

CodeCenter v4.2.1 Platform Guide

Last Reviewed: 8/99

Copyright © 1999 by
CenterLine Systems, Inc.

CodeCenter Platform Guide
for SUN and HP Users
CodeCenter Version 4.2.1

Table of Contents
SUN System Requirements

Supported SUN Platforms
Supported SUN Compilers
Supported Windowing Systems

HP System Requirements

Supported HP Platforms
Supported HP Compilers
Supported Windowing Systems

SUN C Library Functions Replaced

HP C Library Functions Replaced

SUN Shared Libraries

Search Rules for Loading Libraries
Using Environment Variables to Modify Loading Libraries
Using Switches to Modify the Loading of Libraries
Specifying the Binding Mode
Loading the Static Version of the C Library
Setting Breakpoints in Shared Libraries while in PDM
Binding of Functions and Data
Unloading a Specific Function
Other SunOS (Solaris 1) Differences
Unloading Shared Objects
Unloading a Specific Module
Using Initialized Global Data

Using HP Shared Libraries

Page 1 of 26

This Platform Guide describes the supported compilers, supported windowing systems, library
functions replaced by CodeCenter for run-time error checking, shared library support, and
potential SUN and HP anomalies when using CodeCenter version 4.2.1.

For CodeCenter's memory, swap space, and disk space requirements, please see the

Loading Shared Libraries
Search Rules for Loading Libraries
Loading the Archive Version of a Library
Specifying Global ld Switches with LDOPTS
Binding of Functions and Data
Unloading a Specific Function
Shared Library Stack Frames in Core Files
Calls to shl_*(3X) Functions

Potential SUN Anomalies

Default Parser Configuration
Sun C Compilers and pdm
Switches and Variables Ignored by load (SunOS/Solaris 1)
Setting LD_LIBRARY_PATH
Locating X11 Header Files
Resource Limits for Stacksize

Potential HP Anomalies

Default Parser Configuration
Supported cc and c89 Switches
Supported ld Switches
Different Behavior of the load Command
Unsupported Environment Variables
No PIC Support
No Support for Cache Hint Bits
void Types may be Misinterpreted
No Support for Long Pointers
No Support for Argument Values in Intrinsics
CodeCenter Replaces Fewer Header Files
Changes in Signal Handling
sigvec() and sigvector() Flags
sigaction() Flags Ignored
No sigspace() and No sigstack()
_longjmp and _setjmp
Enhanced sigset() and sigvector()
syscall() Function
ioctl() Support
Static Symbol not in symtab
Attaching to a Running Process may Fail on HP-UX
clcc Command-Line Switches

Page 2 of 26

CodeCenter Version 4.2.1 Release Bulletin on the main CodeCenter page of CenterLine's
website.

SUN System
Requirements

This version of CodeCenter supports the following platforms, compilers and
windowing systems for SUN architectures.

Supported SUN
Platforms

For a list of the platforms supported by CodeCenter Version 4.2.1, refer to the
"Supported Platforms" section of the CodeCenter Version 4.2.1 Release
Bulletin. Additionally, you can review CenterLine's Product Compatibility
Matrix which summarizes platform, compiler, etc. support for all CenterLine
products.

Supported SUN
Compilers

CodeCenter supports the following compilers on SunOS and Solaris operating
systems:

CenterLine-C compiler (clcc)
Sun K&R C compiler (cc), all versions
Sun ANSI C compiler (acc), all versions
SPARCompiler C (ANSI C) (acc or cc), all versions

CodeCenter supports the following compilers on SunOS and Solaris but with
limitations to browsing and source level debugging. CenterLine-C is link
compatible with them.

GNU C compiler (gcc), all versions UP THROUGH AND
INCLUDING version 2.5.8 ONLY.
FORTRAN

Supported
Windowing
Systems

CodeCenter supports both the Motif and OPEN LOOK windowing systems on
SunOS and Solaris platforms. OPEN LOOK is the default on the Sun
platform. You can choose Motif at startup with the -motif switch on the
codecenter command line.

CodeCenter also supports the Common Desktop Environment (found on some
SUN platforms).

HP System
Requirements

This version of CodeCenter supports the following platforms, compilers and
windowing systems for HP architectures.

Supported HP
Platforms

For a list of the platforms supported by CodeCenter Version 4.2.1, refer to the
"Supported Platforms" section of the CodeCenter Version 4.2.1 Release
Bulletin. Additionally, you can review CenterLine's Product Compatibility
Matrix which summarizes platform, compiler, etc. support for all CenterLine
products.

Page 3 of 26

Supported HP
Compilers

CodeCenter supports the following compilers on HP-UX operating systems:

CenterLine-C compiler (clcc)
HP C compilers (cc and c89), all versions

CodeCenter on the HP platform does NOT support source-level debugging of
object modules compiled by gcc, the GNU C compiler available from the Free
Software Foundation.

You can also load FORTRAN object files that are in either of the following
categories:

Object code compiled without debugging information.
Object code compiled with debugging information but loaded with the -
G switch.

Supported
Windowing
Systems

CodeCenter supports both the Motif and OPEN LOOK windowing systems.
Motif is the default on the HP platform. You can choose OPEN LOOK at
startup with the -openlook switch on the codecenter command line.

CodeCenter also supports the Common Desktop Environment (found on some
HP platforms).

SUN C Library
Functions
Replaced

To do its run-time error checking and to make its environment behave like a
standard UNIX process, CodeCenter replaces many C library functions and
system calls with its own version of the them. For some of these functions,
you can substitute your own version. However, CodeCenter cannot provide
run-time error checking on your substituted function.

To use your own version of a function, load the function in a source or object
file before linking your program. If your program has already been linked, you
must quit, then start a new CodeCenter session to substitute your function for
one of the CodeCenter replacements.

The following three tables list functions that CodeCenter replaces. The three
tables apply to:

SunOS (Solaris 1.0) in libc
Solaris 2 in libc
Solaris 2 in libucb

Table 1: CodeCenter replaces these C Library functions on SunOS (Solaris
1.0):

Name of Can You | Name of Can You
Function Substitute | Function Substitute

Page 4 of 26

 Your Own | Your Own
 Function? | Function?
------------------------------+------------------------------
 |
__builtin_alloc() no | shmdt() no
_exit() no | shmget() no
_longjmp() no | shmctl() no
_setjmp() no | sigaction() no
alloca() no | sigaddset() yes
bcopy() yes | sigblock() no
brk() no | sigdelset() yes
bzero() yes | sigemptyset() yes
close() no | sigfillset() no
dup2() no | sigismember() yes
fork() no | siglongjmp() no
free() yes | signal() no
getdtablesize() no | sigpause() no
getrlimit() no | sigpending() no
longjmp() no | sigprocmask() no
malloc() yes | sigsetjmp() no
mallopt() yes | sigsetmask() no
mallinfo() yes | sigstack() no
memalign() yes | sigsuspend() no
memcpy() yes | sigvec() no
memccpy() yes | strcat() yes
memset() yes | strcmp() yes
mmap() no | strcpy() yes
munmap() no | strncat() yes
pause() no | strncmp() yes
realloc() yes | strncpy() yes
sbrk() no | syscall() no
setjmp() no | system() yes
setrlimit() no | valloc() yes
shmat() no | vfork() no
______________________________|______________________________

Table 2: CodeCenter replaces these C Library functions on Solaris 2.

Name of Can You | Name of Can You
Function Substitute | Function Substitute
 Your Own | Your Own
 Function? | Function?
------------------------------+------------------------------
 |
__builtin_alloc() no | shmget() no
_exit() no | shmctl() no
alloca() no | sigaction() no
atexit() no | sigaddset() yes
brk() no | sigdelset() yes
close() no | sigemptyset() yes
dup2() no | sigfillset() no
exit() no | sigismember() yes
fork() no | siglongjmp() no
free() yes | signal() no
getrlimit() no | sigpause() no
longjmp() no | sigpending() no
malloc() yes | sigprocmask() no
memalign() yes | sigsetjmp() no
memcpy() yes | sigsuspend() no
memccpy() yes | strcat() yes
memove() no | strcmp() yes
memset() yes | strcpy() yes
mmap() no | strncat() yes
munmap() no | strncmp() yes
pause() no | strncpy() yes
realloc() yes | syscall() no
sbrk() no | sysconf() no
setjmp() no | system() yes
setrlimit() no | valloc() yes
shmat() no | vfork() no
shmdt() no |
______________________________|______________________________

Table 3: CodeCenter replaces these C Library functions on Solaris 2 in libucb.

Name of Can You | Name of Can You
Function Substitute | Function Substitute
 Your Own | Your Own
 Function? | Function?
------------------------------+------------------------------
 |

Page 5 of 26

_longjmp() no | signal() no
_setjmp() no | sigpause() no
bcopy() yes | sigsetmask() no
bzero() yes | sigstack() no
getdtablesize() no | sigvec() no
getrlimit() no | syscall() no
longjmp() no | ucbsignal() no
setjmp() no | ucbsigpause() no
sigblock() no | ucbsigblock() no
______________________________|______________________________

HP C Library
Functions
Replaced

To do its run-time error checking and to make its environment behave like a
standard UNIX process, CodeCenter replaces many C library functions and
system calls with its own version of them. For some of these functions, you
can substitute your own version. However, CodeCenter cannot provide run-
time error checking on your substituted function.

To use your own version of a function, load the function in a source or object
file before linking your program. If your program has already been linked, you
must quit, then start a new CodeCenter session to substitute your function for
one of the CodeCenter replacements.

The following table lists functions that CodeCenter replaces.

Name of Can You | Name of Can You
Function Substitute | Function Substitute
 Your Own | Your Own
 Function? | Function?
------------------------------+------------------------------
 |
_exit() no | shmat() no
_longjmp() no | shmdt() no
_mcount() no | shmget() no
_setjmp() no | shmctl() no
alloca() no | sigaction() no
bcopy() yes | sigaddset() no
brk() no | sigblock() no
bzero() yes | sigdelset() no
close() no | sigemptyset() no
dup2() no | sigismember() no
fork() no | signal() no
free() yes | sigpause() no
getdtablesize() no | sigpending() no
getrlimit() no | sigprocmask() no
longjmp() no | sigsetmask() no
malloc() yes | sigstack() no
mallinfo() yes | sigsuspend() no
mallopt() yes | sigvec() no
memmove() yes | sigvector() no
memcpy() yes | strcat() yes
memccpy() yes | strcpy() yes
memset() yes | strncat() yes
pause() no | strncpy() yes
realloc() yes | sysconf() no
sbrk() no | vfork() no
setjmp() no |
setrlimit() no |
______________________________|______________________________

On HP platforms, CodeCenter replaces the following libBSD functions,
neither of which can be replaced by the user:

signal()
sigvec()

On HP platforms, CodeCenter replaces the folowing libV3 functions, none of
which can be replaced by the user:

Page 6 of 26

sigblock()
sigset()
sigpause()
sigrelse()

SUN Shared
Libraries

This section describes the support for shared libraries within the CodeCenter
environment. For general information about Sun shared libraries, see the Sun
manual "Programming Utilities & Libraries" for SunOS and "Linker and
Libraries Manual - SunOS 5.0" on Solaris 2.

Reading debugging information on shared libraries is not supported in
component debugging mode (CDM, a.k.a. CodeCenter's Interpreter). Without
debugging information on a file, you are unable to perform certain debugging
activities, such as stepping through functions. For information about what
debugging techniques are possible on code without debugging information,
see the debugging entry in the Manual Browser or "CodeCenter Reference
Manual"

CodeCenter supports full source-level debugging of shared libraries in process
debugging mode (PDM). For example, you can step into functions in shared
libraries that were compiled with -g.

Once you load a shared library into CodeCenter, its functions and any of its
data that you have exported are available to your program. CodeCenter
mimics the behavior of the system's link editors, ld and ld.so, with regard to
loading shared libraries and with regard to binding functions and data.

Search Rules for
Loading Libraries

When you load a library using the load command's -l switch, CodeCenter
searches for libraries in its search path in the same way that the Sun ld
command does. CodeCenter stops searching as soon as it finds either the
shared or static version of the library. If it finds both versions in the same
directory, CodeCenter uses the shared version (.so file) by default. You can,
however, override this default behavior by specifying the binding mode:

On SunOS (Solaris 1.0):

-> load -lX11
Attaching: /s/apps/openwin3.0/lib/libX11.sa.4.3
Attaching: /s/apps/openwin3.0/lib/libX11.so.4.3
-> unload -lX11
Detaching: /s/apps/openwin3.0/lib/libX11.sa.4.3
Detaching: /s/apps/openwin3.0/lib/libX11.so.4.3
-> load -Bstatic -lX11
Attaching: /s/apps/openwin3.0/lib/libX11.a
->

On Solaris 2:

Page 7 of 26

-> load -lX11
Attaching: /usr/openwin/lib/libX11.so.4
Attaching: /usr/lib/libsocket.so.1
Attaching: /usr/lib/libnsl.so.1
Attaching: /usr/lib/libintl.so.1
Attachnig: /usr/lib/libw.so.1
-> unload -X11
Detaching: /usr/openwin/lib/libX11.so.4
-> load -Bstatic -lX11
Attaching: /usr/openwin/lib/libX11.a
->

Note that CodeCenter may load more libraries that just the X11 library. When
you load a library into CodeCenter, CodeCenter also loads any other library
referenced by the library you loaded explicitly.

CodeCenter unloads only the X11 library as a result of the unload -X11. The
unload command unloads only those libraries that you explicitly unload,
regardless of whether CodeCenter loaded them as a result of a reference or an
explicit load command.

CodeCenter allows you to load both the static and shared versions of a library,
but we do not recommend that you do so.

On SunOS (Solaris 1), when CodeCenter loads a shared object (an .so file), it
looks in the same directory for a data interface description file (an .sa file)
with the same root name and version number. If it finds such an .sa file, it
loads it so it can generate the necessary data references. CodeCenter does not
report an error if it fails to find such an .sa file.

NOTE: CodeCenter does not load an .sa file with the same root
name but different version number as an .so file. This situation is
treated the same as a missing .sa file.

Using
Environment
Variables to
Modify Loading
Libraries

One way to affect how CodeCenter loads shared libraries is by setting
environment variables before starting CodeCenter. Like ld, CodeCenter takes
into account the following environment variables.

LD_LIBRARY_PATH

A colon-separated list of directories to search for libraries
specified with the -l switch. Like ld, CodeCenter looks in
directories specified in this environment variable after
looking in libraries specified with the -L switch on the
command line.

LD_OPTIONS

A default set of options to pass to ld. The options specified

Page 8 of 26

in LD_OPTIONS are passed to load just as if they were
entered first on the command line.

CodeCenter ignores other environment variables used by
ld.

NOTE: You must set environment variables before you start CodeCenter.

Using Switches to
Modify the
Loading of
Libraries

Another way to affect how CodeCenter loads shared libraries is to use ld's
command-line switches with CodeCenter's load command. The following
command-line switches affect how CodeCenter loads libraries:

-Bdynamic / -Bstatic

Specifies binding mode. -Bdynamic is the default.

-Bdynamic enables dynamic binding; that is, it uses the
shared version of a library if one exists.

-Bstatic forces static binding; that is, it loads the static
version of the library.

-lx[.v]

Loads a library with the name libx.so or libx.a. If -
Bdynamic is in effect at that point on the command line,
loads the latest version of the shared library in teh first
directory found that contains the library. If no shared
version is found, loads the static version.

If you supply a .v suffix, only the version specified will be
loaded. If that version is not found, CodeCenter reports an
error. If you specify a .v suffix to -l when -Bstatic is in
effect, CodeCenter reports a load-time error.

-Ldir

Adds dir to the directories searched for libraries.

CodeCenter ignores other ld command-line switches.

Specifying the
Binding Mode

If you want to load the static version of a library instead of the shared version,
you can specify the binding mode with the load command.

Just as with ld, you specify the binding mode using the -B switch. The binding
mode you specify is in effect until the end of the command line or until you
specify another binding mode. Because you can specify binding mode more

Page 9 of 26

than once with the load command, you can use the shared version of some
libraries and the static version of others.

In the following example, the static library One (libOne.a) is loaded, and the
shared library Two (libTwo.so) is loaded:

-> load -Bstatic -lOne -Bdynamic -lTwo

Loading the Static
Version of the C
Library

CodeCenter automatically loads the C library when starting. By default, it
loads the shared version. You can force CodeCenter to load the static version
(libc.a) by setting the environment variable LD_OPTIONS to the value -
Bstatic before starting CodeCenter. That causes CodeCenter to load the static
versions of all libraries by default. Alternatively, you can unload the shared
libraries (using unload), then explicitly load the static versions by specifying
their pathnames with the load command.

When you load a library, CodeCenter automatically loads any other libraries
that the library references. Unloading the first library unloads only that first
library, not anyof the libraries that were referenced by it. To unload the other
libraries, you must unload them explicitly.

Setting
Breakpoints in
Shared Libraries
while in PDM

While you are in pdm, you can set a breakpoint in a C library function, such
as printf(). To do so, you first set a breakpoint in main(), issue the run
command, set the breakpoint in printf(), and issue the cont command:

pdm -> stop in printf
Function "printf" not defined.
pdm -> stop in main
stop (1) set at "main.c:8, main()".
pdm -> run
Resetting to top level.
Executing: /test_dir/a.out

Breakpoint 1, main (argc=1, argv=0xf7fff824) at main.c:8
pdm (break 1) -> stop in printf
stop (2) set at 0xf76ed904, printf().
pdm (break 1) -> cont

Breakpoint 2, 0xf76ed904 in printf()
pdm (break 1) ->

You have set the breakpoint in this fashion only once; subsequent runs of the
program retain the breakpoint in printf():

pdm 14 -> run
Resetting to top level.
Executing: /test_dir/a.out

Page 10 of 26

Breakpoint 1, main (argc=1, argv=0xf7fff824) at main.c:8
pdm (break 1) 15 -> cont
Breakpoint 2, 0xf76ed904 in printf()

Binding of
Functions and
Data

Like the Sun dynamic linker/loader, ld.so, CodeCenter binds functions from
shared libraries at run time when the functions are called.

Note that, if you have loaded the definition of a function in your own source
or object file, it takes precedence over a definition of that function in a shared
library.

On SunOS (Solaris 1), CodeCenter binds a library's exported initialized data
(usually found in the .sa file) at link time, not at run time (similar to ld's
statically linking an .sa file at link time).

Unloading a
Specific Function

If you specify a function in a shared library with unload, CodeCenter unloads
the entire .so file.

-> unload printf
Detaching: /usr/lib/libc.so.1

On SunOS (Solaris 1), CodeCenter does not unload the .sa file.

Other SunOS
(Solaris 1)
Differences

NOTE: The rest of the section on shared libraries applies only to SunOS
(Solaris 1).

Unloading Shared
Objects

You can unload and unlink an entire shared library at once.

-> unload -lX11
Detaching: /usr/openwin/lib/libX11.sa.4.3
Detaching: /usr/openwin/lib/libX11.so.4.3

Unloading a
Specific Module

You can also unload specific modules in a data interface description file (.sa)
by specifying the module in parentheses following the library name:

-> unload /lib/libc.sa.1.6(errlst.o)
Unloading: /lib/libc.sa.1.6(errlst.o)

Using Initialized
Global Data

If you declare initialized global data in a program using SunOS (Solaris 1)
shared libraries, you should include its initialization in your .sa archive, as
well as in you .so file. If you don't, your program might not use the correct
initialization values.

The problem results from behavior of Sun's linker, ld, which can only find
initializations of data in the user's program or in an archive (.a or .sa file) - not
in .so files. When ld can't find the initialization for a variable, the system

Page 11 of 26

initializes the variable to 0 (zero).

This issue can come up if you use common variables in C programs. Common
variables are global varaibles that are defined in more than one module
without using the extern qualifier. Consider this simple C example with two
files, a.c and b.c:

In this example, Dogs is a common variable. It is declared in two modules,
namely a.c and b.c, without using the extern qualifier.

Here's what happens when we compile the example statically:

% cc -c a.c
% cc -c -pic b.c
% cc -o static a.o b.o
% static
Dogs is 12

The program runs fine. But suppose the code from b.c is in a shared library
without an .sa archive. When we link the code, it runs incorrectly:

% ld -o libb.so.1.0 b.o -assert pure-text
% cc -o shared1 a.o -L. -lb
% shared1
Dogs is 0

The linker erroneously intialized the variable Dogs to 0 (zero).

The solution is to create an .sa file containing the static data in b.c:

% ar r libb.sa.1.0 b.o
ar: creating libb.sa.1.0
% ranlib libb.sa.1.0
% cc -o shared2 a.o -L. -lb
% shared2
Dogs is 12

Now the program runs correctly. Notice that in this situation you must
initialize data in the .sa file; otherwise the statically linked program runs
differently from the dynamically linked one.

As good practice, you should probably always include initializations in
your .sa files, even if the static variable is initialized to zero. This results in

a.c
int Dogs;
main()
{printf("Dogs is %d\n", Dogs);}

b.c
int Dogs = 12;

Page 12 of 26

better shared-library performance.

Using HP
Shared
Libraries

This section describes the support for shared libraries within the CodeCenter
environment. For general inforamtion about HP shared libraries, see the HP
Manual, "Programming on HP-UX".

Reading debugging information on shared libraries is not supported in
component debugging mode (CDM, a.k.a. CodeCenter's interpreter). Without
debugging information on a file, you are unable to perform certain debugging
activities, such as stepping through functions. For information about what
debugging techniques are possible on code without debugging information,
see the debugging entry in the Manual Browser or "CodeCenter Reference
Manual".

CodeCenter supports source-level debugging of shared libraries in process
debugging mode (pdm). For example, you can step into functions in shared
libraries that were compiled with -g.

Once you load a shared library into CodeCenter, its functions and any of its
data that you have exported are available to your program.

CodeCenter mimics the behavior of the system's link editors in loading shared
libraries and binding functions and data, as described below.

Loading Shared
Libraries

To load a shared library, use the CodeCenter load command. For example, to
load the math library, enter the following:

-> load -lm
Attaching: /lib/libm.sl

To unload a shared library, use the CodeCenter unload command. For
example, to unload the math library, enter the following:

-> unload -lm
Detaching: /lib/libm.sl

You can also use the load and unload commands to load and unload libraries
with relative or absolute pathnames.

Search Rules for
Loading Libraries

When you load a library using the load command's -l switch. CodeCenter
searches for libraries in its search path in the same way that the HP ld
command does. CodeCenter stops searching as soon as it finds either the
shared or archive version of the library. If it finds both versions in the same
directory, CodeCenter uses the shared version (.sl file) by default.

You can, however, change the default search path by specifying the -Ldir

Page 13 of 26

command-line switch. The -Ldir swtich to ld allows you to add additional
directories to the search path. If -Ldir is specified, ld searches the dir
directory before the default places.

The linker searches libraries in the order in which they are loaded. Libraries
specified with the -l switch are searched before the libraries that the compiler
links in by default. CodeCenter links in the standard library libc
and /lib/milli.a last.

You can also specifically tell ld which libraries to search by setting the
LPATH environment variable. If LPATH is not set, ld searches only the
libraries specified in LPATH; the default libraries are not searched unless
they are specified in LPATH.

Loading the
Archive Version
of a Library

If both archive and shared versions of a library reside in the same directory,
CodeCenter loads the shared version by default. You can force CodeCenter to
load the archive version of the library with the -a search command-line
switch; where search can be one of the following: archive (use the archive
version only), shared (use the shared version only), or default (use the shared
version if available; otherwise use the archive version). If the specified
version of the library cannot be found, CodeCenter reports an error.

The following is an example of using the -a archive switch to load an archived
version of the math library:

-> load -a archive -lm
Attaching: /lib/libm.a

The following is an example of using multiple -a switches on the same load
command:

-> load -a archive -lm -a shared -lM
Attaching: /lib/libm.a
Attaching: /lib/libM.sl

Specifying Global
ld Switches with
LDOPTS

CodeCenter supports the HP environment variable, LDOPTS, which allows
you to specify your ld switches in an environment variable. The linker picks
up the value of LDOPTS and places its contents before any arguments on the
command line.

NOTE: You must set the LDOPTS and all other environment
variables in a shell before starting up CodeCenter in that shell.

Binding of
Functions and

The default behavior of the HP dynamic linker/loader, dld.sl, binds functions
from shared libraries at run time when functions are called.

Page 14 of 26

Data Note that, if you have loaded the definition of a function in your own source
or object file, it takes precedence over a definition of that function in a shared
library.

CodeCenter binds a library's exported initialized data at link time, not at run
time.

Unloading a
Specific Function

If you specify a function in a shared library with , CodeCenter unloads the
entire .sl file.

Shared Library
Stack Frames in
Core Files

pdm is currently unable to report about shared library stack frames when
statically analyzing core files. Instead, the output will look something like
this:

Core was generated by 'a.out'.
Program terminated with signal 6, Aborted.
You can't do that without a process to debug
#0 0x800ab0c8 in _end()
pdm 1 -> where
#0 0x800ab0c8 in _end()
#1 0x800ab098 in _end()

In order to get an accurate stack trace, reproduce the fault within pdm.

pdm 1 -> run
Resetting to top level.
Executing: a.out

Reading symbols from /lib/libc.sl...no debugging symbols
found...done.

Program received signal SIGABRT, Aborted.
0x7b0110c8 in kill ()
pdm (break 1) 2 -> where
#0 0x7b0110c8 in kill ()
#1 0x7b011098 in export stub
#2 0x7aff3368 in raise ()
#3 0x7aff32e4 in export stub
#4 0x7aff2f18 in abort ()
#5 0x7aff2d34 in export stub
#6 0x1e74 in foo(const void *, const void *)
(a=0x0, b=0xa "") at h.c:5
#7 0x1e10 in export stub
#8 0x7afe3a84 in _qsort ()
#9 0x7afe39ac in _qsort ()
#10 0x7afe38d4 in export stub
#11 0x1ed4 in main ()

Page 15 of 26

Calls to shl_*
(3X) Functions

This section documents the behavior of shl_*(3X) functions when you call
them within CodeCenter. These functions are available only on the HP 9000
Series 700 and Series 800 platforms.

shl_definesym(3X) always returns -1 and sets errno to EINVAL.
CodeCenter is unable to accurately reproduce the semantics of shl_definesym
(3X), so it is not supported.

shl_load(3X) and cxxshl_load(3X) always interpret the
BIND_IMMEDIATE modifier flag as if it were BIND_DEFERRED. It is
impossible to obtain BIND_IMMEDIATE semantics from shl_load(3X) and
cxxshl_load(3X) within the CodeCenter environment.

Loading a library with the BIND_FIRST modifier flag to shl_load(3X) or
cxxshl_load(3X) will cause that library to be assigned an index of 1 (see the
shl_get(3X) manual pages for a description of a library's index). By contrast,
loading a library outside of the CodeCenter environment will cause that
library to be assigned an index of 0 (zero). Therefore, an index of 0 (zero)
always represents the user's main program within the CodeCenter
environment.

When the DYNAMIC_PATH flag is passed to shl_load(3X) or cxxshl_load
(3X), those functions use only the path list stored in the SHLIB_PATH
environment variable to find the library. This is because there is no way to
emulate the +s and +b options to ld(1) within the CodeCenter environment.

CodeCenter unloads all dynamically loaded libraries when a reset to top level
occurs.

shl_unload(3X) and cxxshl_unload(3X) do not actually unload the library,
and thus do not unbind any symbols that have been bound from that library.
Unloading and relocating a library with shl_*(3X) functions will not cause
them to return an error status, but the original image of the library is the only
one that is ever loaded during a single run of the user program.

The value of the HP-UX reserved variabl, __dld_loc is always 0x0 within
CodeCenter. It should not be used by a user program.

C++ static constructors and destructors in shared libraries are always invoked,
even if the user program does not use the C++-aware dynamic loading
functions, cxxshl_load(3X) and cxxshl_unload(3X).

CodeCenter does not call initializer functions in a shared library at any time.
Note that intializer functions in HP-UX shared libraries are not C++ static
intializers, which CodeCenter supports. Initializer functions are language-
independent functions defined at shared-library-creation time with the +I
option to ld(1).

The initializer member of struct shl_descriptor objects generated by shl_get

Page 16 of 26

(3X) and shl_gethandle(3X) always have the following value:
NO_INITIALIZER.

shl_get(3X) will return -1 (with errono == EINVAL) if it is passed an index
with the value -1 or 0 (zero). This is because there is no distinct dynamic
linker (index -1) or main program executable (index 0) within the CodeCenter
environment.

shl_gethandle(3X) will return -1 (with errno == EINVAL) if it is passed the
handle PROG_HANDLE. This is because there is no distinct main program
executable (index 0) within the CodeCenter environment.

shl_getsymbols(3X) behaves as if every defining instance of a symbol with
external linkage in the user's program is exported from the main program.
These symbols are accessed by passing PROG_HANDLE as the first
argument to shl_getsymbols(3X). Outside of the CodeCenter environment,
this behavior is achieved by using the -E switch to ld(1) when creating the
main program.

The GLOBAL_VALUES and IMPORT_SYMBOLS modifier flags are not
supported for calls to shl_getsymbols(3X). Calls to shl_getsymbols(3X) will
return -1 with errno set to EINVAL if either of these flags is passed in.

Potential SUN
Anomalies

In most cases, your programs will run the same within the CodeCenter
environment as they do outside the environment. However, there are some
platform-specific features that CodeCenter may not support fully, so you may
see unexpected behavior.

This section attempts to call your attention to these potential anomalies on Sun
platforms. Unless otherwise specified, thes anomalies apply to both SunOS
(Solaris 1) and Solaris 2.

Default Parser
Configuration

The default C parser configuration for the CodeCenter interpreter (CDM) is
K&R.

Invoke the config_parser command to display the current setting. For more
inforamtion about specifying a different parser configuration, see the
config_parser entry in the CodeCenter Reference.

Sun C Compilers
and pdm

On Solaris 2, when you try to debug and executable compiled with SunPro C
compiler Version 2.0.1 (or higher) or with SPARCompiler C Version 3.0.1 (or
higher), pdm may report that no debugging symbols were found. This is
because the Sun compiler puts the debugging information that pdm uses in
the .stab.excl section of the executable, which is stripped by the static linker
during final execution.

Page 17 of 26

To work around this problem, compile with the -xs switch. This causes the
assembler to place debugging information in the .stabs section, which is not
stripped by the linker.

Switches and
Variables Ignored
by load
(SunOS/Solaris 1)

In SunOS (Solaris 1), CodeCenter's load command ignores some command-
line switches that are accepted by Sun cc, but many of these switches do not
change the meaning onf a program. The following Sun cc command-line
switches ignored by CodeCenter do change the meaning of a program.

-align_block
-fnonstd
-ffloat_option
-misalign

The load command also ignores the FLOAT_OPTION environment variable
that is accepted by Sun cc, which does change the meaning of a program.

CodeCenter does not support object files created using the Sun cc compiler -
dalign switch. This switch causes more stringent alignment rules for storing
double-precision values in memory. Calling object code functions compiled
with -dalign from source code could result in a segmentation violation.
However, you can load your whole application as object code without
problems.

Setting
LD_LIBRARY_PATH

To use the CodeCenter tutorial on Solaris 2 platforms, you must set the
following environment variables:

setenv OPENWINHOME /usr/openwin
setenv LD_LIBRARY_PATH \
/usr/openwin/lib:/usr/lib:$LD_LIBRARY_PATH

On Solaris 2, the linker only checks for major numbers. Some components of
CodeCenter, for example the vi integration, require the library libX11.so.4. If
CodeCenter issues an error message such as "cannot find libX11.so.4", make
sure that /usr/openwin/lib contains a symbolic link called libX11.so.4
pointing to a libX11.so.4.x or libX11.so.5.x library.

Locating X11
Header Files

The tutorial assumes the X11 header files are installed in /usr/include. If they
are not, contact your system administrator to put a copy or symbolic link to
the location of the X11 header files into /usr/include, or add -Ipathname to
the CL_INCS link in the tutorial Makefile, where pathname is the path to the
directory containing the X11 header files.

If you use the X11R5 libraries instead of the openwin libraries, you must
explicitly load -lnsl and -lsocket into the Workspace to run the tutorial. These
dependencies are not automatically included in the X11R5 libraries, whereas

Page 18 of 26

they are included in the openwin libraries.

Resource Limits
for Stacksize

If a user has set the stacksize resource to unlimited, it may affect
CodeCenter's pdm when debugging an executable. At run time, if the
application being debugged within pdm experiences a run time error (such as
a segmentation fault), CodeCenter may not display any relevant error
information in the Workspace. Essentially, no source file information is
displayed, including the line of code where CodeCenter stopped execution and
where the problem may be occurring. The user will only understand that a
problem has occurred and that execution of the program has stopped but not
have much to go on to resolve the problem.

Using the CodeCenter tutorial as an example, we can see how this problem
takes effect. After running the bounce_dump application in CodeCenter's
pdm, the user may see the following output if the stacksize resource has been
set to unlimited:

pdm -> debug bounce_dump core
Debugging program 'bounce_dump'
Core was generated by 'bounce_dump'.
Program terminated with signal 10, Bus error.
#0 0x10df8 in store_shape ()
pdm ->

As you can see, the user would only understand that a runtime error had
occurred in the function called 'store_shape', but not the line number at which
the problem occurred. This is a problem that occurs on both SunOS (Solaris 1)
and Solaris 2 systems. The error resulting may be slightly different, but the
problem is essentially the same.

To avoid this problem, quit out of CodeCenter and then at the Unix prompt set
the "soft limit" of the stacksize resource to 2048 as follows:<

% limit stacksize 2048

Then restart the pdm session. The user should now obtain the proper run time
error information they had originally expected.

Going back to the CodeCenter tutorial example, the above messages change to
the following once the stacksize resource limit is changed to 2048:

pdm -> debug bounce_dump core
Debugging program 'bounce_dump'
Core was generated by 'bounce_dump'.
Program terminated with signal 10, Bus error.
#0 0x10df8 in store_shape (count=0, shape=0xeffff680
"rectangle") at shape.c:11
11 *old = *new;

Page 19 of 26

pdm ->

You can see how the output changes to what is depicted within the
CodeCenter tutorial manual, giving the user more details on the problem.
Additionally, at run time of an application, the Source Area is able to display
the source code and a pointer to the line number where execution stopped and
where the error is occurring.

There is no explanation at this time as to why the stacksize resource and the
soft limit setting established for this resource affects CodeCenter. However, if
this resource is set to unlimited or pretty much anything higher than 2048, the
problem described above could occur.

To find out more about "soft limits" and the other resources that can have a
limitation placed on them, see the man pages for the limit (or ulimit)
command or talk to your system administrator, who can adjust the system
resource limitations for your login account as necessary.

Potential HP
Anomalies

In most cases, your programs will run the same within the CodeCenter
environment as they do outside the environment. However, there are some
platform-specific features that CodeCenter may not support fully, so you may
see unexpected behavior. This section attempts to call your attention to these
potential anomalies.

Default Parser
Configuration

The default C parser configuration for the CodeCenter interpreter is K&R.

Invoke the config_parser command to display the current setting. For more
information about specifying a different parser configuration, see the
config_parser entry in the CodeCenter Reference.

Supported cc and
c89 Switches

CodeCenter's load command supports the following switches to the HP c89(1)
and cc(1) commands:

-Dname=def or -Dname

to define a preprocessor symbol

-lx

to cause the linker to search the library libx.a or libx.sl,
where x is one or more characters, in an attempt to resolve
currently unresolved global references.

-Ldir

to tell the linker to search in dir for libx.a or libx.sl before

Page 20 of 26

searching in the default locations.

-Uname

to remove any initial definition of name in the
preprocessor.

-w

to suppress load-time warning messages.

Supported ld
Switches

CodeCenter's load command supports the following switches to the HP ld(1)
command:

-a

to specify whether shared or archived libraries are searched
with the -l switch.

-lx

to cause the linker to search the library libx.a or libx.sl,
where x is one or more characters, in an attempt to resolve
currently unresolved global references.

-Ldir

to tell the linker to search in dir for libx.a or libx.sl before
searching in the default locations.

All other switches are ignored.

Different
Behavior of the
load Command

CodeCenter processes all -L switches before processing any -l switches. Thus,
the command:

-> load -lm -L./subdir

loads the library ./subdir/libm.a instead of /lib/libm.a (presuming both
libraries exist). HP's ld(1) command processes all command-line switches in
left-to-right order, so this behavior is unexpected.

Unsupported
Environment
Variables

Currently, CodeCenter's load command ignores these HP-UX environment
variables:

CCOPTS
FLOW_DATA_DIR
LANG

Page 21 of 26

LPATH
LD_PXDB

No PIC Support The CodeCenter dynamic linker/loader does not support object modules
containing Position Independent Code (PIC) on the HP platform.

No Support for
Cache Hint Bits

The CodeCenter dynamic linker/loader does not detect and elimiate use of
cache hint bits in object modules in situations where 64-byte stack pointer
alignment cannot be guaranteed.

void Types may
be Misinterpreted

Due to an HP compiler bug, objects of base type void can sometimes appear
to have the base type of int when their definitions are loaded in object form.

No Support for
Long Pointers

The CodeCenter interpreter does not support long pointer declaration syntax
(for example, "int ^x;").

No Support for
Argument Values
in Intrinsics

The CodeCenter interpreter does not support default argument values in calls
to intrinsics.

CodeCenter
Replaces Fewer
Header Files

We provide fewer header files on the HP platform than we do for some other
platforms because more HP header files comply with the ANSI standard.

Changes in Signal
Handling

If your program makes use of either signal() in libBSD.a or sigpause() in
libV3.a, load the appropriate library before the program in linked or run for
the first time in a session; otherwise, the libc.a version will be used.

After a program is linked or run for the first time in a session, you cannot
subsequently change the version of signal() or sigpause() that your program
uses. Therefore, if you link or run without first loading the appropriate library,
you must exit CodeCenter and restart it.

To avoid this problem, add one of the following lines to your
personal .ccenterinit file or to the system-wide ccenterinit file:

For libBSD.a, add:

load -lBSD

For libV3.a, add:

load -lV3

Page 22 of 26

sigvec() and
sigvector()
Flags

The SV_ONSTACK and SV_NOCLDSTOP flags to sigvec() and sigvector
() are ignored. (This behavior with SV_ONSTACK is the same as on other
architectures supported by CodeCenter; however, the behavior with
SV_NOCLDSTOP is specific to HP-UX).

The SV_BSDSIG flag used in sigvector() has no effect (that is, the sigvector
() funcction always acts as if the SV_BSDSIG flag is set). The SV_BSDSIG
flag is not returned in the old sigvec structure, even if it was set by the caller.

sigaction()
Flags Ignored

The SA_ONSTACK and SA_NOCLDSTOP flags to sigaction() are ignored.

No sigspace()
and No sigstack
()

The sigspace() and sigstack() functions are not supported.

_longjmp() and
_setjmp()

The _longjmp() and _setjmp() functions behave like longjmp() and setjmp
().

Enhanced sigset
() and sigvector
()

Signal handler maintenance functions which are incompatible under HP-UX
(such as sigset() and sigvector()) work correctly with each other under
CodeCenter.

syscall()
Function

The function syscall() is unsupported in HP-UX 9.xx and possibly HP-UX
10.x. Calling this unsupported function can result in unexpected behavior.

ioctl() Support CodeCenter supports user programs that make IPMAPMAP and
IPMAPUNMAP ioctl() requests. There is one restriction.

The restriction is that CodeCenter considers a memory area invalid if your
program maps it with IPMAPMAP and unmaps it with close() or ioctl(). This
is the case even if close() or ioctl() did not actually unmap the area because
other processes on the system still had it mapped. A subsequent IOMAPMAP
ioctl() request for that memory area causes CodeCenter to again consider it
valid.

Static Symbol not
in symtab

On the HP platform, pdm may issue the following warning:

Internal: static symbol 'symname' found in filename psymtab
but not in symtab

If you receive this message, issue the following command:

Page 23 of 26

whatis <symname>

and then reissue the command that caused the warning.

Attaching to a
Running Process
may Fail on HP-
UX

Attaching to a running process sometimes fails on HP-UX in CodeCenter's
process debugging mode (pdm) if the pdm binary you are using is installed
on a remote partition.

The failure looks like a ptrace failure, such as one you get if you request an
illegal process number or if you attempt to attach a file you do not own.

pdm -> debug a.out
process_id debug: ptrace: Permission denied.
pdm ->

Before implementing the workaround we provide below, eliminate any
possibility that the failure is a result of a ptrace error. See the ptrace man
page for information about ptrace failure errors.

This is the workaround:

Copy the pdm binary to a disk that is local to the HP-UX machine.

You must copy it on a disk local to each HP-UX machine one which
you want pdm to run. Do not install it on a cluster partition.
Create a .clpm.conf file in your home directory to override the AS
PDM directive in the system .clpm.conf.

If you have multiple home directories, you have to create the multiple
~/.clpm.conf files so that the workaround affects each machine on
which you want pdm to run.

The .clpm.conf file should contain the following lines:

AS PDM {
 BINARY: /tmp/pdm;
 BINARY_ENV: CLDB;
 ENV:
 LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$(centerline)/$(arch)/lib;
 ARGS: -connect;
 RESTART_ARGS: -connect -restart;
 ARG_TMPL: ^[^-].*:0;
}

With the workaround, attempts to attach to a running process will now
succeed:

pdm 1 -> debug a.out pid
Debugging program '/net/pickup/tmp/loop'
Resetting to top level.
warning: reading register r4: I/O error

Page 24 of 26

0x2560 in sigpause()
pdm (break 1) 2 -> where
#0 0x2560 in sigpause ()
#1 0x21cc in _sleep ()
#2 0x1fec in main () at loop.c:16

Attaching to a process may also fail if the process is sleeping. pdm cannot
attach to a sleeping process. For more information about attaching to a
running process, see the debug entry in the Manual Browser or CodeCenter
Reference.

clcc Command-
Line Switches

Many of the switches used with the HP C compiler are also used with clcc, the
CenterLine-C compiler. However, some switches you use with cc must be
replaced by a corresponding clcc switch, and otehr cc switches have no
equivalent in clcc.

The folowing table shows some common cc switches and their clcc
equivalents.

 | |
HP cc Switch | clcc Switch | Description
________________|_________________|__________________________
 | |
-Aa | -ansi | Enables strict ANSI
 | | compliance.
 | |
-Ac | -traditional, | Disables strict ANSI C
 | -Xa, or -Xt | compliance. Please refer
 | | to the descriptions of
 | | these switches in the
 | | CenterLine-C
 | | Programmer's Guide
 | | or the clcc manual page
 | | for more information.
 | |
-G | -pg | Inserts information
 | | required by the gprof
 | | profiler in the object
 | | file.
 | |
-Wx,arg1[,arg2, | -Hcppopt=string | Pass argument string to
...,argn] | -Hldopt=string | preprocessor (-Hcppopt)
 | | or the linker (-Hldopt).
 | | 'string' can contain
 | | multiple arguments
 | | separated by commas.
 | |
+L | -Hlist | Generates a source
 | | listing on standard
 | | output.
 | |
+On | -On | Sets the optimization
 | | level to 'n' where 'n'
 | | is 1 to 7. If 'n' is not
 | | specified, then a level
 | | of 2 is used.
 | |
+wn | -wn | Suppress warning
 | | messages at level 'n'
 | | and higher where 'n'
 | | is 1 to 4.
 | |
+z | -pic | Produces position-
 | | independent code. The
 | | The memory allocated
 | | to static variables
 | | cannot exceed 4K.
 | |
+Z | -PIC | Like -pic, but allows
 | | the global offset table
 | | to span the range of
 | | 32-bit addresses when
 | | there are too many

Page 25 of 26

 | | global objects for -pic.
________________|_________________|__________________________

Page 26 of 26

