
I* int.eT'V.
Load files for test.ins interval stuff
USE! 1,,.1:i.th UTIL
Alan Bund~ 15.6.81 *I

t -·· COITIF' j_]. t? ([

:i.nt,
·' e~d .. ras: SPO rt r'
J) •

test,
Prob~,.,

'arith:odds',
Gik

J •

% M~ interval stuff
% General Portra~

% Test examples for PaPer
% Current Problems
% odd stuff from eval
% Quick save and restore

I* INT: Finds intervals of terms in PRESS

Alan Bundy 19.12.79
Revised version 14.3.80
Further revised 26,3,81
Cosmetics by Lawrence 18 June 81

- Public

I* IMPORT *I
/*

I* MODES *I

:- mode

vet/2,
Positive/1,
neeative/1,
non_nee/1,
non_pos/1,
non_zero/1,
acute/1,
obtuse/1,
non_reflex/1,

error/3

memberchk/2

number/1
eval/1
eval/2

measure/2
muantity/1
anele/3
incline/3
concavitY/2
sloPe/2
Partition/2

vet(+,?>,
Positive<+>,
neeative<+>,
non_nee<+>,
non_pos<+>,
non_zero<+>,
acute<+>,
obtuse<+>,
non_reflex(t),

een_combine(t,?),
combine<+,+,?>,

Alan Bund~
UPdated: 25 June 81

% ExPorted for convenience

from UTIL:TRACE

from UTIL:SETROU

from LONG

from notional Meche database

Data structures

<interval>
<boundar~>

in<+,+>,
sub_int<+,+>,
below<+,+>,
disJoint<+,+>,
overlaP(+,+>,
marker_fliP(?,?),

default-interval(?),
find_int<+,?>,

find_int2<+,->,
find_int_ares<+,-,->,
find_simPle_int(t,-),

make_assumPtion_Positive(t),

int_aPPl~(+,+,->,
int_aPPlw_all<+,+,->,
all_are_contained(t,t),
make_reeions<+,+,->,

SPlit(t,t,+,->,
SPlitl(t,t,-),

cartesian_product(t,+,-,?),
cart_Prod(t,t,+,-,?>,

find_limits(t,t,t,-),
clean_up(t,->,
limits<+,+,+,+,?>,
eet_bnds<+,+,+,->,

uPdown_fliP(t,+,->,
eet_bnd(t,+,->,

order<+,+,?,?>,
less_than<+,+>,
calc(t,t,?>,

breakuP_bnds<+,-,->,
comb<+,?>,

mono<+,?,?>,

classifw<+,->,
interval(+,-,-),
collect_intervals<+,+,->,
muad(t,+,t,?).

has form
has form

i(LMarker,Bottom,ToP,RMarker>
b(N,Marker)

where:
Bottom, TqP, N are <numbers>
LMarker, RMarker, Marker are one of {oPen,closed}

An interval ranees between Bottom and ToP and is open or closed at
the ends dePendins on LMarker (for Bottom) and RMarker (for ToP).

A bounder~ is an end of an interval. There are operations defined
over these boundaries which are then used to help define the
operations over intervals, Note that the notion of a bounder~ does
NOT involve ans specific end of an interval Cie ToP/Bottom). Thaw

are a Seneralisation over all such ends.

%% @@@ - marker (top of code)

/**! I* Use interval information - top level *I
l**I

% Check that solution is admissible

vet.(true,true).

vet(false,false).

vetCA&B,A1&B1> - vet<A,A1), vet(B,B1>.

vetCAIB,A11B1> :- vet<A,A1>, vetCB,B1).

t(A:::=B,A==B) :-•
find_int(A,IntA>, find_intCB,IntB>,
overlaP(IntA,IntB>,
! •

% X is Positive, nesative, acute, etc.

Posit.ive(X) :- find_int(X,i(L,B,T,R)), less_than(b(O,closed),b<B,L)),

nesative<X> :- find_int(X,i(L,B,T,R>>, less_than(b<T,R>,b<O,closed)).

non_nes(X) :- find_int(X,i(l,B,T,R>>, less_than(b<O,open),b(B,l)).

non_Pos(X) - find_int<X,iCL,B,T,R)), less_than(bCT,R),b(O,oPen)),

%ad hoe Patch (replaces nesative<N>>

non_zero (X) :--
find_int C X, i CL, B, T, R > >,
(less_than(b(O,closed),b(B,l)) ; less_than(b(T,R),b(O,closed)) >,
! •

acute (X) : -
find_intCX,iCL,B,T,R>>,
less_than(b(O,oPen),b(B,L)),
less_than(b(T,R),b(90,oPen)).

obtu~-e (X) : -·
find_int(X,i(l,B,T,R>>,
less_than(b(90,oPen),bCB,L>>,
less_than(b(T,R),b(180,oPen)).

non_reflex(X) :
find_int(X,i(L,B,T,R>>,
less_than(b(O,oPen),b(B,L>>,
less_than(b(T,R>,b(180,oPen)),

l***I I* ManiPulatinm Intervals *I
f***I

% Combine a list of intervals bw sweePinS list 8nd
% accumulatins the combined intervals.

Sen_combine([FirstintlRestintsJ,Result)
:- Sen_combine(Restints,Firstint,Result).

Sen_combine([J,Result,Result>.

Sen_combine([IntlRestintsJ,Acc,Result)
:- combine(Int,Acc,NewAcc),

sen_combine(Restints,NewAcc,Result).

% Combine x and w intervals

combine(i(Lx,Bx,Tx,Rx>, i(Lw,Bw,T~,Rw), i<L,B,T,R>> :
order(b(Tx,Rx>,b<Tw,Rw),_,b(T,R>>,
order(b(Bx,Lx>,b(B~,Lw>,b(B,L),_).

% Number N is contained in interval

in<N,i<L,B,T,R>> :- !,
sub_int(i(closed,N,N,closed),i(L,B,T,R>>.

% x interval is contained in second interval

sub_int(i(Lx,Bx,Tx,Rx),i(L,B,T,R)) :-
marker_fliPCL,Ll>, marker_fliPCR,Rl),
less_than(bCB,Ll),b(Bx,Lx>>, less_than(b(Tx,Rx),b(T,Rl)).

% x interval is whollw below~ interval

below(i(Lx,Bx,Tx,Rx>,i<L~,Bw,Tw,Rw>> :
less_than(b(Tx,Rx),b(Bw,Lw>>, ! •

% x and~ intervals are disJoint

disJoint(IntX,IntY) :- below(IntX,IntY), ! •
disJoint(IntX,IntY) :- below(IntY,IntX>, !.

% x and w intervals overlap

%% overlaP(IntX,IntY) :- not disJoint(IntX,IntY).

overlaP(IntX,IntY> :- disJoint(IntX,IntY>, !, fail,
overlap(_,_),

% open and closed are OPPosites

% (this is how to fliP them)

marker_fliP(open,closed) :- ! .
marker_fliP(closed,oPen>.

l**I I* X lies in closed or open interval *I
l**I

% Worst case default for intervals

default_interval(i(oPen,nesinfinitY,infinitY,oPen>>.

% Lets try to do better ••

find_int(X,Interval)
;- find_int2(X,Result>,

Interval= Result+
% suarantee mode<+,->

% Catch variables (shouldn't be there!)

find_int2(V,_)
:- var(V),

! '
error('Interval Packase siven variable: %w',CVJ,fail).

% Base cases
% Numbers have Point intervals
% Symbols (atoms) have various SPecial cases

find __ int2(X,i(closed,X,X,closed)) :- nrJmber(X), ! •

find_int2CX,Interval) :- atom(X>, !, find_simPle_int<X,Interval).

% Convert -c-1> to 1/

find __ int2(X-(-1), Int) :- !,
find_int2(1/X, Int).

% Deal with exponentials to even Power

find_int2(X~N, i(L,B,T,R>> :
even (N >, ! ,
find_int2(abs(X), i(Lx,Bx,Tx,Rx>>,
calc<-,Cb(Bx,Lx),b(N,closed)J,b(B,L)),
calc(~,Cb<Tx,Rx),b(N,closed)J,b<T,R>>.

% Convert cosecant to sine

·find __ int2(csc<X>, Int) :-• !, finr.Lint2(1/sin(X), Int).

% Convert secant to cosine

find_int2(sec<X>, Int) :- 1, find_int2(1/cos(X), Int).

% Convert cotansent to tansent

find_int2(cot(X), Int> :- 1, find_int2(1/tan(X), Int>.

% General case
% Recursively find intervals for arsuments and
% then int_aPPlY to sort this out. This will use
% monotonicity of F to calculate interval of Term
% from arsuments.

find_int2(Terrn,Int) :
find_int_arss<Term,F,Intlist),
int_aPPlY(F,Intlist,Int>,
! •

% If the seneral case fails

~d-int2(sin(X), i(closed,<-1>,1,closed)) :- ! ,
find_int2(cos(X), i(closed,(-1),1,closed)) :- ! ,

find_int2(X,Default) :- default_interval(Default), •

% Find a list of intervals corresPondin~ to the
% arsuments of Term, Also return the functor.

find_int_arss(Terrn,Fn,Intlist)
:- functor(Term,Fn,Arits),

find_int_arSs(l,Arits,Term,Intlist).

find_int_arssCN,Max,_,[J) :- N > Max, ! •

find_int_ares<N,Max,Terrn,[Int:IntRestJ)
:- ars<N,Term,Ars>,

find_int2(Ars,Int>,
N1 is N+l,
find_int_arss<Nl,Max,Term,IntRest).

% Find the interval for a simPle sYmbol
% This involves lookins to see if we know
% ansthins special about the ssmbol which will
% help us.
% Ad hoe Patch for sravits - Proper solution means
% allowins eouations between auantities and definin~
% s as measure<s,32,ft/sec-2).
% Otherwise trY to classify symbol (if it is an ansle)
% Otherwise assume all auantities are Positive

(possibly extreme?)
% If there is no useful info we must use the default.

find_simPle_int<s,iCoPen,1,infinits,oPen)) :- 1 ,

find_simPle_int(X,Int) :- classifw(X,Int>, !.

find_simPle_int<M,i(oPen,O,infinitw,oPen)) :
measure<Q,M), Guantitw(Q),
! '
make_assumPtion_positive<M>.

find_simPle_int<X,Default) S- default_interval(Default).

% Make and remember assumption

make_assumPtion_Positive<X> :- assumed_positive(X), ! .

make_assumPtion_Positive(X)
:- assert(assumed_positive(X) >,

trace('! assume %t Positive.\n',[XJ,1).

IT**I
I* Find interval of function from intervals of its arsuments *I

l***I

% Simple case

int_aPPlw(F,Resion,Int) :
mono<F,Is,Mono),
all_are_contained(Resion,Is>,

! '
find_limits(F,Resion,Mono,Int>.

% Complex Case

mono<F,MResion,Mono>,
make_resions(Resion,MResion,NewResions>,
int_aPPlw_all(NewResions,F,IntervalSet>,
! '
sen_combine(IntervalSet,Int).

% int_aPPlw all intervals in a set (list>

int_aPPlw_all(CResion11RestJ,F,[Int11IRestJ>
:- int_ap~lw<F,Resion1,Int1),

int_apply_all(Rest,F,IRest).

% All the arsument intervals are sub intervals of
% the corresPondins monotonic intervals for the
% function (from mono>. (ie maPlist sub_int down
¼ the two •arsument• lists>.

all_are_contained([J,[J).

all_are_contained([ArsintlArSRestJ,[FintlFRestJ)
:- sub_int(Arsint,Fint),

all_are_contained(ArsRest,FRest).

% Given the list of actual intervals and the list
% of monotonic intervals for the function build
% a set of similar interval lists, derived from the
% actual interval list, but such that each element
% of each list in the set is wholly inside or outside

its corresPondins monotonic function interval.
% This amounts to case sPlittinS the actual interval

list into a set of intervals for more tractable
(sub) reSions in the nD sPace.

% ImPlemented by sPlittins lists to form a list of
% sets and takins the nD cartesian Product, Note

that both sPlit/4 and cartesian_Product/4 Perform
order reversals - which cancel each other out,

make_resions(Resion,MResion,NewResions>
:- sPlit(Resion,MResion,CJ,ListOfSets>,

cartesian_product(ListOfSets,[J,NewResions,CJ).

% Given the list of actual intervals and the list o~
% monotonic intervals for the function, we build
% a list of n sets, where n is the aritY of the
% function (ie the lensth of the lists> and where
% each set contains intervals which are wholly jnside
% or outside the corresPondins monotonic function
% intervals, such that the intervals in each set
% would combine to foim the corresPondins actual
% interval.
% The combinins property follows from the was we SPiit
% UP the actual intervals.
% The sets Produced at the moment will onlY ever have
% number of members m such that: 1 =< m =< 3.
% The followins SPecial representations are used for
% these cases:
% sinsleton(A)
% Pair(A,B)
% triPleCA,B,C)
% In fact the code will currently never Produce sets
% of 3 elements (triPles>, but I (Lawrence) think
% this is Probabls a bus so have left the oPtion, Rnd
% this comment, around til we see.
% Note that the list of sets built will be in reverse
% order compared with the •arsument• lists, This is
% is imPlemented bY an extra accumulator arsument
% (should be [J to start with) onto which each Set
% is Pushed.

sPlit([J,[J,Result,Result).

sPlit([ArsintlArsRestJ,[FintlFRestJ,Sofar,Result>
:- SPlitl(ArSint,Fint,Set),

sPlit<AreRest,FRest,ESet:SofarJ,Result>.

% Intx wholl~ within Int

sPlitl(Intx,Int,sineleton<Intx)) :
sub_int(Intx,Int),
! •

% Intx and Int overlap with Intx leftmost

sPlitl(i(Lx,Bx,Tx,Rx), i(L,B,T,R), Pair(i(L,B,Tx,Rx),i(Lx,Bx,Bl,L1)))
marker_fliP(R,Rl), marker_fliP(L,L1>,
marker_fliP(Lx,Lxl>,
correct<B,B1>,
less_than(b(Tx,Rx>,bCT,Rl>>,
not less_than(b(Tx,Rx>,b<B,L>>,
less_than(bCBx,Lx1),bCB,L)), !.

% Given a list of n sets Produce the a set of the
% elements from the nD cartesian Product of the sets,
% The incomins sets are represented with sPeci2l
% functors as there are onl~ a few special cases (see
% sPlit), The resultins Product set is rePresented as
% a list, Each element will itself be a list (of n
% intervals) where the order of this element list will
% be the reverse of the order in which the items
% were found in the orisinal list of sets,
% The imPlementation involves an accumulator for the
% (Partial) element beins built and uses the
% difference list techniGue to build the final set
% of elements (rePn as a list),

cartesian_product([J,Element,EElementlZJ,Z),

cartesian_Product([First:RestJ,PartialElement,ProductSet,Z)
I- cart_Prod(First,Rest,PartialElement,ProductSet,Z),

_J

cart_Prod(sinsleton(A>,Rest,PartialElement,PSet,Z)
:- cartesian_Product(Rest,[AlPartialElementJ,PSet,Z),

cart_prod(PairCA,B),Rest,PartialElement,PSetO,Z>
:- cartesian_product(Rest,[AlPartialElementJ,PSetO,PSetl),

cartesian_Product(Rest,EB:PartialElementJ,PSetl,Z).

cart_Prod(triPle(A,B,C>,Rest,PartialElement,PSetO,Z)
:- cartesian_Product(Rest,CA:PartialElementJ,PSetO,PSetl>,

cartesian_Product(Rest,[BlPartialElementJ,PSetl,PSet2),
cartesian_product(Rest,[ClPartialElementJ,PSet2,Z>,

% Calculate Bottom and ToP of Interval

find_limitsCF,Resion,Mono,Int) :
limits(bottom,F,Resion,Mono,b(B,L>>,

limits(toP,F,Resion,Mono,b(T,R)),
clean_up(i(L,B,T,R>, Int).

% Hack to clear UP various funnies

clean_up(i(_,undefined,_,_), Int) :- !, default_interval(Int),
clean_up(i(_,_,undefined,_), Int) :- !, default_interval(Int).
clean_up(i(L,B,O,R), i(L,B,-(O>,R>> :- !.
clean_up(Int, Int).

COrT'E~Ct((),--(())) t-· ! +

correct(B,B) :- ! •

% Calculate limit for a Particular boundary

limits(ToPBot,F,Resion,Mono,BoundarY)
- eet_bnds(Mono,ToPBot,Resion,BoundarYList>,

calc(F,BoundarYList,BoundarY).

% Form a boundary list from an interval list
% siven various details - uP+down x toPtbottom,

eet_bnds([J,_,[J,[J).

set_bndsC[Mono:MRestJ,ToPBot,[Int:IRestJ,[Bnd:BRestJ>
:- uPdown_fliP(ToPBot,Mono,NewMono),

eet_bnd(NewMono,Int,Bnd),
set_bnds(MRest,ToPBot,IRest,BRest>.

updown_fliP(toP,UD,UD),
updown_fliP(bottom,uP,down> :- !.
UPdown_fliP(bottom,down,uP),

set_bnd(up, i(L,B,T,R>, b<T,R)).
Set_bnd(down,i(L,B,T,R), b(B,L>>,

l***I I* ManiPulatinS Boundaries *I
l***I

% Put boundaries in order

% Boundaries are identical
order (Bnd, Bnd, Bnd, Bnd) : - ! ,

% One of Mis is closed
order(b(N,M1),b(N,M2),b(N,closed),b(N,closed)) :- ! ,

% Numbers are different, Nl smallest
order(b(N1,M1),b(N2,M2),bCN1,M1>,b<N2,M2>> :-

eval(Nl < N2), !.
% N2 is smallest

order(b(N1,M1),b(N2,M2),b(N2,M2),b(N1,M1)).

% Orderins of boundaries
% (assumes intervals are consecutive)

less_than(b(X,Mx),b(Y,MY)) :-
comb ([M::{, MY J , M) ,
less_than_eval(M,X,Y).

less_than_eval(oPen,X,Y) :- eval(X =< Y).

less_than_eval(closed,X,Y> :- eval(X < Y).

% APPlY Function F to a boundary list
% Do this bY combinine the bounders markers and
% aPPlYins F to the numbers.

calc<F,BoundarYList,b(X,M)) :
breakuP_bnds(BoundarYList,Markers,Numbers>,
comb (Mc~rkers, M),
Term=•• [FlNumbersJ,
eval(Term,X>,
! •

breakuP_bnds([J,CJ,[J).

breakuP_bnds([b(N,M):RestJ,[MlMRestJ,[NlNRestJ)
:- breakuP_bnds(Rest,MRest,NRest).

% Combine boundary markers
% Result= open if any of the inputs is oPen

ci·omb(Markerl.ist,ResuJ.t) :- memberchk(oPen,Marv..erl.ist), ! , Re=-ult = open.

comb (__ ,closed).

/**I I* Monotonicity of Functions in each Interval *I
f**I
I* unary minus*/
mono<-, [i(closed,nesinfinitY,infinitY,closed>J, [down]).

/* acldi tj.on *I
mono(t,[iCclosed,nesinfinitY,infinitY,closed),

iCclosed,nesinfinitY,infinitY,closed)J, (up,upJ).

/* binars minus*/
mono(-,[i(closed,nesinfinitY,infinitY,closed>,

i(closed,nesinfinitY,infinitY,closed)J, (uP,downJ> •

•

/* absolute value *I
mono(abs,Ci(closed,nesinfinitw,-(0),closed)J, CdownJ).
mono(abs,Ci(closed,0,infinitw,closed)J, [upJ).

/* multiPlication *I
mono<*,Ci(closed,O~infinitw,closed), i(closed,0,infinitw,closed>J,

[uP,uPJ>.
m6no<*,Ci(closed,0,infinitw,closed), i(closed,nesinfinitw,-<0>,closed)J,

[down,upJ).
mono<*,Ci(close~,nesinfinitw,-(0),closed), i(closed,0,infinitw,closed)J,

[uP,downJ).
mono<*,Ci<closed,nesinfinitw,-(0),closed), i(closed,nesinfinitw,-<0>,closed>J,

Cdown,downJ).

I* division *I
mono(/,Ci(closed,0,infinitw,closed), i(closed,0,infinitw,closed)J,

[uP,downJ).
mono(/,Ci(closed,0,infinitw,closed), i(closed,nesinfinitw,-(0),closed>J,

Cdown,downJ).
,.ono(/,Ci(closed,nesinfinitw,-(0),closed), i(closed,0,infinitw,closed>J,

[UP,UP]).
mono(/,Ci(closed,nesinfinitw,-<0>,closed>, i(closed,nesinfinitw,-<0>,closed>J,

Cdown,upJ).

I* exponentiation *I
mono<~,Ci(oPen,0,infinitw,closed),i(closed,0,infinitw,closed>J,

CuP,uPJ>.
monoc-,Ci(open,0,infinitw,closed),i(closed,nesinfinitw,-(0),closed)J,

Cdown,upJ).

I* losarithm *I
mono(los,Ci(closed,0,infinitw,closed),i(closed,0,infinitw,closed)J,

Cdown,uPJ).

I* sine *I
•no(sin,Ci(closed,(-90),90,closed>J,CuPJ) •

.. ono(sin,Ci(closed,90,270,closed)J,CdownJ>.
mono(sin,Ci<closed,270,450,closed)J,CuPJ).

I* cosine *I
mono(cos,Ci(closed,O,180,closed)J,CdownJ).
mono(cos,Ci(closed,180,360,closed)J,CuPl).

I* tansent *I
mono(tan,Ci(open,(-90),90,oPen>J,CuPJ).
mono(tan,Ci(open,90,270,oPen>J,CuPJ).
mono(tan,[i(open,270,450,oPen>J,CuPJ>.

I* inverse sine *I
mono(arcsin,Ci(closed,<-1),1,closed)J,CuPJ).

I* inverse cosine*/
mono(arccos,Ci(closed,<-1>,1,closed>J,CdownJ).

mono(arctan,[i(open,nesinfinitY,infinitY,oPen)J,[upJ).

/* inverse cosecant */
rnono(arccsc,[i(closed,nesinfinitY,(-1),closed)J,[downJ).
mono(arccsc,[i(closed,1,infinitY,closed)J,[downJ).

/* inverse secant*/
rnono(arcsec,[i(closed,nesinfinity,(-1),closed)J,[uPJ).
mono(arcsec,[i(closed,1,infinity,closed)J,[upJ).

/* inverse cotansent *I
rnono(arccot,[i(closed,nesinfinity,-(0),open>J,[downJ).
rnono(arccot,[i(open,O,infinitY,closed)J,[downJ).

l***I
I* Calculate Interval of Ansle from Curve TYPe *I

'***I

% We classify a symbol usins semantic information
% from the (Meche) database. Calls which are to
% this database (notionally, Press does not r~allY
% share the same obJect-level database) are marked
% as s•Jch.
% This method is only aPProPriate if the symbol is an
% <ansle>, and tries to find the interval of the
% anele usins Seneral Principles about curve tYPes,

classifY(Anele, Int) t-
measureCQ, Anele >,
ansle(Po:i.nt, Q, Curve>, !,
interval(anele, Curve, Int).

measure(Q, Ansle >,
inclinE~(Curve, Q, Point>, !,
interval(incline, Curve, Int).

% database
:>: database

::,; database
:>: databa~.e

% Find interval from curve shape

¼ For sirnPle curves
intf.~1-val(AI, Curve, Int) t

concavitY(Curve, Conv >,
!:; 1 oPe (Curve, S 1 oPe) , ! ,
auad(AI, Slope, Conv, Int).

% da:t.abase
% database

% For complex curves
interval(AI, Curve, Int)

i:-,artition(Curve, Clist >, !,
collect_intervals(Clist, AI, Rlist>,
men_combine(Rlist, Int >.

% database

% Collect UP a list of intervals for all the Parts

% of a Partitioned curve,

collect_intervals([J,_,[J).

collect_intervals([First:RestJ,AI,[Firstint:RestintJ)
:- interval(AI,First,Firstint),

collect_intervals(Rest,AI,Restint),

% Information about Properties of simple curves
% The interval depends on both the sloPe and the
% concavit~.

ouad(ansle,left,risht,i(closed,0,90,closed)) :- !,
auad(incline,left,risht,i(closed,90,180,closed)) :- ! ,

auad(ansle,risht,risht,i(closed,90,180,closed>) - !,
ouad(incline,risht,risht,i(closed,180,270,closed)) :- !,

auad(ansle,left,left,i(closed,180,270,closed)) :- ! ,
•ad(incline,left,left,i(closed,270,360,closed)) :- ! •

auad(ansle,risht,left,iCclosed,270,360,closed)) :- ! •
auad(incline,risht,left,i(closed,0,90,closed)) :- ! .

auad(ansle,left,stline,i(open,180,270,oPen>> • -· I . . .
auad(incline,left,stline,i(open,270,360,oPen))

ouad(ansle,risht,stline,i(open,270,360,oPen>> • -· I . . .
auad(incline,risht,stline,i(open,0,90,oPen>> :- !,

ouad(ansle,hor,stline,i(closed,270,270,closed)) :- !.
ouad(incline,hor,stline,i(closed,O,O,closed)) :- !,

ouad(ansle,vert,stline,i(closed,180,180,closed)) :- !,
muad(incline,vert,stline,i(closed,270,270,closed)) :- !,

•• JOBS TO DO

write s~mbolic version for findinS max/mins

use monotonicit~ in>>= etc Isolation rules

I* PT'obs.
CURRENT PROBLEMS*/

I* interval and eval Problems *I

Pba(I) :- find_int(m1/(-m2),I).

* TEST.
·est Examples for PaPer
1lan Bundy 15.6.81 *./

·* Test run with timinss *./
·un :- checklist(stats, [test1,test2,test3,test4,test5,test6,test7,

te!::-t8,test9J) •

. est1(I) :- int_aF,Ph~(sin, Ci(oPen,30,90,closed>J, I) • % I -- (1./2,l]
,est2(I) : -· int._appl•~(
,est~5(I) : -·· int_aPPlY(
,€~st4 <I) • •

int. .. aPPh~(/,
,est~5(:[) !-

s:i.n, Ci(oPen,30,150,closed>J, I) • ., .,. I ::: [1./2,
abs, [i(oPen,(-1),1,closed)J, I) • % I ::: CO, 1]

i~ I ::: [-oo,-2/3)
Ci(oPen,2,3,closed), i(closed,C-3),-(0),closed)J, I>.

% I :::: C-3,3]

lJ

int_aPPlY(*'
;est6(I> :-

[i(closed,(-3),-(0),open), i(closed,C-1>,1,closed)J, I).
% I== C1/2,2J

int_aPPlY(-, [i(open,1,2,closed), i(closed,(-1),1,closed)J, I),
~est7(I) :- find_int((-ml)*g/(mltm2) , I>. % I= C-oo,0)
, \8(I) :- find_int((sin(theta)t2)/cos(Phi) , I>. % I= (-00,00)

~"-9(I) :-- find_int(los(2,sin(theta)), I). % I = (-·oo,O)

~ 1J cm t i t. y (m 1 G) •

~uantitY(m2c~).
measure(m1a,m1).
measure(m2a,m2).

% ml is Positive
% m2 is positive

~uantity(thetaa>.
~uantit~(PhiG).

measure(thetaa,theta).
measure(Phia,Phi).

incline(Path3,thetaa,Point). sloPe(Path3,risht~.
% Hence theta is acute

Partition(semi,CPath1,Path2]),
sloPe(Path1,left).
sloPe(Path2,riShtl.

% Hence Phi is obtuse

1 ~ Jn Problem with statistics*/

concavitY(Path3,stline),

concavitY(Pathl,risht>.
concavitY(Path2,risht),

stats(Name> :- Problem= •• [Name,Ars], statistics(runtime,_),
call(Problem>, !, statistics(runtime,C _, TimeJ>,
trace('\n%t took %t milliseconds and Produced answer %t\n\n',

[Name,Time,ArgJ, 0).

stats(Name) :- statistics(runtime,[_, TimeJ>,
trace('\nSorrY I could not Prove %t and I SPent %t not doins it \n\n',

[Name, Time], 0).

ies.
'?-- run •

. est1 took 9 milliseconds and produced answer i(oPen, (1/2), 1, closed)

.est2 took 68 milliseconds and Produced answer i(closed, (1/2), 1, closed)

,est3 took 38 milliseconds and Produced answer i(closed, O, 1, closed)

.. est4 took milliseconds and Produced answer i(closed, neeinfinity, (-2/3), oPen.

;est5 took 104 milliseconds and Produced answer i(closed, 3, closed)

;est6 took 57 milliseconds and Produced answer i(closed, (1/2), 2, closed)

;est7 took 59 milliseconds and Produced answer i(oPen, neeinfinitY, - O, oPen)

;est8 took 123 milliseconds and Produced answer i(open, neeinfinitY, infinity, 0pe;

~est9 took 36 milliseconds and Produced answer i(open, neeinfinitY, - O, open)

core 68096 (38912 lo-see+ 29184 hi-see>
1eaP
Hobal
loc;,d
:.raJ.1

33792 = 31227 in use+ 2565 free
1175 - 16 in use+ 1159 free
1024 - 16 in use+ 1008 free

511 = 0 in use+ 511 free
0.05 sec. for 2 GCs eainine 1213 words
0.12 sec. for 20 local shifts and 21 trail shifts
9.66 sec. runtime

test1 took 31 milliseconds aQd Produced answer
X:l.

,,.,here-~ :
X l :::: :i. (QPEm, (l i2) , :I. , c 1 osed)

test2 took :1.45 milliseconds and Produced answer
X:l.

whe1·e :
Xl:::: i(clt1~-€~d, (1./2), 1, closE~d)

test3 took 1:1.5 milliseconds and Produced answer
Xl

·-iher·e :
X1 = i(closed, O, abs(- 1), open)

test4 took 65 milliseconds and Produced answer
Xl

whe1·e :
X:l. = i(closed, neeinfinits, <-2/3), open)

test5 took 255 milliseconds and Produced answer
X1

1,Jher·e !
X1 = i(closed, -3, 3, closed)

~t6 took 175 milliseconds and Produced answer

wher-e:
Xl:::: i(closed, (1/2), 2, closed)

test7 took 21:1. milliseconds and Pr-educed answer
X 1

whi:.?re :
X1 = i(open, neeinfinit~, - O, open)

test8 took 383 milliseconds and Produced answer
X:I.

1.,Jhere ;
Xl:::: i(open, neeinfinits, infinit~, oPen>

test9 took 102 milliseconds and Produced answer
X1

Xl = i(oPen, nesinfinit~, - O, oPen)

~e!:,
I ?- core 65536 (36352 lo·-ses + 29184 hi-·ses > I

heap 31232 = 2952:l in 1.1se + 1.710 free
Slobal 1175 = 16 in use + 1159 free
local 1024 = 16 in use + 1008 free
t1-ail 5U. = 0 in use + 511 free

0+03 sec. for 1 GCs sainins 103 words
0+22 sec+ for 25 local shifts and 26 trail shifts
5.39 sec. runtime

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

DAI Working P-3Per N/46
8 Julw 1981 ~~-

SubJect: A Generalized Interval Packase and its Use for Semantic Checkin~
Author: Alan Bundw

abs:l:.r.ac:I:.

We describe an interval arithmetic Package, INT, which generalises previous
interval Packases bw using information about the monotonicitw of functions. INT
~-s been used in an alsebraic manipulation Packase, PRESS, to check the

iditions of rewrite rules and to vet the solutions to eauations.

1. Introd•Jction

In this PaPer we describe a seneral interval Packaee; that is, a ccmPuter
Prosram, called INT, in which arithmetic functions are extended so that theY
aPPlw, not Just.to numbers, but to intervals of the real line, If f is an n-arw
function then it can be extended to intervals with the definition

) = {f(X J+++?X): X e i for all j}
n 1 n .j

so that
'

[1,2] + [3,5] = [4,7]

where [a,bJ = {x: ai x, b} is the closed interval from a to b. Such Packases
are in common use for Providins suaranteed error bounds in arithmetic (see e,S,
[Good & London 70, Yohe 79]).

HH was bu i 1 t for a different PU T'Pose: name 1 Y, f°'\ cheer.. i ni"-i the
of rei..1rite rules ;;md vettine the solutions to aGuations, in
mard.Pulation Pros ram, F'Ft:ESS, [Bund\:~ and Welham 81J. Fo~ _instance,
rule

I.J i w/v
1{

/',

0 , ~---, 4

0 :i. ~ y \/
,;l '

V
\

conditions
an aleebraic
the re;..iri te

2

has the condition that v be Positive, i.e lie in the oPen interval (0,oo).
Other t~Pical conditions are that a variable be non zero, an acute anele, ~tc,
If a, ml, m2 and e are all known to be a positive muantities (e.e. because the~
are known to be an acceleration, mass, mass and acceleration due to eravit~,
respectively) then we want to be able to vet, and reJect, the emuation

a= -ml*e/(m1+m2>

as a Possible solution for a in terms of ml, m2 and e,
that a were neeative.

since it would imPlY

The INT Packaee differs from Previous Packaees in the followine respects.

- INT can deal with intervals whose boundaries include the infinite
numbers, ±oo.

- INT can deal with intervals with open or closed boundaries. These are
denoted by round and smuare brackets, resPectivelY,
[0,5) = {x: 0 i X (5}

- INT can deal with any function, provided only that information is
Provided about where that function is monotonically increasine and
decreasine. Previous Packaees have defined interval arithmetic for
only a few specific functions, e.e. [Good & London 70] sives
definitions only for+,-, *and/+ Currently, the INT Packaee can
deal with+, -, *' /, exponentiation, loearithms, trieonometric and
inverse trieonometric functions, and absolute value.

- INT can deal with intervals which straddle several monotonic reeions
of a function. In Particular, it can deal with i/J when J contains 0,

- INT can use information about a Particular constant, which specifies
in what interval it lies. This has been used in conJunction with a
Proeram for solvine Mechanics Problems, [Bundy et al 79], to allow
semantic information about PhYsical muantities, e.e. that m is
Positive, • is obtuse, etc, to influence the aleebraic manipulation,

2. Monotonicity and Unarw Functions

The keY idea behind INT is to use the monotonicity of a function to decide
which boundaries of its areuments to use to calculate its UPPer and lower
bounds. For instance, sin is monotonically increasine on the interval (30,90],
so the lower bound of sin (30,90] should be calculated from (30 and the UPPer
bound from 90J, •ivine the interval <sin 30, sin 90], which eBuals (1/2~1].
Note that the t~ee of the boundary (oPen or closed) is inherited alon• with its
value. We will saY that sin is maPPed across the interval (30,90] to Produce
the interval (sin 30, sin 90] and then the boundaries are evaluated to Produce

3

the interval (1/2,1J.

Now consider the aPPlication of sin to (90,150]. sin is monotonically
decreasins on this interval, so the lower bound of sin (90,150] should be
calculated from 150] and the UPPer bound from (90, sivins the interval
[1/2 ,1). Note asain that both the tYPe and value of the interval ~re
inherited. We can summarise this by saYins that the interval (90,150] is
inverted to the Pseudo-interval [150,90>+* sin is mapped across it, to Produce
[sin 150, sin 90), and the boundaries are evaluated to Produce [1/2,1).

sin is simPlY monotonic on both the intervals (30,90] and (90,150]. To
calculate the value of sin on an interval, on which it is not simPlY monotonic,
is more comPlicated. Consider the interval (30,150]. To calculate
sin (30,150] INT first divides the interval into sub~intervals, on each of
which sin is simPlY monotonic. In this case (30,150] would be divided into
C30,90J and (90,150]. sin is then aPPlied separately to each sub-interval, to
Produce (1/2,1J and [1/2,1>, and these results are then combined into the
interval [1/2,1J.

3. Generalized MohotonicitY and Non-UnarY Functions

To deal with non-unarY functions we have to seneralize the notion of
monotonicity to a tuPle valued function. This is because a non-unarY function
maY have different monotonicity behaviour on different arsuments. For
instance, binary minus is monotonically increasins on its first arsument and
monotonically decreasins on its second. That is x-y increases as x increases,
b1jt, decreases as y increases. We represer,t this by saYins that - has
monotonicity <uP,down> on the resion <C-oo,tooJ, C-oo,ooJ> (i.e. everywhere).
Usins the same notation, sin has monotonicity <uP> on resion <[-90,90J>, and
monotonicity <down> on resion <C90,270J>.

We can formalize this notation as follows:

Definition 1: An nD resion is an n-tuPle of intervals. If every
interval is C-oo,tooJ the the resion is called the whole nD sPace.

Definition 2: An n-arY function, f, is monontonicallY increasins on
its Jth arsument in resion <i , ••• ,i > iff

1 n

•
*[150,90) would be the emPtY interval by the normal definition. However, the

Phrase 'pseudo-interval' is meant to imPlY that we will not resard it as a
Proper interval, but merely as a syntactic device.

,j j

fOT' all:-~ e
k

i
1
and y

k

4

~i n
e i

.j .j

Definition 3: A function, f, is monontonicallw decreasins on its Jth
arsument in resion <i , ••• ,i > iff

.J j
t~or all }-~

1 n

-> f(x , ••. ,x , ••• ,x >
1 ~i n

e i and Y 8 i
k .j ._i

1 ._i n

Definition 4: An n-ary function is simPlY monotonic in resion r iff
it is monotonically increasins or monotonically decreasins on each of
its arsuments in resion r. Its monotonicity is siven by an n-tuPle jn
which the ._ith element is 'up' or 'down' accordins as the function is
monotonically increasins or decreasins on the ._ith arsument in r,

Armed with this notation, we can now tackle th~ Problem of extendins interval
arithmetic to non-unarY functions. Consider the aPPlication of to the
arsuments <[3,5J, [1,2>>. Since - is monotonically increasins on its fjrst
arsument and monotonically decreasins on its second we should calculate the
lower bound of [3,5] - [1,2) from [3 and 2) to Yield (1. Similarly, the UPPer
bound should be calculated from 5] and [1 to Yield 4]. This can be summarised
by saYins that [1,2) is inverted to the pseudo-interval (2,1] and - is then
maPPed across the Pseudo-resion <E3,5J,(2,1J> to Produce (3-2, 5-1]. The rule
is that the Jth interval is inverted iff the function is monotonically
decreasins on the ._ith arsument. Note that the tYPe of a boundary js oPen
unless all of the boundaries it is calculated from are closed, since a function
can only attain a boundary iff all its arsuments do.

Both + and are simPlY monotonic throushout the whole 2D space, *and/,
however, are not simPlY monotonic throushout the sPace, they have four resions
of simPle monotonicity. For instance, / has the monotonicities Siven in fisure

<1.1P,uP> in
<[-oo,-OJ, [tO,tooJ>

<down,up) in
<[-oo,-OJ, [-oo,-OJ>

<uP,down> in
<E+O,+ooJ, E+O,+ooJ>

<down,down> in
<E+O,+ooJ, [-oo,-OJ>

Fisure 3-1: The Monotonicities of/

5

Consider the aPPlication of/ to <[2,3J, [-1,lJ>. INT breaks this down into
the separate aPPlications of/ to <[2,3J, [-1,-0>> and <C2,3J, C+0,1J>, in
~hich resions / is simPls monotonic. Calculatins these aPPlications from the
nonotonicits information Siven above sields the followins Process,

To calculate/ aPPlied to <C2,3J, [-1,-0>>
invert both arsuments and map/ across them to Produce
(3/-0,2/-1]
Evaluate the boundaries to Produce
[-oo,-2J

To aPPl~ / to <[2,3J, [+0,1J>
invert the second arsument and map/ across the result to Produce
[2/1,3/t0J
Evaluate the boundaries to Produce
(2,+ooJ

The two resultins intervals are then combined into a new interval ~hose UPPer
bound is their maximum UPPer bound and whose lower bound is their minimum lower
bound. This sields the interval [-oo,tooJ, Note that this interval is too
Permissive, in the sense that it includes the interval (-2,2), which should be
excluded.

4. The Alsorithm

After the informal introduction of the preceedinS sections we now turn to a
formal account of the seneral, interval-arithmetic alsorithm, which ~•e ~ill
call Int-APPlw.

6

To Int-APPlY a function, f, to a region, r, we must consider two cases:

(a) If f is simPlY monotonic on r then

Form a Pseudo-region r' from r by rePlacing the Jth element
of r by its inverse iff f is monotonically decreasing on its
Jth argument.

MaP f across r', evaluate the boundaries of the result and
ret•Jrn it.

(b) If f is not simPlY monotonic on r then

SPlit r into a sub-resion on which f is simPlY monotonic
n

and the 2 -1 comPlementarw sub-regions (some of which maw
be emPtw).

Call the Procedure recursively on each of the 2
sub-regions which are not empty.

n

Combine the resulting intervals into one interval.

The above descriPtion leaves various sub-Procedures undefined, namely the
Processes o~ 'maPPing across', 'inverting', 'evaluating the boundaries',
sPlittins a region into sub-regions and combining several resions into one. We
now Proceed to def j_ ne these Precesses.

- Intervals. Intervals are represented as GuadruPles, in which the
first and last elements are either 'open' or 'closed', to represent
the t~ee of boundarw, and the second and third elements are numbers
representing the Malue of the boundaries, e.s. (90,150] is
represented bw <oPen,90,150,closed>+

- Invertins. The inverse of interval <L,B,T,R> is <R,T,B,L>.

- MaPPins Across. The maPPins off across

<<Ll,B1,T1,R1>, ••• ,<Ln,Bn,Tn,Rn>>

is

<c({Ll, •.• ,Ln}), f(Bl, •.• ,Bn>, f<Tl, ••• ,Tn), c({Rl, ••• ,Rn}>>

'
where c(Set)=open iff oPen 8 Set and c(Set)=closed otherwise.

7

Evaluation. As can be seen from Previous sections the nor~al
arithmetic functions must be extended to deal with the infinite
numbers -oo and too. It is also necessary to distinsuish between -0
and +o, since 3/-0 = -oo and 3/+0 = too, For evaluatins the
boundaries of intervals INT uses an arbitrary-precision,
rational-number, arithmetic Packase developed by Richard O'Keefe. In
this Packase numbers are represented by triPles of
<sisn,nurnerator,denominator>, e.s, <-,2,1>. too is rePresented h~
<t,1,0> and -0 by <-,0,1>, etc. The standard rational arithmetic
operations reGuire only trivial adaPtation to return the correct
answers for infinite numbers. In indeterminate cases, e.s. 0/0, the
answer 'undefined' is returned. Such an answer causes Int-APPlY to
return the default interval (-oo,+oo).

- SPlittins. To SPlit resion <Il, ••• ,In> into aPProPriate sub-resions
so throush the simPlY monotonic resions off until one, <Ml,,,,Mn>,
is found with the Property that each IJ is a disJoint union of
intervals IJ' and IJ", where IJ" is non-empty, and a sub-interval of

n
MJ. Return the 2 sub-resions <Il*'•••'In*>, where IJ* is either IJ'
or !Ja. Note that f is simPlY monotonic on sub-resion <Il",,.,,In">.
If IJ' is empty then so is any resion containinS it. If <Il,,,,,In>
cannot be divided into a finite set of simPlY monotonic sub-resions
then this SPlittins Process may not terminate.

Combinins, To combine a set of intervals, form a new interval whose
lower bound is the minimum of the lower bounds of the set and whose
upper bound is the maximum of the set. Note that the minimum of two
boundaries with the same value, but different tYPes, is the closed
boundary. Similarly with the maximum. The combination of two
intervals is the smallest interval containins their union, but it may
not be eGual to their union, e.g. combinins [-oo,-2] and [2,tooJ
Produces [-oo,+oo].

5. Semantic Checkins

he above sections describe an interval arithmetic alsorithm, We now explain
the aPPlications of this alsorithm in the alsebraic maniPulation Packase,
PRESS, [Bundy and Welham 81].

As describe in the introduction, the aPPlications are twofold: checkins the
conditions of rewrite rules and vettins the solutions to emuations, Both these
aPPlications make use of a common sub-procedure, Find-Int, Find-Int takes an
alsebraic term and returns the interval within which it lies. For instance, if
a, mi, m2 and s are all positive then Find-Int aPPlied to the term
-m1*S/(m1+m2) will return (-oo,O>, from which it can be deduced that the term
is nesative and that a= -m1*S/(m1tm2) is false.

The Procedure, Find-Int, works bY call bY value, APPlied to ~ term

8

f(t , ••. ,t >, Find-Int is called recursively on each t and returns i . f is
1 n j j

then aPPlied to <i , ••. ,i > by Int-APPlY, If Find-Int is aPPlied to a number,
1 n

1, then the interval Cn,nJ is returned, e.s. C2,2J. If Find-Int is aPPlied to a
symbolic constant or variable, e.s. ml, then semantic information is used to
try to determine the result. If this is not successful then the default
interval, (-oo,+oo), is returned.

The semantic information is Provided by the MECHO Prosram, CBundy et al 79J,
for solvins Mechanics Problems. Information is Provided about two sorts of
constant: PhYsical Guantities (e.s. masses, accelerations, etc) and ansles. All
PhYsical Guantitias are assumed to be Positive, that is, to lie in the interval
<O,+oo>. Provision exists for Providins more sophisticated information about
each kind of GuantitY, but this has not been exploited. In the case of ansles
an attempt is made to infer in which Guadrant<s> of the circle the ansle]jes,
for instance, C0,90J, C180,360J, etc.

nsles are defined in MECHO either as the inclination or the nor-al to ~ ?
dimensional curve, where the normal is towards the convex side of the curve and
the inclination is 90 desrees sreater. For simPle curves, i.e. monotonic
curves with monotonic first derivatives, both the inclination and the normal
lie wholly within a sinsle Guadrant. Which Guadrant this is depends on the sisn
of the first and second derivatives. We call the first derivative the slope and
the second derivative the concavity of 'the curve. For instance, if the sloPP is
Positive and the concavity is Positive then the inclination lies in the
Guadrant C0,90J and the normal lies in the Guadrant C270,360J. This and the
other seven cases are illustrated in fisure 5-1.

If Find-Int is aPPlied to an ansle defined on a non-simPle curve then the
curve is first broken into simPle curves, the above Process is aPPlied to each
of these and the resultins auadrants are combined, usins the combination
Procedure described in section 4.

6~ Results

The INT interval arithmetic Packase has been imPlemented in PROLOG <[Pereira
et al 79J on a DEC10. It occupies 39k, 36 bit words and the PROLOG system
occupies a further 29k. The former fisure could Probably be reduced
substantially by deletins various utility Procedures reauired bw PRESS but not
by INT. Table 6-1 summarises the results of aPPlYins Int-APPlY to some tYPical
functions and resions. Table 6-2 summarises the results of aPPlwinS Find-Int
to some tYPical formulae.

7. Limitations

The INT Packase uses inform•tion about the simPlY monotonic resions of a
function to extend its definition on numbers to one on intervals. In this way

Nesative

:Zero

I nf i rd. t!::!

' (
' --·-----·----------,;-"\

9

Positive Nesative Zero

normal [270,360] normal [90,180] normal (270,360)
incline [0,90] incline [180,270] incline (0,90)

normal [180,270] normal C0,90] normal (180,270)
incline [270,360] incline [90,180] incline (270,360)

impossible impossible

impossible impossible

normal=270
incline==O

normal==1BO
incline==270

FiJ•Jre 5-1: Classification of the Ansles of Simple Curves

'··········------!\
- .

-, ___ Jnte.rva l
Calc•Jlation,

sin (30,90]

sin (30,150]

abs (-1,1.]

[--3,-··0) * [-1,l.]

[-··1,:1.]
(:I.' 2]

Answer

(1/2,1]

[1/2,1]

[0,1.]

C-oo,-·2/3)

[-·3,3]

[1/2,2]

CPU 1 Time
in msecs

13

64

38

18

120

58

Is Resion SimPl!:1
Monotoriic1

no

no

no

no

Table 6-1: Results of APPl':linS Int-APPl~

10

Form•Jla Interval CPU Time
it lies in in msecs

··m 1 *s./ (ml. +m2) <-oo,-0) 63

sin(8)t2./cos(d>) (-00,00) 128

los sin(8) <-oo,-0) 37
2

~here ml., m2 and s are Positive numbers, 8 is an acute ansle
and d> is an obtuse ~nsle.

Table 6-2: Results of APPlYinS Find-Int

it seneralises Previous interval PackaSes, which could deal with onlw?
-specified number of functions. However, INT onlw works well on functions

~nich are well behaved monotonicallw, i.e. divide the whole sPace into a finite
~et of continuous simPlY monotonic resions. Some of the situations in which INT
joes not behave ideally are listed below.

- INT cannot d~al with the situation where a function must be aPPlied
to a resion which only divides into an infinite set of simPlY
monotonic sub-resions, because Int-APPlY will not terminate. For
instance, sin aPPlied to <(-oo,too)> should return C-1,lJ, but
<<-oo,too>> cannot be divided into a finite set of simPlY monotonic
sub-resions, so Int-APPlY will not terminate. This Particular case
is dealt with by a Patch to the INT Packase to take into account the
bo•Jndedness of sin, cos, etc.

- Int-APPlY is constrained to return a sinsle continuous interval as
its result. To return, saw, a set of disJoint intervals would alter
the whole basis of the alsorithm with a conseauent loss of simPlicitw
and efficiency. The Price to be Paid for this is that the result of
Int-APPlY will sometimes be too inclusive. An examPle of this was
siven in section 3 where the result of C2,3J/C-1,1J included the
interval (-2,2).* Sometimes the best descriPtion of the monotonicitw

*G• CaPlat, in a Private communication, has sussested that ?llowins
'extervals' to be returned by Int-APPlY, would account for the maJoritY nf
~ounterexamPles which arise in Practice, for only a small increase in the
~omPlexitY of the alsorithm. An exterval is a set of real numbers obtained by
;ubtractinS an interval from the real line. I have not explored this
'"'Oss:i.bilitY.

11

of a function involves non-continuous sets of numbers. For instance,
~

x has monotonicity <down,uP> when x is nesative and Y is an even
rational. Unfortunately, the even rationals cannot be represented as
an interval. In fact exponentiation has no simPlY monotonic
sub-resions in <[-oo,OJ,C-oo,tooJ>. There is a Patch in !NT to deal
with this Particular case, but in seneral such situations are outside
its scope.

3. Conclusion

We have seen that the !NT interval arithmetic Packase seneralises Previous
interval Packases by the use of the monotonicity of functions. It can deal
with more functions than Previous Packases and can deal correctly with the
aPPlication of a function to a resion which straddles a finite number of simPlY
~onotonic resions. It breaks down onlY when a function has a Particularly
~omPlex monotonic behaviour.

The INT Packase has been aPPlied in unusual ways, to check the conditions of
r~rite rules and to vet the solutions to eGuations, as Part of an alsebraic
~aniPulation Packase.

iefe~eoces

[Bundy and Welham 81]
Bundy, A. and Welham, B.
Usins meta-level inference for selective aPPlication of multiPle

rewrite rules in alsebraic manipulation.
A~iificial Ioielliseoce 16(2), 1981,

[Bundy et al 79]
Bundy, A., BYrd, L,, Luser, G., Mellish, C., Milne, R, and
Palmer, M.
Solvins Mechanics Problems Usins Meta-Level Inference.
In e~ocs of ibe si~ib+ IJCAI, Tokyo, 1979.
Also available from Edinbursh as DAI Research Paper No. j12,

[Good & London 70]
Good, D.I. and London, R+L+
Computer interval arithmetic: definition and Proof of correct

imPlementation.
JACM 17(4):603-612, 1970,

[Pereira et al 79]
Pereira, L.M., Pereira, F.C.N. and Warren, D,H.D,
Use~'s suide to DECsYsiem-10 ee□LOG.

Occasional Paper 15, DePt. of Artificial Intellisence,
Edinbursh, 1979.

iohe 79J

12

Yohe, J.M.
Software for interval arithmetic: A reasonablw Portable Packasa.
~CM I~aos. Matb. Softwa~e 5(1):PP50-63, March, 1979.

-)l£o ----
DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

DAI Working Paper No: 86
27 March 1981

Subject: A Generalized Interval Package and its Use for Semantic Checking
Author: Alan Bundy

Abstract
We describe an interval arithmetic package, INT, which generalises previous

interval packages by using information about the monotonicity of functions. INT
has been used in an algebraic Manipulation package, PRESS, to check the
conditions of rewrite rules and to vet the solutions to equations.

1. Introduction
In this paper we describe a general interval package; that is, a computer

program, called INT, in which arithmetic functions are extended so that they
apply, not just to numbers, but to intervals of the real line. If f is an n-ary
function then it can be extended to intervals with the definition

f(i 1, ... ,in) = {f(x 1, ... ,xn): xj 6 ij for all j}

so that

[1,2] + [3,5] = [4,7]

where [a,b] = {x:
are in common use for
[Good & London 70]).

the closed interval from a. to b. Such packages
guaranteed error bounds in arithmetic (see

INT was bu:i.lt for a different purpose: namely, for checking the conditions
of rewrite rules and vetting the solutions to equations, in an algebraic
manipulation program, PRESS, [Bundy and Welham 81]. For instance, the rewrite
rule

u*v 2. w => u 2. w/v

has the condition that v be positive, i.e lie in the open interval (O,oo).
Other typical conditions are that a variable be non zero, an acute angle, etc.
If a, m1, m2 and g are all kno¥n to be a positive quantities (e.g. because they
are known to be an acceleration, mass, mass and acceleration due to gravity,
respectively) then we want to be able to vet, and reject, the equation

a= -m1*g/(m1+m2)

as a possible solution for a in terms of m1, m2 and g, since it would imply
that a were negative.

The INT package differs from previous packages in the following respects.

- INT can deal with intervals whose boundaries include the infinite
numbers, ±oo.

- INT can de&l with intervals with open or closed boundaries. These are
denoted by round and square brackets, respectively, e.g.

2.

[0,5) = {x: 0 ~ X (5}

- INT can deal with any function, provided only that information is
provided about where that function is monotonically increasing and
decreasing. Previous packages have defined 'interval arithmetic for
only a few specific functions, e.g. [Good & London 70] gives
definitions only for+, -, *and/. Currently, the INT package can
deal with+, -, *, /, exponentiation, logarithms, trigonometric and
inverse trigonometric functions, and absolute value.

- INT can deal with intervals which straddle several monotonic regions
of a function. In particular, it can deal with i/j when j contains 0.

- INT can use information about a particular constant, which specifies
in what interval it lies. This has been used in conjunction with a
program for solving Mechanics problems, [Bundy et al 79], to allow
semantic information about physical quantities, e.g. that m is
positive, ~ is obtuse, etc, to influence the algebraic manipulation.

2. Monotonicity and Unary Functions
The key idea behind INT is to use the monotonicity of a function to decide

which boundaries of its arguments to use to calculate its upper and lower
bounds. For instance, sin is monotonically increasing on the interval (30,90],
so the lower bound of sin (30,90] should be calculated from (30 and the upper
bound fr·om 90], giving the interval (sin 30, sin 90], which equals (1 /2, 1].
Note that the~ of the boundary (open or closed) is inherited along with its
value. We will say that sin is mapped across the-interval (30,90] to produce
the interval (sin 30, sin 90] and then the boundaries are evaluated to produce
the interval (1/2,1].

Now consider the application of sin to (90,150]. sin ism -otonica~ly
decreasing on this interval, so the lower bound of sin (90, 15 should be
calculated from 150] and the upper bound from (90, givin t interval [/ v:s-
,1). Note again that both the type and value of the interva inherited. e 1
can summarise this by saying that the interval (90,150] is inverted to the~
pseudo-interval [150,90).* sin is mapped across it, to produce [sin 150, sin_ •
90), and the boundaries are evaluated to produce [1/2,1).

sin is simply monotonic on both the intervals (30, 90] and (90,150] . To
calculate the value of sin on an interval, on which it is not simply monotonic,
is more complicated. Consider the interval (30,150]. To calculate
sin (30, 150] 1 INT first divides the interval into sub-intervals, on each of
which sin is simply monotonic. In this case (30,150] would be divided into
(30,90] and (90,150]. sin is then applied separately to each sub-interval, to
produce (1 /2, 1] and [1 /2, 1) , and these results are then combined into the
interval [1/2,1].

*[150,90) would be the empty interval by the normal definition. However, the
phrase 'pseudo-interval' is meant to imply that we will not regard it as a
proper interval, but merely as a syntactic device.

3

3. Generalized Monotonicity and Non-Unary Functions
To deal with non-unary functions we have to generalize the notion of

m9notonicity to a tuple valued function. This is because a non-u ry function
may have different monotonicity behaviour on different argumen O or instance,
binary minus is monotonically increasing on its first argument and
monotonically decreasing on its second. That is x-y increases as x increases,
but decreases as y increases. We represent this by saying that - has
monotonicity <up,down> on the region <[-oo,+oo], [-00,00]> (i.e. everywhere).
Using the same notation, sin has monotonicity <up> on region <[-90,90]>, and
monotonicity <down> on region <[90,270]>.

We can formalize this notation as follows:

Definition 1: An nD region is an n-tuple of intervals. If every
interval is (-oo,+oo] the the region is called the whole nD space.

Definition 2: An n-ary function, f, is monontonically increasing on
its jth argument in region <i 1, ... ,in> iff

xj < Yj -> f(x1,•••,xj,••·,xn) < f(x1,•••,Yj,••·,xn)
for all xk G ik and y· G i· . J J

Definition 3: A function, f, is monontonically decreasing on its jth
argument in region <i 1, ... ,in> iff

xj < Yj -> f(x1,••·,xj,·•·,xn) > f(x1,•••,Yj,•··,xn)
for all xk G ik and Yj G ij

Definition 4: An n-ary function is simply monotonic in region riff
it is monotonically increasing or monotonically decreasing on each of
its arguments in region r. Its monotonicity is given by an n-tuple in
which the jth element is 'up' or 'down' according as the function is
monotonically increasing or decreasing on the jth argument in r.

Armed with this notation, we can now tackle the problem of extending
interval arithmetic to non-unary functions. Consider the application of - to
the arguments <[3,5], [1,2)>. Since - is monotonically increasing on its first
argument and monotonlcally decreasing on its second we should calculate the
lower bound of [3,5] - [1,2) from [3 and 2) to yield (1. Similatly, the upper
bound should be calculated from 5] and [1 to yield 4]. This can be sUiilIDarised
by saying that [1,2) is inverted to the pseudo-interval (2,1] and - is then
mapped across the pseudo-region <[3,5],(2,1]> to produce (3-2, 5-1]. The rule
is that the jth interval is inverted iff the function is monotonically
decreasing on the jth argument. Note that the type of a boundary is open
unless all of the boundaries it is calculated f~om are closed, since a function
can only attain a boundary iff all its arguments do.

Both + and - are simply monotonic throughout the whole 2D space. ~ and /,
however, are not simply monotonic throughout the s they have four regions
of simple mo~otonicity. For instance, / has the -~l.er1!~:ft£ monotonicities given
in figure 3-1 .

Consider the application of/ to <[2,3], [-1,1]>. INT breaks this down into
the separate appli~at.ions of / to <[2,3], [-1,-0)> and <[2,3], [+0, 1J>, in
which regions/ is simply monotonic. Calculating these applications from the
monotonicity information given above yields the following process.

To calculate/ applied to <[2,3], [-1,-0)>

<up,up> in
<[-oo,-0], [+0,+oo]>

<down,up> in
<[-oo,-0], [-oo,-0]>

4

<up,down> in
<[+0,+oo], [+0,+oo]>

<down,down> in
<[+0,+oo], [-oo,-0]>

Figure 3-1: The Monotonicities of/

invert both arguments and map/ across them to produce
[3/-0,2/-1]
Evaluate the boundaries to produce
[-oo,-2]

To apply/ to <[2,3], [+0,1]>
invert the second argument and map/ across the result to produce
[2/1,3/+0]
Evaluate the boundaries to produce
[2,+oo]

The two resulting intervals are then combined into a new interval whose upper
bound is their maximum upper bound and whose lower bound is their minimum lower
bound. This yields the interval [-oo, +oo]. Note that this interval is too
permissive, in the sense that it includes the interval (-2,2), which should be
excluded.

4. The Algorithm
After the informal introduction of the preceeding sections we now turn to a

formal account of the general, interval-arithmetic algorithm, which we will
call Int-Apply.

To Int-Apply a function, f, to a region, r, we must consider two cases:

(a) If f is simply monotonic on r then

Form a pseudo-region r' from r by replacing the jth element
of r by its inverse iff f is monotonically decreasing on its
jth argument.

Map f across r', evaluate the boundaries of the result and
return it.

(b) If f is not simply monotonic on r then

Split r into a sub-region on which f is simply monotonic
.. and the 2n-1 complementary sub-regions (some of which may

be empty).

Call the procedure recursively on each of the 2n
sub-regions which are not empty.

Combine the resulting intervals into one interval.

The above description leaves various sub-procedures undefined, namely the

5

processes of 'mapping across', 'inverting', 'evaluating the boundaries',
splitting a region into sub-regions and combining several regions into one. We
now proceed to define these processes.

Intervals. Intervals are represented as quadruples, in which the
first and last elements a~e either 'open' or 'closed', to represent
the ~ of boundary, and the second and third elements are numbers
representing the value of the boundaries, e.g. {9C, 150] is
represented by <open,90,150,closed>.

Inverting. The inverse of interval <L,B,T,R> is <R,T,B,L>.

- Mapping Across. The mapping off across

<<L1,B1,T1,R1>, ... 1 <Ln,Bn,Tn,Rn>>

is

<c({L1, ... ,Ln}), f(B1, ... ,Bn), f(T1, ... ,Tn), c({R1, ... ,Rn})>

where c(Set)=open iff open G Set &nd c(Set)=~losed otherwise.

Evalu~tion. As can be seen from previous sections the normal
arithmetic functions must be extended to d6al with the infinite
numbers -oo and +oo. It is also necessary to distinguish between -0

-and +O, since 3/-0 = -oo and 3/+0 = +oo. For evaluating the
boundaries~ of intervals INT uses an arbitrary-precision,
rational~number, arithmetic package developed by Richard O'Keefe. In
this package numbers are represented by triples of
<sign,numerator,denominator>, e.g. <-,2,1>. +oo is represented by
<+,LO> and -0 by <-,0,1>, etc. The standard rational arithmetic
operations· ·require only triv:i.al adaptation ':.o return the correct
answers f0r infinite numbers. In indeterminate cases, B.g. 0/0, the
answer 'undefined' is returned. Such an answer nauses Int-Apply to
return the default interval (-oo,+oo).

Rplitting. To split regio~ <I1, ... ,In> into appropriate sub-regions
go through the simply monotonic regions of f until one, <M1, ... Kn>,
is found with the property th&t each :i:j is a disjoint union of
intervals lj' and Ij", ".vhere Ij" is non-empty, and a sub-interval of
Mj. Return the 2n sub-regions <11•, ... ,In~>, ~here Ij* is either Ij'
or Ij". Note that f is simply monotonic on sub-region <I1", ... ,In">.
If Ij' is empty then soi~ any region containing it. If <I1, ... ,In>
cannot be divided into a finite set of simply monotonic sub-regions
then·t;his splitting process may not terminQte.

- Combining. To combine a set of intervals, form a new interval whose
lower> bound is the minimum o!' the lower bour.ds of the set and whose
upper bound is th8 maximum of the set. Note that the minimum of two
boundariP.s with the same value, b~t different typss, is the closed
boundary. Similar:i.y with the ma.ximum. The combinatic,n of two
intervals is the smallest intervaJ containing thAir union, but it may
not be ec:ual to their uniun, e.g. combining [-oo,-2] and [2,+oo]
prod11ces [-oo;+oc]. •

6

5. Semantic Checking
The above sections describe an interval arithmetic algorithm. We now explain

the applications of this algorithm in the algebraic manipulation package,
PRESS, (Bundy and Welham 81].

As describe in the introduction, the applications are twofold: checking the
conditions of rewrite rules and vetting the solutions to equations. Both these
applications make use of a common sub-procedure, Find-Int. Find-Int takes an
algebraic term and returns the interval within which it lies. For instance, if
a, m1, m2 and g are all positive then Find-Int applied to the term
-m1*g/(m1+m2) will return (-oo,O), from which it can be deduced that the terc
is negative and that a= -m1*g/(m1+m2) is false.

The procedure, Find-Int, works by call by value. Applied to a term
f(t 1 , ... , ~n) , Fin1-Int is called recursively on ea11h t j and ~~et urns i j. f is
then applied to <1 1, ... ,i > by Int-Apply. If Find-Int is applied to a number,
n, then the interval [n,nf is returned, e.g. [2,2]. If Find-Int is applied to a
symbolic constant or variable, e.g. m1, then semantic information is used to
try to determine the result. If this is not successful then the d.efaul t
interval, (-oo,+oo), is returned.

The semantic information is provided by the MECHO program, [Bundy et al 79],
for solving Mechanics problems. Inforliiation is provided about two sorts of
constant: physical quantities (e.g. masses, accelerations, etc) and angles. All
physical quantities are assumed to be positive, that is, to lie in the interval
(O,+oo). Provision exists for providing more sophisticated information about
each kind of quantity, but this has not been exploited. In the case of angles
an attempt is made to infer in which quadrant(s) of the circle the angle lies,
for instance, [0,90], [180,360], etc.

Angles are defined in MECHO either as the inclination or the normal to a 2
dimensional curve, where the normal is towards the convex side of the c~rve and
the inclination is 90 degrees greater. For simple curves, Le. monotonic
curves with monotonic first derivatives, both the inclination and the normal
lie.wholly within a single quadrant. Which quadrant this is depends on the sign
of the first and second derivatives. We call the first derivative the slope and
the second derivative the concavity of the curve. For instance, if the slope is
positive and the concavity is positive then the inclination lies in the
quadrant [0,90] and the normal lies in the quadrant [270,360]. This and the
other seven cases are illustrated in figure 5-1.

If Find-Int is applied to an angle defined on a non-simpl
curve is first broken into simple curves. the above process
of these and the resulting q-:.iadrants are combined,
procedure described in section 4.

6. Limitations

curve then the
applied to each
the ccmbination

The INT package uses information about the simply monotonic regions of a
function to extend its definition on numbers to one on intervals. In this way
it generalises previous interval packages, which could deal with only a
pre-specified number of f 1mctions. However, . INT only works well on functions
which are well behaved monotonically, i.e. divide the whole space into a finite
set of continuous simply monotonlc regions. Some of the situations in which INT
does not behave ideally are listed below.

•

7

Positive Negative Zero

Positive

Figure 5-1: Classification of the Angles of Simple Curves

- INT cannot deal with the situation where a function must be applied
to a region whic~ only divides into an infinite set of simply
monotonic sub-regions, because Int-Apply will not terminate. For
instance, sin applied to <(-oo,+oo)> should return [-1,1], but
<(-oo,+oo)> cannot he divided into a finite set of simply monotonic
sub-regions, so Int-Apply will riot terminate. This particular case
is dealt with by a patch to the INT package to take into account the
boundedness of sin, cos, etc.

- Int-Apply is constrained to return a single continuous interval as
its result. To return, say, a set of disjoint intervals would alter
the whole basis of the algorithm with a consequent loss of simplicity
and efficiency. The price to be paid for this is that the result of
Int-Apply will sometimes be too inclusive1 An example of this was
given in section 3 where the result of [2,3]/[-1,1] included the
interval (-2,2). +

- Sometimes the best description of the monotonicity of a function
involves non-continuous sets of numbers. For instance, xY has
monotonicity <down,up> when x is negative and y is an even rational.
Unfortunately, the even rationals cannot be represented as an
interval. In fact exponentiation has no simply monotonic sub-regions
in <[-oo,O] ,[-oo,+oo]>. There is a patch in INT to deal with this
particular case, but in general such situations are outside its
scope.

8

7. Conclusion
We have seen that the INT interval arithmetic package generalises previous

interval packages by the use of the monotonicity of funct:i.ons. It can deal
with more functions than previous packages and can deal correctly with the
application of a function to a region which straddles a finite number of simply
monotonic regions. It breaks down only when a function has a particularly
complex monotoni~ behaviour.

The INT package has been applied in unusual ways, tc check t,he conditions of
rewrite rules and to vet the solutions to equations, as part of an algebraic
manipulation package .

.B.fil:fil::el}Q§S

[Bundy and Welham 81]
Bundy 1 A. and Welham, B.
Using meta-level inference for selectlve application of multiple

rewrite rules in algebraic manipulation .
.Artificial. Intelligenc(l , in press 1981.

[Bundy ?.t al '19]

[Good & London

Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R. and
Palmer, M.
Solving Mechanics Problems Using Meta-Level Inference.
In Procs .Q.f the sixth. IJCAI, Tokyo, 1979.
Also available from Edinburgh as DAI Research Paper No. 112.
70]
Good, D.I. and London, R.L.
Computer interval arithmetic:

implenientaU.on .
.JA.CM. 17(4):603-612, 1970.

defini/. and proof of correct

ALBERT-LUDWIGS-UNIVE RSITAT

INSTITUT FOR ANGEWANDTE MATHEMATIK

Prof. Dr. K. Nickel

Dr. Alan Bundy
University of Edinburgh

0-7800 FREIBURG I. BR., den May 5, 1981
Hermann-Herder-Strasse 10

Telefon (0761) 203-3062

Department of Artificial Intelligence
Hope Park Square, Meadow Lane

Edinburgh EH8 9NW

Dear Doctor Bundy!

Thank you very much for your letter of April 20 and for

your manuscript "A generalized interval package ... "

I read it with great interest. We will include it in our

"interval library" such that everybody interested in it can

look at it. I enclose a list of the papers which are encluded

in that library.

Some years ago I worked also in the field of the mono

tonicity of functions. A paper of mine is enclosed. I found

your ideas very stimulating and I am sorry that I did not

know them at that time.

I would very much like to see your results published.

Probabely a Journal on Computer Science and/or on Artificial

Intelligence would be the best. Perhaps you could also add

some practical results? Unfortunately I do not know which

Journal accepts such a paper. There is still much hesitation

in accepting papers from Interval Mathematics.

Sincerely yours

·ir:; b 7

w,t ~

~ ~"l

'--"'

3'J ·~

	Program
	Working paper 86: Generalized interval package
	Working paper 86: master copy
	Letter from Karl Nidel
	Citation: R.E. Moore Interval Analysis, Prentice-Hall 1966

