
Design and Simulation of a Sequential Prolog Machine

W F Clocksin

Computer Laboratory

University of Cambridge

Com Exchange Street

Cambridge CB2 3QG, England

Keywords: Prolog, sequential inference machine, compiler, virtual machine

ABSTRACT

Prolog-X is an implemented portable interactive sequential Prolog system

in which clauses are incrementally compiled for a virtual machine called

the ZIP Machine. At present, the ZIP Machine is emulated by software,

but it has been designed to permit easy implementation in microcode

or hardware. Prolog-X running on the software-based emulator provides

performance comparable with existing Prolog interpreters. To demon­

strate its efficiency, compatibility, and comprehensiveness of implementa­

tion, Prolog-X has been used to compile and run several large applications

programs. Several novel techniques are used in the implementation, par­

ticularly in the areas of the representation of the record:,; database, the

selection of clauses, and the compilation of arithmetic expressions.

1. Introduction

The motivation and key principles behind the design of sequential Prolog (Clocksin

and Mellish, 1981) machines are described in (Yokota, et al., 1983). In this paper

we describe an abstract Prolog machine, called the ZIP machine, which is suitable

for implementation in software, microcode, or hardware. The main requirements of

the design are that

• It should be portable.

• The Prolog syntax should be compatible with DECsystem-10 Prolog (Warren,

1979), a. de facto standard. Unlike the DECsystem-10 implementation however,

there should be no perceived operational difference between compiled clauses

and interpreted clauses.

• It should imply a. high-performance implementation suitable for large-sea.le

co=ercia.l and industrial applications.

These conflicting requirements have led to the design of a. system which is a. rea­

sonable compromise. The ZIP ma.chine forms the basis of a. working Prolog system,

ea.lied Prolog-X, which has been implemented twice in different computer languages,

and which has been transported to several operating systems and three different

versions of Unix.

Prolog-X contains a. resident compiler which incrementally compiles Prolog

clauses into compact bytecoded instructions which a.re then emulated by software.

Using the software emulator, the ZIP ma.chine runs Prolog programs a.t a. speed sim­

ilar to purpose-built Prolog interpreters, but slower than if programs were compiled

into-native ma.chine instructions. The primary intention of the software emulator is

that it should serve as a. model for a. microcode or hardware implementation from

which one can expect higher performance.

Two fundamental principles have guided the design of the ZIP ma.chine:

• Despite decreases in the price of memory, compact representations of code and

data. will continue to be important for languages such as Lisp and Prolog, which

generally have poor locality of reference. Compactness should improve locality,

which in turn should improve interaction with caches and paging.

• It is important to use !ow-overhead implementation techniques which "sea.le

up" well. The performance of the system must not decrease dra.ma.tica.lly and

disproportionally as the size of the application program increases.

Consequences of these principles will be discussed below.

The ZIP ma.chine uses a. similar principle of operation as the DECsystem-10

Prolog system of Warren (1977), modified to incorporate ta.ii recursion optimisation

(Warren, 1980). The ma.in differences a.re:

2

-(

• The use of copying instead of structure-sharing as the means of constructing

compound terms.

• Choice points are created only when required instead of at every procedure

call.

• Potentially global variables in the final goal of a clause are made global only if

required at run-time, instead of by default at compile-time.

• Extra checks are made at run-time to detect determinate computations as early

as possible.

Many aspects of the ZIP machine are similar to a new Prolog machine design inde­

pendently proposed by Warren (1983). The first implementation of ZIP predated

Warren's new proposal, and specifies the design of some components, such as arith­

metic, which are not covered in Warren's new proposal. In addition, the Prolog-X

system built around the ZIP machine removes several restrictions imposed by the

DECsystem-10 Prolog system:

• The user perceives no difference between compiled clauses and interpreted

clauses (except for performance). For example, any clause in the database

may be examined and modified.

• Database references from one clause to another are permitted.

The ZIP machine is defined by a word format, a set of registers, the format of storage

areas, an instruction set, and assumptions about the layout of data structures in

memory. Prolog data-structures are represented by a tagged 32-bit word, and Prolog

clauses are represented as sequences of 8-bit bytes. In the Prolog-X system, a

resident compiler (written in Prolog) incrementally compiles clauses into a compact

bytecode sequence. Each instruction consists of a one-byte operation code followed

by up to two arguments.

The bytecode emulator consists of a number of small routines that define the

different operations. Some instructions can be executed in three different modes,

so there is a separate routine for each mode.

The first version of the Prolog-X system was written in Pascal under VMS for

the DEC VAX in 1982. It was then ported to the ICL 2980 under VME, and the

3

.(

bytecode emulator wa.s subsequently tra.nsla.ted into the VME systems programming

la.ngua.ge S3. The first version wa.s a.lso used a.s the ha.sis of a. sepa.ra.te Prolog

implementation design study (Bowen, Byrd, a.nd Clocksin, 1983). The second (a.nd

current) version of Prolog-X is a. tra.nsla.tion of the first version into the C la.ngua.ge.

This version runs on the following ma.chines: the ICL Perq under PNX (similar

to System ill Unix), the HLH Orion (ma.de by High Level Ha.rdwa.re, Ltd.) under

Berkeley Unix 4.1, the DEC VAX under Berkeley Unix 4.2, a.nd the IBM 3081 (370

architecture) under MVS.

To demonstrate its efficiency, compatibility, a.nd comprehensiveness of imple­

mentation, Prolog-X ha.s been used to run Cha.t-80 (Warren a.nd Pereira., 1982)

a.nd PRESS (Sterling, et a.1., 1982), two large programs written originally for

DECsystem-10 Prolog.

A study is currently in progress to estimate the feasibility of microcoding the

HLH Orion to emulate the ZIP Ma.chine. The HLH Orion is a. 32-bit micropro­

grammed processor with performance compa.ra.ble with a. DEC VAX-11/750. Pre­

liminary estimates suggest a. speed ranging from 15K to 25K LIPS, depending on

the extent of the emulation a.nd on properties of the pa.rticula.r program executed.

2. Data Words

Every da.ta. structure is represented by a. (t + 11)-bit word which is divided into

a. ta.g field of t bits in length, a.nd a. va.1 field of II bits in length. The ta.g field is

idea.Uy 8 bits long, but Prolog-X uses only 4, encoding unique ta.gs a.s unique 4-bit

integers. With more bits a.va.ila.ble, a. redundant coding could be used to speed up

certain ta.g tests. The va.J field is idea.Uy 32 bits long so tha.t single-precision floating

point numbers ca.n be represented directly. Prolog-X uses a. 28-bit va.l a.nd does not

implement floating point numbers a.t a.11. Integers in the range -2 28
••• 228

- 1 a.re

represented directly in the va.J, a.nd ha.ve ta.g INT. The 16 primitive tagged objects
.(

a.re a.s follows:

Tag Mnemonic

0

1

INT

FLOAT

Val

integer value

float value

Purpose

integer

single-precision float

2 BOX pointer to a BLOCK cell byte string

3 ATOii pointer to an atom cell atom

4 TERII pointer to a compound term compound term

5 CONS pointer to a list cell list cell (special case)

6 LINK pointer to a variable binding instantiation

7 UNDEF pointer to self unbound variable

8 FUNCTOR pointer to a functor cell functor information

9 BLOCK byte count header of null-padded byte string

10 EMPTY unused to catch bugs

11 TERIIIN unused terminate internal chains

12 CLAUSE pointer to clause cell clause information

13 TABLE component count + 1 header for word table

14 TABREF pointer to TABLE cell vector

15 PROC pointer to a procedure cell procedure

Except for one special case, the compound term of arity n is represented by a

TERII pointer to a cell of n + 1 words. The first word of the cell is a FUNCTOR-tagged

pointer to the appropriate functor cell. The components of the term follow in the

subsequent words. The compound term of arity 2 having functor '.' is co=only

used as a list constructor, so a special case representation is provided. To represent

a list cell, a CONS-tagged word points to a cell of two words, which correspond to

the head and tail of a list. The alternative method used in some implementations is

to represent a list cell as a compound term of arity 2, using a TERll-tagged pointer

to a cell having at least three words (functor, head, and tail).

Some of the above tags are not strictly necessary. It is possible to represent

procedures, clauses, tables, and functors as compound terms or tables. This would

provide a more uniform and simple set of data structures, but would cost more in

memory fetches. For example, to test whether something is a clause, we test the

tag, which is very fast. Representing a clause as a compound term would mean

testing for a clause by fetching and testing its header (a functor pointer).

-(

3. Layout of Data Object Cells

In common with other cell representations used in LISP and POP-2, multiword

storage cells are accessed by a tagged pointer to the first word in the cell. The

most obvious difference is that LINK pointers are allowed to point directly to words

within a cell. Although constants can be represented as functors of arity O, ZIP

does not use this convention; a functor of arity O is consistently represented as an

atom, preventing unnecessary construction of functor cells. Any unused component

of a cell is occupied by a TER!HN word.

We now show the layout of each data object understood by ZIP. We do not

suggest that these layouts have been optimally designed. In particular, some of these

objects contain extra fields for debugging and diagnostic purposes not connected

with the execution of the ZIP machine. For example, given a compiled clause cell,

it is possible to follow back a chain of pointers from its procedure to its functor to

its atom, for the purposes of printing its name for diagnostic purposes.

ATOM. The ATOM word points to a three-word cell.

(1) A hash chain, continued by an ATOM pointer or terminated by a TEIDIIN word.

(2) A functor chain, continued by a FUNCTOR word or terminated by a TEIDIIN word.

All functors having the same name but different arity are linked into this chain.

(3) A BOX-tagged word pointing to the byte string block containing the atom name.

FUNCTOR. The FUNCTOR word points to a cell of four words.

(1) An ATOM word to the atom naming this functor.

(2) An INT word containing the arity of the functor.
I

(3) A FUNCTOR word pointing to the next functor cell of any other functors of the

same name having different arities.

(4) A PROC word pointing to the procedure cell, if any.

PROC. The PROC word points to a cell of six words:

(1) An INT word containing various flags.

(2) An ATOM word naming the module in which the procedure is defined.

(3) An ATOM word naming the module in which the procedure is visible.

6

(4) A FUNCTOR word pointing to the functor associated with this procedure.

(5) A PROC word pointing to the next procedure with the same functor, but with

different module characteristics.

(6) The clauses for this procedure. For Primitive Procedures, this is an INT word

identifying the particular Primitive. For procedures defined by Prolog clauses,

this is a TABREF word pointing to a two-component table. The first component

is a CLAUSE word pointing to the first clause; the second component is a CLAUSE

word pointing to the last clause.

CLAUSE. The CLAUSE word points to a cell which represents a single Prolog clause.

Clauses are bidirectionally chained so that inserting and deleting clauses from the

chain can be performed in constant time. A clause is at least seven words in length.

The eighth and subsequent words are any Prolog data words, which collectively

are called the external references table for the clause, and are used as references to

data structures used by the ZIP instructions of the clause. Entries in the external

references table are accessed by an offset from the XC register, which always points . .

to the clause cell of the currently executing clause. The first seven words of the

clause cell are:

(1) An INT word contains various flags.

(2) A word used as a search key when searching clauses in the database. The key

is related to the first argument of the clause. The key is the same as the first

argument for constants; is an UNDEF word for variables or no first argument; is

the principal functor for compound terms; it is a CONS-tagged word (having a.f

don't care val field) for list constructors.

(3) A PROC word pointing to the procedure owning this clause.

(4) A BOX word pointing to the byte code block containing the ZIP instructions

for this clause. Byte code blocks contain only instructions and arguments.

Arguments are only literal values or offsets from a register, hence, no tagged

words appear as arguments. The reason for this is so that instructions can be

easily decoded on byte-boundaries, and so that is it never necessary to scan

the code block to find references (as required for garbage collection). Instead,

tagged words appear in the external references table, and instructions access

7

! • J
I

I
I

I
i
f
f
I
I
I
I
I
I

r
I
I
I
f
i
t
I
" • , __ ,
I

I
I

I
t
I
tit
I
t '
1Pi-. ...

these using their argument as an offset into the table. An additional advantage

is that external references are represented uniquely, thus improving compaction.

(5) An INT word containing the total size of the clause cell in words.

(6) Either a CLAUSE word pointing to the previous clause, or a TABREF word.

(7) Either a CLAUSE word pointing to the next clause, or a TERIHN word.

TERM. A compound term of arity n is represented by a TERM pointer to a cell of

length n + 1. The first word of the cell is a FUNCTOR pointer to the appropriate

functor cell. Subsequent words are the components of the compound term.

BOX. The byte string of length n bytes is represented as a BOX word pointing to a

block cell of length l(n - l)/4J + 2 words. The first word of the block cell has tag

BLOCK and val n. Subsequent words contain bytes packed four to the word, null­

padded to the nearest word. The padding is required because boxes are compared

with each other word-at-a-time.

TABREF. The vector of length n is represented by a TABREF word pointing to a table

cell of n + 1 words in length. The first word of the table cell has tag TABLE and val

n + 1. The subsequent n words contain the n components.

4. Registers

The current state of a computation is contained in a set of registers, most of which

point into the storage areas discussed below. The registers having contents valid at

all times are: -/

PM processor mode

XC current clause pointer

D current data pointer

PC current program counter

L current (target) local frame

CL current (source) local frame

CP forward continuation program counter

CLO forward continuation local frame

G global stack allocated top

8

GO global stack committed top

H heap freelist

BL backtrack continuation local frame

BG backtrack global stack top

BP backtrack continuation clause

TR trail allocated top

TR0 trail committed top

Some of the above registers are redundant in that they are caches for slots in the cur­

rent local frame. Other registers not mentioned here are scratchpad registers whose

contents are valid only during the execution of a single ZIP machine instruction.

6. Storage Allocation

Storage is allocated in four main areas, although small scratchpad stacks are used

for other housekeeping within primitive procedures not a part of the ZIP machine.

The four areas are summarised here, and more detailed discussion is given below.

• Activation records are allocated on the Local stack, which is implemented as a

true stack with contiguous storage but allowing indexing into it. Local stack

frames do not require garbage collection, as this is done automatically as a re­

sult of certain ZIP instructions which control tail-recursion optimisation. Vari­

able slots in the local frames are the source of all roots to data structures . .(

Variable slots are not initialised upon activation, because the first use of a

variable is identified by the compiler, and appropriate action is ta.ken by the

generated instruction.

• The Global stack, in which most temporary data structures are allocated,

should also be a. true stack, but it is a.lso necessary to index from arbitrary

pointers into the stack. Space is automatically recovered on backtracking, al­

though garbage collection is nowadays considered necessary to recover space

in situations where backtracking can never occur. These issues a.re discussed

below.

• Persistent data. structures are allocated in the Heap, which should be imple­

mented as a. heap. Allocations a.nd deallocations a.re programmed explicitly

9

(by using assert (X), retract (X), and other more primitive predicates). A

simple reference-bit garbage collection scheme discussed below is used. The

ZIP machine sees the heap only in that registers PC, CP, XC, and BP point

into it.

• The Trail is an historical record of variable instantiations. When certain vari­

ables are instantiated, a pointer to the variable is entered on the Trail so that

the variable can be reset when backtracking. Only variables occurring previ­

ous to the current backtracking point are trailed. The trail also holds other

information of a chronological nature required for garbage collection of clauses.

This is also a true stack, with pushes and pops being done by the ZIP machine.

In addition, the ZIP machine uses ?. small scratchpad stack when executing arith­

metic instructions, and when executing code between the !functor! and ~ in­

structions (see below).

Local stack frames, called activation records, are offset from register CL. The

order of the first eight entries is unimportant but must be consistent. A complete

stack frame stores the following entries, although in some cases (determinacy), not

all register save entries are used. An ordering could be imposed to increase speed,

as registers CP, CL0, XC, and GO are saved or restored at the same time by several-(

of the machine instructions. An activation record, in order of increasing address, is

laid out as:
(reserved)

continuation program counter
continuation local stack frame

backtrack clause pointer
global stack pointer

backtrack local stack pointer
trail pointer

current clause pointer

(arguments and local variables)

(temporary local variables)

The argument slots hold the actual parameters of the procedure call. If a variable

appears at the top-level in the head of a clause, then its value is simply that of

10

t
t

I

the corresponding actual parameter, and there is no need to allocate a variable slot

for it. Locals classified by the compiler as temporaries are allocated nearest the

top of the stack, so that the stack space occupied by temporaries can be recovered

automatically when the neck of a clause is executed.

6. ZIP Instructions

A complete list of the ZIP instructions is given in the Appendix. The ZIP Machine

is always in one of three states called Processor Modes: ARG, COPY, or MATCH. Many

of the instructions described here have alternative interpretations depending on the

current Processor Mode. Some of the instructions switch the Processor Mode.

Each instruction is encoded by a byte containing a number O ... 63, which is

combined with the contents of the PM register (2-bit Processor Mode) to form an

8-bit operation code. Arguments, if any, follow in the subsequent zero, one, or two

bytes. Arguments of an operation code are of three different types:

• An integer in the range O ... 255. This is encoded directly as an argument byte.

• A procedure argument or variable within the current clause. All procedure

arguments and variables are found in the current stack frame offset from register.(

CL, so the argument is encoded as an offset from CL.

• A functor, procedure, or constant. These are known as external references, and

data words referring to them are stored in an area of the clause cell known as

the external references table. Register XC always points to the current clause

cell, so such arguments are encoded as an offset from XC.

The instructions described here are generated by an optimising compiler writ­

ten in Prolog, and residing in the Prolog-X system. The compiler is capable of

identifying cases where full unification is not required, where data structures should

migrate to other areas, where tail recursion is used, where unit and doublet clauses

require less housekeeping, and where certain built-in predicates are translated di­

rectly as ZIP instructions (instead of generating calls). Special-purpose instruc­

tions are generated in these cases. The principles on which these optimisations

are founded is discussed in Warren (1977). There are no instructions defined for

handling disjunctions. Disjunctions are interpreted using the) callxl instruction,

which handles interpreted calls to the "cut" predicate correctly.

Before describing each instruction individually, we shall first show how instruc­

tions are generated from Prolog clauses. Suppose we are given terms t1 , ••• , t1,

u1, ••• , Um, 111, ••• , 11,., and predicate symbols p of arity I, q of arity m, r of arity

n, not all necessarily distinct. Then the clause

compiles into the sequence (here shown unoptimised):

code for t 1

code fort,
enter
code for u1

code for Um

call X

code for 111

code for v,.
call y
exit

The I enter I instruction marks the division between the head and body of the clause,

and creates a choice point if necessary. This instruction employs an argument,

not shown, giving the size of the local stack frame. Each lcalll instruction has

byte argument which refers to an entry in the external references table which is a

reference to the required procedure. Finally, I exit I marks the end of the clause,

and passes control to the.forward continuation.

Among the optimisations used here are translation of lcalll)exit I sequences

into a Jdepartl (or possibly !proceed!) instruction which handles "last call" opti­

misation (the general case of tail recursion optimisation). A discussion of this issue

appears in Warren (1980).

The compilation of terms proceeds as follows:

12

• If the term is atomic, it is translated as !constant nl, where n is an offset

from register XC used for addressing the external references table. The term

is inserted into the nth entry of the external references table.

• If the term is a variable, it is translated as lvar nl, where n is an offset from

the current stack frame register CL.

• If the term is compound (consider the compound term t(a1,•••,an), where

each a; is a term), then it is translated as:

functor f n
code for a1

code for an
pop

The !functor f nl instruction refers to an offset f from XC to an entry in the

the external references table pointing to the functor cell for the function symbol t.

The arity n is included as an argument of the instruction for efficiency. Code for

the n arguments and a housekeeping instruction follow the lfunctorl instruction.

The ZIP instruction set listed in the Appendix contains many optimised variants of

the above instructions, which are all compiled by the Prolog-X resident compiler.

For example, integer constants O $ n $ 255 compile into I immed n I instead of

taking up external reference space. The constant [], used to represent the null list,

compiles into lconstnill for the same reason. The functor '.' of arity 2, used

as a list constructor, compiles into lconslist! instead of !functor n 21, where n

would be an XC offset. There are many variants of the lvarl instruction, generated.(

as a result of a flow analysis of the clause as it is compiled. Details of the general

idea are given in Warren (1977), and are relevant despite the fact that Warren uses

structure-sharing to represent data structures. A complete list of the instruction

set is given in Appendix A.

We now give an example of the ZIP instructions into which the Prolog concate­

nate predicate compiles. Associated with each clause is a clause cell as previously

described, which contains the external references table. The code sequences shown

here constitute only the code body, and are each only a few bytes in length. The

13

concatenate(X, Y ,Z) goal succeeds when the list X concatenated with the list Y

gives the list Z:

concatenate([],L,L).
concatenate([XIL1] ,L2,[XIL3]) :- concatenate(L1,L2,L3).

The ZIP "assembly language" into which concatenate compiles is as follows.

Two code sequences are shown, one for each clause of concatenate. Many of the

instructions shown are optimised variants of those introduced above.

constnil

skipvar

var 9

return

conslist

firstvar 13

firstvar 11

pop

skipvar

lastconslist

var 13

firstvar 12

argmode

var 11

var g

var 12

proceed 1 3

unify with []

an optimisation of the first variable L

... because this one does the work

successfully pass control to continuation, no subgoals

unify the list constructor

unify the head (first occurrence of variable X)

unify the tail (first occurrence of variable Ll)

finished with that term

optimisation for variable L2

unify list constructor, no ~ needed

head X

tail: first occurrence of L3

an optimised !enter! (only 1 subgoal)

push first argument Ll

push second argument L2

push third argument L3

tail-recursive call of concatenate

The final !proceed! instruction takes a pointer to the procedure cell for coneate­

na t e from the first entry in the external references table, and performs a tail­

recursive call of three arguments, reusing the current stack frame.

The actual operation performed by each instruction depends on the context .f

provided by the PM register. During the execution of the head of a clause, the pro­

cessor is in MATCH mode, and each instruction attempts to unify its argument with

T
8
f
I
I
' I
!

the arguments of the goal. Within the code for a term, data structure construction

must be performed, so the processor switches to COPY mode so that each instruc­

tion can construct its argument by copying. During the execution of the body of a

clause, the processor is in ARG mode, and each instruction passes its argument to

the subgoal to be called. Maintaining the correct contents of PM is a simple task

performed by some of the instructions. For example, lenterl and its optimised form

jargmode! assign mode ARG to PM. The):runctorl instruction pushes the contents

of PM on a scratchpad stack and sets PM to COPY. The matching e instruction

restores PM from the scratchpad.

The current version of the ZIP machine calls for byte-coded instructions as

shown in the Appendix. As an experiment I also implemented a word-coded ma­

chine to compare relative performance. A word-coded machine stores instruction

and arguments in successive machine words, word-aligned. Because word-sized ar­

guments can therefore fit in the instruction code body, the external references table

is not required for execution; nevertheless, the external references table has been re­

tained because the reference-counting garbage collector used to maintain the clause

database also requires the information held in it. The supposed advantages of

the word-coding scheme are to obtain the improved performance possible on many

commercial processors by fetching only word-aligned data, and to remove the in­

direction overhead of accessing arguments through the external references table.

Furthermore, a word-sized instruction could be represented as the starting address

of the emulator definition of the instruction, further reducing the instruction dis­

patching overhead by means of the so-called "threaded code" technique .

. Our results for the word-coded machine (which did not use threaded code)

follow. First, program size increased by about fifty percent. For example, the size

of the initial heap image (consisting of that part of the Prolog-X system written in

Prolog) increased from 64352 bytes to 98616 bytes. Speed of execution (over a range

of programs including CHAT-80) increased by less than five percent on an HLH .f

Orion processor. This was less of an increase than expected, and can be explained

by the following post facto reasons. First, byte-fetching is not significantly slower

on the Orion processor, which fetches more than one word at a time and contains

15

a. hardware byte shifter. Most of the use of the external references table is for

referring to other procedures; fetching the external procedure reference is however

an insignificant fraction of the total amount of time required to emulate procedure

calls.

It remains to be seen the extent to which instruction dispatch can be reduced by

adopting the threaded code technique. The present implementation (in C) uses the

switch statement, which compiles into an indexed table; instruction dispatch time

can be perhaps halved by using threaded code, but portability would be sacrificed.

7. Selection of Clauses

As mentioned above, clauses a.re compiled separately and a.re bidirectionally

chained. This technique provides easy incremental compilation and modification

of the data.base. However, there a.re some disadvantages of this technique compared

with the alternative (Warren, 1983) of compiling entire procedures at a. time. When

an entire procedure is compiled as a. unit, changes of context ea.used by unification

failure can be performed more quickly. More information is available for the pur­

poses of indexing, and it is possible in principle to share co=on subexpressions

in clause heads so that unification need not be restarted every time an alternative

clause is selected.

In order to compensate for the slower context changing in the ZIP model, we

use two techniques to improve clause selection. The first technique, which is used

in other implementations, is to associate a. search key with the first argument of a.

clause. This acts as a. "filter" to reduce the amount of futile matching. The second

technique works as follows. H a. clause has been selected, the system then "looks

a.head" in the procedure for another clause that might match the goal according

to the search key. H no further clause matches, then we have discovered that the .f

selected clause can be executed deterministically (no choice point is necessary). H

another clause matches, however, the backtracking pointer is then updated to point

to the clause. It is worthwhile to spend the time looking a.head, as it is likely that

the search will be required anyway.

16

The combination of the two techniques allows, for example, deterministic exe­

cution of the concatenate predicate regardless of the order of clauses, and renders

superfluous the "cut" goal which is sometimes written for the empty-list case of

concatenate. The techniques gain more purchase on larger programs: we esti­

mate that the number of stacked choice points is more than halved when running

programs such as Chat-80.

8. Arithmetic Instructions

The Pro log goal is (X, Y) is defined to consider the term bound to Y as an arithmetic

expression, and to evaluate that term according to the rules of arithmetic, and to

unify the result with X. This goal is normally written in infix form as "X is Y".

Consider the following goal, which shifts X left by eight bits and adds Y, unifying

the result with Z:

Z is X << 8 + Y.

The usual interpretation of arithmetic expressions in computer languages admits X

and Y to be bound to numbers. However, evaluation of arithmetic expressions in

Prolog is complicated by the fact that X and Y are allowed to be bound to arbitrary

compound terms denoting arithmetic expressions. Whether a variable is bound

to a number or a compound term can only be detected at run-time, so the usual

methods for generating code for arithmetic expressions are not sufficient. Most (if

not all) Prolog interpreters implement 'is' correctly, but inefficiently, evaluating

the entire arithmetic expression at run-time by recursive descent. This evalua­

tion consumes global stack space which is recoverable only by garbage collection or

backtracking. Furthermore, co=on expressions bound to the same variable are .f

evaluated redundantly (for example, consider X is Y << 8 + Y, where Y is bound

to an expression). Another strategy is adopted by the DECsystem-10 Prolog com­

piler, which does not completely implement 'is', giving a run-time error when

variables in arithmetic expressions are bound to compound terms. This is one way

in which the DECsystem-10 Prolog compiler implements a different language than

the DECsystem-10 interpreter does, and such a difference is considered awkward.

17

. The solution taken by Prolog-X is to generate a sequence of instructions which

tests the tag of the word bound to each unique variable in the expression. If the value

is an integer, then execution proceeds normally, using the value in the subsequent

calculation. If the value is a non-integer, the ZIP machine performs a call to a

procedure, written in Prolog, which recursively evaluates the expression and passes

the result back. The instruction for performing the run-time test is I eval t1; v; I,
which for variables (local stack offsets) t1; and t1;, evaluates the term bound to

t1;, placing the resulting value in "i· During the execution of the leval t1; v;I
instruction, if the word at stack offset t1; is not an integer, then the term is (t1; , t1;)

is constructed on the global stack, and control proceeds to the ! call:z: I instruction.

Arithmetic instructions are compiled into stack (zero address) instructions.

The ZIP Machine is equipped with a scratchpad stack used by the !functor I family

of instructions during the unification of compound terms. This stack also serves as

the operand stack during the evaluation of arithmetic expressions. Some care must

be observed in dealing with this stack: the stack contents are not guaranteed over

Prolog procedure calls. Thus, levall instructions, which could cause procedure

calls, must be generated before the instructions in the goal which use the stack.

This constraint does not unduly complicate the compiler. Instead of the usual

compilation schema applied to each node of the expression parse tree

generate code to pt1,$h. arguments on stack

generate code for operator

the Prolog-X compiler first generates levall instructions for all previously unevalu-.f

ated variables in the current goal being compiled, and then compiles the goal using

the usual schema.

Here is an example of code generated from arithmetic expressions. We shall

use mnemonic variable names to denote the byte quantities (offsets from the CL

register) which are actually generated:

eval X X'

eval Y Y'

pushv X'

pushb 8

evaluate X, move result to X •.

evaluate Y, move result to Y •.

push what X evaluated to.

push the byte 8.

18

shl

pushv Y'

add

result Z

pop arguments, perform shifting, and push result.

push what Y evaluated to.

pop arguments, perform addition, and push result.

pop stack, unifying result with variable.

Although I eval I instructions are emitted at the beginning of a goal, only one

I eval I instruction is generated per unique variable appearing in the entire clause.

This prevents duplicate evaluation of common subexpressions bound to variables.

More generally, I eval I instructions are not emitted for any variables in the entire

clause known to be instantiated to integers. This of course applies to the variables

found as the left-hand argument of 'is' goals. Furthermore, if a variable known to

be bound to an integer appears as the left-hand argument of an 'is', then code for

an numerical equality test is generated instead of the more general (but in this case

unnecessary) I result I instruction. For example, the conjunction of goals

compiles into:

eval X X'

eval Z z•

pushb 3

pushv X'

mul

pushv z•
add

result y

eval w w•
pushv x·
pushv y

sub

pushv w·
add

pushv z·
eq

Y is 3 * X + Z, Z is X - W

in the second goal, only W requires possible evaluation.

Y is known to be an integer (from previous goal).

known to be an integer,

so, simply test it for equality.

19

There is a considerable increase in execution speed for those arithmetic expressions

from which ZIP instructions can be generated. Speed increases by a factor ranging

from 10 to 50 compared with the interpretation of expressions by recursive descent

with a Prolog program.

9. Discussion or Storage Allocation

9.1 Local Stack

When a goal succeeds determinately, its local frame is discarded. If the procedure

is determinate at the point where the last goal in the body of the clause is about to

be called, then the frame for that goal replaces the frame for the procedure. This is

how tail recursion optimisation is implemented. One problem is as follows. Suppose

a goal replaces a frame that has variables that refer to the goal. In this special case,

which is detected during compilation, space for the affected variables is migrated to

the global stack. The instructions generated to perform this task are !glofirvarl

and lglovarl (see Appendix A). Migration may not in fact be necessary, and a

run-time check determines this.

9.2 Global Stack

As mentioned above, garbage collection is required for the global stack only when

inaccessible structures are created in the absence of backtracking. The current

implementation ofProlog-X does not perform garbage collection in the absence of

backtracking. If it is necessary to garbage collect the global stack, then a normal

mark-sweep-reallocate algorithm can be used. References to data in the global

stack are rooted in the local stack variables. A refinement of the usual algorithm

recognises that it it not strictly necessary to mark accessible structures if it is known

that the local variable will not be used subsequently in the current goal. This has

the effect of reclaiming much space that normally would not become inaccessible

until a determinism has been committed. Other relevant issues are discussed below.

9.3 Heap

Clauses and database entries are stored in the heap using the assert and record:.

predicates, respectively. They are incrementally garbage collected after they have

been erased, but only after they are not being used in a proof (a running program),

and after no database references to them exist. Two bits for each clause are required

for this purpose: a CLAIMED bit and a DOOMED bit. H a clause is being used in

a proof, then the CLAIMED bit is set. When backtracking proceeds to the point

at which the clause is no longer used, then the CLAIMED bit is cleared. It is at

this point the clause can be deallocated if it has been erased during its use in

the proof. The chronologically first claim of a clause is sufficient for it to remain

claimed until the chronologically last use of a clause is discarded. This property

results from the strict depth-first execution model used in Prolog-X procedure calls.

In addition, database references to clauses are permitted, and a reference count field

is used for this purpose. The reference counting system meshes conveniently with

the claiming system, and full details of the incremental garbage collection method

used are discussed by Clocksin (1984).

Compilation of clauses loses information about the source form of a clause. In

DECsystem-10 Prolog, this has the effect of preventing the user from performing

database operations (such as retract and clause) on compiled clauses, and this is

another awkward difference between compilation and interpretation. In Prolog-X

we get around this problem by compiling the input clause, and then compiling a

unit clause of predicate source, in which the input clause appears as one of the

arguments of the head of source. The advantage of this is that source terms are

compactly represented as the ZIP machine codes necessary to construct a copy of the

source term. Clause searching and matching is done by the usual mechanisms of the

ZIP machine, and database references are used to link between a compiled term and

its compiled source. The result is a very convenient and efficient implementation

permitting full access to compiled clauses via looking up its source term.

Because clauses are compiled into the database, the time taken to execute a

record is greater than if clauses were copied as terms into the database. For this

reason, a small, fast compiler, which does no optimisations, is used for recording

21

instead of the usual compiler (used for asserting). Having unoptimised code, which

may occupy twice the space of optimised code, is justified by the temporary nature

of recorded terms. It must also be borne in mind that access cost (executing

recorded) is greatly decreased by our method, because the benefits of compilation

are exploited. This technique is fully described in Clocksin (1984).

10. Problems with Storage Management

The strict Prolog execution model permits the use of stack-like memory man­

agement, with which storage is reclaimed i=ediately upon backtracking. This

property confers a number of advantages. Under usual circumstances, the need for

costly allocation and garbage collection of cells from a heap is obviated. Also, most

heap garbage collectors do not allow pointers to within cell bodies, thus prevent­

ing the most efficient way of implementing Prolog variable bindings. Furthermore,

allocation from stacks improves locality of reference.

Despite the advantages of stack-like storage management used by Prolog-X,

there are two problems with this method. First, certain Prolog programming tech­

niques rely on never backtracking, using Prolog goals to simulate perpetual processes

which co=unicate via shared variables. Such techniques (Shapiro, 1982; Warren,

1982) are more popular now than when Prolog-X was first designed, and are likely

to form the foundation of future applications written in Prolog. Prolog-X however

relies on backtracking to reclaim any redundant data structures constructed, and

because no further garbage collection is performed, Prolog-X is unable to reclaim

such structures in the absence of backtracking. Implementing a garbage collector

for the global stack is only a short-term measure which does not counter the second

problem.

The second problem arises from another recent trend, that of mixed-language

programming with shared data structures. With systems such as Poplog (Mellish

and Hardy, 1982) and LM-Prolog (Kahn, 1983), it is possible to share data struc­

tures and to call procedures between Lisp and Prolog programs, and this leads to

· a very attractive programming methodology. Such systems are most conveniently

implemented by the use of a co=on virtual machine together with a co=on

22

garbage collected heap. The ZIP machine, on the other hand, is tailored so exclu­

sively to the stack-like execution model of Prolog that it would be impracticable to

compile Lisp programs, say, to run under the ZIP machine. Perhaps a future sys­

tem could be designed around a heap-based common virtual machine, considering

carefully the interaction with long-term and short-term data structures, and with

incremental garbage collection.

Acknowledgements

The work reported here owes much to preliminary design effort in collaboration

with Lawrence Byrd, a discussion with David Warren, and to much good advice

contributed by Richard O'Keefe and Arthur Norman. Transporting the first version

of Prolog-X to the ICL 2980 under VME was done by Paul Cager, Alan Reiblein,

and Jim Doores of ICL. Transporting the second version of Prolog-X to the IBM

3081 was done by Alan Mycroft.

References

Bowen, D L, Byrd, L M, and Clocksin, W F, 1983. A portable Prolog compiler.

Proceedings of the Logic Programming Workshop, Albufeira, Portugal.

Clocksin, W F, 1984. Implementation techniques for Prolog databases. Computer

Laboratory, University of Cambridge. To appear in Software-Practice and Expe­

rience.

Clocksin, W F, and Mellish, CS, 1981. Programming in Prolog, Springer-Verlag.

Kahn, K, 1983. Unique Features of LISP Machine Prolog, UPMAIL Report 14,

University of Uppsala, Sweden.

Mellish, C S, and Hardy, S, 1982. Integrating Prolog in the Poplog Environment,

Cognitive Science Research Paper 10, University of Sussex.

Shapiro, E Y, 1982. A subset of Concurrent Prolog and its interpreter, Technical

Report TR-003. Institute for New Generation Computer Technology, Tokyo.

23

Sterling, L, Bundy, A, Byrd, L, O'Keefe, R, and Silver, B, 1982. Symbolic reasoning

with PRESS, in Computer Algebra (ed J Calmet), Lecture Notes in Computer

Science 144, Springer-Verlag.

Warren, D H D, 1977. Implementing Prolog - compiling logic programs. Research

Reports 39, 40. Department of Artificial Intelligence, University of Edinburgh.

Warren, D H D, 1979. Prolog on the DECsystem-10, in Expert Systems in the

Micro-electronic Age (D Michie, editor), Edinburgh University Press.

Warren, D H D, 1980. An improved Prolog implementation which optimises tail

recursion, Proceedings of the Logic Programming Workshop, Debrecen, Hungary.

Warren, D H D, 1982. Perpetual processes - an unexploited Prolog technique, Logic

Programming Newsletter, 3, 2.

Warren, D H D, 1983. An abstract Prolog instruction set. Technical Note 300. SRI

International, Menlo Park, California.

Warren, D H D, and Pereira, F C N, 1982. An effici~nt easily adaptable system

for interpreting natural language queries. American Journal of Computational Lin­

guistics 8, 110-122.

Yokota, M, Yamamoto, A, Taki, K, Nishikawa, H, and Uchida, S, 1983. The design

and implementation of a personal sequential inference machine: PSI. New Genera­

tion Computing 1, 125-144.

APPENDIX

A complete list of the ZIP instructions is given in the table below. Each

instruction is followed by zero to two arguments. Arguments are byte-sized, and

are interpreted in one of three possible addressing modes, denoted n, a, and t1 in

the table.

n The argument is a ZIP word, located as the nth word of the external references

table of the current clause (addressed by register XC).

24

...---

a The argument is the byte a, not sign-extended. In the immed and pushb in­

structions, a forms the lowest significant eight bits of an !NT-tagged ZIP word.

11 The argument is a Prolog variable, located as the 11th variable in the current

local stack frame (addressed by register CL).

25

Mnemonic Opcode Arguments Description
con.atant 11 II unify constant
immed 27 .. unify constant small integer
con■hil 35 unify the constant ' [] '
functor 9 II a. unify functor of arity a.
la■tfu11ctor 10 II a. unify last functor in a nested term
con■list 33 unify the functor ' . ' of arity 2
laatco111liat 34 unify the last functor ' . ' of arity 2 in a nested term
void 1 unify an anonymous variable
void11 32 .. unify a. consecutive anonymous variables
akipvar 8 unify fl.rst occurrence of an argument variable
■kipVII 31 .. unify a. consecutive fl.rst occurrences of argument variables
fir■tvar s • unify fl.rst occurrence of local or temporary variable
glofirvar 29 • unify fl.rst occurrence of variable in last goal
glovar 30 • unify subsequent occurrence of variable in last goal
var 4 • unify subsequent occurrence of variable
pop 1 complete a compound term
popmatch 2 complete a compound term in the head of a clause
poparg 3 complete a a compound term in the body of a clause
proceed 18 II a. call the only goal in a clause
depart 16 II a. call the last goal in a clause
call 17 II call a goal
callx 26 • ,. convert a term to a goal and call it
return 13 .. the neck of a unit clause
argmoda 14 .. the neck of a doublet clause
enter 12 .. the neck of a clause
exit 25 end a clause having an open-coded last goal
cut lS .. compiled ' I '
fail 19 compilea fail
provar 20 • compiled var (I)
pronon.var 21 • compiled IIOIIV&r (I)
proatom 22 • compiled atom(I)
proillt 23 • compiled integer (I)
proatomic 39 • compiled atomic (I)
proaimple 40 • compiled aimpl■term(I)
IUCC 24 compiled ■ucc(l,T)
proarg 36 compiled arg(I, T, Z)
profu11ctor 37 compiled f011ctor (I, T, Z)
proequal 38 compiled I • T
eval u o1 •t variable {binding unknown) in arithmetic expression
puahb 42 4 small integer in arithmetic expression
puahi 43 II large integer in arithmetic expression
puahv u • variable (known to be integer) in arithmetic expression
fir■traault 6 • unify result of arithmetic expression with a fl.rstvar
reault 45 • unify result of arithmetic expression with a variable
add 46 integer addition
■ub 47 integer subtraction
mul 48 integer multiplication
div 49 quotient of integer division
mod so remainder of integer division
shr Sl bit shift right
■hl 52 bit shift left
and 53 bit and
or 54 bit or
not SS bit complement
neg 56 integer negation
aq 51 integer equality
H SS integer inequality
lt 59 integer less than
la 60 integer less than or equal
gt 61 integer greater than
ga 62 integer greater than or equal to

