
Prolos Installation for Swstems Prosrammers 26th June ;79
---------------- .----------------==----==--------===---=-=---

1 + Introd•Jction

This note contains the information needed to build, modify and debug
the DECswstem-10 Prolos system. It also lists all the source and derived
modules which make the Prolos sYstem.

2+ Conventions

Unfortunately, there are hot as yet fully obewed coding and namins
conventions for the Prolos swstem. However, some rules have more or less been
followed:-

a Prolos source file has extension .PL;
- a functors definition file has extension .FNS;
- a file of ProloS external definitions has extension .EXT;
- a file of commands to be used bY the comPiler has extension .CCL;

a relocatable file containins modules each cominS from a different
source file has extension .LIBf

- the filenames of Prolos mod1..1les 1Jsed in the interpreter or com?iler
have first letter z;
names of entry Points or external Gu,ntities besin with s;
files created by SUBFIL comPaction have extension .MAS.

3. Where are the sources

Sources are com?acted bw SUBFIL in .MAS files. However, if a module has
been recently modified, the copy in the .MAS file is the previous version,
and the current version is available as a sinsle file+

All the Prolos sources needed for the interpreter or the compiler are
in PLS.MAS. All the Macro sources needed for the runtime swstem are in
PLM+MAS.

To extract File1, ••• Filen from name.MAS, use the MIC command

/XTRACT <File1, ••• ,Filen>,name

4, How to create a swstem from scratch

The following files should exist in the directorw:-

PLC.EXE
PLM+MAS
PLS.MAS
START.FNS
◊+CCL
PLC.EXT
O.EXT
MACRO.MIG
COMMON.MIG
COMLIB+CMD
PROLOG+MIC
PROLIB+CMD
PROLOG.CMD
PLC.MIG
PLCLIB+CMD
PLC.CMD

a workins comPiler
swstem's Macro sources
swstem's Prolos sources
initial functors: '[J', •. ✓ and ✓•✓(_,_)

defines the loadins seGuence for Prolos Prosrams
external definitions for the comPiler
external definitions for the interPreter
assembles the swstem's Macro sources
compiles the Prolos sources common to every Prosram
creates COMMON.LIB (called from COMMON+MIC>
creates the interpreter
creates PROLOG,LIB (called from PROLOG+MIC)
loads the interpreter
creates the compiler
creates PLC.LIB (called from PLC.MIG)
loads the compiler

Besin bw exploding both PLM+MAS and PLS+MAS:-

+R SUBFIL
*PLM+MAS
*PLS+MAS ~c

After this, delete ans files with extension .NEW which maw have been
created if there are newer sources in the directors. Now, excute the MIC
command /MACRO, to assemble the Macro sources. Continue bw executing the
MIC command /COMMON, to comPile the Prolos modules common to the interpre­
ter and the comPiler. Now, the MIG command /PROLOG will comPile, load and
save a new interpreter NP.EXE, and the command /PLC will comPile, load
and save a new compiler, PLCN.EXE.

If sou are sure that the new interpreter and comPiler are working well,
delete or rename to other names PLC.EXE and PROLOG.EXE, and rename NP.EXE
to PROLOG.EXE, PLCN+EXE to PLC.EXE+

5. Lawout of the swstemrs relocatable files

To save space and simPlifs handling, the relocatable modules which
form the comPiled Prolog sYstem are organized (Perhaps not in the best wa~)
in libraries. We list now the correspondence between source files and relo­
catable libraries. Each source is tagged either with A Call Prosrams), C
CcomPiler>, I (interpreter), R (programs which reauire it - the interpreter
needs all these), N (only for naked programs>, or B (used bw compiler,
interpreter and Programs which reauire it):-

PLLIB2+REL

PLRUN2+REL

PLINI2 ♦ REL

IOLIB2+REL

MHEAP.REL

SHIFT.REL

GARBGE+REL

COMMON.LIB

PROLOG+LIB

sources which make it UP

PLLIB2+MAC A

PLRUN2.MAC A

PLINI2.MAC A

IOLIB2+MAC A

MHEAP.MAC A

SHIFT.MAC A

GARBGE+MAC A

ZIOCTL.PL A
ZSYNER+PL B
ZOPS.PL B
ZRECAL+PL B
ZTOKE+PL B
ZNAME.PL B
ZMISC+PL B
ZINHTA.PL A

ZEGALF.PL R
ZWRITE.PL R
ZDBASE.PL R
ZREAD+PL R

basic runtime routines

core control, I/O, etc.

small integers, Prolog start/up

heap management

stack shifts

garbage collection

Prolog I/O interface
s~ntax errors rePortins
operators
'tag•, 'tasged' and runtag•
read tokens
'namer eval pred
common useful Preds
initialise hash table

•==' eval Pred
writes terms
internal database
reads terms

PLC.LIB

START.REL

CTRAF'+REL

ZSVWX.REL
ZKNOW+REL

ZUNIV.PL
ZSTATS.F'L
ZINPFH .PL
ZSAVE+PL
SAVE.MAC

ZSCAN.PL
ZTMPCO+PL
ZMREAD.PL
ZADMNO.PL
ZAflMN1.PL
ZADMN2+PL
ZCLAUS.PL
ZBLOCS.PL
ZGOAL1.PL
ZGOAL2.PL
ZDCG+PL
ZLTERS.PL
ZRTERS.PL
ZFLAG+PL
ZEVAL1+F'L
ZEVAL2+PL
ZEVAL3+PL
ZCSTAT.PL
-Ml06'J+MAC

AIIBfH. MAC

START.PL

CTRAP.MAC

ZSVWX.PL
ZKNOW.PL

R
F~
R
R
F<

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
bf

N

I

I
I

✓ =••' eval Pred
statistics rePortins
initialises ProPertY table
interface to 'save'
'save' and 'restore'

parses comPiler commands
calls other Prosrams
'metaread'
comPiler control
functors and exts files
outputs Macro code
compiles a clause
comPiles a Procedure
compiles soals

•
compiles srammar rules
compiles terms in head
compiles terms in body
sisnals various conditions
compiles arithmetic

compiler statistics
da. .. fftr,r '.bG?rt' C-'1,all,')

starts naked Prosrams

interpreter -c trap

interpreter control
interpreter main loop

PROLOG+REL

ZNOEXT+REL

PLC.REL

Produced when comPilinS the interpreter

ZNOEXT+PL I dummy main module

Produced when comPilins the compiler

6. How to update a module

First, ~et a COPY of the source as described in 3. Edit it, and recomPile
as described in the next section, Producing a relocatable file, module+REL,
saY+ Now consult the list in the previous section. If the module is Part of one
of the .LIB relocatable libraries, name.LIB, saw, you must UPdate that librarw,
usins the MIC command

/UPDATE name,module

The relocatable file module.REL is included in name.LIB, module.REL is deleted
and the old version in name.REL is stored in module.OLD.

7+ RecomPilins a module

If the module is a Macro source, module.MAC, Just sive the command

+COMPILE module

If the module is a Prolog source for the comPiler, module.PL, twPe the
incantation

+RUN PLC
ProsramtPLC/S/M
:module
:J]

If there are new functors, a file PLC.MAC is created, which must be
doctored by

EDIT PLC.MAC
JfCOR:l=V
$$V

*X
.COMP/COMP PLC
.DEL PLC+MAC,PLC.BAK

If the module is a PROLOG source for the interpreter, incant

.RUN PLC
ProSiram:PROLOG
:module
:J]

If there are new functors, O.FNS must be updated as follows

commands

.COPY O.FNS=PROLOG.FNS

.DELETE PROLOG.FNS

If the module is Part of COMMON.LIB, beware!. ComPile it with the

.RUN PLC
prosramtCOMMON
:module
:JJ

, and wou sould not Produce COMMON.REL. If there are no new functors, all is 0
If there are new functors, you are
recomPile from scrath the interPre

trouble, because you must now
rand the comPiler ! You can either

- 8 minutes CPU) /PROLOG and /PLC do this, using the (time consumin
MIC commands, or else, as an int rim solution, compile the module
the Prosram YOU want to update PLC, PROLOG>, save the current co·~-~
COMMON.LIB with some other name'f and then update COMMON.LIB as
described in 6+ The new COMMON.LIB will no lonser be loadable with all
Prolog Programs, but onlw with the one YOU are uPdatins and the ones
which do not use the chansed module+ This solution must be corrected
soon bY recomPiling from scratch, lest You forget about it and get into
trouble.

e. Adding a new module to a library

If you have corr.Piled a new module into module+REL, and want to add
it to name.LIB, Just incant

+R MAKLIB
*name.LIB=name+LIB,module/APPEND
JfC,..C

You should now include the name 'module+REL' in the aPProPriate library
buildins control file <COMLIB+CMD, PROLIB+CMD or PLCLIB+CMD>, and also
the instructions for its compilation in the aPProPriate MIC file (MACRO.MIC,
COMMON+MIC, PROLOG+MIC or PLC.MIG).
9. Loadins instructions for prosrams

The loading instructions for Prolog programs are included bw the
comPiler in the Prosram file, which coPies the instructions for normal
Prosrams from O.CCL, and for naked Pro~rams from NAKED.CCL. These files are
in the standard CCL format for LINK-10.

Prosrams compiled with the S switch (scratch) have no loadins instructions
included. In this case (the comPiler is an example) wou have to create your
loading instructions - thew should at least include the loading of all the
modules tassed with A in 6. Examine PLC.CMD to see this in the case of the
comPiler+

10+ Standard functor files

The compiler re~uests automaticallw O+FNS, which contains all the
interPreter functors, when there is no .FNS file for the prosram
beinS comPiled. If YOU want to create Your functors from scratch, copy
a functors file for wour Pro~ram from START+FN~.

11. Standard externals

The compiler uses O.EXT, containins all the external declarations
for the evaluable Predicates, if there is no .EXT file for the Prosram
beins comPiled. Notice that O.EXT must be uPdated whenever new eval
Preds are defined.

12. Universal files

There are four universal symbols files in the swstem, IDENS2.UNV
MACROS.UNV and IDENSF.UNV for the swstem Macro modules, and EQS2.UNV for the
assembly of compiled Prolo• Prosrams. Only EQS2.UNV must be available for
seneral usa•e, in the Prolos directorw.

IDENS2.UNV is produced form IDENS2+MAC, IDENSF.UNV from IDENSF+MAC,
MACROS.UNV from PLMAC2+MAC, and EGS2+UNV from EQS2+MAC. The .REL
files produced when those Macro files are comPiled are not needed, and
can be deleted.

Chanses to the Prolos compiler - 15th June '78, version 1(7)

1. Virtual memorw and non-virtual memors cPeraticn

See the 1st ParaSraPh of Section 1 of PROL22,TXT

2. New er chansed evaluable Predicates

See Section 2 of PROL22,TXT

3. Internal chanses

The instructions for LINK-10 to lead the runtime modules with a
comPiled Prosram are no lonser Siven in a sPecial MIG file (LOAD.MIC and
NAKED.MIC). Instead, the compiler Produces code so the runtime ssstem is loaded
automat:icall!::!+

To load a Prosram PROG, with modules MOD1, MOD2, ~ive the Monitor
comm,;~nd

.LOAD PROG,MOD1,MOD2

This command will load the Prosram as a Part ot the interpreter, and you
will have all the interpreter functions available to ~ou.

If ~ou want to load sour ProSram with selected runtime modules instead of
the full interpreter, sou must use one of two comPiler switches, IN or /S.
The N switch is remuired when wou want to load sour Program with JUST the
runtime modules it uses. The S switch is used if wou want to control wourself
what runtime modules are loaded.

Supposins sour Program is called MYPROG, to comPile it to be leaded
automaticalls with the runtime modules it reauires, the compiler command
should be

.RUN F'LC
Proeram:MYPROG/N

modules

:JJ
With this option, Your Prosram can NOT call the evaluable Predicates

_:break', the various 'assert's, and 'retract'. Also, -c interruPtions will not
,..work. The evaluable PT'edicate ,. abort', I/O and stack ful 1 ert'OT'S wi 11 fail to
~ the Monitor. To J.o;;~d a PT'oi.:n·ain comPi J. ed with the N switch, us€~ the ,·LOAD'

Monitor command as above.

If sou want to control sourseJ.f what runtime modules are loaded,
the switch /S should be used in the comPiler command above instead of /N,
In that case, no runtime modules will be loaded automaticall~.

Remember that the correct operation of the F'rolo• compiler reGuires
that ~ou have the Prolos area in sour seach list. You can achieve this with
the SETSRC Prosram or a switch to LOGIN, both described in the DEC 0Peratins
Swstem Commands Manual.

, Control file to create in MastaPe a Backup interchanse dump of the
; Prolos s~stem (sources excluded).
; Call bw
;
?

/s~stem <tape-id>

; where <tape-id> is the identification of the tape to be written+
; This file assumes that all files, except the User's Guide, are in the area
; where the command is being executed. The User's Guide is supposed to be in
; [400,424]. One can, however, add other directories to the current area with
; Setsrc.
~

'
; First, check if all files are available:
.error%
; Look for the comPiler and interpreter core imases
.dir Plc.exe,Prolos.exe
.if(error) .goto NOFIL
; Look for auxiliar~ compilation files
.dir start.fns,O.fns,O.ext,O.cc~,naked.ccl,eGs2.unv
.if(error> Soto NOFIL
; Look for basic runtime s~stem
.dir Pllib2.rel,Plrun2.rel,Plini2.rel,mheaP.rel,shift.rel,sarbse.rel,iolib2.rel
.if(error) .soto NOFIL
f Look for interpreter modules
.dir zsvwx.rel,zknow.rel,ctraP,rel
.if(error) +Soto NOFIL
; Look for module libraries
.dir common.lib,ProloS.lib
.if(error) .soto NOFIL
; Look for naked Prosram's special modules
.dir start.re!
,if(error) .soto NOFIL
; Look for documentation
.dir Prol22.txt,Plc7.txt,us.memt400,424J
,if(error) .~oto NOFIL
.error T
~ Now mount the tape
.mount mta!backuP/ree:'a/wen
.if(error) .soto NOTAP
; Now dump the Prolos ssstem.
; Two identical save sets with names PROLOG and PROLOGBIS are written •
• r backup
*interchanae
*ssname PROLOG
*save Prolos.exe,Plc.exe,O.fns,start.fns,O.ext,O.ccl,naked.ccl,eGs2,unv,­
*Pllib2.rel,Plrun2+rel,Plini2+rel,mheaP.rel,shift.rel,sarbse.rel,iolib2.rel,­
*common+lib,ProloS,lib,zsvwx.rel,zkncw+rel,ctraP.rel,-
*start.rel,-
*Prol22.txt,Plc7.txt,us.mem[400,424J
*ssname PROLOGBIS
*save Prolos.exe,Plc.exe,O.fns,start.fns,O.ext,O.ccl,naked.ccl,eGs2.unv,­
*Pllib2.rel,Plrun2.rel,Plini2+rel,mheaP.rel,shift.rel,sarbse.rel,iolib2+rel,­
*common.lib,ProloS+lib,zsvwx.rel,zknow.rel,ctraP.rel,-
*start.rel,-
*Pro122.txt,Plc7.txt,us.mem[400,424J
*rewind
*Print Prolos.dir
*rewind
*exit
.dis backup
+Print/coPies:2/delete Prolo•+dir

+Soto EXIT
NOFIL;;
; Missing files
.mic abort
NOTAP::
; Tape not available
.mic abort
EXIT::
; TaPe successful!~ written

