setting the values of 
options. You can set options using:

• The Options Browser

• The Project-wide Properties, File Properties, and Library 
Properties windows in the Project Browser

• Workspace commands

This section shows how to set options with the Options Browser. If 
you need additional information on options, refer to the options , 
printopt , setopt , and unsetopt  entries in the Reference.

The Options Browser and most options are available only in 
component debugging mode.

To open the Options Browser from the Main Window, display the 
Browsers menu and select Options Browser.

Setting the path 
option

When CodeCenter searches for files to load, list, edit, or swap, it looks 
in the directories specified by the path option. If the path option is not 
set, CodeCenter searches only the current working directory. 

NOTE The path option affects the loading, editing, and listing 
of source and object files only. It does not affect the 
loading of libraries and header files.

When setting the path option, you can specify absolute or relative 
pathnames for the directories. CodeCenter searches the directories in 
the order that you specified and appends the current directory to the 
end of the list of directories. That is, if CodeCenter doesn’t find a file 
in the specified path, then it looks in the current directory.

In the following example, the path option is set in the Workspace so 
the load command looks for files in the /usr/prog/test directory before 
it examines the current directory.

1 -> setopt path /usr/prog/test 
2 -> load abc.c def.o
Loading: /usr/prog/test/abc.c
Loading: def.o
CodeCenter Tutorial 109



Chapter 7 Setting  up your environment
To set the path option from the Options Browser:

1 Display the Option Sets option menu and select general.

2 Select the text field next to the path option.

3 Enter the directories that contain all of your application’s source 
and object files. 

Applying your 
changes

To apply changes you’ve made in the Options Browser:

1 Select the Apply button to apply your changes.

2 Select the Dismiss button to close the Options Browser.

Setting the 
cc_prog option

By default, CodeCenter uses cc as the C compiler. If you use a different 
compiler, such as clcc (CenterLine-C, CenterLine’s optimizing ANSI C 
compiler) or gcc, set the cc_prog option. The cc_prog option affects the 
compiler used by the make and load Workspace commands. To set 
cc_prog from the Options Browser:

1 Select the text field next to the cc_prog option.

2 Enter the name of your compiler.

To find out if the CenterLine-C compiler is supplied with your 
platform, refer to your platform guide, which is available as an 
appendix to the online Reference. To use CenterLine-C, set cc_prog to 
clcc.

If desired, you can configure the parsing rules used by the interpreter 
when CodeCenter loads files as source. For further information, see 
the config_parser entry in the Reference.

Setting other 
options

Before you load your code, you may want to set the sys_load_flags 
and load_flags options as described on page 69. Table 5 outlines 
additional options that you may need to set depending on your 
application.
110 CodeCenter Tutorial



Setting options in the Workspace
Table 5 Additional Workspace Options

If your application... Set this option... For this result...

Uses ANSI C. In the misc Option Set, set ansi 
to True.

Performs preprocessing and 
function prototype conversion in 
strict conformance with the 
ANSI C standard.

Does not use a.out as 
the name of its 
executable and uses the 
executable name 
during execution.

In the run-time Option Set, set 
program_name to the name of 
your executable.

Uses the name specified as the 
value of the first argument, 
argv[0], to main().

Relies on a 
preprocessor, such as 
m4 for macro 
expansion or an SQL 
processor for database 
processing.

In the load Option Set, set 
preprocessor to the command 
string to be executed in a 
subshell. The command string 
must have a %s in it, which is 
replaced by the name of the file 
being loaded, for example

m4 macro_file %s

Executes the specified command 
in a subshell before loading the 
file. For complete information on 
using preprocessors, refer to the 
preprocessed code entry in the 
Reference.

Uses 8-bit character 
sets.

In the misc Option Set, set 
eight_bit to True.

Treats input and output as 8-bit 
characters.
CodeCenter Tutorial 111



Chapter 7 Setting  up your environment
Saving your option settings
Changes you make to CodeCenter options are not saved automatically 
across sessions. There are two ways you can save your individual 
option settings across CodeCenter sessions: 

• Specify them in your CodeCenter startup file.

• Save a project file and reload it in the next session. See the 
section 'Saving your project' on page 78 for more information.

Startup files in 
component 
debugging mode

When you start CodeCenter in component debugging mode, it looks 
for the global startup file, CenterLine/configs/ccenterinit. It then 
searches for a local .ccenterinit startup file, first in the current working 
directory, and then in your home directory. If CodeCenter finds the 
startup file, it executes all the commands in the file.

The .ccenterinit file is a text file that can contain any input that is 
accepted inthe CodeCenter Workspace, including Workspace 
commands and source code that does not need to be debugged or 
reloaded. You can use the .ccenterinit file to store your option settings 
and aliases across sessions. 

Here is a sample .ccenterinit file that sets two aliases (s for step and n 
for next), the path option, and the tab_stop option (number of spaces 
for tab expansion):

/* Define aliases for common commands. */
alias s         step
alias n         next

/* Specify option settings. */
setopt path ../test ../src
setopt tab_stop 4

NOTE Because CodeCenter first looks in the current working 
directory for .ccenterinit, you can have different 
.ccenterinit files for use with different projects, as long 
as you work in different directories.

Startup files in 
process 
debugging mode

In process debugging mode, ObjectCenter searches for a local 
.pdminit startup file, first in the current working directory, and then 
in your home directory. It does not read the global ccenterinit file.
112 CodeCenter Tutorial



Customizing your environment
Customizing your environment
You can create your own custom commands, which are placed on the 
User Defined submenu in the Main Window, and your own buttons 
to accompany your custom commands. You can also integrate your 
revision control system with CodeCenter by using X resources, 
custom buttons, or the Workspace.

Creating custom 
commands

To create a custom command:

1 Display the CodeCenter menu, slide off on the User Defined 
submenu, and select Add/Change/Delete. CodeCenter displays 
the User Defined dialog box.

2 Enter the name of the command in the Label text field. This is 
the name that will appear on the menu item (and on a button, if 
you define one).

3 Choose either the Workspace or Shell radio button as the type of 
command.

4 Select the Create Button check box if you want to add a button 
to the control panel with the same name and function as the 
menu item.

5 If you chose Shell, specify the shell to be forked in the Terminal 
text field. You also can select either the Wait for Completion 
(wait for all shell commands to terminate before continuing) or 
Run in Terminal Emulator (direct shell output to terminal 
emulator) check box.

6 Type the command you want to create in the Command Text 
box. To see a list of variables you can use, place your pointer 
over the Command Text field and press F1, or refer to the 
user-defined commands entry in the Manual Browser. 

7 Select the Add button. When you have finished entering 
commands, select the Cancel button.

CodeCenter saves the commands you create across sessions. The 
information is stored in the file .cctrusrcmd in your home directory.

To issue the custom command, simply choose the menu item or 
button.
CodeCenter Tutorial 113



Chapter 7 Setting  up your environment
Setting X 
resources

CodeCenter provides a full set of X resources for tailoring the 
appearance and behavior of the GUI. For example, you can change 
colors and fonts, define special keyboard bindings, and even add 
custom buttons to integrate other tools (such as source control 
systems) into CodeCenter. 

For complete information on X resources, refer to the X resources entry 
in the Reference. 

Revision control 
system support

If you use either the rcs or sccs revision control system, you can add 
CheckIn, CheckOut, FileHistory, and FileDiffs items to the User 
Defined menu in the Project Browser by setting the value of the 
following resource to either rcs or sccs:

CodeCenter*ProjectBrowser.RevisionControl:

For more information about revision control system support, refer to 
the “Revision control systems”  section in the CodeCenter Reference.

Integrating 
revision control by 
creating C 
functions

CodeCenter provides X resources for integrating your version control 
system into the Project Browser. As an alternative or an addition to 
using the built-in menu items, you can integrate your version control 
system into the Workspace by creating C functions that call both 
system and CenterLine functions. For example, consider the file vc.c:

#include <stdio.h>
checkout_and_load(char* arg)
{
char arrayco[200];
strcpy(arrayco, "co -l ");
strcat(arrayco,arg);
system(arrayco);
centerline_load(arg);
printf("Checkout and load are done\n");
};

checkin_and_swap(char* arg)
{
char arrayci[200];
strcpy(arrayci, "ci -l ");
strcat(arrayci,arg);
system(arrayci);
centerline_swap(arg);
printf("Checkin and swap are done\n");
};
114 CodeCenter Tutorial



Customizing your environment
You can load vc.c directly in the Workspace and then use its functions 
as follows:

1 -> alias co checkout_and_load(“#$1”)
2 -> load vc.c
Loading: vc.cc
3 -> co myfile.c
Loading: myfile.c
Checkout and load are done
4 -> checkin_and_swap(“myfile.c”);
Unloading: myfile.c
Loading: myfile.o
Checkin and swap are done
5 ->

The alias co invokes the function checkout_and_load. The function 
checkout_and_load automatically checks a file out of the version 
control system and loads it into CodeCenter in source form. The 
function checkin_and_swap checks the file back into the version 
control system and swaps it into object form in the environment.

Using your own 
editor

CodeCenter supports vi and FSF GNU Emacs. The default editor is vi. 
To specify FSF GNU Emacs as your  editor,  use the following shell 
command:

% setenv EDITOR emacs

FSF GNU Emacs and vi are the only editors we support. However, the 
CenterLine/API directory contains a sample edit server for other 
editors, and unsupported editors for some platforms are in the 
CenterLine/unsupported directory.

You can also start CodeCenter under the control of FSF GNU Emacs. 
Refer to the emacs integration entry in the CodeCenter Reference.
CodeCenter Tutorial 115





Index
Symbols

# (pound sign), in CL targets 75
+> prompt 93

A

actions, saving 78
Add Files  menu item 34
addresses, getting information on 95
ANSI C

additional documentation on 100
setting options for 111

array elements, displaying 48
Ascii CodeCenter, using 97

B

batch_load option 98
break levels

and execution paths 46
establishing 42, 87
generating 95
returning to previous 52

breakpoints
conditional 95
deleting 53
saving 78
setting 41
setting in parent and child 97

build command 99
Build menu item 25
building, your project 99
buttons, creating 113

C

C compilers
ANSI option 111
choosing 110

C functions, creating 114
C interpreter, using 100
C library functions, and run-time error checking 

87
calling structure, displaying 38
cc_prog  option 110
ccenter.proj file 78
.ccenterinit  file 112
CenterLine target, See CL targets
centerline_* functions 95
child processes, setting breakpoints 97
CL targets

additional documentation on 73
building 76
designing 73
and EZSTART 77
loading your application with 73Ð76
for maintaining projects 79

clxterm client 85
code fragments, entering in the Workspace 93
CodeCenter

loading your application 67Ð81
quitting 30
running your application 83Ð105
setting up your environment 107Ð115

commands
build 25, 99
cont 88
continue 42, 52
creating custom 113
debug 6
for setting options 109
history 101
in CL targets 73
info 95
instrument 18
make 15, 76, 77
next 44
print 24
run 85
save 78
setopt 70
CodeCenter Tutorial 117



Index
sh 75
source 102
start 103
step 43, 52
stop on 96
swap 90
unload 99
unres 80
whatis 23

conditional breakpoints 95
Contents window, components of 35
continuing, execution 42, 88
corefiles, debugging 3Ð15
correcting, run-time errors 13Ð30
creating

buttons 113
CL targets 75
commands 113
functions 114

Cross-Reference Browser 36
custom commands, creating 113
customizing, your environment 112

D

data
examining 47
printing the value of 94
visualizing 93

Data Browser
components of 9
contents of 47
dereferencing pointers in 9
dynamic update of data items 52
moving data items in 51
saving space in 49
using 93
zooming 48

data items, moving 51
<data> return type 36
databases, setting option for preprocessors 111

debug command 6
debugging

corefiles 3Ð15
fully linked executables 97
items, deleting 53
modes, switching 5
multiple processes 97
techniques 92Ð98
threaded processes 97

deleting breakpoints 53
dependencies, in CL targets 73, 75
dereferencing, pointers in the Data Browser 9
designing, CL targets 73
display, setting your iv
displaying, functions, variables, headers, types, 

and typedefs 35
dragging, data items 51

E

Edit Line menu item 8
editing

search path used when 109
source code 25, 29

editor, specifying iv
eight_bit option 111
elements of array, displaying 48
enhancing

programs 31Ð55
your application 100

environment variables
DISPLAY iv
EDITOR iv

environment, setting up 107Ð115
Error Browser 87

contents of 27
using to suppress warnings 89

errors
large numbers of 89
responding to 88
run-time 13Ð30, 86
118 CodeCenter Tutorial



Index
saving to file 81
examining

data 47
variables with the Workspace 93

executables, debugging 97
executing

main() 85
your program with different test data 103

execution
continuing 42, 88
interrupting 96
single stepping 43

execution paths, and break levels 46
expressions, displaying 23, 93
<extern> return type 36
EZSTART

loading your application with 77

F

files
ccenter.proj 78
loading 16
reloading 29
swapping 90

folder symbol in Data Browser 48
fork system call 97
fully linked executables, debugging 97
functions

calling from Workspace 45
CenterLine 95
creating 114
displaying 35
listing 40
printing the number of calls to 94
resolving undefined 102
stepping through 44

G

-G switch, for loading files 62
-g switch, overriding 62
global variables, initializing 103

H

header files
displaying 35
resolving problems locating 81
search path for 61

history command 101

I

-I switch, for loading files 61
identifiers, displaying the definition of 23
incremental linking 99
info command 95
instrumented object files

run-time error checking 86
speed of execution 87
swapping 90

instrumenting object files 18, 34
interpreter, using 100

L

-L switch, for loading files 61
-l switch

and load_flags option 69
for loading libraries 62

leaks, finding memory 85
libraries

attaching 62
linking from 64
resolving problems in loading 81
search path for 61

link command 80
CodeCenter Tutorial 119



Index
link -list command 80
linked lists, examining 47
linking

from libraries 64
incrementally 99

listing, search path used when 109
load command 80
load_flags option 61
loading

additional documentation on 64
files 16
object files that don’t exist 62
object files using CL targets 75
object files with debugging information 62
object files without debugging information 

62
project files 79
search path used when 109
setting load switches with options 70
source files 63
switches 61
the Bounce program 59Ð64
with CL targets 73Ð76
with EZSTART 77
with the load command 71Ð72
your application 67Ð81

load-time error checking 27

M

m4 preprocessor, setting options for 111
macros, in CL targets 76
main() function, executing 85
make command 15, 76, 77
makefiles

and EZSTART 77
and loading your application 69
and reloading files 99
loading files with 15
maintaining 79

memory leaks, finding 85

memory locations, monitoring 96
messages, saving to file 81
metacharacter expansion, preventing 75
moving

among break levels 52
data items 51

multiple processes, debugging 97

N

name, of program, setting 85

O

object files
and watchpoints 96
instrumenting 18
loading 16
reloading 99
run-time error checking 87
swapping 90
that don’t exist 62
with debugging information 62, 71, 75
without debugging information 62, 71, 75

options
ansi 111
batch_load 98
cc_prog 110
eight_bit 111
for setting load switches 70
load_flags 61
path 109
preprocessor 111
program_name 111
save_memory 89
saving values 78
setting 107Ð115
setting in CL targets 75
swap_uses_path 90
unset_value 89

Options Browser 109
120 CodeCenter Tutorial



Index
P

parent processes, setting breakpoints 97
parsing rules, configuring 110
path used for loading, listing, editing, swapping 

109
pdm

additional documentation on 97
setting executable name 111
switching modes 5

performance issues 69
pointers, dereferencing in the Data Browser 9
preprocessors, setting option for 111
print command 24
printing

number of calls to a function 94
the value of data structures 94

program_name option 85, 111
programs

enhancing 31Ð55
running 7

Project Browser
components of 16
exporting contents to a file 105
instrumenting files 34
setting options 109

project file
definition 30, 78
for saving options 112
loading 79
saving 78

projects
and CL targets 79
establishing 15
saving 30, 78

Properties windows 109
prototyping, in the Workspace 100

Q

quitting, CodeCenter 30

R

rcs
creating functions for 114
setting resources for 114

rebuilding 11
object files 62
your program 25
your project 99

regular object files
run-time error checking 86
swapping 90

reloading files 99
reloading, files 29
Restart Session menu item 15
return type, of functions 36
revision control systems

creating functions for 114
setting X resources for 114

run command 85
Run Window 85
running

programs 7
test suites 103
your application 83Ð105

run-time error checking
discussion 86
enabling 18
reducing 89

Runtime Error dialog box 20
run-time errors, correcting 13Ð30
run-time problems, responding to 88

S

save command 78
save_memory option 89
saving

error messages to file 81
projects 30, 78
your option settings 112
CodeCenter Tutorial 121



Index
sccs
creating functions for 114
setting resources for 114

segmentation faults 5
setopt command 70
setting breakpoints 41
sh command 75
shell commands

creating 113
in CL targets 73, 75

shrinking, data items 49
signals, saving 78
single stepping 43
Source area

execution symbol 7
lines causing warnings or errors 28
listing a file containing a particular function 

40
listing the corresponding source file 87
pop-up menu 8

source command 102
source files

editing 25
loading 16, 63
reloading 99
run-time error checking 86
swapping 90

standard targets, building 76
start command 103
startup files

.ccenterinit 112
for saving options 112

stepping, execution 43
stop on command 96
suppressing, warnings 88
suppressions, saving 78
swap command 88, 90, 91
swap_uses_path option 90
swapping

files 90
search path used when 109

switches, for loading 61

switching, debugging modes 5
system testing 103

T

tabs, in CL targets 75
targets

CL, See also CL targets
standard 76

terminal emulators, and custom commands 113
test suites, running 103
testing

automating 98
running test suites 103
system testing 103
unit testing 102
your application 100

<text> return type 36
threaded processes, debugging 97
troubleshooting

load and link commands 80
run-time issues 104
the swap command 91

types and typedefs, displaying 35

U

undefined symbols, listing 80
unit testing 102
unload command 99
unres command 80
unset_value option 89
using, Ascii CodeCenter 97

V

variables
displaying the value of 24
examining with the Workspace 93
122 CodeCenter Tutorial



Index
W

warnings
ignoring 88
large numbers of 89
responding to 88
run-time 86
saving suppressions 78
saving to file 81
suppressing 88

watchpoints 96
win_io option 85
Workspace

additional documentation on 93
break levels 46
calling functions 45
commands, See commands
directing output to 85
entering code fragments 93
pdm prompt 5
prototyping in 100
setting options in 109Ð110
unit testing in 102
using 92

X

X resources, setting 114
xterm client, and Run window 85

Z

zooming, in Data Browser 48
CodeCenter Tutorial 123


	CodeCenter Tutorial
	Version 4.1.1

	Using this book �
	What this guide is about
	What you should know before starting
	Conventions used in this guide

	Starting CodeCenter
	Specifying your editor
	Setting your display
	Invoking CodeCenter
	The Main Window
	Managing windows

	Finding information online
	Manual Browser and "?" button
	The man command
	Searching the online documentation
	Moving from place to place
	Printing and copying
	Context-sensitive help
	Using the Help menu
	Workspace help
	CenterLine manual pages

	How to use the tutorial
	Setting up the tutorial directory
	Contents
	Part�I�� ��Tutorial 1
	Chapter 1 Debugging a corefile 3
	Chapter 2 Correcting run-time and static errors 13
	Chapter 3 Enhancing a program interactively 31
	Chapter 4 Using the load command 57

	Part�II�� Getting started with your own code 65
	Chapter 5 Loading your application 67
	Chapter 6 Running your application 83
	Chapter 7 Setting up your environment 107


	List of Tables
	Table 1 Resolving load and link Problems 80
	Table 2 Types of Run-Time Error Checking 86
	Table 3 Troubleshooting Swapping 91
	Table 4 Troubleshooting Run-Time Issues 104
	Table 5 Additional Workspace Options 111

	List of Tips

	Part I:�� ��Tutorial
	This part of the manual contains a tutorial that takes you on a tour of the CodeCenter environmen...
	In the first three chapters you set up, debug, and enhance a program that bounces shapes. These c...
	• Debugging a corefile
	• Correcting run-time and static errors
	• Enhancing a program interactively

	Work through the last chapter to learn how to use the load command to get code into CodeCenter.
	Chapter 1�� Debugging a corefile
	For the purposes of this tutorial, the Bounce program represents code that you have inherited. In...
	Getting started
	1 If you haven’t already created the tutorial directory, install the examples as described in 'Se...
	2 Go to the tutorial directory:

	Compiling the Bounce program at the shell
	Running an executable that dumps core
	Starting CodeCenter in process debugging mode

	Specifying a corefile as a target for CodeCenter
	Finding and fixing the error that causes the segmentation fault
	Stopping execution at the point of the segmentation fault
	Editing the source code
	1 In the Source area, move the mouse pointer over the number 11 at the left margin.
	2 Press the Right mouse button and select Edit line 11 from the pop-up menu.

	1 In your editor, move line 11 below line 16 (new->next = 0;). Your code should now look like the...
	2 Save this file.



	Examining data structures using the Data Browser
	1 In the Source area, use the mouse to highlight the string count.
	2 In the Main Window, display the Examine menu and select Display.

	Using spot help to understand the displayed item
	Dereferencing a displayed pointer

	Building and running the new executable
	Using the make command in the Workspace
	Running the fixed executable


	Chapter 2�� Correcting run-time and static errors
	Now that you have the Bounce program executing to completion, you need to turn your attention to ...
	In this chapter, you will use CodeCenter’s component debugging mode to track down a run-time erro...
	Starting Chapter 2
	1 In the Main Window, display the CodeCenter menu and select Restart Session.
	2 Check that the Component Debugger radio button is selected.
	3 At the bottom of the dialog box, select Restart Debugger.


	Setting up a CodeCenter project for Bounce
	Using a makefile to set up a project

	Viewing the project components
	Using spot help to understand the Project Browser
	Running the program in component debugging mode
	1 At the bottom of the Project Browser, select the Run button.
	2 At the bottom of the dialog box, select the Run button.



	Finding the problem using run-time error checking
	Instrumenting the object files
	Running the Bounce program with instrumented object code
	Viewing error messages in the Error Browser

	Swapping a file from object to source form
	Exploring the code to understand the problem
	Viewing the definition of an identifier
	1 Select the string col_table by highlighting it or by simply moving the mouse pointer over it.
	2 Press and hold the Shift key and click the Middle mouse button.


	Viewing the value of an expression
	1 Select the string INDEX(count) + DECR by dragging the mouse pointer.
	2 Press the Shift key and click the Left mouse button.



	Fixing the error
	1 At the left margin of the Source area, move the mouse pointer over number 13 and press the Righ...
	2 Select Edit line 13.

	1 In your editor, change line 13 so that DECR is subtracted, not added. The line will then look l...
	2 In your editor, save the file.

	Rebuilding and running your corrected program

	Using load-time error checking to clean up the code
	1 In the Project Browser Files area, select the line containing shape.o.
	2 In the middle of the Project Browser, select the Swap button.


	Using the Error Browser
	Editing your code
	1 Delete the string temp from line 8 so the code looks like the following:
	2 In your editor, save the file.


	Reloading the corrected code

	Saving a project file
	1 In the Main Window, display the CodeCenter menu and select Save Project.
	2 In the Save Project dialog box, edit the Save to File line to the name bounce.proj.
	3 At the bottom of the dialog box, select the Save Project button.

	Quitting CodeCenter
	1 In the Main Window, display the CodeCenter menu and select Quit CodeCenter.
	2 In the dialog box, select Quit.




	Chapter 3�� Enhancing a program interactively
	Now that you have the Bounce program executing correctly, you can turn your attention to adding a...
	Starting up and loading your project
	Re-establishing your project inside CodeCenter
	1 Enter the codecenter command at the shell without an argument:
	2 In the Main Window, display the Browsers menu and select Project Browser.
	3 In the Project Browser, display the Project menu and select Load Project.
	4 At the Load From File input line, enter the name bounce.proj.
	5 At the bottom of the dialog box, select Load Project.



	Adding a new module to your project
	1 In the Project Browser, display the Project menu and select Add Files.
	2 In the Files list of the dialog box, move the mouse pointer over the file circle.o and double c...
	3 To dismiss the dialog box, select Done.

	1 In the Files area of the Project Browser, select circle.o.
	2 Below the Files area, select the Instrument button.

	Understanding the program’s structure

	Examining program elements with the Contents window
	1 In the Files area of the Project Browser, select the filenames circle.o. and rectangle.o. You c...
	2 At the bottom of the Files area, select Contents.
	3 Move the two Contents windows so you can see the contents of both windows (they may open so one...


	Looking at the program’s structure in the Cross-Reference Browser
	1 In the Cross-Reference Browser, display the Graph menu and select Cross Reference Symbol.
	2 At the XRef Symbol input line, type draw_rectangle.
	3 Select the Cross Reference button.

	1 In the Cross-Reference Browser, display the Graph menu and select Cross Reference Symbol.
	2 In the input line of the dialog box, type the string draw_circle.
	3 At the bottom of the dialog box, select the Cross Reference button.


	Listing a function in the Source area
	1 In the Reference area of the Cross-Reference Browser, move the mouse pointer over the do_bounce...
	2 Press the Right mouse button and select List.


	Using interactive debugging items to follow execution
	Setting a breakpoint
	1 Move the mouse pointer over the line number 12 at the left of the Source area and press the Rig...
	2 On the pop�up menu, select Set Breakpoint Here.


	Executing to a breakpoint
	Continuing execution from a breakpoint
	Single stepping execution
	1 In the middle of the Main Window, select the Step button.
	The statement at line 12 is executed, and the Execution symbol moves to line 13.
	Execution is now at line 13, which is a call to draw_rectangle(). If you single step on this stat...
	2 In the middle of the Main Window, select the Step button again.
	3 To single step through draw_rectangle(), in the middle of the Main Window, select the Step butt...

	Execution returns from draw_rectangle(), and the Execution symbol is now at line 16 in do_bounce(...
	The next statement is a call to the function store_shape(). Rather than single stepping through t...
	4 In the middle of the Main Window, select the Next button.

	In one move, execution has returned from store_shape() and the Execution symbol is now at line 17.



	Calling a function from the Workspace
	1 In the Main Window, display the Debug menu and select Set Breakpoint.
	2 At the Function input line, type the string store_shape.
	3 Select the Set Breakpoint button.

	1 In the Workspace, type in the following C statement:
	2 Press the Return key to enter this statement at the Workspace.


	Examining a linked list dynamically
	1 In the Source area, select the string list_head on line 18 by dragging the mouse pointer from o...
	2 Display the Examine menu and select Display.

	1 In the Data area, move the mouse pointer over the graphical item for *list_head and press the R...
	2 In the pop�up menu, as shown, select Zoom with the Right mouse button.

	Following the linked list
	1 In the Data Browser, select the Pointer symbol in the first list node.
	2 Select the Pointer symbol in the next node.
	3 Use the horizontal and vertical scrollbars to bring in view the display items you are intereste...


	Seeing how the program uses old and new
	1 In the Main Window, select the Step button.
	2 Repeat stepping to line 13, beyond the allocation of memory for old and new.

	1 Make sure you have no string selected in the Source area of the Main Window.
	2 In the Data Browser, display the Graph menu in the menu bar and select New Expression.
	3 At the input line of the dialog box, type the string old.
	4 At the bottom of the dialog box, select the Data Browse button.
	5 Repeat steps 2 to 4 for the string new.
	6 To dereference each pointer, move the mouse pointer over the Pointer symbol and click the Left ...


	Watching a new node get added
	1 In the middle of the Main Window, select the Step button.
	2 Repeat this until execution moves to line 26.


	Returning to a previous break level

	Modifying the program
	Calling your editor from the Workspace
	1 With do_bounce listed in the Source area, move the mouse pointer over number 12 in the line num...
	2 In the pop�up menu, select Edit line 12.
	3 In your editor, change lines 12 and 13 to replace the string rectangle with the string circle. ...
	4 In your editor, save the file.


	Rebuilding your project
	Running the modified program with a command-line argument
	1 In the Main Window, display the Debug menu and select Delete.
	2 In the Delete submenu, select Delete All Debugging Items.

	1 At the bottom of the Project Browser, select the Run button.
	2 At the input line of the dialog box, enter the string circle.
	3 At the bottom of the dialog box, select the Run button.


	Continuing the tutorial
	Leaving CodeCenter
	1 In the Main Window, display the CodeCenter menu and select Quit CodeCenter.
	2 In the Quit Verification dialog box, select the Save Project button.
	3 In the Save Project dialog box, check that the Save to File input line contains the name you wa...
	4 At the bottom of the dialog box, select the Save Project button.
	5 In the Quit Verification dialog box, select the Quit button.




	Chapter 4�� Using the load command
	In this chapter, we load a version of the Bounce program into CodeCenter using the load command.
	Starting Chapter 4
	1 If CodeCenter is already running, exit your session as described in 'Quitting CodeCenter' on pa...
	2 If you haven’t already created the tutorial directory, install the examples as described in 'Se...
	3 Go to the tutorial directory and invoke CodeCenter:

	Output when loading object files
	Load errors

	Setting options
	1 Set the program_name option:
	2 Set the load_flags option to include all the switches that are passed to the compiler, as speci...
	For Sun™ platforms:
	For HP™ platforms:


	Loading the Bounce program
	Loading object files with debugging information
	If the object file does not exist or is out of date

	Loading object files without debugging information
	Loading source files

	Linking from libraries


	Part II:�� Getting started with your own code
	This part of the manual is designed to help you start using CodeCenter with your own code. It sho...
	• Load your own application into CodeCenter
	• Use CodeCenter’s run-time error checking, debugging, prototyping, and testing features
	• Set options and customize CodeCenter

	All these topics are discussed in more detail in the CodeCenter User’s Guide.
	Chapter 5�� Loading your application
	Before you begin debugging your own code, you need to set some load options, decide how to load y...
	This chapter describes:
	• Setting load options
	• Loading your application with the load command
	• Loading your application with CenterLine targets
	• Loading your application with the EZSTART utility
	• Saving a Project file
	• Troubleshooting the load and link commands

	Getting ready to load your code
	Performance issues
	Using options to set load switches
	Setting system-wide load options
	Setting the load_flags option

	Loading your application with the load command
	1 Load the files to be debugged as regular object files with debugging information:
	Make sure you load any C modules with the -C switch.
	2 Load the rest of the files that constitute your application as regular object files without deb...
	3 Link any attached libraries with the link command:



	Loading your application with CenterLine makefile targets
	1 Design a CL target that automatically loads and links the object files in your application. The...
	2 Issue the make command from the CodeCenter Workspace to execute the CL target.

	Designing CL targets
	1 Edit your makefile.
	2 Create a dependency line for the CL target.
	As shown in the sample makefile, the dependency line for a CL target follows the same syntax as t...
	3 (Optional) Create shell lines for the CL target.

	A shell line consists of a Tab followed by any number of shell commands, separated by semicolons:
	From the perspective of the CodeCenter make command, a shell line in a CL target is the same as e...
	4 Create CL lines for setting any necessary Workspace options, such as program_name. (See 'Settin...

	If you set the load_flags option in a makefile rule then it will affect all the load commands tha...
	Before CodeCenter executes a rule that begins with a #, it passes the rule through the Bourne she...
	5 Create CL lines for loading the object files that make up your application. If necessary, refer...

	If desired, you can use macros, such as $(OBJS), as arguments to the load command. If the object ...
	In the example on page 74, note that the same set of switches used in the standard target, $(CFLA...
	6 Create a CL line for linking your application with any attached libraries:



	Using the CodeCenter make command
	If you encounter problems

	Creating a makefile with the EZSTART utility
	What is EZSTART?
	Using EZSTART

	Saving your project
	Project files
	Saving your project file
	Loading your project file
	CL targets

	Troubleshooting the load and link commands
	Table 1� Resolving load and link Problems (Continued)
	TIP:�� Saving load-time error messages to a file


	Chapter 6�� Running your application
	This chapter describes:
	• Running your program
	• Understanding run-time error checking
	• Instrumenting your application
	• Responding to run-time problems
	• Swapping a file from object to source
	• Debugging techniques
	• Rebuilding your project
	• Exploring, enhancing, and testing your application
	• Troubleshooting run-time issues

	Running your program
	Using the run command
	Naming your program
	The Run Window
	Detecting memory leaks

	What is run-time error checking?
	Table 2� Types of Run-Time Error Checking�

	Adding more run-time error checking to object files
	Responding to run-time problems
	Using the environment to detect and correct a problem
	1 Swap the file from object code to source code using the swap command as described in 'Swapping ...
	2 Run your application again to allow CodeCenter to locate the exact location of the problem.
	3 Use the various debugging techniques described on page 92 to debug your code.


	Ignoring the warnings
	1 Select the warning in the Error Browser.
	2 Select one of the suppression scopes from the Suppress menu.


	Dealing with large numbers of run-time warnings
	1 In the Main Window, display the Browsers menu and select Options Browser.
	2 Display the Option Sets menu and select memory.
	3 Set save_memory to True. With this setting, CodeCenter does not report run-time warnings on dyn...
	4 Set unset_value to 0. With this setting, CodeCenter does not report that a variable is used wit...
	5 Select the Apply button to apply the values.
	6 Select the Dismiss button to close the Options Browser.



	Swapping a file from object to source
	Using the swap command
	Setting the swap_uses_path option
	1 Set the path option to include the directories that contain the source files and object files.
	2 Set the swap_uses_path option to True. When this option is set, CodeCenter searches in the dire...


	Troubleshooting the swap command
	Table 3� Troubleshooting Swapping


	Debugging techniques
	Debugging commands
	Using the interactive Workspace
	Visualizing data structures at run time
	Dynamically inserting statements in your code
	Print the number of times a function was called
	1 Define an integer in the Workspace to serve as the global data structure, and initialize it to ...
	2 In the Main Window, display the Debug menu and select Set Action.
	3 In the Function text field, enter the name of the procedure on which to set the action.
	4 In the Action Body text box, enter the following code:
	5 Select the Set Action button.
	6 Rerun your application and watch the "Adding on to the count” message appear in the Run Window.


	Automatically printing data structure values

	Setting conditional breakpoints
	1 Open the Action dialog box. To do so, in the Main Window, display the Debug menu and select Set...
	2 In the Function text field, enter the name of the procedure on which to set the action.
	3 In the Action Body text box, enter the following code, except replace i with the name of a coun...
	All CodeCenter Workspace commands, such as stop, have a C function equivalent that you can call f...
	All centerline_ functions take one argument, a string. If the CodeCenter command does not take an...
	In the example, centerline_stop() is the equivalent for the CodeCenter command stop.
	4 Select the Set Action button.
	5 Rerun or continue the execution of your application to see the break level generated.



	Getting information about addresses
	Monitoring a memory location
	Debugging fully linked executables
	Debugging multiple processes
	Debugging threaded processes
	Using Ascii CodeCenter

	Rebuilding your project
	Reloading source files
	Reloading object files
	Incremental linking

	Exploring, enhancing, and testing your application
	Using the Workspace for interactive prototyping
	Saving prototyped code with the edit workspace command
	Unit testing
	Loading incomplete programs into CodeCenter
	Invoking individual functions from your program

	System-level testing
	Running test suites
	Executing your program with different test data


	Troubleshooting run-time issues
	Table 4� Troubleshooting Run-Time Issues
	TIP:�� Exporting the contents of the Project Browser to a text file


	Chapter 7�� Setting up your environment
	CodeCenter provides a number of options for tailoring the environment to suit your needs. There a...
	This chapter guides you through the basic set of options required to set up your environment and ...
	This chapter describes:
	• Setting options in the Workspace
	• Saving your option settings
	• Customizing your environment

	Setting options in the Workspace
	Setting the path option
	1 Display the Option Sets option menu and select general.
	2 Select the text field next to the path option.
	3 Enter the directories that contain all of your application’s source and object files. ��


	Applying your changes
	1 Select the Apply button to apply your changes.
	2 Select the Dismiss button to close the Options Browser.


	Setting the cc_prog option
	1 Select the text field next to the cc_prog option.
	2 Enter the name of your compiler.


	Setting other options
	Table 5� Additional Workspace Options


	Saving your option settings
	Startup files in component debugging mode
	Startup files in process debugging mode

	Customizing your environment
	Creating custom commands
	1 Display the CodeCenter menu, slide off on the User Defined submenu, and select Add/Change/Delet...
	2 Enter the name of the command in the Label text field. This is the name that will appear on the...
	3 Choose either the Workspace or Shell radio button as the type of command.
	4 Select the Create Button check box if you want to add a button to the control panel with the sa...
	5 If you chose Shell, specify the shell to be forked in the Terminal text field. You also can sel...
	6 Type the command you want to create in the Command Text box. To see a list of variables you can...
	7 Select the Add button. When you have finished entering commands, select the Cancel button.


	Setting X resources
	Revision control system support
	Integrating revision control by creating C functions
	Using your own editor
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z





