

CodeCenter ChangeLog

Last Reviewed: 8/99

Copyright © 1999 by
CenterLine Systems, Inc.

CodeCenter ChangeLog:
CodeCenter Versions 4.1.0, 4.1.1, 4.2.0 and 4.2.1

Table of Contents
New Features in CodeCenter Version 4.2.1

64-bit Support on Solaris 2.7
Online Documentation
Support for Sun's Debugging Information

New Features in CodeCenter Version 4.2.0

Licensing and Installation Enhancements in CodeCenter 4.2.0

New Features in CodeCenter Version 4.1.1

SUN Platform Support
Support for Solaris 2 non-PIC Shared Libraries
Online Documentation

New Features in CodeCenter Version 4.1.0

Thread Support on Solaris
Emacs Main Window
Printing from the Cross-Reference Browser
Frequently Asked Questions in the Manual Browser
Workspace Improvements
New Command: load_header
edit workspace Enabled
unload workspace Improved
HP clcc Compiler
Enhancing pdm Debugging
Error Browser Layout Improvements
Changing the Size of Your Windows
X Resource Changes
HP Softbench 3.2 Support
Licensing and Installation Enhancements

Page 1 of 24

This document provides details on all new features added to the CodeCenter product since
version 4.1.0. This includes all new features for versions 4.1.0, 4.1.1, 4.2.0, and 4.2.1. It also
describes the changes made between versions 4.0 and 4.1, specifics on the CodeCenter
Documentation and product limitations.

NOTE: All features added to each release of CodeCenter are included in the
releases made available later. For example, features added to CodeCenter Version
4.1.0 are still available in CodeCenter Version 4.1.1, 4.2.0, etc. unless otherwise
documented.

More details about the CodeCenter releases can be found within the CodeCenter Release
Notes as well as the CodeCenter Platform Guides for each release. Refer to the main

Changes Between Version 4.0.0 and Version 4.1.0

Memory Leak Detection
Run Window Changes
clxterm Resources in app-defaults
More Flexible Resource Setting
New Resource For Control Buttons
Support of Direct Pasting into Emacs
Emacs-like Keybindings
User-Defined Commands Access Line Numbers
Directing Output to the Workspace
Two New pdm Options and Switches
New Switches For contents and link Commands
New Scope for unsuppress Command
Mnemonics
New Warning Message for free(0)
Options Browser has Longer Editable Fields
Longer Line Limit in the Source Area
Variable Prevents Unexpected Behavior

CodeCenter Documentation

Online Documentation
Hardcopy Documentation

Product Limitations

GUI Behavior
Caution if Editing sys_load_flags
ANSI Mode Interprets #define Incorrectly
Support for Variable Argument Functions
Data Browser
Source Area
Limited Thread Support
Limited Signal Handling Support

Page 2 of 24

CodeCenter page on CenterLine's website to access these documents relative to your
specific release of CodeCenter.

New Features in
CodeCenter
Version 4.2.1

We have added the following new features in Version 4.2.1

Support for Solaris 2.7 operating systems.
Bug fixes
Online documentation files and documentation viewer upgraded.

All features supported in CodeCenter Version 4.2.0 are also supported in
CodeCenter Version 4.2.1, with the exception of instrumentation. Refer to
the "Object Code Instrumentation Capability Removed" section of the
CodeCenter Version 4.2.1 Release Notes for more details.

64-bit Support on
Solaris 2.7

With the introduction of Solaris 2.7, comes 64-bit technology. CodeCenter
Version 4.2.1 and the CenterLine-C compiler (clcc) are products that can
operate on a Solaris 2.7 system since they are "64-bit aware". Meaning they
will compile and interpret C programs running on a 64-bit aware operating
system, such as Solaris 2.7. But these products have not been enhanced to
provide any special 64-bit support.

If you have any 64-bit related questions/issues when using CodeCenter
Version 4.2.1 on Solaris 2.7, please direct all inquiries to CenterLine
Technical Support at (781) 444-8000 or via email at info@centerline.com

Online
Documentation

With the introduction of CodeCenter Version 4.2.1 comes a new format of
the online documentation. We have replaced the original DynaText Viewer
with Adobe Acrobat Reader for SunOS, Solaris and HP systems. If you
don't have a copy of Adobe Acrobat Reader for your particular system, the
CodeCenter Version 4.2.1 installation process will automatically install a
copy of Adobe Acrobat Reader for those platform releases of CodeCenter
being installed. For example, if you install the Solaris and HP versions of
CodeCenter, you will automatically obtain a Solaris and HP version of
Adobe Acrobat Reader.

The documentation files used with the DynaText viewer have also been
replaced. All documentation files used with Adobe Acrobat Reader are in
PDF format.

The online documentation files in PDF format can be found in:

.../docs

To start the online documentation separately from the CodeCenter product,
simply run the command:

Page 3 of 24

.../bin/cldoc2 &

Along with being able to start the Adobe Acrobat Reader stand-alone and
separately from CodeCenter using the above command, you can also start it
from within CodeCenter via the Manual Browser option in the Browser
menu.

All future releases of CodeCenter following CodeCenter Version 4.2.1 will
use Adobe Acrobat Reader and PDF documentation file format.

Support for Sun's
Debugging
Information

CenterLine has now added support for Sun's debugging information, such
that CodeCenter users who use Sun's C compiler instead of the CenterLine-
C compiler (clcc) no longer need to use the -xs switch during compilation
and linnking in order to have CodeCenter's pdm work properly. In earlier
releases, the -xs switch was necessary when debugging fully built
executables within CodeCenter's pdm if the executable was built using
Sun's C Compiler instead of CenterLine's.

New Features in
CodeCenter
Version 4.2.0

We have added the following new features in Version 4.2.0:

Support for Solaris 2.5, 2.5.1, and 2.6 and SunOS 4.1.4 operating
systems.
Support for Sun UltraSPARC workstations
HP 9000 Series 700 workstations running HP-UX 10.01, 10.10 and
10.20.
Bug fixes
New install and licensing procedures

All features supported in CodeCenter Version 4.1.1 are also supported in
CodeCenter Version 4.2.0.

Like Version 4.1.1, CodeCenter Version 4.2.0 supports the following SUN
and HP Compilers (in addition to CenterLine-C):

clcc (CenterLine-C)
Sun/SPARC-C (all versions)
gcc v2.5.8 --ONLY--
FORTRAN
HP-C (all versions)

Refer to the Product Compatibility Matrix, the CodeCenter Version
4.2.0 Release Notes or the CodeCenter Version 4.2.0 Platform Guide on
CenterLine's website (www.centerline.com) for additional product
support/compatibility information.

Licensing and With the release of CodeCenter Version 4.2.0, we have enhanced the

Page 4 of 24

Installation
Enhancements in
CodeCenter 4.2.0

installation process once again. Instead of running a tar command followed
by the RUN_ME script, we provide a single install.sh script to perform
these two tasks for you in one single step. To reflect these changes, we have
also updated the Installing CenterLine Evaluations and Installing and
Managing CenterLine Products guides.

Additionally, we provide a later release of FlexLM licensing software.
CodeCenter Version 4.2.0 now uses FlexLM Version 5.0a.

New Features in
CodeCenter
Version 4.1.1

SUN Platform
Support

This release adds support for the following:

The Solaris 2.4 operating system
The Sun SPARCompiler C Version 3.0.1
Sun SPARC 5 workstations running SunOS 4.1.3_UI or Solaris 2.3 or
2.4

Support for Solaris
2 non-PIC Shared
Libraries

We have added support for shared libraries that were not built for position
independent loading to the Solaris 2.x platform. You can now load shared
libraries with non-PIC relocations, including the Sun XGL and XIL
graphics libraries.

Online
Documentation

Several of the CodeCenter manuals are now available online. To access the
new online documentation, select Manual Browser from the Browsers
menu on any primary window, click on the "?" button in the Main Window,
or issue the cldoc command from a shell.

In the left panel of the Library window are one or more collections of
books. Click on the name of a collection to display the names of all the
books in that collection in the Books panel. You can open a specific book
by double-clicking on its name, or selecting its name and clicking the Open
button.

You can perform a simple search from the DynaText Library window, and
you can perform more complex searches from a book window. Select
Forms from the Search menu to see which other search forms are
available. Use the Next, Previous, and Go Back buttons to navigate
through the book.

Underlined text is hot - clicking on it scrolls the window to the section of
the book referenced, or opens a new window if the reference is to another
book.

You can create a history of your movement through the book by selecting

Page 5 of 24

New Journal from the File menu and selecting Start Record in the dialog
that pops up.

Print sections by selecting Print from the File menu and highlighting the
sections you want to print. Export sections to a file by selecting Export
from the Edit menu, highlighting the sections you want to export, selecting
Content as the Export format, providing a filename, and clicking the
Export button.

Figures, tables, and tips are shown as icons. Double-click to open them.

New Features in
CodeCenter
Version 4.1.0

Thread Support on
Solaris

We've added support for threaded applications on the Solaris 2.3 platform in
process debugging mode (pdm), with the ability to debug threads in
executables and a graphical Thread Browser to show the status of all the
threads in your program.

In process debugging mode, the Thread Browser gives you information
about the threads and lightweight processes in your program. This
information includes a list of all threads, and the state of each thread. The
state information includes the function the thread is executing, the execution
state (for example, running, sleeping) of the thread, and the start function
for the thread.

At any given time, the Thread Browser focuses on a single thread or light-
weight process (LWP), known as the "current active entity." You control
execution of the current thread with the cont, next, nexti, step, and stepi
commands. You can display a traceback of the thread execution stack with
the where command. You can also perform these operations on another
thread at the break level by making it the current active entity. To make
another thread the current active thread, you use the thread command with
the new thread number as an argument.

CodeCenter's pdm supports threads and threaded applications, where the
types of threads that can be used are Solaris-based thread types. POSIX
and other thread types are not supported by CodeCenter. Solaris is the only
operating system where threads are supported. CodeCenter for HP-UX or
SunOS do not support threads.

For more information about debugging threaded applications, see the
thread, threads, and thread support entries in the Manual Browser.

Emacs Main
Window

If you're an FSF GNU Emacs 19 user, you can start up a CodeCenter
session from within Emacs.

Page 6 of 24

First you need to add the following lines to your .emacs file:

(setq load-path (cons ".../lib/lisp" load-path))
(load "clipc")

The M-x codecenter command starts the environment as a subprocess of
Emacs, with the menus from the CenterLine Main Window replacing the
menus at the top of your Emacs window. Edit the path name supplied if
you want to run a different version of CodeCenter. You can give a project
name as an argument. To invoke CodeCenter in process debugging mode,
use the -pdm switch. Edit your code directly in the Source area at the top
of the Emacs Main Window.

All the browsers are available with the same commands and menu items
you use when you invoke CodeCenter from a shell. A separate Button
Panel window, including your own user-defined buttons, can be launched
from the Browsers menu in the Main Window.

For more information, see the emacs integration entry in the CodeCenter
Reference Guide.

Printing from the
Cross-Reference
Browser

You can now print the contents of the Cross-Reference Browser to a
postscript file. When you click on the Print... button in the Browser, the
Print from Browser dialog box is displayed. You can specify what paper
size to use, the title of the printout, and the name and location of the output
file. The default location is your current directory. You can also specify
how many pages the output should be printed on. For example if you
specify an output page height of 2 and width of 3, CodeCenter resizes the
output to fit on six sheets of paper.

Frequently Asked
Questions in the
Manual Browser

We've taken the questions that customers asked most often and put the
answers in the Manual Browser. Click on the "?" button in the Main
Window to open the Manual Browser.

Select CodeCenter User's Guide from the list of books, and then select
Appendix A, "Frequently Asked Questions", from the Table of Contents
panel. Click on the "+" icons in the Table of Contents panel to view the
topics covered. You'll find topics such as "How do I fix unresolved
symbols?" and "I'm having trouble loading with make".

Workspace
Improvements

We have made several changes to enhance performance and behavior in the
Workspace. The most important changes are described here. In addition to
the changes described below, you can now do the following in the
Workspace:

Set actions on variables defined in the Workspace

Page 7 of 24

Define macros to have the value 0
Declare a single-declaration extern function without enclosing the
single declaration in braces
Define a main with a single line and set breakpoints on it.

New Command:
load_header

We have added a new command, load_header, for loading the definitions
from header files into CodeCenter. Use the load_header command to load
non-local header files without specifying a path, and to load multiple header
files into a single module. If you want to load a header file in your working
directory or path, you can use use the load command to load it.

The load_header command replaces the #include <header_file.h> syntax.
There were several problems related to the use of #include in the
Workspace. For example, because definitions were parsed one at a time, if
an error was encountered while parsing a header file, previous definitions
were not undefined. As a result, users often had to issue an unload
workspace command before they could reload a header file.

In addition, the Workspace does not match the separate compilation model
of C. To enable the Workspace to function as a debugger, definitions in a
header file included in the Workspace are visible across modules. As a
result, using #include in the Workspace occasionally causes CodeCenter to
pick up incorrect definitions from included files.

The new load_header command lets you load a header file into the
environment in a separate module, using the paths defined in the load_flags
and sys_load_flags options to locate the file. You can use load_header to
load system header files such as stdio.h without specifying the path to the
file.

You can also load multiple header files into a single module with
load_header. For example, if the local header file rect.h has dependencies
on definitions in math.h and limits.h, you can load all three header files
into a single module with this command:

-> load_header <math.h> <limits.h> "rect.h"

For complete syntax and usage information, please refer to the load_header
entry in the Manual Browser.

We have provided a new option, workspace_include, to provide backwards
compatibility for users who have existing project files that use the #include
syntax. We do not recommend that you set this option for new projects. The
option is described in the load_header and options entries in the Manual
Browser.

edit workspace
Enabled

You can now save code you define in the Workspace more easily. During a
CodeCenter session, all C definitions you enter are stored in a Workspace

Page 8 of 24

scratchpad. The edit workspace command lets you save the scratchpad to a
file, by default workspace.c, and then edit the file.

For example, suppose you create a program fragment in the Workspace.
You can create stubs for external functions called by the code, and then
execute the code to test it.

After testing your code, you can use edit workspace to create a file
containing the code you defined in the Workspace. You can enter your own
name for the file or accept the default, workspace.c.

-> edit workspace

Appending all workspace definitions to a file.
Default filename is "workspace.c" in the current directory.
Please specify a filename, press Return to accept default,
or <CTRL-D> to abort:

If you want to test a particular set of definitions, edit the file so that it
contains the definitions you want to test. Then use the unload workspace
command to unload all the definitions and objects you created in the
Workspace, and use the source command to load the definitions in your
saved file back into the Workspace. Note that the source command will
report errors if you've unloaded any definitions that the saved file depends
on.

If you want to use the new file as source code, add any #include lines you
need and remove any extraneous lines. For example, some CodeCenter
commands, such as whatis, will appear in the file.

NOTE: When using code developed in the Workspace,
remember that static functions and variables are visible at
global scope in the Workspace. As a result, you may have to
make static functions externally visible to use the Workspace
sources as a separate file.

unload workspace
Improved

The unload workspace command now only undefines user-defined
variables. Previously, when you used the unload workspace command, all
variables were undefined, including predefined macros such as
__CENTERLINE__. CodeCenter now resets predefined macros after an
unload workspace.

HP clcc Compiler CenterLine's C compiler (clcc) is now available on the HP platform. The
CenterLine-C compiler is an ANSI C optimizing compiler designed to
achieve small code size. The compiler is also compliant with K&R C and is
link compatible with Sun and HP compilers.

Page 9 of 24

Enhancing pdm
Debugging

In addition to support for debugging threaded applications, we've made
some other improvements to pdm. The process debugging mode in
CodeCenter 4.1.0 is based on Version 4.12 of gdb and takes advantage of
its new features.

Error Browser
Layout
Improvements

We've streamlined both the appearance and the performance of the Error
Browser. We've moved some of the buttons from the bottom of the
Browser to the side and added Edit, Reload, and Build buttons to the side
button panel to make it easier to fix and reload your code. We removed the
redundant buttons used to suppress warning messages, so now you use just
the Suppress menu to control suppressions. The new Error Browser uses
less memory and performs faster.

Changing the Size
of Your Windows

We've added Motif-style resizeable panes to the Main Window and
Thread Browser. For example, to change the relative size of the Source
panel and Workspace, place your cursor on the pane control sash, which is
a square box at the bottom of the Source panel pane, just under the Error
Sentinel. Hold down the Left mouse button and drag the sash up or down to
resize the panes.

X Resource
Changes

The Graphical User Interface in this release of CodeCenter was built with a
new release of the OI toolkit. This change made it necessary to set more
specific font and color resources for some elements of the GUI. You can
override some of these settings by using the switches described in Table 7
in the CodeCenter Reference Guide (online) or by changing your X
resources as described in "Modifying X Resources" in the CodeCenter
Reference.

HP Softbench 3.2
Support

The CodeCenter integration with SoftBench supports Softbench messages
through CenterLine's Application Programming Interface, or API, using a
Gateway to translate the messages. With this release we've added a new
switch to the codecenter and objectcenter commands that starts up the
Gateway automatically.

To use your CenterLine environment and Softbench together, first start up
Softbench. Then invoke CodeCenter with the -softbench switch:

% codecenter -softbench

This command sends a START message to the SoftBench Tool Manager,
which places CodeCenter in the Tool Manager's window.

The CenterLine environment and the SoftBench Tool Manager send
messages to each other through the Gateway. For example, CodeCenter
sends an EDIT-WINDOW message to the Broadcast Message Server

Page 10 of 24

when it needs to bring up an editor. The SoftBench editor loads and
displays the file.

NOTE: Pretty much all versions of Softbench compiler are
supported by CodeCenter. Any issues using a specific release
beyond version 3.2, please contact CenterLine Technical
Support at (781) 444-8000 or via email at
support@centerline.com.

To terminate the Gateway and remove CodeCenter from the Tool Manager
window, use the CodeCenter quit command.

For more information about CenterLine's API or Gateway, enter man
CLIPC or man CenterLine API in the Workspace, or man
clms_gateway in a shell.

Licensing and
Installation
Enhancements

To make the installation process easier, we've made some changes to the
RUN_ME script and made the licensing error messages more informative.
We've also updated our installation manuals, Installing CenterLine
Evaluations and Installing and Managing CenterLine Products.

Changes
Between
Version 4.0.0
and Version
4.1.0

This section describes improvements made in CodeCenter in the point
releases since Version 4.0.0.

Memory Leak
Detection

Memory leak detection identifies potential memory leaks by reporting on
the memory that the program allocates while running and fails to free before
exiting.

The memory leak detection report lists leaks by the size of the memory
allocated and identifies where the program allocated the memory in the
stack trace. In addition, it shows the number of times the leak occurred
there. For more information, see the memory leak detection entry in the
General Topics category.

Run Window
Changes

By default, the input and output of your program previously went to the
terminal in which you invoked CodeCenter without spawning an
independent Run Window and without returning control to the shell.

Now, CodeCenter by default opens a separate Run Window for your
program's input and output and returns control to the shell in which you
invoked CodeCenter. A CenterLine program called clxterm creates this
Run Window, which is a standard version of xterm, the X11 terminal

Page 11 of 24

emulator.

To avoid creating the separate Run Window and avoid returning control to
the shell, use the -no_run_window switch when you invoke CodeCenter.
The program's input and output goes to the shell in which you invoked
CodeCenter. Using the -no_run_window switch means you are unable to
interrupt CodeCenter and unable to place it in the background. This option
is intended for debugging applications that need specific terminal support
rather than a generic terminal such as xterm.

NOTE: Avoid starting CodeCenter in the background using the
-no_run_window switch. Your program could have
undesirable input/output behavior.

To create a separate Run Window and avoid returning immediate control to
the shell, use the -no_fork switch. With -no_fork, control returns when you
enter the suspend character (usually ^Z) in the shell or exit CodeCenter.
After you type the suspend character in the shell, you must type bg to
enable your program to direct output again to the Run Window. Without -
no_fork, the shell prompt comes back immediately.

By default, issuing the run or start command deiconifies the Run
Window. To prevent deiconifying the Run Window, use the win_no_raise
option. Setting this option prevents the deiconification of the Run Window
when you issue run or start.

The close-window (f.delete) window-manager operation now iconifies the
Run Window. This is to prevent the accidental destruction of the Run
Window.

We added unique resource names for the Run Window, generic terminals,
and the vi Edit window.

The Run Window resource is:

CodeCenter*RunWindow.xterm-resource

The generic-terminal resource is:

CodeCenter*Terminal.xterm-resource

The vi Edit window is:

CodeCenter*EditWindow.xterm-resource

Scrollbars are now the default in the Run Window and in the generic
terminal windows. Disabled scrollbars continue to be the default for the vi
Edit window.

Page 12 of 24

For more information about setting resources for these windows, see the
"Run and Edit Windows" entry in the Manual Browser.

clxterm Resources
in app-defaults

CodeCenter used to require you to use .Xdefaults for setting clxterm
resources. This is no longer true. CodeCenter's clxterm now reads the app-
defaults files of the Graphical User Interface as well as .Xdefaults.

This means you can put all GUI-related resources (those for the user
interface itself as well as for clxterm) into the same app-defaults file. You
no longer have to split them up into two different files, nor do you have to
use your .Xdefaults file for program-specific resources.

The app-defaults file for CodeCenter is:

$XAPPLRESDIR/CodeCenter

See the Xresources entry in the Manual Browser for more information.

More Flexible
Resource Setting

The CodeCenter Graphical User Interface used to require that you use a
model-specific resource setting to set the colors of some objects. This is no
longer true. You can set colors of objects in the same way in Motif and in
OPEN LOOK. This is the syntax for the Graphical User Interface:

CodeCenter*Color*OI_scroll_text.@text.Background: color

This is the syntax for the Workspace:

CodeCenter*Color*Workspace.@text.Background: color

Although a model-specific setting is no longer a requirement, you can
choose model-specific settings if you want a certain standard set of
localizations for Motif users, and a different set for OPEN LOOK users.

New Resource For
Control Buttons

We have added a new resource that can improve performance by reducing
the X11 server traffic that results from dimming the control buttons in the
GUI. This resource is especially valuable when running CodeCenter with
slow X servers or low-speed connections such as X over serial lines.

In previous releases of CodeCenter, the control buttons dimmed as soon as
the component debugger became busy. The new resource enables you to
specify the length of time that the debugger must be busy before the control
buttons on the GUI dim. By default, the buttons on the GUI dim when the
debugger has been busy for 1.15 seconds:

CodeCenter*dimButtonsWhenDebuggerBusy: 1.15

Page 13 of 24

You can change the value of this resource in the site-wide application
defaults file for CodeCenter, or in your local .Xdefaults file. The value can
be:

The string Always if you want the buttons to dim as soon as the
debugger is busy.
The string Never if you never want the buttons to dim.
Any positive floating-point number, to indicate the number of
seconds you want to elapse before the buttons start dimming.

Support of Direct
Pasting into Emacs

Previously, the Graphical User Interface of CodeCenter did not handle
CUT_BUFFER0, the text transfer mechanism that GNU Emacs Versions
18 and 19 use to paste text from other applications. If you wanted to copy
text from CodeCenter and paste it into an emacs buffer, you had to run the
xcutsel program to act as an intermediary.

With this version of CodeCenter, running xcutsel is unnecessary. The user
interface now automatically exports text to CUT_BUFFER0 whenever you
highlight text in labels, entry fields, and multi-line text objects. You can
paste this text directly into emacs in the same way you paste text from an
xterm into emacs.

Emacs-like
Keybindings

These shell-like and Emacs-like keybindings are now available in
CodeCenter Version 4.1 by default:

Control-a Beginning of line
Control-e End of line
Control-b Backward character
Control-f Forward character
Meta-b Backward word
Meta-f Forward word
Control-n Next line
Control-p Previous line
Control-d Delete next character
Control-u Delete to beginning of line
Control-k Delete to end of line
Control-w Delete previous word

In Motif, some windows may use Meta + B and Meta + F as menu
mnemonics, rendering them unavailable in text objects.

As a result of this change, the information in the X resources entry in the
CodeCenter Reference about setting translations for underlying objects in
your .Xdefaults file is now obsolete.

User-Defined
Commands Access

A number of customers said they missed the \L (current Source area line
number) facility that CodeCenter used to provide in user-defined

Page 14 of 24

Line Numbers commands. Without \L, writing certain kinds of user-defined commands
was impossible. For example, you were unable to write a command to select
a line in the Source area and set a breakpoint or action on that line.

Although CodeCenter Version 4.1 allows no editing in the Source area and
the concept of current Source area line number does not really apply, we
have provided an equivalent facility that works in terms of the Source area
text selection.

These four new keywords are now available in user-defined commands:

$first_selected_line $first_selected_char $last_selected_line
$last_selected_char

The $first_selected_line and $last_selected_line keywords provide you
with the starting and ending line numbers of the Source area's current text
selection. Lines are numbered beginning with 1. If no text is selected in the
Source area, both of these keywords return 0.

The $first_selected_char keyword provides the position of the first
character selected on $first_selected_line. The $last_selected_char
keyword provides the position of the last character selected on
$last_selected_line. Character positions are numbered beginning with 1,
and tabs are considered to be a single character. If no text is selected in the
Source area, both of these keywords return 0.

Directing Output to
the Workspace

You can direct your output to the Workspace by unsetting the win_io
option.

We recommend that you keep the win_io option set, however, for
complicated programs that use curses-style input and output. Unsetting
win_io has the following limitations:

Controlling-tty semantics are unavailable in the Workspace.

This means that tcgetpgrp / tcsetpgrp and tty-generated signals will
not work as expected.

If your program affects the tty mode, it may affect the Workspace
output.

The tty mode may not be preserved across Workspace interactions.
For example, when you continue from a breakpoint, the tty settings
may not be the same as when you stopped.

To unset the win_io option, enter this in the Workspace:

unsetopt win_io

Page 15 of 24

Your output will go to the Workspace at your next reinit, whether it is an
implicit reinit (for example, when you issue the run command) or an
explicit reinit (by issuing the reinit command).

Two New pdm
Options and
Switches

We have added two new options and switches in process debugging mode
(pdm). The new options are class_as_struct and full_symbols.

The option class_as_struct has these characteristics:

Type: Boolean
Default Value: FALSE
Commands Affected: debug

When class_as_struct is false, CodeCenter reads the class debugging
information produced by the compiler. This enables CodeCenter to provide
full class information when needed.

When class_as_struct is true, CodeCenter ignores class debugging
information produced by the compiler. This causes CodeCenter to treat
classes as C structures. For example, the whatis command will only display
data members and not member functions. Setting this option will give
shorter initialization time but less debugging information for classes.

You can set the value of class_as_struct by adding this line to
your .pdminit file:

setopt class_as_struct

You can also set it by issuing this command in the Workspace before
issuing the debug command:

-> setopt class_as_struct

Use the unsetopt command to reset the class_as_struct option to false.

The option full_symbols has these characteristics:

Type: Boolean
Default Value: FALSE
Commands Affected: debug

When full_symbols is false, CodeCenter reads only part of the debugging
information to shorten initialization time. Additional debugging information
will be read as needed, such as when you issue the whatis or list command.
When full_symbols is true, CodeCenter reads all the debugging information
at initialization.

You can set the value of full_symbols by adding this line to your .pdminit

Page 16 of 24

file:

setopt full_symbols

You can also set it by issuing this command in the Workspace before
issuing the debug command:

-> setopt full_symbols

Use the unsetopt command to reset the full_symbols option to false.

For more information about options, including setting, unsetting, and
displaying them in the Workspace, see the options entry in the Manual
Browser or the CodeCenter Reference.

The new switch -class_as_struct corresponds to the class_as_struct option.
The new switch -full_symbols corresponds to the option full_symbols. For
example, with the following command, you can invoke CodeCenter in pdm
mode with full_symbols set:

% codecenter -pdm -full_symbols

New Switches For
contents and link
Commands

We have added a switch called -ascii to the contents command and a switch
called -list to the link command.

The contents -ascii command displays the output of the contents command
in the Workspace instead of invoking the Project Browser. The link -list
displays the library link order in the Workspace. This switch is useful for
diagnosing link-order related problems in the interpreter.

New Scope for
unsuppress
Command

We have added everywhere as a new scope argument for the unsuppress
command.

You use everywhere in combination with a CodeCenter violation number
(error or warning) to unsuppress a CodeCenter violation while you are
debugging.

The scope argument everywhere unsuppresses a violation wherever you
had suppressed it without a location-specific scope argument. (A location-
specific argument specifies a line number, file, directory, function, library,
or identifier).

If you had used a location-specific scope to suppress the violation to begin
with, the violation stays suppressed at that location if you use unsuppress
with everywhere. To unsuppress the violation at that location, you must use
the unsuppress command with the location-specific scope you had used to
suppress it.

Page 17 of 24

This is the syntax for global unsuppression of a violation with the number
num:

unsuppress num everywhere

Alternatively, you can unsuppress all occurrences of a violation with one
command regardless of whether you suppressed them with a location-
specific argument. This is the syntax:

unsuppress num

For more information about suppressing and unsuppressing violations, see
the suppress and unsuppress entries in the Manual Browser or
CodeCenter Reference.

Mnemonics Each CodeCenter primary window provides Motif-style mnemonics for
almost every menu item on its menu bar.

Mnemonics are not available for items that you can create and destroy on
the fly during a session , such as items on the User Defined submenu of the
CodeCenter menu in the Main Window.

A menu item with a mnemonic has one of its letters underlined, usually the
first one. To select an item with mnemonics,

1. Press the Meta key and the underlined-letter key at the same time, to
display the menu.

2. Press the underlined-letter key of the menu item.

New Warning
Message for free
(0)

CodeCenter has added the following new warning message for free(0):

Warning #106 Freeing NULL pointer

CodeCenter used to give this warning message for free(0):

#95 (Cannot free memory address (not within data space))

The reason for the new warning is that POSIX and SVID allow free(0).
With the separate warning message, you can suppress the warning
separately and, thus, run POSIX / SVID compliant code without losing the
ability to check bad calls to free().

Here is an example of the new warning:

"d410fix.c":432, d4_10_3(), Freeing NULL pointer
(Warning #106)

Page 18 of 24

431: #if ANSI && D410B
432: free(NULL);
433: #endif /* ANSI */

Use of free(0) is not portable.

Options Browser
has Longer Editable
Fields

In the Options Browser, the maximum input lengths of text entry fields
used to be 512 characters. We have increased this maximum to 1000
characters.

If you need an editable field longer than 1000, you must use the equivalent
Workspace command rather than the Graphical User Interface to perform
the task. For example, if you want to set an option's value to more than 1000
characters, you must use setopt in the Workspace. The Options Browser,
however, displays only the first 1000 characters of the value you set.

Longer Line Limit
in the Source Area

The longest line the Source area could display used to be 500 characters.
Now, the Source area can display up to 10,000 characters per line.

Variable Prevents
Unexpected
Behavior

Rapid signal delivery occurs when you use setitimer(2) to set an interval
timer to expire after less than about 300 milliseconds or when a separate
process sends signals to the CodeCenter process via kill(2) at intervals of
less than about 300 milliseconds.

We added CENTERLINE_RAPID_SIGNALS, a new environment
variable, to ensure robust behavior in the the presence of rapid signal
delivery. In the presence of rapid signal delivery, CodeCenter can
experience unexpected behavior, such as reporting that the user program
generated a SIGSEGV or SIGBUS at some unknown location.

If you strongly suspect that rapid signal delivery is causing unexpected
behavior, set CENTERLINE_RAPID_SIGNALS to any value before
invoking CodeCenter.

Do not set this variable unless you suspect a problem with rapid signal
delivery; doing so would cause a serious performance problem.

CodeCenter
Documentation

This section describes the documentation for CodeCenter. CodeCenter
Version 4.1.1 comes with hardcopy documentation and online
documentation. CodeCenter Version 4.2.0 and 4.2.1 only come with online
documentation.

Online
Documentation

Access online versions of most CodeCenter manuals by selecting Manual
Browser from the Browsers menu or by typing cldoc (for all CodeCenter

Page 19 of 24

versions up through and including Version 4.2.0) or cldoc2 (for CodeCenter
Version 4.2.1 and up) in a shell. The following manuals are available
online:

CodeCenter User's Guide
A task-based description of CodeCenter, explaining how to use the
graphical user interface to load, manage, run, and debug programs
within CodeCenter. An appendix to the online User's Guide contains
Frequently Asked Questions : Answers to some of the questions most
often asked of CenterLine Technical Support.

CodeCenter Reference
A complete reference for CodeCenter, containing an alphabetical
listing and description of CodeCenter commands, functions, and
informational topics. Appendices to the online CodeCenter Reference
include About The CodeCenter Release (this guide, formerly called
About This Release) and CodeCenter Platform Guides containing
platform-specific information about CodeCenter.

CodeCenter Tutorial
A step-by-step introduction to CodeCenter features.

CenterLine-C Programmer's Guide
Information about the CenterLine-C compiler.

NOTE: The older versions of CodeCenter came with the About The
CodeCenter Releases (this guide, formerly called About This Release)
and Platform Guide as part of the installation of the product. With the
introduction of CodeCenter Version 4.2.1, CenterLine has now
provided these manuals separately from the product installation. To
review the CodeCenter Platform Guides related to your release of the
product, see the main CodeCenter page on CenterLine's website.
Platform Guides and About The CodeCenter Release (this guide,
formerly called About This Release) additions for future releases of
CodeCenter can be found on CenterLine's website.

In addition to the online documentation described above, the following
information is available:

Access context-sensitive help in the GUI version of CodeCenter by
moving the cursor over the item you want information about and
pressing F1 or the Help key if your keyboard has one, or by selecting
"On Context" from the Help menu and moving the ? cursor over the
item and clicking. A Help window appears describing that item.

If you have bound the F1 key to a window manager operation, you
are unable to access context-sensitive help with the F1 key.

Access information on a variety of topics from the Help menu, which

Page 20 of 24

appears on every primary window.

Access information about a command by typing help in the
Workspace followed by the name of the command.

Access any entry in the CodeCenter Reference by typing man and the
name of the entry in the Workspace.

The online documentation available outside the CodeCenter environment is
in this directory:

path/c_4.0.0/<arch>/docs

The word path represents the path to the CenterLine directory, and <arch>
is a platform-specific directory, for example sparc-sunos4, sparc-solaris2,
pa-hpux8, i486-svr4, powerpc-aix or m88k-svr4.

The online directory contains a file called README, which describes the
files in this directory. Among the files are:

bugs.open, which describes the known bugs, limitations, and
workarounds for CodeCenter.

bugs.fixed, which describes bugs fixed since the most recent version
of CodeCenter

NOTE: Some of the above listed files/directories may not be
available for your version of CodeCenter. Additionally, the
README file in the online directory may not be available for
your version of CodeCenter.

Hardcopy
Documentation

This is the hardcopy documentation that comes with CodeCenter:

CodeCenter Read Me First Release Bulletin
The latest hardcopy information, containing any updates necessary to
other hardcopy documentation.

Installing and Managing CenterLine Products
How to install CodeCenter and administer it, including how to
troubleshoot licensing problems.

Getting Started with CodeCenter
A step-by-step introduction/overview to CodeCenter features.

CenterLine-C Programmer's Guide
Information about the CenterLine-C compiler.

NOTE: Many of the above listed documents are available on
CenterLine's website (main CodeCenter Page). Additionally,

Page 21 of 24

many of the documents included in the Online documentation
section (above) can be obtained in Hard Copy format. Contact
CenterLine for details.

Product
Limitations

The following is a list of known current limitations with our product.

GUI Behavior CodeCenter currently does not allow you to change the placement of the
scrollbar. In addition, you cannot set the scrollbar placement with a window
manager X resource (such as Motif's XmNscrollLeftSide or
XmNscrollRightSide or OPEN LOOK's
OpenWindows.ScrollbarPlacement). This is because CodeCenter is
developed using the Object Interface (OI) toolkit, not the Motif or OPEN
LOOK (XView) toolkits. The OI toolkit currently does not offer a resource
to change scrollbar placement.

Caution if Editing
sys_load_flags

CodeCenter supplies custom versions of header files, such as stdarg.h and
varargs.h. The CodeCenter versions of the stdarg.h and varargs.h header
files reside in the CenterLine/include directory.

The global ccenterinit file automatically supplies the -
Idirs/include/CodeCenter value to the sys_load_flags option so that
CodeCenter header files will be included vefore the standard versions
in /usr/include.

If you edit sys_load_flags, be sure to keep the location of the -
Idirs/include/CodeCenter directory before other -I switches so this support for
variable argument functions remains unchanged.

ANSI Mode
Interprets #define
Incorrectly

CodeCenter in ansi mode does not interpret the ANSI C #define correctly.
In the following example, CodeCenter produces the warning Macro 'A'
requires 1 parameters, but only 0 are given, when the code should
produce the output HELLO:

#define HELLO
#define A(x) #x
main() {
char *s = A(HELLO);
printf("%s\n", s);
}

This is because defining HELLO gives empty content to the definition and
the parser never sees the argument. The work-around is to define HELLO
as something, any value will do. For example:

Page 22 of 24

#define HELLO 1

Support for
Variable Argument
Functions

CodeCenter supports the use of variable function arguments loaded in
source and object code. It supports both ANSI C (stdarg.h) and K&R C
(varargs.h).

However, the following restriction applies to loading source code. You must
not use a structure or union whose size is larger than 8 bytes as a fixed
argument in a variable-argument function. If you do, the interpreter
computes the address of the arguments incorrectly.

Data Browser Due to window size limitations in X, the Data Browser has a limit to the
number of items it can contain. The limit is determined at run time. The font
and model (Motif or OPEN LOOK) you use affect the limit. Using default
fonts, you can create about 900 fields per data item under Motif and about
1500 under OPEN LOOK.

Source Area There is a limitation to the number of lines that you can list in the Source
area. You can list files up to about 30,000 lines.

Limited Thread
Support

CodeCenter's pdm and CodeCenter's C compiler currently support threads
on Solaris platforms ONLY (Solaris 2.3 and _possibly_ later releases) as
long as Solaris-based threads are defined. POSIX style and other thread
types (such as GNU-based threads) are not supported. Threads are not
supported at all on the HP and SunOS platforms. CodeCenter's cdm does
not support threads at all on any platform supported by CodeCenter.

Limited Signal
Handling Support

CodeCenter does not support the siginterrupt() and sigstack() signal
functions in component debugging mode.

CodeCenter Version 4.1 and up supports calling sigsetjmp() and
siglongjump() from an application running in component debugging mode
with the following limitation:

Every call to sigsetjmp() behaves as if the second argument
were the value 0, regardless of the actual value of the second
argument. This means that a call to siglongjmp() will never
restore the signal mask to the value it had at the time of the
corresponding call to sigsetjmp(). In other respects, sigsetjmp
() and siglongjmp() behave exactly like setjmp() and longjmp
().

Page 23 of 24

There may be additional limitations in signal handling support on your
platform. Please refer to the "Anomalies" section in your Platform Guide.
For the Platform Guide related to your release of CodeCenter, see the main
CodeCenter Page on CenterLine's website.

Page 24 of 24

