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A Tutorial on the Warren Abstract Machine
for Computational Logic

John Gabriel
Tim Lindholm
E. L. Lusk
R. A Overbeek

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, lllinois 60439

1. Introduction
Computational logic can roughly be defined as that branch of artificial intel-
ligence that is based on logic. It includes logic programming, theorem-proving,
rewrite-rule systems, and production-rule systems. Such fields are going
through a truly interesting transition. It now is.becoming apparent that perfor-
mance improvements for computational logic systems could be as high as 3to 5
-orders of magnitude during the next 5 to 7 years. These improvements will
come from three distinct sources:
1. The processors used in the commonly available computing systems will
improve by a factor of 5 to 10. That is, commonly available, cheap pro-
cessors will increase substantially in speed.

2. Multiprocessors featuring up to 1024 nodes will become widely avail-
able. Each node may contain 4 to 18 tightly coupled processors (on a
shared memory).

3. Substantial speedups will occur due to improvements in the implemen-
tation of the basic algorithms.

The last point will be the focus of this document.

It is our belief that the Warren Abstract Prolog Machine[1] represents a
major breakthrough in the design of computational logic systems. It certainly
will be the basis of numerous implementations of logic programming. However,
its significance goes well beyond logic programming. It seems likely to us that
high-performance implementations of classical theorem-proving algorithms,
such as hyperresolution, paramodulation, demodulation (rewrite-rule systems),
and subsumption, based on an extended version of the Warren machine will all
appear within the next three years.

Since no easily accessible, tutorial description of the Warren machine exists
(at least as far as we know), we will start this document with a basic introduction
to the motivation of the machine and the instructions that define it. We will then

This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38, and also by
National Science Foundation grant MCS-82-07498.
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discuss the fairly limited extensions required to extend the machine for more
general use outside of implementations of logic programming.

2. Procedures

The Warren machine is very similar to an abstract machine for the execu-
tion of recursive, block-structured languages such as Pascal or C. The primary
differences involve unification in the procedure call mechanism and the
automatic consideration of alternatives (backtracking).

The basic programming unit in the Warren machine, as in most program-
ming languages, is the procedure or subroutine. We will attempt to gradually fill
in the details of exactly how to code procedures in Warren assembler language.
Initially, the reader should think of a procedure as roughly analogous to a pro-
cedure in a more common language, such as Pascal or a familiar assembler
language.

Although the applications of the Warren machine go well beyond implement-
ing Prolog, it was certainly inspired by a desire to create a high-performance
implementation of that language. Hence, it will be of some use to reflect on the
role of procedures in Prolog. Let us consider the following example:

path(X,Y,Z) sets Z to a list of the nodes in a directed path
fran X to Y. Thus, path(a,e,X) might instantiate
X to [a,c,d,e] in the case in which a is
connected to c, ¢ to d, -and d to e.

o9 39 3% ¢

path(X,Y,Z) :- pathrecurs(X,Y,Z,[X,Y]).

pathrecurs(START,END, ANSWER, EXCLUDELIST) attempts to compute’
ANSWER as a path fram START to END, subject
to the restriction that the path cannot include
nodes fran EXCLUDELIST (except that no check
is made to keep START or END fram being in
EXCLUDELIST—the object is just to avoid
getting caught by cycles in the graph).

o9 5% 29 39 39 3¢ %

pathrecurs(START,END, [ START, END], EXCLUDELIST) :-
connected(START,END). .
pathrecurs(START,END, [ START | TAIL], EXCLUDELIST) :-
connected(START, NEXT),
not_elof (NEXT,EXCLUDELIST),
pathrecurs(NEXT, END, TAIL, [ NEXT | EXCLUDELIST] ) .

% elof(X,Y) is true iff X occurs in the list Y.

elof(X,[X|Y]).
elof(X,[H|T]) :- elof(X,T).

% not_elof(X,L) is true iff X does not occur in the list L.

not__eloféX,L) :- elof(X,L), !, fail.
not_elof(X,L).

This Prolog program for computing paths between nodes in a graph contains
four procedures. Presumably, there is also a collection of unit clauses (or



Jacts) of the form

connected(a,b).
connected(a,c).
connected{(b,d).

which define a specific directed graph. This collection of facts will be considered
a fifth procedure, since we will define a Prolog procedure as the collection of
clauses in which the head literal contains a given predicate symbol and has a
specific number of arguments.

We will use the term "alternative" to refer to multiple approaches within a
single procedure. An alternative corresponds to a clause in the Prolog represen-
tation of such a procedure. In addition, procedure names used within program
segments will be of the form "procedure/arity" (e.g., path/3).

This set of procedures offers enough diversity to illustrate most of the cases
required to understand the concept of procedure within the Warren machine.
The following cases must all be considered in detail:

1. The procedure connected/2 illustrates the situation in which alterna-
tives exist (due to the fact that the procedure contains more than one
clause?. but none of the alternatives requires the invocation of subrou-
tines (or subprocedures). That is, connected/2 is a lowest-level sub-
routine. We have listed it first, since we view "lowest-level” subroutines
as fundamentally simpler than those procedures that invoke other sub-
routines.

2. The procedure path/3 illustrates the situation in which there is only
one approach to computing the desired result—there are no alterna-
tives (although subroutines may, of course, introduce alternatives). It
also illustrates the case in which a procedure requires the invocation of
a single subroutine (in this case pathrecurs).

3. The procedure pathrecurs/4 features alternatives (since there are two
~ clauses, one can think of the procedure as having two approaches that
can be used to compute the desired results). In addition, the second
clause of pathrecurs requires the successive invocation of three sub-
routines.

We are going to analyze exactly how each of these different types of procedures
is coded in Warren assembler language. Initially, we will defer the question of
how to handle the case in which a procedure cannot compute a desired solution
(or another desired solution, in the case in which multiple solutions will be
returned). The process of recovering from failure (to go on and explore other
elternatives), or simply going on to consider another solution, is called back-
tracking. This is a major consideration, and we will return to it once the basic
overview of each type of procedure has been discussed.

8. The Abstract Machine

There are three fundamental data areas manipulated by a procedure—the
argument registers, the local stack, and the global stack. In this section, we try
to clarify the essential role played by each of these data areas and illustrate
their use by coding several short procedures. Throughout this discussion, we
have tried to avoid confusing two uses of the term "variable”. The common use
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of the term, to reflect an area of memory manipulated by a program, is avoided.
Rather, the term is used to refer only to logical formulas that can be instan-
tiated. When it is necessary to speak of a data item conforming to the common
notion of variable, we shall call the item a machine register, or simply register.
This can cause some confusion, as well, since most programmers have a fairly
precise notion of what constitutes a machine register. However, our use of the
term is actually quite close to the common usage. For example, when we speak
below of the fleld continst, which is used to contain the address of where control
should return upon successful completion of a subroutine, it is quite realistic to
envision an actual machine register containing the value.

8.1. The Argument Registers ,

A procedure is passed a number of arguments. In most languages, some
arguments are input arguments and some are output arguments, with the goal
of the procedure being to compute the values of the output arguments from
those of the input arguments. A similar, but not identical, outlook exists for the
Warren machine.

The arguments are referenced by a set of registers—AO0, Al, A2, ...An. The
arguments themselves are logical formulas. There are four types of logical for-
mulas. :
1. wvariables. In the Warren machine, we identify the variable with a struc-

ture in memory called a valuecell which will be used to record instan-

tiations of the variable.

2. constants. Constants can be symbols, integers, floating-point numbers,
or the nil list. A symbol is just a string of characters representing a
predicate symbol, function symbol, or uninterpreted constant. '

3. lists. We will represent a list as [1;,l5.03,...4;], where each [; is a logical
formula. A list has a head, consisting of the first element of the list,
and a tail, consisting of the remaining elements of the list. The empty
list is represented by the symbol "nil". If we use the notation [H|T] to
represent the list with head H and tail T, then the list [,,l2.05,...5] is
equivalent to [Z,|[lz|[s]...[4 | nil]]]...].

4. structures. A structure is a logical formula of the form
func(f1.f2fs...fj), where func is a symbol and f1,f2.fs....[; are all
logical formulas.

A procedure invocation (i.e., invoking the procedure with a fixed set of values for
the arguments) amounts to a request to compute a set of answers. For example,
the invocation of the procedure path./3 with the three arguments a, b, and X
might be viewed as a request to compute the set of possible values of X that
represent paths between the two points a and b. In general, an answer is
represented as an instantiation of the set of arguments. Thus, the normal dis-
tinction between input and output arguments is blurred. An "input” argument
may be instantiated in some cases (where the answer would only apply to the
instantiation of the original input argument).

3.2. The Local Stack

The only type of data that we have mentioned is the collection of arguments
referenced by the registers AQ, Al, A2, ...An. A procedure will require other data
areas in order to compute the desired results. The local stack is one of several
other data areas that can be manipulated by instructions in a procedure. Upon
entry to a procedure, a machine register points to a position in the local stack.
We will refer to this register as LPOS. A procedure may claim memory from the



local stack for two distinct uses:

1.

If the procedure includes alternative approaches for computing solu-
tions, a mechanism for keeping track of which alternative should be
tried next is required. The set of data items required to record this
information is collectively called a choice point. The exact contents
and use of choice points will become clear only after we have con-
sidered the question of how to handle backtracking (and, as we stated
above, we are going to defer that discussion until after we have esta-
blished the overall framework). For now, it is enough to grasp that the
role of a choice point is to record a position in the set of alternatives,
and to know that this position is recorded on the local stack. Note that
this position can be deallocated at the point in which the procedure
begins to pursue the last alternative (and, hence, is not required for
procedures in which there is only one approach).

The second use of the local stack involves '"scratch areas". Upon
entrance to a procedure, two critical registers which we will call con-
tinst (continuation instruction) and currenv {current environment),
contain values established by the invoking procedure. The invoking
procedure does not save these registers before the invocation, since
the invoked procedure may not need to alter them (in which case the
save/restore would be wasted). However, if the invoked procedure
needs to alter these registers, it must save the original values and see
that they are restored before control is returned to the invoking pro-
cedure. The scratch area in the local stack is used for this purpose. In
addition, the values in the argument registers A0, Al, ..., An are not
preserved through subroutine invocations. Hence, if a reference to a
data item (i.e., a logical formula) must be preserved through a call to a
subroutine, the reference must be saved in the scratch area. This is
achieved by establishing a set of valuecells in the local stack. These
value cells can then be bound to the desired formulas to preserve the
ability to reference the formulas. Later, the binding established in
these valuecells in the local stack can be transferred to the argument
registers (if they are to be used as arguments to an invoked subrou-
tine) or to valuecells in the global stack (if they are to become part of
an answer returned to the calling procedure). We shall refer to the
scratch area used to preserve the continst, the currenv, and the local
valuecells as an environment. Basically, an environment provides the
scratch area required to save and restore values in those cases in
which subroutines might destroy references that must be preserved.
An environment is allocated at the start of utilizing a single alternative
approach towards computing a desired answer, since the amount of
scratch area required will depend on the sequence of subroutine invo-
cations required by that approach. It is deallocated at the end of
exploring that single approach (and another environment may have to
be allocated/deallocated, if another approach has requirements for
scratch memory). Now, we can also clarify the contents of the con-
tinst and currenv registers. The continst records the address to
which control should return in the invoking procedure, and currenv is
used to record the address of the "current environment" (which is the
environment established by the invoking procedure, until the invoked
procedure decides to establish its own environment, if necessary).



3.3. The Global Stack

The global stack is a second central data area that can be manipulated by
instructions in a procedure. It is used to construct logical formulas that are
used as answers for the calling procedure. That is, logical variables in the input
arguments will be bound to these constructed formulas, which then become the
answer returned to the caller. Upon entrance to a procedure, a register called
GPOS will contain the address of the next available memory in the global stack.
The memory in the global stack will be deallocated only when the calling prc-
cedure no longer needs to reference the constructed answers. Exactly how this
is achieved must, again, be deferred until we cover the question of how to handle

backtracking.

3.4, Some Facts to Remember

We have noted that formulas can occur in both the local and global stacks.
At this point we include a short list of statements that are true, but for which a
detailed explanation must be deferred. In general, they are consequences of the
more temporary nature of memory in the local stack compared to the global
stack.
1. No valuecell in the global stack can be bound to a formula in the local
stack.

2. Valuecells in the local stack must reference either formulas in the glo-
bal stack or formulas that occur earlier in the local stack.

3. The only formulas that occur in the local stack are variables
(represented by valuecells).

4. Structures and lists exist only in the global stack. Since no valuecell in
-~ the global stack can be bound to a valuecell in the local stack, no sub-
formulas of a list or structure can be in the local stack.

4. The Basic Structure of Procedures in Warren Assembler Language

At this point, we have introduced the central data areas—the argument
registers, the local stack, and the global stack—and are ready to consider the
basic structure of the routines coded in Warren assembler language.
Throughout this discussion we are going to ignore a significant optimization
introduced by Warren called indexing. The basic idea of indexing is to isolate
rapidly a subset of alternatives in a routine, by looking at the first argument
passed to the routine (via A0). That is, indexing isolates a subset of possible
alternatives. Those alternatives that are 'ruled out" by indexing could not be
usable, and this can be detected rapidly by examing the first argument. For
example, suppose that the procedure connected /2 is invoked with AO referenc-
ing the logical formula a and Al referencing the formula z. Then, the set of
alternatives from the procedure connected/2 that must be considered are those
in which the first argument of the head literal (in the case of connected/2, the
only literal) is either a variable or the constant a. Indexing will be considered in
detail in a later section. For now, we will assume that all alternatives are possi-
bly applicable and must be considered.

Throughout this section, we will present examples in the following format
(although not always in the following order):



Prolog code

Warren assembler code with comments

discussion of the instructions in context

definitions of the instructions introduced in the example.

The instruction definitions are repeated in alphabetical order in Appendix A for
ease of reference to instructions introduced in earlier examples.

4.1. A Simple Lowestdevel Procedure

Let us start with the procedure connected/2, since it is a lowest-level pro-
cedure. It could be simpler (if there were no alternatives to consider), but its
structure is fairly straightforward. We assume, for simplicity, that the following
three clauses make up the entire procedure:

connected(a,b).
connected(a,c).
connected(b,d).

Here then is the Warren assembler code for the procedure:

connected/2 4
try_me_else C2,2 7% create choice point
get_constant a,A0 % match 1st arg against "a"
get_constant b,Al % match 2nd arg against "b"
proceed 7% successful return

€2 retry_me_else C3 % update position

: 7% in alternatives
get_constant a,A0 % match arg against "a"
get_constant c,Al 7% match arg against '"c"
proceed 7% successful return

C3 trust_me_else_fail 7% last alternative
get_constant b,A0 - Z match arg against "b"
get_constant d,Al % match arg against "d"
proceed 7% successful return

Each of the three sections of code corresponds to one of the Prolog clauses in
the procedure. The first instruction, the try_me_else, creates a choice point in
the local stack (with C2 as the next alternative to consider and two argument
registers to be saved). The second alternative begins with a retry_me_else,
which updates the "next. alternative” to C3. The last alternative begins with
trust_me_else_fail, which deallocates the choice point in the local stack (since
there will be no more alternatives to consider after the third).

The gel_constant instructions are used to match an incoming argument
against the specified constant. The incoming argument must be either a vari-
able or a constant; otherwise, backtracking will occur (and the next alternative
will be considered). If the incoming argument is a variable (i.e., if the argument
register references a valuecell), the valuecell will be bound to the specified con-
stant. '

Finally, the proceed instructions cause a successful return to the caller.

The reader should consider the example carefully, keeping in mind that we
have not yet clarified the whole topic of how alternatives become considered via
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backtracking. For now, it is enough to see that if the first clause "fails"
(because one of the get constant instructions fails), then control will pass to the
next alternative, beginning at C2.

try_me_else label,n

This instruction is used only in procedures which include multiple alternatives.
It precedes the code for the first alternative. It causes a choice point to be
created in the local stack and sets the next alternative (stored in the choice
point) to the address given as its operand. The choice point will save values for
the first n argument registers. Execution continues with the instruction
immediately following the try_me_else.

retry_me_else label

In a procedure that contains several alternatives, this instruction must precede
the code for all but the first and last alternatives (i.e., it precedes the middle
alternatives). It causes the "next alternative” in the choice point to be set at
the address given as its operand. Execution continues with the instruction

immediately following the refry_me_else.

trust_me_else_fail

In a procedure that contains several alternatives, this instruction should pre-
cede the last alternative. It causes the current choice point to be deallocated
from the local stack (since there are no more alternatives to consider). Execu-
tion continues with the instruction immediately following the trust_me_else_fail.

get_constant constant Ai , : _ , ‘ ‘
The get_constant instruction takes two operands. The first designates a con-
stant, and the second an argument register. The instruction attempts to
"match” the constant with the incoming argument. If the argument register
references an unbound variable, the valuecell will be bound to the designated
constant. If the argument register references the same constant, no action
occurs. In either of these cases, the get constant succeeds and the next
instruction will be the one immediately following the get_constant. If the match
does not succeed, backtracking will occur.

proceed _

The praceed instruction is used to return from an alternative that did not
require invoking a subroutine (i.e., an alternative represented by a unit clause).
The next instruction executed will be designated by the contents of the continst

register.

4.2. Introduction to Backtracking

Backtracking is a topic that we will revisit several times. Initially, we will
attempt to give just enough of an overview for the reader to be able to form an
accurate (though incomplete) conceptual grasp of the flow of control in the War-
ren machine. Backtracking occurs whenever an instruction (such as
get_constant) fails, or when another answer to a query is desired. To understand
the implementation, it is useful to understand what information is stored in a
choice point. The following registers together determine the contents of a
choice point:

1. The continst is a register that gives the address of where control

should go upon successful completion of a procedure.
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2. The currenv register contains the address of the "current environ-
ment” in the local stack. The details of what this means will be covered
later.

3. The lastchpt register contains the address of the last choice point in
the local stack (that is, the previous choice point).

4. The LPOS register contains the current position in the local stack.
The GPOS register contains the current position in the global stack.

8. The TPOS register contains the current position in the trail, which is a
fairly specialized data area used to record instantiations of variables
(so that they can be returned to an uninstantiated state at the

appropriate time).
7. The argument registers record the arguments passed to procedures.

8. The nexfclause register contains the address of the next alternative to
be considered.
When a choice point is created, the current values of these registers are stored
in the choice point.

To understand exactly how the contents of a choice point can be used, it is
first important to form an idea of what is meant by the state of the Warren
machine. Essentially, the state of the machine is a position in some computa-
tion. This is determined by the first seven items listed above that are stored in
a choice point, the neztinst register (which gives the address ~of the next
instruction to be executed), and the contents of the local and global stacks. By
contents of the stacks, we mean the data items stored in the stacks ahead of the
current positions (given by LPOS and GPOS). The point that is significant about
a choice point is that if the first seven items in the list are reset from their. -
values in the choice point, and if the next instruction address neztinst is reset
from the neztclause register in the choice point, then the machine is almost
completely reset to consider the next alternative. All that remains to be tidied
up is the contents of the stacks ahead of the current positions that may have
been altered. As it turns out, all that might have been altered are variable
valuecells (through the process of instantiation). Hence, if the instantiations are
carefully recorded so that they can be "undone" (by setting the altered
valuecells back to their uninstantiated status), then a complete reset will have
been accomplished.

Valuecells that must be uninstantiated in a reset are recorded in the frail.
As valuecells are altered, entries are added to the trail, which is itself a stack. A
current position, called TPOS, is maintained in the trail. To reset the valuecells
altered since a choice point was created, the machine simply pops entries off
the trail and resets the corresponding valuecells, until the end of the trail
reaches the value of TPOS stored in the choice point.

Hence, once a choice point has been added to the local stack, all computa-
tions that follow the creation of the choice point can easily be reset to consider
the next alternative represented by the choice point (discarding all contents of
the local and global stacks past the points given by the stored LPOS and GPOS
values) by simply reloading the registers from the choice point and resetting
valuecells based on information from the trail. This gives an extremely efficient
and powerful mechanism for rapidly recovering from a computation which can-
not be completed—the machine just "resets” back to consider the next alterna-
tive. When all of the alternatives in a choice point have been considered, the
choice point is deallocated, and the previous choice point becomes the mechan-
ism for resetting to previously unexplored alternatives. In what follows, the
phrase "backtracking occurs' means that this reset operation takes place.

o
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Exercises

1. Give the Warren assembler code for the Prolog procedure consisting of the
single clause

1ink(2,17,2400).

2. Now give the Warren assembler code for the Prolog procedure consisting of
the following two clauses: :

link(2,17,2400).
1ink(2, 18, 1200) .

Which of the instructions causes a choice point to be created? Which field
in the choice point contains the address of the next alternative, and what

will it contain when the choice point is created?
3. Finally, give the code for the Prolog procedure consisting of the following
four clauses:

link§2,17.2400).
1ink(2, 18, 1200).
link(1,17,1200).
1ink(2,16,300).

4.3. AProcedure that Invokes a Single Subroutine 4
The procedure path/3 given previously was defined by the following single
Prolog clause: :

path(X,Y,Z) :- pathrecurs(X,Y,Z,[X,Y]).

We will first give the definitions of the new instructions required to write the pro-
cedure in Warren assembler language, then we will present the actual code.

put_list Ai

Execution of this instruction causes a skeletal list (that is, a list in which nei-
ther the head nor the tail has yet been defined) to be created in the global
stack. The argument register Ai is set to reference the skeletal list. Further-
more, a register called neztarg is set to reference the spot in the list into which
a reference to the head of the list being constructed should be stored. The
register neztarg is used only when processing lists and structures and points to
the next argument (in a list, the head or tail) to be processed. Finally, the
machine is put into wrife mode in preparation for filling in these arguments on

the global stack.

unify_nil

This instruction is identical to unify_constant, except that the constant in this
case is the empty list.

unify x value Ai

If the machine is in write mode the reference in Ai is copied into the global
stack at the location specified by neztarg, and neztarg is incremented (to the
next argument in the structure or list being built). If the machine is in read
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mode, then the argument designated by neztarg is unified with the logical for-
mula referenced by Ai. If the unification fails, backtracking occurs. Otherwise,
the "dereferenced result” is put into Ai. That is, if Ai references anything except
a valuecell, Ai will not be altered. On the other hand, if Ai references a valuecell
that is bound to another logical formula, Ai will be altered to reference the for-
mula to which the valuecell was instantiated. If the valuecell is bound to another
instantiated valuecell, the chain of valuecells is examined, and Ai is altered to
reference either an unbound valuecell or a formula that is not a variable (i.e., Ai
is set to the image found by continuing down the chain of bound valuecells).
This process of locating the ultimate image of a reference is called dereferenc-
ing. If the unification is successful, nezfarg is incremented.

unify x local_value Ai

This instruction is identical to unify_r_value, except in the case in which the
value in Ai dereferences to a valuecell in the local stack. In this case, a new
valuecell is allocated in the global stack, the valuecell in the local stack is bound
to the new valuecell, and Ai is set to reference the new valuecell in the global

. stack.

execute procedure

This instruction resets nextinst to reference the first instruction in the desig-
nated procedure. Thus, when control is returned from the executed procedure,
it will not return to the procedure in which the execute occurred, but rather to
the caller of the procedure that issued the execute. It is used only when the last
subroutine in a procedure is invoked.

The code for path/3 in Warren assembler language is as follows:

path/3 put_list A4 % first build [Y]
unify_x_local_value A1l % [Y|
unify_nil % nil]
put_list A3 . 7% build 4th argument
unify_x_local_value AO % [X]
unify_x_value A4 % [Y]]
execute pathrecurs/4 % go to pathrecurs

Consideration of the Prolog representation of this procedure shows that its basic
meaning is "path/3 must construct a fourth argument and invoke pathre-
curs/4'. This is exactly what is accomplished by the code given above. A4 is
used as a scratch variable in which to construct the list [Y].

There are several fine points to be noted in the use of the above instruc-
tions. The first involves the concept of mode. The Warren machine is said to be
operating in either read mode or write mode. Some instructions set the mode,
and others take actions that depend on the setting of the mode. Thus the mode
is one way in which information is passed from one instruction to another. The
put_list instruction sets the mode to write mode. The actions taken then by the
unify instructions depend on the fact that the machine will be in write mode.
Later, we shall cover uses of the unify instructions that are quite different from
their use here (in building a list for the fourth argument). In general, unification
in write mode causes formulas to be written on the global stack, whereas
unification in read mode reads formulas that already exist.

The other subtlety in the above code involves the difference between the
unify_z value and the wunify_z local value instructions. Both instructions
(when executing in write mode) are used to fill in arguments in a list or
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structure being constructed on the global stack. The wunify_z local vclue
instruction includes a check to make sure that the referenced formula is not a
valuecell in the local stack (remember that no list of structure on the global
stack may contain a reference to a valuecell on the local stack). This instruc-
tion must be used when the argument register might reference a valuecell in the
local stack (which is the case for any incoming argument). On the other hand, in
the code for path/3, A4 must point to a list constructed in the global stack,
because we just put it there. Hence, the unify_z value instruction is employed
to avoid a superfluous check.

4.4. A More Complex Example
Now let us consider a somewhat more complex example, the pathrecurs
procedure described by the following Prolog clauses:

pathrecurs(START,END, [ START,END],EXCLUDELIST) :-
connected(START,END).

pathrecurs(START.END.[STARTITAIL],EXCLUDELIST) -
connected(START,NEXT),
not_elof(NEXT, EXCLUDELIST),
* pathrecurs(NEXT,END, TAIL,[ NEXT|EXCLUDELIST]).

The Warren assembler language version of this procedure is as follows:

NEXT |
EXCLUDELIST]
renove enviromment

unify_x_local_value AO
unify_y_local_value Y2
deallocate

pathrecurs/4 .
try_me_else C2,4 % create choice point
get_list A2 % [
unify_x_local_value AO % START
unify_x_variable A4 % |
get_list A4 % [
unify_x_local_value Al % END
unify_nil % 1]
execute connected/2 % invoke connected
C2 trust_me_else_fail 7% last alternative
allocate 4 7% enviromrent with
4 4 valuecells
get_y_variable Y0,A1 7% save END in YO
get_list A2 % [
unify_x_local_value AO % START|
unify_y_variable Y1 % TAIL]
get_y_variable Y2,A3 % save EXCLUDELIST in Y2
put_y_variable Y3,A1 % point Al at Y3 (NEXT)
call connected/2,4 % invoke connected
put_y_value Y3,A0 7% point A0 at NEXT
put_y_value Y2,A1 % point Al at EXCLUDELIST
call not_elof/2,4 % invoke not_elof
put_unsafe_value Y3,A0 7% set A0 to NEXT
put_y_value Y0,A1 7% set Al to END
put_y_value Y1,A2 7% set A2 to TAIL
put_list A3 % [
%
%
%
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execute pathrecurs/4 % invoke pathrecurs

Here we have an example that is substantially more complex than our preceding
two procedures. Since there are alternatives (i.e., two clauses in the pro-
cedure), a choice point will have to be constructed. In addition, we will need
scratch valuecells in the local stack (i.e., in an environment) to keep track of
temporary results.

To begin with, the fry_me_else instruction creates the choice point neces-
sary to handle the alternatives. The second argument indicates the number of
argument registers to be saved and then restored between alternatives. This
number is always the number of arguments to the procedure.

First let us analyze the code generated for the first alternative. Essentially,
one could think of this procedure as first building a list to return as the third
argument of the caller (i.e., bind the third argument of the calling procedure to
the list [START,END]), and call connected to determine whether the two points
are actually connected. This interpretation makes sense in the case in which
the first two arguments are input arguments, and the third argument is an out-
put argument. However, it is legitimate to call the routine with

pathrecurs(X,Y,[a,b],Z)

in which case a completely different interpretation is required. It is very
instructive to see exactly how the actual code handles both of these cases.
First, the get_list instruction checks to see whether the third argument is an
uninstantiated variable or a list (if it is neither, backtracking will automatically
occur). In the usual case, the third argument will be a variable, in which case
the get_list instruction will put the machine in write mode. This will cause the

get_list A2 % [
unify_x_local_value A0 % START
unify_x_variable A4 % |
get_list A4 % [
unify_x_local_value Al % END
unify_nil % 1]

instruction sequence to construct the list [START,END] in the global stack
(pointing A2 at the constructed list). On the other hand, if the third argument is
a list, the machine proceeds in read mode, in which case START and END are
unified with the head and tail of the list. Note that A4 is being used here as a
"scratch" register.

Finally, assuming that the incoming arguments are successfully processed
by the gef_list and unify instructions, control is then transferred to the con-
nected procedure by the ezecute instruction.

It is perhaps worth noting that another way to code this first alternative
would be as follows:

put_list A4 % first, build [END]
unify_x_local_value Al 7%

unify_nil 7%

get_list A2 % [
unify_x_local_value AO % START| ‘
unify_x_value A4 % [END]]
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execute connected/2 7% invoke connected

This alternative is preferable in the case in which the third argument is an out-
put variable (resulting in one less valuecell allocated from the global stack), but
is inferior for the case in which the third argument is input (leading to an
unnecessary construction of the sublist).

get_list Ai

Execution of a get_list instruction causes the contents of Ai to be dereferenced.
If the resulting reference is to an unbound valuecell, a skeletal list will be
created in the global stack, nextarg will be set to reference the location of the
head in the new list (i.e., the address of where the reference to the head must be
inserted into the skeletal list), and the mode will be set to write mode. If the
dereferenced value points to a list, neztarg will be set to reference the location
of the head in the list, and the mode will be set to read maode. If the derefer-
enced value is to neither an unbound valuecell nor to a list, then backtracking

occurs. '

unify x variable Ai

If the machine is in read mode, the argument referenced by neztarg is inserted
into Ai, and neztarg is incremented. If the machine is in write mode, a new
uninstantiated valuecell is created in the global stack. A reference to the new
valuecell is stored in Ai and in the argument designated by neztarg, and nez-
targ is incremented.

Now let us consider the code generated to represent the second alternative
(or clause) in pathrecurs. There are a number of new complexities introduced in
this part of the procedure. The most interesting is the fact that, in this alterna-
tive, it is necessary to allocate an environment containing four valuecells to
retain data between subroutine calls, since the argument registers may be
modified by a call to a subroutine. These valuecells will be used to hold END,
TAIL, NEXT, and EXCLUDELIST (notice that START does not have to be saved
through a subroutine invocation). In the code, the labels Y0, Y1, Y2, and Y3 are
- used to refer to the four valuecells allocated in the environment. This is a nam-
ing convention established by Warren.

In the usual case, in which the first, second, and fourth arguments are input
arguments (and the third is to be set to the answer), the instructions can be
easily interpreted. The following instructions allocate the environment, save the
value of END in YO0, construct a skeletal form of the answer in the global stack,
and save EXCLUDELIST in Y2. The skeletal form of the answer has the head
bound to the value of START, and the tail is bound to an uninstantiated valuecell
(for the TAIL). The TAIL will get instantiated by the invoked subroutines.

allocate 4 7% environment with

4 valuecells
get_y_variable Y0, A1 save END in YO
get_list A2

START|
TAIL]
save EXCLUDELIST in Y2

unify_x_local_value A0
unify_y_variable Y1
get_y_variable Y2,A3

o¥ 59 39 29 e ¢
~

After processing the input parameters and getting the skeletal form of the
answer prepared in the global stack, the following instructions perform the call

to connected /2
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put_y_variable Y3,A1 . % point Al at Y3 (NEXT)
call connected/2,4 % invoke connected

Note that AO still references START before the call, and the put _Yy_variable sim-
ply creates an empty (uninstantiated) valuecell in the global stack to represent
value chosen for NEXT.

The invocation of nof_elof is achieved by the following instructions:

put_y_value Y3, A0 % point A0 at NEXT
put_y_value Y2, Al 7% point Al at EXCLUDELIST
call not_elof/2,4 % invoke not_elof

The code to make the final subroutine invocation is somewhat more complex:

put_unsafe_value Y3, A0 set A0 to NEXT

put_y_value YO0, A1 set Al to END
put_y_value Y1,A2 set A2 to TAIL
put_list A3

unify_x_local_value AO NEXT |

o¥ o¥ o9 o9 29 39 a9
~

unify_y_local_value Y2 EXCLUDELIST]
deallocate % remove enviromment
execute pathrecurs/4 % invoke pathrecurs

The main complexity involves the fact that the deallocate releases the environ-
ment (with the four local valuecells) before the routine is invoked. Thus, the
four arguments passed to pathrecurs’ must. all reference values in the global
stack or in the local stack ahead of the deallocated environment. The only
danger comes when a variable valuecell in the environment was initialized with
an instruction like a puf_y_variable instruction. In that case, it is possible for
the valuecell to dereference to a valuecell in the local environment. In this case,
a put_unsafe_value must be used to make sure that the argument register is
set to reference a value that does not occur in the environment (it will "global-
ize" a valuecell, if necessary; this involves creating a new valuecell in the global
stack). This whole topic is somewhat complex and deserves an entire section
(which we will supply a bit later).

allocate n

Execution of this instruction causes a new environment to be allocated on the
local stack. The current value of both continst and currenv, the continuation
address for successful completion and the address of the current environment,
are stored in the new environment. The new environment will include n
valuecells, which we will refer to as Y0, Y1,...Yn-1. Finally, currenv will be reset
to reference the new environment.

In general, an alternative will allocate an environment if it needs one, and it
will need one if it is going to call (not execute) another procedure. The environ-
ment can be thought of as belonging to a particular alternative, and when we
want to refer to this environment when discussing the sequence of code in some
alternative, we will call it the local environment. -

unify y_variable Yi
Execution of this instruction can have either of two effects, depending on the
mode. If it is executed in read mode, it accesses the next argument designated
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by nezfarg and binds Yi to the argument. If it is executed in write maoade, a new
uninstantiated valuecell is allocated in the global stack, Yi is bound to the new
valuecell, a reference to the newly-created valuecell is placed at the location
designated by neztarg, and neztarg is incremented.

get_y_variable Yi,Aj
Execution of this instruction binds Yi to the logical formula referenced by Aj.

put_y_variable Yi,Aj
Execution of this instruction sets Aj to reference Yi.

call procedure,n _

Execution of this instruction causes an invocation of the designated procedure,
after "trimming" the current environment to contain only n valuecells. Since
not all of the valuecells allocated for an environment always need to be main-
tained throughout the entire computation for an alternative, valuecells can be
trimmed from the end of an environment. This ability depends on the fact that
the valuecells are allocated at the end of an environment in the local stack, and
the ones that can be released the earliest are kept at the end. Thus, a program-
mer can carefully organize his use of the variables Y0, Y1,... to allow a gradual
reduction in the size of the environment. In our example, we did not actually
trim any valuecells before the complete deallocation of the environment.

The actual transfer of control to the designated procedure is accomplished
by first setting continst to reference the instruction immediately following the
call (ie., setting the return address), and then altering nezxtinst to reference
- the first instruction in the designated procedure. 3 e

put_y value YiAj

Execution of this instruction sets Aj to reference the logical formula to which Yi
is bound. If Yi is uninstantiated, but was initialized by a put_y_variable instruc-
tion, then Aj will be set to reference Yi itself.

put_unsafe_value YiAj

First, the value stored in Yi is dereferenced. If the dereferenced value is to a
valuecell in the current environment, that valuecell is bound to a new uninstan-
tiated valuecell in the global stack, and A] is set to reference the new valuecell.
Otherwise, the dereferenced value is inserted into Aj (i.e., Aj is set to reference
the logical formula given by the dereferenced value of Yi).

unify_y_value Yi

If this instruction is executed in read mode, the next argument designated by
neztarg is unified with the logical formula referenced by Yi (which can, of
course, cause backtracking to occur). If it is executed in write mode, the value
stored in Yi is stored in the argument designated by neztarg. In either case,
neztarg is incremented. It is assumed that Yi is bound to a logical formula
other than a valuecell in the local stack.

unify_y_local_value Yi

This instruction is identical to unify_y_value, except in the case in which the
value in Yi dereferences to a valuecell in the local stack. In this case, a new
valuecell is allocated in the global stack, and the valuecell in the local stack is
bound to the new valuecell.
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deallocate

Execution of this instruction deallocates the current environment in the local
stack. More precisely, continst and currenv are reset from the values in the
environment being released.

5. Temporary and Permanent Variables

After one has coded a number of procedures that were originally
represented as Prolog clauses, it becomes clear that it would be useful to have
some rules specifying exactly which Prolog variables will require valuecells in
the local environment. Warren has supplied the basic method of determining
exactly how many local valuecells will be required, and how they should be
ordered (i.e., which valuecell should correspond to each of the Prolog variables
that requires such a valuecell). In the following discussion, it is assumed that we
are talking about a set of variables that occur in a single Prolog clause.

A variable will be called temporary if it fulfills each of the following three
conditions:
1. The first occurrence of the variable is in the head literal, in a struc-
ture, or in the last goal literal. :

2. The variable does not occur in two distinct goal literals.

3. If the variable occurs in the head literal, it does not occur in any goal
literal other than the first.

Temporary variables do not require a valuecell in the local environment.

Any variable that occurs in the Prolog clause and is not a temporary vari-
able is called a permanent variable. Each permanent variable will require a
valuecell in the local environment. For each permanent variable, we can deter-
mine the position in the environment of the corresponding valuecell by consider-
ing which goal is the last one in which the variable occurs. The valuecells should
be ordered so that those variables that occur in later goal literals have
valuecells that occur earlier in the environment. This allows us to trim off
valuecells as they no longer remain useful (see next section).

6. Allocate/Deallocate and Trimming

The exact effects of the allocate and deallocate instructions require some
amplification. When an allocate n instruction is executed, an environment is
allocated on the local stack. This environment will contain two fields used to
save values of the registers continst and currenv, followed by n valuecells
- {which are used for the permanent variables). The previous value of currenv is
stored in the environment, and then currenv is reset to reference the newly
allocated environment. '

Consider the case in which a routine 77 allocates an environment, calls rou-
tine 72, deallocates the environment, and then executes routine 3. Let us refer
to the current environment at entrance to 71 as e, and the newly-allocated
environment as e2. We are now going to focus on what it means to deallocate e.2.
There are two cases to consider:

1. If the invocation of 72 created a choice point, we will say that e is

“protected by a choice point".
2. If no choice points exist in the local stack following e2, then the
environment is "not protected by a choice point".
The execution of the deallocate instruction simply resets currenv and continst

from e2. If e2 is protected by a choice point, then the memory occupied in the
stack is really not reusable {and is not altered in any way by the execution of
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the deallocate). For example, should the protecting choice point ever be used to
"reset” the machine during backtracking, e2 becomes "active" again (in the
sense that the deallocate instruction may again be executed, resetting the
currenv and continst from the values stored in e2). On the other hand, if an
unprotected environment is deallocated, then that memory in the stack
becomes usable again.
The memory is reclaimed by the execution of a call proc,n instruction. This
instruction works as follows:
1. If the current environment is not protected, set the "next available
memory" pointer in the stack just past the mth valuecell in the
environment.

2. Transfer control to proc.

Exercise
4. Consider the following Prolog procedure that can be used to form a list of

”-tuples from corresponding elements of two input lists (or to decompose a
list of 2-tuples into two distinct lists):

project([].[],[]).
project([[X,Y]|T].[X|T1],.[Y|T2]) :- project(T,T1,T2).

Write the Warren assembler language to implement the' procedure.

7. Indexing : .

We have not yet covered all of the instructions defined for the Warren
machine. The most significant class remaining are the instructions to support
indexing, a topic that was covered briefly in an earlier section. Now we will
explore the topic in detail. We begin by considering the example Warren gave to
illustrate the approach; then we will reflect on the general structure of indexes,
and finally we will discuss how to handle the problem of dynamic addition and
deletion of code.

7.1. An Example
Consider the following Prolog definition of the call procedure, followed by
the corresponding Warren assembler language version of the routine:

calléX or Y) :- call§X).
call(X or Y) :- call(Y).
call(trace) :- trace.
call(notrace) :- notrace.
call(nl) :- nl.

call(X) :- builtin(X).
calléX) 1= ext(X).
call(call(X)) :- call(X).
callgrepeat).

call(repeat) :- call(repeat).
call(true).
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CRa
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C3

C4a
C4

Cb5a

CéBa

C7a

L4

L5
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try_me_else
switch_on_term

switch_on_constant

switch_on_structure

try
trust

try_me_else
get_structure

unify_x_variable
execute

retry_me_else
get_structure
unify_void
unify_x_variable
execute

retry me_else |
get_constant
execute

retry_me_else
get_constant
execute

trust_ne_plse_fail

get_constant
execute

retry_me_else
execute ’

retry_me_else
execute

trusthe_glse_jail

switch_on_tem

- switch_on_constant

C8a,1

Cia,Ll,null,L2

5.[

trace,C3]
notrace,C4]

nl,C5]

1.[

C1,1
c2

CRa,1
or/2,A0
A0
call/1

C3a,1
or/2,A0
1

A0
call/1

C4a
trace, AO
trace/0

Cba
notrace, AO
notrace/0

nl,AO
nl/0

C7a
builtin/1

L4
ext/1

C8a,L5,null,L7

2.[

Erepeat,LS]

' [or/2,L3]
]
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true,Ci1]

call{
or( ‘
X,Y)) :-
call(X).

call(
or(
X,
Y)) :-
call(Y).

call(
trace) :-
trace.

call(
notrace) :-
notrace.

call(
nl) :-
nl.

call(X) :-
builtin(X).

call(X) :-
ext (X).
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L6 try Co,1
trust Ci0
L7 switch_on_structure 1,[

'][call/l.cs]

C8a try_me_else C9a,1 % call(

cs get_structure call/1,A0 % call(
uni fy_x_variable A0 % X)) :-
execute call/1 % call(X).

C9a retry_me_else C10a % call{

C9 get_constant repeat,AQ % repeat
proceed % )

C10a ’ retry_me_else Clla % call(

C10 get_constant repeat, A0 % repeat) :-

’ ' put_constant repeat , A0 % call(repeat
execute call/1 % ).

Clia trust_me_else_fail % call{

Ci1 get_constant true,AO % true
proceed % )

Before studying the details of the indexing structure, let.us consider the new
instructions introduced by this example.

switch_on_term Lv.lec.1l,1s

Execution of this instruction causes a branch which is based on the type of the
logical formula referenced by AO. If AO references a variable, a branch to Lv
occurs. If AQ references a constant, a branch to Le occurs. If AO references a
list, a branch to Ll occurs. If AO references a structure, a branch to Ls occurs.
. If any operand is "null”, backtracking will occur if the corresponding type is
detected.

switch_on_constant n.table

This instruction generates at compile time a hash table for access to clauses
that have designated constants occurring as the first argument. The first argu-
ment gives the number of entries allocated in the table. It need not correspond
to number of entries in the table. The second specifies a list of 2-tuples. Each
tuple gives a constant and the address associated with the constant. Execution
of this instruction causes an examination of the constant referenced by A0. If
the constant occurs in an entry in the hash table, a branch to the corresponding
address occurs. Otherwise, backtracking occurs.

switch_on_structure n,table

This instruction generates a hash table for access to clauses that have desig-
nated functions occurring in the first argument. The first argument gives the
number of entries allocated in the table. The second specifies a list of 2-tuples.
Each tuple gives a function symbol and the address associated with the symbol.
Execution of this instruction causes an examination of the structure referenced
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by AO. If the function symbol occurs in an entry in the hash table, a branch to
the corresponding address occurs. Otherwise, backtracking occurs.

try Ln

This instruction causes a choice point to be created in the local stack. The
alternative address stored in the choice point will be the address of the next
instruction after the fry, and n argument registers will be stored in the choice
point. Finally, nextinst is set to L (causing a branch to L to occur).

trust L

This instruction causes the current choice point to be discarded (resetting
lastchpt to the address of the previous choice point before deallocating the
current choice point). Then neztinst is set to L (causing a branch to L to

occur).

get_structure func,Al

Execution of this instruction causes the value in Ai to be dereferenced. If the
result is a variable (and, hence, unbound), then a new skeletal structure is con-
structed in the global stack, and the variable is bound to the new structure.
This will cause nextarg to be set to where the first argument should be inserted
into the skeletal structure, and the machine will continue in write mode. If the
dereferenced value does not reference a variable, then it is checked to see if it
is a structure with func as the function symbol. If so, nezxtarg is set to refer-
ence the first argument of the structure, and the machine will continue in read
mode. If the dereferenced value is not a variable nor a structure with a functlon
symbol equal to func, then backtracking will occur. :

unify void n

If the machine is in read mode, neztarg is incremented past n arguments. If it
is in write mode, n new valuecells are created in the global stack, and the next n
arguments referenced by nextarg are set to reference the created valuecells.

7.2. The General Indexing Mechanism

The assembler language code for the preceding example illustrates the
basic indexing scheme utilized by Warren. Essentially, it is based on the follow-
ing straightforward scheme.

Suppose that the clauses in a given procedure are C;, Cs, ...G,. These are
broken into groups G;, Gg, ...Gn. Each group is either a single clause with a vari-
able occurring as the first argument of the head literal, or a set of clauses in
which none of the clauses contains a variable as the first argument of the head
literal. These groups result in the following generated code:

<procedure> try_me_else L2,k
<code for G;>

L2 retry_me_else L3
<code for Gp>

Im trust_me_else_fail
<code for G,>
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Nothing really needs to be said about those groups that are single clauses with a
variable as the first argument of the head literal. The other groups can be

indexed via the following code:
Li switch_on_term Liv,Lic,Lil,Lis
Lie switch_on_constant n,table

<code for handling multiple clauses
for the same constant>

Lis switch_on_structure n, table

<code for handling multiple clauses
for the same function symbol>

Lil <code for handling multiple clauses -
that have a list as the first argument>

Liv try_me_else Li2,k

Liel <code for the first clause in the group>
Li2 retry_me_else Li3

Lic2 <code for the second clause in the group>
Lij trust_me_else_fail

Licj <code for the last clause in the group>

Clearly, special cases (such as a single clause in a group) might result in
simplified versions of the above structure. The sections of code for handling
multiple clauses with a given constant symbol, multiple clauses with a given
function symbol, and multiple clauses for a list are as follows:

Limi try <label for first clause>,<nurber of argurents>
retry <label for second clause>
retry <label for third clause>

trust <label for the last clause in the set>

This is the first time that we have seen the refry instruction. Its definition is
basically what one would expect, given the definitions of the f{ry and trust
instructions.

retry L

This instruction causes the next alternative in the current choice point to be set
to the instruction immediately following the refry, and nezxitinst is set to L
(causing a branch to L to occur).
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7.3. A Note on Dynamic Modification of Code

Support of the Prolog operations assert and retract require the dynamic
addition, deletion, and modification of code. For example, assertz requires
either adding a clause to the last group, or altering the last trust_me_else_fail
to a retry_me_else and adding a new group.

The question of how to retract clauses is somewhat more difficult. We offer
no solution in the case of Prolog implementors; it seems likely that, in the case
of Prolog, assert and refract should be restricted to interpreted (rather than
compiled) procedures. However, for other applications in which clauses can be
identified by an attached identifler, a limited form of retract can be handled.
This is achieved by maintaining a hash table associating a clause identifier with a
pointer to the code generated by the clause.- The retract is then achieved by
altering the code for the clause to a call to the intrinsic fail. We realize that the
above comments are extremely cursory, and feel that the reader should form
his own judgment on the matter.

8. Another Example

In order to offer another illustration of the concepts that we have covered,
as well as to introduce a few more instructions, we include another simple exam-
ple. The assembler code that we present will correspond to the following Prolog

code:
HE test([1,2,3,4.5,6,7,8,9.10]).

test(LIST) :- display(’input list: '),
display(LIST),
nl, ' '
nrev{LIST,REV),
display(’'reversed list: '),

display(REV),
nl.
nrev([].[]).
nrev([X|LO],L) :- nrev(LO,L1), conc(L1,[X],L).
conc([].L,L).
conc([X|L1],L2,[X|L3]) :- conc(L1,L2,L3).

Note that the code includes a query, followed by a number of procedures. The
query sets up a list of 10 elements (the integers 1 to 10) and invokes the pro-
cedure test to display the original list, create a new list of the elements in
reverse order, and display the resulting list. The Warren assembler language
version of this code is as follows:

query/0 put_list Al % SUB1=[
unify_constant 10 % 10|
unify_nil % [1]
put_list A2 % SuB2=[
unify_constant 9 % 9]
unify_x_value Al % SUB1]
put_list Al % SUB3=[
unify_constant 8 % 8]
unify_x_value A2 % SUB2]



test/1

nrev/2

Lv

put_list
unify_constant
unify_x_value
put_list
unify_constant
unify_x_value
put_list
unify_constant
unify_x_value
put_list
unify_constant
unify_x_value
put_list
unify_constant
unify_x_value
put_list
unify_constant
unify_x_value

put_list
unify_constant
unify_x_value
execute

allocate

get_y_variable

put_constant
call_foreign

put_y_value
call_foreign

call_foreign
put_y_value
put_y_variable

call

put_constant
call_foreign

put_unsafe_value
call_foreign

deal locate
execute_foreign

swi tch_on_temn

try_me_else

>
-
59 5% 39 59 39 39 57 39 29 59 3¢ 39 59 09 39 39 38 ¢

Al
test/1

[y
of oY o8
-

2 % test(

Y1,A0 4

'input list: *,AO

display/1,2

Y1,A0 % display(LIST),

display/1,2
nl/0,2

Y1, A0 % nrev(LIST,

Y0, Al 7%
nrev/2,1

'reversed list:
display/1,1

Y0, AO
display/1,1

nl/0

Lv,Le,Ll,null
C2.2

% nl.

REV)

', A0

% display(REV),



Le

c2

conc/3
Lv2
Le?

C3
L12

Note the trimming of valuecells that occurs in the procedure for nrev/2.

get_nil
get_nil
proceed
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AO

trust_me_else_fail

allocate
get_list
unify_y_variable
unify_x_variable
get_y_variable

put_y_variable
call

put_unsafe_value

put_list
unify_y_value
unify_nil
put_y_value
deallocate
execute

switch_on_term
try_me_else
get_nil

get_x_value
proceed

3

AO

Y1

AO
Y2,Al1

YO0, A1
nrev/2,3

Y0, A0
Al
Y1
Y2, A2

conc/3

% nrev([],
%
7%

% nrev(

X|
Lo]J,
L) :-

0¥ 59 ¥ %

nrev(L0,L1

o¥

Q
o]
=]
Q
~
=
-

I
[11.

o¥ 59 o¢ 9 oY
=
>

N
~r

Lv2,Le2,L12,null

C3.,3

AO
Al,A2

trust_me_else_fail

get_list
unify_x_variable
unify_x_variable
get_list
unify_x_value
unify_x_variable
execute

% coné(f];
7% L,.L
% . ).

cénc([
L1],
X|

L3]) :-
% conc{L1,L2,L3).

o9 0% a9 5% oY ¥

Several new instructions are introduced by this example.

unify_constant const

If this instruction is executed in read mode, it accesses the argument desig-
nated by neztarg. It dereferences that argument and checks the dereferenced
value. If the dereferenced value is an uninstantiated valuecell, the valuecell is
bound to const. Otherwise, if the dereferenced value is not the constant const,
then backtracking occurs. If the machine is in "write mode", a reference to
canst is put into the argument designated by meztarg. In any event, if back-

tracking does not occur, neztarg is incremented to the next argument.
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put_constant const,Ai
Execution of this instruction puts a reference to the constant const into Ai.

call foreign proc.n

This instruction is similar to the call instruction, with the exception that proc is
here a "foreign subroutine”. That is, proc is coded in a language other than War-
ren assembler language (usually). This instruction is an extension to Warren's

defined instruction set.

execute_foreign proc

This instruction is similar to the ezecufe instruction, with the exception that
proc is here a "foreign subroutine”. This instruction is an extension to Warren's
defined instruction set.

get_pil Ai

Execution of this instruction causes the value in Ai to be dereferenced. If the
dereferenced value is to an uninstantiated valuecell, the valuecell will be bound
to nil, the empty list. Otherwise, if the dereferenced value is not the empty list,
backtracking will occur.

get_x value AiAj

Execution of this instruction causes a unification of the two formulas referenced
by Ai and Aj. If the unification succeeds, Ai will be altered to reference the fully
deferenced value of the unification. If the formulas cannot be unified, back-
tracking will occur.

~ Exercise
5. In a previous section, Warren assembler code for the following 3-clause pro-
cedure was given:

connected(a,b).
connected(a,c).
connected(b,d).

How would you modify the code to utilize indexing on the first argument?

8. Give the Warren assembler that would be used to encode the following Pro-
log routine:

connected(a,b).
connected(a,c).
connected(b,d).

connected(X,e) :- incoming(X).
connectedgf,X) :- outgoing(X).
connected(g,h).

connected(g,i).

9. Binding One Valuecell to Another

Whenever a point is reached where two logical variables must be unified,
one of the two corresponding valuecells is bound to the other. The choice of
which valuecell to bind is significant. One should envision the entire global stack
as preceding the entire local stack (i.e., the "addresses” of valuecells in the
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global stack are lower than those of valuecells in the local stack). Furthermore,
the stacks grow into larger addresses (i.e., the address of a newly-allocated
valuecell in the global stack will be larger than the address of any previously
allocated valuecell in the global stack). It is imperative that, when one valuecell
is bound to another, the valuecell with the larger address is instantiated.

The reason for binding the valuecell with the larger address involves the use
of the trail, the data structure used to record bindings. As long as a valuecell
was allocated after the creation of the last choice point, it is not necessary to
record a binding of that valuecell in the trail. If backtracking were to occur, the
valuecell would be deallocated; hence, there is no point in retaining the informa-
tion required to reset it back to an uninstantiated condition. By binding
valuecells with larger addresses, the size of the trail can be minimized. It is also
the case that valuecells in the local stack are trimmed when the contents can be
discarded. There is no problem in trimming a valuecell that is bound to another
valuecell that precedes it. However, if the valuecell occurring earlier in the
stack were bound to a valuecell being trimmed, a "dangling reference” would

result.

10. Unsafe Variables

’ At this point, we have covered a majority of the instructions in the Warren
assembler language. However, it seems approprlate to cover the concept of
"unsafe’ variable in a bit more detail.

The comments in the preceding section imply that the only valuecells that
could be bound to a valuecell V in the local environment are valuecells that fol-
low V in the environment. The execution of a puf_unsafe_wvalue instruction

-ensures that the referenced formula is not a valuecell in the local environment

. (which might get trimmed, leaving a dangling reference). Note, however, that
the puf_unsafe_value, in the case in which a new valuecell is created in the glo-
bal stack, binds the valuecell in the environment to the newly-created valuecell.
This is necessary, since the valuecell in the local environment may not be one of
the trimmed valuecells {and, hence, may still be legitimately accessed by an
invoked subroutine).

This whole topic is actually quite complex. It helps sxmphfy it to remember
the following points, whlch we listed earlier:

1. No valuecell in the global stack can be bound to a formula in the local

stack.

2. Valuecells in the local stack must reference either formulas in the glo-

bal stack or formulas that occur earlier in the local stack.

3. The only formulas that occur in the local stack are valuecells.

4. Structures and lists exist only in the global stack. Since no valuecell in

the global stack can be bound to a valuecell in the local stack, no sub-
formulas of a list or structure can be in the local stack.

11. Miscellaneous Instructions Not Yet Covered

Our previous examples utilized most of the instructions in the complete
Warren instruction set. However, there remain a few worth mentioning.

get_x variable AiAj
This instruction copies the contents of Aj into Ai.
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get_y_value YiAj
Execution of this instruction causes the formulas referenced by Yi and Aj to be
unified. Backtracking will occur if the formulas cannot be unified.

put_x_variable AiAj
Execution of this instruction causes a new valuecell to be allocated in the global
stack. Then a reference to the new valuecell is inserted into both Ai and Aj.

put_x value AiAj
Execution of this instruction copies the value of Ai into Aj (i.e., it is identical to
the get_z_variable instruction).

put_nil Ai
Execution of this instruction sets Ai to reference "nil", the empty list.

put_structure func,Ai

Execution of this instruction causes a skeletal structure to be allocated in the
global stack, with the function symbol for the new structure being func. Aiis set
to reference the new structure, and the machine is set to write made.

12. Additional Operations to Support Theorem Proving

We have covered the opcodes included in the original Warren machine. With
these operations, high performance implementations of Prolog have been
created. However, none of the instructions discussed up to this point perform
an "occurs check” when unifying two formulas. To transfer the advantages in
performance achieved with the Warren machine in the context of Prolog imple-
mentation to the construction of theorem proving systems, we have included a
set of new instructions that perform an occurs check. The following table lists
the two sets of instructions supported on our extended Warren machine. The
operations in the left column do not include the occurs check; those in the right

column do:

unify_x_value o_unify_x_value
unify_y_value o_unify_y_value
unify_x_local_value o_unify_x local_value
unify_y_local_value o_unify_y_local_value
get_x_value o_get_x_value
get_y_value o_get_y_value

The operations that support an occurs check do so only conditionally. That is,
we have added a new status indicator, called the occurs-check-mode, which can
be set to on or off. It is set only during the execution of call, and ezecule
operations. The indicator can be set to off by specifying no_occurs as an
optional additional operand on these operations. If the operand is not specified,
or if it is specified as any other value, execution of one of the above operations
will set the occurs-check-mode to on. Those operations that support occurs
checks do so only when the occurs-check-maode is on. -

12.1. A Theorem-Proving Example in Warren Assembler Language

To illustrate the utility of these operations, we will consider a standard
example from the literature of theorem proving. The problem is to show that
any group in which x * x = e must be commutative. One standard approach to
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solving the problem is to show that the following set of clauses is unsatisfiable.
In this formulation of the problem, p(x,y,z) may be thought of as asserting that
x*y=z. Although an equality representation of the problem is probably prefer-
able[2], this formulation does illustrate the points that we wish to convey in this

section.

1. p(x.e,x) e is a right identity
2. p(e,x,x) e is a left identity
3. p(x,g(x).e) g(x) is the right inverse of x
4. plg(x).x,e) g(x) is the left inverse of x
the operation is associative
5. If p(x,y.xy) & p(y.z.yz) & p(xy.z.xyz) then p(x,yz,xyz)
6. If p(x.y.xy) & p(y.z.yz) & p(x,yz.xyz) then p(xy,z.xyz)
7. p(x.y.f(x.y)) closure

the operation is well-defined
8. If p(x,y.z1l) & p(x.,y.z2) then zl = z2

equality axiams
9. x=x

10. If x =y theny = x
11. If x =y &y =2z thenx =z
-equality substitution for g and f
12. If x = y then g(x) = g(y) :
13. If x = y then f(x,v) = f(y,v)
14. If x = y then f(v.x) = f(v,y)
equality substitution for p
15. If x = y & p(x,v2,v3) then p(y.v2,v3)
18. If x = y & p{vl,x,v3) then p(vl,y,v3)
17. If x = y & p(vl,v2,x) then p(vl,v2,y)
18. p(x,x,e) special hypothesis
denial of theorem:
19. p(a,b,c) There are elements a, b, and c such that
20. -p(b,a,c) -a *b=cbut b * a is not equal to ¢

Hyperresolution is one of the more useful inference mechanisms used in
classical theorem provers[3,4, 5]. In our discussion here, we will be considering
the use of hyperresolution with set of support (although it is known that this
approach is not refutation complete, it is a widely used and effective strategy).
Furthermore, let us confine the discussion to Horn sets, which simply means
that each clause can contain at most one positive literal. Normally, an inference
rule like hyperresolution is implemented such that a positive unit clause is
passed to the inference mechanism. The inference routine must locate a
"nucleus” clause (e.g, one of the associativity axioms) which contains a negative
literal that can be unified with the specified positive unit. Once such a nucleus is
located, the search continues by trying to remove the remaining antecedent
literals with other positive unit clauses. Once all of the negative literals have
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been removed, a hyperresolvent is inferred (composed of the remaining positive
literal).

For purposes of discussion, let us suppose that only axiom 19 of the exam-
ple is included in the set of support. The following basic steps outline the
conversion of a set of clauses intended for interpretation by a theorem prover
into Warren assembler language.

1. First, all of the clauses which are axioms that are not in the set-of-

support are transformed into a set of "pseudo-Prolog"” clauses that are
then compiled into Warren assembler language.

2. Inferences proceed by selecting a single clause from the set-of-
support. This clause is "asserted", which means that it is added to the
code resulting from step 1. That is, if the selected unit were p(a,b,c),
then it would be added to the routine p/3. The code given below
corresponds to the output of these first two steps.

3. Then, the positive unit p(a,b,c) is converted to an invocation of the rou-
tine notp/3 with the given three arguments. Each generated hyper-
resolvent will be passed to the foreign subroutine newclause /1, which
will simplify the clause and perform subsumption tests. If the clause
is the null clause, the problem has been solved. Otherwise, if the gen-
erated clause is useful (passes screening operations such as forward
subsumption, weighting, etc.), it will be added to the set of support.

4. Finally, the given clause is removed from the set of support, and the
algorithm returns to step 2.

This extremely cursory overview of the process should allow the reader to
understand the following encoding of the clauses which follows. Note that in the
comments above each routine we have included a "pseudo-Prolog” version of the
routine. The reader is cautioned to think of it only as a loose description. To
properly present these routines in a "high-level” representation would require
extending the Prolog language to allow the programmer to explicitly control
“"occurs checking”. The reader is particularly cautioned to note that the opera-
in the comments is not intended to be the built-in operator of Prolog.

tor "="
4
% notp/3
%
% notp/3 through the code for C3 comes fram axiam 5.
% The code for C4 through C6 comes fram axiam 6.
% The code for C7 and C8 cames fram axian 8.
% The code for C9 is fram axiam 15.
% The code for C10 is fram axiam 18.
- % The code for Cl1 is fram axianm 17.
% The code for C12 is fram axiam 20.
%
% notp(X,Y,XY) - p(Y.Z2,Y2), p(X,YZ,XYZ), newclause(p(XY,Z,XYZ)
% - notp(Y,Z,YZ) - p(X,Y,XY), p(X,YZ,XYZ), newclause(p(XY,Z,XYZ)
% notp(X,YZ,XYZ) :- p(X,Y,XY), p(Y,Z,YZ), newclause(p(XY,Z,XYZ)
% notp(X,Y,XY) :- p(Y,2,YZ), p(XY,Z,XYZ), newclause(p(X,YZ,XYZ)
% notp(Y,Z,YZ) :- p(X,Y,XY), p(XY,Z,XYZ), newclause(p(X,YZ,XYZ)
% notp(XY,Z,XYZ) :- p(X,Y.XY), p(Y.Z,YZ), newclause(p(X,YZ,XYZ)
% notp(X,Y,Z1) - p(X,Y,Z2), newclause(Z1l = Z2).
% notp(X,Y,Z2) - p(X.Y,Z21), newclause(Z1 = Z2).
% notp(X,V2,V3) - X =Y, newclause(p(Y,V2,V3)).
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% notp(V1,X,V3) :- X =Y, newclause(p(V1,Y,V3)).

% notngl.Vz.X) :- X =Y, newclause(p(V1,V2,Y)).

% notp(b,a,c) :- newclause(null)

%

notp/3 try_me_else C2a,3 7% create choice point
allocate 5 7% allocate an environment
get_y_variable Y4,A0 % If p(x,
get_x_variable A0,A1 7% ¥,
get_y_variable Y2, A2 % xXy) &
put_y_variable Y1,A1 % p(y.z,
put_y_variable Y3,A2 % yz) &
call p/3.5
put_y_value Y4,A0 % p(x,
put_unsafe_value Y3,A1 % yz,
put_y_variable Y0,A2 7# Xyz
call p/3,3 % ) then
put_structure p/3,A0 % Build new clause
unify_y_value Y2 % p(xy,
unify_y_local_value Y1 % z,
unify_y_local_value Yo % Xyz)
deallocate
execute_foreign newclause/1

CRa retry_rme_else . C3a . 7% update choice point

C2 allocate 5 7% allocate an enviromment
get_y_variable Y1,A1 % 1f p(y,
get_x_variable Al1,A0 7% z,
get_y_variable Y3,A2 % yz) &
put_y_variable Y4,A0 % p(x.y.
put_y_variable Y2, A2 % xy) &
call p/3.5
put_unsafe_value Y4, A0 % p(x,
put_y_value Y3, Al 7% yz,
put_y_variable Y0,A2 Z Xyz
call p/3.3 % ) then
put_structure p/3,A0 % Build new clause
unify_y_local_value Y2 % p(xy,
unify_y_value Y1 % z,
unify_y_local_value YO % xXyz)
deallocate
execute_foreign newclause/1

C3a retry_me_else C4a % update choice point

C3 allocate - : 5 % allocate an enviromnment
get_y_variable Y3,A1 % 1f p(x,yz,
get_y_variable Y0,A2 % : xyz) &

put_y_variable Y4,A1 % p(x.,y,-



C4a
C4

C5a
C5

put_y_variable
call

put_unsafe_value
put_y_variable
put_y_variable
call

put_structure
unify_y_local_value
unify_y_local_value
unify_y_value
deallocate
execute_foreign

retry_me_else
allocate
get_y_variable
get_x_variable
get_y_variable

put_y_variable
put_y_variable
call

put_y_value
put_unsafe_value
put_y_variable
call

put_structure
unify_y_value
unify_y_local_value
unify_y_local_value
deallocate
execute_foreign

retry_me_else
allocate
get_y_variable
get_x_variable
get_y_variable

pﬁt_y_yariable
put_y_variable
call

put_unsafe_value
put_y_value
put_y_variable
call

put_structure
unify_y_local_value
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Y2, A2 % xy) &
p/3.5
Y4,A0 % p(y.
Y1,A1 % z,
Y3,A2 7% yz
p/3.3 % ) then
p/3,A0 % Build new clause
Y2 % p(xy,
Y1 7% z,
Yo % Xyz)
newclause/1
C5a % update choice point
5 % allocate an enviromment
Y2,A0 % If p(x.
A0, A1 7% y.
Y4,A2 % xy) &
Y3,A1 % p(y.z,
Y1,A2 % yz) &
p/3.5
Y4,A0 % p(xy,

. .Y3,A1 7% z, 4
YO0, A2 7% Xyz
p/3.3 % ) then
p/3,A0 % Build new clause
Y2 % p(x,
Y1 7% yz,
YO % Xyz) -
newclause/1
Céa % update choice point
5 % allocate an enviromment
Y3,A1 % If p(y.z
Al1,A0 7% ’
Y1,A2 % yz) &
Y2,A0 % p(x.y,
Y4,A2 % xy) &
p/3.5
Y4,A0 % p{xy,
Y3,Al1 7% z,
Y0,A2 % Xyz
p/3.3 % ) then
p/3,A0 % Build new clause
Y2 % p(x,



CBa
Cé

C7a
C7

C8a
Cc8

C9a

unify_y_value
unify_y_local_value
deallocate
execute_foreign

retry_me_else
allocate
get_y_variable
get_x_variable
get_y_variable

put_y_variable
put_y_variable
call

put_unsafe_value
put_y_variable
put_y_variable
call

put_structure
unify_y_local_value
unify_y_local_value
unify_y_value
deallocate
execute_foreign

retry_me_else
allocate
get_y_variable

put_y_variable
call

put_structure
unify_y_value
unify_y_local_value
deallocate
execute_foreign

retry_me_else
allocate
get_y_variable

put_y_variable
call

put_structure
unify_y_local_value
unify_y_value
deallocate
execute_foreign

retry_me_else
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Y1 % yz,

YO % Xyz)
newclause/1

C7a % update choice point

5 7% allocate an enviromment
Y0,A2 % If p(xy.z.xyz) &

A2, A0 7%

Y3.A1 %

Y2,A0 % p(x,

Y4,A1 % y.xy) &
p/3.,5,no_occurs

Y4,A0 % p(y.

Y3,A1 % z,

Y1,A2 % yz

p/3.3 % ) then

p/3,A0 % Build new clause

Y2 % p(x,

Y1 % yz,

YO % Xyz)

newclause/1

CBa % ﬁpdate choice point

2 7% allocate an enviromment

Y1,A2 % If p(x,y,zl) &

Y0,A2 % p(x,y.z2) then

p/3.2

=/2,A0 % Build new clause
Y1 % =/2(z1,

YO % z2)

newclause/1

C9a % update choice point
2 % allocate an enviromment
Y0, A2 % If p(x,y,zR) &

Y1,A2 % p(x.,y.z1) then

p/3.2

=/2,A0 % Build new clause
Y1 % =/2(z1,

YO % z2)
newclause/1

C10a 7% update choice point



- 34 -

C9 allocate 3 7% allocate an enviromment
get_y_variable Y1,A1 % If p(x,v2,
get_y_variable Y0, A2 % v3) &
put_y_variable Y2, A1 % =/2(x.y)
call =/2,3
put_structure p/3,A0 % Build new clause
unify_y_local_value Y2 % p(y,
unify_y_value Y1 % v2,
unify_y_value YO % v3)
deallocate
execute_foreign newclause/1

C10a retry_me_else Clia 7% update choice point

Cio0 allocate 3 7% allocate an enviromment
get_y_variable Y2,A0 % If p(vl,x,
get_y_variable Y0, A2 % v3) &
put_x_value Al1,A0
put_y_variable Y1,A1 % =/2(x.y)
call =/2,3
put_structure p/3,A0 % Build new clause
unify_y_value Y2 % p(vi,
unify_y_local_value Y1 % Y,
unify_y_value Yo % . v3)
deallocate ‘
execute_foreign newc lause/1

Clia retry_me_else Ci2a 7% update choice point

Ci1 allocate 3 7% allocate an enviromment
get_y_variable Y2,A0 % 1f p(vi,
get_y_variable Y1,A1 % v2,x) &
put_x_value A2,A0
put_y_variable Y0,A1 % =/2(x,y)
call =/2,3
put_structure p/3,A0 % Build new clause
unify_y_value Y2 % p(vi,
unify_y_value Y1 % v2,
unify_y_local_value YO % y)
deallocate
execute_foreign newclause/1

Ci2a trust_me_else_fail 7% delete choice point

Ci12 get_constant b/0,A0 % If p(b,
get_constant a/0,A1 % a,
get_constant c/0,A2 % c) then

7% generate the null clause

put_constant null/0,A0
execute_foreign newc lause/1
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not=/2

not=/2 cares from axiaom 10.

The code for C14 through C15 cares from axiam 11.
The code for C18 cares fram axiam 12.

The code for Cl17 cares fram axiam 13.

The code for C18 cames fram axian 14.

The code for C19 cames fram axiam 15.

The code for C20 cames fran axiam 16.

The code for C21 cames fram axiam 17.

RIS IR IR IS IE SIS RS I S e S G s IS BN I SN I

not=(X,Y) :- newclause(Y = X).
not=(X,Y) :- Y = Z, newclause(X = Z).
not=(Y,Z) :- X =Y, newclause(X = Z).
not=(X,Y) newclause{g(X) = g(Y))
not=(X,Y) newclause(f(X,V) = £(Y.V)).
not=(X,Y) newclause( f(V, X) £F(V,Y)).
not=(X,Y) p(X,ve,v3), newclause(p(Y V2,V3)).
not=(X,Y) :- p(V1.X, V3), newclause{p(V1,Y,V3)).
not=(X,Y) :- p(V1,V2,X), newclause(p(V1,V2, Y)).
not=/2 try_me_else Cl4a,2 % create choice point
put_x_value A0, A2 % save reference to x
put_structure =/2,A0 % build =/2(
unify_x_value Al % : y.
unify_x_value A2 % x)
execute_foreign newclause/1
Cl4a retry_me_else Ci5a % update choice point
Ci4 allocate 2 % allocate an enviromment
get_y_variable Y1,A0 % I1f =/2(x.y) &
put_x_value A1, A0 % =/2(y.
put_y_variable Y0,A1 7% z
call =/2,2
put_structure . =/2,A0 % build =/2(
unify_y_value Y1 % X,
unify_y_local_value YO % z)
deallocate
execute_foreign newclause/1
C15a retry_me_else Ci6a % update choice point
C15 allocate 2 % allocate an enviromment
get_y_variable Yo, A1 % 1f =/2(y.z) &
put_x_value A0, A1 % =/2( .y)
put_y_variable Y1,A0 % X
call =/2,2
put_structure =/2,A0 % build =/2(
unify_y_local_value Y1 % X,



Cl6a
C18

Cl7a
C17

Ci8a
Cis

Ci19a
C19

unify_y_value
deallocate

execute_foreign

retry_me_else
put_structure
unify_x_value
put_structure
unify_x_value
put_structure
unify_x_value
unify_x_value

execute_foreign

retry_me_else
put_structure
unify_x_value
put_x_variable
unify_x_value
put_structure
unify_x_value
unify_x_value
put_structure
unify_x_value
unify_x_value

execute_foreign

retry_me_else
put_structure
put_x_variable
unify_x_value
unify_x_value
put_structure
unify_x_value
unify_x_value
put_structure
unify_x_value
unify_x_value

execute_foreign

retry_me_else
allocate
get_y_variable

put_y_variable
put_y_variable
call

put_structure
unify_y_value

unify_y_local_value
unify_y_local_value

deallocate

execute_foreign
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YO

% z)

newclause/1

Cl7a

g/1,A2

AO
g/1,A3
Al
=/2,A0
A2
A3

% update choice point
% build g(x)

% build g(y)

% build =/2(g(x).g(y))

newclause/1

Ci8a
£/2,A2
AO

A4 A4
A4
£/2,A3
Al

A4
=/2,A0
A2

A3

% update choice point

% build f(x,v)

% build f(y,v)

newclause/1

Ci19a % update choice point
f/2,A2 % build f(v,x)

A4, A4

A4

A0

£/2,A3 % build f(v,y)

A4

Al

=/2,A0

A2

A3

newclause/1

C20a % update choice point
3 % allocate an enviromrent
Y2,A1 % 1f =/2(x,y) &
Y1,A1 % p(x,v2,

Y0,A2 % v3)

p/3.3

p/3,A0 % Build new clause

Y2 % p(y.

Y1 % ve,

YO % v3)

newc lause/1



C20a retry_me_else
C20 allocate A
get_y_variable

put_x_value

put_y_variable
put_y_variable
call

put_structure
unify_y_local_value
unify_y_value
unify_y_local_value
deallocate
execute_foreign

C21a trust_me_else_fail
C21 allocate
get_y_variable

put_x_value

put_y_yariablé
put_y_variable
call

put_structure
unify_y_local_value
unify_y_local_value
unify_y_value
deallocate
execute_foreign

The code
The code
The code
The code
The code
The code
The code

O 39 29 39 59 39 39 39 39 39 09 09 59 09 39 59 29 39 3¢ M9

for
for
for
for
for
for
for

p(X,e,X).
p(e.X.,X).
p(X.g(X).e).

p(g(X).X,e).

p(X, Y, £f(X,Y)).
p(X.X,e).
p(a.b,c).

c22
C23
C24
C25
C26
ce7
Cce8

cares
cares
carnes
canes
cares
cares
cares

p/3 switch_on_term

p/3

fran
fran
fran
fran
fran
fran
fran
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C21la % update choice point
3 % allocate an enviromment
Yi,A1 % 1f =/2(x,y) &
A0,A1 % p( ,x,

Y2, A0 %

Y0,A2 % v3)

p/3.3

p/3.A0 % Build new clause
Y2 % p(vi,

Y1 % Y,

YO % v3)

newclause/1

% update choice point
3 % allocate an enviromment

Yo, A1 % If =/2(x.,y) &

AD, A2
Y2, A0
Y1,A1

p/3.3

o¥ o9 ¢

p(

v aX)

ve

p/3,A0 % Build new clause
Y2 - % p(v1,

Y1 %
YO0 7%

newclause/1

axiam 1.
axianm 2.
axiam 3.
axianm 4.
axian 7.
axiam 18.
axiam 19.

ve,
y)

C22a,L1,null, L2



L1

L2

C2Ra
Cc22

C23a
C23

CR4a
C2k4

C25a
C25

C26a
C26

C27a
CcR7

C28a
Cc28

0% 59 39 oY 39 oY

- 38 -

switch_on_constant -4,

[e,C23]

[a,C28]
switch_on_structure 1,[

[g/1,C25]

]
try_me_else C23a,3 % establish choice point
get_constant e,Al % p(x,e,
o_get_x_value AD,A2 % X
proceed
retry_me_else C24a % update choice point
get_constant e,A0 % pe.
o_get_x_value A1, A2 % X,X)
proceed
retry_me_else C25a 7% update choice point
get_structure g/1,A1 % p(x,g(
o_unify_x_value A0 % x),
get_constant e, A2 % e)
proceed
retry_me_else C26a % update choice point
get_structure : g/1,A0 % p(g( :
o_unify_x_value - Al Z x),x,
get_constant - e,A2 % e)
proceed
retry_me_else C27a % update choice point
get_structure £/2,A2 % p(x,y.f(
o_unify_x_value A0 7% X,
o_unify_x_value Al % y))
proceed
retry_me_else C28a % update choice point
get_constant e,A2 %Zp( ., .e)
o_get_x_value AD,A1 7% x x
proceed
trust_me_else_fail % discard choice point
get_constant a,A0 % p(a,
get_constant b,Al 7% b,
get_constant c,A2 % c)

proceed

=/2

The following routine encodes axiam 9.
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7%

%Z X=X

7%

=/2 o_get_x_value A0,A1 Zx=x
proceed

We are aware that minor modifications to an existing dialect of logic program-
ming would allow a fairly natural intermediate encoding (i.e., would represent
the axioms at a level somewhere between the original axioms and the Warren
assembler language). We are interested in such research, but have no concrete
proposals to make at this time.

12.2. Half-Match Unification

Warren’s original instruction set can also be extended to support "half-
match” unification (i.e., unification in which only variables in one of the two
terms can be instantiated). These opcodes are extremely useful for compiling
code that does subsumption checks or demodulation (see[2] for descriptions of
these operations). The added opcodes are as follows:

m_get_x_value m_unify_x value
m, _get_y_value m_unify_y_value
m_get_constant m_unify_constant
m_get_nil m_unify_nil
m_get_structure

m_get_list

These opcodes are all designed to verify that two formulas match identically,
rather than testing to determine whether or not the formulas can be unified.

For example,
m get_list A2

verifies that A2 references a formula which is a nonempty list (setting neztarg
to allow subsequent processing in read mode to inspect the elements in the list).

The above discussion is necessarily brief. However, we do believe that it can
be used as a basis for arguing that the Warren abstract machine will dramati-
cally impact the attainable inference rates for theorem-proving systems.

13. A Comparison with Warren's Original Description
The reader should be well aware that the description of the Warren Abstract
Machine offered in this document differs in substantial aspects from both the
description offered in Warren’s original paper[1] and the implementation in
Quintus Prolog. Since this document is designed both as a tutorial on the
abstract machine and as a reference for the portable implementation produced
at Argonne National Laboratory, some of the differences should be discussed.
The most outstanding differences between the description in this document (and
the implementation based upon it) and that in Warren’'s original report are as
follows:
1. In Warren's description, the notion of temporary variable plays a much
larger conceptual role. He carefully distinguishes those instances in
which an argument register is to be thought of as playing the role of a
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temporary variable. He introduces two conceptually distinct register
sets, the X registers and the A registers. The fact that the sets are
identical is viewed as an implementation optimization. We have chosen
to ignore the distinction. Rather, we view the use of an argument
register to play the role of a temporary variable as a convenient con-
ceptual approach towards implementing Prolog on the Warren Abstract
Machine, but do not view it as a part of the description of the actual
machine. In early versions of our actual implementation, the assem-
bler enforced the Warren distinction. In later versions, the A and X
notations are completely interchangeable.

2. In our implementation, logical formulas in the local and global stacks
are tagged objects, while an "argumen " (i.e., the contents of an argu-
ment register, an argument of a list or an argument of a structure) is a
reference to such a tagged object. In Warren's description of the
machine, all references to formulas contain a copy of the tag of the
object which is being referenced (actually, this is not precisely accu-
rate, but does convey the essence of the situation). This allows many
comparisons and checks to take place without forcing an access to the
referenced object (to inspect the tag). An implementation for a
machine in which a single word can contain both the pointer (the refer-
ence) and the tag will benefit by utilizing Warren’s optimization. How-
ever, since our implementation is designed for portability, we could not
make the assumption that adding the tag would still allow an argument
to reside in a "machine register”. In this case, the added tags may
take substantially more memory and actually slow down execution
(since the arguments cannot easily be coerced into registers).

3.  We have added the instructions required to support the "occurs check”
and "half matches” (i.e., unifications in which only one of the two for-
mulas can be instantiated).

4. We have utilized different register names (see below).

As an aid to the reader when he compares this document against Warren's origi-
nal report we have prepared the following table listing differences in the naming
of machine registers: ‘ .
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_—
Warren's Description Our Name Warren's Name
Program Pointer neztinst P
Continuation
Pointer continst CP
Last Environment currenv E
Last Choice Point lastchpt B
Top of Trail TPOS TR
Top of Heap GPOS H
Strﬁctufe Pointer neztarg S

14. Performance
A few final comments on performance are in order. The abstract machine
described in this document has been implemented in C and ported to a number
of machines. Executing on a VAX 11/780 it attains between 5K and 6K lips (logi-
cal inferences per second) on a determinate concatenate benchmark[6].
Quintus Prolog attains roughly four times this execution rate. The factors which
contribute to this difference are as follows:
1. Warren utilizes a modified instruction set which, although based
directly on the ideas described in this document, includes features
that substantially improve performance.

2. Our implementation is done in C for portability.

3. Our data structures are a generalization of Warren's, which allow an
extension of the machine to support opcodes for coordination of multi-
ple processes working simultaneously. In particular, the machine is
being extended to support both OR-parallelism and determinate AND-
parallelism. The decision to create an implementation that would sup-
port these extensions did introduce some overhead into the implemen-
tation for uniprocessors. '

The factors are listed in decreasing order of significance. We believe that the
first factor could be eliminated with some effort (by modifying the instruction
set in much the way Warren has in Quintus Prolog), producing an implementa
tion that was between one and a half and two times as fast as the current imple-
mentation. We lose some execution speed due to having coded in C rather than
assembler language. We estimate the loss to be less than a factor of two. In our
opinion, the last factor contributes very little to the overall difference in speed.
It introduces, perhaps, a 10% overhead into the execution rate. All of these esti-
mates are offered only as very crude approximations.

The fact that a factor of two is attainable by alteration of the instruction set
may well lead the reader to reflect upon the value of learning the version
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described in this document. It is our belief that the differences between the
instruction set described in this document and the more optimal one used in
Quintus Prolog can be "hidden” by a somewhat more complex assembler. That
is, a program coded in Warren assembler language as described in this docu-
ment could be assembled into a somewhat extended set of machine operations
to attain the added performance. It is quite probable that we will at some future
date extend our interpreter to handle the extended instruction set; however,
our intent is that this should not require recoding of any programs written in
Warren assembler. Hence, we consider it important that those researchers who
choose to compile higher-level languages for use on our interpreter make the
target of compilation Warren assembler language (rather than the actual object
encoding of the machine language supported by the current interpreter).

15. Summary

We have attempted in this document to convey the basic ideas behind the
Warren machine. We believe that the machine represents a substantial break-
through in the design of high-performance inference engines and may well form
the basis of many future applied logic systems.
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Appendix A

The Warren Abstract Machine Instruction Set

allocate n

Execution of this instruction causes a new environment to be allocated on the
local stack. The current value of both continst and currenv, the continuation
address for successful completion and the address of the current environment,
are stored in the new environment. The new environment will include n
valuecells, which we will refer to as Y0, Y1,...Yn-1. Finally, currenv will be reset
to reference the new environment.

call foreign proc,n

This instruction is similar to the call instruction, with the exception that proc is
here a "foreign subroutine”. That is, proc is coded in a language other than War-
ren assembler (usually). This instruction is an extension to Warren’s defined

instruction set.

call procedure,n

Execution of this instruction causes an invocation of the designated procedure,
after "trimming" the current environment to contain only n valuecells. Since
not all of the valuecells allocated for an environment always need to be main-
tained throughout the entire computation for an alternative, valuecells can be
trimmed from the end of an environment. This ability depends on the fact that
the valuecells are allocated at the end of an environment in the local stack, and
the ones that can be released the earliest are kept at the end. Thus, a program-
mer can carefully organize his use of the Y0, Y1,... to allow a gradual reduction
in the size of the environment. In our example, we did not actually trim any
valuecells before the complete deallocation of the environment.

The actual transfer of control to the designated procedure is accomplished
by first setting continst to reference the instruction immediately following the
call (i.e., setting the return address), and then altering neztinst to reference
the first instruction in the designated procedure. '

deallocate
Execution of this instruction deallocates the current environment in the local
stack. More precisely, conlinst and currenv are reset from the values in the

environment being released.

execute procedure

This instruction simply resets neztinst to reference the first instruction in the
designated procedure. Thus, when control is returned from the executed pro-
cedure, it will not return to the procedure in which the execute occurred, but
rather to the caller of the procedure that issued the execute. It is used only
when the last subroutine in a procedure is invoked.

execute_foreign proc

This instruction is similar to the execute instruction, with the exception that
proc is here a "foreign subroutine"”. This instruction is an extension to Warren’s
defined instruction set. :



get_constant constantAi

The gef_constant instruction takes two operands. The first designates a con-
stant, and the second an argument register. The instruction attempts to
"match” the constant with the incoming argument. If the argument register
references an unbound variable, the valuecell will be bound to the designated
constant. If the argument register references the same constant, no action
occurs. In either of these cases, the gef_consfant succeeds and the next
instruction will be the one immediately following the gef_constant. If the match
does not succeed, backtracking will occur.

get_list Ai

Execution of a get_list instruction causes the contents of Ai to be dereferenced.
If the resulting reference is to an unbound valuecell, a skeletal list will be
created in the global stack, nexfarg will be set to reference the location of the
head in the new list (i.e., the address of where the reference to the head must be
inserted into the skeletal list), and the mode will be set to write mode. If the
dereferenced value points to a list, nextarg will be set to reference the location
of the head in the list, and the mode will be set to read mode. If the derefer-
enced value is to neither an unbound valuecell nor to a list, then backtracking

occurs.

get_nil Al

Execution of this instruction causes the value in Ai to be dereferenced. If the
dereferenced value is to an uninstantiated valuecell, the valuecell will be bound
to nil, the empty list. Otherwise, if the dereferenced value is not the empty list,
. backtrackmg will occur:

get_structure func,Ai

Execution of this instruction causes the value in Ai to be dereferenced. If the
result is a variable {and, hence, unbound), then a new skeletal structure if con-
structed in the global stack, and the variable is bound to the new structure.
This will cause neztarg to be set to where the first argument should be inserted
into the skeletal structure, and the machine will continue in wrife mode. If the
dereferenced value does not reference a variable, then it is checked to see if it
is a structure with func as the function symbol. If so, nezxtarg is set to refer-
ence the first argument of the structure, and the machine will continue in read
mode. If the dereferenced value is neither a variable nor a structure with a
function symbol equal to func, then backtracking will occur.

get_x value AiAj

Execution of this instruction causes a unification of the two formulas referenced
by Ai and Aj. If the unification succeeds, Ai will be altered to reference the fully
dereferenced value of the unification. If the formulas cannot be unified, back-

tracking will occur.

get_x_variable AiAj
This instruction copies the contents of Aj into Ai.

get_y_value YLAj
Execution of this instruction causes the formulas referenced by Yi and Aj to be
unified. Backtracking will oceur, if the formulas cannot be unified.
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get_y_variable Yi,Aj
Execution of this instruction binds Yi to the logical formula referenced by Aj.

proceed

The p'roceed instruction is used to return from an alternative that did not
require invoking a subroutine (i.e., an alternative represented by a unit clause).
The next instruction executed will be designated by the contents of the continst

register.

put_constant const,Ai
Execution of this instruction puts a reference to the constant const into Ai.

put list Al

Execution of this instruction causes a skeletal list (that is, a list in which nei-
ther the head nor the tail has yet been defined) to be created in the global
stack. The argument register Ai is set to reference the skeletal list. Further-
more, a register called neztarg is set to reference the spot in the list into which
a reference to the head of the list being constructed should be stored. The
register nezxtarg is used only when processing lists and structures and points to
the next argument (in a list, the head or tail) to be processed. Finally, the
machine is put into write mode.

put_nil Al
Execution of this instruction sets Ai to reference "nil", the empty list.

put_structure func,Ai R R -
Execution of this instruction causes a skeletal structure to be allocated in the

global stack, with the function symbol for the new structure being func. Aiis set
to reference the new structure, and the machine is set to wrife mode.

put_unsafe_value Yi.Aj

First, the value stored in Yi is dereferenced. If the dereferenced value is to a
valuecell in the current environment, that valuecell is bound to a new uninstan-
tiated valuecell in the global stack, and Aj is set to reference the new valuecell.
Otherwise, the dereferenced value is inserted into Aj (i.e., Aj is set to reference
the logical formula given by the dereferenced value of Yi).

put_x value AiAj
Execution of this instruction copies the value off Ai into Aj (i.e., it is identical to
the get_z_variable instruction).

put_x_variable AiAj
Execution of this instruction causes a new valuecell to be allocated in the global
stack. Then a reference to the new valuecell is inserted into both Ai and Aj.

put_y_value YiAj

Execution of this instruction sets Aj to reference the logical formula to which Yi
is bound. If Yi is uninstantiated, but was initialized by a put, A variable instruc-
tion, then Aj will be set to reference Yi itself.



- 46 -

put_y_variable Yi,Aj
Execution of this instruction sets Aj to reference Yi.

retry L

This instruction causes the next alternative in the current choice point to be set
to the instruction immediately following the retry, and nexztinst is set to L
(causing a branch to L to occur).

retry_me_else label

In a procedure that contains several alternatives, this instruction must precede
the code for all but the first and last alternatives (i.e., it precedes the middle
alternatives). It causes the 'next alternative” in the choice point to be set at
the address given as its operand. Execution continues with the instruction
immediately following the retfry_me_else.

switch_on_constant n,table

This instruction generates a hash table for access to clauses that have desig-
nated constants occurring as the first argument. The first argument gives the
number of entries allocated in the table. The second specifies a list of 2-tuples.
Each tuple gives a constant and the address associated with the constant. Exe-
cution of this instruction causes an examination of the constant referenced by
AO. If the constant occurs in an entry in the hash table, a branch to the
corresponding address occurs. Otherwise, backtracking occurs.

switch_on_structure n,table ‘

This instruction generates a hash table for access to clauses that have desig-
nated functions occurring in the first argument. The first argument gives the
number of entries allocated in the table. The second specifies a list of 2-tuples.
Each tuple gives a function symbol and the address associated with the symbol.
Execution of this instruction causes an examination of the structure referenced
by AO. If the function symbol occurs in an entry in the hash table, a branch to
the corresponding address occurs. Otherwise, backtracking occurs.

switch_on_term Lv.Iec,1l.Is A
Execution of this instruction causes a branch which is based on the type of the
logical formula referenced by AO. If AO references a variable, a branch to Lv
occurs. If AO references a constant, a branch to Lc occurs. If AO references a
list, a branch to Ll occurs. If AO references a structure, a branch to Ls occurs.
If any operand is "null", backtracking will occur if the corresponding type is
detected. :

trust L

This instruction causes the current choice point to be discarded (resetting
lastchpt to the address of the previous choice point before deallocating the
current choice point). Then meztinst is set to L (causing a branch to L to

occur).

trust_me_else_{fail

In a procedure that contains several alternatives, this instruction should pre-
cede the last alternative. It causes the current choice point to be deallocated
from the local stack (since there are no more alternatives to consider). Execu-
tion continues with the instruction immediately following the frust_me_else_fail.
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try L.n

This instruction causes a choice point to be created in the local stack. The
alternative address stored in the choice point will be the address of the next
instruction after the try, and n argument registers will be stored in the choice
point. Finally, nextinst is set to L (causing a branch to L to occur).

try_me_else label,n

This instruction is used only in procedures which include multiple alternatives.
It precedes the code for the first alternative. It causes a choice point to be
created in the local stack and sets the next alternative (stored in the choice
point) to the address given as its operand. The choice point will save values for
the first n argument registers. Execution continues with the instruction

immediately following the iry_me _else,

unify_constant const

If this instruction is executed in read mode, it accesses the argument desig-
nated by neztarg. It dereferences that argument and checks the dereferenced
value. If the dereferenced value is an uninstantiated valuecell, the valuecell is
bound to const. Otherwise, if the dereferenced value is not the constant const,
then backtracking occurs. If the machine is in "write mode", a reference to
const is put into the argument designated by meztarg. In any event, if back-
tracking does not occur, neztarg is incremented to the next argument.

unify_nil ,
This instruction is identical to unify_constant, except that the constant in this
case is the empty list. N o

unify void n

If the machine is in read mode, nertarg is incremented past n arguments. If it
is in write mode, n new valuecells are created in the global stack, and the next n
arguments referenced by neztarg are set to reference the created valuecells.

unify_x local_value Ai

This instruction is identical to unify_x value, except in the case in which the
value in Ai dereferences to a valuecell in the local stack. In this case, a new
valuecell is allocated in the global stack, the valuecell in the local stack is bound
to the new valuecell, and Ai is set to reference the new valuecell in the global

stack.

unify_x value Ai ‘
If the machine is in write maode the reference in Ai is pushed into the global
stack at the location specified by neztarg, and neztarg is incremented (to the
next argument in the structure or list being built). If the machine is in read
mode, then the argument designated by neztarg is unified with the logical for-
mula referenced by Ai. If the unification fails, backtracking occurs. Otherwise,
the dereferenced result is put into Ai. That is, if Ai referenced anything except
a valuecell, Ai will not be altered. On the other hand, if Ai referenced a valuecell
that is bound to another logical formula, Ai will be altered to reference the for-
mula to which the valuecell was instantiated. If the valuecell is bound to another
instantiated valuecell, the chain of valuecells is examined, and Ai is altered to
reference either an unbound valuecell or a formula which is not a variable (Le.,
Ai is set to the image found by continuing down the chain of bound valuecells).
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This process of of locating the ultimate image of a reference is called dere-
Jerencing. If the unification is successful, neztarg is incremented.

unify_x variable Ai
If the machine is in read mode, the argument referenced by neztarg is inserted
into Ai, and nezfarg is incremented. If the machine is in wrife mode, a new
uninstantiated valuecell is created in the global stack. A reference to the new
valuecell is stored in Ai and in the argument designated by neztarg, and nez-
targ is incremented.

unify_y_local_value Yi

This instruction is identical to unify_y_value, except in the case in which the
value in Yi dereferences to a valuecell in the local stack. In this case, a new
valuecell is allocated in the global stack, and the valuecell in the local stack is
bound to the new valuecell.

unify_y_value Yi .
If this instruction is executed in read mode, the next argument designated by
neztarg is unified with the logical formula referenced by Yi (which can, of
course, cause backtracklng to occur). If it is executed in write mode, the value
stored in Yi is stored in the argument designated by meztarg. In either case,
neztarg is incremented. It is assumed that Yi is bound to a logical formula
other than a valuecell in the local stack.

unify_y_variable Yi

Execution of this instruction can have either of two. eﬁects depending on the
mode. If it is executed in read mode, it accesses the next argument designated
by nezxtarg and binds Yi to the argument. If it is executed in write mode, a new
uninstantiated valuecell is allocated in the global stack, Yi is bound to the new
valuecell, a reference to the newly-created valuecell is placed at the location
designated by neztarg, and nextarg is incremented.
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Answers to Exercises

1.

Ci:

C1:

C2:

C3:

4.

project/3

get_constant
get_constant
get_constant
proceed

try_me_else
get_constant

get_constant
get_constant
proceed

trust_me_else_fail

get_constant
get_constant
get_constant
proceed

try_me_else
get_constant
get_constant
get_constant
proceed

retry_me_else
get_constant
get_constant
get_constant
proceed

retry_me_else
get_constant
get_constant
get_constant
proceed

trust_me_else_fail

get_constant
get_constant
get_constant
proceed

try_me_else
get_nil
get_nil
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2,A0
17,A1
2400,A2 -

C1,3
2,A0
17,A1
2400,A2

2,A0
18,A1
1200, A2

C1,3
2,A0

- 17,A1
2400,A2

c2

2,A0
18,A1
1200, A2

C3

1,A0
17,A1
1200, A2

2,A0
16,A1
300, A2

A0
Al



- 50 -

get_nil

‘proceed

L1

trust_me_else_fail

get_list
unify_x_variable
unify_x_variable

- get_list

unify_x_variable
unify_x_variable
get_list

~unify_x_variable

5.

connected/2:

‘Cc:

Cv:

Ceb1l:

Cva?2:

Cccel:

Cvbl:

Cecb:

unify_nil

get_list
unify_x_value
unify_x_variable

get_list
unify_x_value
unify_x_yariable

put_x_value
put_x_value
put_x_value
execute -

switch_on_term

switch_on_constant

try_me_else
get_constant

get_constant
proceed

retry_me_else Cvbl
get_constant
get_constant
proceed

trust_me_else_fail
get_constant »
get_constant
proceed

A2

A0 % [[X]|Y]|T], nextarg->[X,Y]
Ad % Ad->[X,Y]

A5 % A5->T |

A4 % [X,Y], nextarg->X
AB 7% AB->X

A7 % A7->[Y.nil]

A7 % nextarg -> Y

A8 % AB8->Y

Al % [X|T1], nextarg->X
A8 . Zmatch X

A9 % A9->T1

A2 % [Y|T2], nextarg->Y
A8 % match Y

Al0 % A10->T2

A5,A0 % AO=T

A9,A1 % A1=T1

Al10,A2 % AR=T2

project/3. Zrecurse

Cv,Cc, fail, fail

[a,Ccal,
[b,Ccb]

Cva2,2
a,AO
b,Al

a,A0
c,Al



- 51 -

Cca: try Ccb1,2
trust Cce1l
6.
%connected(a,b)
%connected(a, c) Groupl
%connected(b, d)
%connected(X,e):- incaming(X) Group?2
%connected(f,X):- outgoing(X)
%connected(g,h) Group3
%connected(g, i)
% The various groups the code divides into are set out above. The
% action of the indexing process directs control to the various groups
% according to the category of the first parameter.
connected/2:

switch_on_term Cv0, Cc,Group?2, Group?
% code for variable ﬁrét argurent starts here

CvO: . try_me_else Cv1,2
get_constant _ a,Al

% Start of Group 1 for switch_on:constant since it is already known
% AD=a if control passes to Ccal

Ccal: get_constant b,Al
proceed Zunified with (a,b)
Cvil: retry_me_else Cv2
get_constant a, A0
Cca2: get_constant c,Al
proceed % (a,c)
Cv2: retry_me_else ~ Cv3
get_constant - b, A0

% code for AO=b fram switch_on_const

Ccb: get_constant d,Al
proceed % (b,d)

% Start of Group 2

Cv3: retry_ne_else Cv4

% Only one clause in Group 2 so no need for try/retry/trust. Therefoe
% Group?2 labels a statement in {he code for variable argurents.
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Group2: get_constant e, Al % (X,e):- incoming(X)
execute incaming/1

Cv4: retry_me_else Cvs
get_constant f,AO0

% Start of Group 3
% code for AO=f from switch_on_const

Cef: get_variable AO0,A1  ZAO0->X
execute outgoing/1 % (f,X):- outgoing(X)
Cv5: retry_me_else CvB - .
get_constant g,A0
Ccgl: get_constant h,Al
proceed % (g.h)
CvB: trust_me_else_fail
get_constant g.AO
Ccg?2: get_constant i, Al
proceed % (g.,1)

% code for constant arguments goes here
% it must transfer control among the various groups.

Cc: try Groupl1,2
’ retry Group?2
trust Group3

Groupl: switch_on_constant [
[a,Cca] % try clauses (a,...)
[b,Ccb] % try clause (b,d)

Group3: switch_on_constant [
[f.Ccf] % try clause (f,X)
[g.Ccg] % try clauses (g,...)

]

% try/retry/trust sequences for (a,b),(a,c) and (g.h),(g,i)
% in Groupl and Group3. Single clauses need no try/retry/trust
% so that Ccb and Cecf label clauses in the main code, i.e.

% (b,d) and (f,X).

% clauses (a,...)
- Cea: try Ccal,2 %(a,b)
trust Cca2 Z%(a,c)

% clauses (g,...)
Ceg: try Ccgl,2 Z%(g.h)
trust Ccg? %(g.i)
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