

About The ObjectCenter Releases

Last Reviewed: 3/98

Copyright © 1999 by
CenterLine Systems, Inc.

ObjectCenter ChangeLog:
ObjectCenter Versions 2.1.0, 2.1.1, and 2.2.0

Table of Contents
New Features in ObjectCenter Version 2.2.0

Licensing and Installation Enhancements in ObjectCenter 2.2.0

New Features in ObjectCenter Version 2.1.1

SUN Platform Support
Support for Solaris 2 non-PIC Shared Libraries
Online Documentation
Tools.h++ Version

New Features in ObjectCenter Version 2.1.0

Thread Support on Solaris 2.3
Emacs Main Window
Printing from the Cross-Reference and Inheritance Browsers
Frequently Asked Questions in the Manual Browser
Workspace Improvements
New Command: load_header
-dd=off Default for Header Files
edit workspace Enabled
unload workspace Improved
Creating Objects for Workspace Classes with Virtual Functions
Overloading and Name-Resolution
HP clcc Compiler
Enhancing pdm Debugging
Error Browser Layout Improvements
Changing the Size of Your Windows
X Resource Changes
ANSI C Code Generation in ObjectCenter
HP Softbench 3.2 Support
Tools.h++ Class Library Object Code
Licensing and Installation Enhancements

Page 1 of 28

This document provides details on all new features added to the ObjectCenter product since
version 2.1.0. This includes all new features for versions 2.1.0, 2.1.1, and 2.2.0. It also
describes the changes made between versions 2.0 and 2.1, specifics on the ObjectCenter
Documentation and product limitations.

Changes Between Version 2.0.0 and Version 2.1.0

Memory Leak Detection
Run Window Changes
clxterm Resources in app-defaults
More Flexible Resource Setting
New Resource For Control Buttons
Support of Direct Pasting into Emacs
Emacs-like Keybindings
User-Defined Commands Access Line Numbers
Directing Output to the Workspace
Template File Definition Extensions
New CC Switches
New Feature for -pg Switch
New Environment Variable
Two New pdm Options and Switches
New Switches For contents and link Commands
New Scope for unsuppress Command
Mnemonics
New Warning Message for free(0)
Options Browser has Longer Editable Fields
Longer Line Limit in the Source Area
Variable Prevents Unexpected Behavior

ObjectCenter Documentation

Online Documentation
Hardcopy Documentation
USL Documentation

Product Limitations

GUI Behavior
Caution if Editing sys_load_cflags or sys_load_cxxflags
ANSI Mode Interprets #define Incorrectly
Support for Variable Argument Functions
Data Browser
Manual Browser
Source Area
Limited Thread Support
Static Functions in the Workspace
Limited Signal Handling Support

Page 2 of 28

NOTE: All features added to each release of ObjectCenter are included in the
releases made available later. For example, features added to ObjectCenter
Version 2.1.0 are still available in ObjectCenter Version 2.1.1 and 2.2.0 unless
otherwise documented.

More details about the ObjectCenter releases can be found within the ObjectCenter Release
Notes as well as the ObjectCenter Platform Guides for each release. Refer to the main
ObjectCenter page on CenterLine's website to access these documents relative to your
specific release of ObjectCenter.

New Features in
ObjectCenter
Version 2.2.0

We have added the following new features in Version 2.2.0:

Support for Solaris 2.5, 2.5.1, and 2.6 and SunOS 4.1.4 operating
systems.
Support for Sun UltraSPARC workstations
HP 9000 Series 700 workstations running HP-UX 10.01, 10.10 and
10.20.
Bug fixes
New install and licensing procedures

All features supported in ObjectCenter Version 2.1.1 are also supported in
ObjectCenter Version 2.2.0.

Like Version 2.1.1, ObjectCenter Version 2.2.0 supports the following SUN
and HP Compilers (in addition to CenterLine-C and CenterLine-C++):

clcc (CenterLine-C)
CC (CenterLine-C++)
Sun/SPARC-C (all versions)
Sun/SPARC-C++ Versions 2.0.1 and 3.0.1 ONLY
gcc v2.5.8 ONLY
FORTRAN
HP-C (all versions)
HP C++ Compilers cfront-based Versions ONLY

Refer to the Product Compatibility Matrix, the ObjectCenter Version
2.2.0 Release Notes or the ObjectCenter Version 2.2.0 Platform Guide
on CenterLine's website (www.centerline.com) for additional product
support/compatibility information.

Licensing and
Installation
Enhancements in
ObjectCenter 2.2.0

With the release of ObjectCenter Version 2.2.0, we have enhanced the
installation process once again. Instead of running a tar command followed
by the RUN_ME script, we provide a single install.sh script to perform
these two tasks for you in one single step. To reflect these changes, we have
also updated the Installing CenterLine Evaluations and Installaing and
Managing CenterLine Products guides.

Page 3 of 28

Additionally, we provide a later release of the FlexLM licensing software.
ObjectCenter Version 2.2.0 now uses FlexLM Version 5.0a.

New Features in
ObjectCenter
Version 2.1.1

SUN Platform
Support

This release adds support for the following:

The Solaris 2.4 operating system
The Sun SPARCompiler C Version 3.0.1
Sun SPARC 5 workstations running SunOS 4.1.3_UI or Solaris 2.3 or
2.4

Support for Solaris
2 non-PIC Shared
Libraries

We have added support for shared libraries that were not built for position
independent loading to the Solaris 2.x platform. You can now load shared
libraries with non-PIC relocations, including the Sun XGL and XIL
graphics libraries.

Online
Documentation

Several of the ObjectCenter manuals are now available online. To access the
new online documentation, select Manual Browser from the Browsers
menu on any primary window, click on the "?" button in the Main Window,
or issue the cldoc command from a shell.

In the left panel of the Library window are one or more collections of
books. Click on the name of a collection to display the names of all the
books in that collection in the Books panel. You can open a specific book
by double-clicking on its name, or selecting its name and clicking the Open
button.

You can perform a simple search from the DynaText Library window, and
you can perform more complex searches from a book window. Select
Forms from the Search menu to see which other search forms are available.
Use the Next, Previous, and Go Back buttons to navigate through the book.

Underlined text is hot - clicking on it scrolls the window to the section of
the book referenced, or opens a new window if the reference is to another
book.

You can create a history of your movement through the book by selecting
New Journal from the File menu and selecting Start Record in the dialog
that pops up.

Print sections by selecting Print from the File menu and highlighting the
sections you want to print. Export sections to a file by selecting Export
from the Edit menu, highlighting the sections you want to export, selecting
Content as the Export format, providing a filename, and clicking the

Page 4 of 28

Export button.

Figures, tables, and tips are shown as icons. Double-click to open them.

Tools.h++ Version The Rogue Wave Tools.h++ class library binary distributed with
ObjectCenter Version 2.1.1 and all subsequent versions, including Version
2.2.0, is Tools.h++ version 6.1.

CenterLine does not have any plans at this time to upgrade the version of
the Rogue Wave Tools.h++ class library binary within later releases of
ObjectCenter. Customers wishing to use a later release of the Rogue Wave
Tools.h++ class library binary must obtain an upgrade through Rogue Wave
directly.

Customers running ObjectCenter Version 2.2.0 (or any later release in the
future), who have a current support contract in place for their
ObjectCenter licenses, will receive full support from CenterLine should an
issue arise while using a later version of the Rogue Wave Tools.h++ class
library binary.

New Features in
ObjectCenter
Version 2.1.0

Thread Support on
Solaris 2.3

We've added support for threaded applications on the Solaris 2.3 platform in
process debugging mode (pdm), with the ability to debug threads in
executables and a graphical Thread Browser to show the status of all the
threads in your program. We have also added a thread-safe libC (the C++
library).

In process debugging mode, the Thread Browser gives you information
about the threads and lightweight processes in your program. This
information includes a list of all threads, and the state of each thread. The
state information includes the function the thread is executing, the execution
state (for example, running, sleeping) of the thread, and the start function
for the thread.

At any given time, the Thread Browser focuses on a single thread or light-
weight process (LWP), known as the "current active entity." You control
execution of the current thread with the cont, next, nexti, step, and stepi
commands. You can display a traceback of the thread execution stack with
the where command. You can also perform these operations on another
thread at the break level by making it the current active entity. To make
another thread the current active thread, you use the thread command with
the new thread number as an argument.

ObjectCenter's pdm supports threads and threaded applications, where the
types of threads that can be used are Solaris-based thread types. POSIX

Page 5 of 28

and other thread types are not supported by ObjectCenter. Solaris is the only
operating system where threads are supported. ObjectCenter for HP-UX or
SunOS do not support threads.

For more information about debugging threaded applications, see the
thread, threads, and thread support entries in the Manual Browser.

Emacs Main
Window

If you're an FSF GNU Emacs 19 user, you can start up an ObjectCenter
session from within Emacs.

First you need to add the following lines to your .emacs file:

(setq load-path (cons ".../lib/lisp" load-path))
(load "clipc")

The M-x objectcenter command starts the environment as a subprocess of
Emacs, with the menus from the CenterLine Main Window replacing the
menus at the top of your Emacs window. Edit the path name supplied if you
want to run a different version of ObjectCenter. You can give a project
name as an argument. To invoke ObjectCenter in process debugging mode,
use the -pdm switch. Edit your code directly in the Source area at the top
of the Emacs Main Window.

All the browsers are available with the same commands and menu items you
use when you invoke ObjectCenter from a shell. A separate Button Panel
window, including your own user-defined buttons, can be launched from the
Browsers menu in the Main Window.

For more information, see the emacs integration entry in the ObjectCenter
Reference Guide.

Printing from the
Cross-Reference
and Inheritance
Browsers

You can now print the contents of the Cross-Reference and Inheritance
Browsers to a postscript file. When you click on the Print... button in the
Browser, the Print from Browser dialog box is displayed. You can specify
what paper size to use, the title of the printout, and the name and location of
the output file. The default location is your current directory. You can also
specify how many pages the output should be printed on. For example if
you specify an output page height of 2 and width of 3, ObjectCenter resizes
the output to fit on six sheets of paper.

Frequently Asked
Questions in the
Manual Browser

We've taken the questions that customers asked most often and put the
answers in the Manual Browser. Click on the "?" button in the Main
Window to open the Manual Browser.

Select ObjectCenter User's Guide from the list of books, and then select
Appendix A, "Frequently Asked Questions", from the Table of Contents

Page 6 of 28

panel. Click on the "+" icons in the Table of Contents panel to view the
topics covered. You'll find topics such as "How do I fix unresolved
symbols?" and "I'm having trouble loading with make".

Workspace
Improvements

We have made several changes to enhance performance and behavior in the
Workspace. The most important changes are described here. In addition to
the changes described below, you can now do the following in the
Workspace:

Set actions on variables defined in the Workspace
Define constructors of nested classes
Define macros to have the value 0
Declare a single-declaration extern function without enclosing the
single declaration in braces
Define a main with a single line and set breakpoints on it.

New Command:
load_header

We have added a new command, load_header, for loading the definitions
from header files into ObjectCenter. Use the load_header command to load
non-local header files without specifying a path, and to load multiple header
files into a single module. If you want to load a header file in your working
directory or path, you can use use the load command to load it.

The load_header command replaces the #include <header_file.h> syntax.
There were several problems related to the use of #include in the
Workspace. For example, because definitions were parsed one at a time, if
an error was encountered while parsing a header file, previous definitions
were not undefined. As a result, users often had to issue an unload
workspace command before they could reload a header file.

In addition, the Workspace does not match the separate compilation model
of C and C++. To enable the Workspace to function as a debugger,
definitions in a header file included in the Workspace are visible across
modules. As a result, using #include in the Workspace occasionally causes
ObjectCenter to pick up incorrect definitions from included files.

The new load_header command lets you load a header file into the
environment in a separate module, using the paths defined in the load_flags
and sys_load_cflags and sys_load_cxxflags options to locate the file. You
can use load_header to load system header files such as iostream.h without
specifying the path to the file.

You can also load multiple header files into a single module with
load_header. For example, if the local header file rect.h has dependencies
on definitions in math.h and limits.h, you can load all three header files
into a single module with this command:

-> load_header <math.h> <limits.h> "rect.h"

Page 7 of 28

For complete syntax and usage information, please refer to the load_header
entry in the Manual Browser.

We have provided a new option, workspace_include, to provide backwards
compatibility for users who have existing project files that use the #include
syntax. We do not recommend that you set this option for new projects. The
option is described in the load_header and options entries in the Manual
Browser.

-dd=off Default for
Header Files

ObjectCenter now loads all header files (files with the suffix .h or .H) wit
hteh switch -dd=off unless you specify -dd=on on the load or load_header
command line or in the load_flags option.

In general, when you load header files, you will want to load them without
demand-driven code generation so that the class data and member functions
are available. Suppose you've loaded a source file, List.C, with -dd=on, the
List.C includes List.h. Because you loaded the List.C with demand-driven
code generation turned on, only the classes and member functions defined in
List.h that are actually used in List.C will be visible to the Class Examiner
and otehr browsers. To see all the classes and member functions defined in
List.h, load the header file:

-> load List.h

ObjectCenter loads the header file with demand-driven code generation
turned off by default.

edit workspace
Enabled

You can now save code you define in the Workspace more easily. During a
ObjectCenter session, all C++ definitions you enter are stored in a
Workspace scratchpad. The edit workspace command lets you save the
scratchpad to a file, by default workspace.C, and then edit the file.

For example, suppose you create a class in the Workspace. You can create
stubs for other classes and external functions called by the class, and then
invoke the methods in the class to test them.

After testing your class, you can use edit workspace to create a file
containing the code you defined in the Workspace. You can enter your own
name for the file or accept the default, workspace.C.

-> edit workspace

Appending all workspace definitions to a file.
Default filename is "workspace.C" in the current directory.
Please specify a filename, press Return to accept default,
or <CTRL-D> to abort:

Page 8 of 28

If you want to test a particular set of definitions, edit the file so that it
contains the definitions you want to test. Then use the unload workspace
command to unload all the definitions and objects you created in the
Workspace, and use the source command to load the definitions in your
saved file back into the Workspace. Note that the source command will
report errors if you've unloaded any definitions that the saved file depends
on.

If you want to use the new file as source code, add any #include lines you
need and remove any extraneous lines. For example, some ObjectCenter
commands, such as whatis, will appear in the file.

NOTE: When using code developed in the Workspace,
remember that static functions and variables and private and
protected member functions are visible at global scope in the
Workspace. As a result, you may have to add friend functions
or classes or make static functions externally visible to use the
Workspace sources as a separate file.

unload workspace
Improved

The unload workspace command now only undefines user-defined
variables. Previously, when you used the unload workspace command, all
variables were undefined, including predefined macros such as
__CENTERLINE__. ObjectCenter now resets predefined macros after an
unload workspace.

Creating Objects
for Workspace
Classes with Virtual
Functions

You can now create objects of Workspace classes which contain virtual
functions or which are derived from classes that contain virtual functions.

Previously, if you defined a class with a virtual function in the Workspace,
and then tried to create an object of the type of that class, ObjectCenter
reported unresolved references.

Overloading and
Name-Resolution

ObjectCenter is now able to find multiple functions of the same name in
multiple compilation units.

Previously, if you loaded a file that contained an overloaded function, and
then defined another function with the same name in the Workspace,
ObjectCenter was unable to find the functions defined in the source file. In
rare circumstances, ObjectCetner may still generate spurious errors because
it cannot do true multiple-module overloading. In these cases, we
recommend you use casts to unambiguously establish the type of the
arguments to the function.

HP clcc Compiler CenterLine's C compiler (clcc) is now available on the HP platform. The
CenterLine-C compiler is an ANSI C optimizing compiler designed to

Page 9 of 28

achieve small code size. The compiler is also compliant with K&R C and is
link compatible with Sun and HP compilers.

Enhancing pdm
Debugging

In addition to support for debugging threaded applications, we've made
some other improvements to pdm. The process debugging mode in
ObjectCenter 2.1.0 is based on Version 4.12 of gdb and takes advantage of
its new features.

Error Browser
Layout
Improvements

We've streamlined both the appearance and the performance of the Error
Browser. We've moved some of the buttons from the bottom of the
Browser to the side and added Edit, Reload, and Build buttons to the side
button panel to make it easier to fix and reload your code. We removed the
redundant buttons used to suppress warning messages, so now you use just
the Suppress menu to control suppressions. The new Error Browser uses
less memory and performs faster.

Changing the Size
of Your Windows

We've added Motif-style resizeable panes to the Main Window and Thread
Browser. For example, to change the relative size of the Source panel and
Workspace, place your cursor on the pane control sash, which is a square
box at the bottom of the Source panel pane, just under the Error Sentinel.
Hold down the Left mouse button and drag the sash up or down to resize the
panes.

X Resource
Changes

The Graphical User Interface in this release of ObjectCenter was built with
a new release of the OI toolkit. This change made it necessary to set more
specific font and color resources for some elements of the GUI. You can
override some of these settings by using the switches described in Table 20
in the online ObjectCenter Reference Guide (online) or by changing your X
resources as described in "Modifying X Resources" in the ObjectCenter
Reference.

ANSI C Code
Generation in
ObjectCenter

ObjectCenter is based on the USL C++ Language System. The USL C++
Language System uses cfront to translate C++ source code into C
intermediate code before compilation. Because ObjectCenter is based on the
USL C++ Language System, ObjectCenter generates C intermediate code
internally in order to interpret C++ source code in the ObjectCenter
environment.

Previously, the type of C intermediate code ObjectCenter generated was
limited to K&R C. We have now enabled ObjectCenter to generate either
K&R or ANSI C intermediate code. The default type of C intermediate code
generation is K&R C.

Usually, generating K&R C intermediate code causes no problems.

Page 10 of 28

Problems can occur, however, in the ObjectCenter environment with some
programs having object code produced by a compiler that generated ANSI C
intermediate code if the programs have functions that pass float, short, or
char arguments.

If you get incorrect results because ObjectCenter generates K&R C
intermediate code by default, you can select ANSI C intermediate code
generation.

You can choose ANSI C intermediate code when invoking ObjectCenter by
using a new command-line switch (-backend_ansi). You can also toggle
between the two types of code generation during a session by setting or
unsetting the new backend_ansi option (setopt backend_ansi or unsetopt
backend_ansi).

We have also provided an ANSI C libC (the C++ library) for CenterLine's
C++ compilation system. The K&R C libC is the default. To use the ANSI
C libC, use the +a1 switch. The libraries are installed in
CenterLine/<arch>/lib/a0/libC.a and CenterLine/<arch>/lib/a1/libC.a.
See the CC entry in the Manual Browser for information about the +a0 and
+a1 switches.

For more information about K&R C and ANSI C intermediate code
generation, see the Manual Browser entry "code generation".

HP Softbench 3.2
Support

The ObjectCenter integration with SoftBench supports Softbench messages
through CenterLine's Application Programming Interface, or API, using a
Gateway to translate the messages. With this release we've added a new
switch to the objectcenter and codecenter commands that starts up the
Gateway automatically on the HP platform.

To use your CenterLine environment and Softbench together, first start up
Softbench. Then invoke ObjectCenter with the -softbench switch:

% objectcenter -softbench

This command sends a START message to the SoftBench Tool Manager,
which places ObjectCenter in the Tool Manager's window.

The CenterLine environment and the SoftBench Tool Manager send
messages to each other through the Gateway. For example, ObjectCenter
sends an EDIT-WINDOW message to the Broadcast Message Server
when it needs to bring up an editor. The SoftBench editor loads and
displays the file.

NOTE: Pretty much all versions of Softbench compiler are
supported by ObjectCenter. Any issues using a specific release
beyond version 3.2, please contact CenterLine Technical

Page 11 of 28

Support at (781) 444-8000 or via email at
support@centerline.com.

To terminate the Gateway and remove ObjectCenter from the Tool
Manager window, use the ObjectCenter quit command.

For more information about CenterLine's API or Gateway, enter man
CLIPC or man CenterLine API in the Workspace, or man clms_gateway
in a shell.

Tools.h++ Class
Library Object
Code

We provide a binary version of the Tools.h++ class library from Rogue
Wave with this release of ObjectCenter. The Tools.h++ class library is a
C++ foundation class library that includes support for single, multibyte, and
wide character strings, time and date handling, internationalization, and
persistant storage.

Among the classes in the Tools.h++ library are template-based classes
including hash tables, stacks, and dictionaries, the RWFile class to
encapsulate standard file operations, and generic and Smalltalk-like
collection classes. The Tools.h++ class library is installed in the directory
CenterLine/rwtool.

Rogue Wave Tools.h++ classes are unsuitable for examination with the
ObjectCenter Data Browser because of their sophistication. To enable you
to examine their contents, we have provided a Rogue Wave Tools.h++
integration that dumps a readable representation of the contents of
RWCollectable classes into the Run Window.

The integration is extensible to your own classes and subclasses and works
in both component debugging mode (cdm or the ObjectCenter Interpreter)
and process debugging mode (pdm). Preparation, usage and capabilities are
slightly different in the two modes. The integration is installed in the
directory CenterLine/unsupported/src/rwtool.

Each ObjectCenter license entitles one developer to use the Tools.h++ class
library. If you have ObjectCenter floating licenses, and more developers
wish to use Tools.h++ at your site, than the number of licenses you have
purchased, please contact your CenterLine Sales Representative at (781)
444-8000 or via email at info@centerline.com to register additional users.

Licensing and
Installation
Enhancements

To make the installation process easier, we've made some changes to the
RUN_ME script and made the licensing error messages more informative.
We've also updated our installation manuals, Installing CenterLine
Evaluations and Installing and Managing CenterLine Products.

Changes This section describes improvements made in ObjectCenter in the point

Page 12 of 28

Between
Version 2.0.0
and Version
2.1.0

releases since Version 2.0.0.

Memory Leak
Detection

Memory leak detection identifies potential memory leaks by reporting on
the memory that the program allocates while running and fails to free before
exiting.

The memory leak detection report lists leaks by the size of the memory
allocated and identifies where the program allocated the memory in the
stack trace. In addition, it shows the number of times the leak occurred
there. For more information, see the memory leak detection entry in the
General Topics category.

Run Window
Changes

By default, the input and output of your program previously went to the
terminal in which you invoked ObjectCenter without spawning an
independent Run Window and without returning control to the shell.

Now, ObjectCenter by default opens a separate Run Window for your
program's input and output and returns control to the shell in which you
invoked ObjectCenter. A CenterLine program called clxterm creates this
Run Window, which is a standard version of xterm, the X11 terminal
emulator.

To avoid creating the separate Run Window and avoid returning control to
the shell, use the -no_run_window switch when you invoke ObjectCenter.
The program's input and output goes to the shell in which you invoked
ObjectCenter. Using the -no_run_window switch means you are unable to
interrupt ObjectCenter and unable to place it in the background. This option
is intended for debugging applications that need specific terminal support
rather than a generic terminal such as xterm.

NOTE: Avoid starting ObjectCenter in the background using
the -no_run_window switch. Your program could have
undesirable input/output behavior.

To create a separate Run Window and avoid returning immediate control to
the shell, use the -no_fork switch. With -no_fork, control returns when you
enter the suspend character (usually ^Z) in the shell or exit ObjectCenter.
After you type the suspend character in the shell, you must type bg to enable
your program to direct output again to the Run Window. Without -no_fork,
the shell prompt comes back immediately.

By default, issuing the run or start command deiconifies the Run Window.
To prevent deiconifying the Run Window, use the win_no_raise option.
Setting this option prevents the deiconification of the Run Window when
you issue run or start.

Page 13 of 28

The close-window (f.delete) window-manager operation now iconifies the
Run Window. This is to prevent the accidental destruction of the Run
Window.

We added unique resource names for the Run Window, generic terminals,
and the vi Edit window.

The Run Window resource is:

ObjectCenter*RunWindow.xterm-resource

The generic-terminal resource is:

ObjectCenter*Terminal.xterm-resource

The vi Edit window is:

ObjectCenter*EditWindow.xterm-resource

Scrollbars are now the default in the Run Window and in the generic
terminal windows. Disabled scrollbars continue to be the default for the vi
Edit window.

For more information about setting resources for these windows, see the
"Run and Edit Windows" entry in the Manual Browser.

clxterm Resources
in app-defaults

ObjectCenter used to require you to use .Xdefaults for setting clxterm
resources. This is no longer true. ObjectCenter's clxterm now reads the
app-defaults files of the Graphical User Interface as well as .Xdefaults.

This means you can put all GUI-related resources (those for the user
interface itself as well as for clxterm) into the same app-defaults file. You
no longer have to split them up into two different files, nor do you have to
use your .Xdefaults file for program-specific resources.

The app-defaults file for ObjectCenter is:

$XAPPLRESDIR/ObjectCenter

See the Xresources entry in the Manual Browser for more information.

More Flexible
Resource Setting

The ObjectCenter Graphical User Interface used to require that you use a
model-specific resource setting to set the colors of some objects. This is no
longer true. You can set colors of objects in the same way in Motif and in
OPEN LOOK. This is the syntax for the Graphical User Interface:

Page 14 of 28

ObjectCenter*Color*OI_scroll_text.@text.Background:
color

This is the syntax for the Workspace:

ObjectCenter*Color*Workspace.@text.Background: color

The ObjectCenter Reference (in the section called "Setting resources for
scrolling text objects" on p. 409) states that you must use a model-specific
resource setting to set the colors of objects. Although this is no longer a
requirement, you can choose to follow the instructions in that section if you
want a certain standard set of localizations for Motif users, and a different
set for OPEN LOOK users.

New Resource For
Control Buttons

We have added a new resource that can improve performance by reducing
the X11 server traffic that results from dimming the control buttons in the
GUI. This resource is especially valuable when running ObjectCenter with
slow X servers or low-speed connections such as X over serial lines.

In previous releases of ObjectCenter, the control buttons dimmed as soon as
the component debugger became busy. The new resource enables you to
specify the length of time that the debugger must be busy before the control
buttons on the GUI dim. By default, the buttons on the GUI dim when the
debugger has been busy for 1.15 seconds:

ObjectCenter*dimButtonsWhenDebuggerBusy: 1.15

You can change the value of this resource in the site-wide application
defaults file for ObjectCenter, or in your local .Xdefaults file. The value can
be:

The string Always if you want the buttons to dim as soon as the
debugger is busy.
The string Never if you never want the buttons to dim.
Any positive floating-point number, to indicate the number of seconds
you want to elapse before the buttons start dimming.

Support of Direct
Pasting into Emacs

Previously, the Graphical User Interface of ObjectCenter did not handle
CUT_BUFFER0, the text transfer mechanism that GNU Emacs Versions
18 and 19 use to paste text from other applications. If you wanted to copy
text from ObjectCenter and paste it into an emacs buffer, you had to run the
xcutsel program to act as an intermediary.

With this version of ObjectCenter, running xcutsel is unnecessary. The user
interface now automatically exports text to CUT_BUFFER0 whenever you
highlight text in labels, entry fields, and multi-line text objects. You can
paste this text directly into emacs in the same way you paste text from an
xterm into emacs.

Page 15 of 28

Emacs-like
Keybindings

These shell-like and Emacs-like keybindings are now available in
ObjectCenter Version 2.1 by default:

Control-a Beginning of line
Control-e End of line
Control-b Backward character
Control-f Forward character
Meta-b Backward word
Meta-f Forward word
Control-n Next line
Control-p Previous line
Control-d Delete next character
Control-u Delete to beginning of line
Control-k Delete to end of line
Control-w Delete previous word

In Motif, some windows may use Meta + B and Meta + F as menu
mnemonics, rendering them unavailable in text objects.

As a result of this change, the information in the X resources entry in the
ObjectCenter Reference about setting translations for underlying objects in
your .Xdefaults file is now obsolete.

User-Defined
Commands Access
Line Numbers

A number of customers said they missed the \L (current Source area line
number) facility that ObjectCenter used to provide in user-defined
commands. Without \L, writing certain kinds of user-defined commands
was impossible. For example, you were unable to write a command to select
a line in the Source area and set a breakpoint or action on that line.

Although ObjectCenter Version 2.1 allows no editing in the Source area
and the concept of current Source area line number does not really apply,
we have provided an equivalent facility that works in terms of the Source
area text selection.

These four new keywords are now available in user-defined commands:

$first_selected_line
$first_selected_char
$last_selected_line
$last_selected_char

The $first_selected_line and $last_selected_line keywords provide you
with the starting and ending line numbers of the Source area's current text
selection. Lines are numbered beginning with 1. If no text is selected in the
Source area, both of these keywords return 0.

Page 16 of 28

The $first_selected_char keyword provides the position of the first
character selected on $first_selected_line. The $last_selected_char
keyword provides the position of the last character selected on
$last_selected_line. Character positions are numbered beginning with 1,
and tabs are considered to be a single character. If no text is selected in the
Source area, both of these keywords return 0.

Directing Output to
the Workspace

You can direct your output to the Workspace by unsetting the win_io
option.

We recommend that you keep the win_io option set, however, for
complicated programs that use curses-style input and output. Unsetting
win_io has the following limitations:

Controlling-tty semantics are unavailable in the Workspace.

This means that tcgetpgrp / tcsetpgrp and tty-generated signals will
not work as expected.

If your program affects the tty mode, it may affect the Workspace
output.

The tty mode may not be preserved across Workspace interactions.
For example, when you continue from a breakpoint, the tty settings
may not be the same as when you stopped.

To unset the win_io option, enter this in the Workspace:

unsetopt win_io

Your output will go to the Workspace at your next reinit, whether it is an
implicit reinit (for example, when you issue the run command) or an
explicit reinit (by issuing the reinit command).

Template File
Definition
Extensions

By default, ObjectCenter used to require files defining templates to have an
extension of either .c or .C. If you wanted to use an extension other than .c
or .C, you ahd to change map files. The reason ObjectCenter had these
default extensions was that they were a USL C++ Language System
convention. Release 3.0.2 of the USL C++ Language System no longer has
this convention. Accordingly, ObjectCenter no longer requires by default
that files defining templates have these extensions.

New CC Switches We introduced the following new switches to ObjectCenter's C++ compiler
command (CC). For a description of these switches, and the complete list of
switches to ObjectCenter's C++ compiler command, please refer to the CC
manual page.

Page 17 of 28

-dryrun
-ec string
-el string
-gdem
-ispace
-ispeed
-nCenterLine
-ptdpathname
-pt1
-pti
-ptk
-ptmpathname
-ptopathname
-v

New Feature for -
pg Switch

Used for profiling with gprof, the -pg switch of ObjectCenter's C++
compiler command (CC) now automatically passes the -pg switch to the
backend C compiler and the -Bstatic switch to the linker to request that it
link with a static library.

New Environment
Variable

A new environment variable to ObjectCenter's C++ compiler,
CENTERLINE_CC_VERBOSE, causes CC to display messages to aid
users in setting the ccC environment variable correctly.

If you use the default backend C compiler (clcc), when you use either the -
ansi or -pg switch, the appropriate switches are supplied to the C compiler
automatically. If you set the environment variable ccC to use a different C
compiler, CENTERLINE_CC_VERBOSE warns you that you may need
to supply an additional switch when you use the -ansi or -pg switch. Set
CENTERLINE_CC_VERBOSE to 0 to disable the warnings.

Two New pdm
Options and
Switches

We have added two new options and switches in process debugging mode
(pdm). The new options are class_as_struct and full_symbols.

The option class_as_struct has these characteristics:

Type: Boolean
Default Value: FALSE
Commands Affected: debug

When class_as_struct is false, ObjectCenter reads the class debugging
information produced by the compiler. This enables ObjectCenter to provide
full class information when needed.

When class_as_struct is true, ObjectCenter ignores class debugging
information produced by the compiler. This causes ObjectCenter to treat
classes as C structures. For example, the whatis command will only display

Page 18 of 28

data members and not member functions. Setting this option will give
shorter initialization time but less debugging information for classes.

You can set the value of class_as_struct by adding this line to
your .pdminit file:

setopt class_as_struct

You can also set it by issuing this command in the Workspace before
issuing the debug command:

-> setopt class_as_struct

Use the unsetopt command to reset the class_as_struct option to false.

The option full_symbols has these characteristics:

Type: Boolean
Default Value: FALSE
Commands Affected: debug

When full_symbols is false, ObjectCenter reads only part of the debugging
information to shorten initialization time. Additional debugging information
will be read as needed, such as when you issue the whatis or list command.
When full_symbols is true, ObjectCenter reads all the debugging
information at initialization.

You can set the value of full_symbols by adding this line to your .pdminit
file:

setopt full_symbols

You can also set it by issuing this command in the Workspace before
issuing the debug command:

-> setopt full_symbols

Use the unsetopt command to reset the full_symbols option to false.

For more information about options, including setting, unsetting, and
displaying them in the Workspace, see the options entry in the Manual
Browser or the ObjectCenter Reference.

The new switch -class_as_struct corresponds to the class_as_struct option.
The new switch -full_symbols corresponds to the option full_symbols. For
example, with the following command, you can invoke ObjectCenter in
pdm mode with full_symbols set:

Page 19 of 28

% objectcenter -pdm -full_symbols

New Switches For
contents and link
Commands

We have added a switch called -ascii to the contents command and a switch
called -list to the link command.

The contents -ascii command displays the output of the contents command
in the Workspace instead of invoking the Project Browser. The link -list
displays the library link order in the Workspace. This switch is useful for
diagnosing link-order related problems in the interpreter.

New Scope for
unsuppress
Command

We have added everywhere as a new scope argument for the unsuppress
command.

You use everywhere in combination with a ObjectCenter violation number
(error or warning) to unsuppress a ObjectCenter violation while you are
debugging.

The scope argument everywhere unsuppresses a violation wherever you
had suppressed it without a location-specific scope argument. (A location-
specific argument specifies a line number, file, directory, function, library,
or identifier).

If you had used a location-specific scope to suppress the violation to begin
with, the violation stays suppressed at that location if you use unsuppress
with everywhere. To unsuppress the violation at that location, you must use
the unsuppress command with the location-specific scope you had used to
suppress it.

This is the syntax for global unsuppression of a violation with the number
num:

unsuppress num everywhere

Alternatively, you can unsuppress all occurrences of a violation with one
command regardless of whether you suppressed them with a location-
specific argument. This is the syntax:

unsuppress num

For more information about suppressing and unsuppressing violations, see
the suppress and unsuppress entries in the Manual Browser or
ObjectCenter Reference.

Mnemonics Each ObjectCenter primary window provides Motif-style mnemonics for
almost every menu item on its menu bar.

Mnemonics are not available for items that you can create and destroy on

Page 20 of 28

the fly during a session, such as items on the User Defined submenu of the
ObjectCenter menu in the Main Window.

A menu item with a mnemonic has one of its letters underlined, usually the
first one. To select an item with mnemonics,

1. Press the Meta key and the underlined-letter key at the same time, to
display the menu.

2. Press the underlined-letter key of the menu item.

New Warning
Message for free
(0)

ObjectCenter has added the following new warning message for free(0):

Warning #106 Freeing NULL pointer

ObjectCenter used to give this warning message for free(0):

#95 (Cannot free memory address (not within data space))

The reason for the new warning is that POSIX and SVID allow free(0).
With the separate warning message, you can suppress the warning
separately and, thus, run POSIX / SVID compliant code without losing the
ability to check bad calls to free().

Here is an example of the new warning:

"d410fix.c":432, d4_10_3(), Freeing NULL pointer
(Warning #106)
431: #if ANSI && D410B
432: free(NULL);
433: #endif /* ANSI */

Use of free(0) is not portable.

Options Browser
has Longer
Editable Fields

In the Options Browser, the maximum input lengths of text entry fields
used to be 512 characters. We have increased this maximum to 1000
characters.

If you need an editable field longer than 1000, you must use the equivalent
Workspace command rather than the Graphical User Interface to perform
the task. For example, if you want to set an option's value to more than 1000
characters, you must use setopt in the Workspace. The Options Browser,
however, displays only the first 1000 characters of the value you set.

Longer Line Limit
in the Source Area

The longest line the Source area could display used to be 500 characters.
Now, the Source area can display up to 10,000 characters per line.

Page 21 of 28

Variable Prevents
Unexpected
Behavior

Rapid signal delivery occurs when you use setitimer(2) to set an interval
timer to expire after less than about 300 milliseconds or when a separate
process sends signals to the ObjectCenter process via kill(2) at intervals of
less than about 300 milliseconds.

We added CENTERLINE_RAPID_SIGNALS, a new Boolean
environment variable, to ensure robust behavior in the presence of rapid
signal delivery. In the presence of rapid signal delivery, ObjectCenter can
experience unexpected behavior, such as reporting that the user program
generated a SIGSEGV or SIGBUS at some unknown location.

If you strongly suspect that rapid signal delivery is causing unexpected
behavior, set CENTERLINE_RAPID_SIGNALS to TRUE before
invoking ObjectCenter.

Do not set this variable unless you suspect a problem with rapid signal
delivery; doing so would cause a serious performance problem.

ObjectCenter
Documentation

This section describes the documentation for ObjectCenter. ObjectCenter
Version 2.1.1 comes with hardcopy documentation and online
documentation. ObjectCenter Version 2.2.0 comes with online
documentation only. Hardcopy manuals for ObjectCenter v2.2.0 are
available for a separate charge. In addition, we provide USL C++ Language
System documentation and Rogue Wave Tools.h++ documentation with any
release of ObjectCenter.

Online
Documentation

Access online versions of most ObjectCenter manuals by selecting Manual
Browser from the Browsers menu or by typing cldoc in a shell. The
following manuals are available online:

ObjectCenter User's Guide
A task-based description of ObjectCenter, explaining how to use the
graphical user interface to load, manage, run, and debug programs
within ObjectCenter. An appendix to the online User's Guide contains
Frequently Asked Questions : Answers to some of the questions most
often asked of CenterLine Technical Support.

ObjectCenter Reference
A complete reference for ObjectCenter, containing an alphabetical
listing and description of ObjectCenter commands, functions, and
informational topics. Appendices to the online ObjectCenter
Reference include About The ObjectCenter Release (this guide,
formerly called About This Release) and ObjectCenter Platform
Guides containing platform-specific information about ObjectCenter.
The ObjectCenter Platform Guides are also available in HTML form

Page 22 of 28

on the main ObjectCenter page of our website.

ObjectCenter Tutorial
A step-by-step introduction to ObjectCenter features.

CenterLine-C Programmer's Guide
Information about the CenterLine-C compiler. Information related to
the CenterLine-C++ Compilation System (CC) can be found in the
ObjectCenter Reference.

In addition to the online documentation described above, the following
information is available:

Access context-sensitive help in the GUI version of ObjectCenter by
moving the cursor over the item you want information about and
pressing F1 or the Help key if your keyboard has one, or by selecting
"On Context" from the Help menu and moving the ? cursor over the
item and clicking. A Help window appears describing that item.

If you have bound the F1 key to a window manager operation, you
are unable to access context-sensitive help with the F1 key.

Access information on a variety of topics from the Help menu, which
appears on every primary window.

Access information about a command by typing help in the
Workspace followed by the name of the command.

Access any entry in the ObjectCenter Reference by typing man and
the name of the entry in the Workspace.

Where there are differences between ObjectCenter Reference and the
Manual Browser, the information in the Manual Browser is more up-to-
date.

The online documentation available outside the ObjectCenter environment
is in this directory:

path/oc_2.0.0/<arch>/docs

The word path represents the path to the CenterLine directory,
and <arch> is a platform-specific directory, for example sparc-
sunos4, sparc-solaris2, pa-hpux8, i486-svr4, powerpc-aix or
m88k-svr4.

The online directory contains a file called README, which describes the
files in this directory. Among the files are:

bugs.open, which describes the known bugs, limitations, and

Page 23 of 28

workarounds for ObjectCenter.

bugs.fixed, which describes bugs fixed since the most recent version
of ObjectCenter

NOTE: Some of the above listed files/directories may not be
available for your version of ObjectCenter. Additionally, the
README file in the online directory may not be available for
your version of ObjectCenter.

Hardcopy
Documentation

This is the hardcopy documentation that comes with ObjectCenter:

ObjectCenter Read Me First Release Bulletin
The latest hardcopy information, containing any updates necessary to
other hardcopy documentation.

Installing and Managing CenterLine Products
How to install ObjectCenter and administer it, including how to
troubleshoot licensing problems.

ObjectCenter Tutorial
A step-by-step introduction/overview to ObjectCenter features.

CenterLine-C Programmer's Guide
Information about the CenterLine-C compiler. Information about the
CenterLine-C++ Compilation System (CC) can be found within the
ObjectCenter Reference.

Tools.h++ - Introduction and Reference Manual
Information about the Tools.h++ foundation class library from Rogue
Wave.

USL
Documentation

ObjectCenter also comes with the following C++ Language System
documentation:

AT&T C++ Language System Product Reference Manual
We ship this complete manual with ObjectCenter. This manual
provides a complete definition of the C++ language supported by
Release 3.0 of the C++ Language System.

AT&T C++ Language System Library Manual
We ship this complete manual with ObjectCenter. This manual
describes class libraries shipped with Release 3.0: the iostream
library, complex library, and task library. (We do not, however,
support or supply the task library libtask.a itself.)

Page 24 of 28

NOTE: If you purchase ObjectCenter Version 2.2.0, you
will only receive with that purchase the above described
documentation in online form. However, you will
automatically receive hardcopies of the Tools.h++ -
Introduction and Reference Manual, the AT&T C++
Product Reference Manual and the AT&T C++ Library
Manual since these are not available within the online
documentation. If you wish to have a hardcopy version of
the manuals provided within the online documentation,
they can be purchased separately.

Product
Limitations

The following is a list of known current limitations with our product.

GUI Behavior ObjectCenter currently does not allow you to change the placement of the
scrollbar. In addition, you cannot set the scrollbar placement with a window
manager X resource (such as Motif's XmNscrollLeftSide or
XmNscrollRightSide or OPEN LOOK's
OpenWindows.ScrollbarPlacement). This is because ObjectCenter is
developed using the Object Interface (OI) toolkit, not the Motif or OPEN
LOOK (XView) toolkits. The OI toolkit currently does not offer a resource
to change scrollbar placement.

Caution if Editing
sys_load_cflags
or
sys_load_cxxflags

ObjectCenter supplies custom versions of header files, such as stdarg.h and
varargs.h. The ObjectCenter versions of the stdarg.h and varargs.h header
files reside in the CenterLine/include directory.

The global ocenterinit file automatically supplies the following directories:

To the sys_load_cflags option, it supplies:

-Idirectories/include/ObjectCenter

To the sys_load_cxxflags option, it supplies:

-Idirectories/clc++/<arch-os>/incl

When ocenterinit supplies these directories, ObjectCenter includes the
header files before the standard versions in /usr/include.

If you edit sys_load_cflags, be sure to keep the location of the -
Idirs/include/ObjectCenter directory before other -I switches so this
support for variable argument functions remains unchanged. If you edit
sys_load_cxxflags, be sure to keep the location of the -
Idirectories/clc++/<arch-os>/incl before other -I switches files.

ANSI Mode ObjectCenter in ansi mode does not interpret the ANSI C #define correctly.

Page 25 of 28

Interprets #define
Incorrectly

In the following example, ObjectCenter produces the warning Macro 'A'
requires 1 parameters, but only 0 are given, when the code should
produce the output HELLO:

#define HELLO
#define A(x) #x
main() {
char *s = A(HELLO);
printf("%s\n", s);
}

This is because defining HELLO gives empty content to the definition and
the parser never sees the argument. The work-around is to define HELLO
as something, any value will do. For example:

#define HELLO 1

Support for
Variable Argument
Functions

ObjectCenter supports the use of variable function arguments loaded in
source and object code. It supports both ANSI C (stdarg.h) and K&R C
(varargs.h).

However, the following restriction applies to loading source code. You must
not use a structure or union whose size is larger than 8 bytes as a fixed
argument in a variable-argument function. If you do, the interpreter
computes the address of the arguments incorrectly.

Data Browser Due to window size limitations in X, the Data Browser has a limit to the
number of items it can contain. The limit is determined at run time. The font
and model (Motif or OPEN LOOK) you use affect the limit. Using default
fonts, you can create about 900 fields per data item under Motif and about
1500 under OPEN LOOK.

Manual Browser You currently cannot view system man pages within the Manual Browser
because the Manual Browser cannot format UNIX man pages. You can,
however, view all the ObjectCenter entries.

Source Area There is a limitation to the number of lines that you can list in the Source
area. You can list files up to about 30,000 lines.

Limited Thread
Support

ObjectCenter and ObjectCenter's C++ compiler (CC) currently support
threads on the Solaris platform ONLY (Solaris 2.3 and _possibly later
releases) as long as Solaris-based threads are defined. POSIX style and

Page 26 of 28

other thread types (such as GNU-based threads) are not supported. Threads
are not supported at all on the HP and SunOS platforms. ObjectCenter's
cdm does not support threads at all on any platform.

Static Functions in
the Workspace

ObjectCenter now maintains all static initializers created for objects defined
in the Workspace, so that in most cases you can rerun applications and the
correct constructors will be called for those objects. However, if you swap a
file from source to object code and rerun the program, ObjectCenter is
unable to find constructors for objects declared in the Workspace. This
limitation only occurs when re-executing code containing a static function
by using rerun or by calling the function explicitly.

The following example illustrates the problem:

C++ 2 -> load -dd=off String.C
Loading (C++): -dd=off String.C
C++ 3 -> link
Linking from '/tmp_mnt/hosts/.../libC.sa.2.0' Linking
completed.
Linking from '/usr/lib/libc.sa.1.6' Linking completed.
C++ 4 -> String s4;
(class String *) 0x33e990 /* (class String) s4 */
C++ 5 -> rerun
Executing: a.out
Program exiting with return status = 0

Resetting to top level.
C++ 6 -> swap String.C
Unloading: String.C
Cannot open '/tmp_mnt/hosts/.../String.o'.
No such file or directory
Executing: /tmp_mnt/hosts/.../CC +d -g -c -
dd=off /tmp_mnt/hosts/.../String.C
/tmp_mnt/hosts/.../String.C:
Loading: String.o
C++ 7 -> rerun
Executing: a.out

"workspace":4, (workspace static initializer for s4), (Error
#156)
Calling undefined function String::String(void).

The workaround is to use the load_header command to load the definitions
of classes you require. If you have received an error such as the one in the
example, you can use the unload workspace command to remove existing
definitions, then use the history command to help redefine functions and
objects.

Page 27 of 28

Limited Signal
Handling Support

ObjectCenter does not support the siginterrupt() and sigstack() signal
functions in component debugging mode.

ObjectCenter Version 2.1 and up supports calling sigsetjmp() and
siglongjump() from an application running in component debugging mode
with the following limitation:

Every call to sigsetjmp() behaves as if the second argument
were the value 0, regardless of the actual value of the second
argument. This means that a call to siglongjmp() will never
restore the signal mask to the value it had at the time of the
corresponding call to sigsetjmp(). In other respects, sigsetjmp
() and siglongjmp() behave exactly like setjmp() and longjmp
().

There may be additional limitations in signal handling support on your
platform. Please refer to the "Anomalies" section in your Platform Guide.
For the Platform Guide related to your release of ObjectCenter, see the main
ObjectCenter Page on CenterLine's website.

Page 28 of 28

