
user_guide.book : titlepage 1 Mon Jun 5 13:07:07 1995

CenterLine Software, Inc.
10 Fawcett Street

Cambridge, Massachusetts 02138

ObjectCenter User’s Guide

Version 2.1.1

user_guide.book : copyright 2 Mon Jun 5 13:07:07 1995

CenterLine Software, Inc. reserves the right to make changes in specifications
and other information contained in this publication without prior notice. The
reader should in all cases consult CenterLine to determine whether any such
changes have been made.

This Manual contains proprietary information that is the sole property of
CenterLine. This Manual is furnished to authorized users of ObjectCenter
solely to facilitate the use of ObjectCenter as specified in written agreements.

No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means without
prior explicit written permission from CenterLine Software.

The software programs described in this document are copyrighted and are
confidential information and proprietary products of CenterLine Software.

CenterLine and ViewCenter are registered trademarks of CenterLine Software,
Inc. CodeCenter, ObjectCenter, ResourceCenter, and TestCenter are
trademarks of CenterLine Software, Inc.

Motif is a registered trademark of The Open Software Foundation, Inc.

Object Interface Library (OI) is a trademark of ParcPlace Systems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Solaris 2, Sun386i, SunCD, SunInstall, SunOS, NFS,
SunView, ToolTalk, and OpenWindows are trademarks of Sun Microsystems,
Inc.

SPARC is a registered trademark of SPARC International, Inc. Products
bearing the SPARC trademark are based on an architecture developed by Sun
Microsystems, Inc. SPARCstation is a trademark of SPARC International, Inc.
licensed exclusively to Sun Microsystems, Inc.

DeltaSeries, DeltaWINDOWS, and SYSTEM V/88 are trademarks of Motorola,
Inc. in the USA. Motorola is a registered trademark of Motorola, Inc. in the
USA and in other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Co, Ltd. OPEN LOOK is a registered
trademark of UNIX System Laboratories, Inc., a wholly owned subsidiary of
Novell, Inc. X Window System and X11 are trademarks of the Massachusetts
Institute of Technology.

Postscript is a registered trademark of Adobe Systems Incorporated.

Licensed under one or more of U.S. Pat. Nos. 5,193,180 and 5,335,344; other
U.S. and foreign patents pending.

© 1986-1995 CenterLine Software, Inc.
All rights reserved.
Printed in the United States of America.

user_guide.book : using_this_manual iii Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide iii

Using this book

Using this book

What this manual
is about

This manual describes how to use ObjectCenter™ to develop C++ and
C applications. It describes how to

• Bring your program into ObjectCenter

• Tailor the ObjectCenter programming environment to meet
your immediate programming objectives and match your own
programming methodology

• Fix static errors by using load-time error checking

• Interactively debug source and object files using run-time error
checking and source-level debugging facilities in component
debugging mode

• Interactively debug fully linked executables using source-level
debugging facilities in process debugging mode

• Comprehend your code using program and data visualization
facilities

• Customize ObjectCenter to your particular requirements

For your convenience, the Index in this User’s Guide contains entries
for the ObjectCenter Reference as well as the User’s Guide.

What you should
know before
starting

This manual does not assume any previous knowledge of
ObjectCenter. However, the ObjectCenter Tutorial provides the best
introduction to the product and gives you a feel for what it is like to
work in the ObjectCenter programming environment. If you haven’t
already gone through the tutorial, we strongly recommend that you
begin there.

This manual does assume that you are familiar with the C++ and C
languages. It does not attempt to teach C++ or C programming. It also
assumes that you are familiar with UNIX® and the environment in
which you will be running ObjectCenter (such as the Motif® or OPEN
LOOK® graphical environment under the X Window System™).

user_guide.book : using_this_manual iv Mon Jun 5 13:07:07 1995

Using this book

iv ObjectCenter User’s Guide

For more
information

The ObjectCenter Tutorial is a hands-on introduction to ObjectCenter.
The tutorial leads you step by step through programming scenarios. It
is the best place to start learning about ObjectCenter.

The ObjectCenter Reference provides a complete reference to Version
2.1.1 of ObjectCenter. The ObjectCenter Reference is an alphabetical
reference that contains entries for topics as well as for Workspace
commands and predefined functions. Some examples of topics are as
follows: ANSI C, built-in functions, debugging, language selection,
options, environment variables, C library functions, templates, and X
resources. The ObjectCenter Reference assumes that you are already
familiar with the material presented in the User’s Guide.

The C++ language supported by ObjectCenter is Release 3.0 of the
AT&T C++ Language System. The ObjectCenter documentation also
includes two manuals shipped by AT&T in support of Release 3.0 of
C++:

• The AT&T C++ Language System Product Reference Manual
provides a complete definition of the C++ language supported
by Release 3.0 of the C++ Language System.

• The AT&T C++ Language System Library Manual describes the
class libraries shipped with Release 3.0.

Relevant excerpts from additional AT&T documents are also included
in the ObjectCenter documentation in the Manual Browser.

The ObjectCenter Platform Guide describes system requirements and
information specific to a particular platform. The Platform Guide is
available online as an appendix to the ObjectCenter Reference.

Installing and Managing CenterLine Products describes how to install
ObjectCenter and administer it, including how to reserve licenses for
particular users.

See the Release Bulletin for information generated too late to be
included in the other manuals.

user_guide.book : using_this_manual v Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide v

Using this book

Documentation
conventions

Unless explicitly noted, this manual uses the following typographical
conventions:

NOTE You will find notes like these throughout this manual.
These notes highlight information of special
importance.

literal names Bold words or characters in commands
descriptions represent words or values
that you must use literally.

user-supplied values Italic words or characters in command
descriptions represent values that you
must supply. Italic words in text also
indicate the first use of a new term, or
emphasis.

sample user input In interactive examples, information
that you must enter appears in this

typeface.

output/source code Information that the system displays
appears in this typeface.

... Horizontal ellipsis points in commands
indicate that you can repeat the
preceding item one or more times.

TIP: Using tips

Tips provide additional information on special issues, such as
troubleshooting and workarounds.

user_guide.book : using_this_manual vi Mon Jun 5 13:07:07 1995

user_guide.book : user_guideTOC.doc vii Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide vii

Contents

Contents
Using this book iii

What this manual is about iii
What you should know before starting iii
For more information iv
Documentation conventions v

Chapter 1 An overview of the ObjectCenter
programming environment 1

What is ObjectCenter? 3
A comprehensive toolset 3
Graphical access to functionality 3
An integrated, open architecture 5

How does ObjectCenter improve your productivity? 7
Full support for both C++ and C languages 7
Incremental linking and loading 7
Demand-driven code generation 7
Precompiled header files 8
Templates 8
Load-time error checking 8
Run-time error checking 9
Interactive debugging modes 9
Graphic visualization of file, function, and data structures 9
Full C++ and C interpreter 10
Full flexibility to tailor performance 10
Compatibility with standard UNIX tools 10
Graphical user interface 11
Customizable environment 11

How do you work in ObjectCenter? 12
Beginning your session 12
Using spot help to learn about ObjectCenter 13
Getting your code into ObjectCenter and setting up your work 13
Working with templates 14
Fixing static errors 15
Interactive debugging 16

user_guide.book : user_guideTOC.doc viii Mon Jun 5 13:07:07 1995

Contents

viii ObjectCenter User’s Guide

Visualizing your code 16
More interactive development 20
An all-day programming environment 21

What’s Next? 21
Chapter 2: ObjectCenter basics 21
Chapter 3: Managing your code in ObjectCenter 21
Chapter 4: Fixing static errors 22
Chapter 5: Component debugging 22
Chapter 6: Process debugging 22
Chapter 7: Visualizing your code 22
Chapter 8: Customizing ObjectCenter 22
Chapter 9: Using Ascii ObjectCenter 22

Chapter 2 ObjectCenter basics 23

Starting ObjectCenter 25
Using the ObjectCenter startup command 25
Specifying the GUI and debugging mode at startup 25
Other command-line switches 26
Libraries automatically loaded at startup 26
Customizing your session at startup 26

Getting help 27
Using spot help 27
Using the Help menu 27
Using Workspace help 28
Using the Manual Browser 28
Contacting CenterLine technical support 28

Using ObjectCenter’s GUI 29
Basic mouse actions 29
Using mnemonics for menu-bar selections 30
Main Window shortcuts with pop-up menus and windows 31
Copying and pasting selected text 32
General GUI accelerators 33

Entering ObjectCenter commands in the Workspace 35
How the debugging and language modes affect the Workspace 36
Invoking ObjectCenter commands directly 37
Executing shell commands 40
Using aliases for ObjectCenter commands 40

user_guide.book : user_guideTOC.doc ix Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide ix

Contents

Other operations in the Workspace 41
Shortcuts for other operations in the Workspace 42

Listing source code 43
Listing source code in the Source area 43
Shortcuts for other operations in the Source area 44

Editing source code 45
Invoking your editor 45
Specifying your editor 46

Quitting ObjectCenter 47

Chapter 3 Managing your code in ObjectCenter 49

Overview 51

Your range of choices for bringing your code into ObjectCenter 52

Deciding your basic approach 52
Comparing performance factors 52

Deciding the form to use for components of a project 55
Comparing performance factors 57
Additional performance considerations 59
Deciding an overall strategy 60
Choosing a method for loading the components 61

Loading individual components 62
Ways to load individual components directly 62
What happens when you load a file or library 63

Loading components as a project 68

Loading an existing project file 69
Using a project file 69

Establishing a project 70
Issuing the make command with CL targets 71
Using the source command with a command file 72
Using clezstart 73

Managing individual components in your project 75
Viewing the components in your project 75
Instrumenting object files 76
Reloading files individually 77
Unloading files 79

user_guide.book : user_guideTOC.doc x Mon Jun 5 13:07:07 1995

Contents

x ObjectCenter User’s Guide

Swapping files 79
Setting properties for individual components 80

Managing your whole project 82
Building your project 82
Linking your project 82
Running your project 83
Setting project-wide properties 85

Enhancing performance for large projects 88

Specifying an executable target 91
Using an executable alone 91
Using an executable with a corefile 91
Using an executable with a running process 91
More information 92

Chapter 4 Fixing static errors 93

Overview 95

What static problems ObjectCenter finds 95
The kinds of static problems ObjectCenter finds 95
Undetected function argument mismatches in C++ and C code 96

What happens when load-time checking finds a static problem 98
The Error Browser button 98
The Error Browser 99
Fixing static problems 100

Using the Error Browser to deal with warnings and errors 101
Dealing with suppressed messages 103
Understanding scope for suppressing and removing
violations 103
Dealing with compiler and make errors 105

Chapter 5 Component debugging 107

Overview 109

Using run-time error checking 109
Executing your code 109
The kinds of dynamic problems ObjectCenter finds 110
Dealing with run-time violations 110
Using the Error Browser button 111

user_guide.book : user_guideTOC.doc xi Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide xi

Contents

Using the Error Browser 111
Continuing past a run-time warning 112
Fixing dynamic problems 112

Using debugging items for interactive debugging 115
Interactive debugging items 115
Setting breakpoints 116
Setting actions 118
Setting tracepoints and tracing program execution 123
Examining and deleting debugging items 124

Interactive debugging from Workspace break levels 126
Locations in break levels 129
Automatic Workspace mode switching 130
Multiple break levels 130
Examining the state of your program 131
Continuing from a break location 131
Resetting from a break level 132
Stepping through your program 133
Displaying the execution stack 134
Moving in the execution stack 135
Displaying static constructors and destructors 136
Handling signals 137

Interactive prototyping and unit testing in the Workspace 138
ObjectCenter’s full C++ and C interpreter 138
Interactive prototyping 138
Interactive unit testing 138
Two language modes for the Workspace 139
Entering C++ and C++ code in the Workspace 142
Defining variables and types 144
Defining functions 146
Defining templates 146
Manipulating class objects in the Workspace 147
How the Workspace displays class objects 150
Workspace troubleshooting 155
Using the Workspace in C language mode 158

user_guide.book : user_guideTOC.doc xii Mon Jun 5 13:07:07 1995

Contents

xii ObjectCenter User’s Guide

Chapter 6 Process debugging 163

Overview 165

How you work in process debugging mode 165
When you use process debugging mode 165
Ways to target an externally linked executable 166

Getting into process debugging mode and specifying a target 167
Selecting process debugging mode at startup 167
Specifying a debugging target 168

Differences between the two debugging modes 169
Elements of the GUI not supported in process mode 169
ObjectCenter commands 169
ObjectCenter options 170
Error checking 170
Interactive debugging 170
Working at break levels 170
Code comprehension 170
Using the Workspace in process debugging mode 171
Debugging information available 171

Chapter 7 Visualizing your code 173

Project Browser 175
The Contents windows 175

Inheritance Browser 178
Accessing the Inheritance Browser 178
Seeing how particular classes relate 179
Selecting and unselecting names in the Inheritance area 180
Showing inheritance levels 181
Showing inheritance levels with pointer boxes 182
Displaying more of the Inheritance area 182
Moving names of classes within the display 183
Clearing the Inheritance area 183
Removing selected class names from the Inheritance area 183
Removing unselected class names from the Inheritance area 184
Listing the code that defines a class 184
Editing the code that defines a class 184
Updating the Inheritance Browser 184

user_guide.book : user_guideTOC.doc xiii Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide xiii

Contents

Examining the members of a particular class 185
Postscript printing from the Inheritance Browser 185
Finding more information 185

Class Examiner 186
Accessing the Class Examiner 186
Keeping member names visible 187
Filtering member names 188
Grouping member names 188
Searching for class members 189
Finding the code that defines a member function 189
Listing the code that defines a member function 189
Editing the code that defines a member function 190
Choosing another class to examine 190
Accessing other windows from the Class Examiner 190
Finding more information 190

Cross-Reference Browser 191
Cross-referencing functions and global variables 191
Displaying virtual functions 191
Using the Cross-Reference Browser 193

Data Browser 197
Displaying data structures 197
Using the Data Browser 197
Finding more information 202

Expanding C++ statements 203
Using the expand command 203
What expand does 203
Two examples 204

Pop-up menu and Workspace commands 206
Expressions Options (shift-right) menu 206

Chapter 8 Customizing ObjectCenter 211

Using ObjectCenter startup files 213
Global startup file 213
Local startup file 213
Restarting a session 214
Using X resources 215

user_guide.book : user_guideTOC.doc xiv Mon Jun 5 13:07:07 1995

Contents

xiv ObjectCenter User’s Guide

Using ObjectCenter options 216
Displaying options 216
Changing option settings 217
Saving option settings 218

Customizing the Project Browser and integrating revision control
systems 219

Creating and managing customized buttons and menu items 220
Using buttons for standard menu items 220
Using menu items and buttons for customized commands 222

Connecting your editor to ObjectCenter 226
Connecting GNU Emacs to ObjectCenter 226
Integrating other editors 226

Using Workspace commands with aliases 227

Using C++ code to work with ObjectCenter 228
Using built-in CenterLine functions 228
Using lint-style comments to suppress warnings 230

Customizing key bindings 231

Using eight-bit character sets 232

Customizing the preprocessor for the load command 232

Setting and examining environment variables 233

Conditionalizing code in source files 234

Chapter 9 Using Ascii ObjectCenter 235

Introducing Ascii ObjectCenter 237
Reasons for using Ascii ObjectCenter 237
Using the Workspace 237
Accessing functionality 238

Ascii ObjectCenter basics 240
Starting Ascii ObjectCenter 240
Switching between debugging modes 240
Editing in Ascii ObjectCenter 240
Suspending an Ascii ObjectCenter session 241
Quitting Ascii ObjectCenter 241

Managing your project 242

user_guide.book : user_guideTOC.doc xv Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide xv

Contents

Load-time violation checking 243
Handling warnings 243
Handling errors 244
Listing source code 245
Batch mode 245

Run-time violation checking 245
Handling spurious used-before-set messages 246

Interactive debugging 248
Setting breakpoints at a line of code or on a function 249
Setting breakpoints in library functions 249
Setting breakpoints on addresses 250
Setting actions 250
Specifying conditional actions 251
Tracing program execution 252
Examining and deleting items 253
Working in object code 253
More information 253

Suppressing linking messages 254

Index 255

user_guide.book : user_guideTOC.doc xvi Mon Jun 5 13:07:07 1995

Contents

xvi ObjectCenter User’s Guide

List of Tables
Table 1 ObjectCenter Startup Switches 25

Table 2 Basic Mouse Actions 30

Table 3 Main Window Shortcuts 31

Table 4 Listing a File: Methods According to Work Area 44

Table 5 Invoking Your Editor: Methods According to Work Area 46

Table 6 Performance Factors According to Debugging Mode 53

Table 7 Performance Factors With Demand-Driven Code Generation
On and Off 57

Table 8 Performance Factors for Source and Object Components 58

Table 9 Loading a Source or Object File: Methods According to Work
Area 62

Table 10 Loading a Library: Methods According to Work Area 63

Table 11 Project-Wide Properties Window 86

Table 12 Effects of Various Techniques for Enhancing
Performance 88

Table 13 How to Respond to Error Browser Warnings and
Errors 101

Table 14 Setting a Breakpoint: Methods According to Work
Area 116

Table 15 Setting an Action: Methods According to Work Area 119

Table 16 Setting a Tracepoint: Methods According to Work Area 123

Table 17 Deleting a Debugging Item: Methods According
to Work Area 125

Table 18 Basic Workspace Commands for Interactive
Debugging 128

Table 19 Switching Debugging Modes 168

Table 20 Accelerator Keys: Selecting and Unselecting 181

Table 21 Cross-Referencing a Function or Variable: Methods
According to Work Area 193

Table 22 Displaying a Data Structure: Methods According to Work
Area 197

Table 23 Expressions Options Menu 208

user_guide.book : user_guideTOC.doc xvii Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide xvii

Contents

Table 24 Workspace Commands for Code Visualization 210

Table 25 Variables for Customized Commands 222

Table 26 Centerline Functions Without Command Equivalents 228

Table 27 Lint-Style Comments to Suppress Load-Time
Warnings 230

Table 28 Commands for Setting and Examining ObjectCenter
Environment Variables 233

Table 29 Access to Functionality in Ascii ObjectCenter Compared
with GUI Access 238

Table 30 Handling Load-Time Warnings in Ascii ObjectCenter 244

Table 31 Handling Load-Time Errors in Ascii ObjectCenter 244

Table 32 Handling Run-Time Violations in Ascii ObjectCenter 246

Table 33 Commands for Interactive Debugging in Ascii
ObjectCenter 248

List of Figures
Figure 1 ObjectCenter’s Architecture: A Conceptual Illustration 6

Figure 2 Ways You Can Bring Code In and Work On It in
ObjectCenter 52

Figure 3 Methods for Loading Components as a Project 68

user_guide.book : user_guideTOC.doc xviii Mon Jun 5 13:07:07 1995

Contents

xviii ObjectCenter User’s Guide

List of Tips
Using tips v

Setting the DISPLAY environment variable 26

Using tips like this one 27

Correcting the support email address 28

Dealing with surprising text in a dialog box input line 33

Using templates 56

Avoiding explicit loads of template declaration or definition files 56

Loading template instantiation modules 56

Using the -I (uppercase i) loading switch to specify directories for
header files 62

Ensuring that header file dependencies are always checked 65

Dealing with unresolved references to symbols in libraries 67

Specifying the search path for swapping files 79

Clearing the Run Window 84

Using a different terminal emulator for program input and output 85

Changing properties for a file that is already loaded 85

Changing load flags for a file already loaded 88

Handling spurious used-before-set messages 113

Dealing with large numbers of run-time violations 114

Improving performance when stepping through code 133

Editing Workspace code 140

Understanding unresolved references from a function call in the
Workspace 146

Improving performance when stepping through code 200

Avoiding multiple-line selections for customized commands 224

user_guide.book : introducing 1 Mon Jun 5 13:07:07 1995

Chapter 1 An overview of the
ObjectCenter programming
environment

This chapter introduces you to ObjectCenter by
answering the following questions:

• What is ObjectCenter?

• How does ObjectCenter improve your
productivity?

• How do you work in ObjectCenter?

At the end of the chapter, we describe the
organization of the rest of the book.

user_guide.book : introducing 2 Mon Jun 5 13:07:07 1995

user_guide.book : introducing 3 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 3

What is ObjectCenter?

What is ObjectCenter?
ObjectCenter is designed to enhance your productivity as a
programmer, improve the quality of the code you deliver, and
generally make it easier for you to tackle the day-in and day-out tasks
of prototyping, compiling, debugging, testing, polishing, and
maintaining C++ and C code. In short, ObjectCenter is all about
enhancing your satisfaction in producing on-time, quality software.

Increased productivity, code quality, and work satisfaction are the
natural consequence of a programming environment that gives you
quick, seamless access to a full set of integrated tools and capabilities
for interactive C++ and C programming.

A comprehensive
toolset

ObjectCenter offers a comprehensive set of tools for C++ and C
programming:

• An incremental linker/loader

• A load-time code checker

• A run-time program checker

• A component debugger for source and object files

• A process debugger for externally linked executables

• An interpreter for the full C++ and C languages

• A C++ translator, which converts C++ source code to C source
code prior to compilation

Graphical access
to functionality

ObjectCenter provides a Graphical User Interface (GUI) that allows
you to access ObjectCenter’s toolset easily through the work areas
shown in the following table.

The ObjectCenter GUI enables you to perform certain basic actions,
such as listing or editing code, in those primary work areas in which
performing those actions would be useful.

user_guide.book : introducing 4 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

4 ObjectCenter User’s Guide

Within primary work areas, the GUI enables you to perform an action
in more than one way so you can perform it in the way you find most
convenient. For example, the Project Browser enables you to
instrument an uninstrumented file by selecting a choice on the
pull-down menu, the pop-up menu, or a button on the Control Panel.
This book discusses at least one way to perform each action on the
primary work areas. By looking at the GUI, you can find all the ways
to perform an action.

Primary Work Area Allows You To

Main Window Access debugging functionality and
control your session. In the Source area,
display source code. In the Workspace,
invoke ObjectCenter commands and
enter C++ and C statements.

Project Browser Manage the files and libraries that make
up your current project and, in the
Contents window, examine definitions
contained in each file.

Error Browser Examine and manage load-time and
run-time errors and warnings.

Cross-Reference Browser Examine the static dependency structure
in your program (references to functions
and global variables).

Data Browser Examine data graphically.

Inheritance Browser Examine the inheritance relationships
among the classes you have loaded.

Class Examiner Examine the members of a class.

Options Browser Tailor various aspects of the ObjectCenter
environment.

Manual Browser View ObjectCenter manuals online.

Thread Browser Examine the state of threads and
lightweight processes in your program.

user_guide.book : introducing 5 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 5

What is ObjectCenter?

An integrated,
open architecture

Underneath ObjectCenter’s toolset and GUI is an architecture that
allows it to be much more than just a collection of programming tools.
ObjectCenter’s architecture consists of a set of cooperating
components that communicate through the CenterLine™ message
server. Each process contributes a specific aspect of the integrated
functionality that makes ObjectCenter a programming environment:

• The CenterLine Message Server (CLMS)

CLMS is a multicast message delivery service for exchanging
data among the other ObjectCenter processes.

• A GUI (graphical user interface)

You can choose either the Motif or OPEN LOOK environment.
The GUI components represent each of the primary work areas
of the GUI listed in 'Graphical access to functionality' on page 3.

The GUI provides ease of use for ObjectCenter’s integrated
toolset. Each component of the GUI provides a distinct work
area for accessing ObjectCenter’s functionality.

• The CenterLine Engine, which you can choose to be either
component debugging mode (cdm) or process debugging mode (pdm)

When in component debugging mode, the CenterLine Engine
operates on source and object files. It incorporates a full C++
and C interpreter, a load-time code checker, and a run-time
program checker.

When in process debugging mode, the CenterLine Engine
operates on externally linked executables.

• Edit Server

The Edit Server translates edit requests and responses between
ObjectCenter and your editor. The Edit Server shipped with
ObjectCenter provides tight integration with vi and GNU emacs.

Figure 1 shows the relationships among the various components of
ObjectCenter’s integrated, open architecture. Two-headed arrows
indicate the interfaces between the clms process and other
ObjectCenter processes.

user_guide.book : introducing 6 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

6 ObjectCenter User’s Guide

Figure 1 ObjectCenter’s Architecture: A Conceptual Illustration

Accessing
ObjectCenter’s open
architecture

Because ObjectCenter’s architecture consists of a set of cooperating
components that communicate through the CLMS, ObjectCenter’s
architecture is open for integration with other programming tools
using the CenterLine Application Program Interface (API).

The CenterLine API allows third-party software vendors to easily
integrate their tools with ObjectCenter. In addition, you can integrate
your own development tools, such as your editor or version control
tool. For more information, see the CenterLine API and CLIPC entries
in the ObjectCenter Reference.

compiler
process

edit server process
(emacs or vi)

CenterLine Engine
process (pdm or cdm)

other processes to
be connected

ProjectError

Data Options

Manual

Other edit server

be connected
processes to

BrowserBrowser

Browser Browser

Browser

User interface
process

Main
Window

(GUI)

clms process

Inheritance
Browser

Class
Examiner

Cross

Browser
Reference

user_guide.book : introducing 7 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 7

How does ObjectCenter improve your productivity?

How does ObjectCenter improve
your productivity?
To see how ObjectCenter delivers on its promise of on-time, quality
code, consider the productivity gains from each of ObjectCenter’s
programming features.

Full support for
both C++ and C
languages

ObjectCenter supports development in both C++ and C.

You can mix C files with C++ files in your program or develop either
straight C or straight C++ programs. This dual language support is
especially helpful if you are working on a project that is moving from
C to C++.

ObjectCenter supports the full C++ language, as defined by the AT&T
C++ Language System Product Reference Manual for Release 3.0 of the
AT&T C++ Language System. Particularly important with
ObjectCenter’s support for Release 3.0 of AT&T C++ is support for
class and function templates.

ObjectCenter also supports the full C language, as defined by
Kernighan and Ritchie (K&R), and has further support for the ANSI C
standard.

Incremental
linking and
loading

ObjectCenter cuts through the delay of your usual edit, compile, link,
and debug cycle.

When you make a change to your source code, ObjectCenter’s
incremental linker/loader recompiles, relinks, and reloads only the
files affected by your change. You get rapid turnaround because you
no longer need to wait for a relink of your entire program.

Demand-driven
code generation

Demand-driven code generation is the process of selectively
generating code according to whether the code is actually used.
ObjectCenter’s version of the C++ translator supports demand-driven
code generation outside the environment with the -dd=on and
-dd=off switches to the CC command. Similarly, you can specify
demand-driven code generation for both source and object files within
the ObjectCenter environment with the -dd=on and -dd=off switches
to the load command.

user_guide.book : introducing 8 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

8 ObjectCenter User’s Guide

Within the environment, using demand-driven code generation can
improve load-time significantly for source files and object files that
require compilation.

See the demand-driven code generation entry in the ObjectCenter
Reference.

Precompiled
header files

ObjectCenter provides its own version of the AT&T C++ Language
System, including the translator (cfront), which translates C++ code to
C code, prior to compilation. To supplement the language system
provided by AT&T, ObjectCenter provides a facility to keep track of
header files that have been compiled and skip them whenever
possible on subsequent compilation of the same program.

See the precompiled header files entry in the ObjectCenter Reference.

Templates Templates are the mechanism in C++ for supporting parameterized
types. Parameterized types allows you to implement generic code for
a type and them implement that type with different parameters.

If you are already familiar with C++ templates, see the “Summary of
Usage” section in the templates entry of the ObjectCenter Reference for
a quick description of their implementation in ObjectCenter. In case
you are not familiar with templates, the templates entry also contains
background information about how templates are defined in the C++
language.

Load-time error
checking

ObjectCenter streamlines the otherwise tedious tasks of locating and
fixing static problems in your code.

When you load a source file, ObjectCenter’s load-time code checker
acts as a super-lint and automatically checks for static errors. The
load-time code checker identifies syntax errors that you need to
correct to get to compilable code and also identifies potentially
dangerous, although legal, code that you need to clean up to have a
polished, maintainable program. Because you locate and identify
static problems simply by loading a file, ObjectCenter makes tracking
syntax errors and cleaning code largely automatic.

user_guide.book : introducing 9 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 9

How does ObjectCenter improve your productivity?

Run-time error
checking

ObjectCenter automatically locates silent, run-time bugs that can hide
even in apparently well-behaved programs.

When you execute a program loaded into ObjectCenter as source and
object files, ObjectCenter’s run-time program checker automatically
checks for over 80 run-time warnings and errors. Simply by running
your program in ObjectCenter, you are assured of catching silent bugs
early on—bugs that otherwise might not be found until quality
assurance testing late in the programming cycle or that might even go
out with your finished program.

Interactive
debugging modes

ObjectCenter allows you to debug interactively and makes it easy for
you to find a known bug—whether in source code, object code, or in
an externally linked executable. ObjectCenter offers two distinct
debugging modes: cdm and pdm.

Component
debugging mode

Component debugging mode (cdm) offers superior debugging
capabilities over run-time checking and process debugging mode,
described in the next section. In component debugging mode, you
debug source and object files that you load as components of an
ObjectCenter project. Component debugging mode gives you a full
range of interactive debugging features: breakpoints, watchpoints,
stepping through code, and tracing execution. You can extend
breakpoints and watchpoints by specifying customized actions. In
component debugging mode, you need not be working on full
executables.

Process debugging
mode

In process debugging mode (pdm), you debug externally linked
executables. Process debugging mode offers breakpoints,
watchpoints, and stepping. In addition, process debugging mode also
allows you to step execution in machine instructions.

Graphic
visualization of
file, function, and
data structures

ObjectCenter improves your understanding of your code (code
comprehension) through graphical views of program elements.

The Contents window of the Project Browser shows the definitions
contained in your files, the Cross-Reference Browser shows the calling
hierarchy in your program, and the Data Browser shows the data
structures in your code. With the Inheritance Browser, you can
examine the inheritance relationships among the classes you have
loaded, and, with the Class Examiner, you can examine class
members.

user_guide.book : introducing 10 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

10 ObjectCenter User’s Guide

Full C++ and C
interpreter

ObjectCenter enables you to execute independent modules for
interactive unit testing and also to execute isolated C++ statements for
prototyping as you go.

When you are in component debugging mode, ObjectCenter’s
interpreter allows you to immediately execute any part of your
application or brand new code that you enter in the Workspace. The
interpreter combines the functionality of an interactive unit tester and
an interactive prototyper.

ObjectCenter supports both Kernighan and Ritchie (K&R) C and the
ANSI standard C language. The default setting depends on the
underlying compiler in use, which is different for each platform. The
default setting is likely to be one that you are accustomed to on your
platform.

Full flexibility to
tailor performance

ObjectCenter allows you to maximize the performance characteristics
that matter the most to you at a particular time: speed, space,
automatic error checking, or debugging facilities.

ObjectCenter gives you many choices in how to set up your work at
any point. You can either target an externally linked executable or else
load source and object files as components of a project. If you target an
executable, you have the choice of the executable alone, the executable
with a corefile, or the executable as a running process.

If you load source or object components as a project, you have the
choice of the composition of the project—anywhere from all object
code to all source code. If you load object code, you can choose to load
object code with or without debugging information. And once object
code is loaded, you can either instrument it to enable run-time error
checking or leave it as regular object code.

Using these various choices, at any point, you can set up your work in
ObjectCenter to fit with your current programming objectives. You
can tailor ObjectCenter to the balance that suits you among the
following performance factors: the amount of static and run-time error
checking, range of source-level debugging features, speed of startup,
speed of execution, or amount of memory required.

Compatibility with
standard UNIX
tools

ObjectCenter provides programming functionality consistent and
compatible with your standard UNIX programming tools, such as
make, lint, CC, cc, dbx, vi, and emacs.

Since ObjectCenter is designed to work with standard UNIX tools, it
is fully compatible with the compilers, preprocessors, and makefiles

user_guide.book : introducing 11 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 11

How does ObjectCenter improve your productivity?

that you currently use. By making the entire programming process
thoroughly interactive and at the same time completely compatible
with your existing UNIX tools, ObjectCenter enhances your own
programming style without imposing a programming methodology.

Graphical user
interface

To access the power of the toolset, ObjectCenter offers a selectable,
easy-to-learn, easy-to-use GUI.

When you start ObjectCenter, you can select one of three user
interfaces: A Motif GUI, an OPEN LOOK GUI, or a nongraphical user
interface (Ascii ObjectCenter). Both the Motif and OPEN LOOK GUIs
provide a standard windowing interface to ObjectCenter for users of
the X11™ window systems. You choose which standard you are most
comfortable with.

Extensive online help ObjectCenter offers a full range of online help: extensive
context-sensitive spot help for every element of the GUI, a Help menu
with topical help, summary help on commands in the Workspace, and
a Manual Browser with a set of ObjectCenter documentation.

Ascii ObjectCenter Most features available when running ObjectCenter with the Motif or
OPEN LOOK GUI are also available in a nongraphical form with Ascii
ObjectCenter. Typically, you use Ascii ObjectCenter if you are using it
from a nongraphical terminal or over a phone line. This manual
concentrates on describing the graphical versions of ObjectCenter.
Differences between the graphical version of ObjectCenter and Ascii
ObjectCenter are described in Chapter 9, “Using Ascii ObjectCenter.”

Customizable
environment

ObjectCenter allows you to customize and extend the programming
environment to suit your own work style, preferences, and additional
programming tools.

You customize the ObjectCenter environment by using initialization
files that configure startup behavior, X resource settings for
configuring the GUI, and options for settings that control
ObjectCenter’s behavior during a session.

To integrate new tools into ObjectCenter’s open architecture, you use
the CenterLine Application Program Interface (CenterLine API)
mechanism as described in the CenterLine API entry in the
ObjectCenter Reference.

user_guide.book : introducing 12 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

12 ObjectCenter User’s Guide

How do you work in ObjectCenter?
Now that you have surveyed the wide range of functionality that
ObjectCenter offers you, let’s take a quick walk through a typical
working session in ObjectCenter.

Beginning your
session

At startup, you choose either a Motif or an OPEN LOOK GUI and
decide on the debugging mode (process or component). Let’s assume
you take the default settings, which will put you in component
debugging mode.

The first thing you see when you start ObjectCenter is the Main
Window, which is the central work area in ObjectCenter. It consists of
the Source area, where source code is displayed, and the Workspace,
where you can enter commands and C++ or C statements. Here is an
illustration of the Main Window:

user_guide.book : introducing 13 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 13

How do you work in ObjectCenter?

Since all components of ObjectCenter use the Source area to display
source code, you usually keep the Main Window visible throughout
your ObjectCenter session.

Using spot help
to learn about
ObjectCenter

As you work in ObjectCenter, you can rely on ObjectCenter’s
extensive spot help to get answers to your immediate questions. For
example, to find out more about the Workspace, you move the cursor
into the Workspace region and press the F1 or Help key. A help
window appears describing what the Workspace is and how to use it.
Here is an example of a help window:

Getting your code
into ObjectCenter
and setting up
your work

You begin working in ObjectCenter by getting your code into the
programming environment and setting up your work in a way that
best suits your present objectives. The files that you load for your
session make up your current ObjectCenter project. Typically, you
would begin by loading an existing project file or using ObjectCenter’s
make command to load a set of files.

At any time, you can tailor your project to have any combination of
source and object files. For the best balance of speed, memory, and
debugging capabilities, you ordinarily load only one or two files that
you want to focus on as source and the rest as object files. Typically,
you use ObjectCenter’s instrument command to enable run-time error
checking on the object files that you load. You use the Project Browser
to examine and manage the files you have loaded.

NOTE The instrument command is not available on some
platforms. Refer to the ObjectCenter Platform Guide to
see if you can use it on your particular platform.

user_guide.book : introducing 14 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

14 ObjectCenter User’s Guide

Here is an illustration of the Project Browser:

If you were debugging an externally linked executable, rather than
loading source and object files, you would have placed ObjectCenter
in process debugging mode and specified an externally linked
executable as your debugging target.

Working with
templates

If your C++ code uses class or function templates (a feature
introduced with Release 3.0 of AT&T C++), ObjectCenter loads and
handles them transparently by default. You simply load this code into
ObjectCenter the same as you would any other C++ code. (You do not
explicitly load template declaration, definition, or map files.)

Source file

Instrumented
object file

user_guide.book : introducing 15 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 15

How do you work in ObjectCenter?

You only have to make explicit adjustments for working with
templates if you want to customize how ObjectCenter handles them.
For more information on working with templates, see the templates
entry in the ObjectCenter Reference.

Fixing static
errors

Because ObjectCenter performs extensive error checking on any
source files that you load, the process of loading files often uncovers
static errors. To deal with these load-time warnings and errors, you
open the Error Browser and examine the static problems that
ObjectCenter has identified in your code. Here is an example:

ObjectCenter’s integrated editor support allows you to edit static
warnings and errors quickly. When you select a warning or error
message icon, ObjectCenter invokes your editor, loads the file into the
editor, and opens a window displaying the line with the warning or
error ready for you to edit. After making all the corrections, you
simply build your project, and ObjectCenter reloads and relinks only
the files that have changed.

For less serious static problems, you can choose to suppress a warning
and make the correction at a later cleanup phase.

If you load an object file that is out-of-date, ObjectCenter sends the file
to CC and catches any resulting compiler error messages, which are
also displayed and managed in the Error Browser.

user_guide.book : introducing 16 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

16 ObjectCenter User’s Guide

Interactive
debugging

After successfully getting your code into ObjectCenter, you either
move directly into interactive debugging or use one of the Browsers to
better understand your program. Let’s assume that you decide to start
debugging.

To take advantage of ObjectCenter’s extensive run-time error
checking, you use ObjectCenter’s run command to invoke your
program. ObjectCenter executes your program and automatically
checks for run-time errors in source files and instrumented object files.
If ObjectCenter encounters a run-time error, the Error Browser button
indicates that you have a run-time error.

The run-time error is recorded in the Error Browser, and you can deal
with the error there. To fix the bug, you take advantage of
ObjectCenter’s rapid turnaround with editor integration and
incremental loading/linking facilities.

To extend your interactive debugging, you can use any of
ObjectCenter’s standard debugging capabilities, such as setting
breakpoints, watchpoints, actions, and stepping through code. In
addition to running the entire program, you can use ObjectCenter’s
C++ or C interpreter to directly call any part of the program. In this
way you can test a function interactively with various arguments.

Visualizing your
code

At any time, you can move between interactive debugging and
exploring some aspects of your program’s structure to better
understand your code. You use ObjectCenter tools for code
comprehension at the class, file, function, and data structure levels.

Visualizing at the
class level

To better understand classes, you use the Inheritance Browser and the
Class Examiner. The Inheritance Browser displays a graphic
representation of the inheritance relationships among classes. The
Class Examiner shows you the members of a class. In the Class
Examiner, you can sort members by name, inheritance, or protection
level. You can also filter class members by protection level and by a
variety of data-member and function-member characteristics.

user_guide.book : introducing 17 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 17

How do you work in ObjectCenter?

This is what the Inheritance Browser looks like:

This is what the Class Examiner looks like:

user_guide.book : introducing 18 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

18 ObjectCenter User’s Guide

Visualizing at the file
level

To better understand the files and libraries that make up your
ObjectCenter project (all the files and libraries you currently have
loaded), you use the Contents window of the Project Browser. The
Project Browser provides a way for you to examine the definitions of
the functions, variables, headers, types, and typedefs contained in
source files, object files, and libraries, as shown in the following
illustration:

user_guide.book : introducing 19 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 19

How do you work in ObjectCenter?

Visualizing at the
function level

To better understand the calling structure for functions and references
to global variables in your program, you use the Cross-Reference
Browser. The Cross-Reference Browser graphically presents references
to and from functions and references to global variables.

With the Cross-Reference Browser, you can also show the calling
hierarchy of a function at any depth and filter the display to suit your
needs at the moment, as shown in this example:

user_guide.book : introducing 20 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

20 ObjectCenter User’s Guide

Visualizing at the
data level

To better understand data structures, you use the Data Browser. The
Data Browser displays a graphic representation of any data structure.
Within complex data structures, you can follow pointers and examine
substructures. For example, you can display a linked list and, at your
discretion, display elements of an array within a struct that is a node
in the linked list, as shown:

More interactive
development

With the context gained from code visualization, you continue to
interactively modify and develop your program by using run-time
error detection in conjunction with ObjectCenter’s debugging
facilities.

Once you are satisfied with the code in the files you have been
focusing on and are ready for a final cleanup of the code, you can go
back and unsuppress any load-time warnings that you suppressed
earlier on. You can reload those files in source form and use the Error
Browser to go quickly through your cleanup phase.

First structure
in linked list

Elements of array
within structure

Pointer to next item
on linked list

user_guide.book : introducing 21 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 21

What’s Next?

An all-day
programming
environment

As this typical session shows, within ObjectCenter you move fluidly
from one phase of your programming cycle to the next: prototyping,
developing, and bringing in new modules; tracking down a bug;
studying an existing body of code; doing unit testing; or polishing up
code that is functionally sound. ObjectCenter’s incremental
linker/loader recompiles, relinks, and reloads only the files affected
by a change. You get rapid turnaround because you no longer need to
wait for a relink of your entire program.

Because you use ObjectCenter for all phases of your programming
cycle, you typically start up ObjectCenter and leave it running
throughout your workday. Rather than merely having a collection of
individual programming tools that you start up for the need of the
moment and then quit from, ObjectCenter gives you a programming
environment that you want to keep resident day in and day out.

What’s Next?
The rest of this manual describes how to take full advantage of the
features introduced in this overview. Each chapter covers a different
aspect of working with ObjectCenter.

Chapter 2:
ObjectCenter
basics

This chapter covers fundamental operations for using ObjectCenter
effectively: options at startup, accessing functionality, getting help,
listing and editing source code, switching debugging modes, and
quitting.

Chapter 3:
Managing your
code in
ObjectCenter

This chapter presents various approaches to getting code into
ObjectCenter, either as an externally linked executable or as source
and object file components for a project (loading individual files,
saving and loading a project file or image file, or using specially
designed makefile targets). It shows how to tailor the way you set up
your work to maximize the performance factors in a way that works
best for you. It also explains Project Browser operations for managing
project components (building, linking, swapping, setting project-wide
and file-specific properties) and gives tips for working with large
projects.

user_guide.book : introducing 22 Mon Jun 5 13:07:07 1995

Chapter 1: An overview of the ObjectCenter programming environment

22 ObjectCenter User’s Guide

Chapter 4: Fixing
static errors

This chapter covers ObjectCenter’s load-time error checking. It
describes how ObjectCenter checks for static errors and how to use the
Error Browser to deal with load-time errors and warnings.

Chapter 5:
Component
debugging

This chapter covers the various aspects of interactively debugging
source and object components. It explains what it means to run a
program in component debugging mode, and it explains using the
interpreter for unit testing and interactive prototyping. It covers
run-time error checking and how to use it to track down bugs. The
chapter explains the various debugging operations available
(breakpoints, actions, stepping, and tracing) and covers working with
them at break levels. It goes on to cover some special issues for
component debugging: working with code generated by a
preprocessor and debugging multiple processes.

Chapter 6:
Process
debugging

This chapter covers the elements of interactive debugging that are
unique to debugging an externally linked executable and
differentiates process debugging from the component debugging
covered in the previous chapter. It discusses when process debugging
mode is most effective and explains how to specify an executable as a
debugging target. It describes specific operations that are different
from those used for component debugging.

Chapter 7:
Visualizing your
code

This chapter covers four levels of code visualization: understanding
your program at the file, function, class, and data structure levels. It
describes how to use the Project Browser’s Contents window, the
Cross-Reference Browser, the Data Browser, the Inheritance Browser,
the Class Examiner, the Source area, and a group of Workspace
commands to help you understand your code better.

Chapter 8:
Customizing
ObjectCenter

This chapter describes how you can configure the ObjectCenter
environment using initialization files that configure startup behavior,
X resources settings for configuring the GUI, and options for settings
that control ObjectCenter’s behavior during a session.

Chapter 9: Using
Ascii ObjectCenter

This chapter describes how to use Ascii ObjectCenter when you do not
have access to a graphical workstation or when you do not want to
incur the overhead of a GUI.

user_guide.book : basics 23 Mon Jun 5 13:07:07 1995

Chapter 2 ObjectCenter basics

This chapter describes the fundamental operations
for using ObjectCenter effectively. It covers the
following topics:

• Starting ObjectCenter

• Getting help

• Using ObjectCenter’s GUI

• Entering ObjectCenter commands in the
Workspace

• Listing source code

• Editing source code

• Quitting ObjectCenter

user_guide.book : basics 24 Mon Jun 5 13:07:07 1995

user_guide.book : basics 25 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 25

Starting ObjectCenter

Starting ObjectCenter

Using the
ObjectCenter
startup command

You start up ObjectCenter by invoking the objectcenter startup
command at the shell. This command takes two types of arguments:
startup switches and configuration switches.

The ObjectCenter startup command is installed in a CenterLine/bin
directory, which could be installed anywhere on your system. If
CenterLine/bin is not in your path or if you need to know the absolute
path for CenterLine/bin, see your system administrator.

Specifying the
GUI and
debugging mode
at startup

When you start ObjectCenter, you can use the switches listed in
Table 1 to specify both the user interface and debugging mode for
ObjectCenter.

Table 1 ObjectCenter Startup Switches

Startup
Switch

Result

[-ascii|
-motif|
-openlook]

Specifies the user interface: nongraphical (Ascii
ObjectCenter), the Motif GUI, or the OPEN LOOK
GUI.

On Sun™ systems, if no switch is used,
ObjectCenter defaults to the OPEN LOOK GUI. On
all other platforms, the Motif GUI is the default.

[-cdm|-pdm] Specifies debugging mode:

cdm (component debugging mode)—for working
with a project comprising source, object, and library
file components.

pdm (process debugging mode)—for working with
an externally linked executable alone or with a
corefile or running process to which ObjectCenter
attaches.

If no switch is used, ObjectCenter starts in
component debugging mode.

user_guide.book : basics 26 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

26 ObjectCenter User’s Guide

Other
command-line
switches

In addition to switches for specifying the user interface and the
debugging mode, you can specify a variety of other attributes by using
command-line switches when starting ObjectCenter. For example,
you can specify:

• A file in which ObjectCenter will save all the input you typed in
the Workspace during a session

• The size of your run-time stack

• Alternative system or local startup configuration files

For information about ObjectCenter command-line switches, see the
objectcenter entry in the ObjectCenter Reference.

Libraries
automatically
loaded at startup

When starting, ObjectCenter automatically loads the standard C++
library, libC.a, and the standard C library, libc.a, and any libraries that
these depend on. ObjectCenter(The exact list of these other libraries
varies depending on your platform.) On architectures that support
shared libraries, ObjectCenter might load the shared version of this
library. For platform-specific information about using libraries in
ObjectCenter, see the ObjectCenter Platform Guide for your platform.

Customizing your
session at startup

You can tailor how ObjectCenter begins each session by editing the
global startup file ocenterinit or your local startup files .ocenterinit
and .pdminit. At startup, ObjectCenter reads these two files and sets
up your session according to the commands contained in them. Since
the local startup file is read last, commands in this file override
conflicting commands in the global file. For more information about
customizing these startup files, see 'Using ObjectCenter startup files'
on page 213.

TIP: Setting the DISPLAY environment variable

Before running the Motif or OPEN LOOK version of
ObjectCenter, make sure to follow the usual X conventions for
setting up your DISPLAY environment variable. Otherwise, the
GUI may not display the way you expect it to.

For a complete list of switches you can use from the command
line to affect the GUI, see the objectcenter entry in the
ObjectCenter Reference.

user_guide.book : basics 27 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 27

Getting help

Getting help

Using spot help The GUI versions of ObjectCenter provide an extensive system of spot
help to assist you in using the product. To get information on any
graphical object, move the cursor over the item or region and press the
F1 or Help key. A help window appears describing the object.

For example, in the Main Window, if you move the mouse pointer
over the Run button below the Source area and press F1, you see the
following help topic:

Using the Help
menu

In addition to spot help, the ObjectCenter GUI also offers help on a
range of topics. You access this help through the Help menu in any
primary window. For example, the On Windows help topic gives an
overview of each of ObjectCenter’s primary windows.

TIP: Using tips like this one

Both in this manual and in the ObjectCenter Reference, you can get
help for troubleshooting and workarounds from tips boxes like
this one. The title for each tip is listed in the List of Tips section
following the Contents at the front of each manual. You can also
use the Troubleshooting entry in the Index to look up tips based
on symptoms.

user_guide.book : basics 28 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

28 ObjectCenter User’s Guide

Using Workspace
help

The help command displays quick usage information about
ObjectCenter commands. If you issue help without any arguments,
ObjectCenter displays a summary of commands. If you issue help
with the name of a command, ObjectCenter displays information
about the specified command. For example:

-> help email
email - send e-mail to CenterLine Software
email file - send file to CenterLine Software
->

Using the Manual
Browser

The Manual Browser presents ObjectCenter documentation. You can
open the Manual Browser from any primary window by displaying
the Browsers menu and selectingManual Browser. You can also open
the online Reference by typing this in the Workspace:

-> man topic_name

Contacting
CenterLine
technical support

To get direct help with technical questions, offer suggestions, and
report problems to CenterLine Software, you can send email to
CenterLine Technical Support by using ObjectCenter’s email facility. If
possible, bug reports should include small examples of code that
produce the bug.

To send email to CenterLine Software from within ObjectCenter, in the
Main Window display the ObjectCenter menu and select Send email.
A dialog box opens with the default setting for the Internet address of
CenterLine Technical Support.

TIP: Correcting the support email address

If the ObjectCenter email messages are not being delivered
properly, your system administrator should correct the installed
support email address using the cladmin utility. For a
short-term solution, you can specify a different mailing address
by changing ObjectCenter’s email_address option. See 'Using
ObjectCenter options' on page 216 for more information.

user_guide.book : basics 29 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 29

Using ObjectCenter’s GUI

Using ObjectCenter’s GUI
In the GUI, you access ObjectCenter’s functionality by using actions
on menus, buttons, and value settings. In general, you operate in
ObjectCenter by following the standard usage conventions that you
would expect for a Motif or OPEN LOOK application. However, the
following deserve special attention:

• Basic mouse actions

• Copying and pasting text

• GUI accelerators

NOTE This manual uses the word select to mean any of the
following mouse-related actions:

• Causing a graphical object to get the focus

• Causing text to be highlighted

• Activating a menu item

• Activating a command button

Basic mouse
actions

Table 2 describes the basic mouse actions you use in the ObjectCenter
GUI. In instances where ObjectCenter’s GUI uses mouse actions other
than the standard conventions in Motif or OPEN LOOK, this book
points these out explicitly. For example, mouse actions for pop-up
menus and windows in the Source area are given in Table 3 on page 31.

user_guide.book : basics 30 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

30 ObjectCenter User’s Guide

Using mnemonics
for menu-bar
selections

Each ObjectCenter primary window provides Motif-style mnemonics
for almost every menu item on its menu bar. A menu item with a
mnemonic has one of its letters underlined, usually the first one. To
select an item with mnemonics:

1 Press the Meta key and the underlined-letter key at the same
time, to display the menu.

2 Press the underlined-letter key of the menu item.

NOTE Mnemonics are not available for items that you can
create and destroy on the fly during a session, such as
items on the User Defined submenu of the
ObjectCenter menu in the Main Window.

Table 2 Basic Mouse Actions

To Do This Use This Mouse Action

Select text Press the Left mouse button and drag
across the text.

Select a menu item,
command button, or a
graphical object

Click the Left mouse button while the
pointer is on the item you want to select.

Display a pop-up menu
or select a menu item
from it

Click or press-and-drag with the Right
mouse button.

Display a pull-down
menu or select a menu
item from it

For OPEN LOOK, click or press-and-drag
with the Right mouse button.

For Motif, click or press-and-drag with
the Left mouse button.

Select the default action
for a pull-down menu

Available for OPEN LOOK only. Click the
Left mouse button on the menu button.

Change the default
action for a pull-down
menu

Available for OPEN LOOK only. Press the
Control key and the Right mouse button.
Select a menu choice to be the new
default.

user_guide.book : basics 31 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 31

Using ObjectCenter’s GUI

Main Window
shortcuts with
pop-up menus
and windows

The Main Window and the Browsers provide pop-up menus and
pop-up windows that give mouse-based shortcuts for accessing
functionality. Because of their central place in the GUI, the Main
Window’s Source area and Workspace are particularly rich in these
pop-up shortcuts.

The following table gives the shortcuts to use for accessing Source area
and Workspace functionality through pop-up menus and windows:

Table 3 Main Window Shortcuts

Shortcut Description

With the mouse pointer in the Source area, press the
Right mouse button.

Displays the File Options menu.
Gives operations to perform on the
currently listed file. Also lets you set
and delete debugging items.

With the mouse pointer in the Workspace, press the
Right mouse button.

Displays the Workspace Options
menu. Gives operations for using the
Workspace. Also lets you delete
debugging items.

With the mouse pointer over a line number at the left
of the Source area, press the Right mouse button.

Displays the Line Number Options
menu. Gives operations to perform
on the specified line of code.

With an expression or identifier selected and the
mouse pointer in the Source area or Workspace, hold
the Shift key and press the Right mouse button. If no
identifier is selected, with the mouse pointer on an
identifier, hold the Shift key and press the Right mouse
button.

Displays the Expression Options
menu. Gives operations to perform
on the selected expression or
identifier.

With an expression selected and the mouse pointer in
the Source area or Workspace, hold the Shift key and
press the Middle mouse button. If no expression is
selected, with the mouse pointer on an expression,
hold the Shift key and press the Middle mouse button.

Displays the Whatis pop-up window.
Shows the definition of the selected
identifier.

With an expression selected and the mouse pointer in
the Source area or Workspace, hold the Shift key and
press the Left mouse button. If no expression is
selected, with the mouse pointer on an expression,
hold the Shift key and press the Left mouse button.

Displays the Print pop-up window.
Shows the value that the selected
expression evaluates to.

user_guide.book : basics 32 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

32 ObjectCenter User’s Guide

Copying and
pasting selected
text

Copying and pasting in ObjectCenter works as you would expect for
any Motif or OPEN LOOK application.

Motif GUI For the Motif GUI, you use the Middle mouse button to paste selected
text (PRIMARY selection). To paste the CLIPBOARD selection, use the
Paste key or Paste Menu (from the Workspace pop-up menu). If you
try to paste a nonexistent CLIPBOARD selection, ObjectCenter pastes
the PRIMARY selection.

OPEN LOOK GUI For the OPEN LOOK GUI, you paste the CLIPBOARD selection using
the Paste key or Paste Menu (from the Workspace pop-up menu).
OPEN LOOK does not support pasting PRIMARY selections using the
Middle mouse button.

By default, X applications use the PRIMARY selection rather than the
CLIPBOARD selection. This means that you cannot copy and paste
between an X application and the OPEN LOOK GUI. You can change
this default behavior of copying and pasting by editing your
.Xdefaults file. To customize X applications to use either type of
selection, define the Copy and Paste keys by adding the following
lines to your .Xdefaults file:

! copy and paste from an xterm to/from CLIPBOARD
XTerm*vt100.translations: #override \n\
<Key>L6: start-extend() select-end(CLIPBOARD) \n\
<Key>L8: insert-selection(CLIPBOARD) \n

NOTE This example binds the L6 key to the copy function
and the L8 key to the paste function; however, you can
substitute any keyboard symbols for these.

You can also customize the OPEN LOOK GUI so it can also paste
PRIMARY selections. This allows you to cut and paste between the
OPEN LOOK GUI and X applications. Add the following to your
.Xdefaults file.

! copy and paste from PRIMARY selection as in
! many X applications
*OI*OI_multi_text.Translations:#override\n\

Shift <Key>L8:insert_selection(PRIMARY)\n
*OI*OI_entry_field.Translations:#override\n\

Shift <Key>L8:insert_selection(PRIMARY)\n

user_guide.book : basics 33 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 33

Using ObjectCenter’s GUI

NOTE This example binds the Shift and L8 keys to the paste
function; however, you can substitute any keyboard
symbols for these.

Then load these definitions into your X resource database by using the
UNIX xrdb command or by restarting your X server.

With these customizations, you can use either the standard copy and
paste procedures of Motif (select text and click the Middle mouse
button) or those of OPEN LOOK (select text and use the keys that you
have bound to the copy and paste functions).

General GUI
accelerators

The following features act as accelerators for actions that apply
throughout the GUI.

Using selected text
as an argument for
an action

Many actions on the pull-down and pop-up menus use the X11
selection as a default argument without asking for confirmation.
Before you choose an action on a menu, be aware of any text you may
have selected. If the action can take an argument, ObjectCenter uses
the selected text as the argument. See the next section “Dialog boxes”
if you want to be able to confirm menu actions and arguments before
you select them.

Dialog boxes By default, ObjectCenter does not display dialog boxes to confirm
selection-based commands. If you want to be able to confirm menu
actions and arguments before you select them, you can enable
selection in pop-up dialog boxes in the GUI by using the following X
resource setting:

ObjectCenter*ConfirmSelnUse: True

TIP: Dealing with surprising text in a dialog box input line

ObjectCenter’s dialog boxes use the current X11 selection, no
matter what the original source. If surprising text appears in a
dialog box input line, check the current selection in other
applications or X terminal windows.

user_guide.book : basics 34 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

34 ObjectCenter User’s Guide

With this setting, the dialog box opens with the selected text as the
default input line. This gives you an opportunity to see what text is
selected and make any changes you want to make before you select
OK or Apply.

For example, you can use the mouse to select the name of an identifier
listed in the Source area, display the Examine menu, and select
Display. When the Display dialog box opens, the selected text is in the
input line.

For more information, see the X resources entry in the ObjectCenter
Reference.

user_guide.book : basics 35 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 35

Entering ObjectCenter commands in the Workspace

Entering ObjectCenter commands
in the Workspace
When the Main Window opens, you are placed in an interactive work
area, the Workspace, shown below. This provides a command-line
interface to the CenterLine Engine.

This interactive work area handles C++ and C statements as well as
Workspace commands. The Workspace is also the output area for
messages and results from C++ and C statements, shell commands,
and some ObjectCenter commands.

user_guide.book : basics 36 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

36 ObjectCenter User’s Guide

How the
debugging and
language modes
affect the
Workspace

The CenterLine Engine has two debugging modes and two language
modes, which affect the operation of the Workspace:

• Component debugging mode (cdm) is for debugging a project
composed of source, object, and library file components.

When you are in component debugging mode, the Workspace is
either in C++ or C language mode. In C++ language mode, the
Workspace uses the default prompt:

C++ 1 ->

When you are in C language mode, the Workspace uses the
following prompt:

C 1 ->

• Process debugging mode (pdm) is for debugging an externally
linked executable alone or with a corefile or running process.
When you are in process debugging mode, the Workspace uses
the following prompt:

pdm 1 ->

Entering C++ and C
code

In either debugging mode, you can enter ObjectCenter commands and
evaluate variables and C expressions. However, only component
debugging mode (cdm) also offers the ObjectCenter interpreter, which
allows you to use the Workspace to immediately execute any arbitrary
C++ or C statement (depending on which language mode you are in).
For information on entering C++ and C code in the Workspace, see
'Interactive prototyping and unit testing in the Workspace' on page
138.

Differences in
Workspace usage

Throughout this manual, examples show the Workspace in
component debugging mode. However, you can assume that most
Workspace usages apply to both modes transparently. For information
about differences when working in process debugging mode, see
Chapter 6, “ Process debugging,” and the pdm entry in the
ObjectCenter Reference.

user_guide.book : basics 37 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 37

Entering ObjectCenter commands in the Workspace

Invoking
ObjectCenter
commands
directly

In either mode, the Workspace functions as a command processor that
allows you to enter ObjectCenter commands directly and to pass shell
commands on to a subshell.

In general, the same ObjectCenter functionality is available either by
using menus, buttons, and other graphical elements of the GUI or by
entering ObjectCenter commands directly in the Workspace. You
choose whichever means of access is most convenient for you at the
moment.

Command format Workspace commands take the following form:

command_name [switches] [arguments]

For example, you can use ObjectCenter’s whatis command to display
the use of a name. To see the declaration for the loaded function
do_bounce(), you can type:

-> whatis do_bounce
extern int do_bounce(); /* defined */

To list the file bounce.c in the Source area, you can type:

-> list bounce.c
Listing file ’bounce.c’, line 1 ...

NOTE To cancel a Workspace entry, press Control-c.

Identifying class
members

You can use the same syntax to identify members of classes. For
example, to see the declaration of the member function getText() in
class String, you could type:

-> whatis getText
void String::getText() /* defined */

To list the definition of the member function getLength() in the class
String, you could type:

-> list getLength
Listing file ’String.C’, line 75 ...

user_guide.book : basics 38 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

38 ObjectCenter User’s Guide

Using the scoping
operator

You can also use the scoping operator (::) when identifying members
of classes. For example, you could also type the previous two
examples as follows:

-> whatis String::getText
void String::getText() /* defined */
-> list String::getLength

Specifying operator
functions

You can specify operator functions in the same way:

-> whatis String::operator=
String &String::operator =(String &s) /* defined */

If the argument is
overloaded

When an ObjectCenter command is given a function as an argument
and that function is overloaded, ObjectCenter lists all instances of the
function and asks you which one you want to act on.

For example, the following statement uses the stop command to
define a breakpoint in the constructors for the String class. Because
there are several String constructors, ObjectCenter responds with a
list of them:

-> stop in String::String
Name is overloaded:
(1) String::String(char *s)
(2) String::String(int l)
(3) String::String()
(4) String::String(String &str1)
#/quit/all [1] ?

Type the function’s number to act on it. Type a to act on each instance
of the function; in this case, a breakpoint would be set on each String()
function. Type q to return to the Workspace without acting on the
function.

You can specify an overloaded function’s argument list (signature) to
avoid having to choose from a list:

-> stop in String::String(char *)
stop (1) set at "String.C":13, String::String().

Getting information
on ObjectCenter
commands

This manual focuses on accomplishing your development tasks using
the graphical elements of the GUI. At times, Workspace equivalents
are shown as well.

For example, we usually suggest this way of opening the Data
Browser:

user_guide.book : basics 39 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 39

Entering ObjectCenter commands in the Workspace

Open the Examine menu and select Display

We sometimes also add:

You can also enter the following in the Workspace:

-> display expression

ObjectCenter’s spot help also shows Workspace equivalents. For
example:

For a complete list of all the commands that you can enter in the
Workspace, see the commands entry in the ObjectCenter Reference.
Each command also has a separate Reference entry.

To get summary help on usage for a specific command right in the
Workspace, you can use the help command:

-> help list
list - display source code lines
list line - display from line
list line line - display between lines
list func - display from top of function
list file - display from top of file
list "file":line - display specified line
list identifier - display defining location
list -n - display n lines before current location

user_guide.book : basics 40 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

40 ObjectCenter User’s Guide

Executing shell
commands

ObjectCenter provides two Workspace commands to execute
subshells from the Workspace:

• The sh command executes a Bourne subshell (/bin/sh).

• The shell command executes your default shell.

The default shell is specified by ObjectCenter’s shell option,
which is set to the value of your UNIX SHELL environment
variable when you start ObjectCenter.

Any command-line arguments that you give these commands are
passed on to the subshell, and results from the shell command are
displayed below the command line:

-> sh grep "test" main.c
test(1,2,3,4);
-> shell touch {term,last}.o
->

Using aliases for
ObjectCenter
commands

At startup, ObjectCenter automatically creates two aliases for the
commonly used shell commands pwd and ls:

-> pwd
/usr/steinway
-> ls
a.c b.c c.c d.c

To see all the aliases currently defined, use the alias command with no
arguments:

-> alias
ls sh ls
pwd sh pwd
assign print
set print
undisplay sh echo "Use the ’delete’ command to

remove display items."
restore sh echo "Use the ’load’ command to

restore project and image files."

To provide similar shortcuts for the commands you use most often in
the Workspace, you can create your own aliases using the alias
command. For example:

-> alias s step

user_guide.book : basics 41 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 41

Entering ObjectCenter commands in the Workspace

You can use your local .ocenterinit or .pdminit file to define aliases
across ObjectCenter sessions. Because ObjectCenter first looks in the
current working directory for these local files, you can use different
ones for each project as long as each project is in a different directory.
You can also use the ocenterinit file to set system-wide options for
component debugging mode. ObjectCenter reads the system-wide
ocenterinit before .ocenterinit, so local aliases override any
corresponding system aliases.

For more information, see the alias and objectcenter entries in the
ObjectCenter Reference.

Other operations
in the Workspace

The Workspace supports a range of extended input functionality, such
as command history, name completion, and inline editing. This input
functionality is based on similar features found in the tcsh shell (an
extended version of the csh shell) and the emacs editor.

In addition to these extended input capabilities, ObjectCenter also
offers functionality for general Workspace maintenance through
clearing the Workspace, saving a session log, and displaying and
saving your input history.

Clearing the
Workspace

You can clear the Workspace by using the clear command from the
Workspace pop-up menu. This places the Workspace prompt at the
top of the pane. Clearing the Workspace pane does not affect any
loaded files or attached libraries.

Saving a session log
in component
debugging mode

At any point, you can save to a file a transcript of Workspace actions.
In this file, ObjectCenter saves all the Workspace lines specified in
your resource file. The Workspace will save only a maximum number
of lines. You can change the maximum number of lines, however, or
make it unbounded. For information about changing the maximum
number of lines, see the X resources entry in the ObjectCenter Reference.

To save a transcript, display the Workspace pop-up menu and select
Save Session to. This displays a submenu.

You can use the default name (~/ocenter.script) or specify another
name for your logfile.

user_guide.book : basics 42 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

42 ObjectCenter User’s Guide

Displaying your
input history

You can display your previous input in the Workspace by using the
scrollbar. You can also use ObjectCenter’s history command to display
previous input:

-> int i;
-> double d;
-> char c;
-> history

1: int i;
2: double d;
3: char c;
4: history

Saving your input
history

ObjectCenter saves all input made in the Workspace in a temporary
logfile that is deleted at the end of a session. The name of the logfile is
specified by ObjectCenter’s logfile option. You can specify that
ObjectCenter keep a permanent logfile by using the -f command-line
switch when starting ObjectCenter. For more information, see the
objectcenter entry in the ObjectCenter Reference.

If you did not use the -f switch when starting ObjectCenter, you can
still save the contents of the logfile at any point by redirecting the
output of the history command:

-> history #> my_ocenter_log

The logfile records your Workspace input only; it does not show
ObjectCenter’s output. This logfile is affected by the line-number limit
in the Workspace. You can change the line-number limit, however, or
make it unbounded. For information about changing the line-number
limit, see the X resources entry in the ObjectCenter Reference. You can
also use the edit workspace command. See the edit entry in the
Reference for more information.

More information on
Workspace
operations

For more details about Workspace input and maintenance features,
see the Workspace entry in the ObjectCenter Reference.

Shortcuts for
other operations
in the Workspace

Beyond entering ObjectCenter commands at the prompt, you can use
the Workspace shortcuts for operations on your command input as
well as on the source code you have listed in the Source area: calling
your editor on a specified location, getting information on listed
expressions, and setting or deleting debugging items. Using these
shortcuts, you can access these operations through pop-up menus and
pop-up windows; see 'Main Window shortcuts with pop-up menus
and windows' on page 31.

user_guide.book : basics 43 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 43

Listing source code

Listing source code
ObjectCenter lists source code in the Source area of the Main Window.
Because it is such a fundamental aspect of all your programming
tasks, ObjectCenter offers many ways for you to get your source code
listed. And once you have it listed, you can use the Source area for
many different operations on that source code: finding a particular
place in the code, getting information on listed expressions, and
setting or deleting debugging items such as breakpoints on specific
lines of code.

Listing source
code in the
Source area

The method you use to list code depends on what window you are in
and what means of access is the most convenient at a given moment.
For example, the List menu in the Main Window allows you to choose
from files you have listed previously, as shown in the following
illustration.

user_guide.book : basics 44 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

44 ObjectCenter User’s Guide

The following table describes the ways to list a file:

Shortcuts for
other operations
in the Source area

Beyond listing source code, you use the Source area for other
operations on the source code you have listed: calling your editor on
a specified location, getting information on listed expressions, and
setting or deleting debugging items. You can access these operations
through pop-up menus and pop-up windows; see 'Main Window
shortcuts with pop-up menus and windows' on page 31.

Table 4 Listing a File: Methods According to Work Area

Work Area Ways to List a File

Main Window From the File menu, select List.

From the List menu below the Source
area, select a previously listed file or select
New File, which opens a file selection
dialog box.

Project Browser From the File menu, select List.

From the pop-up menu in the Files area,
select List.

Error Browser Select a warning or error message.

Cross-Reference Browser From the Examine menu, select List.

Inheritance Browser Select list.

Class Examiner Select list.

Workspace Use the list command in the Expressions
Options menu by pressing the Shift key
and the Right mouse button. See
'Expressions Options (shift-right) menu'
on page 206.

user_guide.book : basics 45 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 45

Editing source code

Editing source code
Through the Edit Server, ObjectCenter provides tight integration with
your standard editor, either vi or GNU emacs. This tight integration
allows you to get the source code you are concerned with at the
moment into your editor quickly and easily.

For example, when you invoke your editor from a warning or error
message in the Error Browser, ObjectCenter puts the source file
containing that violation into your editor and places the cursor at the
beginning of the line containing the problem.

You can also start ObjectCenter within an emacs session, which lets
you edit your code directly in the source area. See the emacs
integration entry in the ObjectCenter Reference.

Invoking your
editor

Like listing files, editing your code is such a fundamental aspect of all
your programming tasks that ObjectCenter provides many ways to do
this. The method you use at a given moment depends on what
window you are in and how you are working in that window. For
example, selecting the Edit symbol in the Main Window invokes your
editor on the currently listed file with the cursor at the top of the file,
as shown in the following illustration:

Table 5 lists the ways to invoke your editor:

Edit symbol

user_guide.book : basics 46 Mon Jun 5 13:07:07 1995

Chapter 2: ObjectCenter basics

46 ObjectCenter User’s Guide

Specifying your
editor

As shipped, ObjectCenter provides integration for both the vi and
GNU emacs editors. ObjectCenter uses the vi editor by default. To use
an editor other than vi, specify this editor as the value of the EDITOR
environment variable before you start up ObjectCenter. For example,
at the shell type:

% setenv EDITOR emacs
% objectcenter

You cannot change editors within an ObjectCenter session. For more
information see 'Connecting your editor to ObjectCenter' on page 226.

Table 5 Invoking Your Editor: Methods According to Work Area

Work Area Ways to Invoke Your Editor

Main Window From the File menu, select Edit.

Select the Edit symbol below the Source
area.

From the Source area pop-up menu, select
Edit.

From the Line Number Options pop-up
menu at the left of the Source area, select
Edit.

Project Browser From the File menu, select Edit.

From the pop-up menu in the Files area,
select Edit.

Error Browser Select the Edit symbol at the left of a
warning or error message.

Cross-Reference Browser From the Examine menu, select Edit.

Inheritance Browser Select edit.

Class Examiner Select edit.

Workspace Use the edit command in the Expressions
Options menu by pressing the Shift key
and the Right mouse button. See
'Expressions Options (shift-right) menu'
on page 206.

user_guide.book : basics 47 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 47

Quitting ObjectCenter

Quitting ObjectCenter
To exit an ObjectCenter session, from the ObjectCenter menu in the
Main Window, select Quit ObjectCenter. In the dialog box, select Quit
to exit.

This dialog box also gives you the choice of saving a project file. The
next time you start ObjectCenter, you can quickly restore the state of
your work by loading the project file.

For more information about using project files, see 'Loading an
existing project file' on page 69.

You can also enter the following in the Workspace:

-> quit

To quit without being asked for confirmation, enter the following:

-> quit force

For more information about quitting ObjectCenter, see the quit entry
in the ObjectCenter Reference.

user_guide.book : basics 48 Mon Jun 5 13:07:07 1995

user_guide.book : managing 49 Mon Jun 5 13:07:07 1995

Chapter 3 Managing your
code in ObjectCenter

This chapter describes how to get your code into
ObjectCenter and manage it effectively. It covers
the following topics:

• Your range of choices for working on code in
ObjectCenter

• Deciding your basic approach

• Deciding which form to use for your components

• Loading individual components

• Loading components as a project

• Loading an existing project

• Establishing a project

• Managing individual components in your
project

• Managing your whole project

• Enhancing performance for large projects

• Specifying an executable target

user_guide.book : managing 50 Mon Jun 5 13:07:07 1995

user_guide.book : managing 51 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 51

Overview

Overview
Before you can use any of ObjectCenter’s capabilities for interactive
debugging or code comprehension, your first step is to get your code
into the ObjectCenter programming environment.

In process debugging mode, you bring your code into ObjectCenter by
specifying a fully linked executable as a debugging target.

In component debugging mode, you bring your code into
ObjectCenter as source file, object file, and library components that
together make up your current ObjectCenter project. As its
incremental loader/linker brings these components in, ObjectCenter
processes the files to obtain the information it needs for automatic
error checking, debugging, and code visualization.

In addition to loading components for your project, when you are in
component debugging mode, you can also set up and manage your
project using the Project Browser and various ObjectCenter
commands, options, and properties that operate either on individual
files or on the project as a whole.

user_guide.book : managing 52 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

52 ObjectCenter User’s Guide

Your range of choices for bringing
your code into ObjectCenter
Because ObjectCenter’s functionality for interactive programming is
so extensive, ObjectCenter gives you a wide range of choices in how
you bring your code in and set up your work session. Figure 2 lays out
the choices you can make:

The following discussion describes each possibility.

Deciding your basic approach
The first choice in getting your code into ObjectCenter is between
specifying a fully linked executable or loading source, object, and
library files as separate components that make an ObjectCenter
project.

Comparing
performance
factors

You decide on your basic approach based on the particular balance of
performance factors that are most important to you for a given
ObjectCenter session. Table 6 can help you decide.

Figure 2 Ways You Can Bring Code In and Work On It in ObjectCenter

target an executable in pdm load components in cdm

Decide a basic approach for your session

executable executable source filesobject files

libraries
and

corefile
alone

executable

running process
and

user_guide.book : managing 53 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 53

Deciding your basic approach

Table 6 Performance Factors According to Debugging Mode

Performance Factor Component Debugging Mode Process Debugging Mode

Error checking Full load-time error checking in
source and run-time error checking
in instrumented object and source.

Catches segmentation faults.

Interactive debugging
capabilities

Full.

Standard debugging actions.

Interactive prototyping, using code
fragments, and unit testing with the
interpreter.

Some.

Standard gdb debugging
actions and debugging on
machine instructions.

Immediately locating an error
that causes a crash by
specifying a corefile.

Code comprehension Data Browser for data-level
understanding and ability to change
values of elements directly in the
Data Browser.

Cross-Reference Browser for
function-level understanding.

Project Browser Contents window
for file-level understanding.

Inheritance Browser for class-level
understanding.

Class Examiner for
class-member-level understanding.

Data Browser for data-level
understanding.

Speed of setup Slower setup. Loading source is
slowest.

The fastest way to get your
code in and start working.

Amount of memory More memory required. Demands least amount of
memory.

Speed of execution Ranging from full speed in regular
object code to much slower in
source.

Full speed of the machine.

user_guide.book : managing 54 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

54 ObjectCenter User’s Guide

Why load source,
object, and library
components?

You choose to load source, object, and library components if

• You want the incremental loader/linker for incremental
development with quick turnaround on your edit, load, link,
run, and test programming cycle.

• You want a C++ interpreter and a C interpreter for interactive
prototyping and unit testing.

• You want the full range of code comprehension facilities that
the Browsers provide.

• You want automatic load-time and run-time error checking.

• You want the full range of debugging facilities.

However, you need to keep in mind that to load source, object, and
library components, you must be willing to accept heavier memory
demands, slower setup time, and slower execution speed than with an
executable.

Why target an
executable?

You choose to target an executable if

• You want the fastest startup for getting to a specific bug.

• You want the lowest memory usage.

• You want to use a corefile to analyze the state of your program
at the point of a crash.

• You want debugging at the assembly level.

• You want to debug a process that is already running.

However, you need to keep in mind that to target an executable you
must be willing to sacrifice automatic error checking, some other
debugging facilities, function and file-level code comprehension, and
the C++ or the C interpreter for interactive prototyping and unit
testing.

user_guide.book : managing 55 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 55

Deciding the form to use for components of a project

Deciding the form to use for
components of a project
If you have decided to load source and object components in
component debugging mode, your next choice is which form to use
for these files.

The most clear-cut choice is between loading source or object code. If
you decide to load object code, you have the additional choice of
loading it with or without debugging information. And once object
code is loaded, you have the choice of leaving it as it is or
instrumenting it (using the ObjectCenter instrument command to
enable run-time error checking on it).

You will almost always want to use demand-driven code generation,
an option of ObjectCenter that saves significant load time and is on by
default. When it is on, ObjectCenter loads only the source code or
object code your program uses. For example, if your program uses
only one class in a class library file, ObjectCenter does not load the
entire class library. ObjectCenter loads only the code for the one class
library you used. You can turn off demand-driven code generation
whenever you want to experiment with class libraries or other code in
the ObjectCenter programming environment.

For more information, see the demand-driven code generation entry
in the ObjectCenter Reference.

This means that a component can take any of the following forms:

• Source code

• Instrumented object code with debugging information
(compiled with the -g switch and loaded without the
ObjectCenter -G switch)

• Instrumented object code without debugging information
(compiled without -g or loaded with the ObjectCenter -G switch)

• Regular object code with debugging information

• Regular object code without debugging information

• Source code or object code of any type that ObjectCenter loaded
with demand-driven code generation on

• Code consolidated with ld -r

user_guide.book : managing 56 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

56 ObjectCenter User’s Guide

• A shared library

• A static library

Which form you use for a given file depends on performance features
you want to optimize for that file and your overall programming
strategy at a given point.

TIP: Using templates

If your program uses templates, which are a feature of the C++
language new in Release 3.0, you need to look at the templates
entry in the ObjectCenter Reference to take advantage of all of
ObjectCenter’s features for using templates. If you are new to
templates, you also may be interested in the Reference’s
discussion of such topics as the concept of templates in the C++
language, their use, and common pitfalls. Templates are
probably easier to use than most people expect; once you set up
your files correctly, the entire process can be handled
automatically by ObjectCenter.

TIP: Avoiding explicit loads of template declaration or
definition files

Do not load template declaration or definition files explicitly.
ObjectCenter handles these files automatically. For more
information, see the templates entry in the ObjectCenter Reference.

TIP: Loading template instantiation modules

Use the tmpl_instantiate_obj option to tell ObjectCenter
whether to load template instantiation modules as source code
or object code. By default, this option is set, which means
ObjectCenter loads template instantiation modules as object
code.

user_guide.book : managing 57 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 57

Deciding the form to use for components of a project

Comparing
performance
factors

The following tables present the advantages of each of type of
component and its performance factors. Table 7 compares loading
code with demand-driven code generation on and off.

Table 8 compares source code and the different types of object code.
For more information about the performance factors for each type of
component, see the debugging entry in the ObjectCenter Reference.

Table 7 Performance Factors With Demand-Driven Code
Generation On and Off

Performance Factor Demand-Driven
Code Generation=
on

Demand-Driven
Code Generation=
off

Speed of setup

1 = fastest

5 = slowest

4 5

Amount of memory

1 = least

5 = most

4 5

Load-time error
checking

3 3

Standard debugging
actions

3 3

Code visualization 3 5

user_guide.book : managing 58 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

58 ObjectCenter User’s Guide

a. Increased paging due to heavier memory usage might possibly degrade execution speed compared to
object code without debugging information. You can solve this by increasing available memory.
b. Only checks consistency of declarations and definitions across modules.
c. Only in certain standard library functions such as malloc() and strcpy().
d. No tracing; no stepout command; some forms of the action command have no effect.
e. Due to the way the linker handles debugging information for consolidated (ld -r) object files, using de-
bugging items is not as reliable with these files as it is with other object files containing debugging infor-
mation.
f. Breakpoints can be set only on functions.
g. No macro definitions. The quality of type information available for object code with debugging infor-
mation depends on how complete the debugging information supplied by your compiler is. Code visual-
ization for object code with debugging information has the following restrictions for examining some
variables: no class or function template information; no information on type const; no information on pro-
tection level of class members; references are treated as pointers; class browsing only on class hierarchy.
To work around these restrictions, load a header file with the appropriate declarations, or swap one of the
object files to source form.
h. Only cross-referencing functions and getting definitions for global symbols.

Table 8 Performance Factors for Source and Object Components

Performance
Factor

Source
Code

Instrumented
 Object Code
with Debug
Info

Instrumented
Object Code
without
Debug Info

Regular
Object Code
with Debug
Info

Regular
Object Code
without
Debug Info

Setup speed
1 = fastest
5 = slowest

5 4 3 2 1

Memory use
1 = least
5 = most

5 4 2 3 1

Execution speed
1 = fastest
3 = slowest

3 2a 2 1a 1

Load-time error
checking

Full. Minimal. b None. Minimal.b None.

Run-time error
checking
1 = most
4 = least

1 2 3 4 (Minimal) c 4 (Minimal) c

Standard
debugging actions

Full. Some
restrictions.d,e

Limited.d, f Some
restrictions.d,e

Limited.d, f

Code visualization Full. Some
restrictions.g

Limited.h Some
restrictions.g

Limited.h

user_guide.book : managing 59 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 59

Deciding the form to use for components of a project

Additional
performance
considerations

In addition to the general performance factors presented in Table 8,
performance can also be affected by the use of templates,
ObjectCenter’s header file skipping, and ObjectCenter’s demand-
driven code generation.

Skipping header
files when compiling
object files

If you load object files that require compilation (they do not exist or are
out-of-date with their source or header files), you can decrease the
compilation time with precompiled header files, using ObjectCenter’s
facility for avoiding recompilation of common header files.This
facility saves and reuses an image of the compiled code for header files
that are used in common by modules in your program. To enable
header file skipping, use the +k switch to CC. For more information,
see the precompiled header files entry in the ObjectCenter Reference.

Demand-driven
code generation

You can increase performance when loading source or object code if
you keep demand-driven code generation on, which is the default
behavior. If the demand-driven code generation option is:

• On, ObjectCenter generates only the code your program uses.
For example, if you use only one class in a class library,
ObjectCenter generates only the code for the class you used.
You will probably want to keep demand-driven code generation
on almost all the time you are using ObjectCenter.

• Off, ObjectCenter generates all the code you have loaded,
whether your program uses it or not. For example, even if you
use only one class in a class library, ObjectCenter generates code
for the entire library. You may want to turn demand-driven
code generation off when you are experimenting with new code
and with class libraries.

To turn demand-driven code generation off or on, use the Enable
Demand Driven Generation option. See 'Setting project-wide
properties' on page 85 and 'Setting properties for individual
components' on page 80.

In a parallel fashion, you can also control demand-driven code
printing for compilation from the shell by using the -dd=on switch.
For more information see the “demand-driven code generation” entry
in the ObjectCenter Reference.

Use the -G switch You can save time and memory if you use the -G switch to load into
ObjectCenter object files compiled with the -g switch. The -g switch of
the compiler produces debug information, which you can choose to
ignore in ObjectCenter if you load them into the environment with the
-G switch.

user_guide.book : managing 60 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

60 ObjectCenter User’s Guide

Deciding an
overall strategy

In addition to deciding how you want a particular file loaded in
ObjectCenter, you need to decide the overall makeup of your project
as a whole. As with the decision about the form for individual files, the
particular mix of source and object files that you use for your project
depends largely on your debugging strategy at a given point.

With a project composed of many components, you have a vast
number of possible combinations. However, the most important
configurations for a project fall into the following scenarios. Set up
your project with one of the following combinations of code.

Source,
instrumented object
code, and regular
object code

Load one or two files as source, a small group as instrumented object
code with debugging information, and all the rest as regular object
code without debugging information.

This is the recommended project configuration when you are
developing code. You load a small group of files that are the focus of
your active development as instrumented object code with debugging
information. From this small group, you then swap in as source code
the one or two files that you are actually making changes to at the
moment. This gives you automatic error checking and full debugging
capabilities on the new code as you add it. All other files are loaded as
regular object code without debugging information.

Source and
instrumented object
code with debug info

Load one or two source files and the rest as instrumented object code
with debugging information.

This is the recommended configuration when you are tracking down
a bug. The one or two files you load or swap in as source code are the
current focus of your debugging or development effort. For this focus
area, you want the full range of ObjectCenter’s interactive
programming functionality available, including full load-time and
run-time error checking. For the rest of your program, instrumented
object code provides most run-time error checking, and loading object
code with debugging information allows full interactive debugging in
object files.

Instrumented object
code with debug info

Load all files as instrumented object code with debugging
information.

By loading no source code, you gain on setup and execution speeds.
This is an good approach if you want to scan your program to localize
a problem area, since instrumented object code gives most, but not all,
run-time error checking capabilities. When you locate a trouble spot,
you can swap the module in question to source code to have full
error-checking and debugging capabilities.

user_guide.book : managing 61 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 61

Deciding the form to use for components of a project

Regular object code
with debug info

Load all files as regular object code with debugging information.

Using regular object code, rather than having ObjectCenter
instrument it, increases performance for setup and execution times.
Having debugging information gives you the full range of interactive
debugging features.

Regular object code
without debug info

Load all files as regular object code without debugging information.

By dropping debugging information, you maximize setup and
execution performance at the expense of many interactive debugging
features. In this case, you may even want to consider using process
debugging mode instead of component debugging mode. See Table 6
on page 53.

Source code only Load all components as source files.

This approach allows you to catch all load-time and run-time
violations possible. Typically, you would use this approach as a final
cleanup sweep through your entire program or to hunt down some
otherwise intractable bugs. Loading all components as source files at
the same time may not be possible depending on the size of your
program and machine resources available.

Demand-driven
code generation

Load all components with demand-driven code generation.

By loading all components with demand-driven code generation, the
ObjectCenter default, you save significant load time. When
demand-driven code generation is on, ObjectCenter loads only the
source code or object code your program uses. You can turn this
option off when you want to experiment with new code.

Code fragments with
other components

Load code fragments with other components.

You can take advantage of ObjectCenter’s interpreter by loading code
fragments, such as those that include classes, to experiment with
them. See the "Interactive prototyping" section on page 138 for more
information.

For more information on these various possibilities for the makeup of
your ObjectCenter project, see the “debugging” entry in the
ObjectCenter Reference.

Choosing a
method for
loading the
components

Once you have decided on which form to use for the different
components of the project you want to work on, the next choice is the
method to use for loading and setting up those components either as
individual components or as a single project. The next sections discuss
these two possibilities.

user_guide.book : managing 62 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

62 ObjectCenter User’s Guide

Loading individual components
The most direct way to bring source, object, and library components
into ObjectCenter is to load each file or library individually. If you are
not using templates, y ou can load any new file or library to an existing
project or set up a project with a small number of files.

If you are using templates, you cannot explicitly load files containing
template definitions or declarations. Instead, you must specify search
paths for these files using the -I switch with the sys_loadcxxflags
option (for system libraries and #include files) or the load_flags
option (for user ones). See the templates entry in the ObjectCenter
Reference to find out how to do so.

Ways to load
individual
components
directly

Table 9 lists all of the ways to load a source or object file without
template definitions or declarations.

TIP: Using the -I (uppercase i) loading switch to specify
directories for header files

To enable ObjectCenter to load your header files, be sure you use
the -I (uppercase i) switch to specify the directories to search for
header files. You do this with the Load Flags setting in the
Properties window or the load_flags option. See 'Setting
project-wide properties' on page 85.

Table 9 Loading a Source or Object File: Methods According to
Work Area

Work Area Ways to Load a File

Main Window From the File menu, select Load. This loads the
file currently listed in the Source area.

Project Browser From the Project menu, select Add Files. This
opens a file selection dialog box.

From the File menu, select Load.

Workspace Use the load command.

user_guide.book : managing 63 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 63

Loading individual components

Table 10 lists all of the ways to load a library.

For more information, see the load entry in the ObjectCenter Reference.

What happens
when you load a
file or library

During the loading process, ObjectCenter’s incremental loader/linker
brings in your source or object file and gathers the information for
ObjectCenter’s interactive debugging and code comprehension
capabilities. The speed of loading is directly related to the amount of
information that ObjectCenter processes. Going in order from most
information and slowest loading to least information and quickest
loading, you can load files as source, object files with debugging
information, or object files without debugging information.

If you instruct ObjectCenter to load a file that is already loaded,
ObjectCenter checks to see if the file is up-to-date; if it is not
up-to-date, ObjectCenter reloads it. A file may be out-of-date because
a header file it includes is out-of-date.

By default, ObjectCenter instantiates templates later, when you issue
a link or build command, rather than at load time. We do not
recommend instantiating templates at load time. If you want to do so,
however, see the “Switches for templates” section in the templates
entry of the ObjectCenter Reference.

Table 10 Loading a Library: Methods According to Work Area

Work Area Ways to Load a File

Project Browser From the Project menu, select Add Libraries.
This opens a file selection dialog box.

From the File menu, select Load. In the dialog box,
use the -l switch format on the input line. For
example, to load libm.a, enter -lm.

Workspace Use the load command with the -l switch.

user_guide.book : managing 64 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

64 ObjectCenter User’s Guide

NOTE When loading a file containing object code with
debugging information or source code, ObjectCenter
performs load-time error checking. If it detects a
serious problem that would prevent your code from
compiling and linking, it automatically unloads the
file. A message in the Workspace informs you that the
file was unloaded, and the Error Browser button
indicates that you have a new error message. For
information on what to do, see 'What happens when
load-time checking finds a static problem' on page 98.

Loading source code If you request to load a source file and the corresponding object file is
already loaded, ObjectCenter first unloads the object file. If the file is
already loaded as source, then ObjectCenter processes the source code
and translates it into an intermediate code. This intermediate code is
used when you execute your program in ObjectCenter.

When translating C++ code, ObjectCenter does not expand inline
functions (equivalent to using +d with CC). This is so you can debug
inline functions.

Loading object code If you request to load an object file and the corresponding source file
is already loaded, ObjectCenter first unloads the source file. If the
object file you want to load does not exist or is out-of-date,
ObjectCenter causes a new object file to be compiled in one of two
ways. If the directory containing the source file also contains a
makefile, ObjectCenter does a make on the object file. If there is no
makefile, ObjectCenter sends the source file to the compiler directly.

Once an up-to-date object file exists, ObjectCenter processes the object
file to gather the information needed. The amount of information that
ObjectCenter can gather depends on whether or not the object file
contains debugging information.

For object files loaded with debugging information (compiled with the
-g switch and loaded without the ObjectCenter -G switch),
ObjectCenter has full type and source file information to enable most
interactive debugging and code comprehension capabilities. (Macros
are not accessible in object code.)

When determining whether an object file is up-to-date, ObjectCenter
checks the object file to see which components your program actually
used when creating the object file.

user_guide.book : managing 65 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 65

Loading individual components

NOTE To enable ObjectCenter to determine which
components your program actually used when
creating the object files, you must compile your
program with the -g switch (to include debug
information). When you compile with the -g switch,
the resulting object code lists the names of the header
files your program used.

This behavior is different from the make program,
which can determine header file dependencies even
when you compiled your program without the -g
switch.

For object files loaded without debugging information (compiled
without the -g switch or loaded with the ObjectCenter -G switch),
ObjectCenter only has information on text and data symbol
definitions. This means that debugging capabilities are limited to
setting breakpoints in a function, and code comprehension is limited
to cross-referencing functions and finding the definitions for global
symbols.

After you have loaded object code, either with or without debugging
information, you can go one step further by instrumenting it to enable
run-time error checking on it. See 'Instrumenting object files' on
page 78.

TIP: Ensuring that header file dependencies are always
checked

If ObjectCenter thinks a file is out-of-date but the make program
does not, ObjectCenter believes make. This can occur when
update dependencies are not included in your makefile. To
ensure that header file dependencies are always checked when
using makefiles, you can put explicit dependencies in your
makefile. For example:

x.o: x.h

user_guide.book : managing 66 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

66 ObjectCenter User’s Guide

Loading a library At startup, ObjectCenter automatically loads the standard C++ library
(libC.a) and the C library (libc.a) and any libraries that these libraries
depend on. (The exact list of these other libraries depends on your
platform.) On architectures that support shared libraries,
ObjectCenter loads the shared version of the standard library. You can
also load libraries directly in the same way that you load source and
object files.

When you load a library, ObjectCenter attaches the library and makes
the symbols it defines available for resolution of references from other
modules in your project. ObjectCenter processes the contents of the
library only to the extent of finding out what external symbols are
contained there; it does not gather information for interactive
debugging or code comprehension on library modules. (This is done
only when you explicitly link your project, as explained next.)

Loading properties When ObjectCenter loads a file or library, it uses the current values for
the loading properties set in the Project-wide Properties window. For
more information, see 'Setting project-wide properties' on page 85.

Automatic linking At load time, ObjectCenter’s incremental loader/linker automatically
links source and object components as they are loaded except for
template instantiations. ObjectCenter does not instantiate templates at
load time. To instantiate templates, issue a link or build command.

user_guide.book : managing 67 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 67

Loading individual components

When you reload a component or load a new component other than a
template instantiation, the loader/linker only has to relink for the
component being loaded, not for all the components that are already
loaded. This linking resolves all the intermodule symbolic references
among source and object files. It does not, however, resolve symbolic
references to libraries.

When ObjectCenter links and loads in a library module, in addition to
resolving symbols, ObjectCenter processes the module for
information to enable interactive debugging and code
comprehension.

More information For more information about loading individual files and libraries, see
the load entry in the ObjectCenter Reference.

TIP: Dealing with unresolved references to symbols in
libraries

To deal with unresolved references to symbols in libraries, you
need to explicitly link your project (see 'Linking your project' on
page 82). You can use the whatis or whereis command to
identify the location of the symbol. You can also use the nm
command to find the library or module and make sure it is
loaded.

With static libraries, ObjectCenter loads in the necessary
modules from the libraries at the time when you link your
project. For shared libraries, ObjectCenter loads in the necessary
modules from the libraries only as they are needed when you
run your program in ObjectCenter. Linking if you use templates

If you use templates, you need to explicitly link your project to
uncover unresolved references you need to fix. See "Linking
your project" on page 82.

user_guide.book : managing 68 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

68 ObjectCenter User’s Guide

Loading components as a project
In addition to loading individual files directly, ObjectCenter also
provides several methods for you to load all your project components
in a single operation. Figure 3 shows the range of choices available:

Figure 3 Methods for Loading Components as a Project

If you load your components as a single project, your first choice is
between loading an existing ObjectCenter project or establishing a
new project in your current session. You can load an existing project if
you have previously saved your project as a project file. If you do not
have an existing project saved as a project file, you can establish a new
project for your session by issuing the ObjectCenter make command
in the Workspace with a makefile containing special CL (CenterLine)
targets, issuing the ObjectCenter source command in the Workspace
with an ObjectCenter command file, or issuing the ObjectCenter
clezstart command at the shell before issuing the make command. The
next two sections discuss loading a project with and without an
existing ObjectCenter project file.

loading components as a project

establishing a project

using
make

using
clezstart

using
source

loading an existing project file

user_guide.book : managing 69 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 69

Loading an existing project file

Loading an existing project file
ObjectCenter allows you to save your current project as a project file.
Once you have an existing project saved, you can load it simply by
loading the project file.

Using a project file At any point while working in ObjectCenter, you can save your
current project as a project file. By loading this project file at a later
time, you can easily re-establish your previous project and resume
your work where you left off. The project file captures the following
project setup features:

• Source, object, and library files that make up your project

For each file in your project, your project file records the code
form and loading flags for that file. The code form can be source
or object code and, if object code, instrumented or regular.
Loading flags are those like -G for object files loaded without
debugging information.

• All current debugging items that are set

• Any warning numbers you have suppressed

• Settings for ObjectCenter options

• Settings for signals that are caught or ignored

Saving a project file To save a project, in the Project Browser you display the Project menu
and select Save Project. In the dialog box, you select Save as Project
File and supply a name for the project file you want to save your
current project in. The default name for a project file is ocenter.proj,
but you can use any name you choose for your project file.

Alternatively, in the Main Window, you can use the ObjectCenter
menu and select Save Project. You can also save a project file during
the exit procedures when you quit ObjectCenter.

You can also enter the following in the Workspace:

-> save project name_of_your_project

If you type only save project, your project is saved under the name
ocenter.proj.

user_guide.book : managing 70 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

70 ObjectCenter User’s Guide

Loading a project file If you have already set up an ObjectCenter project, you can easily load
the entire project into ObjectCenter by loading the project file for that
project. To load a project file, display the Project menu and select Load
Project. In the dialog box, supply the name of the project file. In the
dialog box, also change the directory if the project file is not in your
working directory, which appears by default.

You can also enter the following in the Workspace:

-> load project_file

When you load a project file, ObjectCenter loads the most recent
versions of the source and object files in your project.

Replacing your
present project
when you load a
project file

Loading a project file does not unload files previously loaded. Files in
the project file are added to the previous files. If you want the project
file to replace your previous files, you need to unload all your current
files (see 'Unloading all files and libraries' on page 79).

Establishing a project
This section discusses the three ways in which you can load a project
into ObjectCenter without having had to save the project previously in
ObjectCenter. These are the three ways:

• Issue the ObjectCenter make command in the Workspace with a
makefile containing special CL (CenterLine) targets.

• Issue the ObjectCenter source command in the Workspace with
an ObjectCenter command file.

• Issue the ObjectCenter clezstart command at the shell to invoke
the EZSTART utility that makes a copy of your original makefile
and changes your existing targets to CL targets in the copy. You
then issue the ObjectCenter make command on the copy to load
the project into ObjectCenter.

You can use the ObjectCenter make or source commands to load your
project at the start of each session, or you can load it as an
ObjectCenter project file. No matter which way you load your project,
you can always choose to save it in ObjectCenter as a project file.

user_guide.book : managing 71 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 71

Establishing a project

Issuing the make
command with CL
targets

If you are familiar with maintaining a makefile and using the UNIX
make utility, you may find the ObjectCenter make command the most
convenient way to establish your project at the beginning of each new
ObjectCenter session.

The ObjectCenter make command works with your own UNIX make
utility and allows you to use makefiles to set up and manage your
projects from within ObjectCenter. To do this, you simply add CL
(CenterLine) targets to your makefiles.

A standard UNIX makefile target is composed of shell lines
containing shell commands. For example:

a_standard_target: a.o b.o
echo "starting a standard target"
$(CC) $(CFLAGS) a.o b.o

In contrast, while a CL target can have shell lines like a standard
target, it also has one or more CL lines. The syntax for a CL line is the
following:

<tab>#ObjectCenter command

The following is an example of a CL target with a shell line and two
CL lines:

a_cl_target: a.o b.o
echo "starting a cl_target"
#load a.o b.o
#instrument a.o b.o

By adding this target to your makefile, you would then be able to issue
the following command from the Workspace, using the same
command-line arguments that you use with your standard UNIX
make utility:

-> make a_cl_target

Invoking ObjectCenter’s make command on this CL target would first
echo the string at the shell, then load the object files a.o and b.o into
ObjectCenter and instrument them.

user_guide.book : managing 72 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

72 ObjectCenter User’s Guide

In a similar way, you can add CL lines that use the setopt command to
set ObjectCenter options at the same time you load your files. For
example:

a_cl_target: a.o b.o
#load a.o b.o
#setopt program_name foo

For information on setting options, see 'Using ObjectCenter options'
on page 216.

For more information on the ObjectCenter make command and
customizing your makefiles with CL targets, see the make entry in the
ObjectCenter Reference.

Using the source
command with a
command file

If you have an ObjectCenter command file that contains the
ObjectCenter commands for setting up an ObjectCenter project, you
set up your project by using the source Workspace command. For
example, if your command file is named my_commands, you would
issue the following command in the Workspace:

-> source my_commands

A command file is an ASCII file containing only ObjectCenter
Workspace commands, with each command on a line by itself. For
example, a simple command file might contain the following lines:

load *.o
instrument all
swap problem_child.o

To help you to capture the exact sequence of setup commands for a
command file, you can start a new ObjectCenter session and use the
exact series of Workspace commands you want recorded in the
command file. When you have completed all the setup commands you
want to capture, redirect the output of the history command to the file
you will use for a command file. For example:

-> history #> my_commands

This file contains all the Workspace commands you have used. You
can then edit this file to make any additional changes.

For more information, see the source entry in the ObjectCenter
Reference.

user_guide.book : managing 73 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 73

Establishing a project

Once you have established an ObjectCenter project for your current
session, you use the Project Browser to manage your project during a
session and from one session to the next.

Using clezstart If you have an existing application for which you have a makefile with
only standard targets (no CL targets) and you want to get all the files
in this application loaded in as an ObjectCenter project, you can use
the ObjectCenter EZSTART utility. The EZSTART utility allows you to
import your application into ObjectCenter by using your standard
makefile to generate a new makefile containing the appropriate CL
targets. EZSTART names this new makefile Makefile.cline.

With this new makefile, you can use the ObjectCenter make command
to load your files as a project. Once you have these files loaded in
ObjectCenter, you can set properties for these files, set various
ObjectCenter options, and then save your session as a project file.
Alternatively, you can customize the CL targets in Makefile.cline,
integrate them into your regular makefile, and use the make
command to establish your project at the beginning of each session
(see 'Issuing the make command with CL targets' on page 71).

How EZSTART
works

Leaving your original makefile unchanged, EZSTART monitors your
existing makefile as it builds your current application once. Based on
this build of each file in your application, EZSTART constructs the
makefile Makefile.cline, which contains the equivalent CL targets.
This means that you do not have to change your existing makefile to
begin using the CenterLine software.

Doing a complete
conversion of
standard targets

The basic operation of EZSTART is to create CL targets that load all of
the files associated with your standard targets. You should use this
method only if you:

• Use standard tools. By default, EZSTART recognizes the
following tools only: cc, clcc, CC, gcc, acc, ld, make, ar, mv, and
cp.

• Invoke these tools in your makefile without using an absolute
path specification.

If your situation does not fit these conditions, see the clezstart entry in
the ObjectCenter Reference.

user_guide.book : managing 74 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

74 ObjectCenter User’s Guide

A project import
scenario

If you want to create CL targets to load all of the files that go into an
application, do the following:

1 Remove all the object files and executables that make up the
targets you want to build. Many users put a clean target in the
makefile to do this.

2 At the shell, execute clezstart from the directory in which you
normally execute make. Give the arguments to clezstart that
you normally give to make.

For example, if you would ordinarily use the UNIX command make
myProgram, you would substitute the following command:

% clezstart myProgram

The clezstart command creates the file Makefile.cline in the directory
from which you executed it.

If you made an executable target called myProgram, there will be two
targets in Makefile.cline. One of them is called myProgram_obj,
which loads all the object files and libraries that go into myProgram,
and the other is called myProgram_src, which loads all the source files
and libraries. If you want to load object files, you would then use the
target name with the _obj suffix as an argument for the make
command in the Workspace:

 -> make -f Makefile.cline myProgram_obj

You can create a third target named myProgram_obj_nodebug, which
corresponds to the myProgram_obj target, except that ObjectCenter
generates myProgram_obj_nodebug with the -G switch; that is,
excluding debug information. For clezstart to create this third type of
target automatically, you must make a change in your clezstart_init
file. You must change the cl_nodebug_target=no option to
cl_nodebug_target=yes.

For more information on using the EZSTART utilities, see the clezstart
entry in the ObjectCenter Reference.

user_guide.book : managing 75 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 75

Managing individual components in your project

Managing individual components
in your project

Viewing the
components in
your project

To get an overview of the components that make up your current
project, you use the Project Browser. The Project Browser also lists files
that failed to load because they contained an error.

To open the Project Browser, in any primary window display the
Browsers menu and select Project Browser.

You can also enter the following in the Workspace:

-> contents

The Project Browser has two functional areas for listing the
components you have loaded: the Files area lists source and object
files, and the Libraries area lists libraries.

The Project Browser uses an I to indicate that a file has the property for
instrumenting object code set. (The file might be currently loaded in
either object or source form.) The -G symbol indicates that an object
file is loaded without debugging information. See the following
illustration for an example.

user_guide.book : managing 76 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

76 ObjectCenter User’s Guide

Instrumenting
object files

Enabling run-time error checking for object code in ObjectCenter is
called instrumenting the object file. When you instrument a file,
ObjectCenter gathers additional information on the file, which makes
it possible for ObjectCenter to perform certain kinds of run-time error
checking on the object code. For more information about memory
usage and other aspects of instrumenting object files, see the
instrument entry in the ObjectCenter Reference.

Loading files as
instrumented object
code

By default, files are loaded into ObjectCenter with the file property for
instrumented object code unset. To have ObjectCenter load object files
as instrumented code, set the Instrument Object Files property set in
the Project-wide Properties window.

user_guide.book : managing 77 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 77

Managing individual components in your project

As with the other project-wide properties, the Instrument Object
Files property in effect when you first load a file is remembered for
that file throughout your ObjectCenter session, unless you explicitly
change the properties in the File Properties window for that file.

Changing the project-wide property for instrumenting object files
does not affect files that are currently loaded. For more information,
see 'Setting project-wide properties' on page 85.

Changing from
regular to
instrumented object
code

To change object files loaded as regular object files to instrumented
object files, select the files in the Files area of the Project Browser and
select the Instrument button. The files become instrumented. To
instrument all object files, select Instrument/Instrument All from the
Project Browser menu. All object files become instrumented. For more
information see, 'Setting properties for individual components' on
page 80.

You can also enter the following in the Workspace:

-> instrument filename.o

Once you instrument an object file, it remains instrumented until you
explicitly change it to uninstrumented or unload it.

Changing from
instrumented to
regular object code

To change object files loaded as instrumented object files to regular
object files, select the files in the Files area of the Project Browser and
select the Uninstrument button. The files become uninstrumented. To
uninstrument all object files, select Instrument/Uninstrument All
from the Project Browser menu. All object files become
uninstrumented. For more information see 'Setting properties for
individual components' on page 80.

You can also enter the following in the Workspace:

-> uninstrument filename.o

Reloading files
individually

Once you have a file loaded, you will want to reload the file any time
you make a change to it using your editor. You keep your files
up-to-date in ObjectCenter either by reloading files individually or by
building your project (see 'Building your project' on page 82).

In the Files or Libraries areas of the Project Browser, move the mouse
pointer over the line for the files you want to reload, display the
pop-up menu, and select Reload.

user_guide.book : managing 78 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

78 ObjectCenter User’s Guide

When you issue a command to reload a source file, ObjectCenter
reloads the source file only if the version currently loaded is
out-of-date with the version on disk. For an object file, in addition to
checking the loaded version of the file against the version on disk,
ObjectCenter also checks against the corresponding source file on
disk. If the object file is out-of-date in relation to the source file,
ObjectCenter causes the file to be recompiled (by calling make if there
is a makefile in the source directory or, if not, by sending the source file
directly to the compiler) and then reloads the file.

When you reload a file, ObjectCenter retains the same properties for
the file that it had before you reloaded it. For more information, see
'Setting properties for individual components' on page 80 and 'Setting
project-wide properties' on page 85.

user_guide.book : managing 79 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 79

Managing individual components in your project

Unloading files To remove a file from your current project, you unload it. When you
unload a file, you lose any property settings for that file. If you later
load the file again, you need to reset these properties (see 'Setting
properties for individual components' on page 80). When you unload
a file, there is no need to relink the remaining files.

You can unload a file or library by selecting File/Unload in the Main
Window or Project Browser or by using the unload command in the
Workspace.

Unloading all files
and libraries

To unload all source and object files, with the mouse pointer in the
Files area, display the pop-up menu and select Select All. Then select
the Unload button in the Files area.

You can also enter the following in the Workspace:

-> unload user

To unload all libraries, with the mouse pointer in the Libraries area,
display the pop-up menu and select Select All. Then select the Unload
button in the Libraries area.

By combining the two methods just described, you can unload your
entire project.

You can also enter the following in the Workspace:

-> unload all

For more information on unloading your files, see the unload entry in
the ObjectCenter Reference.

Swapping files At any time, you can change a file that you have loaded from object
code to source or from source code to object by swapping it. When you
swap a file, ObjectCenter first unloads the file in its current form (for
example, main.o) and then loads the corresponding file (main.c).

TIP: Specifying the search path for swapping files

When you swap a file, by default ObjectCenter searches in the
same directory where you loaded the file being swapped out. To
specify the search path for swapping, use the Search Path for
Files and Use Search Path When Swapping project-wide
property settings (see 'Setting project-wide properties' on page
85).

user_guide.book : managing 80 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

80 ObjectCenter User’s Guide

Swapping is especially useful when you have a file in source form as
the focus of your debugging effort and finish debugging it. You would
then swap it to object form to get better performance. Likewise, when
you have a file loaded as object code and decide to make that file the
focus of your debugging effort, you would swap it to source code.

When you swap a file, ObjectCenter retains the same properties for the
file that it had before you swapped it. For more information, see
'Setting properties for individual components' on page 80 and 'Setting
project-wide properties' on page 85.

You can swap a file or library by selecting File/Swap in the Main
Window or Project Browser or by using the swap command in the
Workspace.

For more information, see the swap entry in the ObjectCenter Reference.

Setting properties
for individual
components

An important way to manage the individual components in your
project is by setting properties on specific files and libraries. Once you
set properties for a component, these properties stay in effect as you
swap or reload the file or build your project. If you unload a file or
library, any properties you have set for that component are lost and
need to be reset if you later load that file or library again individually.

Setting properties
for source or object
files

To set properties on source or object files, go to the Files area of the
Project Browser and select all the files for which you want to set
properties. Then select the Properties button below the Files area. A
File Properties window opens for each of the selected files. You can set
the following properties:

• Load flags

• Source language (C, C++, or Other/Unknown)

• Whether to ignore warnings when loading a source file

• Whether to ignore debugging information

• Whether to instrument an object

• Whether to enable demand-driven code generation

user_guide.book : managing 81 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 81

Managing individual components in your project

Setting properties
for libraries

To set properties on libraries, go to the Libraries area of the Project
Browser and select all the libraries for which you want to set
properties. Then select the Properties button below the Files area. A
Library Properties window opens for each of the selected files. You can
set the following properties:

• Load flags

• Whether to ignore warnings when loading

• Whether to load debugging information

user_guide.book : managing 82 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

82 ObjectCenter User’s Guide

Managing your whole project

Building your
project

As you make changes to the source code for source and object files you
have loaded in ObjectCenter, your project becomes out-of-date. To
keep your project current with your source code, you need to build
your project.

You can build your current project by selecting Session/Build Project
in the Main Window, Execute/Build Project in the Project Browser, or
by using the build command in the Workspace.

When you build your project, ObjectCenter checks the dependencies
for all the source and object files that you have loaded. ObjectCenter
reloads and relinks a source file if the file itself has changed or if it is
out-of-date with the header files it depends on.

For more information on building a project, see the build entry in the
ObjectCenter Reference.

Linking your
project

ObjectCenter’s incremental loader/linker automatically links together
source and object modules as these are loaded, resolving symbolic
references among these modules. This automatic linking does not,
however, resolve symbolic references to libraries.

NOTE To resolve symbolic references to libraries and
template definitions if you use templates, you need to
explicitly link your project.

Ways to explicitly
link your project

You can link your current project by selecting Session/Link Project in
the Main Window, Execute/Link Project in the Project Browser, or by
using the link command in the Workspace.

Dealing with
unresolved symbols

If you select Link in the Project Browser or issue the unres command
in the Workspace, the Project Browser opens an Unresolved Symbols
window, listing all unresolved symbols. You can select one of the
unresolved symbols and open the Cross-Reference Browser to see
where the unresolved symbols are used. See the "Cross-Reference
Browser" section on page 191.

user_guide.book : managing 83 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 83

Managing your whole project

If you use templates and you have unresolved references to template
definitions, make sure:

• The template definitions and declarations are in files named
according to the conventions in the “Coding conventions”
section of the templates entry in the ObjectCenter Reference.

• The path to each template definition and declaration file is
specified with the -I switch in load_flags or in sys_loadcxxflags.
See the “Options” section of the templates entry in the
ObjectCenter Reference.

To resolve unresolved references to definitions other than templates
after linking, do the following:

1 Check the source and object files listed in the Files area of the
Project Browser. If files are missing, load them individually.

2 If files listed in the Project Browser have a failed load status,
then check the Error Browser to see if load-time errors are
reported for these files. If so, correct the errors and reload the
files.

3 Check the Libraries area of the Project Browser for missing
libraries. If any libraries are missing, load them individually.

4 Link your project again to ensure there are no more unresolved
symbols.

For more information on linking your project, see the link entry in the
ObjectCenter Reference.

Running your
project

ObjectCenter’s interpreter allows you to either run your whole project
or execute any part of your code at any time.

You can run your current project by selecting the Run button in the
Control Panel of the Main Window, Execute/Run in the Project
Browser, or by using the run command in the Workspace.

When you run your project, ObjectCenter first links it and then
executes main(). If ObjectCenter reports unresolved symbols as a
result of attempting to link your project, you need to resolve these
symbols. If you use templates and ObjectCenter reports unresolved
symbols as a result of attempting to instantiate templates, you need to
resolve these symbols also. See 'Linking your project' on page 82.

user_guide.book : managing 84 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

84 ObjectCenter User’s Guide

When you start ObjectCenter, your program opens a clxterm window
to run in, and returns control to the shell in which you invoked
ObjectCenter. A clxterm window is an xterm window running under
ObjectCenter. You can set options in a clxterm window just as you can
with an xterm window.

To avoid creating the clxterm window, called the Run Window, use the
-no_run_window switch when you invoke ObjectCenter. The
program’s input and output will instead go to the shell in which you
invoked ObjectCenter. When you use the -no_run_window switch,
you are unable to interrupt ObjectCenter and unable to place it in the
background. This switch is intended for debugging applications that
need specific terminal support rather than a generic xterm window.

NOTE You should not start ObjectCenter in the background
using the -no_run_window switch. Your program
could have undesirable input/output behavior.

To create the Run Window, but avoid returning immediate control to
the shell, use the -no_fork switch. When you use the -no_fork switch,
control returns to the shell only when you enter the suspend character
(usually Control-Z) or exit ObjectCenter. After you type the suspend
character in the shell, you must type bg to enable your program to
direct output again to the Run Window. If you do not use the -no_fork
switch, control is immediately returned to the shell.

TIP: Clearing the Run Window

To clear the Run Window, place your cursor over it and hold
down the Control key and the Middle mouse button. From the
popup menu that appears, select “Reset and Clear Saved Lines”.

The Run Window behaves like an xterm window. Each Control
key/mouse button pair pops up a different menu. For more
information, refer to the xterm UNIX manual page.

user_guide.book : managing 85 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 85

Managing your whole project

By default, issuing the run or start command will automatically
restore the Run Window if it has been iconified. To prevent this default
behavior, set the win_no_raise option in the Workspace or in your
startup file.

For more information on running your project, see the run and rerun
entries in the ObjectCenter Reference.

Setting
project-wide
properties

When loading a file, ObjectCenter uses the project-wide loading
properties specified by the Project-wide Properties window. These
properties are remembered for that file throughout your session as
you swap or reload files or build your project. Alternatively, to have a
file take on new project-wide properties, you can unload and then
load the file.

To set these properties, go to the Project Browser, display the Project
menu, and select Project Properties. In the Project-wide Properties
window, you can specify the loading properties, described in Table 11,
which correspond to the indicated ObjectCenter options.

TIP: Using a different terminal emulator for program input
and output

If you want to use a different terminal emulator for input and
output from ObjectCenter’s default, start another ObjectCenter
session from that terminal emulator with the -no_run_window
switch.

TIP: Changing properties for a file that is already loaded

To change a property for a file that is currently loaded, do one of
the following:

• Set new properties for that file in the File Properties window
(See 'Setting properties for individual components' on page
80).

• Unload the file, set the desired project-wide properties, and
then load the file again.

• Reload the file from the Workspace using the load command
with explicit load flags. (These will replace the old
project-wide load-flag properties for that file.)

user_guide.book : managing 86 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

86 ObjectCenter User’s Guide

Table 11 Project-Wide Properties Window

Project-Wide
Property

Description Corresponding
Option or Switch

Program
Name

Specifies the value of the first argument to main(), which
is argv[0].

program_name

Search Path
for Files

Specifies the order for searching directories when any of
the following ObjectCenter commands are invoked: cd,
edit, list, load, or swap (if the swap_uses_path option is
set).

The path does not affect where ObjectCenter searches for
header files. For this, use the -I switch with the Load Flags
property or load_flags option.

path

Use Search
Path When
Swapping

Specifies whether to use the value of the path option when
the swap command is invoked. (Use if selected.)

swap_uses_path

Load Flags Specifies the default switches used for new files being
loaded. This property applies only the first time a file is
loaded and only if the load command is called without
any switches specified explicitly.

Changing the Load Flags properties does not affect any
files currently loaded. Once you load a file (even if the load
fails), unless you explicitly specify new switches when
issuing the load command, ObjectCenter always reloads
the file using the same load switches in effect when it was
loaded originally.

Be sure to use the -I switch to specify additional
directories to search for header files. ObjectCenter always
uses -L switches (switches for specifying the search path
for libraries) with load_flags.

load_flags

(without the -w
or -G switches)

If you want to change any of the properties explicitly
listed elsewhere on the Project-Wide Properties window,
do so where they are explicitly listed. See the entries in this
table for the following items explicitly listed elsewhere on
the Project-Wide Property window: Assume ANSI C,
Ignore Warnings When Loading, Load Debugging
Information, Instrument Object Files, Language
Properties, Instantiate Templates as Object Code, Enable
Demand Driven Generation.

user_guide.book : managing 87 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 87

Managing your whole project

For more information on the options and switches related to these
project-wide properties, see the load entry in the ObjectCenter
Reference. For information on how to set options, see 'Using
ObjectCenter options' on page 216.

Assume
ANSI C

Specifies whether to conform to the ANSI C standard.

(Conform if selected.)

ansi

Ignore
Warnings
When
Loading

Specifies whether to automatically suppress all load-time
warnings. (Suppress if selected.)

load_flags

(with the -w
switch)

Load
Debugging
Information

Specifies whether to load in debugging information
contained in object files compiled outside ObjectCenter
with the -g switch. (Use if selected.)

load_flags

(with the -G
switch)

Instrument
Object Files

Specifies whether to automatically instrument each object
file when it is loaded. (Instrument if selected.)

instrument_all

C Suffixes Specifies file extensions to search for when ObjectCenter
needs to find a C source file that corresponds to a given
object file.

c_suffixes

C++ Suffixes Specifies file extensions to search for when ObjectCenter
needs to find a C++ source file that corresponds to a given
object file.

cxx_suffixes

Instantiate
Templates as
Object Code

If set, ObjectCenter instantiates templates as object code. If
unset, ObjectCenter instantiates templates as source code.

tmpl_instantiate
_obj

Enable
Demand
Driven
Generation

Specifies complete demand-driven code generation. Only
C++ code actually used in a source module you are
loading (together with any included header files) is
generated. This is the default setting.

load -dd=on

Table 11 Project-Wide Properties Window (Continued)

Project-Wide
Property

Description Corresponding
Option or Switch

user_guide.book : managing 88 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

88 ObjectCenter User’s Guide

Enhancing performance for large
projects
When working with large ObjectCenter projects, you can use the
techniques presented in this section to enhance performance.
However, as already discussed in this chapter, increased performance
in loading, executing, and memory conservation are all factors that
need to be balanced against debugging capabilities available.

The following table compares various techniques and the areas of
performance that they affect.

TIP: Changing load flags for a file already loaded

Changing the Load Flags property or the load_flags option does
not affect any currently loaded files. To change load flags for a
file already loaded, use the load command in the Workspace
and explicitly specify new load switches for it.

Alternatively, after you change values for the Load Flags
property or the load_flags option, you can unload files to clear
ObjectCenter memory of their original load flags and then reload
them so they will pick up the new Load Flags settings.

Table 12 Effects of Various Techniques for Enhancing Performance

Performance Enhancement Gained

Technique to Use Speed of
Project Setup

Speed of
Execution

Memory
Conservation

Consolidate object files ✓ ✓

Load object, not source ✓ ✓ ✓

Do not load debugging
information

✓ ✓ ✓

Use regular object code, not
instrumented object code

✓ ✓ ✓

Set the save_memory option ✓

user_guide.book : managing 89 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 89

Enhancing performance for large projects

Consolidating object
files

You can speed up the load process and conserve memory by
combining many smaller object files into one large object file with the
ld -r linker command. You can use this approach for object files that
you are not changing much.

The loading time for the consolidated (ld -r) object file will be much
faster than the total time for the separate smaller files.

NOTE Due to the way the linker handles debugging
information for consolidated (ld -r) object files, using
debugging items is not as reliable with these files as it
is with other object files containing debugging
information.

The specific switches you use with the ld -r linker command depends
on your platform. For more information, see the UNIX manual page
for the ld command on your system.

Loading object files
rather than source
files

Object files load faster, execute faster, and take less memory than
source files. You can increase performance in all these areas by loading
all the files of your project in object form, except for a few selected files
that you load in source form in which you have maximum error
checking, debugging, and code visualization capabilities. Or you can
always load all files in object form and then swap a few selected files
to source.

Not loading in
debugging
information

Object files loaded without debugging information load faster and use
less memory. To increase performance in these areas with object files,
either you can use object files that were compiled without debugging
information (compiled without -g) or you can use the -G switch with
the load command.

Using regular object
code rather than
instrumented code

While not part of the loading process itself, instrumenting object code
adds to setup time. Instrumented object code also executes more
slowly. To minimize setup time for a large project, only instrument
object code that you want to examine more carefully during a given
session.

Setting the
save_memory option

Another way to conserve memory is to set the save_memory option
(see 'Using ObjectCenter options' on page 216).

user_guide.book : managing 90 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

90 ObjectCenter User’s Guide

When the save_memory option is set, global variables and allocated
data take up less memory. This is effective for memory conservation
with applications that have large data structures, such as large arrays
like int a[500000].

You need to set the save_memory option before you load files. Setting
this option reduces run-time violation checking capabilities. For more
information on the save_memory option, see the options entry in the
ObjectCenter Reference.

Keeping
demand-driven code
generation on

By keeping demand-driven code generation on, which is the
ObjectCenter default, you can save significant load time. When
demand-driven code generation is on, ObjectCenter loads only the
source code or object code your program uses. For example, if your
program uses only one class in a class library file, ObjectCenter does
not load the entire class library. ObjectCenter loads only the code for
the one class library you used.

user_guide.book : managing 91 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 91

Specifying an executable target

Specifying an executable target
If you have decided to target an executable in process debugging
mode, your next choice is which form of executable to target: an
executable file alone or with a corefile or running process. This choice
depends on your programming objective at a particular time.

Using an
executable alone

If you want the simplest, most direct route to jumping into a
debugging session, you specify an executable file. To specify an
executable file as your debugging target, use the debug command and
give the name of the file as an argument. For example:

pdm 2 -> debug bounce
Debugging program ‘bounce’

Using an
executable with a
corefile

If your program has dumped core and you want to go immediately to
the point of the crash, you specify a corefile for your executable. To
specify a corefile with your executable, use the debug command and
give the name of the executable and its associated corefile as
arguments. For example:

-> debug bounce_dump core
Debugging program ‘bounce_dump’
Core was generated by ‘bounce_dump’.
Program terminated with signal 11, Segmentation
fault.
#0 0x10df0 in store_shape (count=0,
shape=0xeffff590 “rectangle”) at shape.c:11
 11 *old = *new;

Using an
executable with a
running process

If you have a program that you need to debug as a running process,
you use the debug command and give as arguments the name of the
executable and the id number of the associated running process.

For example, with the program bounces already running outside of
ObjectCenter with the process id 866:

pdm 30 -> sh ps -auxww |grep bounces
petiprin 866 90.9 1.3 36 356 p0 R 11:39 1:06 bounces
petiprin 863 15.4 0.4 28 112 p2 S 11:38 0:00 sh -c
ps -auxww |grep bounces

user_guide.book : managing 92 Mon Jun 5 13:07:07 1995

Chapter 3: Managing your code in ObjectCenter

92 ObjectCenter User’s Guide

You specify this process as a target in the following way:

pdm 31 -> debug bounces 866
Debugging program ‘bounces’ (previous program
‘/tmp_mnt/hosts/w+cap/u8/petiprin/ctutor_dir/bounces’
)
Resetting to top level.
pdm (break 1) 32 ->

More information For more information on when you would use each type of executable
target, see 'How you work in process debugging mode' on page 165.

user_guide.book : load_time_checking 93 Mon Jun 5 13:07:07 1995

Chapter 4 Fixing static errors

This chapter covers ObjectCenter’s load-time error
checking. It describes how ObjectCenter checks for
static errors and how to use the Error Browser to
deal with load-time errors and warnings. The
chapter covers the following topics:

• What static errors ObjectCenter finds

• What happens when ObjectCenter finds a static
problem

• Using the Error Browser to deal with warnings
and errors

user_guide.book : load_time_checking 94 Mon Jun 5 13:07:07 1995

user_guide.book : load_time_checking 95 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 95

Overview

Overview
When you load a source file in component debugging mode,
ObjectCenter automatically checks it for static errors; its load-time
error checker functions like a super-lint utility. If ObjectCenter finds
any static problems, it notifies you of these load-time violations
(warnings or errors) as they are encountered.

Using the Error Browser, you can either correct these static problems
as you go or suppress them to deal with later. ObjectCenter’s
incremental loader/linker and integration with your editor provide
quick turnaround to allow you to incrementally fix static errors as you
load the components of your project.

What static problems ObjectCenter
finds

The kinds of
static problems
ObjectCenter finds

ObjectCenter’s load-time checking finds static problems in the
following categories:

• I/O errors

• Illegal characters

• Illegal constant formats

• Illegal escape sequences

• Lexical constant overflow

• Improper comments

• Preprocessing violations

• Macro expansion violations

• Syntax errors

• Illegal statements

• Illegal expressions

• Undefined identifiers

• Unused variables

user_guide.book : load_time_checking 96 Mon Jun 5 13:07:07 1995

Chapter 4: Fixing static errors

96 ObjectCenter User’s Guide

• Improper type specifiers

• Declaration violations

• Initialization violations

• Redefinition violations

• Linking violations

• C++ ambiguity errors

• Class-specific errors

• Operator errors

• Virtual function errors

For a complete list of the individual violations that ObjectCenter
reports for each category, see the violations entry in the online
Reference.

Undetected
function
argument
mismatches in
C++ and C code

If you load C code that does not declare functions with prototypes,
argument mismatches concerning the number and type of arguments
for functions may go undetected depending on the order in which files
are loaded.

This is because the function argument mismatch violations are not
reported until the defining instance of the function has been seen.
Therefore, all calls to the function that were loaded prior to the
defining instance of the function are not checked properly.

For example, suppose that the test() function, which is defined in the
test.c file, is called with one argument in file one.c and three
arguments in the file two.c, as follows:

one.c: test(1);
two.c: test(1,2,3);
test.c: test(i, j) int i, j;

If both one.c and two.c are loaded (with -C, since they are C files) prior
to test.c, then no violations are reported. If however, you load test.c
first, the Error Browser reports a warning in one.c and two.c. Here is
the warning the Error Browser displays after loading the file test.c and
then the file one.c.

user_guide.book : load_time_checking 97 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 97

What static problems ObjectCenter finds

Since all function argument mismatches are detected at run time, this
situation is not as potentially troublesome as it may appear.

To find all of these warnings at load time, you must generate a
prototype file. For more information, see the proto entry in the
ObjectCenter Reference.

user_guide.book : load_time_checking 98 Mon Jun 5 13:07:07 1995

Chapter 4: Fixing static errors

98 ObjectCenter User’s Guide

What happens when load-time
checking finds a static problem
When ObjectCenter’s load-time error checker finds a static problem,
ObjectCenter notifies you with the Error Browser button and lists the
violation message in the Error Browser. For load-time errors, you use
ObjectCenter’s incremental loader/linker and close integration with
your editor to correct the source code and quickly load and link the
corrections into your ObjectCenter project. For load-time warnings,
you can either correct them as you go or suppress them and deal with
them at a later time.

The Error
Browser button

To notify you that new violation messages have arrived in the Error
Browser, the Main Window and the Project Browser have an Error
Browser button that announces new error and warning messages.

To deal with load-time violations, you can open the Error Browser by
selecting the Error Browser button in the Button Panel of the Main
Window or the Project Browser. You can also select Error Browser
from the Browsers menu in any primary window.

New errors message

user_guide.book : load_time_checking 99 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 99

What happens when load-time checking finds a static problem

The Error
Browser

As ObjectCenter finds load-time violations in source files it is loading,
it lists a message summarizing each violation in the Error Browser.
Here’s an illustration:

The Error Browser divides the static problems it finds into two
categories—more serious or less serious problems—and generates a
different type of violation message for each kind of problem:

• Load-time error messages

Load-time error messages indicate serious problems in your
code that would prevent your code from compiling and linking.

Because a file containing a load-time error cannot be linked with
the rest of your ObjectCenter project, ObjectCenter
automatically unloads the file. The Project Browser lists the load
status of the file as failed. You cannot use the file containing the
error inside ObjectCenter, and the definitions in this file are not
available to your project. ObjectCenter, however, remembers the
property settings for files that failed to load.

• Load-time warning messages

Load-time warning messages indicate static problems that are
less serious. These problems would not prevent your code from
compiling or linking. However, they indicate potential trouble
spots in your code and, at some point, need to be attended to in
order to have clean, maintainable code.

After encountering a warning, ObjectCenter continues reading
the file and reports on any additional problems it finds. Files
that contain warnings, but no errors, can be used in your
programs.

user_guide.book : load_time_checking 100 Mon Jun 5 13:07:07 1995

Chapter 4: Fixing static errors

100 ObjectCenter User’s Guide

NOTE When you are loading a C++ file, the message text is
usually the same as would be produced if you had run
the file through CC.

Fixing static
problems

To fix a problem indicated by a violation message, you first invoke
your editor directly on the source code containing the problem. Then
after editing the code causing the violation, you build your project to
load the changes into ObjectCenter. There are two distinct times when
you fix static problems:

• Getting your source code to load successfully

You deal with load-time errors when you are introducing new
source code into your project.

Because you cannot successfully load a source file that contains
a load-time error, you first need to take care of any load-time
errors. Since load-time errors are static problems that would
also prevent your code from compiling, this stage is strictly
analogous to getting your code to compile and link in your
standard edit, compile, link cycle.

• Cleaning up source code

You deal with load-time warnings whenever you do cleanup on
your code. If you like keeping your code clean as you work, you
can fix load-time warnings at the same time you fix load-time
errors. However, you may prefer to deal with cleanup as a final
stage of your programming cycle for an individual module or
an entire project.

You can easily postpone dealing with load-time warnings
simply by suppressing them in the Error Browser. Later, when
you want to deal with them, you can unsuppress them and
reload the code.

user_guide.book : load_time_checking 101 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 101

Using the Error Browser to deal with warnings and errors

Using the Error Browser to deal
with warnings and errors
When the Error Browser button indicates that you have new warning
or error messages, you can use the Error Browser to respond in any of
the ways in Table 13.

Table 13 How to Respond to Error Browser Warnings and Errors

If you want to... Then take this action... By doing the following:

Fix the problem
immediately.

Examine the warning or error
message and invoke your editor
on it.

1 Open the Error Browser,
select the Folder symbol
for the appropriate file,
and examine the violation
message.

2 To view the code in the
Source area, select the
violation message.

3 To invoke your editor on
the static problem, select
the Edit symbol at the left
of the violation message.

4 After fixing the static
problems, build your
project.

Wait until later to deal
with some category of
warning messages.

Suppress a category of warning
message for a scope you specify.

The category of warnings you
suppress is no longer reported by
ObjectCenter during your
session or until you unsuppress
it. You cannot suppress errors.

1 Open the Error Browser,
select the Folder symbol
for the appropriate file,
and select the warning
you want to suppress.

2 Display the Suppress
menu and select the scope
you want.

user_guide.book : load_time_checking 102 Mon Jun 5 13:07:07 1995

Chapter 4: Fixing static errors

102 ObjectCenter User’s Guide

Resume dealing with
some category of
warning message you
have suppressed.

Unsuppress the warning for a
scope you specify.

For warnings that you
unsuppress, ObjectCenter again
starts reporting that category of
warnings.

1 Open the Error Browser,
display the Suppress
menu, and select Open
Browser.

2 In the Suppressed
Messages window, select
the Folder symbol for the
appropriate file, and select
the warning to unsuppress.

3 Select the Unsuppress
button.

Not deal at all with a
warning or error
message during your
current session.

Remove a category of warning or
error message currently in the
Error Browser.

The category of violations you
remove are taken out of the Error
Browser permanently during
your session. Unlike
suppressing, this does not affect
subsequent reporting on this
category of violations during
your session. For example,
messages about violations you
removed without fixing will
return the next time you build
your project.

You can remove both warnings
and errors.

1 Open the Error Browser,
select the Folder symbol
for the appropriate file,
and select the violation
message you want to
remove.

2 Display the Remove menu
and select the scope you
want. You can also choose
to remove the selected
message or all messages in
the window.

Table 13 How to Respond to Error Browser Warnings and Errors (Continued)

If you want to... Then take this action... By doing the following:

user_guide.book : load_time_checking 103 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 103

Using the Error Browser to deal with warnings and errors

Dealing with
suppressed
messages

The Error Browser has one supporting window, the Suppression
Browser, where you deal with warning messages that you have
previously suppressed in the Error Browser.

For more information, see the suppress entry in the ObjectCenter
Reference. You can also suppress warnings by customizing your source
code; see 'Using lint-style comments to suppress warnings' on page
230.

Understanding
scope for
suppressing and
removing
violations

When suppressing warning messages or when removing warning and
error messages, you can specify the scope that will apply. Although
scope is similar in suppressing and in removing messages, the exact
range of scope and how scope applies varies in each case.

For example, suppose you are dealing with the following message:

Errors 1 Warnings 6 test11.c (./test11.c)
Line: 11 W#761 The formal parameter ’i’ was not used.

Scope for
suppressing a
warning message

For suppressing, you can specify the following scope:

• Everywhere

No Warning #761 is reported again during your session, unless
you unsuppress it. This applies to Warning #761 for any formal
parameter, not just i.

• In file

No Warning #761 is again reported for test11.c. This applies to
Warning #761 for any formal parameter, not just i.

user_guide.book : load_time_checking 104 Mon Jun 5 13:07:07 1995

Chapter 4: Fixing static errors

104 ObjectCenter User’s Guide

• At line

No Warning #761 is again reported for line 11 of test11.c. This
applies to Warning #761 for any formal parameter on line 11,
not just i.

• On name

No Warning #761 for the formal parameter i anywhere in your
project is again reported. But Warning #761 for j would be
reported.

• In procedure

All instances of Warning #761 in the function do_test in test11.c
are suppressed when do_test is called.

Scope for removing
a warning or error
message

For removing messages, you can specify the following scope:

• Everywhere

All instances of Warning #761 currently in the Error Browser are
removed.

• In file

All instances of Warning #761 for test11.c currently in the Error
Browser are removed.

• At line

All instances of Warning #761 for line 11 of test11.c currently in
the Error Browser are removed. For example, both of the
following messages would be removed:

Line: 11 W#761 The formal parameter ’i’ was not used.
Line: 11 W#761 The formal parameter ’j’ was not used.

• On name

All instances of Warning #761 for the formal parameter i
currently in the Error Browser are removed. But Warning #761
for j would not be removed.

• In procedure

All instances of Warning #761 in the function do_test in test11.c
currently in the Error Browser are removed.

user_guide.book : load_time_checking 105 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 105

Using the Error Browser to deal with warnings and errors

Dealing with
compiler and
make errors

In addition to listing its own load-time warning and error messages,
ObjectCenter also captures error messages from your compiler or
make utility.

When ObjectCenter lists compiler or make error messages in the Error
Browser, if ObjectCenter can associate them with a specific file, then
the messages appear under the folder for that file. Messages that are
not associated with a particular file are listed under a folder labeled
MAKEn, where n is a unique number.

Here is an illustration of a make error message in the Error Browser:

Some compiler and make error messages appear only in the
Workspace.

For more information, see the make entry in the ObjectCenter Reference.

user_guide.book : load_time_checking 106 Mon Jun 5 13:07:07 1995

user_guide.book : component_debugging 107 Mon Jun 5 13:07:07 1995

Chapter 5 Component
debugging

This chapter covers the various aspects of
interactively debugging source and object
components. It covers the following topics:

• Using run-time error checking

• Using interactive debugging items

• Interactive debugging from Workspace break
levels

• Interactive prototyping and unit testing from the
Workspace

user_guide.book : component_debugging 108 Mon Jun 5 13:07:07 1995

user_guide.book : component_debugging 109 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 109

Overview

Overview
ObjectCenter’s component debugging mode offers a broad range of
facilities for interactive debugging. When you execute your code in
ObjectCenter, the run-time checker automatically catches dynamic
problems in source and instrumented object code. You can use a full
set of debugging items for setting breakpoints, actions, and
tracepoints. When execution has been stopped by a run-time violation
or by a breakpoint, you can work from a Workspace break level. The
Workspace also provides direct access to ObjectCenter’s interpreter,
allowing you to do interactive prototyping and unit testing.

Using run-time error checking
When you execute your code, ObjectCenter automatically checks for
dynamic problems. If the run-time error checker finds a dynamic
problem, ObjectCenter generates a break level in the Workspace and
notifies you with the Error Browser button. For run-time errors, you
use ObjectCenter’s incremental loader/linker and close integration
with your editor to correct the source code and quickly load and link
the corrections into your ObjectCenter project. For run-time warnings,
you can either correct them as you go or suppress them, continue
execution, and deal with them at a later time.

Executing your
code

Any time you execute your code in component debugging mode,
ObjectCenter’s run-time checker automatically checks for dynamic
problems in source or instrumented object code components. In
ObjectCenter you can execute either your entire project or any part of
your program at any time. For information on running your project,
see 'Running your project' on page 83. For information on executing a
part of your code, see 'Interactive prototyping and unit testing in the
Workspace' on page 138.

user_guide.book : component_debugging 110 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

110 ObjectCenter User’s Guide

The kinds of
dynamic
problems
ObjectCenter finds

ObjectCenter’s run-time error checking automatically detects the
following kinds of dynamic problems:

• Losing information during data conversions/assignments

• Calling functions with the wrong number of arguments

• Returning a pointer to an automatic or formal variable

• Trying to free unallocated memory

• Dereferencing a pointer that is out of bounds

• Using a pointer that points to freed memory

• Illegal index into an array

• Division by zero

• Long jump error

• Signals

• C++ casting errors

For a list of all violations that ObjectCenter reports, see the violations
entry in the online Reference.

Dealing with
run-time violations

ObjectCenter divides the dynamic problems it finds into two
categories—more serious or less serious —and generates a different
type of violation message for each kind of problem:

• Run-time error messages

Run-time error messages indicate serious problems in your
executing code. Continuing execution beyond the point where a
run-time error occurs would usually result in an invalid program
state and might cause a nonrecoverable error to occur. You
should take care of run-time errors before continuing your
execution.

• Run-time warning messages

Run-time warning messages indicate dynamic problems that are
less serious, and you can usually continue execution beyond them.

user_guide.book : component_debugging 111 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 111

Using run-time error checking

Using the Error
Browser button

To notify you that new run-time violation messages have arrived in
the Error Browser, the Main Window and the Project Browser have an
Error Browser button that announces new error and warning
messages:

To deal with run-time violations, you can open the Error Browser by
selecting the Error Browser button in the Control Panel of the Main
Window or in the Project Browser. You can also select Error Browser
from the Browsers menu in any primary window.

Using the Error
Browser

When the Error Browser button indicates that you have run-time
violations, the Error Browser lists a message summarizing each
warning or error. Here is an example.

You can use the Error Browser to respond to run-time violations in the
same way as load-time violations. For more information, see the
section 'Using the Error Browser to deal with warnings and errors' on
page 101.

user_guide.book : component_debugging 112 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

112 ObjectCenter User’s Guide

Continuing past a
run-time warning

After examining a new run-time warning, in addition to choosing
whether to suppress the warning, you can also choose to continue
execution. You can do this by selecting the Continue button in the
Error Browser.

Fixing dynamic
problems

If the violation is a run-time error, you should not continue execution
beyond that point until you fix the problem causing the error. You can,
however, continue execution from a run-time warning.

CAUTION Continuing past a run-time error can lead to a
nonrecoverable error. Although ObjectCenter gives
you the option of continuing past an error, be careful
about doing this.

When the Error Browser button indicates that you have run-time
violations, you can deal with them in the following ways:

• To fix a problem immediately, you can examine the violation
message in the Error Browser and call your editor directly on the
warning or error.

• You can work at the break level using ObjectCenter’s code
comprehension tools to learn more about the problem. For
example, you can examine definitions, look at variable values,
examine the calling hierarchy of your program, and display data
structures.

• After using your editor to fix an individual violation, you build
your project. Reloading a file after a run-time error causes
ObjectCenter to reset the Workspace to the top level. You can
then run your program again.

user_guide.book : component_debugging 113 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 113

Using run-time error checking

TIP: Handling spurious used-before-set messages

Since ObjectCenter has no direct knowledge of the operations
executed within object code, run-time violations are difficult to
detect when execution moves between source and object code.
This is particularly true of dynamic used-before-set violations,
since memory can be initialized within object code.

To handle this situation, ObjectCenter stores the value of the
unset_value option (by default 191) in each byte of uninitialized
data. (This is not true of global and static variables that lack
explicit initializers; these variables are initialized to 0, as the C++
 language requires at compile time.) The assumption is that if the
data is initialized in object code, the data stored will not have the
value 191 (octal 277) stored in any byte. For example:

-> char *ptr;
-> ptr = new char;
(char *) 0x38e098 "" /* unset value */
-> *ptr;
(char) ’\277’ /* unset value */

This assumption sometimes fails when data is read into memory
with an object code library function such as read() or fread().
This may cause spurious used-before-set warnings if the value
stored equals 191. There are several ways to get rid of these
warnings:

• Prevent them by inserting calls to centerline_untype(), a
built-in ObjectCenter function that marks memory as
initialized and valid. The centerline_untype() function is
similar to the ObjectCenter touch command, except that it is
easier to use in programs and will not mark unknown
memory.

For an example of using centerline_untype(), see the
centerline_untype() entry in the ObjectCenter Reference.

• Suppress the warnings.

• Change the value of the unset_value option to 0. This
prevents further dynamic used-before-set warnings. For more
information, see 'Using ObjectCenter options' on page 216 and
the options entry in the ObjectCenter Reference.

user_guide.book : component_debugging 114 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

114 ObjectCenter User’s Guide

TIP: Dealing with large numbers of run-time violations

If you are getting an overwhelming number of run-time
violations, you can use the following options to temporarily
reduce the amount of run-time error checking that ObjectCenter
does:

• Set the save_memory option to true (set).

ObjectCenter does not report run-time warnings such as
dynamic type mismatches and dynamic used-before-set
violations.

• Set the unset_value option to 0.

ObjectCenter does not report used-before-set violations.

After dealing with your most critical run-time violations, you
would restore these options to their original settings and deal
with the remaining violations.

For more information, see 'Using ObjectCenter options' on
page 216 and information on save_memory and unset_value in
the options entry in the ObjectCenter Reference.

user_guide.book : component_debugging 115 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 115

Using debugging items for interactive debugging

Using debugging items for
interactive debugging

Interactive
debugging items

ObjectCenter allows you to interactively set and delete debugging
items on code you have loaded. Some debugging items can be set on
code in files loaded either in source or object code, some require source
code or object code containing debugging information, and some only
work in source code.

You can set the following debugging items:

Setting debugging
items in object code

In addition to code loaded in source form, you can also set breakpoints
and define actions in code loaded in object form if the code was
compiled with the -g option (these files contain debugging
information). You cannot set breakpoints or actions on an address,
lvalue, or variable in object code, and you cannot set tracepoints on or
trace through code loaded in object form.

In object code loaded without debugging information, you can set a
breakpoint or an action in a function by specifying the function name,
but you cannot set a breakpoint or action at a particular line of code.

Setting debugging
items on inline
functions

You can set debugging items in inline functions in source code.

In object code, you can set debugging items if you compiled the file
with CC’s +d switch. The +d switch tells CC not to expand inline
functions.

Breakpoint Stops execution at a line, in a function, or when
there is a change of value for an address, variable,
or lvalue.

Action Extends breakpoint functionality by performing
customized actions at a line, in a function, or when
there is a change in value for an address, variable,
or lvalue.

Tracepoint Turns on line-by-line execution tracing in a
specified function or for your entire program.

user_guide.book : component_debugging 116 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

116 ObjectCenter User’s Guide

Setting
breakpoints

You can set as many breakpoints as you like, in as many loaded files
as you like.

In source code, you can set a breakpoint on an address, at a location
(in a function or at a line), or on an expression (the name of a variable
or lvalue). You can use an address for the following items: global
variables, allocated data, formal parameters, and automatic variables.

In object code with debugging information, you can set a breakpoint
at a location or on an expression. Breakpoints set on an address that
your program modifies during execution are unrecognized in
ObjectCenter.

In object code without debugging information, you can set a
breakpoint only in a function.

Table 14 lists all of the ways to set a breakpoint.

Table 14 Setting a Breakpoint: Methods According to Work Area

Work Area Ways to Set a Breakpoint

Source area Place the mouse pointer to the left of a line
number and click the Left mouse button
to set a breakpoint at that line.

Place the mouse pointer over a line
number at the left of the listed source code
and display the Line Number pop-up
menu. Select Set Breakpoint Here to set a
breakpoint at that line.

Place the mouse pointer over listed source
code and display the File Options pop-up
menu. Select Set Breakpoint.

Main Window From the Debug menu, select Set
Breakpoint. In the Set Breakpoint dialog
box, specify the scope (at a location, in a
function, on an expression or on an
address).

Contents window of the
Project Browser

Select a function or variable listed in the
Contents window and then select the
Stop button.

Workspace Use the stop command.

user_guide.book : component_debugging 117 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 117

Using debugging items for interactive debugging

You can also use the centerline_stop() built-in function to set a
breakpoint. See the built-in functions entry in the ObjectCenter
Reference.

For more information on setting a breakpoint, see the stop entry in the
ObjectCenter Reference.

What happens when
a breakpoint is
triggered

When execution reaches a breakpoint set at a line or in a function,
ObjectCenter stops execution, establishes a new break level in the
Workspace (see 'Interactive debugging from Workspace break levels'
on page 126), and lists the current line of code in the Source area.

When the value at an address with a breakpoint changes,
ObjectCenter stops execution, establishes a new break level in the
Workspace, and lists the current line of code in the Source area. The
same is true when a breakpoint is set on memory within the range you
specify with two addresses.

If the value at an address with a breakpoint is modified within
compiled code, ObjectCenter does not detect the event, and execution
of the program is not interrupted. To avoid spurious messages, the
breakpoint does not trigger if the watched address is modified by code
you enter in the Workspace.

The Breakpoint
symbol in the
Source area

When you have set a breakpoint at a line, the Source area displays a
Breakpoint symbol to the left of the line number. Here is an
illustration:

Breakpoint symbol

user_guide.book : component_debugging 118 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

118 ObjectCenter User’s Guide

Setting breakpoints
on library functions

You can set a breakpoint in a library function only if the function has
been linked in. If you want to set a breakpoint on a library function
before running your program, you can use the link command to
explicitly link unresolved symbols from static libraries. Then set the
breakpoint.

Here is an example of setting a breakpoint on a library function
without first running the program:

-> load bpprog.C
Loading (C++): bpprog.C
-> stop in printf
Cannot set stop or action on an undefined symbol:
’printf’.
-> link
-> stop in printf
stop (1) set at “/lib/libc.sl”, function printf().
->

Setting actions Actions allow you to customize and extend ObjectCenter’s built-in
breakpoint functionality by defining some action that will take place
when execution triggers it. You set an action by defining a body of C++
or C code or ObjectCenter commands for that action. When execution
triggers the action, ObjectCenter evaluates the action body and lists
the current line of code in the Source area. Unlike a breakpoint, an
action does not automatically stop execution and create a new break
level in the Workspace (see 'Interactive debugging from Workspace
break levels' on page 126).

You trigger an action in the same ways that you trigger a breakpoint.
See 'Setting breakpoints' on page 116.

For more information, see the action entry in the ObjectCenter
Reference.

The same considerations apply to setting actions on library functions
as for breakpoints; see 'Setting breakpoints on library functions' on
page 118.

Table 15 lists the ways to set an action.

user_guide.book : component_debugging 119 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 119

Using debugging items for interactive debugging

The Action symbol
in the Source area

When you have set an action at a line, the Source area displays an
Action symbol to the left of the line number. Here is an illustration:

Table 15 Setting an Action: Methods According to Work Area

Work Area Ways to Set an Action

Source area Place the mouse pointer over a line
number at the left of the listed source code
and display the Line Number pop-up
menu. Select Set Action Here to set an
action at that line.

Place the mouse pointer over listed source
code and display the File Options pop-up
menu. Select Set Action.

Main Window From the Debug menu, select Set Action.
In the Set Breakpoint dialog box, specify
the scope (at a location, in a function, on
an expression, or on an address).

Contents window of the
Project Browser

Select a function or variable listed in the
Contents window and then select the
Action button.

Workspace Use the action command.

Action symbol

A

user_guide.book : component_debugging 120 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

120 ObjectCenter User’s Guide

Specifying the
action body

The body of an action can consist of one or more C++ statements;
enclose multiple statements within braces. The following example sets
an action on line 78 in shapes.Cc:

The action causes ObjectCenter to print the value of count using a
built-in CenterLine function that calls the ObjectCenter print
command each time line 78 in shapes.C is executed.

Alternatively, if you are debugging C code in C mode, actions consist
of C statements. You could use the following function in an action
statement to print the value of count in a C program:

printf("%d”, count);

Unlike breakpoints, actions do not automatically stop execution. To
have ObjectCenter stop execution and generate a new break level in
the Workspace (see 'Interactive debugging from Workspace break
levels' on page 126), you use the CenterLine function
centerline_stop(), which invokes the ObjectCenter stop command.

user_guide.book : component_debugging 121 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 121

Using debugging items for interactive debugging

For example, to have ObjectCenter print the value of count and then
stop execution, you would use the following definition:

For information on using built-in CenterLine functions, see the
built-in functions entry in the ObjectCenter Reference.

user_guide.book : component_debugging 122 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

122 ObjectCenter User’s Guide

Conditional actions You can also conditionalize actions. For example, you can have
ObjectCenter generate a break level only if certain conditions are true:

In addition to printing the value of count in the Run window, the
action interrupts execution with centerline_stop() if count is greater
than 3. A function call to centerline_stop() in your code is equivalent
to using the stop command in the Workspace. For more information,
see the built-in functions entry in the ObjectCenter Reference.

user_guide.book : component_debugging 123 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 123

Using debugging items for interactive debugging

Setting
tracepoints and
tracing program
execution

You use tracing to follow the path your program takes as it executes.
When tracing is turned on, ObjectCenter continually updates the
Source area in the Main Window to show the line of code being
executed. The current point of execution is indicated by the Execution
symbol, as shown in the following illustration:

Table 16 lists all of the ways to set a tracepoint.

For more information, see the trace entry in the ObjectCenter Reference.

Table 16 Setting a Tracepoint: Methods According to Work Area

Work Area Ways to Set a Tracepoint

Source area Place the mouse pointer over listed source
code and display the File Options pop-up
menu. Select Set Trace.

Main Window From the Debug menu, select Set
Tracepoint. In the Set Tracepoint dialog
box, specify the scope (everywhere or in a
function).

Workspace Use the trace command.

Execution symbol

user_guide.book : component_debugging 124 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

124 ObjectCenter User’s Guide

Examining and
deleting
debugging items

At any point while working in ObjectCenter, you can see which
debugging items are set and delete any of them.

Examining
debugging status

To see which debugging items are currently set, display the Examine
menu in the menu bar of the Main Window and select Status. The
Workspace echoes the status command and lists all the debugging
items:

You can also enter the following in the Workspace:

-> status

For more information, see the status entry in the ObjectCenter
Reference.

Deleting debugging
items

To delete debugging items, display the Debug menu and select
Delete. This displays a submenu listing all current debugging items.
You can select the item you want to delete, or delete them all at once.
See the following illustration for an example.

user_guide.book : component_debugging 125 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 125

Using debugging items for interactive debugging

Table 17 lists all of the ways to delete a debugging item.

For more information, see the delete entry in the ObjectCenter
Reference.

Table 17 Deleting a Debugging Item: Methods According
to Work Area

Work Area Ways to Delete a Debugging Item

Source area Place the mouse pointer over listed source code and
display the File Options pop-up menu. Select
Delete.

Left click on the Breakpoint or Action symbol itself.

Main Window From the Debug menu, select Delete. This displays
a menu listing all debugging items currently
defined. Select the item you want to delete.

Workspace Display the Workspace Options pop-up menu.
Select Delete.

Use the delete command.

user_guide.book : component_debugging 126 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

126 ObjectCenter User’s Guide

Interactive debugging from
Workspace break levels
When you execute a program in ObjectCenter, the Workspace can
operate at various levels of nested execution, called break levels.
When your program begins, the Workspace is at the top level. A break
level is generated when execution is interrupted due to one of the
following reasons:

• ObjectCenter finds a run-time violation

• You press Control-c

• Execution hits a breakpoint in the program

• A signal occurs that is not being handled by your program

Break levels are an important aspect of ObjectCenter’s facilities for
source-level debugging. Operating at a break level allows you to
preserve the flow of execution at one point, work with a different flow
of execution, and then return to continue the previous flow of
execution.

The current break level is indicated by the Workspace prompt:

At a break level, you can perform nearly all of the operations
supported at the top level of the Workspace. (Some commands such as
build, unload, and run force a reset to the top level.)

user_guide.book : component_debugging 127 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 127

Interactive debugging from Workspace break levels

Many operations specific to working in a break level are available as
commands on the Execution menu and as buttons in the Main
Window control panel.

Table 18 on page 128 describes the basic Workspace commands that
you can use for interactive debugging at a break level.

For detailed information on how to use each of these commands, see
the ObjectCenter Reference entry for each one. For information on how
to create your own buttons for these commands, see 'Creating and
managing customized buttons and menu items' on page 220.

Debugging object
code

Except for tracing and the stepout command, ObjectCenter provides
the same debugging capability for object code loaded with debugging
information as for code loaded in source form: You can set
breakpoints, define debugging actions, and step through the object
code.

With object code that is loaded without debugging information (either
the file was compiled without the -g switch or was loaded into
ObjectCenter using the -G switch), you can stop on or set an action on
a function name, but not on a particular line. You cannot step through
object code loaded without debugging information.

Debugging inline
functions

By default, ObjectCenter’s demand-driven code generation is on
except for header files. This means that ObjectCenter loads internal
information only about code your program uses. Although
demand-driven code generation significantly speeds load time, you
may want internal information about some of the code your program
did not use. For example, if you have defined unused inline functions,
you can get internal information about them by loading them without
demand-driven code generation (-dd=off).

user_guide.book : component_debugging 128 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

128 ObjectCenter User’s Guide

Table 18 Basic Workspace Commands for Interactive Debugging

Workspace
Command

Description

action Specifies statements to execute when execution triggers the action. Allows
you to customize conditional breakpoints.

cont Continues execution from a break location.

delete Deletes an existing debugging item on the current line.

down Moves the current scope location down the execution stack.

dump Displays all local variable.

edit Invokes your editor, positioned at the current line.

expand Lists the functions that could be called from a C++ statement.

file Displays and sets the current list location.

info Displays the name, size, and type of the item associated with an address.

next Executes the next line; does not enter functions.

print Prints the value of variables or expressions.

step Steps execution by statement, entering functions.

stepout Continues execution until the current function returns.

stop Sets a breakpoint.

up Moves the current scope location up the execution stack.

whatis Displays all uses of a name for a function, data variable, tag name,
enumerator, type definition, or macro definition.

where Displays the execution stack.

whereami Displays the current break and scope locations.

whereis Lists the defining instance of a symbol. If the symbol is an initialized global
variable, whereis also indicates the location at which it is initialized.

user_guide.book : component_debugging 129 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 129

Interactive debugging from Workspace break levels

Locations in
break levels

While at a break level, ObjectCenter maintains several distinct
locations.

The break location The break location is the location in your program at which execution
was stopped and at which execution is resumed when you continue.
The values of program variables are determined by their scope at the
break location. The break location does not change for a given break
level.

The break location is indicated in the Source area by the Execution
symbol, as shown in the following illustration:

The scope location The scope location and the break location are identical when the
program stops. The scope location, however, can change in response
to your actions in the break-level Workspace. For example, you can
use the up and down commands to move around in the execution
stack.

The source location The source location is the default location used by commands that
handle source code files, such as list and edit. When a break level is
created, the source location is set to the break location. When the scope
location changes, the source location is set to the new scope location.
The file and list commands also change the source location.

user_guide.book : component_debugging 130 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

130 ObjectCenter User’s Guide

Automatic
Workspace mode
switching

ObjectCenter automatically places you in the Workspace mode that is
appropriate for the code you are stopped in. That is, if you are stopped
in C++ code, you are placed in C++ mode. If you are stopped in C
code, you are placed in C mode. (For more information about
ObjectCenter’s modes, see 'How the debugging and language modes
affect the Workspace' on page 36.)

As you move around in your code (either by moving up or down in
the execution stack or by stepping through code as described later),
ObjectCenter automatically changes the Workspace mode as
appropriate.

Multiple break
levels

If execution is interrupted again while you are at a break level, a new
break level is generated. Each break level maintains its own break and
scope locations.

In the following example, the Workspace contains a call to err(), a
function defined in the Workspace with an error. When execution
continues, a second call to err() stops execution at a second break level.

C++ 2 -> load_header string.h
Loading (C++): -I. /tmp/OC.4096/string.h
C++ 3 -> void err() {char *d; strcpy (d, “sdfsdf”);};
Warning #769: d used but not set.
(void)
C++ 4 -> err();

“workspace”:3, err(void), (Warning #113)
Using auto variable err(void)`d which has not been
set.
General options: break/continue/quit/edit/reload

C++ (break 1) 5 -> err();

“workspace”:3, err(void), (Warning #113)
Using auto variable err(void)`d which has not been
set.
General options: break/continue/quit/edit/reload

C++ (break 2) 6 ->

The prompt identifies the new break level as number 2. Each break
level is numbered according to how many levels deep it is from the top
level.

user_guide.book : component_debugging 131 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 131

Interactive debugging from Workspace break levels

Examining the
state of your
program

While at a break level, you can examine the state of your program by
using ObjectCenter’s facilities for code comprehension: the Project
Browser, Cross-Reference Browser, Inheritance Browser, and Data
Browser (see Chapter 7, 'Visualizing your code").

Because you only use the Data Browser at run time, it has an especially
strong connection with interactive debugging from break levels.
Typically, you use the Data Browser when you are at a break level and
want to investigate the state of some data structure that is currently in
scope. For more information about using the Data Browser, see 'Data
Browser' on page 197.

Continuing from a
break location

If execution was interrupted because you entered Control-c or because
a breakpoint was encountered, you can issue the cont command to
resume execution from the point at which it had stopped. Selecting the
Continue button in the Main Window or pressing Control-d are
shortcuts for calling cont without an argument. In the following
example, execution is resumed from break level 2 by pressing
Control-d and from break level 1 by calling cont without an argument:

-> stop in do_bounce
stop (1) set at “bounce.c”:10, do_bounce().
-> stop in store_shape
stop (2) set at “shape.c”:7, store_shape().
-> run
Executing: bounce
(break 1)-> store_shape(500, “triangle”);
(break 2)-> shape;
(char *) 0x195420 “triangle”
(break 2)-> ^D
(void)

 Execution returns to do_bounce() . ..
(break 1)-> shape;
(char *) 0xf7ff8c9c “rectangle”
(break 1)-> cont

 Execution goes into store_shape()...
(break 1)-> shape;
(char *) 0xf7ff8c9c “rectangle”

user_guide.book : component_debugging 132 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

132 ObjectCenter User’s Guide

Continuing from a
run-time violation

If the break level was generated because of a run-time violation, you
can issue the cont command with an argument. The argument
supplied to cont is substituted for the expression containing the error.
If no argument is supplied to cont, the value of the original expression
is used.

In the following example, an attempt was made to dereference and use
a null pointer. The value supplied to cont is used as the right-hand
side of the assignment, and the variable ptr is not dereferenced.

-> int i, *ptr =0;
-> i = *ptr;
Error #165: Dereferencing a pointer (ptr) that is
out of bounds.
Pointer = 0x0, low bound = 0x0, high bound = 0x0.
(break 1)-> cont 123
(int) 123
-> i;
(int) 123

For more information, see the cont entry in the ObjectCenter Reference.

Resetting from a
break level

The reset command transfers control from the break level in which it
is issued to a higher-level break level. Break levels are specified by
numbers.

If no break level is specified, control returns to the top level:

(break 3)-> reset
Resetting to top level.
->

If reset is called with a positive argument, it treats the argument as the
number of the break level to which to return. If the argument is
negative, the reset command backs up the specified number of break
levels. For more information, see the reset entry in the ObjectCenter
Reference.

user_guide.book : component_debugging 133 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 133

Interactive debugging from Workspace break levels

Stepping through
your program

You can step through your program from a break level by using the
step and next commands. In the Main Window, these commands are
available on the Execution menu and as buttons below the Source
area.

You can step through code loaded in source form as well as object code
that contains debugging information (compiled with the -g switch and
not loaded using the load command’s -G switch).

As you step through your program, the listing in the Source area is
updated to show the current line, as indicated by the Execution
symbol. Also, data items in the Data Browser are automatically
updated at every break in execution (see 'Data Browser' on page 197).

Differences between
the step and next
commands

The step command continues execution until the next statement is
reached. If execution is stopped on a line containing multiple
statements, step executes the next statement only.

On the other hand, the next command executes all statements on the
current source code line.

The step command enters function calls, while next does not.

Any breakpoints set within a function are triggered even if you
continue over the function call with next.

If a numeric argument is passed to step or next, it is taken as the
number of statements or lines to execute before stopping.

The stepout
command

In source code, the stepout command continues execution until the
current function returns. The command is particularly useful if you
accidentally entered a function by using step instead of next.

TIP: Improving performance when stepping through code

If you are stepping through your code and have many data
items displayed in the Data Browser, the time spent in updating
the Data area at each break in execution can degrade
performance. You can improve performance by minimizing the
number of items you have displayed, or by dismissing the Data
Browser.

user_guide.book : component_debugging 134 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

134 ObjectCenter User’s Guide

Displaying the
execution stack

The execution stack consists of all the functions that are in the process
of execution. You can display the execution stack by using the where
command. The execution stack is displayed starting from the location
where execution has stopped in the current break level:

(break 2)-> where
stop #1 set in
store_shape(count = (int) 500, shape = (char *)
0x1b2098 “triangle”) at “shape.c”:7
break level #1, line 141
stop #2 set in
main(argc = (int) 1, argv = (char **) 0x1b2058) at
“main.c”:8

(break 2)-> For example, if the user is stopped in drawMove() as
shown in the screen on on page129, where shows the execution stack
as:

(break 1)-> where
error #24
DrawableShape::drawMove(this = (class DrawableShape

*) 0x223a98, count = (int) 400) at "shapes.C":90
DrawableShape::doDraw(this = (class DrawableShape *)

0x223a98) at "shapes.C ":78
DrawableShape::bounce(this = (class DrawableShape *)

0x223a98) at "shapes.C ":97
main() at "main.C":33
centerline_run((char *) 0x20c8f8 "") builtin function

In this example, the user is stopped following an error in the function
drawMove(), which was called by doDraw(), which was called by
bounce(), which was called by main(), which was called by
centerline_run(), which is the function equivalent of ObjectCenter’s
run command.

user_guide.book : component_debugging 135 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 135

Interactive debugging from Workspace break levels

Moving in the
execution stack

When a break level is generated, the break location and the scope
location are identical—all variables, types, and macros are scoped to
the point at which execution was interrupted. You can change the
scope location to another function on the execution stack with the up
and down commands.

When you issue up or down to move in the execution stack and move
to a break level in your source code, ObjectCenter displays the scope
location (now different from the break location) in the Source area
using the Scope symbol.

As a result of the whereami command, the Workspace shows where
you currently are in the execution stack. The whereami command
displays the scope location in the Source area (scrolling the display if
necessary) and, if the scope location is different from the break
location, displays the break location in the Workspace.

If you issue an up command after whereami, the Source area shows
the new scope location. Here’s an illustration:

If the user is stopped in the function drawMove(), as shown in the
previous example, and issues up, the scope location is changed to the
call to drawMove() in doDraw():

(break 1)-> up
Scoping to DrawableShape::doDraw() at "shapes.C":78

If you get lost If you have moved around in the execution stack and perhaps have
scrolled around in your source code, you might forget where you are.
In this situation, issue the whereami command.

Scope symbol

user_guide.book : component_debugging 136 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

136 ObjectCenter User’s Guide

Displaying static
constructors and
destructors

There are times when a static constructor or destructor is on the
execution stack. For example, you can set a breakpoint on main(), then
step into a static constructor. The file static.C contains this code:

// static.C
class foo {
 int i;
public:
 foo () {i = 5;}
};
foo f1;
main () {
}

You can step into the static constructor by issuing these commands in
the Workspace:

-> load static.C
Loading (C++): static.C
-> stop in _main
stop in _main
stop (1) set at "centerline", function _main().
-> run
run
Executing: a.out
Stopped in main() at "static.C":11
 10:
 * 11: main () {
 12: }
(break 1-> step
step
Stopped in static.C::initializer() at "static.C":9
 * 9: foo f1;
(break 1->

The top-most function in the execution stack shown above is a static
constructor.

ObjectCenter uses the following format when displaying a call to a
static constructor:

file::initializer() at “file”:linenum

Where file is the file stopped in, and linenum is the location where the
static object is declaredSimilarly, ObjectCenter shows static
destructors as follows:

file::deinitializer() at “file”:linenum

user_guide.book : component_debugging 137 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 137

Interactive debugging from Workspace break levels

Handling signals Most signals that are generated during execution are caught directly
by ObjectCenter. When a signal occurs, execution is stopped and a
break level is created.

You can use the ignore command to specify which signals should be
ignored by ObjectCenter and passed directly to your program. Some
signals are ignored by default. Issuing ignore without arguments
displays the signals currently being ignored:

-> ignore
Signal Description
14 SIGALRM alarm clock
18 SIGCLD child status change
20 SIGWINCH window size change
21 SIGURG urgent socket condition
22 SIGPOLL pollable event occurred
25 SIGCONT stopped process has been continued
28 SIGVTALRM virtual timer expired
29 SIGPROF profiling timer expired

If your program defines a handler for a signal, that signal must be
ignored for the handler to receive the signal.

The catch command is the converse of the ignore command; it
specifies which currently ignored signals should be caught by
ObjectCenter.

For more information, see the catch and ignore entries in the
ObjectCenter Reference.

user_guide.book : component_debugging 138 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

138 ObjectCenter User’s Guide

Interactive prototyping and unit
testing in the Workspace

ObjectCenter’s
full C++ and C
interpreter

In component debugging mode, in addition to handling ObjectCenter
commands, the Workspace also functions as a direct interface with the
ObjectCenter interpreter. The interpreter operates in either of two
language modes: C++ mode or C mode.

Depending on the language mode, you can enter any C++ or C
statement at the Workspace to have ObjectCenter execute it
immediately. Also, when you execute code from the Workspace,
ObjectCenter’s run-time error checker automatically checks it for
dynamic problems (see 'The kinds of dynamic problems ObjectCenter
finds' on page 110).

Interactive
prototyping

Because the Workspace allows you to enter any C++ or C statement
and immediately execute it, the Workspace supports incremental
development through interactive prototyping. You can create code
fragments or define variables, functions, and data structures as you
go. This means that you have a tool for the highly iterative and
explorative phases of your programming style, wherever you choose
to bring these phases into your development methodology.

For example, to define a function that adds two integers, you could
enter:

-> int add (int x, int y)
+> { return x + y; }
-> add (3, 4);
(int) 7

Interactive unit
testing

Constructing a modular, maintainable application is easier if you can
extract a component from its context in the program, test and refine it
in isolation, and then merge the modifications back into the program.
The Workspace’s access to ObjectCenter’s interpreter is tailor made for
this approach.

Using your editor and ObjectCenter’s incremental loader/linker, you
can easily create and load a small-to-medium functional unit or a
group of related functional units. Using the Workspace, you can test
these units individually, as a set, and in interaction with your
established project components. Once you have tested a unit, you can
then easily integrate it into your project.

user_guide.book : component_debugging 139 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 139

Interactive prototyping and unit testing in the Workspace

For example, with the unit testing capabilities of ObjectCenter’s
interpreter accessed through the Workspace, you can do the following:

• Load an incomplete program into ObjectCenter. This could be a
code fragment you are developing as an enhancement to your
application. By linking, you would find the unresolved symbols.
Then you could either resolve the symbols by loading other
pieces of the application that you need or resolve them artificially
by declaring them in the Workspace.

Using the Workspace, you could also resolve undefined function
calls artificially by declaring function stubs. The same applies to
resolving data structures by declaring them in the Workspace.
You also have the option of ignoring the unresolved references
and executing only the section of code that you want to test.

• You can load a complete program into ObjectCenter and invoke
individual functions from the Workspace, rather than calling
main() and running the entire program. Using this approach, you
can set a breakpoint in the function that you are executing and
stop in that function. Then, while you are stopped in the function,
you can test other types of behavior by executing code fragments
that simulate the desired behavior. When you are satisfied that
the part of your program that you are focusing on supports all the
different kinds of behavior you are interested in, you can
integrate that code into your project.

Two language
modes for the
Workspace

Unless you change ObjectCenter’s default language (using the setopt
primary_language option), ObjectCenter’s default language is C++.
That is, programming statements you enter in the Workspace are
considered to be C++ statements and are parsed accordingly. In C++
mode, the interpreter supports the full C++ language, as defined by
the AT&T C++ Language System Product Reference Manual for Release
3.0 of the AT&T C++ Language System.

The prompt for C++ mode is:

C++ 1 ->

When in C++ mode, ObjectCenter displays the output of commands
using C++ syntax and names.

user_guide.book : component_debugging 140 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

140 ObjectCenter User’s Guide

TIP: Editing Workspace code

During an ObjectCenter session, all C++ definitions you enter
are stored in a Workspace scratchpad. To edit Workspace code,
use the edit workspace command. This command saves your
scratchpad to a file named, by default, workspace.. To edit the
Workspace code, you simply edit this file.

For example, suppose you create a class in the Workspace. You
create stubs for other classes and external functions called by the
class, and then invoke the methods in the class to test them.
After testing your class, you can use the edit workspace
command to create a file containing the code you defined in the
Workspace. ObjectCenter will prompt you to enter a name for
the file or accept the default name. For example:

-> edit workspace
Appending all workspace definitions to a file.
Default filename is “workspace.” in the current
directory.
Please specify a filename, press Return to accept
default,
or <CTRL-D> to abort:

If you want to test a particular set of definitions, edit the file so
that it contains the definitions you want to test. Then use the
unload workspace command to unload all the definitions and
objects you created in the Workspace, and use the source
command to load the definitions in your saved file back into the
Workspace. Note that the source command will report errors if
you’ve unloaded any definitions on which the saved file
depends.

If you want to use a new file as source code, add any #include
lines you need and remove any extraneous lines. For example,
some ObjectCenter commands, such as whatis, will appear in
the file.

When using code developed in the Workspace, remember that
static functions and variables, and private and protected
member functions, are visible at global scope in the Workspace.
As a result, you may have to add friend functions or classes or
make static functions externally visible in order to use
Workspace sources as a separate file.

user_guide.book : component_debugging 141 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 141

Interactive prototyping and unit testing in the Workspace

You should switch to C mode when you want to:

• Debug C programs by issuing C statements in the Workspace

• See the internals of C++ data structures (such as the virtual
function table)

Switching to C mode To enter C code, the Workspace must be in C mode. In C mode, the
interpreter supports the full C language as defined by Kernighan and
Ritchie (K&R) and also has support for the ANSI C standard. By
default, the interpreter treats C code as K&R C; for information on
using ANSI C code, see the ANSI C and config_parser entries in the
ObjectCenter Reference.

Use the cmode command to switch to C mode:

C++ 10 -> cmode
C Workspace Enabled.
C 11 ->

Notice that the Workspace prompt is different in C mode:

C n ->

Specific considerations for entering C code are discussed in the section
'Using the Workspace in C language mode' on page 158.

Switching back to
C++ mode

You return to C++ mode by issuing the cxxmode command:

C 11 -> cxxmode
C++ Workspace Enabled.
C++ 12 ->

The language mode
does not affect how
files are loaded

The language mode you are in does not affect how ObjectCenter loads
source files.

For more information about how ObjectCenter loads C and C++ files
in C and C++ language modes, see the language selection entry in the
ObjectCenter Reference.

user_guide.book : component_debugging 142 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

142 ObjectCenter User’s Guide

Entering C++ and
C++ code in the
Workspace

When you enter C++ or C code at the Workspace, you terminate each
statement or expression with a semicolon. To define a variable and
assign a value to it in the Workspace, you could type:

C++ -> int i = 5;
C++ -> i;
(int) 5

In C mode it would be the same:

C -> int i = 5;
C -> i;
(int) 5

C++ or C statements input at the Workspace are immediately
interpreted and expressions are immediately evaluated. The result is
shown in the Workspace below the command line. Definitions are
maintained in an internal Workspace scratchpad and are available to
be referenced throughout your session.

Using multiple-line
statements

C++ or C statements you type in the Workspace can span several lines.
To continue the statement on the next line, simply press Return at an
appropriate place in the statement. The input prompt changes from ->
to +>, indicating that the Workspace is expecting additional input for
the statement. For example:

-> 123 +
+> 456 +
+> 789;
(int) 1368
->

Interpreting the
Workspace prompt

Besides the normal Workspace prompt (->), there are others for special
situations: +>, #>, and *>.

The +> prompt appears when the Workspace is waiting for additional
code for a multiple-line statement. This often happens when you
forget to type a semicolon at the end of a C++ or C statement or
expression.

The two other Workspace prompts appear less frequently. The #>
prompt indicates that the Workspace is waiting for an #endif line to
end an #ifdef statement. The *> prompt indicates that the Workspace
is waiting for the closing */ to end a C comment beginning with /*.

user_guide.book : component_debugging 143 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 143

Interactive prototyping and unit testing in the Workspace

Responding to errors ObjectCenter flags run-time warnings and errors you make in the
Workspace. For example:

-> extern int j;
-> int i;
-> i = j;
Error #155: Undefined variable: ’j’.
(break 1) ->

For more information on responding when ObjectCenter displays a
run-time violation, see 'Using run-time error checking' on page 109
and 'Interactive debugging from Workspace break levels' on page 126.

Using blocks Blocks are useful for ensuring that operations performed in the
Workspace do not produce adverse side effects or conflict with global
variables. All automatic variables declared within the block are local
to the block—they cease to exist at the end of the block. You can use
these variables for storing values and performing calculations without
affecting global variables, even of the same name. For example:

-> int i = -1;
-> {
+> int i = 0;
+> while(i <= 10) i++;
+> }
(void)
-> i;
(int) -1

ObjectCenter does not execute expressions and statements placed
within a block until the block is ended with a closing brace (}). Values
produced by the expressions and statements within the block are not
displayed. Only the void value produced at the end of the block is
displayed.

user_guide.book : component_debugging 144 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

144 ObjectCenter User’s Guide

Unloading the
Workspace

During an ObjectCenter session, all C++ and C definitions you enter
from the Workspace are stored in the Workspace scratchpad. You can
undefine all C++ and C definitions stored in the Workspace
scratchpad by using the unload workspace command in the
Workspace. For example:

-> int i = 99;
-> i;
(int) 99
-> unload workspace
Unloading: workspace
-> i;
Error #742: i undefined.

Unloading the Workspace scratchpad does not affect any loaded files
or attached libraries. Workspace input history is also unaffected by
unloading the Workspace scratchpad.

One reason for unloading the Workspace is to remove a function that
was typed in the Workspace. You can also use the command unload
function_name to unload the Workspace scratchpad.

Using the delete
operator in the
Workspace

The C++ delete keyword conflicts with the ObjectCenter delete
command. To deallocate memory using the delete operator in the
Workspace, delimit the delete statement with parentheses, such as:

-> int *iptr = new int[4];
-> (delete iptr);

Defining variables
and types

You can define and use variables and types directly in the Workspace
at any time.

Defining a variable’s
type and value

To display the type and value of a variable, enter the name of the
variable followed by a semicolon.

ObjectCenter evaluates the input and returns its type and value. For
statements, the type void is displayed. For example:

-> int i;
-> i = 16;
(int) 16
-> while (i < 100) i++;
(void)
-> i;
(int) 100

user_guide.book : component_debugging 145 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 145

Interactive prototyping and unit testing in the Workspace

For data structures, ObjectCenter displays all nonstatic members:

-> struct mystruct {int i; float f; };
-> struct mystruct struct1;
-> struct1;
(struct mystruct) =
{
 int i = 0;
 float f = 0.000000e+00;
}

For pointers, ObjectCenter displays the kind of pointer, the address
being pointed to, and the data being pointed to:

-> char *msg = “hello there”;
-> msg;
(char *) 0x194ea0 “hello there”

Declaring types in
the Workspace

If an object code file without debugging information is loaded, no
information about the types of variables or functions is available.

Consider the file xyz.C:

int i=4;
int test()
{
return i;
}

If this file is loaded into ObjectCenter as an object file compiled with
debugging information, you do not need to declare the type of a
variable or function that is defined in that file before using it; for
example:

-> load xyz.o
Loading: xyz.o
-> i;
(int) 4

However, if this file is loaded without debugging information
(compiled without -g or loaded with -G), this happens:

-> load -G xyz.o
Loading: -G xyz.o
-> i;
Error #742: i undefined.
-> extern int i;
-> i;
(int) 4

user_guide.book : component_debugging 146 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

146 ObjectCenter User’s Guide

Defining functions You can define and use functions directly in the Workspace at any
time. When defining a function in the Workspace, you must specify its
return type.

For example, to define a function that adds two integers, you could
enter:

-> int add(int x, int y)
+> {return x + y;}
-> add (3, 4);
(int) 7

You can also use a function prototype regardless of whether the ansi
option is set or unset. For more information, see the ANSI C entry in
the ObjectCenter Reference.

Defining templates If you want to define templates in the Workspace, see the “Using
templates in the Workspace” section of the templates entry in the
ObjectCenter Reference.

TIP: Understanding unresolved references from a function
call in the Workspace

When you call C++ functions in the Workspace, ObjectCenter
may notify you of unresolved references unrelated to the
functions you call. This is because all static constructors (sti
routines) are executed, not just the static constructors for the file
the function is defined in. Either use the continue command or
resolve the references.

user_guide.book : component_debugging 147 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 147

Interactive prototyping and unit testing in the Workspace

Manipulating
class objects in
the Workspace

You manipulate class objects in the Workspace basically the same way
you manipulate other C++ objects.

Consider this definition of a String class in String.h:

class String{
public:

String (char*);
String(int);
String();
String(const String&);
~String();
String &operator=(const String&);
String &operator==(const char*);
friend String operator+(const String&, const

String&);
void getText();
int getLength();

private:
int len;
char *text;

};

Assume that String.C implements the member functions that are
declared in String.h. If you load String.C, you can interactively
manipulate String objects in the Workspace. (There are special
considerations you need to be aware of if your class definitions are
loaded only in object form. See 'Workspace troubleshooting' on
page 155.)

String.h and String.C are provided in the directory that is set up when
you go through the ObjectCenter tutorial, so you can try these
examples yourself.

Creating class
objects

ObjectCenter automatically calls any constructor required to create an
instance of a class. It also links in any library modules that are needed.

-> load String.C
Loading (C++): String.C
-> String s1="Object";
(class String *) 0x2dcef8 /* (class String) s1 */
-> String s2="Center";
(class String *) 0x2dcf38 /* (class String) s2 */
-> String s3=s1+s2;
(void)

user_guide.book : component_debugging 148 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

148 ObjectCenter User’s Guide

Name clashes with
ObjectCenter
command

If you define a class with the same name as an ObjectCenter
command, there is a name conflict when you try to instantiate the class
in the Workspace. For example, say you have loaded the following file,
print.C:

class print {
int i;
int j;

};

When you try to define an instance of the print class called myprint,
you get an error:

-> load print.C
Loading (C++): print.C
-> print myprint;
Error #719: myprint undefined.

ObjectCenter considered the statement at line 22 to be an invocation of
the print command—it thought you were asking to print the value of
the variable myprint. There is no such variable, so an error resulted.

To define an instance of such a class, simply use the class keyword at
the beginning of the declaration (normally the keyword is optional
with the C++ language). For example:

-> class print myprint;
(class print *) 0x223ec0 /* (class print) myprint */
-> myprint;
(class print) =
{
 int i = 0;
 int j = 0;
}
-> print myprint
(class print) =
{
 int i = 0;
 int j = 0;
}

Accessing class
objects

You display class objects the same way you display other data
structures in ObjectCenter; that is, by specifying the object’s name
followed by a semicolon. ObjectCenter displays all nonstatic data
members for a given class object.

user_guide.book : component_debugging 149 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 149

Interactive prototyping and unit testing in the Workspace

-> String s3;
Linking from ’/usr/lib/libC.a’Linking completed
Linking from ’/lib/milli.a’ ... Linking completed.
(class String *) 0x40124b98 /* (class String) s3 */
-> s3;
(class String) =
{
 int len = 12;
 char *text = 0x1fbcc0 "ObjectCenter";
}

You access class members using the same syntax used in C++
programs:

-> s3.getLength();
(int) 12
-> s3.len;
(int) 12
-> s3.text;
(char *) 0x1fbcc0 "ObjectCenter"
-> String *sptr = new String;
(class String *) 0x1fbc80 /* (class String)
(allocated) */
-> sptr->text="A string";
(char *) 0x1fbca0 "A string"
-> *sptr;
(class String) =
{
 int len = 0;
 char *text = 0x1fbca0 "A string";
}

NOTE There is no access protection in the Workspace. You
can reference any member function or data member of
any class, even those defined as protected or private.

Deleting class
objects

The C++ delete keyword conflicts with the ObjectCenter delete
command. To deallocate memory using the delete operator in the
Workspace, delimit the delete statement with parentheses, such as:

-> String *sptr = new String("ObjectCenter");
(class String *) 0x2c5920 /* (class String)
(allocated) */
-> (delete sptr);
(void)

user_guide.book : component_debugging 150 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

150 ObjectCenter User’s Guide

How the
Workspace
displays class
objects

When ObjectCenter displays a class object it displays all nonstatic data
members in that object. For example:

-> String s1="Object";
(class String *) 0x2dcef8 /* (class String) s1 */
-> String s2="Center";
(class String *) 0x2dcf38 /* (class String) s2 */
-> String s3=s1+s2;
(void)
-> s3;
(class String) =
{
 int len = 12;
 char *text = 0x1fbcc0 "ObjectCenter";
}

Displaying pointers
to class objects

When displaying pointers to class objects, ObjectCenter displays the
type of pointer, the address being pointed to, the type of the object
currently being pointed to, and the object being pointed to:

-> String *sptr;
-> sptr =
(class String *) 0x2e3148 /* (class String) s3 */

In the above case, sptr is defined as a pointer to String and is currently
pointing to a String (s3). 0x2e3148 is the address being pointed to.
Consider the following case, where a pointer to Parent (pptr) is
defined, then pointed to an instance of class Child, which is derived
from Parent:

class Parent {
 int i;
};

class Child : public Parent {
 int j;
};
-> Parent p1;
-> Parent *pptr = &p1;
-> pptr;
(class Parent *) 0x2e2b60 /* (class Parent) p1 */
-> Child c1;
C++ 63 -> pptr = &c1;
(class Parent *) 0x308e88 /* (class Child) c1.Parent::i */

user_guide.book : component_debugging 151 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 151

Interactive prototyping and unit testing in the Workspace

When you dereference a class pointer, ObjectCenter displays the full
object being pointed to:

-> *pptr;
(class Child) =
{
 int Parent::i = 0;
 int j = 0;
}

Here, ObjectCenter displays the Child object being pointed to. If you
don’t want to display the run-time type of a pointer, but rather display
the compile-time (or definition-time) type of the pointer, unset the
option print_runtime_type, which is set by default:

-> unsetopt print_runtime_type
-> *pptr;
(class Parent) =
{
 int i = 0;
}

Displaying pointers
to data members

For pointers to class data members, ObjectCenter displays the kind of
pointer, the address pointed to, the type of object pointed to, and the
data member pointed to:

-> String s5="A string";
(class String *) 0x2066c8 /* (class String) s5 */
-> int *ptr;
-> ptr = &s5.len;
(int *) 0x2066c8 /* (class String) s5.String::len */
-> ptr;
(int *) 0x2066c8 /* (class String) s5.String::len */
-> *ptr;
(int) 8

Displaying the
inheritance hierarchy

ObjectCenter shows inheritance when displaying members in a
derived class.

Consider the following class hierarchy, where class Two is derived
from class One, class Three is derived from class Two, and so on:

class One {protected: int a;};
class Two : public One {protected: int b;};
class Three : public Two {protected: int c;};
class Four : public Three {protected: int d;};
class Five : public Four {protected: int e;}

user_guide.book : component_debugging 152 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

152 ObjectCenter User’s Guide

ObjectCenter displays an instance of the Five class as follows:

-> load hierarchy.C
Loading (C++): hierarchy.C
-> Five myfive;
-> myfive;
(class Five) =
{
int Four:Three:Two:One::a = 0;
int Four:Three:Two::b = 0;
int Four:Three::c = 0;
int Four::d = 0;
int e = 0;
}

If a member is defined in the class itself, ObjectCenter simply shows
the member. For example, the member e is defined locally by the Five
class, so ObjectCenter shows:

int e ...

If a member is inherited, ObjectCenter displays the class in which the
member is defined using the syntax defining_class::member.

For example, the member d is defined in Four, so ObjectCenter shows:

int Four::d ...

If an inherited member is defined by a higher-level class than the
direct base class, ObjectCenter displays the entire path of inheritance
as class1:class2:class3: ... defining_class::member.

For example, the member c is defined in the class Three. The Five class
inherits that member through its base class Four. So ObjectCenter
shows the inheritance path as:

int Four:Three::c ...

Similarly, the member b is inherited through the path from class Four
through class Two, so ObjectCenter shows:

int Four:Three:Two::b ...

NOTE ObjectCenter uses single colons (:) to indicate the
inheritance path and uses the scoping operator (::) to
indicate the class that actually defines a member.

user_guide.book : component_debugging 153 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 153

Interactive prototyping and unit testing in the Workspace

The inheritance path
is for display
purposes only

While ObjectCenter shows the inheritance path when displaying class
members, you don’t specify the path when identifying class members
in the Workspace.

For example, the following is an error:

-> myfive.Four:Three::c; // ERROR

You identify class members the same way C++ does, by simply
specifying the class name, the selection operator (.), and the member
name, such as:

-> myfive.c;
(int) 0

Though note that the following is valid C++ syntax:

-> myfive.Three::c;
(int) 0

In some, but not all, cases, that syntax can resolve an ambiguity that
might exist when accessing a data member.

Suppressing the
display of the
inheritance path

You can tell ObjectCenter not to display the complete path of
inheritance for inherited members by unsetting the option
show_inheritance, which is set by default.

In the following example, show_inheritance is unset, so only the
defining class is shown for members.

-> unsetopt show_inheritance
-> myfive;
(class Five) =
{
int One::a = 0;
int Two::b = 0;
int Three::c = 0;
int Four::d = 0;
int e = 0;
}

Notice that ObjectCenter is no longer showing how myfive inherited
members; it is simply showing the class that defines each member.

Suppressing the
display of inherited
members

By default, ObjectCenter displays all nonstatic data members of an
object. Using ObjectCenter options, you can change whether
ObjectCenter displays inherited members and static members.

user_guide.book : component_debugging 154 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

154 ObjectCenter User’s Guide

If you unset the option print_inherited (which is set by default),
ObjectCenter displays only locally defined members of objects:

-> myfive;
(class Five) =
{
int One::a = 0;
int Two::b = 0;
int Three::c = 0;
int Four::d = 0;
int e = 0;
}
-> unsetopt print_inherited
-> myfive;
(class Five) =
{
 int e = 0;
}

ObjectCenter now only displays e, which is the only data member that
is defined in class Five.

Turning on the
display of static
members

Similarly, by setting the option print_static (unset by default), you can
display static members.

Given this class:

class test {
static int count;
int i;

};

ObjectCenter displays this:

-> test test1;
-> test1;
(class test) =
{
 int i = 0;
}
-> setopt print_static
-> test1;
(class test) =
{
 static int count = 0;
 int i = 0;
}

user_guide.book : component_debugging 155 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 155

Interactive prototyping and unit testing in the Workspace

Workspace
troubleshooting

Because of the complexity of C++ (particularly the use of constructors,
inline functions, and virtual functions), there are several situations
when working in the Workspace can get confusing.

In particular, you might be told that you have unresolved references
in your program, and it is not immediately obvious what the problem
is. This section describes some of these situations.

Unresolved
references with
static constructors

If you call a function in the Workspace, all static constructors (sti
routines) are executed, not just the static constructors for the file the
function is defined in. (This is because it is not possible to determine
what can be called when a statement is executed; therefore,
ObjectCenter needs to assume that everything might get called.)

This can be confusing. For example, you load several C++ files and call
a function. ObjectCenter might report unresolved references from sti
routines that are completely unrelated to the function you are calling.

Unresolved
references with
inline functions

It is possible to run a program without encountering any unresolved
references, but then discover unresolved references when you use the
Workspace to call functions in the program. This occurs if your
program never used the functions you are trying to call in the
Workspace.

By default, ObjectCenter uses demand-driven code generation
(-dd=on with the load command). If demand-driven code generation
is on, ObjectCenter loads only the code your program uses. Setting
-dd=off eliminates unresolved references when you use the
Workspace to call functions your program never used.

For example, you can have inline functions your program never calls.
When you run your program, these inline functions are not called, so
you do not discover any undefined functions that are called by those
inline functions. However, when you call such an inline function in the
Workspace, ObjectCenter discovers any undefined functions called by
the inline function, generates a break level, and reports unresolved
references.

You must set -dd=off to generate information about these functions
and call them in the Workspace.

Using virtual
functions with
incomplete programs

When working with incomplete programs, virtual functions can
reduce the usefulness of the Workspace. One problem results from the
initialization of the vptr inside a constructor. The pointer is initialized
to the vtbl for the class, which references all virtual functions defined
for the class.

user_guide.book : component_debugging 156 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

156 ObjectCenter User’s Guide

Consider this class definition in virtual.h:

class p {
virtual one ();
virtual two ();

};

and this file, virtual1.C, which defines one() but not two():

#include "virtual.h"
int p::one() {

return 1;
};

If you load virtual1.C and try to create an instance of the class, you get
a warning:

-> load -dd=off virtual1.C
Loading (C++): virtual1.C
-> p p1;
Error #156: Calling undefined function p::p(void).
(break 1)-> unres
Undefined symbols:
int p::two()
(break 1)-> cont
Error #156: Calling undefined function p::p(void).
(break 1)-> p1;
(class p) =
{

(break 1)-> cmode
C Workspace Enabled.
C (break 1)-> p1;
(struct p) =
{
 struct __mptr *__vptr__1p = 0x0;
}
C (break 1)-> cxxmode
C++ Workspace Enabled.
C++ (break 1)->

Here we have created an instance of the class p, which contains virtual
functions. The unresolved warning results from not all the virtual
function definitions being loaded into ObjectCenter. In this case, you
can ignore the warning until p::two() is referenced in a call or pointer
to a member assignment.

user_guide.book : component_debugging 157 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 157

Interactive prototyping and unit testing in the Workspace

Optimization in the
C++ language

A more serious case arises from the optimization included in C++
beginning with Release 2.0 of the AT&T C++ Language System. (This
optimization is described in the paper "Virtual table optimizations in
C++ 2.0," by Andrew Koenig and Stan Lippman in the March 1990
issue of The C++ Report.)

The optimization attempts to create one definition of a class’s vtbl per
executable. Before Release 2.0, this could only be accomplished by
using the CC switches +e0 and +e1.

The algorithm is to generate a vtbl definition for a class if the module
being compiled contains the definition of the first non-inline virtual
member function declared in the class.

For example, now load this new file, virtual2.C, which defines two():

#include "virtual.h"
int p::two() {

return 1;
}

we find the vtbl for p defined in only one file:

C++ 9 -> load -dd=off virtual2.C
Loading (C++): virtual2.C
C++ 10 -> whereis __vtbl__1p
"virtual1.C" struct __mptr __vtbl__1p[4], initialized

This presents a problem in the Workspace. If you attempt to instantiate
a class that contains virtual functions, and the file that contains the
vtbl is not loaded, the instance will not be initialized properly:

C++ 11 -> unload user
Unloading: virtual1.C
Unloading: virtual2.C
C++ 12 -> unload Workspace
C++ 13 -> load -dd=off virtual2.C
Loading (C++): virtual2.C
C++ 14 -> p p1;
Warning #73: Calling function p::p() which contains
unresolved references. Use the ‘unres’ command to
list all undefined symbols.
C++ (break 1) 15 -> unres
Undefined symbols:

extern struct __mptr vtbl__1p[];
C++ (break 1) 16 -> cont
(class p *) 0x399398 /* p1 */

user_guide.book : component_debugging 158 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

158 ObjectCenter User’s Guide

C++ 17 -> cmode
C Workspace Enabled.
C 6 -> p1;
(struct p) =
{
struct __mptr *__vptr__1p = 0x0;
}

You need to understand the optimization in the C++ Language System
and load the appropriate files to create a usable Workspace.

Using the
Workspace in C
language mode

You can load, run, and debug C programs as well as C++ programs in
ObjectCenter. In order to enter standard C statements in the
Workspace, you use ObjectCenter’s C mode.

Viewing C definitions With files loaded as C source code, no C definitions or external
definitions are visible in the Workspace in C++ mode. Consider the C
file c_int.c, which contains only this definition:

int c_var;

Look at what happens if you load c_int.c and ask for the value of the
defined integer:

C++ 55 -> load -C c_int.c
Loading (C): c_int.c
C++ 56 -> c_var;
Error #719: c_var undefined.

The workaround is to use C mode:

C++ 57 -> cmode
C Workspace Enabled.
C 58 -> c_var;
(int) 0

Differences between
C++ mode and C
mode

When you are in C mode, statements you enter in the Workspace are
considered to be standard C statements and are parsed accordingly.

Also, the output of Workspace commands is shown using C, not C++,
syntax. That means that all C++ identifiers are shown in mangled form,
after they have been translated from C++ code to C code, prior to
compilation.

user_guide.book : component_debugging 159 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 159

Interactive prototyping and unit testing in the Workspace

Take a look at what happens when a class instance is created in C++
mode, then the user switches to C mode:

C++ 4 -> load String.C
Loading (C++): String.C
C++ 5 -> String s1="This is a string";
(class String *) 0x1fc280 /* s1 */
C++ 6 -> s1;
(class String) =
{
 int len = 16;
 char *text = 0x21f190 "This is a string";
}
C++ 7 -> cmode
C Workspace Enabled.
C 8 -> s1;
(struct String) =
{
 int len__6String = 16;
 char *text__6String = 0x21f190 "This is a string";
}

As shown on line 8, the member names are shown in mangled form:
len becomes len__6String and text becomes text__6String.

Attempts to access the members using the C++ names fail when in C
mode:

C 10 -> s1.len;
Error #713: ’len’ is not a member of type (struct
String).
C 11 -> cxxmode
C++ Workspace Enabled.
C++ 12 -> s1.len;
(int) 16

When in C mode, you access members by using their mangled names:

C 13 -> s1.len__6String;
(int) 16

Also, using a C++ construct while in C mode fails. In the following
example, an attempt was made in C mode to concatenate two strings
using the overloaded + operator.

C 32 -> s1+s2;
Error #593: Illegal argument type:

 (struct String) + (struct String)

There are several other differences between working in C++ mode and
C mode.

user_guide.book : component_debugging 160 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

160 ObjectCenter User’s Guide

Displaying
references

In C++ mode, when you display a C++ reference type, ObjectCenter
returns the value of the reference type:

C++ 70 -> int i = 5;
C++ 71 -> int &ref = i;
C++ 72 -> ref;
(int) 5

In C mode, ObjectCenter shows you what the reference type is an alias
for. In this case, ref is an alias for i.

C++ 73 -> cmode
C Workspace Enabled.
C 74 -> ref;
(int *) 0x206050 /* i */

Displaying static
objects

ObjectCenter displays static objects when in C++ mode (if the
print_static option is set), but not in C mode. (This is because static
objects don’t actually exist internally in the C structure.)

Given this class:

class test {
static int count;
int i;

};

ObjectCenter displays this:

C++ 70 -> class test { static int count; int i; };
C++ 71 -> int test::count = 0;
C++ 72 -> setopt print_static
C++ 73 -> test test1;
C++ 74 -> test1;
(class test) =
{
 static int count = 0;
 int i = 0;
}
C++ 75 -> cmode
C Workspace Enabled.
C 76 -> test1;
(struct test) =
{
 int i__4test = 0;

user_guide.book : component_debugging 161 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 161

Interactive prototyping and unit testing in the Workspace

Displaying virtual
table pointers

In C++ mode (the default), ObjectCenter doesn’t display virtual table
pointers; in C mode it does. For example, given this class definition:

class foo {
virtual void func();
int i;

};

ObjectCenter displays this:

C++ (break 1) 44 -> foo f2;
(class foo *) 0x308ec8 /* (class foo) f2 */
C++ (break 1) 45 -> f2;
(class foo) =
{
 int i = 0;
}
C++ (break 1) 46 -> cmode
C Workspace Enabled.
C (break 1) 47 -> f2;
(struct foo) =
{
 int i__3foo = 0;
 struct __mptr *__vptr__3foo = 0x309e90 /* (struct
__mptr) __vtbl__3foo[0] */;
}

The virtual table pointer is identified at the end as struct __mptr
*__vptr__3foo.

Displaying virtual
base class pointers

Pointers for virtual base classes are shown in C mode, but not in C++
mode.

Displaying members
in classes with
multiple inheritance

Inherited members created using multiple inheritance are shown as
members in C++ mode and as sub-objects in C mode:

C++ 51 -> class a {int i;};
C++ 52 -> class b {int j;};
C++ 53 -> class c : public a, public b {int k;};
C++ 54 -> c c1;
C++ 55 -> c1;
(class c) =
{
 int a::i = 0;
 int b::j = 0;
 int k = 0;
}

user_guide.book : component_debugging 162 Mon Jun 5 13:07:07 1995

Chapter 5: Component debugging

162 ObjectCenter User’s Guide

C++ 56 -> cmode
C Workspace Enabled.
C 57 -> c1;
(struct c) =
{
 int i__1a = 0;
 struct b Ob =
 {
 int j__1b = 0;
 };
 int k__1c = 0;
}

user_guide.book : process_debugging 163 Mon Jun 5 13:07:07 1995

Chapter 6 Process debugging

This chapter describes ways for you to get
information about your program’s structure and
current state. It covers the following topics:

• How you work in process debugging mode

• Getting into process debugging mode and
specifying a target

• Differences between the two debugging modes

user_guide.book : process_debugging 164 Mon Jun 5 13:07:07 1995

user_guide.book : process_debugging 165 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 165

Overview

Overview
You use ObjectCenter’s process debugging mode for interactive
debugging of an externally linked executable as an autonomous
process.

For the most part, in process debugging mode, you conduct
interactive debugging and data-level code comprehension in the same
way you do in component debugging mode. This chapter
concentrates on those aspects of interactive debugging that are unique
to process debugging mode and explains the differences between the
two debugging modes.

How you work in process
debugging mode
Process debugging mode allows you to debug externally linked
executables. This provides you with a superior programming
environment for traditional source-level debugging. You get the
interactive debugging features of source-level debuggers such as gdb,
plus the unique code comprehension facilities offered by
ObjectCenter’s Data Browser, Source area, and Workspace commands.
Because you use the same command set and access functionality
through the same GUI, both process and component debugging
modes combine to offer you a unified programming environment. At
any time, you can switch between the two debugging modes to suit
your current programming objectives.

When you use
process
debugging mode

There are times you need to use process debugging mode to do things
not possible in component debugging mode, such as tracking down a
bug that depends on the way your linker lays out storage or a bug that
depends on multiprocess interactions.

Typically, however, you use process debugging mode when you
simply want to get a quick check of your program’s behavior and are
willing to sacrifice the extra benefits of using component debugging
mode. Using an externally linked executable, you get faster setup time
for your debugging session and faster execution speed for your
program running in ObjectCenter.

user_guide.book : process_debugging 166 Mon Jun 5 13:07:07 1995

Chapter 6: Process debugging

166 ObjectCenter User’s Guide

But this increase in setup and execution speed for process debugging
mode comes at the expense of some of ObjectCenter’s most powerful
features that are only available in component debugging mode:
automatic error checking, graphical views of the calling hierarchy
using the Cross-Reference Browser, graphical views of the inheritance
hierarchy using the Inheritance Browser, access to all categories of
definitions contained in a file using the Contents window, and access
to the interactive C++ interpreter or C interpreter.

Ways to target an
externally linked
executable

In process debugging mode, you can debug an externally linked
executable in any of three ways: as an executable alone, or with a
corefile or running process. You choose among these ways according
to your current programming objective.

Using an executable
alone

If you are simply interested in going after a known bug in the simplest
method possible, you start a process debugging mode session and
target an executable alone. When you target an executable alone,
ObjectCenter starts the target executable as a new process and pauses
execution at the first instruction of the program.

Using an executable
with a corefile

If your executable has crashed and dumped core, you can target the
corefile and go immediately to the point of the crash.

When you use an executable with a corefile, ObjectCenter recreates the
program state, halted at the point where your program faulted. Since
the corefile is an image of your application’s memory at the time of the
crash, you have access to the complete program state when the crash
occurred. However, you cannot restart or continue execution from a
corefile.

Using an executable
with running process

If you are up against a bug that occurs in an event-driven or
multiprocess application, you can use an executable with a running
process.

When you use an executable with a running process, ObjectCenter
attaches to the running process and process execution is suspended.
(If you prefer, you can first suspend the running process from the shell
using the UNIX kill -STOP command and attach to the process later.)
This allows you to explore the program in the context of complex or
transient states that would be difficult to recreate any other way. You
can then use the interactive debugging facilities to change the state,
resume execution, and debug the program.

user_guide.book : process_debugging 167 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 167

Getting into process debugging mode and specifying a target

Getting into process debugging
mode and specifying a target

Selecting process
debugging mode
at startup

If you are not already in the ObjectCenter environment, you can start
ObjectCenter in process debugging mode by using the -pdm switch at
the shell command line:

% objectcenter -pdm

When you start up in process debugging mode, ObjectCenter reads
the global startup file ocenterinit and the local startup file .pdminit
(rather than the local startup file .ocenterinit). For information about
customizing these startup files, see 'Using ObjectCenter startup files'
on page 213.

Running process debugging mode only means being without access to
clms (CLIPC Message Server), the process that manages the
interprocess communication among all Ascii ObjectCenter application
services. With process debugging mode only, you have no access to
the GUI as a way of switching to component debugging mode.

Once you are in an ObjectCenter session in one debugging mode, you
can easily switch to the other mode. However, switching modes
means that you begin a new session; the state of your debugging
session is not carried over from one mode to the other.

To switch from one mode to another, display the ObjectCenter menu
in the Main Window and select Restart Session. This opens the
Restart Environment dialog box. You can specify the items listed in
Table 19 on page 168.

When you begin process debugging mode the first time, the
Workspace displays a startup message that you can have ObjectCenter
suppress for subsequent sessions. The Workspace prompt indicates
that ObjectCenter is in process debugging mode (pdm):

pdm ->

user_guide.book : process_debugging 168 Mon Jun 5 13:07:07 1995

Chapter 6: Process debugging

168 ObjectCenter User’s Guide

Specifying a
debugging target

You specify your debugging target by using the ObjectCenter debug
command from the Workspace.

Specifying an
executable alone

You use an executable as your debugging target by giving the name of
the executable as an argument. For example:

pdm -> debug my.a.out

Using an executable
with a corefile

You use an executable with a corefile by giving the name of an
executable and its associated corefile as arguments. For example:

pdm -> debug my.a.out my_core

Table 19 Switching Debugging Modes

To do this... Take this action...

Switch to process debugging
mode

Select Process Debugger for the
Run-time Engine.

Switch to component debugging
mode

Select Component Debugger for
the Run-time Engine.

Use a startup directory that is
different from ObjectCenter’s
current working directory

Specify the pathname.

Specify a target for process
debugging mode or a file to load
(such as a project file or source or
object components) in
component debugging mode

Specify these as arguments.

Initialize the new session using
the global initialization file
ocenterinit

Select Load Global Initialization
File. For more information, see
'Using ObjectCenter startup files'
on page 213.

Initialize the new session using
the local cdm initialization file
.ocenterinit or the local pdm
initialization file .pdminit

Select Load Local Initialization
File. For more information, see
'Using ObjectCenter startup files'
on page 213.

user_guide.book : process_debugging 169 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 169

Differences between the two debugging modes

Using an executable
with a running
process

You use an executable with a running process by giving the name of
an executable and the process id number for the associated running
process. For example:

pdm -> debug my.a.out 49172

For more information about specifying a debugging target, see the
debug entry in the ObjectCenter Reference.

Differences between the two
debugging modes
Wherever possible, ObjectCenter maintains consistency of use in both
component debugging mode and process debugging mode. Except for
the differences discussed here, you can approach interactive
debugging in process debugging mode in the same way described for
debugging in component mode.

Elements of the
GUI not
supported in
process mode

When in process debugging mode, those elements of the GUI, such as
menu items and buttons, that do not apply to this mode are grayed
out. The most prominent elements of the GUI not supported in
process debugging mode are the Project, Cross-Reference, Inheritance,
and Options Browsers.

ObjectCenter
commands

Most ObjectCenter commands are the same for both debugging
modes. However, there are some differences. Some commands apply
only to component debugging mode, other commands apply only to
process debugging mode, and some commands use slightly different
syntax or have slightly different behavior depending on which mode
you invoke them in.

For a list of the ObjectCenter commands supported in process
debugging mode, along with a description of any differences between
the way each command works in process debugging mode compared
to component debugging mode, see the pdm entry in the ObjectCenter
Reference.

You can also enter the following in the Workspace:

pdm -> help

user_guide.book : process_debugging 170 Mon Jun 5 13:07:07 1995

Chapter 6: Process debugging

170 ObjectCenter User’s Guide

ObjectCenter
options

Most ObjectCenter options do not apply to process debugging mode,
and the Options Browser is not available. There are two options
available in process debugging mode: class_as_struct and
full_symbols. Both are described in the options entry in the
ObjectCenter Reference.

Error checking In process debugging mode, ObjectCenter does not perform
automatic load-time or run-time error checking.

Interactive
debugging

Most of the interactive debugging facilities operate transparently
between component and process debugging modes.

To set actions in process debugging mode, you use the when
command from the Workspace, rather than the action command. For
more information, see the when entry in the ObjectCenter Reference. For
more information on using the other debugging items, see 'Using
debugging items for interactive debugging' on page 115.

Working at break
levels

In process debugging mode, you work at break levels in much the
same way as you do in component debugging mode (see 'Interactive
debugging from Workspace break levels' on page 126).

However, since the Run-time Engine in process debugging mode does
not include the C++ interpreter or C interpreter, from break level 1 you
cannot invoke a new line of execution and generate a nested break
level. For interactive debugging in process debugging mode, the
Workspace is either at the top level or at break level 1.

Code
comprehension

Process debugging mode offers the same code comprehension
features in the Data Browser, Source area, and Workspace commands
(see 'Data Browser' on page 197 and 'Pop-up menu and Workspace
commands' on page 206).

When you display the Data Browser in process debugging mode, you
cannot use it to change the values in the elements of data structures as
you can in component debugging mode. Since the Project Browser,
Contents window, and Cross-Reference Browser only apply to code
comprehension for project components, you do not use them in
process debugging mode.

user_guide.book : process_debugging 171 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 171

Differences between the two debugging modes

Using the
Workspace in
process
debugging mode

If you are in process debugging mode, the Workspace prompt changes
to indicate the mode. Once in process debugging mode, you enter
ObjectCenter commands in the same way as you would in component
debugging mode. For example:

pdm -> step

Like component debugging mode, in process debugging mode you
can enter either ObjectCenter commands or code directly in the
Workspace.

However, in process debugging mode, the Workspace does not give
you access to the ObjectCenter interpreter. This means that, unlike
component debugging mode where you can immediately execute any
C++ or C statement from the Workspace, in process debugging mode
you can only evaluate a limited range of C++ or C statements.

Furthermore, the two language modes (C++ mode and C mode) for
the Workspace only apply to component debugging mode. Basically,
in process debugging mode, you can evaluate any C++ or C
expression at the Workspace that you could use as an argument to the
print command. For more information, see the print and pdm entries
in the ObjectCenter Reference.

Debugging
information
available

The debugging information in the symbol table in an executable file
varies according to whether or not you used the -g switch when you
compiled the object modules that were linked to create the executable.
For more information on debugging information, see the debug entry
in the ObjectCenter Reference.

user_guide.book : process_debugging 172 Mon Jun 5 13:07:07 1995

user_guide.book : visualizing 173 Mon Jun 5 13:07:07 1995

Chapter 7 Visualizing your
code

With ObjectCenter you can visualize and, thereby,
comprehend code more quickly. ObjectCenter can
be especially useful when you have to debug,
enhance, or continue developing code others have
written. It can reduce the time it takes to
reacquaint yourself with code you wrote before. It
can also speed up the development of new code.

This chapter describes the following tools that help
you to visualize code:

• Project Browser

• Inheritance Browser

• Class Examiner

• Cross-Reference Browser

• Data Browser

• Expand Command

• Pop-up menu information and Workspace
commands

user_guide.book : visualizing 174 Mon Jun 5 13:07:07 1995

user_guide.book : visualizing 175 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 175

Project Browser

Project Browser
You use the Project Browser to get an overview of all the source, object,
and library files that are the components of your current project. You
use the File Contents and Library Contents windows of the Project
Browser to examine the definitions of the functions, variables,
headers, types, and typedefs contained in your files. Using the Project
Browser to get an overview of the files in your project is available only
in component debugging mode.

The Contents
windows

To examine the functions, variables, headers, types, and typedefs
defined in a file or library in your current project, you use the Contents
windows of the Project Browser. These are the File Contents window
and the Library Contents window.

The File Contents
window

To open the File Contents window for any files listed in the Project
Browser, select any files of interest in the Files area and then select the
Contents button in the Files area. A File Contents window opens for
each selected file. To view a particular kind of definition (functions,
variables, headers, types, or typedefs) in a file, select the appropriate
category from the display filter as shown in the illustration:

user_guide.book : visualizing 176 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

176 ObjectCenter User’s Guide

For header files loaded as source code, the File Contents window
shows nesting of header files with indentation.

The Library
Contents window

To open a Library Contents window for any library listed in the Project
Browser, select any libraries of interest in the Libraries area and then
select the Contents button in the Libraries area. A Library Contents
window opens for each selected library. Here is an illustration:

NOTE As shown above, shared libraries often contain a very
large number of definitions. Displaying them can take
an excessive amount of time. Therefore, we
recommend you ordinarily display only static libraries.

The Library Members area lists the individual object files making up
the library. To view the contents of a library member, select that object
file in the Library Members area. (If the library you have selected is a
PIC file, the Library Contents window only lists those library modules
that are currently linked in.) To view a particular kind of definition
(functions, variables, headers, types, or typedefs) in a library, select the
appropriate category from the display filter.

user_guide.book : visualizing 177 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 177

Project Browser

Type information To have type information, you must compile object files with the -g
switch and load them into ObjectCenter without the -G switch. If an
object file does not contain type information for an item, the File
Contents and Library windows list the area in the object file in which
the item is located: <text> or <data>. If the object file does not contain
enough information even to determine the location of the item, then
the type is listed as <extern>.

user_guide.book : visualizing 178 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

178 ObjectCenter User’s Guide

Inheritance Browser
The Inheritance Browser is one of the two class windows. The
Inheritance Browser lists the names of the classes in the files you have
loaded and displays a graphic representation of the inheritance
relationships they have. The Class Examiner, the other class window,
displays information about class members. See the 'Class Examiner'
on page 186.

Accessing the
Inheritance
Browser

When you select Inheritance Browser in the Browsers menu, the
Inheritance Browser appears.

This is what the Inheritance Browser looks like:

Class List When the Inheritance Browser appears, the Class List contains an
alphabetical list of the names of all the classes in the files you have
loaded, including instantiated templates and C structs.

You can exclude names from the Class List by selecting the Class List
filter button corresponding to the type of class you want to exclude.
You can include the classes by unselecting the Class List filter button.

Class List

Class list

Inheritance area

Button Panel

filter buttons

user_guide.book : visualizing 179 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 179

Inheritance Browser

These are the types of classes you can use the Class List filter buttons
to include or exclude:

• Abstract classes

Abstract classes are classes with one or more pure virtual
functions.

• Root classes

Root classes are classes that have no base classes.

• Leaf classes

Leaf classes are classes from which no other classes are derived.

• C structs

C structs are classes that have no constructors, destructors,
member functions, or base classes.

The All Classes filter button applies to C structs if the Show C Structs
filter button is selected. If the Show C Structs filter button is
unselected, the All Class filter button causes all classes except C
structs to appear.

You can scroll through the names in the Class List using its vertical
scrollbar. Some class names may be too long to appear in their entirety.
To see more of the names too long to fit, use the horizontal scrollbar.

Inheritance area The Inheritance area is where you display the classes whose
inheritance relationships you want to see. The area is blank when you
access the Inheritance Browser from the Main Window. When you
access it from a window requiring you to specify a class first, the
specified class appears in the center of the Inheritance area.

Seeing how
particular classes
relate

You can quickly see the inheritance relationships of any classes you
are interested in. To find out about inheritance relationships among
certain classes, select their names in the Class List. As you select each
class name, it appears in the Inheritance area. You can display as many
classes as you want in the Inheritance area by selecting their names in
the Class List. The Inheritance Browser automatically shows you
whether an inheritance relationship exists between any two classes in
any of the classes whose names you selected.

Another way you can see how classes relate is by using pointer boxes.
See the 'Showing inheritance levels with pointer boxes' on page 182.

user_guide.book : visualizing 180 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

180 ObjectCenter User’s Guide

The following illustration shows the Inheritance area with three
classes selected in the Class List. A line connects Drawable and
DrawableShape because they have a parent-child relationship. Link
is unconnected to Drawable and DrawableShape. It does not have a
parent-child relationship with either one of the other two classes.

Selecting and
unselecting
names in the
Inheritance area

You must select class names in the Inheritance area before you can do
such things as display more inheritance levels and move and remove
class names from the Inheritance area.

Selecting names You can select class names in the Inheritance area with the mouse, the
pop-up menu, or the Main Menu. Once you select a class name, a box
appears around the class name.

In addition to selecting items individually, you can select all items in
a rectangular area by dragging the mouse pointer to enclose the
desired items. You can also select them by specifying a scope from the
pop-up menu:

1 Move the mouse pointer to the item and display the pop-up
menu with the Right mouse button.

2 From the pop-up menu, select Select.

3 From the submenu, select the scope you want. (The Ancestors,
Parents, Children, and Descendents scopes only apply to items
linked by pointers.)

Unselecting names You can unselect class names in the Inheritance area with the mouse,
the pop-up menu, or the Main Menu. Once you unselect a class name,
the box around the class name disappears.

user_guide.book : visualizing 181 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 181

Inheritance Browser

Accelerators for
selecting and
unselecting

The Inheritance Browser provides accelerator keys for selecting and
unselecting class names in the Inheritance area. Table 20 contains the
accelerator keys and what they select or unselect.

Showing
inheritance levels

You can show the inheritance levels of any classes you select. To show
inheritance levels, you can use the Main Menu or the pop-up menu.

To show levels of inheritance using the pop-up menu:

1 Put the cursor on the name of the class whose inheritance you
want to show. The name of the class does not have to be selected
in the Inheritance area.

2 Choose Show on the pop-up menu.

3 Cascade into Children, Descendants, Parents, or Ancestors,
depending on what you want to show.

The class names on the branch you selected appear in the
Inheritance area, and they become selected in the Class List.

Table 20 Accelerator Keys: Selecting and Unselecting

Accelerator Keys What They Do

Control + Extend mouse button Select descendants

Control + Shift +
Extend mouse button

Add descendants to selection

Control + Meta + Shift +
Extend mouse button

Toggle selection state of
descendants

A Unselect descendants

Control + Select mouse button Select ancestors

Control + Shift +
Select mouse button

Add ancestors to selection

Control + Meta + Shift +
Select mouse button

Toggle selection state of ancestors

C Unselect ancestors

user_guide.book : visualizing 182 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

182 ObjectCenter User’s Guide

Showing
inheritance levels
with pointer boxes

You can show inheritance levels with pointer boxes. A pointer box
appears left of and right of each class name in the Inheritance area.

The pointer box to the right of the class name in the Inheritance area
refers to the children of that class. If the pointer box is empty, the class
has at least one child. If the pointer box has an "X", the class has no
children.

The pointer box to the left of a class name refers to the parents of that
class. If the pointer box is empty, the class has at least one parent. If the
pointer box has an "X", the class has no parents.

To see the parents of any class, click on the pointer to the left of its
name. To see the children of any class, click on the pointer to the right
of its name. Parents and children that now appear in the Inheritance
area also appear selected in the Class List. You can show as many
levels of inheritance as you want.

In the previous example, DrawableShape and Link have empty
pointer boxes to the right of their names, indicating that they have at
least one child each. Here is the Inheritance area now after clicking on
the empty pointer box to the right of Link. ShapeList, the only child
of Link, appears and is selected in the Class List.

Displaying more
of the Inheritance
area

You may want to see parts of the inheritance hierarchy that don’t fit in
the Inheritance area.

To display another part of the inheritance hierarchy, use the horizontal
and vertical scrollbars of the Inheritance area.

To display as much of the hierarchy in the Inheritance area as you
want at any one time, resize the entire Inheritance Browser.

As an alternative to using scrollbars, you can customize the
Inheritance Browser to display a canvas representing the virtual
display area and a panner that represents what is currently shown in
the Reference area.

user_guide.book : visualizing 183 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 183

Inheritance Browser

For more information on using X resources to customize the
ObjectCenter GUI, see the X resources entry in the ObjectCenter
Reference.

Moving names of
classes within the
display

You may want to change the position of classes in the Inheritance area
to reflect your visualization of the inheritance hierarchies you want to
analyze. Once a class name is in the Inheritance area, you can drag it
anywhere in the Inheritance area. If you want to move several class
names as a group, select them first. Put the cursor on any one of their
names and drag them as a group.

When you move a class name that is connected to a parent or child by
a line, a line still connects them after the move. The line becomes
longer or shorter, depending on the resulting distance between them.

When you move a parent to the right of its child, the line becomes
dashed. When you move a child to the left of its parent, the line
becomes dashed.

Clearing the
Inheritance area

To clear the Inheritance area of all class names, do one of the following:

• Press the Clear button on the Button panel, or

• Choose Clear in the Graph menu of the Inheritance Browser.

All the class names in the display disappear, and they become
unselected in the Class List.

Removing
selected class
names from the
Inheritance area

You can remove selected class names from the Inheritance area with
the Class List or in the Inheritance area.

To remove class names from the Inheritance area individually,
unselect their names in the Class List. The class names disappear from
the Inheritance area as you unselect them in the Class List.

You can also remove class names from the Inheritance area with the
Button panel, pop-up menu, Main Menu, or the Delete key.

To remove class names with the Button panel:

1 Select the class name or names you want to remove.

2 Click on the Remove Selected button on the Button panel. The
class names disappear, and they become unselected in the Class
List.

user_guide.book : visualizing 184 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

184 ObjectCenter User’s Guide

Removing
unselected class
names from the
Inheritance area

In addition to removing selected class names, you can keep unselected
branches in the Inheritance area:

1 Select the class names you want to keep.

2 Select Remove Unselected in the Graph menu of the
Inheritance Browser. Class names that were unselected
disappear, and they are unselected in the Class List.

Listing the code
that defines a
class

You can list the source code that defines a class by selecting its name
in the Inheritance area and using the Main Menu or the Button panel.
Without having selected the name of a class, you can also use the
pop-up menu.

To list the code by using the pop-up menu:

1 Put the cursor in the Inheritance area on the name of the class
whose code you want to list. The class does not have to be
selected in the Inheritance area.

2 Choose List on the pop-up menu. The code appears in the
Source area of the Main Window.

Editing the code
that defines a
class

You can edit the source code that defines a class by selecting its name
in the Inheritance area and using the Main Menu or the Button panel.
Without having selected the name of a class, you can also use the
pop-up menu.

To edit the code by using the pop-up menu:

1 Put the cursor in the Inheritance area on the name of the class
whose definition you want to edit. The class does not have to be
selected in the Inheritance area.

2 Choose Edit on the pop-up menu. The Inheritance Browser has
accessed your editor, displaying the lines of code containing the
definition you want to edit.

Updating the
Inheritance
Browser

The Inheritance Browser displays a message when ObjectCenter
senses that the reference information for the Inheritance Browser may
be out-of-date. Loading, reloading, unloading, or swapping a file can
cause the reference information in the Inheritance Browser to be
out-of-date.

If the message appears, click on Update to ensure that the reference
information available to the Inheritance Browser is up-to-date with
the current state of your project.

user_guide.book : visualizing 185 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 185

Inheritance Browser

Examining the
members of a
particular class

You can examine the members of a class by accessing the Class
Examiner. See the 'Class Examiner' on page 186. You can access the
Class Examiner by selecting the name of a class and using the Main
Menu or the Button panel. You can also use the pop-up menu without
having selected the name of a class.

To access the Class Examiner with the pop-up menu:

1 Put the cursor in the Inheritance area on the name of the class
whose members you want to examine. The class does not have
to be selected.

2 Choose Examine Class from the pop-up menu. The Class
Examiner appears, focusing on the class you selected.

Postscript
printing from the
Inheritance
Browser

You can print the contents of the Inheritance Browser to a Postscript
file. Click on the Print... button in the Browser to see a dialog box in
which you specify what paper size to use, the title of the printout, and
the name and location of the output file. The default location is your
current directory. You can also specify how many pages the output
will be printed on. For example, if you specify an output page width
of 3 and height of 2, the output is resized to fit on six sheets of paper.

Finding more
information

For more information, see the classinfo entry in the ObjectCenter
Reference.

user_guide.book : visualizing 186 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

186 ObjectCenter User’s Guide

Class Examiner
The Class Examiner is one of the two class windows. The Class
Examiner displays information about class members. The Inheritance
Browser, the other class window, displays a graphic representation of
the inheritance relationships among classes. See the 'Inheritance
Browser' on page 178.

Accessing the
Class Examiner

You can access the Class Examiner from the Main Window with or
without having selected the name of the class you are interested in, in
the Source area.

If the name of the class you want to examine appears in the Source
area, follow these steps to access the Class Examiner:

1 Select the class name in the Source area or in the Workspace.

2 Do one of the following: Click on Examine Class... in the Button
panel or choose Examine Class in the Examine menu in the
Main Window. The Class Examiner appears.

If the name of the class you want to examine does not appear in the
Source area, you must enter the class name in a dialog box that
appears after you make an examine-class choice in the GUI. You select
Browse in the dialog box, and the Class Examiner appears.

user_guide.book : visualizing 187 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 187

Class Examiner

This is what the Class Examiner looks like:

In this example, the Class Examiner is focused on a class called Point.

When the Class Examiner appears, the Members area lists all the
members of the focus class sorted by name.

You can scroll through the names in the Members area using the
vertical scrollbar. Some member names may be too long to appear in
their entirety. To see more of the names too long to fit, use the
horizontal scrollbar.

Keeping member
names visible

When the Class Examiner appears, it displays the names of all the
members of the class. All of the Visibility buttons are selected.

If you are not interested in displaying the names of inherited class
members, unselect the Inherited Visibility button. Inherited members
disappear from the Members area.

 If you want to remove the names of other kinds of class members from
the Members area, unselect the Public, Protected, Private, Function,
and Data Visibility buttons, depending on the kinds of class members
you want the Members area to keep visible. A class member must
meet all the selected characteristics to remain visible in the Members
area.

user_guide.book : visualizing 188 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

188 ObjectCenter User’s Guide

Filtering member
names

You can filter out names of certain kinds of class members by using the
Member Filter buttons. These are the kinds of class members that you
can filter out:

• Static

• Inline

• Virtual

• Pure Virtual

• Operator

• Constructor

• Destructor

• Normal

Normal members are members that belong to no other of the
categories above.

You can select any one or any combination of Member Filter buttons.
The Members area displays a class member if it meets at least one of
the characteristics selected. To limit the display to names of class
members with only one of the characteristics, the rest of the
characteristics must be unselected.

Grouping member
names

You can group class member names by protection level, name, or
inheritance. To change the grouping, select the Group By button that
corresponds to the grouping you want: Protection, Name, or
Inheritance.

When you select one of these buttons, the class member names in the
Members area are immediately sorted in the order you have selected.
When you sort by Protection or Inheritance, the secondary sort is
Name.

user_guide.book : visualizing 189 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 189

Class Examiner

Searching for
class members

You can search for class members in this way:

1 Click on the Find button. A dialog box appears:

2 In the Search For field, enter the name of the class member you
would like to search for.

3 Click on First Match to see the first entry in the Members area
that matches your search criterion, or click on Find Previous to
see the previous match, Find Next to see the next match, and
Find Last to see the last match in the Members area.

The search is limited to only those class members that are visible in the
Members area. The search excludes class members you have filtered
out or made to disappear from the Members area.

Finding the code
that defines a
member function

You can find the source code that defines a member function:

1 Select a text fragment in the name of the member function
whose definition you want to find.

2 Click on the Where is button in the Button panel. The filename
and line number of the source code that defines the member
function appears.

Listing the code
that defines a
member function

You can list the source code that defines a member function:

1 Select the name of the member function whose definition you
want to see.

2 Click on the List button in the Button panel. The source code
that defines the member function appears.

user_guide.book : visualizing 190 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

190 ObjectCenter User’s Guide

Editing the code
that defines a
member function

You can edit the source code that defines a member class:

1 Select the name of the member function whose definition you
want to see.

2 Click on the Edit button in the Button panel. The Class
Examiner has accessed your editor, displaying the lines of code
containing the definition of the member function you want to
edit.

Choosing another
class to examine

You can examine any child or parent of the class you are examining by
clicking on the Children or Parents button and cascading to the
submenu to select the name of the class you want to examine.

Accessing other
windows from the
Class Examiner

From the Class Examiner, you can access the Cross-Reference Browser
by selecting the Cross-Reference button in the Button panel.To access
the Inheritance Browser, select the Inheritance button.

Finding more
information

For more information, see the classinfo entry in the ObjectCenter
Reference.

user_guide.book : visualizing 191 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 191

Cross-Reference Browser

Cross-Reference Browser
You use the Cross-Reference Browser to see a graphic representation
of the calling structure of your program. It shows the references to and
from functions and global variables. You can show the calling
hierarchy at any depth and filter the display to suit your needs at any
given moment. Using the Cross-Reference Browser to see the calling
structure of your program is available only in component debugging
mode.

Cross-referencing
functions and
global variables

If you cross-reference a function, the Cross-Reference Browser shows
all of the functions where that function is called and all of the
functions and global variables that the function references.

If you cross-reference a global variable, the Cross-Reference Browser
shows all functions in which the variable is used and all other
variables that use the named variable for an initialization value. If the
named variable is initialized, all functions and variables it uses for its
initialization value are also listed.

NOTE Cross-referencing functions or global variables in
shared libraries is unreliable and changes depending
on the execution state of your program. This is due to
the way that symbols are linked from shared libraries.
If you need accurate cross-reference information for a
library, load and link it as a static library.

Displaying virtual
functions

Whenever there is a reference to a virtual function, the
Cross-Reference Browser displays each instance of the virtual
function. In the following example, drawMove() has this definition:

void DrawableShape::drawMove(count)
{

move(Point(...));
draw();
wait();

}

user_guide.book : visualizing 192 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

192 ObjectCenter User’s Guide

In this example, draw() is a virtual function implemented by the
subclasses of DrawableShape. This is how drawMove() appears in
the Cross-Reference Browser:

The Browser shows that there are three instances of draw(),
implemented by the classes DrawableShape, Circle, and Rectangle.

NOTE The Cross-Reference Browser only recognizes static
references between functions or global variables. If a
reference was dynamically created, such as by
assigning the address of a variable to a pointer, it is
not shown.

Formal arguments, automatic variables, macros, and
typedefs cannot be cross-referenced.

You specify a function or global variable to cross-reference in any of
the ways listed in Table 21.

user_guide.book : visualizing 193 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 193

Cross-Reference Browser

Using the
Cross-Reference
Browser

When you cross-reference a function or global variable, the
Cross-Reference Browser opens and the Reference area displays the
referencing structure of the functions or global variables you have
specified.

For example, to examine all the locations where the function
DrawableShape::bounce() is used and all the global symbols it uses,
select bounce and invoke the Cross-Reference Browser as shown in
this illustration:

In this example, bounce() is called only by main(), and it calls three
functions: sleep(), closeWindow(), and DrawableShape::doDraw().

Table 21 Cross-Referencing a Function or Variable: Methods
According to Work Area

Work Area Ways to Cross-Reference a Function or
Global Variable

Main Window 1 From anywhere in ObjectCenter, use the
mouse to select a function or global
variable you want to display.

2 From the Examine menu, select xref.

Workspace Use the xref command.

user_guide.book : visualizing 194 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

194 ObjectCenter User’s Guide

Interpreting
reference lines

When a reference between two items is shown, it is represented by a
line connecting the right reference box of one item with the left
reference box of another item. Typically, an item making a reference is
to the left of the item receiving the reference.

As an aid for following references that are displayed in the opposite
direction (right to left), the Reference area uses a dashed line. That is,
if the item making the reference is to the right of the item receiving the
reference, they are connected with a dashed line.

Showing further
references and
removing them

You can show additional references to or from an item by clicking on
the reference box of that item. To remove items, you must select them
(See 'Selecting and manipulating reference items' on page 195) and
select the Remove Selected button.

In the previous example, bounce() is the focus item and main() is
shown as referencing it. To show all the other references made by
main(), click on the reference box at the right of main().

user_guide.book : visualizing 195 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 195

Cross-Reference Browser

Navigating in the
Reference area

You can display as many functions or global variables as you want in
the Cross-Reference Browser. To move a reference item into view in
the Reference area, use the horizontal and vertical scrollbars.

As an alternative to using scrollbars, you can customize the
Cross-Reference Browser to display a canvas representing the virtual
display area and a panner that represents what is currently shown in
the Reference area. For more information on using X resources to
customize the ObjectCenter GUI, see the X resources entry in the
ObjectCenter Reference.

Updating the
Reference area

The Cross-Reference Browser displays a message when the reference
information might be out-of-date. Loading, reloading, unloading, or
swapping a file can cause the reference information in the
Cross-Reference Browser to be out-of-date.

If the message appears, click on Update Graph to ensure that the
reference information available to the Cross-Reference Browser is
up-to-date with the current state of your project.

Selecting and
manipulating
reference items

Each function or global variable shown in the Cross-Reference
Browser is treated as a separate item and can be selected or unselected
individually or as a group.

In addition to selecting items individually, you can select all the items
in a rectangular area by dragging the mouse pointer to enclose the
desired items. You can also select items by specifying a scope from the
pop-up menu in the Reference area as follows:

1 Move the mouse pointer to the reference item and display the
pop-up menu with the Right mouse button.

2 From the pop-up menu, choose Select.

3 From the submenu, select the scope you want. (The Ancestors,
Parents, Children, and Descendents scopes only apply to items
linked by pointers.)

A child is a function called from another function. A parent is a
function from which another function is called. Descendants are
the children of a function, their children, and so on. Ancestors
are the parents of a function, their parents, and so on.

Once a file or a group of files is selected, you can move it around the
Reference area or use the pop-up menu to remove it from the
Cross-Reference Browser.

user_guide.book : visualizing 196 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

196 ObjectCenter User’s Guide

Changing the
number of
characters displayed

By default, the Cross-Reference Browser displays a maximum of 29
characters in each function cell. If you want to change the number of
characters displayed, edit your .Xdefaults file by adding this line:

ObjectCenter*XrefBrowser.XrefColumnWidth: num_of_char

For num_of_char, enter the maximum number of characters you want
displayed in function cells. For more information about X11 resources
that you can modify to customize ObjectCenter, see the X resources
entry in the ObjectCenter Reference.

Displaying the return
type

By default, the Cross-Reference Browser does not display the return
type of a function in its cell. If you want the Cross-Reference Browser
to display the return type, edit your .Xdefaults file by adding this line:

ObjectCenter*XrefBrowser*showReturnType: True

Postscript printing
from the
Cross-Reference
Browser

You can print the contents of the Cross-Reference Browser to a
Postscript file. Click on the Print... button in the Browser to see a
dialog box in which you specify what paper size to use, the title of the
printout, and the name and location of the output file. The default
location is your current directory. You can also specify how many
pages the output will be printed on. For example, if you specify an
output page width of 3 and height of 2, the output is resized to fit on
six sheets of paper.

Finding more
information

For more information, see the xref entry in the ObjectCenter Reference.

user_guide.book : visualizing 197 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 197

Data Browser

Data Browser
You use the Data Browser to display a graphical representation of any
data structure. The Data Browser has an especially strong connection
with interactive debugging in either component or process debugging
mode. Typically, you use the Data Browser when you are at a break
level and want to investigate the state of some data structure that is
currently in scope. You may also examine global data at any time.

Displaying data
structures

Table 22 lists all of the ways to display a data structure.

Using the Data
Browser

When you display data structures, the Data Browser opens and the
Data area displays a graphic representation for the data structures you
have specified.

Changing values for
data structure
elements

Complex data structures like arrays and structures also have a
scrolling list for elements in the structure folders you can open to see
all the elements of the structure.

Table 22 Displaying a Data Structure: Methods According to Work
Area

Work Area Ways to Display a Data Structure

Main Window 1 From anywhere in ObjectCenter, use the
mouse to select a variable you want to
display. The variable must currently be in
scope.

2 From the Examine menu, select display.

Data Browser 1 From the Graph menu, select New
Expression.

2 In the dialog box, enter the variable or
expression at the input line.

3 Select the Data Browse button.

Workspace Use the display command.

user_guide.book : visualizing 198 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

198 ObjectCenter User’s Guide

When you are in component debugging mode, you can change the
values for structure elements directly in the Data area. Select the Value
Field you want to change and enter a new value.

When you display the Data Browser in process debugging mode, you
cannot use it to change the values in the elements of data structures as
you can in component debugging mode.

Dereferencing
pointers and
following linked lists

Values that are pointers have an empty pointer box to the right of the
pointer value. Clicking on the empty box dereferences the pointer and
displays the item to which it points. The Data Browser draws a line
between the box and the new data item in the linked list. If the data in
the item contains an invalid pointer, the pointer box contains an "X"
instead of being empty.

Structures appear in data elements as folders, which you can choose
to open by clicking on them. In the next example, some_gadget is an
instance of the structure Gadget, which contains Loc, an instance of
the structure Location.

Dereferenced
pointer

Null pointer

user_guide.book : visualizing 199 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 199

Data Browser

The folder for Location is open to display its contents, which include
two instances of the structure Point. The folder for TopLeft, one
instance of the structure Point, is closed. The folder for BottomRight,
another instance of Point, is open to show its contents: int x and int y.

Removing items To remove data items, you must select them (See 'Selecting and
manipulating data items' on page 200) and select the Remove
Selected button.

Interpreting
reference lines

The Data Browser draws a solid line if the pointer points to the top of
a data element. The deference symbol may not actually be visible in
the Data Browser because it may be:

• In an array or structure and has scrolled off the list

• In a nested array or structure

• Hidden with property sheet hiding

user_guide.book : visualizing 200 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

200 ObjectCenter User’s Guide

If the reason the deference symbol is not visible is that it is in an array
or structure and has scrolled off the list, the solid line starts at the
corner of the dereference symbol box. If the reason the dereference
symbol is not visible is that it is in a nested array or hidden with
property sheet hiding, then the solid line starts between the corners.

The Data Browser draws a dotted line if the pointer points to an
element other than the first element in the structure. Even though the
pointer points to an element other than the first, the dotted line
touches the top corner of the item.

Navigating in the
Data area

You can display as many data structures as you want in the Data
Browser. To move a display item into view in the Data area, use the
horizontal and vertical scrollbars.

As an alternative to using scrollbars, you can customize the Data
Browser to display a canvas representing the virtual display area and
a panner that represents what is currently shown in the Data area.

For information on using X resources to customize the ObjectCenter
GUI, see the X resources entry in the ObjectCenter Reference.

Updating data items When data has changed, data items in the Browser are automatically
updated at every break in execution and at every assignment
statement in the Workspace.

Selecting and
manipulating data
items

Each data structure shown in the Data Browser is treated as a separate
item and can be selected or unselected individually or as a group.

In addition to selecting items individually, you can select all items in
a rectangular area by dragging the mouse pointer to enclose the
desired items.

TIP: Improving performance when stepping through code

If you are stepping through your code and have many data
items displayed in the Data Browser, the time spent in updating
the Data area at each break in execution can degrade
performance. You can improve performance by minimizing the
number of items you have displayed or dismissing the Data
Browser.

user_guide.book : visualizing 201 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 201

Data Browser

You can also select them by specifying a scope from the pop-up menu
in the Data area in the following way:

1 Move the mouse pointer to the reference item and display the
pop-up menu with the Right mouse button.

2 From the pop-up menu, choose Select.

3 From the submenu, select the scope you want. (The Ancestors,
Parents, Children, and Descendents scopes only apply to items
linked by pointers.)

Once an item or a group of items is selected, you can use the pop-up
menu to remove them from the Data Browser or use the Remove
Selected button.

You can also move selected items by dragging them where you want
them.

Changing display
properties

You can change the display of a data structure. Changing the display
affects only the display of the data structure in the Data Browser, not
the definition of the data structure itself.

One of the ways you can change the display of a data structure is with
the Properties dialog box. Select a data structure and select
Properties/Item Properties. The Properties dialog box appears
showing the type, display number of the item and its address. Here is
what the Properties dialog box looks like:

user_guide.book : visualizing 202 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

202 ObjectCenter User’s Guide

In the Properties dialog box, you can choose to:

• Display the address in hexadecimal notation or as an integer.

• Display the type casting you choose.

• Display all or none of the fields of the data structure, or limit the
display to only the specific fields of the data structure you are
interested in.

• Apply display changes only to the one data item you selected or
to all the data items of its type.

Once you make changes in the Properties dialog box, you can select:

• Apply to apply the changes you set.

• Revert to revert the settings to the way they were when you
opened the box, unless you selected Apply since you opened
the box. If you selected Apply since you opened the box, then
the settings revert to the way they were when you selected
Apply.

• Current Default to use the global display settings for data of
that type.

• Cancel to close the box.

You can change the display of a selected data structure outside the
Properties dialog window by selecting Properties/View... from the
main menu of the Data Browser and then selecting one of the
following:

• Iconify if you want to keep the data structure displayed but
want to save space by hiding all but its name. Select Deiconify
to revert to the display before you selected iconify.

• Raise if you want to shuffle the data structure up from one that
was covering it. Select Lower if you want to shuffle it down to
uncover one that was hidden.

• Shrink if you want to close all the folders of all the fields of the
data structure. Select Zoom if you want to open all the folders
and make the data item expand to show all items.

Finding more
information

For more information, see the display entry in the ObjectCenter
Reference.

user_guide.book : visualizing 203 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 203

Expanding C++ statements

Expanding C++ statements
It is often difficult to see exactly what code needs to be executed in
order to carry out a particular C++ statement. For example, your code
might call overloaded operators and functions or a user-defined
conversion. None of these calls are obvious by simply looking at the
code.

Using the expand
command

ObjectCenter provides several ways for you to better understand the
flow of your code. One of the most powerful is the expand command.

The expand command allows you to see which functions could
possibly be called if a section of code is executed. (The set of functions
actually executed during a given run might depend on run-time
conditions and so might be a subset of the functions listed by expand.)
Expanding a statement allows you to see implicit function calls and
disambiguates overloaded functions and operators.

To expand C++ statements, first select a section of code in the Source
area, then choose expand in the Examine menu in the Main Window.

What expand does When you issue expand, ObjectCenter searches for statements
contained in the selected text:

• If no complete statement is contained in the selected code, or if
there is no function call in the selected code, ObjectCenter takes
no action when you issue expand.

• If there are function calls in the selected statements,
ObjectCenter opens a pop-up window and lists the functions
that could be called, including user-defined conversions.

Note that the expand command evaluates the selected statements; it
does not execute them. No program functions are actually called and
no program values are changed by the evaluation of the statements.

user_guide.book : visualizing 204 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

204 ObjectCenter User’s Guide

Two examples NOTE If any class objects were constructed in the code you
selected, the expand command shows at the end the
destructors that would be called when the objects
went out of scope.

In the following example, s1, s2, and s3 are all instances of the String
class. The statement s3 = s1 + s2 is selected and evaluated using the
expand command in the Workspace.

As shown, this statement involves three function calls: two
overloaded operators (operator= and operator+) and a String
destructor.

user_guide.book : visualizing 205 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 205

Expanding C++ statements

You can also select several statements to expand. In addition, you can
use the expand choice in the Examine menu. In the example in the
next illustration, selecting expand from the Examine menu results in
the display of the functions that the lines of selected code call.

user_guide.book : visualizing 206 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

206 ObjectCenter User’s Guide

Pop-up menu and Workspace
commands
ObjectCenter offers a pop-up menu and pop-up information windows
that help you understand your code better by showing information
about selected identifiers or expressions listed in the Source area or
Workspace.

Expressions
Options
(shift-right) menu

You can get information on an identifier or expression listed in the
Source area by accessing the Expressions Options (shift-right) menu.

To access the Expressions Options menu:

1 Put the cursor on the expression you want information about.
The expression can be either in the Source area or Workspace
and can be either selected or unselected. If it is unselected,
however, you must have no other expression selected. If another
expression is selected, you must unselect it.

2 Press and hold down the Shift key. Then, click the Right mouse
button.

The Expressions Options menu appears. The first line of the menu
shows the expression you want information about.

user_guide.book : visualizing 207 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 207

Pop-up menu and Workspace commands

Here is an illustration:

Select the command you want to apply to the expression. If you have
selected one of the commands that opens a window of information
about your code, that window remains in the screen until you click the
Left mouse button.

For example, this illustration shows the whatis pop-up window.

user_guide.book : visualizing 208 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

208 ObjectCenter User’s Guide

Table 23 contains the names of all the commands in the Expressions
Options menu.

Table 23 Expressions Options Menu

Menu Selection Description

Edit Invokes your editor at the specified location.

List Displays source code lines.

Stop in function Sets a breakpoint at the first line of the function
if you specify a function.

Stop on expression Sets a breakpoint on the expression, if you
specify an expression. Stops execution
whenever the expression changes.

Trace Displays each line of code as it is being
executed. If the location is in a function, tracing
is limited to within that function.

Print Shows the value of the variable or expression.

Print* Shows the dereferenced value of the pointer.

Dump function Displays the name and value of each variable
local to the specified function.

Dump variable Displays the name and value of the variables in
the text string.

Whatis Displays all uses of a name for a function, data
variable, tag name, enumerator, type
definition, or macro definition.

Whereis Lists the defining instance of a symbol. If the
symbol is an initialized global variable,
whereis also indicates the location at which it
is initialized.

user_guide.book : visualizing 209 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 209

Pop-up menu and Workspace commands

As with the corresponding Workspace commands, the pop-up
information windows only work if the selected item is currently in
scope. For more information, see the entries for each of these
commands in the ObjectCenter Reference.

Accelerators for
Whatis and Print

ObjectCenter provides mouse accelerators to access the two pop-up
information windows that you are most likely to use: Print and
Whatis. You must have an expression selected (or the mouse pointer
on an expression and nothing selected).

Print appears when you use the Shift key and the Left mouse button.
Whatis appears when you use the Shift key and the Middle mouse
button.

Expand Displays which functions a given section of
code could possibly call. For this Expressions
Options menu command, you can select any
amount of code you want. See the 'Expanding
C++ statements' on page 203 for further
information.

Examine class Displays the selected class as the focus class in
the Class Examiner.

Xref Displays the selected class as the focus class in
the Cross-Reference Browser.

Swap Replaces a source file with the corresponding
object file or replaces an object file with the
corresponding source file.

Display Displays in the Data Browser the variable or
expression.

Display* Displays in the Data Browser what the variable
or expression points to.

Table 23 Expressions Options Menu (Continued)

Menu Selection Description

user_guide.book : visualizing 210 Mon Jun 5 13:07:07 1995

Chapter 7: Visualizing your code

210 ObjectCenter User’s Guide

Table 24 contains ObjectCenter commands that give you information
on your program, information that is available only in the Workspace.

For more information, see the dump, info, and unres entries in the
ObjectCenter Reference.

Table 24 Workspace Commands for Code Visualization

Workspace
Command

Description

dump If the function is on the execution stack, shows
all local variables (formals and automatics) for
the selected function.

info Lists the name, size, and type of the object
associated with an address.

unres Lists unresolved references.

user_guide.book : customizing 211 Mon Jun 5 13:07:07 1995

Chapter 8 Customizing
ObjectCenter

This chapter describes several ways you can tailor
ObjectCenter to your own requirements. It covers
the following topics:

• Using the ObjectCenter startup files

• Using ObjectCenter options

• Customizing the Project Browser and
integrating revision control systems

• Creating and managing customized buttons and
menu items

• Connecting your editor to ObjectCenter

• Using Workspace commands with aliases

• Using C code to work with ObjectCenter

• Customizing key bindings

• Using eight-bit character sets

• Customizing the preprocessor for the load
command

• Setting and examining environment variables

• Conditionalizing code in source files.

user_guide.book : customizing 212 Mon Jun 5 13:07:07 1995

user_guide.book : customizing 213 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 213

Using ObjectCenter startup files

Using ObjectCenter startup files
When you invoke ObjectCenter from the shell, ObjectCenter reads two
startup files: a global initialization file named ocenterinit and a local
initialization file named .ocenterinit (if you start in component
debugging mode) or .pdminit (if you start in process debugging
mode). These are text files in which you put any ObjectCenter
commands, option settings, or C code that is accepted at the
Workspace. ObjectCenter sends each line in the file to the Workspace
and executes it.

You can customize how ObjectCenter begins each session by editing
either your global or local ObjectCenter startup file.

Global startup file Before reading your local startup file, ObjectCenter reads a global
startup file, named ocenterinit (no initial period).

Typically, you use the ocenterinit file to set system-wide attributes
such as:

• The directories ObjectCenter searches for libraries, header files,
and so on

• The libraries that ObjectCenter attaches automatically

• ObjectCenter options and aliases for all users

NOTE The system-wide ocenterinit file is located in the
directory CenterLine/configs.

See your system administrator if you do not know
where the CenterLine directory is installed on your
system.

Local startup file After reading the global startup file, ObjectCenter looks for a local
startup file in the current working directory; if it does not find the file
there, it searches in your home directory. If you are starting
ObjectCenter in component debugging mode, ObjectCenter uses the
local startup file named .ocenterinit. For process debugging mode,
ObjectCenter uses the startup file .pdminit. ObjectCenter does not
read the global startup file, ocenterinit, in process debugging mode.

user_guide.book : customizing 214 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

214 ObjectCenter User’s Guide

You use the local startup file to set the values of ObjectCenter options
and define aliases that are used across ObjectCenter sessions. Here is
a sample .ocenterinit file:

% cat .ocenterinit
/* Define aliases for common commands. */
alias s step
alias n next
/* Specify option settings. */
use . ../test ../src
setopt tab_stop 4

This startup file uses three ObjectCenter commands: alias, use, and
setopt. As a result of ObjectCenter reading this file, the user can type
s as an alias for step and n as an alias for next. Also, the directories that
ObjectCenter searches when loading files are set, and the number of
spaces for tab expansions is set to 4.

Because ObjectCenter first looks in the current working directory for
.ocenterinit, you can have different .ocenterinit files for use with
different projects, as long as you work in different directories.

The system-wide ocenterinit file is read before the local .ocenterinit
file, so any specifications in the local file will override corresponding
specifications in the system-wide file.

Restarting a
session

You may want to restart an ObjectCenter session to clear your current
session or to switch debugging modes.

Select Restart Session... on the ObjectCenter menu of the Main
Window. The Restart Environment window appears enabling you to
specify how you want to restart the session. The window has these
fields:

• Runtime Engine

Select Component Debugger to start a cdm session or Process
Debugger to start a pdm session.

• Directory

This is the directory in which you want ObjectCenter to look for
local initialization files. The default is the directory in which
ObjectCenter looked at last startup. Edit this field if you want to
change the directory.

user_guide.book : customizing 215 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 215

Using ObjectCenter startup files

• Args

In the Args field, enter the arguments with which you want
ObjectCenter to restart.

• Load Global Initialization File

Select Load Global Initialization File to initialize the new
session using the global initialization file ocenterinit.

• Load Local Initialization File

Select Load Local Initialization File to initialize the new session
using the local cdm initialization file .ocenterinit or the local
pdm initialization file .pdminit.

After you have entered the information about your restart, press the
Restart Debugger button.

Using X resources As with other X applications, you can customize the ObjectCenter GUI
by specifying values for X11 resource variables. For information on
X11 resources that you can modify to customize ObjectCenter, see the
X resources entry in the ObjectCenter Reference.

user_guide.book : customizing 216 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

216 ObjectCenter User’s Guide

Using ObjectCenter options
In component debugging mode, the Options Browser allows you to
examine and change the values of all ObjectCenter options. You can
customize much of ObjectCenter’s functionality through these
options. For information on each ObjectCenter option, see the options
entry in the ObjectCenter Reference.

Displaying options To display the ObjectCenter options and their current values, from any
primary window, display the Browsers menu and select Options
Browser. Here is an illustration of the Options Browser:

The Options Sets line shows the current option category, and the
Options area lists each option grouped under that category. Each
option is shown on a separate line. Each option line shows the name
of the option, the type of value it takes (Boolean, integer, or string),
and the current value setting.

user_guide.book : customizing 217 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 217

Using ObjectCenter options

Changing the option
category

The Options Sets menu lists all of the categories under which options
are grouped. To change the current option category, display the
Options Sets menu and select the desired menu item.

Changing option
settings

To change the value of an option, move the cursor to the value field for
the desired option line, drag the mouse to select the portion of the field
you want to change, and type the changes. The Options Browser has a
limit of 1000 characters for each entry field. If you need to set an option
to a value with more than 1000 characters, you must use the setopt
command in the Workspace.

At the bottom of the screen, the Options Browser displays a brief
description of the option you have in input focus.

Values that cannot
be changed

A few options, such as the ObjectCenter version number, are
uneditable. If you try to edit one of them, the Options Browser
displays an error message at the bottom of the screen that says the
option is read-only.

Canceling changes At any point while making changes to option settings, you can cancel
all your changes since you last applied new values. To revert to the
option settings in effect when you last applied settings, select the
Revert button.

NOTE When you revert, changes made since the last time
you applied new values are canceled for all options in
the Options Browser, not only those options currently
shown in the Options area.

Applying changes You can change as many value settings as you like before applying
these settings. To apply the current values as new settings for all the
options, select the Apply button.

You can apply changes to one field at time by pressing the Return key
after you have entered a change in each field. If you apply a change
with the Return key, however, ObjectCenter applies that value and the
Revert key is unable to restore the previous value.

Changes made since the last time you applied new values are applied
to all options in the Options Browser, not only those options currently
shown in the Options area.

user_guide.book : customizing 218 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

218 ObjectCenter User’s Guide

You can also enter the following in the Workspace:

-> setopt option_name

For more information on setting, unsetting, and viewing ObjectCenter
options, see the setopt, unsetopt, and printopt entries in the
ObjectCenter Reference.

Saving option
settings

Changes you make to ObjectCenter options are not automatically
saved across sessions. When you leave ObjectCenter, then return later,
option values you changed are not remembered.

You can explicitly save option settings across ObjectCenter sessions in
several ways, for example:

• Put these option settings in your local startup file .ocenterinit;
see 'Using ObjectCenter startup files' on page 213.

• Save your current session as a project file and start your new
session by loading this project file. The current settings for all
options are automatically saved with a project file.

• Explicitly specify each option as part of a CL makefile target or a
command file that you use to set up your project when you start
a new session.

For more information on how to use these methods, see 'Loading
components as a project' on page 68.

user_guide.book : customizing 219 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 219

Customizing the Project Browser and integrating revision control systems

Customizing the Project Browser
and integrating revision control
systems
For information on customizing the Project Browser, particularly for
integrating revision control systems, see the X resources entry in the
ObjectCenter Reference.

user_guide.book : customizing 220 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

220 ObjectCenter User’s Guide

Creating and managing
customized buttons and menu
items
In the Main Window, you can customize the GUI access to
ObjectCenter functionality by creating, changing, or deleting any of
the following graphical aids:

• Buttons for standard menu items

• Menu items for customized commands

• Buttons for your customized commands

Using buttons for
standard menu
items

You can create a button for any menu item on the menus in the menu
bar of the Main Window. You can also change or delete an existing
button. ObjectCenter stores information about customized buttons for
standard menu items in the file .octr_buttons.

NOTE ObjectCenter automatically generates the
.octr_buttons file and saves it in your home directory
at the end of your ObjectCenter session.

Although the .octr_buttons file is an ASCII file, it is
not intended for direct editing.

Adding a new button To add a new button, display the ObjectCenter menu and select
Button Panel. In the submenu, select Add Menu Items to Panel. This
opens the Add Menu Cell to Button Panel dialog box and places the
Main Window in copy mode.

Display any of the menus in the Main Window menu bar and select
the menu item for which you want to create a custom button. You
cannot use a menu item that displays a submenu.

The name of the menu item appears on the Label line, and the Position
line defaults to position 0 (the button at the far left). You can specify a
new label and set the position for the button.

You use the Apply button in the dialog box to put the new button in
the Button panel and get the GUI out of copy mode. The new button
appears at the specified position on the Button panel.

user_guide.book : customizing 221 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 221

Creating and managing customized buttons and menu items

For example, by displaying the Session menu and selecting Link
Project, you could create a new Link Project button:

Changing or
deleting buttons

To delete or to change the position or name of any button on the
Button panel, display the ObjectCenter menu and select Button Panel.
In the submenu, select Customize Button Panel. This opens the
Modify Buttons in Button Panel window:

New button

in position 3

user_guide.book : customizing 222 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

222 ObjectCenter User’s Guide

The Buttons area shows all the buttons in the Button panel. To modify
any of these buttons, select the button line in the Buttons area. You can
specify a new name on the Button Label line or specify a new position
on the Button Position line, then select the Change button. To delete
the selected button, select the Delete button.

Using menu items
and buttons for
customized
commands

You can create, change, or delete menu items or buttons for
customized commands that you create. To create a customized
command, display the ObjectCenter menu and select User Defined. In
the submenu, select Add, Change, Delete. This opens the User
Defined window. ObjectCenter stores information about customized
buttons and menu items for customized commands in the file
.octrusrcmd.

NOTE ObjectCenter automatically generates the .octrusrcmd
file and saves it in your home directory at the end of
your ObjectCenter session.

Although .octrusrcmd is an editable ASCII file, we
recommend that you do not edit it. Rather, we
recommend you use the Add, Change, and Delete
choices in the GUI. If you do decide to edit it, ensure
that each customized menu item or button has a
unique, sequential user command number.

When you define a customized command, you can use the variables
shown in Table 25:

Table 25 Variables for Customized Commands

Variable Description

$pwd ObjectCenter’s current working directory.

$filename The filename of the file in the Source area,
relative to ObjectCenter’s current working
directory.

$filepath The absolute filename of the file in the
Source area.

user_guide.book : customizing 223 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 223

Creating and managing customized buttons and menu items

$first_selected_char The position of the first character selected
on $first_selected_line. Character positions
are numbered beginning with 1, and tabs
are considered to be a single character. If no
text is selected in the Source area, this
keyword returns 0.

$first_selected_line Starting line number of the Source area’s
current text selection. Lines are numbered
beginning with 1. If no text is selected in the
Source area, this keyword returns 0.

$last_selected_char The position of the last character selected on
$last_selected_line. Character positions are
numbered beginning with 1, and tabs are
considered to be a single character. If no text
is selected in the Source area, this keyword
returns 0.

$last_selected_line Ending line number of the Source area’s
current text selection. Lines are numbered
beginning with 1. If no text is selected in the
Source area, this keyword returns 0.

$selection The current contents of the X11 PRIMARY
selection, interpreted as a string. If the
current selection is not available or is empty,
$selection is replaced with an empty string.

$clipboard The current contents of the X11
CLIPBOARD selection. If the current
selection is not available or is empty,
$clipboard is replaced with an empty
string.

Table 25 Variables for Customized Commands (Continued)

Variable Description

user_guide.book : customizing 224 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

224 ObjectCenter User’s Guide

Creating a custom
command for
Workspace
commands

To create a customized command as an alias for one or more
Workspace commands, you type the new command name on the
Label line. Select the Workspace button next to the Type label to
specify the type of commands that will be in the definition. If you want
this customized command to appear as a button in the control panel,
select Create Button next to the Options label.

Then, in the Definition area, type the Workspace input that defines this
custom command. On each line in the Definition area, put any input
that the Workspace will accept on a single line; you cannot use a
backslash (\) to escape the newline character. You can enter as many
commands as you like. This allows you to create a batch of single-line
Workspace commands that you invoke under one alias.

Creating a custom
command for shell
commands

To create a customized command as an alias for one or more shell
commands, you type the new command name on the Label line. Select
the Shell button next to the Type label to specify the type of
commands that will be in the definition. If you want this customized
command to appear as a button in the control panel, select Create
Button next to the Options label.

For a customized command that is an alias for shell commands, you
also specify the following items:

• The shell you want ObjectCenter to fork when you invoke this
custom command.

• Whether you want ObjectCenter to wait for all the shell
commands in the definition to terminate before continuing its
own process.

• Whether you want the shell output to use a terminal emulator.
If so, you specify which one to use.

TIP: Avoiding multiple-line selections for customized
commands

If the current X11 selection contains newlines, the $clipboard
and $selection variables expand to multiple lines. You cannot
use multiple lines for customized Workspace commands.
Multiple lines might also interfere with customized shell
commands.

user_guide.book : customizing 225 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 225

Creating and managing customized buttons and menu items

NOTE If you do choose not to use a terminal emulator, your
commands will not be able to perform any input or
output. Use this choice only if your commands do not
do any input and if you do not want to see any
command output.

Then, in the Definition area, type in the shell commands that define
this custom command. Put any input that the specified shell will
accept. You can enter as many commands as you like. This allows you
to create a batch of shell commands that you invoke under one alias.

Invoking a custom
command

To invoke a custom command that you have created (composed of
either Workspace or shell commands), if you have created a button for
it, select the corresponding button in the second row of the Main
Window control panel.

If you did not create a button for this command, display the
ObjectCenter menu and select User Defined. In the submenu, select
the customized menu item.

NOTE You cannot invoke customized commands from the
Workspace.

Modifying a custom
command

To change a custom command, select the command name in the
Commands area of the User Defined Commands window and make
any changes you want in the Specifications or Definition areas. Then
select the Change button in the Commands area.

To delete a customized command, select the command name in the
Commands area and select the Delete button.

user_guide.book : customizing 226 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

226 ObjectCenter User’s Guide

Connecting your editor to
ObjectCenter
ObjectCenter provides a great deal of flexibility in integrating your
editor. The way this integration is implemented determines whether
the connection between ObjectCenter and your editor is established
from ObjectCenter or from your editor.

Connecting GNU
Emacs to
ObjectCenter

There are two ways to integrate ObjectCenter with GNU Emacs. You
can connect your GNU Emacs session to ObjectCenter so that your
Emacs session is used when you use the edit command or select an
Edit symbol or button. You can also invoke ObjectCenter from within
Emacs and use the Emacs main window. For more information, see the
Emacs integration entry in the ObjectCenter Reference.

Integrating other
editors

If you use an editor other than vi and emacs and want to integrate it
into ObjectCenter’s open architecture, look in the CenterLine/API
directory for documentation and examples of writing edit servers
with the CenterLine API.

user_guide.book : customizing 227 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 227

Using Workspace commands with aliases

Using Workspace commands with
aliases
The alias command lets you establish additional identifiers for
commands or other text. Aliases are often single-letter shortcuts for
commonly used commands. The original command name remains
valid.

To create an alias, use the alias command with this syntax:

-> alias alias_name command

For example, to create an alias mylpr that sends a file to the printer,
you could issue this command:

25 -> alias mylpr sh lpr

With this alias defined, to print the file main.c, you could issue this
command:

26 -> mylpr main.c

You can look at your current aliases by issuing the alias command
without any arguments:

-> alias
ls sh ls
pwd sh pwd
assign print
set print
undisplay sh echo "Use the ’delete’ command
to remove display items."
restore sh echo "Use the ’load’ command to
restore project and image files."
mylpr sh lpr

Aliases can take arguments. For information on specifying arguments
with aliases, see the alias entry in the ObjectCenter Reference.

To learn how to save aliases across ObjectCenter sessions, see 'Using
ObjectCenter startup files' on page 213.

user_guide.book : customizing 228 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

228 ObjectCenter User’s Guide

Using C++ code to work with
ObjectCenter

Using built-in
CenterLine
functions

To allow you to control debugging operations from ObjectCenter
actions or from debugging statements within your source code, all
ObjectCenter commands have a function equivalent that can be used
to call the command from either C or C++ code.

How CenterLine
commands work

The function equivalent for any command is the name of the
command with the prefix centerline_ added to it. For example,
centerline_stop() causes an immediate break level in the same way
that typing stop in the Workspace does.

All centerline_*() functions take one argument, a string. If the
ObjectCenter command does not take an argument, you need to use
an empty string as the argument when using the function equivalent.

The centerline_*() functions have the following prototype:

int centerline_command-name(char *);

For example, the prototype for the function to invoke the stop
command is:

int centerline_stop(char *);

CenterLine functions
without command
equivalents

ObjectCenter also defines several C functions, described in Table 26,
that do not have ObjectCenter command equivalents.

Table 26 Centerline Functions Without Command Equivalents

Function Description

centerline_getopt() Returns the value of an option

centerline_malloct() Allocates memory with type checking

centerline_true() Indicates whether ObjectCenter is running

centerline_unset() Marks memory as having unset value

centerline_untype() Marks memory as initialized and valid

user_guide.book : customizing 229 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 229

Using C++ code to work with ObjectCenter

Using CenterLine
functions in actions

You can use CenterLine functions in actions to create conditional
debugging procedures. For example, the following action stops
execution, establishes a break level, and displays the current break
and scope locations:

-> action on j
Enter body of action. Use braces when entering
multiple statements.
action -> {
action +> printf("j is %d\n", j);
action +> if (j > 50) {
action +> centerline_stop("");
action +> centerline_whereami("");
action +> }
action +> }
action (2) set on address 0x1947e8.

Using CenterLine
functions in your
source code

You can also use CenterLine functions to place ObjectCenter
debugging commands directly into your source code. Typically, you
would conditionalize such code using the built-in ObjectCenter
macros, such as __OBJECTCENTER__. For example:

draw(col_table[INDEX(count) - INDEX_DECREMENT],
row_table[INDEX(count) - INDEX_DECREMENT]);

#ifdef __OBJECTCENTER__
centerline_stop("");
centerline_whereami("");
#endif
do_wait();

For information on ObjectCenter macros, see the built-in macros
entry in the ObjectCenter Reference.

user_guide.book : customizing 230 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

230 ObjectCenter User’s Guide

Using lint-style
comments to
suppress
warnings

The comments in source code listed in Table 27 turn off ObjectCenter’s
load-time error checking for the specified violations:

For a complete list of all ObjectCenter warnings and error messages,
see the violations entry in the online Reference.

Table 27 Lint-Style Comments to Suppress Load-Time Warnings

Comment Action

/*VARARGS*/ Suppresses reporting that a function takes a
variable number of arguments.

/*VARARGSn*/ Suppresses reporting of a variable number of
arguments, after n arguments.

/*NOTREACHED*/ Suppresses reporting that the following
statement cannot be reached.

/*ARGSUSED*/ Suppresses reporting that formal parameters
of a function are not used.

/*SUPPRESS n*/ Suppresses reporting of violation #n. If the
comment appears at the global level of a file,
the violation is suppressed for the entire file.
If the comment appears within a function, the
violation is suppressed only for the following
line.

/*EMPTY*/ Suppresses reporting on empty bodies, such
as in if statements and for loops. The
/*EMPTY*/ comment must appear on its
own line preceding the statement on which
reporting is to be suppressed.

user_guide.book : customizing 231 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 231

Customizing key bindings

Customizing key bindings
The command processor for the Workspace provides key bindings
that support inline editing and input history. For example, you can
move to the beginning of a line of input by pressing Control-a and
scroll through previous lines of input by pressing Control-p.

Key sequences are bound to key functions or key commands:

• Key functions support cursor movement and inline editing

• Key commands treat the text of the binding as arguments that
should be executed when they are called

You can display the list of key functions and commands by issuing
keybind without arguments. The list is also available in the keybind
entry in the ObjectCenter Reference.

The example below binds the key Control-l to echo the string load .c.
The Control-b characters move the cursor back before the suffix .c. The
Control-v that you type is not echoed on the display; rather; it is used
to prevent interpretation of the subsequent control character. The
Control-l key sequence then expands to load .c with the cursor located
before the .c.

-> keybind ^V^L macro load .c^V^B^V^B
-> ^L
-> load .c

For more information, see the keybind entry in the ObjectCenter
Reference.

user_guide.book : customizing 232 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

232 ObjectCenter User’s Guide

Using eight-bit character sets
ObjectCenter supports eight-bit character sets. Add the following two
lines to your local .ocenterinit file so you can use the Meta key to get
the extended character set:

setopt eight_bit
unsetopt line_meta

To turn on this feature for all users at your site, ask your system
administrator to add the two lines to the global ocenterinit file.

Customizing the preprocessor for
the load command
To filter source files through a special preprocessor before they are
loaded with the load command, set the preprocessor option. The
value of the preprocessor option should contain the argument %s,
which is replaced with the name of the file being loaded.

For example, to pass all source files through the m4 preprocessor
before they are loaded, set the preprocessor option as follows:

-> setopt preprocessor m4 %s

To filter input to the Workspace through a preprocessor, you can bind
the Return key to send all input to a subshell. For example, to send all
input to the m4 preprocessor, enter the following command (where
RETURN is shown with ^M):

-> keybind ^V^M user m4

user_guide.book : customizing 233 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 233

Setting and examining environment variables

Setting and examining
environment variables
Environment variables make up an array of strings that are available
to programs through the global variable environ and the formal
parameter envp, which is passed as the third argument to main(). (For
more information, see the UNIX documentation on setenv and
printenv.)

ObjectCenter’s printenv, setenv, and unsetenv commands manipulate
environment variables within ObjectCenter. They are analogous to the
similarly named csh commands. These commands affect only your
program’s environment variables. They do not affect the environment
variables used by ObjectCenter to control its own operation.

For example, you would display and set the current setting for the
SHELL environment variable in the following way:

-> printenv SHELL
SHELL=/usr/local/bin/tcsh
->
-> setenv SHELL /bin/sh
-> printenv SHELL
SHELL=/bin/sh

Note that printenv displays the default values of the environment
variables, which are the values that the user’s program inherits each
time it starts. If a program alters an environment variable with the
putenv() library function, the change is not shown by the printenv
command.

Table 28 Commands for Setting and Examining ObjectCenter
Environment Variables

Command Action

printenv Displays the values of environment variables.

setenv Sets the values of environment variables. If the
second argument to setenv is omitted, the empty
string ("") is used as the value.

unsetenv Unsets environment variables.

user_guide.book : customizing 234 Mon Jun 5 13:07:07 1995

Chapter 8: Customizing ObjectCenter

234 ObjectCenter User’s Guide

Also, changing the EDITOR or DISPLAY shell variables with
ObjectCenter’s setenv command does not affect which editor, display
screen, or paging program ObjectCenter uses. To modify
ObjectCenter’s behavior, use the Options Browser (see 'Using
ObjectCenter options' on page 216).

Conditionalizing code in source
files
You can load your source files into ObjectCenter without making any
modification whatsoever. But there may be some debugging code that
you want executed only when you are in ObjectCenter. When you
compile the code, you do not want the ObjectCenter-specific
debugging code included.

For your convenience, ObjectCenter predefines several macros,
including _ _OBJECTCENTER_ _, that you can use to #ifdef your code
so that certain code is used only when you are working in
ObjectCenter. For example, your code would look like this:

< program code >

#ifdef __OBJECTCENTER__
< code to be run only when in ObjectCenter >
#endif

< more program code >

For more information, see the built-in macros entry in the
ObjectCenter Reference.

user_guide.book : ascii_starcenter 235 Mon Jun 5 13:07:07 1995

Chapter 9 Using Ascii
ObjectCenter

This chapter describes how working in Ascii
ObjectCenter differs from working in the
ObjectCenter GUI. It covers the following topics:

• Introducing Ascii ObjectCenter

• Ascii ObjectCenter basics

• Managing your project

• Load-time violation checking

• Run-time violation checking

• Interactive debugging

• Suppressing linking messages

user_guide.book : ascii_starcenter 236 Mon Jun 5 13:07:07 1995

user_guide.book : ascii_starcenter 237 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 237

Introducing Ascii ObjectCenter

Introducing Ascii ObjectCenter
Except where specifically indicated, this book presents ObjectCenter
functionality as it appears in the graphical versions. This chapter
presents the differences between using the graphical and the
nongraphical user interfaces. The nongraphical version of
ObjectCenter is called Ascii ObjectCenter.

Reasons for
using Ascii
ObjectCenter

You might choose to use Ascii ObjectCenter over the graphical
versions for any of the following reasons:

• To run ObjectCenter on a nongraphical workstation.

• To gain quicker startup time or to reduce the amount of
memory needed to run ObjectCenter.

• To debug GUI programs.

Using Ascii ObjectCenter, you can debug from an ASCII
terminal running alongside the X server. This allows you to
more easily debug programs that grab mouse and keyboard I/O.

• To do automated test runs.

Using I/O redirection with the run command and setting the
batch_load option, you can automate program tests. For more
information, see the run entry in the ObjectCenter Reference and
'Batch mode' on page 245.

Using the
Workspace

Unlike the GUI versions, Ascii ObjectCenter has a single work area,
the Workspace:

% objectcenter -ascii
ObjectCenter Version 2.1.1
Copyright (C) 1986-1995 by CenterLine Software,Inc.

For customer service call 1-617-498-3100,
or send email to
‘objectcenter-support@centerline.com’.

Attaching: /usr/lib/libc.so
Attaching: /usr/lib/libdl.so.1
Attaching: /.../lib/a0/libC.so
->

user_guide.book : ascii_starcenter 238 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

238 ObjectCenter User’s Guide

The Ascii ObjectCenter Workspace handles the same command and
C++ and C code input and display of results as the Workspace in the
GUI. However, in Ascii ObjectCenter, the Workspace is the total user
interface. Therefore, the Workspace also takes on the Ascii-equivalent
functionality of the Source area and all of the Browsers. In Ascii
ObjectCenter, all of the available equivalent functionality of the GUI
can be accessed through Workspace commands.

Accessing
functionality

Since the Workspace is the only work area available in Ascii
ObjectCenter, you use Workspace commands to access functionality
equivalent to that offered in the GUI work areas.

Table 29 shows you what commands to use and gives you the context
where this functionality is discussed for the GUI.

Table 29 Access to Functionality in Ascii ObjectCenter Compared with GUI Access

GUI Work Area Equivalent Functionality in Ascii
ObjectCenter

Where this Functionality is
Discussed for the GUI

Source area in the
Main Window

The list Workspace command lists
lines of code that provide the
context of the command argument.

'Listing source code' on page 43.

The action, stop, status, and delete
commands set, display, and remove
debugging items.

'Using debugging items for
interactive debugging' on page 115

Your editor The edit command invokes your
editor.

'Editing source code' on page 45.

Project Browser The load command loads files
individually.

'Loading individual components'
on page 62.

The unload, swap, instrument, and
uninstrument commands manage
files in your project individually.

'Managing individual components
in your project' on page 75.

The build, link, unres, run, and
rerun commands manage your
whole project.

'Managing your whole project' on
page 82.

user_guide.book : ascii_starcenter 239 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 239

Introducing Ascii ObjectCenter

Properties
window of the
Project Browser

The setopt command sets the
following project-wide options for
loading:

ansi

instrument_all

load_flags

path

program_name

swap_uses_path

'Setting project-wide properties' on
page 85.

Contents window
of the Project
Browser

The contents command lists the
files and libraries in your current
ObjectCenter project.

'Project Browser' on page 175.

Cross-Reference
Browser

The xref command lists the
references to and from the
command argument.

'Cross-Reference Browser' on page
191.

Data Browser The display command displays a
summary of the data structure for
the command argument.

'Data Browser' on page 197.

Error Browser When load-time or run-time errors
are encountered as you load files or
run your program, violation
messages appear in the Workspace.
You manipulate these messages by
using the suppress and
unsuppress commands.

'Using the Error Browser to deal
with warnings and errors' on page
101.

Options Browser The setopt and unsetopt
commands manipulate option
settings.

'Using ObjectCenter options' on
page 216.

Workspace The make, source, and load
project_file commands load files as a
project.

'Loading components as a project'
on page 68.

Table 29 Access to Functionality in Ascii ObjectCenter Compared with GUI Access

GUI Work Area Equivalent Functionality in Ascii
ObjectCenter

Where this Functionality is
Discussed for the GUI

user_guide.book : ascii_starcenter 240 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

240 ObjectCenter User’s Guide

Ascii ObjectCenter basics

Starting Ascii
ObjectCenter

To start Ascii ObjectCenter, use the following command at the shell:

% objectcenter -ascii

If you want to run process debugging mode only, use the following
command at the shell:

% objectcenter -pdm -ascii

Running process debugging mode only means being without access to
clms (CLIPC Message Server), the process that manages the
interprocess communication among all Ascii ObjectCenter application
services.

Switching
between
debugging modes

If you are using Ascii ObjectCenter and you wish to switch between
component and process debugging modes, you must start a new
session from outside the environment. Use the following ObjectCenter
command:

-> quit force

Then at the shell, use the appropriate startup command to invoke
Ascii ObjectCenter. For going from component debugging mode to
process debugging mode, use the following command line:

% objectcenter -ascii -pdm

For going from process debugging mode to component debugging
mode, use the following command line:

% objectcenter -ascii -cdm

Since component debugging mode is the default mode, you do not
need to use the -cdm argument.

Editing in Ascii
ObjectCenter

While you are using Ascii ObjectCenter, editing a file suspends
ObjectCenter. You can return to ObjectCenter by suspending or
quitting from the editor. If the editor was started from a line listing
options following a load-time or run-time violation, the options line
reappears when you suspend or quit from the editor.

user_guide.book : ascii_starcenter 241 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 241

Ascii ObjectCenter basics

Suspending an
Ascii
ObjectCenter
session

If you are using Ascii ObjectCenter from the C shell (csh or tcsh), you
can suspend it and return to the shell by pressing Control-z or by
issuing ObjectCenter’s suspend command. (You cannot do this if you
started Ascii ObjectCenter from the Bourne shell (sh).) To return to
Ascii ObjectCenter, type fg.

Quitting Ascii
ObjectCenter

To quit Ascii ObjectCenter, use the following command:

-> quit force

If you want to save your current project as a project file, you can use
the save command before you quit, or use the quit command.
ObjectCenter will prompt you for a project file name.

user_guide.book : ascii_starcenter 242 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

242 ObjectCenter User’s Guide

Managing your project
To display the contents of your project in Ascii ObjectCenter, type
contents at the workspace prompt:

-> contents
 object: centerline (C++)
 source: workspace (C++)
 library: /usr/lib/libc.so
 library: /usr/lib/libdl.so.1
 library: /dir/codecenter/arch/lib/a0/libC.so
 object: main1.o, debugging (C++)
 object: link.o, debugging (C++)

To display the definitions made in a file, issue the contents command
and supply the name of the loaded file as an argument:

-> contents link.o
Contents of object: link.o, debugging (C++)
/my_dir/c++tutor_dir/link.C
/usr/include/stdio.h
/my_dir/c++tutor_dir/link.C
/my_dir/c++tutor_dir/link.h
/my_dir/c++tutor_dir/link.C
/my_dir/c++tutor_dir/link.h
/usr/include/stdio.h
/usr/include/sys/feature_tests.h
typedef int (*)() ;
struct {...} ;
typedef unsigned int size_t ;
typedef long fpos_t ;
class FILE {...} ;
typedef class FILE FILE ;
class Link {...} ;
Link::Link(class Link *)
class Link *Link::nextLink()
char Link::setNext(class Link *)

user_guide.book : ascii_starcenter 243 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 243

Load-time violation checking

Load-time violation checking
When you load a file in Ascii ObjectCenter, each load-time violation is
reported immediately, and Ascii ObjectCenter prompts you to act.
Here is a sample load-time warning message:

-> load shapes.C
Loading (C++):

““shapes.C”:72, `;’ missing after statement (Error
#573)
 71: filled = 0
 * 72: }
 73:
`;’ missing after statement.
Unloading: shapes.C
Warning: 1 module currently not loaded.
Options: quit/reload/edit/abort [q] ?

The first line of the message displays the location of the violation
followed by a brief description and violation number. The next three
lines list the source code at the location of the violation, with the line
containing the violation marked by an asterisk (*). This is followed by
a description of the violation.

The last lines of the message contain a set of options from which you
can select a specific action. The default option is enclosed in square
brackets ([]). You can select the default option by pressing the
spacebar or Return key.

The options available to you depend on the context and severity of the
violation.

Handling warnings See Table 30 for a list of ways to deal with a load-time warning.

user_guide.book : ascii_starcenter 244 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

244 ObjectCenter User’s Guide

Handling errors You have fewer choices when dealing with a load-time error; see Table
31 for a list of ways to deal with load-time errors.

Table 30 Handling Load-Time Warnings in Ascii ObjectCenter

Choice Action

c (Default). Continues loading the file.

s Silences reporting of all warnings for the current file and
all other files specified on the command line.

q Quits loading the file.

a Quits loading the file and aborts loading for other files
specified on the command line.

e Edits the file at the location of the violation.

r Reloads the file if modified.

E Suppresses the warning everywhere.

F Suppresses the warning in the current file.

L Suppresses the warning on the current line.

P Suppresses the warning in the current procedure.

N Suppresses the warning for the current name.

Table 31 Handling Load-Time Errors in Ascii ObjectCenter

Choice Action

c (Default). Continues loading the file.

q Quits loading the file.

r Reloads the file if modified.

e Edits the file at the location of the violation.

a Quits loading the file and aborts loading for other files
specified on the command line.

user_guide.book : ascii_starcenter 245 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 245

Run-time violation checking

Listing source
code

In Ascii ObjectCenter, the source listing appears immediately after the
list statement. Ascii ObjectCenter displays the number of lines
specified by the page_list option. If more lines can be displayed, list
displays a more prompt, which accepts many of the options accepted
by the shell’s more utility. Type h to see the list of commands that can
be entered.

Batch mode You can set the batch_load option if you do not want to be prompted
at each reported warning or error. Ascii ObjectCenter will display the
messages, but it will continue loading the file automatically without
prompting you.

See the options entry in the ObjectCenter Reference for more
information about batch_load.

Run-time violation checking
In Ascii ObjectCenter, when a run-time violation occurs, you see a
display like this:

-> run
Executing: Bounce

“main1.C”:12, main(), (Error #156)
 11: {
 * 12: Point P1(50, 50);
 13: Point P2(64, 20);
Calling undefined function Point::Point(int,int).
Options: break/quit/edit/reload [b] ?

The first line of the message displays the location of the violation
followed by the violation number. The next three lines list the source
code at the location of the violation, with the line containing the
violation marked by an asterisk (*). This is followed by a description
of the violation.

The last lines of the message contain a set of options from which you
can select a specific action. The default option is enclosed in square
brackets ([]). You can select the default option by pressing the
Spacebar or Return key.

user_guide.book : ascii_starcenter 246 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

246 ObjectCenter User’s Guide

The options available to you depend on the context and severity of the
violation; see Table 32 for a list of options along with ways to handle
each.

Handling
spurious
used-before-set
messages

Since ObjectCenter has no direct knowledge of the operations
executed within object code, run-time violations are difficult to detect
when execution moves between source and object code. This is
particularly true of dynamic used-before-set violations, since memory
can be initialized within object code.

To handle this situation, ObjectCenter stores the value of the
unset_value option (by default 191) in each byte of uninitialized data.
(This is not true of global and static variables that lack explicit
initializers; these variables are initialized to 0, as the C++ language
requires.) The assumption is that, if the data is initialized in object
code, the data stored will not have the value 191 stored in any byte.

This assumption sometimes fails when data is read into memory with
an object code library function, such as read() or fread(). This may
cause spurious used-before-set warnings if the value stored equals
191.

Table 32 Handling Run-Time Violations in Ascii ObjectCenter

Option Result

b (Default). Generates a break level.

c Continues execution.

q Quits execution.

e Edits the file at the location of the violation.

r Reloads the file if modified.

E Suppresses the warning everywhere.

F Suppresses the warning in the current file.

L Suppresses the warning on the current line.

P Suppresses the warning in the current procedure.

N Suppresses the warning for the current name.

user_guide.book : ascii_starcenter 247 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 247

Run-time violation checking

There are several ways to get rid of these warnings:

• Prevent them by inserting calls to centerline_untype(), a built-in
ObjectCenter function that marks memory as initialized and
valid. The centerline_untype() function is similar to the
ObjectCenter touch command, except that it is easier to use in
programs and will not mark unknown memory.

For an example of using centerline_untype(), see the
description of centerline_untype() in the ObjectCenter Reference.

• Suppress the warnings.

• Change the default value of 191 by using the command setopt
unset_value. In particular, setopt unset_value 0 prevents
further dynamic used-before-set warnings for the entire
program; it effectively disables checking for used-before-set
violations.

user_guide.book : ascii_starcenter 248 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

248 ObjectCenter User’s Guide

Interactive debugging
You use the following ObjectCenter commands for interactive
debugging from the Workspace:

Table 33 Commands for Interactive Debugging in Ascii ObjectCenter

Workspace
Command

Description

action Specifies statements to execute when execution triggers the action. Allows
you to customize conditional breakpoints.

cont Continues execution from a break location.

delete Deletes an existing debugging item on the current line.

down Moves the current scope location down the execution stack.

dump Displays all local variables.

edit Invokes your editor, positioned at the current line.

expand Lists the functions that could be called from a C++ statement.

file Displays and sets the current list location.

info Displays the name, size, and type of the item associated with an address.

next Executes the next line; does not enter functions.

print Prints the value of variables or expressions.

step Steps execution by statement, entering functions.

stepout Continues execution until the current function returns.

stop Sets a breakpoint.

up Moves the current scope location up the execution stack.

whatis Displays all uses of a name for a function, data variable, tag name,
enumerator, type definition, or macro definition.

where Displays the execution stack.

whereami Displays the current break and scope locations.

whereis Lists the defining instance of a symbol. If the symbol is an initialized global
variable, whereis also indicates the location at which it is initialized.

user_guide.book : ascii_starcenter 249 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 249

Interactive debugging

Setting
breakpoints at a
line of code or on
a function

In Ascii ObjectCenter, you use the stop at command to set a
breakpoint on a line of code. You give the file and line number as
arguments to the command. For example, to set a breakpoint at line 11
in the file main1.C, you would enter:

-> stop at “main1.C”:11
stop (1) set at “main1.C”:11, foo(void).
->

You can set a breakpoint in a function, which causes ObjectCenter to
stop execution at the first line of the function. You do this using the
stop in construction. For example, to set a breakpoint in the function
main(), you would enter:

-> stop in main
stop (2) set at “main1.C”:23, main().
->

When you list your code, ObjectCenter uses a B to indicate a line with
breakpoints set.

Setting
breakpoints in
library functions

You can set a breakpoint in a library function only if the function has
been linked in. If you want to set a breakpoint on a library function
before running your program, you can use the link command to
explicitly link unresolved symbols from static libraries. Then set the
breakpoint.

Here is an example of setting a breakpoint on a library function
without first running the program.

-> load bpprog.C
Loading (C++): bpprog.C
-> stop in printf
Cannot set stop or action on an undefined symbol:
’printf’.
-> link
-> stop in printf
stop (1) set at “/lib/libc.sl”, function printf().
->

user_guide.book : ascii_starcenter 250 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

250 ObjectCenter User’s Guide

Setting
breakpoints on
addresses

You can set a breakpoint on an address, global variable, or lvalue,
which interrupts execution whenever a specific address is modified.
You can set these breakpoints on the addresses of global variables,
allocated data, formal parameters, and automatic variables. (The
variables must be in scope when you set the watchpoints.)

If the watched address is modified within code loaded in object form,
ObjectCenter does not detect the event and execution of the program
is not interrupted. That is, this type of breakpoint is only triggered
when the address is modified by code loaded in source form. To avoid
spurious messages, the watchpoint does not trigger if the watched
address is modified by you in the Workspace.

You use stop on to set a breakpoint on an address. The following
example sets a breakpoint on the variable abc:

-> int abc;
-> stop on abc
stop (4) set on address 0x194788.

The number of bytes watched equals the size of the type of data. In the
example above, four bytes are watched because abc is an int, and the
size of an int is four bytes.

To set a breakpoint on the address stored in a pointer, the argument to
stop should be the value of the pointer, as shown:

-> int *ptr;
-> ptr = (int*) malloc(sizeof(int[20]));
(int *) 0x40129f30 /* (<data>) (allocated) */
-> stop on *ptr
stop (1) set on address 0x40129f30.
->

ObjectCenter uses a B to indicate lines with breakpoints set.

Setting actions You can tell ObjectCenter to execute certain statements whenever it
reaches a particular location in your program by setting actions. You
can choose whether ObjectCenter generates a break level as part of the
action.

You use the Workspace to specify the statements to execute, so the
easiest way to set an action is using the action command in the
Workspace.

The action command takes the same arguments that stop does, so you
specify the location of the action (for example, a line of code, a
function, an address) the same way as with stop.

user_guide.book : ascii_starcenter 251 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 251

Interactive debugging

If you issue action without providing a location argument, the
debugging action is executed at every line in your program. This
allows you to set actions that constantly monitor the execution of your
program. (In order to avoid spurious messages and infinite recursion,
statements that are executed directly in the Workspace or by other
debugging commands are not monitored.)

After you issue the action command, you are prompted to enter the
body of the action.

The body of an action can consist of one or more C++ statements;
enclose multiple statements within braces. (If you are debugging C
code in C mode, actions consist of C statements.) Here is an example
of setting an action.

-> action at “sample.C”:8
Setting action at “sample.C”:8, main().
Enter body of action. Use braces when entering
multiple statements.
action -> printf(“print %d”, i);
action (1) set.

 ObjectCenter uses an A to indicate lines with actions set.

Specifying
conditional
actions

You can also conditionalize actions. For example, you can tell
ObjectCenter to generate a break level only if certain conditions are
true. The following example prints “i=3” if i = 3.

-> action at “sample.C”:14
Setting action at “sample.C”:14, main().
Enter body of action. Use braces when entering
multiple statements.
action -> if (i==3) printf(“i=3”);
action (1) set.
-> action at “sample.C”:14
Setting action at “sample.C”:14, main().
Enter body of action. Use braces when entering
multiple statements.
action -> if (i > 3) centerline_stop (““);
action (2) set.

In addition to printing “i=3” in the program’s output window each
time execution reaches line 14, the action interrupts execution with
centerline_stop() if i is greater than 3.

user_guide.book : ascii_starcenter 252 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

252 ObjectCenter User’s Guide

For example:

-> run
Executing: a.out

Hello 0
Hello 1
Hello 2
Hello 3 i=3
Hello 4 Stopped in action #2, line 1, set in
main() at “sample.C”:14
13: printf(“\nHello %d “, i);
A 1: if (i==3) printf(“i=3”);
A* 1: if (i > 3) centerline_stop (““);
14: }
15: bye();
(break 1)->

Since ObjectCenter’s stop command is being called in code (instead of
being typed in the Workspace), the function version of the stop
command, centerline_stop(), is used. To learn more about calling
ObjectCenter commands in code, see 'Using C++ code to work with
ObjectCenter' on page 228.

Tracing program
execution

You can use the trace command to trace through your code as it
executes. You can only trace in source code. This example shows how
to trace each line of your code:

-> load sample.C
Loading (C++): sample.C
-> trace
trace (1) everywhere.

This example shows how to trace in a function:

-> trace bye()
trace (1) set on function bye(void).
->

Tracing is a good way to follow the path your program takes.

Statements executed within an action are not traced. You can only
trace through code loaded in source form. If you turn tracing on in
Ascii ObjectCenter, all lines that are executed are echoed to the
Workspace.

user_guide.book : ascii_starcenter 253 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 253

Interactive debugging

Limiting extent
oftracing

You can issue trace with the name of a function to limit tracing to that
function. (This feature is available only for functions loaded in source
form.)

Turning tracing off You turn off tracing by deleting the corresponding debugging item, as
described in the next section.

Examining and
deleting items

At any point, you can see which debugging items are set, and you can
delete particular items.

Examining
debugging status

To examine the debugging items currently set, issue the status
command. The status command lists all debugging actions by
number.

Deleting debugging
items

From the Workspace you can issue the command delete number, where
number is the number of the debugging item shown by the status
command.

If you issue delete without specifying an argument, ObjectCenter
deletes all debugging items at the current break location.

If you issue delete all, ObjectCenter deletes all debugging items
everywhere.

Working in object
code

You can set breakpoints and define actions in code loaded in source
form as well as in code loaded in object form if the code was compiled
with the -g option (these files contain debugging information).

In object code loaded without debugging information, you can stop on
or set an action on a function name, but not on a particular line of code.
You cannot set breakpoints or actions on an address, lvalue, or
variable in object code, and you cannot set tracepoints on or trace
through code loaded in object form.

More information For more information, see 'Interactive debugging from Workspace
break levels' on page 126.

user_guide.book : ascii_starcenter 254 Mon Jun 5 13:07:07 1995

Chapter 9: Using Ascii ObjectCenter

254 ObjectCenter User’s Guide

Suppressing linking messages
By default, ObjectCenter displays a message when linking from a
library:

Linking from ... Linking completed.

You can suppress the linking messages by setting the environment
variable CENTERLINE_LINK_SILENT before starting ObjectCenter.
This is particularly useful in Ascii ObjectCenter when you are linking
from shared libraries; run-time linking messages will not obscure your
program’s output.

user_guide.book : combinedIX.doc 255 Mon Jun 5 13:07:07 1995

Index

This index covers the ObjectCenter User’s Guide
(page numbers prefaced with U) and the
ObjectCenter Reference (page numbers prefaced
with R).

user_guide.book : combinedIX.doc 256 Mon Jun 5 13:07:07 1995

user_guide.book : combinedIX.doc 257 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 257

Index

Index

Symbols

character
in makefiles R-206
in preprocessor directives R-15

character in Workspace R-157, R-420
#$ characters in Workspace R-421, R-422
#/quit prompt U-38
#> redirection character in Workspace R-157,

R-425
#>> redirection character in Workspace R-425
#line directives

how used by ObjectCenter R-277
ignoring R-242

#-tab characters used to specify CL targets in
makefiles R-206

+> prompt in Workspace R-429
: (single colon) showing inheritance R-23, R-249
:: (scoping operator) showing defining class R-23,

R-249
@ character in CL targets R-210
\ character

in CL targets R-210
with arguments to main() R-298

\" characters in CL targets R-210
‘ (accent grave) R-426

A

+a switch R-49
a.out

loading a core file U-91
loading as a target U-91
specifying for targetting U-168
targeting an U-166

accelerator key R-439
accelerators in Source panel U-209
accent grave R-426

accessing
symbol information R-62
uninitialized memory R-164

action command U-250, R-3
action symbol, in Source area U-119
actions

definition of in Ascii ObjectCenter U-250
deleting U-124, R-128
examining U-124
and functions defined in the Workspace R-5
in object code U-115, U-253
listing R-319
setting U-250, R-3, R-409
setting breakpoints U-118, U-120
setting conditional U-122
setting in Ascii ObjectCenter U-250, U-251
setting in object code R-6
specifying to execute at every line of program

U-251
addresses

displaying information about R-160
name, size, and type of object in U-210
setting breakpoints on R-328
setting breakpoints on in Ascii ObjectCenter

U-250
alias command R-8
aliases

created at startup U-40
creating U-40
customizing Workspace commands U-227
default R-8
defining in startup files U-214
removing R-395
seeing all defined U-40

ansi option U-87, R-12, R-237
ANSI C standard R-12

conformance with R-12
conventions used even in K&R mode R-15
default compiler configurations R-105
intermediate code generation R-91

user_guide.book : combinedIX.doc 258 Mon Jun 5 13:07:07 1995

Index

258 ObjectCenter User’s Guide

ObjectCenter conforming to R-237
tip for loading libraries and #include files

R-196
AON environment variable R-52
API, CenterLine R-58
application files, specifying in map files R-359
appVector.C example R-341
ar, archiving repository object files with R-381
architecture, ObjectCenter’s open, integrated U-5
archive libraries

See shared libraries R-366
ARGSUSED comment U-230, R-33
argument declaration files for templates R-352
arguments

clearing, with run R-301
new, with rerun R-298
retaining, with run R-301
spaces in R-304
to command-line switches U-26

argv[0], setting R-303
array index errors R-165
arrow keys

bound to functions R-174
using in Workspace R-424

-ascii (command-line switch) U-25
-ascii switch to contents command R-110
Ascii ObjectCenter U-11, U-235

accessing U-240
checking load-time errors U-243
checking load-tme warnings U-243
choices in handling

load-time errors U-244
load-time warnings U-243
run-time errors U-246

deleting actions, breakpoints, tracing U-253
differences in use to GUI access U-238
examining actions, breakpoints, tracing

U-253
interactive debugging commands U-248
invoking editor from U-240

object code U-253
project management U-242
quitting U-241
reason to use U-237
responses to the More prompt R-182
run-time error handling in U-245
same functionality as with GUI U-238
setting

actions U-250
conditional actions U-251

setting breakpoints
in shared libraries U-249
in user functions U-249
on addresses U-250

suppressing linking messages U-254, R-179
suspending to return to shell U-241
switching between debugging modes U-240
tracing execution U-252
viewing a project U-242
viewing definitions in loaded files U-242
Workspace in U-237

assign command R-18
AT&T R-44

C++ release U-iv
documentation included U-iv

attach command R-18
attaching, to processes R-18, R-113
auto_compile option R-237
automatic aggregates R-105

automatic instantiation, See templates
automatic mode switching R-90, R-111

with next R-218
with step R-321

automatic variables
in blocks R-431
displaying U-210
pointers to not checked R-164
and unset_value R-163
using with action R-7

user_guide.book : combinedIX.doc 259 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 259

Index

B

-backend_ansi (command-line switch) R-92,
R-224

backend_ansi option R-92, R-237
background, X resource R-461
-background (command-line switch) R-227
backquote R-426
backslash character (\), with arguments to

main() R-298
bank example, template classes R-337
base class, displaying information about R-20
basenames, and templates R-359
batch_load option U-245, R-237
batch_run option R-238
beginning a session U-12
-bg (command-line switch) R-227
bindings, customizing key bindings U-231, R-153
bitfields R-105
blocks, specifying in Workspace U-143, R-431
Bourne subshell, executing U-40, R-312
break levels U-126

continuing from U-131
continuing from a run-time error U-132
examining state of your program at U-131
how identified U-130
multiple U-130
resetting from U-132
returning to previous R-299
what you can do in them U-126
when generated U-126

break location
definition of U-129
displaying U-135, R-414

breakpoints
conditional, setting U-122
deleting U-124, R-128
examining U-124
in library functions U-118
in object code U-115, U-253
listing R-319
setting U-116

on addresses U-250
on inline functions R-123
in machine code R-328
in preprocessor input files R-281
in shared libraries R-313
in shared libraries in Ascii ObjectCenter

U-249
in source code R-325
in user functions in Ascii ObjectCenter

U-249
setting actions U-118, U-119
symbols in debugging U-117

browse_base command R-20
browse_class command R-21
browse_data_members command R-24
browse_derived command R-26
browse_friends command R-27
browse_member_functions command R-28
Browsers

Class U-178, U-186
Class Examiner U-186
Cross-Reference U-191
Data Browser U-197
Error Browser U-111
Inheritance U-178
Manual Browser U-28
Options Browser U-216
Project Browser U-75, U-175

browsing, with demand-driven code R-116
build command R-30, R-283

compared with load and make R-213
building a project U-82
built-in

CenterLine functions U-228, R-34
comments R-33
macros R-36

buttons
creating new menu U-220
customizing U-222
deleting menu U-221

user_guide.book : combinedIX.doc 260 Mon Jun 5 13:07:07 1995

Index

260 ObjectCenter User’s Guide

C

C code R-12 to R-17, R-33, R-36, R-40 to R-42
C compiler R-195

compatibility R-40
default configurations R-40, R-103
specifying one to use R-238

C interpreter U-10
C language

ANSI R-12
building in CenterLine functions U-228
-C switch to load C modules R-186, R-193
command-line switches supplied by

sys_load_cflags R-189
customizing code to work with ObjectCenter

U-228
describing definitions in English R-146
forcing file to be loaded as R-176
K&R R-12
loading C object modules R-194
loading C source modules R-193
mode R-89
settings, ANSI U-87
Workspace mode R-96

C library functions replaced by ObjectCenter
R-84

C library, attached automatically U-26, R-223
C mode U-141

differences from C++ mode U-158
C statements

entering in Workspace U-158
specifying in actions U-120, U-251

-C switch R-46
loading source files as C modules R-193
loading object files as C modules R-194

C++ language
: (single colon) showing inheritance path

R-23, R-249
:: (scoping operator) showing defining class

R-23, R-249
C linkage, needed for ObjectCenter functions

R-34

command-line switches supplied by
sys_load_cxxflags R-189

expanding statements R-149
file extensions supplied by cxx_args R-192
implicit function calls, showing R-149
loading source files R-192
mode R-111
mode in the environment R-175 to R-177
overloaded functions and operators,

disambiguating R-149
showing full inheritance path R-21, R-24,

R-28, R-69, R-249
showing truncated inheritance path R-21,

R-24, R-28, R-69, R-249
templates, See templates R-1
Workspace mode R-96

C++ library, attached automatically U-26, R-223
C++ mode U-139

differences from C mode U-158
C++ objects, displaying internals of U-141
C++ references, displaying U-160
C++ statements

expanding U-203
seeing which functions would be calledU-203

C++ translator
compatibility R-44
environment variables used by R-52

c++filt, restoring names in gmon.out R-51
c_plusplus macro R-36, R-37
c_suffixes option U-87, R-176, R-240
cache, of headers for templates R-368
calling structure, viewing in the Cross-Reference

Browser U-191
calling up ObjectCenter U-25
calling up pdm R-254
cancelling a Workspace entry U-37
catch command U-137, R-38
CC

command U-10, R-44 to R-55
environment variables R-52
switches R-46
template instantiation R-347, R-352

user_guide.book : combinedIX.doc 261 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 261

Index

cc U-10
compatibility with R-40

cc_prog option R-195, R-238
ccargs option R-238
ccC environment variable R-54
CCLIBDIR environment variable R-52
CCROOTDIR environment variable R-52
cd command R-56, R-428

differences between CL and standard targets
R-211

cdm, See debugging and component debugging
mode

CenterLine API R-58
CenterLine Engine R-58
CenterLine functions

in actions U-229
in source code U-229
prototypes U-228
without command equivalents U-228

CenterLine GNU debugger, license R-477
CenterLine Message Server (CLMS) U-6
CenterLine preprocessor, license R-477

CenterLine targets, See also CL targets
centerline_ prefix for function names U-228
centerline_ functions, as ObjectCenter command

equivalents R-34
CENTERLINE_ environment variable R-148
CENTERLINE_LINK_SILENT R-179
__CENTERLINE__ macro R-36
centerline_*_sym() R-62
centerline_getopt() R-60
centerline_malloct() R-61, R-248
centerline_path option R-238
centerline_print() R-34
centerline_stop() U-251, R-7, R-34
centerline_true() R-65, R-304
centerline_untype() R-67
CenterLine-C compiler R-71
cfrontC environment variable R-54
changing R-187

current working directory R-56
help key R-444

option settings U-217
options, effect of R-187

characters
changing default number of,printed R-247
eight-bit character sets U-232
in CL targets R-210

child process, debugging R-125
CL targets R-206

that invoke make R-211
cl_ez_ar, EZSTART option R-72
cl_ez_fstat, EZSTART option R-73
cl_ez_path, EZSTART option R-73
cl_nodebug_target, EZSTART option R-73
CL_REPOS_LOCK_MAX_WAIT environment

variable R-52
CL_REPOS_LOCK_STALE_TIME environment

variable R-53
class

static data members R-371
templates R-336
See also templates

Class Browser
Class Examiner U-186
Inheritance Browser U-178
See also Inheritance Browser and Class

Examiner
Class Examiner U-186

accessing U-185, U-186
another class to examine U-190

displaying names of class members U-187
editing code that defines a member function

U-190
filtering names of members from the display

U-188
finding code that defines a member function

on the Class Examiner U-189
keeping names of members visible U-187
listing code that defines a member function

U-189
searching for names of class members U-189
sorting names of class members U-188
Visibility Buttons U-187

user_guide.book : combinedIX.doc 262 Mon Jun 5 13:07:07 1995

Index

262 ObjectCenter User’s Guide

class hierarchy
: (single colon) showing inheritance path

R-23, R-249
:: (scoping operator) showing defining class

R-23, R-249
base class information R-20
complete information shown in the Class

browser R-69
complete information shown in the

workspace R-21
data member information R-24
derived class information R-26
friend class and friend function information

R-27
listing all loaded classes R-183
member function information R-28
show_inheritance option for inheritance path

R-21, R-69, R-249
show_inheritance option for inheritance

path R-24, R-28
showing defining class R-23, R-249
showing truncated inheritance path R-21,

R-24, R-28, R-69, R-249
Class List U-178
class members

displaying in Workspace U-148
displaying inheritance of U-151
listing them in the Class Examiner U-187
See also Class Examiner

class names, creating with same name as
ObjectCenter command U-148

class objects
deleting in Workspace U-149
displaying in Workspace U-150
turning on display of static members U-154

class objects, manipulating in the Workspace
U-147

class_as_struct option R-238
-class_as_struct switch R-224
classes

displaying inheritance relationships
graphically U-179

editing code that defines a class U-184
listing U-178
listing code that defines a class U-184
showing inheritance U-151

classinfo command R-69
clcc R-71

example of loading libraries when using
R-196

CLCCDIR environment variable R-52
CLcleanR environment variable R-53
clearing

the Run Window U-84
the Workspace U-41

clezstart U-73, R-72 to R-83
establishing a project with U-68
example of usage R-73
scenarios R-77

$clipboard in command resource R-468
CLIPC (CenterLine Interprocess

Communication) U-11, R-59, R-85
CLMS (CenterLine Message Server) U-6
CLMS (CLIPC Message Server) R-86
clms_query R-86
clms_registry R-86
cmode R-175 to R-177
cmode command R-89
cmode command U-141
code, entering in Workspace U-142
code generation, demand-driven U-7
color

for documentation viewer R-473
X resource R-461

$command in command resource R-467
command file, sourcing U-72
command-line switches U-26, R-223
commands

conditionalizing execution in pdm R-409
customizing in the Workspace U-227
displaying history of Workspace commands

R-419
function equivalents for ObjectCenter

commands R-34

user_guide.book : combinedIX.doc 263 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 263

Index

how handle overloaded functions U-38
not supporting redirection of output R-425
ObjectCenter equivalents R-34
overview of ObjectCenter commands R-96
overview of, in pdm R-255
user-defined R-462
user-defined,examples R-463
Workspace

commands U-38
displaying information about R-215
reading from a file R-316
requesting help about R-156

comments, to suppress load-time warnings
U-230

compatibility
C language R-12
C++ translator R-44
make command, with other implementations

R-213
compilation, separate, and templates R-373
compilation time, reducing with -ispeed R-47
compilation, automatic R-237
compiler

configurations R-103
default configurations R-105
specifying one to use R-238

completion of names in Workspace R-424
component debugging mode U-9

See also debugging
conditional actions

and breakpoints U-122
setting in Ascii ObjectCenter U-251

conditional breakpoints, See actions
conditional compilation
conditionalizing code with macros R-36
-config (command-line switch) R-227
config_c_parser command R-103, R-175 to R-177
configuration

default compiler R-40
language R-175 to R-177

constant static pointers to characters R-17
constants, in object code R-123

construct command R-106
constructors, displaying static U-136
cont command U-131, R-107
contents command U-75, R-109
continue button U-131
continuing execution R-107
continuing from

break level U-131
run-time violation U-132

Control key sequences R-169
Control keys, in Workspace R-424
Control-c, cancelling a Workspace entry U-37
conventions

for template files R-352
used in this book U-v

copying and pasting text U-32
core file

loading as an a.out U-91
specifying for targeting U-168, R-113
targeting U-166

__cplusplus macro R-36, R-37
CPLUS environment variable R-53
cPLUS environment variable R-54
cplusfiltC environment variable R-54
cppC environment variable R-54
CPPFLAGS environment variable R-53
create_file option R-195, R-239, R-281
creating new menu buttons U-220
cross referencing functions and variables R-434
Cross-Reference Browser U-19, U-191

accessing U-191
changing the number of characters displayed

U-196
displaying of return type U-196
font specifications R-461
and global variables U-192
interpreting reference lines U-194
showing further references U-194, U-199
and static references U-192
using the reference area U-195
what it cannot reference U-192
See also xref

user_guide.book : combinedIX.doc 264 Mon Jun 5 13:07:07 1995

Index

264 ObjectCenter User’s Guide

csh shell U-41
customizing

according to language R-175 to R-177
buttons and menus U-220
C language code to work with ObjectCenter

U-228
changing ObjectCenter option values U-216
ObjectCenter U-11, U-211
command for a shell command U-224
connecting your editor to ObjectCenter

U-226
eight-bit character sets U-232
environment variables U-233
invoking a custom command U-225
keybindings U-231
list of variables in defining a command U-222
menu items U-222
modifying a custom command U-225
preprocessor for the load command U-232
session at startup U-26
startup files U-213
using the Meta key U-232
Workspace commands U-224

with aliases U-227
X resources U-215

cxx_prog option R-241
cxx_suffixes option U-87, R-176, R-241

suffix supplied to load R-192
cxxargs option R-241, R-363
cxxmode command U-141, R-111, R-175 to R-177

D

+d switch R-49
-D switch, shown in template header cache R-368
data, updating in the Data Browser U-200
Data Browser U-20, U-197

accessing U-197
changing display properties U-201
changing values of variables in U-198
dereferencing pointers U-198
following linked lists U-198

font specifications R-461
interpreting reference lines U-199
manipulating structures in U-195, U-200
navigating in the Data area U-200
opening R-134
removing items U-199
updating data in U-200
using U-197

data items
deleting R-128
listing R-319

data structures, displaying U-145, R-429
data types, defining in Workspace U-144, R-429
__DATE__ macro R-37
dbx U-10
-dd=off, -dd=on switches U-7, R-46, R-129
-debug (command-line switch) R-227
debug command R-113
debugging U-57

a.out files U-165
action symbol in Source area U-119
actions, setting R-3
an externally linked executable file U-14
and binary size with templates R-380
and performance factors U-52
breakpoint symbols in the Source area U-117
CL target R-212
component debugging U-107

performance factors U-53
component debugging modes U-9
component mode U-9
corefiles R-254 to R-262
deleting

items U-124
differences between debugging modes U-169
examining current debugging items U-124,

U-253
examining items U-124
executable files R-254 to R-262
inline functions U-127
interactive U-16, U-20

with break levels U-126
with debugging items U-115

user_guide.book : combinedIX.doc 265 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 265

Index

interactive debugging in Ascii ObjectCenter
U-248

multiple processes R-125
object code U-115, U-127, U-253
ObjectCenter triggers a breakpoint U-117
overview R-116 to R-127
preprocessed code R-193
process debugging, performance factorsU-53
process debugging mode U-9, U-14, U-163

choosing when to use U-165
entering U-167

processes R-254 to R-262
producing symbol table information with -g

R-47
setting

actions U-250
actions at breakpoints U-118
breakpoints U-116

in library functions U-118
conditional actions U-122
tracepoints U-123

setting the action body U-120
stepping through a program U-133
tracing execution R-394
tracing program execution U-123, U-252
types of debugging possible in ObjectCenter

U-21
warnings, load time U-20
with actions U-115
with breakpoints U-115
with tracepoints U-115

debugging information, not loading as a
technique to improve performance U-89

debugging items
deleting R-128
listing R-319

debugging modes R-221
component (-cdm) U-25
process (-pdm) U-25

@dec, @def entries in map file R-356
declaration file, See template declaration file

R-354

declaring types in the Workspace U-145
default

C language setting R-12
changing for help key R-444

default map file, overriding R-359
defaults

changing length of character string R-247
compiler configurations R-103
settings U-12
shell command U-40

defining U-144
functions in Workspace U-146
types in Workspace U-144

defining class, showing R-23, R-249
defmap file R-345

defined R-382
don’t edit R-376
for Vector example R-357

deinitializer() shown in execution stack U-136
delete command R-128
delete operator, using in the Workspace R-432
deleting

debugging items R-128
menu buttons U-221

demand-driven code generation U-7, R-129
advantages R-130
deciding whether to use U-55
performance R-116
performance factors U-57
performance increase with U-59

DEMANGLE environment variable R-53
dependencies, templates R-352, R-368
dereferencing pointers in the Data Browser U-198
destruct command R-132
destructors, displaying static U-136
detach command R-133
development, incremental U-138
differences

between cdm and pdm R-255
between debugging modes, trapping signals

R-38
cd command in CL target vs others R-211

user_guide.book : combinedIX.doc 266 Mon Jun 5 13:07:07 1995

Index

266 ObjectCenter User’s Guide

errors detectable in source but not object code
R-165

object code debugging vs source code R-122
object code vs source code R-164

directories
changing R-56
displaying search path R-405
setting search path R-246, R-405
specifying for loading header files U-62

directories, changing and listing R-428
disabling run-time error checking for object code

R-396
-display (command-line switch) R-227
display command R-134

options used by R-134
DISPLAY environment variable U-26
displaying

environment variables R-287
input history U-42
length of character strings R-247
machine instructions R-184
options U-216
pointers in Workspace U-145
static constructors U-136
static destructors U-136

-Dname switch R-224
documentation, overview of, for ObjectCenter

U-iv
documentation viewer

customizing X resources R-471
Xresource names R-474

down command U-135, R-136
-dryrun switch R-46
dump command U-210, R-137
dynamic extension lookup and templates R-355

E

+e switch R-49
-E switch R-46
-ec switch R-46
echo option R-241

edit command R-138
options used by R-139

edit server R-140
Edit window

setting resources R-444
setting size R-445

editing U-45
code that defines a class U-184
code that defines a member function U-190
in Ascii ObjectCenter U-240
in the Workspace U-41, R-424
invoking your editor U-45
line, keys used in R-168
loading after editing code U-15
need for reloading a file U-77
source code R-138
specifying your editor U-46
ways to invoke your editor U-45
with emacs U-45
with vi U-45

editor
accessing through Error browser U-15
accessing to fix load-time errors U-15
connecting other editors to ObjectCenter

U-226
connecting your editor U-226,R-141

editor option R-241
eight_bit option R-242
eight-bit character set

enabling U-232, R-242, R-243
using R-223

-el switch R-46
emacs U-41, U-45, R-168, R-424

and other UNIX tools U-10
connecting to ObjectCenter R-141
editing source code U-45
features of in ObjectCenter U-41
integration R-141
keybindings R-446
in user-defined command R-465

email command R-144
email_address option R-242

user_guide.book : combinedIX.doc 267 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 267

Index

embedded SQL, using files containing R-193,
R-276

empty array brackets R-41
empty bodies R-33
EMPTY comment U-230, R-33
encoding, of functions in template map files

R-358
english command R-146
enumerated types, viewing in object code R-124
environ global variable U-233
environment control options R-230
environment variables R-147 to R-148

AON R-52, R-53
creating R-308
definition of R-147
displaying R-287
examining U-233
expanding in the Workspace R-422
LD_LIBRARY_PATH R-254
manipulating within ObjectCenter U-233,

R-147
removing R-400
setting U-233
specific to ObjectCenter R-148
used by C++ translator R-52
used by CC R-52
using in aliases R-9, R-422

envp formal parameter U-233
Error Browser U-15, U-99, U-101, U-111
Error Browser button U-98, U-111
error messages

See errors
error-checking

load-time U-8, R-119, R-121
run-time U-9, R-119, R-121, R-162

overview of U-110
with instrument command U-14

error-checking in project management U-53
errors

accessing uninitialized memory R-164
array index R-165
compiler U-105

definition of U-99
detectable in source but not object code R-165
fixing load-time U-100, U-101
fixing run-time U-112
load-time

checking in Ascii ObjectCenter U-243
choices in handling in Ascii ObjectCenter

U-244
how handled U-99
in Error Browser U-99

make U-105
pointer bounds R-164
reported in Workspace U-143, R-431
responding to errors reported in Workspace

U-143
running project to find U-109
run-time U-109

in Ascii ObjectCenter U-246
in the Error Browser button U-111
types ObjectCenter finds U-110

scope of message suppression U-103
seeing load-time U-98
and templates R-377

Escape key sequences R-169, R-425
Esc-Esc, sequence for completing commands and

names R-424
Esc-x sequence

to echo Workspace commands to shell R-198
for completing file name patterns R-425

establishing a project
with clezstart U-68
with make U-68
with source U-68

evaluating
an assignment expression R-18
expressions R-307

Examine menu R-439
examining environment variables U-233
examples, templates

separate compilation R-373
separate compilation and specialization

R-375

user_guide.book : combinedIX.doc 268 Mon Jun 5 13:07:07 1995

Index

268 ObjectCenter User’s Guide

specialization R-369
Vector example R-341

executable files
attaching to a running executable U-91
debugging R-254 to R-262
reloading R-30
specifying as debugging target U-91, R-113
targeting an externally linked U-166
viewing contents of R-109

execution
continuing R-107
continuing until function returns R-324
displaying location in R-414
knowing whether running in ObjectCenter

R-304
seeing which functions would be called in

code U-203
specifying arguments R-304, R-318
specifying how to proceed after violation

R-238
specifying new arguments R-297
stepping U-133, R-218, R-320
stepping through machine code R-220
suspending R-332
tracing U-123, U-252, R-394
with arguments R-301
without initializing variables R-317

execution stack
definition of U-134
displaying U-134, R-411
moving in U-135, R-136, R-404
exiting ObjectCenter, See quit command

expand command U-203, R-149
expressions

displaying value in Source panel U-208,
U-210

displaying values of R-134, R-285
evaluating R-18, R-307

EZSTART U-73, R-72
See also clezstart

F

-F switch R-46
f.delete function R-417
f.destroy function R-417
F1 (help key) U-27

changing R-444
-fastdraw (command-line switch) R-227
-fg (command-line switch) R-227
fg command R-151
file command R-152
File Contents window of the Project Browser

U-175
file properties, instrumented versus

uninstrumented U-77
__FILE__ macro R-36
filename suffixes interpreted by clezstart R-76
filenames, conventions for template files R-352
$filepath in command resource R-467
$files in command resource R-467
files

C++ suffixes supplied to load R-192
changing properties for file already loaded

U-85
choosing ways to load files U-60
conditionalizing for debugging U-234
editing R-138
linking R-178
listing

source code R-180
source files for an executable R-109

loading R-185
loading in an existing project U-69
loading them singly U-62
properties of files loaded singly U-66
reloading U-77, R-30
setting list location R-152
swapping U-79
unloading U-79, R-397
ways to load singly U-62

filtering names of class members from the Class
Examiner U-188

user_guide.book : combinedIX.doc 269 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 269

Index

$first_selected_char in command resource R-467
$first_selected_line in command resource R-468
fixing

compiler errors U-105
load-time errors U-101
load-time warnings U-98, U-100, U-101
make errors U-105
run-time errors U-109, U-112
run-time warnings U-109
static errors U-15, U-93, U-100

-flags_cc switch R-47
-flags_cpp switch R-47
focus policy R-440, R-443
-font (command-line switch) R-227
fonts

changing globally R-440
for ObjectCenter components R-461
for documentation viewer R-471

-foreground (command-line switch) R-227
fork(), debugging programs that call R-125
format for ObjectCenter lines in makefiles R-206
forward declarations for function templates

R-354
Free Software Foundation

license R-477
using GNU debugger in Workspace R-262

FS environment variable R-53
FSF GNU Emacs, See emacs

full_symbols option R-242
-full_symbols switch R-224
__FUNC__ macro R-36, R-37
function prototypes R-16, R-40

creating R-292
in K&R mode vs. ANSI mode R-17
loading R-197
using in ObjectCenter R-17

function templates
declaring R-354
defined R-338
troubleshooting R-378

functions
arrow keys bound to R-174
binding to keys R-169

cross referencing R-434
defining in Workspace U-146, R-430
displaying all local variables R-137
editing R-138
entering when single stepping R-320
equivalent to ObjectCenter commands R-34
library, executing R-430
library, replaced by ObjectCenter R-84
listed U-228
listing machine code for R-184
listing source code for R-180
not entering when single stepping R-218
returning from R-324
setting actions in R-409
setting breakpoints in R-326
setting conditional breakpoints in R-326
showing all local variables U-210
showing implicit R-149
viewing the calling structure of U-191

G

-g command-line switch U-65, U-115, U-127,
R-47

-G load switch U-65, U-87, R-186, R-224
-G load switch with compiler -g switch U-59,

U-65
gcc, using with ObjectCenter R-43
gdb

in contrast to ObjectCenter U-165
using commands in the Workspace R-262

gdb command R-153
gdb_mode command R-154
-gdem switch R-47
global variables, initializing R-295
gmake command R-213
gmon.out file R-51
GNU Debugger, using in the Workspace R-153,

R-154, R-262
GNU Emacs, See emacs
gprof R-51

graphical user interface, See GUI

user_guide.book : combinedIX.doc 270 Mon Jun 5 13:07:07 1995

Index

270 ObjectCenter User’s Guide

grave accent R-426
Group By button on the Class Examiner U-188
GUI U-29

and visualizing code U-9
choice of three interfaces U-11
command-line switches to specify R-227
fonts for ObjectCenter components R-461
set DISPLAY before choosing U-26
setting default style R-438
window managers R-417
See also X resources

H

-hdrepos switch R-47
header cache, for templates R-368
header files

checking dependencies U-65
common R-271
loading R-200
precompiled U-8
specifying directories when loading U-62
specifying whether checked by make R-244
using correct, and templates R-377

help U-27, U-28
man Workspace command U-28
Manual Browser U-28

help command R-156
Help key U-27, R-440

changing R-444
Help menu U-27
history command U-42, R-157, R-419

options used by R-157
history file, saving U-41
history, enabling R-243

I

+i switch R-49
I environment variable R-53
-I switch for specifying header files directories

U-62, R-187. R-224

shown in template header cache R-368
in sys_load_cflags option R-196

-iconic (command-line switch) R-227
icons

Execution U-123
Scope U-135

identifying memory leaks R-216
ignore command U-137, R-158
ignore_sharp_lines option R-242, R-283
implicit function calls, showing R-149
importing a project from an existing application

U-73
#include directive, nested, and templates R-368
#include files

search path for R-187
loading R-196
loading with -I R-194
path option does not apply to R-194

include guards R-353
source file replaying R-378

including same file twice, avoiding with include
guards R-353

incremental development U-138
incremental linking at reloading U-66
info command U-210, R-160
information lookup options R-231
inheritance

displaying among classes U-179
displaying levels U-181
See also Inheritance Panel U-181

Inheritance Browser U-178
accessing U-178
Class List U-178
Inheritance Panel U-179
updating after (re)loading or swapping

U-184, U-195
inheritance of class members

displaying U-151
suppressing display of U-153

Inheritance Panel U-179
accelerator keys for selecting and unselecting

names U-181

user_guide.book : combinedIX.doc 271 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 271

Index

clearing U-183
customizing U-182
displaying inheritance levels U-181
displaying inheritance relationships among

classes U-179
displaying more of the Panel U-182
moving class names in the display U-183
panners U-182
pointer boxes to display inheritance levels

U-182
removing names U-183
scroll bars U-182
selecting names U-180
unselecting names U-180

inheritance path
full R-21, R-24, R-28, R-69, R-249
truncated R-21, R-24, R-28, R-69, R-249

initialization ofstatic data members R-379
initializer() shown in execution stack U-136
initializing statics, step does not stop in

functions that R-322
inline cutoff

decreasing with -ispace R-47
increasing with -ispeed R-47

inline editing in the Workspace U-41
inline functions

debugging U-127
how handled when loaded U-64, U-115
in templates R-355
setting breakpoints on R-123

input history
displaying U-42, R-157
displaying in Workspace R-419
-f switch U-42
logfile U-42
moving through R-157
Save Session to command U-41
saving U-42

a session log U-41
input, Workspace

editing R-424
repeating previous R-420

instantiating templates at linking or building not
loading U-63

instantiation
class, definition R-336
function template R-340
options R-363
repository R-345
See also templates

instrument all command U-87
instrument command U-14, R-162
instrument_all option R-162, R-242
instrument_byte option R-162, R-163, R-242
instrument_space option R-162, R-242, R-268
instrumenting object code U-76
integrating other software with ObjectCenter U-6
integration of other tools with API R-58
intentional bugs R-41
interaction model R-441
interactive debugging U-16, U-20

in project management U-53
interactive prototyping U-138

loading code fragments U-61
template definitions in the Workspace R-364

interactive testing U-138
international features R-17
interpreter, C U-10
invoking

a custom command U-225
make with CenterLine(CL) targets R-204
ObjectCenter U-25
pdm R-254
your editor U-45

-ispace switch R-47
-ispeed switch R-47

K

+k switch U-59, R-50, R-271
K&R C R-12
key bindings

customizing U-231
displaying and changing R-167

user_guide.book : combinedIX.doc 272 Mon Jun 5 13:07:07 1995

Index

272 ObjectCenter User’s Guide

keybind command U-231, R-167
options used by R-167

keyboard editing
changing defaults for, in Motif R-447 to R-458
default settings R-446

keys
binding to commands R-168
binding to functions R-169
functions, table of R-170
help R-444

L

-L (command-line switch) R-187, R-196, R-225
-l (command-line switch) R-187, R-225
language control options R-231
language selection R-175 to R-177
languages, full support for C and C++ U-7
language, Workspace mode R-96
$last_selected_char in command resource R-468
$last_selected_line in command resource R-468

lazy generation, See demand-driven code
generation

ld -r U-88, R-267
LD_LIBRARY_PATH environment variable

R-254
leak detection R-216
leaving ObjectCenter U-47
length, character strings, changing R-247
lex, using R-279
LIB_ID environment variable R-53
libC.a, attached automatically U-26, R-223
libc.a, attached automatically U-26, U-66, R-223
libC_p.a R-51
$libraries in command resource R-467
libraries

attached automatically U-26
loading R-195, R-196
loading with -G R-186
making with clezstart R-79
making, of templates R-367
profiling R-51

shared R-166, R-313
unloading U-79
unresolved references to symbols in U-67

library functions, executing R-430
Library Contents window of the Project Browser

U-176
LIBRARY environment variable R-53
limitations, name length and templates R-377
limits, changing character string size R-247
line, continuing a statement on next U-142
#line directives

how used by ObjectCenter R-193
ignoring R-283

line editing
keys used in R-168
in the Workspace R-424

__LINE__ macro R-37
line_edit option R-243
line_meta option R-243
LINE_OPT environment variable R-53
lines, interpreting in Cross-Reference Browser

U-194
link command R-178
link simulation, templates R-368
linked lists, following in the Data browser U-198
linking

automatic incremental at reloading U-66
incremental U-7, U-16
project U-82
suppressing link messages in Ascii

ObjectCenter U-254
lint command U-10
lint comments, how ObjectCenter handles R-33
lint_run option R-243
list command R-180

options used by R-181
list location, setting R-152, R-181
List template class R-337
list_action option R-243
list_classes command R-183
listi command R-184

user_guide.book : combinedIX.doc 273 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 273

Index

listing
class members in Class Examiner U-187
code that defines a class U-184
code that defines a member function in the

Class Examiner U-189
control options R-231
debugging items R-319
files linked from libraries R-109
loaded files R-109
locations where a name is declared or

defined R-416
machine code R-184
unresolved references U-210

listing source code U-43
in the Workspace U-43
ways to list source code U-44

load command R-185
C modules R-186
C++ suffixes supplied by cxx_suffixes R-192
command-line switches R-189
compared with build and make R-213
customizing the preprocessor for U-232
default switches used by R-244
include files R-194
libraries R-195
object file as C module R-194
options used by R-187, R-363
project files R-198
source file as C module R-193
source file as C++ module R-192
sourcing project files R-198
switches for C++ files R-189
switches used by R-185, R-200
using preprocessor with R-246
using wildcards with R-198

load control options R-231
load -dd=off, -dd=on U-87
load_flags option U-86, R-244, R-363

specifying loading switches for load R-190
load_header command R-200
loading

a project file U-70

an existing project U-69
changing effect of options R-187
choosing ways to load files U-60
code according to your objectives U-14
code with a makefile U-13
code with a project file U-13
deciding on types of files U-55
executables and corefiles with debug

command R-113
files as a project U-68
files singly U-62
finding warnings and errors U-15
fixing static errors with the Error Browser

U-15
incremental U-7, U-16
object code when source code already loaded

U-64
object files as a technique to improve

performance U-88
reloading after editing code U-15
source code when object code already loaded

U-64
source vs. object code R-117
speed tradeoffs R-117
template files U-62, R-363
templates, summary R-382

See also templates
types of files according to your objectives

U-10
ways to load files singly U-62
your code into ObjectCenter U-13

loading C modules, -C switch for R-186, R-193
loading C++ modules R-192
loading switches

system default R-189
user-specified R-190

load-time errors
checking U-8, R-119
fixing warnings U-98
how errors handled U-99
how warnings handled U-99
suppressing warnings U-230

user_guide.book : combinedIX.doc 274 Mon Jun 5 13:07:07 1995

Index

274 ObjectCenter User’s Guide

local variables, showing U-210
location of a variable, specifying R-182
logfile U-42, R-419
logfile option R-244
lookup schemes, templates

dynamic extension R-355
type lookup R-355

LOPT environment variable R-53
LPPEXPAND environment variable R-54
ls alias U-40

M

machine code
debugging R-114
displaying R-184
setting breakpoints R-328
stepping R-220, R-323

macros
built-in R-36
predefined by ObjectCenter R-36
specific to ObjectCenter U-234

mail, sending to CenterLine Software R-144,
R-242

Main Window U-12
make command U-10, U-71, R-204

compared with buildand load R-213
default command-line arguments R-244
establishing a project with U-68
invoked by load R-194
options used by R-204
specifying which program is called R-244

make_args option R-244
make_hfiles option R-244
make_offset option R-244
make_prog option R-244
make_symbol option R-244
makefiles for ObjectCenter

creating with clezstart R-72 to R-83
example of R-207
format for lines in R-206
meta-characters in R-209

and templates R-363
use of # character in R-206

making libraries with clezstart R-79
man command R-215
managing a project U-14
mangled names, displaying U-158
mangling names in template map files R-358
Manual Browser U-28

opening R-215
X resources for R-471

map files R-357 to R-359
name mangling R-358
overriding default R-359
problems R-377
user-defined R-359

mapping, disabling by ignoring #line directives
R-242

mem_config option R-245
mem_trace option R-216, R-245
member function, finding code that defines, in

the Class Examiner U-189
members, listing in the Class Examiner U-187

See also Class Examiner
memory

allocated by sbrk R-249
allocating for instrumented code R-162
allocating with type checking R-61
as a performance factor in project

management U-53
initializing R-392
leak detection R-216
marking as initialized and valid R-391
marking as initialized and valid with

centerline_untype() R-67
optimizing R-245
used one byte at a time R-162
using uninitialized R-164
value for unset variables R-163, R-252

menu buttons U-220
deleting U-221

menu items, customizing U-222
message server U-6

user_guide.book : combinedIX.doc 275 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 275

Index

messages
CLIPC R-85
diagnostic R-41
errors in the Workspace R-431
errors with templates R-377
EZSTART R-75
object file too large for instrumenting R-166
related to make R-214
spurious R-166
undefined function R-313
used-before-set U-246

Meta key
enabling R-243
using R-223

meta-characters, for ObjectCenter makefiles
R-209

missing template arguments R-344
modes, debugging R-221
modes, workspace

automatic mode switching R-90, R-111,
R-218, R-321

C R-89
C++ R-111

modifying a custom command U-225
monochrome, X resource R-461
More prompt, responses to R-182
Motif U-11, R-96

changing defaults for keyboard editing R-447
default interface style, setting R-438
X resource R-462
X resources specific to R-462

mouse
accelerators in Source panel U-209
actions U-29
shortcuts U-31

-mt switch R-47
multiple processes R-125

debugging R-125
multiple-line statements U-142
munchC environment variable R-54
mwm R-417, R-438, R-442, R-444

N

-n switch to make R-212
-name (command-line switch) R-228
name completion in Workspace R-424
name mangling in template map files R-358
name mapping file

contents R-345
defined R-382
See also map files

names
displaying all uses of R-408
displaying defining instances of U-208
displaying uses of U-208
listing where declared R-416

-nCenterLine switch R-48
-ncksysincl switch R-48
next command U-133, R-218

automatic mode switching for R-218
options used by R-218

nexti command R-220
NM environment variable R-54
nmake command R-213
nmap files

creating R-359
order searched R-359

NMFLAGS environment variable R-54
-no_fork switch R-225
-no_run_window switch R-225
NOTREACHED comment U-230, R-33

O

object code
in Ascii ObjectCenter U-253
changing to and from instrumented U-77
debugging U-127, R-122
having type information in the Project

Browser U-177
instrumented R-162

speed R-117
instrumenting U-76

user_guide.book : combinedIX.doc 276 Mon Jun 5 13:07:07 1995

Index

276 ObjectCenter User’s Guide

setting actions in R-6
uninstrumented R-396
vs. source code, errors detected R-165

object filenames, in map files R-379
object files

consolidating to optimize performance R-267
displaying function parameters when there is

no debugging information R-125
gcc R-43
if loaded with debugging information U-145
if loaded without debugging information

R-430
loading R-185
replacing with source files R-333
setting breakpoints and actions in U-115,

U-253
when reloaded by build R-31
with #line information R-279
without debugging information, using

U-145, R-430
working with, general R-122

ObjectCenter
as a programming environment U-1, U-21
basics U-23
command equivalents R-34
commands, overview R-96 to R-97
customizing U-11, U-26
debugging in, overview R-116 to R-127
directory U-25
environment variables R-148
functions R-34

renaming R-296
listed U-228
See also built-in functions

leaving U-47
macros, predefined U-234
makefiles for R-205
options, See options
overview U-3
path for startup command U-25
tools available in U-3
X resources in R-436 to R-470

objectcenter, shell command U-25, R-221 to
R-223

command-line switches to specify GUI R-227
__OBJECTCENTER__ macro U-234, R-36
OBJECTCENTER macro R-36
OBJECTCENTER_ environment variables R-148
obsolete options R-236
ocenter.proj file R-305
.ocenterinit file U-26, U-213
ocenterinit file U-26, U-213, R-222

finding R-222
.octrusrcmd file U-222, R-463
OI components R-461
OI names R-459, R-461
-ol (command-line switch) R-228
-ol2d (command-line switch) R-228
-ol3d (command-line switch) R-228
olvwm R-417
olwm R-417
one definition rule violation R-377
OPEN LOOK U-11, R-96

X resources specific to R-462
-openlook U-25
openlook, X resource R-461
-openlook_2d (command-line argument) R-228
-openlook_3d (command-line argument) R-228
openlook3d, X resource R-461
options

alphabetical list R-237
changing settings U-217
customizing menu buttons U-220
displaying U-216
displaying values of R-288
effect of changing R-187
functional summary R-230
instrument_all R-162
instrument_byte R-162
instrument_space R-162
integrating revision control systems U-219
list of U-216
obsolete R-236
saving settings U-218

user_guide.book : combinedIX.doc 277 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 277

Index

saving values of U-218
setting values in component debugging

mode U-216
setting values in startup flles U-214
setting values of R-310
template instantiation R-363
that affect loading R-187
unset_value R-163

Options Browser U-216
options, ObjectCenter

displaying value of R-60
expanding in the Workspace R-422
unsetting R-401
using in aliases R-9, R-422

options, EZSTART R-72
order, See precedence

output file (from preprocessor)
creating R-281
loading R-279

output in Workspace, redirecting R-425
overloaded functions

and operators, disambiguating R-149
using in the Workspace U-38

overriding default map file R-359
overview

commands R-96 to R-102
debugging R-116 to R-127
usage of templates R-382

P

+p switch R-50
page_cmds option R-245
page_list option U-245, R-245
page_load option R-245
panner R-441
parameterized types, See templates
patchC environment variable R-54
path option U-86, R-57, R-194, R-246

not for include files R-194
pdm R-254 to R-262

debug command R-113

.pdminit file U-26, U-213, R-255
performance factors R-164

comparing in component debugging mode
U-57

consolidating object files U-88
demand-driven code generation U-59, R-116,

R-130
in managing a project U-52
in project management U-53
loading object files to improve performance

U-89
not loading debugging information U-89
precompiled header files U-59
setting the save_memory option U-89
techniques to improve performance U-88
using uninstrumented object code U-89
with demand-driven code generation U-57

-pg switch R-48
pointer bounds errors R-164, R-165
pointer boxes to display inheritance levels U-182
pointers

to data members, displaying U-151
displaying dereferenced value U-208, U-210
displaying in Workspace U-145, R-429
how displayed R-247
how represented in Data Browser U-198
how represented in the Cross-Reference

Browser U-194
pop-up menus U-206

saving a transcript of a session U-41
shortcuts U-31

porting, See C compiler compatibility
#pragma directives R-15
precedence R-176

of load switches R-190
of X resources R-461
specifications for loading libraries R-195

precompiled header files U-8, R-271
and lock time R-52
performance increase with U-59

predefined macros, ObjectCenter
See macros, predefined by ObjectCenter

user_guide.book : combinedIX.doc 278 Mon Jun 5 13:07:07 1995

Index

278 ObjectCenter User’s Guide

predefined, See built-in comments, built-in
functions, built-in macros

prefixes for X resources R-461
preprocessed code, debugging R-193
preprocessing, echoing input stream R-241
preprocessor input files

modifying R-283
using in ObjectCenter R-276

preprocessor option U-232, R-246
preprocessor output files

creating R-281
loading R-279

preprocessors
customizing for the load command U-232
using with ObjectCenter R-276

primary_language option R-247
primary_language option R-176
print command U-208, U-210, R-285

options used by R-285
print* command U-208, U-210
print_inherited option R-247
print_pointer option R-247
print_runtime_type option R-247
print_static option R-247
print_string option R-247
printenv command U-233, R-287
printing

length of character strings R-247
values of variables R-285
variable values U-208, U-210

printopt command R-288
process

child, debugging R-125
targeting a running U-166

process debugging mode (pdm) U-9, R-254 to
R-262

overview of commands R-255
processes

attaching to R-18, R-113
debugging multiple R-125
See also CenterLine API

profiling, and libC_p.a R-51

program name R-248
program_name option U-86, R-248, R-303
programming environment, ObjectCenter as a

U-1
programming interface R-58
programs

rerunning without arguments R-302
running R-301
running without initializing variables R-302
run-time error checking U-110
stepping through U-133
tracing execution of U-123, U-252
See also execution

project
linking R-178
loading R-185
properties

C source file extensions U-87
C++ file extensions U-87
enable demand-driven code generation

U-87
instantiate templates as object code U-87

updating R-283
Project Browser U-18, U-175

examples of user-defined commands R-463
File Contents window U-175
Library Contents window U-176
type information with object code U-177
user-defined commands R-462
viewing project components U-75

project files
definition of R-305
loading U-70, R-185, R-198
saving U-69, R-305

project management U-49
in Ascii ObjectCenter U-242
attaching to a running executable U-91
building a project U-82
choosing the type of code to load U-52
choosing ways to load files U-60
and code comprehension U-53
component debugging mode

user_guide.book : combinedIX.doc 279 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 279

Index

choosing types of files U-55
display a project in Ascii ObjectCenter U-242
error-checking U-53
establishing a project U-70
establishing a project with a command file

U-72
establishing a project with make U-71
importing from an existing operation U-73
and interactive debugging U-53
linking U-82
loading a core file U-91
loading a project file U-70
loading an existing project U-69
loading files as a project U-68
loading files singly U-62
memory as a performance factor U-53
and performance factors U-52

comparing in process debugging mode
U-57

project as a whole U-82
project properties U-86
properties of files loaded singly U-66
reloading a file after editing U-77
running a project U-83
running part of a project U-83
saving a project file U-69
setting properties U-85
setting properties for single components

U-80
specifying an executable U-91
speed as a performance factor U-53
swapping files U-79
techniques to improve performance U-88
unloading files U-79
unloading libraries U-79
unresolved references when linking U-82
viewing components with the Project

Browser U-75
viewing project in Ascii ObjectCenter U-242
ways to load files singly U-62
why load source, object and library files U-54
why target an executable U-54

promoting arithmetic operands R-105
promoting function arguments R-105
properties R-290

changing for a loaded file U-85
need to reset after unloading and reloading

U-80
project

ANSI U-87
ignore warnings U-87
instrument object files U-87
load debugging information U-87
load flags U-86
program name U-86
search path U-86
swap search path U-86

setting for files and libraries U-80
setting project U-85

proto command R-292
.proto files R-197
proto_path option R-197, R-248
prototypes, function

creating R-292
equivalents of ObjectCenter commands

U-228
loading R-197

prototyping, interactive U-138
template definitions in the Workspace R-364

-pta command-line switch R-360
and type checking template members R-379

ptcompC environment variable R-54
-ptd command-line switch R-360
-ptf command-line switch

and function templates R-378
and type checking template members R-379

-pth command-line switch R-361
PTHDR environment variable R-54, R-356
-pti command-line switch R-361
-ptk command-line switch R-361
ptlink

dumping a link map R-361
fatal error R-359
file lookup R-355

user_guide.book : combinedIX.doc 280 Mon Jun 5 13:07:07 1995

Index

280 ObjectCenter User’s Guide

forcing to continue on error R-361
link-simulation algorithm R-368

ptlinkC environment variable R-55
-ptm command-line switch R-361
-ptn command-line switch R-361

problems with multi-file applications R-378
PtoPTS environment variable R-54
-ptr command-line switch R-361
ptrepository R-345
-pts command-line switch R-362
PTSRC environment variable R-54, R-356
-ptv command-line switch R-362
-ptx switches R-48
pushpins R-441, R-443
$pwd in command resource R-467
pwd alias U-40

Q

quit command U-47, R-290
quitting

Ascii ObjectCenter U-241
ObjectCenter U-47

R

rcs R-469
recompiling R-31

avoiding with common header files R-271
recursive makefiles R-211
redirecting output from Workspace R-425

commands not supported R-425
reducing compile time, See skipping header

files
references, listing unresolved U-210
reinit command R-295
reinstantiation, of templates, forcing R-369
releasing a process R-133
reloading

a file after editing U-77
automatic incremental linking U-66

reloading, executables R-30

removing
environment variables R-400
See also deleting

rename command R-296
renaming object files R-379
repository

defined R-383
filename length R-368
multiple R-366
permissions R-365
sharing R-366
template contents R-345
See also precompiled header files, templates

rerun command R-297
options used by R-297

reset command U-132, R-299
resetting from a break level U-132
restarting a session, and startup files U-214
returning after suspending R-151
-reverse (command-line argument) R-228
revision control systems R-469
run command R-301

arguments to main(), spaces in R-304
options used by R-301
redirecting output R-426
run-time errors in Error Browser U-16
using the \ character with R-304

Run Window R-445
clearing U-84
logging content R-445
-no_run_window switch U-84, R-225
setting size R-445

running
checking if in ObjectCenter R-65
code to find errors U-109
part of a project U-83
a project U-83
See also execution

running process
specifying for targeting U-169
targeting U-166

user_guide.book : combinedIX.doc 281 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 281

Index

running programs
a step at a time U-133
error-checking U-110
knowing whether running in ObjectCenter

R-304
stopping as part of an action U-122, U-251
using command-line arguments R-302
without initializing variables R-302
See also execution

run-time error checking U-9, R-119, R-162
in Ascii ObjectCenter U-245
continuing from a violation U-132
handling violations U-110

run-time stack, specifying switches U-26
-rv (command-line argument) R-228

S

save command R-305
Save Session to command U-41
Save to command R-420
save_memory option R-248

as a technique to improve performance U-89
saving

aliases R-9
option values U-218
a project file U-69
transcipt of session U-41
Workspace input U-42, R-419
your work R-305

sbrk_size option R-249
sccs R-469
scenarios, clezstart R-77
Scope icon U-135
scope location

changing R-136, R-404
changing in break level U-135
definition of U-129
displaying R-414
viewing U-135

screws, in place of pushpins R-443
script file, reading R-316

scrollbar R-441
cannot change location R-444

search path
#include files R-187, R-196
libraries R-196

search paths, displaying and setting R-405
select, with the mouse U-29
$selection in command resource R-468
separate compilation and templates R-373
session

beginning U-12
restarting U-214
saving transcript U-41

set command R-307
-set_lib_id switch R-48
setenv command U-233, R-308
setopt command R-148, R-310
setting

actions R-3, R-409
actions in object code R-6
breakpoints U-116
breakpoints in machine code R-328
environment variables U-233
tracepoints U-123
value of a variable with assign command

R-18
values of options R-310
watchpoints R-7, R-34, R-409
X resources in ObjectCenter, example R-437

settings, default U-12
sh command U-40, R-312
shared libraries R-187, R-313

and ptlink R-368
cannot be instrumented R-166

sharing code
and templates R-366

sharing template repositories R-366
shell command U-40, R-315
shell commands

customizing U-224
redirecting output R-426
sh Bourne shell command U-40
shell default shell command U-40

user_guide.book : combinedIX.doc 282 Mon Jun 5 13:07:07 1995

Index

282 ObjectCenter User’s Guide

shell commands, redirecting output R-426
shell option R-249
shortcuts

pop-up menus U-31
in the Source area U-44
using alias command R-8
Workspace operations U-42

show_inheritance option U-153, R-21, R-24,
R-28, R-69, R-249

signals
continuing execution with R-107
handling in ObjectCenter U-137
ignoring R-158
trapping R-38

SILENT, option with make R-214
size of program, decreasing with -ispace R-47
size_t R-105
skipping header files R-271
skippp environment variable R-55
-softbench (command-line switch) R-226
$sources in command resource R-467
Source area U-12

font specifications R-461
how it displays files R-182
shortcuts U-44

source code
editing R-138
listing R-180
loading vs. object code R-117

source command R-316
establishing a project with U-68

source files
C++ file extensions for R-192
conditionalizing for debugging U-234
loading R-185
loading C modules R-193
loading C++ modules R-192
paginating display of R-245
replacing with object files R-333
replaying, and templates R-378
when reloaded by build R-31

source location, definition of U-129

sourcing
a command file U-72
project files R-198

space, See memory
spaces

in arguments to main() R-304
in CL targets R-210
to indent for tab, setting with tab_stop option

R-251
special characters in CL targets R-210
specialization R-369 to R-371

defined R-383
and function templates, troubleshooting

R-378
link time, example R-375

specifying application files in map files R-359
specifying a different compiler R-195
specifying a variable’s location R-426
speed

as a performance factor in project
management U-53

considerations with instrumented object
code R-164

increasing with -ispeed R-47
instrumented code vs. other R-117
tradeoffs with various kinds of debugging

R-121
spot help U-13, U-27
SQL, using files containing R-193, R-276, R-280
src_err option R-250
src_step option R-250
src_stop option R-250
stacking windows in user interface R-417
standard C library, attached automatically U-26,

R-223
standard C++ library, attached automatically

U-26, R-223
standard libraries, attached automatically U-66
start command R-302, R-317

options used by R-317

user_guide.book : combinedIX.doc 283 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 283

Index

starting
ObjectCenter U-25
ObjectCenter in pdm R-254

startup files R-222
customizing U-213
customizing global U-213
customizing local U-213
defining aliases U-214
restarting a session U-214
setting option values U-214

static constructors
displaying U-136
how displayed in execution stack U-136

static destructors
displaying U-136
how displayed in execution stack U-136

static errors
fixing U-15, U-93
types ObjectCenter finds U-95

static members, turning on display of U-154
static objects

displaying U-160
invoking constructors for R-106
invoking destructors for R-132
step doesn’t stop in functions that initialize

R-322
static template class data members R-371

initialization R-379
specialization R-371

status command R-319
__STDC__ macro R-37
step command U-133, R-320

automatic mode switching for R-321
stepout command U-133, R-324

options used by R-324
stepping

and entering functions R-320
in machine code R-323
machine code R-323
through preprocessed code R-282
through a program U-133
without entering functions R-218

stop command R-325
options used by R-326

stopi command R-328
string table, in template map file R-357, R-358
strings

changing default length R-247
number of characters printed R-247

subshell option R-250
subshell, executing U-40

Bourne R-312
specified by SHELL environment variable

R-315
-.suffix switch R-48, R-49
suffixes

for template files R-352
used for template lookup R-356
supplied by cxx_suffixes R-192

support_phone option R-250
suppress command R-329

options used by R-330
suppressing echo of violation name R-251

SUPPRESS n comment U-230, R-33, R-331
Suppressed Messages window U-103
suppressing

error messages U-103
linking messages R-179
load-time warnings U-230
warning messages U-103, R-329

using built-in comments R-33
using touch command R-392
with comment /*SUPPRESS n*/ R-403
with -w R-187

suspend command U-241, R-332
suspending Ascii ObjectCenter to return to shell

U-241
swap command R-333

options used by R-333
with instrument R-162

swap_uses_path option U-86, R-250
swapping files U-79
switches

command line U-26, R-223

user_guide.book : combinedIX.doc 284 Mon Jun 5 13:07:07 1995

Index

284 ObjectCenter User’s Guide

configuration U-25, U-26
-f U-42
for saving input history U-26
for specifying run-time stack U-26
startup U-25
supplied by sys_load_cxxflags option R-189
supplied to load R-189
used by build R-31
used by load R-185, R-200
used with template instantiation R-360
See also options

symbol information R-62
symbol table R-114
symbols

displaying defining instance of U-208
displaying uses of U-208, R-408
listing where declared R-416

syntax
for specifying a variable’s location R-426
templates R-336

sys_load_cxxflags option R-251
switches supplied to load R-189
and templates R-363

T

@tab in template map file R-357, R-358
tab_stop option R-251
target, specifying an executable U-91
targeting

an a.out file U-166
a core file U-166
an externally linked executable U-166
a running process U-166
specifying a core file U-168
specifying a running process U-169
specifying an a.out file U-168

tcsh shell U-41, R-168
technical support

correcting email address U-28
email not being delivered U-28
sending email U-28

template declaration file
example R-341, R-353, R-373
not included in template definition file

R-354, R-376
template declaration, defined R-383
template definition file

contents R-354
defined R-383
definition and application in same file R-372
don’t include in application R-354
example R-342, R-354, R-373
naming R-354

template definition, defined R-383
template implementation, See template definition
template implementation file, See template

definition file
templates U-8, R-335 to R-383

argument declaration files R-352
avoiding explicit loads of declaration or

definition files U-56
avoiding problems R-376
bank class example R-337
basename of object file R-359
basic concepts and syntax R-336
class R-336
coding conventions R-352
common pitfalls R-376
conventions for filenames R-352
declaration, See template declaration file
declaring function R-354
declaring function templates R-354
defining in the Workspace R-364
definition, See template definition
dependency checking R-352, R-368
dynamic extension lookup R-355
examples R-372
filename length restriction R-368
filenames R-352
files suffixes R-355
for more information R-336
forcing reinstantiation R-369

user_guide.book : combinedIX.doc 285 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 285

Index

function
defined R-338
instantiation R-340
troubleshooting R-378

header cache R-368
how to load instantiation modules U-56
implementation, See template definition
in the Workspace R-364
inline functions R-355
instance, defined R-383
instantiantion at linking or building not

loading U-63
instantiation R-336

defined R-383
detailed description R-345 to R-347

libraries of R-367
link-simulation algorithm R-368
loading files with declarations and

definitions U-62
lookup schemes R-355
map files R-357
multiple repositories R-366
problems, avoiding R-376
repository R-345
repository permissions R-365
single file example R-372
specialization R-369 to R-371
specialization at link time R-375
static data members R-371
suffixes R-355
summary of usage R-341, R-382
switches affecting R-360
terminology R-382 to R-383
tools provided with R-380
type checking R-379
type lookup R-355
unloading, with unload R-398
unresolved references U-67, U-83
usage scenarios R-365 to R-375
usage, detailed description R-341 to R-344
using options to control instantiation R-363

terminology, templates R-382 to R-383

terse_suppress option R-251
terse_where option R-251
testing, interactive U-138
text, copying and pasting U-32
__TIME__ macro R-37
timestamps

and instantiation system R-368
and template troubleshooting R-377

TMPDIR environment variable R-54
tmpl_instantiate_flg R-252, R-362, R-363
tmpl_instantiate_obj U-87, R-252,R-345, R-362,

R-363
tools used with templates R-380
top level, returning to R-299
touch command R-391
trace command U-123, U-252, R-394
tracepoints

deleting U-124
examining U-124

tracing execution U-123
in Ascii ObjectCenter U-252

tradeoffs, speed with instrumented object code
R-164

transcript, saving a session U-41
transient windows R-417, R-438
translation functions for Motif keyboard editing

R-448 to R-458
trapping signals, See catch

troubleshooting
+> prompt, #> prompt, *> prompt U-142
.Xdefaults file R-438
accessing inline member functions U-127
avoid multiple-line selections for customized

commnands U-224
calling functions in the Workspace U-146
code visualization in object code U-58
email not being delivered U-28
examining variables in object code U-58
files not found U-79
-I switch for loading header files U-86
improving performance when stepping

through code U-200

user_guide.book : combinedIX.doc 286 Mon Jun 5 13:07:07 1995

Index

286 ObjectCenter User’s Guide

linking U-82
dealing with unresolved symbols U-82

load_flags option U-62
loading header files U-62, U-86
loading libraries and #include files R-196
loading template declaration or definition

files U-56
load-time error checking—undetected

function argument mismatches U-96
no access protection in Workspace U-149
resolving symbolic references to libraries

U-82
setting breakpoints in shared library

modules U-118
spurious used-before-set messages U-113,

U-114
swapping U-79
too many run-time violations U-114
unresolved references U-146
using templates U-56, R-376

type checking template members R-379
type lookup and templates R-355
types

declaring in the Workspace U-145
parameterized, See templates

U

-Umacro switch R-187, R-226
unalias command R-395
undefined symbols, listing R-399
uninstrument command U-77, R-396

See also instrument
uninstrumented object code

loading as a technique to improve
performance U-89

UNIX compatibility U-10
Unload button U-79
unload command U-144, R-397
unloading

definitions made in Workspace U-144
files U-79

libraries U-79
unmangling names, with -gdem R-47
unres command U-210, R-399
unresolved

variables R-178
unresolved references

and templates U-67, U-83
listing U-210
to symbols in libraries U-67
when linking projects U-82
with inline functions U-155
with static constructors U-155
with virtual functions U-155
with virtual tables U-157

unset_value option U-113, U-246, R-68, R-163,
R-252

specifying value to prevent checking for
unset memory in Ascii ObjectCenter
U-247

unsetenv command U-233, R-400
unsetopt command R-401
unsigned char R-105
unsuppress command R-402
up command U-135, R-404
updating

data in the Data Browser U-200
Inheritance Browser after (re)loading or

swapping U-184, U-195
usage, templates R-341 to R-344, R-365 to R-375
use command R-405
used-before-set messages U-114, U-246

user interface, See GUI
user-defined map files for templates R-359
user-defined commands U-222, R-462

V

+V switch R-50
-v switch R-48
VARARGS comment U-230, R-33
variables

assigning values R-307
changing values in Data Browser U-198

user_guide.book : combinedIX.doc 287 Mon Jun 5 13:07:07 1995

ObjectCenter User’s Guide 287

Index

cross referencing R-434
defining in Workspace U-144, R-429
displaying all uses of R-408
displaying information about R-160
displaying values U-208, U-210
displaying values of R-134, R-137, R-285
environment R-147 to R-148

specific to ObjectCenter R-148
used by CC R-52

expanding in Workspace R-422
in Workspace U-144
initializing R-295
list of in defining a command U-222
location, specifying R-182
setting with assign command R-18
specifying location in Workspace R-426
unresolved R-178
viewing values of U-208, U-210

Vector example R-341
defmap file for R-357
specialization R-369
and specialization R-369

version_date option R-252
version_number option R-252
vi U-10, R-140

editing source code U-45
violation one definition rule R-377
virtual functions displayed in Cross-Reference

Browser U-191
virtual table pointers, displaying U-161
virtual tables, one per executable in C++ Release

2.0 U-157
Visibility Button in Class Examiner U-187
visualizing your code U-16, U-173

seeing all the files throught the Project
Browser U-18

seeing data structures through the Data
Browser U-20

seeing the callling structure through the
Cross-Reference Browser U-19

W

+w switch R-50
-w switch U-87, R-187, R-226
warnings

choices in handling load-time warnings in
Ascii ObjectCenter U-243

definition of U-99
fixing load-time U-100, U-101
load-time

checking in Ascii ObjectCenter U-243
how handled U-99
in Error Browser U-99
suppressing U-230

preventing, about uninitialized memory
R-392

reactivating reporting of R-402
reported during execution R-243
reported for instrumented code R-164
run-time U-109

continuing past U-112
scope of message suppression U-103
seeing load-time U-98
suppressing R-329
suppressing load-time U-230
See also suppressing reporting of warnings

watchpoints R-34
setting R-7, R-409

in Ascii ObjectCenter U-250
whatis command U-208, R-408
when command R-409
where command U-134, R-411

options used by R-411
suppressing list of args with R-251

whereami command U-135, R-414
whereis command U-208, R-416
which C compiler, specifying R-238
wildcards, using with load R-198
win_fork option R-252
win_io option R-253
win_no_raise option R-253
window managers R-417

user_guide.book : combinedIX.doc 288 Mon Jun 5 13:07:07 1995

Index

288 ObjectCenter User’s Guide

workgroup_id option R-253
Workspace U-12

changing bindings used by the in-line editor
R-167

clearing U-41
commands, displaying information about

R-215
completing names in R-424
displaying data structures in U-145, R-429
displaying input history R-157
displaying input history in U-42, R-419
entering C code in U-158
entering code in U-142
errors reported in U-143
evaluating an assignment expression R-18
executing library functions R-430
font specifications R-461
functions defined in, and actions R-5
in Ascii ObjectCenter U-237
inline editing U-41
manipulating class objects in U-147
name completion functionality U-41
no access protection in U-149
preprocessing input to U-232
recording of input history R-419
redirecting output in R-425
repeating previous input R-420
requesting help about R-156
responding to errors made in U-143, R-431
saving

transcript of session U-41
saving input history U-42, R-419
shortcuts U-42
templates in R-364
unloading U-144
using GNU debugger R-262

workspace
identifying class members in U-37
modes in U-130, U-139

Workspace commands U-206
customizing U-224
help command U-28
using U-38

Workspace modes U-139
switching automatically U-130

Workspace prompt U-142
workspace_include option R-253

X

X resources R-436 to R-470
component and object names R-459
customizing U-215
documentation browser R-471
DynaText R-471
examples of user-defined commands R-463
fonts for ObjectCenter components R-461
in user-defined commands R-462
Manual Browser R-471
modifying R-436
ObjectCenter, description R-439
OI components R-461
OI names R-459
revision control systems R-469
setting default UI style R-438
specific to Motif vs OpenLook R-462
specifying scope for R-461
troubleshooting .Xdefaults file R-438

X11 U-11
.Xdefaults file

troubleshooting R-438
modifying R-437

XLFD (X11 Logical Font Description) R-440
xref command R-434
-xrm (command-line argument) R-228

Y

yacc files
example R-277
using R-193, R-276

-Yp,pathname switch R-48

Z

zombied debugging items R-128, R-319

