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I* INT: Finds intervals of terms in PRESS 

Alan Bundy 19.12.79 
Revised version 14.3.80 
Further revised 26,3,81 
Cosmetics by Lawrence 18 June 81 

- Public 

I* IMPORT *I 
/* 

I* MODES *I 

:- mode 

vet/2, 
Positive/1, 
neeative/1, 
non_nee/1, 
non_pos/1, 
non_zero/1, 
acute/1, 
obtuse/1, 
non_reflex/1, 

error/3 

memberchk/2 

number/1 
eval/1 
eval/2 

measure/2 
muantity/1 
anele/3 
incline/3 
concavitY/2 
sloPe/2 
Partition/2 

vet(+,?>, 
Positive<+>, 
neeative<+>, 
non_nee<+>, 
non_pos<+>, 
non_zero<+>, 
acute<+>, 
obtuse<+>, 
non_reflex(t), 

een_combine(t,?), 
combine<+,+,?>, 

Alan Bund~ 
UPdated: 25 June 81 

% ExPorted for convenience 

from UTIL:TRACE 

from UTIL:SETROU 

from LONG 

from notional Meche database 



Data structures 

<interval> 
<boundar~> 

in<+,+>, 
sub_int<+,+>, 
below<+,+>, 
disJoint<+,+>, 
overlaP(+,+>, 
marker_fliP(?,?), 

default-interval(?), 
find_int<+,?>, 

find_int2<+,->, 
find_int_ares<+,-,->, 
find_simPle_int(t,-), 

make_assumPtion_Positive(t), 

int_aPPl~(+,+,->, 
int_aPPlw_all<+,+,->, 
all_are_contained(t,t), 
make_reeions<+,+,->, 

SPlit(t,t,+,->, 
SPlitl(t,t,-), 

cartesian_product(t,+,-,?), 
cart_Prod(t,t,+,-,?>, 

find_limits(t,t,t,-), 
clean_up(t,->, 
limits<+,+,+,+,?>, 
eet_bnds<+,+,+,->, 

uPdown_fliP(t,+,->, 
eet_bnd(t,+,->, 

order<+,+,?,?>, 
less_than<+,+>, 
calc(t,t,?>, 

breakuP_bnds<+,-,->, 
comb<+,?>, 

mono<+,?,?>, 

classifw<+,->, 
interval(+,-,-), 
collect_intervals<+,+,->, 
muad(t,+,t,?). 

has form 
has form 

i(LMarker,Bottom,ToP,RMarker> 
b(N,Marker) 

where: 
Bottom, TqP, N are <numbers> 
LMarker, RMarker, Marker are one of {oPen,closed} 

An interval ranees between Bottom and ToP and is open or closed at 
the ends dePendins on LMarker (for Bottom) and RMarker (for ToP). 

A bounder~ is an end of an interval. There are operations defined 
over these boundaries which are then used to help define the 
operations over intervals, Note that the notion of a bounder~ does 
NOT involve ans specific end of an interval Cie ToP/Bottom). Thaw 



are a Seneralisation over all such ends. 

%% @@@ - marker (top of code) 

/****************************************! I* Use interval information - top level *I 
l****************************************I 

% Check that solution is admissible 

vet.(true,true). 

vet(false,false). 

vetCA&B,A1&B1> - vet<A,A1), vet(B,B1>. 

vetCAIB,A11B1> :- vet<A,A1>, vetCB,B1). 

t(A:::=B,A==B) :-• 
find_int(A,IntA>, find_intCB,IntB>, 
overlaP(IntA,IntB>, 
! • 

% X is Positive, nesative, acute, etc. 

Posit.ive(X) :- find_int(X,i(L,B,T,R)), less_than(b(O,closed),b<B,L)), 

nesative<X> :- find_int(X,i(L,B,T,R>>, less_than(b<T,R>,b<O,closed)). 

non_nes(X) :- find_int(X,i(l,B,T,R>>, less_than(b<O,open),b(B,l)). 

non_Pos(X) - find_int<X,iCL,B,T,R)), less_than(bCT,R),b(O,oPen)), 

%ad hoe Patch (replaces nesative<N>> 

non_zero ( X) :--
find_int C X, i CL, B, T, R > >, 
( less_than(b(O,closed),b(B,l)) ; less_than(b(T,R),b(O,closed)) >, 
! • 

acute ( X) : -
find_intCX,iCL,B,T,R>>, 
less_than(b(O,oPen),b(B,L)), 
less_than(b(T,R),b(90,oPen)). 

obtu~-e ( X) : -· 
find_int(X,i(l,B,T,R>>, 
less_than(b(90,oPen),bCB,L>>, 
less_than(b(T,R),b(180,oPen)). 

non_reflex(X) :
find_int(X,i(L,B,T,R>>, 
less_than(b(O,oPen),b(B,L>>, 
less_than(b(T,R>,b(180,oPen)), 



l*****************************************I I* ManiPulatinm Intervals *I 
f*****************************************I 

% Combine a list of intervals bw sweePinS list 8nd 
% accumulatins the combined intervals. 

Sen_combine([FirstintlRestintsJ,Result) 
:- Sen_combine(Restints,Firstint,Result). 

Sen_combine([J,Result,Result>. 

Sen_combine([IntlRestintsJ,Acc,Result) 
:- combine(Int,Acc,NewAcc), 

sen_combine(Restints,NewAcc,Result). 

% Combine x and w intervals 

combine(i(Lx,Bx,Tx,Rx>, i(Lw,Bw,T~,Rw), i<L,B,T,R>> :
order(b(Tx,Rx>,b<Tw,Rw),_,b(T,R>>, 
order(b(Bx,Lx>,b(B~,Lw>,b(B,L),_). 

% Number N is contained in interval 

in<N,i<L,B,T,R>> :- !, 
sub_int(i(closed,N,N,closed),i(L,B,T,R>>. 

% x interval is contained in second interval 

sub_int(i(Lx,Bx,Tx,Rx),i(L,B,T,R)) :-
marker_fliPCL,Ll>, marker_fliPCR,Rl), 
less_than(bCB,Ll),b(Bx,Lx>>, less_than(b(Tx,Rx),b(T,Rl)). 

% x interval is whollw below~ interval 

below(i(Lx,Bx,Tx,Rx>,i<L~,Bw,Tw,Rw>> :
less_than(b(Tx,Rx),b(Bw,Lw>>, ! • 

% x and~ intervals are disJoint 

disJoint(IntX,IntY) :- below(IntX,IntY), ! • 
disJoint(IntX,IntY) :- below(IntY,IntX>, !. 

% x and w intervals overlap 

%% overlaP(IntX,IntY) :- not disJoint(IntX,IntY). 

overlaP(IntX,IntY> :- disJoint(IntX,IntY>, !, fail, 
overlap(_,_), 

% open and closed are OPPosites 



% (this is how to fliP them) 

marker_fliP(open,closed) :- ! . 
marker_fliP(closed,oPen>. 

l****************************************I I* X lies in closed or open interval *I 
l****************************************I 

% Worst case default for intervals 

default_interval(i(oPen,nesinfinitY,infinitY,oPen>>. 

% Lets try to do better •• 

find_int(X,Interval) 
;- find_int2(X,Result>, 

Interval= Result+ 
% suarantee mode<+,-> 

% Catch variables (shouldn't be there!) 

find_int2(V,_) 
:- var(V), 

! ' 
error('Interval Packase siven variable: %w',CVJ,fail). 

% Base cases 
% Numbers have Point intervals 
% Symbols (atoms) have various SPecial cases 

find __ int2(X,i(closed,X,X,closed)) :- nrJmber(X), ! • 

find_int2CX,Interval) :- atom(X>, !, find_simPle_int<X,Interval). 

% Convert -c-1> to 1/ 

find __ int2(X-(-1), Int) :- !, 
find_int2(1/X, Int). 

% Deal with exponentials to even Power 

find_int2(X~N, i(L,B,T,R>> :
even ( N >, ! , 
find_int2(abs(X), i(Lx,Bx,Tx,Rx>>, 
calc<-,Cb(Bx,Lx),b(N,closed)J,b(B,L)), 
calc(~,Cb<Tx,Rx),b(N,closed)J,b<T,R>>. 

% Convert cosecant to sine 

·find __ int2(csc<X>, Int) :-• !, finr.Lint2(1/sin(X), Int). 

% Convert secant to cosine 



find_int2(sec<X>, Int) :- 1, find_int2(1/cos(X), Int). 

% Convert cotansent to tansent 

find_int2(cot(X), Int> :- 1, find_int2(1/tan(X), Int>. 

% General case 
% Recursively find intervals for arsuments and 
% then int_aPPlY to sort this out. This will use 
% monotonicity of F to calculate interval of Term 
% from arsuments. 

find_int2(Terrn,Int) :
find_int_arss<Term,F,Intlist), 
int_aPPlY(F,Intlist,Int>, 
! • 

% If the seneral case fails 

~d-int2(sin(X), i(closed,<-1>,1,closed)) :- ! , 
find_int2(cos(X), i(closed,(-1),1,closed)) :- ! , 

find_int2(X,Default) :- default_interval(Default), • 

% Find a list of intervals corresPondin~ to the 
% arsuments of Term, Also return the functor. 

find_int_arss(Terrn,Fn,Intlist) 
:- functor(Term,Fn,Arits), 

find_int_arSs(l,Arits,Term,Intlist). 

find_int_arssCN,Max,_,[J) :- N > Max, ! • 

find_int_ares<N,Max,Terrn,[Int:IntRestJ) 
:- ars<N,Term,Ars>, 

find_int2(Ars,Int>, 
N1 is N+l, 
find_int_arss<Nl,Max,Term,IntRest). 

% Find the interval for a simPle sYmbol 
% This involves lookins to see if we know 
% ansthins special about the ssmbol which will 
% help us. 
% Ad hoe Patch for sravits - Proper solution means 
% allowins eouations between auantities and definin~ 
% s as measure<s,32,ft/sec-2). 
% Otherwise trY to classify symbol (if it is an ansle) 
% Otherwise assume all auantities are Positive 

(possibly extreme?) 
% If there is no useful info we must use the default. 

find_simPle_int<s,iCoPen,1,infinits,oPen)) :- 1 , 



find_simPle_int(X,Int) :- classifw(X,Int>, !. 

find_simPle_int<M,i(oPen,O,infinitw,oPen)) :
measure<Q,M), Guantitw(Q), 
! ' 
make_assumPtion_positive<M>. 

find_simPle_int<X,Default) S- default_interval(Default). 

% Make and remember assumption 

make_assumPtion_Positive<X> :- assumed_positive(X), ! . 

make_assumPtion_Positive(X) 
:- assert( assumed_positive(X) >, 

trace('! assume %t Positive.\n',[XJ,1). 

IT************************************************************I 
I* Find interval of function from intervals of its arsuments *I 

l*************************************************************I 

% Simple case 

int_aPPlw(F,Resion,Int) :
mono<F,Is,Mono), 
all_are_contained(Resion,Is>, 

! ' 
find_limits(F,Resion,Mono,Int>. 

% Complex Case 

mono<F,MResion,Mono>, 
make_resions(Resion,MResion,NewResions>, 
int_aPPlw_all(NewResions,F,IntervalSet>, 
! ' 
sen_combine(IntervalSet,Int). 

% int_aPPlw all intervals in a set (list> 

int_aPPlw_all(CResion11RestJ,F,[Int11IRestJ> 
:- int_ap~lw<F,Resion1,Int1), 

int_apply_all(Rest,F,IRest). 

% All the arsument intervals are sub intervals of 
% the corresPondins monotonic intervals for the 
% function (from mono>. (ie maPlist sub_int down 
¼ the two •arsument• lists>. 



all_are_contained([J,[J). 

all_are_contained([ArsintlArSRestJ,[FintlFRestJ) 
:- sub_int(Arsint,Fint), 

all_are_contained(ArsRest,FRest). 

% Given the list of actual intervals and the list 
% of monotonic intervals for the function build 
% a set of similar interval lists, derived from the 
% actual interval list, but such that each element 
% of each list in the set is wholly inside or outside 

its corresPondins monotonic function interval. 
% This amounts to case sPlittinS the actual interval 

list into a set of intervals for more tractable 
(sub) reSions in the nD sPace. 

% ImPlemented by sPlittins lists to form a list of 
% sets and takins the nD cartesian Product, Note 

that both sPlit/4 and cartesian_Product/4 Perform 
order reversals - which cancel each other out, 

make_resions(Resion,MResion,NewResions> 
:- sPlit(Resion,MResion,CJ,ListOfSets>, 

cartesian_product(ListOfSets,[J,NewResions,CJ). 

% Given the list of actual intervals and the list o~ 
% monotonic intervals for the function, we build 
% a list of n sets, where n is the aritY of the 
% function (ie the lensth of the lists> and where 
% each set contains intervals which are wholly jnside 
% or outside the corresPondins monotonic function 
% intervals, such that the intervals in each set 
% would combine to foim the corresPondins actual 
% interval. 
% The combinins property follows from the was we SPiit 
% UP the actual intervals. 
% The sets Produced at the moment will onlY ever have 
% number of members m such that: 1 =< m =< 3. 
% The followins SPecial representations are used for 
% these cases: 
% sinsleton(A) 
% Pair(A,B) 
% triPleCA,B,C) 
% In fact the code will currently never Produce sets 
% of 3 elements (triPles>, but I (Lawrence) think 
% this is Probabls a bus so have left the oPtion, Rnd 
% this comment, around til we see. 
% Note that the list of sets built will be in reverse 
% order compared with the •arsument• lists, This is 
% is imPlemented bY an extra accumulator arsument 
% (should be [J to start with) onto which each Set 
% is Pushed. 

sPlit([J,[J,Result,Result). 

sPlit([ArsintlArsRestJ,[FintlFRestJ,Sofar,Result> 
:- SPlitl(ArSint,Fint,Set), 



sPlit<AreRest,FRest,ESet:SofarJ,Result>. 

% Intx wholl~ within Int 

sPlitl(Intx,Int,sineleton<Intx)) : 
sub_int(Intx,Int), 
! • 

% Intx and Int overlap with Intx leftmost 

sPlitl(i(Lx,Bx,Tx,Rx), i(L,B,T,R), Pair(i(L,B,Tx,Rx),i(Lx,Bx,Bl,L1)) ) 
marker_fliP(R,Rl), marker_fliP(L,L1>, 
marker_fliP(Lx,Lxl>, 
correct<B,B1>, 
less_than(b(Tx,Rx>,bCT,Rl>>, 
not less_than(b(Tx,Rx>,b<B,L>>, 
less_than(bCBx,Lx1),bCB,L)), !. 

% Given a list of n sets Produce the a set of the 
% elements from the nD cartesian Product of the sets, 
% The incomins sets are represented with sPeci2l 
% functors as there are onl~ a few special cases (see 
% sPlit), The resultins Product set is rePresented as 
% a list, Each element will itself be a list (of n 
% intervals) where the order of this element list will 
% be the reverse of the order in which the items 
% were found in the orisinal list of sets, 
% The imPlementation involves an accumulator for the 
% (Partial) element beins built and uses the 
% difference list techniGue to build the final set 
% of elements (rePn as a list), 

cartesian_product([J,Element,EElementlZJ,Z), 

cartesian_Product([First:RestJ,PartialElement,ProductSet,Z) 
I- cart_Prod(First,Rest,PartialElement,ProductSet,Z), 

_J 

cart_Prod(sinsleton(A>,Rest,PartialElement,PSet,Z) 
:- cartesian_Product(Rest,[AlPartialElementJ,PSet,Z), 

cart_prod(PairCA,B),Rest,PartialElement,PSetO,Z> 
:- cartesian_product(Rest,[AlPartialElementJ,PSetO,PSetl), 

cartesian_Product(Rest,EB:PartialElementJ,PSetl,Z). 

cart_Prod(triPle(A,B,C>,Rest,PartialElement,PSetO,Z) 
:- cartesian_Product(Rest,CA:PartialElementJ,PSetO,PSetl>, 

cartesian_Product(Rest,[BlPartialElementJ,PSetl,PSet2), 
cartesian_product(Rest,[ClPartialElementJ,PSet2,Z>, 

% Calculate Bottom and ToP of Interval 

find_limitsCF,Resion,Mono,Int) :
limits(bottom,F,Resion,Mono,b(B,L>>, 



limits(toP,F,Resion,Mono,b(T,R)), 
clean_up(i(L,B,T,R>, Int). 

% Hack to clear UP various funnies 

clean_up(i(_,undefined,_,_), Int) :- !, default_interval(Int), 
clean_up(i(_,_,undefined,_), Int) :- !, default_interval(Int). 
clean_up(i(L,B,O,R), i(L,B,-(O>,R>> :- !. 
clean_up(Int, Int). 

COrT'E~Ct((),--(())) t-· ! + 

correct(B,B) :- ! • 

% Calculate limit for a Particular boundary 

limits(ToPBot,F,Resion,Mono,BoundarY) 
- eet_bnds(Mono,ToPBot,Resion,BoundarYList>, 

calc(F,BoundarYList,BoundarY). 

% Form a boundary list from an interval list 
% siven various details - uP+down x toPtbottom, 

eet_bnds([J,_,[J,[J). 

set_bndsC[Mono:MRestJ,ToPBot,[Int:IRestJ,[Bnd:BRestJ> 
:- uPdown_fliP(ToPBot,Mono,NewMono), 

eet_bnd(NewMono,Int,Bnd), 
set_bnds(MRest,ToPBot,IRest,BRest>. 

updown_fliP(toP,UD,UD), 
updown_fliP(bottom,uP,down> :- !. 
UPdown_fliP(bottom,down,uP), 

set_bnd(up, i(L,B,T,R>, b<T,R)). 
Set_bnd(down,i(L,B,T,R), b(B,L>>, 

l*****************************************I I* ManiPulatinS Boundaries *I 
l*****************************************I 

% Put boundaries in order 

% Boundaries are identical 
order ( Bnd, Bnd, Bnd, Bnd) : - ! , 

% One of Mis is closed 
order(b(N,M1),b(N,M2),b(N,closed),b(N,closed)) :- ! , 

% Numbers are different, Nl smallest 
order(b(N1,M1),b(N2,M2),bCN1,M1>,b<N2,M2>> :-

eval(Nl < N2), !. 
% N2 is smallest 



order(b(N1,M1),b(N2,M2),b(N2,M2),b(N1,M1)). 

% Orderins of boundaries 
% (assumes intervals are consecutive) 

less_than(b(X,Mx),b(Y,MY)) :-
comb ( [ M::{, MY J , M) , 
less_than_eval(M,X,Y). 

less_than_eval(oPen,X,Y) :- eval( X =< Y ). 

less_than_eval(closed,X,Y> :- eval( X < Y ). 

% APPlY Function F to a boundary list 
% Do this bY combinine the bounders markers and 
% aPPlYins F to the numbers. 

calc<F,BoundarYList,b(X,M)) :
breakuP_bnds(BoundarYList,Markers,Numbers>, 
comb ( Mc~rkers, M), 
Term=•• [FlNumbersJ, 
eval(Term,X>, 
! • 

breakuP_bnds([J,CJ,[J). 

breakuP_bnds([b(N,M):RestJ,[MlMRestJ,[NlNRestJ) 
:- breakuP_bnds(Rest,MRest,NRest). 

% Combine boundary markers 
% Result= open if any of the inputs is oPen 

ci·omb(Markerl.ist,ResuJ.t) :- memberchk(oPen,Marv..erl.ist), ! , Re=-ult = open. 

comb ( __ ,closed). 

/**********************************************I I* Monotonicity of Functions in each Interval *I 
f**********************************************I 
I* unary minus*/ 
mono<-, [i(closed,nesinfinitY,infinitY,closed>J, [down]). 

/* acldi tj.on *I 
mono(t,[iCclosed,nesinfinitY,infinitY,closed), 

iCclosed,nesinfinitY,infinitY,closed)J, (up,upJ). 

/* binars minus*/ 
mono(-,[i(closed,nesinfinitY,infinitY,closed>, 

i(closed,nesinfinitY,infinitY,closed)J, (uP,downJ> • 

• 



/* absolute value *I 
mono(abs,Ci(closed,nesinfinitw,-(0),closed)J, CdownJ). 
mono(abs,Ci(closed,0,infinitw,closed)J, [upJ). 

/* multiPlication *I 
mono<*,Ci(closed,O~infinitw,closed), i(closed,0,infinitw,closed>J, 

[uP,uPJ>. 
m6no<*,Ci(closed,0,infinitw,closed), i(closed,nesinfinitw,-<0>,closed)J, 

[down,upJ). 
mono<*,Ci(close~,nesinfinitw,-(0),closed), i(closed,0,infinitw,closed)J, 

[uP,downJ). 
mono<*,Ci<closed,nesinfinitw,-(0),closed), i(closed,nesinfinitw,-<0>,closed>J, 

Cdown,downJ). 

I* division *I 
mono(/,Ci(closed,0,infinitw,closed), i(closed,0,infinitw,closed)J, 

[uP,downJ). 
mono(/,Ci(closed,0,infinitw,closed), i(closed,nesinfinitw,-(0),closed>J, 

Cdown,downJ). 
,.ono(/,Ci(closed,nesinfinitw,-(0),closed), i(closed,0,infinitw,closed>J, 

[UP,UP]). 
mono(/,Ci(closed,nesinfinitw,-<0>,closed>, i(closed,nesinfinitw,-<0>,closed>J, 

Cdown,upJ). 

I* exponentiation *I 
mono<~,Ci(oPen,0,infinitw,closed),i(closed,0,infinitw,closed>J, 

CuP,uPJ>. 
monoc-,Ci(open,0,infinitw,closed),i(closed,nesinfinitw,-(0),closed)J, 

Cdown,upJ). 

I* losarithm *I 
mono(los,Ci(closed,0,infinitw,closed),i(closed,0,infinitw,closed)J, 

Cdown,uPJ). 

I* sine *I 
•no(sin,Ci(closed,(-90),90,closed>J,CuPJ) • 

.. ono(sin,Ci(closed,90,270,closed)J,CdownJ>. 
mono(sin,Ci<closed,270,450,closed)J,CuPJ). 

I* cosine *I 
mono(cos,Ci(closed,O,180,closed)J,CdownJ). 
mono(cos,Ci(closed,180,360,closed)J,CuPl). 

I* tansent *I 
mono(tan,Ci(open,(-90),90,oPen>J,CuPJ). 
mono(tan,Ci(open,90,270,oPen>J,CuPJ). 
mono(tan,[i(open,270,450,oPen>J,CuPJ>. 

I* inverse sine *I 
mono(arcsin,Ci(closed,<-1),1,closed)J,CuPJ). 

I* inverse cosine*/ 
mono(arccos,Ci(closed,<-1>,1,closed>J,CdownJ). 



mono(arctan,[i(open,nesinfinitY,infinitY,oPen)J,[upJ). 

/* inverse cosecant */ 
rnono(arccsc,[i(closed,nesinfinitY,(-1),closed)J,[downJ). 
mono(arccsc,[i(closed,1,infinitY,closed)J,[downJ). 

/* inverse secant*/ 
rnono(arcsec,[i(closed,nesinfinity,(-1),closed)J,[uPJ). 
mono(arcsec,[i(closed,1,infinity,closed)J,[upJ). 

/* inverse cotansent *I 
rnono(arccot,[i(closed,nesinfinity,-(0),open>J,[downJ). 
rnono(arccot,[i(open,O,infinitY,closed)J,[downJ). 

l*************************************************I 
I* Calculate Interval of Ansle from Curve TYPe *I 

'*************************************************I 

% We classify a symbol usins semantic information 
% from the (Meche) database. Calls which are to 
% this database (notionally, Press does not r~allY 
% share the same obJect-level database) are marked 
% as s•Jch. 
% This method is only aPProPriate if the symbol is an 
% <ansle>, and tries to find the interval of the 
% anele usins Seneral Principles about curve tYPes, 

classifY(Anele, Int ) t-
measureCQ, Anele >, 
ansle(Po:i.nt, Q, Curve>, !, 
interval(anele, Curve, Int ). 

measure(Q, Ansle >, 
inclinE~(Curve, Q, Point>, !, 
interval(incline, Curve, Int ). 

% database 
:>: database 

::,; database 
:>: databa~.e 

% Find interval from curve shape 

¼ For sirnPle curves 
intf.~1-val(AI, Curve, Int ) t

concavitY(Curve, Conv >, 
!:; 1 oPe (Curve, S 1 oPe ) , ! , 
auad(AI, Slope, Conv, Int ). 

% da:t.abase 
% database 

% For complex curves 
interval(AI, Curve, Int) 

i:-,artition(Curve, Clist >, !, 
collect_intervals(Clist, AI, Rlist>, 
men_combine(Rlist, Int >. 

% database 

% Collect UP a list of intervals for all the Parts 



% of a Partitioned curve, 

collect_intervals([J,_,[J). 

collect_intervals([First:RestJ,AI,[Firstint:RestintJ) 
:- interval(AI,First,Firstint), 

collect_intervals(Rest,AI,Restint), 

% Information about Properties of simple curves 
% The interval depends on both the sloPe and the 
% concavit~. 

ouad(ansle,left,risht,i(closed,0,90,closed)) :- !, 
auad(incline,left,risht,i(closed,90,180,closed)) :- ! , 

auad(ansle,risht,risht,i(closed,90,180,closed>) - !, 
ouad(incline,risht,risht,i(closed,180,270,closed)) :- !, 

auad(ansle,left,left,i(closed,180,270,closed)) :- ! , 
•ad(incline,left,left,i(closed,270,360,closed)) :- ! • 

auad(ansle,risht,left,iCclosed,270,360,closed)) :- ! • 
auad(incline,risht,left,i(closed,0,90,closed)) :- ! . 

auad(ansle,left,stline,i(open,180,270,oPen>> • -· I . . . 
auad(incline,left,stline,i(open,270,360,oPen)) 

ouad(ansle,risht,stline,i(open,270,360,oPen>> • -· I . . . 
auad(incline,risht,stline,i(open,0,90,oPen>> :- !, 

ouad(ansle,hor,stline,i(closed,270,270,closed)) :- !. 
ouad(incline,hor,stline,i(closed,O,O,closed)) :- !, 

ouad(ansle,vert,stline,i(closed,180,180,closed)) :- !, 
muad(incline,vert,stline,i(closed,270,270,closed)) :- !, 

•• JOBS TO DO 

write s~mbolic version for findinS max/mins 

use monotonicit~ in>>= etc Isolation rules 



I* PT'obs. 
CURRENT PROBLEMS*/ 

I* interval and eval Problems *I 

Pba(I) :- find_int(m1/(-m2),I). 



* TEST. 
·est Examples for PaPer 
1lan Bundy 15.6.81 *./ 

·* Test run with timinss *./ 
·un :- checklist(stats, [test1,test2,test3,test4,test5,test6,test7, 

te!::-t8,test9J) • 

. est1(I) :- int_aF,Ph~( sin, Ci(oPen,30,90,closed>J, I ) • % I -- ( 1./2,l] 
,est2( I) : -· int._appl•~( 
,est~5( I) : -·· int_aPPlY( 
,€~st4 <I) • • 

int. .. aPPh~( /, 
,est~5(:[) !-

s:i.n, Ci(oPen,30,150,closed>J, I ) • ., .,. I ::: [1./2, 
abs, [i(oPen,(-1),1,closed)J, I ) • % I ::: CO, 1] 

i~ I ::: [-oo,-2/3) 
Ci(oPen,2,3,closed), i(closed,C-3),-(0),closed)J, I>. 

% I :::: C-3,3] 

lJ 

int_aPPlY( *' 
;est6( I> :-

[i(closed,(-3),-(0),open), i(closed,C-1>,1,closed)J, I). 
% I== C1/2,2J 

int_aPPlY( -, [i(open,1,2,closed), i(closed,(-1),1,closed)J, I), 
~est7(I) :- find_int( (-ml)*g/(mltm2) , I>. % I= C-oo,0) 
, \8(I) :- find_int( (sin(theta)t2)/cos(Phi) , I>. % I= (-00,00) 

~"- ... .9(I) :-- find_int( los(2,sin(theta)), I). % I = (-·oo,O) 

~ 1J cm t i t. y ( m 1 G ) • 

~uantitY(m2c~). 
measure(m1a,m1). 
measure(m2a,m2). 

% ml is Positive 
% m2 is positive 

~uantity(thetaa>. 
~uantit~(PhiG). 

measure(thetaa,theta). 
measure(Phia,Phi). 

incline(Path3,thetaa,Point). sloPe(Path3,risht~. 
% Hence theta is acute 

Partition(semi,CPath1,Path2]), 
sloPe(Path1,left). 
sloPe(Path2,riShtl. 

% Hence Phi is obtuse 

1 ~ Jn Problem with statistics*/ 

concavitY(Path3,stline), 

concavitY(Pathl,risht>. 
concavitY(Path2,risht), 

stats(Name> :- Problem= •• [Name,Ars], statistics(runtime,_), 
call(Problem>, !, statistics(runtime,C _, TimeJ>, 
trace('\n%t took %t milliseconds and Produced answer %t\n\n', 

[Name,Time,ArgJ, 0). 

stats(Name) :- statistics(runtime,[ _, TimeJ>, 
trace('\nSorrY I could not Prove %t and I SPent %t not doins it \n\n', 

[Name, Time], 0). 



ies. 
'?-- run • 

. est1 took 9 milliseconds and produced answer i(oPen, (1/2), 1, closed) 

.est2 took 68 milliseconds and Produced answer i(closed, (1/2), 1, closed) 

,est3 took 38 milliseconds and Produced answer i(closed, O, 1, closed) 

.. est4 took milliseconds and Produced answer i(closed, neeinfinity, (-2/3), oPen. 

;est5 took 104 milliseconds and Produced answer i(closed, 3, closed) 

;est6 took 57 milliseconds and Produced answer i(closed, (1/2), 2, closed) 

;est7 took 59 milliseconds and Produced answer i(oPen, neeinfinitY, - O, oPen) 

;est8 took 123 milliseconds and Produced answer i(open, neeinfinitY, infinity, 0pe; 

~est9 took 36 milliseconds and Produced answer i(open, neeinfinitY, - O, open) 

core 68096 (38912 lo-see+ 29184 hi-see> 
1eaP 
Hobal 
loc;,d 
:.raJ.1 

33792 = 31227 in use+ 2565 free 
1175 - 16 in use+ 1159 free 
1024 - 16 in use+ 1008 free 

511 = 0 in use+ 511 free 
0.05 sec. for 2 GCs eainine 1213 words 
0.12 sec. for 20 local shifts and 21 trail shifts 
9.66 sec. runtime 



test1 took 31 milliseconds aQd Produced answer 
X:l. 

,,.,here-~ : 
X l :::: :i. ( QPEm, ( l i2) , :I. , c 1 osed) 

test2 took :1.45 milliseconds and Produced answer 
X:l. 

whe1·e : 
Xl:::: i(clt1~-€~d, (1./2), 1, closE~d) 

test3 took 1:1.5 milliseconds and Produced answer 
Xl 

·-iher·e : 
X1 = i(closed, O, abs(- 1), open) 

test4 took 65 milliseconds and Produced answer 
Xl 

whe1·e : 
X:l. = i(closed, neeinfinits, <-2/3), open) 

test5 took 255 milliseconds and Produced answer 
X1 

1,Jher·e ! 
X1 = i(closed, -3, 3, closed) 

~t6 took 175 milliseconds and Produced answer 

wher-e: 
Xl:::: i(closed, (1/2), 2, closed) 

test7 took 21:1. milliseconds and Pr-educed answer 
X 1 

whi:.?re : 
X1 = i(open, neeinfinit~, - O, open) 

test8 took 383 milliseconds and Produced answer 
X:I. 

1.,Jhere ; 
Xl:::: i(open, neeinfinits, infinit~, oPen> 



test9 took 102 milliseconds and Produced answer 
X1 

Xl = i(oPen, nesinfinit~, - O, oPen) 

~e!:, 
I ?- core 65536 (36352 lo·-ses + 29184 hi-·ses > I 

heap 31232 = 2952:l in 1.1se + 1.710 free 
Slobal 1175 = 16 in use + 1159 free 
local 1024 = 16 in use + 1008 free 
t1-ail 5U. = 0 in use + 511 free 

0+03 sec. for 1 GCs sainins 103 words 
0+22 sec+ for 25 local shifts and 26 trail shifts 
5.39 sec. runtime 
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We describe an interval arithmetic Package, INT, which generalises previous 
interval Packases bw using information about the monotonicitw of functions. INT 
~-s been used in an alsebraic manipulation Packase, PRESS, to check the 

iditions of rewrite rules and to vet the solutions to eauations. 

1. Introd•Jction 

In this PaPer we describe a seneral interval Packaee; that is, a ccmPuter 
Prosram, called INT, in which arithmetic functions are extended so that theY 
aPPlw, not Just.to numbers, but to intervals of the real line, If f is an n-arw 
function then it can be extended to intervals with the definition 

) = {f(X J+++?X ): X e i for all j} 
n 1 n .j 

so that 
' 

[1,2] + [3,5] = [4,7] 

where [a,bJ = {x: ai x, b} is the closed interval from a to b. Such Packases 
are in common use for Providins suaranteed error bounds in arithmetic (see e,S, 
[Good & London 70, Yohe 79]). 

HH was bu i 1 t for a different PU T'Pose: name 1 Y, f°'\ cheer.. i ni"-i the 
of rei..1rite rules ;;md vettine the solutions to aGuations, in 
mard.Pulation Pros ram, F'Ft:ESS, [Bund\:~ and Welham 81J. Fo~ .... _instance, 
rule 

I.J i w/v 
1{ 

/', 

0 , ~---, 4 

0 :i. ~ y \/ 
,;l ' 

V 
\ 

conditions 
an aleebraic 
the re;..iri te 
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has the condition that v be Positive, i.e lie in the oPen interval (0,oo). 
Other t~Pical conditions are that a variable be non zero, an acute anele, ~tc, 
If a, ml, m2 and e are all known to be a positive muantities (e.e. because the~ 
are known to be an acceleration, mass, mass and acceleration due to eravit~, 
respectively) then we want to be able to vet, and reJect, the emuation 

a= -ml*e/(m1+m2> 

as a Possible solution for a in terms of ml, m2 and e, 
that a were neeative. 

since it would imPlY 

The INT Packaee differs from Previous Packaees in the followine respects. 

- INT can deal with intervals whose boundaries include the infinite 
numbers, ±oo. 

- INT can deal with intervals with open or closed boundaries. These are 
denoted by round and smuare brackets, resPectivelY, 
[0,5) = {x: 0 i X ( 5} 

- INT can deal with any function, provided only that information is 
Provided about where that function is monotonically increasine and 
decreasine. Previous Packaees have defined interval arithmetic for 
only a few specific functions, e.e. [Good & London 70] sives 
definitions only for+,-, *and/+ Currently, the INT Packaee can 
deal with+, -, *' /, exponentiation, loearithms, trieonometric and 
inverse trieonometric functions, and absolute value. 

- INT can deal with intervals which straddle several monotonic reeions 
of a function. In Particular, it can deal with i/J when J contains 0, 

- INT can use information about a Particular constant, which specifies 
in what interval it lies. This has been used in conJunction with a 
Proeram for solvine Mechanics Problems, [Bundy et al 79], to allow 
semantic information about PhYsical muantities, e.e. that m is 
Positive, • is obtuse, etc, to influence the aleebraic manipulation, 

2. Monotonicity and Unarw Functions 

The keY idea behind INT is to use the monotonicity of a function to decide 
which boundaries of its areuments to use to calculate its UPPer and lower 
bounds. For instance, sin is monotonically increasine on the interval (30,90], 
so the lower bound of sin (30,90] should be calculated from (30 and the UPPer 
bound from 90J, •ivine the interval <sin 30, sin 90], which eBuals (1/2~1]. 
Note that the t~ee of the boundary (oPen or closed) is inherited alon• with its 
value. We will saY that sin is maPPed across the interval (30,90] to Produce 
the interval (sin 30, sin 90] and then the boundaries are evaluated to Produce 
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the interval (1/2,1J. 

Now consider the aPPlication of sin to (90,150]. sin is monotonically 
decreasins on this interval, so the lower bound of sin (90,150] should be 
calculated from 150] and the UPPer bound from (90, sivins the interval 
[1/2 ,1). Note asain that both the tYPe and value of the interval ~re 
inherited. We can summarise this by saYins that the interval (90,150] is 
inverted to the Pseudo-interval [150,90>+* sin is mapped across it, to Produce 
[sin 150, sin 90), and the boundaries are evaluated to Produce [1/2,1). 

sin is simPlY monotonic on both the intervals (30,90] and (90,150]. To 
calculate the value of sin on an interval, on which it is not simPlY monotonic, 
is more comPlicated. Consider the interval (30,150]. To calculate 
sin (30,150] INT first divides the interval into sub~intervals, on each of 
which sin is simPlY monotonic. In this case (30,150] would be divided into 
C30,90J and (90,150]. sin is then aPPlied separately to each sub-interval, to 
Produce (1/2,1J and [1/2,1>, and these results are then combined into the 
interval [1/2,1J. 

3. Generalized MohotonicitY and Non-UnarY Functions 

To deal with non-unarY functions we have to seneralize the notion of 
monotonicity to a tuPle valued function. This is because a non-unarY function 
maY have different monotonicity behaviour on different arsuments. For 
instance, binary minus is monotonically increasins on its first arsument and 
monotonically decreasins on its second. That is x-y increases as x increases, 
b1jt, decreases as y increases. We represer,t this by saYins that - has 
monotonicity <uP,down> on the resion <C-oo,tooJ, C-oo,ooJ> (i.e. everywhere). 
Usins the same notation, sin has monotonicity <uP> on resion <[-90,90J>, and 
monotonicity <down> on resion <C90,270J>. 

We can formalize this notation as follows: 

Definition 1: An nD resion is an n-tuPle of intervals. If every 
interval is C-oo,tooJ the the resion is called the whole nD sPace. 

Definition 2: An n-arY function, f, is monontonicallY increasins on 
its Jth arsument in resion <i , ••• ,i > iff 

1 n 

• 
*[150,90) would be the emPtY interval by the normal definition. However, the 

Phrase 'pseudo-interval' is meant to imPlY that we will not resard it as a 
Proper interval, but merely as a syntactic device. 
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Definition 3: A function, f, is monontonicallw decreasins on its Jth 
arsument in resion <i , ••• ,i > iff 

.J j 
t~or all }-~ 

1 n 

-> f(x , ••. ,x , ••• ,x > 
1 ~i n 

e i and Y 8 i 
k .j ._i 

1 ._i n 

Definition 4: An n-ary function is simPlY monotonic in resion r iff 
it is monotonically increasins or monotonically decreasins on each of 
its arsuments in resion r. Its monotonicity is siven by an n-tuPle jn 
which the ._ith element is 'up' or 'down' accordins as the function is 
monotonically increasins or decreasins on the ._ith arsument in r, 

Armed with this notation, we can now tackle th~ Problem of extendins interval 
arithmetic to non-unarY functions. Consider the aPPlication of to the 
arsuments <[3,5J, [1,2>>. Since - is monotonically increasins on its fjrst 
arsument and monotonically decreasins on its second we should calculate the 
lower bound of [3,5] - [1,2) from [3 and 2) to Yield (1. Similarly, the UPPer 
bound should be calculated from 5] and [1 to Yield 4]. This can be summarised 
by saYins that [1,2) is inverted to the pseudo-interval (2,1] and - is then 
maPPed across the Pseudo-resion <E3,5J,(2,1J> to Produce (3-2, 5-1]. The rule 
is that the Jth interval is inverted iff the function is monotonically 
decreasins on the ._ith arsument. Note that the tYPe of a boundary js oPen 
unless all of the boundaries it is calculated from are closed, since a function 
can only attain a boundary iff all its arsuments do. 

Both + and are simPlY monotonic throushout the whole 2D space, *and/, 
however, are not simPlY monotonic throushout the sPace, they have four resions 
of simPle monotonicity. For instance, / has the monotonicities Siven in fisure 

<1.1P,uP> in 
<[-oo,-OJ, [tO,tooJ> 

<down,up) in 
<[-oo,-OJ, [-oo,-OJ> 

<uP,down> in 
<E+O,+ooJ, E+O,+ooJ> 

<down,down> in 
<E+O,+ooJ, [-oo,-OJ> 

Fisure 3-1: The Monotonicities of/ 
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Consider the aPPlication of/ to <[2,3J, [-1,lJ>. INT breaks this down into 
the separate aPPlications of/ to <[2,3J, [-1,-0>> and <C2,3J, C+0,1J>, in 
~hich resions / is simPls monotonic. Calculatins these aPPlications from the 
nonotonicits information Siven above sields the followins Process, 

To calculate/ aPPlied to <C2,3J, [-1,-0>> 
invert both arsuments and map/ across them to Produce 
(3/-0,2/-1] 
Evaluate the boundaries to Produce 
[-oo,-2J 

To aPPl~ / to <[2,3J, [+0,1J> 
invert the second arsument and map/ across the result to Produce 
[2/1,3/t0J 
Evaluate the boundaries to Produce 
(2,+ooJ 

The two resultins intervals are then combined into a new interval ~hose UPPer 
bound is their maximum UPPer bound and whose lower bound is their minimum lower 
bound. This sields the interval [-oo,tooJ, Note that this interval is too 
Permissive, in the sense that it includes the interval (-2,2), which should be 
excluded. 

4. The Alsorithm 

After the informal introduction of the preceedinS sections we now turn to a 
formal account of the seneral, interval-arithmetic alsorithm, which ~•e ~ill 
call Int-APPlw. 
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To Int-APPlY a function, f, to a region, r, we must consider two cases: 

(a) If f is simPlY monotonic on r then 

Form a Pseudo-region r' from r by rePlacing the Jth element 
of r by its inverse iff f is monotonically decreasing on its 
Jth argument. 

MaP f across r', evaluate the boundaries of the result and 
ret•Jrn it. 

(b) If f is not simPlY monotonic on r then 

SPlit r into a sub-resion on which f is simPlY monotonic 
n 

and the 2 -1 comPlementarw sub-regions (some of which maw 
be emPtw). 

Call the Procedure recursively on each of the 2 
sub-regions which are not empty. 

n 

Combine the resulting intervals into one interval. 

The above descriPtion leaves various sub-Procedures undefined, namely the 
Processes o~ 'maPPing across', 'inverting', 'evaluating the boundaries', 
sPlittins a region into sub-regions and combining several resions into one. We 
now Proceed to def j_ ne these Precesses. 

- Intervals. Intervals are represented as GuadruPles, in which the 
first and last elements are either 'open' or 'closed', to represent 
the t~ee of boundarw, and the second and third elements are numbers 
representing the Malue of the boundaries, e.s. (90,150] is 
represented bw <oPen,90,150,closed>+ 

- Invertins. The inverse of interval <L,B,T,R> is <R,T,B,L>. 

- MaPPins Across. The maPPins off across 

<<Ll,B1,T1,R1>, ••• ,<Ln,Bn,Tn,Rn>> 

is 

<c({Ll, •.• ,Ln}), f(Bl, •.• ,Bn>, f<Tl, ••• ,Tn), c({Rl, ••• ,Rn}>> 

' 
where c(Set)=open iff oPen 8 Set and c(Set)=closed otherwise. 
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Evaluation. As can be seen from Previous sections the nor~al 
arithmetic functions must be extended to deal with the infinite 
numbers -oo and too. It is also necessary to distinsuish between -0 
and +o, since 3/-0 = -oo and 3/+0 = too, For evaluatins the 
boundaries of intervals INT uses an arbitrary-precision, 
rational-number, arithmetic Packase developed by Richard O'Keefe. In 
this Packase numbers are represented by triPles of 
<sisn,nurnerator,denominator>, e.s, <-,2,1>. too is rePresented h~ 
<t,1,0> and -0 by <-,0,1>, etc. The standard rational arithmetic 
operations reGuire only trivial adaPtation to return the correct 
answers for infinite numbers. In indeterminate cases, e.s. 0/0, the 
answer 'undefined' is returned. Such an answer causes Int-APPlY to 
return the default interval (-oo,+oo). 

- SPlittins. To SPlit resion <Il, ••• ,In> into aPProPriate sub-resions 
so throush the simPlY monotonic resions off until one, <Ml,,,,Mn>, 
is found with the Property that each IJ is a disJoint union of 
intervals IJ' and IJ", where IJ" is non-empty, and a sub-interval of 

n 
MJ. Return the 2 sub-resions <Il*'•••'In*>, where IJ* is either IJ' 
or !Ja. Note that f is simPlY monotonic on sub-resion <Il",,.,,In">. 
If IJ' is empty then so is any resion containinS it. If <Il,,,,,In> 
cannot be divided into a finite set of simPlY monotonic sub-resions 
then this SPlittins Process may not terminate. 

Combinins, To combine a set of intervals, form a new interval whose 
lower bound is the minimum of the lower bounds of the set and whose 
upper bound is the maximum of the set. Note that the minimum of two 
boundaries with the same value, but different tYPes, is the closed 
boundary. Similarly with the maximum. The combination of two 
intervals is the smallest interval containins their union, but it may 
not be eGual to their union, e.g. combinins [-oo,-2] and [2,tooJ 
Produces [-oo,+oo]. 

5. Semantic Checkins 

he above sections describe an interval arithmetic alsorithm, We now explain 
the aPPlications of this alsorithm in the alsebraic maniPulation Packase, 
PRESS, [Bundy and Welham 81]. 

As describe in the introduction, the aPPlications are twofold: checkins the 
conditions of rewrite rules and vettins the solutions to emuations, Both these 
aPPlications make use of a common sub-procedure, Find-Int, Find-Int takes an 
alsebraic term and returns the interval within which it lies. For instance, if 
a, mi, m2 and s are all positive then Find-Int aPPlied to the term 
-m1*S/(m1+m2) will return (-oo,O>, from which it can be deduced that the term 
is nesative and that a= -m1*S/(m1tm2) is false. 

The Procedure, Find-Int, works bY call bY value, APPlied to ~ term 
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f(t , ••. ,t >, Find-Int is called recursively on each t and returns i . f is 
1 n j j 

then aPPlied to <i , ••. ,i > by Int-APPlY, If Find-Int is aPPlied to a number, 
1 n 

1, then the interval Cn,nJ is returned, e.s. C2,2J. If Find-Int is aPPlied to a 
symbolic constant or variable, e.s. ml, then semantic information is used to 
try to determine the result. If this is not successful then the default 
interval, (-oo,+oo), is returned. 

The semantic information is Provided by the MECHO Prosram, CBundy et al 79J, 
for solvins Mechanics Problems. Information is Provided about two sorts of 
constant: PhYsical Guantities (e.s. masses, accelerations, etc) and ansles. All 
PhYsical Guantitias are assumed to be Positive, that is, to lie in the interval 
<O,+oo>. Provision exists for Providins more sophisticated information about 
each kind of GuantitY, but this has not been exploited. In the case of ansles 
an attempt is made to infer in which Guadrant<s> of the circle the ansle ]jes, 
for instance, C0,90J, C180,360J, etc. 

nsles are defined in MECHO either as the inclination or the nor-al to ~ ? 
dimensional curve, where the normal is towards the convex side of the curve and 
the inclination is 90 desrees sreater. For simPle curves, i.e. monotonic 
curves with monotonic first derivatives, both the inclination and the normal 
lie wholly within a sinsle Guadrant. Which Guadrant this is depends on the sisn 
of the first and second derivatives. We call the first derivative the slope and 
the second derivative the concavity of 'the curve. For instance, if the sloPP is 
Positive and the concavity is Positive then the inclination lies in the 
Guadrant C0,90J and the normal lies in the Guadrant C270,360J. This and the 
other seven cases are illustrated in fisure 5-1. 

If Find-Int is aPPlied to an ansle defined on a non-simPle curve then the 
curve is first broken into simPle curves, the above Process is aPPlied to each 
of these and the resultins auadrants are combined, usins the combination 
Procedure described in section 4. 

6~ Results 

The INT interval arithmetic Packase has been imPlemented in PROLOG <[Pereira 
et al 79J on a DEC10. It occupies 39k, 36 bit words and the PROLOG system 
occupies a further 29k. The former fisure could Probably be reduced 
substantially by deletins various utility Procedures reauired bw PRESS but not 
by INT. Table 6-1 summarises the results of aPPlYins Int-APPlY to some tYPical 
functions and resions. Table 6-2 summarises the results of aPPlwinS Find-Int 
to some tYPical formulae. 

7. Limitations 

The INT Packase uses inform•tion about the simPlY monotonic resions of a 
function to extend its definition on numbers to one on intervals. In this way 
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Positive Nesative Zero 

normal [270,360] normal [90,180] normal (270,360) 
incline [0,90] incline [180,270] incline (0,90) 

normal [180,270] normal C0,90] normal (180,270) 
incline [270,360] incline [90,180] incline (270,360) 

impossible impossible 

impossible impossible 

normal=270 
incline==O 

normal==1BO 
incline==270 

FiJ•Jre 5-1: Classification of the Ansles of Simple Curves 

'··········------!\ 
- . 

-, ___ Jnte.rva l 
Calc•Jlation, 

sin (30,90] 

sin (30,150] 

abs (-1,1.] 

[--3,-··0) * [-1,l.] 

[-··1,:1.] 
(:I.' 2] 

Answer 

(1/2,1] 

[1/2,1] 

[0,1.] 

C-oo,-·2/3) 

[-·3,3] 

[1/2,2] 

CPU 1 Time 
in msecs 

13 

64 

38 

18 

120 

58 

Is Resion SimPl!:1 
Monotoriic1 

no 

no 

no 

no 

Table 6-1: Results of APPl':linS Int-APPl~ 
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Form•Jla Interval CPU Time 
it lies in in msecs 

··m 1 *s./ (ml. +m2) <-oo,-0) 63 

sin(8)t2./cos(d>) (-00,00) 128 

los sin(8) <-oo,-0) 37 
2 

~here ml., m2 and s are Positive numbers, 8 is an acute ansle 
and d> is an obtuse ~nsle. 

Table 6-2: Results of APPlYinS Find-Int 

it seneralises Previous interval PackaSes, which could deal with onlw? 
-specified number of functions. However, INT onlw works well on functions 

~nich are well behaved monotonicallw, i.e. divide the whole sPace into a finite 
~et of continuous simPlY monotonic resions. Some of the situations in which INT 
joes not behave ideally are listed below. 

- INT cannot d~al with the situation where a function must be aPPlied 
to a resion which only divides into an infinite set of simPlY 
monotonic sub-resions, because Int-APPlY will not terminate. For 
instance, sin aPPlied to <(-oo,too)> should return C-1,lJ, but 
<<-oo,too>> cannot be divided into a finite set of simPlY monotonic 
sub-resions, so Int-APPlY will not terminate. This Particular case 
is dealt with by a Patch to the INT Packase to take into account the 
bo•Jndedness of sin, cos, etc. 

- Int-APPlY is constrained to return a sinsle continuous interval as 
its result. To return, saw, a set of disJoint intervals would alter 
the whole basis of the alsorithm with a conseauent loss of simPlicitw 
and efficiency. The Price to be Paid for this is that the result of 
Int-APPlY will sometimes be too inclusive. An examPle of this was 
siven in section 3 where the result of C2,3J/C-1,1J included the 
interval (-2,2).* Sometimes the best descriPtion of the monotonicitw 

*G• CaPlat, in a Private communication, has sussested that ?llowins 
'extervals' to be returned by Int-APPlY, would account for the maJoritY nf 
~ounterexamPles which arise in Practice, for only a small increase in the 
~omPlexitY of the alsorithm. An exterval is a set of real numbers obtained by 
;ubtractinS an interval from the real line. I have not explored this 
'"'Oss:i.bilitY. 
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of a function involves non-continuous sets of numbers. For instance, 
~ 

x has monotonicity <down,uP> when x is nesative and Y is an even 
rational. Unfortunately, the even rationals cannot be represented as 
an interval. In fact exponentiation has no simPlY monotonic 
sub-resions in <[-oo,OJ,C-oo,tooJ>. There is a Patch in !NT to deal 
with this Particular case, but in seneral such situations are outside 
its scope. 

3. Conclusion 

We have seen that the !NT interval arithmetic Packase seneralises Previous 
interval Packases by the use of the monotonicity of functions. It can deal 
with more functions than Previous Packases and can deal correctly with the 
aPPlication of a function to a resion which straddles a finite number of simPlY 
~onotonic resions. It breaks down onlY when a function has a Particularly 
~omPlex monotonic behaviour. 

The INT Packase has been aPPlied in unusual ways, to check the conditions of 
r~rite rules and to vet the solutions to eGuations, as Part of an alsebraic 
~aniPulation Packase. 
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Abstract 
We describe an interval arithmetic package, INT, which generalises previous 

interval packages by using information about the monotonicity of functions. INT 
has been used in an algebraic Manipulation package, PRESS, to check the 
conditions of rewrite rules and to vet the solutions to equations. 

1. Introduction 
In this paper we describe a general interval package; that is, a computer 

program, called INT, in which arithmetic functions are extended so that they 
apply, not just to numbers, but to intervals of the real line. If f is an n-ary 
function then it can be extended to intervals with the definition 

f(i 1, ... ,in) = {f(x 1, ... ,xn): xj 6 ij for all j} 

so that 

[1,2] + [3,5] = [4,7] 

where [a,b] = {x: 
are in common use for 
[Good & London 70]). 

the closed interval from a. to b. Such packages 
guaranteed error bounds in arithmetic ( see 

INT was bu:i.lt for a different purpose: namely, for checking the conditions 
of rewrite rules and vetting the solutions to equations, in an algebraic 
manipulation program, PRESS, [Bundy and Welham 81]. For instance, the rewrite 
rule 

u*v 2. w => u 2. w/v 

has the condition that v be positive, i.e lie in the open interval (O,oo). 
Other typical conditions are that a variable be non zero, an acute angle, etc. 
If a, m1, m2 and g are all kno¥n to be a positive quantities (e.g. because they 
are known to be an acceleration, mass, mass and acceleration due to gravity, 
respectively) then we want to be able to vet, and reject, the equation 

a= -m1*g/(m1+m2) 

as a possible solution for a in terms of m1, m2 and g, since it would imply 
that a were negative. 

The INT package differs from previous packages in the following respects. 

- INT can deal with intervals whose boundaries include the infinite 
numbers, ±oo. 

- INT can de&l with intervals with open or closed boundaries. These are 
denoted by round and square brackets, respectively, e.g. 
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[0,5) = {x: 0 ~ X ( 5} 

- INT can deal with any function, provided only that information is 
provided about where that function is monotonically increasing and 
decreasing. Previous packages have defined 'interval arithmetic for 
only a few specific functions, e.g. [Good & London 70] gives 
definitions only for+, -, *and/. Currently, the INT package can 
deal with+, -, *, /, exponentiation, logarithms, trigonometric and 
inverse trigonometric functions, and absolute value. 

- INT can deal with intervals which straddle several monotonic regions 
of a function. In particular, it can deal with i/j when j contains 0. 

- INT can use information about a particular constant, which specifies 
in what interval it lies. This has been used in conjunction with a 
program for solving Mechanics problems, [Bundy et al 79], to allow 
semantic information about physical quantities, e.g. that m is 
positive, ~ is obtuse, etc, to influence the algebraic manipulation. 

2. Monotonicity and Unary Functions 
The key idea behind INT is to use the monotonicity of a function to decide 

which boundaries of its arguments to use to calculate its upper and lower 
bounds. For instance, sin is monotonically increasing on the interval (30,90], 
so the lower bound of sin (30,90] should be calculated from (30 and the upper 
bound fr·om 90], giving the interval ( sin 30, sin 90], which equals ( 1 /2, 1]. 
Note that the~ of the boundary (open or closed) is inherited along with its 
value. We will say that sin is mapped across the-interval (30,90] to produce 
the interval (sin 30, sin 90] and then the boundaries are evaluated to produce 
the interval (1/2,1]. 

Now consider the application of sin to (90,150]. sin ism -otonica~ly 
decreasing on this interval, so the lower bound of sin ( 90, 15 should be 
calculated from 150] and the upper bound from (90, givin t interval [ / v:s-
,1). Note again that both the type and value of the interva inherited. e 1 
can summarise this by saying that the interval (90,150] is inverted to the~ 
pseudo-interval [150,90).* sin is mapped across it, to produce [sin 150, sin_ • 
90), and the boundaries are evaluated to produce [1/2,1). 

sin is simply monotonic on both the intervals ( 30, 90] and ( 90,150] . To 
calculate the value of sin on an interval, on which it is not simply monotonic, 
is more complicated. Consider the interval (30,150]. To calculate 
sin (30, 150] 1 INT first divides the interval into sub-intervals, on each of 
which sin is simply monotonic. In this case ( 30,150] would be divided into 
(30,90] and (90,150]. sin is then applied separately to each sub-interval, to 
produce ( 1 /2, 1] and [ 1 /2, 1) , and these results are then combined into the 
interval [1/2,1]. 

*[150,90) would be the empty interval by the normal definition. However, the 
phrase 'pseudo-interval' is meant to imply that we will not regard it as a 
proper interval, but merely as a syntactic device. 
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3. Generalized Monotonicity and Non-Unary Functions 
To deal with non-unary functions we have to generalize the notion of 

m9notonicity to a tuple valued function. This is because a non-u ry function 
may have different monotonicity behaviour on different argumen O or instance, 
binary minus is monotonically increasing on its first argument and 
monotonically decreasing on its second. That is x-y increases as x increases, 
but decreases as y increases. We represent this by saying that - has 
monotonicity <up,down> on the region <[-oo,+oo], [-00,00]> (i.e. everywhere). 
Using the same notation, sin has monotonicity <up> on region <[-90,90]>, and 
monotonicity <down> on region <[90,270]>. 

We can formalize this notation as follows: 

Definition 1: An nD region is an n-tuple of intervals. If every 
interval is (-oo,+oo] the the region is called the whole nD space. 

Definition 2: An n-ary function, f, is monontonically increasing on 
its jth argument in region <i 1, ... ,in> iff 

xj < Yj -> f(x1,•••,xj,••·,xn) < f(x1,•••,Yj,••·,xn) 
for all xk G ik and y· G i· . J J 

Definition 3: A function, f, is monontonically decreasing on its jth 
argument in region <i 1, ... ,in> iff 

xj < Yj -> f(x1,••·,xj,·•·,xn) > f(x1,•••,Yj,•··,xn) 
for all xk G ik and Yj G ij 

Definition 4: An n-ary function is simply monotonic in region riff 
it is monotonically increasing or monotonically decreasing on each of 
its arguments in region r. Its monotonicity is given by an n-tuple in 
which the jth element is 'up' or 'down' according as the function is 
monotonically increasing or decreasing on the jth argument in r. 

Armed with this notation, we can now tackle the problem of extending 
interval arithmetic to non-unary functions. Consider the application of - to 
the arguments <[3,5], [1,2)>. Since - is monotonically increasing on its first 
argument and monotonlcally decreasing on its second we should calculate the 
lower bound of [3,5] - [1,2) from [3 and 2) to yield (1. Similatly, the upper 
bound should be calculated from 5] and [1 to yield 4]. This can be sUiilIDarised 
by saying that [1,2) is inverted to the pseudo-interval (2,1] and - is then 
mapped across the pseudo-region <[3,5],(2,1]> to produce (3-2, 5-1]. The rule 
is that the jth interval is inverted iff the function is monotonically 
decreasing on the jth argument. Note that the type of a boundary is open 
unless all of the boundaries it is calculated f~om are closed, since a function 
can only attain a boundary iff all its arguments do. 

Both + and - are simply monotonic throughout the whole 2D space. ~ and /, 
however, are not simply monotonic throughout the s they have four regions 
of simple mo~otonicity. For instance, / has the -~l.er1!~:ft£ monotonicities given 
in figure 3-1 . 

Consider the application of/ to <[2,3], [-1,1]>. INT breaks this down into 
the separate appli~at.ions of / to <[2,3], [-1,-0)> and <[2,3], [+0, 1J>, in 
which regions/ is simply monotonic. Calculating these applications from the 
monotonicity information given above yields the following process. 

To calculate/ applied to <[2,3], [-1,-0)> 



<up,up> in 
<[-oo,-0], [+0,+oo]> 

<down,up> in 
<[-oo,-0], [-oo,-0]> 

4 

<up,down> in 
<[+0,+oo], [+0,+oo]> 

<down,down> in 
<[+0,+oo], [-oo,-0]> 

Figure 3-1: The Monotonicities of/ 

invert both arguments and map/ across them to produce 
[3/-0,2/-1] 
Evaluate the boundaries to produce 
[-oo,-2] 

To apply/ to <[2,3], [+0,1]> 
invert the second argument and map/ across the result to produce 
[2/1,3/+0] 
Evaluate the boundaries to produce 
[2,+oo] 

The two resulting intervals are then combined into a new interval whose upper 
bound is their maximum upper bound and whose lower bound is their minimum lower 
bound. This yields the interval [-oo, +oo]. Note that this interval is too 
permissive, in the sense that it includes the interval (-2,2), which should be 
excluded. 

4. The Algorithm 
After the informal introduction of the preceeding sections we now turn to a 

formal account of the general, interval-arithmetic algorithm, which we will 
call Int-Apply. 

To Int-Apply a function, f, to a region, r, we must consider two cases: 

(a) If f is simply monotonic on r then 

Form a pseudo-region r' from r by replacing the jth element 
of r by its inverse iff f is monotonically decreasing on its 
jth argument. 

Map f across r', evaluate the boundaries of the result and 
return it. 

(b) If f is not simply monotonic on r then 

Split r into a sub-region on which f is simply monotonic 
.. and the 2n-1 complementary sub-regions (some of which may 

be empty). 

Call the procedure recursively on each of the 2n 
sub-regions which are not empty. 

Combine the resulting intervals into one interval. 

The above description leaves various sub-procedures undefined, namely the 
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processes of 'mapping across', 'inverting', 'evaluating the boundaries', 
splitting a region into sub-regions and combining several regions into one. We 
now proceed to define these processes. 

Intervals. Intervals are represented as quadruples, in which the 
first and last elements a~e either 'open' or 'closed', to represent 
the ~ of boundary, and the second and third elements are numbers 
representing the value of the boundaries, e.g. {9C, 150] is 
represented by <open,90,150,closed>. 

Inverting. The inverse of interval <L,B,T,R> is <R,T,B,L>. 

- Mapping Across. The mapping off across 

<<L1,B1,T1,R1>, ... 1 <Ln,Bn,Tn,Rn>> 

is 

<c({L1, ... ,Ln}), f(B1, ... ,Bn), f(T1, ... ,Tn), c({R1, ... ,Rn})> 

where c(Set)=open iff open G Set &nd c(Set)=~losed otherwise. 

Evalu~tion. As can be seen from previous sections the normal 
arithmetic functions must be extended to d6al with the infinite 
numbers -oo and +oo. It is also necessary to distinguish between -0 

-and +O, since 3/-0 = -oo and 3/+0 = +oo. For evaluating the 
boundaries~ of intervals INT uses an arbitrary-precision, 
rational~number, arithmetic package developed by Richard O'Keefe. In 
this package numbers are represented by triples of 
<sign,numerator,denominator>, e.g. <-,2,1>. +oo is represented by 
<+,LO> and -0 by <-,0,1>, etc. The standard rational arithmetic 
operations· ·require only triv:i.al adaptation ':.o return the correct 
answers f0r infinite numbers. In indeterminate cases, B.g. 0/0, the 
answer 'undefined' is returned. Such an answer nauses Int-Apply to 
return the default interval (-oo,+oo). 

Rplitting. To split regio~ <I1, ... ,In> into appropriate sub-regions 
go through the simply monotonic regions of f until one, <M1, ... Kn>, 
is found with the property th&t each :i:j is a disjoint union of 
intervals lj' and Ij", ".vhere Ij" is non-empty, and a sub-interval of 
Mj. Return the 2n sub-regions <11•, ... ,In~>, ~here Ij* is either Ij' 
or Ij". Note that f is simply monotonic on sub-region <I1", ... ,In">. 
If Ij' is empty then soi~ any region containing it. If <I1, ... ,In> 
cannot be divided into a finite set of simply monotonic sub-regions 
then·t;his splitting process may not terminQte. 

- Combining. To combine a set of intervals, form a new interval whose 
lower> bound is the minimum o!' the lower bour.ds of the set and whose 
upper bound is th8 maximum of the set. Note that the minimum of two 
boundariP.s with the same value, b~t different typss, is the closed 
boundary. Similar:i.y with the ma.ximum. The combinatic,n of two 
intervals is the smallest intervaJ containing thAir union, but it may 
not be ec:ual to their uniun, e.g. combining [-oo,-2] and [2,+oo] 
prod11ces [-oo;+oc]. • 
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5. Semantic Checking 
The above sections describe an interval arithmetic algorithm. We now explain 

the applications of this algorithm in the algebraic manipulation package, 
PRESS, (Bundy and Welham 81]. 

As describe in the introduction, the applications are twofold: checking the 
conditions of rewrite rules and vetting the solutions to equations. Both these 
applications make use of a common sub-procedure, Find-Int. Find-Int takes an 
algebraic term and returns the interval within which it lies. For instance, if 
a, m1, m2 and g are all positive then Find-Int applied to the term 
-m1*g/(m1+m2) will return (-oo,O), from which it can be deduced that the terc 
is negative and that a= -m1*g/(m1+m2) is false. 

The procedure, Find-Int, works by call by value. Applied to a term 
f( t 1 , ... , ~n) , Fin1-Int is called recursively on ea11h t j and ~~et urns i j. f is 
then applied to <1 1, ... ,i > by Int-Apply. If Find-Int is applied to a number, 
n, then the interval [n,nf is returned, e.g. [2,2]. If Find-Int is applied to a 
symbolic constant or variable, e.g. m1, then semantic information is used to 
try to determine the result. If this is not successful then the d.efaul t 
interval, (-oo,+oo), is returned. 

The semantic information is provided by the MECHO program, [Bundy et al 79], 
for solving Mechanics problems. Inforliiation is provided about two sorts of 
constant: physical quantities (e.g. masses, accelerations, etc) and angles. All 
physical quantities are assumed to be positive, that is, to lie in the interval 
(O,+oo). Provision exists for providing more sophisticated information about 
each kind of quantity, but this has not been exploited. In the case of angles 
an attempt is made to infer in which quadrant(s) of the circle the angle lies, 
for instance, [0,90], [180,360], etc. 

Angles are defined in MECHO either as the inclination or the normal to a 2 
dimensional curve, where the normal is towards the convex side of the c~rve and 
the inclination is 90 degrees greater. For simple curves, Le. monotonic 
curves with monotonic first derivatives, both the inclination and the normal 
lie.wholly within a single quadrant. Which quadrant this is depends on the sign 
of the first and second derivatives. We call the first derivative the slope and 
the second derivative the concavity of the curve. For instance, if the slope is 
positive and the concavity is positive then the inclination lies in the 
quadrant [0,90] and the normal lies in the quadrant [270,360]. This and the 
other seven cases are illustrated in figure 5-1. 

If Find-Int is applied to an angle defined on a non-simpl 
curve is first broken into simple curves. the above process 
of these and the resulting q-:.iadrants are combined, 
procedure described in section 4. 

6. Limitations 

curve then the 
applied to each 
the ccmbination 

The INT package uses information about the simply monotonic regions of a 
function to extend its definition on numbers to one on intervals. In this way 
it generalises previous interval packages, which could deal with only a 
pre-specified number of f 1mctions. However, . INT only works well on functions 
which are well behaved monotonically, i.e. divide the whole space into a finite 
set of continuous simply monotonlc regions. Some of the situations in which INT 
does not behave ideally are listed below. 
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Positive Negative Zero 

Positive 

Figure 5-1: Classification of the Angles of Simple Curves 

- INT cannot deal with the situation where a function must be applied 
to a region whic~ only divides into an infinite set of simply 
monotonic sub-regions, because Int-Apply will not terminate. For 
instance, sin applied to <(-oo,+oo)> should return [-1,1], but 
<(-oo,+oo)> cannot he divided into a finite set of simply monotonic 
sub-regions, so Int-Apply will riot terminate. This particular case 
is dealt with by a patch to the INT package to take into account the 
boundedness of sin, cos, etc. 

- Int-Apply is constrained to return a single continuous interval as 
its result. To return, say, a set of disjoint intervals would alter 
the whole basis of the algorithm with a consequent loss of simplicity 
and efficiency. The price to be paid for this is that the result of 
Int-Apply will sometimes be too inclusive1 An example of this was 
given in section 3 where the result of [2,3]/[-1,1] included the 
interval (-2,2). + 

- Sometimes the best description of the monotonicity of a function 
involves non-continuous sets of numbers. For instance, xY has 
monotonicity <down,up> when x is negative and y is an even rational. 
Unfortunately, the even rationals cannot be represented as an 
interval. In fact exponentiation has no simply monotonic sub-regions 
in <[-oo,O] ,[-oo,+oo]>. There is a patch in INT to deal with this 
particular case, but in general such situations are outside its 
scope. 
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7. Conclusion 
We have seen that the INT interval arithmetic package generalises previous 

interval packages by the use of the monotonicity of funct:i.ons. It can deal 
with more functions than previous packages and can deal correctly with the 
application of a function to a region which straddles a finite number of simply 
monotonic regions. It breaks down only when a function has a particularly 
complex monotoni~ behaviour. 

The INT package has been applied in unusual ways, tc check t,he conditions of 
rewrite rules and to vet the solutions to equations, as part of an algebraic 
manipulation package . 
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