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Ak EXFORT %/

i~ Fublic vetl/ 2
rositives/ly
nesgative/l:
ron..ness 1.
non..ross 1y
non.zerosls
aoutesls
obtuses L
norn..reflexs s

# Ewrorted for convenience

AR OIMPORT %/
Fg
errar/3 from UTILITRACE

memberchk /3 from UTILISETROU

ramber/sl from LONG
eval/l
eval /2

measure/2 from notional Mecho dstzbhase
auantitwsl
anglesd
inclines3
concavitw/?
slore/2
rartition/2
xS

A MONES X/

P mode veti{i+sT)s
rositivel(t):
negativel(+l
nor.nesi+) .
non.easi+ds
nor.zera{+).
aoute(+d)y
obtuse(+).
rnon.reflewi+d

gan..combinei+s Ty
combhimne(+stsThe



im(ted)s
aub.int{+s+.
telowl(+st)s
disdoint{+s+)e
aoverlari{+s+)
marker Tlir{TsT).

defsult. .interval(F),
find.imt{+sT)s
firmd.intZits—)s
Find.int_ _srdge(4s—r2~)>»
find.simele _int{(+es—)»
mebke. assumrtion.rositive(+),

int .arrlul(tstds—)os
int.zrele. sllidste—Dy
gll are.contained(+s+)s
make_ regionsitstr—)y
arlit{(+stotr—)»
arlitli{tests—~)s
cartesizn.rroduct{+ets—~s Tl
cErt.rrod(tstete—s Ty
find.limits(+etotr—)»
clean.ur{ts—)s
limitsd{+ototrteTiy
get. bhrnds{(+stste—)s
yrdown.flir(+ste~3»
get. . bnod(ds+e—)y

orcer{(+stsTeFlrs
less thani{+s+y
caloi+sds Tl

treskur. bnds(ts=s—1s
comb(+s 7)oy

monoitsTe Tl

classifu(+s—I»
interval{4s—s=-1y
collect.intervalei{tsto~)»
- auacd{testedes ¥,

FK
etz structures
“intervals ties Torm if{lMarkersBottoms TorsRiMarker)
hOUnGa P fhize form biNsMarker)
where:
Bottoms Tors N are <numbersl

LHzrkers RMarkers Marker are one of {orenscloceald

An dinterval ranges between Bottom and Tor z2icd is oren ar closed a2t
the ends derending on LMarker {(for Bottom) z2nd RMaricer (for Tor).

A boundary is z2n end of an interval. There zre orerztions defined
over these Dhoundsries which are thern used to hels define the
orerations over intervals, Note that the notion of 2 boundsry does
NOT dnvolve anw srecific end of a2n interval {(ie Tor Bottom). Thew



)

sre g denerzlisstion over 211 such ends,

ko

“h BEE - marber (tor of code)
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X Use interval informzation - tor level ¥/
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4 Cheeck that solution is zdmissible
vet{truestrue),
vet{falsesfalse).,
val (AERsALERL) I~ vet{ArAl)s vet(BsR1),
vet (A¥BAL#RL) - velbt{(AAl)y veti(B:R1),

CiA=RsA=R) -
fFind.int{AsInta), Ffind. int{(BsIntE),
overlar(intasIntE) s

LI

vet{A=Rsfazlael,

ne

A X is rositiver nedativer zcuter eto,

sositive(X) -~ Ffindlint(Xsi{LBsTsRI)» less_ tnanib{Qsclosed)sn{BsL)).
rnegative(X) - find.int(Xsi{(LsB:sTsR}))s less_ thanibh{(TsR)sDi0rclased)),
nonLneg(x) §- findwint(Xyi(L;BaTgR))a less_ than{p{(0rorenl)sn(BsLL0) .
non.Fos(X) 3= find.int{(Xsi{LsBsT+R))» less_ than(b(TsR)sni{O0roren)),
rorLEeralXTNY - by nmonlzerol(X), %20 hoc rateoh (rerlzces nesativeiN))

nor.zera{XxX -
fimnd. int{Xsi{LsBsTsR))»
( less_ thanibh(dsclosed)sn(BL)) 7 less_ than(b(TsRI)spi0sclosedd) I
‘5

aoute(xX) -
Fimad.int(Xsi{LsBsTHrR) Iy
less_ thani(b{(drsorenlsD{(RsL) D)
less than(b{(TsR)en{(Z0r0rean) ),

obbuse(X) -
Fimd int{Xsi{LsBsT+R))>»
less_ thani{b{(¥0soren)sD{BsL.) )
less_ than{b(T+sR)0{(180ra0ren) ),

rnon.refle(X) 1-
Faimd int{Xs i {LsBsTsR))s»
less_ tharmi(b{Qsoren) sh{BsL 2,
less thani{b(TRI)0{180r0ran) ).
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i Manirulating Intervals X/
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% Combinme 2 list of intervaels b csweering list

% accumulating the compimead intervals.

gern.Lcombine{[FirstIintiRestIintslsResult)
i~ dgen.combine{RestintssFiretIntResult),

gon.combine(lrResultsResult).
gen.combine(LInt RestintslsAcoryResult)
- combine(lntrsAccsNewAoo) s
gen.combine(RestIntss NewAcosResult),
% Combine x and v intervels
combine (i (s By THoRM)r d(lLuwsBusTusRu)s 1{LsBsTsR)) i-

order(hi{TesRu)sD{(TusRue)r sD(T+sR))>»
arder{b (B L) sD(BuslL )y (Bal )oY,

%4 Number N is contzined in interval
ANy i (LeBsToRYY 31— 15
gubint{i{closedsNsNrclosed)»i{LsBsTsR)),
% ou o dinterval s contzined in second interval
gutiint il (LeBue TeRu)Ys i (LsBsToR)Y 1~
marker. . flir{lsL1)s marker . flir{(RsRK1)»
less_ tharn{b(BsL1)sb(HBxslx) )y less_ thamibh{(TxsRx)sD{(T+R1,
2w interval is whollw below v interval

melow(i(lxsByeTrsRu)si(LwsBusTusRu)) -
less_ tharn(b(TusRM)sD(Buslwldds 1,

% ox oand v intervals z2re disdoint

disdoint(IntX:sIntY) - belowl{lIntXsIntYlis I,
disdoint{IntXsIntY) - below({intY,InmtX): |,

% ¥ oand v intervals overlar
¥ overlas(IntXsIntY) - not disdoint{IntXsIntY),

overler(IntXsIntyY) - disdoint{IntXsIntY)s t» fzil.
overlari. e ),

% aren and closed are oprosites

B oTu)



% (this dis how to flir them?

marker.flir{oren,closed) - I,
marker. . flir{closedroren).

A7 AR K KK 0k S KK S O K OKOK R OR KR K KK S
A X lies inm closed or oren interval X/
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#n Worst cese defazult for intervals

vdefasult interval (i{orensneginfinityrinfinitusorend ),

%4 Lets true to do better..

fimd.int{XsInterval)

- Pindlint2{(XsResult)s %4 guzsrzntee mode (+»—1
Interval = Result,

% Cateh varizdles (shouldn't be therel)

find. . intd (U, 2
i wvariUls
Ly

aerror{’Interval rackadge diven variable! Xw LUl Fzil).

Bace cases
Numbers have roint intervazls

e d

fFirmd. . int2{XsifclosedsyXsXsclosed)) 1~ number(xX), |,

Firmdoint2(Xs Interval) i~ 2tom(X)y 1 findosimeple. inti{XsIntervall,

% Brecizl czse normalisstion
#n Cornvert 7(-1) to 1/

Fimnd.int20X7{-1)y Int) - 1>
find.int2 (17X, Inmt).

% lezl with evwronentizls to even rower
Faird it XNy 1(LsBsTsRY)Y 3~
averni{iN)s iy
Fimc o int2iana(X)y di{lLxesBrs TRy
cale( T s[hi{Buslx)sb(Nsclosed)JrD{RBL )
cale(yLhbiTusRx)eh{Nsclosed)lsD(TsRY ),
¥ Convert cosecant to sine

FimgdointZicsc{(Xre Int) - 1y Fimd int201l/sin{X)e Intd,

%2 Convert secant to cosine

Sumbols (atoms) have various srecial czses



Find.intd(seci(X)sy Int) -

Fimdoint2{icot{X), Irnt) i-

A A A

Find.int2{Term: Int) -

Py P dint2(1/c0s(X)s Int).
Convert cotangent to tazngent

by Find.int2(l/tean(xX)s Int).,

Generzl case

Recursively find intervals for zrduments znd
then int.zrrly to sort this out, This will use
monotonicity of F to czloulate intervzl of Term
from arguments.

finmd.int_ ardsi{Term:FesIntlist)s
int.agreledF Intlicsts Ity

?*

)
4

If the senerzl cazse fails

adointPisin(X)s iicloseds{~1)slsclosed)) i~ 1,
Find.int2{cos(X)» iiclosedys(~1lelescloged)) - 1,
Find.int2{Xlefault) - default_ interval(lefault). ¢

A
%

Fimnd 2 list of intervsle corresrondinsg o the
srguments of Term, Also return the functor,

find.int.ardgs{TermsFrsIntiist)

*

i~ functor{TermsFrisAritu).,

fimd.int. ardgs{lsAritesTerms Intiist),

Find.int.ards(NsMawe o[ 1)

P N O MaMse 1,

Find.int . argsiNsMaxsTern: LIntiIntRestl)

+

i~ ardi{NsTormsArsE)

M1 dis Ntls

Find. .int2{argsInt)»

find.int_ arde{NlsMaxsTerms IntRest),

A
%
A
“
%
%4
pA
“
“
%
%

Fimg the interval for 2 simele swmbol
This involves locking to see 1f wWe krow
grwthing srecizl zbout the swmbol which will
el us,

Ad hoo ratoh for gravite - eroper solution means
allowing ecuaztions between auantities and definins
g ae measurei{g:32.ft/sec™2),

Otherwise tre to classifwy sumbol (if it is z2m angle)

Otherwise assume zll nuantities zre positive

(rossibly extreme?)
IT there is no useful info we must use the default.

find simrleintigsi{orenslsinfiniturorenld) 1~ |,




Fincdosimerlednt{(XsInt) - classifulXesInt)s .,

fimd.simele_dint{Msi{orernsQOrinfinityroren)) -
measurellsMiey cuantite(),
Ly
make_ assumrtion.rositive(M) .

Fimd.simrle int{(Xsllefault) - default_intervalilefault),

4 Mazke and rememper assumstion
make_ sssumrtion.rositive(X) - assumed_rositive(Xl)s |,

make. assumrtion.rositivel X)
i~ assert{ assumed.rositivel(X) )
trace( '] azscume #4t rocitive.\n s[XIel),

e KK SO 2 0B ORS00 R B 08 38 0K K A 8 08 K KA O A0 o o K R KKK RO NOKOR OO R S
¥ Fing interval of function from intervesls of ite arduments X/
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% Simrle czse

int_ arrlu(FsRedgionsInt? -
mono(FsIssMonnls
zll. ozre.contained{Redion:Is)s
by

find . limits(FsRedgiansrMonosInt),
% Comelex Case

int.agrrlu(FsRedgion:s Int) - .
mono{FsMRedgionsMonod s
make_ regions{RedionsMRegionNewRegions)
int.zrerlu_ zll{NeuwlegionssFsIntervalSet) .
Ly
gen.comnbinel{lntervalSetsyInt).,

4 odnmtoarrle 211 intervals in 2 set (list)
intoarsrlu 2l (0l L1,

intoarelu.all{lRegionliRestl«sFLIntliIRestl)
- intoarrlu(FsRegionls Intlidy
intearrlucall{RestFrIRest) .,

% All the argument intervals zre sub intervals of
% the corresronding monotonic intervsls for the
% functiorn (from mono), {(ie marlist sub.int down
% the two *azrdument” lists),



all. . sgre. containead(lls[1),

gli zre.contzined{l{Argint!ArgRest] LFInt!FRestl)
i~ subLint{argint:Fint).
all. . agre.contazined{ArdRestsFRest),

Given thne list of azactuzl
of monotonic intervals
z set of similar intervy
zotual interval lists b
of ezch list in the set
ite corresronding monot

This amounts Lo case swrl
list into 2 set of inte
(sub! regiomns in the ni

Imelemented by srlitting
sets and taking the nl
that both srlit/ 74 a2rnag o
arder reversals - whicnh

M NN NN

make. .regions{RedionsMRedionsNewRedions) -
i~ srelit{RedionsMRegion[lrListlfSets)y
cartesian.rroductilistlfSetas Ll NewRedions

4 Given the list of actusl
“ monotonic intervals for
%# 2 list of n setss where
4 Tunction (ie the length
4 each set containsg inter
4 or outside the corresro
% dntervalse such that th
%  would combine to form t
4 interval.

%A The compining rrorertu 1
s ur the zctuzl intervaels
%4 The sets rroduced zt the
4 number of members m suc
4 The following srecizl r
4 these cases!

% singleton(
A rair{As B
“ trirle(AsB

A Im fzet the code will ¢
42 of 3 elements (trirles)
Z 0 thie is rrobable 2 bus
% this comment: around Li
% Note that the list of se
% order compared with the
Y% is imrlemented Duw 2R ey
% tehould be [1 to start
A 1e rushed,

arlit{llsLlsResultsResult).,

arlit{(fardlntidrghest]l (FIntiFRestlsSofarsResult)
- arlitlid{argintFinteSet).

intervals z2ra the list
for the furnchtiorn buila
21 lists», derived from the
ut such that each element
is wholly inside or outsice
onic function intervsl.
itting the zctuzl intervazl
rvale for more tractable
-3 Tud -0

lists to form 2 list of
cartesian sroduct. dNote
artecizn.rroduct/ 4 rerform
cancel each other out,

!!:3:)4

intervals z2rngd the list of
the functions we bHuila

n is the aritwy of the

of the lists) znd where
vals which are whollw insiade
nading monotonic function
e intervals in eazch set
he corresronding z2ctusl

ollows from the waw we srlit
L 4

moment will onle ever have
fh thatd: 1 =< m =< 3,
erresentations zre usen for.

A)

s

urrently never sroduce cets

» byt I {Lawrence) think

z0 have left the artione: 2og

1 we see. :

te puilt will be in reverse
*araument® lists. This is

trz zocunulator srsument

Wit} onto which each Set



arlit{ArsRestyFRest[SetiSofarisResuylt),

L]

Z Imtx whollw within Int

arlitld{intysintresingleton{intx)) -
sub.int(IntyesInt) e

b,
A Inmty and Int overlar with Inty leftmost

srlitl idlysBueTosRudy 1(LsBsTsRYry mair(idlsBsTroRudedilsBusBLlal 1)y ) i-
marker Tlir{(RsR1)y marker_flisdLsL.1)»
marker.flir(lxsl.xxl)s
correct{BsEB1),
less_ thanib(TH RIsb(TsR1))>»
not less. thanm(biTxsRx)sh(BsL 1)
less than{b(BxsLxldesbh(Bsl))s |,

- Givern 2 list of n sets rroduce the 2 set of the
elements from the nl cartesian Pvnduﬁ+ of the cete.,
The incoming sets are rerresented with seacizl
functors as there zre only 2 few special caeses (cee

;W
-4

i
Wi

arlit): The resulting sroduct set i rerresented
2 list., Ezch element will iteself e 2 liet (of n
intervals) where the order of this element list will
be the reverse of the order in which the items

were found in the originel list of sets.

The imglementation involvee z2n aoocumulztor for the
(rartizl) element beimng built and uses tne
difference list techrnicue to build the finmzl set
of elements (rerm 2¢ a3 listl.

e M NN

3

A

cartesiancrroduct(LlsElements{Element 1 Z1:7),

cartesian.rroduct(lFirstiRestIsFartizlElementsFroductSet,7)

+

- cartorrodiFirstsRestsFartizlElementsFroductlets7Z).,

cart.rrod{singleton{(d)sRestsFartizlElementsFSetsZ)
i~ cartesian.rroduct(RestylAliFartizlElementlsFSet2),

cart.rrodirzir(AsB)sRestsFartizlElementFSet02)
i~ cartesian.rroduct(Rests LAl F3rt1a1Flmment]rF*e+u-FQeti.‘
cartesizn.rroductiResty[BiFartialElement]sFSetl»Z).,

cart.rrodi(trirle(dAsBEsC)sRestsFartiazlElement s FSet02)
1~ cartesian.eroduct{RestslAlFartizlElement]lFSatOsFSetl)s
cartesian.rroductiRests[RiFartizlElement] FSetl FSetd)s .

cartesian.rroductiRests[CiFartizlElementlsFEet2» 2.,

% Caloulate Bottom zrnd Tor of Interval

Fimd limits{F«RedionsMornasInt) -
limits{hottomsFeRegionsMornosb (Bl



limitesdtorsFeRegiomnsMonosn{T+R) I
clearn ur{i{L B TRY» Int).

%4 Haok to clesar ur various funnies

clean.usii( rungetfineds s ) Int) - 1 defeult. interval{intl,
clesn.ur{i{_ s sundetinedes )y Int) - 1 default_ intervslliInt),
clesmn urli(LsBeOsRYs di{leBe—(D)sRIY i~ 1,

cleamn.ur(ints Int).

correcht{Qs—-{(3)) - |,
correcti{BsB) - 1,

# Caleculate limit for 2 particular Doundarw

limites(TorbotFeRediornsMonos Boundary)

1 dget. bnds{(Mornos TorBot rRedionsBoundarwlist ).
caloc(FsBoundarelistyBoundary),

% Form 2 boundary list from zn intervael list
% given various detzsils - upddown x tostbottom.

get. . brnds(Cls L3 L),

gt _brds(CHMono i MRestl TorBot DInt i IRest s LEBno i BRest 1)
= urdown.flirs{TorEBEot s Mono s NewMono) s
get . brndi{NewMoros IntsBrid)s

get. . bnds (MRests TorBot s IRest s BRest ),

urdown.flis{tor Ul UL .
urdown. flirinottomsurdown) - 1,
urdown.flir{(hottomsdowrnsusd,

~ gob hrd{uss i{LeBeToRYr D(TeRIY,
gat. brd{(downsi{LesBesTsR)y b{EsL)),

3R o AR o K 0k D8 K R ROR KOROOK  RKROR R OR R  S
FX Mamnirulating Boundaries X/
3% K08 8 K K K K 8 K 83K 3R K KK O OKOR R KR R OKOK R K S

4 Pyt boundaries in order

% Boundaries are identicsl
orderi{BndsBnds Brids Bnd) - 1,

% UOne of Mis is closed
order{D{(NsML)sbH{NsM2) e hi{Nsclosed) s DiNsclosed)) - |,

% Numbers are differents N1 smallest
order(b{NLsM1) b {NZsM2) oD INLsM1L)sD(N2,M22) -

‘ eval (N1 = N2), 1,
4 N2 is smallest




order{DiML ML) DINZ M2 DINI»M2)sbINLHML) ),

4 Ordering of boundaries
4 ifassumes intervals are consecutive)

less_ tham(h{(XsMu)ob(YsMuw)) {-
comr{CMsMulom) s
less_than.eval (MesXsY),

less_ than.eval(orensXsY) 1= evall X =Y ),

less than.eval(closedsXsY) I~ evall X < Y ),

4 Apply Functiorn F to 2 boundare list
4 Do this bw combining the boundary mariers 2no
%4 areluing F to the numbers,

caloiFsBoundarul.isteb(XsM)) I~
presbur_ bonds{BoundarelistsMarkerssNumbers) s
comb(Markerss M)
Term =,. L[FiNumberals
evzl{TermsX)»

L

trrezbus brdsd Ll 01030,

tresbur. bnds{CD(NsM) iRestls[MiMRestIs [NIiNRest])
i preskbur bnds(RestsMRestsNRest) .

# Combine poundaryd markers
% Result = oren if anw of the inruts i1s oren

comb(MarkerlListrResult) (- memberchhk{orensMarkerList)y s Result = orer.

combi_sclosed).,

AR K KSR K KB 3K K KK K8 DK KO SR K HOK OOK OKOCK KO R KOOk K S
¥ HMonotonicity of Functions in each Interval %X/
23345+ 333 3533304833333 338 25238+ s iy

AR umare minus XS
mono(-—» Li{closedrmneginfinite-infinitersclosed)dy [downl),

A additiorn ¥/
monoitelifolosedrsnedginfiniturinfinituwrsclosed) .
ii{closedsnedginfinitesinfinitusclosed)ds [urrurldl.,

K bimary mimus K/
monoi-sDifolosedrneginfiniturinfinitusclosed)s
iiolosedeneginfinitusinfinitysclosed)ls (urrsdownl),



B I

S abhsolute value ¥/
monoiabtssLi(closedsnedginfinituys-(0)rclosed?ds [downl),
mongiabssli(closedsOrinfinitursclosed)ly Cusldld,

AR multislication %/

monoi¥:Li{closedsOrinfinitusclosed)s il{closedsOsinfinituwrclosed)ls
Lursurld,

monoiXsDi{closed»Orinfiniterclosed)s i{closedrneginfinitus—{O)sclosed)]s
Coowrisurl) .,

mono (ks Di(closedrnedinfinites~(0)rclosed)s i(closedsOrinfinitusclosed)ls
LCursdownl).,

mornodksDi{closedrsneginfinite,~{D)ryclosead)r id{olosedrsmedinfiniters—~{(D)sclosed)ls
Loownsdownl) .

AE division X/

mono(/rLi{oclosedsdsinfiniturscloseddy iiclosedsOsinfinitusclosed)ds
Cursdownld) .

monol{/sLidclosedsOrinfinitesclosed)s i{closedsneginfinituys—(0)rclosed)]s
Coowrsdownl) .

vonol{/rLilclosedrneginfinites—{(0)rsclosed)y i{closedsOrinfinitusclosed)ls
Cursursld,

mono{/Lid{closedsnedginfiniters-{(0)rclosed)y iiclosedrmneginfinite.-~(0)rclosed)]s
Ldowrmsurl),

¥k exronentistion X/

mono{ s LidorernsOrinfinitusclosed)rsi(closedsdrsinfinituesclosed)ds
Cussusl),

mono{ s LidorerO0rinfinitwrclosed)siiclosedrneginfinituws—~{(D)rclaosed) s
Cdowrnsurl),

A lodgarithm %/
monotlogsli(closed»Orinfinitusclosed)ri{closedsOrinfinitusclosed)ls
Ldowrnsusld),

S sine X/

moisinelifcloseds (~90)»90sclosed) s Lusld,
onoisineli(closed:920,270rc]losed) Jsldownl) .,
mong{sinsLi{closeds270:450,closed)Islurl),

K cosine X/
monolicossLi{closeds Qs 180rclosen)lsldownl).,
monoi{cossLi{closedy 180, 340sclosenddelurl),

A tangsent X/

monoltansLi{oren, (~90)90r0ren) e lurl),
monoltansLi{oren s F0:270v0rer) e lurld,
monoltansli(orerny270:450s0ren) e lurlld,

AKX dnverse sine X/
mornoi{arcsinslii{closeds(~1)eslrsclosed)lsLlurll,

¥ inverse cosine ¥/
monol{arccossLil{oloseds(~1)slisclosed)lsldownl).,

AKX dnverse tangent X/




morno{arctansDi{orensneginfiniturinfinitesoren) s furll,

¥ dinverse cosecant ¥/
monolarcescrlil{closedyneginfinitys(~1)rclosea)dsLdownl),
monol{arccsesLil{closedslsinfinitusclosed)lsLdownl).

K dinverse secant %/
monodarcsecsli{closedsnedinfinitus{~L)sclogsed)IsLuxrl).,
monoi{arcsec:Li{closedeslrinfinitusclosedidIslurdd.,

¥ inverse cotandent %/
mono{(arccotesli{closedrneginfinitys~(Q)rorarn)dsldowunldy.,
monolarceotsDi{orernsdrinfiniturclosed) s {downl).,

A K KK R K K K KA 08 0K 3 K 8 8 8K K KK 8 08 K 0RO Dk e ROk IOk M ok kK S
7% Calculzte Interval of andle from Curve Ture K/
#3838 A K K K I K O e b K 3K 8K K 0K K K K KK K K RO HOR OK OO KK S

# We classgifw 2 sumbol using semantic informaztion

% from the (Mecho) datzbzse. Cz2lls which are to

% this database (notionzllwr FPress does not resile

4 share the same oblect~level dstzbase) zre marked
a8 such,

% This metnod is onlwy srerorrisgte if the swumbol is z2n
4 <andglers and tries to find the interval of the

% asnsle using deneral rrincirles zbout curve tures.

classifw{Angles Int ) -

mezcure{d: Ansle ). % databacse
angledFoints 3y Curve Yy iy % adztabace
intervali{angles Curves Int ).,

classifuiAngles Int ) 31—
measurei{lds Angle ). 4 datzbase

inclined{Curvers Qs Foint 3» | % datsbase
intervaliinclines Curves Int ).,

% Firg interval from curve share

% For simrle curves
interval {(aly Curves Int 3 -
concavite(Curves Donyv ). 4 database
slore{Curve, Slore ) 1o 4 odatabase
auad(Al, Slore, Conve Int ).,

% For complex curves
interval{Aal: Curves Int > -
rartition{Curves Clist )s 1 %A database
collect_ intervals(Clists Al Rlist).
gen.combine(Rlists Int I,

% Collect upr 2 list of intervals for z2ll the rartis



4 of a8 rartitioned curve,
collect intervals(lls. «L1).,

collect. . intervals{(lFirgtiRestlsalslFirstintiRestIintl)

= interval(AlsFirsteFirsetint),
collect. intervals(RestsalsRestIint),

% Inmnformation zbout srorerties of simrle curves
4 The interval derends on both the slore znog the
% concavitw,

auad(anglesleftysrightsi(closeds,90sclosed)) i~ 1,
ouadlinclinesleftsridgntrsi(closed»?0:180sclosea)) - 1,

auad{anglesridgntsrightrsiiclosed,y?0,180ycloged))y - 1,
auadi{inclinesrightsrightri{closed180:270sclosed)) 1~ |,

auadi{znglersleftrleftri(closedsy180,270yclosed))? - 1,
wgiinclinersleftrleftrii{closed»270s360yclosed)) 31— |,

auadizndlesright:leftrsiicloseds 2703460 closedl)) 31— 1,
auad{inclinesrightsleftrsi{closeds0»90sclosedd)) - 1,

I

auad{anglesleftrsstlinersi{orensy 180+370s0rend) - 1,
auadiinclinesleftrsatlinesi{orens270y340s0ren)) 11— |,

auadi{anglesrightrestlinesi(orens270y360s0ren)) - 1,

14

auadiinclinesrigntsstlinersi(orens0»?0s0ren)) 11— |,

auad(angleshorsstlinersi{closed270,270rclosed)) 11—~ |,
auadiinclineshorsstlinersi{closed:0r0sclosed)) - 1,

auad{anglesvertsstlinerii{closeds 180 180ycloseadd)) - 1,
auadl{inclinesvertsstlinesi{(closed:»270:270sclosed)) - |,

JOBRS TO D0
write sumbolic version for finding max mins

vyse monotonicity i » = etec Isolation rules
¥/




/¥ rrobs,
CURRENT FROBLEMSX/

¥ dinterval and eval rroblems X/
rha(l) - findoint{ml/{(-m23:1).
#hb I~ aoute(:XxXd).

non.zeroial.

e - non.Lzero{ {737 (1/2)4+93%(1/723) .,



K OTEST.
et Examerles for Parer
rhan Bunde 15,8.81 %7

* Test rum with timindge X/
+

w3 phecklisti(stetsy LtestlstestIrtestIrtestdstestbrtestartest?s
test8rtestsl).,

X Tests %/
estl{Il) - int.arerluwl siny [i(orens30:90:closed’ds I3, #0L = (17211
et () - dint.arrlued siney [i(orens30:1%0sclosed)ls 1), A0 = [152:11
est3 () - dntoarrlul zbsy [i(orens(-1)slsclosed)ls 1), A0 = L0113
eatdily - Al o= [-00s=2/3)
int.arrlul /Fy Litorens2s3rclosed)s i(closeds(~3)s-(O)srloseddds 173,
ety - 41 = [~-3+3]
int.arrlael ¥, [i(closeds{(~3)s~(Dlsoren)s 1i{closeds{~1)slscloses)ls I},
estd iy - 201 = [172+2]
intosrrlw( T [i{orensls2rclosed)r i(closeds(~1lislsclosed)ds 1),
et (L) 1~ Ffindoimt{ (-mild¥sg {mi4+m2) » 1), A1 = (~o0s))
oo RBOIY e Findoint{ (sin(thetz)+2)cosirhi) » I3, w1 = {~oosran?
e SPCLY I~ Findlint( log(2rsinitheta))s 1), A1 = {(=-aosd)
wiantitwi(mlal, measureimicsml), A ml is rositive
amrantitwimIal, messure{mdasma) ., 2 m2 is rositive
wiantituithetzaal, measure{thetagstheta).
adantitw(rhia)d., messure(rniqsrni ),
incline{(srathisthetazasrointy., slorei{rath3sright), concavitwirathisstlined,
# Hence thets is zoute
zngledrointerhieesani), rartitioni{semisirathlsratndl).
' slore(rathlsleft), concaviteiratnlsrignt).,
sloreisazth2yright)., concaviteirathleright) .

4 Hence »hi is obtuse

hoan rroblem with statistics¥/

statsi{Name) I- Froblem=,..0Negmesdrgly staztistics(runtimes_.)s
calliFProblem?, 1» statisticsiruntimesl .+ Timel)s
trace( \mxt took %t milliseconds and sroduced snswer Zhimur’s
CNamesTimesArsls O,

stats{Name) 31— statisticsi{runtimesl . Timells
trace{’ \nBSorry I could not rrove %t 2rnd 1 srent %t not doinsg 1€ Am\n7 s
CNames Timels 0),



e
T TUM,
aatl took ¢ millisecondes and rroduced answer if{orens (1L/72)s 1s closed)
est took 48 milliseconds and rroduced answer iicloseds (1/72)s 1s closed)
estd took 38 milliseconds and rroduced sznswer ii{closeds O0s 1» closen)
estd ook 22 milliseconds z2nd rroduced aznswer i{closeds meginfinites (~2/3%), mpeﬁi
estd took 104 milliseconds and rroduced znswer ii{closedr -3¢ I closeq)
estd took 57 milliseconds and produced znswer i{closeds (17°2)» Z» closed)
.est? took 59 milliseconds and eroduced snswer iforens neginfinitws - O» oren)

cestd took 123 milliseconds znd produced znswer i(oren: neginfinitws infinitws e

est? took 346 milliseconds and sroduced answer i({orens neginfinitw: - O oren)

263

T core H8096 (ZB912 lo-seg + 29184 hi-sed)
T AR792 =  FL227 in use + 25465 free
globzl o l1vE = 16 in use + 1159 free

Locsl 1034 = 16 in use + 1008 free

srail 311 = O in use + %11 free

0,085 gec, for 2 GCs dgaining 1213 words
0,12 sec, for 20 loczl shifts 2rd 21 trzil shifts
Ps6d sec,. ruantime



HEE

T UM

testl took 31 milliseconds 2nd sroduced answer
X1
whers 3
X1 = ddorenrs (172 1. closea)

test? took 14% millisecornds zand eroduced answer
X1 ‘
where i (
X1 = d(closedrs (1/72)s 1 closed)

testd took 11% milliseconds and Froduced answer

X1
yhere 3
¥l o= dieloseds Qs zDsi{- 1) oren)

testd took &% milliseconds a2nd sroduced znswer

X1
whers 3
X1 = dd{closeds nedginfinitwr, (-273)» oren)

teatd took 25% milliseconds and sroduced answer

X1
Wwhere |
X1 = dicloseds -3y 3y closed)
sté took 175 milliseconds and sroduced sanswer
where 3

X1 = di{closedy (172} 29 closed)

test? took 211 milliseconds and sroduced answernr

X1
where 2 .
X1 = d{owren: neginfinitws: - 0r oren)

testd took I3 milliseconds and groduced answer
X1
where 3
X1 = di{oreny neginfinitwy infinitw. oren)



test? took 102 milliseconds and eroduced snswer

X1

where 3

1 0=  d{oren: neginfinitws - Oy oren)

wes
i T core HEHEE (34352 lo-seg + 29184 hi-seg)
hear I1232 0= 29522 in use 4 1710 free
slobsl 1175 = 14 in use + 1159 free
local 10324 = 16 in use + 1008 free
trail 511 o= O in use + 911 free

0,03 sec, for 1 GCs gzining 103 words
Q.22 sec. for 28 locsl shifts and 26 trzil shifts
5,39 sec., runtime
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mbstract

We describe a2n interval zrithmetic rackadger INTs which generzlises srevious
interval rackages bw using information about the monotonicity of functions, INT
e peen used in 2n aldgebrzic manirulztion rackages FRESS, to  checlk  the
voaditions of rewrite rules zrnd to vet the solutions to ecuztions,

1+ Introduction

In this rarer we describe z deneral interval rackases that isrs 2 comruter
rragramy called INT, in which aritnmetic furnctions z2re extended <o +that thew
grerlyy not Jdust to numberss but to intervals of the rezl line. If f is znm n-a2rw
function therm it can be extended to intervals with the defimition

Fid 25208l ) = LF(t soss92 33 x €& 1 for 211 J4F
1 ] i r o N]

a0 that
120 4+ L3581 = [457]

where [a:s0] = Lx! 24 » 4 0¥ 1s the closed interval from 2 to b. Such rachkades
a2re in commorn dse fTor rroviding dguszraznteed error bounds in sgrithmeiic (see e.8.
LGood & Lomdorn 70 Yohe 7913, -—

INT was built for z different rurrosel rnamelws Fa{ checking the conditions
of rewrite rules and vetting the solutions to eweuwstionss in an aldebraic
manirulation erograms FRESS, [Bundw 2nd Welham 811, Forlinstaznce: +the rewrite
Tl N

XY oW omxoy WAV N
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nas  the condgition that v bDe rositives i.e lie in the oren interval (Osoo),
ther terical conditions azre that 3 varizble be non zeros zm acute zndles  oho.
If 2 mis» m2@ arnd ¢ z2re 211 krnown to be 2 rositive auzntities (e.d, bheczuse thew
are  knowrn  to be an acocelerations massy mases and zoceleration due to gsravitus
resrectively) themn we want to bhe zble to vets 2rnd reldects the ecusztion

g = ~ml¥g ml+m2)

as & rossibrle solution for 2 im terms of mls m2 2nd gy since 1t would imelw
that 2 were nedgative,

The INT rackadge differs from rrevious rackages in the following resrectas.

- INT can dezal with intervals whose boundaries include the infinite
ramberss oo,

- INT camn dezsl with intervals with oren or closed boundsries,. These zr
denoted by round ana SRUaTe bracketss recsractivelus 2.8,
LO«S) = L3 O & w = &BF

- INT cecan dezsl with =z2nw functions rrovided only that information is
rrovided about whnere that function is monotoniczlly increzsinsg znd
cecreasing, Frevious rackadges have defined interval zrithmetic for
onle 38 few srecific functions, e.d, [Good & Lomdon 701 dgives
definitions only for +s ~» ¥ and /. Currentler the INT raclkzse can
dezl with 49 —~+ ¥» /» exponentiztions lodgarithmsy trigonometric and
inverse trigonometric functionse: and zbsolute value,

- INT ean dezl with intervals which straddle several monotonic regions
of &2 function,. In rarticular: it can dezl with 174 when J contains O,

-~ INT carn use information about 2 razrticular constant: which srecifiecs
in what interval 1t lies. This has been used in condunchtion witnh 2
sragram for solving Mechanics rroblemss [Bundwe et a2l 791, +to =z=llow
semantic information about rhusicsl ouzntities, e.d, that m is
rositives & is obtuses etcs to influence the zldgebrzic manirulation.

2, Monotonicitw and Unarw Functions

The kew ide=z behindg INT is to use the monotonicity of 2 function to decide
which boundzsries of its arguments to use to czlculste its wusrer z2nd lower
pounds. For instarnces sin is monotoniczlle incressing on the interval (30, F00s
s0 the lower bound of sin (30:.901 should pe calculzted from (30 2rnd the uprer
boundg from 901: giving the interval (sin 30s gin 901, which ecusls (1/72:17.
Note that the tuse of the boundarwe {(oren or closed) is inherited zlomsg with i1te
value, We will ssw that sin is marred across the interval (30,907 4o rroduce
the imterval (sim 30 sin 901 2na then the boundaries zre evaluated to rFroduce
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the interval (1725171,

Now  consider  the aewelication of sin to (9015071, #in is mormotonicalle

decreasing on this intervale: so the lower bound of sin ($0. 1307 ehould De
caloulated from 1501 znd the urrer bound from (90, dgiving the intervzl
L1772 »1)+ Note again that both the tuyre and wvalue of the interval =re
inherited, We canm summarise +this bw sawing that the interval (90,1507 is

inverted to the rseudo—-interval [150:90),% sin is marred zoross ite: Lo produce
Lgimn 150y sin 90)y znd the boundaries are evaluzsted to rroduce [1/7221),

ginm 18 simely monotonic on bhoth the dntervals (30,901 z2nma (201501, Ta
caloulate the value of sin on an intervals on which it is mot simely monotonics
16 more comrlicated, Consider +the interval (3015070, To czlculate

sim (301501 INT first divides the intervazl inteo sub-intervals: on ezch of
whichh sin is simrlw  monotonic, Imn this case (301301 would be divided into
(30,901 and (901303, «in is then z2rrliend serarztelw to each sub-interval:, to
rraduce (17213 arnad 17210 a2rnd these results azre then combined into the
interval (172,171,

3. Generalized Monotomnicity and Nom—-Unare Functions

To dezl with non-unarye Tunctions we have Lo denerzlize the notion of
monotonicitey to 2 turle valued function, This is beczuse z non—umare function
mayw have different monotonicity behaviour on different z2rsuments. For
instances bimarw minus  is monotonicallw increzsing on its first srsument 2nao
monotonically decreasing om its second, That i ¥-% 1NCresses 28 M INOTESSESs

but decresses 2% W INCTe25S, We rerresent this bDw sawing thet - hes
monotonicity <ursdown> on the region <[-ocostools [-ooro0l:x (i.e, everuwhere),

Using the same notations sin has monotonicity <ur> on redion <[L-90.901%» 2nd
monotonicity <down> on redion <L90.2701:,

We cen formalize this notation as followsd

Definition 1! Arn nl redgiom is =n n-turle of intervals., If everw
interval is [~oos+00] the the redion is czlled the whole nll srace.

Definitiorn 2! an rn-are functions f» i monontonically increasing on
its Jth ardument inm region <1 seeeri > IfF
i )

[ ]
¥[150:90) would be the emrty interval bw the mormal definition, Howevers +the
rhrase ‘reeudo-intervzal’ is meant to imrle thet we will not  redard it 28 2
rrorer interval: but merelw zs 2 swuntactic device.
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12 <ow - FOM 820023 92asa23 ) D G T L A TR *
o o 1 N ] 1 N x]
for 211 % E i and w € 1
k. k. N N

Defimition 3! A functions f» is monontonically decreassing on its Jth
argument in redion <i sseeri > LfF

i ]
¥ o = TLM st raaard ) TUM saaasd 38 )
N o 1 o r 1 A r
for 211 » B 1 and w & 1
b b J o

Iefinition 4! ar n—are function is simely monotonic in redgion v  iff
it is monotonically increzsing or monotomiczslly decrezsing on esch of
its arguments in redgion r. Itse monotonmicitw is dgiven bw 2 n-turle in
which the Jth element is “ur’ or ‘down’ 2ccording a2s the function is
monotonically increasing or decreassing om the Jdth argument in r.

Armed with this notations we can now tackle the rroblem of extending interval

arithmetic to norn—umarwe funchtions. Consider the aerlicaztion of - +to +he
arguments <L3:50, L T RED BCIN Since - is monotonically increzsing on its First

argument a2nc monotonically decrezsing on ite second we should czlculate thae
lower bpournd of L3313 ~ D120 from [3 and 2) to wield (1, Similarles the uprer
bound should be calcoulzted from 51 znd {1 to wield 431, This can be summarised
e sawing  that [1:2) is inverted to the rseudo-intervasl (211 2rd - ie then
marrad soross the rseudo-redgiorn SL3:51e (211> to rroduce (3-2» S-11. The rule
is that the Jth intervel is  inverted Aiff  the function is mornotoniczllw
decreasing on the Jtn argument, Note that the tuwre of =2 boundare s oFen
unless 311 of the boundaries it is calculated from zre closeds since z funchtion
can onlw sttain 2 boundary 1ifF 3211 its arguments do,

Both 4+ and - are simely monotonic throushout the whole 20 srzee. ¥ ang A
nowevers are not simerly monotonic throushout the sraces thew have four regions
of simrle monotonicitw, For instancer 7/ has the monotonicities dgiven in figure
o,

A

TUF R AN TURs dowrn: i
SL-aoe=01s [+0s+400l> “L40s+00ds [+0s400l>
COOWM L A CHQWR Y dOwnE 1N
o0 Qlds L-0oe—071% SL40s+o00ls [—ooe—-00>

Figure 3-1: The Monotonicities of /
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Congsider the arrlication of / to <0237y [-1s171%, INT brezbs thnis aown into
the serarate arrlications of 7 to <02:30s {~1s-0)r ard L2373, (40135 in
which redions / is simerlw monotonic,. Calcoulzsting these zeelicztiomns from the
wonotornicity information given zbove wields the following rrocess,

T calculate / arrlied to <LZ2s37y [-1ls=-0)

invert botn arguments and mar / z2orose them to produce
L3/7-0:27-11

Evaluaste the boundaries Lo rroduce

L-oos—271

To arrlw 7/ to <0231 [40:11-

invert the second argument and mar / zcross the result to produce
L2/ 137400

Evaluate the boundaries to sroduce

L2stonl

The two resulting intervals azre then combimed into 2 new intervzl wvhose uprsr
bound ds thedir maximum urrer bound znd whose lower bournd is their minimum lower
pounc.  This wields +the intervzel ([(-oos+o0l. Note that this interval is too
rormissives in the sense that it includes the interval (2.2 whnich should be
weluded,

4, The Aldorithm

After the informzl introduction of the rreceeding sections we now turn Lo 2
formal zccount of the dHermerzl, interval-arithmetic 2ldgorithmes which wve will
csll Int-Arelu,



&
To Int-Arely 2 functions f» to 2 redions v» we must consider two cases:
(2) I f is simelw monotonic om r then
Form 2 pseudo-redgion v’ from r by rerlacing the Jth element

of r by its inverse 1iff T is monotomiceslly decrezsing aon its
HJth argument. s

Mar f zcoross v’y evaluste the boundaries of the result arng
return 1it.,

() IFf f is mot simely monotonic om r then

Srlit r into 3 sub-redion on which f is simerlw monotonic
r

and the 2 -1 comrlementare sub-redgions (some of which maw
be emrtu) .,

n §
Call the rrocedure recursivelw on ezch of the 2
sub—-redgions which are not emrtw,
Combime the resulting intervals into one interval.
The above descrirtion leaves variows sub-rrocedures uyndefined, nemelw the
rrocesses  of ‘marring 20r0ss s “invertings ‘eyaluzting  the bouncdzriec’s

arlitting 2 redion into sub-redgions and combining several redgions into one. We
now rroceed Lo defime Lhese rFrrocesses.

- Intervals. Intervals 2re rerresented 28 acuadrurless in which the
firet and last elements are either ‘oren’ or ‘closed’s Lo rerresent
the tuse of boundargs and the second and third elements 2re numbers
rerresenting  the wvalue of the boundariess .8, (90,1501 is
rerresented by <oren:90150scloseds,

- Inverting. The inverse of interval “L:BsTrR> is <RsT2BsL>.

-~ Marring Across. The marring of f across

ULl RIsTLsRL s el Brie Tre R

SeldllesssrbmFle FI(Blr . osrBrds F(TlrssaoTrde c({Rlr, s RNF)I>

where ci{Set)=orern iff oren & Set and ciSetl)=closed otherwise.
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- Evaluation., aAs cam be seen from srevious sections +the normal
arithmetic functions must bhe extended +to dezazl with +the infinite
numbers -0 and foo,. It dis 2lso necessary to distinguish betweern -0

2rgd 40 since 3/-0 = -o00 and 3740 = 400, For evzluzating the
boundaries af intervals INT uses 2 arbitrare-rrecicion:
rationzl-numbers arithmetic rachkadge develored hw Richard 0Keefe, Im
this rackade numbers are rerresented b trirles of
saigrnsnumeratorsdenominator>es e,g, Oy dell, ton ie rerresented Hw
421205 ard -0 by C-s0slxe eto, The standard rationmzl arithmetic

orFgrations reeuire onlw trivial azdartation +to return the correct
zrnswers for infinite numbers,. In indeterminate czsess e.dg, 070» +the
snswer ‘undefined’ is  returned,. Such an answer causes Int-Arrlw to
return the default interval {(-~oostoo0).

-~ Srlitting, To srlit region <Ilssss2lnm> imto arerorriate  sub-regions
g0 throush  the simerly monotonic redgioms of f umtil omes <Mlse. . .Mres
ie found with the rrorertw that eszch IJ dis 2 disdoint wunion of
intervals 1.7 and 1" where I14° is nom—emrtyy 2nd 3 subp—interval of

L]
M. Return the 2 sub-redions <I1Xs., 2 Ink>s where [0 is either 147
or 1%, Note that f is simrly monotonic on sub-redgion <I1%s,ssslm®=,
I I is emrtw themn so is anw redion contzininsg it., If <Idlsssseln:
cannot be divided into z finite set of simrly monotonic sub-regions
then this srlittinsg srocess maw not terminzte.

- Combining. To combine 2 set of intervaless form 2 new intervzl whose
lower bound is the minimum of the lower bounds of the et =2nd whose
urrer  bound ie the mavimum of the set, Note that the minmimum of two
toundaries with the szme value» but different turess ie the oclosed
poundarw,. Similarley with the maximuam. The combpinztion of two
intervals is the smallest interval contsining their unmiomn: but it maw
rnot be ecual to their unions e.d, combining [-o0y-231 =z2nd [2e400]
rroduces [~oos+00l,

S+ Semantic Chechking

he above sections describe an interval zritnmetic zlgorithm. We now exrlizin
tne arrlications of this a2ldgorithm  in the algebrzic manirulztion rsackage
FRESS s [Bundwe and Welham 811,

fis  describe in the introductions the aerlications zre twofoladl checking the
conaditions of rewrite rules and vetting the solutions to ecuations. Both  these
arrlications make use of z common sub-srocedurer Find-Int. Find-Int takes 2n
slgebraic term and returns the imtervael within which it lies, For instances if
2 ml» w2 amd &€ are 211 rositive thern Find-Int arrlied +to the term
~ml¥s/ (ml+m2) will returm (-0o0s0)y from which it czn be deduced that the term
is nedative a2nd that 2 = -mi¥g mli+m2) is false,

The srocedures Find-Imts works bwe c2ll by vzlue, Arrlied +to =& ferm
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FCt sasaet Jde Fino-Int dis czlled recursivelw on ezch t 2ng returns 1 . F is
i g A A

then arrlied Lo <1 sesesi > by Int-Arslv, If Find~Int is zerlied to 2 numbers

1 ln} .

a1 thern the interval (nend dis returneds e.g, (2223, IF Finad-Int is zeelied to =2

sumbolic constant or varigbler e.dg. mls then semantic information is used ta

trw Lo determine the result. If this is not successful  thern +the defzult

interval: (-oost+oode is returned,

The semantic informztion is rrovided bw the MECHD srogrames [Bundgwe et 2]
for solving Mechanics sroblems,. Information is  rrovided zoout two sor 0
constant! shuesicel cuantities (e.d, massess zeocelerztionss ete) znd zndgles,. Aall
rhwsical euantities are =zssumed to be rositives that ise to lie in the interval
(Qst0a), Frovision #ists for sroviding more sorhisticzated information zbout
gaoh kind of euantitws but this has not been exrloited, Inm the czse of zngles
gn attemrt is made to infer in which auadranti{s) of the circle the zngle liecs
for instance: [0y901s [180:34600y etco,

ngles are defined in MECHO either z2s the inclinztion or the rmormal +to = 32
dimensionzl curver where the normzl is towsrds the convex side of the curve =nd
the inclimation is 90 dedrees dgrezter. For simrle curves: i,e, monotonic
curves with monotonic first derivativess both the inclinstion =2rnd  the normal
lie whollw within 2 single aeuasdrant, Which ouadrant this is derends on the sign
of the first and second derivatives., We cz2ll the first derivetive the slore znd
the second derivative the concavity of the curve, For instznces 1f the slore i
rositive and  the concavitw ig  rositive thern the inclinstion lies in the
cuadrant [0s901 and the normal lies in the cuadrant (2703801, This a2na the
other seven cases are illustrated in figure S-1.

I Finmdg-Int dis zeelied to z¢ ozngle defined om 3 non-simele curve then the
curve ig first bDroken into simrle curves: the azbove rrocess ie z2rrlied Lo ezoh
of these ard the resulting ocuadrants are combineds using the combination
Frocedure descoribed in section 4.

6o Results

The INT imterval arithmetic rackade has bheen imrlemented in PROLOG (CFPereirs
et sl 791 on a2 BEC1I0, It occuries 39k 36 Dit words znd the FPROLOG sustem
accuries a3  fTurther 29k, The former figure could rrobable he reduced
subpstantially bw deleting variows utility errocedures recuired bw FRESS but not
bw INT, Table &—1 summarises the results of zeprluing Int-drrle Lo some tfuricel
furctions and  regions. Table 6-2 summarises the results of zerleing Findg-Int
to some turiczl formulze,

7. Limitations

The INT sackazsge uses information zbout the simrlw monotonic resions of =
function +to extend its definition on numbers to one on intervzls, In this waw
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Fositive
normal 27034801 mormal [90, 1807 rmormal (370,3&80)
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|
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Fi%ure -1t Classification of the Andles of Simrle Curves
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;klniery;i“" Answer CFPU/Time Is Redion Simelw

Calculation in msecs Monotonic?

sin (302901 (172170 13 o1=3-3

sirn (3021501 | 172913 &4 ro

ghs (~1s1] fO«11 38 o

(230 7 [~34-01] [—oos~273) 18 wes

[-39-0) % [-1+17 [-3,31 130 rno

[-12113
(1.2 C1/72.21 58 no

Tahle é6-1! Results of Arrlueing Int-arrlu
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Formula Interval CFU Time
it lies in in msecs
~ml¥sg/ (mldm2) {(—gos-0) &3
sinlEI+2/coala) (—-ooson) 128
1ag'ﬁiniﬂ) (~ons—0) 37

2
Ahere mles m2 and € are rositive numberss 8 is am 2cute 2nsle
Band @ is an obtuse zndgle,

Table 6-2! Results of Arrluing Find-Int

it deneralises rrevious interval rackagess which couwld dezl with ornle =

~arecified rnumber of functiorms, Howevers INT only works well or functions
ahich are well behaved monotonicallys i.e. divide the whole serace into 2 finite
zet of corntinuous simrlw monotonic redgions. Some of the situstioms in which INT
joes not behave idezlly are listed below,

- INT carnnot desl with the situation where 2 furnction must he =zrrlied
to 2 redion which only divides dinto =2 infinite set of simelw
monotonic  sub-regionss  beczuse  Int-Arrly will mot terminate. For
instancer sin  srrlied to  <{-oos+00)> should return [-1s13+s bt
“l-nor+00d):r cannot  be divided into 2 finite set of simrlwy monotonic
sub-regions: o Int-Arrly will not terminzte, This rarticulzr czse
is dealt with bw a2 raten to the INT rackade to take into zccount the
toundedness of sine cose: eto,

=~ Inmt-Arrly i comnstrzined to return 2 single continuous interval =2
its  result,. To returns savws 2 set of disdoint intervals would z2lte
the whole basis of the sldorithm with & consequent loss of simelicitwy

- ana efficiency, The rrice to e raid for this is that the result of
Int-arrley will sometimes bDe too inclusive. An examrle of this was
given in section 3 where the result of [2,31/0-1:11 included +the
interval (-2:2).% Sometimes the best descrirtion of the monotonicitw

b AL Carlaty in & erivate communicationsy has susdested thnat  2llowing
‘ewtervals’ to be returned bw Int-Arrlwes would zaccoumt for the madoritwy of
rounterexamrles which 2rise i sracticer for onlw 2 small incresse in the
comFledite of the zlgorithm. Aarn exterval is 2 set of rezl numbers obtzined bDw
subtracting 2rn interval from the real line. I have not exrlored +this
zogsibilitu,



11

of & function involves non-continuous sets of numbers, For imstances

u
¥ hias monotonicity <downsur> when » is nedative znd & is z2n even
rationzl. Unfortunately: the even rationzls cannot bhe resresented  ag
& interval. Imn fazct ewronentiztion has nmo simely monotonic

sub-regions in <l-o00s0lsl~o0st+00l>, There ic a2 ratch in INT to de=zl
with this rarticulzar casey but in demneral such situstiaons 2re ocutside
its score,

3. Conclusion

We have seen  that the INT intervzl arithmetic rackade dSenerzlises rrevious
interval rackadges bw the use of the momotonicitwy of functions., It c=n deszl
with more functions tham rrevious rackases and can dezl correctlw with the
arrlication of 2 fTunctionm to 2 region which strzddles 2 finite rumber of simelw
monetonic resions. It breaks down only when =2 furmction hase 2 rearticularlwe
camrlex monotonic behaviour,

“he INT rachkadge hace been arrlied in unusuzal wawss to check the conditions of
rewrite rules and to vet the solutions to eaquationse: z2s rart of 2 2lgedrzic
manirulation rackase.
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Abstract

We describe an interval arithmetic package, INT, which generalises previous
interval packages by using information about the monotonicity of functions. INT
has been used in an algebraic manipulation package, PRESS, to check the
conditions of rewrite rules and to vet the solutions to equations.

1. Introduction .

In this paper we describe a general interval package; that is, a computer
program, called INT, in which arithmetic functions are extended so that they
apply, not just to numbers, but to intervals of the real line. If f is an n-ary
function then it can be extended to intervals with the definition

Fiq,.000,10) = {F(Xq,.0.,%p): xj 6 ij‘for all j}
so that
(1,2] + [3,5] = [4,7]

where [a,b] = {x: a{ x £
are in common use for
[Good & London T70]).

is the closed interval from a to b. Such packages
roviding guaranteed error bounds in arithmetic (see
~

INT was built for a different purpose: namely, for chescking the conditions
of rewrite rules and vetting the solutions to equations, in an algebraic
manipulation program, PRESS, [Bundy and Welham 81]. For instance, the rewrite
rule

u*v > w => u > w/v

has the condition that v be positive, i.e lie in the open interval (0,00). -
Other typical conditions are that a variable be non zero, an acute angle, etc.
If a, m1, m2 and g are all known to be a positive quantities (e.g. because they
are known to be an acceleration, mass, mass and acceleration due to gravity,
respectively) then we want to be able to vet, and reject, the equation

a = -mi¥g/(m1+m2)

as a possible'solution for a in terms of ml, m2 and g, since it would imply
that a were negative.

The INT package differs from previous packages in the following respects.

- INT can deal with intervals whose boundaries include the infinite
numbers, +00.

- INT can dezl with intervals with open or closed boundaries. These are
denoted by round and square brackets, respectively, e.g.



[0,5) = {x: 0 £ x <5}

INT can deal with any function, provided only that information is
provided about where that function is monotonically increasing and
decreasing. Previous packages have defined ‘interval arithmetic for
only a few specific functions, e.g. [Good & London 70] gives
definitions only for +, -, ¥ and /. Currently, the INT package can
deal with +, -, ¥, /, exponentiation, logarithms, trigonometric and
inverse trigonometric functions, and absolute value.

INT can deal with -intervals which straddle several monotonic regions
of a function. In particular, it can deal with i/j when j contains 0.

INT can use information about a particular constant, which specifies
in what interval it 1lies., This has been used in conjunction with a
program for solving Mechanics problems, [Bundy et al 79], to allow
semantic information about physical quantities, e.g. that m is
positive, ¢ is obtuse, etc, to influence the algebraic manipulation.

2. Monotonicity and Unary Functions

The key idea behind INT is to use the monotonicity of a function to decide
which boundaries of its arguments to use to calculate its upper and 1lower
bounds. For instance, sin is monotonically increasing on the interval (30,90],

so the lower bound of sin (30,90]

should be calculated from (30 and the upper

bound from 90], giving the interval (sin 30, sin 90], which equals (1/2,1].
Note that the type of the boundary (open or closed) is inherited along with its
value. We will say that sin is mapped across the.interval (30,90] to produce
the interval (sin 30, sin 90] and then the boundaries are evaluated to produce

the

Now consider the application of sin to (90,150].

interval (1/2,1].

sin 1is monotonically

decreasing on this interval, so the lower bound of sin (90,15 should be
calculated from 150] and the upper bound from (90, giving interval [A/
»1). Note again that both the type and value of the interva ‘inherited. e

can summarise this by saying that the interval (90,150] is inverted to the

pseudo-interval [150,90).%

90),

and the boundaries are evaluated to produce [1/2,1).

sin is simply monotonic on both the intervals (30,90] and (90,150].
calculate the value of sin on an interval, on which it is not simply monotonic,
more complicated. Consider the interval (30,150]. To calculate
sin (30,150], INT first divides the interval into sub-intervals, on each of

is

which sin is simply monotonic.

sin is mapped across it, to produce [sin 150, sin

To

In this case (30,150] would be divided into

(30,90] and (90,150]. sin is then applied separately to each sub-interval, to

produce (1/2,1] and [1/2,1),

interval [1/2,1].

!

and these results are then combined into the

150,90) would be the empty interval by the normal definition. However, the
phrase 'pseudo-interval' is meant to imply that we will not regard it as a
proper interval, but merely as a syntactic device.

w»—

’,



3. Generalized Monotonicity and Non-Unary Functions

To deal with non-unary functions we have to generalize the/notion of
monotonicity to a tuple valued function. This is because a non-unédry function
may have different monotonicity behaviour on different argumentsgyXfor instance,
binary minus is monotonically increasing on its first™~ argument and
monotonically decreasing on its second. That is x-y increases as x increases,
but decreases as y 1increases. We represent this by saying that - has
monotonicity <up,down> on the region <[-o00,+00], [-00,00]> (i.e. everywhere).
Using the same notation, sin has monotonicity <up> on region <[-90,901>, and
monotonicity <down> -on region <[90,270]>.

We can formalize this notation as follows:

Definition 1: An nD region is an n-tuple of intervals. If every
interval is [-00,+00] the the region is called the whole nD space.

Definition 2: An n-ary function, f, is monontonically increasing on
its jth argument in region <i1,,,,,1n> iff

x'<y' "'> f(x‘l,.‘c,x"'oc,Xn) <f‘(x1,cct,y"qc',Xn)
£dr ali X, 6 iy and/yj & ij J
Definition 3: A function, f, is monontonically decreasing on its jth
argument in region <i1:"~:in> iff

X: K ys =2 f(XqyeeerXigeeesXn) 2 F(XqyeeesYipeesyXn)
for all Xp € iy ;nd Yj & ij . ! J "

Definition U4: An n-ary function is simply monotonic in region r iff
it is monotonically increasing or monotonically decreasing on each of
its arguments in region r. Its monotonicity is given by an n-tuple in
which the jth element is 'up' or 'down' according as the function is
monotonically increasing or decreasing on the jth argument in r.

Armed with this notation, we can now tackle the problem of extending
interval arithmetic to non-unary functions. Consider the application of - to
the arguments <[3,5], [1,2)>. Since - is monotonically increasing on its first
argument and monotonically decreasing on 1ts seccnd we should calculate the
lower bound of [3,5] - [1,2) from [3 and 2) to yield (1. Similarly, the upper
bound should be calculated from 5] and [1 to yield 4]. This can be summarised
by saying that [1,2) is inverted to the pseudo-interval (2,1] and - is then
mapped across the pseudo-region <[3,5],(2,1]> to produce (3-2, 5-1]. The rule
is that the jth interval 1is inverted iff the function 1is monotonically
decreasing on the jth argument. Note that the type of a boundary 1is open
unless all of the boundaries it is calculated from are closed, since a function
can only attain a boundary iff all its arguments do..

Both + and - are simply monotonic throughout the/whole 2D space. ¥ and /,
however, are not simply monotonic throughout the sphce, they have four regions
of simple morotonicity. For instance, / has the, monotonicities given
in figure 3-1.

Consider the application cf / to <[2,3], [-1,1]>. INT treaks this down into
the separate applications of / to <[2,3], [-1,-0)> and <[2,3], [+0,11>, in
which regions / is simply monotonic. Calculating these applications from the
monotonicity information given abcve yields the following process.

To calculate / applied to <[2,3], [-1,-0)>V



<up,up> in <up,down> in
<[-00,-0], [+0,+00]> <[+0,+00], [+0,+00]>
<{down,up> in <down,down> in
<[~00,-0], [-00,-0]> <[+0,+00], [~0,-0]>

Figure 3-1: The Monotonicities of /

invert both arguments and map / across them to produce
[(3/-0,2/-1]

Evaluate the boundaries to produce

[-w)-z]

To apply / to <[2,3], [+0,1]>

invert the second argument and map / across the result to produce
[2/1,3/+0]

Evaluate the boundaries to produce

[2,+00]

The two resulting intervals are then combined into a new interval whose upper
bound is their maximum upper bound and whose lower bound is their minimum lower
pound. This yields the interval [-o00,+00]. Note that this interval 1is too
permissive, in the sense that it includes the interval (-2,2), which should be
excluded.

4, The Algorithm
After the informal introduction of the preceeding sections we now turn to a

formal account of the general, interval-arithmetic algorithm, which we will
call Int-Apply.

To Int-Apply a function, f, to a region, r, we must consider two cases:
(a) If f is simply monotonic on r then

Form a pseudo-region r' from r by replacing the jth element

of r by its inverse iff f is monotonically decreasing on its

jth argument.

Map f across r', evaluate the boundaries of the result and
return it.

(b) If f is not simply monotonic on r then
Split r intc a sub-region on which f is simply monotonic
. and the 2P-1 complementary sub-regions (some of which may

be empty).

Call the procedure recursively on each of the 21
sub-regions which are not empty.

Combine the resulting intervals into one interval.

The above description leaves various sub-procedures undefined, namely the



»

processes of 'mapping across', 'inverting', ‘'evalvating the boundaries',

splitting a region into sub-regions and combining several regions into one,

now proceed to define these processes.

Intervals. Intervals are represented as quadruples, in which the
first and last elements are either 'open' or 'closed', to represent
the Lype of boundary, and the second and third elements are numbers
representing the yalue of the boundaries, e.g. (90,150] is
represented by <open,90,150,closed>.

Inverting. The inverse of interval <L,B,T,R> is <R,T,B,L>.
Mapping Across. The mapping of f across
<«Lt,B1,T1,R1>,...,<Ln,Bn,Tn,Rn>>
is
<c({L1,...,Ln}), f(B1,...,Bn), £(T1,...,Tn), c({R1,...,Rn})>

where c(Set)=open iff open & Set and c(Set)=closed otherwise.

Evaluation. As can be seen from previous sections the normal
arithmetic functions must be extended to deal with the infinite

‘numbers -oo and +oo. It is also necessary to distinguish between -0
.and +0, since 3/-0 = -oo and 3/40 = +oo0. For evaluating the

boundaries ¥. of intervals INT uses an arbitrary-precision,
rational-number, arithmetic package developed by Richard O'Keefe. In
this package numbers are represented by triples of
<{sign,numerator,denominator>, e.g. <-,2,1>. +00 1is represented by
<+,1,0> and -0 by <-,0,1>, etc. The standard rational arithmetic
operations ‘require only trivial adaptation %o return the correct
answers for infinite numbers. In indeterminate cases, =2.g. 0/0, the
answer 'undefined' is returned. Such an answer causes Int-Apply to
return the default interval (-oo0,+00).

Splitting. To split region <It1,...,In> into appropriate sub-regions
go through the simply monotonic regions of f until one, <M1,...Mn>,
is found with the property that each Ij is a disjeint union of
intervals 1Ij' and Ij", where Ij" is non-empty, and a sub-interval of
Mj. Return the 2P sub-regions <I1¥*,...,In¥*>, where Ij* is either Ij’
or Ij". Note that f is simply monotonie on sub-region <It",...,In">.
If Ij' s empty then so is any region containing it. If <I1,...,In>
cannot be divided into a finite set of simply monctonic sub-regiocns
then this splitting process may not terminate.

Combining. To combine a set of intervals, form a new interval w«hose

"lower hound is the minimum of the lower bounds of the set and whose

upper bound is thes maximum of the set. Note that the minimum of two
boundaries with the same value, but different types, is the closed
boundary. Similarly with the maximum. The combination of two
intervals is the smallest interval containing their union, but it may
not be equal to their unicn, e.g. combining [-o00,-2] and [2,+00]
produces [~-oo,+oc].

We



5. Semantic Checking

The above sections describe an interval arithmetic algorithm. We now explain
the applications of this algorithm in the algebraic manipulation package,
PRESS, [Bundy and Welham 81].

As describe in the introduction, the applications are twofold: checking the
conditions of rewrite rules and vetting the solutions to equations. Both these
applications make use of a common sub-procedure, Find-Int. Find-Int takes an
algebraic term and returns the interval within which it lies. For instance, if
a, ml, m2 and g are all positive then Find-Int applied to the term
-mi*¥g/(m1+m2) will return (-co0,0), from which it can be deduced that the term
is negative and that a = -mi¥g/(m1+m2) is false.

The procedure, Find-Int, works by call by value. Applied to a term

f(t1,...,tn), Find-Int is called recursively on each t; and returns 1iji. f is

then applied to <i, ... /i > by Int-Apply. If Find-Int is applied to a number,
n, then the interval [n,n] is returned, e.g. [2,2]. If Find-Int is applied to a

symbolic constant or variable, e.g. ml, then semantic information is used to
try to determine the result. If this is not successful then the default
interval, (-o00,+00), is returned.

The semantic information is provided by the MECHO program, [Bundy et al 79],
for solving Mechanics problems. Inforfiation is provided about two sorts of
constant: physical quantities (e.g. masses, accelerations, etc) and angles. All
physical quantities are assumed to be positive, that is, to lie in the interval
(0,+00). Provision exists for providing more sophisticated information about
each kind of quantity, but this has not been exploited. In the case of angles
an attempt is made to infer in which quadrant(s) of the circle the angle lies,
for instance, [0,90], [180,360], etc.

Angles are defined in MECHO either as the inclination or the normal to a 2
dimensional curve, where the normal is towards the convex side of the curve and
the inclination is 90 degrees greater. For simple curves, i.e. monotonic
curves with monotonic first derivatives, both the inclination and the normal
lie 'wholly within a single quadrant. Which quadrant this is depends on the sign
of the first and second derivatives. We call the first derivative the slope and
the second derivative the concavity of the curve. For instance, if the slope is
positive and the concavity is positive then the inclination lies in the
quadrant [0,90] and the normal lies in the quadrant [270,360]. This and the
other seven cases are illustrated in figure 5-1.

curve then the
applied to each
the combination

e

If Find-Int is applied to an angle defined on a non-simpl
curve is first broken into simple curves. the above process i
of these and the resulting quadrants are combined, usi
procedure described in section U4,

6. Limitations

The INT package uses information about the simply“monotonic regions of a
function to extend its definition on numbers to one on intervals. In this way
it generalises previous interval packages, which could deal with only a
pre-specified number of functions. However,. INT only works well on functions
which are well behaved monotonically, i.e. divide the whole space into a finite
set of continuous simply monotonic regions. Some of the situaticns in which INT
does not behave ideally are listed below.
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INT cannot deal with the situation where a function must be applied
to a region which only divides into an infinite set of simply
monotonic sub-regions, because Int-Apply will not terminate. For
instance, sin applied to <(-o00,+00)> should return [-1,1], but
<(-00,+00)> cannot be divided into a finite set of simply monotonic
sub-regions, soc Int-Apply will not terminate. This particular case
is dealt with by a patch to the INT package to take into account the
boundedness of sin, cos, etc.

Int-Apply is constrained to return a single continuous interval as
its result. To return, csay, a set of disjoint intervals would alter
the whole basis of the algorithm with a consequent loss of simplicity
and efficiency. The price to be paid for this is that the result of
Int-Apply will sometimes be too inclusive. An example of this was
given in section 3 where the result of [2,3]/[-1,1] included the
interval (-2,2). ¢

Scmetimes the best description of the monotonicity of a function
involves non-continuous sets of numbers.  For instance, xY has
monotonicity <down,up> when x is negative and y i1s an even rational.

“Unfortunately, the even rationals cannot be represented as an

interval. In fact exponentiation has no simply monotonic sub-regions
in <[-00,0],[-00,+00]>. There is a patch in INT to deal with this
particular case, but in general such situations are outside its
scope.,



7. Conclusion

We have seen that the INT interval arithmetic package generalises previous
interval packages by the use of the monotonicity of functions. It can deal
with more functions than previous packages and can deal correctly with the
application of a function to a region which straddles a finite number of simply
monotonic regions. It breaks down only when a function has a particularly
complex monctoniz behaviour.

The INT package has been applied in unusual ways, tc check the conditions of
rewrite rules and to vet the solutions to equations, as part of an algebraice
manipulation package.

ere
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