' M. Richards December 29, 1967

This is part of an experimental PAL manual which was written

to demonstrate the usefulness‘of L and Rvalues when describing PAL.

U PO e T) . QY T 8 el WA n T ot TMST R B A AR = M8 B e sniy e 3y 4R e g o s e ey det e e ey AR YT L L E W 10t T b i eigen AR A €S ST POEY BB St bt o s 4 St Y= Tt B A e < be < s mir

1.0 PAL Szntax

The syntactic notation used in this'manual is basically BNF

with the following extensions:

(1) The symbols E and D are used as shorthand for <expression>
and «definition> . ‘
(a) The metalinquistic brackets ', ' and '' may be

nested and thus used to group together more than one
constituépt sequence (which may contain alterna-
tives). An integer subscript may be attached to

the metalinquistic bracket '~ ' and used to specify
repetition; if it is an integer mn, then the

sequence within the brackets must be repeated at
least n times; if the integer is followed by a

minus sign, the sequence may be repeated at most n

times or it may be absent.

1.1 Hardware Syntax

The hardware syntax is the syntax of an actual implementation of
the language and is therefore necessarily dependent on the character set
that is available. To simplify the description of any implementation
of PAL a canonical syntax has been defined and this is given in section 1.2.

The canonical representation of a PAL program consists of a sequence of

the symbols from the following set.

" 1l.1.1 PAL Ganonicai Symbols

The 41 list canonical symbols are given in the following list:

Zname> <number> «<string consty Crue false nil
J dummy () I S A + x [/ + -

N = & SAV - ag , := goto val *

resultis : ; where let def and within ;o in_
([

The symbols «name> Znumber) and <Zstringconst) are composite

items which have associated sequences of characters.

B S b e PR

1.1.2 The 1050/938 Hardware Representation

This hardware representation was designed for an IBM 1050 electric
typewriter with a 938 golf ball.' Although it is sometimes possible to juxtapose

system words, numbers, and identifiers, it is wiser' to separate such symbols

with spaces.

(a) A system word is any sequence of two or more small letters
not followed or preceded by a letter or a digit. These words are reserved
by the system and cannot be used as names. The following table gives the

correspondence between system words and canonical symbols.

System Word Canonical Symbol System Word Canonical Symbol
true true or v
false ’ false aug aug
nil nil goto 7 goto
i3 J : where where
dummy dummy let let
11 A ‘def - def
ls < and and
gr ' > within within
not ~ rec rec
| in in
; val val ;
res resultis

No other system words may appear in a PAL program.
(b) A number is either a single digit or a sequence consisting of
digits and at most one dot. A dot which is not adjacent to a digit stands

for itself; it is used in the syntax of lambda expressions.

(¢) A name {is any sequence of letters and digits which is not
a system word or a number; thus the following are names: '
X A3 2nd Hd consL 3h1

(d) User's comments may appear in a program between a double slash
'// ' and the end of the line. Example:

let Y £ = let x= 0 in // This defines a function Y
x :=f x; // such that
x /] EQIE) =Y £

l/ for some function f

(e) The hardware representations of all the other cononical
symbols are given by the following table:

Hardware Symbol Cononical Symbol Hardware Sxﬁbol Cononical Symbol
((- -
)) — -
dok P , ,
¥ ., & = =
/ St :
+ + H H
& A
1.2 The Cononical Syntax of PAL

The syntax given in th&ﬁeseccion specifies all the legal constructions
in BCPL without defining either/relative binding powers or the association

rules of the expression or definition operators. These are given later in

the manual in the descriptions of each construction. The terminal symbols

of this syntax are the cononical symbols of PAL which are listed in section
1.1.1.

E ::= <name> | <stringconstd] <number> (true i false | dummy [
canil)g |(E)Y | E E| EQ IE <diadic op> E |
VE[+E|-E|E B, B |E4 Ey| E Yenane> E |
E :=E ’ <named E,gggg E ‘ E H E i
let Din E[E where D
N '<bv:3... E

val E { resultis E

<diadic op> i:= 'P{x '/ l+‘-l<{='>)/\lv téﬂ&

Lbvy

£ program

::2 <name> < , <name> >

. =& |

gname>» <bv> 1 = E l rec D t

D and D'D within D { (D)

::= <name> l O l (<name> <& , <name) Zo)
1:= g def

2.0 Data Items

2,1 Rvalues and Types

D >o< E >1-

An RVALUE is a machine representation of an object in the domain of
discourse of PAL.

type of the Rvalue.

The complete set

(a)

(b)

(c)
(d)

(e)

(£)

(8)

(h)

Integar
Real

Boodean

String
Function

NFtuple

Label

Program
Closure

The actual kind of object represented is called the

of PAL types is given below:

This is a set of positive and negative integers
of limited magnitude.

This is a set of real numbers of limited precision
and magnitude.

This has only two values: truth and untruth.

This is the set of all strings of zero or morei
characters.

This is the set of all functions which can be
defined by a PAL function definition.

An N-tuple is a set of Lvalues (see 2.2) each of
which can be obtaiped by applying the N-tuple to
the integer 1,2 --- N.

An Rvalue of type label represents a position in
the program (see).

An Rvalue of type program closure is obtained by
applying the special function J to‘an thuple, a
function or a program closure; for more details

see section 3.6,

2.2 Lvalues and Extent

An LVALUE is a storage cell which.concains an Rvalue. In PAL an

Lvalue has the following properties:

(a) It contains an Rvalue of any type.

(b) The Rvalue contained can only be replaced by executing an
assignment statement that updates the céll. The type of the
new Rvalue of the cell need not be the same as the type of the
old Rvalue.

(c) An Lvalue remains in existance as long as there is a reference

to it.

The concept of Lvalues is useful when describing any programming
language in which one can update variables by assignment. It is particu-
larly necessary for PAL since most of the language features depend directly
or indirectly on the sharing properties of the variables and these are

best described in terms of Lvalues.

2.3 Mode of Evaluation

Any legal expression can be evaluated in one of two modes: Lmode or
Rmode, to yield an Lvalue or an Rvalue respectively. The actual mode of
evaluation of an expression occurring in a PAL program is determined by its
syntactic context, The following table defines the mode of evaluation for
every context in PAL. The symbols E, E and E are used to define the mode
as follows:

E denotes a right~hand context,

E denotes a left-hand context, and

~n

E denotes a context for which the mode of evaluation is the
same as that of the expression of which the context is
a part.

Mode of Evaluation Table

E E E Q) $ E
ETE E*E E/E
E +E . E=E + E
- E EL E E=E
E>E ~ E EAE
~N o~ ——
EVE E 2E, E E aug E
e - n
E<,E>1 ~ goto E E ; E
~J ~
<name> : E E where D let D in E
A.<bv>1 .E val .E.: resultis-};
~— o o— ~J
E 7 <name> E (E)
<name> < , gname> >° = E
<name> <bv>1 = E

2,3.1 The Functions 8 and é

These two functions are of supreme importance in PAL but are not
directly accessible to the programmer.
5 takes an Rvalue as argument and yields an Lvalue containing the
Rvalue as result, the Lvalue created during the application of 8 is dis-
jointed from all other Lvalues previously in existence, and it is an impor-
tant feature of PAL that Lvalues can only be created by applying this function.
&% is the inverse function; it takes an Lvalue as argument and
yields the corresponding Rvalue as result. '
The following set of expressions are called Rtype expressions and
always yield Rvalues when evaluated.
<string constd> <numbery true false nil
dunmy J $E ~E + -E
E<, E> Ei=E N <bv> .E ExE E/E ETE
E+E E-E E=E E<KE EDPE EAE EWVE EaugeE

If such an expression occurs in a left-hand context, then the PAL

system automatically invokes the transfer function 5 .

The function &is automatically invoked if one of the follpwing
expressions occur in a right-hand context:

E E E() name

E % ¢name> E val E

It should be noted that the programmer loses no power nor con-
venience by not having direct access to S or é since he can always pro-
duce the right context for their automatic insertion by using the no-share
operator § (see section 3.8) and indeed he could define functions which

are equivalent tog and 6as follows:

let Xx = §$x
and C y = §y

3.0 Primary Expressions
The primary expressions are those whose syntactic form is:
E ::= <name>» | «string const> | <numbers | Erue l false ’
nil {dumy | 3 | ®|$E | EE|EOQ
3.1 Names
Syntax: The syntax of names is given in 1.1.2(c).
Semantics: A name can always be evaluated to yield the Lvalue
‘ which was associated with the name at its declaration
(see section). If the name occurs in a right-hand
context, then C is applied automatically to yield the
corresponding Rvalue.
3.2 String Constants
Syntax: ' <string alphabet character;o'
A string alphabet character is any single hardware
character except ' and *, or it can be any of the fol-
lowing character pairs which are used to represent single
characters as follows:
*% represents *
] n '
*n " newline
%*g " space
%t " tab
*b " back space
Semantics: A string constant is an explicit representation of an
Rvalue of type string.
3.3 Numbers
Syntax: The syntax of numbers is given in 1.1.2(b).
Semantics: If the number does not contain a decimal point in its

written form, then it is an explicit representation of
an Rvalue of type integer; otherwise, it represents a
real Rvalue.

10

3.4 True and False

Syntax: true . or false
Semantics: They are explicit representations of the two boolean
Rvalues., ‘

3.5 Nil and Dummy

Syntax: . nil or dummy
Semantics: nil is an explicit representation of the Rvalue of

the O-tuple,

dummy is an explicit representation of the Rvalue
which is the result of an assignment; it is useful
in the few situations where it is syntactically
necessary to have an expression but where no effect

is required,

3.6 The Special Variable J

Syntax: . J

Semantics: The meaning of J is difficult to define exactly with~-
. out a detailed study of an evaluating mechanism for
PAL; in this manual the description of J will be
slightly incomplete.

The result of evaluating J is a special func-
tion which may be applied to certain Rvalues to
yield program closures. It is only meaningful if
the argument of J is a function, a program closure
or an n-tuple; however, an erroneous application of
J will only be detected when the resulting program
closure 1is applied.

Suppose J was evaluated .and applied to an
ordinary function £, and let us call the program
closure obtained g. Then g is the function f with
an abnormal return. The difference: between f and g
is best described by an example:

3 + £ 2 - y/x (1)

At some point during the evaluation of this

11

expression f will be applied to 2 to yield a result; R say;
evaluation will then continue as if the sub-expression f 2
had been replaced by R:

3 + R - y/x
However, if the expression (i) had been

3 4+ g2- y/x
then the effect would have been different. As g is the func-
tion f with an abnormal return, the evaluation proceeds as
before until the moment when the result R is obtained;
execution then suddenly jumps to a totally different place,
- just as if some other expression, E say, had just yielded
the result R. The expression E is called a J-context and
depends on the dynamic context of J's evaluation. The J-
context associated with an occurrence of J is the smallest
textually enclosing expression which is of one of the fol-
lowing syntactic forms:

N-body,
function body.
val expression,
let expression body,
a where expression body,
or the defining expression in a within definition.

[

Bopw

‘We will complete this discussion of J by analyzing
the following example:

Print (let £f x =3 + x
.an_d. j’x’g = @’ (9:
in

o
letiF to= ((J' i= J;

=)

~

o g
wn

6, x+10) %

J,t_..f

]
LY I (I ||

£;
85
In this example f is a simple function and j, x and g are
local variables. The function F has the important side
effect of assigning to j the result of evaluating J. The
assignment
x :=F35
has twd effects: J is evaluated and assigned to j, and
x 18 set to 5. The next command then applies j to f to

yield a program closure of f£f which is then assigned to g.

3.7

3.8

12

The next statement compargs'x witly 5 and, since they are
equal, applies g to 6. As g is a program closure of f,
evaluation first proceeds by applying f to 6 yielding the
result 9; however, at this point the abnormal return takes

place and execution resumes as if the body of F (which is
the J-context of J), namely,

¢ 3 = J;
t)
had just yielded the result 9; the particular activation
of this body is the one that was invoked when F was ori-
ginally applied to 5 and so evaluation now continues as if
F 5 had produced 9 in the assignment:

X = F 5
and therefore x is set to 9. The next statement
g = jf

has exactly the same effect as before, but the result of
the final expression in the sequence is different. Since

x now has value 9, the value of this conditional expres-
sion is the second alternative, namely, x + 10, which is 19.
Thus the effect of the whole program is to print the

number 19.

Bracketted Expressions

Syntax:

Semantics:

(E)
Parentheses may enclose any expression without changing its

value or effect; their sole purpose is to specify grouping.

Noshare Expressions

Syntax:

Semantics:?

$E

Where E may be any primary expression.

The operator $ can be thought of as a transfer function
from any expression to an Rtype expression. Its main use

is to produce the right context for the automatic insertion

of ES

3.9 Combinations

Syntax:

Semantics:

13

The following examples illustrate the two most common uses
of $§.
The declaration

let t = $x
declares t to have the same Rvalue as x but different
Lvalues and so the assignment to t does not change x.
The use of . $ in

x:=y,$ ¢t
causeség to be automatically invoked when the second number
of the 2-tuple is evaluated.

After the assignment X is a 2-tuple whose first

element shares with y and whose second element has an
Lvalue which is dsjoiﬂﬁ‘from a}l other Lvalues pre-

viously existing.

ELl E2 or E1()

Where El is a primary expression and E2 is one of the

following forms:

(E) cnames> <number> <stringconst >

true false nil or J

note that the combinations associate to the left. The

form E1 () is syntactic sugar for El nil.

The expression El is evaluated in Rmode to yield the
Rvalue of the operator of the combination and E2 is
evaluated in Lmode to yield the Lvalue of operand. The
order of evaluation is not defined. The operator is
then applied to the operand and the effect depends on
the type of the operator as follows:

(a) If the operator is an n-tuple, then the Rvalue of the
operand, n-. say, is obtained; a check is then made to
insure that n is an integer greater than zero and less
than or equal to the length of the n-tuple. If the check
is satisfied, then the Lvalue of the k element of the

