The ZIP Virtual Machine
W F Clocksin

January 1983, with subsequent revisions

Prolog-X is an implementation of Prolog which makes use of an abstract
(virtual) machine called the ZIP Machine. The ZIP Machine is defined by a
pointer format, 32 registers, the format of storage areas, an instruction set,
and assumptions about the layout of data structures in memeory.

POINTERS

Every data structure is represented by a (T+V)-bit word which is divided
into a tag ficld of T bits in length, and a val ficld of V bits in length. The tag
field should be 8 bits long. The present software simulator (Prolog-X) reserves
8 but uses about 4. The val field is ideally 32 bits long so that floats can be
represented directly. The present software simulator uses a 24-bit val and
does not implement floats.

The following formats denote data structures:

TAG MNEMONIC VAL PURPOSE

0 INT integer value integer

1 FLOAT float value float

2 BOX pointer to a block cell raw byte string
3 ATOM pointer to an atom cell atom

4 TERM pointer to a term instance term

5 LINK pointer to variable referent instantiation
6 reserved reserved

7 UNDEF uninstantiated variable variable

8 FUNCTOR pointer to a functor cell functor

9 BLOCK byte count cell header

10 EMPTY don’t care to catch bugs
11 TERMIN don't care terminate chains
12 CLAUSE pointer to a clause cell clause
13 TABLE word count + 1 cell header
14 TABREF pointer to a table cell vector
15 PROC pointer to a fixture procedure

Some of the above tags are not strictly nccessary. It is possible to represent
procedures, clauses, tables, and functors as gencral terms. This would provide
a more uniform and simple set of data structures, bul would cost more in

mecmory [ctches. For example, to test whether something is a CLAUSE, we test

the tag, which is very fast. Representing o clause as a term would mean test-
ing for a clause by fetching and testing its term header (a functor pointer).
With little extra effort we could make clauses, etc, seem like terms to the user,

and this is donie most of the time.

LAYOUT OF DATA CELLS

In common with other systems used in LISP and POP-2, multiword storage
cells are accessed by a pointer to the first word in the cell. The most obvious
difference is that LINK pointers are allowed to point directly to words within a
cell. Other pointers to within cells are stored in the Trail, discussed below.

[ATOM | ---]------ > [ATOM | ---]---> (hash chain)
[FUNC| --]--> (functor chain)
[BOX | ---]---> (name string)
[FUNC| ---]------ > [ATOM| ---]---> (atom backpointer)
[INT | arity]
[FUNC| ---]---> (next functor)
[PROC| ---]---> (procedure chain)
[PROC| ---]------ > [INT |flags]
[ATOM | ---]---> (defining module)
[ATOM | ---]---> (visible module)
[FUNC| ---]---> (functor backpointer)
[PROC| ---]---> (next procedure)
[|] (clauses INT or TABREF)
[CLAU| ---]------ > [INT |flags]
[] (index key (various))
[PROC| ---]---> (proc backpointer)
[BOX | ---]---> (code block)
[TABR]| ---]---> (XR table)
[1] (clause backpointer)
[1] (next clause)

[TERM | ---]------ > [FUNC| ---]---> (functor pointer)
(1]+

|
| (N components)
. |
[|]+

[BOX | ---]----> [BLOC| N]
[-+
I
| (N bytes, 0 padded)
: I
[)=

[TABR| ---]---—-> [TABL| N]--+
t 1 11
l
| (N words, incl header)
- I
(1 J-+

REGISTERS
The major registers are:

XC current clause pointer

XR external references pointer

D current data pointer

PC current program counter

L current (target) local frame

CL current (source) local frame

CP forward continuation program counter
CLO forward continuation local frame

G global stack allocated top

GO global stack committed top

H heap freelist

BL backtrack continuation local frame
BG backtrack global stack top

BP backtrack continuation clause

TR trail allocated top

TRO trail committed top

Other registers are internal temporarics or status bits, ctc.

DATA STRUCTURES

Storage is allocated in four main areas, although small scratchpad stacks
arc uscd for general unification, reading terms, and other housekeeping that is
not a part of the ZIP Machine. The four areas are summarised here, and more
dctailed discussion is given below.

= Activation records are allocated on the Local stack, which is implemented
as a true stack with contiguous storage but allowing indexing into it. Local
stack frames do not require garbage collection, as this is done automati-
cally as a result of certain ZIP instructions. Variable slots in the local
frames are the source of all roots to data structures.

« The Global stack, in which most temporary data structures are allocated,
should also be a true stack, but it is also necessary to index from arbitrary
pointers into the stack. Space is automatically recovered on backtracking,
although garbage collection is nowadays considered necessary to recover
space in situations where backtracking can never occur. Garbage collec-
tion of the global stack is discussed below. Persistent data structures are
allocated in the Heap, which should be implemented as a heap. Allocations
and deallocations are programmmed explicitly (for example asserting and
retracting clauses), so a simple reference bit garbage collection scheme
discussed below is used. The ZIP machine sees the heap only in that regis-
ters PC, CP, XR, XC, and BP point into it.

« The Trail is an historical record of variable instantiations. When a variable
is instantiated, a pointer to the variable is entered on the Trail so that the
variable can be reset when backtracking. The trail also holds other infor-
mation of a chronological nature required for garbage collection. This is
also a true stack, with pushes and pops being done by the ZIP machine.

In addition, the ZIP machine uses a small scratchpad stack when executing
code between the FUNCTOR and POP instructions.

Local stack frames, called activation records, are offset from CL. The
order of the first cight entries is unimportant but must be consistent. A com-
plete stack frame stores the following entries, although in some cases (deter-
minacy), not all register save entries are used. An ordering could be imposed
to increase speed, as registers CP, CLO, XC, and GO are saved or restored at the

same time by several of the machine instructions.

o

(reserved)

CP A
CLO

BP

Go

BL

TRO

XC

N OO W -

A e —— o — s

(arguments and local variables)
(temporary local variables)

The argument slots hold the actual parameter's of the procedure call. If a vari-
able appears at the top-level in the head of a clause, then its value@simply
that of the corresponding actual parameter, and there is no need to allocate a
variable slot for it. Locals classified by the compiler as temporaries are allo-
cated nearest the top of the stack, so that the stack space occupied by tem-
poraries can be recovered automatically when the neck of a clause is exe-

cuted.

INSTRUCTIONS

The ZIP Machine is always in one of three states called Processor Modes:
ARG, COPY, or MATCH. Many of the below instructions have alternative
interpretations depending on the current Processor Mode. Some of the
instructions switch the Processor Mode.

Each instruction is encoded by a byte containing a number 0..63, which is
combined with the contents of the PM register (2-bit Processor Mode). Argu-
ments, if any, follow in the succeeding zero, one, or two bytes. The argument
bytes encode cither an XR-pointer offset, a CL-pointer offset, or a literal value
0..255.

In the description of each instruction, we will use the verb ‘to mode’ to
mean 'to take appropriate action depending on the current Processor Mode'.
Depending on the current Processor Mode, moding involves: constructing argu-
ments on the local stack (ARG), or unifying individual data structures with oth-
ers (MATCH), or constructing new individual data structures (COPY). The D
Register is normally maintained at the destination of the moding operation.
How much work the processor does depends on what is moded. For example,

moding anonymous variables involves little or no work.

All of these instructions are generated by an optimising compiler. The
compiler is capable of identifying cases where full unification is not required,
where data structures should migrate to other arcas, where tail recursion is
used, where unit and doublet clauses require less housekeeping, and where
certain built-in predicates are translated directly as ZIP instructions (instead
of gencrating calls). Speccial-purpose instructions are generated in these
cases. It has been found that over 80 percent of code generated is spec-ial-
purpose. Thus when the descripticn below refers to a 'general case’, it does
not mean ‘fast and most popular’, but usually means 'slower and rarer’.

immed n Modes the integer n.
constant n Modes a constant at XR+n.
functor n a Modes a functor of arity a at XR+n. This instruction is fol-

lowed by instructions that mode cach component of the

A

lastfunctorn a

void

voidn n

skipvar

skipvn n

firstvar v

glovar v

glofirvar v

varyv

functor, and then a matching ‘pop’ instruction.

Modes a leaf functor of arity a at XR+n, but no matching
‘pop’ required.

Modes an anonymous variable. Under certain conditions no
opcration is performed.

The next n modings are with anonymous variables.

The variable at D is known to be moded later (if at all!), so
we can ignore it now. Under certain conditions no operation
is performed. .
The next n variables starting at D are known to be moded
later (if at all), so they are ignored now.

Mode the first occurrence of a temporary or local variable

at CL+v which is known to need moding now.
Mode a variable at CL+v, and migrate it to the global area.

Mode the first occurrence of a variable CL+v and migrate it
to the global area.

The general case: mode a variable at CL+v. The most com-
mon use of this instruction, during ARG mode, entails very
little work. A var in ARG mode is also the most popular
instruction, being used almost ten times more than the next
most popular instruction.

pop. popmatch, poparg

rcturn a
argmode a

cnter a

proceed n a

depart n a

call n

callx v

exit

These three instructions pop the mode context pushed by
the FUNCTOR instruction. Some of them change the Proces-

sor Mode.

Enter the neck of a unit clause, stack frame Size a.

Enter the neck of a doublet clause, stack frame size a.

The general case: enter the neck of a clause having more
than one goal. Stack frame size is a.

Call the only goal in a doublet clause. The procedure of
ari'ty a is at XR+n. If deterministic, then single solution is
implied.

Call the last goal in a clause. The procedure of arily a is at
XR+n. If deterministic, then single solution is implied.
General case: call a goal XR+n.

The term at CL+v is to be considered as a goal, and called.
The really really general case (interpreted higher-order
functions; a 'call(X)' compiles into this).

The last goal is an open coded construct, so this forces an

exit from the current procedure.

N i N RONES. W LAR N

1w esGoeR

cut a The activation in the current frame of size a is the only solu-
tion (a 'cut’ compiles into this).

fail The current activation is noi a solution (a ‘fail' compiles into
this).

provar v, prononvar v, proatom v, proint v
In-line tests of CL+v for var, nonvar, atom, and integer (the
built-in predicates var, nonvar, atom, integer compile into
these). The compiler also attempts where legal to tran-
splant these to the left of an ENTER instruction for better
performance.

There are no instructions defined for disjunction or arithmetic. These
facilities are currently written in the base language, and called using pro-
ccdure calls. This actually gives an incorrect definition of disjunction, for
which it is nccessary to do tricks with the activation recprdmtended
junction. Al minimum, instructions will be required for add, subtract, multi-
ply. divide, remainder, bit and, bit or, bit not, bit xor, shift left, and shift right.
These instructions would use cither CL or XR offsets to obtain arguments, and
we must therefore also provide a hack to permit passing expressions though
variables to be interpreted at run-time.

NOTES ON USE OF STORAGE AREAS AND GARBAGE COLLECTION

Local Stack. When a goal succeceds determinately, its local frame is dis-
carded. If the procedure is determinate at the point where the last goal in the
body of the clause is about to be called, then the frame for that goal replaces
the frame for the procedure. This is how tail recursion optimisation is imple-
mented. Onc problem is as follows. Suppose a goal replaces a frame that has
variables that refer to the goal. In this special case, which is detected during
compilation, space for the affected variables is migrated to the global stack.

Global Stack. As mentioned above, garbage collection is required for .the
global stack only when inaccessible structures are created in the absence of
backtracking If it is necessary to garbage collect the global stack, then a nor-
mal mark-sweep-reallocate algorithm can be used. References to data in the
global stack wre rooted in the local stack variables. A refinement of the usual
algorithm rccognises that it it not strictly necessary to mark accessible struc-
tures if it is known that the local variable will not be used subscquently in the
current goal This has the eflect of reclaiming much space that normally
would not become inaccessible until a determinism has been committed.

Heap. Clauses, which are stored in the heap, are garbage collected after
they have been retracted. Two bits for cach clause are required for this pur-
posc: a REFERENCED bit and a DOOMED bit. Any built-in predicate that returns

a clause pointer checks the REFERERNCED bit. If the bit is sct then no action is

taken. lf—L}1TExL xs clégxr, then we must set the bit and record a trail entry.

When a clause is retracted, the REFERENCED bit is checked. If the REFER-

ENCED bit is clear (most often the case), then the space occupied by the

clausc is recovered immediately. If the REFERENCED bit is set, then it is not

possible to immediately rcc?vcr the spece (o(r it. Instead, the DOOMED bit is
. Clape P W e Koletaon—— L

sct. When backtracking past ajtrail entry, thlblt is cleared. If at this time the

DOOMED bit is set, then the space occupied by the clause is recovered.

It is possible that references to cells on the heap may continue to be refer-
cnced after the clause in which th,;fy appear has been removed. Instead of
adopting a reference count for such cells, it is possible to scan the trail for
references to variables that refer to the cells. This is possib(lj expensive for
long trails, but the simplicity of the scheme may outweigh the alternative of
full reference counts and some new instructions, as has been proposed else-
where.

Ideas on garbage collection and storage allocation have changed since this

was written. The later notes are in a separate paper.

