
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

'lhe Interaction retw'eerl Prolog
and Relational J:e.tabases

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

by
Raf VENKEN *

Internal Rep:>rt
BIM-prolog IR6

September 1984

** Katholieke Universiteit I.euven
Department of Canputer Science
Celestijnenlaan 200A
B-3030 Heverlee Belgium
tel. +32 16 20 06 56

DEWB = Diensten van de eerste minister: Programnatie van
het Wetenschapsbeleid.

SPPS = Services du premier ministre: Programmation de la
Politique Scientifique.

•

THE INTERACTION BETWEEN PROLOG AND RELATIONAL DATABASES.

by

1. Abstract.

Raf Venken

8.I.M .
Kwikstraat 4

B-3078 Everberg
Belgium

This paper summarizes the results of the study of the different
compilation techniques to transform Prolog queries in conjunctions of
data base calls. A brief survey of existing compilation techniques is
given. followed by a short intro uction to partial evaluation. Then we
demonstrate how this technique could be used as an alternative to the
previous compilation techniques.

We further investigated the different ways and techniques to
effectively integrate an existing Prolog and data base system. We give
a survey of the different concepts and state the requirements for data
bases to allow such integration. The impact on the Prolog system is
analysed.

2. Introduction.

Host applications written in Prolog use only a limited number of
rules. which can therefore be kept in the internal data structures of
a Prolog system. However. depending on the nature of the application.
there can be a considerable amount of el mentary facts that cannot be
mastered in core and thus would have to be kept on secondary storage.

One approach to solve this problem is to integrate a suitable file
system into the Prolog interpreter. The advantage of this approach is
that the access to elementary facts can be realized very efficiently
by implementing a dedicated retrieval scheme for the Prolog partial
match queries. The manipulation of the facts on secondary storage is
invisible to the user. the access and manipulation of elementary facts
is translated automatically by the dedicated Prolog system in a series
of elementary manipulations of the underlying dedicated file system.
Examples of this approach are described in <Ven81>, where the
K.U.L.-Prolog is integrated with a multi-level B+ tree mechanism. and
in <Llo8J> and <Ram8J> who incorporated a multi-key hashing method for
dynamic file access into HU-Prolog.

The disadvantage of this approach however is that the file system is
dedicated to the Prolog type · of data access and is not easily
accessable from existing software tools. On the other hand, the only
way to access the data residing in existing and eventually huge
databases is to convert them (eventually partially) into the dedicated
filesystem. which can be very impractical and time consuming .

The alternative solution. which we investigate in this paper. is to
use a conventional relational data base system which solves the fact
storage and retrieval problem. and integrate it. as a ·back-end·. with
the deductive part (the inference mechanism of Prologl.

3. Transforming Prolog queries into data base calls.

There are essentially two ways to transform a Prolog query into a
conjunction of database calls. The first is the so called ·compiled
approach· (see work of Reiter, Kellogs et al. and Chang in <Gal78>1.
the second the ·interpretive approach· (see <Ven81> or <Cha82>). ln
this section we describe also the partial evaluation technique and
show how it can be used as a compromise between the former two
methods.

3.1 The compiled approach.

In the compiled approach it is assumed that the procedural statements
are non-recursive. Therefore one can apply procedural statements until
all goal statements consis of relations that are known to be stored
in the database. The result is then a conjunction of database calls
which is passed to the database for answering. There are two methods
to reali~e this approach. one requires some modifications to be made
to the Prolog system. which essentially consists of delaying database
calls until one has one conjunction of database calls that can be
handled by the relational database. The second method avoids to make
this changes to the Prolog system by the construction of a Prolog
metasystem. a Prolog system written in Prolog. that simulates the
behaviour of the former system.

The advantage of the compiled approach is that the calls to the
database are clustered together in a conjunction which can be the
subject of some less or more elaborated optimisation process (see e.g.
<War81>). One great disadvantage of the compiled approach is the
restriction to non-recursive rules. This problem has been partially
solved in <Hen84> where it is shown how recursive queries can be
compiled towards iterative programs. Further investigation should
point out how this compilation technique could be used in a
compilation of Prolog to an iterative language.

J.2 The interpretive approach.

In the interpretive approach one interleaves searches of the database
with deductive steps. Each time a database call is encountered by the
Prolog system. this call is sent to the database for evaluation. the
Prolog system resumes execution with values obtained from the first
resulting tuple. the remaining tuples of the solution of the query are
consumed one by one on backtracking.

One possibility to implement this scheme is to change the database
system in this way that it always gives the first tuple which answers
the query to the Prolog system. The next tuples are provided on demand
of the backtracking mechanism of the Prolog system. This approach can
be implemented with a stack. all tuples are stored on a stack and
consumed one by one by the Prolog system on backtracking. It appears
that one only needs one stack for storing the resulting tuples of

consecutive database calls. Hore details concerning this approach can
be found in <Ven81>.

A variant of this approach is the socalled set-oriented approach
<Cha82>. In contrast with the previous approach, which typically
generates the search tree one node at a time, the set-oriented
approach manages the entire unification set at each node. The Prolog
system has a set of substitutions instead of a single substitution at
each node and the operations are performed on the whole set. The task
of generating, including intersection and union of unification sets is
delegated to the data base system which can handle it in an efficient
way. This approach requires a considerable change in the Prolog system
and a special data base system which can take advantage of some
parallel processing.

Of all these approaches the stack-oriented interpretive approach seems
to be the closest to the logic programming philosphy. However, in the
context of an interactive natural language system for querying data
bases it seems appropriate to consider an alternative method which. as
the compiled approach, could permit an optimisation process on the
order of data base calls. The partial evaluation technique adapted for
data base manipulation seems an ideal alternative.

3.3 Partial evaluation.

It is very likely that in the near future a large part of the
programming will be done in higher level languages. These languages
seem appropriate tools for efficient problem solving but pose one
serious problem: because of their high level of abstraction they seem
not too appropriate to be executed efficiently on conventional
sequential machines. This forces the programmer for the moment to fall
back on low level programming languages or styles at the expense of
clarity and programming methodology.

In <Kom81> partial evaluation of Prolog programs is investigated as a
part of a theory of interactive. incremental psogramming, with the
goal to provide formally correct. interactive programming tools for
program transformation. These program transformation tools will play
an eminent role in program optimisation.

The initial goal of partial evaluation is to transform Prolog programs
into more efficient ones. ~ is optimisation is accomplished by mainly
three techniques instantiate the parameters of a program by
propagating values for top-level arguments through the program
(perform the unification process at compile time). reduce the number
of logical inferences by opening calls and by evaluating builtin
predicates (builtins for short) whenever possible. Partial evaluation
can be seen as a compile-time application of the basic mechanisms.
which are normally applied at run-time. A Prolog program is converted
to a semantically equivalent Prolog program. where unification and
evaluation is already partially done, thus needing less logical
inferences at run-time. In <Ven84> it is described how a partial
evaluation system can be built on the basis of a Prolog meta-inter­
preter.

The effect of the partial evaluation on a program interacting with a

relational database. is very similar to that of the compiled approach
: the transformed program consists of a conjunction of builtins (which
were not evaluable at compile time), calls to recursive rules and
database calls. Each recursive rule is partially evaluated to a
similar conjunction of calls. As in the compiled approach the calls to
the data base are clustered together and can be optimised using
statistical (<War81>) or semantic information (<Kin81> or <Ham8O>1.

The evaluation of the resulting programs however is very similar to
the interpretive approach. A normal Prolog system can be used to solve
the builtins and recursive rules, the conjunctions of data base calls
are transferred to the data base system, the results. a set of tuples.
is again stored on a stack and consumed one by one on backtracking of
the Prolog system. The change to be made to the Prolog system is
exactly the same as in the interpretive approach.

4. Integration of a Prolog system and a relational Database system.

4.1 Some concepts.

In <Gal83 >, the
system on one
identified :

A

most essential conceptual blocks to build a Prolog
hand and a database system on the other hand are

B

! DEDUCTION ! ! ELEMENTARY ACCESS !
! KNOWLEDGE !---------------------------! PER TUPLE

C D E

! DATA DESCRIPTION ! COMPL. ACCESS ! ! OPTIMISED !
! DATA MANIPULATION !----- ! JOINS. . . . ! ----- ! ACCESS

A conventional Prolog system consists of building blocks A and 8, a
con entional database system of the blocks C, O and E. These building
blocks however can be combined in different ways for special purposes.
A Prolog+ system is defined as a combination of blocks A. 8 and E.
i.e. a Prolog system extended with a dedicated file access. which
permits efficient access to a great amount of elementary facts stored
on secondary devices. Prolog-D8 stands for a combination of A. D and
E. which permits some optimisation to be done on conjunctions of
database calls. Adding building block C gives us a so called logic
database wich incorporates typical database functionalities as
integrity constraints, views, etc. These 3 kinds of systems have all
the Prolog system as kernel. One could also start from an existing
conventional database system and add a deduction component {A and C. D
and E) to obtain a deductive database. and add functionalities like
incomplete information and deduction rules.

4.2 Level of access.

On the functional level there are different ways to access a

relational database system:

On the upper layer we could think of a system that translates Prolog
database queries into a SQL-type of querylanguage. These queries could
be answered by a standard database system, this would ask only a very
simple interface that fits in the scheme of the compiled approach.

In the compiled approach one could also think of a lower layer of
access which solves a conjunction of database queries. The standard
optimisation of the database system can then be replaced by a more
domain dependent or application ependent optimisation scheme residing
in the Prolog system.

Even lower levels of access can be useful in the context of the
development of information systems in Prolog. Primitives to query
single relations. or even to manipulate filepointers and individual
tuples should be available then. In this case the responsability for
the optimisation process is shifted towards the application
programmer. It is feasible to implement the higher levels of access in
terms of this last one.

p

R
0
L
0
G

join of edb-calls
<----------------------------->

answer to join

! optimisation !
!-----------------!
! implementation

of join
individual relation !-----------------!

<-----------------------------> ! strategy to get !
set of tuples ! tuples of rel.

seek
getnext

<----------------------------->
1 tuple

!-----------------!
I

! access modules
via index

The ways to effectively integrate an existing Prolog system and a
commercial database system evolve in a natural way from this scheme.

4.3 Prolog and SQL.

Since a database query as stated in Prolog. is essentially a
conjunction of calls to elementary relations, it is evident that any
relational query language can express those queries. A simple way thus
to couple a Prolog system and a relational database is to use the
compiled approach or the partial evaluation approach and translate the
resulting conjunctions of database queries into the available database
query language. On execution of the program the query is translated
into the query language and transmitted to the dat~base system, the
answers on the other hand have to be translated into the internal
Prolog format.

We studied this approach for the SOL/SEQUEL type of languages. The
results of this investigation can be summarised as follows :

- The form of the conjunctions of database calls as they appear in
Prolog correspond with the following SQL-type of query

SELECT <variables> FROM <union of relations>
WHERE <set of equalities>

This type of query is general enough to express all queries than can
be expressed in the framework of Prolog. The transformation to be
made is rather simple and straigthforward.

- However in this case one does not use the full power of the SQL-like
language, these generally provide special constructs for special
types of queries, but when these special queries are expressed in
the unique Prolog form, it is not always evident or simple to make
the conversion to the appropriate SQL-query.

- When using this kind of interaction. it is not possible to control
the process of optimisation, in general it is not possible to switch
off the optimisation process. or even to recognize (on reading the
reference manual) if there is an optimisation at all. In particular
it is not clear if the order of relations in the union or conditions
in the set of equalities has an impact on the response time of the
database system.

- The answer of the database system to the query is usually very human
oriented and not machine or Prolog oriented, this implies that a
transformation has to be applied on the resulting tables to convert
th~m to the internal Prolog format.

- The only requirement imposed on the database system is that it can
be invoked from a procedural language and that results of a query
can be collected within that language. This technique has been
tested with the integration of Ingres which offers the possibility
to embed QUEL statements between the language statements) and
Prolog.

4.4 Prolog and a conjunction of database calls.

An other way to realize an integration between Prolog and relational
database systems is offered by the partial evaluation variant of the
compiled approach. The Prolog program as stated by the user is
converted in a number of rules each consisting of a conjunction of
calls to builtins. calls to recursive rules and conjunctions of
database calls. These conjunctions of database calls can eventually be
transformed into an optimised one, using different techniques of query
optimisation syntactic. statistic or semantic query optimisation
(see <War81>. <Ham60> and <Kin81>).

This technique requires a slight modifi ation to be made to both the
Prolog and the database system.

The modifications to be made to the Prolog system are very similar as
those made in the interpretive approach : when the system .during the
normal evaluation of the transformed Prolog program encounters a
conjunction of database calls. the system transfers it for evaluation
to the database system. eventually after some optimisation, the

results of the global query are furnished to the Prolog system one by
one which consumes them on backtracking. As already said before, this
approach can be implemented using a stack.

1:0nsi~b~ of the databases ~stem, it should be possible to switch
off the optimisation proce-s. This implies in general that one has
access to a lower layer of the dat base system (a socalled open
system: e.g. a system that offers a standard interface to some
conventional programming language as Pascal or C) or to the source
code of the system (in which case one can apply any desired
modification).

It is very important to consider the possibilities of some
par llellism once the database system has found the first solution
to the query coming from the Prolog system, the Prolog system can
continue its deductions, while the database system works in parallel
to find alternative solutions which can be stored on a stack to be
consumed later by the Prolog system on eventual backtracking.

We essentially see two possible approaches :

- Open system : the database system includes a conventional language
interface to all needed primitive actions.
The database system can be seen as a set of subroutines which can be
included in the Prolog system. The Prolog system has to be split up
in two parallel processes one which handles the normal Prolog
functions. the second which would solve the database queries coming
from the first process by calling the appropriate database
subroutines and giving back subsequent solutions on demand to the
first process.

- Closed system if the database system offers no such language
interface, the only way of integration is offered by modification of
the source of the database system.
Again we have two processes : the first is the normal Prolog system
augmented with a layer of communication and synchronisation with
other processes. The second process is the database system enriched
with the same layer of communication and synchronisation and a
modification of the standard interface : concerning the syntax of
the queries it can handle and concerning the syntax and the way it
gives back solutions on demand. This approach is being tested in the
integration of Prolog and Unify.

4.5 Primitive database actions.

Depending on the application which has to be written in Prolog, it can
be necessary to provide the Prolog programmer with an access to the
same primitive actions as used in the 'Open system·-approach by the
Prolog system itself. E.g. if one writes the optimisation module in
Prolog (which is a reasonable choice). the programmer needs access to
some kind of datadictionary containing statistical or
meta-information, which is stored in the same way as the raw data.
Access to this kind of information has to be structured and optimised
by the programmer himself, using a more primitive kind of interaction,
which is similar to the approach proposed in <Rie81> (however. they
propose this kind of approach in the overall interaction between a

conventional programming language and a database system).

The level of interaction needed in such approach are of the following
kind positioning and moving filepointers, extracting records from
files, manipulating buffers and values. etc .. which are generally
offered in a conventional language interface and can be implemented as
desired when having access to the source code.

5. Implementation of a database interface at the Prolog side.

The
the
user
obeys

idea behind the actual implementation, which we are finishing for
moment. is to make the da~abase as invisible as possible to the

and to permit the connexion of any relational database, which
the requirements stated above. without changing the Prolog

system.

5.1 The view of the Prolog user.

The only impact on the way the user writes its program, is the fact
that he has to declare the external database relations, eventually
these declarations can be generated from a datadictionary. The
programs are then fed into the partial evaluation system which
semi-automatically transforms and optimizes them. The calls to
relations which reside on the external da abase are transformed in the
appropriate formalism.

5.2 The view of the Prolog system.

The Prolog system activates the database process and establishes a
communication channel between its own and the database process. The
conjunctions of database calls are transmitted across this channel in
an appropriate syntax. the database replies with a first result. i.e.
a set of values which the Prolog system assigns to the appropriate
variables. The Prolog sys em continues evaluation of the program,
eventually containing other database calls. on backtracking,
subsequent solutions to the queries are requested from the database
and consumed in the same way. Eventually, on encountering a 'cut' in
the Prolog program, some solutions, still pending on the stack of the
database. are not needed anymore, a special discard convnand is
transmitted then from the Prolog system to the database. In the same
way. 'insert'. 'delete' and 'update· can be implemented.

At first sight the implementation is straightforward : a database call
is a backtrackable builtin predicate. the conjunction is transmitted
across the communication channel, by numbering the occurring variables
in an appropriate way, the assignment of the values is simplified. But
there is one little problem the constants coming back from the
datab_ase system are to be stored in the constant table of the Prolog
system. due to the fact that the amount of constants returned from the
database can be huge, some precautions have to be taken. In principle
there are two solutions an appropriate garbage collector or a
temporary constant table for database constants.

5.2.1 Garbage collector.

When the Prolog system has an appropriate garbage collector which

cleans the constant table too, one could solve the problem of the huge
amount of constants eventually coming from the database system as
follows the constants are stored in the normal constant table.
whenever this table is full, the garbage collector is activated. The
principle of this kind of garbage collection is very simple :
constants referenced by Prolog code, active variables and structures
are marked, all unmarked constants are deleted. To optimize this
process. one could permanently mark the constants referenced by the
static Prolog code, i.e. the compiled ode.

The disadvantage of this approach is in the case of an interactive
system depending on the size of the different tables. the garbage
colsection can be time consuming. degrading thus t e immediate respons
time to the user.

5.2.2 A temporary constant table.

The constants can also be stored on a temporary constant table which
can be organized as a stack, since the constants will never be
referenced anymore they can savely disappear from the stack on
backtracking. However, in order to not increase the computing time of
the unification, some precautions have to be taken in order that
constants are not duplicated in both tables or in a single table : if
the constant is already in the permanent constant table it should not
be duplicated in the temporary one, also in the temporary table a
constant should appear only once. There is no need for a reference
count since the constants disappear in a stackwise manner. last in
first out.

There are however some problems with the non-logical features of
Prolog : i.e. the assert and the cut. The effect of the assert is that
a temporary constant can become a permanent one. It is not possible to
shift the constant at the time of the assert from the temporary
constant table to the permanent one, since the constant can be
referenced by other database variables from later queries. these
constants as we said are not duplicated for the sake of efficiency of
the unification. Therefore we propose to only shift the constant from
the temporary table to the permanent one on backtracking, when
normally the constant would disappear. Then however a reference list
has to be constructed for each constant used in an assert in order to
change the references when shifting the constant. One can see that a
same mechanism has to be provided for builtin predicates like bagof or
setof .

. A stack frame on the temporary constant table corresponds with a
database query and is referenced by a corresponding choicepoint on the
run-time stack of the interpreter. On encountering a 'cut' the Prolog
interpreter normally removes a certain number of choicepoints from the
stack. This however is not possible for database choicepoints : on
backtracking the temporary cons ant table has to be cleaned up. using
the information which resides in the choicepoint. One can see that
only the last (i.e. the oldest) database choicepoint is needed. A set
of database choicepoints can then be replaced by a single dummy
clean-up choicepoint.

The disadvantage of the temporary constanttable is the complexity of

the implementation and a slight overhead for the 'cut'-operation. The
advantage is that the constant table is kept cleaner and garbage
collection is not needed frequently.

6. Conclusion.

We described the
conjunctions of
Prolog system
some comments
realized at the

different ways of transforming a Prolog program in a
database calls and the mechanisms to integrate a

and an existing database system effectively. We gave
how the interface to the database system could be
Prolog side.

The minimal requirement for a database system (or database machine) to
be connectable to the Prolog system enhanced with a database interface
as described above, is that it is either an Open system or that we
have access to the source code (and a minimal assistance or
documentation in order to apply the desired modifications).

This interface has been implemented in our Prolog system. The
connexion with Ingres and Unify has been realized.

7. Acknowledgements.

This research has been done pa.rtly under contract KBAR/SOFT/1 (a grant
from De Oiensten voor de Programmatie van het Wetenschapsbeleid) and
partly in the context of the ESPRIT Pilot Project 107 (sponsored by
the Commission of European Communities). The author wishes to thank
Maurice Bruynooghe, Bart Demoen. Jose Cotta, Gerda Janssens, Horst
Adler and John Gallagher for their useful comments on previous drafts
of this paper.

8. References.

<Cha82>

<Gal78>

<Gal83>

<HamBO>

<Hen84>

<Kin81>

<Loy83>

<Ram83>

Chakravarthy. U.S., Minker,
predicate logic languages
First Int. Logic Programming
Gallaire, H .. and Minker,
Plenum Press, New-York 1978.
Gallaire, H., Minker. J ..

J. , and Tran, C. , Interfacing
and relational databases, Proc.
Conference, Marseille 1982.

J .. , Eds .. Logic and Data Bases.

and Nicolas, J.M .. Logic and
Databases an overview and survey, Report CERT/CGE,
University of Maryland, 1983.
Hammer, M .. and Zdonik, s .. Knowledge based query processing,
Proc. 6th Int. Conf. on very large Databases. Montreal 1980.
Henschen, L. and Shanim, A.N .. On compiling queries in
recursive first-order databases, Journal of the Association
for Computing Machinery. Vol. 31. No. 1, 1984
King, J., Quist : a system for semantic query optimisation in
relational databases. Proc. 7th Int. Conf. on very large
Databases, Cannes 1981.
Komorowski. H.J., A specification of an abstract Prolog
machine and its application to artial evaluation, Linkoping
studies in Science and Technology Dissertations. No. 69,
Softwaie Systems Research Center, Linkoping University, 1981.
Lloyd, J.W., An introduction to deductive database systems,
The Australian Computer Journal. Vol. 15, No. 2. May 1983.
Ramamohanarao. K., Lloyd, J.W .. and Thom, J.A .. Partial match

retrieval using hashing and descriptors. ACM Transactions on
Oatabase systems. Vol. 8. No. 8, 1983

<Rie81> van de Riet, R.P .. Wasserman, A.I .. Kerstens, M.L., and de
Jonghe, W., High Level Programming Features improving the
Efficiency of a Relational Oatabase System, ACM Transactions
on Database Systems, Vol. 6, No. 3, 1981.

<Ven81> Venken. R., A simple relational database as an extension for
Prolog, (in Outchl. Undergraduate Student Thesis. June 81.
K.U.Leuven.

<Ven84> Venken. R .. A Prolog meta-interpreter for partial evaluation
and its application to source to source transformation and
query optimisation. Proceedings of ECAI '84, september 1984.
Pisa.

<War81> Warren. D.H.O.. Efficient processing of interactive
relational database queries expressed in logic, Proc. 7th
Int. Conf. on very large Databases. Cannes 1981.

