
)

, Proceedings

Praia da Falesia, Algarve/PORTUCiAL

Nlicleo de lnteligincia Artificial

UNIVERSIDADE NOVA DE LISBOA

Proceedings

Praia da Falesia, Algarve / PORTUGAL

26 Jun -1 July, 1983

Edited by: Sponsored by:

Lufs Moniz Pereira Associagao Portuguesa. para a lnteligencia Artificial
Antonio Porto Direcgao-Geral do Ensino Superior
Lufs Monteiro Junta Nacional de lnvestigagao Cieritffica e Tecnol6gica
Miguel Filgueiras Institute Nacional de lnvestigagao Cientffica

Nucleo de lnteligincia Artificial

UNIVERSIDADE NOVA DE LISBOA

F O R E W O R D

i These a.re the papers presented at the LOGIC PROGRAMMING WORKSHOP'83,
, which took place at Hotel Al'fa-M.r, Praia da Falesia, Albufeir·a., Alga.rvi',
in Portugal, from June 26 to July 1, 1983.

The \llor·kshop was organized by the Nucleo de Inteligencia. Artificial,
of Departamento de Informatica, Faculdade de Ciencias e Tecnologia, Uni
versidade Nova ~e Lisboa.

We thank everyone who helped us in organizing this event, and all the
participants for their contribution.

We further thank, for their financial support:

Direccao Geraldo Ensino Superior
Instituto Nacional de Investigacao Cientifica
Junta Nacional de Investigacao Cientifica e Tecnologica.

Thanks are also due to the Servicos Ora.ficos da Universidade Nova de
Lisboa.

We expect that a refereed selection of these papers will be soon published
in book form.

To obtain a copy of the proceedings delivered by air mai 1 send 1,J00
1
Escudos or equivalent, by personal check or otherwise, to

Logic Programming Workshop 1 83
Nucleo de lnteligencia Artificial
Universidade Nova de Lisboa
2825 Quinta da Torre
Portugal

The program chairman

r -~-

Luis Moniz Pereira

I

!

I

!

C O N T E N T S

Some Reflexions on Implementation Issues of Prolos
Maurice Bru~nooshe

A Prolosical Definition of HASL
Harve~ Abramson

A Virtual Machine to ImPlement Prolos
Gerard Ballieu

The Personal Seauential Inference Machine <PSI)t
Its Desisn and Machine Architecture

Hiroshi Nishikawa, M. Yokota, A+ Yamamoto,

1

7

40

K+ Taki, S. Uchida 53

A Portable Prolos ComPiler
David Bowen, L. B~~d, w. Clocksin

MethodolosY of Losic Prosrammins
Ehud ShaPiro

Th• Prasmatic of Prolos: Some Comments
E+ W+ Elcock

A Pol~morPhic T~Pe s~stem for Prolos
Alan M~croft, Richard O'Keefe

PRISM - A Parallel Inference s~stem
Solvins

s. Kasif, M. Kohli, J. Minker

for

Control of Losic Prosrams Usins Intesrit~
M. Kohli, J. Minlt,er

74

It\

94

107

Problem

123

Constraints
153

Interprocess Communication in Concurrent Prolos
Akikazu Takeuchi, K+ Furukawa

Intellisent Backtrackins for Automated Deduction
in FOL

Stanislaw Matwin, T+ Pietrzwkowski

 Losical Action S1:1stems
Antonio Porto

Issues in DeveloPins Expert S1:1stems
Jack Minv~er

Knowledse Representation in an Efficient
Deductive Inference S1:1stem

E+ Stabler, Jr. and E. w. Elcock

A Losic-Based ExPert S1:1stem for Model Buildins
in Resression Anal1:1sis

Ferenc Darvas, K+ Bein, z. Gabanwi

DeveloPins ExPert Swstems Builders in Losie
Prosrammins

Eusenio de Oliveira

KBO1 t A Knowledse Based Garden Store Assistant
Adrian Walker, Antonio Porto

Data Base Manasement, Knowledse Base Manasement and
ExPert Swstem DeveloPment in Prolos

Kamran Parsawae

A Data Base SuPPort S1:1stem for Prolos
Jan Chomicki, Wlodzimierz Grudzinski

171

186

192

204

216

229

240

252

271

290

Securiti:1 and Intesriti:1 in Losic Data Bases Usins QBE
M. Williams, J. Neves, s. Anderson 304

 Towards a Co-operative Data Base Hanasement Svstem
J. Neves, M. Williams 341

PROGRAPH as an Environment for Prolos DB APPiications
Tomasz Pietrzwkowski 371

Relational Data Bases •'a la carte•
Misuel Filsueiras, L. Moniz Pereira

Modellins Human-Computer Interactions
in a Friendlv Interface

389

P. Saint-Dizier 408

A Kernel for a General Natural Lansuase Interface
Misuel Filsueiras 419

An Operational Alsebraic Semantics of Prolos Prosrams
Pierre Deransart 437

Finite ComPutation PrinciPle - An Alternative Method
of AdaPtins Resolution for Losic Prosrammins

Ed Babb 443

A Note on Computational ComPlexitv of LoSic Prosrams
AndrzeJ Linsas 461

On the Fixed-Point Semantics of Horn Clauses with
Infinite Terms

M. Falaschi, G. Levi, c. Palamidessi 474

Some AsPects of the Static Semantics of Losic Prosrams
with Monadic Functions

Patrizia Asirelli 485

A First Order Semantics of a Connective Suitable to
ExPress Concurrencv

PierPaolo Desano, s. Diomedi 506

On ComPilinS Prolos Prosrams on Demand Driven
Architectures

M. Bellia, G. Levi, M. Martelli 518

Control of Activities in the Or-Parallel Token Machine
<ABSTRACT)
A. CiePielewski, s. Haridi

An Or-Parallel Token Machine
s. Haridi, A. CiePielewski

An Experiment in Automatic s~nthesis of ExPert
Knowledse throush Qualitative Medellin•

I. Mozetio, I. Bratko, L. Navrao

Evaluation of LoSic Prosrams Based on Natural
Deduction (DRAFT)

S. Haridi, D. Sahlin

Contextual Grammars in Prolos
<ABSTRACT>
Paul Sabatier

Current Trends in Losic Grammars
Veronica Dahl

Losical Data Bases vs Deductive Data Bases
Herve' Gallaire

ComPutinS with Seauences
c.o.s. Moss

536

537

553

560

575

578

608

623

1

Some Reflexions on Implementation Issues of PROLOG

INTRODUCTION

M.Bruynooghe

Departement Computerwetenschappen
Katholieke Universiteit Leuven

Celestijnenlaan, 200 A
B 3030 HEVERLEE

Current interest in PROLOG is high. This papers aims at opening
a.discussion on implementation related issues which, in our opinion, can
have ~ great impact on the acceptance of PROLOG as a valuable
programming language. Our focus is on issues concerning users of todays
PROLOG, not on implementation issues in current research on logic
programming (parallellism, intelligent backtracking, special
architecture, control).

The issues are:

the bad influence of cut on programming style but its necessity, in
current implementations, to obtain efficient (time and space)
execution of programs.

Can/will everyone develop good (efficient) PROLOG programs or is this
an art for a small club of skillful experts.

an observed desire for standardisation.

1 The influence of an implementation on programming style.

The PROLOG community has gone a long way from the first PROLOG
interpreters to current compilers promising to allow efficient execution
without running out of space, even for infinite queries if they are
determinate.

In the first interpreters, we could distinguish two major work
areas:

a dictionary of clauses, spoiled but slowly because ·retract" does
not free the space.

2 an environmentstack ("trail" included or separate) which grows until
backtracking liberates it.

l

This resulted in "dirty· programstyle, exemplified by the
following:

When you are affraid of running out of core, then:

assert your useful results.
fail and backtrack.
restart, picking up your useful results and retract their assertion.

It has been learned to separate the global/copystack from the
environmentstack, to keep the environmentstack small by exploiting
determinism and to apply garbage collection on the copystack. Also
compilation techniques have been developped to obtain more efficiency.

Does the combination of all these features provide the paradise
for the purists among logic programmers willing to apply such an
advanced programming technique as the usage of abstract data types?

Let us look at a simple example:

A procedure Partition(~. l, ll, 12) which separates a list l into a list
11 of elements less than or equal to x, and a list 12 of elements
greater than x.

The datastructure can be implemented as follows:

Empty(ll a test to see whether a list l is empty, also to initialize
an empty list.

A possible realisation is Empty(Nill <- (another one could be with
difference lists: Empty(d(~.~ll <-

Select ll, ~. tail): a list 1 is separated into its first element x and
its remainder (tail) (Fails for an empty list)

Realisation: Select(~.l. ~. ll <-

Construct(~ . .iill,, ll: a list l is constructed with first element x and
remainder tail

Realisation: Construct(~. l, ~. ll <

Now Partition can be defined:

Partition(~. l, l.1, ill <- Empty(ll, Empty(l.ll, Empty(ill

Partition(~. l, l.1, ill <- Select(l, ~. l'), ~ <= ~.
Construct(~. l.1', ill, Partition(~. l', ll', ill

Partition(~. l, ll, ill <- Select(1, ~. 1' l, ~ > K,
Construct(~. ll', 12), Partition(K, 1·, ll, g·)

To my knowledge, the best of all existing PROLOG systems cannot
prevent that a heavy price is paid for this programming style:

Efficiency:
number of
doubled.

the recursive calls contain 4 calls instead of 2, the
logical inferences required to obtain a solution is

Space: current implementations are unable to recognize the
determinism of the above program. Half of the calls will be
considered as nondeterministic, backtrackpoints will be created and
will stay on the environmentstack. Completion of a partition call
will not free the environmentstack. As a consequence, references to
the global/copystack are not removed and the potential for garbage
collection is severely reduced.

Preprocessing
improve the situation.
promising to automate
arrive at:

the calls to Empty, Select and Construct can
A technique as ·partial evaluation" seems

this. Doing the partial evaluation by hand, we

Partition(x, Nil, Nil, Nil) <-
Partition(x, .i.-l.', .i.-l.1', ll) <- .i. <= K, Partition(x, l.', ll', ll)
Partition(x, L.l,', l.1, Lil') <- .i. > X, Partition(x, l.', ll, ll')

This solves the efficiency problem but not the space problem
(to recognize the determinism of the base case (empty list), indexing on
the second argument is necessary)

To recognize determinism, a cut in the second clause is needed.
At the same time, an experienced programmer will drop the condition in
the third clause. We obtain:

Partition(x, Nil, Nil, Nil)<-
Partition(lS,, §. . .J,,', §..li', 12') <- §. <= lS., I, Partition(,2i, .l', .ll', ill
Partition(K, §..!,', ll, .i.-.!Z.') <- Partition(K, !,', l.1, ll.:J.

This cut, an ugly feature to purists and beginners, changes the
whole nature of the program. Now, the program Partition(x, !, ll, lll
cannot be used to obtain all possible merges l of 11 and 12. This
restriction on the use of Partition is not declared. As in most cases,
it is the purpose of the cut to inform the execution mechanism about
determinism, about the opportunity to optimise the execution of the
program. At the same time, the possible use of the program is severely
restricted. It is a sad fact that this guidance and its accompagnying
restriction are not given on a more elegant and more explicit way. It is
the obscurity of the cut which restricts the use of PROLOG, beyond toy
examples, to skillful expert programmers having a good understanding of
the underlying implementation.

Actually, we can state two questions about the above program,
(I am affraid that studying the manual of a particular implementation
will not answer them):

1 Is a cut needed in the first clause to recognize the determinism of
the base case (Nil)? Not recognizing the base case as deterministic
has a dramatic effect on memory usage, frames are locked on the
stack!

4

2 Will tail recussion optimisation be obtained when the second clause
is selected ? It cannot be applied at the time of unification with
the heading because the call is nondeterministic (the third clause
provides an alternative), it becomes deterministic only after
execution of the cut; at that moment, the opportunity exists to
collapse two stack frames into one.

2 Applicability of PROLOG

The application of PROLOG is rather limited. It is only used by
skillfull experts, mainly in the field of artificial intelligence. Can
it be applied to more conventional problem areas, where Fortran, Cobol,
Basic or Pascal are used, i.e business applications? Recently, we
conducted a few experiments. Our tools: a slow PROLOG interpreter
written in Pascal (about 400 logical inferences per second on·a VAX 750)
. the vendors Basic and Pascal compiler.

Experiment 1

A parser was developed by rather unexperienced programmer using a
compiler generator system semantic actions hand-written. The result:
2276 lines of Pascal. A parser which is roughly functionnally
equivalent was written in PROLOG by an expert PROLOG programmer: 246
lines of PROLOG (factor 9). Execution time (parsing the same file):
52 s (seconds) with Pascal, 296 s with PROLOG (factor 5 - 6).

Experiment 2

A program with complex data structures. An unexperienced Pascal
programmer: 2371 lines of code, a skillful PROLOG programmer: 136
lines of PROLOG (factor 17). Both programs have roughly the same
functional equivalence. Execution times: Pascal: 43 s, PROLOG: 119 s.
(factor 3).

Experiment 3

A complex retrieval task involving 4 files on the vendors file system
(RMS). A Basic program of 170 lines required an execution time of
12.5 sec. A PROLOG program with exactly the same functionality
required 70 lines (factor 12.5) and an execution time of 191 s.
(factor .17). (Due to the experimental nature of the interface
PROLOG-RMS, each call to the file system required a lot of additional
logical inferences, also the program did more file accesses.). A, for
PROLOG, simple optimisation (bringing a small part of 2 files in
core) reduced the execution time to 47 s. (factor 4).

Taking into account the slowness of the interpreter, an

improvement of factor 5 to 10 (2000 - 4000 LIPS) seems not difficult to
obtain, using compilation techniques, further improvements are
possible.this suggests that PROLOG becomes a competitive language to be
used on a large scale when:

complex data structures are to be manipulated (making use of the full
power of unification)
a substancial amount of time is spend on file accesses.

However, this require~:

A robust interpreter, not running out of space while executing large ·
programs and sufficiently efficient.

Easily extendible set of evaluable predicates, allowing to develop
specific predicates for specific applications. e.g.:

* connection with a particular file system or database
* screen management functions
* allowing to implement components with insufficient efficiency at a

lower level.

An environment allowing the development of good PROLOG programs by
mediocre progranvners, this probably requires:

* A cut free variant of PROLOG, making less an art of the writing of
space efficient programs (see reflection 1)

* An automatic optimiser based on partial evaluation techniques (see
reflection 1)

* Hore compile time verification (types, restrictions on the usage of
procedures), (Preferably incremental and integrated in a syntax
oriented editor)

A lot of programming is involved with side effects which should be in
a particular order. e.g. interaction with a terminal, producing a
report. We need a well choosen set of metalevel predicates to control
such side-effects. Some possibilites:

* For_each <-'-2.D.d., actionl, e.g.:
For_each (employee(x), compute_salary(x>>

(Definition in Prolog :
For_each(~.actionl <- ~. action, fail
For_each(~.actionl <-

* Repeat_unt1l_exit(command), e.g.:
Repeat_until_exit(Read_and_process(x))
The execution backtracks, reading commands until a special Nexit"
call is executed and the infinite backtracking is destroyed.

Although Prolog allows every expert to implement his own set of such
metapredicates, some standardisation is desirable and integration of

them in compiletime verification tools is needed.

3 Portability of Prolog programs

Currently, Prolog is not only a subject for research, but
becomes accepted as a suitable language for implementing diverse
applications (e.g. its role in the Japanese Fifth Generation Project and
in the European ESPRIT project). This creates the problem of exchanging
programs, of portability of programs. Although Edinburgh's OEC10 Prolog
tends to be a de facto standard, different implementations exist and
many more are likely to appear. Porting Prolog programs from one Prolog
system to another is problematic due to :

Differences in syntax. As far as the syntax is syntactical sugar for
Horn clauses, automatic conversion seems not difficult. However,
conversion to Horn clauses poses a problem when the syntax allows for
alternatives (e.g. (P;Q)) inside a clause, in cases where such an
alternative contains different calls and one of them is a cut (scope
of the cut).
Differences
extremely
christmas
high level

in evaluable predicates. Although the core of Prolog is
simple, manuals are becoming wieldy, they look like
trees, full of evaluable predicates. Some have to do with

control of the system, but others are extensively used
inside programs.

The observable desire to use Prolog as a programming language
for large projects creates a need for standardisation of syntax and
evaluable predicates. Is it possible to define a minimal set of
evaluable predicates and to define all extensions as Prolog procedures?
For reasons of efficiency, an implementor can provide these extensions
at a lower level. Taking Edinburgh's Prolog as the de facto standard is
probably not optimal, some reflection on the choice seems preferable.

A Prological Definition or HASL a Purely Functional
Language with Unification Based Conditional Binding

Expressions

Harvey Abram8on

Department of Computer Science
University of British Columbia

Vancouver, B.C. Canada

ABSTRACT

We present a definition in Prolog of a new purely functional (applicative)
language HASL (H. Abramson's .s\atic Language). HASL is a descendant of
Turner's SASL and differs from the latter in several significant points: it includes
Abramson's unification based conditional binding constructs; it restricts each
clause in a definition of a HASL function to have the same arity, thereby compli
cating somewhat the compilation of clauses to combinators, but simplifying con
siderably the HASL reduction machine; and it includes the single element domain
{Cail} as a component of the domain of HASL data structures. It is intended to
use HASL to express the functional dependencies in a translator writing system
based on denotational semantics, and to study the feasibility of using HASL as a
t~nctional sublanguage of Prolog or some other logic programming language.
Regarding this latter application we suggest that since a reduction mechanism
exists for HASL, it may be easier to combine it with a logic programming
language than it was for Robinson and Siebert to combine LISP and LOGIC into
LOGLISP: in that case a fairly complex mechanism had to be invented to reduce
uninterpreted LOGIC terms to LISP values.

The definition is divided into tour parts. The first part defines the lexical
structure or the language by means of a simple Definite Clause Grammar which
relates character strings to "token" strings. The second part defines the syntactic
structure or the language by means of a more complex Definite Clause Grammar
and relates token strings to a parse tree. The third part is semantic in nature and
translates the parse tree definitions and expressions to a variable-Cree string of
combinators and global names. The fourth part of the definition consists of a set
of Prolog predicates which specifies how strings of combinators and global names
are reduced to "values", ie., integers, truth values, characters, lists, functions,
fail, and has an operational flavour: one can think of this fourth part as the
definition of a normal order reduction machine.

April 24, 1983

A Prological Definition of HASL a Purely Functional
Language with Unification Based Conditional Binding

Expressions

1. Introduction

Harvey A.bramson

Department of Computer Science
Ugiversity of British Columbia

Vancouver, B.C. Canada

In this paper we shall use Definite Clause Grammars (DCGs) and Prolog to present a
definition of HASL, a purely functional language incorporating the unification based conditional
expressions introduced in [Abramson,82aJ.

Metamorphosis grammars were introduced in [Colmerauer, 78J and were shown to be effective
in the writing of a compiler Cor a simple programming language. Definite Clause Grammars, a
special case of metamorphosis grammars were introduced in [Pereira&Warren,80J and shown to be
effective in "compiling", ie, translating a subset of natural language into first order logic.
Metamorphosis grammars (M-grammars) have been used to describe several languages, namely
ASPLE, Prolog, and a substantial subset of Algol-68 [Moss,81J, [Moss,79]; see also !Moss,82J for
the use of Prolog and grammars as tools in language definition. Although neither M-grammars
nor DCGs were mentioned in [Warren,771, that paper is of interest in the use of Prolog as a com
piler writing tool. The use of DCGs and Prolog for the implementation of SASL [Turner,76,79,81J,
a purely applicative language, was reported in [Abramson,82b).

The language HASL which we shall define below arose out of the Prolog implementation of
SASL. One reason Cor defining the new language was to incorporate unification based conditional
binding expressions; another was to simplify and clean up the combinator reduction machine
introduced by Turner to evaluate SASL expressions; a third was to provide a possible functional
sub language for Prolog; and a fourth was to provide a functional notation for a denotational
semantics based translator writing system akin to Mosses' Semantics Implementation System
[Mosses,79J but to be tied to DCGs. Although we do not present a purely logical definition or
HASL, we feel that the departures from Horn clause logic in the definition presented below (the
use or the cut for control; negation as failure; and extension or HASL 's database or globally
defined functions) are not significant enough to mar the formality of the definition or its
comprehensibility. The definition can be used as a specification of HASL, as an interpretive imple
mentation of HASL, and as a guide to a more efficient implementation of HASL in some system
programming language.

In section 2 we shall informally and briefly describe HASL. Section 3 contains a description
or the general definition strategy: HASL expressions are compiled to variable-free strings of com
binators, global names, and uses or the two primitive operations of function application (->)
and pair construction(:, like LISP's CONS). Following this are sections devoted to: the DCG for
lexical analysis; the DCG and associated predicates which perform syntactic analysis and parse
tree formation; the translation to combinators; and the HASL reduction machine. A final section
will suggest some further work which we intend to pursue.

8

-2-

2. HASL • Informally and Briefly

HASL is descended from Turner's SASL (see (Turner,76,79,81)) and obviously owes much to
it. We have ch05en to designate this language HASL not to suggest that what we present is
totally original, but that there are enough departures from SASL to warrant a new designation.

A HASL program is an expression such as

[1,2,3J + + [4,5,61

with value

[1,2,3,4,5,6J

or an expression with a list of equational definitions qualifying the expression:

rx
where
x= hdy
hd (a:x) = a,
y = 3:y,
r o == 1,
f X = X * f(x-1)

with value 6.

We note in this list of definitions that

[IJ A function such as/ may be defined by a list of clauses. The order of the clauses is impor
tant: in applying /to an argument the first clause will be "tried", then the second, etc.

{2] In the definition of hd the argument must be a constructed pair, specified by (a:z) where : is
the HASL pair constructor. Structure specifications may involve arbitrary list structures of
identifiers and constants.

[3J HASL makes use of lazy evaluation ((Henderson St Morris, 761) so that infinite lists such as y
may be defined, and elements of such lists may be accessed, as in hd y without running into
difficulties. ·

A list may be written as

[l,2,3J

which is syntactic sugaring for

1: 2: 3: ll
where IJ denotes the empty list and the notation 'string' is a sugaring for the list of character
denotations:

%s: %t: %r: %i: %n: %g: II
There are functions such as number, logical, char and function which may be used to check

the types of HASL data objects:

number 12 = true
logical 5 = false
char % % = true
function hd = true

are all HASL expressions which have the value true.

Functions may be added to HASL's global environment as follows:

def
string I] = true,
string (a:x) = char a & string x,
string x = false,
cons ab= a:b

-3-

10

Each clause defining a HASL function / must have the same number of arguments or arity. Thus
above, each clause in the definition of string has arity one. In the second clause for string how
ever, a single structured argument is designated. Although HASL functions may be written as if
they had several arguments, such as cons above, HASL functions are all considered to have in fact
single arguments. The single argument is a HASL data object which may be a character, a truth
value, an integer, fail, a list of HASL objects, or a function of HASL objects to HASL objects.
The value of such a function may be any HASL object - including a function. Thus the value of

cons %a

is the HASL function which puts %a in front of lists.

The HASL object fail is the result of, for example, applying hd to a number:

hd 5 = fail

The object fail is not a SASL object and is one of our departures from that language.

Another departure is in the introduction of the restricted unification based conditional bind
ing constructs {;. and -} of !Abramson,1982J.

formals {- expl => exp2; exp3

The meaning of this is that if e:epl can be unified to the list of formals, then the value of this
expression is the value of e:ep2 qualified by the bindings induced by the match; otherwise, it is the
value of e:ep9. This may be expressed somewhat inefficiently using the HASL conditional expres
sion (a-> b; c):

(fail = f expl
where f formals= exp2) ->

exp3;
(f expl
where f formals = exp2)

Thus the unification expression may be regarded as the definition and application of an
anonymous function.

The unification expression is in fact the basis of the compilation or HASL clausal definitions
into a single function. If member is defined by the following clauses:

def
member a n = false,
member a (a:x) = true,
member a (b:x) = member ax

then the HASL specification and interpreter treats this as:

member xl x2 =
a IJ {- xl x2 => false;
a (a:x) {- xl x2 => true;
a (b:x) {- xl x2 => member ax;
fail

-4-

3. The Top Level of the HASL Speclftcatlon.

A HASL expression denotes a value. We may express this by the notation

hasl(Expression, Value).

This relation requires some refinement, however. The expression is written as some sequence or
characters, including spaces, carriage returns, etc., and the characters must be grouped into a
sequence or meaningful HASL "tokens". These tokens must then be grouped into meaningful syn
tactie units determined by the syntax or HASL expressions. These two relations, the lexical and
syntactic, are expressed by means ot two DCGs: one DCG defines the relation between a sequence
or characters and a sequence of HASL tokens; a second DCG defines the relation between a
sequence or HASL tokens and a representation of the syntactic structure or a HASL expression as
a tree.

Further, the expression of the relation between the tree and the value denoted by the origi
nal sequence of characters requires refinement. The tree represents the abstract syntax of the
HASL expression. A semantic relation holds between this tree and a sequence of combinators, glo
bal names, function application operators (->) and pair construction operators (:). This relation
the ref ore defines a translation from a syntactically sweet string or ·symbols (HASL) to a
mathematically equivalent - but rather unreadable - sequence of symbols suitable for mechanical
evaluation or reduction. The reduction relation (= > >) specifies how such a sequence of symbols
is related to another sequence of symbols which is the head normal form of the first. A final rela
tion (> > >) between head normal form and HASL values (normal form) completes the
specification of the relation hasl:

hasl(Expression, Value) :
lexical(Expression, Tokens),
syntactic(Tokens, Tree),
semantic(Tree,Combinators),
Combinators=>> HeadNormal,
HeadNormal > > > Value.

The lexical relation· may be specified in. terms of a relation lezemes (see next section):

lexical(Expression, Tokens) :- lexemes(Tokens,Expression,O).

and the syntactic relation may be specified in terms of a relation ezpression (see Section 5):

syntactic(Tokens, Tree) :- expression(Tree, Tokens,11).

The two relations lezemea and expression are defined below by definite clause grammars.

4. The Lexical Speclflcatlon of HASL.
This relation requires little comment. A sequence of characters such as

"def tac O = 1, fac x = x • rac(x-1);"

is grouped into the following string of tokens:

ldef,id(rac),constant(n um(O)),op(3,cEQ),constant(num(l)),comma,id(fac),id(x), .
op(3,cEQ),id(x),op(5,cMUL T),id(fac),lparen,id(x),op(4,cSUB),constant(num(1)),
rparen,semicolon}

Identifiers such as fac are represented by id{fac), constants such as O are represented by
constant(num(O)}. Some reserved words and punctuation are represented by atoms such as def
and comma.

A sequence of definite clause rules such as

11

-5-

tIDENT(id(ld))-> [id(Id)l.

defines the function symbols which are the terminals for syntactic analysis.

The complete Prolog specification or HASL is at the end or this report following the Refer
ences.

5. The Syntactic Specification of HASL.

As mentioned above, the syntactic relation is between token strings and parse trees which
represent the abstract syntax or HASL expressions.

The leaves or a parse tree may he identifiers such as id(fac), constants such as logical(true),
num(12S}, char(C), fail, or they may be the names or certain known HASL combinators such as
c.4DD Cor addition, or cMATCH used in unification, etc. These names follow the convention or a
lower case c followed by some other letters (usually upper case), digits or underline characters.

There are several kinds or branch nodes. A branch may be labeled by the HASL function
application arrow (->) or by the HASL pair construction colon (:). The arrow associates to the
left, the colon to the right. Thus the linear parse tree representation or a+ 1 is:

cADD -> id(a) -> num(l)

and that for hd 'abc' is:

clID-> %a: %b: %c: [}

Another kind of branch node is labeled with the functor where and has one subtree which is
an expression and another which is the subtree Cor a list of definitions qualifying the expression:

where(Exp,Defs)

Global definitions are subtrees of a tree where the root is labeled with the functor global

global(DeCs)

To each definition there is a branch node labeled with the functor def and with three sub
trees: the name or the identifier being defined; the arity associated with the name being defined;
and, the expression or list or clauses to be associated with the name. For a name with arity 0
such as in:

def b =a+ l;

the definition node looks like:

deC(id(b),O,cADD-->id(a)->num(l))

When a function is being defined, the a.rity is at least one, and the third argument is a list of
clauses, each or the Corm: -

runc(Fseq,Exp)

where Fseq is a list or arguments of length arity for the function being defined, and Ezp is the
expression associated with that clause. Thus, the definition of member in Section 2 is represented
in a parse tree as:

def(id(member),2,
!Cunc(!id(a)jflist(id(b):id(x))l,id(member)-> id(a)-> id(x)),
runc(lid(a)I flist(id(a):id(x))J ,logical(true))I
rune(! id(a)! con st(nil)J,logical(false))J)])

The functor flist is used to label a branch or a tree in which a list structured argument to a func
tion is specified. The context sensitive restriction that each clause defining a function have the
s::i.me arity is specified by the predic:1te rr.eruedef which merges separate clauses for a runction into

12

-6-

one node of the above description. (See the next two sections for further discussion of this restric
tion.}

One other point to note is that a list of definitions of arity Osuch as

lx,y,z) = x

is represented as a list of definition nodes:

[def(id(x},0,cHD->id(x)),
def(id(y),0,cHD->(cTL->id(x))I
def(id(z},0,cTL->(cTL->id(x))J

This is specified by the predicate ezpandef.

The last remaining kind of branch node is that for a unification based conditional binding
expression.

(a:x){-y=>x;fail
y-}(a:x}=>x;fail

would both be represented as:

unify(flist(id(a):id(x }),id(y),id(x),fail)

The DCG specifying the syntax of HASL is fairly straightforward. There is some slight intri
cacy in the specification of the grammar rules for expressions involving the HASL operators:
operator precedence techniques are used to build the appropriate subtrees.

The function symbols beginning with a lower case t are the terminals for this grammar and
specify HASL tokens as defined by the lexical DCG.

e. The Semantic Speclflcatlon of BASL.

The semantic relation is one which holds between parse trees as specified in the previous
section, and certain strings of combinators, constants, global names, and the primitive HASL
operations of function application (->) and pair construction (:). These strings may in fact be
regarded as modified parse trees in which the global, where, def, June, fti,t and unify nodes have
been eliminated and replaced by variable-free subtrees. The elimination of these nodes depends
on a discovery of the logician Schoenfinkel: that variables, although convenient, are not necessary.

Schoenfinkel's discovery that variables can be dispensed with relies on a sort of cancellation
related to extensionality. If in HASL we defined

successor x = plus 1 x
plus ab= a+ b

then we could say that

successor = plus 1

for both sides, when applied to the same argument, are always equal.

Schoenfinkel related a variable, an expression which may contain that variable, and an
expression from which that variable had been abstracted (removed) with the aid of the following
combinators:

cS x y z = x z (y z)
cK x y = x
clx=x

The specification or the abstraction or removal of a variable is given by the predicate abstrO:

13

-7-

abstrO(V,X->Y,cS->AX->AY) :- ! ,
abstrO(V,X,AX),
abstrO(V, Y,A Y).

abstrO(V,V,cl) :- !.
abstrO(V,X,cK->X).

Vis a variable, Xis an expression, and the third argument of abstrO is the expression with vari
able removed. So in the following:

abstrO(id(x),plus-> num(l)-> id(x),X).

we have

X = cS->(cS->(cK->plus)->(cK->num(l)))->cl

with no variables, and only the constants plus and num(l}, the combinators and->.

When the resulting expression is applied to an actual argument, these combinators, speaking
anthropomorphically, place the actual arguments in the right places so that the evaluated result is
the same as would be given (by extensionality) by evaluating the original expression with vari
ables and by making the appropriate substitutions or actual arguments for variables. The advan
tage or not using variables, of course, is that an environment is not necessary and that no substi
tution algorithm is necessary.

It is clear, however, that this abstraction specification albeit elegant, leads to expressions
much longer than the original. It is possible, however, to control the size of the resulting expres
sion by introducing combinators which are "optimizing" in the sense that if a variable which is
being abstracted is not used in the original expression, then the resulting expression will not have
any redundancies. Some of these optimizing combinators are described in· !Burge,1975J; a more
effective set was introduced by Turner who also extended the notion of abstraction of variables to
a context in which there was a primitive operation of pair construction in addition to the primi
tive (?peration of function application.

The predicate for abstraction in the specification or HASL 's semantics is based on Turner's
technique: abstract specifies how a list or variables is to be removed; abstr specifies how a single
variable is removed; and combine specifies the optimizations which control the size of the resulting
expressions.The first argument to abstract is a list uncurrying combinator which splits a structure
into its components, and is an aspect or HASL 's (restricted) unification. Ir a formal argument on
the left hand side of a clausal definition is being "opened up", the combinator (cU_s) is strict: if
the actual argument does not have the appropriate list structure then the value fail must result;
in other cases, the list uncurrying combinator (cU) need not be strict.

Since constants may be HASL arguments, the abstraction predicate must specify what the
resulting expression ought to be: in a strict position, removing a constant Crom an expression E
means that when the resulting expression is applied to an actual argument, that argument must
match exactly the removed constant, and so the parse tree is modified Crom E to cMATCH --->
X ---> E where Xis the constant being abstracted; otherwise the resulting tree is cK---> E.

We may now examine the ,emantic relation in detail. The semantic relation specifies a
traversal of the parse tree which results in a new tree Crom which all identifiers except global
identifiers have been removed. For a subtree or the form X : Y or X ---> Y, the resulting tree is
specified by:

semantic(X:Y,Sx:Sy) :- semantic(X,Sx), semantic(Y,Sy).
semantic(X-> Y,Sx->Sy) :- semantic(X,Sx), semantic(Y,Sy).

Related to a subtree or the Corm where{Ezp,Defe) is a subtree Combinators specified by

sema.ntic(where(Exp,Defs),Combinators) :- abstract_locals{where(Exp ,Defs), Combinators).

The predca.te abstract_locals reforms the where node into a subtree of the form AbsE ---> (cY --
> AbsD}:

:

-8-

abstractJocals(where(Exp,Defs),AbsE->(cY->AbsD)) :
comp_defs(Defs,lds,Abs),
abstract(cU,Ids,Exp,AbsE),
abstract(cU,Ids,Abs,AbsD).

c Y is HASL 's fixed point combinator whose reduction is defined as

cY->X =>> Res :-X-> (cY-> X) =>> Res.

This is read as: cY--->X reduces to Res if X--->(cY--->X) reduces to Res. In the
abstracUocals predicate, Defs are compiled by comp_defs to a list of identifiers defined {Ids) and a
list of defined expressions from which all local variables have been removed {Abs). The list of
variables is abstracted from Ezp and from Abs, specifying the subtrees AbsE and AbsD, respec
tively. The abstraction of Ida from Abs is the method of implementing mutually recursive
definitions.

The predicate comp_defa builds the list ot identifiers and abstractions by compiling each
definition in Def using the predicate comp_def. A definition of arity 0 is left unchanged by the
first clause of comp_def. As was mentioned in Section 2, the clauses defining a function are com
piled as it one large unification expression had been specified. This compilation is specified by the
predicate compJunc. The variables which are introduced by compJunc are of the Corm
id{l},id(f}, etc., (these are not HASL variables) and must later be abstracted from Code0 which is
returned by comp June to yield the Code tree for a definition:

comp_der(der(Name,0,Def),def(Name,0,Def)) :- !.
comp_def(def(Name,Arity ,Funcs),def(Name,Arity ,Code)) :
Arity > 0,
comp_func(Funcs,Arity, CodeO},
generate_seq(Arity ,Ids),
abstract(cU _s,lds, CodeO, Code).

The predicate generate_aeq specifies a relation between Arity and the list of introduced identifiers
Ids which later gets removed!

A function is compiled clause by clause in reverse order. The last clause of any function is
compiled by compJunc to

cCONDF -> Abs-> fail

where Ab8 is variable-free. cCONDF is a combinator defined as follows:

cCONDF-> X-> Y =>>Res:-
X =>>Rx,!,
condJail(Rx,Y,Res).

and is read: cCONDF--->X---> Y reduces to Rea if Xreduces to Rz and if Rz is not fail as deter
mined by condJail; otherwise, condJail specifies that the value of Res is the value of the reduc
tion of Y.

Remaining clauses defining a function are compiled by comp1Junc to:

cCONDF -> Abs-> Sofar

where Ab8 is the compiled clause and Sofar is the code for the clauses already compiled.

A clause is compiled by the predicate comp_clauae:

comp_clause(func(Fseq,Exp),Arity ,Abs) :
note_repeats(Fseq,MarkedFseq),
semantic(Exp,Sexp),
abstract(cU _s,Ma.rkedFseq,Sexp,Aps),
generate_applies(Aps,Arity ,Abs).

15

-9-

[lJ The predicate note_repeats relates a. list or formals, Fseq, to a marked list or formals Afark
edFseq, where the second, third, etc., occurrences of a formal identifier id(x) have been
replaced by match(id(x)). When id(x) is eventually abstracted Crom the right-hand side of a
clause, this insures - by unification - that ea.ch occurrence of id(x} is matched to the same
value. In the definition of member for example,

member a (a:x) = true

both occurrences of a must be bound to the same value. The abstract predicate treats
repeated occurrences of an identifier in the way it treats constants.

[21 Exp is related by the semantic relation to Sexp.

(3J The marked formal sequence is abstracted from Sexp to yield Aps.

[4J The identifiers id(l}, id{2}, etc., are introduced.

The interested reader may follow on his own the specification of the semantic relation for
subtrees labeled by the functor unify and for trees rooted at the functor global. It only needs to
be said that a global definition such as

def sue x = 1 + x;

results in the following clause being added to HASL 's database:

global(suc,cCl->cCONDF->(cADD-> num(l))->fail).

Global names in any HASL expression are replaced at reduction time by their value as specified
by the second component of global.

Some comments are due about the way we have compiled clauses into a function. In SASL,
Turner allowed different clauses defining a function to have different arities. For example:

rob= c

r I= d
fxyz=e

Thus, when an application of / is encountered in a SASL expression, it is impossible to know in
advance, ie, at compile time, how much of the SASL expression to the right of f would actually
be used by /. To cope with this, Turner introduced what he called a combinator "TRY, with
rather peculiar reduction rules" [Turner,1981J. We had earlier implemented SASL in Prolog, and
the specification of TRY in logic caused an enormous amount of trouble: it seemed to require at
reduction time a stack to hold everything to the right of/ in a SASL expression (ie, either to the
end of the SASL expression, or to the first right parenthesis). The TRY combinator itself seemed
to come in two arities: one of arity 3 for stacking everything to the right to be passed to each
clause to be tried; and one of arity 2 to attempt clauses in order to find the applicable one. No
other combinator seemed to require this explicit stack, but at reduction time the stack had to be
passed as part of the state of the reduction to each combinator rule in case some clausally defined
function were invoked. The presence of the stack in the logical specification seemed too opera
tional and too distasteful, and there seemed no way to write the SASL reduction rules completely
without it. This may have been simply a result of our confusion; or more profoundly a case where
Wittgenstein's dictum held: Was sich ueberhaupt sagen laesst, laeset sich klar eagen; und wovon
man nicht reden kann, darueber muss man schweigen. At any rate, HASL was born partly as a
result of the hassle of trying to clean up the SASL reduction machine.

The cCONDF combinator was introduced to deal with a kind of conditional expression
which arises often in dealing with unification based conditional binding expressions and in apply
ing clausally defined functions: we could simply use the cCOND combinator, but the resulting
code would be longer. Either way is simpler and clearer than using the TRY combinator! It
should finally be noted that the restriction t.hat all clauses defining a function have the same :uity
- which makes use of the cCO!'.'DF combinator feasible for compiling functions - imposes no loss
of generality on what c;;.n be exp;:-es.5cd ill lL\SL: the so!c lntercstir.g exa:;:p!e in [Turner,1981j

16

- 10 -

which makes use of different arities can be expressed without utilizing clauses of different arities.

7. The Specfflcatlon of HASL Reduction.
The specification of the HASL reduction relation consists mainly of a set of rules as to how

the HASL combinators a.re reduced. The combinator cS, for example, introduced in the previous
section, is reduced as follows:

cS -> Z -> Y -> X => > Res :
z -> X-> (Y-> X) =>> Res.

Here,"=>>" is the infix reduction operator. The above specification is read: cS ---> Z ---> Y
---> Xreduces to Rea if Z ---> X---> {Y---> X} reduces to Rea.

Associated with each combinator is an arity, for example:

arity(cS,3)

which indicates the number of arguments necessary for the reduction to take place. An expression
such as

cS-> X-> Y

cannot be further reduced as it is already in head normal form. The reduction rules are listed in
order of increasing arity; at the end of each group of rules for a given arity, there is a rule such
as:

C->X->Y=>>C->X->Y~
arity(C,D) , D >= 3, !.

which would specify that cS --->_X •··> Yis already in head normal form.

The general reduction rule is to reduce the leftmost node of the combinator tree (the left
most redex); if that node has not been reached, none of the combinator reduction rules apply. To
handle the case of moving to the leftmost redex, the following (last but one) reduction rule
applies:

X-> Y-> Z =>>Res:
X-> Y=>> Rxy,
not same(X-> Y,Rxy),
Rxy-> Z =>> Res.

The reduction rules a.re recursively applied to try and reduce X •··> Y to head normal form; if X
•··> Yis not in head normal form, then R::y is head normal form for X---> Yand R::y ---> Z
is reduced to Rea.

The last reduction rule X => > X specifies that Xis already in head normal form.

Some combinators, such as the combinator cCONDF, defined in the last section, recursively
call on the reduction machine. So does the combinator cMATCHwhich specifies unification:

cMATCH-> X-> Y -> Z =>>Rees:-
X =>> Redx, !,
Z =>> Redz, !,
eqnormal(Redx,Redz,Y,fail,Req),
Req =>> Res.

X and Z are reduced to Redx and Redz, respectively, and if they have the same normal form, Y
is unified with Req and is reduced to Rea; otherwise, fail is unified with Req and a trivial reduc
tion reduces the entire match to fail. The binding of arguments to HASL formal variables -
another part or HASL 's restricted unification - is accomplished at the reduction stage by the com
binators simply placing rhe actual arguments in their proper places for evaluation!

11-

- 11 -

HASL numbers, truth values, and characters are tagged by the functors num, logical and
char. (Lists are tagged by :.) Various parts of the reduction machine use these functors for type
checking. For example, the addition component of the "arithmetic unit" specifies that addition is
strict:

add(num(X),num(Y),num(Z)) :- Z is X + Y, !.
add{X,Y,fail).

HASL type checking functions such as number are defined globally and apply type checking com
binators such as

cNUMBER -> X =>>Res:- type_check(num(X),Res).

The predicate type_check is specified by:

type_check(Form,logical(true)) :- Form, !.
type _check(F orm,logical(false).

The reduction from head normal Corm to normal Corm is specified by the relation > > >
whcih also has the side effect or printing the value of the original HA.SL expression in an
appropriate format.

8. Appllcatlona, Conclusions, Further Work.

Ill One of our interests is in building a logical translator writing system based on Scott
Strachey denotational semantics. The general idea is to use DCGs for lexical and syntactic
analysis and to produce an applicative expression which denotes the "value" of a program.
The applicative expression must then be reduced to its value. It is our intent to construct
the system so that HASL expressions are used as the applicative expressions which denote
the values of programs.

Peter Mosses jMosses,1979J Semantics Implementation System (SIS, implemented in BCPL)
provides a "hard-wired" model for this project. It allows one to specify a grammar and the deno
tational semantics of a language, and produces Cor any program in that language an applicative
expression in a language called DSL which is a slightly sugared version of a lambda calculus
language LAMB. As a first step in our project we will probably compile DSL expressions to com
binators and use the HASL reduction machine to reduce DSL expressions to the values which
they denote.

(21 HASL may be thought of as a functional sublanguage of Prolog. More generally, we can
think of a deduction machine (eg, Prolog) which has a reduction machine (eg, HASL) as a
component. Another model here is LOGLISP 1Robinson&Siebert,1980J in which LOGIC is
the deduction machine and LISP is the reduction machine. In the case of LOGLISP, how
ever, it took quite a lot of work to define a suitable reduction mechanism for LISP: the
notion or reduction or LISP expressions is fairly complex and is not identical to evaluation
or LISP expressions. We suggest that since HASL is defined in terms oi a notion or reduc
tion ah initio, it is simpler and perhaps cleaner mathematically to consider a deduction
reduction machine with HASL as the reduction component. LOGLISP, however, treats the
LOGIC machine and the LISP machine as equal components able to call on each other for
computations; it remains to be investigated how HASL might call on the deduction
machine.

[3J The HASL reduction machine bas some notion of partial evaluation. If one defines

def f cond a b = cond -> a ; b:

then / true is the function which when applied to two arguments selects the first one. In
terms or combinators, the reduction or J true is:

- 12 -

cC->(cBl->(cBl->cCl)->cCONDF->
cCOND->logical(true))->fail

Another observation is that the abstraction or variables from an expression is a relation
between a variable, an expression, and another expre55ion without that variable. The abstraction
may be run "backwards" and a variable may be put into a variable-free combinator expression to
get something more readable. For example, in:

abstrO(id(x),E,cS->(cS->(cK->plus)->(cK->num(l)))->cI).

we have

E = plus->num(l)->id(x).

HASL abstraction is more complicated than this, but in principle one may think of decom
piling variable-free expressions.

One might think or combining these two observations to get a notion for a debugging
method for applicative languages: a partially evaluated expression may have some variables put
back into it, and then one might try using the lexical and syntactic DCGs as generators rather
than as recognizers to produce a readable HASL expression.

It may not be entirely frivolous to think in fact of generating programs which compute a
given value. The reduction relation may be run backward to derive combinator strings which
could be translated into HASL expressions. Of course there are infinitely many such expressions
and most of them are trivial and/or uninteresting. Could one place constraints on the searching of
the space of HASL expressions which compute a given value to produce interesting expressions?

14) Pragmatically, Prolog is ideal for designing and testing experimental languages. One tends
not to carry out language experiments other than on paper• or in one's head• if implemen
tation requires extensive coding in a low level language. But • the HASL interpreter
described here, implemented in CProlog to run on a VAX 780 under Berkeley UNIX, is slow.
A Prolog compiler which optimizes tail recursion and runs under UNIX is an absolute neces
sity.

O. Acknowledgements.
This work was supported by the National Science and Engineering Research Councilor

Canada. I must also thank the UBC Laboratory for Computational Vision for time on its VAX
running Berkeley Unix: modem and adequate computing facilities are not currently made avail
able to the computer science department by UBC.

10. References.

!Abramson, 1982al

Abramson, H., Unification-based Conditional Binding Constructs, Proceedings First International
Logic Programming Conference, Marseille, 1982.

IAbramson,1982bJ
Abramson, H., A Prolog Implementation of SASL, Logic Programming Newsletter 4, Winter
1982/1983.

1Burge,1975J
Burge, W.H., Recursive Programming Techniques, Addison-Wesley, 1975.

I Colmerauer, 1978j

Colmerauer, A., Metamorphosis Grammars, in Natural Language Communication with Comput
ers, Lecture Notes in Computer Science 63, Springer, 1978.

!Henderson&Morris, 19761

- 13 -

Henderson, P. & Morris, J.H., A lazy evaluator, Conference Record or the 3rd ACM Symposium
on Principles or Programming Languages, pp. 95-103, 1976.

!Moss,1979J

Moss, C.D.S., A Formal Description of ASPLE Using Predicate Logic, DOC 80/18, Imperial Col
lege, London.

!Moss,1981J

Moss, C.D.S., The Formal Description of Programming Languages using Predicate Logic, Ph.D.
Thesis, Imperial College, 1981.

[Moss, 1982j

Moss, C.D.S., How to Define a Language Using Prolog, Conference Record of the 1982 ACM Sym
posium on Lisp and Functional Programming, Tittsburgh, Pennsylvania, pp. 67-73, 1982.

!Mosses, 1979J

Mosses, Peter, SIS - Semantics Implementation System: Reference Manual and User Guide, DAI?vfl
MD-30, Computer Science Department, Aarhus University, Denmark, 1979.
1Pereira&Warren,1980J

Pereira, F.C.N. & Warren, D.H.D, Definite Clause Grammars for Language Analysis, Artificial
Intelligence, vol. 13, pp. 231-278, 1980.

!Robinson&Siebert, 1980aJ

Robinson, J.A. & Siebert, E.E., LOGLISP - an alternative to Prolog, School or Computer and
Information Science, Syracuse University, 1980.

!Robinson&Siebert, 1980b J

Robinson, J.A. & Siebert, E.E., Logic Programming in LISP, School or Computer and Information
Science, Syracuse University, 1980.

1Turner,1976J

Turner, D.A., SASL Language Manual, Department of Computational Science, University of St.
Andrews, 1976, revised 1979.

!Turner, 1979J

Turner, D.A., A new implementation technique for applicative languages, Software - Practice and
Experience, vol. 9, pp. 31-49.

1Turner,1981J

Turner, D.A., Aspects of the Implementation of Programming Languages: The Compilation of an
Applicative Language to Combinatory Logic, Ph.D. Thesis, Oxford, 1981.

!Warren,1977I

Warren, David H.D., Logic programming and compiler writing, DAI Research Report 44, Univer
sity of Edinburgh, 1977.

lO

- 14 -

/ • lexical rules • /

reserved(true,constan t(logical(true))).
reserved('TRUE' ,constan t(logical(true))).
reserved(Calse,constant(Iogical(false))).
reserved('F ALSE',constant(logical(false))).
reserved(fail,constant(fail)).
reserved('F AIL' ,constant(fail)).
reserved(def,def).
reserved('DEF ',def).
reserved(where,where).
reserved('WHERE' ,where).

lexemes(X) - > space , lexemes(X).
lexemes([XIY]) - > lexeme(X) , lexemes(Y).
lexemes(U) -> 0-

lexeme(Token) ->
word(W) , ! , { name(X,W), (reserved(X,Token); id(X) =Token)}.

lexeme(constant(Con)) -> constant(Con) , !.
lexeme(Punct) -> punctuation(Punct), !.
lexeme(op(Pr,Comb)) -> op(Pr,Comb), !.

space-> " " , !.
space-> (IOJ, !. /• carriage return •/

num(num(N)) -> number(Number) , ! , { name(N,Number) }.

number([DIDsl) -> digit(D) , digits(Ds).

digit(D) -> (DI , { D>47, D<58 }. /• 0 ... 9 •/

digits((DjDsl) -> digit(D) , digits(Ds).
digits(!!) -> IJ.

word([L ILsl) - > letter(L) , lords(Ls).

letter(L) -> IL}, { (L>96,L<123; L>64,L<90) }. /• •z, A-Z •/

lords(ILILsl)-> (letter(L); digit(L)), lords(Ls).
lords(!]) -> IJ.

/• in op(N,O) N designates the binding power of the operator 0. •/
op(0,cAPPEND)-> "+ +", !.
op(0,cCONS) -> ":" , !.
op(l,cOR) -> "I" , !.
op(2,cAND) -> "&" , !.
op(3,cLSE) -> "<=" , !.
op(3,cGRE) -> ">=", !.
op(3,cNEQ) -> "=" , !.
op(3,cEQ) -> "=" , !.
op(3,cGR) -> ">" , !. ,.

21

op(3,cLS) -> "<" , !.
op(4,cADD) -> "+" , !.
op(4,cSUB) -> "-" , !.
op(5,dvfUL T) --> "*" , !.
op(5,cDIV) -> "/" , !.
op(6,cB) -> "." , !.

- 15 -

hasl.J,tring(C:Cs)-> stringchar(C), hasl_string(Cs).
hasl.J,tring(ni!) -> [l.

hasl_char(C)-> "%" , stringchar(C), !.

stringchar(char(A)) -> [CJ , { C =\= 39, name(A,[Cl) } , !.
stringchar(char(""))-> """ , !.

string(S) -> '"" , hasl_string(S) , "'" ,!.

constant(N) - > num(N) , ! .
constant(C) -> hasl_char(C), !.
constant(S) -> string(S) , !.
constant(nil) - > "IJ" , !.

punctuation(tilde) -> ,,-,, , !.
punctuation(comma) -> "," , !.
punctuation(lparen) - > "(" , ! .
punctuation(rparen) -> ")" , !.
punctuation(condarrow) -> "->" , !.
punctuation(rightcrossbow) -> "-}", !.
punctuation(leftcrossbow) -> "{-", !.
punctuation(lbrack) - > "I", !.
punctuation(rbrack) ->"I",!.
punctuation(unifyarrow) -> "=>", !.
punctuation(semicolon) -> ";" , !.

/• The following predicates constitute the interface
between lexical and syntactic analysis. Predicates
with names starting with 't', eg, tCOLON, are the
terminals in syntactic analysis.

*/

tCOLON -> !op(0,cCONS)j.
tPLUSPLUS -> !op(0,cAPPEND)J.
tCOMMA -> [commaj.
tLBRACK -> [IbrackJ.
tRBRACK -> lrbrackj.
tLPAREN -> llparen].
tRPAREN -> [rparenJ.
tUNIFYARROW -> [unifyarrowj.
tLEFTCROSSBOW -> [IeCtcrossbowJ.
tRIGHTCROSSBOW -> lrightcrossbowj.
tCONTIARROW -> lcondarrowJ.
tEQUAL -> lop(3,cEQ)J.
tSE~.1ICOLON •-> [semico!onJ.

I I

tWHERE -> !whereJ.
tDEF -> Ide~.
tNOT -> !tilde).
tNEGATE --> (op(4,cSUB)).
tPLUS -> [op(4,cADD)J.
tlDENT(id(Id))-> lid(Id)J.
tCONSTANT(C) -> lconstant(C)I.
tOP(Pr,Comb) -> lop(Pr,Comb)J.

- 16 -

/* syntactic rules*/

deC(global(Ds)) - >

- 17 -

tDEF , dets(Ds) , tSEMICOLON.

definition{def(Id,Arity ,runc(Fseq,Exp))) ->
tIDENT(Id), fseq(Fseq), ! , tEQUAL , expression(Exp),
{ seq,Jength(Fseq,Arity) }.

definition(Def) - >
Cormal(Formal) , ! , tEQUAL , expression(Exp) ,
{ expandeC(deC(Formal,0,Exp),Def) }.

defs(Ds) -> definition(D), ! , { append_def(D,!J,Deftist) } ,
defs l(Deftist,Ds).

defsl(D,Ds) -> tCOMMA, definition(DeC) , ! ,
{ mergedef(D,Def,Dm) } , defsl(Dm,Ds).

defsl(D,D) -> !J.

fseq(Fseq) -> formal(Formal) , ! , fseql(Formal,Fseq).

fseql(Fl,[FllFI) -> formal(F2) , ! , fseql(F2,F).
fseql(F,F) -> [].

formal(Id) -> tIDENT(Id), !.
formal(const(C))-> tCONSTANT(C), !.
formal(ftist(Flist)) -> tLBRACK, ftist(Flist), ! , tRBRACK.
formal(ftist(Flist))-> tLPAREN, fprimary(Flist), ! , tRPAREN.

ftist(Fl:F2) -> fprimary(Fl), ! , ffistl(F2).
ftist(const(nil)) -> !J.

ftistl(F) -> tCOMMA, ftist(F).
llistl(const(nil)) -> IJ.

fprimary(F) -> formal(Fl), ! , fprimaryl(Fl,F).

fprimaryl(Fl,Fl:F)-> tCOLON , formal(F2), ! , fprimaryl(F2,F).
fprimaryl(F,F)-> I}.

expression(E) -> def(E).
expression(E) -> unification(El) , ! , expression(El,E).

expression(El,where(El,Ds)) -> tWHERE, defs(Ds).
expression(E,E) -> [I.

unification(unify(Fseq,El,E2,E3)) ->
fseq(Fseq), tLEFTCROSSBOW, expression(El), tUNIFYARROW,

expression(E2) , tSEMICOLON , expression(E3).

unification(U) -> condexp(U).

Z4

- 18 -

condexp(E) -> expl(El,0) , ! , condexpl(El,E).

condexpl(El,cCOND -> El-> E2 -> E3)->
tCONDARROW , expression(E2) , ! , tSEMICOLON , condexp(E3).

condexpl(El,unify(Fseq,El,E2,E3)) ->
tRIGHTCROSSBOW, fseq(Fseq), tUNIFYARROW,

expression(E2), tSEMICOLON, expression(E3).
condexpl(E,E) -> IJ.

expl(E,P) -> tPLUS , expl(El,6) , ! , exp2(El,E,P).
expl(E,P)-> tNEGATE, expl(El,6), ! , exp2(cNEGATE -> El,E,P).
expl(E,P)-> tNOT, expl(El,3), ! , exp2(cNOT-> El,E,P).
expl(E,P) -> comb(El) , ! , exp2(El,E,P).

/ • since : or cons is a primitive in HASL: • /
exp2(El,E,0) -> tCOLON , expl(E2,0) , ! , exp2(El : E2,E,1).

/• since + + or append is the only other zero level operator: •/
exp2(El,E,0)-> tPLUSPLUS, expl(E2,0), ! , exp2(cAPPEND-> El-> E2,E,1).

/• : and + + are right associative; all others are left associative: • /
exp2(El,E,P) -> tOP(Q,Op) , { P < Q } , ! , expl(E2,Q) ,

exp2(Op -> El '""""> E2,E,P).

exp2(E,E,P) -> [I.

comb(C)-> primary(P), ! , combl(P,C).

combl(Pl,C) -> primary(P) , ! , combl(Pl -> P,C).
combl(C,C) -> 0-

primary(L) -> tLBRACK, explist(L), ! , tRBRACK.
primary(!)-> tIDENT(I), !.
primary(C) -> tCONSTANT(C) , !.
primary(E)-> tLPAREN, expression(E), ! , tRPAREN.

explist(El : E2) -> expl(El,0) , ! , explistl(E2).
explist(nil) -> a.
explistl(E) -> tCOMMA , explist(E).
explistl(nil) -> [I.

/ • The following predicates are used to check that each clause
defining a function has the same arity, and to merge all
definitions made at the same time into a single list of
definitions.

•/

mergedef(Deflist,Def,Defmerge) :
flat(Def,FlatDer) ,
merge(Deflist,FlatDef ,Defmerge).

merge(Deftist,!DeflDefsJ,Defmerge) :-
merge(Detfo;t,Def,Deflistl) ,

25

merge(Deftistl ,Defs,Defmerge).

merge(ldef(id(X),O,D)IDeflistJ,
def(id(X), O,D 1),
ldef(id(X),O,D)IDeflistl) :
write(X),

- 19 -

write(' is a constant already defined: ') ,
write(D) , nl ,
write('definition ignored: ') ,
write(D 1) , nl.

merge(ldef(id(X),N ,D)IDetlistj,
def(id(X),N,Dl),
ldef(id(X),N,IDllDl)IDeftistl) :- !.

merge(!def(id(X),N,D)IDeflistJ,
def(id(X),M,D 1),
ldef(id(X),N,D)!Dellistl) :-
write('wrong number of arguments in definition of:') ,
write(def(id(X),M,Dl)) ,
write('should be ') , write(N) , nl.

merge(ldef(id(Y),M,Dy)IDetlistj,
def(id(X),N,D),
[def(id(Y),M,Dy)jDeftistl) :
defined(X,Deflist,Dx) , ! ,
write(X) ,
write(' already defined: ') ,
write(Dx) , nl ,
write(def(id(X),N,D)),
write(' ignored.') , nl.

merge(Deftist,
Def,
!DefjDeftistJ).

defined(Y,ldef(id(Y),_,Dy)I..J,Dy).
defined(Y ,[def(id(X),...,_)IDeftistJ,Dy) :

defined(Y ,Deflist,Dy).

seqJength([FIGJ ,N) :- ! ,
seqJength(G,M) ,
N is 1 + M.

seqJength(F, 1).

append_def(def(A,B,C),Z,ldef(A,B,C) IZI) :- !.
append_def(IXIYJ,Z,IXIWJ) :

append_def(Y,Z, W).

ftat(def(X,Y,Z),def(X,Y,Z)).
llat(!def(X,Y,Z)!DefsJ,ldef(X,Y,Z)IFDefsj) :

llat(Defs,FDefs) , !.
flat(IDefHdjDerI'll,Flat) :

flat(DefHd,FlatHd) ,
fl.at(DerI'l,FlatTl) ,
append_def(F latHd ,Flat Tl ,Flat).

lG

expandef(Defs,Def) :
expand(Defs,Defl) ,
ftat(Defl ,Def).

- 20-

expand(def(flist(X:const(nil}),0,Exp),Derx) :
expand{ def(X,O,Exp),Defx).

expand(deC(flist(X:Y),O,Exp),IDerxlDefyl) :
expand(def(X,O,cHD -> Exp),Defx),
expand(def(ftist(Y),0,cTL -> Exp},Defy).

expand(deC(flist(X),O,Exp),def(X,O,Exp)).
expand(def(F ,0,Exp),def(F ,O,Exp)).

/* semantic rules*/

semantic(X:Y,Sx:Sy) :
semantic(X,Sx) ,
semantic(Y,Sy).

semantic(X-> Y,Sx->Sy) :-
seman tic(X,Sx) ,

- 21 -

semantic{Y,Sy).
semantic(where(Exp,Defs),Combinators) :

abstractJocals(w here(Exp ,Defs), Combinators).
semantic{unify(Fseq,El,E2,E3),cCONDF->Exp->Se3) :

semantic(El,Sel) ,
semantic(E2,Se2) ,
semantic(E3,Se3) ,
translate_unification{Fseq,Se l ,Se2,Exp).

semantic(global(Defs),global) :-
installdefs(Defs).

semantic(X,X).

abstract(U ,nil,Abs,Abs).
abstract(U ,ftist(Flist),Exp,Abs) :-

abstract(U ,F list,Exp,Abs).
abstract(U,IXIYl,E,Abs) :

abstract(U,Y,E,Absl),
abstract(U ,X,Absl,Abs).

abstract(U,id(X),E,Abs) :-
abstr(id{X),E,Abs).

abstract(cU,const(X),E,cK -> E).
abstract(cU_s,const(X),E,cMATCH -> X -> E).
abstract(cU,~,match(X),E,cMATCH-> X-> E).
abstract(U,(X : Y),E,U -> Abs) :-

abstract(U,Y,E,Absl),
abstract(U ,X,Absl,Abs).

abstr(V,X -> Y,Abs) :
abstr(V,X,AX) ,
abstr(V, Y ,A Y) ,
combine{->,AX,AY,Abs), !.

abstr(V,(X : Y),Abs) :
abstr(V,X,AX) ,
a~str(V,Y,AY) ,
combine(:,AX,AY,Abs), !.

abstr(id(X),id(X),cl) :- !.
abstr(V ,X,cK -> X).

combine(->,cK-> X,cK-> Y,cK-> (X-> Y)).
combine(->,cK -> X,cl,X).
combine(->,cK--> (Xl -> X2),Y,cBl -> Xl -> X2 -> Y).
combine(->,cK-> X,Y,cB-> X-> Y).
combine(->,cB--> Xl -> X2,cK-> Y,cCl -> Xl -> X2-> Y).
combine(->,X,cK-> Y,cC -> X-> Y).
combine(->,cB--> Xl -> X2,Y,cSl -> Xl -> X2 -> Y).
combine(->.X.Y,cS -> X-> Y).

I !

- 22-

combine(:,cK-> X,cK-> Y,cK-> (X: Y)).
combine(:,cK -> X,Y,cB_p -> X -> Y).
combine(:,X,cK -> Y,cC_p -> X -> Y).
combine(:,X,Y,cS_p -> X -> Y).

generateJeq(l,id(l)) :- !.
generateJeq(N,Y) :-

NI is N - 1,
genJeq(Nl ,id(N), Y).

gen_seq(l,X,[id(l)IX)) :- I.
genJeq(N,X,Y) :-

Nl is N - 1,
genJeq(Nl, lid(N)IX), Y).

generateJpplies(X,N,Y) :
generateJeq(N,Seq),
genJpplies(X,Seq, Y).

genJpplies(X,IHdlTIJ,Y) :-1,
genJpplies(X-> Hd,Tl,Y).

gen_applies(X,S,X -> S).

restructure(X-> (Y -> Z),W) :- restruct(X,Y -> Z,W).
restructure(X-> Y,X-> Y).

restruct(X,Y -> Z,A -> Z) :- restruct(X,Y,A).
restruct(X,Y,X -> Y).

comp_clause(func(Fseq,Exp),Arity ,Abs) :-
noteJepeats(Fseq,MarkedFseq) ,
semantic(Exp,Sexp) ,
abstract(cUJ,MarkedFseq,Sexp,Aps) ,
generateJpplies(Aps,Arity ,Abs).

compJunc([func(Fseq,Exp)jFuncsJ,Arity ,Code) :
comp_clause(func(Fseq,Exp),Arity ,Abs) ,
complJunc(Funcs,Arity,cCONDF ->Abs-> fail,Code).

compJunc(func(Fseq,Exp),Arity,cCONDF -> Abs-> fail) :
comp_clause(func(Fseq,Exp),Arity ,Abs).

comp lJunc(lfunc(Fseq,Exp)IFuncsJ,Arity ,So(ar, Code) :
comp_clause(Cunc(Fseq,Exp),Arity ,Abs) ,
complJunc(Funcs,Arity,cCONDF ->Abs-> Sofar,Code).

complJunc(runc(Fseq,Exp),Arity,Sofar,cCONDF ->Abs-> SoCar) :
comp_clause(runc(Fseq,Exp),Arity ,Abs).

comp_def(def(Name,0,Def),der(Name,0,Der)) :- !.
comp_deC(deC(Name,Arity ,Funes),deC(Name,Arity,Code)) :-

Arity > 0, I,
compJunc(Funcs,Arity ,Code0) ,
generate_seq(Arity,Ids),
abstract(cU_s,lds,Code0,Code).

l9

- 23 -

comp_defs(!DefjDefsJ,Ids,Abs) :
comp_def(Def,def(id(Id),Arity ,Absl)) ,
comp_defsl(Defs,id(Id),Absl,lds,Abs).

comp_defs 1 ([l ,Ids,Abs,lds,Abs }.
comp_defs l(!Def!Defsj ,Idsln,Absln,Ids,Abs) :

comp_def(Def ,def(id(Id),Arity ,Absl)) ,
comp_defsl(Defs,id(Id):Idsln,Absl:Absln,Ids,Abs).

abstractJocals(where(Exp,Defs),AbsE-> (cY -> AbsD)) :
comp_defs(Defs,Ids,Abs) ,
abstract(cU,Ids,Exp,AbsE) ,
abstract(cU,Ids,Abs,AbsD).

translate_unification(Fseq,El,E2,Exp) :
noteJepeats(Fseq,MarkedFseq) ,
abstract(cU _s,MarkedFseq,E2,Abs) ,
restructure(Abs -> El,Exp).

installdefs(Defs) :
comp_defs(Defs,Ids,Abs),
install(Ids,Abs).

install(id(Id):Ids,Def:Defs) :
global(Id,Defld) , ! ,
write(Id) , write(' already globally defined.') ,
write(' New definition ignored.') , nl ,
install(Ids,Defs).

install(id(Id):Ids,Def:Defs) :
assertz(global(Id,Def)) ,
install(Ids,Defs).

install(id(Id),Abs) :
global(Id,Defld) , ! ,
write(Id) , write(' already globally defined.'} ,
write(' New definition ignored.') , nl.

install(id(Id),Def) :-
assertz(global(Id ,Def)).

member(Id,!Idj__J).
member(Id,l__)Idsl) :- member(Id,Ids).

noteJepeats(Fseq,Marked) :-
markJepeats(Fseq,IJ,~Marked).

markJepeats(id(Id),In,In,match(id(Id))) :
member(Id,In), !.

markJepeats(id(Id),In,!IdlinJ,id(Id)).
markJepeats(flist(Flist),In,Out,ftistfMarked)) :

mark_repeats(F list,ln,Ou t,Marked).
markJepeats(Hd:Tl, In, Ou t,MarkedHd :Marked Tl) :

mar kJepeats(Hd ,In ,In 1,MarkedHd) ,
mark_repeats(Tl,Inl,Out,MarkedTl).

markJepeats([HdlTlj,In,Out,[MarkedHdjMarkedTlj) :-
mark_rep~ats(Hd,!n,Inl,Marke<lHd) ,

~o

I I

- 24 -

markJepeats(Tl,In 1, Out,MarkedTI).
markJepeats(U ,In,In,[I).
markJepeats(const(C),In,In,const(C)).

3J

/ • reduction rules • /

id(X) -> id(Y) =>>Res:
global(X,DeCX) ,
global(Y,DefY) ,

- 25 -

DefX-> DefY =>> Res.

id(X) = > > Def :-
glohal(X,Def) , ! .

id(X) =>> _:
nl,
write('not defined: ') ,
write(X) , nl , abort.

cl-> X =>>Res:
X =>> Res.

cY-> X =>>Res:-
X -> (cY -> X) => > Res.

cHD-> (X: Y) =>>Res:- ! ,
X =>> Res.

cHD-> X =>>Res:-
X = > > (Hd : Tl) , ! ,
Hd =>> Res.

cTL -> (X : Y) = > > Res :- ! ,
Y =>> Res.

cTL -> X =>>Res:-
X =>> (Hd: Tl),!,
Tl=>> Res.

cCHAR -> X =>>Res:
type_check(char(X),Res).

cFAILUR~-> X =>>Res:
type_check(failure(X),Res).

cLOGICAL -> X =>>Res:
type_check(logical(X),Res).

cFUNCTION -> X =>>Res:
type_check(function(X),Res).

cNUMBER-> X =>>Res:
type_check(num(X),Res).

cNOT-> X =>>Res:
X =>>Rx,!,
~1.oosc'R·· log1·c,,Hf-..Jc~) •~r:rnl(t··•"' R·e"' ~.&.i \ A. 1 -.....-.\ ..,_ o\.. ,1\,,,, 0 .1."'Ml,il, l "-\,, JI \. ..; J~

I I i
!

, I

cNEGATE-> X =>>Res:-
arith(sub,num(0),X,Res).

num(X) -> Y => > num(X).

logical(X) - > Y = > > logical(X).

char(X) -> Y => > char(X).

nil-> X =>> nil.

C -> X => > C -> X :
arity(C,D) ,
0>=2,!.

id(X) -> Y => > Res :
global(X,Def) , ! ,
Def-> Y =>> Res.

id(X) -> Y => > Res :
nl,
write('not defined: ') ,
write(X) , nl , abort.

Y -> id(X) => > Res :
global(X,Der) , ! ,
Y-> Def=>> Res.

Y -> id(X) => > Res :
nl,
write('not defined: ') ,

- 26-

write(X), nl, Y -> fail=>> Res.

(X: Y)-> num{l) =>>Res:-! ,
X =>> Res.

(X: Y)-> num(Z) =>>Res:-!,
Z > 1,
Zl is Z - 1 ,
Y -> num(Zl) => > Res.

(X: Y)-> Z =>>Res:-
z =>> num(Num), ! ,
X: Y-> num(Num) =>> Res.

cK-> X-> Y =>>Res:-
X =>> Res.

cU-> X-> Y =>>Res:-
X -> (cIID -> Y) -> (cTL -> Y) => > Res.

cUJ-> X-> (Y: Z) =>>Res:-!,
X-> Y-> Z =>> Res.

cU_i:; -> X-> Y =>>Res:
y = > > (Hd : Tl) , ! ,

- Z7 -

X-> Hd-> Tl=>> Res.
cU_i:; -> X-> Y =>> fail.

cAND--> X-> Y =>>Res:-
X =>>Rx,!,
choose(Rx,Y,logical(false),Res).

cOR -> X-> Y =>>Res:-
X =>>Rx,!,
choose(Rx,logical(true), Y,Res).

cEQ-> X -> Y =>> logical(Res) :
X =>>Rx,!,
y =>>Ry'!'
eqnormal(Rx,Ry,true,Calse,Res).

cNEQ -> X -> Y = > > logical(Res) :
X =>>Rx,!,
Y=>> Ry,!,
eqnormal(Rx,Ry ,Calse,true,Res).

cAPPEND -> nil-> Z => > Z :- !.
cAPPEND -> (X : Y) -> Z => > (X : Res) :- ! ,

cAPPEND-> Y-> Z=>> Res.
cAPPEND -> X -> Y => > Res :

X =>> Resx, ! ,
not same(X,Resx) ,
cAPPEND-> Resx-> Y =>> Res.

cLSE-> X-> Y =>>Res:-
cNOT -> (cGR -> X-> Y) =>>Res,!.

cGRE-> X-> Y =>>Res:-
cNOT-> (cLS -> X-> Y) =>>Res,!.

cLS -> X -> Y =>>Res:-
arith(Is,X,Y,Res) , !.

cGR -> X-> Y =>>Res:-
arith(gr,X,Y,Res) , !.

cADD -> X-> Y =>>Res:-
arith(a.dd,X,Y,Res) , !.

cSUB-> X-> Y =>>Res:-
a.rith(sub,X,Y,Res) , !.

cl\ruL T -> X -> Y => > Res :-
arith(mult,X,Y,Res) , !.

cDIV -> X-> Y =>>Res:-
arith(div,X,Y,Rc.,), L

I I I

- 28-

cCONDF -> X -> Y => > Res :
X =>>Rx,!,
condJail(Rx,Y,Res).

C->X->Y=>>C->X->Y~
arity(C,D) ,
0>=3,!.

cCOND -> X-> Y -> Z =>>Res:
X =>> Resx, ! ,
choose(Resx,Y,Z,Res).

cMATCH -> nil-> Y -> Z => > Res :
match(nil,Z,Y,Res).

cMATCH -> num(X) -> Y -> Z => > Res :
match(num(X),Z, Y,Res).

cMATCH-> char(X)-> Y -> Z =>>Res:
match(char(X),Z,Y,Res).

cMATCH-> logical(X)-> Y-> Z =>>Res:
match(logical(X),Z,Y,Res).

cMATCH-> X-> Y-> Z =>>Res:
X =>> Redx, ! ,
Z => > Redz , ! ,
eqnormal(Redx,Redz,Y,fail,Req) , ! ,
Req =>> Res.

cS_p -> X -> Y -> Z =>> Res :-
(X -> Z): (Y -> Z) =>> Res.

cB_p -> X-> Y -> Z =>>Res:-
X: (Y -> Z} =>> Res.

cC_p -> X-> Y -> Z =>>Res:
X-> Z: Y =>> Res.

cS -> Z -> Y -> X => > Res :-
Z -> X-> (Y-> X) =>> Res.

cB -> X -> Y -> Z => > Res :-
X -> (Y -> Z) =>> Res.

cC-> X-> Y-> Z =>>Res:-
X-> Z-> Y=>> Res.

C->X->Y->Z=>>C->X->Y->Z~
arity(C,D) ,
D >= 4, !.

cSl -> W -> X -> Y -> Z => > Res :-
W -> (X-> Z)-> (Y -> Z} =>> Res.

cBl -> W -> X --> Y -> Z => > Res :-
W -> X-> (Y-> Z) =>> Res.

- 29-

cCl -> W-> X-> Y-> Z =>>Res:
W -> (X -> Z)-> Y =>> Res.

X-> Y-> Z =>>Res:
X-> Y =>> Rxy,
not same(X-> Y,Rxy), ! ,
Rxy-> Z =>> Res.

X=>> X.

same(X,X).

choose(logical(true),Y,Z,Res) :-
Y =>>Res,!.

choose(logical{Calse),Y,Z,Res) :
z =>>Res, I.

choose(X,Y,Z,fail).

match(X,Y,Z,Res) :-
Y =>>Ry,!,
eqnormal(X,Ry,Z,fail,R), ! ,
R =>>Res,!.

eqnormal(X,Y,T,F,T) :-
equals(X,Y) , !.

eqnormal(X, Y, T ,F ,F).

equals(num(X),n um(X)).
equals(char(X),char(X)).
equals(logical(X),logical(X)).
equals(nil,nil).
equals((A : B),(X : Y)) :

A=>> Reda,
X =>> Redx,
equals(Reda,Redx) , ! ,
equals(B,Y).

isJailure((X -> Y)) :-
isJailure(X).

isJailure(Cail).

isJunction((X --> Y)) :- isJunction(X).
isJunction(X} :- arity(X,_).

arity(cl,l).
arity(cY,l).
arity(c V,l).
arity(cHD,l).
arity(cTL,1).
arity(cNOT,l).
arity (cFUN CTIO N, 1).
arity(cCHAR,l).
arity(cLOGICAL,l).
arity(c J\iTnvIBER, 1).

I I

i

- 30-

arity(cF Ail..URE,l).
arity(cK,2).
arity(cU,2).
arity(c U J, 2).
arity(cEQ,2).
arity(cNEQ,2).
arity(cAND,2).
arity(cOR,2).
arity(cAPPEND,2).
arity(cCONDF ,2).
arity(cSUB,2).
arity(cADD,2).
arity(cMUL T,2).
arity(cDIV,2).
arity(cGRE,2).
arity(cLSE,2).
arity(cLS,2).
arity(cGR,2).
arity(cS,3).
arity(cC,3).
arity(cB,3).
arity(cS_p,3).
arity(cCOND,3).
arity(cMA TCH,3).
arity(cB_p,3).
arity(cC_p,3).
arity(cS,3).
arity(cSl,4).
arity(cBl,4).
arity(cCl,4).

type_check(Form,logical(true)) :- Form , I.
type_check(Form,logical(false)).

char(X) :- X => > char(_).

logical(X) :- X = > > logical(_).

num(X) :- X =>> num(_).

f ailure(X) :- X = > > Rx , ! , isJailure(Rx).

list(X) :- id(list) -> X =-> > logical(true).

function(X) :- X => > Rx , I , isJunction(Rx).

add(num(X),num(Y),num(Z)) :- Z is X + Y , !.
add(X,Y,fail).

sub(num(X),num(Y),num(Z)) :- Z is X - Y , !.
sub(X, Y ,fail).

mult(num(X),num(Y),num(Z)) :- Z is X • Y, !.
mult(X,Y,faH).

- 31-

div(num(X),num(Y),num(Z)) :- Z is X / Y , !.
div(X,Y,Cail).

eq(X,Y) :- X =:= Y.

gr(num(X),num(Y),logical(true)) :- X > Y , !.
gr(num(X),num(Y),logic~l(false)) :- !.
gr(X,Y,fcil).

ls(num(X),num(Y),logical(true)) :- X < Y , !.
ls(num(X),num(Y),logical{false)) :- !.
ls(X,Y,fail).

condJail(X,Y,X) :- not isJailure(X), !.
condJail(_,Y,Ry) :- Y =>> Ry.

arith(Operation ,X, Y ,Res) :-
X =>>Rx,
y =>>Ry,
a.rithop(Operation,Rx,Ry ,Res).

arithop(add,X,Y,Z) :-
add(X,Y,Z).

arithop(sub,X,Y,Z) :-
sub(X,Y,Z).

arithop(mult,X,Y,Z) :-
mult(X,Y,Z).

a.rithop(div ,X,Y,Z) :-
div(X,Y,Z).

a.rithop(ls,X,Y,Z) :-
ls(X,Y,Z).

arithop(gr,X,Y,Z) :-
gr(X,Y,Z).

/• reduce to normal Corm */

red u celist(nil ,nil).
reducelist(Hd : Tl,Nbd : Ntl) :- write(','),

Hd =>> Redhd, ! ,
Redhd >>> Nhd,
Tl=>> Redtl, ! ,
red ucelist(R edtl, N ti).

reducestring(nil,nil).
reducestring(char(C),cha.r(C)) :- write(C).
reducestring(Hd : Tl,Nbd : Ntl) :-

Hd =>> Redhd, ! ,
reducestring(Redhd,Nbd) ,
Tl=>> Redtl, ! ,
reducestring(Redtl,Ntl).

num(X) > > > num(X) :- write{X).

ch3.:-{X) > > > ch:lr{X} :- write('%') , writ('(X) ..

38

I
I !

! I

• 32-

logical(X) > > > logical(X) :- write(X).

X > > > fail :- isJailure(X) , write(fail).

nil > > > nil :- write('!)').

Hd:Tl > > > Nstr :-
id(string) -> (Hd:Tl) =>> logical(true), ! ,
write("") ,
reducestring(Hd:Tl,Nstr) ,
write(' 111).

Hd: Tl>>> Nhd: Ntl :-
id(list) -> (Hd:TI) ==> > logical(true) , ! ,
write('(') ,
Hd ==>> Redhd, f,
Redhd >>> Nhd,
Tl==>> Redtl,
reducelist(Redtl,Ntl) ,
write(')').

Hd: Tl>>> Nhd: Ntl :-
Hd =>> Redhd, ! ,
Redhd >>> Nhd,
write(':') ,
Tl=>> Redtl,
Redtl > > > Ntl.

X > > > X :• write(X).

ABSTRACT

A VIRTUAL MACHINE TO IMPLEMENT PROLOG.

Gerard BALLIEU
Department of Computer Sciences

K.U.Leuven
Celestijnenlaan 200 A

B-3030 Heverlee (Belgium)

40

We describe the design and the definition of a vitual Prolog
machine. Like other computers, this virtual machine has an
instruction set and a working storage (sstatements and data).

The design of the instruction set is mainly based on the implemen
tation by D. Warren on the DEC10 where he used an abtract machine
to explain the principles involved in his compiler. The organiza
tion of the working storage corresponds to the "non-structure
sharing" technique of c.s. Mellish or the "copying" approach of M.
Bruynooghe.

One of our main purposes is of course to realise the idea of the
virtual machine. The execution of a Prolog program on the vitual
machine consists of two steps:

Compilation of Prolog programs to virtual machine instructions.
The compiler is written in Prolog and the compilation process
should be completely reversible.

Interpretation of the virtual machine instructions. An inter
preter is being developed in a high level language (Pascal and
C) and it should be mainly portable.

It is our goal to combine the advantages of both compiled Prolog
(efficiency) and interpreted Prolog (adaptibility). We argue that
this implemsntation is easily portable to different computer sys
tems be rewriting only that part of the interpreter which imple
ments the built-in procedures.

-1-

I

I I
!

A VIRTUAL MACHINE TO IMPLEMENT PROLOG.

1. Introduction.

Gerard BALLIEU
Department of Computer Sciences

K.U.Leuven
Celestijnenlaan 200 A

B--3030 Heverlee (Belgium)

41

Prolog is a simple but powerful programming language based on
symbolic logic. A lot of specific features such as declarative
reading, incomplete data structures, unification and non determin
ism make Prolog programs very attractive and well suited for solv
ing a great variety of problems. There is a growing interest to
use Prolog as a software tool to design and develop new projects.
In order to support Prolog as a real programming language, we
design a Prolog system having the following charateristics:

the Prolog system has to be efficient: compared with other
languages the execution time must be reasonable (maximum 3 or 4
times slower) and the storage use may not overload the computer
system.

the Prolog system should be portable to a variety of machines
and it should be easily adaptable to the specific capabilities
of a particular computer.

- Prolog programs have to be compiled to virtual machine instruc
tions which are completely machine independant.

the data representation in the Prolog system should cover both
Prolog implementations on conventional machines and on dedi
cated hardware.

In the next section we describe the main features (storage areas
and instructions) of the virtual machine. Some design decisions
are discussed and compared.with the Prolog implementation of D.
Warren [5]. Finally we discuss the current implementation and
give some future developments.

2. Description of the virtual Prolog machine.

2.1. General processes.

We design a virtual machine with an architecture which should
support the efficient execution of Prolog programs. The execution
mechanism of logic programs consists in constructing a sequence of

-- 1 --

proof-trees according to the depth-first left-to-right search
strategy [1] and to store in each node the appropriate variables
and data. The fundamental questions we have to answer are of the
form: "what does the machine do?" and "where and how does it
represent its data?".

A Prolog machine has to perform two kind of processes: a control
process and a unification process. On a sequential machine archi
tecture these processes are alternated. The control process
selects the next goal and the procedure definition, adjusts the
proof-tree or restores the proof-tree to a previous state. The
unification process is in fact a computation process which tests
and assigns data or creates complex data structures.

To represent the control information and the data structures
involved in the execution of a Prolog program, the virtual machine
will provide a complex run-time structure consisting of an
environmentstack, a copystack and a resetstack (or trail). For
complex terms we use the "structure copying" approach.

The design of our virtual machine has strongly been influenced by
the work of D. Warren [5] where he used an abstract machine to
explain the Prolog compilation process. We also compile each Pro
log clause into a sequence of virtual machine instructions accord
ing to the following scheme:

unification {

control
and

data

unification

instructions

'neck'instr

'call'instr
followed by
its arguments

' foot' instr

2.2. The main working storage.

head of the clause

unification completed

body of the clause

completes execution of
this clause

The major data area of the virtual machine is the environ
mentstack. Like in block structured languages this stack is used
to build a run-time environment for each goal (procedure call).
When a new goal or subgoal is takled, a new stackframe is created
and sp&~o is rese:::-7ed for tha variables and for li~ing (manage
ment) information.

-- 2 --

4l

I
' I

The stack frames are linked in two kinds of lists: a father-list
and an alternative list. Each stackframe belongs at least to one
of the lists. The father-list corresponds to a path in the
proof-tree from the root to the current node. The alternative
list is a list of backtrackpoints or nodes with alternative
choices. to solve the goal corresponding to the node. In figure 1
we show for a given proof tree the corresponding environmentstack:
P is the initial goal or problem, Di is a deterministic node and
Bi is a backtrackpoint.

B1

father-list alternative list

D3 B3

D6
proof tree (current goal D6)

figure 1

ENV

environments tack

The top element of the father-list and the alternative list is
pointed by ENV respectively ALT. When a goal is successfully com
pleted and no alternative choices remain (no backtrackpoint), the
top frame of the stack (father-list) is removed. When a goal
fails, the last backtrackpoint becomes the current frame and an
alternative clause is chosen to solve the current goal.

Each stack frame also has space for the variables in the
corresponding clause. Due to the general tree structures and the
incomplete data structures in Prolog (dynamic data structures) it
is not always possible to put the variable binding in the reserved
space. When a variable's value is a constant (atom or integer)
the value is put in the stack frame. When a variable is bound to a
compound term (functor and arguments) a ~ of this term is made
and put on a second stack, the conystack, and a reference to this
copy is put in the stack frame. Another reason for having two
stacks is that on successful completion of a deterministic goal we
will deallocate a stack frame and that for further computation we

-- 3 --

still need the variable bindings. The value of a variable in the
environmentstack can either be a constant, undefined (free vari
ables), a reference to a compound term on the copystack or a
reference to another variable earlier in the environmentstack.

The third working area of the virtual machine
which is a trail or a push-down list. This
the addresses of variables which need to be
(free) on backtracking.

is the resetstack
area is used to store
reset to undefined

The copystack and the resetstack generally increase in size with
each new goal and are reduced by backtracking. The top elements
are pointed by COPY respectively RESET and the old values of these
pointers are kept in the mangement information part of the last
backtrack frame. The management info contains also the links of
the father-list and the alternative list, and pointers to the
current goal and the alternative clauses if any.

Next to the working storage areas which are writable, we have the
~ ~ for storing the code of the compiled program. Informa
tion in the code area is generally accessed in a "read-only"
manner.

2.3. The instruction set.

According to the control process and the unification process we
can classify the virtual machine instructions in two classes: the
unification instructions and the control instructions.

2.3.1. The unification instructions.

The main computation in Prolog consists of a sequence of unifi
cations or pattern matching operations. Each unification involves
matching two terms. One term is a "goal" (or procedure call)
followed by its parameters and is instantiated. The other is the
uninstantiated "head" of a clause. The control instructions ver
ify that unification only takes place between a goal and a clause
with the same name and arity. The unification process tries to
match each of the arguments of the head of the clause against the
corresponding arguments of the goal.

Instead of using a general matching procedure, the head of a
clause is translated into unification instructions, most of which
are simple tests and assignments. The arguments of the goal are
translated into a sequence of literals (or "argument instruc
tions").

The variable$of a clause are categorised in three classes as fol
lows:

-- 4 --

local variables: multiple occurences, with at least one in the
body, numbered from 1 ton

temporary variables: multiple occurences, all in the head of
the clause, numbered from n+1 onwards

void variables: single occurences.

The unification instructions are:

uvar(i)
uref'(i)
uint(j)
uatom(a)
uvoid :
uterm(f'n,n):

matching of' the free variable~ against •••
matching of the bound va,tiable i against .•••
matching of' the integer value j against •••
matching of the atom a against •••
matching always succeeds
matching of' the functor fn with arity n against •••

(the number of a variable refers to a variable in the current
frame.)

The literals (argument instructions) are:

var(i) the free variable i
ref(i) the bound variable i
atom(a) . the atom a .
void a void variable
funct(fn,n) : the functor fn with arity n

(the number of' a variable refers to a variable in the goal frame.)

The next table gives an overview of the unification process:

~ var ref atom int void funct
d

uvar assign assign assign assign assign copy
assign

uref' assign general case of case of success case of
general

uint assign case of fail test success fail .
uatom assign case of test fail success fail

uvoid assign success success success success skip

·uterm copy case of fail fail skip test
assign general assign

-- 5 --

assign
copy
test
case of:
general:

si~ple assigrenent
copy a compound term
simple test (and assignment)
multiple test
general unification algorithm

Most of the unification instructions are simple test and assign
ment instructions. If one of the terms is a reference we have to
dereference that term until we get its value (undef, atom, int or
funct). We can avoid long reference chains if we use only refer
ences to compound terms or to free variables. (Otherwise the value
is copied.) The length of the reference chain would be mostly one.

There are two cases where we have to copy a compound term, depend
ing on its source:

the compound term appears in the haed of the clause

the compound term appears in the argument list of the goal.
Since the argument list is accessed in a read-only manner, only
the parts containing variables must be copied. Therefore the
compound terms are marked with "labelvar" or "labelcons".

There are three cases where the general unification algorithm can
be invocated. This happens when two compound terms are to be uni
fied and neither of them is known at compile time.

Remark that the virtual machine has no special instructions for
initialising variables since the types "ref" and "var" indicate if
a variable is free or bound.

2.3.2. Control instructions.

Each clause of a Prolog program is translated into a sequence
of virtual machine instructions consisting of unification instruc
tions for the haed of the clause, literals for the argument lists
and control instructions (neck, call and foot).

neck(n) : unification is completed; n is the number of local
variables to be kept on the current environment.

call(p) this is a procedure call; a new frame is created, the
call or return address is saved and a jump to address pis per
formed.

foot: completes the execution of a goal, possibly removes the
current frame and transfers control to the next instruction of
the parent goal.

A Prolog procedure is composed of one or more clauses and is

-- 6 --

translated into a list of control instructions of the form:

p: enter
try(C1)
try(C2)

.
trylast(Cn)

enter: new procedure starts
try(Ci) : execute the instructions of clause Ci and note that

there are alternative choices (backtrackpoint).
trylast(Cn) : execute the instructions of the clause Cn.

Note that these instructions manage the different clauses of a
procedure and that they are generated at the end of the compila
tion process. If we extend our Prolog system with built-in predi
cates for adding or deleting clauses, this part of the code must
be changeable.

Finally we have two control instructions which are strongly
related to the Prolog source program: "cut" and "fail".

cut(i) : i is the number of local variables; the alternative
list must be adjusted and space can be recovered from the
environments tack.

- fail: forces backtracking.

2.4. Example.

As an example we show the quicksort program: source and virtual
machine instructions.

qsort(.(X,L),R,RO):-partition(L,X,L1 ,L2),
qsort(L2 ,R1 ,RO),
qsort(L1 ,R,.(X,R1)).

qsort(nil,R,R). partition(.(X,L),Y,.(X,L1),L2):
lt(X,Y),!,partition(L,Y,L1,L2). partition(.(X,L),Y,11 ,.(X,L2)):
partition(L,Y,L1 ,12). partition(nil,_,nil,nil).

3qsort1 uterm(. ,2)
uvar(O)
uvar(1)
uvar(2)
uvar(3)

-- 7 --

3qsort2 uatom(nil)
uvar(O)
uref(O)
neck(O)
foot

4r

neck(?)
call(partition,4)
ref(1)
ref(O)
var(4)
var(5)
call(qsort,3)
ref(5)
var(6)
ref(3)
call(qsort,3)
ref(4)
ref(2)
labelvar(1)
fn(. ,2)
ref(O)
ref(6)
foot

4partition1 uterm(.,2) 4partition2
uvar(O)
uvar(1)
uvar(2)
uterm(. ,2)
uref(O)
uvar(3)
uvar(4)
neck(5)
call(lt,2)
ref(O)
ref(2)
cut(5) .
call(partition,4)
ref(1)
ref(2)
ref(3)
ref(4)
foot

4partition3 uatom(nil) 4partition
uvoid
uatom(nil)
uatom(nil)
neck(O)
foot

-- 8 --

3qsort enter
try(3qsort1)
trylast(3qsort2)

uterm(.,2)
uvar(4)
uvar(O)
uvar(1)
uvar(2)
uterm(. ,2)
uref(4)
uvar(3)
neck(4)
call(partition,4)
ref(O)
ref(1)
ref(2)
ref(3)
foot

enter
try(4partition1)
try(4partition2)
trylast(4partition3)

I I

3. Implementation.

As a first step in our Prolog system the Prolog source programs
are compiled into a sequence of virtual machine instructions. A
first version of the compiler has been written in Prolog itself.
[6] The output consists of symbolic Prolog machine code as illus
trated in the previous example and of two tables: a functor table
(names of the predicates and arity) and an atom table.

The next step in our Prolog system is the interpretation of the
virtual machine instructions. The interpreter should be query
oriented and has the following structure:

init read-only part (code area)
WHILE not end

DO read query
compile query (set Program Counter to first instr.)
init working storage
execute (Program Counter)
remove query

The initialisation part reads the symbolic code and transforms it
into a sequence of word-codes which are loaded in the code area.
The call instructions are divided in two classes: calls of evalu
able predicates (built-in procedures) and calls of user-defined
procedures. In the WHILE-loop a query is read and compiled into a
sequence of word-codes which are added to the code area. This
compilation can result in extending the atom table and the functor
table. After execution of the query, the code area and the tables
are restored.

In our prototype version we have split up the code in two parts:

the executable part (unification and control instructions) is
put in the code area

the literal part (argument lists) is put on the copystack as a
read-only segment. The literal part has the same structure as
the compound terms except that a literal can be "var(j)" while
a compound term on the copystack has the value "undef" instead
of "var".

Figure 3 gives an overview of the Prolog system.

-- 9 --

list of
evaluable
predicates

50

Prolog
program _ _._,,

Prolog
machine
instr.

1----tio.r-esults

Figure 3

4. Design concepts.

atom
table

functor
table

Having described the main features of our Prolog system, we now
comment some design concepts and their consequences.

- The "structure copying" approach is used as data representation
technique for compound terms. Compared with the, implementation
of D. Warren, in our system there is no need to split up the
variables in globals and locals: they are all local. A com
pound term is copied on the copystack only if it has variables.
In addition the copying ap~roach will behave better when a gar
bage collector is needed. L2]

- For the head of a clause we generate exec~table code for all
terms nested to any level. We also detect the first
occurrences of the variables in the body of the clause and the
arguments of the goals are marked with "var" or "ref". Due to
this decision we have eliminated the need to initialise the
variables and the specific initialization instructions.

- The variables of the parent frame which are bound during the
execution of a goal are never to be put on the resetstack
because the arguments of the goal define which variables are
free.

- The Prolog system has a modular strucure. Optimizations and
extensions of the system require only small adjustments. The

-- 10 --

' !

I

l !

implementation of the "neck"-instruction is responsible for
tail recursion optimization. If we will add the "occurcheck"
to the unification process, we only have to extend the imple
mentation of "uref".

- The Prolog system is easily portable to other machines. If we
will take full use of the capabilities offered by the underly
ing machine, it is sufficient to adapt the implementation of
the evaluable predicates or to add new built-in procedures.

5. Future developments.

The virtual machine described in this paper is being imple
mented. A prototype of this machine has been written in the
language C (under the UNIX operating system) and some simple Pro
log programs have been tested. In comparison with the existing
interpreter (written in C by M. Bruynooghe) our system behaves
favourably in speed and space. For more complex programs we
expect better results. Another implementation will be written in
Pascal for machines with a Pascal-oriented architecture such as
the PERQ.

We further plan to set up a complete Prolog program environment
for this Prolog system:

- the current implementation will be optimized: tail recursion,
clause selection based on the arguments, intelligent backtrack
ing •••

development of a Prolog debugging tool

different modules of a Prolog program may be compiled and
linked into one executable program.

the list of built-procedures and utility programs has to be
extended

the Prolog system has to be• coupled with a relational data
base or with a database machine.

Acknowledgements

I am grateful to Maurice Bruynooghe for the many helpful discus
sions and to Gerda Janssens who has implemented and tested as a
student project, this virtual machine in Prolog and c.

-- 11 --

6. References.

[1] Bruynooghe, M. The memory management of PROLOG implementa
tions, in Logic Programming (Clark & Tarnlund eds.), Academic
Press, 1982.

[2] Bruynooghe, M. A note on garbage collection in Prolog inter
preters, Proc of the first Int Logic Conf., Marseille, September
1982.

[3] Cloksin, W.F. and Mellish, C. Programming in Prolog, Springer
Verlag, 1981.

[4] Mellish, c.s. An alternative to structure sharind in the
implementation of a PROLOG-interpreter, in Logic Programming
(Clark & Tarnlund eds.), Academic Press, 1982.

[5] Warren, D.H. Implementing PROLOG- Compiling Logic Programs,
and 2, D.A.I. Research Report No 39, 40, University of Edinburgh,
1977.

[6] Warren, D.H. Logic programming and Compiler Writing, Software
Practice and Experience, Vol 10, nr 2, pp97-126.

-- 12 --

I

! I

The Personal Sequential Inference Machine (PSI):

Its Design Philosophy and Machine Architecture

Hiroshi Nishikawa Minoru Yokota
Akira Yamamoto Kazuo Taki Shunichi Uchida

Institute for New Generation Computer Technology
Mita-Kokusai Building, 21F.

4-28, Mita l~home, Minato-ku, Tokyo 108
Japan

ABSTRACT

As a software development tool of the Fifth
Generation Computer Systems (FGCS) project, a personal
sequential inference machine is now being developed. The
machine is intended to be a workbench to produce a lot of
software indispensable to our project. Its machine
architecture is dedicated to effectively execute a logic
programming language, named KLO, and is equipped with a
large main memory, and devices for man-machine
communication. We estimate its execution speed is about
20K to 30K LIPS. This paper presents the design
objectives and the architectural features of the personal
sequential inference machine.

54
Page 2

1. Introduction

The final goal of the Fifth Generation Computer Systems (FGCS)
project[l] is to develop the basic technology for a totally new
computer system which has the ability to handle knowledge information.
Inference is for the key mechanism in that system. That is the basic
motivation why our project chose logic programming as the basic
programming framework.

As one of the actual programming languages based on logic, there
is an on-going active move of using Prolog to build new computer
applications, especially in the artificial intelligence area.
However, the processing power of existing computers is not sufficient
for this purpose. It is quite important for the project to rapidly
establish the logic programming environments. To satisfy this aim,
the Sequential Inference Machine (SIM) is under the development in
ICOT.

SIM is mainly intended to be a software development tool,
however, the design of its architecture has many experimental aspects.
It seemed to be difficult to design the ideal machine at once. So we
have taken the following development steps:

1) designing a new programming language based on logic.

2) designing a personal sequential inference machine which is
specialized for that new language.

3) designing a new operating system running on that new machine.

4) designing an advanced sequential inference machine based on
the experiences from 1) - 3).

As the first step, the logic programming language, called Kernel
Language Version O (KLO), was designed to take the place of Prolog.
KLO is mainly used to describe system software, such as the operating
system kernel, compilers, and interpreters. Therefore KLO can be
regarded as a conventional assembly language except for logic
programming features. And a Personal Sequential Inference machine
(called PSI:) which is designed to execute KLO is now under the
development as the second step.

The following sections describe PSI design objectives, its system
overview, and its machine architecture.

2. Design Objectives

As PSI is considered as a main computing tool in t.lie initial
stage of the FGCS project, the main requirements for its design are
the high performance and an easy-to-use man-machine interface. Since
PSI must be available as soon as possible, the main efforts are

I I
, I

55
Page 3

focused on designing its processing unit and memory unit. However, in
another aspect, designing PSI can be considered as an experimental
step toward the target inference machine.

2.1 Performance Goal

As a software development tool, an adequate execution speed and a
sufficient . memory space must be provided in order to execute
real-world applications.

. On this point, it is suitable to compare them with the DEC-10
Prolog system[2]. Because, it is the most popular one and its
compiler generates very fast codes.

However, the DEC-10 Prolog system is limited in its memory size
(256K words) for users. It is relativity small for actual· Prolog
applications. This limitation may cause a serious problem in its use.
The lower execution speed might be compensated by longer processing .
time, however, there is no way to continue the program execution if
the system has used up such a memory space as a stack. From our
experience in using the DEC-10 Prolog system, we estimated that at
least a 10 times larger memory space must be necessary. In this
situation, the virtual storage system would be an attractive feature,
however, its implementation in the Prolog environment involves several
problems to be studied. We have to study such problems· more deeply as
the swapping ratio between main memory and secondary storage, namely
the locality of memory accesses, effective cache control mechanism,
and an effective garbage collection algorithm working real-time[3].
Therefore we decided to leave the virtual storage system as a future
extension. Instead of it, PSI is equipped with a relatively large
real memory, maximum 16M words. About execution speed, PSI is
designed to attain 20K to 30K LIPS {Logical Inference Per Second)
which is the similar performance to the DEC-10 Prolog compiler version
running on DEC-2060.

2.2 Personal Use

PSI is designed as a self-contained, personal machine in order to
provide its user with powerful computing facilities and an efficient
programming environment.

An easy-to-use, sophisticated man-machine interface is the most
important features for software development tools. To provide good
man-machine communications, PSI is equipped with a bit-mapped display
device and a pointing device (a mouse). And a multi-window system is
planned to be implemented on them. The input/output devices for
Japanese characters will also be included, and PSI will support a word
processing system for Japanese.

Page 4

2.3 Local Area Network

PSI is planned to be connected to a local area network in order
to give its user a more productive environment. Although any kind of
peripheral devices can be connected to PSI, an usual PSI system will
have a limited number of devices according to its own system
characteristics.

Through a local area network, the distributed processing system
connecting several PSI's can be built. Furthermore, the user can
access other machines from PSI, such as a relational data base machine
also being developed in the project, and conventional commercial
machines.

2.4 Flexibility

PSI has adopted microprogrammed control for flexibility and
extendability.

The project has decided on KLO as a machine level language,
however, its usefulness will be verified after PSI completes. In
addition, the research and development of new programming languages,
such as concurrent Prolog[4][5], is also one of the important subjects
in the project. Therefore PSI must be able to execute those
experimental languages as their test bed

2.5 Evaluation

Using PSI, several items of measurements are planned for
evaluation on programs behavior and machine design. One is to
evaluate characteristics about the execution profile of logic based
programs. Another one is to evaluate the validity about PSI
architecture and hardware design. Especially, the measurement of
memory access characteristics including cache hit ratio is one of the
important items, because memory access is the most frequent operation
in inference machines. The next advanced models of SIM will be
designed utilizing effectively these evaluation results.

2.6 Specialized Hardware Supports

As a first experimental inference machine, an effort has been
made to introduce several specialized hardware supports suitable for
executing a logic programming language in PSI. To improve unification
speed, PSI has hardware buffers. The role of these buffers is to
quickly refer to the binding values of variables. For dynamic data
type checking, each word has an 8 bit data tag (tag architecture). To

I

I I

Page S

make memory access operations faster, the connection between the main
memory and the processing unit was designed as tightly as possible.

PSI design objectives can be summarized as the combination of
high performance of the 32 bit "super mini-computer" with the good
man-machine interface of the "super personal computer".

3. System Overview

One of the key factors to determine a machine architecture may be
the design of the machine instruction set. PSI is a specialized
machine for executing the logic prog,-amming language (KL0),however, it
must have its own operating system to be a self-contained personal
machine. This section briefly summarizes the software system and
hardware configuration of PSI.

3.1 Language System

One advantage of a logic programming language is to use its
non-determinism effectively. However the non-determinate operation is
considered unnecessary for describing low-level system control such as
the kernel of · operating systems, because it mainly consists of
determinate operations and thus non-determinate operations would
produce redundancy. In general, if a machine architecture is
dedicated to some high- level programming language, it becomes
difficult to implement its operating system in that language on the
same machine. In this situation, a different programming language
could be used for system description, however, this approach would
degrade the uniformity of the system. And the machine architecture
should support two different types of language processing. To make
the entire system uniform, we decided to implement a PSI operating
system based on the logic programming concept. KL0 has been designed .
to make this possible.

Figure 1 shows the language system hierarchy. The system
programmer uses KL0 directly to develop a compiler, an interpreter,
and operating system kernels. From the user's view point, KL0 can be
regarded as a machine language of PSI, however, KL0 is basically a
high-level, logic programming language. Its features are summarized
as follows:

o a subset of DEC-10 Prolog

o an extended ability for hardware resource handling

o an extended ability for interrupt handling and process control

Page 6

o extended execution control facilities

KLO includes the normal unification mechanism and clause handling
mechanism like usual Prolog. From this view point the users can
regard PSI as a complete Prolog machine. On the other hand, the users
can also specify the machine level control with its extended
facilities in KLO.

compiler

KLO

interpreter

KLO

compiler

assembly language
interpreter \

assembly language 1 __

r
I
I
I
I
I
I
l
I
I
I
I
t

object code 7

interpreter

micro code

HARDWARE

I I
I I
L-------. _____ J

Figure 1.

I
compiler

I

I

object code

interpreter
micro code

HARDWARE

1
I
I
I
I
I
I
I
I
I
I
I

I I
I I

I------------'
language hierarchy

KLO

5 3

Page 7

3.2 Operating System Support

The kernel parts of the PSI operating system are written in KLO.
These are transformed into internal machine forms by the compiler
which is also written in KLO itself. Then PSI hardware/firmware
directly executes those internal forms. Furthermore, time crucial
parts of the operating system kernel, such as the garbage collector or
process switcher, are executed directly with firmware. The
applications programmers will use a higher programming language than
KLO. This language is executed with the interpreter or is compiled by
the compiler written in KLO into internal machine forms.

From the software side, it can be said that the PSI operating
system is written in completely a logic programming style. From the
hardware side, it can also be said that PSI architecture supports the
primitive kernel operating system functions.

3.3 System Configuration

Figure 2 shows the PSI system configuration. CPU has a
microprogram sequencer. The capacity of its writable control storage
is 16K words. The micro instruction is 64 bit long and is executed in
less than 200 nsec.

Main
Memory

Cache

PSI
CPU

network

IEEE 796 bus

hard disk keyboard bitmap display mouse

Figure 2. system configuration

CPU interprets internal object forms of KLO with its micro-coded
interpreter. Its hardware mechanism is mainly dedicated for the fast
unification. It includes several discrete registers, register files,
and an arithmetic operation unit.

Page 8

The memory unit has a relatively large main memory instead of
being equipped with a virtual memory system. A maximum of 16M 40 bit
words can be installed. To shorten memory access time, PSI is
equipped with a cache memory. It consists of 2 sets of 4K word
memory, and a write-back strategy is adopted. Since several stack
areas are required for interpretation of KLO and each stack area will
arbitrary grow during program execution, PSI introduces logical memory
addressing. Therefore the roles of the memory control unit are
address translation and cache control. If the required data exist in
the cache memory, PSI can fetch that data within one micro instruction
cycle.

A general purpose input/output bus is provided to PSI. To keep
design simplicity and generality, JEEE-796 standard bus(MUL TIBUS) is
adopted. As a minimum configuration, PSI supports a fixed head disk,
a floppy disk, a key board, a bit-mapped display, a mouse, a printer,
and a local area network interface. Since PSI is planned to be
connected to a local area network, the peripheral devices may be
selected according to their own characteristics.

PSI also has an additional parallel interface port, in order to
satisfy the requirement for connecting special 1/0 devices directly.
For example.this parallel interface will be used to connect the
relational data base machine or the voice recognition device, and etc.

4. Machine Architecture

The architecture of PSI was decided based on vanous
considerations. A KLO program is compiled into the internal object
forms of PSI. But the level of the object code has been decided to be
higher than that of ordinary machine instructions. So PSI is regarded
as a high level language machine. In order to attain high
performance, PSI adopted a tag architecture. Furthermore, a cache
memory and special purpose registers are provided to improve the
unification speed. PSI always refers to memory with logical address,
and also has hardware supports for multi-processing.

4.1 How to Design the Machine Instruction Set

KLO is a logic programming language, however, it is mainly used
for system description. Therefore, performance in its execution is
crucial. To take advantage of the source program information as much
as possible, we decided to employ a compiler and thus PSI executes
compiled codes instead of interpreting source codes directly. Even
though, after compiling KLO, there still remains many operations to be
performed only in execution time, such as unification, because of a

60

I I

I

Page 9

dynamic feature of the logic programming language. Then several
levels of machine instructions can be considered.

The lowest one may be the conventional machine instruction level,
and a KLO program would be compiled into small pieces of those
primitive machine instructions. The highest one is the internal form
which is translated one by one from a source statement of KLO. The
desirable machine instruction level depends on the characteristics of
the language.

Originally, KLO contains two different groups of elements. The
first group is user--defined clauses to be executed within the logic
programming framework. Namely, it is executed based on unification
and backtracking. The execution of them is slightly simple and
dominated with memory access operations. Therefore, it is undesirable
that such execution is broken into many small machine instructions,
because many instruction fetches are needed. In addition to this,
there is less room for macro optimization on the hardware side because
of low level machine instructions. This results in increased
redundancies in both execution time and memory usage. We considered
that PSI should have these unification and backtrack control
facilities by itself.

The second group is built-in predicates for such operations as
arithmetic operations and input/output operations[6]. Since the
execution of them is performed determinately, their object codes can
be represented in compact forms like conventional machine
instructions. These built-in predicates are introduced not only to
enhance the efficiency of frequently used operations but also to be
able to include such primitive operations as register handling and
direct memory manipulations used in the operating system.

Consequently the PSI machine instruction set has two types in its
internal object forms. The first one corresponds to user--defined
clauses. Actually, such a clause is compiled . into the sequence of
several internal object forms according to source clause definition.
PSI interprets that sequence as a machine instruction on the whole.
The others correspond to built-in predicates. Basically, a built-in
predicate is compiled into one internal machine form.

4.2 Internal Object Forms

A KLO program is translated into the corresponding internal
object form described above. How to represent data and clause is
shown in this section.

4.2.1 Internal Data Representation

Page 10

Through examining PSI machine architecture, providing it with
enough ability for increasing requirements from application areas is
considered. At least 32 bits are necessary for representing
sufficient magnitude of numbers and addressing space. In result, PSI
employs a 40 bit word representation as shown in Figure 3. The upper
8 bits represent tag bits (tag part), and the remaining 32 bits
represent the data itself (data part). 2 bits of the tag part are
used by the garbage collector and the remaining 6 bits indicate the
type of data included in the data part.

tag data

32

Figure 3. word format

PSI has several internal data types corresponding to ones in KLO.
The visible data types for user are listed below:

o symbol
o integer
o real
o vector
o string
o local variable
o global variable
o void variable

(a) Symbol

This indicates the identifier of an atom. In the data part, the
symbol number corresponding to an atom is stored. The printing image
of an atom is managed by the operating system. So there is no direct
relation between the symbol number and its printing characters.

(b) Integer, Real.

These are numerical data on PSI. The value of them is stored m
the data part.

(c) Vector

A vector is a block of continuous memory slots, and is used to
represent various structured data such as binary trees. As shown in
Figure 4, a vector is usually accessed by way of its descriptor.
However, this representation always needs an extra memory access
whenever a vector is accessed. Since it is supposed that the vector
which has a few elements is frequently used in programs, the direct
vector type is introduced in order to effectively access such vectors.
The conventional list structure is an example, and its representation

Page ll

is shown in Figure S. Comparing the performance of the structure
sharing[7] with that of the copying strategy on structured data
handling. PSI employs the structure sharing method similar to the
DEC-10 Prolog. Therefore the structured data are manipulated as the
pair of a structure (representing in a vector) and its values (located
in the global stack). This address pair is. called a molecule.

vect tag 1

tag 2

int N tag N

Figure 4. vector representation

vect 2

int

vect 2

int 2

vect 0 nil

Figure 5. list representation

(d) String

elem 1

elem 2

elem N

A string data type is introduced for manipulating a byte
(CHARACTER), double bytes (KANJI). and a bit (FIGURE) string data.
Like the vector representation, string data is also accessed by way of
its descriptor.

(e) Local/Global Variable

This data type indicates a local/ global variable included in a
clause. In the data part, the variable number is stored. The
instance of a local variable is created in the local stack. The
instance of a global variable is created in the global stack. Roughly
speaking.the difference between the two is that the instances of local
variables are cleared when the clause including them are executed

Page 12

determinately, however, those of global variables are not cleared.

(f) Void Variable

This type means that the variable can have an arbitrary value,
namely can be unified to any type of data.

4.2.2 Clause Representation

The definition of a clause in KLO is the same as the one in
Prolog. It consists of a head predicate and several goal predicates.
The compiler translates a clause into a corresponding internal object
form. As shown in Figure 6, each clause is represented as continuous
memory slots, called code, in PSI. A code is a similar data type to a
vector, and consists of a clause header, head arguments, goal
predicate name and its arguments.

compile

disc size

code
Header Part

(reserved)

int TYPE I Narg I Nl Ng alternative claus~ _
for p

Arguments L•var X

of Head \ L-var y

~.if code

L-var

L-var
\.

X

z
r

BLT Goal, add z y

--
Figure 6. clause representation

A clause header consists of four words. The first word indicates
the size of the code. The second word has an address to the code
representing the next alternative clause. The third word is a
reserved word. It might be used by the garbage collector. The last
word indicates attributes of the clause. TYPE shows the clause type.
For example, it is a unit clause, or having alternative clauses etc.

---- ----- --

' i

i

' I
i

I I
I

Page 13

Narg shows the number of arguments included in the head predicate.
Nl/Ng shows the number of local/global variables included in this
clause.

Following a clause header, the head predicate arguments are
located. Each argument is represented in the data types described in
4.2.l.

The remaining codes show the internal form of goals. There are
two types of goal representation according as the called goal
predicate is a built-in predicate or not.

(a) User-Defined Predicate Call

A goal . predicate name is compiled into the pointer to the code
representing the called clause. This pointer is stored in the data
part and the tag of this pointer is set to a code type. The goal
arguments are arranged continuously, following this pointer.

(b) Built-in Predicate Call

In the data part, a compact representation of machine
instructions is stored and it consists of an 8 bit operation code and
three 8 bit operands. The role of built-in predicates is to create
objects, test the attributes of objects, and manipulate objects etc.
A built-in predicates is compiled into one word object code basically,
so that it can be executed efficiently on PSI.

Each goal is compiled into the pointer of the corresponding
clause and its arguments. There are three connection types of goals,
which l>SI can directly interpret with its fmnware interpreter.

(a) AND Connection

AND connection shows that the goals are combined as an AND node
in the AND-OR search tree. Each goal is continuously located as shown
in Figure 7-(a). AND connection means that each goal is executed
sequentially and if a goal is failed, then backtracking occurs.

(b) OR Connection

This type is used to represent an OR connection included within a
clause. OR connection shows that each goal is combined as an OR node
in the AND-OR search tree. This connection is realized by an OR
instruction as shown in Figure 7-(b). At first execution, the first
goal is tried. When they fail, then the second goal is tried. Each
branch of the OR connection can be composed of several goals.
Therefore each branch of an OR connection is the same as an ordinary
alternative clause except that they are included in only one clause
and require no unification process.

{a) ANO connection

H:- 81 ,BZ,83.

Header Part

..._ Arguments ... of Head

Goa 1 81

-
-

(b) OR connection

H: - (81 ;B2) ,83.

Header Part

Arguments
of Head

Page 14

(c) CASE connection

H:- case(Indx,B1 ,82),B3.

Header Part

,- Arguments -
i- of Head -

BLT easel tndx
-

BR
-

Goa 1 82

Goal B2

BR

I/
Goal B1

Goal 83
BR ~

Goal B3
Goal 82

Figure 7. . goa 1 connections Goal 83

(c) CASE Connection

CASE connection can be regarded as the arrangement of indexed
goals. Figure 7-(c) shows the internal format of CASE connection.
One of the goals is selected by the result of CASE instruction and if
it is successively executed then the goal following the case block is
executed next. Even if backtracking occurs, unlike OR connection, the
remaining indexed goals are not executed.

4.3 Execution of PSI Internal Object Forms

For interpretation of the KLO program, the following four stacks
are needed:

o local stack
o global stack
o trail stack
o control stack

The use of these stacks' is similar to those of DEC-10 Prolog,
however, the control stack is separated from the local stack in order
to efficiently execute the extra control primitives of KLO.

lk'""
V

I✓

6G

I
, I

I

, I Page 1S

The local stack is an instance region for local variables.
Preceding the unification process. PSI allocates the stack entries
according to the number of local variables included in a clause.
These stack entries are popped up when the evaluation of the clause
including them is determinately terminated, or unification fails.
They are also cleared when it is pruned by a "cut" operation.

The global stack is an instance region for global variables.
Similar to the local stack, PSI allocates stack entries according to
the number of global variables. These entries are only popped and .
cleared when unification fails. In addition, a molecule generated
during unification and some control information are also allocated in
this stack.

The trail stack is used for undoing variables when backtracking
occurs. In .this stack, binding information (i.e. the cell address
where a value is stored during unification and whose content must be
changed to 'undefined' when unificatoin fails) is stored When the
instance value of a variable is modified, its old contents are also
stored in the trail stack in addition to its cell address.

In the control stack, various book-keeping information required
for the execution control is stored. All of them are pointers which
represent the execution environment of corresponding clauses. They
are used to return to the calling clause, or to the backtrack point
when unification fails.

There are some data types dynamically generated during program
execution. Some of them are described below.

(a) Reference

It indicates a pointer generated during unification.

(b) Molecule

PSI adopts the structure sharing method to represent structured
data described before. Since a molecule consists of two words in PSI,
it can not be located into a variable cell. Therefore, a molecule
itself is allocated in the global stack, and the reference to it is
located in the variable cell.

4.4 Address space

PSI has a 32 bit logical address space. It is composed of 256
logically independent areas. The size of each area is 16M words, and
managed by pages of lK words. The reason why the concept of area is
introduced is as follows:

(a) Since PSI supports multi-processing, it is desirable for the

G 1-

Page 16

operating system to assign completely independent areas to each
process.

(b) Since PSI firmware interpreter uses four stacks described in
section 4.3, it is desirable to be able to expand each stack area
independently. If these stacks are allocated to the same space, a
collision between stack areas will occur. At that time, one of them
must be moved to another space. This situation causes serious
overhead time.

Since four stacks are required for interpretation of a KLO
program, it means that each process needs at least four areas for its
execution environment. On the other hand, code areas might be shared
among many processes. If four areas are assumed to be used for code
areas, namely heap areas, a maximum of 63 processes can be created on
PSI from 256 areas.

Each area is divided into 16K pages. A page consists of 1K
words. An area is managed by PSI operating system in page units. PSI
allocates one page when a process needs more memory. On the other
hand PSI disallocates some pages when a process release memory.

In result, the memory address field is divided into an 8 bit area
number, 14 bit page number, and 10 bit offset as shown in Figure 8.

I AREA # I PAGE# I OFFSET

~\,
V /'--.:.....,,--1

8 14 10

Figure 8. address format

The address translation mechanism is shown in Figure 9. The
translation from a logical address to a physical address is performed
with an area table and a page table. Each area table entry shows the
base address of a page table located in the page map table
corresponding to an area. And each page table entry shows the
physical page address corresponding to a logical address page. As a
first step to generate a physical address from a logical address, the
area table is accessed using the area number, and a page table base
address is obtained. Then the page map table is accessed using the
sum of that page table base and a the page number. Finally
concatenating the output of the page map table and the page offset, a
24 bit physical address is obtained.

G8

I I

I i

Page 17

LOGICAL MDRE:SS A# PG# OFFSE:T

8 (ARl:A TAGLE) C PAGE MAP TABLE>

/
14

PTfJ
1S

<256 entries) PG#

l pp

(321< entries)

14

PHYSICAL ADDRESS
PP OFFSE:T

•

Figure 9. address translation

To achieve address translation, it is common to use a Translation
Lookaside Buffer(TLB). Each TLB entry contains a logical page address
and corresponding physical page address. TLB is a sort of cache
memory, and if the address pair corresponding to a logical address is
stored in it, there is no reference to the translation table existing
in the main memory. PSI does not adopt this method. Instead, the
area table and the page map table are located in special fast memory.
In result, the address translation process is performed within a micro
instruction cycle. The reasons why TLB is not adopted are shown
below:

(a) If the address pair is not in TLB, the translation table in main
memory must be accessed to generate a physical memory address.

(b) Since the garbage collector must search all memory space, it is
supposed that the memory access locality during garbage collection is
not so high. Therefore, TLB might not work well in that situation.

19

Page 18

(c) PSI does not adopt virtual memory. The total amount of page map
table entries can not exceed the number of physical pages. Since the
maximum size of main memory is 16M words, it is sufficient to have 16K
entries in the page map table.

The size of an area can extend from one page to 16K pages.
Before program execution, the maximum number of pages used in a area
cannot be predicted. Furthermore, a process needs at least four
areas, however, the utilization of each area is different among
processes. Accordingly, as the number of page table entries increases
during execution, a page table may collide with another page table
within the page map table. To avoid that case when possible, it is
desirable to locate each page table corresponding to an area as
dispersively as possible. Also, the page map memory size should be
larger than the number of physical pages. To satisfy this condition,
PSI has a page map memory of 32K entries. Since the standard physical
memory size is 4M words, the size of a page map memory is eight times
larger than that of physical pages.

If a page table collision occurs in page map memory, a trap
occurs and page table relocation must be done. There are many
algorithms to be considered. It is a future research theme to examine
which algorithm is better.

4.5 Hardware Supports for Fast Unification

Unification plays an important role in executing a KLO program.
To efficiently execute the unification process, the hardware support
mechanism is indispensable. The major part of the unification process ·•
is memory access and data type checking. The facilities employed in
PSI are as follows:

o Cache memory
o Tag bits
o Frame buff er

(a) Cache Memory

The merit of using cache memory is to reduce the cost of all
memory accesses besides stack access. PSI adopts the write
back-strategy for cache control, not the write-through strategy. A
cache memory manages logical addresses. Therefore, if the accessed
data exists in cache memory, no address translation is needed. The
address translation is required only if a cache miss-hit occurs. PSI
memory controller performs address translation during the cache memory
access in parallel. This mechanism creates no overhead time for
translation when the cache memory miss-hit occurs.

(b) Tag Bits

tO

, I

' I

Page 19

A tag is essential to effectively interpret a data type. To
realize fast unification depends on how rapidly the data types can be
examined. For this aim, tag bits are attached to all data, and they
specify the type of the data. A special hardware mechanism, which
decodes tag bit pattern efficiently, is provided in PSI.

(c) Frame Buffer

Frame buffer is the set of special registers provided for the top
of the stack frame. In this buffer, the arguments of a clause and the
cells of local variables are stored. Most of the unification is done
using this buffer. This reduces the number of memory accesses, and
faster unification will be realized. Furthermore, using this buffer,
Tail Recursion Optimization {TRO)[8] can be realized efficiently.

4.6 OS Support

Since PSI is designed as a self-contained system, it requires own
operating system. This operating system consists of an end-user
interface {command interpreter), a programming system {editor,
debugger), a file system, and so on. To provide its users with a
sophisticated programming environment, that operating system must be
an easy-to-use system, and provide good man-machine communications.
Considering that these systems are specified by KLO,it is desirable
that PSI must have operating system support functions.

To attain this objective, PSI has various hardware and r1rmware
supports. For example, such primitive operations as a memory
allocation or a garbage collection included in the memory management
system is directly performed by r1rmware. The process switching of
the process management system is also performed by r1rmware.
Furthermore, PSI holds the process information in fast CPU memory in
order to reduce process switching overheads. This is an essential
hardware support in PSI, because KL0 requires larger execution
environment than ordinary programming languages, and without that
hardware support the contents of many base registers must be saved
into the main memory at process switching.

In addition to higher level operating system support, there are
several KL0 built-in predicates which perform low level system
control, such as hardware resource handling, direct memory
manipulation, and input/output control. These built-in predicates are
effectively executed by r1rmware. ·

Besides this support described, garbage free regions is
introduced to support the operating system kernels. In this region no
garbage collection is done. This means that a program running in this
region can be executed even while a garbage collection process is
being executed. Those special processes unconcerned with the . garbage
collection are called supra GC processes. The aim of introducing this

Page 20

GC-less process is to maintain good man-machine interface even when
the garbage collector is working.

Summarizing those, the hierarchy from the end-user interface
language to the hardware on PSI is shown in Figure 10.

APPLICATION END-USER
LANGUAGE

r USER INTERFACE ' \

EDITOR DEBUGGER COMPILER

INTERPRETER KLO~

r SUBSYSTEM ' \.

WINDOW SYSTEM

FILE SYSTEM NETWORK SYSTEM KLO

r KERNELSYSTEM \. .I

MEMORY PROCESS DEVICE (supra-Ge)
MANAGEMENT MANAGEMENT MANAGEMENT MODE

KLO

GARGAGE COLLECTOR FIRMWARE
PROCESS SWITCH

HARDWARE

Figure 10. operationg system hierarchy

5. Conclusion

In this paper, we described the design objectives and the machine
architecture of a Personal Sequential Inference machine, PSI. Its
detail hardware design has almost been completed and the
microprogrammed KLO interpreter is now under the design. The rough
estimation of PSI execution speed is comparable to the compiled codes
of DEC-10 Prolog system on DEC-2060.

PSI is a first step toward the target inference machine which
will be attained in ten years. For designing next advanced SIM, we
are planning several evaluations on PSI. Many software products will
also be made on PSI. We believe that PSI will be a powerful and
useful workbe~ch for our project.

rl

I I

I I

I I

Page 21

ACKNOWLEDGMENTS

The authors express their grateful thanks to Dr. Takashi
Chikayama for his valuable advice, and to Mr. Kazuhiro Fuchi,
Director of ICOT Research Center and to Dr. Kunio Murakami, Chief of
First Research Laboratory for their continuous encouragement, and to
other memben of ICOT for their useful comments and discussions.

REFERENCE

[1] Outline of Research and Developments for Fifth Generation Computer
Systems. ICOT Research Center, April (1983)

(2) Warren, D.H.D. Implementing PROLOO - compiling predicate logic
program. Vol.1-2, D.A.I Research Report No.39-40, Department of
Artificial Intelligence, Univ. of Edinburgh (1977)

(3) Cohen, J. Garbage Collection of Linked List Data Structures.
Computing Surveys, 13-3 (1981)

[4] Shapiro, E.Y. A Subset of Concurrent Prolog and Its Interpreter.
ICOT Technical Report TR-003(1983) .

(5) Takeuchi, A., et al. Interprocess Communication in Concurrent
Prolog. Logic Programmjng Workshop, '83 (1983) ·

[6] Chikayama, T., et al. Fifth Generation Kernel Language. Proc.
of the Logic Programming Conference '83 (1983)

[7] Boyer, R.S and J.S.Moore. The Sharing of Structure in Theorem
Proving Programs. Machine Intelligence Vol.1-7, Edinburgh Up (1972)

(8) Warren, D.H.D. An Improved PROLOG Implementation Which Optimizes
Tail Recunion. D~A.I Research Report No.141, Department of
Artificial Intelligence, Univ. of Edinburgh (1980)

13

A PORTABLE PROLOG COMPILER

D.L. Bowen, L.H. Byrd

Dept of Artificial Intelligence
University of Edinburgh

and W.F. Clocksin

St Cross College, Oxford

ABSTRACT

This paper describes the basis of the design of a Prolog imple
mentation which is currently being built. This new implenenta
tion is intended to conbine a high degree of portability with
speed and efficient utilisation of memory. Our approach is to
compile Prolog clauses into instructions for a relatively
high-level abstract machine. This abstract machine is imple
mented by an interpreter written in a high-level systems pro
gramming language (C), giving a portable Prolog system.

in order to
well suited to

is a small
of the work.

Some portability must be sacrificed, however,
achieve the high speed required. The design is
tailoring for particular machines, because ~here
central core of the interpreter which does most
This central core can be translated into assembly language or
microcode ~hen necessary.

An advantage of this approach is that it avoids the
compiler/interpreter dichotomy found in DEC-10 Prolog and LISP
systems with conpilers. All clauses are compiled, but conpila
tion is reversible so that it is not necessary to have a
separate representation of the textual form of clauses.

1. Introduction

This paper describes some design principles behind current work at Oxford
and Edinburgh Universities to build a new Prolog system. The desired qual
ities of the new system are that:

(1) It should be highly portable.

(2) It should be fast and 11se nemory efficiently; this requirenent
directly conflicts with (1).

i I

I

I I

- 2 -
=rs

The approach we have chosen is to compile Prolog clauses into code for a
relatively high-level (i.e. Prolog oriented) abstract machine. This
abstract machine is implemented by an interpreter written in a high-level
systems programming language (C). The compiler, and many of the evaluable
predicates, are written in Prolog itself. This approach has allowed us to
get a preliminary version of the system running fairly quickly.

However, this system as it stands will not meet our requirement for speed.
A certain amount of non-portable work will be necessary in order to achieve
high speed on particular computers. Our intended methodology is to
translate the most heavily used parts of the C code into assembly code, or
microcode where possible (e.g. on the ICL Perq). This non-portable work
is minimised because the central core of the interpreter is simpler and
smaller than that of a direct Prolog interpreter.

We have opted for the sructure-copying method of [Mellish 80) and
[Bruynooghe 80], rather than structure-sharing [Warren 77}. An important
reason for this is that structure-copying is expected to give better local
ity of reference and therefore better paging behaviour on virtual memory
sys.terns. Another advantage is that it allows us to dispense with holding
the Prolog form of all the clauses in the heap: our abstract machine is so
arranged that we can reconstruct these terms when they are needed (i.e. in
the implementation of the evaluable predicates 'clause' and 'retract') by
effectively decompiling the compiled form of the clauses.

Our storage management strategy is basically that of [Warren 77), i.e.
there is a heap containing the program, a "lo.cal" stack for control infor
mation and variable bindings., a "global" stack for structures, and a
"trail" stack which keeps track of when variables are bound so that they
can be reset to "uninstantiated" at the appropriate time on backtracking.
One change is that a reference count is maintained for each clause so that
pointers to clauses (as returned by the predicate clause/3 in DEC-10 Pro
log) can safely be included in asserted terms. A consequence of this
slightly complex memory management is that it is never necessary for a gar
bage collector to do a full sweep of the heap.; it only has to sweep the
local and global stacks.

As our run-time system is based on previously published work [Warren 77)
[Warren 80), we will concentrate in the rest of this paper on the new part
of our design which is the intermediate language.

2. The Intermediate Language

In this section we introduce the kernel of the intermediate language into
which Prolog clauses are translated. Although this language subset has only
seven instructions, it is sufficient; the only reason for extending it is
for· efficiency as will be discussed later. We introduce it syntactically
by discussion of the (reversible) cocpilation of a Prolog clause. The
semantics of the language will be explicated in t.he following section by
means of a simple interpreter for it written in Prolog.

A c0t1piled clause has two main parts: an External Reference (XR) table, and
a block of byte-codes. Let us consider the compilation of the clause:

16
- 3 -

p(tpl,tp2, •••) :- q(tql,tq2, •••), r(trl,tr2, •••).

where the tpi, tqi and tri are arbitrary terms. The general fonn of the
byte-code block is then:

<code for tpl)
<code for tp2) ...
enter
(code for tql)
(code for tq2) ...
call <XR offset for procedure q)
<code for trl)
<code for tr2) ...
call (XR offset for procedure r)
exit

This introduces the three "control" instructions we need: 'enter', 'call'
and 'exit'. The 'enter' instruction simply marks the division between the
head and the body of the clause. Each 'call' has an argument (the next
byte-code in the block) which refers to an entry in the XR table which is a
reference to the required procedure. Finally, 'exit' marks the end of the
clause.

The terms which are the arguments of the head of a clause, and those which
are the arguments of goals, are all translated in the same way. Each term
is compiled into "data" instructions as follows:

(1) If the term is atomic it is translated as

const <XR offset>

where the corresponding entry in the XR table is either an integer (if
the term is an integer) or a pointer to an atom record.

(2) If the term is a variable it is translated as

var <number)

where the variables in the clause are numbered in order of appearance.

(3) If the term is compound it is translated as

functor <XR offset)
(code for 1st argument>
(code for 2nd argument)

pop

The 'functor' ins true tion refers to an X..~ table entry which points to
the corresponding functor record. It is followed by the compiled form
of each of its arguments, followed by a 'pop' instruction.

I I

I 1

I
I

- 4 -

For the purposes of the interpreter to be presented in the next section, we
need to represent compiled code as Prolog data structures. Conpiled pro
cedures will be represented as assertions of the form:

procedure(Name/Arity, List of Clauses).

A clause will be represented by a term:

clause(XR_Table, Number_of_Variables, List_of_Bytecodes)

An XR table is also represented as a term:

xrtable(•••)

where the table entries are either integers, atoms, functors (written in
the form Name/Arity), or procedures (written as procedure(Name/Arity)).

For example, the compiled for.m of the procedure:

append(nil,L,L).
append(cons(X,Ll),L2,cons(X,L3)) :- append(Ll,L2,L3).

looks like this:

. procedure(append/3, [
clause(xrtable(nil), 1,

[const, 1,
·var, 1,
var, 1,
exit]),

% nil
% L
% L

clause(xrtable(cons/2 ,procedure(append/3.)), 4,
[functor, 1, var, 1, var, 2, pop, % cons(X,Ll)

var, 3, % L2
functor, 1, var, 1, var, 4, pop, % cons(X,L3)
enter,
var, 2, var, 3, var, 4, call, 2,
exit])]) •

% append(Ll,L2,L3)

1.• ~ Interpreter E?!_ ~ Intermediate Language

We now present our mini-interpreter written in DEC-10 Prolog. For simpli
city, we use the unification and backtracking capabilities of Prolog rather
than doing everything explicitly as is necessary in a real implementation.
A consequence of this is that cut cannot easily be implemented in the
mini-interpreter.

The entry point to the interpreter is the procedure arrive/3.
ments are the procedure to be called, a list of its arguments,
tinuation list which represents goals still to be solved. E.g.
one list to another we would call:

Its argu
and a con
to append

:- arrive(append/3,(cons(a,cons(b,nil)), cons(c,nil), L),[J).

t8
- 5 -

This call should succeed, instantiating L to

cons(a,cons(b,cons(c,nil))).

There are two clauses for arrive/3 (Figure 1). The first of these finds
any compiled clauses for the procedure. It then non-determinately selects
(using member/2) the first clause, i.e. future failure will cause us to
backtrack here and select another clause if there is one. Next it creates
a new set of (uninstantiated) variables by means of the built-in predicate
functor/3 which sets Vars to be the functor with name 'vars' and having
Nvars uninstantiated arguments. Finally control is passed to execute/6 to
execute the byte-code list (which we have called PC because it corresponds
to the Program Counter in a real implementation).

The second clause for arrive/3 allows the built-in predicates of Prolog to
be used in the mini-interpreter.

arrive(Proc,Args,Cont) :
procedure(Proc,Clauses), !,
member(clause(XR,Nvars,PC),Clauses),
functor(Vars,vars,Nvars),
execute(PC,XR,Vars,Cont,Args,[}).

arrive(Name/Arity,Args,Cont) :
Proc =•• [NamejArgs],
call(Proc), .
execute([exit],_,_,Cont,_,_).

member(X,{XI 1).
member(X,[_IL]) :- member(X,L).

Figure!= arrive/1_

% Find clause list for Proc
% Select one
% Make new set of variables
% Go to execute byte-codes

% No compiled clauses: call
% normal Prolog procedure
% and continue

The clauses for execute/6 (Figure 2) are all determinate, so that it resem
bles a CASE statement in other languages. Let us consider the data
instructions first, assuming for now that they are in the head of a clause
(i.e. before the 'enter' instruction).

The 'const' instruction is fairly straightforward: it simply matches the
first element of the argument list with the appropriate entry in the XR
table. (arg(X,XR,Arg) unifies Arg with the Xth argument of the term XR.)
If successful, it then tail-recursively calls execute/6 to execute the sub
sequent instructions with the rest of the argU1:1ent list. Note that if Arg
was initially uninstantiated it will have become instantiated to the given
constant. Similarly, 'var' matches the given variable with the current
argument.

For 'functor' we first check that the argument has the right principal
functor (or instantiate it to the most general term with this principal
functor if it is uninstantiated). If successful, we obtain the list Args
of the arguments of Arg and go to execute subsequent instructions which are
to be matched against them. There remains the list Arest of argunents to
be matched after Arg. This list is stacked on Astack froc where it is

- 6 -

execute([const,XjPC],XR,Vars,Cont,[ArgjArest],Astack) :- !,
arg(X,XR,Arg), % Match XR entry with Arg
execute(PC,XR,Vars,Cont,Arest,Astack).

execute([var,VjPC] ,XR,Vars,Cont,[ArgjArest] ,Astack) :- ! ,
arg(V,Vars,Arg), % Match variable with Arg
execute(PC,XR,Vars,Cont,Arest,Astack).

execute([functor,XjPC],XR,Vars,Cont,{ArgjArest],Astack) :- !,
arg(X,XR,Fatom/Farity), % Get functor from XR table
functor(Arg ,Fatoa,Farity), % Match principal functors
Arg ••. [Fatoal Args], % Get Args of Arg term
execute(PC,XR,Vars,Cont,Args,[ArestlAstack]).

execute([popjPC],XR,Vars,Cont,[],[ArgsfAstack]) :- !, % Pop Args off Astack
execute(PC,XR,Vars,Cont,Args,Astack).

execute([enterlPC],XR,Vars,Cont,[],{J) :- !,
execute(PC,XR,Vars,Cont,Args,Args). % Initialise diff list:

execute([call,XIPC],XR,Vars,Cont,[],Args) :- !,
arg(X,XR,procedure(Proc)), % Extract proc name from XR
arrive(Proc,Args,{frame(PC,XR,Vars)jCont]). % Save context & go

execute([exit] ,_,_,[frame(PC,XR,Vars) jcont] ,[] ,[]) :- ! ,
execute(PC,XR,Vars,Cont,Args,Args). % Resur.ie previous context

execute([exit] ,_,_, [] , [] , []) :- ! • % No previous context: stop

Figure!= execute/!

removed by the corresponding 'pop' ~nstruction.

We have explained how the data instructions work in the head of a clause.
It is the 'enter' instruction that ensures that they also work in the body,
where what they are required to do is build up rather than take apart the
argument list. What it does is initialise a difference list: a partially
formed argument list is the difference between the 6th and 5th arguments of
execute/6. For example, if two arguments have been processed we would get
a goal of the form:

:- execute(_,_,_,_,X, [(arg l> ,<arg 2> IX]).

Thus each data instruction encountered in the body appends an argur.1ent onto
this argument list by instantiating the variable at the end of it to
[<argument>l<new variable)]. It is interesting to see how this works for
'functor': this is left as an exercise for the reader!

The 'call' instruction terminates the difference list by instantiating the
variable at the end to[]. It then goes off to arrive at the called pro
cedure with the new argut1ent list, first stacking all the infomation
needed to resume this clause on the continuation list.

Of the two clauses for 'exit', the first is selected when the continuation
list is non-empty. It causes resumption of a clause after the successful
completion of a 'call'. Note that it is necessary to reinitialise the
difference list here so t,hat another argument list is cons~ructed for the
next 'call'. The second clause for 'exit' terminates the program.

- 7 -

4. Some Additions to the Intermediate Language - ------- -
It may be noticed that there is no point in returning from. the last 'call'
in a clause and restoring its context only to imnediately 'exit' and
restore a previous context. This can be avoided by introducing a new
'depart' instruction which replaces the last 'call' and the subsequent
'exit' (cf. [Warren 80]). The interpreter is easily extended to handle
this new instruction by the addition of one more clause for execute/6:

execute([depart,X],XR,Vars,Cont,[],Args) :- !,
arg(X,XR,procedure(Proc)),
arrive(Proc,Args,Cont).

This is just like 'call' except that no continuation frame is stacked.

Another inefficiency arises in the execution of 'functor' if it appears as
the last argument in the clause head, or as the last argut:1ent of sooe other
term. In either case there are no remaining arguments (Arest is[) or will
be instantiated to {l later) but we are stacking Arest anyway and popping
it back to no useful purpose when 'pop' is encountered. The cure is to
introduce anothe.r new instruction, 'lastfunctor', which is like functor
except that it has no corresponding 'pop'. It is interpreted thus:

execute([lastfunctor,XIPC],XR,Vars,Cont,[Arg] ,Astack) :- !,
arg(X,XR,Fatom/Farity),
functor(Arg,Fatom,Farity),
Arg ••• [FatomlArgs],
execute(PC,XR,Vars,Cont,Args,Astack).

Various other instructions can be introduced to save space in the clause
representation or to gain speed. An example is <'immediate' N> which
allows a SMall integer N to be represented directly in the byte-code block
without the need for an XR table entry. It is also useful to provide
instructions for the simpler built-in predicates such as integer/I, var/I
etc. A possibility is to combine some of the instructions with their most
cor.imon arguments to make new single-byte versions of two-byte instructions,
but the trade-off with increasing the size of the interpreter needs to be
studied empirically.

5. Considerations for_! Practical Implementation

The operation of our environment (or local) stack, which holds continuation
and backtrack information as well as the argt.1t1ents of procedures and vari
able bindings, is based closely on [Warren 80]. At the point where we are
about to colllI:lence execution of a byte-code block, the top frame of this
stack is like this:

I I

, I

--------------CP (blank)
CL (blank)
XR {blank)
BP
BL
TR
G {blank)
Argument I ...
Argument m
Var 1 {blank)

•••
Var n {blank)

--------~-----

- 8 -

Continuation {byte-code) Pointer
Continuation Local stack frame
XR table for continuation
Backtrack Point {clause pointer)
Backtrack Local frame
Trail marker
Global stack marker

The first three words of the frame {marked blank because they have not yet
been filled in) are for exactly the continuation information that was in
the continuation stack of the mini-interpreter: the CL pointer allows
access to the variables of the contination frame. The next four words are
for control of backtracking. Then come the arguments to the procedure,
which have already been filled in, followed by the variables which have
not.

An argument register, A, is initially set to point to Argument I. Each
byte-coded instruction matches against the argument pointed to by A and
then increments it. When a 'functor' instruction matches against an unin
stantiated argument, it creates a new term with uninstantiated arguments on
the global stack, and A is then set to point to the first of these new
arguments. The previous value of A is saved on a special stack so that it
can be retrieved by the corresponding 'pop'.

We do not actually have to initialise all the variables in the local stack
frame to be "uninstantiated". The first occurrence of <'var' N) in a
clause {for each N) is changed to be a new instruction ('firstvar' N) which
simply assigns the value indicated by A to variable N. If a variable only
appears once in a clause, there is no point in doing even this much work,
so there is also a 'void' instruction which does nothing.

Another improvement we can make is to overlap the variable and argument
blocks in the stack frame. That is, if a variable appears at the top level
in the head of a clause, e.g. L2. in append{[XILI] ,L2,[XjLJ]) :- •••), then
we can use the appropriate argll!lerit slot for the variable value, thus sav
ing space and avoiding superfluous assignments. All that has to be done is
rearrange variable frame offsets appropriately (variables are not actually
nt.Dllbered l, •• ,n, but by their offsets in the frame), and use 'void' instead
of 'f irstvar'.

Without special-purpose hardware, there is bound to be inefficiency in the
way we have described building terms: first we build the term with all its
argur.tents uninstantiated, and then subsequent instructions match against
these uninstantiated arguments and fill them in. This involves (unneces
sary) testing to see if each argwnent is uninstantiated; also it is in gen
eral necessary when instantiating a variable to test whether or not it

82
- 9 -

should be put on the trail. We avoid all this checking, and the need for
initialising the arguments of the constructed tem, by introducing a new
mode of interpretation of our instruction set. This is called 'copy' mode,
as opposed to 'match' mode which is what we have been discussing until now.
In 'copy' mode data instructions simply copy the data they stand for over
to A.

This concept of interpreter modes can also be useful for debugging. In
nonnal operation, the abstract machine goes to great lengths to throw away
any information which it will not need again. When debugging, this is
undesirable, so we plan to include a 'debug' mode in which more information
is kept.

One other cooplication should be mentioned. This is the problem described
in [Warren 80] of dangling references arising from tail~recursion optimisa
tion. We follow his approach of putting variables which may give rise to
this problem onto the global stack. For this purpose we require two new
instructions which are global stack versions of 'var' and 'firstvar'.

6. Related Work

A compiler for Prolog has been written in POPll by c.s. Mellish at Sussex
University. This actually compiles Prolog into the POPll abstract machine
language which is then in turn compiled into real machine language. Advan
tages of this approach are (1) relative ease of implementation, and (2)
instant access to a good programming environment. The long-term drawback,
however, is that there is no possibili.ty of tailoring the memory management
to the special needs of Prolog. The fully general POPll garbage collector
has to be used (even for backtracking).

Another approach has been taken by [McCabe 83]. His Abstract Prolog
Machine is specified at a much lower level than ours, and depends on the
availability of a LISP style garbage collector of some sort.

7. Conclusions

The design we have described is a compromise between pure interpretat-ion
and pure compilation. Preliminary tests have shown our initial system to
be comparable in speed with Pereira's C-Prolog interpreter· [Pereira 82].
It has the advantage over pure interpretation that it is easier to optimise
for particular hardware: the kernel of the interpreter is relatively simple
and compact and well suited to microcoding.

Our design requires much less space for program storage than pure compila
tion, due to the relatively high level of the byte-code instructions, and
to the fact that we do not need to store a separate representation of the
Prolog source code. Also there is the advantage that there is no dichotomy
between interpreted code (that you can debug) and conpiled code (which goes
fast) as there is on the DEC-10 system. Finally, our design has the advan
tage of minimising the amount of machine-specific work which needs to be
done in implementation.

I ,

I

I I

I

- 10 -

It is our belief that people are going to want to run larger and larger
("knowledge-based") programs, and that therefore the efficiency of both
program storage and garbage collection will become increasingly important.
Prolog does not require the generality of a LISP or POP garbage collector,
so it should have an advantage over these languages if more efficient,
special-purpose memory management is used.

8. Acknowledgement

We are indebted to David Warren and Fernando Pereira for the inspiration
behind this work.

References

[Bowen 82] D.L. Bowen (ed.), L.M. Byrd, F.C.N. Pereira, L.M. Pereira
and D.H.D Warren,
"DECsystem-lo Prolog User's Manual",
Department of Artificial Intelligence,
University of Edinburgh, 1982.

[Bruynooghe 80) M. Bruynooghe,
"The Memory Management of Prolog Implementations",
In "Logic Programming", ed. K.L. Clark and s.-A. Tarnlund,
Academic Press, 1982.

[McCabe 83] F.G. Mccabe,

[Mellish 80]

[Pereira 82]

[Warren 77)

{Warren 80)

"Abstract Prolog Machine - A Specification",
Technical Report, Department of Computing,
Imperial College, London, February 1983.

C.S. Mellish,
"An Alternative to Structure Sharing in the
Implementation of a Prolog Interpreter",
In "Logic Programming", ed. K.L. Clark and s.-A. Tarnlund,
Academic Press, 1982.

F .C.N. Pereira,
"C-Prolog User's Manual, Version 1.1 11 ,

Edinburgh Computer Aided Architectural Design,
University of Edinburgh, September 1982.

D.H.D. Warren,
"Implementing Prolog - Compiling Logic. Programs",
Research Reports 39 & 40, Department of Artificial
Intelligence, University of Edinburgh, 1977.

D.H.D. Warren,
"An Improved Prolog Implementation which Optimises Tail
Recursion",
Proceedings of the Logic Programming Workshop, Debrecen,
Hungary, ed. ~ .-A Tarnlund, July, 1980,
(also available as Research Paper 141, Department of
Artificial Intelligence, University of Edinburgh).

Methodology of Logic Programming

by

Ehud Shapiro

Department of Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100, ISRAEL

I I

I I

In this session I would like to discuss research methodol,;gy, rather
than programming methodology, of logic programming. As a basis for discus
sion I propose the following statements, interspersed with text that attempts
to justify or explain them.

1 Goals of research in logic programming
Statement: Logic-programming share the goo.la of comp?.J..ter science

at large.

As I see it, there are no major differences between the goals of com
puter science at large and the goals of logic-programming. Both want to solve
the problem:
(*) How to make computers do what we want them to?

This problem has two derivatives:
(21) How to make it easy for us to make computers do what we want them to?
() How to make computers do fast what we want them to?

Using a more respectable jargon, the two derivative questions become:
(1') How to program computers?
(2') How to make computers run the programs fast?

Many of us beleive that logic-programming may provide better solu
tions to these problems than the more conventional approaches to computer
science.

Statement: The basic method of computer science ia bootstrapping.
Computer science offers one encompassing methodology for solving

these two questions, namely bootstrapping. Apart from brilliant new ideas
(which no methodology can promise to provide), the crucial factor dictating
the ease in which we can program computers and build faster computers is
the computerized support available to these tasks. More concretely, the ease of
programming is determined mostly by the quality of the programming environ
ment available; and the possibility of building cheaper and faster computers is
determined mostly by the quality of the CAD/CAM systems available.

Logic programming has a lot to contribute to the general . thrust of
bootstrapping, and also to provide some briliant new ideas of its own.

2 Prolog
Statement: Prolog ia an ezpreasive and efficient programming lan

guage, which we are still learning how to use.

- 2 -

Prolog is the first practical logic programming language. It is acquir
ing a growing group of users, who develop for it a rich set of programming
idioms and techniques, and a refined programming style. Inspite of the initial
dissatisfaction of Prolog's inventor, Alain Colmerauer, and others wjth the lan
guage, it turns out that its expressiveness is far greater than what was expected.
It is surprising that such a simple language can lend itself to so many sophis
ticated and powerful programming techniques. Even after programming in
Prolog for the past three years, lam still learning new methods and techniques
of Prolog programming.

Pro log falls short of the aspirations of the founders of logic program
ming in several respects: it has a rather inflexible control, and, to implement
substantial systems, must resort to features that have only procedural mean
ing (cut, I/0, side-effects). Nevertheless, many of us beleive that Prolog, as
it is, is a good programming language for many applications. To increase its
effectiveness, Prolog requires improvements in its speed of execution and pro
gramming environment.

Statement: Pro log akould be made to run /aster.

The desire for greater speed needs no justification. If we had as many
MegaLIPS as we have MIPS, then almost no programming task will have to be
carried in a lower programming language.

The speed of Prolog on a von Neumann machine can be increased in
several ways. One is to improve the basic cycle of Prolog, the unification, by
providing faster (cached, pipelined, multiported) memory access, by supporting
the basic unification instructions in hardware or microcode, and by parallelizing
the unification of subterms. Another is to incorporate in Prolog an abstract
data-types mechanism, that will support in a logical way interface to efficient
data-structures. Abstract data-types are needed in order to make more efficient
use of the resources of the underlying hardware. If substantial systems are to
be implemented in Prolog, then, given current technology, we cannot afford to
represent everything as a list of elements. Mutable arrays, strings, and other
efficient data-structures need to be supported. The only clean way to support
these in the logic-programming framework is via predicates over abstract data
types.

Improving Prolog's speed by incorporating high-level parallelism (in
contrast to the low-level parallelism available in the unification algorithm), is
discussed in the next section.

- B -

i I

I I

Statement: Prolog needs a better programming environment. Prolog
programming environments are best implemented in Prolog.

Given the short time they exist, and the number of man-years devoted
to their development, some of the current Prolog programming environments
are quite impressive. The main problem that prevents further, or faster,
development, is that every new Prolog implementor reinvents the wheel. This
phenomenon is most evident in the development of the Edinburgh Prolog
family, in which every new implementator has implemented the programming
environment from scratch.

One of the most important properties of Prolog is that it is an excellent
language for developing its own environment. By defining a small core-Prolog,
which is expressive enough to implement a full environment, a new Prolog
implementor can simply implement this core, and port the environment from
a previous implementation. The availability of such a core will also support
distributed implementation efforts, in which different tools are implemented in
different locations. This is in contrast to the current situation, in which the
burdon of implementing a reasonable environment for Prolog falls solely on the
implementor of the core Prolog and its close associates.

My experience suggests that a subset of the system pr4~dicates of
Waterloo Prolog, or those of Edinburgh Prolog augmented with . the 'retry'
and 'ancestor-cut' predicates, are expressive enough to implement almost any
tooi desired. Many system predicates in Edinburgh Prolog are better viewed as
utilities that are, in principle, implementable in core-Prolog, but are provided
for the sake of convenience or efficiency.

Statement: Prolog should be kept a small.

There are two good reasons for keeping the core of Prolog small.
One is intellectual economy. I think we are still learning how to program
in Prolog. A baroque set of features (cf. IC-Prolog[4]) will prevent us from
identifying what is essential and what is superfluous, and will not encourage the
development of innovative programming techniques that squeeze every ounce
of expressiveness from a small set of constructs.

Another good reason to keep Prolog small is related to the discussion
of programming environments and bootstrapping. If there is a small Prolog
core, in which everything else is implemented, then:
1. Developing a new or better Prolog requires less effort.
2. A new Prolog implementation does not need a new environment.
3. Sophisticated Prolog programming tools, that know about all core-Prolog

system predicates, are easier to develop.

- 4 -

An example of an enhacement to Prolog that can be implemented
in core-Prolog is a module and type system. Most current Prolog implemen
tations resemble an assembly language, rather than a high-level programming
language, in their flat name space of procedures, and in their lack of support of
any type system. It is clear that a facility for modular programming is neces
sary for substantial systems to be developed in Prolog by many programmers.
MProlog [14] supports a notion of modules. However, its implementation is in a
low-level language, and cannot be ported to other Prologs. On the ether hand,
[5] showed that modules can be implemented easily in Prolog, by preprocessing,
without affecting the Prolog core. Since the preprocessor is written in Prolog,
it can be ported, in principle, to any compatible Prolog implementation.

Another example is the Prolog-10 debugger [1]. It is implemented
almost solely in Prolog, but pieces of it which are implemented in a lower
level language (pseudo-Prolog), prevent it from being easily. ported to a new,
compatible, Prolog implementation, such as CProlog. On the other hand, the
debugging algorithms in [12] are implemented solely in Prolog.

Inspite of what is said, investigating extensions to Prolog is still a
useful activity. I beleive that any extension to Prolog's core should satisfy at
least the following three criteria:
1. It can be demonstrated, with non-toy examples, that the extension is

useful.
2. The extension cannot be implemented in Prolog (e.g by preprocessing).
3. The extension can be implemented efficiently, and does not incure runtime

overhead when not used.
Examples of extensions that can be implemented in Prolog are second

order predicates (setof, bagof) [15] and modules [5]. Examples of extensions
whose implementation seem to induce run-time overhead even when not used
are selective backtracking [10] and several other forms of more sophisticated
control [4], [11].

In addition to supporting its own environment, I beleive that Prolog is,
in principle, an ideal language for implementing a VLSI CAD system. The main
requirements of such a system are the ability to integrate ·a large database with
algorithms that manipulate it. No other programming language supports both
database and algorithmic functions in the way Prolog does. The main obstacle
to realize such a pratical system today seems to be Prolog's inefficiency.

3 Concurrency
Statement: Prolog is not suitable for expressing concurrency.

- 5 -

lnspite of its expressivness in general, Prolog has a major blind-spot:
it is not suitable for expressing concurrency. This means that in order to
build a Prolog machine we must either extend Prolog substantially, or use
a lower programming language to implement multi-tasking. Needless to say,
multi-tasking is an essential feature even in sequential computers.

There have been many proposals to incincorpoe more so?histicated
control-constructs to Prolog, to support coroutinning and concurrency, e.g. in
IC-Prolog, Prolog-11, MU-Prolog, and Epilog, among others. It seems that none
of those is both expressive and efficient enough to implement a multi-tasking
operating system.

Statement: Concurrency and don i-know nondeterminism {deep
backtracking) do not miz well, but can be interfaced.

The Relational Language of Clark and Gregory [2] and Concurrent
Prolog [13] take a different approach. They give up Prolog's non-determinism
(implemented by deep backtracking) for the sake of expressing concurrency.
The memory management of these languages is very different from that of
Prolog, therefore integrating the two efficiently on a von Neumann machine
is a non-trivial problem. Also, my experience with programming in Concur
rent Prolog suggests that applications that require concurrency do not require
non-determinism, and vice versa. A good interface between Prolog (or a logic
programming-based database machine) and concurrent logic-programming lan
guages are set expressions, or Prolog's setof predicate, as suggested by Clark
and Gregory [3]. The availability and sufficiency of such an interface reduces
the need for an immediate integration of the two languages.

4 Parallelism

Statement: Parallel ezecution of Prolog is difficult.

Logic programs offer two kinds of parallelism: Or-parallelism and Ap.d
parallelism. Or-paralelism means trying several candidate clauses in parallel.
And-parallelism means trying to solve several goals in a conjunction in parallel.

One approach to designing a logic programming language for parallel
computers is to patch Prolog. However, since Prolog was designed specifically

- 6 -

for efficient execution on a von Neumann machine, it is not clear that it is
a good starting point. Adding Or-parallelism to Prolog is not so difficult
concenptually. One problem is the cut. If cut is used to implement implicit
negation (a substitute for if-then-else) and defaults, then Prolog programs
may behave incorrectly when executed in Or-parallel mode. This is a difficult
problem, due to the pervasiveness of this use of cut. Another problem is
memory management. The overhead of maintaining seperate environments for
the Or-parallel subcomputations may eliminate the benefits gained from their
parallel execution.

Incoprorating And-parallelism into Prolog is far more diffi~ult.

Statement: And-parallelism and Or-parallelism have different ap
plications, and are beat explored independently.

Since the problems of parallel computers are so difficult, and there is
so little positive experience with them in other branches of computer science,
I think it is much more sensible to start small.

The first step is to examine the uses of the two kinds of parallelism.
Or-parallelism is useful for speeding the solution of problems that require
search. One significant class of search problems are database queries. In
many applications, however, good algorithms can often provide a substitute for
simple brute-force search. And-parallelism is useful for implementing parallel
algorithms. The class of problems for which efficient parallel algorithms have
been designed is increasing rapidly. The existence of computers that can
actually run them will no doubt increase the pace in which they are produced.
These observations suggest that And- and Or-parallelism have different, disjoint
applications, which, at least initially, are best studied seperately.

The design of an Or-parallel database machine is an important and
challenging problem. The close relationship between logic programs and rela
tional databases suggests that ideas and concepts from relational databases can
readily be put into use within the logic programming framework.

Concerning And-parallel machines, my view is that simple languages
such as the Relational Language and Concurent Prolog are a good starting
point. These languages are expressive enough in their current form for a
parallel implementation of them to be useful and interesting. Hence their
incporporation with the more powerful features of sequential Prolog may be
postponed until the problems of building a parallel machine for these simpler
languages are better understood.

- 7 -

9C

I I

I

5 Logic vs. control

Statement: Efficient algorithm, cannot alway, be obtained by twid
dling with the control of logic program,.

Some of the research on logic programming was guided by the desire
to find some 'philosopher's stone': a notation that eliminate the need to think
algorithmically. Kowalski's celebrated equation [6]:

Algorithm = logic + control

have suggested to many [4],[7],[8],[10], that if only we could find the 'right'
control regime; we could factor the task of devising and implementing efficient
algorithms into two, independent subtasks: defining the logic of a solution to
a problem, and converting it into an efficient algorithm by imposing control
on it. I beleive that this interpretation of the equation is too strict. It is
impossible, in general, to specify sophisticated algorithms-just by modifying
the control component of a logic program. No massaging will make a logic
program that specifies the exponential generate--and-test permutation sort into
quicksort. The same statement is certainly true for less basic algorithms.

Statement: Sopkiaticated control ha, large runtime overhead, hence
it is beat implemented in an embedded language.

The sophisticated control regimes developed in response to Kowalski's
equation usually have an unacceptable runtime over head. Hence they cannot
be incorporated in a base language. An alternative way to achieve sophisti
cated control is to implement embedded languages in Prolog. Implementing
interpreters for embedded languages in Pro log is by now a well understood
technique [9].

Statement: Compile-time optimizations are auperior to runtime op
timizations.

One of the goals of sophisticated control is to make certain logic
programs run faster. This approach may be called "runtime optimization".

Whenever a runtime optimization of an inefficient logic program rep
resents a traektable algorithm, it is usually possible to implemente the algo
rithm directly in ordinary Prolog. The transformation of inefficient logic pro
grams to efficient Prolog programs may be called "compile-time optimization".

It is my (unsupported) beleif that compile-time optimizations repre
sent a more promising approach than runtime optimizations.

- 8 -

91

6 The Fifth Generation Project

Statement: Logic-programming machine, will require new solution,
to old problems.

One goal of the Fifth Generation project is to construct computers
with a new machine language, based on logic. To realize such machines we will
have to address many questions which are already solved for von Neumann
computers. There is a lot to learn from the old solutions, but one measure for
the viability of logic-programming is the quality of the new solutions it will
provide to these old problems.

7 References

[1] Lawrence Byrd, Prolog-10 Debugging Facilities, Technical Note, Depart
ment of Artificial Intelligence, Edinburgh University, 1980.

[2] Keith Clark and Steven Gregory, A Relational Language for Parallel
Programming, In Proceeetlinga of the ACM Conference on Fucntional
Programming Languages and Computer Architeckture, pp. 171-178,
1982.

[3] Keith Clark and Steven Gregory, PARLOG: A Parallel Logic Pro-
gramming Language (Draft), Technical Report DOC 83/5, March 1983.

[4] Keith Clark and F. McCabe, The Control Facilities of IC-PROLOG,
In:Ezpert System, in the Micro Electronic Age, D. Mitchie (ed.), Edin
burgh University Press, pp. 122-149, 1981.

{5] Paul Egghart, Logic enhancement. ~ Proceeding, of the ACM Con-
ference on Lisp and Functional Programming Languages, August, 1982.

[6] Robert A. Kowalski, Algorithm= Logic+ Control, CACM22(7):426-
346, July 1979.

[7] John McCarthy, Coloring Mapa and the Kowalski Doctrine, Technical
Report STAN-CS-82-903, Stanford University, April 1982.

[8] Lee Naish, An Introduction to MU-Prolog, Technical Report 82/2,
Department of Computer Science, University of Melbourne, 1982.

[9] Luis M. Pereira, Logic Control with Logic, In Proceedings of the
First International Logic Programming Conference, pp. 9-18, ADDP,
Marseille, September 1982.

- g -

9L

(10] Luis M. Pereira and Antoili.o Porto, Selective Backtracking, In Logic
Programming, K.Clark and S.-A. Tarnlund {Eds.), Academic Press,
1982.

[11] Antonio Porto, Epilog: a language for extended programming in logic,
In Proceeding, of the Fir at International Logic Programming Conference
pp. 31-37, ADDP, Marseille, September 1982.

[12] Ehud Y. Shapiro, Algorithmic Program Debugging, ACM Distinguished
Dissertation Series, MIT Press, 1983.

(13] Ehud Y. Shapiro, A Subset of Concurrent Prolog and its Interpreter,
Technical Report TR-003, ICOT - Institute for New Generation Com
pputer Technologu, 1983.

[14] SZKI. MProlog Language reference Manual, SZKI, Budapest, Hungary,
November 1982.

[15] David H. D. Warren, Higher order extensions to Prolog - are they
needed? In Machine Intelligence 10, D. Michie, J. Hayes, and Y. H.
Pao {eds.), Ellis-Horwood, 1982.

- 10 -

Abstract

The pragmatics of Prolog: some comments

by

E.W. Elcock

The University of Western Ontario

London, Canada

N6A 5B9

Logic programming and Prolog in particular have done
much to illuminate the relationship between logic and
computing.. The relationship between logical· consequence and
effective construction is. however, very subtle, and it seems
appropriate (even if not entirely novel) to continue to be
concerned about too simplistic an approach to the
difficulties which face any assertative programming language.
This note attempts to focus some of these difficulties for
Prolog in the context of a simple but rewarding pedagogic
example.

(Keywords: Logic programming; Prolog; programming
methodology, pragmatics)

I the pragmatics of Prolog: some comments Page 2

~ntroduction: "between the expectation and the reality lies
the shadow"

The paper comments on the view that Prolog, as an
ixemplar of logic programming, is a candidate for a
ipecification language and as such provides specifications
:1th a declarative (standard model theoretic) reading, but
rith the bonus that such specifications can be re-interpreted
irocedurally and without change as providing implementations
if the specifications.

I As a specification, a Prolog p~ogram [A,G] is to be
fhought of a sequent A=> G. It is well-known, however, that
lrolog is an incomplete system: that is, there exist Prolog
irograms [A,G] where A is a sequence of Horn clauses
nd G a conjunction of predications such that the
orresponding clausal sequent A=> G is a true -sequent and
et the Prolog program [A,G] does not terminate
uccessfully. A simple example illustrating this
ncompleteness is the Prolog program [A,G] where A is the
equence of clauses .

1. mem(U,[VIL]) :- mem(U,L)

2. mem(U,[UIL])

G is the goal statement

mem(a,[alM])

, In executing the goal statement Prolog repeatedly uses
lause 1 in the procedure for list -membership generating the
~finite sequence of goal statements
I
I

mem(a,[alM])
mem(a,M)
mem(a,M1) where Mis bound to [V1IM1]
mem(a,M2) where M1 is bound to [V2IM2]

, Prolog does not prove the true sequent A =>
~m(a,[alM]). In fact, with 'mem' specified with the ordered
air of clauses above in some more general sequence of
lauses A , Prolog will not establish the truth of any
~quent involving a call of 'mem' on a list with variable
I• 1 ,1 .

45

The pragmatics of Prolog: some comments Page 3

In this
of A would
Indeed, the
reordering is
ordering. In
of clauses

example a simple reordering of the clauses
result in acceptable computational behaviour.
set of Prolog proofs generated with the
a superset of those generated with the original
this particular example, with A the sequence

1. mem(U,[UIL]~

2. mem(U,[VIL]) :- mem(U,L)

the membership
synthetically
Thus, if G

relation is very
(constructively) as

is a goal such as

m em (a • [b I M])

well
well

behaved and acts
as analytically.

then the Prolog program succeeds with, for-example. M bound
to· [a IM•] •

Prolog programmers might rationalize the problem of
which this example is a symptom by insisting that, although
one wishes to take advantage of the model theoretiri semantics
of Horn clauses in viewing a Prolog program as a lucid
specification, one should be willing in Prolog as in any
other language, to rewrite (transform) one's specification~
now viewed as a program, with the pragmatics of the
procedural interpretation (defined by the particular
interpreter or whatever) in mind.

In the particular case of 'mem', and with the procedural
interpretation of Prolog firmly in mind, one might
rationalize away any unease with so~e argument that "it's
obvious that one should have given the base case of the
recursion first" and in this Prolog is no worse than a
"conventional" applicative language where the "same thing"
might have happened. Certainly Prolog programmers are well
aware of the problem and acknowledge it (see for example
Clocksin & Mellish, 1982). My readings, however, lead me to
believe that many still do not treat the phenomenon with the
seriousness it deserves. This note exploits one of my own
five-finger exercises using Prolog in the hope of drawing
further attention to the problem.

I j I

rhe pragmatics of Prolog: some comments

i
i
~e,rmutations of a problem
!

Page 4

Let•s now turn to a more focal example: that of using
rrolog to write a specification of a solution of the eight
[ueens problem. We specify a board position by an ordered
1air of row and column numbers (r,c) l=<r,c:<8 • We wish
fo specify the set of subsets of size 8 such that no two
,embers of a subset lie on the same row, column or diagonal.
fe take advantage of the fact that the interpretation of a
iequence of the eight numbers 1 to 8 as a set of ordered
lairs (r,c) , where c is the r'th number in the sequence.
luarantees that no two members of the set have the same row
Ir column number. With this representation of subsets we
iimply have to restrict the sequences to be such that no
~o (r,c) pairs in the represented subset are-on the same
jiagonal.
!

I With this preamble we might begin to specify a solution
lo the eight queens problem with the Horn clause
'

1. queens(Q) :- perm([1,2,3,4,5,6,7,8),Q) , dsafe(Q)

~th the intended interpretation that .perm(M,N) specifies
~at the lists M and - N stand in the (symmetrical)
~lation permutation to one another, and that the predicate
psafe' will be suitably specified to capture the intended
nterpretation discussed above.

I So far, so good: the specification has a very clear
Ddel theoretic (declarative) semantics contributing to our
~tended interpretation - still to be filled out by
becifications of 'perm' and 'dsafe'. Let's look at the
bllowing specification taken from Clark , and McCabe's
reatment of the eight-queens problem (1979):
I

1. perm([],[])

2. perm(L,[UlM]) :- inserted(U,L,L1) • perm(L1,M)

3. inserted(U,[UIL],L)

4. inserted(U,[VIL],[VIM]) :- inserted(U,L,M)

1ere 'inserted(U,L,L1)' has the intended interpretation
!at the list L is the list L1 with the element U

The pragmatics of Prolog: some comments Page 5

inserted at some (arbitrary) position.

Again these specifications could be claimed to have
clear and acceptable declarative readings. We will assume
that 'dsafe' can be equally nicely specified - it has no
detailed pedagogic role to play in our example.

We seem then to have exploited the model theoretic
semantics of Prolog to obtain a very clear and complete
specification of a solution to the eight-queens problem by
the set of Horn clauses 1.2 •••• Let us call this set of
sentences "A" • The existence of a' solution to the eight
queens problem could now be asserted by the sequent "A=>
queens(Q)" •

Prolog would instantiate Q properly. However, if
clause 1 of the specification were changed to the apparently
_equivalent clause

1. queens(Q) :- perm(Q,[1.2,3,4,5,6,7,8]),dsafe(Q)

leaving everything else unchanged, then Prolog would .D..Q..t
instantiate Q •

This remark is not intended as a criticism of Clark &
McCabe, but to draw attention again to the difference between
possible expectations and the reality. One has the
expectation that a satisfactory axiomatization of 'perm'
would necessary capture the symmetry of the· relation. The
Prolog implementation of the axiomatization by Clark & McCabe
does not. In the context of its sole use in a particular
axiomatization of the eight-queens problem, the effects of
asymmetry have been nullified: in· general, however, this
might be treating the symptom rather than the disease and
would become increasingly opaque in more complex problems
involving deeper nestings of axiomatized relations.

The difficulty of the Clark & McCabe axiomatization lies
in the fact that if one backtracks to a call
of perm(M,L) where M is a variable, then clause 4 for
inserted is repeatedly used, each use generating a candidate
permutation M consisting of a list with one more
uninstantiated variable at its head and an uninstantiated
variable tail, each of which candidate permutations finally
fails the call perm(M,[]) - as, of course, it should!

~he pragmatics of Prolog: some comments
i I

Page 6
, I

I I

I
I !

, It might be thought this problem with 'perm' could be
of Prolog in some :ol ved by using meta-logical features

lpecification such as:

1 • perm(L,M) :- nonvar(L)
' !

'
perm1(L,M)

2. perm(L,M) :- nonvar{M) • ! , perm1 (M, L)

3. perm 1 ([], [])

4. perm1(M,[UIL]) :- inserted(U,M,N) • perm1(N,L)

5. etc., etc.

!i th the intention that "perm 1" is only called with an I

IPPropriately instantiated argument pair such that "inserted"
1s well-behaved. This specification would certainly "solve"
~e original problem associated with the eight-queens
~ecification: however, the new specification of "perm"
•haves in a similar way to the first for pairs of calls such
~ "perm([1,2,3],(21L])" and "perm([2IL],[1,2,3])".

ln order to emphasize the point made earlier about the
btivation of this brief note, a digression is in order. The
~llowing is a quotation from comments by an unknown referee
~resumably chosen for his expertise) of an earlier version
r this note: .

" ••• ;for that matter any Prolog programmer
knows or should know, that if he wants his predicate
to work independently of the data flow he m.Y.at, be
careful; hence program • • • is ..ll.Q.t to be written if
one knows that L can be a free variable or
"infinite" (i.e. end up with a free variable);
further the problem is not necessary with "perm", it
can be argued that it is with "inserted ": one
should then write:

inserted(U,V,L) :-
not var(V), !·, insert(U,V,L)

where "insert" is given by

insert(U,[UIL],L)

insert(U,[VIL],[VIM) :- inserted(U,L,M)

97 .

The pragmatics of Prolog: some comments Page 7

Admittedly this is a partial solution, but is
it correct in all cases whe~e inserted is called; in
particular perm([1,2,3],[2lL]) gives the two
correct answers for L and M; similarly
for perm([2IL],[1,2,3]) which fails ••• Hence
there is a natural way to get it right." (My
underlining - E.W.E.)

Adopting the referee's suggestion, the
specification of "perm" becomes:

perm([],[]) '
perm(L,[UIM]) :- inserted(U,L,L1) , perm(L1,M)
inserted(U,V,L) :/ not var(V), !, insert(U,V,L)
insert(U,[UIL],L)
insert(U,[VIL],[VIM) :- inserted(U,L,M)

Note that the referee has essentially addressed
the subproblem of non-termination by making one of
"perm(M,L) 11 and "perm(L,M) 11 !..ail! I did not and
still do not regard this as a "natural 11 way to get
nil" right!

Finally, to avoid potential misunderstandings
let me stress ·that this somewhat curious digression
has been made to emphasize that my men are not all
strawl Some are flesh and blood and refereeing!

Returning to the symmetry problem: in all
cases the incompleteness stems fr·om the potential
for generating objects from an infinite domain by
backtracking. Both the specification of "mem" at
the beginning of the paper and our specifications
of "perm" give trouble for this reason.

In the case of "mem" the difficulty was
removed by a reordering of clauses with the result
that no new candidate was generated "unnecessarily".
In the case of "perm" the problem is deeper: it
cannot be solved by reordering nor by meta-logical
wizardy which indeed addressed the "wrong"
problem. Equally important, this kind of
incompleteness is potentially difficulty to detect -
particularly when the calls to an offending m-ary
relation are part of higher relations themselves
possibly with completeness constraints of their
argument tuples. Thus, in our introductory
pedagogic context. the call of

100

~e pragmatics of Prolog: some comments Page 8

11 perm([1,2,3,4,5,6,7,8],Q)" comes from the body of
the specification of "queens". Although, as already
mentioned, once having diagnosed our difficulty, it
is not onerous to change the call
to 11 perm(Q,[1,2,3,4,5,6,7,8]) 11 , one could easily
construct more sophisticated examples where the
choice of appropriate orderings of argument tuples
could become quite a tricky problem.

In the· case of our illlustrative example
of "perm", and having identified that the
difficulty stems from the potential for "inserted"
in the specifications above to generate an infinite
sequence of objects each of which possesses a
property which is going to lead to failure. we can
see that it is possible to respecify "perm" to
make this impossible. There are two interestingly
different ways to do this.

The property in the "perm" . specification is
that each of the generated lists, L , say, has a
length one greater than its predecessor and that the
initiation of backtracking takes place by a failure
of 11 perm(M,[]) 11 ! Recognition of this motivates the
specification:

1. perm(L,M) :- samelength(L,M) , perm1(L,M)

2. samelength([],(])

3. samelength([UIL],[VIM]) :- samelength(L,M)

4. < clauses specifying 11 perm1 11 as in Clark &
McCabe specification above. say>

With this specification, any call of "perm"
with an argument tuple which fixes the common
(finite) length of the argument lists will lead to
"inserted" being called in a context in which
generation of an infinite sequence of objects cannot
occur. For example, one of our earlier "problem"
calls 11 perm([2IL],[1,2,3]) 11 would now result in
11 perm1([2IL],[1.2,3]) 11 being called in an
environment in which L is bound to the list [X,Y].
In effect we have a call of
11 perm1([2,X,Y],[1,2,3]) 11 : which call does not permit
infinitary generation.

The pragmatics of Prolog: some comments Page 9

One might, somewhat impudently, present the
specification with the motivation that the intended
procedural reading is to be "well, we'll do a quick
check that the two argument lists are indeed
globally consistent with the relation of permutation
before we get down to crossing the i's and dotting
the t's" !!! Indeed, in the case
where L and M are both explicit finite lists
then "samelength" acts like this (apart from the
tongue in cheek adjective "quick"). More generally
however "samelength" acts tp construct the most
general finite lists L and M which can satisfy
"samelength(L,M)" and it has been introduced into
the specification for just this reason.

A second (and more "honest"?) way to
axiomatization which is symmetric under
interpreter is to use a subtler kind of
and write the 'constructive' axioms:

perm([],[])

obtain an
the Prolog
redundancy

perm(X,Y) :- perm(X1,Y1) , inserted(U,X,X1)
inserted(U,Y,Y1)

with the previous axiomatization of "inserted".

Here.we simply have the embarrassment that each
of the permutations is generated twice!

"This is a long cautionary tale" said the mouse.

The Prolog "perm" saga ~oes not end here. What
happens if one wants the~ of permutations of some
finite list say?

Sets of consequences in Prolog are handled by a
non-logical operator "set-of" which essentially
explores the whole potential sequent space
aggregating appropriate instantions of variables in
provable sequents.

Certainly "set-of"
axiomatization of "perm"
"samelength" device within
device.

works with
using the

the domain of

the
covert

this

'
I I

The pragmatics of Prolog: some comments Page 1 O

However, "set-of" does JlQ.t work with the more
·"honest" axiomatization immediately above and for
the same reason as for previous failures: "set-of"
eventually enters an infinite search space, and we
once again have the problem of non-termination.

We see here a subtle interaction in Prolog of
incompleteness (in the obvious sense), and
no~-logical operators specifically introduced to do
what otherwise couldn't be done!

' An adjournment

Having got the bit between one's teeth and with
the success of 'samelength' to motivate one. one can
return to the original attempt at a direct symmetric
specification of "perm" and try

perm([],[])
perm([XIL],[XIM]) :- perm(L,M)
perm([XIL],[YlM]) :- inserted(X,M,M1,Y,L,L1) ,

perm(L1,M1)
inserted(X,[XIM],M,Y,[YIL],L)
inserted(X,[XIM],M,Y,[Y1lL1],[Y11L2]) :

inserted(X1,M;M1,Y,L1,L2)
inserted(X,[X1lM1],[X1IM2],Y,]YIL],L) :

inserted(X,M1,M2,Y1,L,L1)
inserted(X,[X1lM1],[X1lM2],Y,[Y1lL1],[Y11L2]) :-

inserted(X,M1,M2,Y,L1,L2)

where. inserted(X,L,L1,Y,M,M1) has the intended
interpretation that L(M) is the list L1(M1) with
X(Y) inserted in it. This is Prolog - symmetric and
works with "set-of". (Of course, one should prove
these statements?)

The necessity for the 6-ary function and the
multiplicity of cases in the model theoretic reading
rather detract from any sense of achievement!

summary

The late Christopher Strachey told the story
that whenever he gave talks on his design for the
language CPL, he would inevitably be asked "but can
it do so-and-so?" Strachey claimed that as the
designer of a good programming language there were

103

I •

The pragmatics of Prolog: some comments Page 11

only two possible answers he could give and they
were either "of course it can!", or "of course it
can't!"

One of the difficulties with Prolog is that it
does not meet this criterion and this note has
attempted to give a simple example of an important
way in which it fails. In a phrase: Prolog holds
out promises it cannot fulfill. In particular, to
have to consider potentially difficult proofs of
termination of procedural readings of obviously true
sequents, seems to run counter to one's intuition of
what "logic programming" is all about. One of the
reasons for the author's concern is that it is like
Absys (Foster, 1969) in this. Examples of other
ways in which Prolog fails to meet Strachey's
criterion could be given. It may well be that there
will emerge brands of logic programming languages
that will be both pragmatically useful and which
will indeed meet Strachey's criterion. It is
consistent with the goals of much current research
in Artificial Intelligence that the cause of
difficulties arising from a first tentative
specification might be automatically diagnosed and
rectified by a suitable respecification and, as an
issue in the study of knowledge representation and
use, some form of the problems identified with
Prolog above will have to be faced as part of that
study as such.

In the absence, however, of substantive
progress on such issues it might be better to
recognize that the goals of logic and the goals of
programming should be regarded as essentially
different unless proven otherwise. The goal of
logic as usually conceived is to exhibit what things
follow from what. The goal of programming as
usually conceived is to exhibit how to construct
something from oiher things. Although "what follows
from what" certainly provides the framework in which
a construction is demonstrated to be valid, to call
this validation process "control", at least in the
simplistic sense of current computational control
structures, and to regard Prolog programming as
"logic plus control" e.g. Kowalski~ 1979, is to
stretch a good catchphrase too far. In what sense,
for example, is it appropriate to regard the
1 samelength' assertion as a control component of the
specification of 'perm' in the example above? Like

10~

1
I tl'he pragmatics of Prolog: some comments Page 12

most provoking catchphrases, "programming as logic
plus control" can be given interesting
interpretations. However, for now a better
catchphrase, if one wants catchphrases at all, might
be that "logic is (Prolog) programming minus
control": a Prolog program, [A,G] , terminating
or not, stripped of a particular procedural
semantics with its particular concomittant
'control', and re-interpreted as a sequent A=>
G , is always, if true# demonstrably true in first
order logic. (The asymmetry in the two catchphrases
is, of course, only in the'eye of the believer!).

As mentioned in the introduction, although the
declarative aspect of computational text is very
important and has been increasing illuminated by the
study of the relation between logic and programming,
the relationship between consequence and
construction is very subtle, and its subtlety must
be· respe_cted.

The content of this note and, in particular,
the relationship between consequence and
construction, is being elaborated in a further
technical report in preparation. The work is being
conducted under Operating Grant Number A9123 from
the Natural Sciences and Engineering Research
Council of Canada.

105

The pragmatics of Prolog: some comments Page 13

References

1. Clark, K.L. & McCabe, F.G. (1979). The control
facilities of I.e. Prolog, Expert Systems in the
Micro Electronic Age (D. Michie, ed), Edinburgh
University Press.

2. Clocksin, W.F. and
Programming in
Berlin.

Mellish,
Prolog.

c.s. (1981).
Springer-Verlag.

3. Foster, J.M. and Elcock, E.W. (1969). Absys 1:
an incremental compiler. for assertions: an
introduction. Machine Intelligence 4, (Eds.
Meltzer. B. and Michie, D.). Edinburgh
University Press. Edinburgh. pp. 423-429.

4. Kowalski, R.A. (1979). Algorithm = Logic +
Control. C.A.C.M. Vol. 22, No. 7. pp. 424~436.

JOG

Abstract

A polymorphic type system for Prolog

Alan Mycroft
Dept of Computer Science

Edinburgh University

Richard O'Keefe
Dept of Artificial Intelligence

Edinburgh University

101-

We describe a polymorphic type scheme for Prolog which makes static type

checking posslble. Polymorphism gives a gooa degree of flexlblllty to the type

system. and makes it intrude very little on a user's programming style. The only

additions to the language are type declarations. which an interpreter can ignore if it

so desires. with the guarantee that a well-typed program will behave identically with

or without type checking. Our implementation is discussed and we observe that the

type resolution problem for a Prolog program is another Prolog < meta-> program.

1 Introduction

Prolog currently lacks any form of type checking. being designed as a language

with a slng·le type C the term> . While this is useful for learning it initially and for fast

construction of sketch programs, it has several deficiencies for its use as a serious

tool for building large systems.

We have observed that a theorem prover which reasons about Prolog programs

can be more powerful .if it has type information available. One indication as to why

this is so can be seen from the fact that the traditional definition of append has

append< nil. 3. 3) deducible from its definition.

One very good reason for a type system Is that it can provide a static tool for

determining whether all the cases In a Prolog predicate have been considered. For

example. a predicate defined by

type neg list< list< int> . list< int>>

neg list< cons<A. L>. cons(B. M> > .. negate CA. B>. neglist< L. M>

will never succeed. since we have probably omitted the clause

1

10 8
negllst< nil. nil> -

A type system would enable us to detect this by checking for exhaustive specificatior

of argument patterns tor a given data-type. Of course. if we really did want a

certain case to fail. then adding a clause such as

neg list< nil. nil) - fail

would be an explicit way of requesting such an event without leaving first-order logic

< and would facilitate tater reading of the program>.

Moreover. our type system can be used as the basis of an encapsulatior

providing an abstract data type facility. The ability to hide the internal details of c

given object greatly aids the reliability of a large system built from a library o

modules.

Finally. we note that static type checking cannot of itself provide a great increase

in speed of Prolog programs. due to the fact that term unification must still be

performed. as in the dynamic case. However. typed Prolog can improve the speec

of compiled clauses of a given predicate by using a mapping of data constructor~

onto small adjacent integers to enable faster selection of the clause(s> to be

invoked. By far the greatest gain is that of programmer time provided by earl~

detection of errors.

As far as we know this work is the first application of a polymorphic type schemE

to Prolog, but related work includes Milner's work (41 on typing a simple applicative

language which is used in the ML [31 type checker and the HOPE language whict

uses a version of Milner's algorithm extended to permit overloading. However. thi:

work differs from these In several respects. Firstly, the formulation of Prolog a:

clauses means that the problems of generic and non-generic variables are muct

reduced. All predicate and functor definitions naturally receive gener'::; polymorphic

types which can be used at different type instances within the program whilst al

variables receive non-generic types. Moreover. our formulation for Prolog removei

a restriction in Milner's scheme in which all mutually recursive definitions can only bE

used non-generically within their bodies. Thus in ML the (rather contrived> progran

2
109

let rec Ix= x

and f X = I (x+ l)

and g x = if l<x> then l else 2

would be ill-typed. Since all Prolog clauses are defined mutually recursively. this

restriction would have the effect of making the polymorphism useless.

2 Mathematics

We assume the notion of substitution. a map from variables < and terms by

extension> to terms. ranged over by 9 and t,. An invertible substitution is called a

renaming. If a term. u. is obtained from another. v. by substitution then we say

that u is an instance of v. and write u(v. We write usv if u(v and v(u. This means

that u and v only differ in the names of their variables and that the substitutions

involved are renamings. Also assumed is the notion of most-general unifier (MGU>

of two terms.

For any class of objects S. the notation s* will be used to indicate the class of

objects consisting of finite sequences of elements of S.

3 Prolog

The simple variant of Prolog we consider will be defined by the following syntax

C we assume the existence of disjoint sets of symbols called Var. Pred and Functor.

representing variables. predicates and functors symbols respectively>:

Term · · - Var I Functor< Term*>

Atom ::= Pred(Term*>

Clause : : = Atom ... Atom*

Sentence : : = Clause*

Program : : = Sentence: Atom

Resolvent : : = Atom•

By definition of clause form each. implicitly universally quantified. variable appears

In at most one clause. To make the formal description of typing simpler. we assume

that the textual names of variables also follow this rule. A program then is given by

a 1inite list of C Horn> clause declarations. followed by an Atom C short for atomic

formula) • called the query. to evaluate in their context. It specifies an initial

resolvent by taking the query and treating it as a· one-element list.

3 110

The evaluation mechanism for Prolog is very simple. and based on the notion 01

SLD-resolution as the computation step:

SLD-resolution is the one-step evaluation which transforms a Resolvent. Given a

resolvent

R = A1 An

we select an Atom. the selected atom. say Ak, < this Is often A1 In real Prolot

interpreters) and perform resolution with it and a matching clause. So. choose a

clause of the program. the selected clause. say Q, given by

C +- 8 1 , ...• Bm

and suppose that R has no variables in common with it < otherwise we must rename

Its C Q's> free variables since they are implicitly universally quantified for the clause> .

Now let 9 be MGU<Ak. C> if this exists. If it does. then we can rewrite R into R'

given by

9(A1 •...• Ak_1 • B1 , ..• Bm. Ak+-1 An).

The most common form of Prolog interpreter uses k=l when this expression simplifies

somewhat.

An answer is produced when the resolvent is rewritten into a sequence of zerc

atoms. The associated answer to such a rewriting sequence is the composition o

most-general unifiers encountered during the rewriting process. or rather it~

restriction to the variables in the query.

Observe that the above specification only told us how we could produce an answe1

(if one exists> from a Prolog program. For computation the choices above (the

selected atom and clause> must be incorporated into a deterministic tree saarchin~

algorithm. which we take time to explain below for the reader's benefit. However.

we would like to stress now that the results on type-checking given in section 5 wor•

for any order of evaluation <choices of atoms and clauses> of Prolog programi

< de c th-first/breadth-first/ coroutlning/ par alleD .

i

I

, I
!

4

111
3. 1 Digression: SLD-trees

The Idea of SLD-resolutlon above. leads to the Idea of an SLD-tree: whenever

we are forced to select a clause then. instead of Irreversibly choosing a given

matching clause. we construct a tree of resolvents Can SLO-tree> where a resolvent

has a son resolvent for each clause which matches with the selected atom. A

sensible computation (the standard implementation of Prolog> is then to search this

tree in depth-first left-right manner.

Some branches die out. in that no clause matches the selected atom. whereas

· others have more than one subtree contribute to the answer. This is often referred

to as the non-determinacy of Prolog.

Finally. we remark that there is never any need to seek alternatives to the

selected atom - In fact doing so would merely lead to duptlcatlon of answers exhibited

elsewhere in the SLD-tree. < For more details on this aspect see (1)).

4 Types

The scheme of types < Type> we allow are given by the following grammar and are

essentially the same as those which occur in ML (31. We assume disjoint sets of type

constructors CTcons. ranged over by roman words) and type variables (Tvar. ranged

over by greek letters like a. P. 'Y>. These are also assumed to be disjoint from Var.

Pred and Functor.·

Type : : = Tvar I Tcons< Type*>

Type will be ranged over by paT . ..

variables. Otherwise it Is a polytype.

A type is called a monotype if it has no type

For examples. we suppose that Tcons Includes the nullary constructor int and the

unary list. Example types are then

list(a>. int. list< list< int>> • etc.

Note that the third type is an instance of the first.

5

11 ~
4. l Digression: the Unary Predicate Calculus

The type systems used in r. 3.ny Al programs are variants or restrictions of th,

Unary Predicate Calculus. However. UPC is not adequate as the single type sys ten

tor an Al programming language. Rules such as

C"I N. U integerCN> & int_listC U =:::r int_list<cons<N. U >

< V U int_list< U ==:a (L=nil V integer(car< U))

cannot be expressed In it.

5 Well-typing of Prolog

This section contains the central definition of a Prolog program being well-typed

together with precursor and auxiliary definitions. Many. of the ideas appear in {4

where a polymorphic applicative language is typed. but our formulation for Proto,

poses new problems and simplifies old ones as we discussed in the introduction.

Let Q the clause c~s, Bm and P be a finite subset of VarUPredUFuncto

containing all the symbols of Q. We define a typing P of P to be an association c

an extended type to each symbol occurring in Q. The types are members of a give

algebra as defined . in section 4. Predicates and Functors are associated wit

extended types as given below. Types and extended types will be written as

superscript on the object they are associated with. ai and T will represent < non

extended) types. For each variable X occurring in a. P will contain an element c

mu mrm ~T, r{U QAt:m PfQfllAi;JlQ i;J AT ijfllY K rn Q, p WIii QArtli;Ufl ijfl QIQfflQnl m m

form a0 P • · • • 0 k. For each functor f of arity k in Q, P will contain an element of th

Term ,ca,.··· .ak>--r,

Similarly. the clause Q will be written as a typed clause Q by the writing of a typ

on each term < this includes variables> .

As an example of a clause and its typing consider the clause Q. given by

appCconsCA. U, M, cons CA. N)) - appC L. M. N>

The set P = CA, L. M. N. app. cons} gives its set of symbols. and a typing < which wi

turn out to be a well-typing considered later> can be given by P:

6

113

where T Is used for a shorthand for list< a> and the associated clause typing a given

by:

P _will be called the typed premise of Q due to the relation to theorem proving.

Fortunately. it will turn out that most of the mess of types written above are inter

dependent and the above expression can be well-typed much more succinctly - see

later.

We will now define Q to be a · well-typing of Q under P. written P t- Q if the

following conditions hold:

l . P t- CA ... 8 1 ••..• Bm> if

A = a<t[1 •...• t{k> and aP E:P
with (r, Tk) S!p

and P I- t{1 C 1 (i<k>

and P t- 8 1 < l (i(m) .

2. P I- A if A is an Atom and

A - (tT1 t.Tk) d Pp - a 1 •...• 'I(an a E:

with (T1 •••.• Tk) (p

and P t- tt1 < 1 (i(k) .

:,, p t- u0 IT u IB a Term ana
T T p -

U = Ht1 1, • , , , \ k) ana T E:P

with ((T 1 • •••• T k) --o) (p
- T ana P >- t1 1 < 1 <l'-'O •

4. P t- xo If x0 E: P.

Now. we will define a program to be well-typed under a typed premise P if each

7

of its clauses is well-typed under P and if its query atom Is.

well-typed if each of its atoms are.

Similarly a resolvent i~

Well-typing as a mathematical concept is of little use. unless we relate it 1<

computation. This we will now do. under the motto ·well-typed programs do not gc

wrong'".

6 Well-typed programs do not go wrong

What we desire to show. is the semantic soundness condition that if a progran

can be well-typed. then one step of SLD-resolution will take a well-typed resolven

into a new well-typed resolvent. Thus any SLD-evaluation of a well-typed progran

will remain well-typed. It is trivially the case that the initial resolvent is well-typed i

the program is. Moreover. we should show that the variables in the query can onl'

be instantiated to terms specified by their types given by the well-typing.

The first condition is simply proved: Let R be the resolvent A 1 •...• An and let C

be a clause C ... B1 •...• Bm which has no variables in common with R C the cas,

where Q and R have variables in common will be discussed later> . Without loss o

generality <symmetry> let A 1 be the selected atom and suppose 8=MGUCA1. c:

exists. The resolvent produced by one-step evaluation is R' given by

We will now show hew to well-type this from the well-typing of R.

Let us suppose that there is a P with typing P and associated well-typings R an1

Q such that P I- R and P I- Q C note this provides well-typings Ai, C. Bi>. Moreover

let us suppose that R and Q have no type variables In common C again. we wt

discuss this later. but note that the typing rules never rely on the · absolute' names c

the type variables> .

Let the type of the predicate symbol of C in P be cP1• ···,Pk. Now the well-typini

determines that C can be written cc s?'1 •...• sfk> and A1 as cc ti 1 •...• t[k) where

(0'1 • · · · • ok) '!!! (P1 · · · · • Pk)

(T 1 • ...• T k) ~ (p 1 • ..•• pk) .

I I
. I

8
115

This means that there Is a substitution t, on type variables < actually

t,&rMGU((a, •••.• ak). (T, Tk))) such that (T, Tk) = t,(ca, •...• ak)).

The claim Is that

gives a well-typing of A'. where applying t> < a type substitution> to a typed atom

means that it is to be applied to the type variables in types associated with terms

occurring within that atom.

We now address the problem of there being variables. or type variables. in

common between A and Q. These are really the same problem (the perennial one

of renaming in Prolog>. A simple solut_ion is the following: Whenever we come to

perform resolution between a clause Q and a resolvent A we rename Q such that all

its variables (using a renaming ,-> and all its type variables < using a renaming 71)

are distinct from the variables <and type variables> in A and the other clauses. This

can always be done since A can only contain a finite number of different variables.

Moreover this does not change the meaning of Q. This strictly breaks the type

scheme. since the new variables appearing in Q do not appear in P. However. a

almpte addition to P or 1'< X> 71 <T> ror each vartabto x In tno or1g1na1 Q which appGarQd

as xr In P serves to correct this and preserve the typing. we are now back In the

case where Q and R have no variables or type variables in common.

We now return to the problem of showing that a well-typed program can only

instantiate the variables of its query to values having types as dictated by the typed

premise. To see that this is the case. it is merely necessary to observe that each

resolution step <as above> Is performed between an Atom. A. and a (type> Instance

of a clause C ... 8 1 •...• Bm. such that the types ot A and this instance ot C are

Identical except for the names of type variables. Thus variables in A can only be

instantiated to Terms < possibly other variables> having identical types. The whole

result is proved by induction on the length of computation leading to a refutation.

9

116
7 Specification of the type information to Prolog

We suggest that the type specification be performed by annotations to the Prolog

system. The well-typing required three sets of information to be supplied:

- the types of the predicates

- the types of the functors

- the types of the variables.

We suggest that declarations be supplied which give the type of the first two but the

type of variables can easily be determined from them. This can be seen b-y

observing that a well-typed Atom or Term labels the type of each argument Term.

and so each variable is labelled with a type. The most-general unifier of all the

types associated with a single variable C if it exists> gives a type for that variable.

<This is also convenient since the scope of variables in Prolog is a single clause.

whereas the other objects have a global scope.>

It is convenient to specify the names of types along with the functors which create

them from other types. This has been demonstrated by HOPE [21 and we do no1

expect to better this idea.

So one of the declarations. or meta-commands is one of the form

Declaration : : = 'type' TconsCTvar*> '=>' Functor<Type*>*.

Examples would be C the second somewhat improper>

type llsHa> => nit. cons<a. lfst<a> >
type int => 0. 1. -1. 2. -2. 3. -3.

The second declaration specifies the type of predicates. Suggested syntax is

Declaration : : = 'pred' Pred(Type*>.

and an example for the 'equal' function defined by

equalCX.X> ...

would be

ored equal< a. a>.

10
111-

We note here. that. given the types of the functors. then would seem possible to

determine the types of the predicates involved without any great amount of work c as

in ML l41> . However. this seems to depend on an analysis of the whole program at

once. rather than any form of interaction. 1 We would also claim that the

documentation provided b~ the written form of the types facilitates human

understanding of programs in much the same way that explicit specification of mode

information C input/output use of parameters> for predicates does.

7. 1 Abstract data types

We observe that the above declarations furnish a form of abstract data typing.

Providing a 'module' construct and . exporting from it a given type name. and

predicates which operate on that type. but not the constructor functors for that type.

enables us to use a type. but not to determine anything about its representation.

HOPE has such a construct. and we think it would greatly benefit Prolog.

8 Overloading

The above discussion has centred on a formalism for well-typing Prolog.

However. it does not allow for one feature which we have found to be useful. and

which is very easy to build into the type system. This feature is overloading and

appears in a similar form in HOPE l2l.

The observation. is. that quite often. we may wish a given function. predicate or

functor name to stand for more than one distinct operation. This Is common In

mathematics and computer science. where an operator C eg '+') may be used to

denote a different function at different types. In Prolog this can be useful too. For

example. we may wish to have types specified by

list<a> => nil. cons<a.listCa>>

treeCa> => nil. leaf<a>. cons<tree<a>. tree<a> >

where the constructors nil and cons<_._> have different meanings according to

whether they act on lists or trees. C Of course we could give them different names.

1 Moreover there is a small technical problem concerning recursive definitions which makes checking ot
type specifications of such definitions much easier than their: derivation.

11

but this is not always helpful to the programmer.>

Similarly. we may want certain predicate symbols to refer to different predicate

according to the type of their arguments. A typical example would be some sort c

'size' predicate.

We formalise this by permitting the typed premises used above to contain mor1

than one type associated with any given 1unctor or predicate symbol.

9 Implementation

We have built such a system in Prolog which implements the overloaded typ1

checker by backtracking. Note that this is not particularly difficult since our well

typing rules given in section 5 are essentially Horn clauses. There are merely tw,

points to observe. Firstly, the ·occur-check' of unification <which Is often omitted b

Prolog implementations> is essential for this typechecking scheme. Secondly. th,

use ot (can be simulated by instantiation of a copy of the functor or predicate typ

and the use of a! by a common meta-linguistic predicate < numbervars> whic

instantiates variables in a term to ground terms to avoid their further instantiation

Copies of the code can be obtained from the authors or could be included as a

appendix.

That the well-typing rules < which define when a given program has a given type

can be used to determine the type of a given program is a simple consequence c

the Horn clause input/ output duality. Moreover. when the well-typing rules are use

in the fashion on a given program. T say, then the standard SLD-resolution wi

produce a terminating evaluation giving the most-general types associated with T

The basic Idea is that If the well-typing problem has no solution. tu. the program i

ill-typed. If it has exactly one ff$dhe program is well-typed. and if it has more tha

one then some overloaded operator is ambiguous.

10 Higher order objects

This section is much more tentative and more in the manner of suggestion tha

the rest of the paper and we would be grateful for any comments on its inclusion c

its contents., It is included because we want to discuss the well-typing of objects whic

12

11~
do not form part of first-order Prolog. jn particular the calf and univ operators.

The definition of call is based on the fact that most Prolog implementations use

the same set of symbols for predicates and functors < this causes no syntactic

ambiguity> and thus a Term has a naturally corresponding Atom. Hence call is

de1ined to be that predicate such that call< X> is equivalent to Y where Y is the Atom

corresponding to the Term X. Thus call provides a method of evaluating a Term

which has been constructed In a program and is accordingly related to EVAL In LISP.

We would like to argue that such a predicate is more powerful than is required and

. Indeed encourages both bad programming style and Inefficient code. It Is certainly

the case that most uses of call are used in the restricted case of applying a certain

functor passed as a parameter to arguments determined locally C as in mapping

predicates> . Functions or predicates like EVAL or call do not appear to have

sensible types and are thus generally omitted from strongly typed languages in favour

of some form of APPLY construct.

We would like then to change our definition of Prolog and its typing to introduce

this construct. To do this we introduce a family of abstract data types. called

predCa). predCa.,8). predCa • .S.x>

and a family of predicates with types given by

pred appfy<predCa>. a>. apptyCpredCa. IJ>. a.lJ>.

The only way to Introduce object of type pred is by a special piece of syntax given by

Term : : = 'Pred

which has the effect of associating the definition of the given predicate with Term.

which then receives the type pred < a 1 •.••• an> if th~ predicate has type (a 1 •••.• an> .

< It may be desirable to use such syntax as • foo/3 or • fooC_. _. _) if several

predicates of different arities have the name foo. > Such values can only be used in

apply and have the effect of using the associated predicate value together with Terms

as arguments to produce an Atom to evaluate. It can be shown that such a scheme

is type secure. For example. the map predicate can be defined and used by:

13

F j

mapCF.consCA.L>.consCB.M» .. applyCF.A.B>. mapjL.M>

map(F. nil. nil) ..

neglistCX. Y> - map(· negate. X. Y>

J ,<.C

assuming tnat nGgate Is defined as a dladlc predicate. The type of map so defined

would be < pred(a. /J). list<a>. list<.B> >.

The other higher-order object frequently used is the univ predicate (often writter

·= .. ') which can be used to transform a Term Into a ltst of Terms derived from the

farmer's top-level substructure. <This is typically used for analysing terms read with

input functions.> Thus

univ(f(gCX.a>. Y>. U.g<X.a>. Y])

is true. As it stands this clearly breaks the type-scheme we are proposing since the

elements of the list represented by the second parameter need not be of the same

type. We observe again. that such a predicate is not commonly used in its full

generality. but rather to allow arbitrary terms to be input. As such. we suspect tha1

introducing a new type 'input_term' which specifies the type of objects generated b~

input routines and giving univ the type < input_term. list< input_term> > • together with c

notation for treating a Term as an input_term would give much of the power of uni\

within a strong typing discipline.

The difficulty of typing univ arise from the conflation of object and meta levels ir

one language. which requires the same object to simulatenously possess at least twc

types. in a stronger sense than overloading. A satisfactory resolution of thif

problem waits on the introduction of an explicit meta-level or the construction of c

genuinely reflective Pro log [51.

11 Conclusions and further work

We have shown how to well-type that subset of Prolog described by flrst-orde1

logic and indicated how this might be extended to allow higher order objects. It is ar

interesting result that the well-typing problem for a Prolog program can itself be

regarded as a Prolog meta-program.

14

1Z1
12 Acknowledgments

This work was supported by the British Science and Engineering Research

Council.

13 References

(11 Apt. K. R. and van Emden. M. H.
Contributions to the theory of logic programming.
Journal of the ACM 29<3>: 841-862. 1982.

[21 Burstall. R. M .• MacQueen. D. and Sannella. 0. T.
HOPE: an Experimental Applicative Language.
In Conference Record of the 1980 LISP Conference. 1980.
Also internal report CSR-62-80. Dept. of Computer Science. Edinburgh

University.

(31 Gordon. M. J.C .• MIiner. A. J. R. G .• Morris. L., ·Newey. M. and
Wadsworth. C.
A Metalanguage for Interactive Proof in LCF.
In Proc. 5th ACM Syrnp. on Principles of Programming Languages.

Tucson. Arizona. 1978.

[41 Milner. A.
A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences 17<3>: 348-375. December.

1978.

Smith. B. C.
Reflection and Semantics in a Procedural Language.
PhD thesis. MIT LCS. 1982.

l Introduction
2 Mathematics
3 Prolog

3. l Digression: SLD-trees
4 Types

Table of Contents

4. 1 Digression: the Unary Predicate Calculus
5 Well-typing of Prolog
6 Well-typed programs do not go wrong
7 Specification of the type information to Prolog

7. l Abstract data types
8 Overloading
9 Implementation
10 Higher order objects
11 Conclusions and further work
12 Acknowledgments
13 References

1ll

PRISM
A Parallel Inference System for Problem Solving

Simon Kasif Madhur Kohli Jack Minker

Department of Computer Science
University of Maryland
College Park, MD 20742

(301) 454-4251
MINKER@ UMCP-CS

1.2.3

I ~
I

Abstract

A Parallel Inference System for Problem Solving (PRISM)
developed at the University of Maryland. The system is designed to
general experimental tool for the construction of large artificial
gence problem solvers.

124

has been
provide a
intelli-

We present some of the basic facilities for controlling parallelism and
inference provided by the system. PRISM is based on the concept of logic pro
gramming with a separate control componenent. The control may either be
explicitly specified by the user in his input or alternatively determined
dynamically by the system, which takes advantage of the implicit parallelism
in the logic of the algorithm. The design makes the underlying virtual archi
tecture transparent to the user. The system supports both AND and OR parallel-
ism.

1
1 2.5

1. Introduction and Overview

1.1. Introduction to Parallel Problem Solving

In general, problem solving systems have been designed to be executed on
sequential machines (i.e. a single processor architecture). However, the com
plexity of many interesting problems, makes the sequential implementation ot
these problems infeasible in terms of speed and resource requirements. This
implies that it is necessary to examine solutions to these problems in a dis
tributed environment, in order to determine if these solutions will prove more
feasible in terms of speed and resources, than those in a sequential environ-

. ment. Further~ore, the investigation of distributed methods or problem solv
ing is suggested by the structure of the problems themselves. Many interest
ing AI problems are NP-complete and require exponential ·-time --on a determinis
tic machine, whereas they can be solved in polynomial and sometimes linear
time- on a nondeterministic- -machine. -- A distributed system is necessary, to
implement, nondeterministic solutions.

A large amount of work has been done on parallel architectures [Computer
1982a], [Computer 1982b] and algorithms tor parallel architectures [Kung
1986]. Work has also been done on parallel languages and environments for
parallel architectures for non-AI problems [Hewitt 1977], [Kahn 1977].

In the AI environment several researchers have suggested
parallelize certain types or problems, however, few of these
actually been implemented on a distributed .system. Kornfeld
Lieberman [1981] describe systems and languages which have been
parallel applications.

methods to
schemes have
[1979], and
designed for

PRISM (a Parallel Inference System), which is an experimental tool for
the · development or distributed AI problem solvers, has been developed at the -
University of Maryland and has been implemented on ZMOB (Rieger [1980]).
PRISM is based on logic programming (Kowalski [1979]).

1.2. Control in Logic Programs

In conventional programming systems the logic and control of an algorithm
are combined making it difficult to separate or to modify control without
affecting the logic. Logic as the specification· language, is neutral - with
respect to control and specifies only the problem semantics. The method or
how the problem is to be solved is external to the logic specification. It has
been shown (Kowalski[1979], Pereira[1978], van Emden[197~]) that the complete
separation or logic (the specification to be executed) and control (the order
in which tasks are executed) allows a great amount of flexibility during exe
cution, thus providing a natural parallel implementation or a program.

This is true since the inherent nondete.rminism of logic pr~grams can be
exploited in many different directions during excution.

1. Top-down and bottom up execution or a program can be done in parallel.

2. At any time during execution more than one possible goal node (procedure)
can be invoked.

2

3. Since the order of execution of atoms in a goal is usually not specified
we can sometimes separate the goal into several independent subgoals to
be solved.

Ct.
4. Logic progljns are distinguished from other applicative languages such as

LISP due 'to the fact that more than one procedure can match a procedure
call. This seeming disadvantage on a sequential machine becomes an
advantage in a highly parallel environment since all or some matching
procedures can be executed in parallel.

Thus, a primary issue in achieving a parallel system is developing an
effective control specification that exploits parallelism. PRISM permits us
to specify the problem independently of the control and allows us to experi
ment with alternative control possibilities for the same problem.

l•.2.• ~ and Parallel Problem Solving

PRISM has been implemented on ZM0B, which consists of a set of 256 Z80A
microprocessors connected on a conveyor belt together with a host VAX-11/780
minicomputer. A description of ZM0B is given in the following section. A
description of how parallel problem solving is achieved using ZMOB is
described in Section 1.3.2.

l•.2.•l· ~ Description

The particular system to be used is ZM0B, a parallel multi-microprocessor
system developed at the University or Maryland (Rieger[1980]). ZMOB is to
consist or 256 Z80A microprocessors connected to a host computer (VAX 11/780)
which is to communicate between machines via a high speed 48 bit wide, 257
stage shift register called the "Conveyor Belt" (Figure 1). The system is
described in detail in Rieger[1980, 1981a, 1981b]. We shall briefly describe
here only the communication features necessary to support PRISM.

The Z80A is a microprocessor capable of executing 400,000
instructions/second and has a 64K byte memory. Thus, the whole system is
theoretically capable of executing 100 million instructions/second and has a
memory capacity of 16 million bytes. Each processor is connected to the con
veyor belt via a collection of high-speed 8-bit I/0 registers and associated
control circuitry, called the "Mail Stop". The registers are in charge of
interrupt control, buffering and address control functions.

In general, the Conveyor Belt moves 257 bit patterns (bins) each 48 bits
wide. Each processor can theoretically consume any bin that is currently at
its mail stop, but it can send out information only in its own bin. The 48-
bit message in the bin consists of four fields:

CONTROL

8 bi ts

DATA

16 bi ts

Figure 1

SOURCE

12 bi ts

DE ST! NA TI ON

12 bi ts

3 . 12}

The control bits allow the implementation of several communication stra
tegies: Let (C XS D) be the content of a bin on the Conveyor Belt, then dif
ferent control bits specify the following communication formats.

1. Direct addressing - The message Xis sent to a processor whose physical
address is D.

2. Pattern matching - Message Xis sent to the first processor whose pattern
(determined by Capability Code and Mask Registers in the Mail stop)
matches D.

3. Send to all Processors - Message Xis sent to all processors.

4. Send to a set or Processors - Message Xis sent to all processors whose
patterns match D.

Additionally, different settings or Control Registers i~ the Mail Stop allow
the following :

s. Exclusive Source - This mode provides exclusive conversation between two
processors and disables-interrupts from other processors.

6. Readback - This mode allows an individual processor to inter~ept any of
its own messages that went around the conveyor belt and was not consumed
by any of the destination processors.

The following examples illustrate the utility of the above formats.

(3,5) Permits large blocks of data to be sent in a burst mode to all proces
sors from the host computer. (e.g. to load kernel programs or data to all
processors).

(2) Provides the ability to assign to each processor a relation. Logically
the relation's name would be the pattern identifying this processor.

(4) ·- Allows .a. very useful. provision of clustering the system into independent
sets of logically equivalent processors.

(6,4) Can be used to send a message to a set of processors and in case it was
not consumed to activate a recovery routine.

l·l•_g• ~ Parallel Problem Solving System

We find ·it useful to separate the static set or clauses representing the
logic or a problem from the control which generates a search tree by applying
these clauses to a goal clause. This distinction will be seen to be useful in
experimenting with the control of a parallel logic programming system.

In particular we shall distinguish three separate portions of the system
to which we dedicate microprocessors. These are:

(1) the problem solver (PS),

(2) the extensional database (EDB), the set of assertions, and

(3) the intensional database (IDB), the set or procedure clauses.

12 i
The PS administers the search space which consists of a tree of goal

clauses. The root of the tree is the original goal, whereas successors of any
clause C in the tree are resolvents obtained by resolving program clauses (EDB
or IDB clauses) with an atom selected inc. Each leaf node in the tree is
either the empty clause; or some indication that the respective branch of the
search resulted in a failure; or an open goal clause not yet selected for
expansion; or an active clause sent for expansion and not fully expanded.

To generate the successors of an open clause C the PS has to select an
atom and send it to that part of the system that handles unification of the
atom with procedure heads in the EDB or the IDB. If the tree is distributed
among several microprocessors, several atoms of different clauses can be
selected simultaneously for expansion.· Atoms sent to the EDB/IDB for solving
cause the return of infq'mation necessary for generating all successor clauses
or c. 11.,

While waiting for the information the PS in each machine can treat other
open clauses in the same way, so that the subproblems of several open nodes in
the same machine can be solved in parallel and independent of each other.

A second part of the system is in charge of the assertions and procedure
clauses. This is subdivided further into the extensional database (EDB) con
sisting of all function-free ground assertions, and the intensional database
(IDB) that constitute the procedure clauses and non-EDB assertions (i.e.
those that contain variables and/or functions).

This distinction was drawn primarily for two reasons. First, the EDB and
IDB can use different unification algorithms. In particular, when matching an
atom against an EDB entry, it is not necessary to invoke the occur check which
is used to determine if a term substituted for a variable contains the vari
able. Second, there are many applications where the sizes of the EDB and IDB
differ considerably. If the set or clauses is used as a database, the number
of IDB clauses is likely to be relatively small, whereas there are many EDB
clauses corresponding to a relational database in the usual sense. If, on the
other hand, the set of clauses represents a program, there are usually few
EDB-clauses, but the IDB clauses are generally numerous. In some instances we
may wish not to make a distinction between EDB/IDB clauses. We want the sys
tem to be sufficiently flexible to be able to react in different ways.

In addition to predicates contained in the EDB and IDB, systems usually
contain predefined predicates, e.g. arithmetic predicates or equality predi
cates. Such atoms are evaluated directly in the PS where encountered and are
not sent to the EDB or IDB for evaluation.

Problems can arise if predicates are permitted to have side effects. One
such side effect would be the ability to modify the database as, for example,
contained in the PROLOG primitives ASSERT and RETRACT. As the system pursues
different branches of the search tree in parallel, there is no way of deter
mining the exact point at which the side effects were executed. Since side
effects in one branch can influence other branches of the search tree, this
fact would render the overall behaviour of the system intolerably unpredict
able.

For that reason in this first design, we do not allow any predicates with
side effects in a goal clause (and hence they are not permitted in a procedure
clause) thus restricting the system to pure logic. This means that such

• I

5

extralogical tricks as modifications to the database to simulate global vari
ables are not permitted. or course, the system must provide features other
than the ability to solve goal clauses, including such capabilities as adding,
deleting, and modifying clauses. Such capabilities are provided at the top
level only, so that there is no modification of a lmowledge base during prob-

. lem solving.

The separation or the problem solving system into the problem solver, EDB
search, IDB search, IDB monitor and VAX has isolated the functions in the sys
tem and has placed them on separate processors. The main link between the
processors is the conveyor belt and message passing. There is an uniform mes
sage passing facility between machines.

2. Control Issues

2.1. · Problem Solving Process

The problem solving process may be outlined as follows:

(1) the problem to be solved is expressed as a conjunction or goals, each or
whi9h is a subproblem to be solved;

(2) one or more subgoals may be selected to be solved;

(3) a subgoal is solved if it is matched by some assertion, or it is matched
by a procedure which consists of a set of sµbgoals which can be solved.

The repeated execution of steps (1), (2) and (3) results in a top-down execu
tion of a problem. One can specify a problem solving process which permits
bottom-up, middle-out, top-down, or any combination or these reasoning
methods. _ The initial PRISM system is restricted to top-down reasoning (back
ward chaining from the goal).

£•£· f!2!! B:!!. !!!5!, Control Issues

A goal tree is generated in the problem solving process •. The goal tree
is formed initially by placing the conjunction of goals to be solved in the
root node of the tree. In general the tree consists or a set of nodes, where
each node· consists of a set of goals. How, given a node, there are several
ways in which the node may be executed. One or more goals J.JJ8.Y be selected to
be executed asynchronously. This possibility provides for user control of
parallel execution. Subgoals in a node may be characterized to be dependent
or independent of one another. A subgoal is dependent if its execution must
await the successful execution of another subgoal in the same node. It is
independent otherwise. An acyclic partial order expresses such a relationship
among subgoals. At any stage of the execution of a node, all those subgoals
which are independent may be executed asynchronously. However, goals which
are candidates for simultaneous execution must be treated specially if they
share unbound variables.

A goal selected for execution must be matched against assertion or pro
cedure heads. There may be several assertion/procedure heads which match the
given goal. Any procedure head which matches a goal can potentially lead to
the solving of that goal, independent of any other procedure head that may

6 1:;o

also match the goal. All matching procedure heads are therefore candidates
for asynchronous execution. Furthermore, the user may wish to specify a par
tial order of execution of procedure bodies, in a similar manner to the par
tial ordering on subgoals within a node. Thus there is the possibility of
specifying that certairi alternatives need be explored only if other alterna
tives have failed.

An assertion or a procedure that matches a goal in a node causes a new
node to be generated as a successor node to the node that contains the goal.
The new node consists of all goals in the parent node where the selected goal
is deleted and replaced by the body associated with the procedure head and the
matching substitution is applied to the new node. In case of a· matching
assertion, the body is empty and the new goal node has one less problem to be
solved. When an empty node is generated, the problem has been solved.

Executing a problem as outlined above leads to the generation of many
nodes, each node of which can be in a partial state of execution. It is in a
partial state when all assertion/procedure heads that match a subgoal have not
been selected for execution. Thus, there is the option to select many nodes
for asynchronous execution.

All possible asynchronous operations may be executed on autonomous
machines.

g.J_. PRISM Control Facilities~ Language

In the previous section we described the possibilities for parallelism in
the control structure. Here we specify the support for controlling parallel
ism in PRISM. PRISM provides the ability to specify for every goal and pro
cedure body a partial order for execution. This partial order expresses the
dependencies among the subgoals within a goal· (a procedure body may be con
sidered to be a goal). or within alternative procedures for solving the same
goal.

The partial order on subgoals in a goal are specified by a notation as
explained in the following example.

P <-. (G1,[a2,(G3,a4),G5],(G6,G7]).
The procedure head is on the left hand side of the arrow, while the body is
the right hand side. The body consists of a set of goals, separated by commas
and formed into groups by properly nested pairs of parentheses and brackets.
All groups of goals enclosed by parentheses, must be executed in a left-to
right sequence, i.e., the leftmost group in the sequence must be executed and
solved before the remaining groups. Groups of goals .enclosed in brackets, may
be executed independently of other groups in the same set of brackets, i.e.,
all groups in the bracket may be executed asynchronously. The partial order
induced by the above notation is:

I

I I

7

1--------------01---------------1
I I I
t t t
G2 G3 G5
I I I
I t I
I o4 I
I I I
t t t
---------------------------------I

t
1------~---------------1

The groups formed by G1; [G2{o3,o4),G5]; [G6,G7], must be executed from left
to right since they are enclosed within parentheses, i.e. o1 must be executed
and completed before any other group. Once G1 is completed, the groups o2;
CG3,G4); o5 may be executed asynchronously since they are enclosed by a
bracket. However, since o3; o4 are enclosed in parentheses, o3 must be exe
cuted and completed before o4 is initiated. The next group, [G6,o7] cannot be
initiated until all groups to its left have been completed, i.e., goals
G1,o2,o3,o4 and _G5• The goals 06; o7 may be executed asynchronously.

In the case where no parenthesis or brackets are specified, PRISM assumes
a default ordering. This default is user specifiable to be either left-to
right · ·or asynchronous.

The user has the ability to specify a partial-like ordering of procedures
with the same procedure name. The user is provided with a notation which per
mits assigning precedences to procedures. The semantics of the ordering is
different than for the ordering of goals. The ordering specified on the pro
cedures is a recommendation on the likelihood of success when the procedure is
executed. However, these recommendations may be ignored by the problem solv
ing system which could change the recommended ordering or perform them in
parallel. Also · provided ls a capability to invoke a procedure only if other
procedures have been executed and failed. The following notation is used as
an example:

1: P <- o1,o2

1: p <- G3

2: P <-- o4,o5,o6

•3: P <-- o7
4: P <-- 08,09

8

The integers represent the recommended order of execution. The asterisked
integers represent a forced ordering. In the above example, the first two
procedures (priority:1) may be executed simultaneously. The third procedure
(priority:2) is less likely to succeed but may also be executed in parallel
with the first two, or'even before them if the problem solver so decides.
However, the fourth procedure (priority:*3) cannot be executed unless the
preceding procedures have been completely executed. A default ordering is
provided by PRISM when the procedures are not numbered. The recommended ord
ering is the sequence in which the procedures were present~d to the system.

At the present time, no user facilities are provided for node selection.
However, the PRISM problem solver is supplied with several evaluation func
tions to permit automatic selection of nodes to be expanded.

1• The Problem Solving Machine(~)

3-1• .TI!! !§!:1 Organization

l•l·l· .TI!.!!. Role of !!!! PSM

The Problem Solving Machine (PSM) is the core of the parallel problem
solving system. At initiation time, a number of moblets (a moblet is a single
ZMOB processing element) are designated as PSMs. The central task of the PSMs
is to manage the search space. The complete separation of logic (the problem
specification) and control (the strategy of solving the problem) allows a
great degree of flexibility while executing the program. Not only can the
search strategy be varied dynamically, but due to the inherently non
deterministic nature of logic programs, several mutually exclusive possibili
ties_may be explored simultaneously. The PSMs permit this inherent parallel
ism to be exploited during the course of solving a problem.

Initially a goal, which represents the problem to be solved, is sent by
the VAX to ZMOB and is read by some PSM. This PSM places the goal as the root
of a proof tree. A goal is expanded by selecting an atom in the goal and
replacing it by the body of a program clause that resolves with it. In this
manner a new goal clause, which when solved, solves the original problem, is
produced. When an atom is expanded, there may be several program clauses
which resolve with it. These represent alternative ways to solve the same
problem. These alternative subgoals lead to a branching in the search tree
(OR branches).

Thus at any given instant in the problem solution process the search
space administered by each PSM consists of a tree of goal clauses. The rest
of the search tree is the original goal with which the PSM was initiated. The
successor of any clause in this tree is the resolvent obtained by resolving
program clauses with some atom in the parent clause. Each leaf node in the
tree can be in one of four states:

the node represents the empty clause

the node represents a failure node

9 133

• the node represents an open goal clause not yet selected for expansion.

• the node represents an active goal clause selected for expansion, but not
yet fully expanded.

At any stage the PSM ~ust select an open clause from the search tree, and
then select one or more atoms from this clause. This selected atom is then
sent to an IDB and/or an EDB for expansion. While the IDB and/or EDB are
working on this atom, the PSM can transfer its attention to other nodes in the
search tree. An atom sent to the IDB may unify with one or more procedure
heads, and all the corresponding bodies are sent back to the PSM which ini
tiated the search, either one at a time or all at once. In the case that more
than one procedure body is returned for a given atom, several mutually
exclusive subgoal clauses are generated. These mutually exclusive goals can
then be solved independently in separate machines.

Thus each PSM has the capability to dynamically send a goal to another
PSM machine, if one is available. As with the goal tran·smitted by the VAX. to
a PSM, the goal transmitted from one PSM to another becomes a root of a goal
tree in the new PSM whose parent is the sending PSM. Each PSM can indepen
dently develop and manage the subtrees of the search space generated by the
goal node transmitted to the PSM. Each PSM is autonomous except for the
knowledge of the parent-child relationship. When a goal assigned to a PSM is
completely solved it transmits the solution or failure to its parent PSM. The
parent of the PSM to which the original goal was transmitted is the Host (VAX)
machine.

1•1•£• Conceptual~ of~~

This section presents a conceptual view of the program that drives the
PSM in terms of the subtasks that compose it and their functional specifica
tions.

The program which drives each PSM is composed of several subtasks. Each
subtask operates independently of all other subtasks. These processes do not
communicate directly with each other, instead they change global data struc
tures which then may affect another process. This independence makes it pos
sible to consider each process in isolation. This isolation makes the imple
mentation less error prone, and at the same time permits the single PSM pro
cess to be split across several machines if the need arises.

The operation of these processes is controlled by a scheduler process
which, based on the current state of the global data structures, determines
which subtask to invoke next. Thus each process once invoked is allowed to
proceed until completion (except in certain special cases, which result in its
preemption). Once this process completes, it returns to the scheduler which

, then applies a decision process to determine which subtask to invoke next.
This can be represented by a recursive PROLOG program, of the form:

S <- Di,Pi,S
where Sis the scheduler and Di is a decision process which succeeds if pro
cess Pi is to be invoked next, and fails otherwise.

There are six basic processes which compose the problem solver (aside
from the scheduler). These are the initialization, input, selection, resolu
tion, output and finalization processes.

10

The scheduler, once invoked with the initial goal, unconditionally
invokes the initialization process which creates all global data structures
required by the PSM processes and sets them to their initial values. The
scheduler then repeatedly invokes the input, output, selection and resolution
processes, by using its· decision criteria. This continues until an answer is
found or a termination signal is received. Once an answer (or all answers, as
the case may be) is found, the finalization process is invoked. If all chil
dren PSMs of this PSM have completed already and returned their answers, this
PSM transmits its answer to its parent. Otherwise, the finalization process
creates a data structure which contains enough information to construct the
answers when the children PSMs complete their tasks. Once this data structure
is created the PSM is reinitialized and can accept queries.

In this manner PSMs are not kept idle in case they complete before their
children do. This also allows a PSM to be its own ancestor if so desired.
Thus a cyclic graph of parent-child dependencies may be constructed.

In addition to the six processes mentioned earlier, there are two low
level processes which are totally independent of the scheduler and all other
processes. These are the mailstop handlers. These processes are interrupt
driven and are invoked whenever a message enters (leaves) the input (output)
mailstop of the PSM. The input (output) mailstop handler merely places
(removes) a message into (from) the input (output) queue and returns to the
interrupted process.

The input process understands the message formats of all possible mes
sages that can be received by the PSM. It selects a message from the input
queue, decodes it and updates the appropriate global data structure with the
information contained in the message.

The output process understands the message formats of all messages that
can be sent by the PSM. When invoked with a certain message type, it uses
information from the appropriate data structure, and formats this information
into the correct message format. This message is then placed into the output
queue, ready to be sent out.

The selection process directs the problem solving process by determining
which clause, and which atom within the selected clause to operate on next.
It is also responsible for the creation of new PSMs.

The resolution process receives the procedure bodies for an atom that has
been matched by the IDB and/or EDB. It then inserts a new clause into the
proof tree. This new clause consists of the clause from which the atom was
selected, with the atom deleted and the procedure body attached in its place.
The unifying substitution is then applied to the new clause.

1•£• Control in the ~

1•£•..!· Control Specification Support - Selection Process

The selection procedure determines the control strategy of the system.
The user is permitted to specify certain guidelines to direct the selection
process. The selection procedure has four main selection functions. These

11

are: node (clause) selection, atom selection, procedure selection and PSM
creation.

~ selection is concerned with choosing a clause, from the search tree, from ,,
which an atom is to be s~ected. Any node which has not been fully expanded, /,Q,
is a candidate for selection. A fully expanded node consists or a clause
whose selected atom has been expanded and all leaf nodes descended from the
clause are either failure nodes or null clauses. A non-fully expanded node
may be either an active or an open node. An active node is one from which one
or more atoms have been selected for expansion, but which has not been fully
expanded. An open node is one from which no atom has yet been selected for
expansion.

Atom selection is concerned with selecting an atom, for expansion, from a
selected node in the search tree. There are several system defined and user
defined constraints that will affect atom selection.

As defined in section 2, the user has the ability to·specify which atoms
in a clause may be executed in parallel and which must be done in sequence,
i.e. a partial order on the execution of the atoms. These user specified con
straints- limit the atoms which can be selected at any stage.- Only those atoms
which do not depend on any other atom or those for which the atoms they depend
on_have already been solved are candidates for selection.

· In addition to these user-defined orderings, there are certain orderings
implied by the structure of the node itself. There are two basic ways in
which the contents of a clause dictate the ordering on atom selection. These
are: dependent atoms, and special predicates.

Two or more atoms in a clause are said to be dependent when they share
variables. In this case what is desired is the first (or all) binding(s)
which cause the atoms to succeed. This can be accomplished either by process
ing the atoms in parallel and then intersecting-the sets or bindings for the
shared variables, or by finding a binding which satisfies one predicate and
then substituting it in the others and determining if they succeed with that
binding. This can be repeated until some ·binding succeeds or all are
exhausted (nested loops method). In either method a special AND node has to
be generated with the dependent atoms as its children and one of the above
techniques applied. In this system the nested loops method will be adopted
since space limitations make the set of values method infeasible.

The special predicates are a set of language supplied predicates whose
semantics dictate that certain other predicates in the clause must be fully
solved before these system defined predicates may be invoked, i.e., these
predicates induce a partial ordering on the atoms in a clause. These predi
cates are: write, read, fail,/ (the cut operator), not, and the evaluable
predicates (e.g., arithmetic operations).

Once these user and system defined constraints have been satisfied, a set
of atoms which are candidates for selection will remain. The atom selected
from this set will be selected based on user or system supplied heuristics.

Procedure selection is concerned with choosing which procedure body should be
given the highest priority when several bodies match an atom which was sent
for expansion. This decision is made by the IDB and is not influenced by the
PSM.

I .

i •

12

PSM selection, is concerned with the decision of when to initiate another PSM
with a subproblem. Whenever a branching of the search tree is induced by
either multiple alternate subproblems (OR-branches) or by independent conjunc
tive subproblems (AND-branches), this branch becomes a candidate for execution
in another PSM machine~ The actual process of determining when a new PSM is
initiated is discussed in the following section.

1•£•£· PSM Creation

The decision of when to initiate another PSM with a subproblem is not an
easy one. If the subproblem is too small, a large amount of overhead would be
incurred to solve it. If the subproblem is too large, the parent PSM may com
plete before the child and remain idle until its children complete. In gen
eral it is extremely difficult if not impossible to determine how complex a
subproblem is. Thus no attempt is made to determine the complexity of a sub
problem, in the initial system. Instead a new PSM is initiated every time a
branching of the search tree takes place, and there is a PSM available. At
any given instant, there may be several active branches within a PSM, and thus
several candidate nodes which may be sent to other machines. In this case all
or only some of these nodes may be shipped out. This is determined by the
user or by system supplied heuristics.

In order to reduce idle time, machines which have completed their alloted
task are permitted to accept fresh queries, as follows. If no further pro
cessing can be done then either all possible .answers for the goals this PSM
was invoked with have been found, or all paths resulted in failure, or all
paths local to this PSM have been fully explored and there are some children
of this PSM which have not yet completed their work. In the cases where all
answers have been found or all paths have failed, this information is
transmitted to the parent of this PSM, and the PSM state is restored to one in
which a new query can be accepted. In the case where · all local paths have
been explored and some chidren PSMs are still active, a data structure is con
structed which contains enough information to reconstruct the complete answer
from the information in this PSM and from the answers from the currently
active children PSM. Once this data structure is constructed, the local proof
tree is destroyed and the PSM state is restored to one in which a new query
can be accepted.

In this manner PSMs are not kept idle in case they complete before their
children do. This also allows a PSM to be its own ancestor if so desired.
Thus a cyclic graph of parent-child.dependencies may be constructed.

1•£•£•.!.• AND Parallelism

An AND-branch in the search tree can be one of two types. The first type
of AND-branch results when there is a conjunction of atoms which do not share
variables. This results in a node which has as its children two or more sets
of atoms which do not share variables. We shall refer to such an AND-node as
an AND1-node. The second type of AND-branch results when there is a conjunc
tion of atoms which do share variables (dependent atoms). This results in a
node which has as its children two or more sets of atoms which do share vari
ables •. These. children are ordered so that those atoms which bind variables
are executed earlier than those atoms which use those variables. Such an

13

AND-node will be referred to as an AND2-node.

The children of an AND2-node are currently always executed in the same
machine since concurrent execution across machines requires an excessive
amount of control and communication to synchronize the producers and consumers
of the answers. Thus in the initial system the children of only AND 1-nodes
are executed concurrently in separate machines.

We previously defined a clause to be an AND 1-Node if it could be split
into two or more sets of atoms that do not share variables.

This definition must be revised when dealing with ordered clauses. For
example let <- P(x),Q{x),R(y),T(y) be a clause. According to the definition
above we create an AND 1-Node as follows:

Now let· <-(P{x),(Q{x),R(y)],T(y)) be an ordered clause. The execution
sequence imposed by the order in the clause does not allow a similar split.
Thus a split may be performed only on sets of the clause that may be executed
in parallel. Therefore the clause above is represented as:

(P(x)[~)] T(y))

Q(x) R(y)

The split would be executed dynamically after P was solved.

J_.g_.g_.~ • .Q!! Parallelism

An OR-branch is created in the search tree when there are several match
ing bodies for a selected atom. These several bodies are alternative ways of
solving the selected subgoal and are thus independent. The existence of mul
tiple bodies then results in the formation of an OR-node with each of these
bodies as a child.

Since these children are independent of each other they may be executed
in separate machines. However those bodies which should not be attempted
until some other body fails are not scheduled for execution until the body it
depends on has failed.

J_.g_.J_. Handling Negation and the £!IT,(/) Operator

In addition to imposing an implicit ordering on the atoms within a node,
the cut(/) operator and negation both require special treatment in concurrent
systems.

1•,g,•1·1· ~ 9!,!(/) Operator

The cut operator is a means of achieving determinism in sequential logic
programs. The execution of a cut in the body of a procedure results in all
alternatives for the parent node of the node containing the cut to be. dis
carded. However, in sequential execution all alternatives with higher prior
ity than the one containing the cut have already been completely executed
before the one containing the cut. Thus the semantics of the cut operator are
unclear for concurrent execution, since the alternative containing the cut may
be executed concurrently with, or even before alternatives with higher prior
ity. This would lead to an incompatibility between sequential and concurrent
execution of the same logic program.

In the interest of preserving compatibility between the concurrent and
sequential execution of logic programs containing the cut operator, we have
defined the concurrent cut as detailed below.

The presence of the cut operator causes an implicit ordering
within the node containing the cut. The cut operator requires
preceding it in the node to be processed before it. The invocation
operator results in the following:

of atoms
all atoms
of this

(a) all bindings that have been computed for variables in atoms preceding the
cut will not be recomputed in the event of a failure of some atom
succeeding the cut

(b) all alternative procedure bodies which have lower priority than the body
containing the slash are discarded. However all higher priority bodies
are still considered, i.e., if procedure P has 3 bodies and if the second
(middle priority) body contains a cut then the third body will never be
considered if the cut in the second is executed, but the first body will
be unaffected.

1.,g,.1.,g,. Negation

The NOT meta-predicate defined in most sequential logic programming is an
implementation of Negation-by-Failure [Clark 1978). In this scheme, the nega
tion of an atom is considered to hold if all attempts to prove the atom, fail.
This is well defined in the case where all the arguments of the atom are con
stants. However this is not well defined when one or more of the arguments
are unbound variables. This is because the atom could succeed with some par
ticular bindings for the free variables, and fail for some other bindings.
Thus the behaviour -of the NOT meta-predicate can be anomalous in the case
where all argumentds are not constants. The semantics of negation can be
extended to handle atoms with variables as arguments by creating a set of
bindings for which the atom fails and assuming the negation of the atom holds
for precisely this set of bindings. This is how we define negation in PRISM.

The NOT meta-predicate requires that all atoms preceding it in the node
must have been solved before it is invoked. The execution of this meta
predicate results in the creation of a special negation node which has as
children the predicates which are to be negated. These predicates are solved
as if they were positive atoms for whom all answers are desired. When all
these predicates have been solved, the sets of values bound to each variable
will be c~mplemented with the domain over which they are defined. These

15

complements will be returned as answers by the negation node.

4. Examples 2£ Control in PRISM

In this section we provide an example of AND-parallelism and an example
of OR-parallelism to illustrate some of the capabilities of PRISM.

!!_ • l · Mm, Parallelism

tree.
This example of AND-parallelism provides a preorder traversal of a binary

Let
P(u,z) means that the preorder traversal of a binary tree u is z.
t(y1,x,y2) denote a tree whose left branch is y1, whose root is x and
whose right branch is y2•

Append(y.1,y2 ,z) mean that-if y2 is appended to the tail of y1 the result
is z.

We may then write,

1: P(nil,nil) <--
*2: P(t(y 1'x,y2) ,x.z) <--

([P(y 1,z1) ,P(y2,z2) J,Append(z1,z2,z)).

1: Append (nil,y,y) <--
•2: Append (x.y,v,x.w) <-- Append (y,v,w).

Thus, the base case, P(nil,nil) is always tested before the general case.
When the preorder clause defined by •2 is executed, the preorder traversal of
the left and right branches may be done asynchronously.

Since the preorder traversal of the left branch is independent of the
right branch, they may be executed asynchronously in different processors.
Each of the sub-branches may again be split to be executed on different
machines. Hence, a number of different PSMs can be executing the problem at
the same time. Thus, the time to execute the search is proportional to the
size of the longest branch, rather than the number of nodes in the tree as in
a sequential search.

Even if the problem is executed on a single machine, because one can be
searching for matches on many nodes of the search tree, the multiple IDB
machines can be working in parallel performing matching operations for each of
the nodes in the search tree.

4.2. OR Parallelism

Consider a database problem whose database is shown below (Figure 2).

16

Extensional (Relational) Database

MOTHER(Rita, Sally)
MOTHER(Alice, Beth)

- MOTHER(Laura, Christine)

FATHER(Harry,Jack)
FATHER(Harry, George)
FATHER(Jack, Sally)

Intensional Database

GRANDPARENT(x,z)
PARENT(u,z)
PARENT(u,z)

<- [Parent(x,y),Parent(y,z)]
<- Mother(u,z)
<- Father(u,z)

Query: <- GRANDPARENT(x, Sally).

Figure g.

140

We shall -describe how the problem might be solved -in PRISM. on the ZMOB
system. We use the following abbreviations in the series of figures that fol
low.

M-MOTHER
F-FATHER
G-GRANDPARENT

R-RITA
S-SALLY
A-ALICE
B-BETH

H-HARRY
G-GEORGE
J-JACK

We assume that there are only two moblets assigned to the EDB, one moblet
/ F contains the /-table, and the other the M-table. We assume that the IDB is

replicated on two moblets and two moblets are allocated to be PSMs.

When the system is to be loaded, the ZMOB executive specifies the moblets
allocated to the problem. The PRISM executive is informed of the machines and
allocates the EDB, IDB, and PSMs to specific moblets. The data and programs
are sent in a burst mode by the PRISM executive, resident in the host machine,
to the appropriate moblets. Mask registers are set in the EDB moblets so that
they can recognize the encoding for MOTHER and FATHER. The state of the sys
tem as would exist on ZMOB is illustrated in Figure 3. Processing of the
query shown in Figure 2 is now described.

1. The query is submitted by the user to the PRISM executive which sends a
message requesting response from a free PSM. We assume that the PSM on
the first moblet encountered responds and that the query is sent over the
belt in a burst mode. Figure 4 shows the state of the system at this
point.

2. The PSM-1 forms a goal tree, and selects the only atom to be solved. It
knows from preprocessing that the "G" predicate resides in an IDB
machine. It sends it out to be matched against all procedure heads with

17 141

the same name. IDB-1 receives the request and also notes that there is
only one response possible. See Figure 5.

3- IDB-1 finds a single match, informs PSM-1 that it has a match and at the
request of PSM-1 transmits the body of the procedure and the unifying
substitution. See Figure 6.

4. PSM-1 forms a new node (the resolvent clause) and selects the easier of
the two subproblems to be solved, namely PARENT(y,S). It determines that
the PARENT relation is intensional, and sends a message out to an IDB to
be processed. Since IDB-1 is not busy, it accepts the message and now
finds two matches. The PSM-1, in the meantime, determines that it has no
work to be done since no additional responses are possible for the root
node and it must wait for a response.

5. PSM-1 is informed by IDB-1 when it has found all matches for PARENT(y,S).
There a.re two responses. PSM-1 may request that both responses be
transmitted (or it may be done one at a time). Assuming both are
transmitted, the PSM forms two nodes (OR branches). Since a PSM is
available, it transmits one of the two nodes to PSM-2 to be solved. Now,
PSM-1 can send out -a request f'or MOTHER(y,S), while PSM-2 can send out a
request for FATHER(y,S). These requests are sent out by pattern on the
relation name and accepted by different moblets where the two relations
are-stored.

At this stage, two PSMs are cooperating in the solution of the problem,
and two EDB machines are searching for data. The processing continues in a
manner similar to the above description, until a solution is arrived at, as
shown in Figure 3-9.

The above illustrates how OR parallelism may be handled within PRISM.
Both AND and OR parallelism may be executing simultaneously. Each of' the PSM
machines may be working on a problem at some stage and all IDB and EDB
machi~es may also be executing simultaneously •

.2.• Summary and Future Work

There have been several proposals to achieve parallelism in logic pro
gramming systems (Clark[1981], Hogger[1982], Pereira[1978], van Emden[1976],
Wise[1982]). All these schemes, including PRISM provide natural ways of
expressing algorithms for execution on conventional distributed architectures.

PRISM provides an implementation of logic programs on a highly parallel
architecture. The design exhibits a high degree of modularity and orthogonal
ity. By this we mean that portions of PRISM can be replaced by functionally
similar modules with a minimum impact on the system. This provides a flexible
tool to experiment with the implementation of various control strategies on
diverse architectures. It provides full OR parallelism, partial AND parallel
ism and permits parallel asynchronous search for assertions and procedures.
Parallelism is transparent to the user. We provide a proper interpretation of
negation based on negation-by-failure.

The system represents a first approach to developing an experimental tool
for the design and implementation of large AI systems. There are many capa
bilities that need to be added in a second development. Some of' these are:
co- routining; a full AND-parallelism; user specificable heuristics; typing of

18

variables; intelligent backtracking for arbitrary execution sequences; non
top-down search methods; and the ability to incorporate lemmas dynamically.
These capabilities need to be incorporated into a coherent control language
that would permit th.e user to specify di verse aspects of control to varying
depths of detail while a problem is being solved. Some of the issues related
to the above developments are explored below.

The fundamental difficulty in distributed problem solving arises from the
fact that distributed control has not been cohesively studied and it is hard
to achieve effective global solutiQn by distribution of tasks: good local
decisions are not necessarily a guarantee for an effective global procedure.
Thus our efforts were aimed at the construction of a system that will be able
to support various problem solving strategies without paying the price in
efficiency of the execution. The main emphasis in our system was directed
towards modularity, flexibility and adaptivity. We believe that a paper design
is rarely as good as an effective implementation on a real parallel machine,
which - will · enable modifications and enhancements with minimal -programming
effort, and consequently were admittedly willing to make some compromises in
the initial system. Consistent-with this philosophy the system components~
induce a logical network topology, and virtual processors may be added or
deleted easily in our system without any changes to the rest of the system.
Each set of machines is seen as a single machine to the rest of the system and
any modifications and improvements to individual components may be made
without effecting the rest of the system. In this section we briefly discuss
some of the enhancements to PRISM that are currently under implementation or
being investigated.

Database Machines

EDB - Today's databases are far larger than the memory capacity of a few
hundred 64K microcomputers. Thus it will be useful to incorporate in our sys
tem a set of peripheral devices that will be attached to each EDB(or possibly
shared by several EDBs) ~ This will -enable both an increased memory capacity
and an ability to dynamically reconfigure the database machines in case of an
unbalanced demand on one of the EDB machines. Additionally it will be con
structive to facilitate basic database operators such as join,projection for
efficient data retrieval •.

IDB - In the current implementation the set of intensional database
axioms (IDB) is replicated over several machines. This philosophy was based on
the assumption that the IDB is relatively small and therefore may be stored in
one machine. This assumption simplified the communication protocols and the
operation of each IDB machine. We are currently developing a scheme in which
the IDB is distributed over several machines. Additionaly to achieve effec
tive performance from a highly parallel machine there is a need to control the
ratio between the communication and the computation time, that is for a full
utilization of a system it is desirable to increase the computation and
minimize communication. In the system to date this control exists in the PSMs
which may decide to solve a subproblem themselves rather than dispatch it to a
different PSM. Similar techniques will be incorporated in the IDB. The IDB
machine could perform several atomic resolution steps before returning the
bodies and the unifiers to the PSM, thus increasing the ratio between computa
tion and communication involved in a single resolution step. This effect may
be attained either by a partial compilation of the the IDB axioms, or by

19 14!>

parameterized execution of the IDB that will perform a number of resolution
steps as indicated by the PSM that initiated the query.

PSM - Machines Structure Sharing

Currently there is no sophisticated memory management done in the PSM.
The memory management schemes most commonly used in Prolog implementations are
copying and structure sharing. The decision not to incorporate structure
sharing in PRISM was motivated by two factors. Firstly an implementation of a
straight forward structure sharing will result in a tremendous overhead in
pointer chaining before each literal(clause) is sent for expansion or a
cumbersome and inefficient resolution operation if the structure sharing is
done across processors. Secondly, since more than one path in the proof tree
is active during execution, a locking mechanism must be incorporated to disal
low bindings from two different paths to be applied to variables of the same
literal simultaneously.

Parallelism enhancements in the PSM.

The_flexible implementation_of the_ selection procedures allows some
dynamic exploitation of inherent parallelism in the program. This includes
automatic detection of literals that do not share variables,and selecting
literals that will maximize the degree of the parallelism in the new subgoal.
Consider the goal: <- P(x),Q(x,y),R(y,z). It is quite clear that if Q is an
EDB predicate, binding of x and yin Q will result in a new goal with two
literals that do not share variables, and therefore maximize the parallelism
in the clause. At the moment our system supports only local detection of
parallelism, that is parallelism internal to a single clause. We are currently
investigating partial compilation techniques to maximize global parallelism,
during execution, and global planning strategies to optimize the performance
of the system in terms of utilization of the computational power of ZMOB on
the one hand and search space pruning on the other.

It is evident that cooperative problem solving must be supported with
communication channels between PSMs to minimize some of the redundant search,
by sharing partial results, eliminating goals that are logically related (by
implication o:r subsumption) and task sharing.

The notion of a PSM as defined in our system is problem independent,that
is each PSM may accept any problem. We are investigating the possibility of an
Expert PSM which is dedicated to the solution of a class of problems. This
notion will minimize some of the effort spent by the PSM in the selection pro
cess by precompiling some or all-of the selection procedures.

Our system is based on a goal driven procedure invocation. Some thought
has been given to facilitation of data-driven procedural invocation, that will
allow effective simulation of data-flow machines.

Before any of the above enhancements are attempted we will need to per
form many experiments with PRISM to determine its strengths and weaknesses. We
plan to experiment with algorithms by alternatively modifying the logic, the
control, and the architecture.

20 144
6. Acknowledgements

Work on this effort was supported by AFOSR grant number 82-0303 and by
NSF grant number MCS-79-19418.

1· References

Chakravarthy[1982]
Chakravarthy, U.S., Kasif, s., Kohli, M., Minker, J., Cao, D., "Logic
Programming on ZMOB: A Highly Parallel Machine", Proc. 1982 International
Conference on Parallel Processing, IEEE Press, 1982, New York, pp 347-
349.

Clark[1978]
Clark, K.L., "Negation as Failure", in Logic and Databases, H. Gallaire
and J. Minker (Eds.), Plenum Press, 1978, New York.

Clark[1981]
Clark, K.L., Gregory, s., "A Relational Language for Parallel Program
ming", DOC 81/16, Dept •... of Computing, Imperial College, 1981, London.

Computer[1982a]
Computer, Vol. 15, No. 2, Special issue on Data Flow Systems, February
1982, IEEE Press, New York.

Computer[1982b]
Computer, Vol. 15, No. 1, Special issue on Highly Parallel Computing,
January 1982, IEEE Press, New York.

Eisinger[1982]
Eisinger, N., Kasif, s., Minker, J., "Logic. Programming: A Parallel
Approach", Technical Report 1128, Dept. of Computer Science, University
of Maryland, College Park, 1981.

Hewitt[1977]
Hewitt, c., "Viewing Control Sructures as Patterns of Passing Messages",
Artificial Intelligence, Vol. 8, North-Holland Publishing Company, 1977,
PP 323-364.

Hogger[1982]
Hogger, C.J., "Concurrent Logic Programming", in Logic Programming, K.L.
Clark and S-A. Tarnlund (Eds.), Academic Press, 1982, New York.

Kahn[1977)
Kahn, G., MacQueen, D.B., "Coroutines and Networks of Parallel
Processes", Proc. IFIP Congress 77, North Holland, Amsterdam, pp 564-569.

Kornfeld[1979]
Kornfeld, W.A., "Using Parallel Processing for Problem Solving", A.I.
Memo No. 561, MIT A.I. Lab, December 1979, Cambridge, MA.

Kowalsk1[1979]
Kowalski, R.A., "Logic for Problem Solving", Elsevier North Holland Inc.,
1979, New York.

Kung[1980]
Kung, H.T., "The Structure of Parallel Algorithms", in Advances in Com
puters 1980 1 M.C. Yovits, Ed., Academic Press, 1980, pp 65-112.

21 145
Lieberman[1981]

Lieberman, H., "Thinking About Lots of Things At Once Without Getting
Confused", A.I. Memo No. 626, MIT A.I. Lab, May 1981, Cambridge, MA.

Minker[1982]
Minker_, J., Asper, C., Cao, D., Chakravarthy, U.S., Csoeke-Poeckh, A.,
Kasif, s., Kohli, M., Piazza, R., "Functional Specification of the ZMOB
Parallel Problem Solving System", Technical Note Z-1, Dept. of Computer
Science, University of Maryland, College Park, 1982

Pereira[1978]
Pereira, L.M., Monteiro, L.F., "The Semantics of Parallelism and Co
Routining in Logic Programming", Divisao de Informatica, Laboratorio
Nacional de Egenhario Civil, December 1978, Lisbon.

Rieger[1980]
Rieger, c., Bane, J., Trigg, R., "ZMOB: A Highly Parallel Multiproces
sor•, TR-911; Dept. of Computer Science, University of Maryland, May
1980, College Park, Mayland.

Rieger[1981a]
Rieger, c., Trigg, R., Bane, J., "ZMOB: A New Computing Engine for AI",
TR-1028, Dept. of Computer Science, University of Maryland, March 1981,
College Park, Maryland.

Rieger[1981b]
Rieger, c., "ZMOB: Hardware from a User's Point of View", TR-1042, Dept.
of Computer Science, University of Maryland, April 1981, College Park,
Maryland.

van Emden[1976]
van Emden, M.H., Lucena, G.H., de Silva, H.M., •Predicate Logic as a
Language for .Parallel Programming'!., Research Report, Dept. of Computer
Science, Univ. of Waterloo, Ontario.

Wise[1982]
Wise,
Proo.
1982,

M.J., "A Parallel Prolog: The Construction of A Data Driven Model",
1982 ACM Symposium on LISP and Functional Programming, ACM Press,

New York, pp 56-66.

VAX

PROBLEM
[olving
1:'._.achine - 1

. . .

\.

I ntensio na 1
:Q:a ta.Q_ase - 1

. .. -

PROBLEM
Solving
P'.achine - 2

. . .

[xtensional Datab se

...

Intensiona11 i 6
Qa ta!?_ase - 2

Fig. 3.

I
I

PROBLEM
[olving
J:1achine - l

+GP{x,s)

+GP(x,s)

l

•

M(R,S)~
M(R,M)+
M(B,F)+

Intensional
!!a ta.Q_ase - l

GP{ x,z)+P{ x,y),
P{y,z).

P{ u, v)+M(u, v).

P(u.v)+F(u, v).

- . .

...

. . .

PROBLEM
Solving
J:!achine - 2

F(H,J)+
F(H,G)+ ·
F(J,S)+

.[xtensional Qata-2_ se

. . .

lntensiona114 f
_Qa ta.Q_ase - 2

GP(x, :z)+P{ x ,y),
P{x,z).

P(u, v)+M(u, v).

P(u,v)+F{u,v) •

•

Fig. 4

PROBLEM
~o1 vi ng
Jiachir.e - 1

+GP{x,s)

+P(x,y}. P(y,s}

+GP(x,s)

. . .

I ntensiona1
:Q:a ta Q_a se - 1

GP(x,z)+P(x,y},
P(y,z).

P(u, v)+M(u, v).

P(u, v}+F{ u, v).

(1) MATCH+GP(x,s)

. . .

M{R,S},t;
M(R,M)+
M(B, F)+

.. . .

PROBLEM
Solving
.ffachine - 2

. . .

F(H,J)+
F(H,G)+ ·
F(J,S)+

fxtensior.a1 Qata.Q_ase

lntensional 148
Qa ta.Q_ase - 2

GP(x,z)+P(x,y),
P(x,z).

P(u, v}+M(u, v).

P(u,v}+F(u,v) •

. . .

.,..

•
•

Fig. 5.

PROBLEM
~olving
,11achine - 1

, ,

+GP(x,s)

+P(x,y), P(y,s)

/
+P(x,y), M(y,s)

VAX

+-GP(x~s)

. . .

M(R,Sh
M(R,M}+
M{B, F)+

Intensional
:Q:a ta.Q_ase - 1

GP(x,z)+P{ x,y),
P(y,z).

P(u, v)+M(u, v).

P(u, v)+F(u, v).

(1) MATCH+GP(x,s)
(2} MATCH+ P(y,s)

. . -

. . .

. . .

PROBLEM •
Solving
,!:!achine - 2

+P(x,y), F(y,s)

F(H,J}+
F(H,G}+ ·
F(J,S}+

.E_xtensional QataQ_ se

...

,.

lntensional 1 /. Q
Qa ta.Q_ase - 2 ...,. f

GP(X ,z)+P(x,y).
P(x,z).

P(u, v)+M(u, v).

P{u,v)+F(u,v).

I
•
•
•

Fig. 6 •

VAX

PROBLEM
Solving
Eachine - 1

+GP(x,s)

+P(x.y), P(y,s)

r-
+P(x,y), M(y,s)

1
+P{x,R)

+GP(x,s)

Intensional
~a ta!lase - 1

. . .

GP(x,z)+P(x,y),
P(y,z).

P(u, v)+M(u, v).

P(u,v)+F(u, v).

(1) MATCH+GP(x,s)
(2) MATCH+ P(y,s)

. . -

(3) MATCH+M(y,S)

M(R,S)-+:
M(R,M}+
M(B, F)+

PROBLEM
Solving
flachine - 2

+P(x,y), F(y,s)

I
....P(x,J)

. . .

(3) MATCH+F{y,S}

F(H,J)+
F(H,G)+ ·
F(J,S)+

fxtensional Qata.e_ se

...

.!.ntensional 150
Qata.e_ase - 2

GP(x,z}+P(x,y),
P(x,z).

P(u, v)+M{ u, v).

P(u,v)+F(u,v).

I
•
•
•

Fig. 7.

f.ROBLEM
iolving
t!adliPie - l

+GP(x,s)

+P(x,y), P(y,s)

~
+P(x,y), M(y,s)

I
+P{ x,R)

T~
+M(x,R) +F(x,R)

VAX ·

+GP(x,s)

Intensional
:Q:a ta.Q_ase - 1

GP(x,z)+P(x,y),
P(y,z).

P(u, v)+M(u, v).

P(u, v)+F{ u, v).

. . .
(1) MATCH+GP(x,s) • F? MATCH+ -P(y,s)
4 MATCH+ P(w,R)

.

(3) MATCH+M(y ,S)

M(R,Sh
M(R,M)+
M(B, F)+

PROBLEM
Solving
ffachine - 2

+P(x,y). F{y,s)

I
+P(x,J)

/~
+M(x,J) +F(x,J)

...

(3) MATCH+F(y,S)

F(H,J}+
F(H,G)+ ·
F(J,S)+

.E_xtensiona1 Q_ata.!!_ se

...

Intensional 151
Qa ta.!?_ase - 2

GP(x, z)+P (x,y),
P(x,z).

P{ u, v)+M{ u, v).

P{u,v)+F(u,v).

(4) MATCH+P(x,J

I

•

Fig. 8 •

•
•
•

):_ROBLEM
~ol vi ng
~.a ch i ne - 1

,.,
+GP(x,s)

+P(x,y), P(y,s)

r-
+P(x,y), M(y,s)

I
+P(x,R)

/~
+M(x,R)

I
F.11.IL

VAX

+GP(x,s)

+F{x,R}

-I
FAIL

Intensional
Q:a ta.Q_ase - l

GP(x,z)+P{x,y),
P(y,z).

P(u, v}+M(u, v).

P(u, v)+F{ u, v}.

...
(1) MATCH+GP(x,s)
(2) MATCH+-P(y,s)
(4) MATO!+ P(w,R)

- - -

(3) MATOl+M(y,S)
(5) MATCH+M(x,R)
(6) MATCH+M(x,J)

M(R,Sh
M(R,M)+
M(B,F)+

PROBLEM
Solving
J'.lachine - 2

+P{x,y), F(y,s)

I
+P(x,J)

I ~
+M(x,J) +F{x,J)

I I . . .
FAIL D

(SUCCEED)

X=H

(3) MATCH+F(y,S)
(5) MATCH+F{x,R)
(6) MATCH+F(x,J)

F(H,J)+
F(H,G)+ ·

· F(J,S)+

' . -

.(xtensional QataQ. se

lntensional 152
Qa ta.Q_ase - 2

GP(x,z)+P(x,y),
P(x,z).

P(u,v)+M(u,v).

P(u,v)+F{u,v).

...

(4) MATOl+P(x,J

Fig. 9

Control of Logic Programs Using Integrity Constraints

Madhur Kohli Jack Minker

Department of Computer Science
University of Maryland
College Park, MD 20742

153

15~
Abstract

This paper presents a theory for the intelligent execution of function
free logic programs.

Generally, interpreters for logic programs have employed a simple search
strategy for the execution of logic programs. This control strategy is
'blind' in the sense that when a failure occurs, no analysis is performed to
determine the cause of the failure and to determine the alternatives which may
avoid the same cause of failure.

When executing a logic program it is often_desirable to permit an arbi
trary selection function and to have several active nodes at any given time.
It is also useful to be able to remember the causes of failures and use this
information to guide the search process.

In this paper we present a theory for using integrity constraints,
whether user supplied or automatically generated during the search, to improve
the execution of function free logic programs. Integrity constraints are used
to guide both the forward and backward execution of the programs. The theory
supports arbitrary node and literal selection functions and is thus tran
sparent to the fact whether the logic program is executed sequentially or in
parallel.

1 155

1. Introduction

1.1. ~ Problem

This paper presents a theory for the intelligent execution of function
free logic programs.

Interpreters for logic programs have employed, in the main, a simple
search strategy for the execution of logic programs. PROLOG (Roussel [1975],
Warren [1979], Roberts [1977]), the best known and most widely used inter
preter for logic programs, employs a straightforward depth first search stra
tegy augmented by chronological backtracking to execute logic programs. This
control strategy is 'blind' in the sense that when a failure occurs, no
analysis is performed to determine the cause of the failure and to determine
the alternatives which may avoid the same cause of failure. Instead the most
recent node where an alternative exists, is selected. This strategy has the
advantage that it is efficient in that no decisions need to be made as to what
to select next and as to where to backtrack. However, the strategy is
extremely inefficient when it backtracks blindly and thus repeats failures
without analyzing their causes.

Pereira [1982], Bruynooghe [1978] and others have attempted to improve
this situation by incorporating the idea of intelligent backtracking within
the framework of the PROLOG search strategy. In their work the forward execu
tion component remains unchanged, however, upon failure their systems analyze
the failure and determine the most recent node which generated a binding which
caused the failure. This then becomes the backtrack node. This is an
improvement over the PROLOG strategy but still suffers from several drawbacks.
Their scheme works only for a depth first search strategy and always back
tracks to the most recent failure causing node. Also, once the backtrack node
has been selected, all information about the cause of the failure is dis
carded. This can lead to the same failure in another branch of the search
tree. Pietrzykowski [1981] has considered intelligent backtracking in the
framework of general first-order systems.

A node in the search space is said to be closed when it has provided all
the results possible from it. In most PROLOG based systems a node cannot be
closed until every alternative for that node is considered. However, by using
integrity constraints as will be shown later, a node can be closed once it is
determined that exploring further alternatives for that node will not provide
any more results.

When executing a logic program it is often desirable to permit an arbi
trary selection function and to have several active nodes at any given time.
It is also useful to be able to remember the causes of failures and use this
information to guide the search process.

In this paper we present a theory for using integrity constraints,
whether user supplied or automatically generated during the search, to improve
the execution of function free logic programs. Integrity constraints are used
to guide both the forward and backward execution of programs. The theory sup~
ports arbitrary node and literal selection functions and is thus transparent
as to whether the logic program is executed sequentially or in parallel.

2 156

In the rest of this section we define the class of logic programs to
which this theory is applicable. In Section 2 we show how integrity con
straints can be used to guide the forward execution of the system. In Section
3 we show how integrity constraints can be extracted from failure and pro
pagated up the search tree. In the Appendix we present the interpreter for
this theory.

1•£· Function~ Logic Programs

1•£•1· Horn Clauses

Horn clauses are a subset of the first order predicate calculus. The
language of function free Horn clauses is defined below.

A~ is a constant or variable.

An atomic formula is a predicate letter of arity n > 1 whose arguments are
terms, i.e., if Pis an n-ary predicate letter and t 1, ••• ,tn are terms then
P(t 1, ••• ,tn) is an atomic formula.

An atomic formula or its negation is a literal. The classical logical connec
tors - (not),/\ (and), V (or) and the universal quantifier V are used in con
structing clauses.

A clause is a disjunction of literals all of whose variables are universally
quantified. That is, B1 v ••• V 13ui V -A1 v ••• V -An is a clause. A clause can
be written equivalently as (V xi) (B1 v ••• V Bm <- A1 /\. • ./\ An) where the xi'
i=1, ••• ,k are all the variables in the atomic formulae Ai, Bj, i=1, ••• ,n,
j:1, ••• ,m. Since all variables in a clause are universally quantified, the
universal quantifier will be omitted in the rest of this paper.

A Horn clause is a clause which has at most one positive literal, i.e., the
clause above is Horn iff m < 1.

A function free logic program is composed of function free Horn clauses
as follows:

1. Assertions are facts or general statements about the domain and are of
the form

2. Procedures are of the form:
P{x 1, ••• ,~) <- P1(•••), ••• ,Pn(•••)

which states that to solve P we must solve P1, ••• ,Pn.

3. Goals or the problem to be solved are of the form
<- P(•••),Q(•••), ••• ,S(•••)

A function free logic program is defined in terms of the following:

(1) Axioms

(a) Domain Closure Axioms, which states that there is a finite set of
constants c 1, ••• ,cn from which all constants in the knowledge base must
be drawn.

3

(b) Unique Name Axioms, which state that the constants are unique i.e.,
(c 1,c2), ••• , (c 1,cn), ••• , (cn_,,cn)

(c) Equality Axioms:
reflexive (x = x)
symmetric ((y = x) <- (x = y))
transitive ((x = z) <- (x = y) /\ (y = z))
principle of substitution of equal terms

P(y1,•••,Yn) <- P(x,, ••• ,Xn) /\ (x1=Y1> /\. • ./\(Xn = Yn)
where Pis an n-ary predicate letter.

(2) Assertions of the form
P(x1, ••• ,Xn) <-

(3) Procedures of the form
P(x1, ••• ,~) <- P1(•••), ••• ,Pm(•••)

(4) A meta-rule: Negation as failure to prove positive literals.
1978] and [Reiter 1978]).

1.g.g. Integrity Constraints

([Clark

An integrity constraint is an invariant that must be satisfied by the
clauses in the knowledge base. That is, if T represents a theory of function
free logic programs and IC represents a set of integrity constraints applica
ble to T, then TU IC must be consistent.

Integrity constraints are closed function free Horn formulae of the form:

(a) <- P1, ••• ,Pm, or

(b) Q <- P1, ••• ,Pm, or

(c) E1 V E2 V ••• V En<- P1, ••• ,Pm where the Ei, i:1, ••• ,n, are equality
predicates i.e. each Ei is of the form xi= yi where at least one of the
xi, Yi are variables.

Thus, an integrity constraint of the form (a) above, represents negated
data, in the sense that P 1 /\ P2 /\. • ./\Pm can never hold if T U IC is con
sistent.

An integrity constraint of the form (b) above, states that if
p 1 /\ P2 /\. • ./\ pm

holds then Q must also hold.

Integrity constraints of the form (c) above, represent dependencies
between the arguments of P1,P2, ••• ,Pm.
Consider the logic program:

I P(x,y)<-F(x,y) I
F(a,b)<- IT

I
I

F(b,c)<-

and the associated integrity constraint

4

I
I

R(x,z)<-P(x,y),P(y,z)IIC
I
I

In the above example, R(a,c) can be proven from T, by using negation by
failure. P(a,b) and P(b,c) can be proven from T. R(a,c) can be proven from
P(a,b) and P(b,c) and IC. Thus R(a,c) can be proven from TU IC. Thus TU IC
is inconsistent. The above integrity constraint is violated by the logic pro
gram since TU IC is inconsistent.

If, however, the clause:
R(x,z) <- F(x,y),F(y,z)

were added
would not
constraint

to T, then TU IC would be consistent and the integrity constraint
be violated. Similarly, one could leave the axiom as an integrity

and add R(a,c) to the knowledge base and have a consistent theory.

2. Goals and Integrity Constraints

2.1. Integrity Constraints to Limit Forward Execution

Though integrity constraints are not necessary for finding the solution
of a given set of goals with respect to a given logic program (Reiter
[1978]), they can greatly enhance the efficiency of the search process and
thus improve the performance of the problem solver (McSkimin and Minker
[1979], King [1981]).

Integrity constraints enable the semantics of the given domain to direct
the search strategy by enabling the problem solver to prune those alternatives
which violate integrity constraints and thus focus the search. Thus,
integrity constraints influence the forward execution of the problem solver by
enabling it to detect which sets of goals are unsolvable. This avoids explor
ing alternatives which must fail after a, possibly lengthy, full search.

Thus whenever a new set of subgoals is generated, this set can be tested
to determine if it violates any integrity constraints. If so, the node in
question can be discarded and another path considered.

2.2. Implementation and Search Strategy

There are several forms an integrity constraint may take (Section 1.2.2).

Whenever a new set of goals is generated it must be tested to
if it violates an integrity constraint. Though each of the forms
and (c) above require slightly different treatments to determine if
violated, the underlying mechanism for each is the same.

determine
(a), (b),
they are

Form (c) can be transformed into form (a) by moving the disjunction of
equalities on the left into a conjunction of inequalities on the right, i.e.,

E1 V E2 V ••• V En<- P1, ••• ,Pm
is equivalent to

I I
I

5 159

These inequalities can then be handled by using predicate evaluation rather
than negation.

Form (b) can be interpreted to mean that solving Q is equivalent to solv
ing P,, ••• ,Pm and thus P1, ••• ,Pm can be replaced by Qin the set of goals.

Since all that is
integrity constraint
algorithm can be used.
side of some integrity

required, is to determine if the literals in the
occur in the goal clause, an extremely straightforward
It is only necessary to determine if the right hand

constraint can subsume the goal clause.

A clause C subsumes a clause D iff there exists a substitution o- such
that

Co-SD

By Co-we mean the result of applying a substitution set o-, which is composed
of pairs of the form a1;xi where the xi are variables of C and the a1 are
variables or constants, to C, i.e. each occurrence of xi inc is replaced by
ai.

The subsumption algorithm executes in linear time and does not increase
the complexity of the search.

This algorithm (Chang and Lee [1973]) is presented below:

Let C and D be clauses.
Let Q = {a1tx1, ••• ,an/xn} be a substitution set, where x 1, ••• ,~ are all
the variables occurring in D and a 1, ••• ,8n are new distinct constants not
occurring in C or D (Skolem constants) and the constants ai is to be sub
stituted for the variable xi, wherever it appears inc.
Suppose D = L1 V L2 V ••• V Lui,
then DO= L,o V L20 v ••• v LuiO
DQ is a ground clause since all variables in D have been replaced by
Skolem constants.
Thus , -og = -L 1 Q /\ -L2Q /\. • ./\ -Lmg

1: Let w = {-L1o, ... ,-~Q}

2: Let k = 0 and u0 = {C}

3: If uk contains the null clause then terminate; C subsumes D
else let uk+1 = {resolvents of c1 and c2 I c 1 ~ uk and c2 ~ W}

4: If uk+1 is empty then terminate; C does not subsume D
else set k to k+1; go to Step 3.
Consider now, how the yarious forms of integrity constraints can be used

to limit the forward execution.

If a constraint is a form (a) constraint then all that is required is to
apply the subsumption algorithm to the newly generated goal clause. If the
constraint subsumes the goal clause, the goal violates the constraint and
should be deleted from the search space.

Whenever a literal is solved, it must be determined whether
with any literal in the right hand side of a form (c) constraint.

it unifies
If so, the

6
160

resulting substitution is applied to the constraint, the solved literal is
deleted, and the resulting clause is added to the set of integrity con
straints.
For example, if

x1:x2 <- P(x,x1),P(x,x2)
is a constraint and P(a,b) is solved then P(a,b) unifies with the right hand
side of the above constraint with the substitution set {a/x, b/x1}. Applying
this substitution to the above constraint, and noticing that P(a,b) has been
solved permits the revised constraint

X2=b <- P(a,x2)
to be obtained. This is then added to the set of integrity constraints.
Also, this allows any node containing P(a,x) to be considered as a purely
deterministic node, since only one possible solution for P(a,x) exists.

Finally form (b) constraints can be used as follows. If the right hand
side of the constraint subsumes the goal then, the resulting substitution is
applied to the left hand side of the constraint and a new alternative goal
with the left hand side substituted for the right hand side of the constraint,
is generated. For example, if

Q(x,z) <- P1(x,y),P2(y,z)
is a constraint, and the goal clause under consideration is

<- R(a,u),P,(a,y),P2(Y,Z),S(Q,Z)
then

<- P1(x,y),P2(y,z)
subsumes the goal with substitution {a/x}. Applying this substitution to <
Q(x,z) results in<- Q(a,z). Generating an alternative node with Q replacing
P1,P2 then results in the above goal node being replaced by the following OR
node

Parent Node

R(a,u),P 1(a,x),P2(y,z),s(b,z)

Whenever a violation of an integrity constraint occurs it is treated as a
failure. This results in failure analysis and backtracking which are detailed
in the next section.

1· Local and Global Conditions

Global conditions are integrity constraints which are applicable to every
possible node in the search space. Local conditions are integrity constraints
which are generated during the proof process and which are applicable only to
the descendant nodes of some given node in the search space.

In this section we show that both local and global conditions exist. We
also show how implicit global and local conditions may be determined and how
they can be used to improve the efficiency of a problem solver. We also show
how both failure nodes and fully expanded nodes may be used to derive these
conditions.

1

J•l· Failure

The failure of a literal can provide valuable information for directing
the search. A literal 'fails' when it cannot be unified with the head of any
clause (intensional or extensional) in the knowledge base. Since this failure
means that the literal cannot be proven in the current knowledge base, because
of the assumption of failure by negation, the literal's negation can be
assumed to hold. Thus, the negation of the literal can be viewed as an impli
cit integrity constraint, and the failure can be viewed as a violation of this
integrity constraint.

Thus, every failure can be viewed as a violation of some integrity con
straint, implicit or explicit. This allows us to extract useful information
from every failure, and to use this information in directing the search.
The possible causes of unification conflicts are:

(a) The literal is a pure literal. That is, there is no clause in the
knowledge base, which has as its head the same predicate letter as the
literal selected. This implies that any literal having the same predi
cate letter as the selected literal, will fail anywhere in the search
space. This information can be useful in terminating other branches or
the search tree in which a literal containing this predicate letter
occurs. Thus if P(a,x) is a pure literal, then all of its argument posi
tions can be replaced by distinct variables and the resulting literal can
be added to the set of integrity constraints as a form (a) constraint,
i.e.,

<- P(x,,x2)
is added to the set of constraints.

(b) There are clauses in the knowledge base which could unify with the
selected literal, but which do not unify because of a mismatch between at
least two constant names. This mismatch can occur in two ways:

(1) one of the constant names occurs in the literal and the other occurs
textually in the head of the clause with which it is being matched.

(ii) both the constants, which are distinct, occur in only one of the
literal or the clause head being matched, but are to be bound
together by the repeated occurrence of a variable in the clause head
or literal, respectively.

In both cases (1) and (ii) it is obvious that the
never succeed with that particular set of arguments.
used as an integrity constraint by placing the literal
straint. For example, if the selected literal is

P(x,a,x)
and the only P clauses in the knowledge base are

P(nil,nil,nil) <-
P(z,z,b) <- P1(z,b),P2(z)

selected literal can
This information can be
as a form (a) con-

then the unification fails and <-P(x,a,x) can be added to the set of integrity
constraints.

8

1·£• Explicit and Implicit Integrity Constraints

Integrity constraints may be either explicit or implicit. Explicit
integrity constraints are those which are provided initially in the domain
specification. These constraints affect the forward execution of the problem
solver as detailed in Section 2. These constraints can also be used in the
derivation of implicit constraints.

Implicit integrity constraints are generated during the proof process,
i.e., during the solution of a specific set of goals. These constraints arise
out of the information gleaned from failure as shown in section 3.1, and from
successes in certain contexts as will be shown in later sections. These
integrity constraints may be considered to be implicit integrity constraints
in the sense that they are not explicitly supplied integrity constraints but
are derived from the proof process.

l•l• Applicability of Integrity Constraints

An integrity constraint may be globally or locally applicable. An
integrity constraint is said to be globally applicable if it can be applied to
any node in the search space. That is, it must be satisfied by every node on
every success path in the proof tree. Explicit integrity constraints are
always globally applicable since they are defined for the domain and are
independent of any particular proof tree. Implicit integrity constraints may
be either locally or globally applicable.

A locally applicable integrity constraint is one which must be satisfied
by a given node and all its children. Any node which is not part of the sub
tree rooted at the node to which the constraint is locally applicable, need
not satisfy the constraint. Locally applicable integrity constraints are
derived from the failure of some path in the search space. The analysis of
the cause of the failure results in the generation of a locally applicable
integrity constraint which is transmitted to the parent node of the failure
node. This local integrity constraint·must then be satisfied by any alterna
tive expansions of the node to which it applies. This effectively prunes
those alternatives which cannot satisfy the constraint. For example, consider
the following logic program fragment,

Logic Program:
P(a,b) <-
Q(y,z) <- Q1(z,x), Q2(z,y)
Q(y,z) <- Q3(z,y)
Q1 (b,d) <-
Q2(b,b) <-
Q2(c,c) <-
Q2(c,b) <-
Q2(x,y) <- Q4(c,x)
Q3(c,b) <-
Q4(x,x) <-

Query:
<- P(x,y),Q(y,z)

9

Search Tree:

(1)

<- f(!,z),Q(y,z)

(2) l
<- SC!~,.!>

(3)

<- Q1 (z,x) <- S3<.!,E.>

(4)

<- g,cr~) (5)

<- s, (E_,!_)

l
.Jess

fail success

fail

From the proof tree, the following information can be exteracted. From node
4, <- Q1(c,x) can be propagated as a global implicit constraint since<-
Q1(c,x) can never be solved. Also, z = c can be propagated as a local impli
cit constraint to node 3 and thus later prevent the generation of node 8.
This constraint is local to node 3 and its children since that is the node
that bound z to c. Thus, node 6 has inherited this local constraint and
thereby prevents z from being bound to c. As can be seen from the example an
alternative expansion of node 2 giving node 7 succeeds with z bound to c,
which illustrates that z =cat node 3 is a local constraint.

1•~• Fully Expanded Nodes

Implicit integrity constraints can be derived not only from failures but
also from fully expanded nodes.

If the same local integrity constraint is generated by every expansion of
a given node, then this constraint can be propagated globally, irrespective of
whether or not some expansion of this node succeeded. Also any node which
fails for every possible expansion, can be propagated as a global integrity
constraint.

10

1•2· Generation and Propagation of Conditions

Implicit integrity constraints are generated at the leaf nodes of the
search space and are then propagated either globally or as locally applicable
integrity constraints to some parent node of the leaf node. The rules for
generating and propagating these dynamic constraints are detailed below.

When a goal fails along all paths, then that goal along with its current
bindings is propagated as a global integrity constraint. Thus, if
P(d1 u2 ••• ,~), where the d1 , i = 1, ••• ,n are constants or variables, fails
for 'every expansion of P, then<- P(dj u2 ••• ,dn) is a global integrity con
straint. This is because P(d 1 d 2 ••• ,dn)'can never succeed, given the current
state of the knowledge base. ' '

Since that goal can never succeed with its current bindings, alternatives
which give rise to different bindings for its arguments must be tried. Thus
those nodes which created the failure causing bindings receive as local
integrity constraints, the information that these bindings must not be
repeated along alternative expansions of the nodes which created the bindings.
That is, if P(d 1 u2 ••• ,dn) fails and there is some ancestor P' of P such
that some di of Pi! b6und by some literal (other~!') in the clause con
taining P', then <- xi= di is a local integrity constraint for the clause
containing P'. If there are several d. which have been bound in different
clauses then the conjunction of these 5indings must be propagated to the bind
ing clauses. That is, if ~ ~ ••• ,p are constants, where ~- = d- i =
1, ••• ,m; j = 1, ••• ,n, such taaf'pi wal bound by some ancestor pi 6f P,Jand if
P1 is the most recent ancestor of P and Pm is the least recent ancestor of P,
then<- x1 = ~1 is propagated to the clause containing P1 and<- x1 = ~1, x2 =
p2, ••• ,xi= ~i is propagated to the clause containing Pi. This is because
undoing the p1 binding at P1 may suffice to remove the cause of failure
whereas at P2, undoing either of the p1 or ~2 bindings may suffice. We do not
propagate <- x1 = ~1, x2 = ~2, ••• ,xi= ~i to every Pk since xi has been
replaced by pi in Pi and thus does not occur in any Pk, k < i.

Local constraints which are propagated to a node by a descendant of the
node must then be propagated to all other descendants of that node. This is
because, as was noted above, the binding of pi to xi in the node containing Pi
was due to the selection of some atom other than Pi in that node. Thus, Pi
will be present in every expansion of that node and the binding of pi to xi
will cause Pi to eventually fail.

Theorem:

Consider a node P which has several children P1, P2, ••• , Pn.
Associated with each Pi is a set of local integrity constraints generated
by its descendent nodes.
Let ICi be the set of local integrity constraints associated with each
Pi. Then(')Ici is propagated to P.

i

Proof:

Let !Ci be the set of local integrity constraints applicable to Pi, i.e.,

11 1 (;5

ICi is the set of constraints generated by the descendents of Pi using
the rules explained above.
Let ICp be the set of local integrity constraints applicable to P, then

f)rci~ICp• Let Y < (lrci, then Y < ICi "I/ i=1, ••• ,n and thus every Pi will
fail for any bindingithat satisfies "'i. Thus since every P. fails, p must

l.
fail with any binding that satisfies 7. Thus Y<ICp i.e.
'/ ~nrci => Y < ICp and0ICi :ICp•

i l.

4. Summary

A theory has been developed for function-free logic programs to permit
control of the search based both on domain specific information in the form of
integrity constraints and on an analysis of failures. Integrity constraints
limit search in the forward direction, while failures result in the creation
of integrity constraints. Failure analysis is also used to determine back
track points which are more likely to succeed. The concepts of local and glo
bal constraints have been introduced and are to be used to inhibit exploring
fruitless alternatives. Subsumption is employed to take advantage of the con
straints. A logic program is provided for an interpreter which will perform
the above.

We intend to incorporate these concepts into PRISM, a parallel logic pro
gramming system [Kasif,Kohli and Minker 1983], under development at the
University of Maryland.

2• Acknowledgements

This work was supported in part by AF0SR grant 82-0303 and NSF grant
MCS-79-:-19418.

6. References

[Bruynooghe 1978]

12

Bruynooghe, M., Intelligent Backtracking for an Interpreter of Horn
Clause Logic Programs, Report CW 16, Applied Math and Programming Divi
sion, Katholieke Universiteit, Leuven, Belguim, 1978.

[Chang and Lee 1973]
Chang, C.L., and Lee, R.C.T., Symbolic Logic and Mechanical Theorem Prov
ing, Academic Press, New York, 1973.

[Clark 1978]
Clark, K.L., "Negation as Failure", in Logic and Databases, H. Gallaire
and J. Minker, Eds., Plenum Press, New York, 1978, pp 293-322.

[Kasif, Kohli, and Minker 1983]
Kasif, s., Kohli, M., and Minker, J., PRISM: A Parallel Inference System
for Problem Solving, Technical Report, TR-1243, Dept. of Computer Sci
ence, University of Maryland, College Park, 1983 •.

[King 1981]
King, J.J., Query Optimization by Semantic Reasoning, Ph.D Thesis, Dept
of Computer Science, Stanford University, May 1981.

[McSkimin and Minker 1977]
McSkimin, J.R., and Minker, J., The Use of a Semantic Network in a Deduc
tive Question Answering System, Proceedings IJCAI-77, Cambridge, MA,
1977, pp 50-58.

[Pereira 1982]
Pereira, L.M., and Porto, A., Selective Backtracking, in Logic Program
ming, K.L. Clark and S-A. Tarnlund, Eds., Academic Press, New York, 1982,
pp 107-114.

[Pietrzykowski 1982]
Pietrzykowski, T., and Matwin, A., Exponential Improvement of Efficient
Backtracking: A Strategy for Plan Based Desduction, Proceedings of the
6th Conference on Automated Deduction, Springer Verlag, New York, June
1982, pp 223-239•

[Reiter 1978]
Reiter, R., On Closed World Data Bases, in Logic and Databases, H. Gal
laire and J. Minker, Eds., Plenum Press, New York, 1978, pp 55-76.

[Roberts 1977]
Roberts, G.M., An Implementation of PROLOG, M.S. Thesis, University of
Waterloo, 1977.

[Roussel 1975]
Roussell, P., PROLOG: Manuel de Reference et d'Utilisation. Groupe
d'Intelligence Artificielle, Universite d'Aix-Marseille, Luminy, 1975.

[Warren 1979]
Warren, D.H.D., Implementing PROLOG: Compiling Predicate Logic Program,
Department of Artificial Intelligence, University of Edinburgh. Research
Reports 39 and 40, 1979.

13

Appendix: TI!! Interpreter

In this appendix we describe the interpreter, for function-free logic
programs, which implements the theory described in the previous sections.

~: An open node is a node which has not been selected for expansion.

~: An active~ is a node which has been selected for expansion but has
not yet been fully solved.

~: A closed node is a node which has been completely expanded.

1. Interpreter Specification

1. Initialise the search space with the initial goals.

2. Select an open node from the search space. Mark it as active.

3. If the selected node is subsumed by a global integrity constraint then go
to step 15.

4. Select an atom from the selected node.

5. Unify the selected atom with all procedure heads which have the same
predicate letter.

6. Delete all procedures which require bindings which violate the local
integrity constraints of the selected node, from the set of procedures
which were selected in step 5.

7. If the set of procedures obtained after step 6 is empty, go to step 14.

8. Add the set of selected procedures to the set of all selected but uncon
sumed procedures generated so far.

9. Select one or more procedures from the set of unconsumed procedures.

10. For each of the procedures selected in step 8: generate descendant nodes
of the node which was expanded to obtain these procedures. The descen
dants are generated by replacing the selected literal by the body of a
matching procedure, and applying the substitution obtained from the unif
ication process to the newly generated node. Mark the newly generated
node as open.

11. If any of the newly generated nodes is empty (null clause), STOP.

12. Initialise the local constraint sets for the newly generated nodes, with
the local constraint sets of their parent node.

13. go to step 2.

14. Add the selected node with all its current bindings to the list of global
integrity constraints.

15. Mark the current node as closed. For each ancestor node which made a
binding in the current node, add a local constraint which is the negation
of the bindings.

16. Propagate the local constrint set to all children of each affected node.

17. Go to step 2.

14 1 G 3

2. Logic Program f2!: ~ Interpreter

In this section we define the logic program for the interpreter described
in the previous section.

A node is a 3-tuple
n(state,clause,localic)

where, state is either open, active or closed; clause
represented by this node; localic is the set of local

A body is a 2-tuple,
b(clause,sublist)

is the set of goals
integrity constraints.

where, clause is the procedure body; and, sublist is the substitution set gen
erated by unification of the literal and the procedure head.

solve(goals,prog,ic) <-
init(goals,tree),
interpret(tree,prog,ic).

init(goals,tree) <
inittree(n(open,goals,nil),tree).

interpret(tree,prog,ic) <-
empty(tree).

interpret(tree,prog,ic) <-
selectnode(tree,node,newtree1),
expandnode(node,newtree1,prog,ic,newtree,newic),
interpret(newtree,prog,newic).

expandnode(node,tree,prog,ic,newtree,newic) <-
icok(node,ic),
selectatom(node,atom),
unify(atom,prog,bodies),
checklocalic(node,bodies,newbodies),
insertbodies(newbodies,node,atom,tree,ic,newtree,newic).

expandnode(node,tree,prog,ic,newtree,ic) <
not(icok(node,ic)),
failurenode(node,tree,newtree).

icok(node,ic) <-
empty(ic).

icok(node,ic) <
selectic(ic,oneic,restic),
not(subsume(oneic,node)),
icok(node,restic).

checklocalic(node,nil,nil,ic,ic) <- •
checklocalic(n(x,y,lic),b(z,subs).restbodies,b(z,subs).newbodies,ic,newic) <

checklicok(lic,subs),
checklocalic(n(x,y,lic),restbodies,newbodies,ic,newic).

16

failurebindings(~,bindings) creates a list of bindings in~' undoing any
one or more of which may undo the cause of failure.

addlocalic(parents,bindings,newparents) updates the local integrity constraint
sets for parents with those elements of bindings which are applicable, and
creates the new node list newparents.

propagatelocalic(parents,~,newtree) propagates the local integrity con
straint sets of each element of parents to every child of that node. It gen
erates a newtree with all the newly modified nodes.

addic(~,ic,newic) adds~ to the set of global integrity constraints ic
to generate the new global integrity constraint set newic.

selectic(ic,singleic,restic) selects an integrity constraint singleic from the
set of integrity constraints ic and creates the set restic which is ic -
singleic.

15

checklocalic(n(x,y,lic),b(z,subs).restbodies,newbodies,ic,newic) <
not(checklicok(lic,subs)),
addic(z,ic,newic1),
checklocalic(n(x,y,lic),restbodies,newbodies,newic1,newic).

checklicok(nil,subs) <-
checklicok(lic.restlic,subs) <-

not(member(lic,subs)),
checklicok(restlic,subs).

insertbodies(bodies,node,literal,tree,ic,newtree,ic) <-
not(empty(bodies)),
inserttree(node,literal,bodies,tree,newtree).

insertbodies(bodies,node,literal,tree,ic,newtree,newic) <
empty(bodies),
addic(node,ic,newic),
failurenode(node,tree,newtree).

failurenode(node,tree,newtree) <
bindingnodes(node,tree,parents),
failurebindings(node,bindings),
addlocalic(parents,bindings,newparents),
updatetree(parents,newparents,tree,newtree1),
propagatelocalic(newparents,newtree1,newtree).

where,

1 tO

inittree(node,tree) creates~ with node as its root node.

inserttree(node,lit~ral,bodies,tree,newtree) creates a newtree which is formed
from tree by generating children nodes 9f node by replacing literal in node by
the atoms in each of the bodies and applying the substitutions to the newly
generated nodes.

updatetree(nodes,newnodes,tree,newtree) modifies tree to produce newtree by
replacing each element of nodes in the tree by the corresponding element in
newnodes.

selectnode(tree,~,newtree) selects an open node from tree and creates a
newtree which has node replaced by a new node marked as active.

selectatom(node,atom) selects an atom from node.

unify(atom,_rn,bodies) selects those procedures from ,rn which have the same
name as atom. It then applies the unification algorithm to each of these pro
cedure heads and forms a list of those bodies which match the given atom,
along with the resulting substitution lists.

subsume(ic,node) determines whether the integrity constraint ic subsumes node.

member(element,set) determines if element is a member of set.

empty(list) determines if list is empty(nil).

bindingnodes(node,tree,parents) sets parents to be the list of all ancestors
of node which created a binding in node.

Interprocess Communication
in Concurrent Prolog

Akikazu Takeuchi Kouichi Furukawa
Research Center

Institute for New Generation Computer Technology
Mita-Kokusai Building. 21F.

4-28, Mita 1-chome, Minato-ku, Tokyo 108
Japan

Abstract

Concurren! Prolog is a logic-based concurrent
programm,ng language which was designed and
implemented on DEC-10 Prolog by E. Shapiro. In
this paper, we show that the parallel computation in
Concurrent Prolog is expressed in terms of message
passings among distributed activities and that the
language can describe parallel phenomena in the same
way as Actor-formalism does. Then we examine the
expressive power of communication mechanism based on
shared logical variables and show that the language
can express both unbounded buffer and bounded buffer
stream communication only by read-only annotation
and shared logical variables. Finally the new
feature of Concurrent Prolog is presented, which
will be very useful in describing the dynamic
formation and reformation of communication network.

I

1 11

1. Introduction

Concurrent Prolog was designed and implemented on the DEC-10 Prolog by E.
Shapiro [l] for concurrent programming. As the Relational Language [2].
Concurrent Prolog adopts Or-parallelism as a basis for non-deterministic processing.
and And-parallelism for description for parallel processes. Shared variables are
used, with some control information uvariable annotation", as communication
channels among concurrent processes.

In the Relational Language, there are two kinds of the variable annotation. input
and output, which are used for input suspension and output suspension respectively.
On the contrary, in Concurrent Prolog, there is only one annotation. read-only
annotation, which is a generalized idea of input annotation and by which we can
also express the output suspension when an output buffer is full. This will be
explained in the section 4.

In the section 2, we review the Concurrent Prolog. In the section 3, the
computation model of the language is presented and in the section 4 we examine
the basic communication mechanism based on shared logical variables and derive
the technique for implementing the bounded buffer communication in the language.
In the section 5, we introduce the concept of the incomplete message as a new
programming paradigm and explain briefly. In the section 6, we present a new
feature of Concurrent Prolog which is very useful in describing the formation and
reformation of the communication network.

2. Review of the Concurrent Prolog

2.1 Syntax of Concurrent Prolog

In Concurrent Prolog, a program is represented as a list of guarded clauses. The
form of a guarded clause is

A :- 01, ... ,Gn I Bl, ... ,Bm. n.m >= 0.

A guarded clause must have a guard bar "I". The left hand side of guard bar is
called the guard sequence and the right hand side is called the goal sequence. The
guard bar can be omitted when the guard sequence is empty, that is n=0. G's and
B's are both lists of literals connected by logical AND.

There are two kinds of logical AND's, which are parallel-AND and serial-AND.

serial-AND
parallel-AND

u&"
U II

Their logical meaning are the same, but the way to interpret and execute is
different. As it is clear from their name, goals connected by serial-AND must be
executed in sequential order (left-to-right), and goals connected by parallel-AND
must be executed in parallel. As for the operator precedence,

"," is lower than "&", that is,

f&g , p&q is equivalent to {f&g) • {p&q}.

Current implementation of Concurrent Prolog only provides sequential-or mode.
Therefore, alternative clauses are tried in the text order.

On the notation, we adopt DBC-10 Prolog-like convention, for example, a word
beginning with a capital letter denotes a variable.

In Concurrent Prolog. variables can be accompanied with some special control
information. "read-only" annotation, which can control the unification. Read-only
annotation is denoted by •111 and can be attached to variables in the following way,

X? where X is a variable.
(JC~f.L

The meaning of read-only annotation is that a variable) annotated by "?" must not be
unified with a non-variable term. .The annotation can be attached to eadi ~ 7
occurence of a variable, and will vanish when the variable will be instantiated to a
non-variable term. Generally read-only annotation can be attached to the variables
shared by concurrent processes in order to restrict the direction of data flow, where
the process which annotates the shared variable can not instantiate the variable and
wait for the variable to become instantiated by the other process which does not
annotate it. This will be explained later again.

2.2 Reduction

In this section, the process of reduction is explained. Suppose that the goal A
and the following program are given.

Al:- 011 Bl.
A2 :- 02 I B2 •

.
An:- Gn I Bn.

where Oi and Bi {1 =< i =< n) are a guard sequence and a goal sequence
respectively.

Bach clause is classified into one of the three fallowing classes with respect to
the goal A.

1. Candidate Ai :- Oi I Bi.

when, without instantiating variables annotated
by "?" to non-variable terms, A and Ai can be unified ·
and Oi can be solved.

2. Suspended Aj :- Oj I Bj.

3

when, except for instantiating read-only
variables to non-variable terms, A and Aj can be
unified and Gj can be solved.

3. Failure
otherwise.

Each clause is checked in ~text order whether it can be a candidate, and the
clause that is found to be a candidate first is selected. The selected clause, say A :
GilBi., is used to reduce the goal to the goal sequence Bi. Once the goal is reduced,
checking of the rest of clauses will be abandoned. In this sense, the guard bar "I"
acts as a cut symbol.

When the goal has no candidate and has at least one suspended clause, it will be
suspended until at least one candidate will be found or it will be failed (i.e. all the
clauses will be classified into the failure).

~
Since the instantiation of shared variables can be undo.¢ by ~ backtracking

before the guard sequence is solved completely, the values of the shared variables
will be hidden from other processes until the guard sequence is solved completely.

Although Concurrent Prolog adopts And-parallelism. consistency check of values
of shared variables will be replaced by the restriction that the process instantiating
the shared variables must be one. However, which process can instantiate a shared
variable need not be specified before the execution, as long as it is guaranteed that
there can be only one such process even if it is determined dynamically in a
non-deterministic way.

3. The Computation Model

In this section we present the Actor-like ·model [3,4] of the parallel e&..Q
computation in Concurrent Prolog. For the simplicity, we assume that ev,'J_ goals
are solved in Or-parallel mode, that is, all the alternatives are checked in parallel.

First we define the term "event" which is a basic concept in order to formalize
the computation model.

"An event is a successful unification between a foal
and a head of a clause and a successful solution o the
guard sequence of that clause."

Using this definition, we can specify the condition for an event to arise.

"The condition for an event associated with a goal to
arise is that the goal can be unified with a head of
some clause and its guard sequence can be solved
successfully."

+

115

Given a goal A and a clause A' :- Gl, ... ,GnlBl, ... ,Bm, we denote the event by

A:A'.

Once a goal A is unified with the head A' of a clause

A' :- Gl, ... ,GnlBl,... Bm.

that is, the event A:A' happens, then A is reduced to the goal sequence Bl, ... ,Bm
which in tum begin to invoke other events, say Bl:Bl', ... ,Bn:Bn'. In this way,
generally an event causes other events except the case in which a goal is unified
with a clause with empty goal sequence, in this case the event causes nothing.

Let's define the causal relation among events more precisely.

"An event B, A:A', causes an event B', B:B',
if and only if B is included in the set

{ Bi I 1 =< i =< n }

where A' is a head of the clause

A' :- I Bl, ... ,Bn. "

It is clear from the definition of an event that there can be no circular causal
relation among events.

We denote the causal relation "B causes B'" by

B => B'

Generally an event causes more than one events.

Bl ;,
B => B2

~ B3

The reflexive transitive closure of the causal relation => is denoted by ==>. By the
relation ==>, an event Bl can be related to the event B2 indirectly caused by the
event Bl. For example, Bl => B2, B2 => B3 then Bl ==> B3 and so on.

Note that the relation ==> also can be interpreted as the semi-order relation of
an activation of an event. "Bl ==> B2" can be read as that an activation of an event
Bl precedes an ·activation of an event B2.

Now we define the term "process".

"A process initiated by an event B is a chain of events
connected by the relation =>."

Given a goal A and a clause A' :- Gl, ... ,GnlBl, ... ,Bm., a process initiated by the
event A:A' can be thought as the solution process of the goal A using that clause.
From this point view, it is clear that the time when a process terminates is the time
when the goal A is solved completely.

Since an event can cause more than one event, the chain of events (= process)
looks like a tree (see figure).

c..1

EIO

(

The terminal nodes of the tree correspond to the events each of which is a
unification between a goal and a clause with an empty goal sequence.

4. Interprocess communication

In Concurrent Prolog, interprocess communication is realized by variables
logically shared among processes. A process can send a message to other processes
by instantiating a variable shared among them to the message. Since a destructive
assignment to a logical variable is not permitted, communication using one variable
cannot be done more than once. However, in general, because there is no
restriction about the number of the processes sharing a variable, the message to
which one of the processes instantiates the shared variable will be sent to the rest
of processes at the same time. Therefore broadcasting of a message has been
realized without any additional mechanism.

Shared variables are created when, for example, a process forks to subprocesses.

p(X) :- I q(X,Y),r(Y?).

In the example above, the variable Y is shared between the processes, which are
solution processes of the goal q and r respectively, and is used for communication
between them.

However, as mentioned above, communication using one shared variable cannot
be done more than once. Therefore in order to enable the successive
communication among processes, there must be some mechanism to create a new
logically shared variable dynamically. Most general method for this is the technique
of the stream communication which is well known by the work of Clark and
Gregory [2].

In the stream communication. a shared variable is instantiated to a data structure
which contains a message and a new uninstantiated variable. In the Relational
Language, a list was used for such structure.

[<message>l<variable>].

A variable contained in the structure is sent with a message from the sender to the
receivers, becomes a new shared variable among processes and will be used for the
next communication. Consequently as long as a process sends a message in this
way, every time a message is sent, a new shared variable is created, so that the
successive communication is established.

In general, the successive communication consists of two phases.

Phase 1 A shared variable is instantiated to a
message.

Phase 2 A new shared variable is created.

In the phase 1, the action most essential to communication is performed. In the
phase 2, what enables a next communication is performed. In the case of the
stream communication, both phases are performed at the same time in the same
process, the sender. However there is no reason for two phases to be performed in
the same process and no restriction on the

7

execution order between the phase l and the phase 2. If we treat the two phases
separately. we will be able to find several kinds of communication style based only
on logically shared variables and read-only annotation. As an example. we present
in this section the bounded buff er communication based on shared logical variables.
which is implemented without introducing another annotation like the Relational
Language. Before that, we summarize the unbounded buffer stream communication.

[The Unbounded Buff er Communication]

In the stream communication, both phases are performed at the same time in
the sender of messages by instantiating a shared variable to a pair of a message and
a variable. Therefore every time a sender sends a message, it gets a new "shared"
variable, so that it can send a next message as soon as it sends a message. On the
contrary, a receiver can read a message only after it is received and the receiver has
to wait when it tries to read a message and no message is received yet. This "wait"
mechanism is implemented by making the shared variable in the receiver read-only.
Because there is no mechanism for inhibiting the sender to send a message, this
type of communication realizes the unbounded buffer communication. Note that
the essence of unbounded buffer communication is in the fact that both phases are
performed in the same process, the sender of messages.

As an example of the stream communication we show the program which
describes the situation where there are two communicating processes, one of which
sends an integer every time the process generates it and the other prints out an
integer every time the process receives it.

Goal:: integers(0,N) • outstream(N?).

Program-I ::
integers(I,[IIN]) :-

plus{I,1,J) I integers(J,N).
outstream([IIN]) :-

write{I) I outstream(N?).

[send]

.... [receive]

Note that "outstream" will be suspended when the variable N is not instantiated to a
non-variable term, because of the condition for read-only variables. In the example
above, message sendings and receivings are processed at the unification between a
goal and a head of a clause. We could write the same program in more abstract
level like below.

Goal:: integers(0,N) , outstream(N).

Program-2 ::
integers(I,N) :-

send{I,N,M), plus{I,1,J} I integers(J,M).
outstream(N) :-

receive(I,N? ,M), write{I) I outstream(M).

In both predicates "send" and "receive", the first argument is a message, the second
argument is a current communication variable and the third argument is a next
communication variable. The program "send" and "receive" are:

send(X,[XlM],M).
receive(X.[XlM].M).

8

The advantages in using •send• and •receive• are to hide the internal structure to
which the shared variable is instantiated and to modularize programs. In fact, even
if we could use another data structures, say •stream{ <message>,<variable>)", instead of
the list "[<message>l<variable>]", the programs which have to be changed are only
"send" and "receive" {new codes are shown below) and no other programs including
the user programs are kept unchanged.

send{I,stream{I,M),M).
receive{I,stream{I,M) ,M).

On the other hand, we could say that using "send" and "receive" is to lose the
simplicity of the Program-I.

[The Bounded Buffer Communication]

In the bounded buffer communication, to send a message is suppressed when
messages, the number of which is equal to the size of the buffer, are kept unread in
the buff er of the receiver.

From the above analysis of communication through shared variables, we can
naturally rmd the mechanism for this kind of communication. The key idea is the
separation of the actors of two phases.

The phase 1 {instantiation) is performed by the sender at the moment it send a
message and the phase 2 is performed by the receiver when and only when it reads
(picks up) a message from the buffer. Therefore the sender cannot send messages
more than the buffer size if the receiver did not read the messages, that is, it did
not generate new shared variables.

We explain the method when the buffer size is equal to two, using the previous
example.

Goal:: integers(O,[X,YIZ]) , outstream([X,YIZ]).

Program::
integers{I,N) :-

send(I,N? ,M), plus{I,l,J) I integers(J,M).
outstream(N) :-

receive(I,N,M), write{I) I outstream(M).

Note that the second argument of "send" is annotated as read-only, while in the
previous example the second argument of "receive" is annotated as such. The
following is a new code for "send" and "receive• programs in the bounded buffer
communication.

send(Msg,[MsglNewChannel],NewChannel).
receive(Msg,[MsglNewChannel],NewChannel) :-

wait(Msg)lupdate_buff(NewChannel).

Here again we use the list structure for implementing the stream. "wait(X)" is a
system predicate which suspends when the argument "X" is not instantiated yet, and
succeeds otherwise. "update_buff(X)" is a sequential Prolog program which takes a
d-list as an ar~ument and instantiates the tail variable of it to a cons cell "[PIQ]"
where both "P' and "Q" are uninstantiated variables.

update_buff(X) :- var(X),!,X=[PIQ].
update_buff([XJYJ) :- update_buff(Y).

1io

The second argument of "receive" plays a role of a buffer consisting of slots
(variables) which will be filled with messages by the sender. The buffer is updated
by one slot when and only when the receiver picks up a message from the buff er,
so that the length of the d-list (buff er) remains the same which corresponds to the
buff er size. Although the sender shares the buffer with the receiver, it can not
update the buffer and all it can do is to fill empty slots with messages if there is
any such slot. When the size of buffer is equal to two, the buffer looks like:

[X,YIZ].

For the sender, the buffer looks like one of the following.

(1) [X,YIZ]
(2) [YIZ]
(3) Z

where "X", "Y" and "Z" are all uninstantiated variables. (1) corresl)Onds the case in
which the buffer is empty, that is, there is two empty slots and (2) corresponds to
the case in which there is one room for sending a message. (3) corresponds to the
case in which the buffer is full, that is, there is no room for sending a message.
Because the second argument of "send" is treated as read-only, the reduction of
"send" is suspended in the case (3). The figure below shows the situation where the
sender tries to send three messages, "ab", "cd" and "ef" when the buffer is empty.

the receiver
[X,YIZ]

[ab,YIZ]

[ab,cdlZ]

receive "ab" -

[cd,PIQ]

the sender
[X.YIZ]

send "ab"

[YIZ] ,

send "cd"

z

send "ef" is suspended

[PIQ]

send "ef"

It is more convenient when we could parameterize the size of the buffer.
Generally their usage are the following.

In sender :: send(Msg,Channel?,NewChannel)

In receiver At the rust communication
:: open(Channel,N).

receive{Msg,Channel,NewChannel)

At the subsequent communications
receive(Msg,Channel,NewChannel)

1 8 1

"open" takes two arguments, a communication variable "Channel" and a size of a
buffer "N", and it instantiates the variable "Channel" to the d-list with the rust "N"
arguments of it instantiated to variables. "open" is also a sequential Prolog program.

open{X,O) :- !.
open([XIY],N) :- Nl is N-1,open(Y ,Nl).

The program above specifies the case in which the buffer size is more than or
equal to one. Implementation of 0-Buffer communication is a little different from
the above. The predicate "receive" is replaced by the following definition.

receive(Msg,[MsglNew],New).

and their usage becomes:

In sender :: same as above
In receiver :: receive(Msg,Channel,NewChannel},wait(Msg)

The bounded buffer communication is very important when there are several
processes, each of which produces or consumes data in different speed. Suppose
that, in the example above, the rate of integer generation in "integers" is much
greater than that of data consumption in "outstream", in such case if we use the
unbounded buffer .communication between two processes, the huge amount of
unprocessed integers will be produced. The bounded buffer communication is a
simple and efficient method to control and combine processes having different rate
of data producing or consuming by controlling the production of data according to
the consumption of them.

As an example of the application of this bounded buffer communication, we
can define a 2 x 2 communication switch which has two input ports and two output
ports. It can receive inputs from two ports and sends them to the output port which
has at least one empty slot. If both ports are not available, the "switch• is
suspended.

switch2x2{Inl,In2,0utl,Out2) :-
receive(M,Inl,Insl)&send(M,Outl,Outsl} I switch2x2(Insl,In2,0utsl,Out2).

switch2x2(Inl,In2,0utl,Out2) :-
receive(M,In2,Ins2)&send(M.Outl,Outsl} I switch2x2(Inl,Ins2,0utsl,Out2).

switch2x2(Inl,In2,0utl,Out2) :- .
receive(M,Inl,Insl)&send(M.Out2,0uts2) I switch2x2(Insl,In2,0utl,Outs2).

switch2x2(Inl,ln2,0utl,Out2) :-
receive(M,In2,Ins2)&send(M,Out2,0uts2) I switch2x2(Inl,Ins2,0utl,Outs2).

J I

5. Incomplete Message

As in the actor formalism, Concurrent Prolog is a model of the parallel
computation and provides a communication methods through shared variables. A
message will be sent by instantiating the shared variables. A message which
contains a variable is called an incomplete message [5]. It makes a new variable
shared by the sender and the receiver of the

message, that is, it creates a new communication channel. It means that a
communication channel can be made dynamically and it can be sent to other
processes also.

182

The concept of an incomplete message is a large programming paradigm which
includes the basic communication mechanism between processes, so-called pipeline
processing on stream data, and yields new features of Concurrent Prolog. The close
analysis of this concept is described in the paper of Shapiro and Takeuchi [5].

In this section, we review the key features of this concept according to the
paper of Shapiro and Takeuchi [5].

(1) [Stream] Once a variable is instantiated, it· will never be rewritten except the
case where the whole goals fail. Therefore it can not be used as a communication
channel in the next message passing phase. In order to enable subsequent
communication, in the stream communication generally a shared variable is
instantiated to a list of a message and a variable which will be used in a next
communication. In this sense, the stream communication is one of the examples of
incomplete messages and provides a basic communication mechanism in Concurrent
Prolog.

(2) [Pipeline] In addition, incomplete messages make it possible to process partially
obtained data in a pipeline style. Although pipeline processing on stream data is a
new concept of programming languages, it is included naturally in the paradigm of
the partially defined message. In some sense, usual message passing can be seen as
a kind of pipeline processing on a sequence of commands generated incrementally.

(3) [Response] When a process sends a message which requires a response, the
response can not be sent through the same shared variable, since logical variables
are single-assignment. The technique of the incomplete messages is also useful in
this case, in which the sender sends a message that contains an uninstantiated
variable, and then examines that variable in a read-only mode, which causes it to
suspend until this variable gets instantiated to tb.e response by the recipient of the

) :..

message. However this is different from the examples above, because the process
which instantiates a shared variable is the receiver of the message. In this case,
once a message is sent to a process, the sender can run independently whether the
receiver returns the response as long as the sender need not to refer to the .
response. When the sender needs the response it is forced to wait until it will be
instantiated. This behavior associated to a shared variable used in a response takes
an advantage in writing a monitor of shared resources and highly reduces the
overhead on the resource manager because the manager will never be locked and
the request will never be refused.

6. New Features of Concurrent Prolog

In this section, we explain the another feature of the Concurrent Prolog not
available in other concurrent programming languages. .

The interprocess communication based on shared variables is not new method
and has been implemented generally by sharing physical memory cells. The
difference between the communication by the shared variables of Concurrent Prolog
and that of traditional languages is the highly abstracted level of shared object. In
traditional languages, the objects shared are physical objects such as memory cells or
global variables. On the contrary, in Concurrent Prolog, the objects shared are
highly abstracted logical variables which can be objects of the unification operation,
a very high level operation. Because of this hip level abstraction, Concurrent
Prolog can express very high level communicatJ.on style among parallel processes in
a simple way, · that is, unifying two communication channels.

The well-known "merge" program is an example of this feature.

merge([AIXJ,Y.[AIZ]) :- I merge(X?,Y .Z).
merge(X,[AJY],[AIZ]) :- I merge(X, Y?,Z).
merge([l,Y,Y).
merge(X,[],X).

Goal:: p(X),q(Y),merge(X?,Y?,Z),r(Z?)

This program merges two input streams into one stream. The first two clauses are
used for this purpose. The rest two clauses describe the situation, where one of the
input stream {say "X") reached the end, and the remaining stream C-Y") is unified
with the output stream ("Z"). After this unification, data on the remaining stream
("Y") are sent to the output stream ("Z") without any relay, because the input stream
and the output stream are logically the same. The important point is that this
change of the data flow can be performed only by the unification and that both the
sender and the receiver never know the change of data flow (Figure) .

⇒
.. -- --...... -0

r Y= ~ '
r \ ; r \ , _____

Ci))

13

The next program shows another example.

switch({ on!X],{1,X).
switch{[AIX],[AIY],Z) :- I switch{X?,Y,Z).

Goal:: p(X), switch(X?,Y,Z), q(Y), r{Z).

"switch" takes three arguments. The first argument is the input stream and the
second and the third are the output streams. "switch11 program keeps the connection
between the input stream and the second ar~ent until it will fmd the "on"
message in the input stream. When "switch receives it, it changes the connection
and thereafter it will pass input data to the third argument. Here again the
important point is that the the data flow can be changed directly by the unification
and it is hidden from both the sender and receivers {figure).

0 t C switc~

0
These two examples demonstrate the new feature of interprocess

communication in Concurrent Prolog. Other powerful examples are presented in
the paper [5].

7. Conclusion

In this paper we present the computation model of Concurrent Prolog and
explain mainly the interprocess communication based on the shared logical
variables. 1) From the close analysis of the stream communication, we derived the
mechanism for implementing the bounded buff er communication only by the
read-only annotation. 2) We have shown briefly the basic programming paradigm
"incomplete messages" as a source of the powerful programming technique. 3) We
have shown the new features of Concurrent Prolog provamming which originate
from the logical power of the unification.

8. Acknowledgement

We thank E. Shapiro for his many helpful insights and discussion. We would
also like to thank Kazuhiro Fuchi, Director of ICOT Research Center and all the
other members of ICOT, both for help with this research and for providing a
stimulating place in which to work.

9. References

[l] E.Y.Shapiro: A Subset of Concurrent Prolog and Its Interpreter. ICOT Technical
Report TR-003 (1983).

[2] KL.Clark. $.Gregory: A Relational Language for Parallel Programming.
Proceedings of the ACM Conference on Functional Programming Languages and
Computer Architecture (1981).

[3] C.Hewitt: Viewing Control Structures as Patterns of Passing Messages. Artificial
Intelligence 8 (1977).

135

[4] S.A.Ward, R.H. Halstead: A Syntactic Theory of Message Passing. JACM Vol.27.
No.2 (1980)

[5] E.Shapiro, A.Takeuchi: Object Oriented Programming in Concurrent Prolog. New
Generation Computing Vol.1. NoJ (1983)

,r;

Intelligent Backtracking for Automated
Deduction in FOL

St:arusra w M atwin
Department of Computer Science, University of Ottawa, Ontario, Canada

Tomasz Pietrzykowski
School of Computer Science, Acadia Universitv, Nova Scotia, Canada

Atst:ract

An "intelligent" backtracking algorithm for depth-first search of the solution space
generated during linear res:il.ution in fcil has been designed. It inspects only a small
porticn of the total s:il.ut:im space, which consists of special graphs representing t.11e
deductive stru:::ture of the proof. These graphs are generalization of AN D/0 R
trees. Our (partially) complete search algorithm has natural potential fer paralJel
implementat:i.cn. However, it may generate redurrlant refutati.ro.s; it seems that
tlrls :is the effect of the prevailing design objective, which in our case was
completeness of the method.

A preliminary estimate of the efficiency of the algorithm has been carried out.
It indicates expcnential speed-up over the worst case of linear backtracking.

An implementation (3000 lines of PASCAL code, urrler CMS) has oow been
completed. That atlows us to experiment with the algorithm and investigate
certain open quest:kns.

L Introduction

Many researchers working in Artificial Intelligence and its awlicat:ims agree that
an efficient ba::ktrceking mechanism will drasticalfy exparrl atplicability of Logic
Program ming ([Warren et al 77], [Pereira and Porto 80], [Nau 82], [Stallman and
SU$man 77]). One su:h algcrithm has been designed by M. Bruynooghe f78] and
L.M. Pereira f79l, [80]. This paper presents an alternative and different awroach.
Our method :is base:! on a graph-based, depth-first proof procedure [Cox and
Pietrzykowski 81]. The basic notioo, on which thjs algorithm js based, :is the plan:
a directed graph, rei;:resent:ing deductive strocture of the proof. The plan ~a
natural generalization of AND/OR trees. 't'he unffi.caticns, generated during the
proof, are kept in a separate graph strocture, called the graph of constraints. In
tlrls way, even if backtracking along a particular path of tlie'pum-does oot lead to
a rolution and tlrls path wfil have to be re-gene: ated, there :is oo need to re
gene:ate the unifications obtained along that path.

Furthermere, our method :is awlicable to general first order log.:ic, without being
restricted to Hern clauses. Als:>, as it will be demcnstrated later, intelligent plan
based deductim has natural potential fer a parallel implementation.

Finally, it has to be emphasized that the prevailing design criteria of our
algcrithm was compl.etenegs of search of the search-space. This has been achieverl,
and the proof of (partial) completeness has been obtained [M atwin and
Pietrzykowski 83]. However, a price which had to be paid :is redurrlancy (i.e. the
same oolution may be obtained mere than once). Bruyncoghe-Pereira method does
oot suffer from this deficiency, but then it is oot certain that their solution is a
complete one.

1st
: Operat:i.oo of the Intelligent Backtracking System.

befa:e mt:rodudng the algcr.il:hm and a ma:e complete example, let us ilJnstrate
(he difference between "exhaustive" and "intelligent" backtracking using a very
· mp.1e case. Assume t."iat the foUow:ing set of clauses :is given:

P(x) Q{x).
-P(u,v) V(u) w (v).
-V(b). -V(a).
-w (c). -w (d).
-w (e). -w (f).

-Q(z) S(t,s) T(s,z).
-S (q,b). -S (q,c)
-S (q,d) • -S (q,e)
-T(b,a).

I.early, with the lefu-to-rlght "reduction" (althol)3h "expansim" seems to be mere
equate term) polic..y, the follow:ing plan, which in this case ?S just and AND/OR
ee, :is obtained:

-P (U,v) V(U) W (v)

3,
' ' '

P(x,y) Q(x)
1

-V(b) -vla) -W(c) ;.-,
I .__'

I ,. '• -w (d) -w (e) -w (£)

2

T(s,z)

" ~ 5'' 6
,I ' ' 'l.---------,, ' ..

/ ' '
-V(q,c) -V(q,a) -V(q,e}

-T(b,a)

e cmtinuous lil'Es represent the AND arcs, the dotted are the o R arcs.
bviously, in this tree there is a clash between ccnstant b, generated by arc 3, and
i-..-. ,,...t a, generated by arc 6. One look at the pl.an cmvinces us that arc 3 :is

culprit, and that a reduct:ioo following its alternative reme:lies the problem.
owever, exhaustive bc.cktracking will perfcrm 33 redlct:i.a'ls [3*2 + 3*((4*2) + 1) =
] befere generating the s:iluti.cn. The rearori · fer that is the fact that all the
:tematives between the arcs 3 and 6 involved in the cooflict are tried by

austive bcctracking. Our method is different: it only tries 6, 3 and the
:tematives lying above them. In tlrls case, ooe reduct:::im replacing 3 with its
:temative w:il.J. cb the job. In a reas:,nably balanced ~ND/OR tree, the number of
:temative deduct:i.a'ls obtainable in between two mcrles :is of the order exponential
rt the he:ight of the tree. Therefore, a method which operates only above the

es w:ill be expmentiall.y faster than the worst:-case behaviour of exhaustive
rcktracking discussed here.

NI e shall row p.roc:eed with a mere thoiotJ3h discussim of our method, beginning
ith the urrlerly.ing rot::ials and cmcepts.
rhe basic stru::ture, involved in the algorithm i3 the pl.an. By a plan we
hdetstand a ditecmd graph, rooes of which represent variants of clauses. One of
lie nodes, referred to as TOP, reiresents the clause to be proven. Arcs of the
~ camect pa:iJ:s of literals, belonging to in:lividual rooes. Each two literals,
efi.rrlng ann · arc, are unifiable and of 0!_:PCSi.te sign. 't'here are two types of arcs:
µB arcs and RED arcs (as proven in [Cox and Pietrzykowski 81], those two rules
~ovide a complete set}. Infermally speaking, SUB arcs point "downwards'' in the
Ian, while RED arcs point "upwards". Each ncx:le, except the ":'OP, :is entered by
'actly me SUB arc (and, pc:mi.bly, by zero or mere RED arcs). The literal within

a nooe, rointed to by a SUB arc, is the l<ev of t.li:is node. Each other literal of tJus
rode is caTurl a goal. A goal is calJed c1cse1 ff there is an arc, originating in this
goal, otherwise the goa1 is an open one.

1:~ath each goa1 of t."1e plan we ae:oc:i.ate a set of arcs, called the set of
potentials. They are the arcs which could have been generated i'1Stead of the one
actuaJJy created. Let us ootice that, jf the plan :is a tree, then the initial value
of all potentials represents all the OR arcs. In any case, this initial value :is static
information.

As mentime:l befcre, the information gathered as resu:!.t of unification :is kept
se-parately, :in a special data strocture called the graph of constraints. 'I'his graph
reflects the history of un:ificatims which have taken place in the proof during its
pro9¾eEE. A rode of the graph of constraints, called a constraint, represents the
infar'maticn atcut the bi.rrlings which have ben impcsed on a vanable during the
history of proof. Therefore, presence of two di.tferent constants in a coostraint :is
an irrlication of a clash. This clash is then mag:,ed on the plan. Each minimal set
of plan arcs su:::h that its removal annihilates the clash is referred to as a ccnflict.
The conflict set is the set of all su:::h cooflict:s for a given plan. In oome
si.tuatiOns, e,,en though the cooflict set is empty, we want to create an artificial
conflict set, in order to aEEure completeneEE. Artificial conflict set contains all
the arcs entering unit clauses, and all the reduction arcs.

F:inaily, our methoo introduces two other rotims, motivated by memory
management problems. The algcrithm uses a repcsi.tory of plans, accompanied by
their graphs of constraints and cmflict sets. This repcsi.tory, called the store
resides on disk, and plans are fetdled from it and added to it. There is always
me plan being operated m: it :is caned the table plan (or simply the table).

With this bcekgrourrl, we can now fal.Jow the operation of our algorithm m the
foll.owing set of clauses: 0 ~

A. P(x) Q(y) R(x,y) j<a,x) = TOP
Ii z B. -P(a)
10 , c. -}!_(t,y)

D. -P(C)
E. -Q(w) V(v,w)
F. -R(z,z)
G. -R(u,v) S(u)
H. -S(a)
L -V(b,b)
J. -V(c,c)

Initia1ly, the store :is empty. Clause A :is chosen as the TOP and a single-node
plan consisting of A 1s generated. Since it is rot clcsed, it w:ill be further
developed until. either a clcsed plan :is obtained or a non-empty ccnfl.ict set is
generated. In our case, we get the following plan:

plan Pl ""'A:.;.--------------.--------r
.,-----., l
B

' ,8 E
D

I
I

L

,'6 3

J I

F 'G C

l CCllfUct set is (3, 1 A 5: 4). Suppose that 3 is
-~ P2 is obtained and pl.aced in the store:

1 89

chcsen fer re mov~ the open

~ P2!! (A}

I ,·a (E)
D ;6 ,

I
J

he cmflict on the table is row (1 A 5, 4). If 1" 5 is chcsen, prunrring annihilates
pl.an, as 5 has ro pd:ential and A is the TOP. With t.li.e choice of 4, open t;ilan

3 is obtained and placed in store:

P3 A
2 ' 7 5

' ' . ' . '8 E "G
\,

0 9' 3 , , ,
J I

· e there are ro ma:e cmflicts on the table, one of the store pl.ans (suppa;e it
P2) is placed on the table. Potential 6 is realized as an arc, which leads to a

· t set (1 A 5, 6, 4) a, the table. S:ince choice of either 6 or 1 A 5 leads
where, suppose that 4 is dlcsen and P4 is sent to store.

A
__ -#1

,
,' 8
'o 6

J

' 7 ,.
' 'G

s the ccnflict set is again empty, cne of the store plans P4 and P3 is placed on
ne table. Amume P3 is dlcsen; the only open goal is closed with its p::,tential 7
pd a roluti.on is obtained:

lan PS
1'""'--
l 1 , ,.

,'8 ,
D

2 5

6/ 3 ,
I

Jt!. I H

rt.ificlal caiflict set of PS is (1, 3, 5, 9). Femoval. of 5 and 9 leads rowhere as
nere are ro potentia1s between these arcs and the top. Reol.acement of 1 by 8 is
~ unproductive (the reader w:i11 easily see why). This ieaves us with 3 as a
~aronable candidate far removal, which results in plan P6.

I

1,t.1,J...t /71· •lv'- L. rrtrr LA...., , ,

Plan P6
"'----

A
l
, ,

/8 ,,
D

17 0

E

The only plans in store are now P4 and P6. ·with t.he choice of P6, potential J is
realized and we get roluticn P7:

'A
l

B ,
/'

,.-· 8 E G C
D 9

J

Since all attempts of obtaining new plans from its artificial cnflict set fail, the
only remaining store pl.an, P4, is placed on the table. Tts potential 7 and then arc
9 are realized, which gives a redurrlant solution identical to P7. The store is now
empty and the algcrithm terminates.

We have proven elsewhere [Matw:in, Pietrzykowski 831 that when our algorithm
terminates, it generates all the existing proofs {partial completenee:;).

3. Further Inhancements of the Algorithm

There are at least three di.recti.als of further research, leading to potentially
interesting enhancements of the algorithm.

1. Different strategies fer nondeterminism. A number of rondeterm:in:istic choices
is involved in the algcrithm. Two typ~ of such choices were menticned in
the brief descr:ipt:i.oo in the preceding section: choice of the plan from the
store to be placed on the table, and choice of a ccnfl.ict from the set of
ccnflicts. It is rot clear, at this stage, what are the right criteria fer these
choices. This is partia.il.arly important when the objective is to firrl a proof,
rather than all the rx::s=;ible proofs. 1t seems that :in this case the right
strategy may bring a.rout significant increase in efficiency.

2. Applicability of the algorithm in the domain of expert systems. The
researchers in expert systems point out that a method of limiting the search
space is of great importance fer implementation of practical systems f'Nau 83].
The early work of [Stallman and Su..,:;sman 771 bears a good deal of
resemblance to our methcrl, althotJ3h their awroach is lee; general. System
ARS, repcrted in [Stallman and Sussman 77] implements a method of
dependency directed backtracking, tailored to the particular environment of
algebraic relatirnsh:ip; encountered in the analysis of electrlc circuits.
Therefcre it seems that a met..11<xl like ours mav be productive, particularly in
case of e:xpert S"JStems usi.ng fol or its derivatives (Skuce 831 to represent
krowledge bases.

3. Distributed implementation. Since no orderi...rig of conflicts in within the

conflict set :is assumed, an :interesting parallel implementat:im seems pcssible.
It will. :involve a number of proceS90rS, each of which would remove a ccnflict,
carry out the neceg:iary pruming (if any) and develop the plan. The result of
devel.opment :is placed in store, ready to be picked up by another proce$0t".
The whole system stop; when the store becomes empty. Such a parallel,
distributed implementat:ioo seems to be feasible. Let us ootice that the
si.m:ilar awroach to Bruynooghe-Pereira method would not work, si.nce their
algcrithm specifically orders the ccnflicts, which in turn allows t.hem to avoid

'l the redurrlancy problem.

,eferences

ruynooghe 78) Bruyrooghe, M., Intel.ligent Backtracking fer an Interpreter of Horn
Clause Logic Programs, Procs. of Calloquim en Mathematical Logic in
Program ming, Salgotarjan, Hungary, 1978.

rt.tynooghe and Perren-a 81] Bruyncoghe, M., P~eira, L.M., revision of Top-Down
Logical Reas:>ning Through Intel.ligent Backtracking, res. Report of KUL and
CIUNL, 198L

ox and Pietrzykowsld 81] Cox, P., Pietrzykowsld, T., Deduction Plans: A Basis
for Intel.ligent Backtracking, mEE PAMI, .Tan. 198L

atwin and Pietrzykowsld 82] Matwin, s., Pietrzykowski, T., Exponential
Improvement of Exhaustive Backtracking: Data Structure and Implementation,
Procs. of CA DE-6, 1982.

atwin and Pietrzykowsld 83] Matwin, s., Pietrzykowski, T., InteJJigent
Backtracking in Plan-Based Deduction, Submitted to IEEE PAML

au 83] Nau, D.S., Expert Computer Systems, IEEE Computer, Feb. 1983. C:::::--

ereira 79] Pereira, L.M., Backtracking Intelligently in AND/OR Trees, Research
Repcrt, CIUNL 1979.

ereira and Porto 80] Pe:eira, L. M ., Porto, A., Selective Backtracking fer Logic
Programs, Procs. of CADE-5, 1980.

l

ietrzykowsld and M atwin 82] Pietrzykowsld,
'Improvement of Exhau..c;ti_ve Backtracking:

T ., M atwin, s., Exponential
A Strategy fer Plan-Based

' Deducti..cn, Proc. of CADE-6, 1982.

I . •
ll{uce, 83] Skuce, D., KNOWLOG, Submitted to IEEE Computer.
'
i

:i:an.man, R.M. and Sug:iman 77] Stallman, R.M., Sug:iman, G.J., Forward Reasoning
I and Dependency-Directsd Backtracking in a System fer Computer-aided Circuit
1 Analysis, Artificial Intelligence, 1977.
I
iarren et al 1977) Warren, D.H.D., Pereira, L.M. Pereira, F.,. PROLOG - The
. language and its implementation compared to LISP, ACM SIGPLAN, Aug. 1977.

ABSTRACT.

LOGICAL ACTION SYSTEMS

Antonio Porto

DePartamento de Informatica
Universidade Nova de Lisboa

2825 Monte da CaParica
Portusal

142,

Losic Prosrammins is beins hailed bY many People as a Sood
way towards a side-effect-free Prosrammins stYle. On the other
hand, talkins about temporal effects or actions is the natural
way of viewins manw common computational Phenomena,
inPut/outPut or database update operations.

such as

The Purpose of this paper is to introduce some common
sround in the form of loSical action swstems, a framework for
dealins with actions that has its roots in losic Prosrammins.
Prosrams consist of rules for action reduction; rules have
Preconditions as Prolos-like Saal expressions and define state
transitions in the form of deletion and/or creation of
assertions. Concurrency of actions is suPPorted. Abstract data
types can be defined.

INTRODUCTION.

Despite the defense b~ man~ People of a side-effect-free
Prosrammins st~le, as in a 'Pure' losic Prosrammins s~stem,
the fact remains that man~ common computational Phenomena are
not naturall~ expressed without resortins to the notions of
action and state transition+

Rather than considerins actions as imPure
arisins within a Pure losic computation, wh~ not
situation and consider losic computations as
side-effect of action s~stems?

side-effects
invert the

a normal

We will Put forward a Proposal for a lansuase in which to
describe losical action s~stems CLAS>, Providins a clear link
between actions and normal losic Prosrammins.

LoSic and unification are still the basis on ~OP of which
LAS are conceived; however, actions are clearl~ separated from
Purel~ deductive seals+

The lansuase can be seen as ~et another Proposal for
exPressins concurrenc~.

We will besin bw exPosins the main ideas behind LAS, and
then move on to an obJect-oriented approach with abstract data
t~Pe definitions.

ACTIONS.

Actions take Place on some world, modifwins it. Between
occurrences of actiona we can refer to the state of the world.

We represent a world in two Parts, each one of them a losic
Prosramt
(1) the rules of the world, definins relations that are not

bound to chanse in time ;
(2) the state of the world, containins assertions that ma~

chanse in time as the result of actions Performed on the
world+

Let us look at an examPle. < Edinbursh Prolos swntax will
be used, excePt for clause functor.)

Consider a blocks world.
The world rules would contain definitions such as:

tower(CBJ) <- on<B,floor).

tower<B1.B2+Bn) <- on(B1,B2), tower(B2.Bn).

A Particular world state would have assertions such as:

on<a,b).

on(b,floor).

At anw time between actions it is Possible
moal expression asainst the world, usins the
state as a Joint loSic Prosram.

to evaluate a
rules and the

In this example, one could evaluate the Soal

<- tower(X).

that would wield the solutions

X=CbJ ; X=Ca,bJ •

The action of movins 'a' to the 'floor' would rePlace the
assertion 'on(a,b)' bw 'on<a,floor>'. As a conseauence we
would have a new world state, and the same Soal '<-tower(X)'
would now Produce the solutions

X=CaJ ; X=CbJ +

In seneral, an action will consist of a number of action
steps {possiblw infinite).

Each action step will result
consistins of falsifwins (deletins>
Previous state and/or makins true
assertions.

in a chanse of state,
some assertions of the

(creatins) some new

The specification of an action step is an action
is made UP of two Parts: the action reduction and
conditions.

rule. It
the state

The action reduction defines what new actions the action
reduces to, bw virtue of the steP+

The state conditions are the Preconditions and the state
transitions.

Preconditions are soals that are evaluated asainst the
world in its current state.

State transitions tell what assertions must be deleted
from, and what new ones added to, the current state to set the
new state.

For example, the notion that the action of movins A to B
can be accomPlished if nothins is on toP of A and B, and as a
result A ceases to be on toP of whatever it was before to be
on toP of B, can be described bw the action rule:

move<A,B) <= not on(_,A),
not on<~,B>,
on<A,_) -> on<A,B>.

ACTION REDUCTION.

When an action reduces to void (is finished>, as
Precedins example, the action reduction Part of the
Just the action - the rule head.

in the
r•Jle is

In seneral, an action reduces to other actions. The action
reduction Part of a rule is then of the form

A-> NA

where A is some action (the rule head>, and NA is an action
expression referins to the new actions.

How can actions relate to one another to f~rm an action
exPressionT We fihd that we need two connectives: Parallel and
seauence.

Two actions in seauence are denoted b~ 'A,B' , meanins the
•econd action (Bl can onl~ take Place after the first one <A>
is finished.

Two Parallel actions, written 'A/B' , ma~ take Place with
no time constraints on one another.

•An action exi:-ression is recursivel~ constructed from atomic
.ac:t.ions and the Parallel. and seauence connectives. Relative
P receden.ce between these .is such that "A/B, C' is the same as
'(A/B),C' +

In, an action s~stem there is alwaas an action exPression
evolvin~ iri time and denotins at each moment the actions that
are to be carri•d out in the world+ We call it the asenda. For
ever~ action in the asenda that is read~ to be carried out
(for example, Al and B1 in (A1,A2)/(B1,B2) >, the s~stem tries
to aPPl~ an action step.

The action reduction involved in a steP is like a
rule for the read~ action in the asenda, keePins the
structure of this action expression+

Thus, if we have the asenda

A,B

and the action reduction

A-> A1/A2

is Performed, the asenda becomes

A1/A2,B

rewrite
overall

meanins that after Al and A2 are both
so independently of one another) Bis

finished (havins done
ready to take Place.

Actions occur in time and time always runs forward, so
there is no auestion of backtrackinS over action stePs, If an
action is reauired and no rule for that action aPPlies in the
current state, it Just means that the action must remain in
the asenda waitins for the risht conditions to appear (when
some other action chanses the state to that effect). This
eventually entails the well-known Phenomena of deadlock and
starvation.

STATE TRANSITIONS.

State transitions inside an action rule may be of three
tYPeS

(1) -> A assertion A is created ;
(2) A -> assertion A is deleted ;
(3) A -)· NA assertion A is deleted and assertion

NA is created+

Of course a tYPe 3 transition is no more than a tYPe 1 and
a tYPe 2 Put tosether, but it makes for a more clear readins
of the rule, especially if A and NA are for the same
Predicate. In this case, a comPiler or interpreter can easily
translate the transition into simPle assisnments on the
chansins arsuments, with considerable speed-up over deletion
and creation.

RULE EVALUATION.

Each rule is associated with a sinSle action (the rule
head), so a ready action in the asenda can efficiently trisser
its own rules, much as Prolos soals trisser their clauses.

Rule evaluation besins with unification of the ready action
with the rule head.

If there are any tYPe 2 or tYPe 3 transitions in the rule,
their left-hand side is resarded as a soal to be matched
asainst an assertion in the current world state. All
Precondition soals tosether with these transition soals, in
the order in which they aPPear in the rule, form a Prolos soal
expression that is evaluated. If a solution is found, then the
rule aPPlies, and the transitions are carried out, deletins
the assertions that matched the transition seals for the
solution found.

The action is replaced
expression it reduced to,
when this is void,

in the
with

asenda b"::s
the obvio1.Js

the new action
simPlifications

There ma~ be several rules for a Siven action. Rules should
be tried in the order in which the~ aPPear in the prosram.
This Provides a simPle, elesant form of if-then-else.

For example, the complete definition for the 'move' action
in the blocks world misht be:

move(A,floor> <= not on(_,A),
on<A,_) -> on<A,floor).

move<A,B) <= not on(_,A),
not on(_,B),
on<A,_) -> on<A,B>.

Sivins Preference to 'move's to the 'floor', if destination
is unspecified.

SYNCHRONIZATION.

What is usuall~ referred to as Process s~nchronization is
achieved in a LAS b~ the combined effect of the seauence
connective and state transitions seen b~ the •processes•.

Imasine a sinsle cell buffer, defined b~ the followins
actions t

Put<X> <= empt~-> with(X).

setCX) <= with(X) -> emPt~.

A 'Put' action will onl~ be accomPlished if the buffer is
empt~, and, conversel~, a 'Set' action can onlY be carried out
if the buffer contains somethins. So actions seauenced after a
'Put' will eventually have to wait for the 'Set' of a Previous
token Put in the buffer, and actions seauenced after a 'Set'
will eventuall~ ·have to wait for the 'Put• of the
co~resPondins token, thus achievins synchronization of the two
•processes• usins the buffer.

CONCURRENCY.

Parallel actions are Performed concurrentl~. So it is
crucial that an~ sound implementation of the system be able to
suarantee, Just before Performins a state transition, that the
Preconditions of the rule still aPPlY+ In other words, care
must be taken with resard to state transitions occurrins
durins the evaluation of a rule. A number of techniGues exist
for tacklins this Problem, dePendins on the actual hardware,
but their discussion is outside the scoPe of this PaPer.

Let us look at an implementation of a Gueue ih terms of its

1,~

accessins actions 'Put' and 'Set'. The aueue itself is
imPlemented as a difference-list Q-T via an assertion
'a(Q,T)', acted u~on bw 'Put' and 'Set' :

Put(X) <= a(Q,X.T) -> a(Q,T),

set<X> <= a(Q)T) -> a(NQ,T>,
nonvar(Q),
Q=(X.NQ).

This aueue "Process• puts in a list all elements X for
which a 'Put(X)' action is reauested, in the order in which
these actions are Performed (since thew can alwaws be
executed, apart from simultaneitw with 'Set' actions, this
will be the order in which thew become readw in the asenda).

This is in contrast to other formalisms, such as Concurrent
Prolos [ShaPiro 83J, that deal with explicit streams and thus
reauire the exPlicit merse of the various inPut streams to a
aueue.

Let us look at another classic examPle of concurrent
Prosrammins, the Problem of the dinins Philosophers. Five
Philosophers are seated around a table, with a fork between
each two of them (five in all) and a central bowl of sPaSethi.
Whenever a PhilosoPher stoPs thinkins because he sets hunsrw,
he must Pick UP the two forks on his left and risht and besin
eatins until satisfied, lettins then down the two forks and
resumins his thinkins.

'Philosophers - Pl, P2, P3, P4, P5

Forks - fl, f2, f3, f4, f5

World rules :

forks(P1,f1,f2).
forks(P2,f2,f3).
forks(p3,f3,f4).
forks(P4,f4,f5).
forks(P5,f5,f1>.

Initial world state:

down(fl).
down(f2>+
down(f3).
down(f4).
down(f5).

-~ thinkinS(rl) / thin~in~(P2) / thinkinS(p3) '
thinkinS(P4) / thinkinS(P5).

Action rules:

thinkinS(X) -> hunsr~<X>.

hunsr~<X> -> eatins<X> <=
forks(X,L,R),
downCL) -> withCX,L>,
down(R) -> withCX,R).

hunsr~(X) -> wants_forkCX,R> <=
fork.s<X,L,R),
down(L> -> with(X,L).

hunsr~(X) -> wants_fork(X,L> <=
forks<X,L,R>,
down<R> -> with<X,R>.

wants_fork(X,F> -> eatins(X) <=
down(F) -> with<X,F).

eatins<X> -> thinkins<X> <=
withCX,L) -> down<L>,
withCX,R> -> down<R>.

Some comments are due.
The first and last rule, of course, do not show an~ details

about when to set hunsr~ or when to stoP eatins. For an actual
simulation we should Provide adeauate mechanisms, sa~ a rando~
time lapse senerator.

It is important to note that, in the last rule, the two
'with' transition seals must match two distinct assertions and
not the same one. T~P~ 2 or t~Pe 3 transitions inside the same
rule alwa~s refer to distinct assertions, for it would make no
sense to specif~ two deletions of a sinsle assertion.

The aforementioned if-then-else effect of rule evaluation
imPlies that, when a Philosopher sets hunsr~ and both his two
forks are available, he will Pick them UP simultaneous!~. This
fact entails that there is no deadlock or starvation if the
s~stem starts from a non-deadlock initial state, as can be
easil~ Proved. What haPPens is a transfer of
deadlock/starvation monitorins to the underl~ins execution
mechanism of LAS, when concurrent!~ tr~ins to aPPl~ action
rules. We are in fact assumins that no read~ action is
indefinite!~ Postponed if conditions indefinite!~ exist for
its reduction.

ABSTRACT DATA TYPES.

One of the nice extensions of the action s~stem Presented
so far is the introduction of abstract data t~Pe <ADT>
definitions. This Provides a much needed modutarit~, in the
form of local assertions that cannot be Sloball~ accessed, and

ZDO

are manipulated onlY bY the actions interfacins the ADT obJect
with the rest of the sYstem.

A definition of a Gueue ADT misht be the followine :

tYPe Gueue.

PUt(X) <= G(Q,X.T) -> Q(Q,T).

set(X) <= G(Q,T) -> G(NQ,T),
nonvar(Q),
G=<X.NQ).

a<X,X>.

*
The first Part of an ADT definition, until the

't', defines the external actions that may be used
an obJect of the Siven tYPe+

In this example we have the Previouslw defined
'Set' actions.

character
to access

'Put' and

The second Part of the definition, until the character '*''
defines internal rules and assertions, that cannot be accessed
from the outside.

The assertions correspond to the initial state of an
obJect, when it is created. There can also exist, in the
second Part of an ADT definition, an initial asenda '->A' to
be launched uPon creation of an obJect.

In the Precedins example the initial state is an emPtY
aueue, as defined bY the assertion 'G(X,X)', and there are no
internal actions or initial asenda. The assertion beins local,
it won't be "seen• bY any outside Saal 'a(_,_)'.

Havins defined an ADT, we must have means to create and
kill obJects of that tYPe+ We use the system-defined actions

create(ObJect,TYPe)
and

kill(ObJect) •

Now actions directed at an obJect must refer to it.
We use the notation

ObJect:Action

for that kind of actions.

Let us look at a more complex examPle,
video terminal. The keyboard is scanned

a definition of a
to set characters

twPed in it. In the local mode each character is output on the
screen; however, if the character is a 'send', character
output is diverted to the outside of the terminal, until the
character 'eot' is found, in which case there is a switchins
back to local mode. The terminal can be accessed from the
outside throush a 'Put(X)' action, resultins in character X
beins disPlawed in the screen.

This ADT has three Parameters, 'Kewboard', 'Screen' and
'Out', which are SUPPosed to be ADT obJects themselves.
'Kewboard' is supposed to be accessed·throush a 'Set' action,
while 'Screen' and 'Out' throush a 'Put'+

twpe terminal(Kewboard,Screen,Out).

Put<X> -> Screen:PutCX).

t

terminal<X> -> select<X> / Kewboard:set<NX>, terminal(NX).

select(send)
select(eot>
select(X) ->
select<X> ->

local.

<= local-> out.
<= out-> local.
Screen:Put<X> <= local.
Out:Put(X) <= out.

-> Ke~board:setCX>, te~minalCX).

*
External access is Permitted onl~ throush a 'Put' action.

'terminal' and 'select' are internal actions 'terminal'
Performs the endless loop of settins characters from the
ke~board and Processins them; 'select' does this Processins.

The initial state is local mode, and the terminal activity
is started bw settins a character from the kewboard and
enterins the loop.

A terminal, beins accessed throush a 'Put', can serve as
the 'Out' obJect of another terminal. We can for example link
two terminals tosether:

-> createCT1,terminal(k1,s1,T2>> /
create(T2,terminal(k2,s2,T1)).

DEDUCTION AS ACTION.

We tackle here the Problem of treatins as an action
work of a Prolos interpreter while tr~ins to execute a
Keep in mind that backtrackins is •backward" as far as

the
Soal.

the
obJect lansuame ~oes, but is "forward• as re~ards 'the temporal
activit~ (action) of the interpreter.

A drawback of Prolos is revealed when we want to keeP track
of different solutions to a seal while settins them on demand,
alons with some other comPutation. The Problem lies in the
fact that we are usins a sinsle interPreter, and backtrackins,
that is needed locally to Provide the various solutions, is
only available as a Slobal oPeration.

'MetaPredicates• like 'setof' or 'all' only sive the whole
set of solutions to a seal, and cannot be used in the desired
coroutined way.

A way out in the framework of LAS is to have
interpreter defined as an ADT, accessible throush
of Producins the next solution to a Seal.

the Prolos
the action

We can then create an instance of the interpreter bY the
action

create<I,interPreter<G,T))

where G is the soal expression to be interpreted, and Tis the
term whose instances we seek.

TransPortins the name I of this Particular interpreter we
can then set on demand the next solution, with the action

Itnext(X) •

As a result, Xis bound in the action environment to a COPY
of the next instance of T found bY I to be a solution for G CT
and G will remain unbound in the action environment).

This is to say that several interpreter obJects are truly
decoupled in the sense that theY don't share their bindins
environments. Some more thousht should be Siven to this theme
of sharins versus coPY, in the context of LAS+

There remains the Problem of failure. The action 'next' is
always carried out, but it should Produce information
resardins its outcome, that can be used in the action context.

MaYbe this type of actions should really be
losical Seal, with associated meanins the truth or
of the Possibility of Performins the action.

used as a
falsehood

We can turn this into a seneral Property of actions, with
the assumption that the default boolean value of an action is
true when the action is normally finished, and false if
unfinished when the special action 'abort' is carried out,
makins 1 imPossible 1 the whole action expression (asenda) where
it occurs (it becomes empty).

Remember that usins ADTs one has distinct asendas for
obJect, and thus 'abort' can be used in a modular rather
slobal way. One can, for example, implement a Unix-like

each
than

shell
usins the 'abort' action tris~ered bs the control_C tr3P to
abort execution of the current command :

t~Pe shell<InPut,Command_interPreter).

commands(C) -> InPut!set(NC> / Command_interPreter!C ,
commands(NC).

control_C_traP(C) -> InPut:set_ahead<NC> / check(C) ,
control_C_trap(NC>.

checkc-c> -> Command-interpreter:abort.
check(_) -> •

-> InPut:set<C>,
commands(C) / control_C_traP(C).

*

REFERENCE.

CShaPiro 83J

Ehud Shapiro.
A Subset of Concurrent Prolos and its interpreter.
The Weizmann Institute of Science.

1. Introduction

1

Issues in Developing Expert Systems

Jack Minker

Department of Computer Science

University of Maryland

College Park, Maryland 20742

2 OLt

The purpose of this note is to provide a brief overview of the field of

expert systems, and to set forth some issues to be discussed in a panel ses

sion on the subject. The field of artificial intelligence has several objec

tives:

(1) The development of computational models of intelligent behaviour- both

cognitive and perceptual.

(2) The engineering-oriented goal of developing programs that can solve prob

lems normally thought to require human intelligence.

(3) The development of tools and techn;ques needed for the above two items.

The development of a system intended to meet the needs of users and is

intended to provide expert advice falls into the second category.

The field of expert systems is relatively new. It extends back approxi

mately twenty years, although it is relatively recent that such systems have

been referred to as expert systems. Although there has, in the past few years,

been a great deal of work on this subject, the actual accomplishments have, at

best, been modest. In using the term modest, it is meant that with respect to

having expert programs used by individuals in their daily work, there are

relatively few such systems. In the following section we briefly note some of

l05
2

the expert systems that have been developed, and their status. In the last

section we discuss several issues that must be addressed if expert systems are

to become a reality. These issues are posed for discussion, and no positions

are taken on them. The intent of the panel discussion is to explore the issues

in great depth.

2. Background in Expert Systems

Early work in artificial intelligence was oriented towards providing gen

eral approaches to probelm solving. It was realized that.some of the problems

being attacked were, perhaps, more difficult than anticipated. This was par

ticularly true with work in machine translation and natural language process

ing. Efforts to apply theorem proving techniques to arbitrary problems in

diverse domains introduced combinatorial explosions. A move was therefore

made towards specializing problems and building into application areas special

knowledge focused on the domain of application. Systems that focus on specific

problem domains, building in knowledge specific to that domain, have come to

be called expert systems.

There have been several phases in the development of Expert Systems. This

may be illustrated by efforts leading to one successful system, MACSYMA, whose

function is to act as an expert in the area of formal integration of func-

tions. It is perhaps of interest to note that throughout the development of

MACSYMA the term "expert system" was never applied. The first stage was the

demonstration that it was possible to perform symbolic integration on a com

puter. Jim Slagle's system, SAINT, was developed and was subsequently tested.

It succeeded in passing an examination in integral calculus at MIT. Although

it was successful, it was intended to be a research program, and not a fin

ished product that could be used by scientists and engineers. Following SAINT,

.2...06
3

Joel Moses developed SIN, which was able to perform integration in a more

powerful way than the Slagle program. It had more general rules built into it,

and more explicit answers to problems whose integrals were already known. In

the third stage, the system, MACSYMA, was developed to meet the day- to-day

needs of scientists and engineers. Thus, after a long research and development

stage, a final product was developed. Although MACSYMA is a successful system,

in the sense that it is currently in use by scientists and engineers, many

individuals fail to refer to it as an expert system. Neither MACSYMA, SAINT

nor SIN are referred to as expert systems since the term was not in vogue when

they were developed. It is clear, however, that all three systems would be

referred to as expert systems were they developed today.

There are several stages in the engineering of an expert system:

Phase 1 - Research in which the feasibility of developing

an expert system in a specific domain is established.

Phase 2 - Development of and experimentation with a

prototype system.

Phase 3 - Field test the prototype system.

Phase 4 - Use of the expert system in the field.

In discussing the status of a particular "expert system", it is useful to

distinguish its stage of development. There are four expert systems that are

routinely in use: MACSYMA; DENDRAL(Feigenbaum et al. [1971]), an expert system

that analyzes mass spectral patterns to determine the chemical structure of

unknown compounds; R1 (McDermott [1981]), an expert system to determine com

puter layouts and configurations; and PUFF (Osborn et al.[1979]), an expert

system that interprets pulmonary function tests.

20}

A list of some representative expert systems and their domains of appli

cation appears in Table 1. A number of useful articles on expert systems

appear in books (Michie (1979), Hayes-Roth et al.(1983), Webber et al. [1981),

Szolovits et al.[1982)). Several comprehensive surveys have been written on

expert systems (Duda et al.[1983), Buchanan (1982), Nau [1983)). See Reggia

[1982) for a comprehensive list of references in expert systems oriented pri

marily towards medical applications.

208
5

I Expert System Domain Reference I
I ldli Biagnosis or plant disease chilausky et ai. [1 §'16 J I
I CASNET Glaucoma assessment and Weiss et al. [1978] I
I therapy I
I DENDRAL Mass spectroscopy Feigenbaum et al. [1971] I
I interpretation I
: Digitalis Advisor Digitalis dosing advice Go:r:ry et al.(1978] :
I Dipmete:r Advisor Oil exploration Davis et al. [1981] I
t El Analyzing electrical ci:rcui ts Stallman et al. [1977] I
I Internist-I Internal medicine diagnosis Miller et al.(1982] I
I HASP & SIAP Ocean Su:rveillence Nii et al. [1982] I
I (signal processing) I
I_KM_S ________________ _;_ _______ .,,..[___,,8-]---~I

Medical consulting Reggia 19 0
I MACSYMA Mathematical formula Moses [1971] I
I manipulation I
I MDX Medical consul ting Chand:raseka:ran et al. I
I [1979]. I
: Microprocessor Protein electrophoresis Weiss et al[1981] :

EXPERT interpretation
: MOLGEN Planning DNA experiments Martin et al. [1977] I
I MYCIN Antimicrobial therapy Davis et al.[1977]
I PROSPECTOR Geological mineral Hart et al.[1978]
I exploration
I PUFF Pulmonary function test Osborn et al.[1979]
I interpretation
I R 1 Computer layout and McDermott et al.[1981]
I configuration

TABLE 1 - Representative Expert System

Expert systems have been implemented using a variety of different

approaches:

(1) Embedding control and inference in a program written in a language such

as FORTRAN o:r PASCAL (Bleich [1972]).

(2) statistical pattern classification techniques as the basis of making con

clusions. For example, Bayseian (Ben-Bassat [1980]), and linear discrim

inant function (Faught et al. [1979]), have been proposed.

(3) Developing cognitive models of diagnostic :reasoning Reggia [1981].

6

(4) Production rule based systems (Davis et al. (1977]).

3. ISSUES

There are a wide range of issues that have to be addressed before expert

systems can reach full maturity. These range from the philosophical to the

moral to research issues and to user acceptance. It is not intended that all

of the items need be addressed before such systems can become a reality, but

that a number of these issues must be developed before the field can reach

maturity.

1. Philosophical Issues

a. What is meant by knowledge and how does one differentiate between

data and knowledge?

b. Will it ever be possible to capture all knowledge in a domain of

real interest?

c. Can one deal with systems in which there are significant gaps in

knowledge, and how can one assess the effectiveness of such sys

tems?

d. How does one differentiate an expert system from an application

program?

e. Can an expert system exhibit intelligence in the same sense as

attributed to humans?

2. Moral and Sociologic Issues

a. Are there classes of expert systems that should never be attempted:

they are morally repugnant?

b. What are the legal problems? Who is responsible for adverse reac

tions when a medical expert system incorrectly diagnoses a patient?

c. What are the potential social consequences of expert systems and

7

are they for the good, or wil they lead to major social problems?

d. Who should build expert systems: domain experts, computer scien

tists, or both?

3. Research Issues

Knowledge Acquisition and Representation

a. How does one identify and encode knowledge?

b. What characteristics should a knowledge representation formalism

have?

c. How does one express temporal knowledge and physiological mechan

isms involved in the evolution of disease processes?

d. How does one represent exceptions to situations?

e. How does one explain the basis for the decision criteria and/or

rules used in a knowledge based system?

f. Should knowledge be augmented by using causal and mechanistic links

that represent functional behavior?

g. How does one obtain large, reliable data/knowledge bases?

Inference and Uncertainty

a. How does one deal with vagueness and ignorance? Are fuzzy logic

(Zadeh [1978]) and statistical theories of evidence (Shafer [1976])

useful?

b. In what ways is logical inference useful?

c. Will indefinite data(i.e., data of the form p V q) be needed for

expert systems? What are the implications with respect to the

development of such a system or answers obtained during its use?

d. How can logical inference handle exceptions?

e. How is reasoning performed in the presence of ignorance and how can

8
2 11

a reasoning system recognize the limits of its knowledge?

f. What is "common sense" knowledge, and how can it be embedded in

expert systems?

Control

a. How is search controlled in an expert system?

b. What is needed to permit the user to exercise control and to under

stand what the expert system is doing?

c. Do current languages allow for control needed to find solutions to

problems in an efficient manner?

Explanation

a. Explanation in terms of goals and its knowledge base is very use

ful. However, experts who provided a set of rules are likely to

give explanations in terms of phy~iological mechanisms or disease

processes. How can a system accomplish this?

b. How does one provide explanations to different classes of users?

That is, how does one maintain models of users and provide explana

tions to the various users according to the implied intent of the

user?

c. How can the user be aware of the significance of questions asked by

an expert system? (e.g. the expert system may ask if a spinal tap

has been performed, and the user should be able to understand why

the question is being asked, as well as the fact that this test is

potentially dangerous).

4. System Assessment and User Acceptance

a. How does one certify an expert system?

9
2 1 L

b. How does one assess system performance, particularly where the

"correct" solution to the problems may not always be known? (e.g.

medical diagnosis)

b. How does one obtain large, reliable databases?

c. How does one scale up a system from small experimental systems?

What are the problems?

d. How does one develop user friendly systems?

e. How does one develop systems that can be transferred from the

experimental laboratory to a remote user site?

f. When will cost-effective systems be developed?

g. How can user resistance to change be overcome?

h. How will new knowledge and changes be made at the user sites?

We have set forth some of the issues associated with developing expert

systems. In the course of the panel discussion we will consider these issues.

5. REFERENCES

1. M. Ben-Bassat, et al. "Pattern-Bas~d Interactive Diagnosis of Multiple

Disorders-The MEDAS System", IEEE Trans. Pat. Anal. Machine Intelligence,

2, 1980, 148-160.

2. H. Bleich, "Computer-Based Consultation", AM. J. Med., 53, 1972, 285-291.

3. B. G. Buchanan, in Machine Intelligence, Vol 10, J.E. Hayes, D. Michie

and Y.-H. Pao Eds. Wiley, New York, 1982, pp. 269-300.

4. B. Chandrasekaran et al., "An Approach to Medical Diagnosis Based on Con

ceptual Structures," Proc. Sixth Int'l Joint Conf. Artificial Intelli

gence, 1979, pp. 134-142.

10

5. R. Chilausky, B. Jacobsen, and R.S. Michalski, "An Application of

Variable- Valued Logic to Inductive Learning of Plant Disease Diagnostic

Rules", Proceedings Sixth Annual International Symp. Multiple-Valued

Logic, 1976.

6. R. Davis et al., "The Dipmeter Advisor: Interpretation of Geological Sig

nals," Proc. Seventh Int'l Joint Conf. Artificial Intelligence, Aug.

1981.

7. R. Davis, B. Buchanan, and E. Shortliffe, "Production Rules as a

Representation for a Knowledge-Based Consultation Program," Artificial

Intelligence, Vol. 8, No. 1, 1977, pp. 15-45.

8. R. o. Duda and E. H. Shortlffe, "Expert Systems Research", Science, Vol.

220, No. 4594, 15 Apr 1983, pp. 261-268.

9. E. Faught et al., "Cerebral complications of Angiography for Transient

Ischemia and Stroke-Prediction of Risk", Neurology, 29, 1979, 4-15.

10. 10. E. Feigenbaum, G. Buchanan, and J. Lederburg, "Generality and Problem

Solving: A Case Study Using the DENDRAL Program," Machine Intelligence 6,

D. Meltzer and D. Michie, eds., Edinburgh University Press, 1971, pp.

165- 190.

11. G. Gorry et al., "Capturing Clinical Expertize-A Computer Program that

considers Clinical responses to Digitalis", Amer. J. of med.,

64,1978,452-460.

12. P.E. Hart, R.O. Duda, and M.T. Einaudi, A Computer-Based Consultation

System for Mineral Exploration, Technical Report, SRI International,

Menlo Park, California, 1978.

11

13. F. Hayes-Roth, D. Waterman, and D. Lenet, Eds. Building Expert Systems,

Addison-Wesley, New York, 1983.

14. N. Martin et al., "Knowledge-Base Management for Experiment Planning in

Molecular Genetics," Proc. Fifth Int'l Joint Conf. Artificial Intelli

gence, 1977, pp. 882-887.

15. J. McDermott and B. Steele, "Extending a Knowledge Based System to Deal

with Ad Hoc Constraints," Proc. Seventh Int'l Joint Conf. Artificial

Intelligence, 1981, pp. 824-828.

16. D. Michie, Ed, Expert Systems in the Microelectronic Age, Edinburgh Univ.

Press, Edinburgh, 1975.

17. R. Miller et al., New England Journal of Medicine, 307,468(1982).

18. J. Moses, "Symbolic Integration: The Stormy Decade," Comm. ACM, Vol. 14,

No. 8, 1971, pp. 548-560.

19. D. s. Nau, "Expert Computer Systems", Computer, 16, 63(1983), pp. 63-85.

20. H. Nii et al., AI Magazine 3,23(19~2).

21. J. Osborn et al., "Managing the Data from Respiratory Measurements," Med

ical Instrumentation, Vol. 13, No.6, Nov. 1979.

22. H.E. Pople, "The Formation of Composite Hypotheses in Diagnostic Problem

Solving: An Exercise in Synthetic Reasoning," Proc. Fifth Int'l Joint

Conf. Artificial Intelligence, 1977, pp. 1030-1037.

23. J. A. Reggia, "Computer-Assisted Medical Decision Making", Applications

of Computers in Medicine, M. Schwartz, Ed, IEEE, 1982.

24. J. A. Reggia and B. Perricone, "Knowledge-Based Decision Support Systems

- Development Through High- Level Languages", Proc. Twentieth Ann.

12 215

Technical Symposium of Washington DC, ACM, June 1981, pp. 75-81.

25. J. Reggia et al., "Towards an Intelligent Textbook of Neurology," Proc.

Fourth Annual Symp. Computer Applications in Medical Care, 1980, pp. 942-

947

26. G. Shafer, A Mathematical theory of Evidence, Princeton Univ. Press.

Princeton, New Jersy, 1976.

27. R.M. Stallman and G.J. Sussman, "Forward Reasoning and Dependency

Directed Backtracking in a System for Computer-Aided Circuit Analysis,"

Vol. 9, Artificial Intelligence, 1977, pp. 135-196.

28. P. Szolovits, Ed, Artificial Intelligence in Medicine, West View,

Boulder, Colorado, 1982.

29. S.M. Weiss et al., "A Model-Based Method for Computer-Aided Medical

Decision- Making," Artificial Intelligence, Vol. 11, No. 2, 1978, pp.

145-172.

30. S. Weiss and C. Kulikowski, "EXPERT - A System for Developing Consulta

tion Models," Proc. Sixth IJCAI, 1979, pp. 25-40.

31. S. M. Weiss et al., In Proc. of the Seventh Int'l. Joint Conf. on AI,

Univ. of British Columbia, Vancuvar, Aug 1981, pp. 835.

32. L. Zadeh, "Fuzzy Sets", Systems 1,3(1978).

KNOWLEDGE REPRESENTATION
IN AN EFFICIENT DEDUCTIVE INFERENCE SYSTEM

E. P. Stabler, Jr.
E.W. Elcock

University of Western Ontario
London, Canada

ABSTRACT

216

Efficient response to queries addressed to a large data
base is an important problem of knowledge representation. The
problem and various solutions have been well researched for
certain "conventional" (e.g. relational) data- models. The
analogous problem has been tackled and solutions similar in
spirit to those for relational models developed for data bases
and queries expre~sed in Horn clause systems such as Prolog
with the severe constraint that the "data base" is a set of
ground instances of assertions.

The situation becomes more interesting and challenging
when the data base is deductive: e.g. a Prolog first-order
theory. Basically the interest is in finding an automatic way
of representing the first-order theory which facilitates, the
dynamic reordering of residual literals and the selection of
the next goal to be evaluated based on a ~hanging measure of
the cost of-~valuating each goal in the residual query.

The current paper presents paitial solutions which can be
used to obtain dramatic reductions in search times. The paper
also identifies some remaining and difficult problems.

The methodology was designed with the processing of
natural language queries in mind, but it is quite general in
its domain of application.

KNOWLEDGE REPRESENTATION
IN AN EFFICIENT DEDUCTIVE INFERENCE SYSTEM

E. P~ Stabler, Jr.
E.W. Elcock

University of Western Ontario
London, Canada

. L 1 t

There -is an increasing demand for large database systems
that provide efficient inference capabilities. These are
~bviously needed in question answering systems and expert
systems, buf their potential rang~ of application is really
very wide~ It is an advantage to allow any database user a
uniform view of both explicit and implicitly represented

· information. Accessing the databa~e through a deductive
inference system offers the possibility of such freedom,
first, in its ability to decide whether any particular
proposition follows from what is represented in the database,
and second, in its ability to use rules, meaning postulates
and definitions of new terms and relations .as nonlogical
axioms in ~aking such decisions. Thus, ·rather th~n having to

·search for particular pieces of information, the user can
simply ask whether or not a partiqular proposition foliows
fr~m the database: · g·eneral rules can be introduced to cover
large classes of particular facts and to define new terms that
might b~ used in queries.

K~eping the deductive access to a large database efficient
requires, in the first place, that we deal with some of the
~tandard database management pr_oblems, viz., · the problems of
making search efficient and- of optimizing queries to minimize
the need for sear-ch. Tl;lese problems are paricularly pressing
when the database and access system are to be embedded in a
larger design, such as a question.answering system. In this
conte~t the system must interface with natural language
processors, rather ·than with the typical brilliant and
insightful human database user who· can learn how to avoid the
system's weak spots. ·As a result, database queries cannot be
expected to arrive_ i-n a for-m that is optimal from the point of
view of efficiency. In this rep~rt we·will show how such
standard database management problems can be handled in
PROLOG, one of the most. efficient and most widely known
_theorem proving systems.

--------------------* The software described in this paper was designed and
implemented by a research group.which included the authors,
D. Wyatt; and A .. Young. This work is also described in Elcock
et al.(forthcoming) and Stabler (1982).

.218
Page 2

PROLOG preliminaries. Since PROLOG is fairly well known
and'there are good introductions to the language (e.g.,
Clocksin and Mellishi 1981) we will only briefly review some
important features. PROLOG i 9 basically a Horn clause theorem
prover.· It also· has metalog ical facilities that can provide
higher order effects, and of course nonstandard effects can be
obtained by quantifying over possible worlds (cf. Moore,
1980). A clause is a first or~er prenex formula whose prefix
consists of (only) u_niversal quantifiers and whose matrix is a
disjunction of literals, where a literal is an atomic formula
or the·negation of an atomic formula. Since the order of
universal quantifiers makes no difference, they do not need to
be written down. A Horn clause is a clause whose matrix
contains at most one positive literal. The restriction to
Harn ·clauses does not, in principle, prevent us from
expressing anythlng that can ~e expressed in first order
logic. The relevant results are these: for any formula F of
first order predicate cal.culus, there is an· easily

.constructible set S of c~auses which is inconsistent if, and
only if, Fis (see e.g., Chang and Lee thm.4.1.)~ and for any
set S of clauses there is an easily constructible set Hof
sets of Horn clauses such fhat the~e is an inconsistent set in
H'if, and only if, sis inconsistent (see e.g., Henschen and
Wos, 1974). In spite of this generality in principle, though,
some problems are much more feasible and natural when
ex~ressed in noa-Horn clause.form.

The restriction to the Horn clause subset of first .order
logic is not the only special logical.problem that faces a
PROLOG database system. In the first place, we should note
that PROLOG does not· immediately provide-ideal inference
capabilities even within the Horn- clause logic: it's failings
are the familiar ones. It is.well known that "Horn•sets" are
not decidable (Hermes, 1965), and so of course PROLOG cannot
decide whether an arbitrary query of its Horn clause logic
follows from ·the database or not, even given unlimited time
and space. And'although it is easy to design proof methods
for Horn clause logic which are complete in the sense that
they will find _a proof of an arbitrary sentence if there is
one, the most efficient theorem p~overs, like PROLOG, are not
complete. They are even unsound in the sense that they will
sometimes claim ·to have found a proof when there is no valid
proof. Let's consider these problems briefly before
considering the ~ore standard database problems.

Soundness. It is well known that PROLOG will sometimes
produce an invalid proof. For example, -given the database
"p(X,X).", PROLOG will say that the query 11 p(Y,f(Y))."
follows. The instance that follows, according to the PROLOG
system, is the one in which Y=f(f(f~-■• {f(Y)))).... (Since
this is an infinite expression, there wJll be trouble if
PROLOG tries to print it out.) But obviously,

.214
Page 3

"(E-y) (P(y,f{y)))" docs not follow from "(x) (P(x,x))". PROf.,OG

gets this incorrect result because it does not do th~ "occurs
check" in the .course of unification. What it does is this.
When confronted with the query "p(Y,f(Y))" it tries to match
it with the database clause "p(X,X)". It begins with the
first argument; in effect, "Y" is substituted for "i". The
result is "p(Y,Y).", and this is identical to the query up to
the second argument. So now PROLOG tries to match the second
arguments, which it does by substituting "f(Y)" for "Y". As a
result, Y=f(f(f ••• (f(Y)))) ••• , and the query is judged to be
an instance of the databas~ clause. Strictly speaking, this
matching process is not the unification which is employed in
sound, resolution procedures, because a variable cannot.
properly be unified with any term which contains that
variable.. Implementing unification correctly would involve
performing an "occurs check" to .make sur·e that the variable
does not occur in the term it is being unified with.
Performing this check in every unification step is expensive,
especially when t~e term~ being unified are large. Since the
matching process without an o~curs check is so-much cheaper,
-and since it is sufficient in most cases, most PROLOG
implementatioris do not Dse strict ~nification. As noted

·above, assuming that we do not want to just tolerate·errors,
this means that the use:rs of thes·e systems must make sure they
are not accepting conclusions based on unsound inference-s.
There are a number of ways .to do this. ·

One way to. avoid unsound inferences is simply to require
that only ground clauses occur in the database. -This
restrict~on is perfectly straightforward, and it is obviously
adequate since the database would then not contain ·any
variables which might occur in terms tney would be matched

. with.·· The problem is that this rest~iction is obviously going
to eliminate the j;eatures which make logic programming
languages particularly attractive. (Consider, for example,
the features mentioned at the beginning of this paper.) ·

There are other similar and iess restrictive strategies.
We can hope th.at programmers experienced.with PROLOG_will
learn how to avoid creating a database in which unsound
inferences will be made. If an unsound inference is going to
cause trouble, they should block it. The problem then is not
with th-·"systemlt datab~se whlch is provided by programmers,
but with database.clauses which might be provided by naive
useis. We do not want to require'the users to understand and

·attend to such things as the peculiarities of the PROLOG
·matching process. so we can either provide a complete system

· to which the user cannot add information, or we can require
that any information added be groupd·clauses •. The "system"
database wou'id then be created by programmers famil.iar with
PROLOG.' s matching process, and the ".user" database, if there
is one, would not add any dangers.of uns6undness. This
restriction on the users' database would certainly to be felt,

220
Page 4

howe~er; it severely constrains what the user can do with the
system. He would not,- for example, be able to add definitions
of new relations in terms of relations already provided by the
system. The only other alternative that seems to. be .
available, though, would be to do the occurs check whenever
non-ground clauses that could conceivably cause an error are
used.· Since the main thrust of the present project is to
allow the dat~base users the real advantages of accessing a
database through an inference system (without errors, even·
very unlikely ones!),· this last strategy is the only
acceptable one, and is currently being explored.

Completeness~ The second-problem that we would like our
system to deal with as well as possible is that of avoiding
attempts to- find proofs which are beyond the theoretical
capabilities of PROLOG. We have already noted the obvious
point that mere completeness is not going to do us any good if
the proof proced~re is just not feasible. But the point of
interest is that if finding a proof of some result is beyond
PROLOG's theoretical capabilities, it is of course also beyond
its practical capabilities. It is a good strategy to try to

_keep the whole class of proofs that might be sought within the
theoretical capabilities of PROLOG, and then to keep those
proofs as efficient as possible. Sometimes a simple change in
the databa~e, query, or proof strategy that brings a res~lt
within the theoretical capabilities of the system also
suffices to bring the result wi t·hin the practical capabilities
of the system.

Th~ following familiar sort of example illustrates this
situation. (This example is taken from Moore(forthcoming),
where it is used to illustrate the related problem of forward
vs. backward chaining.·) One of ,the standard ways to define a
relation is with "base rules" and "induction rules." For
example, the one-place r~lation or property of being Jewish
might be partially defined with a list of people who are
Jewish and with the rule from the Talmud that a person is
Jewish if the mother of that person is Jewish, as follows:

jewish(bar-hillel}.
jewish(X}:-jewish(mother(X}).

Given this database, PROLOG will properly indicate that there
is a proof of the query ~jewish(bar-hillel).". If, however,
the clauses in the database are reversed,·putting the
"induction rule" before the "base rule," PROLOG will never
succeed in finding a proof of this query. -Because it uses a
depth-first proof strategy and selects the first database
clause first, it would never get to the second rule, the base
rule, which it would need to use. It would "loop," using· the
first rule, the "induction rule," over and over again. Since
this sort of situa~ion is quite common, we can adopt the

-Page 5

strategy of alway~ putting "base" rule~ before "induction"
rules. The problem is to recognize them. A crude
approximation that will handle this case is to check each
clause that is going· into the· database to see if it is a
simple assertion, a unii clause with an empty body. If it is,
put it at tbe beginning of the list of clauses which have the
same predicate; otherwise, put it at the end of the list.
(This is one of the things which is done by our predicate
"update" which will be described in more detail later.) It
should be noted, however, that- this ordering strategy will not
work in, cases where the "base" rules are not simple
assertions, and it will not.work in cases in which there is
more than one· "induction rule." There are cases of
incompleteness which cannot be remo_ved by any reordering of
database clauses. (Cf. Elcock, 1982; 1983.) Thus,- our
implementation of this ordering strategy is not.motivated so
much by completeness considerations as by. feasibility: it is

· gene·rally cheaper to find· s.olutions using unit clauses, so·
·these should be tonsidered f~rst.

Feasibility. Problems which are at prese-nt effe·ctively
insurmountable also seem to face the general goal of staying
within the practical limits-of the system. The use of a
language .that has a formal, logical interpretation is no
panacea for the standard sorts of programming problems; we do
not have any mechanical method for transforming logically .
correct but inefficient code into correct and efficient code.
The ordering method just described will help in some cases.
Another thing that. is done (by "update") to improve efficiency
i~ that whenever a clause is added to the database, all
instances of that clause -are deleted. So, for example, the
addition of "p(X)." to the database will cause "p(a)." to be
del~ted. And the addition of "p(X,Y)." will cause dp(X,X)."
to be ·deleted. So a certain easy to find redundancy is
automatically eliminated. Apart from such simple steps as·
these, though, there is not much that can be done cheaply and
easily to enlarge the class of feasible proofs except to
provide as much time and space as is practical, to minimize
the need for unnecessarily long searches, and to make searches
of the database.as effi9ient as possible. Search efficiency·
can be improved by indexing the database; unnecessary search

·c,n be eliminated with appropriate goaL s~lection strategies
and intelligent backtracking. Each of these method·s will now
be considered in turn. Notice that none of them are theorem
proving matters; they are metalogical operations that change
the set of axioms from which we may draw inferences. They can
be taken care of automatically, out of the sight of the user.
The user should s~e only the improved efficiency.

Indexing the database. A standard technique for making
search efficient involves indexing the units of information so

2-ZZ
Page 6

that when an item is needed the whole memory does not need to
be searched~ insiead the location of the needed information
can be looked up in an array cir hash table. ·The DEC-10.PROLOG
interpreter indexes database clauses according to their "head"
predicates, i.e., according to the predicate in the head of
each clau~e (Pereira et al., 1978). But when a relation is
large, when there are many clauses with a particular head
predicate, the searches will still be long.. In this
situation, the standard strategy is to start secondary
indexing on the arguments of the relations. A database that
is indexed for every argument of every relation is said to be
totally indexed or totally inverted. Some PROLOG
implementations, s.uch as IC-PROLOG,. provide facilities for
indexing according to the principal· functor of arguments to
the head predicates in the database (Clark and McCabe, 1982).
And in systems.like interpreted DEC-10 PROLOG, secondary
indexing effects ca.n be obtained si-mply by building auxiliary
predicates which incorporate names of the principal functors
of the arguments. This technique was U$ed in the Edinburgh
Chat-80 system (Warren, ·1981; Warren and Pereira, 1981), and
we used it in our work.

Goal selection strategies. The order in which the goals
of a query are solved can make a substantial difference in
resource use. Suppose, for example, that the· database has
4000 clauses with the predicate "gl" and 1 clause with .the
predicate "g2", and that all of these are ground clauses.
Then, given the left-to-right selection method that is
standard in PROLOG, and assuming that the database is totally
indexed, it is much.more efficient to evaluate the query,

g2 (X, Y) ,gl (X, Y}.
than it is to evaluate the query~

. gl(X,Y),g2(X,Y).
Evaluating the latter query could involve an enormous amount
of backtracking. Evaluating "g2(X,Y)" first, on the other
hand, immedi~tely provides the only instances of "X" and "Y"
which could possibly satisfy the query. The indexing will
allow this instance to be checked without a long search, and,
in any ~ase, backtracking is more expensive than a simple
search for a matching head predicate. so· in general, we want
to evaluate the least expensive goals first. When the
database is all ground clauses and the query has variables in
all argument places, we can let the c,ost of a goal be the size
of the relation, i.e., the number of clauses in the database
whose heads have the same predicate as the goal. The cost
function should be more elaborate, however, when the database
contains clauses with variables (or terms-containing
variables) or the query contains goals with non-variables.

Let',s consider ~irst the·elaboration of the cost function
which is needed to allow for queries with instantiated
arguments. If a predicate is indexed in the database, then

.2. 2.3
Page 7

a·ny "use-r" query of that predicate will be solved by first
·converting it into its indexed form and then finding a
solution to that "i~dexed" query. In a totally indexed
database the cost of solving the original query will not in
general depend on the size of its main predicate, but rather
on the size of the sets of arguments that occur in each of the
n-positions of any n-place prediGate in the query, since these
are the.arguments to the indexed predicates. In order to

. estimate the expense of finding a solution to a query (in a
manner which will be described below) we can keep records of
the sizes of the sets of arguments that occur in each place of
every predicate. When all the database clauses are ground
clauses, calculating the sizes of these sets is ·

1 straightforward. The sets s_imply include all the different
te+ms. that occur in the relevant argument positions.

This brings us to the question of how to elaborate the
cost function to make it appropriate for a totally indexed
database that is not restricted to ground cleuses~ In this
situation, not all of the possibl~ instantiations of any
par·ticulat: argument position need be explic1tly available;
some of them will only.be found by the inference process. We
do not want tri have to calculate .all of the·possible ·.
instantiations ·of each predicate, so we need some reasonable
way of estimating the number.of distinct-terms that could
occur in each argument position. The details of the ·
calculation will not be described here, but roughly, we make
worat-case assumptions that allow us to calculate the maximum

1 number of possiple distinct provable instantiations of e.ach
predicate. And th~n, thinking of each different pre~icate as
a relation, we want some reasonable way of calculating the
relation size. Again, we calculate relation sizes by making a
worst-case ~stimation of the number of solutions one would be
able to find to the query consisting of any particular
predicates followed by the appropriate number of variables.
We calculate these estimates and revise them when new
information is added as part of the "updating" process. Given
these estimates, we are able to use the same cost es.timation
formula as was used in the Chat-80 system for ground clause
databases. The cost of solving a goal ·is defined as the size·
0f the relation divided by the product of the argument domain
sizes associated with argument positions that are instantiated
at the time a solution is•sought. . ·

Notice that, given this definition, the cost of a goal may
change when other goals in the query are solved. For example,

· in solving the query,
g l (X , Y) , g 2 (Y , Z) , g'3 (Z·, a) •

th~ solution of the first goal will instantiate the first
argument of the second goal, making it cheaper to solve. And
the solution to the second goal will leave no uninstantiated
arguments in the third goal. So-if we want to plan our
queries in such a way that the cheapest goal will always be

2.i 1
Page 8

the next one solved, we will have to anticipa~e the
instantiation of the relevant variables. This process
interacts with the backtracking strategies described below, so
let's consider those before describing how this query planning
should be done.

Selective backtracking. Sometimes PROLOG will do a lot of
unnecessary backtracking in the course of finding the set of
solutions to a query. Consider, for example, the query,

bagof(X,h(X),B).
where the unary predicate "h" is defined by the database
clause, ·

h (X) :-gl (X) ,g2 (Y).
And suppose the database provides some number n of solutions
to the first goal, "gl (X)-", and some very, large number m of
solutions to "g2(Y)". In finding the list B of solutions to
"h(X)", a solution to the first goal "gl(X)" ~ill be found;
the~ a solution to the second goal "g2(Y)" will b~ found and

.the instance of "X" will be put in list B. The system will
then backtrack to find all m ~olutions to the second goal,
putting the first solution to the first goal in.the list B
each time. Since we are only interested in getting the
instances of "X" whi6h satisfy the g6als given, it is just a
waste to get each such solution m times. We could use "setof"
instead of "bagof" to get a nonredundant list of solutions,
but this query also wastes the time to get all the redundant
solutions before deleting them.· r'nterchanging the positions
of "gl ('X) 11 and "g2 (Y) 11 do_es not ·improve things. And simply
putting a cut into ·the original query somewhere will also not
achieve the goal of getting a complete set of the .instances of
"X 11 without this wasted effort. (In this case we could
interchange the goals and put a cut between them, but this
sort of solution will not always be available, as the examples
below will illustrate.) Because it shares no variables with
the head of the clause, the goal 11 g2(Y)" is, in effect, an
independent subproblem; it must have a solution, but this is
all we need to know to find all of the solutions to "h(X) 11 •

Precisely the same situation arises if instead of having a
definition of "h", we s.imply ask,

bagof(X, (gl(X) ,g2(Y)} ,B) .-
We would like to be able to avoid the unnecessary backtracking
in all such cases.

This problem was handled in the Chat-80 system by putting
independent subproblems inside braces,· and then changing the
PROLOG interpreter so that it would evaluate queries
containing such braces ~ppropriately. We used the standard
interpreter and used new rules with cuts to achieve the same
effect.• Thus, instead of evaluating a query like

bagof (X, {gl (X) ,g2 (Y)) ,B). .
or putting a rule in our database like,

· h(X):-gl{X),g2(Y).

.2..«5
Page 9

we would enter the auxiliary rule,
r 1 (Y) : -g 2 (Y) , ! .

, and then evaluate the eq~ivalent query,
bagof(X, (gl(X) ,rl(Y)) ,B).

or put the following equivalent rule into our database,
h (X) : -g 1 (X) , r 1 (Y) •

The latter query and rule will yield the same results but
without all the ~necessary backtracking.and inference. The
body of the auxiliary rule is appropriately evaluated as an
"independent subproblem." The savings in resource use can
obviously be enormous.

Extending this sort of treatment to more complicated
queries and rules is not trivial, but not terribly hard
either. Consider the follo·wing sort of case,· for example,

h{X.,Z) :-gl(X) ,g2(Y) ,g3 (Z).
In this case we do not want to enter the auxiliary rule,

rl(Y,Z):~g2(Y)·,g3(Z),!.
and change our original ruie to,

. ·. h(X,Z):-gl(X),rl(Y,Z) ..
since this procedure would only allow us to find one of the
possibly many solutions to g3(Z). The moral of this sort of
case is that no head variable should occur uninstantiated in a

: subproblem when that subproblem is evaluated. Thus, although
1 _"g3(Z)" s~ould not be includ~d in a subproblem in thii last

·example, it could be included in a subproblem in
_h(X,~)~-gl(X,Z);g2(Y),g3(Z).

In this case the mentioned auxiliary rule would be
appr·opr·iate, since the head variable "Z" will always be
-instantiated at.the time "g3(Z)" is evaluated, and so its
occurrence in an independent subproblem wiil not restrict the
number of solutions found. . · .

. An6ther sort of case that can arise is that we may have
i subproblems within subproblems. Consider for example the

query.,
h(W) :-gl(X) -g2(X,Y) ,g3(X,Z).

None of these goals contain head variables, so they can
immediately be put into an independent subproblem. After the
f.irst of these goals has been solved, though, the remaining
two goals do not share any variablas, so they break into two
further subproblems. Accordingly, the rule· wouia be handled
by transforming it into,

h (Wl: ..-r 1 (X, Y, z) •
and th~n we enter the following auxiliary iules~

r 1 (X, Y , Z) : -g 1 (X) , r 2 (X, Y) , r 3 (X , Z) , ! .
•r2 (X, Y) :-g2 (X, Y), ! .
r 3 (X, Z) : -g 3 (X, Z} , ! •

The ratio'nale for doing this is just the same as ·above.
Suppose for example,. that for some choice of "X" we are unable
to prov·e "g3 (X, z) ". There is no point in_ backtracking to find
other solutions to "g2(X,Y)", since the choice of "Y" is
irrelevant to our problems with "g3(X,Z)". What we need to do

...

Page 10

is.-immediately go back to find another choice of "X". This is
precisely what our new rules will accomplish.

This g~ouping of goals into subproblems is sometimes going•
to interact with our goal selection strategy. For example,
after ordering the goals on the basis of solution cost, it may
turn out that an independent subproblem is broken up by a goal
containing a head variable. This sort of conflict is resolved
with an optimizing algorithm which integrates the cost
planning and the selective backtracking stra·tegies we have
described. · ·

Optimizing,. The optimizing algorithm that was implemented
is roughly the following:

Giv·en a rule of. the form H:-Gl,G2, ••• Gn,
(1) Order the list of goals, Gl, G2, •.• r Gn, according

to solution cost, as discussed above.
(2) Look through the goals, in order, to find head

variables.
(i). If such a a goal is found, it will be the cheapest
goal containing a head variable, so move it to the front
of the list of goals,. and assume for the remainder of the

.optimizing process.that its arguments are instantiated.
(S.ome of them· may 9ccur in other goals.) Consider oniy
the remaining goals for the rest of the optimizing
process •. Reorder· these goals according to cost, and
repeat step (2).
(ii) If no such goal containing head var:i:ables•is found,
proceed to· the next s-tep. · ·

(3) Any goals that remain to be considered at this
poin·t will not have any head variables at the time they
are to be solved, so they constitute independent .
subproblems. Take the first ~oal Gi on ·the list - it will
be_ the cheapest - and check the following goal to see if
it shares any variables with Gi; If it does, it is to be
included in the same subproblem with_Gi, and check the
next goal to see if it contains any of the same variables
as Gi, and so·on until there are no more goals or until a
goal with no variables ·in common with Gi are found. At
this point we have a list of the goals in the Gi
subproblem, and possibly also a list of remaining goals
not in the Gt subproblem. Now enter an auxiliary rule,
"the Gi rule," i~to the database. The Gi rule is given a
unique head predicate and has as head arguments all the .
variables· that occur in. the goals of the subproblem. '!'he
body of the Gi rule consists of the 9oals in the Gi
subproblem. We now want to optimiz€ the body of this rule
as welli so assume foi the.remainder of the optimizing
process that the variables in Gi are all instantiated.
Reorder the rest of the goals in the body of Gi rule {if
any) and perform-this step (3) again on these goals to

;_ .2:,...
Page 11

find subsubproblems. Finally, reorder the list of goals
outside of the Gi subproblem and perform this step (3) o~
them as well.

This algorithm anticipates the instantiation of variables both
in its cost calculations and in its recognition of independent
subproblems. I_t appears to be a very expensive process, but
it need only be done once for any rul~ being put into the
database, and it can actually save an enormous amount of time.

Suppose that our dat·abas·e contains one ground clause with
the predicate "gl", -0ne hundred ground clauses with the
predicate "g2"~ five hundred ground clauses wiih the predicate
"g3", and nothing else except the follo~ing definition of the
predicate "h":

. h (·x) : -g 3 (Y) , g 2 C z , Y) , g 1 (x) .
Now consider the query, ·

setof(X,h(-X) ,S).
This query is obviously maximally ineffi.cient, but our
database is not really huge and so it may not be obvious that
it would be worth.optimizing the rule for "h(X)". The actual
processing times are as follows. Executing the maximally ·
inefficient qu~ry in fhe situation described takes 2291 ms.
OptimiziQg the r~le for "h" tranforms it into,

h{X):~gl(k),~l(Y,Z)~ ·
: and enters the auxiliary rules, -

· r 1 (Y, z) : -g 2 (Y, z·) , r 2 (z) , ! .
r 2 (Z) : -g 3 (Z) , l • .

. This optimizing process takes· about· 280 ms. And executing the
same "setof" query, but now with the optimized definition of
"h" and the auxiliary rules, takes about 30.ms. Obviously,
the optimizing is worthwhile in any case like this one. On a

' larger·database, the improvements are even more dramatic, as
would be expected. The optimizing code could also be compiled
to improve its efficiency further once it has been p~t in the
form in which we want to use it in any particular application.

Conclusion. The work that has been desc-ribed here is
aimed. at providing the basis for a feasible, pragmatic

·deductive inference system. It is completely general and
~ortable. The applications that this work is specifically·
designed for are those -in which a user wants to have
inte~active deductive access to a database ~hich may include
general rules (expressions containing logical variables} as
well as particular facts (expressions containing n6
variables). This sort of application would go substantially
beyond most previous logic programming projects which usually
require.that the database contain only ground clauses or that
the user cannot add new ·rules. It is precisely the more
general sort of _database system that exploits the real
advantages of a.deductive system, though, and this sort of
system would be required in many question answering systems.

References.

Chang, c. and Lee, R.C. (1973) Symbolic Logic and
Mechanical Theorem Proving. New Yorl<: Academic Press.

Page 12

Clark, K. L. and McCabe, F.- (1982) IC-PROLOG - language
features. In K.L. Clark and S.-A. Tarnlund, eds., Logic
Programming. New York: Academic Press.

Clocksin, W.F. and Mellish, C.S. (1981) Programming in
PROLOG~ Berlin: Springer-Verlag. . -·

, -) -Elcock, E.W. (1982) Goal selection strategies in Horn
claus~·programming. Proceedings of the Fourth National
C0nference of the Canadian Society for Study in Artificial
Intelligence.

Elcock, E.W. (1983} The pragmatics of PROLOG - some
comments. Unversity of Western Ontario, Department of
Computer Science Technical Report.

~ Elcock, E.W., Stabler, E.P.-. Wyatt, D., and Young, .
A •. (forthcoming} Database management in PROLOG. Unp_ublis·hed

· technical report •.
Henschen, L. and Wos, L. (1974) u·nit refutations and Horn

sets. JACM, 21, pp 590.-605.
-Hermes, H:-(1965) Enumerability, Decidability,·

Computability. New York: Springer-Verlag.
Moore, R.C. (1980) Reasoning about Knowledge and Action.

SRI Technical Note 191. --
! ~ Moore, R.C. (forthcoming) The role of logic in knowledge

r~presentation and commonsense reasoning.
Pereira, L.M-1 Pereira, F.C.N. and· Warren, D.H.D. (19-78)

User's Guide to DECsystem-iO PROLOG.
~ Stabler, E°:"P. (1982) Database arid theorem prover designs

for quest.ion answering systems. Centre · for Cognitive Scien.ce
technical report, Cogmem No. 12, University of Western
Ontario. · '

Warren, D.H.D. (1981) Efficient ~recessing of interactive
relational database queries expressed in logic. Department of
Artifical Intelligence Research Paper No. 156, University of
Edinburgh.

Warren, D.H.D. -and Periera, F.C.N. (1981) An efficient
easily adaptable system for interpreting natural language
q·uer ies. Department of Artificial Iritelligence Research Paper
No. 155, University of Edinburgh.

·1 - -· .

A LOGIC-BASED EXPERT SYSTEM FOR MODEL-BUILDING IN REGRESSION ANALYSIS

Ferenc Darvas, Kornel Bein, Zolta.n Gaba.nyi

Company for Computer-Assisted Drug Design*,

, 1054 Budapest, Akademia u. 17.

1. Introduction

Methods of mathematical statistics and pattern recognition make a

significant part of computer applications besides data processing.

Although there are mimerous expert systems based on these methods

/REG8l/, relatively few attempts have been made for automatic

building of models, computations to be based on, as well as for

automatic evaluation of results, which form a major part of brain
work.

•
This situation seems to be apt also to regression analysis, the

most wide-spread method of mathematical statistics which has been

referred to in altogether two publications on possible automation.

In this paper application of logic programming in automatic model

building for regression analysis is presented, in connection with

a drug design problem. After a survey of the regression problem

/Chapter 2/, the drug design problem and the logical model for

problem solving will be dealt with /Chapter 3/. Chapter 4 gives a

summar:, of the program system implementing the model, while

Chapter 5 reports on experiences with the system and evaluates the

chosen logic programming method.

HA joint company of the Institute for Coordination of Computer
Techniques, Budapest, and the Institute of Enzymology, Biol.
Res. Cent., Hungarian Academy of Sciences, Budapest •

.. •··· .. ,, __________ ,. ___ ,. ________________ _

.2.30

2. The regression problem

It is a frequent case that in regression equations of the form

- = + e /1/

some of the :x1 column vector~ of !'matrix are binary vectors, i.e.

the components of x. can take the discrete values of O or 1 only
l.

/DRA66/. Components of such vectors can be regarded as logical

variables of values "true" or "false" and can be subjected to

Boole / .Al'ID, OR, NOT/ operations.

Suppose that a variable x. is assigned to the column vector x.,
l. l.

and values of land O of x. correspond to the presence and
l.

absence of ~:1.•

If the model permits to interpret physically a common variable for

~i and ~j, a new vector ~ can be introduced, as the logical OR of
xi and x. : _ _ _ , _

J ~ i= X4 off x1 • x, + XJ

More generally

Similarly, a new vector can be generated by performing the

Boolean AND operation on original vectors xk:
.e

- r,..> -

i-- = /)i x,_

/2/

/3/

/4/

Logical combinations according to /3/ and /4/ might be useful in

all cases when x.-s are not competely independent of each other
J.

ias it is the common case in many fields/. Caus.al interpretation

of the regression equation requires, however, that each variable,

.2.31

·- ... ___ ----·----·---
formed by Boolean operation, should have a meaningful inter-

pretation in the frame of the model investigated •

.3. Prediction of drug activit:y

Drug design aims at predicting biological activity of not yet

synthetized or, at least, not yet tested compounds /HAN69/. In

its most widely applied approaches /HAN6J, FRE'-64/, linear

relationships between two groups of quantitative-descriptors are

searched. The first group relates to the biological activity, the

second one to the chemical structure of a series of organic

compounds •. An important group of chemical descriptors is formed

by the so-called "indicator" variables, giving the presence or

absence of definite groups within the molecules /MAF..78/. In drug

design methods like in the Free-Wilson approach, Fujita~Ban

approach and Kubinyi's mixed method, eq. l. comprises exclusively

·or additionally indicator variables asxi column vectors of¥.
/FRE64, FUJ71, KUB76.3/.

Indicator variables in eq., l. can be interpreted as logical

variables and also combined in sense of eq. /3/ or- /4/ /GOL80/.

Becaus,e of the high number of the possible logical combinations,

the regression eq. l. cannot be solved with a pre-determined set

of all combined variables. Input variable set of the normally

used stepwise regression program might include only those logical

combinations, which can be interpreted in the context of the
biological activity investigated.

Interpretation of the large quantity /sometimes several hundred/

of combined variables means a formidable work, which is burdened

with errors of subjective decisions. We think that the high

intellectual expenditures of such interpretations compose the

main reason for the fact that logical combinations ar9 rarely

used in drug design calculations /HAN75, ELG82/, though the first

examples were published a long time ago ,BOC65, KOP65, SCHA75,

h'1JB762/.

In order to find physical interpretation for the combined

variables by logical programming, a logical model of the drug

receptor "reaction", the ultimate scene of the drug action is

needed. Here we give only an informal summary of the most

important concepts we .have used in our model.

It is supposed that all compounds act with the same "reaction

mechanism" on the same macromolecule /receptor/ within a living

cell. Measured biological activity values used in eq. l. are

originated almost exclusively from this reaction.

Structure of the compound series can be described as aggregate of

unique groups /occuring only in some compounds/ and of the

re.maiDing part of the molecule /supposed to be common in all

compounds/. Indicator variables of eq. l. denote the presence

or absence of single groups in each compound.

Contributions of the i-th and the j-th indicator variables /Y;i
and~ to the biological activity of all compounds are expressed

as the regression coefficients b. and b .• b. and b. depend, in
J. J J. J

the first place, on the sets of chemical and physical properties

/C. and E./ of the chemical groups ~-, and ~-•
1 J J. J

There are two cases:

1. Contributions of ~and~ are independent from each other.

2. Contributions of ~ and "Q depend on each other.

In this latter case, it is supposed that '{i and~ enter into an

"interaction". Such interaction can be originated e.g. from the

formation of an intramolecular chemical bond between the

233
-1---------- ------------------------------ --·---- ---------------
i

substituents /FUJ71/. An interaction between ~,and "3 depends on

the "environmental" conditions in addition to the properties of

~ and l'j • Most important groups of the environmental conditions
are the

electronic connections between two groups, transmitted through

the common part of all molecules, and

- through-space connections between two groups being able to
reach each other.

Let describe bi; and JAJ.J the two sets of connecti~ns between ~
and (\1 •

The sets ¾, f"2 , •• f'Q are constructed in such manner, that they

give a possible full description of the. meanings of ~' t°f. •••
~~groups, attaching all to the same position (~) of the

common part of molecules.

A variable resulted from logical addition oft, f1.., • • • "4, where

N c: G. according to eq. 3. can be interpreted as the largest

common subset within E .. , f 1 , •••• EN which, in the same time,

does not occur in the fft<tt' E'N+t. ••• f~ property sets of the

remaining !t.1+.t , 'tt.itt, ••• 't~ groups attaching to ~ •

Logical multiplication of f1 and "{'1. according to eq. 4. can be

interpreted as an indication to an interaction, r1 •

I1 occurs if properties of 'Ci and °1 • e:. e £, _ and z ! 6 £;
enable chemical or physical 'mo9'ification" of ~..£ and \j trough

the connections M'.e:: IA••andb••6a°•••
I -4 1 r-'a ;,,.a "f

Thus, they can be represented in form of a production rule /SH076/

/5/

Subsets of properties can cause several interactions. On the other

hand, an interaction can be triggered by several combination of
property sets.

.23'-,

4. Computer implementation of the model

Biological activities and chemical structural descriptors of the

tested compound a.re the starting data of the calculations.

Structural descriptors can be divided into two classes: binary

indicator variables and continuous physico-chemical, quantum

chemical variables. Values of these continuous variables can be

calculated by other programs or retrieved from the data base

stored in the system. They can be transformed in different ways

/addition, subtraction, taking logarithm/. Structural formulae

of the compounds with activities to be predicted also belong to

the starting data set.

First step of the program is to solv.e a so-called Fujita-Ban

equation system /FUJ71/ using the measured activities and the

indicator variables. The solution serves as input for the

logical interpretation of the possible logical additions.

In the PROLOG program providing the interpretation, each chemical

group /nsubstituent"/ is charac~erized by a chemical property set.

If a contraction /i.e. logical addition/ is carried out, common

pa.rt of the property sets of the groups is generated. A

contraction is pemitted only if the property set of the other

chemical groups at the same substitution site do not imply this

common part. As interpretation of the contracted variables the

resulted common property sets are considered.

After the evaluation of the possible interpretations the

computation goes on in an interactive way so that the user

decides on the contractions of the substituents step by step.

After the user's giving two or more substituents to be contrac

ted, the system computes the new regression equation, its

statistics and optionally the estimated biological activities

of the untested compounds. If the user accepts the equation,

the next contraction will be carried out on the base of the

new indicator variable set, otherwise the processing continues

------· ------~s-.. ••-·•-·•·-------

using the previous variable set. Contractions of indicator

variables are carried out at each substitution-site, one by one.

Having performed all necessary contractions, generation of

interaction variables follows. An interaction variable corresponds

to the common presence of substituent M.at site I and substituent
Nat site J /logical 'AND' relation/.

Value of this variable isl for a given compound if this 'and'

relation is true, otherwise it is O.The system generates all

interaction variables with value= l for two or more tested

compounds, and calculates frequencies for them.

The user gives a lower frequency limit f1 • This specifies that

henceforth interaction variables of frequency greater than or
equal to f1 are treated only.

The interaction variables are then prescreened: the progr~ lists

the variables with statistics informing about their importance.

If a vari~ble is redundant in statistical poilitt of -.:iew, it is

ignored. The accepted interaction variables are added to the set

of variables, and the!f11so passed to the program giving automatic
interpretation.

Using the built-in automatic deductive m.echanism, this program

tries to prove the interaction rules stored in its data base.

If the proving procedure is successful, the user is informed

about the result as a possible interaction. The interpreted

interaction variable can be included in the input data set for

the calculation of the final regression equation. This input

involves not only the original, contracted and interaction

variables but the continuous ones as well. There are two means

for computing the final equation: interactive or automatic

stepwise regression analysis. As result of the numerical

calculations one gets the regression equation corresponding

to the wanted quantitative structure-activity relationship,
·-- ··--·- ---· ____ ..,,

its statistical characteristics and the estimated activities of

the tested and untested compounds.

5. Experiences. SUmma.rz

The system is implemented on the Siemens 7536 computer of the

Institute for Coordination of Computer Techniques, in FORTRAH

and MPROLOG • li'O?ROLOG is a modular version of PROLOG, being

developed by the Institute. Besides its comfortable program

development facilities it permits modular structuring of the

program.

. '

In order to test drug design performance of the system, earlier

results were recalculated and new problems were solved.

Recalculating_one of our earlier series of structure-activity

regression equations /DAR80/ resulted significant and meaningful

equations in all of the 8 cases investigated. In addition, an

earlier version of the system helped in a great extent to

calculate quantitative structure~activity relationships for

anti:f'u.ngal nitroalcohols /LOP83/. In summary, the mechanical

interpretation of the combined variables seems to be a helpful

tool in model-building for drug design.

On the other hand, drug design has been a favourite field of

logical programming for a long time. Besides a system for

predicting drug interaction /DAR75, FUT76, FUT771, DAR78, FUT79/,

a carcinogenity prediction system /FUT771/ and a system for

calculation of physicochemical properties of organic compounds

/DAR782/ have been implemented. The expert system in question

has an additional feature relative to them: the general nature

of the problem and the model formulated permits our program

system, with minor changes, to be applied in numerous other

fields as v:ell.

Among others, potential application fields are the quality

control, geology, town planning, environment protection, all

of them dealing frequently with regression models including

yes/no variables and their combinations. The fact, that

interpretation of the combined variables, a bottleneck of

the model-building, could be performed by a relatively short

program shows,that logical programming is a powerful tool in

constructing small expert systems.

,I

{-

References
BOC65 .,
K. Bocek, J. Kopecky, M. Krivucova, D. Vlachova: Experientia
20 667 /J965/ - ,

DAR75
). Darvas, I. Pu.to, P. Szeredi, in: Proc. Cont. Comp. Cyb.

:Methods in Medicine ud Biology, P• 413, Ed. D. Kuszka, Szeged,
·11ungary

. iai8
: • arvas, I. Pu.to, P. Szeredi: Int. J. of Biomed. Comp. 9
!259 /1978/ -

ID.AR 82
'J. barvas, I. Fut6, P. Szeredi, in: Proc. Symp. on Chem.-Struct.
- Biol. Act.: Quant. Approaches, Ed. R. Franke, Akademie Verlag,

: Berlin, 1978.

· DJB8o
J. Darvas, J.- RlShrieht, z. Budai, B. Bordas, in: Chemical Struc
ture-Biological Activity Relationships, Eds. J. Xnoll, P. Dar
vas, Pergamon Press, London 1980, p. 25.

DG82
: J. llguero, A. l'ruchier, Af:f'inidad .J2 548 /1982/
f
' 'fiEi4 •• Pree, J. W. Wilson: J. Med. Chem. 7 395 /1964/ -
rJ~ · jita, G. Ban: J. Med. Chem • .!4 148 /1971/

· r'?~ · .• ·. t9, -p._" Sse.reili, l'. Darvas, in: Proc. Cont. Logique et
Base de Donnees, Toulouse, ON.BRA, 1977, p. 18.

FU!771
t. Juto, l'. Darvas, E. Cholnoky, in: Proc. 2nd Int. Congr.
o:f' the J. Heumann Society, Budapest, 1977

FU'?79
I. Fut6, F. Darvas, P. Szeredi, in: Logic and Data Bases,
Ed. J. Kinker, Plenum Press, N. Y. 1979

GOL8o
V. E. Golender, A. B. Rozenbliet, in: Drug Design, Vol. IX.,
P• 299, Ed. E. J. Ariens, Academic Press, N. Y. 1980

1i.AW6--•··-··· ··-·-··--··-•····· -·· ·- ··•··- ····-·-· --··---· ·•··.

~ansch, R. M. Kuir, T. 'Jlujita, P. P. Maloney,
K. Streich: J. Amer. Chem. Soc. 85 2817 /1963/
. -
lW169
c. Hansch: Accounts Chem. Res. _g 232 /1969/

'Jl. Geiger,

. J'1'~5 .
. • ansch, c. Silipo, E. E. Steller: J. Pharm. Sci. 64 1186

/1975/ -

K. Bocek; D. Vlachova: Iature 2o7 · 981 /1965/

J. Med. Chem. 19 587 /1976/ -
o. Kearhahl:i: J. 11ed. Chem. 19 lo4o /1976/ -

fOP~3 .
pata, 'JI. Darvas, IC. Valk6, Gy. Kiki te, E. Jakucs, A. ICis-:

7!amas; Pestic. Sci., accepted for publication, 1983

Jilb8 .
• • Martin; Quantitative Drug Design. A Critical Introduction.

••Dekker,•~ Y. 1978

UG81
J. I. Reggia: .A.ml. Biomed. Eng. ·_2 6e5 /1981/

SCHl2
"t • • Schaad, R.H. Werner, L. Dillon, L. 'Jlield, C. E. Tate:
J. Med. Chem. 18 344 /1975/ -SH076

1 1;. H. Shortlife, R. Davis, s. G. Axline, B. G. Buchanan, c. c.
Green, N. Cohen: Comp. Biomed. Res.§ 3o3 /1975/

DRA.66
lr. I. Draper, H •. Smith: Applied Regression Analysis. J. Wiley,
ll. Y. 1966 ·

•

. ·•-·········•-•-'·•---·····---------

DEVELOPING EXPERT SYSTEMS BUILDERS IN LOGIC PROGRAMMING

Eusenio Oliveira
Dept. Informatica,
Universidade Nova de Lisboa
Quinta da Torre
2825, Monte da CaParica

ABSTRACT

We intend to develop a set of kits to build ExPert SYstems
usins Prolos. Two Principal modules, a Knowledse Base
acauisition and consultation subswstems are now Presented.

Several knowledse representation structures and mixed
inference mechanismes are Proposed for the sake of system
efficiencw. Finallw some explanation capabilities derived
accordinslw with used inference methods are also imPlemented
and Presented •

• Introduction

Knowledse Based Swstems are twPical, useful and Practical
Artificial Intellisence aPPlications.

Knowledse Representation schemas, Problem Solvins methods,
Natural Lansuase interfaces, Knowledse acauisition
capabilities, Plausible reasonins are several imPortant
techniaues we can find inside AI to build UP more intellisent
swstems to Perform expert's knowledse into a sreat variety of
domains.

Knowledse is the very fundamental component
swstems. Nevertheless, if such systems maw obey the
of beins • Knowledse rich even if they are methods
efficiency and friendliness must not be neslected for
of usefulness.

of such
paradism

POO r •,
the sake

Our experience with ExPert Systems <ES) -- Knowledse Based
Swstems embodwins knowledse of one or more experts in a
siven domain (medicine, seolosw, ecoloSY, business •••) -- save
us some particular insishts in such a tradeoff. So,a number of
desisn ideas we now Present evolved from Past work in ORBI+

ORBI [PERJ is an ExPert System desisned for environmental

resource evaluation, wri~ten in PROLOG and runnins on a PDP
11/23 which sives advice about resions aPtitudes and
resources. It has a dYnamic Knowledse Base entered and
modified by experts (not Prosrammers> and suPPorts its
decisions with more or less detailed exPlanations about its
reason ins.

One of the fundamental lessons of ORBI
imPlementation is PROLOG suitability to
declarative manner structured knowledse
(semantic networks, Production rules •••) as
lansuase, relational database, intermediate
of this with the same clear formalism (Horn

develoPment .and
encode in a

about the world
well as the auerw
interpreters, all
clause losic).

One of the important drawbacks of most existins systems is
that they reflect specific domain Particulariti•s loosins all
the seneralitw.

Other critical Point of such systems is the difficult
acauisition of new knowledse and modification of old one
directly from experts without the need for computer scientists.

attempts at seneralizins
Present domain independent

framework to deal with at least

Recent developments show some
Pre-existins ES, trYins to
mechanisms and to be a Seneral
some classes of worlds.

It is our aim to develop more versatile, Powerful and
simPle Expert Systems Builders usins Losic Prosrammins •

• swstem orsanization

Our system is able to acauire interactively all the
concepts of each new world, to represent them internalw,
to relate them, to disPlaw them in a comprehensive manner on
user's demand. It must have an efficient and versatile
Procedural behaviour to achieve intended results well enoush
SUPPorted with explanations.

The swstem can be resarded as two main cooPeratins modules :

Knowledse Base Acauisition Subsystem (KBAS)
Consultation Subsystem <CS)

KBAS suides the exPert accePtins his structured knowledse,
individualizes and defines domain concepts, keeps all existent
relationshiPs, so enterins a complete new world into the
swstem.

.Knowledse Base

Each entity is a triPle <concept, attribute, value>. With
these entities a conceptual semantic network is built uP,whose
nodes, corresPondins to sinsle concepts (for example
"disease"), are expanded on records with several fields (for
example meanins, number of attributes •••). One of these fields
is Pointins another tree of concept's attributes each of which
with its own characteristics.

We can see this Part of Knowledse Base as orsanized
three layers :

into

Templates, abstracted schemas for concePts's
characteristics and rule models.

concept(n. of attributes, attributes names,
dependencies, contributions, meanins>.

Conceptual network,
Particular domain concepts.

connect ins and namins all

For e:<amPle :

therapy(3, attrbtrp(_,_,_), Cdisease,PacientJ,
CnoneJ,Cmedical adviceJ).

--- Concepts tree, Particularizins for each concept all its
attributes characteristics. Note that the second arsument of
the Predicate rePresentinS a sPec~fic concept is a new data
structure whose instantiations represent all the attributes
characteristics under that concept. After havins selected a
specific concept Predicate, its attributes Predicates are
directly accessed by means of that second attribute.

For e:-tamPle :

attrtrp('attribute name', 'attr. 1Jnities',
'how is obtained').

attrtrp('attribute name',•••) •

• • •

All this contextual knowledse is once for all entered bY
the expert and then it suides the consultation subsystem over
the Protocol session. It also Sives the structure of knowledse
which can be consulted by the user.

This feature which is called metaknowledse or selfknowledse
rePresents a kind of introspective caPabilitY of knowins about
its own knowledse and showins it. Of course that Prolos's

ProPert~ of Prosrams
Possibilit~.

seen as data facilitates this

This kind of knowledse archet~Pes is also important to
check rule acGuisition. In fact, the other knowledse base
maJor component is a set of Production Rules each of which
embodies a chunk of expert domain knowledse, drawins
inferences from some concept attribute value to other one. We
can disPla~ the KBAS module as followins:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I

USER

---I

I ---------------1
I
I
I
I
I
I
1·

l
I
I
I
I
I
I
I

I Acauisition I

Knowledse Base

I Context
I Network.

·1

----------------- I
I Rule
I Acauisitior1

I Rule
I Set

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

Sel fl'-.nowledse I
I
I
I

I
I

USER

Rule acauisition is done in a flexible st~lized lansuase
where several words are recosnized as oPerators (where, if,
else, or, and, not ••• >, others as concept attribute's names
and its specific values, and finall~ other ones as functions
like (eaual, sreater,lesser,different •••). It is obvious that
Prolos non unit clauses < declarativlY : 'Head' if 'body') are
clearly suitable to represent Production rules ('conclusion'
if 'Permises').

After beins checked for sYntatic and
consistency <reaardins contextual network)

mostly semantic
Production rules

.are PrecomPiled in an internally Procedural form and are
modularly intesrated. A Prolos Procedure (a set of Prolos
clauses) looks into an intermediate file to where the inPuted
rule was sent reads it and build the correspondent new clause.

Durina such an oPeration optimizations are done to avoid
duplication of evaluable Predicates into rule's bodies in case
of comPlicated concatenations of boolean operators ('or's"
inside "and's", •ored" branches with same concept attribute's
name>, and so imProvins rule's fireins efficiencw.

Note, however, that thew can be disPlaYed asain in the same
form as thew had been entered, bw means of a· decomPilation
module which translates them back from internal representation
to the more friendlw inPut lanauase.

Rules which shall caPture experts knowledae as near as
Possible its Primitive form, must, if necessarw, enable
several conclusions and complex Permises. This is a clear and
natural way of trYins to Prove several conclusions (Soals) in
a Pre-determinate seauence.

When the expert Sives such a comPlex rule
those alternative conclusions of the rule are
if the first one fails, second shall imediatlw
on. This kind of asresate often corresponds
orsanization in expert's head. What I mean
-determinism is not alwaws the best waw to deal
representation.

he means that
connected and

be tried and so
to knowledse

is that non
with knowledse

Note that later, if the swstem keeps track of its
successfullw fired rules it will know not onlw which was the
riSht conclusion but also that other ones aPPearins before in
the same rule were tried and failed.

So, rules space is orsanized as a set of rules subsets
(also known as knowledse sources), resardins each concept's
attribute, and each rule can either have several alternative
conclusions or onlw one.

This is a verw nice imProvement. In fact, other
swstems like Emwcin CVMEJ, onlw have verw simPle

well known
r1Jles with

one conclusion and a conJunction of sinsle Permises.

Our rules can, if necessarw, be much more complete as seen
in the followins example :

disease name = influenza

if
s~ndrome name = headache

and
s~ndrome duration > two daws

and • • •
or
swmPtom name = feever

and
(s~mPtom intensit~ > moderate

or . . .)
and + • •

else
disease name = • • •

if • • •

Rules can also be inspected about theirs components,
concept attributes which contribute for them can also
retrieved, on demand, b~ searchin~ into theirs bodies.

Several other anotations like rule's name, author and
are also·siven~

and
be

data

S~stem has a few meta-rules. Meta-rules embodie knowled~e
about rules themselves. One meta-rul~ asks the expert if he
wants to encode such an ordered a)ternative conclusions and,
if it is the case, instructs him about rule's form.

Knowledse Base is structured as followins:

KNOWLEDGE BASE

Templates Meta-Rules

IConcePtual Network!
I I

I --------------- I
I I Concepts I
I --------------- I

I --------------- I
I I Attrib1Jtes I
I --------------- I
l I

Trissers

.summarizins

R1Jle Set

Concept l
I attribute I
I r1Jle s1Jbset I

ConcePt
I attrib1Jte
I r1Jle s1Jbset

When a session besins and if user's Ca certain domain
exPert> Password enables him to access knowledse base buildins
he can either enter a comPletlw new knowledse base or consult
an old one for UPdatins.

UPdates are kePt in a seParate file to be
alternativlw or if modifications are definitive the
will contain the old one alreadw updated.

consulted
new file

Durins knowledse base buildins, the user is on
hierarchical waw asked for I

concept's names, theirs short mnemonics,
theirs mutual relations, number of attributes, meanins.

-- concept attribute's names, Possible values, its unities
(if mesurable), how shall thew be known to the swstem.

-- Which are the attributes values (if there are
Presence is able to directlw senerate a set of

ans) ~.Jho·:;e
h':::!Pothesi s?

expectations to be verified later on+ Such

(called 'tri!Sers') will be resPonsaole for win
an information

of efficienc~
~Yr~ns ev~~Y~~~cn ~recess er ~he consultation session,
aPProachins once more experts way of reasonins.

Simple or complex rules are entered, checked, comPiled,
retrieved and orsanized into knowledse sources.

Guided modifications can be done either into the rules or
concept network.

If Selfknowledse module is
information can be accessed
clearl~ Presented.

activated
Cincludins

all knowledse
rules bodies)

base
and

Once asain Prolos and its assotiated"Horn clause losic it
is a very natural formalism to encode knowledse either facts
or rules •

• ~onsultation and Inference mechanisms

Consultation subsystem, a module under development, uses a
selected Knowledse Base (for examPle a certain medical field),
Previousl~ build UP b~ means of KBAS module, to interact
ProPerl~ with the user. Note that an~ user (and not only
domain experts) are now able to use Consultation s~stem.

In each session, as result of such an interaction, all
needed information is collected. A dynamic context network is
built UP accordinsl~ to the static one, and the conclusion is
reached in an efficient way usins Production rules selected
from respective knowledse sources. ExPlanations are also
obtained.

From KBAS the s~stem already knows Possible top soals <ex.
theraP~, disease). It also knows the set of •trissers•
(h~Pothesis Senerators>, and between them those whose values
shall be asked for at the besinins of the session.

So, a Protocular session when consultation starts, collects
these Possible hiShl~ discriminator~ information.

At that moment inference ensine is aPPlied to these two
extremes of the sPace Problem (data and toP soal) to find the
solution.

---C S

I Dwnamic context!

Output
I ExPlanation
l module

I Plausible
l reasonins

Inference

+Inference methods

I UPPer level I
1----------------1
I I
I AGENDA l
I I
I I
I I
I I
I l
I I

Ensine

Expert s~stems can be used in a number of aPPlications so
diferentiated as diasnosis, Plan, desisn and education amens
others.

It becomes verw difficult to Present enoush seneralized
techniaues to cover all these Possibilities. Nevertheless,
several reasonins method~ should be available to sive
versatilitw to each particular class of swstems.

As Prolos is our uniaue imPlementation
sussested stratesw is backward chainins (Soal
dePth first with backtrakins. This is also the
bw well known ES like Mwcin (Shortliffe) as
derived essential swstem (EMYCIN).

lansuase,
directed)
stratesw

well as

the
and

used
its

However if search space is verw larse Cnamelw if the
tree has a bis amount of Parallel branches near the
simPle toP down becomes inefficient and other search
must be Pursued.

Proof
root),

methods

Our inference ensine takes advantase of initial data token
from the user and of Knowledse Base information about
hwPothesis senerators to Prune, earlier, the search space
tree. A little cwclic interpreter takes these data, asks KB

for aPProPriate (matched with that data) 'trissers• and, if
thew exist, climbs UP the tree, suessins some hwPothesis and
trwins to Prove them all the Possible waws around. If it is
the case, these hwPothesis (now intermediate conclusions), are
asserted in an •asenda•, a Sloballw accessible data structure,
and the cwcle is repeated with these asserted facts and other
Possible •trissers•.

Verw manw initial Possibilities can
search space will become more workable
hierarchical senerate and test method+

so be
with

discarded
this kind

and
of

When this cwcle is over the inference ensine still keeps
the main obJective it wants to achieve (top soal> and 1 asenda 1

has all Proved intermediate conclusions. At this moment the
swstem can choose between two reasonins methods : forward
chainins from asserted data or backward chainins from toP soal
till it meets assertions in •asenda • or in the data base.

1 Asenda 1 has a sesmented structure with an individualized
UPPer level. So, as forward chainins Proceeds, not everw
asserti6n in the 1 asenda 1 is taken into account but onlw those
in UPPer level, rePreasentins nodes nearer toP Seal, avoidins
combinatorial explosion of search Paths+ In each cwcle nodes
directlw connected with those ones but one steP UP the tree
are tr~ed to be Proved. This imPlies a reconfisuration of the
UPPer level •asenda•, deletins assertions from which the c~cle
had started and the assertion of Proved new ones. Such a
Process ma~ continue till top soal is reached if desired.

If backward chainins is choosen, which depends
effi~ienc~ considerations, the inte~Preter looks for the
Soal clause, tr~ to Prove its bod~ and So on recursivel~
it meets data or alread~ Proved facts on the •asenda'.

on
toP

till

These methods imPlw, of course, that 1 asenda 1 access
mediates each decision steP+

.ExPlanations

Mixins h~Pothesis seneration with forward and backward
chainins mechanisms makes explanation task not so easw as if
it was onlw one direction inference (for example toP down like
in Orbi or M~cin>.

Durins computation all Proved
special data structured arsument or
the •asenda". Thew are connected
dePendins how thew were infered or
Paths. We keep this executed code, a
and then we look at it as data to

steps are carried on a
convenientlw asserted in

bw different constructs
if thew are alternative
kind of Prosram's trace,
be manipulated. Prolos's

Prosrams declarativitY is once more very much aPPreciated.

An aProPriate outPut Procedure deals with these constructs
buildins UP an enoush understandable output exPlanation, where
we can distinsuish between inPut data, suessed information and
step by step infered conclusions.

Already used in Drbi the system will also disPose of
another interpreter which discriminates inside rule's body
deterministic Parts from non-deterministic ones, comPutins the
former and delawins the latter. This interPreter, like other
ones into the sYstem, is of course written in Prolos.

An exemPle of a compound explanation will be:

ExPlaned answer for •x• :

1 E1 is a valid intermediate conclusion because :

•A• was •iven for wou
and 1 B1 is a fact
and to the auestion •c• wou answerd •n•

still another explanation for 1 E 1 is:
I already know 1 F 1

and the truth of •F• implies 1 E 1

and finallw from •E• I can deduce •x• •

• conclusion

Under development is a kit of Prosrams to build
Swstems in several knowledse domains. At Present
our atention at swstem architecture and convenient
representation structures, selfknowledse inference
and explanation capabilities.

UP Expert
we focused

knowledse
mechanisms

Other components like natural lansuase interface and
Plausible reasonins models will be later on implemented.

We Propose to combine several knowledse representation
structures as semantic networks and Production rules, to use a
meta-knowledse module to Suide user's consultation, to aPPlw
hwPothesis seneration and bidirectional inference. Composed
but understandable explanations are already sussested.

Prolos is our uniaue imPlementation lansuase and a verw much
suitable one.

+References

CPERJ

CVMEJ

•

ORBI- an ExPert s~stem for environmental resource
evaluation throush Natural Lansuase
Pereira,L. ; Oliveira E. ; Sabatier P.
Proceedinss First International Losic Prosrammins
Conference, Marseille 1982.

The Em~cin manual
Van Melle; Scott; Bennet; Peairs
Department of ComPuter Science, Stanford Universit~
1981 •

Submitted to the Logic Programming Workshop, Portugal, June 83

KBOl: A Knowledge Based Garden Store Assistant

Adrian Walker

I BM Research Laboratory
San Jose, California, USA

Antonio Porto

Universidade Nova de Lisboa
Lisboa, Portugal

252

PAGE ii L5-'!J

ABSTRACT

This paper describes a prototype knowledge based system which answers
English questions about some of the products supplied by a garden store.
The system answers questions such as

what can I use to kill snails ?

is there anything I can use that will fertilize my lawn ?

what can I use to kill weeds in my lawn in spring ? ·

does product A kill dandelions in less than 20 days ?

in less than one second each, and it produces a helpful phrase when it
cannot answer a question.

The syntax, semantics and knowledge needed by the system are written in
the language Prolog. The behavior of the system indicates that Prolog
appears to be a good language for the construction of practical knowledge
based systems which can answer questions in ordinary English.

1.

PAGE 1 25 4

1. INTRODUCTION

This paper describes KB01, a prototype knowledge based system which
answers English questions about some of the products supplied by a
garden store. The system matches, to a certain extent, the behavior of a
helpful, knowledgeable assistant in a store which sells products such as
domestic pesticides and weed-killers.

Some questions which produce brief, but useful and accurate answers,
are:

what products do you sell ?

what is each product that you sell for ?

what can I use to kill snails ?

is there anything I can use that will fertilize my lawn ?

what can use to kill weeds in my lawn in spring ?

what can use to kill weeds around my fence ?

do I need a sprayer to use product A ?

what is the response time of weeds to product A ?

does product A kill dandelions in less than 20 days ?

The present system only answers questions about certain house and
garden products. Questions which lie outside this scope, such as

is there a bus stop near here ?

are answered with a sentence such as

I'm sorry, I don't know the word: bus

The system has been written to explore the feasibility of building useful
knowledge bases in the programming language Prolog (1, 2). Prolog
appears promising as a notation for implementing knowledge based natural
language systems, since knowledge rules and grammar-like rules can be
written down and executed more or less directly (3, 4, 5).

In the case of our KB01 system, it was not necessary to write an
inference engine or a parser. Both of these items were covered by the use
of the built in inference method of Prolog. We have used an efficient
implementation of Prolog (7) on an I BM mainframe computer. In terms of
coverage of a part of English, our results are promising. In terms of
performance, we ·find that no question takes more than 1 second to
answer, even when our computer is heavily loaded with work by other
users. Our coverage and performance results are consistent with those
reported by (3, 5, 9), namely, that efficient Prolog programs can be
written for useful natural language access to knowledge bases.

PAGE 2 2.55

Section 2 of this paper describes the input-output behavior of the KBOl
system by means of some annotated examples. Section 3 outlines the
internal design of the syntactic and semantic components of the English
interface of KBOl, while Section 4 describes the knowledge base. Section
5 consists of conclusions and directions for future work.

PAGE 3

2. INPUT-OUTPUT BEHAVIOR OF KBO1

A user of the KBO1 system types English questions on a keyboard, and
gets answers on a screen. In the following example session, a question
starts after a prompt symbol ">>" and ends with a question mark "?".
The answer produced by the system follows the question. Comments
which we have added appear in parentheses after answers.

>>

what products do you sell ?

product A
product B
product C
product D
product E
product F

(the system has simply listed the products.
for examples with more products, it would print
just the kinds of products)

>>

what do you know about ?

product A kill weed
product B kill pest
product C kill pest
product D kill insect
product E kill insect
product F kill weed
product F fertHize lawn

(the system has listed the products in its knowledge base,
with one or more intended uses for each product. English
output generation is minimal)

>>

what is each product that you sell for ?

product A kill annualweed
product A kill perennialweed

product B kill garden pest

product C kill garden pest

product D kill crawlinginsect
product D kill flyinginsect
product D kill hop pi ngi nsect

156

product E kill crawlinginsect
product E kill flyinginsect
product E kill hoppinginsect

product F kill annualweed
product F kill perennialweed
product F fertilize lawn

>>

(this question has put more emphasis on intended use than
the last, so the system has answered in more detail)

when should I use product· F ?

spring
fall

>>
what can I use to kill snails ?

product B
product C

>>

what can I use to kill snails on my vegetables ?

product C

>>

(the product product B is not for use on food, and so is
not suggested in this answer)

what can I use to kill weeds ?

product A
product F

(these are the suitable products known to the system)

>>

what are the weeds ?

annualweed
perennialweed

PAGE 4 J._5 f

(the system has listed, without much detail, the kinds of weeds)

>>
what a re weeds ?

sorry, I don't know

(we have reached a limit of the knowledge in the system)

>>

what are the perennial weeds ?

bahiagrass
bull thistle
clover
dandelion
kentucky bluegrass
poison ivy
poison oak
yellow oxalis
oxalis

>>

(the system has understood this as a request for
a detailed answer)

is there anything I can use that will fertilize my lawn ?

product F

(a suitable product is suggested)

>>
what can I use to kill weeds in my lawn in spring ?

product F

(the same product can be used)

>>
what can I use to kill weeds around mv, fence ?

product A

PAGE 5

(product F is for lawns, but elsewhere we can use something stronger)

>>
do need a sprayer to use product A ?

yes

>>
can I use product A without a sprayer ?

sorry, no

>>
what are the precautions I should follow in using product A ?

avoid contact with eyes
keep children and pets away till spray has dried

PAGE 6

avoid contamination of food
if accidental spray then wash off with water

>>

what is the response time of weeds to product A ?

annualweed 5 days
perennialweed 15 days

>>

what is the response time of each product that kills annual weeds ?

product A 5 days
product F unknown

>>

what can I use on dandelions ?

product A
product F

>>

what can I use on dandelions that will kill them in less than 20 days ?

product A

>>

does product A kill dandelions in less than 20 days ?

yes

>>

does product A kill dandelions in less than 2 days ?

sorry, no

This session shows that the KBOl system has considerable knowledge of
the properties of a few products and their intended uses. As with all
knowledge bases known to us, there are limits to the domain which is
covered. However, when a question cannot be answered, the user sees
reasonable replies such as "I'm sorry, I don't know", or "I don't
understand the word: bus". Although the domain of competence is much
smaller than that of most adult people, these phrases carry about the
same information as an immediate reply from a person who does not know
the answer to a question.

It would appear worthwhile to extend KBOl so that it would explain its
answers when asked to do so. For example, it would be helpful to know
why product B cannot be used to kill snails on vegetables. The
techniques described in (8) could be used to do this.

159

PAGE 7

In this section, we have described the input-output behavior of KB01.
The next section outlines the design of the English interface, while
section 4 describes the knowledge base.

PAGE 8

3. THE ENGLISH INTERFACE

Our two main goals in designing the English interface were simplicity and
modularity. We wanted to keep the interface simple so as to be able to get
a system working within a short time. On the other hand, we made the
interface modular so that it can form a basis more elaborate English input
processing. The interface uses full dictionary lookup for every word in
the sentence. Thus it is distinct from a 'keyword' interface, in which
some words may simply be ignored.

Our main simplification is to make lexical analysis deterministic. This
means that only one morphological token is associated with each word, an
assumption which does not hold in general, but which which turns out not
to be a serious limitation in our present application. This simplifying
assumption allows us to complete the lexical analysis before starting a
syntactic parse. In a later version of the interface we would expect to
drop the deterministic assumption, but to retain modularity and efficiency
by using coroutining techniques in Prolog (6).

Some other design desicisions which we made to keep the English inteface
simple were as follows.

We only deal with fairly simple ellipsis, namely an elided subject in a
conjunction of verb phrases. We feel that any serious treatment of ellipsis
would need to manipulate information from several sentences in a dialog.
The present system works one ·sentence at a time.

We do not generate a syntactic tree.
representation directly during parsing.
checks are made early in the anaylsis
unfruitful parses.

Rather, we construct a semantic
This is efficient, since semantic

of a sentence, helping to prune

We do not treat extra position, although some common cases of left
extraposition can be handled by an easy extension of the present system.

We also do not make a syntactic check of gender and number agreement,
since we have found that it can only be used constructively in some rare
cases in which it may disambiguate an attachment problem. (Even then,
semantic checks may be enough.) In the same vein, no analysis is made of
verb tense.

We made the English interface modular by clearly separating a number of
functional components, and by classifying each component as either
specific to our present application, or general. The main components are:
a lexical analyser, a dictionary, a syntactic parser, semantic rules, and
an output package. The lexical analyser and the syntactic parser are
general purpose. The dictionary and the semantic rules each have a
general subcomponent and an application-specific subcomponent, while the
output package is application specific.

The lexical analyzer reads a question from the terminal, groups the
characters into words, and looks up the words in the dictionary to find
the corresponding morphological tokens (e.g. noun, verb, preposition).

PAGE 9

As mentioned above, the dictionary consists of a general and a specific
part. The general part contains entries that are likely to be needed in
any application in English, such as articles and the forms of the verb 'to
be'. The specific part contains entries for items such as product names
for the KBOl application.

The syntactic analyzer consists of a set of rules, written in the manner of
a definite clause grammar (4). The rules are executed top-down by
Prolog's built-in inference mechanism, hence there is no distinct syntactic
parser component in KBOl. The bodies of the grammar rules contain the
usual calls to nonterminal symbols, and also contain calls to the semantic
rules that construct a representation of the meaning of the sentence which
is being parsed. If a fruitless parse is being attempted, the calls to the
semantic rules will fail, causing a new parse to be sought before too much
effort has been wasted.

The function of the semantic rules is to translate groups of syntactic
items into a semantic representation of a question. The semantic
representation, which we describe in detail below,. is a Prolog statement
roughly equivalent to 'the set of all X such that p(X) is true in the
knowledge base', where X and p may be structured terms. In particular,
p may contain further set-formation terms. The general part of the
semantic rules component treats items such as quantification and the verb
'to be' which would be needed in most applications, while the specific part
deals with items such as the kinds of objects to which it is reasonable to
apply domestic chemical products.

The output component uses the information which is retrieved from the
knowledge base, together with syntactic information about the question
which caused the retrieval, to generate the answer that is diblayed on the / /"">
screen. r
Since KBO1 is designed to answer questions, the syntactic component of
the English interface only accepts questions. These may be wh-questions,
(such as 'what ... ', 'when ... ', 'how ... ' etc.) or nexus questions
('does ... ', 'is there ... ', etc). Verbs are accepted both in the active and
the passive forms, and they can be followed by any number of
complements. Nouns can be preceded by any number of adjectives, and
double nouns are accepted (e.g. 'poison ivy'). Nouns can have simple
complements ('persistence of product A') or double complements
('response of bluegrass to product A'). The syntax covers the usual
articles and prepositions, a few pronouns ('you', 'them', 'anything', ...)
and some auxiliary verb forms ('can', 'should', ...) . Relative clauses are
accepted, and there can be conjunctions of relative clauses, verb
phrases, or verb complements.

The concepts represented inside the parser are of two types, which we
call Entities and Properties. A complete meaning representation, in terms
of Entities and Properties, is constructed from the morphological token
stream by the syntactic and semantic rules. Entities are either Objects, or
sets of Objects, the latter being represented by 'set(Q, O)', where Q is a
quantifier ('each', or 'all') and O is an Object.

lG2

PAGE 10 .2..G:;,

Objects can be named, or can be defined. A named Object is represented
as 'T:X', where T is the name of the type of the Object. If X is a free
variable, then we say that the Object is abstract, that is, it is an
unspecified Object of type T. If X has a value, then we say that the
Object is concrete, and that X is its name. Thus 'perennialweed:X' is an
abstract Object, while 'perennialweed:clover' is a concrete Object.

Defined Objects have the form

Abstract_ Object ! Property

(read 'Abstract Object such that Property') where the Abstract Object is
T:X and X appears,in the Property. -

A simple Property is just a Prolog predicate. Properties may also be
quantified, in the form

for(Qantifier, Object, Property)

Conjunctions of Properties are also Properties.

Here are some concepts and their internal representations:

product_A

a weed

the weeds

all weed kilf ers

item: product_A

weed:X

set(each, weed:X)

set(all, item:I ! use(I, kill-weed:W, S))

persistence of each product
time:T ! for(each, 'item: I, use(I, *, persistence(T)))

There are semantic predicates that link concepts to form new concepts.
They link subject and verb, verb and object, verb and complement, and
adjective and noun. The domain-independent part of the definition of
these predicates deals with the handling of quantification and the verb 'to
be', while the domain-dependent part contains only quantifier-free
definitions .

. After a syntactic and semantic parse succeeds in producing a data
strucure corresponding to an input question, the data structure is
transformed into a Prolog query which can be applied to the knowledge
base. The essence of the transformation is to insert a call to the Prolog
meta-predicate 'all', which computes the set of all items which satisfy a
given property.

For example, for the question

'what is the response time of weeds to product A ?'

the query

PAGE 11)._ C:,'f

set(response):R !

all (T, use(product A, kill-weed: any, response(T)), R)

is generated. This query, when executed against the knowledge base,
retrieves the answer to the original question and binds the answer to the
variable R.

Special care was taken to give informative, rather than yes-no, answers
to nexus questions. To see that this is essential, rather than simply
desirable, consider the question

'do you sell anything that kills bluegrass ?'

Very few people would be satisfied with only the answer 'yes', so the
system generates the query

set(item):1 ! all(P, use(P, kill-weed:bluegrass, M), 1).

which retrieves a list of suitable products.

On the other hand, a yes-no question such as

'does product A kill dandelions in less than 20 days ?'

is translated into the query .

yesno ! use(product_A, kill-weed:dandelion, response(T)) &

typedlt(T ,20.days)

This section has described the design' of the parts of the KB01 system
that translate a question in English into a query for the knowledge base.
The next section describes the knowledge base.

PAGE 12 2.bS

4. THE KNOWLEDGE BASE

The last section described the mapping of an English question into either
a form

yesno ! p(X)

or a form
set(items): X ! p(X)

where p(X) is, in general, an abitrary Prolog goal expression. This
section describes the underlying knowledge base which provides answers
to the mapped queries.

The knowledge base consists of two components, both of which are
domain-specific. The first component contains an is-a hierarchy, while
the second contains knowledge about the products and how they may be
used.

The hierarchy contains assertions such as

setname(weed)
setname(annualweed)
weed(annualweed)
an n ualweed (bluegrass)

together with an immediate membership predicate 'mem', a transitive
membership predicate 'member', and an 'isa' predicate. Thus
mem(bluegrass, annualweed) holds, while mem(bluegrass, weed) fails, but
member(bluegrass, weed) holds. Similarly isa(bluegrass, bluegrass),
isa(bluegrass, annualweed), and isa(bluegrass, weed) all hold. The
'mem' predicate is also written in infix form as':', e.g.

mem(bluegrass, annualweed) '

is written annualweed: bluegrass.

The type-hierarchy is actually a directed acyclic graph rather than a
tree, as there are statements such as

homepest (fly)
flyinginsect(fly)

The hierarchy allows questions to be answered at an appropriate level of
detail. For example

'what can I kill with product A ?'

yields the answer 'weeds', while

'what weeds can I kill with product A ?'

yields

annual weeds
perennial weeds

PAGE 13 J_(:,~

The main body of knowledge about the products is stored in the second
component of the knowledge base. It consists of

(i) an input component, which maps sub-queries of the form

use(Subject, Verb-Object, Modifiers)

into calls to some basic clauses about the products,

(ii) the basic clauses themselves, e.g.

can_use(product_A, kill, weed:Y:Z) <- weed:Y:Z

and,

(iii) an output component which contains information about which kinds of
questions (yesno, set) require which kinds of answer format.

The knowledge base is used as follows. A query such as

'what should I use in spring to kill weeds in my lawn ?'

is presented to the knowledge base as

set(item) :X !
all(S, use(S, kill-weed:any,

environment(plant: lawn). season (spring)), X).

Here all (S, use(S,), X) returns in X the set of all subjects S such
that one can use S for the indicated purpose. The call

use(S, kill-weed: any, environment(plant: lawn). season(spring))

is mapped by the knowledge base into

can use(S, kill, weed:any) &
envTronment(S, kill, weed:any, plant:lawn) &
season(S, kill, weed:any, spring)

Thus a subject S is retrieved if it can be used to kill some Object 0, the
Object O matches weed: any in the type hierarchy, and the modifiers
environment and season are satisfied.

The knowledge base contains basic clauses such as

can use(product F, kill, weed:Y:Z) <- weed:Y:Z
envTronment(product F, kill, weed:*, plant: lawn).
season(product_F, *-;*, spring).

I ,

PAGE 14 2f>f

which cause the original call to use(S, ...) to succeed with S =
product_F.

As mentioned above, the general form of an internal query to the
knowledge base is

use(Subject, Verb-Object, Modifiers)

where Modifiers is a list made up from some of the predicates:
environment, season, persistence, response (e.g. response time of a weed
to a weed-killer), ingredient, assume, precaution, directions (i.e.
directions for use, and how (precautions and directions). The modifiers
in the list may be negated, and the list denotes a,conjunct.

The predicates for how, precaution and direction are special in that they
store English text which can be retrieved, but which cannot be checked
in detail. Thus one can ask 'what are the directions for· using product A
?' which yields the query

set(direction): S !
all(D, use(product_A, V-O, direction(D), S)

and the answer

apply with hand trigger sprayer
one application kills most weeds
less effective if rain within 24 hours

However the question 'does product A kill most weeds in one application ?'
yields 'Sorry, I don't understand'.

The remaining predicates can be used e'ither for retrieval or for checking,
and there is some overlap between these and the retrieval-only
predicates. Thus the question 'what vegetables can I spray with product
D ?' yields the query

set(vegetable) :S !
all(V, use(product D, V-O,

environment(vegetable:V).
assume(equipment(sprayer))), S)

which retrieves into S the answer 'any'.

One can also ask the checking question 'can tomatoes be sprayed with
product D ?' which yields a yesno query similar to the one above, but for

environment(vegetable: tomato)

and leads to the answer 'yes'.

The use of retrieval-only predicates to store English sentences is mainly a
matter of convenience. If detailed questions about, e.g., directions for

PAGE 15

the use of a product, were expected, then the knowledge could be moved
to predicates which could be used both for retrieval and checking.

To summarize, the knowledge base consists of a hierarchy together with
specific knowledge about products and their uses. An incoming internal
query from the English interface is transformed into a Prolog goal, the
goal is executed against the knowledge, and the result is sent to the
output component of the system.

PAGE 16

5. CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

The KBOl system is at present a prototype. Our experience in bringing
it to its present level of behavior indicates that Prolog is well-matched to
the task of building a knowledge based natural language system. The
system answers non-trivial questions in under one second of real time on
an I BM mainframe computer.

While certain simplifications were made in order to build a demonstrateable
system in a short time, the English language interface performs full
dictionary lookup and parsing. The system was built in a modular manner,
and we have separated the reusable parts from the domain dependent
parts.

Adding new words and their meanings the system is rather
straightforward. Many extensions to the syntactic parser could be made
without having to change other parts of the system. For example. we
could improve the present treatment of left extraposition just by
modifying the parser. In fact, 'what' is already treated like an extraposed
noun, and 'when' like an extraposed complement.

A major improvement would be to handle anaphora, mainly ellipsis and
pronoun reference beyond the scope of one sentence. However, this is
still a research area needing much work. An interesting point is that ,
people sometimes make outside references not only to a previous question,
but also to previous answers. To resolve such references, we must have
access to a representation of the previous answers.

Another interesting enhancement would be the treatment of cardinal and
fuzzy quantifiers. This would require that we modify the semantic rules
that handle quantification, and that we define the equivalent of the 'all'
meta-predicate for the new quantifiers. A nice possibility is a generalized
'all' meta-predicate with an extra argument which would impose conditins
on the number of solutions. ·

In summary, the direct representation of syntax, semantics and
knowledge in the language Prolog appears to be a good approach to the
construction of useful knowledge based systems which can answer
questions in ordinary English.

PAGE 17 J.. t0

6. REFERENCES

(1) Clocks in, W. F. and C. S. Mellish, Programming in Pro log.
Springer-Verlag, 1982.

(2) Kowalski, R. Logic for Problem Solving. North-Holland Publishing
Co., 1979.

(3) McCord, M. Using slots and modifiers in logic grammars for natural
language. Artificial Intelligence 18, (1982), 327-367.

(4) Pereira, F. C. N. and D. H. D. Warren. Definite clause grammars
for language analysis - a survey of the formalism and a comparison with
augmented transition networks. Artificial Intelligence 13, 1980, 231-278.

(5) Pereira, L. M., P. Sabatier and E. Oliveira. Orbi: an expert system
for environmental resource/ evaluation through natural language. Proc.
1st Int. Logic Programming Conference, University of Marseilles, France,
1982, 200-209.

(6) Porto, A. Epilog: A language for extended programming in logic.
Proc. 1st Int. Logic Programming Conference, University of Marseilles,
France, 1982, 31-37.

(7) Roberts, G. M. An implementation of Prolog. M.S. thesis, Department
of Computer Science, University of Waterloo, 1977.

(8) Walker, A.· Prolog/EX1: An inference engine which explains both yes
and no answers. Proc. 8th Int. Joint Conf. on Artificial Intelligence,
Karlsruhe, to appear.

(9) Warren D. H. D. and F. C. N. Pereira. An efficient easily adaptable
system for interpreting natural language queries. DAI Research Paper
No. 155, Department of Artificial Intelligence, University of Edinburgh,
1981.

i.

Database Management. Knowledge Base Management
and Expert System Development in PROLOG

Ka.mran Pa.rsaye

Computer Science Research International•

ABSTRACT: The programming language PR0L0G suggests a natural way of com
bining programming and deductive database queries by treating both programs
and data as assertions in a database. We explore some issues in the implementa
tion of databases and expert systems in PR0L0G. We show that some simple

• extensions to PR0L0G will allow for the convergence of many concepts from rela
tional databases and expert systems into a uniform formalism for the manage
ment of both data and knowledge.

1. Introduction
The programming language PR0L0G .. , has been an interesting step in

modem language design. By its nature of design, PR0L0G includes a database
and is hence a suitable language for database applications, particularly rela
tional databases. Due to its symbolic nature and deductive capabilities, PR0L0G
is also a suitable language for expert systems implementations. Thus PR0L0G
seems a good candidate language for implementing both databases and expert
systems.

· In this paper we explore some issues which arise in the implementation of
databases and expert systems in PR0L0G. We show that some simple extensions
to PR0L0G will allow for the convergence of many concepts from relational data
bases and expert systems into a single formalism. This formalism can be used to
approach both database management and knowledge-base management in a uni
form manner.

Our extensions to PR0L0G are, however, intended to preserve the flavor of
PR0LOG as a language. For instance, we show that the concept of functional
dependency in relational databases is essentially equivalent to some PR0LOG

:.:: 1 >.· ''.ouis'1,. that-integrity-constraints may simply be treated as PR0L0G assertions.
and that explanations and transparent reasoning in expert systems can be
viewed as PR0L0G execution traces. Many of the issues presented here grew out
of the work on EDD (Expert Database Designer), a PR0LOG based expert system
for database design [Parsaye 82]. .

This paper is organized as follows: In section 1.1 we give a brief description
of the language PR0L0G. In section 2 we relate · standard relational database

- concepts and terminology with PR0LOG. We suggest an extension to PR0LOG
mode declarations, show the relationship between cuts and functional dependen
cies, and show how integrity constraints can be treated. Section 3 is devoted to
PR0L0G optimization issues for large database applications. We present a
classification scheme for PR0L0G clauses and propose the "independence
assumption" for optimization. We also suggest how the notions of transactions

•) Authar's Address: Computer Science Research International, 6420 W"tls..liire Blvd., Suite
2000, Los .Angeles, CA 90048 .
..) fn this paper PR0L0G essentially refers to the language originally defined by (Co1meraue:r
75) and implemented by (Warren 77].

...

and serializability can be easily introduced into PROLOG. In section 4 we focus
on expert system applications. We propose a uniform view of database and
knowledge-base management and illustrate two closely related approaches to
knowledge representation in PROLOG. We also show how features such as expla
nations and transparent reasoning can be naturally programmed in PROLOG.

1.1 'lb.e Language PROLOG

In the context of this paper, it is particularly interesting to compare the
development of PROLOG as a language to similar developments in data models
and database languages.

Early database systems, e.g. IMS or CODASYL, use data structures such as
trees or networks to store data Users of IMS store and retrieve data by explicit
insertion and retrieval operations which act upon tree structures, and in this
sense deal with a structure oriented language. On the other hand more recent
database systems, e.g. relational databases, hide the underlying data structures
and implementation details from the user, and present associations and rela
tionships in a non-navigational form. .

Similarly, in programming languages such as FORTRA..1'\J", LISP or ADA one has
to create data structures such as arrays, lists or stacks, store bis data within
these structures and later retrieve the data by navigational searches. On the
other hand, in a database oriented language, such as PROLOG, the user can be
unaware of the underlying implementation methods used for storing much of his
data, and simply ask for data items to be stored and retrieved, just as he would
ask a relational database system for storage and retrieval of data.

Software development in PROLOG can thus be mostly based on "progra:rn
ming by assertion and query" [Robinson 80], rather than by insertion and
searohs of data structures. Moreover, the style of PROLOG programming is
decla:rati.ve, in· the sense that a predicate (procedure) definition explicitly
includes both the input and output parameters. Thus in PROLOG the distinction
between°input parameters and output parameters is much less prominent than
in other languages, as seen by the examples below.

We now present a very brief and informal description of PROLOG, proceed
ing mostly by example. A detailed and comprehensive description of the

· lru;iguage. can be found in [Clocksin & Mellish 81], or (Pereira, Pereira & Warren
71). . '

The basic building blocks of PROLOG programs are clauses. A clause in
PROLOG is a predicate name, called a functor, with some arguments. For
instance

father(john. mary).
square(3, 9).

are clauses, where 'father' and 'square' are functors and 'john', 'mary', 3 and 9
are arguments.

Arguments may be constants or variables, and conventionally, non-numeric
constants are denoted by lower case letters, while variables must start with
uppercase letters, e.g. as in father(X, mary).

In PROLOG clauses can be assarted. to be true, in which case they are
included in the PROLOG "database". The PROLOG database contains all facts
which are asserted to be true. For instance,

1

C --

,-~- ·~ ·.;:,_· .;.

I !

assert(father(john. mary)).
will include father(john, mary) in the database and

retract(father(jobn, mary)).
will remove it.

I · In PROLOG, clauses are used to make sentences. A sentence in PROLOG
may be a simple unit clause, such as father(john, mary). or it may involve the
conctii:icmal construct denoted by" :- ", and better understood as "if".

For example, the conditional sentence
parent(X, Y) :- mother(X,Y) . . .

means that "for all X and Y", parent(X, Y) is true if mother(X, Y) is true. Thus
essentially " A :- B " means that A is logically implied by B. •

Clauses on the right hand side of a " :- " can be joined together by "and" and
"or" constructs denoted by"," and";" respectively, as in

parent(X. Y) :- mother(X,Y) ; father(X. Y) .
which means that "for all X and Y", parent(X, Y) is true if either mother(X, Y) is
true "or" father(X, Y) is true.

Let us make two simple technical notes here. First that sentences in PRO
LOG must end with a period. Second that due to the universal quantification

· above, the range of each variable in PROLOG is essentially a sentence, i.e. two
occurances of the same variable name within two sentences are totally unre
lated. The PROLOG compiler will internally rename variables to avoid conflicts.

Unlike equational programming languages, such as OBJ [Goguen & Tardo 79]
or HOPE [Burstall et al. 80], PROLOG allows variables on the right hand side of a
conditional which do not appear on the left hand side. Such variables are
~tended to be e:z:istentially <p.t.a:ntified. For instance the sentence

grandfather(X, Y) :- father(X, Z), parent(Z, Y).
:,means that"for all X and Y''r Xis the grandfather of Y if "there exists., some Zin :.;••c>··'.'.'·''r:···

the database, such that Xis the father of Z and Z is a parent of Y.
In PROLOG, conditional clauses may be stored in the database just as data

are, i.e. programs are really treated as data in a database. This uniform view of
: .::::7"7:-:both. programs~-and .data· as items--in~a high level . database -ts· p-erhaps the major · . · · t1 :·;; t.::Lz'.1 .. ·(:Ei

· reason for the elegance of the PROLOG programming style.
Once one has adapted this database view of programming, one may natur

ally wonder about queries to the database; Simple queries may relate to simple
facts such as: "Is father(john, mary) true in the database?", which may simply
require a look up in the database, However, one may also ask more complex
queries.

We generally refer to an attempt to answer a query in the PROLOG database
as an attempt to satisfy a. goal (or to prove a goaJ.}. For instance, in the exam
ple above "father(jobn, mary)" is the goal, and it can be satisfactorily proved if
father(john, mary) has been asserted in the database.

One may also try to prove goals with variables, in which case PROLOG will
try its best to find a match for the variables to satisfy the goal. For instance, an
attempt to prove "father(X, mary)" will succeed provided that the condition (X =
john) is .. true. Note that this is not an assignment (PROLOG is assignment free),

•) Logically speakmg, PR0L0G sentences are Horn Clauses [Horn 51].

2

but a binding of a variable to a value as in pure lJSP. Such bindings are dis
carded upon the completion of the query.

Now, how about conditional clauses? Since the interpretation of the condi
tional construct " :- " is that the right hand side logically implies the left hand
side, the validity of the left hand side can be established by proving the right
hand side. This new goal may itself in turn be part of a conditional clause, ... , and
so on. Thus execution of programs in PR0L0G essentially consists of attempts to
establish the validity of goals, by chains of pattern matching on asserted
clauses.

To prove a goal PR0L0G searches its database for a clause that would match
the goal, by using the process of unification (Robinson 65]. If a conditional
clause whose left hand side matches the goal is found, PR0L0G tries to satisfy
the set of goals on the right hand side of ":-" in a left to right order. If no match
ing clause can be found, fauure will be reported.

It must be noted that PR0L0G includes no explicit negation symbol, and
negation is essentially treated as unprovability, i.e. the failure to establish a
goal from a set of axioms [Clark 79]. This closely resembles the closed world
assumption [Reiter 78].

If PR0L0G does not succeed in establishing a g.oal in a chain of deductive
goals at a :first try, it will backtrack, i.e. go to the last goal it had proved and try
to satisfy it in a different way. For instance, suppose that we have the sentences
(or program)

parent(X, Y) :- mother(X,Y); father(X.Y). (•)
grandfather(X, Y) :- parent(Z, Y), father(X, Z). (••)

and that the following facts have also been asserted:
father(john, mary) ..
father(paul,jobn).
mother(jennifer, mary).
Then to prove "grandfather(X, mary)", by using (•) and(..) above, first the

goal "parent(Z, mary)" will be tried. This in turn will result in an attempt to
prove "mother(Z, mary)" and will succeed with (Z: jennifer). Tb.en, going back
to the ti grandfather" clause again, the next goal in- the conjunction should be
proved. So "father(jennifer, Y}" will be tried and will fail. At this point PR0L0G
will go back (i.e. backtra~k), discard the assumption (Z : jennifer) and try to
prove "parent(Z, Y)" again. This time (Z :::: john) will result, after trying
"father(Z, mary)". Then the eventual binding (Y :::: paul) will be returned, after
trying "father(X, john)".

Let us note that in the grandfather "program" here there are nn explicit
input or output parameters, i.e. one may either invoke grandfather(X, mary}, or
grandfather{paul, Y). This style of declarative programming in PR0L0G can
often be used to great advantage to develop software very rapidly. However, if a
parameter in a program is always intended to be an input or output, the com
piler can be signaled to generate optimized code by including mode declarations
of the form

:-mode square-root(+, -).
which means that the square root function is never intended to be used to multi
ply a number by itself. Thus the user has the choice of running a program in
both directions or not, as he sees flt.

3

~ ,-\ ,i' ,.,,,.
'' , . .., ··~- "

On one hand, the series of steps taken by the PROLOG c·ompiler in proving a
goal essentially amount to deduction. On the other hand an attempt to prove a
goal "father(X, Y)" can also be looked at as a procedure call to the predicate
father. Thus the use of the term "logic programming" is quite apt here.

Calls in PROLOG can also be recursive, as in
connected(X, Y) :- edge(X, Z), connected(Z, Y).

which deals with connectivity in graphs described in terms of edges. The PRO
LOG compiler [Warren 77] uses tail recursion optimization to great advantage in
such cases.

Now, for expression evaluation. In the author's opinion, one of the most
inconvenient features of symbolic languages such as LISP has been the relation
between quotation and evaluation. The PROLOG approach to evaluation is
exactly the opposite of LISP, i.e. evaluation does not take place until it is forced
to. This is specially relevant to arithmetic expressions and removes the need for
quotes. Thus (2 + 3) can be evaluated to 5 when the need arises, by using the
PROLOG infix operator "is", i.e. ''Xis (2 + 3)" binds X to 5. However, again note
that this is not assignment.

Finally, one other feature of PROLOG which we need to mention is the "cut",
denoted by .. , ... The cut is used to control backtracking in PROLOG. It is just
treated as a goal itself, and can be used in any conjunction or disjunction of

· goals. Any attempt to satisfy "!" will succeed immediately fo~ the first time, hut
will signal the compiler never to try it again. In fact an attempt to "retry'' a cut
will fail the parent goal invoking it, e.g. in

a(X) :- b(X,Y), !, c{Y,Z), d(Z} ..
backtracking can take place between c and d, but PROLOG will never backtr~ck
to b. The cut can thus be used to gain efficiency and control in programs.

· · · Many more examples of PROLOG programs, and a more detailed description
of the language and its use may be found in in (Clocksin & Mellish 81], or /
[Pereira, Pereira & Warren 7/J. _ i-·

2. PROLOG and Relational Databases
,·'··" · It . ts: well known that relational data oases can be viewed as ·logical· predi-

cates [Nicolas 77J Essentially, each table in a relational database can be con
sidered as the 'extensional' specification of a predicate. Each PROLOG predicate
on the other hand, can be viewed as the 'intensional' specification of a relation
or table. Moreover, it is also well known that most 'assertions', dependencies
and integrity constraints in relational databases can be expressed as Horn
Clauses [Fagin 80], which are essentially PROLOG sentences. Thus there is a
natural correspondence between PROLOG and :relational databases.

However, there are differences between existing relational concepts and
PROLOG. In the next 3 sections we outline some of these dit!erences and show,
how with some simple extensions, they can be reconciled.

2.1 Schemas and Types
Relational databases usually rely on a typed system of logic and include

schema information which determines the type and domain of attributes. PRO
LOG currently lacks these notions and relies on an untyped system of logic.

However, as [Nicolas 78] shows, an untyped system of logic can be easily

4

used to represent typed logic. For instance, the typed assertion
V XdNT p(X)

can be represented as the untyped sentence
VX (integer(X) & p(X)),

where & denotes conjunction.
The addition of schema and type information to PROLOG without affecting

the flavor of the language is quite easy. PROLOG already includes mode declara
tions of the form:

:-mode employee(+,+,-).
which, for selected predicates, can be used to signal the compiler as to which
parameters are intended as input and output.

To declare schemas, we suggest adding schema declarations of the form
:-schema employee(name, age, salary).

Similarly, we can add type information of the form
:-type employee(string[12], integer[3], integer[?]).

However, we believe that the inclusion of type information need nai be man
datory and the user should be allowed to exclude type declarations for small
relations, or when he sees fit .

. The gain from havim:g the declarations is two fold: on one hand they can be
used for type checking and error detection, on the other they can be used by
the compiler to achieve considerable enhancement in performance.

We feel that a major shortcoming of most current PROLOG implementations
is that the compiler can not be informed that the argument to· a square root
function is intended to be an integer (rather than an arbitrary list). or that a
social security number is a string of 9 digits. In most large database applica
tions one needs to specify some type information and fixed length record sizes.
We believe that before PROLOG can be used in a "real" large database application
it should be extended to allow for the inclusion of type information within pro
grams.

2.2 Functional Dependencies J

PROLOG currently inc!udes no notions of dependencies and normalization so
far. These concepts were introduced into relational database theory since they
are needed for design and for the avoidance of update anomalies. We believe
that these concepts should be introduced into PROLOG in order to make it suit
able for database applications. Moreover, in section 3.3 we show how functional
dependencies can sometimes be used for optimization purposes.

Functional dependencies are simple enough to preserve the elegance of the
PROLOG programming style. However. we feel that the addition of more complex
dependencies, such as MVD's (Zaniolo 78] [Fagin 78] or E1IVD's [Parker & Par
saye 80], may add an unnecessary amount of complexity to PROLOG programs.

Functional dependency information can be added to PROLOG in a manner
similar to the type and sche_ma information. However, interestingly enough, not
only can this concept be incorporated into PROLOG quite naturally, but it gives
rise to a different style of PROLOG programming.

In relational database terminology [Armstrong 77], the existence of a func
tional dependency A->B in a schema p(A,B) means that for each A there is only
one B such that p(A,B) is true, e.g. X->Y in father(X, Y) means that each child

5

has at most one father.
We suggest the introduction of functional dependencies into PR0L0G pro

grams by declarations of the form
:- dependency(A->B) in p(A, B).
:- dependency(AB->C) in q(A,B,C).

At first a functional dependency may seem similar to a PR0L0G construct of
the form .

... , p(A.B), !, ...

which fails the parent goal invoking p(A,B) if any goal following the cut fails. If a
binding for A is supplied by the parent goal the cut is essentially equivalent to
having the dependency (A->B) in p(A,B). In this case after fai.µng p(A. B) once,
one could not hope to .find a new value for B by retrying p(A,B). •

However, if B is supplied by the parent goal and A is to be found by invoking
p(A, B) then the the cut and the dependency are not equivalent, since the cut
still forces the search to end. We feel that sometimes this use of cuts is against·
the general PR0L0G philosophy that programs can be run in both directions
when desired.

In general there has been a good deal of dissatisfaction with cuts in PR0LOG
anyway. We suggest that in many cases functional dependencies would be a
much better alternative to cuts. Functional dependencies can often be used to
write "cut-free", but efficient PR0L0G programs, by directing the execution of
programs in a manner which is dependent on the mode of procedure calls. Thus
witJ:?. the above functional dependency, in evaluating /}

q(A,B) :- ... , p(A, B), ... r::>~

there is an implicit cut after p(A, B} in the evaluation of q(a,B}, but not in the
evaluation of q(A,b). Moreover, note that the two sided declaration

:- dependency(A<->B) in p(A,B).
can be used to achieve a symmetric effect.

Of course, there are cases where one wishes to terminate the search after
one unsuccessful attempt even though there is no dependency, in which case a
cut will have to be used. However, this ge,nerally reduces the elegance and tran-

·.sparency:otthe "cut~free_" PR0L0G programming style"'··•:·'..: · ·.,·- ·

2.3 Integrity Constraints ·
Enforcing database style integrity constraints expressed by Horn Clauses is

very· natural in PR0L0G and is essentially a form of integrity enforcement by
query modification [Stonebraker 75].

Clauses are usually added to the PR0L0G database by the predicate
'assert', which adds almost anything to the database, without any integrity
checks. To enforce integrity, we suggest the use of a predicate 'add' to assert
facts which are subject to an integrity check. 'Add' is itself defined in PR0L0G by

add(C) :- not(invalid(C)), assert(C). ••
Conditions which should not be allowed in the database are indicated by the

predicate 'invalid'. Thus, to enforce an integrity constraint on a predicate we
add an assertion about invalidity. For instance, assume that we wish to enforce

•) Provided the integrity of the database has been preserved, as discussed in section 2.3 .
..) Where 'not' denotes negation as unprovability.

6

the fact that an employee whose age is less than 19 can not earn over 100,000,
i.e. that in

employee(Name, Age, Salary)
Salary should be less than 100,000 if Age is less than 19. We can simply add the
assertion

invalid(employee(Name, Age, Salary}) ·- (Age < 19) , (Salary> 100,000).
Thus the assertion

add(employee(johnson, 18, 120,000))
will fail, since

invalid(employee(johnson, 18, 120,000))
will succeed.

Functional dependencies are a special form of integrity constraint and will
hence have to be enforced during addition of new data. A functional dependency
(A->B) in p(A,B) can be enforced by simply adding the constraint

invalid(p(A, B)) :- p(X,B), not(eq(X,A)),
where 'eq' is defined by eq(X.X).

One may also wish to deal with the validity of responses, i.e. to ensure that
returned values are consistent. Then one can define

return(A) :- A, not(invalid(A)).
to return results. Updates to the database can then be treated by combining
additions and deletions.

The discussion above is aimed at integrity constraints that are usually
placed on relational databases, i.e. constraints which essentially deal with unit
clauses. We feel that enforcing constraints on non-unit clauses will often involve
such a great deal of computation as to make it practically non-feasible.

3. Large PROLOG Databases
Having considered some high level database and language issues, we now

focus on large database implementation and optimization issues relating to PRO
LOG.

Currently, all implementations of PROLOG either reside totally in core or
rely on virtual memory. This proves to be sufficient for general programming
and very small databases, but is certainly inadequate for serious database appli
cations. However, we believe that with a suitable implementation strategy PRO
LOG can also be successfully used in conjunction with very large databases.

Moreover, since large databases are almost always shared by many users,
we also need to consider PROLOG in a multiuser database context. We shall deal

· with these issues in the next three sections.

3.1 'lb.e Independence Assumption.
Much of the appeal of PROLOG has been the unification of the concepts of

programming and querying into a single discipline by treating programs and
data in a unified manner at the user level. However, while the user may be
unaware of this distinction. we feel that for optimization purposes, a PROLOG
implementor should separate these facts and deal with them accordingly.

Clauses in PROLOG can be classified into three categories:

7

a) Non-'Ll:nit Qauses, i.e. clauses with both a left and a right hand side, e.g.
clauses of the form p(A,B) :- q(A, C), r(C, B, X).

b) Unit-Clauses with variables, i.e. clauses with no right hand side, but with
a variable argument, e.g. clauses of the form p(a,X).

c) Ground-Unit Cla:uses, i.e. clauses with no right hand side, and with no
variable arguments, e.g. clauses of the form p(a, b, c).

Almost all of the information stored in current relational databases is of
type c), while PR0L0G 'programs' mostly contain clauses of types a) and b).

Currently most PR0L0G implementations store and retrieve data by
directly accessing a predicate's clause and (sometimes) bashing on one or more
of the arguments. Moreover, almost all implementations use the same hashing
method for clauses of class a), b) and.c). In most large database applications
this is simply an unacceptable implementation strategy since the size of and fre
quency of access and updates to data can be very different from the correspond
ing size and frequency for programs. Hence different hashing and indexing
methods for these different categories of clauses are called for.

At first it may seem that the presence of a large number of 'database facts' ·
of type c} and 'programs' of type a) for a given functor name can cause a prob
lem since it may not be clear what form of hashing or indexing should be used

. for that functor name. However, we suggest that ~his need not be the case, and
that the above classification can be used to implement large deductive data
bases more efficiently by making the following independence assurnptico·

For ea.ch given functor name, it is unlikely thaJ: there a.re a large number
of Non-'Ll:nit clauses· and a. large number of Ground~nit clauses al: tha same
time. It is also unl:ilcely that there are a. large number of Unit-clauses with vari
ables for any given functor name.

Assuming that Non-unit clauses are essentially 'programs' and Ground-Unit
clauses are mostly 'data·. the independence assumption means that programs
and data are usually referred to with different functor names.·· The user may, if
he wishes, indicate whether a functor name will be used for large database appli
cations by a declaration of the form

:- largedata(employee(name, social-security-no, salary)).
;;_;~~•···, ... , Diffe.ren.t hashing = .. and. indexing sch~mes may thus. be. ,.used for- these

different classes. It would also be desirable to provide indices not only on the
first argument but on other arguments of a predicate as specified by the user
with a declaration of the form ,

:-index(B), index(C} in p(A, B, C).
which provide extra indices for B and C.

In this context, an interesting form of indexing for use in conjunction with
deductive database systems has recently been proposed by [Lloyd 82].

3.2 Transactions, Concurrency.
Currently PR0L0G is really only for single user personal databases, and

includes no notions of transactions and concurrency control. Large databases
are almost always accessed by more than one user, and there is a need for con
trolling the interleaving of the different user's programs in order to preserve the
consistency of the database.

If PR0L0G is to be used in large database applications, there will be need
for sharing parts of databases between different PR0L0G programs. This is not

B

I.
I

directly related to expert system issues, but a PROLOG based expert system
may need to access a shared database, say of patient medical records.

There will also be a need for including some form of transaction
specification facility in PROLOG. There is also a need for the modification of
most PROLOG implementations so that they would provide better interaction
facilities with operating systems.

The introduction of transactions and concurrency control would require
that some specified parts of a program be indicated as "atomic" actions, which
are not interleaved with other programs. This is really a very simple point, and
we are including it mostly for the sake of completeness.

To illustrate the concept of atomicity, consider a PROLOG transaction which
performs transfers between accounts, i.e. the predicate

transfer(Accountl, Account2, Amount) :-
balance(Accountl, X), balance(Account2, Y),
Z is (X + Amount), Wis (Y -Amount),
retract(balance(Accountl, X)), retract(balance(Account2, Y)).
add(balance(Accountl, Z)), add(balance(account2, W)).

The interleaving of the execution of this predicate with another user pro
gram such as

printsum(Accountl, Account2) :
balance(Accountl, X), balance(Account2, Y),
Wis (X + Y), print(W).

may result in inconsistent results. Thus the user needs to specify that he wishes
'transfer' to be an atomic action on the shared database.

We suggest adding simple declarations of the form
:- atom.ic(transfer(account, account, amount)).

to specify that a predicate should be implemented as an atomic transaction.
The method of concurrency control can of course be left to the database operat
ing system.

3.3 Implementing the •Setof' Predicate
Some PRO LOG implementations provide a predicate 'set of' which retrieves

· all instances of variables satisfying a predicate (or conjunction of predicates),· ,,:c
e.g.

setof(X, (p(X, a, Y), q(Y,b), r(Y,c)), L)
retrieves into L all X for which p, q and r are true. Of course in many situations
the order in which the predicates are evaluated can make a big difference. This
form of conjunctive query optimization occurs quite frequently in database
applications. Both System R [Astrahan et al. 76] and CHAT-BO [Warren & Pereira
61] deal with this issue by looking up relation sizes and reordering conjunctions.

We feel that the need for introducing this optimization into CHAT-BO is sim
ply an indication of the fact that such a feature is missing from the basic PRO
LOG implementations. If PROLOG is to be used as a 'database' language, such
feature would be necessary. It would not be bard to add such a feature essen
tially as CHAT-BO has implemented it.

Moreover, sometimes it might be possible to do even more optimization by
using functional dependencies. A user can specify the order of the evaluation of
conjuncts in his programs if he wishes, but any given order is not optimized for
different modes of procedure calls. Again due to the PROLOG philosophy that

9

programs should be runnable in both directions it would be a good idea to allow
the optimization to vary with the mode of the procedure call. Often it is possible
to optimize in these situations if a functional dependency is known, e.g. if we
know that

dependency(A->B) in q(A,B)
then in the evaluation of

setof(X, (p(X, Y), q(a, Y)), L)
it would usually be advantageous to evaluate q before p. This is also helpful in
CHAT-80 like applications.

4. Some Expert System Issues
So far, we have discussed the appeal of PROLOG in database applications.

Due to its symbolic nature and deductive capabilities, PROLOG is also a suitable
vehicle for implementing expert systems. In the past few years, PROLOG has
been the major language for expert system i~plementations in Europe. Some
such systems, e.g. [Pereira & Porto 82], [Pe1111"ra et al. 82], [Darvas et al. 79], i ~
[Markusz BO] among others, offer encouraging results.

In the next sections we discuss the appeal of PROLOG's uniform approach to
data and programs in expert system applications and and show how issues such

.as knowledge representation, explanations, transparent reasoning and inheri
tance can be dealt with.

4.1 Databases and Knowledge-bases .
Currently, most expert systems dealing with databases have two distinct

notions of data.base management and knowledge-base management [Davis &
Lenat 8Z]. Often, the interaction between the knowledge-base and the database
is not as smooth and well coordinated as one would Wish.

As we have discussed before, PROLOG treats both programs and data in. a
uniform way. In expert systems applications, this can be looked upon as a single
view of both 'data' and 'knowledge'. We suggest that this single view of both data
and knowledge can be . used to approach both database management and .
knowledge-base management in a uniform and elegant manner .

.. :; Looking back at the history of computing systems, one can view;tbis as part
of a general trend towards the development of very high level interfaces for
interactive systems. The user interfaces of the computing systems of the 1960's
were essentially based on the notion of file management, while since the early
1970's there has been a distinct trend towards high level database management.
As (Ohsuga 82] points out, the user interfaces of the computing systems of the
late 1980,.s and beyond are very likely to be mostly based on knowledge-bases.
This signifies a general trend towards a uniform and high level style of interac
tive computing based on intelligent knowledge-based interfaces. We believe that
PROLOG'S uniform view of data and knowledge is a good basis for this gradual
movement towards this for'm of knowledge-based interactive computing.

PROLOG is particularly useful in expert system applications which need to
use large databases in one of the following ways:

a) They need to interact with large amounts of 'data' stored in databases,
e.g. as in the RX system [Blum 82] which bases its inferences on a large database
of medical case histories.

b) They need to use a database to store a large amount of 'knowledge' in

10

terms of a large number of rules which pertain to an area of expertise, e.g.
expert systems which deal with a manufacturing environment [FGCS 81].

Of course, there are also many cases where both of the above conditions are
~ satisfied. The advantage of using PROLOG in such applications is that the unified

manner in which PROLOG approaches both data and programs (and in this case
'knowledge') results in a uniformity of design which facilitates the interaction
between the human expert, the knowledge engineer and the expert system. As
[Buchanan 79] points out, uniformity in design and representation is of great
value in the development of expert systems.

We feel that in due course of time, most computing environments will be
eventually liberated from the concept of a file system and will exclusively deal
with unified databases and knowledge-bases. We also believe that due to its uni
formity of approach, PROLOG is an excellent vehicle for this transition.

4-.2 Knowledge Representation
Since PROLOG programs are essentially a subset of the sentences of first

order logic, a natural knowledge representation method in PROLOG is a "logic
flavored" knowledge representation method similar to MRS [Genesereth 81b].
Such representation has many advantages, but as we shall discuss later, it need
not necessarily be the sole conceptual representation method for expert sys
tems developed in PROLOG.

In the logical approach, the world is viewed in terms of 'predicates', and
knowledge is essentially captured in terms of logical implications, i.e. produc
tion system like rules, or 'if then else' conditions. Such representation is in a
way similar to the methods used by Rl [McDermott 80]. PROLOG sentences offer
a convenient way of representing such rules, both in terms of 'deep' and 'sur
face' rules [Hart 82].

For instance, this form of representation is quite useful in the development
of expert systems for diagnostic applications [King 82]. SUBTI..E [Genesereth et
al. 81a] uses an essentially similar approach. For example, a basic and general
rule about the malfunctioning of structured components, say in an instrument
diagnosis expert system, would be

malfunction(X) :- subcomponent(X, Y), malfunction{Y).
where the subcomponent information can itself be included in the database, as
shown for example by

subcomponent(instrument, sensor).
subcomponent(instrument, connector).
subcomponent(instrument, display).

Specific structure relating to connectivity can be represented by assertions of
the form

connector-input(X) :- sensor-output(X).
display-input(X) :- connector-output(X).

On the other hand, assertions of the form
malfunction(connector) :-

CODJ?.ector-input(X), connector-output(Y), not(eq(X, Y)).
can be used to reflect the input/output relationships for the components.

In this example, note how easy it is to deal with the knowledge-base about
the structure of the components just as one deals with a relational database
containing parts and components information. Moreover, sometimes in the

11

course of diagnosis and repair of an instrument, the expert system may wish to
gather information about the availability of "field replaceable units" from a com
mon shared database. This can again be handled quite naturally by using the
framework suggested in the previous sections.

However, the logical knowledge representation method need not be the only
knowledge representation method used in conjunction with PR0L0G. We feel
that the "None for all, but any for some" truism of programming languages also
applies to knowledge representation methods, i.e. that there is no knowledge
representation method that is good for all applications, but that any knowledge
representation method is perhaps good for some application. This suggests that
one may use PR0L0G in conjunction with difierent knowledge representation
methods in different applications. We must, however, point out that the
differences in these approaches are essentially conceptual and in many cases
one approach may easily be translated into the other without much difficulty.

Another approach to knowledge representation would be a semantic net
work like approach, e.g. as suggested in [Brachman BO]. However, as [Deliyanni
& Kowalski 79] point out, PR0L0G's lpgical form can be closely linked to seman..:
tic network based knowledge representation techniques [Findler 80]. Moreover,
in database applications, semantic network like representations may also be
viewed as using some form of Entities and Relationships. EDD [Parsaye 82] uni
formly uses the Entity-Relationship model [Chen 76] both for database schema
design and for capturing the knowledge used in the design process by viewing
Entity-Relationship diagrams as semantic networks.•

An example of a situation in which an Entity-Relationship like representa
tion is intuitively appealing is in expert systems for office automation or in data
base design. AJJ [Deliyanni & Kowalski 79] showed, in such cases one can simply
capture the schema. structure of the Entity-Relationship diagram by assertions
of the form

relationship(employment, department, employee).
attribute(employee, name). .
attribute(employee, social-security-number).
attribute(employee, department-number).

which reflect the fact that "employment•: is a relationship between the entities
''department" and "employee'..';:and that "name", "social-,security-number" and•
"department-number" ar~ attributes of the entity employee. The translation of
this representation to a logical form is very similar to the translation of Entity
Relationship diagrams into relational schemas, i.e. it involves the transformation
of entities into relation names and attributes into arguments. For instance, the
entity "employee" will be transformed into a relation schema

:-schema employee(name, social-security-number, department-number).
which can later be used to store information such as

em.ployee{jones, 558 53 8973, departmet-4).
Thus, as is the case with Entity-Relationship diagrams and relational sche

mas, the logical and network-like representation methods can easily be
translated into each other.

•) The fact that with very simple modiftcations, semantic networks diagrams can be easily
transformed into Entity-Relationship diagramB has been part of computer science folklore
for some time now.

12

Another issue that is sometimes quite important in knowledge representa
tion is that of subtypes and i:nheritance. For instance, it is sometimes very use
ful to a user to deal with both "employees" and "managers", and record the fact
that each manager is also an employee. Th.ere is a lot that can be said about
suchpolyrnorphic type structures in theoretical terms [Parsaye Bl], [Mac Queen
82], but in most practical cases these issues are quite simple to deal with.

As mentioned in section 2.1, types can be captured in untyped logic by the
use of conjunctions, and thus such properties can easily be included in PROLOG
programs by assertions of the form

employee(X) :- manager(X).

which specifies that each manager is an employee.
The inclusion of such conjunctions in PROLOG programs is no more easy or

difficult than explicit type declarations for variables in a typed language, but
this approach provides the flexibility of having or not having the types as
desired.

4.3 Explaining Facts and Deductions
It is well known that relational databases can be viewed as logical theories

[Nicolas 77], [Jacobs 81]. With this view, almost all data stored in, and queries
posed to, current relational database systems deal with facts which are ground
literal logical assertions or Ground-Unit PROLOG clauses. Such sentences
correspond to what might be termed who and what facts and queries, e.g. "Who
is the manager of department X" or "What is the salary of the oldest employee".

In expert system applications, 'knowledge' is captured in terms of facts
which pertain to some form of expertise and need to be represented as non
ground literal clauses, i.e. Non-Unit clause sentences in PROLOG. Queries
corresponding to such facts might be termed how and. why questions, e.g. ."Yfuy
did you recommend antibiotics for this patient", or "How did you know that this
patient has diabetese".

Such queries are important since in the development of expert systems, it
is often necessary to query the system about the knowledge used, and the series
of deductive steps taken, in a deduction . .This form of transparent reasoning, i.e.
the.ability of the expert system to explain,and justify its actions and derivations
'is of utmost importance in the development of expert systems; without it the
gradual enrichment of a simple set of rules into a non-trivial knowledge base
would be almost impossible.

In such cases, it is not only necessary to explain the method of deduction
and the knowledge used in the derivation of the answer, but to record why some
piece of knowledge is in the database. For instance, it is usually necessary to
record the actual patient case history which results in the addition of a rule to a
MYCIN like system in order to facilitate future debu.gging [Shortliffe 76].

Once again, by involdng the uniformity of PROLOG's approach to knowledge
and data, we suggest that explanations pertaining to both data and knowledge
may be treated in a uniform manner. The basic idea is rather simple: each
derivation in. PROLOG essentially has the form of a proof tree whose leaves
correspond to 'basic facts' or data, while the rest of the nodes reflect the struc
ture of the proof.

The basic facts (i.e. the leaves) are obtained by some empirical means, e.g.
laboratory tests, physicians observations, etc. The justification for these facts
can be stored in terms of assertions in the PROLOG database itself, by using

13

assertions like justification(fact, reason), which record a basic reason for a basic
fact, e.g.

:- Justification(blood-count(johnson, 130), "test on 11 /7 /82").
Then the predicate "justify" can be used to justify basic facts by
justify(X) :- justification(X, Y), print(Y).

Such method may also be used for justifying the addition of non-unit
clauses to the PROLOG database, e.g.

:- ju.stification(rule 133, "patient case history 173").
· Moreover, the steps involved in the deduction are essentially those steps

involved in pattern matching and unification Most PROLOG implementations
offer debugging facilities which allow the user to trace the steps in the execution
corresponding to a certain predicate. We suggest that similar technique can
also be used in explanations, e.g. suppose we have

grandfather(X, Y) :- father(X, Z). parent(Z. Y).
parent(X, Y) :- mother(X,Y) ; father(X. Y).
father{john. mary).
mother(mary, paul).

A first level explanation of "grandfather(john, paUl)" can be obtained by following
_ the steps of the unification, i.e.

grandfather(john, paul) since father{john, mary), parent(mary, paul).
A further level of explanation may then be obtained by
parent(mary, pau1) since mother(mary, paul).
Now let "trace(X, Y)" give Y as the top level goals which were used in the

derivation of X. The predicate "justify" can then be extended to the trace and
be used to give explanations by using "explain", where

explain(X) :- justify{X).
explain(X) :- trace(X, Y), explain(Y).
explain(X ', • Y) :- explain(X), explain(Y).
Another interesting issue is to ask "why not'' questions, e.g. "Why is not john

the father of mary?". A simple answer to this can be that this fact is non
~·-- existent in'the d~tabase, but sometimes 'there may .be, need for:the display of

partial deductions that fail. This is quite· interesting to program in PROLOG, and
is left to the reader as an exercise.

There are of course many other issues that need to be dealt with in the con
text of multi.:level explanations. A number of these issues are discussed in
[Swartout 81], and a good deal more work remains to be done on the subject.

5. Conclusions
We have shown how PROLOG can be used to arrive at a uniform and high

level approach to both database management and knowledge-base management.
We have also pointed out the appeal of this single approach to the management
of both data and knowledge in expert system applications. As a language, PRO
LOG holds a lot of promise. We believe that with the advent of architectures
more suited to its implementation (FGCS 81], PROLOG will become a dominant
force in computing in the 1980's.

14

6. Acknowledgements
1 wish to thank David Warren and Fernando Pereira of SRI, Stott Parker of

UCLA, Edward Katz, Heinz Breu, Robert Fraley and Martin Liu of Hewlett
Packard, Robert Blum and Gio Wiederhold of Stanford University, Jonathan }(jng
of Symantec and Antonio Porto of the/university of Lisbon for helpful comments
and discussions. Some of this work was performed while the author was at the
Computer Research Center, Hewlett Packard Laboratories.

References
[Armstrong 74]

Dependency Structures of Database Relationships, Proceedings of the 1974
lFIP Congress, Amsterdam.

[Astrahan et al. 76]
System R: A Relational. Approach to Data Management, ACM Transactions
on Database Systems, Vol 1, No 2.

-> [Blum 82]
The RX Project, Computer Science Department, Stanford University.

[Brachman BO]
Knowledge Representation in KLONE, in [Findler 80]

[Buchanan 81]
Research on Expert Systems, Heuristic Programming Project Report, Stan
ford University.

[Burstall et al. 80]
HOPE, An Experimental. .Functional Programming Language, Proceedings
of the 1980 IJSP Conference, Stanford University.

[Chen 76]
The EJntity Relationship Model, ACM Transactions on Database Systems, Vol
1, No 1.

[Clark 78]
Negation as Failure, in [Gallier & Minker 78].

[Clark 80]
PROLOG, A language for Implementing Expert Systems, in 'Machine Intelli
gence 10', edited by P. Hayes and D. Michie.

[Clocksin & Mellish 81]
Programming in PROLOG, Springer Verlarg.

[Colm.erauer 75]
Les Gram.ma.ires de Metamorphose, Groupe d'Intelligence Artificialle,
Marsille-Luminy, 1975, reprinted in Lecture Notes in Computer Science Vol.
63.

[Dahl 82]
On, Database Systems Development through Log'ic, ACM Transactions on
Database Systems, Vol 7. No 1.

(Deliyanni & Kowalski 79]

15

Logic a:n.d Semantic Networks, Communications of the ACM, Vol 22. No 3.
[Darvas, et al. 79]

A Logia Based Program for Predicting lJn.Lg Interactions, International
Journal of Biomedical Computing, Vol 9.

[Davis & Lenat 82].
Knowledge-Based Systems in Artificial Intelligence, McGraw Hill, New York.

[Fagin 78]

A New Norm.al Form Jar Relational Schemas, Research Report, IBM San
Jose Research Laboratory.

[Fagin 80]
lmplicational Dependencies, Proceedings of the 1980 ACM Conference on ·
Foundations of Computer Science.

[Forgy 81]
OPS5 User's Manual, Department of Computer Science, Carnegie-Mellon'
University.

[FGCS 81]
Proceedings of the Fifth Generation Computer Systems Conference, Tokyo,
Japan.

[Findler 80]
Associative Networks, North Holland.

[Furukawa 81]
Problem Solvi:ng and Inference Mechanisms, in [FGCS 81].

[Gallier & Minker 78]
Logic a:nt:lDatabases, Plenum Press, NewYork, 1978.

[Genesereth et al. 81a]
SUBTLE Reference Manual, Computer Science Department, Stanford
University.

[Genesereth et al. 81 b]
•

.. . · MRS Reference Ma:nual, Computer .Science Department, Stanford Univer-
sity.

[Goguen & Tardo 79]
An Introduction to OBJ, Proceedings of IEEE Conference on Reliable
Software, Boston .

....4) [Hart 82]
The future of Artificial Intelligence, Artificial Intelligence Technical
Report, Fairchild Laboratories.

[Horn 51)
On Sentences which a:re '!rue of J)f,rect Unions of Algebras, Journal of Sym
bolic Logic, Vol. 16.

(King 82]
Knowledge-Based Dlagnosis and Repair, Internal Memorandum, Hewlett
Packard Laboratories.

--{.) [Kitagawa 82]

16

t
.:!' J

~
~

.z '3

Japans .Annual Reviews in Computer Science and Technologies, North Hol
land.

[Kowalski 79]
Logic for Problem Solving, North Holland.

[Kowalski 81]
Logic as a .Database Language, Department of Computing, Imperial College
London.

~ (Jacobs 81]

--P

Applications of Logic to Databases, Department of Computer Science,
University of Maryland.

[Lloyd 81]
Implementing Qa:use Inde:r:ing in Deductive Database Systems, Technical
Report, Department of Computer Science, University of Melbourne.

[Mac Queen 82]
A Polymorphic Type System, Technical Report, Bell Laboratories.

[Markusz 1980)
Applications of PROLOG in Many-storied Panel House Design, Proceedings
of the 1980 Logic Programming Conference, Hungary.

[Mc Dermott 80)
Rl : A Rule-Based Ccmfigurer of Computer Systems., Technical Report, Com
puter Science Department, Carnegie-Mellon University.

[Michie 80]
Expert Systems in the Micro-electronic Age, Edinburgh University Press.

[Nicolas 78]
Logic a:nd Data.bases, in [Gallier & Minker 78].

[Ohsuga 82]
Knowledge-Based Systems as a New Interactive Computer System of the
Next Generation, in (Kitagawa 82].

[Parker & Parsaye 80]
Inferences Involving Embedded JJulti-Valued Dependencies and Transitive
Dependencies, Proceedings of the 1980 ACM SIGMOD Conierence.

[Parsaye 81]
Higher Order Abstract Data Types, Ph.D. Dissertation, Computer Science
Department, UCLA.

[Parsaye 82]
EDD, an Expert System for .Data.base Design, Internal Report, Computer
Research Center, Hewlett Packard Laboratories.

[Pereira 82]
Ca.n Drawing be Liberated from the Von Neuman Style?, Technical Report,
SRI International.

[Pereira, Pereira & Warren 77]

17

'5

DEC-10 PROLOG users Guide, Dl]. par~e~tiof Artifiii~ Intelligence, Univer-
. sity of Edinburgh. ff'~ A~ ~T _.J(. ?~_j (] 11. ~

[Pereira & Porto 62] {;
~ PROLOG Implementation of a La:rge System on a Small }la.chine, Proceed
ings of the 1982 Logic Programming Conference, Marseille.

[Reiter 78]
On. Closed-world Data.bases, In [Gallier & Minker 78].

[Robinson 65]

A Ma.chine-oriented Logic Based on the Resolution Principle, Journal of the
ACM, Vol. 12, No. 1.

---...1.;> [Robinson 80]
Programming by .Assertion and Query, in [Michie 80].

[Shortlifie 76]
Computer Based Medical Consultations: MYCIN, Elsevier, :New York.

-P [Stonebraker 75]
Implementation of Integrity Constraints on Vie'l.t.S by Query Modification,
Proceedings of the 1975 ACM SIGMOD Conference.

---{> [Suwa 81]
Knowledge Base Mechanisms, in [FGCS 81].

[Swartout 81]
E:r:plai:n:ing and Justifying Expert Consultation Programs, Proceedings of
the 7th IJCAI. -

[Warren77]
Implementing PROLOG - Compili:ng Predicate Logic Programs, Research
Reports 39 and 40, Department of Artificial Intelligence, University of Edin
burgh.

[Warren 81]
Efficient Processi:ng of Interactive Relational Database Queries Ex-pressed

,, :. in Logic, Proceedings of the 1981 VLDB. .,. _,.,
[Warren, Pereira & Pereir~ 77]

PROLOG, The La:ngu.age and Its Implementation Compared with LISP,
· Proceedings of the ACM Symposium on AI and Programming Languages.

[Warren & Pereira Bl]
The CIIAT-80 System, Technical Report, Department of Computer Science,
University of Edinburgh.

[Zaniolo 78]
Stu.dies an Relational Databases, Ph.D. Dissertation, Department of Com
puter Science, UCLA.

18

I .Introduction

A database support system for PROLOG

Jan Chomicki
Wlodzimierz Grudzinski

Institute of Informatics
Warsaw University

PKiN
POB 1210

00-901 Warsaw, Poland

In the current literature PROLOG is often connected with databases, eg (Warren 81), (Lloyd 82). That
intuition is, in our opinion, correct. Nevertheless, two main points have been missed: how to organize large
PROLOG databases and why they should be superior to the conventional, eg relational, ones. In this paper, we
concentrate on the former question. We start by discussing the advantages of PROLOG over the relational model
of data. Then we outline simple PROLOG solutions to several database problems. However, some of the most
difficult issues of database management do not depend on the language used for defining and manipulating
databases.

We describe a database support system for PROLOG implemented at the Institute of Informatics, Warsaw
University. According to the taxonomies of (Lloyd 82), our efforts may be described as an interpreted approach,
providing (currently)limited database management system capabilities.

The system is primarily meant for the storage, retrieval and modification of a form of PROLOG clauses. Unit
clauses designated by PROLOG are managed by the support system which stores them on disk. Other clauses are
treated in the standard way by the PROLOG interpreter. When a clause from disk is required, the interpreter
issues a query to the support system. Then the system performs preliminary unification and returns all the
clauses possibly matching the query(one at a time). The final unification and the binding of variables are
performed by the interpreter.

To cope with growing ftles the database organization and access method is dynamic and based on extendible
hashing (Fagin 79), augmented to allow partial-match retrieval (Lloyd 80). A general method has been developed
for handling incomplete information (Chomicki 83). This method is used for storing, retrieving and modifying
unit PROLOG clauses with variables.

2.PROLOG compared to relational languages

2.1.Relational model of data

Base relations are represented in PRO LOG as procedures consisting only of unit clauses.
Domains are not directly mapped to the constructs of the language. They may be defined as unary (not

necessarily base) relations, but then unit clauses of a n-ary relation should be augmented by the calls to the
procedures defining its domains, so the clauses are no more unit. Or, to achieve more restrictive typing, domains
may be treated as functors. But then, for the matching to succeed, queries should submit appropriate domain
(functor) names.

Attributes are implicit in the order of relation columns. Their naming for further reference may be locally

(within a clause) obtained by introducing appropriately riamed PROLOG variables.
Keys(unique tuple identifiers) are in no way supported by PROLOG and, if required, should be defined as

integrity constraints(cf section 2.5).
Throughout this paper, we use the original PROLOG notation (Roussel 75). Predicate names are in

uppercase, variable names - in lowercase. The goal(procedure head) of the clause is preceded by the "+"
character, the premisses - by the"·" character.

2.2.Relational algebra

As the following examples show, PROLOG easily supports relational algebra (Ullman 80) operators:
selection, projection and join.

Example l.
Let R be a binary relation with two numeric attributes: A and B.
Selection:
dA-s(R)
d,.,.,(R)
ds<A(R)
Projection:
,rA (R)

Equijoin:
R"S

+Rl(S,x) -R(S,x).
+R2{x,x) -R(x,x).
+R3{x,y) -R(x,y) -LESS(S,x).

+R4(x) -R(x,y).

+RS(x,y ,z) -R(x,y) -S(y,z).

Conjunction of selection conditions may be expressed by their enumeration in clause premisses and
disjunction • by clause variants. Hence in PROLOG the selection condition is in disjunctive normal form.

Now consider set-theoretic operators: union and difference. (or equivalently (Ullman 80): union and
division). Union is straightforwardly modelled by clause variants. To defme set difference we should resort to
some form of negation.

Example 2 .
. Suppose we write down the difference as

+Q(x,y) -R(x,y) -NOT(S(x,y)).
If no clause def ming R contains variables, the argument of NOT
will be ground and NOT will be evaluated correctly in the standard way.

23.Nulls

The difficulty in defining relational algebra operators in the presence of null(undefmed) values has been
recognized for some time already: (Codd 79), (Vassiliou 80). There are two ways of representing nulls in
PRO-LOG: as variables or as ground terms. .

If null is represented as an unbound variable~ the semantics of stored null values ('missing', 'any', 'not
applicable')may be enforced by restricting the result of the query (by the predicates differentiating several sorts
of nulls). Furthermore, the standard predicates, eg EQUAL or LESS, should be extended to capture properties of
different nulls.

If nulls are represented as ground terms, a null matches only either a variable or itself b the query. This
disallows the interpretation of a null as an 'any' value matching all the values.

In our opinion, different nulls should be differently represented. More general nulls, eg 'missing' or 'any',
expressing possible relevance of the information in a clause to many queries, should be handled as variables. More
specific ones, eg 'not applicable', matching no value in a query except itself and a variable, may be treated like a

ground term. Various null values and their semantics are described in: (ANSI 75), (Vassiliou 80), (Zaniolo 82).
Note that representing null value as a variable may lead to well known problems with negation in PROLOG:
(Clark 79), (Naish 83).

Example 3.
Returning to Example 2, let us define a clause +R(5,g) with the variable g
standing for the 'any' null value.
Now writing

+Q(x,y) -R(x,y) -NOT(S(x.y)).
fails to produce the desired result: "all the elements of R
which are not in S".
To see that, it is sufficient to make both procedures R(and S)
consist only of one unit clause: +R(5,g). (and +S(5,2).).
The query: "is Q non-empty? ", expressed as

-Q(u,w)
fails instead of producing a positive answer.

The above effect may be partly remedied by extending NOT, like EQUAL or LESS, to capture the semantics
of nulls.

2.4.Views

Precisely in the same way as queries (relational algebra expressions), database views may be defined in
PROLOG. However it is unclear how to do view updates. Currently in PROLOG, modifying the view has no
effect on the underlying base relations. Each updating user must access base relations. So PROLOG views do not
fulfill their fundamental role of protection mechanisms, hiding information from users. An explicit translation of
view updates to the updates of the underlying base relations is required. That translation is determined by the
semantics of relations and attributes involved. Sevaral strategies have been proposed in: (Dayal 82), (Bancilhon
81), (Paolini 82), (Siklossy 82). A general mechanism should allow the definition of procedures updating base
relations and triggered by view updates (Shipman 81). Such a mechanism is outlined in section 2.5.

It is rather obvious that PROLOG clauses, containing eg recursive calls, are more general than relational
views. Nevertheless it is an open problem whether the strategies for updating relational views may be generalized
to arbitrary PROLOG views.

2.5.Integrity constraints

Furthermore, it is not well known how to impose integrity constraints in PROLOG. The constraints assert
about the consistency of the database, so they should be defined at some meta-PRO LOG level. The only solution
of that problem we know of was proposed in (Bowen 81). It requires major changes in the PRO LOG interpreter.
As it supports arbitrary assertions expressed in first order logic, the computational complexity of its
implementation would be enormous. We think of developing a less powerful but simpler and more efficient
method, outlined below.

Pattern-directed procedure invocation in PRO LOG may be used to solve the problems of integrity constraints
enforcement, view updates and general triggers. We define two database modification operators: INSERT(clause)
and DELETE(clause). They are hidden from the user who sees only "safe" (consistency preserving) operators:
INCLUDE(clause) and EXCLUDE(clause) defined as

+INCLUDE(c)-INSERTSAFE(c)-INSERT(c).
+£XCLUDE(c) -DELETESAFE(c) -DELETE(c).

Both INSERTSAFE and DELETESAFE are defined as conjunctions of individual integrity constraints:

+INSERTSAFE(c) -ISl{c) ... -ISk(c).
+DELETESAFE(c)-DSl(c) ... DSp(c).

The problem is how to get the individual integrity constraints. They may be generated manually from
informal specifications.

Example 4.
In the relation R first attribute functionally determines the
second attribute.
+ISI(R(x,y)) -R(x,yl) -NOT(EQUAL(y,yl)) -/ -FAIL
+ISl{R(x,y)).

Example S.
The domain of the ftrst attribute of S contains the domain
of the second attribute of R.
+1S2(R(x,y)) -S(y).
+1S2(S{y)).
+DS2(S(y)) -R(x,y) -/ -FAIL
+DS2(S(y)).
+DS2(R(x,y)).

As may be seen from the above examples, one of the pair of constraints on insertion (deletion) is often
tautologically true and may be omitted in the definition of INSERTSAFE (DELETESAFE). However we do not
addre·ss here further issues of optimizing constraint checking, referring the reader to (Nicolas 82) and (Blaustein
81).

Triggers (Eswaran 76) provide an interesting alternative (or complement) to assertions. In tead of checking
the constraints, we may pref er to correct their violations. Now

+INCLUDEl(c)-INSERTTRIGGER(c) -INCLUDE(c). '
+EXCLUDEl{c)-DELETETRIGGER(c) -EXCLUDE(c).

and

+INSERTTRIGGER(c) -ITl{c) .•. -ITm(c).
+DELETETRIGGER(c)-DTl{c) •.. -DTn{c).

The execution of a trigger may obviate integrity checking as seen below.

Example 6.
All the assertions from Example S may be replaced by three triggers:

+ITl(R(x,y)) -INSERT{S{y)).
+DTl(S{y)) -R(x,y) -DELETE(R{x,y)) -DTl{S(y)) ·/.
+DTl{S{y)).

Triggers may perform view updates identically as corrective actions above.
Our approach to the consistency of PROWG databases is rather preliminary. In fact, we omitted the most

difficult problems of:
• supporting transactions (multiple actions) as consistency units (Eswaran 75)
• backing out the transactions violating database consistency
· efficient checking of arbitrary integrity assertions during
or at the end of a transaction.

We do not think that the solution of the above problems is any easier with PRO LOG than with conventional
programming languages.

3.System architecture

System architecture may be described as an hierarchy of six levels. This paper discusses only the lowest four.

SPO~UEL

PROLOG-

Dra..-ic.
l,o..s ,, .. i.,.:,

Pr~1A..••11'f ,·cat,·o.,

Pa3e
'1GMcfJ.,';-, 3

Ph c,.s ico. L
tl.t,ek I/0

'

r-----
1 A'->-t:k e v-

i £i..«·8i, - ~ve.l
wseY ,·a11+~vfqc:t

I

.SPOQUEL

,.._ ---..-----...---- - 7
A111othev- \
fvolf\t-ei,,a 1 'l?ROLOG

f

-------.... ------..---J I
I AII\.Otkev

I
I L--7---.

I l>,.ff« r« "1t
I W'A-fc.t.,·"'1~

(:I &&vess,·v,a
scJ,,e""'e

r-- .L - ~------..---

• t>,Pfe.,..,~
f ~3e . .1.
, o Y" a""""tJ 0A, 011

L--T--
1 C.,'ff'--V~
(I/0

..
f~SIG4l
b-toek I/ O

L•~ te.,~ C.C

L._ -----------

1.SPOQUEL is a SEQUEL-like query language described in (Kluzniak 83b). The interpreter of SPOQUEL is
written in PROLOG.
2. The PRO LOG interpreter (Kluzniak 83a) underwent only a minor change by incorporating new database
primitives described in the next section.
3. Upon receiving a request from PRO LOG, the addressing layer forwards the request to specific database pages.
This layer perl'orms also simple catalog management to keep track of defmitions of relations.
4.Preunification filters out clauses retrieved by page handling layer and not matching the clause passed from
PROLOG as the argument of the request. The variables are not instantiated, but only the matching clauses are
returned. The unification is completed by the interpreter.
S. The page handling layer performs software paging and, retrieves (inserts,deletes) tuples and auxiliary
inf onnation from core buffers. The tuples are stored as variable-length and arbitrarily nested records. The page
size is 2048 bytes.
6.Physical block 1/0 which supports paging is based on the file system of the underlying operating system.

Now consider the (relatively) easy-to-do alternatives marked by dashed lines.
The effects of their introduction would be limited to to the layer of their application.

I.Another high-level user interl'ace, eg Query-By-Example, may be implemented in PROLOG analogously to
SPOQUEL.
2.Another front~nd would make possible to get into our system beside PROLOG. We actually had to develop

such a front-end for the purpose of testing.
3.If dynamic hashing does not turn out to perform satisfactorily in some applications, we may choose to replace
it by another addressing scheme, eg multidimensional binary search trees. Such a possibility was outlined in
(Chomicki 83).
4.Ctirrently the preunification adheres to standard PROLOG semantics. However, it would be easy to adapt the
preunification to somewhat different requirements, eg pattern-matching in text.
5. The variable-length records are flexible but may tum out to be inefficient, requiring an additional level of
indirection. For conventional formatted databases, fixed length records should rather be considered.
6.lt is also conceivable to bypass the file system and perform the 1/0 directly without protection and
bookkeeping overhead.

On the whole, the interfaces between the layers are narrow, the layers are loosely coupled and besides there
seems to be a high potential of asynchronous processing.

The PROLOG interpreter and the support system are written in CDL-2 (Koster 75), a highly modular
language. CDL-2 gives the possibility of gluing high-level control and parameter-passing structures together with
assembler macros. The support system consists of 3000 lines of source code. About 15% of code are written in
MACR0-11 assembler. The system is being developed on the SM-4 minicomputer (functionally equivalent to
PDP-11/40) under the RSX-llM operating system.

4. Database Support System.

In our database support system we have implemented extendible hashing scheme based on (Fagin 79) with an
extension to partial-match retrieval along the lines proposed by (Lloyd 82). That method was chosen because of
very good search performance which doesn't deterioriate for dynamic (growing and shrinking) files. This method
is simple to implement, even with an extension to handle partial-match queries typical for PROLOG oriented
databases.

This scheme has been adapted to handle incomplete information (Chomicki 83).
In the sequel we shall refer to PROLOG unit clauses as tuples.

4.1. Extendible hashing.

Extendible hashing is a method for handling dynamic files. There is a hash function h from the key space
(domains of attributes) of the tuples to the set of bit strings of length k

h: K-')Bk
The details of the hash function will be discussed in section 4.2.
The file is structured into directory and database level.
The directory contains pointers to database pages and is characterized by a number, called the depth of the

directory. The directory entries are indexed by all bit strings of the length d (d(=k) and d is the current depth of
the directory. We called these bit strings (after (Lloyd 82)) the indexing strings.

When a directory entry is indexed by the string bl.. •.. bd it means that the database page, pointed at by this
entry, stores all the tuples for which h(K) starts with bl. •... bd.

There are 2**d entries in the directory.

000
001
010
011
100
101
110
111

d=3

Indexing strings Directory

local depth d'

' z

2

Database pages

Fig 4.1

Database pages contain tuples. The order of tuples is immaterial. They are stored in structured compact form
as variable-length arbitrarily-nested records. Each database page has a header which contains the local depth d'
for this page. The local depth of a page is d' (d'{=d) iff there are 2**(d-d') entries in the directory, pointing at
that page. ·

In Figure 4.1 the local depth of database page pointed at by the first directory entry is 2 and depth of the
directory is 3. That means that this page contains all tuples for which h(K) agrees with 000 on the first 2 places.
Thus the 001 entry also points at this database page.

Suppose that we want to insert a new tuple with a key KO. We calculate h(K0) and select its frrst d bits. Next
we do a simple computation to fmd a coresponding entry in the directory. Following the pointer we fmd a
database page on which a tuple should be placed. When this page is already full and d)d' then t splits into two
database pages.

000
001
010
011
100
101
110
111

Indexing strings Directory

'

local depth d'
J,

Database pages

Fig4.2

A new, initialy empty, database page is allocated and the tuples from the full page are hashed again. If the
d'+ 1 th bit from h(K) of a tuple is 1 it is put on the new page. Otherwise it remains on the old one. The new
tuple is treated identically. The local depths of both pages are set to d'+l.

If the database page is full and local depth is equal to the depth of directory (d=d') then the directory
doubles in size as shown on the Figure 4.3 and the database page splits. The depth of the directory is increased
by 1.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
lltl

Indexing strings

local depth d'

Directory Database pages

Fig4.3

l'here is no need to access database pages during the doubling of the directory. When the directory exceeds
one page, new directory page must be allocated during its doubling. However it does not happen very often.

In the case when the file is shrinking significantly after a large number of deletions and dictionary occupied
many pages, it can be reduced twice in size.

4.2. Partial-match retrieval using extendible hashing.

The hash function h : A-)Bk where A - set of all domains of relation's attributes is constructed. We are using
one hash function (a kind of square hashing) for all attributes (but different hash functions can be constructed
for each domain). The hash function uses as arguments the top level functor of clause attributes.

Let the value of the attribute ai in a query be vi for i= l , ... ,n. The fmal string which indexes a directory entry
is constructed by selecting bits from each h(vi) according to a predefined choice vector {il,i2, ,id) where
d-depth of the directory. The m'th position in the indexing string will be filled by the first so far unused bit in
the string h{ vim).

Example 7.

When (4, 1,4,2) is a choice vector then the indexing string contains
• first bit from the string h(v4),
• first bit from the string h{vl),
- second bit from the string h{ v4),
- first bit from the string h{v2).

•

The methods of designing choice vectors are not considered here. The reader is ref erred to (Lloyd 80) and
(Lloyd 82) for a discussion of this issue.

A partial-match query is a query in which an arbitrary subset of the attributes of the tuple is specified.
A query and a tuple match if all theirs specified attributes values are equal .
The result set of a query is the set of all pages where a matching tuples may reside.
When an incomplete query is considered and the choice vector indicates a bit from the unspecified attribute

on the m'th place, then result set doubles, because both 0 and 1 should appear on the m'th place of all
appriopriate indexing strings.

Example 8

For a relation T, choice vector (1,2,1) and the value of the hash function
for the second attribute h(GREEN)=0l0 the query
-T(x,GREEN,15) has the result set indexed by strings:
000, 001, 100, 101.

For a fully specified (complete) query only one page adclress is computed, so no more than two page accesses are
necessary to fmd an answer.

4.3. Storage and retrieval of incomplete tuples.

The value of 'any' is introduced which is equivalent to PROLOG variable in the sense that 'any' matches
every value in each domain and itself. When incomplete tuples appear, the set of tuples possibly matching a
query grows exponentialy with the number of any-valued (unspecified) attributes.

Example 9

The query -S(TOKYO,1964) has four poSStole matchings:
+S(any,any), +S(any,1964), +S(TOKYO,any), +S(TOKYO,1964).

When an unspecified attribute provides no bits for the choice vector, the tuple is treated as complete.
We implemented a parametrized family of methods of the storage and retrieval of incomplete tuples.
Let m be the length of choice vector for the relation F and t an incomplete tuple to be inserted into F.

There are two extremal methods :
Method m (full replication)

- compute the result set of t and put a copy of t on each database page of this set. This method is
time-optimal because the number of page accesses it requires is equal to the cardinality of the result set of a
query.

However it gives a high storage redundancy• in the worst case 2**m.
Method 0 (no replication)

• put t on an arbitrary chosen page from the result set of t. This method is space-optimal, but search time can
be unacceptable, requiring an access to each page, for we have no cues whether and where the incomplete tuples
matching the query reside.

There is a family of intermediate methods numbered from 1 to m-1.
Methodi

• tuples from each database page indexed by string bl. .. bi-1 bi bi+l.. .. bm obtained by Method i-1 are
specified in the following way :

if the i-th bit of the choice vector is given and equal ci then move the tuple to the database page indexed by
the string bl.. bl.. .•. bi-1 ci bi+l •... bm,

300

otherwise put the tuple on both database pages indexed by strings b 1.. •. bi-1 0 bi+ l.. ... bm and b 1.. ...• bi-1 1
bi+l. •.•. bm.

In other words, to insert a tuple t, the set of indexing strings is constructed. First i-bits are selected in the
way described in the previous section. Then to each of them m-i bits are appended and the copies of t are put on
each indexed database page.

The parameter i, called any-depth, can be chosen by the user or be given by a system option.
It should be taken into account that the properties of Method i are changing during file evolution. As long as

the depth of the directory is less qr equal than any-depth, full replication is performed.
When a choice vector is chosen then attributes which can assume the value of 'any' should rather not serve as

a source of bits for the choice vector, because the result set for unspecified queries and consequently the number
of accesses to database pages are growing.

4.4. Modyfing a file with incomplete tuples.

A partial orderinge' is defined (interpreted as " h is no less precise then t2 ") among the tuples as follows :
tl{" t2 iff tl=(al, an), t2=(bl, ,b2) and ai=bi or bi=any for all i=l, ... ,n.

To insert a tuple we simple put it on the database page determined by an any-depth parameter in the way
de cribed in previous sections .

The deletion from a file has a tuple t0 as an argument and is defined in two basic ways.
A. Delete tuple (delete no less precize) : delete all tuples t such that t~ t0.
B. Delete this tuple (exact delete) : delete only those tuples t such that t=t0.

Example 10.

The request of deleting all tuples of relation R with first attribute equal to 1
may result in deleting

A. +R(l,YELLOW), ••.. ,+R(l,GREEN), +R(l,any)
B. +R(l,any).

The deletion of all tuples matching this tuple is not acceptable for it causes unintended loss of information.
In the above example •

+R(l,YELLOW), , +R(l,GREEN), +R(l,any),
+R(any,YELLOW), ...•. , +R(any,GREEN), +R(any,any).

Update is implemented as consecutive deletion and insertion in two variants.
1. Delete this tuple(tl),Insert(t2) - to update exactly one tuple.
2. Delete tuple(t1),Insert(t2) - to replace a set of tuples by one tuple.

4.4. Additional aspects of implementation.

Descriptions of all relations (PROLOG procedures) which are stored in the database are in a catalog.
For each relation the catalog contains :
- the unique identifier,
- the cardinality,
- the choice vector,
- the any-depth,
- the current depth of the directory,
- the address of the directory descriptor.
Each relation has its own directory. During the session the catalog resides in core and at the end of the

$ession it is copied back to disk as the header of the database.

During query evaluation or modification preunification, which directly corresponds to unification in
PROLOG, is performed on all levels. Only the binding of variables is left to the PRO LOG interpreter.

There is a stack of queries which is used to handle of backtracking. Matching tuples are returned to the
PROLOG interpreter one by one. The computation continues and, after backtracking, may return to one of the
previous queries and request another matching tuple.

The stack for each query contains :
- indexing string which determines the address of last accessed database page;
- location of the last returned tuple on the database page;
- the pattern of indexing string (the string with 1 on the places fixed by specified attributes of query or
tuple) which is used to fmd the next elements of a query result set;

- the local depth of database page during last matching.
A priority mechanism connected with buffer management is used for optimizing number of page accesses.

The database page, on which more than one tuple matching a query reside, is kept in a buffer so long as it is
possible. '

However for a queiy which required many backtracking, in particular for a nested query , we cannot avoid
- many disk accesses for the same database page.

Another problem arises when, between two matchings for the same query (before backtracking), the
database page on which we found last matching tuple splits. For example it can occur during the checking of
integrity constraints for insertion, when a few additional tuples are stored. In this case the order of tuples is
changed as an effect of a database page spliting, so the the next tuple is undefmed.

Our solution is provisional. We retrieve all matching tuples from both old and new pages. It causes that some
of the matching tuples are returned twice to the PROLOG interpreter like in the case of replication of
incomplete tuples when the interpreter also receives duplicates and handles them. It seems that duplicate
elimination would require quite a lot of additional data structures so we postponed it to the future development
of the system. ·

4.6. 'Interface with PRO LOG~

The interface between the PROLOG interpreter and the support system is very simple. The interpreter sends
a request which is fulfilled and, if necessary, the matching clauses are returned one by one. The requests are ·
treated by PROLOG like 1/0 commands.
The requests are : •
Create relation(name, cardinality, any-depth) - adds a description of relation to the catalog and creates a new
directoiy for it. The system creates a rest ofa description. (The choice vector may be also a request parameter).
Drop relation(name) - deletes all tuples (if there are any), frees all database and directoiy pages and removes a
relation from catalog.
Insert tuple(relation name, tuple address) - inserts a tuple to database.
Delete tuple(relation name, tuple address) and Delete this tuple(relation name, tuple address) - deletes tuples or
tuple in the way described in section 4.4.
Delete all tuples(relation name)- deletes all tuples of an indicated relation.
Give first tuple(relation name, queiy pattern address, request number) • returns first tuple matching specified
query pattern and pointer to the request stack entry which contains description of this request.
Give next tuple(relation name, queiy pattern address, request number) - returns next tuple matching specified
query pattern (generally after backtracking). The pointer to request stack entry doesn't change.

The PROLOG interpreter and support system are working as synchronous processes.

,5.Conclusions

Our proposals in section 2.3 and 2.4 demonstrated the conceptual conciseness of PRO LOG in dealing with
several database problems. The implementation of simple integrity assertions and triggers does not require any
extensions of the language. The deductive capabilities of PROLOG are unquestionable. This all makes PRO LOG
an attractive programming language for an implementor of sophisticated user interfaces for databases. However,

using PROLOG in an actual database application requires further development of database management system
mechanisms.

No form of recovery, concurrency control and protection is provided in our system, so it is certainly not a
"full-fledged" database management system. It is nevertheless, to our knowledge, the first attempt to handle
non-toy PROLOG databases. Other approaches: (Lloyd 82), (Kunifuji 82), (Warren 81) neglected the problems
of: efficient secondary storage organization and access, the support for null values and views, and even the
simplest integrity checking. We have proposed solutions for the above problems and incorporated the solutions
into an actual system. The experience with this system will certainly give further arguments for (or against) the
use of PRO LOG in the database area.

6.Acknowledgements

We are greatly indebted to Feliks Kluzniak and Stanislaw Szpakowicz for the constant inspiration and help in
the development of our system.

7. References.

(ANSI 75) ANSI/X3/SPARC Interim Report, PDT Bulletin of ACM-SIGMOD, 7:2, 1975.

(Blaustein 81) Blaustein,B.T., Enforcing database assertions : techniques and applications. Ph.D. thesis Harvard
University, 1981. ·

(Bowen 81) Bowen,K.A. and Kowalski,R.A., Amalgamating language and metalanguage in logic programming.
School of Computer and Information Science, Syracuse University, 4/81, June 1981.

'
~ (Chomicki 83) Chomicki)., Implementing null values. (Submitted for publication).

(Clark 79) Clark,K.L~ Negation as failure in: Logic and data bases, Eds. Gallaire,H. and Minker,J. Plenum Press
1979.

(Codd 79) Codd,E.F. Extending the relational data base model to capture more meaning. ACM Transactions on
Database Systems, 4,4, 1979.

(Dayal 82) Dayal, U. and Bemstein,P.A., On the correct translation of update operations on relational views.
ACM Transactions on Database Systems, 7 ,3, 1982.

(Eswaran 75) Eswaran,K.P. and Charnberlin,D.D., Functional specifications of a subsystem for database
integrity. Proceedings, 1st Int'l Conf.on Very Large Data Bases, 1975.

(Eswaran 76) Eswaran,K.P., Specifications, implementations and interactions of a trigger subsystem in an
integreted database system. IBM RJ 1820, August 1976.

(Fagin 79) Fagin,R at all, Extendible hashing - a fast access method for dynamic files. ACM Transactions on
Database Systems, 4,3, 1979.

(Fernandez 81) Femandez,E.B. and Summers,R.C. and Wood,C., Database security and integrity.
Addison-Wesley 1981.

-") (Kluzniak 83a) Kluzniak,F., PROLOG for SM-4. Technical documentation, Institute of Informatics, Warsaw
University 1983. ·

-'.) (Kluzniak 83b) Kluzniak,F. and Szpakowicz,S., SPOQUEL - a Simple PROLOG-Oriented Query Language.
Institute of Informatics, Warsaw University (in preparation).

(Koster 74) Koster,C.H.A., Using the CDL compiler-compiler. In : Compiler construction, an advanced course.
Eds. Bauer,F.J. and Eickel,J. Lectures notes in computer science 21, Springer-Verlag 1974.

(Kunifuji 82) Kunifuji,S. and Yokota,A., PROLOG and relational databases for fifth generation computer
systems. In: Preprints,Workshop on Logical Bases for Databases, Toulouse, France, Dec.1982.

(Uoyd 80) Uoyd,J. W., Optimal partial-match retrieval. BIT 20,1980.

(Uoyd 82) Uoyd,J.W., An introduction to deductive database systems. TR 81/3, Dept.of Computer Science,
Univ.of Melbourne, revised 1982. ·

(Naish 83) Naish,L, Introduction to MU-PROLOG. TR 82/2, Dept.of Computer Science, Univ.of Melbourne,
revised 1983.

(Nicolas 82) Nicolas,J.M;, Logic for improving integrity checking in relational databases. Acta Informatica
18,1982.

(Paolini 82) Paolini,P. and Zicari,R., Properties of views and their implementation. In : Preprints, Workshop on
Logical Bases for Databases, Toulouse, France, Dec.1982.

(Roussel 75) Roussel,Ph., PROLOG, manuel de reference et d'utilisation. Groupe d'Intelligence Artificielle,
Universite d' Aix-Marsefile Il, 1975.

(Siklossy 82) Siklossy, L, Updating views : a constructive approach. In : Preprints, Workshop on Logical Bases
for Databases, Toulouse, France, Dec.1982.

' (Ullman 80) Ullman,J.D.~ Principles of Database Systems. Computer Science Press, 1980.

-7 (Vassiliou 80) Vassiliou,Y., A formal treatment of imperfect information in database management. TR
CSRG-123, Univ.of Toronto, Nov.1980.

(Warren 81) Warren, D.H.D.~ Efficient processing of interactive relational database queries expressed in logic.
Proc.7th.lnt'l Conf.on Very Large Data Bases, Cannes, France, Sept.1981.

(Zaniolo 82) Zaniolo,C., Database relations with null values. Proc.ACM Symp.on Principles of Database Systems,
1982.

SECURITY AND INTEGRITY IN LOGIC DATA BASES USING

QUERY-BY-EXAMPLE

M H WILLIAMS, J C NEVES and S O ANDERSON

Department of Computer Science

Heriot-Watt University

Edinburgh

Scotland

KEYWORDS: Security, Integrity, Query-by-Example,

Prolog, Logic data base.

30~

Abstract

Security and integrity are two important and

inter-related aspects of data base systems, and

data base management languages must make provision

for the specification and enforcement of such

constraints. In the case of the data base

language Query-by-Example a style for handling

certain types of security and integrity

constraints has been developed by Zloof.

An alternative approach to integrity in QBE

is presented here which is based on the idea of

consistency of the data in the data base. This

approach allows for a more general type of

constraint which includes the handling of

functional, multivalued and em.bedded-multivalued

dependencies, as well as the more conventional and

simpler type of integrity constraints in a uniform

manner.

Both security and integrity constraints have

been implemented in Prolog as part of a logic data

base.

305

30.6

M H Williams, J C Neves, S O Anderson

1 • INTRODUCTION

One of the important functions of any data base

management system

stored within the

is to preserve the integrity of any data

data base by ensuring that it is

consistent with the prescribed properties of such data

(integrity constraints). Integrity constraints. can be

classified into three types (Ullman [1], Nicolas and

Yazdanian [2]) :

(a) Value-based constraints. These are conditions which

the values of the domain elements must satisfy. They are

usually restrictions on the range of values which a field

can assume or are concerned with non- structural

relationships amongst various fields. For example in the set

of relations given in.Appendi<:!: 1 one might.wish to impose

restrictions such as:

(i) The weight of a part is always less than 100 units

(simple restriction on range).

(ii) An entry may only appear in the supplier_parts

table if an entry for the supplier concerned exists in the

supplier table (existence check).

(iii) Any supplier from Vienna or Athens must have a

status which is at least 20 (non-structural relationship),

etc.

(b) Structural or "Value-oblivious" constraints.. These

are restrictions concerned not with the value in any

- 2 -

M H Williams, JC Neves, SO Anderson - 3 -

particular field of a tuple but with whether certain fields

of one tuple match those of another. Three specific types 0f

structural constraints are addressed in this paper:

-(i) Functional Dependencies. If X and Y are two sets of

attributes from some relation scheme, then X functionally

determines Y (or Y functionally depends on X), written "X ->

Y", if any pair of tuples which agree in the components for

all attributes in set X must likewise agree in all

components corresponding to attributes in set Y.

Examples of functional dependencies in the set of

relations in Appendix 1 include:

sno -> sname (corresponding to each
supplier number is a unique name),

sno, pno -> qty (corresponding to each
supplier/part number combination is
associated an unique quantity),

and so on. It has been shown [3] that any set of functional

dependencies can be transformed to an equivalent set in

which all functional dependencies have the form "X -> Y"

where Y is a singleton set.

(ii) Multivalued Dependencies. If X and Y are two sets

of attributes from some relation scheme then X

mul tidetermines Y (or there is a multivalued dependency of Y

on X), written "X ->-> Y", if corresponding to a given set

of values for the attributes of X there is a set of zero or

more associated values for the attributes of Y, and this set

of Y-val ues is independent of the values of any attributes

M H Williams, JC Neves, SO Anderson

not contained in XU Y.

An example of a multivalued dependency taken from the

relation scheme in Appendix 2 (taken from Ullman [1]) is:

course->-> period, room, teacher

that is, associated with each "course" is a set of "period

room- teacher" triples which does not depend on any other

attributes. For example, given the pair of tuples:

cs2a
cs2a

3
5

601
302

jones j
smith t

a.dams a 42
zebedee e 67

one would expect to be able to exchange (3, 601, jones j)

with (5, 302, smith t) and obtain two valid tuples, viz:

cs2a
cs2a

5
3

302
601

smith t
jones j

adams a 42
zebedee e 67

However, it is not possible to exchange one or two fields of

the triple without exchanging all of them, eg:

cs2a 5 601 smith t adams a 42

is not in the data base since "course ->-> room" does not

hold.

(iii) Embedded Multivalued Dependencies. These are

multivalued dependencies which do not apply in the full set

of data but which become applicable when the data set is

reduced by projection. Formally, given a relation scheme R,

an embedded multivalued dependency is one which holds only

when any relation r in R is projected onto some subset X [

- 4 -

M H Williams, JC Neves, SO Anderson

R. For example, in the relation scheme presented in Appendix

2, the multivalued dependency "course->-> prerequisite'!

does not hold since tuples such as:

cs2a zebedee e cs1b 1978

are not present in the data base. However, if the data in

progresstable is projected onto the subset {course, student,

prerequisite} giving:

cs2a adams a cs1a
cs2a adams a cs1b
cs2a zebedee e cs1a
cs2a zebedee e cs1b

then "course->-> prerequisite" does hold, as does "course

->-> student".

(c) Transition constraints. These are restrictions on

the way in which the data base may change; or, more

specifically, the relationship between the states of the

data base before and after any change is made. They include

restrictions on the way in which:

(i) Values in a single field may change, e.g. values

such as age or salary may only increase, marital status may

only change in a particular way, etc.

(ii) Values in a set of fields (possibly in different

relations) may change, e.g. the amount of special low

interest-rate loan may be increased only if the grade of the

employee is above a certain level, etc.

- 5 -

~10

M H Williams, JC Neves, SO Anderson - 6 -

Security, on the other hand, is concerned with who may

access what information in the data base and what operations

may be performed. The distinction between security and

integrity constraints is not always clear as will be seen in

later sections.

Zloof [4] has developed mechanisms for handling

security and integrity constraints within the data base

language Query-by-Example (QBE). The approach used for

handling integrity constraints is a trivial extension of the

concept of transition constraints in which constraints may

be placed on insert, delete and update operations as well as

on print operations. The problem with such an approach is

that it is not possible to make any general statements about

the data in the data base without a detailed history of the

data base.

The object of this paper is to present a slightly

different approach which includes all three types of

constraints, and which does lend itself to statements about

the properties of data in the data base.

The following section gives a brief introduction to

Query-by-Example, while section 3 looks briefly at the

specification of security constraints (a slight variation

from Zloof's approach). The remainder of the paper is

devoted to the integrity constraints and implementation

details.

M H Williams, JC Neves, SO Anderson

2. QUERY-BY-EXAMPLE - THE BASIC LANGUAGE

Query-by-Example [5] is a two-dimensional language

which is designed for use at a terminal and makes use of a

special-purpose screen editor to compose queries. On

striking a particular key, the user is presented with the

skeleton of a table as follows:

I
I
I -------------,------------------------------1
I

The four areas delimited by this skeleton are:

(1) I (2)
I -------------,------------------- - ·--------

('.3) I (4)

(1) Table name field,

(2) Column name field,,

(3) Tuple command field , and

(4) Tuple entry field.

Using the screen editor the user may position the

cursor in any of these four areas in order to insert a

command and/or a variable or constant element. The

formulation of queries is achieved by setting up tuples

containing variables, constants and conditions. An attribute

which is to be displayed is indicated to the system by

typing " " P• ' followed possibly by a variable name and

possibly by a condition, in the column corresponding to that

attribute. In our implementation lower-case letters have

311

- 7 -

M H Williams, JC Neves, SO Anderson

been used in place of upper-case letters for the basic

operations.

For example, to print the status of a particular

supplier, say "clark", given the data base of Appendix 1 ,

the user may enter the table name "suppliers" in the table

name field, viz (the parts which the user might enter are

underlined " __ "):

suppliers l
I
I
I ------------1--------------------------------I
I

Since the relation already exists in the data base the

column headings (attributes of suppliers) can be generated

by the system, i.e.:

suppliers I sno sname status city
I
I
I ------------,----------------------------
1
I

One can now enter "cl ark" in the sname field and II p.X 11 in

the status field as follows:

suppliers l sno sname status city
I
I
I ------------,----------------------------
: clark p.X

Any character sequence beginning with a lower case

letter, such as II clark", is taken to be a constant

representing a specific value, while one beginning with an

upper case letter or an underline symbol " tf is taken to be

31l

- 8 -

M H Williams, JC Neves, SO Anderson

a variable. Thus this is interpreted as a request to print

the status of any supplier whose name is "clark".

Similarly to print the details of any supplier whose

status exceeds 10, one may enter:

suppliers l sno sname status city
I

I ------------1-------------------------------
1, p.X p.Y A A>10 p.C p. : :

or one may write the command "p." in the tuple command field

as follows:

suppliers l sno sname status city
I
I
I ------------1----------------------------

P• ! X Y A::A>10 C

where the infix operator "::" is used as a syntactic aid and
'

is to be read as "such that".

A query may require more than one relation in which

case appearances of the same variable name in different

parts of a query represent the same value. For example, to

display the names of all suppliers who supply parts which

are red, one may enter:

- 9 -

M H Williams, JC Neves, SO Anderson

parts l pno pname colour weight
I
I
I --------1------------------------------
l X red

supplier_ps.rts l sno pno qty
I
I
I -----------------1----------------l y X

suppliers l sno sname status city
I
I
I ------------,----------------------------
1 Y p.Z

- 10 -

Complex conditions are handled by use of a separate

condition box. For example, suppose that one wishes to

display the names of all suppliers for whom the quantity of

part number 2 lies between 100 and 300. One may enter:

suppliers l sno sname status city
I
I
I ------------1----------------------------
: X p.Y

supplier_ps.rts l sno pno qty
I
I
I -----------------,------------------
: X 2 Z

I I 1--------------------1 l CONDITIONS i
I I 1--------------------1
l Z>99 and Z<301 l

Besides the query operator "p." there are three other

---~ - ------ -----

M H Williams, JC Neves, SO Anderson

operators: " . " l.. (Insert), "d." (Delete) and "u." (Update).

As an illustration of the use of "i.", consider the addition

of a new part tuple to the relation parts:

parts i pno pname colour weight
I

I --------,------------------------------
i. i 7 washer red 10

3. SECURITY IN QUERY-BY-EXAMPLE

Security constraints take the form of an authorization

for a user to perform certain operations on a relation. For

example, if one wishes to permit a user John to perform

print, update and insert operations on the relation

suppliers, this may be specified as follows:

suppliers l s?io sname status city
I
I
I -------------------------,----------------------------

i. au tr (p • , u • , i.) . j ohn l A B C · D

where once again lower case letters have been used and the

final ". " J.. omitted [4].

The presence of a variable in each field of the

relation indicates that John has access to that field. If

the variable Chad been omitted and the status field left

blank, this would indicate that John does not have access to

the status field. Just as in other QBE statements, one may

add conditions to these variables or link them to fields in

other relations.

015

- 11 -

M H Williams, JC Neves, SO Anderson

A more complex example which illustrates this imposes

the constraint that John may only read details from the

supplier_parts relation if the status of the supplier is

less than 30 or the supplier comes from Paris. This is

specified as follows:

supplier_parts l sno pno qty
I
I
I -------------------,----------------

1.autr(p.) .john l A B C

suppliers l sno sname status city
I
I
I ------------,----------------------------
1 A E F

I I ,---------------------,
l CONDITIONS l
I , I ,---------------------, l E<3O or F=paris I

In each case the entry in the tuple-command-field has

the form:

i .autr(<access rights lists>) .<user>

The <access rights list> is a list of one or more of

the four rights "p.", " . " J.. , n " u. or "d. 11 while < user> is the

name of the user to whom access is to be granted. In

generalizing these two items, following the philosophy of

QBE, variables may be used. Similarly if the keyword II all. 11

is used in the table-name-field it will refer to all

-- 12 -

M H Williams, JC Neves, SO Anderson

relations. Thus the constraint:

all. I
I
I
I
I ---------------,-------------------

i .autr(X). Y l

will allow any user to perform any operation on any

relation.

4. REALIZATION IN PROLOG

each

In our initial implementation of QBE in Prolog [6],

QBE request (insertion, deletion, update, print,

constraints) was translated directly into Prolog and applied

to the data base. However, when we changed our approach to

integrity constraints and adopted the approach which will be

described in the next section, a different implementation

strategy was called for.

In the current system (which runs both on a PDP 11/34

and a DEC 10 machine), each QBE request is translated into a

clause in a meta-language which is then interpreted using

the remainder of the data base.

The following notation is used to express object-level

knowledge in the meta-language:

(1) A rule clause is represented as:

p <- [q1, q2, ••• , qn, {s}].

which stands for p :- q1 ,q2, ••• ,qn.
while the strings in braces!} is used
to store information for recreating the

- 13 -

M H Williams, JC Neves, SO Anderson

original QBE request.

(2) A goal clause is represented by:

<- [q1,q2, ••• ,qn].

which stands for?- q1,q2, ••• ,qn.

(3) A fact or assertion is represented
as:

p.

which stands for p.

The usual interpretations are to be understood for

rules, goals and assertions [7]. The use of the meta-

- 14 -

language at the object-level has the great advantage of

allowing one to use clauses and predicates as terms.

5. EXTENSION TO HANDLE INTEGRITY CONSTRAINTS

The general philosophy beh~nd the approach described

here is that any constraint which is currently operative

must apply to all data in the data base. Thus whenever a new

constraint is defined, it is immediately checked against the

data in the data base. If any of the data does not satisfy

the constraint, the exceptions are reported and the user is

given the opportunity of either updating the data or

revising the constraint. If all the data does satisfy the

new constraint, it is stored and used to check all

insertions and update operations conducted in the future.

Ttree new operators are ln'croduced for this pur·pose:

M H Williams, JC Neves, SO Anderson

ic. - insert a new constraint

de. - delete an existing constraint

pc. - print constraints

The form of a constraint definition is similar to that

of a query. As a simple example, consider the insertion of

the constraint that the value in the quantity field of each

supplier_parts tuple should be greater than zero. To do this

one may enter:

supplier_parts : sno pno qty
I
I
I -----------------1------------------

ic. : X::X>O

or one may use the condition box as follows:

which is

To

supplier_parts : sno pno qty
I•
I
I -----------------1----------------

ic. l X

I I ,----------------,
l CONDITIONS l
I I 1----------------1 l X > 0 l

translated by the system to yield:

supplier parts(, , X) <-
[X>O, -

{X>O}
] .

ensure that a tuple may only exist in the

31,

- 15 -

M H Williams, JC Neves, SO Anderson

supplier_parts relation if a tuple for the supplier

concerned exists in the suppliers relation, one may have:

supplier_parts l sno pno qty
I
I
I -----------------,----------------

ic. l X

suppliers l sno sname status city
I
I
I ------------,----------------------------
: X

which is translated by the system to yield:

supplier parts(X, ,
[suppliers(X,

]. {}

_) <-
_, _)'

A more complicated value-based constraint is the

restriction that any supplier from Vienna or Athens must

have a status which is at least 20. To specify this, one

has:

suppliers l sno sname status city
I
I
I ------------,----------------------------

ic. l X Y

I I ,--,
l CONDITIONS t
I I ,--, i (Y = vienna or Y = athens) implies (X >= 20) i

which is translated by the system to yield:

- 16 -

M H Williams, JC Neves, SO Anderson

supfliers(_, _, X,
not (Y=vienna
not (Y=athens
{ (Y=vienna or

].

Y) <-
or X>=20) and
or X>=20),
Y=athens) implies (X>=20)}

Functional dependencies are specified in the condition

box using the format:

<var> -> <var>

or (<varlist>) -> <var>

For example, in the parts relation, suppose that "pno

-> weight". This can be specified as a constraint as

follows:

parts l pno pname colour weight
I

I --------,------------------------------
ic. l X Y

I I ,----------------,
l CONDITIONS l
I I ,----------------,
I I
I X -) Y 1

which is translated as follows:

parts(X, , , Y) <-
[parts(X, _, _, U),

Y=U,

J.
{ 1 ->4}

This can be read as :

- 17 -

?
.,.

M H Williams, JC Neves, SO Anderson - 18 -

for all X, A, B, Y:
if there exists R, S, U such that
if parts(X, R, S, U) and Y=U are true
then parts(X, A, B, Y) is true.

When this command is given, the data base will be checked

immediately to ensure that the data already present

satisfies this condition. Provided it does, the constraint

will be added to the data base. Thereafter whenever the user

inserts or updates a tuple in the parts relation it attempts

to deduce "weight" from "pno" and fill it in automatically

for the user.

Multivalued dependencies are specified in a similar way

using the format:

<X> ->-> <:Y>

where <X> and <Y> each stand for either a single variable or

' a variable list enclosed in parentheses. Thus in the example

from Appendix 2 one might express the constraint:

timetable : course period room teacher student mark
I
I
I ----------,---

ic. l W X Y Z

I I ,----------------------,
l CONDITIONS i
I I ,----------------------,
l W ->-> (X, Y, Z) l

which is formalized as follows:

M H Williams, JC Neves, SO Anderson - 19 -

timetable(W, X, Y, Z, R, S) <-
[timetable(W, A, B, C, M, N),

timetable(W, A, B, C, R, S),
timetable(W, X, Y, Z, M, N),
{1->->(2,3,4)}

] .

Once again when this command is given the data base is

checked for any violations. If violations arise they are

reported, if not the constraint is added to the data base.

Thereafter whenever an insertion or update operation causes

this constraint to be invoked, the system generates (and

displays) the full set of tuples which need to be added to

the data base in order to maintain consistency. If the user

is content with the set of tuples generated, the system adds

the full set to the data base, otherwise the

insertion/update operation is abandoned.

Embedded multivalued dependencies are specified using

the format:

<X> ->-> <Y> /<Z>

where <X>, <Y> and <Z> each stand for· either a single

variable or a variable list in parentheses. This is

interpreted as X multidetermines Y if the set of attributes

Z is removed. For example, to express the fact that "course

->-> prerequisite" if the relation "progresstable" in

Appendix 2 is projected onto the subset (course, student,

prerequisite}, one may enter:

M H Williams, JC Neves, SO Anderson

progresstable l course student prerequisite year
I
I
I ----------------,---------------------------------------

ic. i X Y Z

I I ,----------------,
i CONDITIONS ;
I I ,----------------,
i X ->-> Y/Z ;

which is translated by the system to yield:

progresstable(X, A, Y, Z) <-
[progresstable(X, B, C,

progresstable(X, A, C,

].
frogresstable(X, B, Y,
1->->3/4}

E),
R)'
s),

When this command is given, the data base is checked

for consistency. If violations arise the user is prompted to

correct them or abort the constraint. Once the constraint

is added to the data base, any further insertions or update

operations are checked against the constraint and where

required the system will generate the full set of tuples

needed to fulfil any particular operation, prompting the

user for the additional information (year) required to

complete each tuple.

Transition constraints, which are concerned with the

way in which values in the data base may change, are

expressed using a pair of entries for the relation in

question. The field in this relation which is to be

controlled, will be represented by two different variables -

- 20 -

M H Williams, JC Neves, SO Anderson - 21 -

the one occurring in the line with the ic command in the

tuple-command-field represents the new

variable, the other the old value.

value of the

For example, suppose that one wishes to place a

constraint on the status of a supplier whereby it can only

increase, one might enter:

suppliers l sno sname status city
I
I
I ------------1----------------------------

ic. l N X
I
I
I

I
I N y

I I 1-----------------1 I CONDITIONS l
I I 1-----------------1 l X>=Y l

which is translated by the system to yield:

suppliers(N, , X,) <-
[suppliers(N~ , Y,

X>=Y,

J.
{X>=Y}

) - '

Similarly one might impose a constraint on the age or

salary of an employee whereby the values of these fields for

a particular employee can only increase. In the case of

marital status the only permissible transitions may be:

M H Williams, JC Neves, SO Anderson

single ---> married
married ---> divorced or widowed
divorced ---> married
widowed ---> married

which may be specified as follows:

employee I empno ename salary status grade
I
I
I -----------1--

ic. i N X
I
I
I
I

l N single

I I ,---------------------------,
l CONDITIONS l
I I ,-------- ------------------,
l X=married or X=single l

employee l empno ename salary status grade
I

\ -----------,---------------------------------------
ic. l N X

I
I
I
I

I N married

I I ,--1
: CONDITIONS l
I I ,--,
I X=married or X=divorced or X=widowed l

and so on. This is translated by the system to yield:

- 22 -

M H Williams, JC Neves, SO Anderson - 23 -

employee(N, , , X, _) <-
[employee(N, _, _, single, _),

X=married or X=single,
!X=married or X=single}

] .
employee(N, , , X,) <-

[employee(N, -; , married, _),
X=married or X=divorced or X=widowed,
{X=married or X=divorced or X=widowed}

] .

Alternatively the four constraints may be combined into

a single one using two variables.

As an example of a more complex form of constraint,

consider the restriction that the value of a loan may only

increase (or decrease) if the grade of the employee is

greater than 5. This might be specified as follows:

M H Williams, JC Neves, SO Anderson

loantable i empno loan
I
I
I ------------1-------------

ic. i X NL
I
I
1
I

l X OL

employee l empno ename salary status grade
I
I
I -----------1--
: X y

I I 1----------------------------1 i CONDITIONS i
I 1 ,----------------------------,
l (Y<=5) implies (NL=OL) l

This is translated by the system to yield:

loantable(X, NL)<-
[loantable{X, OL),

employee(X, , , , Y) ,
not Y<=5 or NL=OL,
{(Y<=5) implies (NL=OL)}

J.

The complete syntax of these constraints is given in

Appendix 3,

6. OVERLAP OF INTEGRITY AND SECURITY CONSTRAINTS

The transition constraints discussed in the previous

section deal only with the way in which data in the data

base may change (i.e. te apdc.-:ed). It does not cater :or

transitions involving insertion or deletion.

- 24 -

M H Williams, J C Neves, S O Anderson

Thus suppose one wishes to impose the constraint that a

loan may only be granted to an employee with grade between 5

and 8, but once an employee has been granted a loan, if his

grade changes to a value outside the range 5-8, he will not

lose his existing loan. This type of constraint is not a

simple property of the data (i.e. one cannot conclude that

any employee who has a loan, must have a grade in the range

5 to 8). However, it can be handled using a security

constraint, eg.

loantable : empno loan
I

I --------- ------,-------------
i.autr(i.) .X : A B

~mployee l empno ename salary status grade
I
I
I -----------,---------------------------------------
: A C

I I ,-----------------------,
l CONDITIONS l
I I ,-----------------------, l (C>=5) and (C<=8)

Likewise the example considered by Nicolas and

Yazdanian [2] in which a constraint needs to be placed on

the system to prevent employees whose income is less than

some value (say 5000) from being deleted, can be treated as

follows:

- 25 -

330

M H Williams, JC Neves, SO Anderson - 26 -

employee i empno ename salary status grade
I
I

-----------------!---------------------------------------1

l.autr(d.).X l A B C D E

I I ,-------------------1
i CONDITIONS i
I I 1-------------------1

. l C>=5000 l

7. CONCLUSIONS

The specification and enforcement of integrity

constraints in a data base system is essential in order to

guarantee the consistency of data within the data base. The

role of security constraints is to control the types of

operations which individual users may perform on the data

base. The two types of constraints overlap to some extent.

This paper presents an integrated approach for

specifying generalized integrity and security constraints

within the data base management language Query-by-Example.

The important aspects of this approach are:

(a) It caters for all three types of integrity

constraints in a generalized and consistent manner.

(b) It treats integrity constraints as properties of

the data applying to all data in the data base, rather than

as properties of particular operations (as proposed by Zloof

r ., 1 \
L'+J/.

(c) It ensures that the user is aware of the

M H Williams, JC Neves, SO Anderson

implications of any operation producing changes in the data

base which affect fields involved in

embedded-multivalued dependencies.

ACKNOWLEDGEMENTS

multivalued or

The work of one of the authors, J C NEVES, was

supported by the Calouste Gulbenkian Foundation under grant

14/82 and by an ORS award from the Committee of Vice

Chancellors and Principals of the Universities of the United

Kingdom.

JC NEVES is on leave from Minho University, Largo do

Paco, 4700, BRAGA, PORTUGAL.

- 27 -

M H Williams, JC Neves, SO Anderson

8. REFERENCES

[1] J. D. Ullman, Principles of Database Systems, London:

Pitman, 1980.

[2] J.M. Nicolas and K. Yazdanian, Integrity Checking in

Deductive Data Bases, in: Logic and Data Bases, Plenum

Press, 1978, 325-344.

[3] w. W. Armstrong, Dependency Structures

Relationships. Proc. IFIP 74, 1974, 580-583.

[4] M. M. Zloof, Security and Integrity within

by-Example Database Management Language,

Yorktown Heights, N. Y., 1978.

of Database

the Query

IBM RC6982,

[5] M. M. Zloof, Query-by-Example: A Data Base Language, IBM

Systems J., Vol. 16, No. 4, 1977, 324-343.

[6] J. C. Neves, S. O. Anderson and M. H. Williams, A Prolog

Implementation of Query-by-Example, in: Proceedings of the

7th International Computing Symposium, March 22-24, 1983,

Nurnberg, Germany.

[7] W. F. Clocksin, and C. S. Mellish, Programming in

Prolog, Springer-Verlag, 1981.

[8] K. Bowen, and R. A. Kowalski, Amalgamating Object

L.s.nguage ar ... d I1etala;:g1.1:lge iL Logic Prcgramm.ing. To ap~ea:- in

Logic Programming (K. L. Clark and S. -A. Tarnlund Eds.)

- 28 -

M H Williams, JC Neves, SO Anderson

Academic Press,1982.

[9] M. H. Williams, A Flexible Notation for Syntatic

Definitions, ACM Trans. on Prog. Lang. and Syst., Vol. 4,

No. 1, 1982, 113-119.

333

- 29 -

M H Williams, JC Neves, SO Anderson

Appendix 1: A simple business data base

Consider a simple business data base which contains:

(i) A relation "parts" with attributes (columns): pno,

pname, colour and weight.

(ii) A relation "suppliers" with attributes: sno,

sname, status and city.

(iii) A relation "supplier_parts" with attributes: sno,

pno and qty.

(iv) A relation "employee" with attributes: empno,

ename, salary, status and grade.

loan.

(v) A relation "loan table" with attributes: empno and

Suppose that the current content of each relation is:

parts i pno pname colour weight
I --------1------------------------------l 1 nut red 12
l 2 bolt green 17
i 3 screw blue 17
l 4 screw red 14
l 5 cam blue 1 2
i 6 cog red 19

Table 1.1 - The parts relation

- 30 -

M H Williams, JC Neves, SO Anderson

1 . I supp iers I sno sname status city
I ----------,-------------------------------
: 1 smith 20 vienna
I 2 jones 10 paris
I 3 blake 30 paris
I 4 clark 20 vienna
l 5 adams 30 athens

Table 1.2 - The suppliers relation

supplier_parts sno pno qty
----------------- -----------------

1 1 300
1 2 200
1 3 400
1 4 200
1 5 100
1 6 1-00
2 1 300
2 2 400
3 2 200
4 2 200
4 4 300
4 5 ' 400

Table 1.3 - The supplier_parts relation

employee l empno ename salary status grade
I ---------,------------------------------------
: 12 morley 6500 married 10
I 7 warren 7135 single 7
l 15 exner 4475 single 4
l 17 berry 5345 married 12
l 5 john 6725 widowed 9

Table 1.4 - The employee relation

loantable I empno loan
I ------------,-------------
: 7 570
l n 1500

Table 1.5 - The loantable relatio

335

- 31 -

33~

M H Williams, JC Neves, SO Anderson - 32 -

Appendix 2: A simple departmental data base

Consider a simple departmental

contains:

data base which

(i) A relation "timetable" with attributes: course,

period, room, teacher, student, grade.

(ii) A relation "progress table"

course, student, prerequisite, year.

with attributes:

Suppose that the current content of the data base is:

timetable l course period room teacher student grade
I ----------,---
1 cs2a 3 601 jones j adams a 42
l cs2a 5 302 smith t zebedee e 67

Table 2.1 - The timetable.relation

progresstable l course student prerequisite year
I --------------,--
1 cs2a adams a cs1a 1978
: cs2a adams a cs1 b 1979
l cs2a zebedee e cs1a 1978
l cs2a zebedee e cs1b 1979

Table 2.2 - The progresstable relation

M H Williams, JC Neves, SO Anderson

Appendix 3: Concrete syntax of the data base query language

Extended-Query-by-Example

The basic Extended-Query-by-Example (EQBE) format is as

follows:

Table-name-field l Column-name-field
I ----------------------,--------------------

Tuple-command-field l Tuple-entry-field
I
I

I I 1---------------------------1 l CONDITIONS l
I I ,---------------------- ----, l Condition-entry-field l

where the syntax of each of these components is defined as:

bl f . d (II. II I ta e-name- iel ::= i. 1 "u.") string-constant ·:

[" ti p. l "d."] [string-constant]

"all."

column-name-field : : = ["p. "] [string-constant]

tuple-entry-field : : = ["p. "] [example-element

["::" relation] l p-relation]

l string-constant l integer

authorization : : = "autr" ["(" access-rights-list ") "]

user-list

tt "

access-rights- list : : = access-right ("," access-right)*

example-element

" " I ". II I "d " I " " access-right ::= p. 1 .i.. 1 • 1 u.

user-list ::= list l example-element l string-constant

1 . t "(" t . t t "It t. t t)*")" is ::= s r.i.ng-cons an ,(, s ring-cons an

33r

- 33 -

M H Williams, JC Neves, SO Anderson - 34 -

tuple-command-field : : = r ft. "
L J.C •

"d n I n n
C. I pc.

(1f - " 1. • "d." j "u.." " n) p.

[authorization]]

condition-entry-field ::= functional-dependency

multivalued-dependency

embedded-multivalued-dependency

boolean-expression

functional-dependency : : = set "->" example-element

multivalued-dependency : : = set "->->" set

embedded-multivalued-dependency::= set"->->" set"/" set

set : : = "(" example-element ("," example-element)* ")"

l example-element

boolean-expression ::= boolean-secondary

("implies" boolean-secondary)*

boolean-secondary : : = boolean-term ("or" boolean-term)*

boolean-term ::= boolean-factor ("and" boolean-factor)*

boolean-factor ::= ["not"] boolean-primary

boolean-primary::= boolean-constant i relation

1 "(" b 1 . 1 oo ean-expressJ.on tt) If

boolean-constant : := "true" : "false"

relation : : = numeric-exp relational-op numeric-exp

string-exp relational-op string-exp

p-relation ::= relational-op (numeric-exp : string-exp)

numeric-exp ::= [add-op] numeric-term

(add-op numeric-term)*

numeric-term ::= factor (multiply-op factor)*

factor::= [function-designator] numeric-variable

M H Williams, JC Neves, SO Anderson

l numeric-constant "(" . ")" numeric-exp

multiply-op : : = "*" : "/"

dd "+ It I II It a . - op : : = · 1 -

function-designator::= " " I max. 1
n • n I min. 1 "ave."

l "cnt." If ti sum.

string-exp : : = string-primary ("+" string-primary)*

string-primary::= string-variable l string-constant

integer ::=digit+

string-constant ::= ('""'"non-quote-character*'"""')+ l

lower-case-letter letter-or-digit*

string-variable ::= example-element

numeric-variable ::= example-element

example-element ::= capital-letter letter-or-digit*

l underscore letter-or-digit*

letter-or-digit ::= lower-case-letter : digit
'

capital-letter : : = "A" l "B" l "C" l "D" l "E" "F"

"G" "H" "I" "J" "K" "L"

"M" "N" "O" "p" "Q" "R"

"S" "T" "U" "V" "W" "X"

"Y'' "Z''

lower-case-letter ::= "a" "b" If CH I "d" I tt e" I "f" I I I

"g" "h" ti." "j" "k" "l" J.

"m" "n" tt " " tt "q" " r" 0 p

"s" "t" "u" " " "w" "xn V

" It " II y z

digit : : = "O" I "1 " "2" "3" "4" "5" I

"6" I "7" I "8" I "9" I I I

- 35 -

340

M H Williams, JC Neves, SO Anderson - 36 -

where the notation used is that given by Williams[~].

TOWARDS A CO-OPERATIVE DATA BASE MANAGEMENT SYSTEM

J C NEVES and M H WILLIAMS

DEPARTMENT OF COMPUTER SCIENCE

HERIOT-WATT UNIVERSITY

EDINBURGH

SCOTLAND

KEYWORDS: Logic programming, Horn clauses, Prolog,

Logic data base, Query-by-Example, Incomplete queries,

Co-operativeness.

Abstract

A desirable feature of any high-level data

base query system is that it should be user

friendly. This should ex tend beyond the provision

of a query syntax which is easy to use, to some

attempt at intelligent helpfulness or co

operativeness. In particular additional knowledge

about the structure of the data in a data base or

the incomplete data contained in a query may be

used to benefit the user. In this respect, despite

its simplicity and ease of use, the data base

management language Query-by-Example is relatively

inflexible.

This paper looks at several ways in which the

co-operativeness of Qu~ry-by-Example can be

improved. These are concerned with incomplete

queries (i.e. queries in which certain information

has been omitted), incomplete updates and queries

which fail as a result possibly of misconceptions

on the part of the user. Consideration is also

given to how these are implemented in Prolog.

JC Neves and M H Williams

1. Introduction

The application of first order logic and resolution

based theorem proving to machine intelligence problems

started during the early 1970 's. Recently, logic programming

has received a considerable boost due to its choice as the

basis of the core programming languages for the Japanese

Fifth Generation Computer Systems [1].

Prolog [2] is a qualified implementation of Horn

clauses which has become important as a vehicle for

Artificial Intelligence applications. In particular there

is growing interest in its use for data base applications

[3]. Since Prolog itself is not very convenient as a query

language, various researchers have sought to develop other

user interfaces to Prolog data bases. These include natural

language interfaces [4] and Que11y-by-Exam~le [5].

Query-by-Example (QBE) is a non-procedural data base

query language developed by Zloof [6] in which queries are

expressed by filling in skeleton tables with examples of the

result required. In a human factors experiment conducted by

Thomas and Gould [7] to determine the ease of use of data

base query languages, the advantages of QBE over SQUARE and

SEQUEL were clearly demonstrated. In particular they found

that subjects using QBE required about one-third the

training time, were somewhat faster in expressing queries

and were about twice as accurate [7].

In view of this and the similarity between the syntax

2

JC Neves and M H Williams

of Prolog goals and QBE [8], an implementation of QBE

interfacing with a logic data base has been realized in

Prolog. Details of the implementation are given in [5].

Despite its simplicity and ease of use, QBE is

relatively inflexible and makes no attempt at intelligent

helpfulness or co-operativeness. This paper consider some

ways in which the co-operativeness of QBE can be improved.

2. Incomplete queries

In QBE all queries must be expressed in full in a

manner which reflects the way in which the data has been

stored in the data base. However, the inexperienced or

casual user may have difficulty in remembering the internal

.structure of the data and the way in which any particular

query must be framed in order to reflect this. On the other

hand the experienced user may find the process a little

clumsy and look for short cuts. The idea of an incomplete

query may appeal to either type of user.

In QBE any simple query which involves the join of two

relations makes use of a common variable which occurs in one

field of each of the two relations.

For example, given the data base in Appendix 1, suppose

that the user wants to find the names of all suppliers who

supply part number 2. The parts which he/she might enter

are underlined " ". Toe entry r:iight be:

JC Neves and M H Williams

suppliers l sno sname status city
I
I
I ------------------,-------------------------------------
: S p.N

supplier_parts l sno pno qty
I
I
I ------------------,------------------------
: S 2

The common variable here which serves to join the two

relations is S. Such a variable will be referred to as a

link variable, and the fields of the two relations which are

linked together (sno of suppliers and sno of supplier_parts)

will be referred to as link fields.

In general there is no choice in the pair of link

fields which can be used to join two relations together. For

example, in the case of the relations suppliers and

supplier_parts, the field sno of relation suppliers and

field sno of relation supplier_parts are the only possible

pair of fields which can be used to join these two

relations.

In some cases it may not be possible to join relations

directly and a join may only be effected via one or more

intermediate relations.

For example, suppose that the user wishes to retrieve

the names of all suppliers who supply at least one red part.

The essential information in this query is:

3~5
4

JC Neves and M H Williams

suppliers l sno sname status city
I
I
I ------------,----------------------------------
1
I p.N

I parts I pno pname colour weight
I

I ------------1------------------------------------
: red

although the complete query is:

suppliers l sno sname status city
I
I
I ---------------,-------------------------------------
: S p.N

supplier parts l sno pno qty
- I

I
I ---------------,------------------------
: S X

parts l pno pname colour weight
I

I ---------------,---------------------------------- ----
l X red

where Sand X are both link variables and supplier_parts is

an intermediate relation.

Since in general link variables are not an essential

part of a query but rather a result of the way in which data

are stored in the sys tern, it should be possible for the user

to omit link variables from any query (together with any

empty in termed ia te tables which may result). Any query in

which one or more of the link variables have been omitted

will be referred to as an incomplete query.

5

JC Neves and M H Williams

However, there is one snag with the omission of the

link variables. Consider the query:

suppliers l sno sname status city
I
I
I ---------------1-------------------------------------
: p.N

supplier parts l sno pno qty
- I

I ---------------1------------------------
: 2 p.X

If this is treated as an incomplete query the system would

attempt to link together these two requests. The result

might be:

suppliers · I sno sname status city
I ---------------1-------------------------------------I s p.N

supplier parts l sno pno qty
- I ---------------1------------------------

l S 2 p.X

which would be interpreted as "print the name of each

supplier who supplies part number 2 and the quantity

supplied" • On the other hand, the original query is

sufficient in its own right being interpreted as "print the

names of all suppliers and the quantities of part number 2

as supplied by different suppliers". The latter is a form of

OR-query.

In gener~l an incomplete ~uery will have the sa~e ~or:n

as an OR-query and the system will be unable to distinguish

6

J C Neves and M H Williams 7

between the two. Thus it must be assumed that an incomplete

query will not involve an OR-condition aI1.d that the user

will indicate when an incomplete query has been issued.

In the next section the underlying data structures and

the general approach to implementation of incomplete queries

are discussed.

3. Implementation of incomplete queries

If a user wishes to issue an incomplete query, the

query is entered in exactly the same way as any other query

except that a different key (for example, a special function

key in the keyboard) is used to signal the end of the query.

When the system is presented with an incomplete query,

it attempts to link together the separate parts of the

request. If it succeeds in find~ng appropriate links, the

resulting query will be displayed in full to the user. If

this resulting query satisfies the user, he/she indicates

acceptance of the query by pressing the key normally used at

the end of a complete query; if it is not what the user

wants, a different key is used to indicate to the system to

continue its search. If no suitable links can be found, the

system reports this to the user.

To illustrate this, consider a request for the names of

any suppliers who supply widgets and to whom one does not

owe money at the present moment. IQ and CQ are used to

denote the keys corresponding to Incomplete Query and

JC Neves and M H Williams

Complete Query respectively. The dialogue might be as

follows (commentary is in/* ••• */ brackets):

suppliers i sno sname status city
I
I
I ------------------,-------------------------------------
1 p.N

parts I pno pname colour weight
I

I ------------------,------------------------------- -------
: widget

supplier_balance l sno amountowed
I
I
I ------------------,--------------------
: X: :X=<O

IQ /* signals the end of an incomplete query * /

The infix opera tor ti::"• is used for syntactic

convenience only and is to be read as ti such that".

In response to this the system mlght display:

8

JC Neves and M H Williams

suppliers l sno sname status city
I ------------------1-------------------------------------
: A p.N

supplier_parts l sno pno qty
I ------------------,----------------------
: A B

parts l pno pname colour weight
I ------------------1---------------------------------------
: B widget

supplier_balance l sno amountowed
l ------------------1--------------------
: A X::X=<O

3.1. Formal specification of links

The data structure used to represent the data base

relations and the connections between the relations is an

undirected graph.

Fig 1 is a diagrammatic representation of the graph

representing the links of the data base in Appendix 1. Every

data base relation is represented by a vertex or node,

called a relation node, and for every two nodes, if the same

attribute occurs in both relations, an edge will connect the

pair. This edge is labelled with the pair of attribute names

from the two relations.

350

9

JC Neves and M H Williams

suppliers

product
-parts

351
10

prodno:prodno]

supplier
-parts

sales

~:::~::::sno]
supplier
-balance

sales
-people

Fig 1 - The graph structure representing the link
dictionary for the data base given in
Appendix 1.

This information is represented within the

language system by a set of clauses of the form:

link(RELATION NAME 1, RELATION NAME 2,
[

query

ORDERED SEQUENCE OF LINK FIELDS OF RELATION 1:

]) . ORDERED SEQUENCE OF LINK FIELDS OF RELATION 2

setofnodes(GRAPH NAME,
[

SET OF GRAPH NODES
]) .

In Appendix 2 the link dictionary for the data base in

Appendix is given. Also prese:r.:ted is the Prolog progr!:".m

for searching for a path linking any pair of relations in

JC Neves and M H Williams

the data base.

The link dictionary described can be accessed by the

user through the normal query mechanism, thus enabling the

user to examine or update the structure of the data in the

data base.

For example, suppose that the user wants to find which

relations are linked with which • The entry might be:

p.links l
I
I
I ----------,-----------
1
I

CQ /* signals the end of a complete query*/

The system will respond by displaying for each relation R a

list of relations linked to R, e.g.

links l supplier_parts
I --------,-----------------
: supplier balance
l suppliers
l parts
I product_parts

3.2. Handling join conditions

In order to handle joln conditions the system

determines the number N of unlinked components of the

request and then seeks to establish the paths linking them

together.

11

JC Neves and M H Williams

For example, suppose that the user wants to find the

names of any suppliers to whom no money is owed at the

present moment and who supply part number 1023. The entry

might be:

suppliers ! sno sname status city
I
I
I ------------,----------------------------
: X p.N

supplier_balance ! sno amountowed
I

I -------------------,-----------------
: X A: :A=<O

product_parts l prodno pno nor~qd
I
I
I ----------------1----------------------
l 1023

IQ /* signals the end of an incomplete query*/

where the user has partially specified the links by using

the variable X to link relation suppliers with relation

supplier_balance.

Given a query which contains join conditions, the paths

linking the different components of the whole request may be

established using:

(i) - relation merging; that is, if two
relations x and y which form part of the
query are related to each other through
the join variables A1, A2, .•• , An
(n>=1), merge relations x and y by
performing joins between relations x and

353

12

JC Neves and M H Williams

y. Repeat this operation until no
further merges are possible.

(ii) - graph generation; that ls, look
for paths which connect the remaining
unlinked components of the graph (these
must involve intermediate relations).

Let join-relation be the relation obtained by the join

of relation suppliers with relation supplier_balance. Then

the graph for the unlinked components of the initial request

is as shown in Fig 2.

join
-relation

Fig 2 - Graph structure after merging.

product
-parts

The start node is indicated on the graph by an arrow,

and double bars have been used to distinguish the final

node. As a response, the system might display:

13

JC Neves and M H Williams

suppliers i sno sname status city
I ------------,----------------------------
1 X p.N

supplier_balance i sno amountowed
I -------------------,-----------------
1 X A: :A=<O

supplier_parts I sno pno qty
I -----------------1----------------: x y

product_parts l prodno pno noreqd
I ----------------,----------------------
: 1023 Y

4. Incomplete updates

The ideas outlined in the previous section apply also

to update operations.

For example if the user wishes to set the quantity to

zero for all suppliers living in London, he/she might enter:

supplier_parts I sno pno qty
I
I
I -----------------1----------------------

u l o

suppliers I sno sname status city
I

I -----------------1---------------------------------------
: london

IQ /* signals the end of an incomplete query * /

to which the system will respond with:

..355

14

JC Neves and M H Williams

supplier_parts l sno pno qty
l -----------------1----------------------

u l Q o

suppliers i sno sname status city
t

-----------------1------------------------------------- ►-l Q london

In addition this link information may also be used in

the case of update operations to ensure that when the user

attempts to update a value in a link field of some relation,

he/she is reminded of the possibility that the corresponding

link field in some other relation may need to be updated

too. In such a case the system might ask the user whether

he/she wishes the same operation to be performed in the

corresponding link field in the appropriate relation.

For example, if the user wishes to change the supplier

number 13 to 3, the user might enter:

suppliers l sno sname status city
I

\ ------------,-------------------------------------
u l 3

I
I
I
I

l 13

CQ /* signals the end of a complete query*/

The system should then ask the user whether in addition

he/she wishes to perform the following updates:

35G

15

JC Neves and M H Williams

supplier_parts l sno pno qty
I -------------------1----------------------

u : 3
l 13

supplier_balance : sno amountowed
I -------------------,--------------------

u l 3
l 13

In such case the user must indicate whether he wishes the

additional update operations to be performed or rejected.

5. Queries which fail

In formulating a query a user inevitably makes certain

presuppositions about the data present in the data base.

These presuppositions are inherent in the information

contained in the query and are an indication of what the

user believes about the state of the information in the data

base.

A data base query can be viewed either as requesting

the selection of a subset (termed the response set) from a

set of qualified instances in the data base, or as

expressing some general belief about the data in the data

base. In either case queries presented in QBE are translated

into an intermediate meta language before being presented as

a conjecture that a resolution-based theorem prover (e.g.

Prolog) attempts to prove. This meta language is a graph

structure, the nodes of which represent both data base

relations and conditions imposed on the relation's

16

J C Neves and M H Williams

attr lbute(s) •

The query graph is divided into connected subgraphs,

each of which in itself constitutes a well-formed query in

the meta language and is translated into a conjecture that

can be presented to the theorem prover to be proved (i.e.

each connected subgraph corresponds to a presupposition the

user has made about the domain of discourse) •

The next section discusses how the presuppositions

inherent in these subgraphs can be used to provide a more

co-operative response to users for both queries that request

the selection of a subset of qualified instances in the data

base and YES-NO queries.

5.1. Constructing corrective indirect answers

When dealing with queries requesting the selection of

qualified instances in the data base (i.e. with queries

defining a property of data base objects) consider the

situation where the system fails to prove the conjecture

(the initial query returns the empty set as an answer). In

this case, on request from the user, the system will try to

establish the user's presuppositions by translating each

connected subgraph into a conjecture to be proved. This

approach ensures that should a presupposition fail, an

appropriate corrective indirect answer [9] will be returned

to the user.

For example, suppose that the user wishes to retrieve

17

JC Neves and M H Williams

the numbers of all suppllers living in London who supply

part number 2. The entry might be:

.suppliers I sno sname status city
I
I
I ---------------,---------------------------------------
: p.X y

supplier parts l sno pno qty
- I

I
I ---------------,----------------------
: X Z

I I 1----------------------,
1 CONDITIONS i
I I ,----------------------, l Z=2 and Y=london

CQ /* signals the end of a complete query * /

This query is based on the following presuppositions

(i.e. the preconditions for the correctness of any direct

answer):

(i) There are suppliers.
(ii) There are suppliers who supply parts.
(iii) There are suppliers supplying part number 2.
(iv) There are suppliers living in London.
(v) There are suppliers living in London who supply

part number 2.

Should any of these presuppositions fail to be true,

the system would, in general, respond with an empty list or

"NULL". If, however, this query were addressed to a human

being one might expect a more co-operative respom1e which

identifies the failing presupposition(s).

35i
18

360

JC Neves and M H Williams 19

A complex query asking for the display of certain data

items subject to a variety of retrieval conditions will be

decomposed into a number of basic components in the meta

language (i.e. connected subgraphs), each of which are

acceptable queries in their own right. With each sub-query

is associated a subset of the original set of

presupposition(s). In the case of the above example, this

can be represented diagramatically as:

[X:X]
suppliers(X,_,_,Y) supplier_parts(X,Z,_)

,.

Y=lond on Z=2

Fig 3 - The complete query.

suppliers(X,_,_,Y) supplier_parts(X,Z,_)

Y=lond on Z=2

Fig 4 - Two first-level components

J C Neves and M H Williams

---------------------- -------------------------suppliers(X,_,_,Y) supplier_parts(X,Z,_)
---------------------- -------------------------

Fig 5 - Two second-level components

which will be translated by the system to yield:

<- suppliers(X, , Y),
Y=london,
supplier_parts(X, Z, _),
Z=2.

This clearly consists of two components:

<- suppliers(X,
Y=london.

, Y) ,

<- supplier_parts(X, Z, _),
Z=2.

each of these jn turn depend on components:

' <- suppliers(X, _, _, Y).

<- supplier_parts(X, Z, _).

In this case the system's response "NULL" will be

produced only in the case where the top level query has

failed but all sub-queries have succeeded. Otherwise the

message "NULL-LOWER LEVEL QUERY FAILED" will be displayed.

On request the system will attempt to determine the

cause of failure. If any sub-query fails and its failure

contributes to the failure of the top level query, then:

- the failure of the sub-query will be
reported back together with any other
sub-query on the same level which

20

j C Neves and M H Williams

contributes to the failure of the top
level query,

- any higher level failing sub-queries,
not failing due to failure of component
sub-queries, will be also reported back.

In the current implementation this is achieved by

typing the keyword "WHY".

For example, if the query described above is presented

to the system but the system fails to find any supplier

living in London, it will respond with:

suppliers i sno sname status city
I ------------,-· - -----------------------------------
: p.X london

results: NULL /* the empty set*/

that is, the system recognizes the failure of the component:

' <- suppliers(X, Y),
Y=london.

and responds appropriately.

On the other hand, an OR-query fails if and only if all

of its sub-queries fail. If one succeeds, the query as a

whole succeeds, even if all the others fail. Such a

situation might contribute to the misinterpretation by the

user of the system's response due to the false assumptions

made about the way the answer was inferred.

For example, suppose that the user wishes to retrieve

the names of all suppliers who live in London or Paris. The

en try might be:

21

JC Neves and M H Williams

suppliers l sno sname status city
I
I
I ------------,---------------------------------------
: p.X london
I
I
I
I
1
1 p.Y · paris

CQ /* signals the end of a complete query * /

, to which the system' s answer is:

results I sname
I ----------,------
: jones
l blake

But it is known (see Appendix 1) that Jones and Blake

both live in Paris, and that no one is in London. That is,

the user can think of suppliers living in London and living

in Paris to be correct, an~ carry on with a frustrating

series of questions, or worse, misinterpret the system's

response. To avoid such a situation, the user can, as soon

as the answer has been displayed, request further

information about the process used in the evaluating of the

query. The result might be:

suppliers I sno sname status city
I ------------,---------------------------------------
: p.X london

results: NULL /* the empty set*/

which indicates to the user that the presupposition that

some suppliers were living in London is incorrect.

22

JC Neves and M H Williams

To the extent that update operations involve an initial

request (query) aimed at

instances or tuples in the data

locating

base, a

certain qualified

similar type of

analysis as the one described above would apply in the case

of failure.

In the case of a query which expresses some property of

the data base as a whole, should the system fail to prove

the conjecture, an attempt is made to prove the negation of

the conjecture in order to answer "NO". Should the sys tern

fail to prove or disprove a given conjecture an answer of

"DON'T KNOW" is returned to the user. This is the case when

neither a "YES" nor "NO" answer is possible from the axioms

in the data base.

If the answer is "NO" or "DON'T KNOW" an analysis of

the presuppositions made might follow if requested.

6. Conclusions

Most query systems currently available respond to

queries in a very literal manner, giving an answer to what

the user actually asked for - no more and no less. Though

the responses are literally correct, such rigidity can be

very unhelpful at times, and a more flexible system is

desirable. This flexibility in the interpretation of queries

in a manner which ls both natural and of benefit to the user

is termed co-operativeness.

This paper outlines several ways in which the query

23

JC Neves and M H Williams

language QBE can be made more co-operative. These features

have been added to a version of QBE implemented in Prolog,

which is running under UNIX on both a PDP 11/34 and a DEC

10 system.

The main features of such a system are:

(i) A link dictionary has been implemented which

contains information about the data base relations and the

linkages between them. This facility was interfaced with

the query facility to provide the user with the means to

examine how the data in the data base are organized and how

they should be accessed and used.

(ii) The system attempts to handle incomplete queries

and updates by filling in link variables. This can be of

use to casual users of the data base who do not have the

details of the structure of the data base at their

fingertips, as well as to experienced users who seek short

cuts.

(iii) The system reminds users of possible side effects

when updates are performed on link variables.

(iv) The system attempts to provide a helpful response

when a complex query fails to give the user an indication of

why it failed. The same tabular form is used to explain the

reasoning it followed to arrive at the answer as that used

to enter the initial request.

Acknowledgements

24

JC Neves and M H Williams

The work of one of the authors, J C NEVES, was

supported by the Calouste Gulbenkian Foundation under grant

14/82 and by an ORS award from the Cornmi ttee of Vice

Chancellors and Principals of the Universities of the United

Kingdom.

JC NEVES is on leave from Minho University, Largo do

Paco, 4700 BRAGA, PORTUGAL.

~66

25

JC Neves and M H Williams

7. References

[1] T. Moto-0ka et al, Challenge for knowledge information

processing systems, in: Fifth Generation Computer Systems

(North-Holland, .Amsterdam, 1982) 3-89.

[2] D. H. D. Warren, Implementing Prolog - Compiling

Predicate Logic Programs. Technical Report 39 and 40,

Department of Artificial

Edinburgh, 1977.

Intelligence, University of

[3] H. Gallaire and J. Minker (eds), Logic and data bases,

Plenum Press, New York, 1.978.

[4] F. C. N. Pereira and D. H. D. Warren, Definite clause

grammars for language analysis - a survey of the formalism

and a comparison with augmented transition

Artifi;ial Intelligence 13 (1980) 231-278.

networks,

[5] J. C. Neves, S. 0. Anderson and M. H. Williams, A Prolog

implementation of Query-by-Example, in: Proceedings of the

7th International Computing Symposium, March 22-24, 1983,

Nurnberg, Germany.

[6] M. M. Zloof, Query-by-Example: A data base language, IBM

Systems Journal 16(4) (1977) 324-343.

[7] J. C. Thomas and J. D. Gould, A psychological study of

Query-by-Example, Proc. National Co~;uter Cor.ference (1975)

439-445,

26

JC Neves and M H Williams

[8] M. H. van Emden, Computation and deductive information

retrieval, in: Formal Description of Programming Concepts

(North-Holland, Amsterdam, 1978).

[9] S. J. Kaplan, Co-operative responses from a portable

natural language query system, Artificial Intelligence 19

(1982) 165-187.

27

JC Neves and M H Williams

Appendix 1: A simple business data base

The examples in this i;:aper make use of the following

relations:

(i) A relation called i;:arts with attributes (columns):

pno (i;:art number), pname (part name), colour and weight.

(ii) A relation called suppliers with attributes: sno

(supplier number), sname (supplier name), status and city.

(iii) A relation called supplier_parts with attributes:

sno (supplier number), pno (i;:art number) and qty (quantity

supplied).

(iv) A relation called supplier_balance with

attributes: sno (supplier number) and amountowed.

(v) A relation called sales_people with attributes:

salesno (sales number) and salesname.

(vi) A relation called product_i;:arts with attributes:

prodno (product number), pno (part number) and noreqd

(number of i;:arts required).

(vii) A relation called sales with attributes: salesno

(sales number),

(quantity sold).

prodno (product number) and qtysold

Typical values of these relations are as follows:

28

JC Neves and M H Williams

parts l pno pname colour weight
I --------1------------------------------
l 1 nut red 12
i 2 bolt green 17
l 3 screw blue 17
l 4 screw red 14
l 5 cam blue 1 2
l 6 cog red 19

Table 1.1 - The parts relation

suppliers l sno sname status city
I ------------,------------------------------
: 1 smith 20 vienna
l 2 jones 10 paris
l 3 blake 30 paris
l 4 clark 20 vienna
l 5 adams 15 athens

Table 1.2 - The suppliers relation

supplier_parts l sno pno qty
I -----------------,----------------
: 1 1 300
l1 2 200
l1 3 400
l 1 4 200
l 1 5 , 100
l 1 6 1 oo
l 2 1 300
l 2 2 400
l 3 2 200
l 4 2 200
l 4 4 300
l 4 5 400

Table 1.3 - The supplier_parts relation

supplier_balance l sno amountowed
I -------------------,--------------------
1 1 100
i 2 90
i 3 0
l 4 0
l 5 145

1 ,!,. - T::e s,1ppller_balance relation

29

JC Neves and M H Williams

sales_people i salesno salesname
I ---------------,-----------------------
: 1 flanagan
I 2 ellis
l 3 smith
l 4 schafer

Table 1.5 - The sales_people relation

product_parts l prodno pno noreqd
I ----------------,----------------------------
1 1027 1 350
l 1~3 1 ~o

1028 1 100
1033 3 275
1040 4 435
1072 5 555
1045 2 315
2001 6 125
1067 5 111

Table 1.6 - The product_parts relation

l salesno
I

sales prodno qtysold
--------,---------------------------------

: 1
l 1
l 2
l 3
i 3
l 4

'

1023
1027
1028
1033
1040
1072

100
45
40

150
75
20

Table 1.7 - The sales relation

30

J C Neves and N H Williams

Appendix 2: The link dictionary for the data base

in Append ix 1 •

The link dictionary for the data base in Appendix 1.

link(supplier parts, supplier balance, [sno]:[sno]).
link(suppliers, supplier_balance, [sno]:[sno]).
link(supplier_parts, prod uct_parts, [~no]: [pno]).
link(parts, product parts, [pno]:[jnoj). .
link(sales, product-parts, [prodno :[prodno]).
link(sales_people, sales, [salesno :[salesno]).
link(supplier_parts, suppliers, I sno]:4sno]).
link(supplier_parts, parts, [pno]:[pnoJ).

setofnodes(graph, [supplier_balance, product_parts, sales,
sales people, suppliers, parts,
supplier_parts]).

The Prolog program for searching for a pa th linking any

pair of relations in the data base:

clause 1

clause 2
clause 3

clause 4
cle.use 5

?- op(40, xfx, :).

/* declare "·" infix operator */

path(GRAPH, X, Y, PATH)<
setofnodes(GRAPH, SET),
member(X, SET),
member(Y, SET)
walk(GRAPH, [X j, Y, PATH).

walk(GRAPH, [Y l L] , Y, [Y l L]) •
walk(GRAPH, [xi1], Y, PATH) <-

(
link(X, Z,);

link(Z, X, _)
) '
not(member(Z,L)),
walk(GRAPH, [z,XJL], Y, PATH).

member(X, [X l]) .
r,inmho,...(Y r 1vl \ (' -
~-" ._ .. .:.,; '-" ,._ \.: .. J i.. l ,._ -1 j '

member(X, Y).

31

PPCGRA._PH AS AN F.r-MRCT-!MENT

FOR PROLCG f'ATA RA...c:;F, APPLIC"\TIONS

by T. Pietrzykowski
Acadia University
Holfville, Nova Scotia
Canada ROP IXO

' ABSTRACT

LPaper presents a specialized data base model of a newly developed
I functional prograMming language with graphical front PROGRAPH, and
I discusses the advantages of using it as a host from PROLOG. On the
· basis of an example there is a description of a method of converting

(via PROI.ro} an arbitrary query into a wff containing only data 'i:ia.se and
computational predicates. Afterwards such a wff is formulated in
PROGRAPH and computed (again a series of examples and a method
provided}.

1. Introduction

Logic programming approach proves, beyond any doubt, to ce the rnost

universal and flexible mechanism for data base queries ([6] , [7] I
etc.}. Its power becomes particularly visible when a query L-rwolves a 1

more advanced conceptual structure and requires non trival computations.

However, for the full success of logic programing in this area is

handicapped by the following shortcomings:

(i} awkwardness of executing queries, which involve universal

quantifcation. The usual method of converting them into negated

existential qualification of negated formula ([5]} leads often to

considerable inefficiency of the search procedure. Moreover, universal

1

! •

qualification generally accompanies implication inside of the query what

in tenn proouces non Hom clauses.

(ii) communication with data base only via unification of the unit

clauses brings various dilemnas: the unit clauses with a small number

of variables increase flexibility in formulating queries but also

increase depth of deduction while unit clauses with a large number of

variables may dangerously expend the size of the data base

~epresentaticn am conseqently leads to the losf of efficiency.

(iii) relational data base model (which becomes a consequence of the

unit clause approach discussed in (ii)) may causes lose of important

infonnation al::out the overall structure of data base which could be used

as valuable heuristical guidelines for an efficient search procedure

which is the foundation of the computation of queries.

Int.he following we shall propose an alternative approach which

deals with the data base model as well as with the computation of

queries. It will be based on a newly developed programming language

PROGRAPH ([3], [4 J) which will be used as a host system for logic

programin;, particularly in the area of interface with a data base.

2. PROGRAPH Data Base.

We will start our presentation from the description of the data

base model. It can be viewed as a combination of a particular case of
'

the relational model with some network model influences. However, these

similarities maybe more misleadin; then helpful and the best way would

be to consider it on its own.

We shall present three different but strictly equivalent

definitions of the model. Later we shall refer to any of them:

whichever appear to be most convenient.

A. Directed graph rrodel.

The PROGRAPH data base can be defined as a directed graph with

labelled arcs. We shall call it graph database or shortly GD. We

assume that the graph is connected. The set of nodes N of GD is

partitioned into two distinct categories: abstract records and data

2

records. While abstract records are abstract elements without any

particular qualities the data records are trees where leaves are

elementary data of basic types like integer, real, boolean, strings of
characters, etc.

Among the abstract records there is one specifically distinguished

called root and denoted as ~ The arcs GD are labelled by a

string of characters which are called attributes.

B. Functional Model.

This model is called functional database of FD. It consists of a

set elements identical to nodes N of GD and a set of partial multivalued

functions with domains and ranges in N. Each of these functions

correspoms to a distinct attribute of GD in a one-to-one manner: if F

is a function of FD then the domain of Fis a subset of N consisting of

all nodes where any arc of GP with the attribute F originates while

range is the set of all nodes where such an arc ends. The connectivity

comiticn can be easily expressed in terms of FD.

c. Relational Model.

This model called relational database (RD) is a simple variation of

the functional model. It is defined as a set of partial binary relations

over N. If P is a relation of RD then P(x,y) holds iff y P(x) where

P(x) is defined in terms of FD. (The notational ambiguity is hopefully
resolved by the reader).

Now we shall present an example of a PROGRARI database using 1::oth

GD and RD models. Construction of the FD model for this example is left
for the reader

3

l __________ _____::ot~

l
JOHN 1

1 <: NAr+-{c
COHp'

Fig. 1

4

Nv H.Beo - ,, . I -~-- > 200-;, I
;)

This GD represents a structure composed of departments, students

majoring, courses offered, courses taken as well as the names of

departments and students and numbers of courses. The integers inside of

nodes have no semantic significance and are used only as a way of

referring to individual abstract records nodes in further discussion.

For example: nodes 1, 2 correspond to departments: 1 to Mathematics

while 2 to Computer Science 3, 4, 7, 8 are students with names JOHN,

llJCY, MARY and PAUL respectively. The data records have no identifying

numbers and we refer to them via the corresponding data.

A useful way of looking at the above GD is to compress it into a
map as presented below.

D€-PT-

Fig. 2

1' l_....Ll J,-
1 \l'""TI"" ':::

The map is obtained by recursively collapsing all the arcs with the

same attribute originating in a node into one, following by collapsing

the corresponding end nodes of these arcs. The circle nodes of the map

corresponds to sets of abstract records of GD while triangle nodes

correspond to sets of data records.

Now we represent database of Fig. 1 as RD in the form of binary

tables. We use the numbers attached to appropriate nodes as entries to

the tables arove while the heading of a table corresponds to a relations

name (attribute).

5

DEPI'

r:r

1 ~TH

2 <XMP

3 JOHN

4 I1JC'.{

7 [l,1ARY

8 PAUL

M1\JORS

1 3

1 4

2 7

2 8

NUMBER

5 1003

6 2003

9 2003

10 3003

OFFERS TAKES

1 5 3 6

1 6 4 5

2 9 4 6

2 10 7 6

7 9

8 6

8 9

Fig. 3

It is easy to note that the graphical structure presented on Fig. 1

and even more clearly on Fig. 2 contains valuable information on

efficient implementing the data base. It suggests keys, access

structures and storage allocation. In contrast in the flat tables of

the relational model described on Fig. 3 this potentially useful

informaticn is lost: it can only be recovered by converting the tables

into a graphical or functicnal structure.

3. Canbining logic. progranming with PRCGRAPH.

In the following we shall present a proposal on how to deal with

problems of logic programming mentioned in the Introduction. Our

aproach will use the PROORAPH data rese model and programming technique~

Our presentaticn will be based en examples.

I.et us consi,der the following query:

"are all the students regular, where regular means faithful but not

overzealous? A faithful student takes at least one course from the

department in which he/she majors, while overzealous takes all the

6

o¼

I
i

~T1--r-------------------------
courses from such a department".

Now we shall present the same query as a mixture of predicate logic

and PROI.ro:

(i) vx regular (x)

(ii) regular(x) := faithful(x), notoverzealous(x)

(iii) faithful(x) := 3 y 3 z[(DEPI'(f ,y) /\ MAJORS(y,x)) ::i

(TAKES(x,z) /\ OFFF.RS(y,z))J

In the above query and following it definitions, let us distinguish

two types of predicates: defined predicates like regular, faithful and

notoverzealous and evaluation predicates, like DEPI', MAJORS, TAKFB and

OFFERS. The former we denote by using bold face lett.ers while the

latter by capitals. The defined predicates occur, at least once, on the

left hand side of PROLOG expressions while evaluation predicates are

attributes of the PRCX1RAPH data base or computation predicates like x~

or :x+y=z (absent in our example).

Now we are ready to describe th,,rocessing of the query. We apply

PROI.ro mechanism to replace all occurences of the defined predicates,

starting with the actual ouery in formula (i). (Let us note that the

query is not negated or skolemized.)

These replacements will follow the rules of logic programming with

the understanding that occurrences of universally qualified variables

are treated as constants. Substituting (ii) into (i) with the

appropriate unification, we obtain:

(v) V x(faithful(x) /\ notoverzealous(x)).

At that moment the comma ',' separating the two subgoals is converted

into conjunction (' /\ '). ~ we continue our activity substituting into

(v) the formulae (iii) and (iv) to obtain, after _easy optimization:

(vi) 'tfX 3 y[(DEPT(t ,y) /\ MAJORS(y,x)) :>

(3 z (TAKES (x, z) /\ OFFERS (y, z}) /\

3u(TAKES(x,u) /\-, OFFERS(y,u))J

Let us note that (vi) does not contain any defined predicates and

PROI.ro phase of processing is therefore terminated.

7

3-=tg
r---------------------------

I n general the situation is more involved because in the presence

of recursive definitions such a state cannot be achieved, but it is not

a new phenomenon: PROLOG will deal with it in the same way as it

usually does with recursion. It should be mentioned that the whole

mechanism described aoove can be wit.hout t..~e difficulties implemented in

PROLCX:;.

Before we move to the next stage of producing a prograph

corresp:,nding to the formula (vi) let us provide some information a.rout

PRCX;RAPH.

PROGRAPH is a programming functional language with a graphical I
I

front. It follows the direction of the Graphical Programming Language, j

GPL [2] developed at the University of Utah and dedicated to their data

flow computer DDM 1 [l]. However, PROGAA.PH goes much further then GPL

allowing: comp:,se operation, introduction of user defined subroutine,

explicit indicaticn of !X)ssible parallelism of computation and what is

most irn!X)rtant, it provides a mechanism for database access and update

activities, which does not violate the functional character of the

language. An experimental version of PROGRAm is currently implemented

en PERO graphics station.

A PR(X;RAfH equivalent of 'program' is called 'prograph'. Generally

speaking a prograph is a network of boxes connected by wires. A box,

corresponds to a specific operation provided by the system (called

primitive) or defined by a user. Such an operation is performed on

datas supplied to its input and the results are delivered as outputs.

The wires naturally connect inputs and outputs of distinct ooxes without

producing loops.

Now we shall introduce a few PROGRAPH primitives, necessary to

present our query as a prograph.

Let F be an attribute of a PROGRAPH data base which we shall

interpret, for the moment, as a binary relation. Let X be sets of nodes

of data base applied respectively to input - top wire and Y resulting

from output - bottom wire. As a matter of fact, inputs always are

provided by top wires while outputs always are delivered by the 1::ottom

8

ones. ~

The rox '-f-' , called access, means that Y= F[X] (in functional

notaticn) while ~ • inverse access, means Y = r 1[xJ. /"c,,, let x,

y be single records provided as inputs of the box ·Lt] called

application. Then the output z = F(x,y) (using relational notation).

In this case the output is obviously of the type boolean, however

PRCGRAPH does not require specification of types of datas.
I

Let us introduce two obvious primitives: ~ arrl $111el
I

oval boxes are used here only for visual ef feet so the user can easily/

distinguish logical operations.

Finally, we shall present two so-called composed operations (all

the above ones are simple): EXISTS and FUR ALL.

:,::;: FOR Al L :·:·:·::r-:-:::·:,:·:;:·:::•:•:·:·:::·:,:·:·:·:·:-:·:·

p

♦

The number of inputs can vary while there must be one and only one

called multiple whidl is signified by the ..I.. It should be mentioned

that multiple input does not have to be first to the left but it must

not be more than one such input. It should be mentioned that the

multiple input dOes not have to be first to the left.

9

380
r----------------------

denotes an arbitrary prograph with k+l inputs (k~O) and one output of

the type boolean. The semantics of these operations is: if x,y,, .• ,yk

are values of inputs then the values of outputs are respectively:

3 x (~ E X /\ P (x, y, , .•• , Yk) and r/ x (x E X :J P (x, Y,, ... Yk))

It is worth to note that the PRCGRAPH definitions of quantifiers satisfy

the basic properties of predicate logic: that is

♦
is equivalent to

10

I ...

0
' I
!

/ ~QT) .,,,

♦

(Ni}; ',
i

~w we are ready to present the PRCX;RA.m equivalent of the formula (vi)

;::::;:, FOR ALL

!
~

ANO

♦

Fig. 4

11

\ !Hl.JGR S

OFFERS

I
~
♦

381

Note thc:1.t letters cl..; ~Jo and g are not part of the PROGRAPH

descriptiai: they are introduced as references to appropriate EXISTS

and roR ALL boxes.

Now we shall present an informal description of how the prograph of

Fig. 4 is derived.

First let us construct the following graphics presentation of the

formula (VI) called outline which will be useful for our explanation.

DE=-PT

Fig. 5

The outline is a directed graph with nodes corresponding to
'

distinct variables in formula {VI). . The labelled arcs correspond to

predicates (or negated predicates) of (VI) in such a way that R labels

arc originating in the node m and ending in n iff R(m,n) occurs in (VI).

In order to derive the prograph of Fig. 4 we introduced a partial order

among the arcs the outline which is imposed in natural way by the

directions of arcs.

Now we can proceeded with constructing the prograph starting with a

. minimal arc (in this case: DEPr) and create:

12

382

i---------------~-----------
Then we progress along outline and arrive at the end node of this arc

(in this case node y), and create EXISTS box ~ since y is

existentially quantified in (VI).

We proceed in an analogous manner with arc MAJORS: we introduce and

create ~ box FOR ALL.

The rational behind the box is somewhat more complex so we will provide

the reader with some additional explanation. Let us consider the top of

the prograph of Fig. 5:

DEPT

EXISTS

where y0 is the input to

\ MAJORS

I

\MAJOR/
!

and ~ the output. Obviously,

y0 satisfies DEPI'(~ ,y0) am x E x0 iff MAJORS(y0 ,x). Therefore x E Xo

iff DEPT(~ ,y0) /\ MAJORS(y0 ,x) so in view of formula (vi) and

definitiai of semantics of operation FOR ALL the introduction of the box

is justified. Following the ordering of outline on Fig. 5 we arrive in

node x and note that there are 2 arcs org~"'}yng in x,both
labelled TAKES. Therefore we introduce TAKES and branch the

outp.rt. The corresponding branches are directed to EXISTS 1-..oxes and
.•

respectively, which corresponds to z and u, variables of Fig. 5.

Now both arcs OFFERS and 7OFFERS ·end in the node y (already

traversed). In this case we fill the boxes O and J1 with the

13

383

,-----------------------331
operations:

i I
OFFERS 7

i
and ! OFFERS respectively

(~flT) ' i' ~

It is worth noticing that the first input wire corresponding toy

variable originates in the rox<X, has been transmitted into j3 (first

input wire) and branches there to arrive as first input to C and

[' respectively.

inputs to ~
" Finally outputs of boxes t and i} are joined as

box according to the conjunction of both

existential subexpressions 3 z(.••) and 3u(.•.) in formula (VI).

The above descriptiai of an algorithm for producing a prograph from

a well formed formula, as we mentioned already, is fairly infernal and

sketchy. However, there is a formal algorithm performing this task

which is unfortunately too lengthy to be described here and will be a

subject. of a separate publication.

To further convince the reader that the proposed approach is

useful, we will present two more examples of data base queries and their

PROGRAm representation.

First query:

'does exist a course offered by the department of mathematics

such that every student majoring in math takes this course'
' Here is this query presented as a iff formula of predicate logic:

(viii) 3x3z V y[(DEPI'(~ ,x) /\ NAME(x,MATH) A MAJORS(x,y)):)

(OFFERS(x,Z) TAKES(y,z))]

Given below is an equivalent PRCXiRAPH formulatiai:

14

-

'MATH"

\ MAJORS / OFFERS /

I
;r

NAME

EXISTS

I
, I

TAKES

AHO

Fig. 6

Now we shall present a ~ · version of the formula {viii) with

a secorxl and third quantifier reversed, so the prefix looks as follows:

:9xVy3z and the matrix is unchanged.

15

'MATH"
r===r-

OFFERS /
i

!

!
iAKES

I

♦

♦

ANO

Fig. 7

The reader is encouraged, to find how the reversal of qualifiers effects

the changes in corresp:mding prographs.

4. Conluding Ranarks.

The presented results have a preliminary character, but in the

author's opinion, leave no doubt that the appr~ch is worth p1rsuing.

Since an experimental version of PROGRAPH is already functioning on a

PERO graphics station we intend to use it for a thorough series of

experiments with a variety of data base queries formulated in terms of

16

PROGRAPH. The next stage will be to introduce an interface with a

PROLOG implementation (unfortunately such one is not, at present,

available on PERQ). This can be achieved by establishing appropriate

communicaticn with another computer or porting PRCX;RAm onto a computer

system where PROIOO is available. Finally, we would like to experiment

with the combinaticn of both as a uniform environment.

17

r---------------------388

[l]

[2]

~ [3]

-::::;[4]

[SJ

[6]

[7]

BIBLICGRAPHY

Davis, A. L., Keller, R. M., "Data Flow Program Graphs", IEEE
Canputer, Feb 1982, W• 26-41.

GPL Progranming Manual, CS Cept. , University of Utah, July, 1981.

Pietrzykowski, T., "Programming Language PROGRAPH: Yet Another
Application of Graphics" (with s. Matwin and T. Muldner), Graphics
Interface 83 Conference, F.drronton, May 1983.

Pietrzykowski, T., "Report on a Functional Language with a
Graphical Front PR03RAPH: (with S. Matwin and T. Muldner), Research
Notes, CS 83 02, School of Computer Science, Acadia University,
1983.

Sato, T., ''Negation and Semantics of PROI.ro programs", Proceedings
of 1st International Workshop on Logic Programming, Marseille,
1982.

Van Emden, M. H., "Computation and r:eiuctive Information Retrieval"
in "Formal Description of Programming Concepts", North Holland,
1978.

Warren, D., "Efficient Processing of Interactive Relational Data
Base Queries Expressed in Logic", Proceedings of Conference on Very
Large L'e.ta Basis, 1981.

Abstract

R e 1 a t i o n a 1 D a t a B a s e s

• 'a 1 a c a r t e •

M i s u e 1 F i 1 s u e i -r a s

L u i s M o n i z P e r e i r a

Nucleo de InteliSencia Artificial
DePartamento de Informatica
Universidade Nova de Lisboa

Quinta da Torre
2825 Monte da CaParica

PORTUGAL

We have developed a Seneral Purpose Prosram <written in
Prolos) which uses information sathered interactively from the
user to senerate specific menu based consultation Prosrams,
tailored to suit the relational data base and access
reauirements of each aPPlication. Every menu allows for auite
Seneral relational aueries, comPrisins universal and
existential auantifications, conJunctions, disJunctions, and
nesation as non-provability. Some of the relational data base
access concepts emPloYed concern imPlicit fields, special
access Predicates, references to text strinss stored on disk,
findins complete descriPtions from Partial ones, etc ••

We claim the sreat usefulness of this Prosram: for those
who have data to store and retrieve the onlY work is to Plan a
relational data base; the consultation Prosram is almost
instantl~ made.

The use of Prolos was Paramount for the ease of desisn and
imPlementation of this system.

Introduction

We have developed a Seneral PUrPose Pros ram (written in
ProloS) which uses information sathered interactively from the
user to senerate sPecific menu based consultation Prosrams,
tailored to suit the relational data base and access
rerauirements of each aPPlication. Every menu allows for auite
seneral relational aueries, comPrisins universal and
existential Quantifications, conJunctions, disJunctions, and
nesation as non-provability. Some of the relational data base
access concepts emPloYed concern imPlicit fields, special
access Predicates, references to text strinss stored on disk,
findins complete descriPtions from Partial ones, etc ••

We claim the sreat usefulness of this prosram for
who have data to store and retrieve the onlY work is to
relational data base; the consultation Prosram is
instantly made.

those
Plan a
almost

The use of Prolos was Paramount for the ease of desisn and
implementation of this swstem. Indeed, Prolos as lansuase
CW. Clocksin, c. Mellish 81] comPrises in itself relational
aueries, and relational data bases are inherent to it.
Additionallw, it incorporates a search stratesw for data
retrieval, besides beins a Powerful swmbol maniPulatins
lansuase on its own. Thus it is ideally suited for Piecewise
Prosram Seneration this is so because Prolos clauses
are extremely modular and need nol have any side-effects.
ConseauentlY, the aPPlication dePendent clauses of the
consultation Prosram are simPlY added to its aPPlication
independent core.

Furthermore, aueries are easily built alons successive menu
steps because Prolos clauses do not have to return complete
data structures, but mas cooperate instead to their successive
refinement.

The user relational data base is Just a Prolos subProsram,
in the form of unit clauses, which is added to the
consultation part. UPdatinS is simply Performed with an
editor, which in some swstems may be called from within
Prolos. The criticism that the address sPace Puts a limit on
the data base size is waved in the 32-bit address machines. In
smaller address space machines, one can set UP several Prolos
Jobs to hold data base Parts, and have them communicate
throush a messase aueue handler. We have done so on a
PDP 11/23 runnins under RT11-XM.

Basic Notions

Data are SUPPlied, as in all relational data bases, as
n-tuPles of arsuments of relations (or Predicates>, and stored
as Prolos unit clauses. Each arsument (or field) has a meanins
dependent on the Predicate and arsument Position.

For Print out Purposes, a headins for each field is
reouested from the user. The consultation Prosram assumes
identical headinss correspond to similar fields, for all data
base relations.

A distinction is drawn between 'outPut-onl~' ·and 'both-wa~'
arsuments: the forme~ are onlY used for output and cannot be
instantiated in oueries, the latter can be used for data
retrieval as well, and so can be instantiated in oue~ies.

We have developed some optional features to increase data
base compactness and imProve access. They are:

- References to texts. Sometimes there are non
formatted informations that are best kePt as texts. We
use fields of the form t(File, Number) to refer to
a text under the Siven Number in the Siven File. Such
fields are viewed as output-only and we have a special
Predicate (in Prolos) to retrieve such texts.

- ImPlicit fields. It is useful for derived infor
mation (imPlicit fields) to be built from actual
fields of a data base Predicate, so as to avoid
duplication. To this end we Provide two different
imPlementations ♦ They should be chosen accordins to
how often the derived information is reouired. For the
imPlicit fields freouentlY used, an interface
Predicate is created that calls the corresPondins data
base one and builds all such fields. For infreouentlw
used imPlicit fields, ancillary conditions are emPlow
ed to define them. Each such condition is only
activated whenever the corresPondent imPlicit field is
reouired. A data base Predicate maY be ausmented with
both kinds of imPlicit fields.

- Special access Predicates. Information maY need some
PreProcessinS before beins output or retrieved from an
exPlicit or imPlicit field+ We tackle this bY allowins
special user defined Predicates to be called when
accessins such fields. As an examPle consider the case
of lists. One may be interested in obtainins not a
list but one of its elements; Pretty-printins may also
be reauired.

To build a GuerY one needs to know the tYPe of operation
envisased, the losical connectives and predicates involved, as
well as a specification of which fields have an inPut value
imPosed and which are to be out2ut. Additionally, a reauest
can be made for similar fields to hold the same value, or for
a set of answers to be Partitioned relative to the different
values of one or more fields.

The first menu Presented to the user offers
Guantifier/operations as well as calls to
independent from the consultation prosram Proper
that finds comPlete desisnations from Partial
'oracle'). ExamPles of auantifiers are

one all how manw

and of oPerations on numeric fields are

a choice of
subProsrams

Ce.s. the one
ones the

sum mean least value sreatest value

Next, for describins the information in auestion, the user
is Presented, in a first stase, with two more menus. One
allows the choice of a data base predicate (or interface
Predicate if anw), and of a combination of its fields and
their mode of access. Another menu follows, to select between
launchins the auerw to obtain an answer (the specification is
assumed comPlete) or to connect the Partial specifification to
what follows with an and/ andnot /or/ ornot operator. The
completion of the specification is then resumed from the first
stase.

The specification of anw field maw be a combination of four
modes :

- a value is inPut

- a value is to be output

- output is to be srouPed accordinS to its different
values

- the information in this field must match the
information in similar field(s) (i.e.,
identical output headinss> occurins in
already incorporated in the auerY

those with
Predicates

All non-contradictory combinations of these can be
the consultation Prosram reJectinS anY inconsistency
course one cannot sive two different values to be

made,
of

matched

simultaneouslw, but can Sive a value and ask it to be outPut
as well. OutPut-onlw fields, too, cannot be inPut a value.

The followins section
features.

A Consultation Prosram

thoroushlw examPlifies these

We now describe in some detail a real data base swstem made
under a contract with JNICT - 'Junta Nacional de Investisacao
Cientifica e Tecnolosica' <National Science and Technolosw
Research Council) - reSardins data on FACC - 'Fundo de APoio
'a Comunidade Cientifica' (Scientific Communitw Support Fund)
- concernins research centers (about 200), their orsanics Cone
Per center and Per wear), and aPPlications for fundins (about
500 Per Year) CL. Moniz Pereira, M. Filsueiras 82J.

The extensional data base Predicates were desisned as
follows :

center(Number_c, Initials, Sector, District, Info_c)

orsanic(Number_c, Year, Director_Title, Director_Name, Info_o)

aPPlication(Number_c, TwPe, Year, Item, Researchers,
Value_aPPlied, Value_sranted, Process-no, Status)

where Number_c is the center humber, and Info_c, Info_o
and Item are references to texts on disk, containins inform
ation about the center, the orsanic and the item(ns) refered
in the aPPlication, respectively. Three sPeci•l features were
used:

- center name: this was made an imPlicit field of the
data base Predicate center, and was defined as a
reference to text with the form t(cent, Number_c).
We used an interface Predicate to imPlement it thoush
the use of an ancillarw condition would be more
efficient as the field is an outPut-onlw one and not
so often used

- director name: for outPut we built another imPlicit
field of the form Director_title: Director_name
(where •:• is an infix operator) imPlemented throush
an ancillary condition

- researchers : this field is either O (zero
researchers involved or unknown), or of the

: no
form

N1+N2+ ••• <'+' beins another infix operator) where
N1, N2, ••• are researcher numbers. When retrievins
the aPPlications a siven researcher is involved in, we
want to find fields containins his number. When output
is wanted from this field, we do not want numbers but
names, so we build a list of references to texts that
have the form t(researcher, N). AccordinSlY, we
use two special Predicates to access the field, one
for when it is inPut, the other for when it must be
output.

We illustrate the consultation Prosram with a small
ficticious data base. In the Protocol below, user answers
follow the PromPt •:• and commentary comes between braces.

{ the first menu is}

one) all) how)manw s)um m)ean s>reatest l)east o)racle bye
: one

a)PPlication c)enter o>rsanic . ~
• 0

{ sive me one}

error
{application}

n)umber_c t)wPe w)ear
vs)ranted

i)tem r)esearchers
va)PPlied

: n 61
P)rocess_no s)tatus all)fields ! error

: Y 1980
: va1
: vs1
• +

a)nswer and andn)ot or orn)ot error
: a

value_sranted
value_aPPlied

25
25

{ no. of center 61
in the year 1980,
the value aPPlied,
the value sranted,
and nothins else}

{answer}

{ return to the initial situation after the answer}

one) all) how)manw s)um m)ean s)reatest l)east o)racle bwe
: 0

{ the oracle obtains a complete desisnation of one or more
researchers or centers as desired, whose Partial desisnation
is known}

, I
l I:

I

I I
' '

I I

! I

I I
, I

I j
: i

r)esearchers c)enters
: C

write in one line onl\:I the Partial desisnation \:IOU know
and capitalize Proper and common names;
the usual abreviations are allowed if ended with a dot.
t c. de Informatica

identification no. 61
Centro de Informatica Universidade Nova de Lisboa

.3iS

m)ore a)nother
: m

{ here one ma~ reauest comPlete
desisnations for the same Partial one,
or sUPPl~ another Partial desisnation,
or(!) terminate}

unknown

r)esearchers c)enters
: !

< consultation ends and the s~stem
returns to the initial situation}

{ sive me all about an aPPlication from center no. 61}

one) all> how)man\:I s>um m)ean s)reatest l)east o)racle
: one

a)PPlication c)enter o>rsanic
: a

error

n>umber_c t)~pe \:l)ear i)tem r)esearchers
va)PPlied vs)ranted p)rocess_no s)tatus all)fields ! ·error

: n 61
: all
• •
a)nswer
• • a

number_c
t~Pe
\:lear
item

and

researchers
value_aPPlied
value_sranted
Process-no
status

andn)ot or orn)ot error

61
2
1980
visit of David Warren
Luis Moniz Pereira
25
25
347
ok

346

{ how many are the applications?}

one) all) how)manY •>um m)ean s>reatest l)east o>racle bye
: how

a)PPlication c>enter o)rsanic
: a

error

{ a ! would return the system to the initial situation}

n)umber_c t)ype y)ear
va)PPlied vs>ranted

i)tem r)esearchers
p)rocess-no s)tatus all)fields

: !
{ no further sPecification is intended;

! is Siven since the specification has ended}

a)nswer and andn)ot or orn)ot error
: a

n•Jmber 21

error

one) all) how)manY s)um m)ean s)reatest l)east o)racle bye
: all { Sive me for all}

a)PPlication c)enter o)rsanic error
: C {centers}

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me

: n'l'
• . 'i'
• l .

{ their number and
their initials,

all)fields error

: d* srouPins them by district <*>}
• •
a)nswer and andn)ot or orn)ot error
: a

initials-number_c bY district
* lisboa :

ciPd 76
SPb 19

* Porto • +

SPO '40
deafeuP 44

is 206
SPCV 20

cemup 15

SPIT! 7

•••

demfeuP 11

{ Sive me, for all centers, their na~e,
srouPins them b~ district and b~ sector}

one) all) how)man~ s)um m)ean S)reatest l)east o)racle
: all

a)PPlication c)enter o)rsanic
t C

error

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me

error

all)fields error
t na1
ts*
: d*
• •
a)nswer and andn)ot or orn)ot error
t a

name bw seetor-district
* lisboa iPsfl :

Centro de Informatica e Pesauisa Para o Desenvolvimento
Instituto de Soldadura
Sociedade Portusuesa de Matematica

* Porto iPsfl ♦ •

Sociedade Portusuesa de Ornitolosia

* lisboa sovernment ♦ •

Direccao-Geral do Saneamento Basico

* lisboa ensino_inic ♦ •

, ~: Centro de Fisica Nuclear da Universidade de Lisboa
Centro de Informatica Universidade Nova de Lisboa

* Porto ensino_inic
i

♦ •

i Centro de Ensenharia Mecanica da Universidade do Porto

* lisboa ensino ♦ •

DePartamento de Estudos Classicos

* Porto ensino • •
DePartamento de Ensenharia Mecanica

da Faculdade de Ensenharia da Universidade do Porto
DePartamento de Ensenharia Quimica

da Faculdade de Ensenharia da Universidade do Porto

3i8

one) all) how)man~ s)um m)ean S)reatest l)east o)racle b~e
: s { Sive me the sreatest value}

a)PPlication c)enter o)rsanic error
: a { in an aPPlication}

n)umber_c
va)PPlied

: ~ 1980
: vs?
• •

t)~Pe ~)ear i>tem r)esearchers
vs)ranted p)rocess_no s)tatus all)fields

{ for the Year 1980
that was Sranted}

a)nswer and andn)ot or orn)ot error
: a

sreatest value_sranted 400

error

{ Sive me, for all aPPlications, the item and the center name
SrouPed by district}

one) all) ho~)man~ s)um m)ean S)reatest l)east o)racle bYe
: all

a)PPlication c)enter o)rsanic
t a

error

n)umber_c t)ype y)ear
va)PPlied vs)ranted

• . ?
• l .
• • !

i)tem r)esearchers
p)rocess_no s)tatus all)fields error

{ to refer the name and the district one needs to consider the
center ; to do so, a conJunction is made of the Previous
Partial reauest with an additional specification}

a)hswer and andn)ot or orn)ot error
t and

a)PPlication c)enter o>rsanic
t C

error

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me

• n= •
• na'? •
• d* •
• •

all)fields error
{ it is necessary that the center to which we refer
now be the same center assumed in the specification
of the application ; thus then= ; = allows in
in seneral to link amons themselves successive
Partial specifications}

a)nswer and andn)ot or orn)ot error
: a

item-name bw district
* Porto :

Varian twPe atomic absortion esPectrofotometer
DePartamento de Ensenharia Quimica

da Faculdade de Ensenharia da Universidade do Porto

fundins of non-Profitable Private institution
Sociedade Portusuesa de Ornitolosia

* lisboa + •

fundins of non-Profitable Private institution
Centro de Informacao e Pesauisa Para o Desenvolvimento

visit of Dr. Fullwear to Alcabidexe
Institute de Soldadura

fundins of non-Profitable Private institution
Sociedade Portusuesa de Matematica

+ • •

{ sive me all about everw center not in the district of Lisbon}

one) all> how)manw s)um m)ean s>reatest l)east o)racle bwe
: all

a)PPlication c)enter o)rsanic ! error
: a •

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me

: all
• ..

all)fields error

a)nswer and andn)ot or orn)ot error
: andn { here the Partial specification is comPleted with the

nesation of a conJuncted additional specification
andn; it is also Possible to continue with an
alternative or or with a nesated alternative orn}

a)PPlication c)enter o>rsanic
: C

error

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me

: n=
: d lisboa
+ •

all)fields error
{ the center is the s~me}

a)nswer and andn)ot or orn)ot error
: a

number_c - initials - sector - district - info_c - name

40 sPo iPsfl Porto address!
Sociedade Portusuesa de Ornitolosia

15 cemuP ensino_inic Porto address2
Centro de Ensenharia Mecanica da Universidade do Porto

11 demfeuP ensino Porto address3
DePartamento de Ensenharia Mecanica

da Faculdade de Ensenharia da Universidade do Porto

44 deafeuP ensino Porto address3
Departamento de Ensenharia Quimica

da Faculdade de Ensenharia da Universidade do Porto

{ Sive me all about each orsanic in 1980}

~00

one) all) how)man~ s)um m)ean s>reatest l)east o)racle b~e
: all

a)PPlication c)enter o)rsanic
: 0

error

n>umber_c ~)ear dt)itle dn)ame i)nfo_o d)irector
all)fields ! error

: all
: Y 1980
♦ •

a)nswer and andn)ot or orn)ot error
: a

number_c - ~ear - info_o - director

11 1980 info! Prof:Vasco Sa
61 1980 info2 Prof:Candido Marciano da Silva

one) all) how)man~ s)um m)ean s>reatest l)east o)racle b~e
: how

a)PPlication c)enter o)rsanic ! error
: error { "how• was not intended ; the Prosram is

[EXECUTION ABORTEDJ automatically restarted after an error}

4 01

one) all) how)manY s)um m)ean s)reatest l)east o)racle bye
: ho
what T < ho is not an oPtion}

: 0

r>esearchers c)enters
: r

write in one line only the Partial desisnation you know
and capitalize Proper and common names;
the usual abreviations are allowed if ended with a dot.
: Guedes

identification no. 1
Dr Joao Guedes de Carvalho 44

m)ore a)nother
: m

identification no. 2
Dr Rodriso Guedes de Carvalho 44

m>ore
: !

a)nother
< .return to the initial situation}

one> all) how>many s)um m)ean s)reatest l)east o)racle bye
< exit from Prosram}

BYe !

Generatins Consultation Prosrams

The consultation Prosram described in the last section was
desisned from scratch, imPlemented and thoroushlY tested in a
man-month on a PDP-11/23 with 128KB central memory and 2
floPPY-disks (RX02). Soon it was felt that a
'meta-consultation Prosram' was within· reach and would be
extremely useful. In fact the data base dependent sections of
the consultation Prosram were easily set apart, and Provision
was made to senerate these sections from answers caJoled from
the user about his data base. In some 6 man-days the senerat
ins Prosram in Prolos was finished and tested.

It is our strons conviction that all this was onlY Possible
throush the use of Prolos.

Generated Prosrams are concise (contain exactly what is
needed to imPlement the featur~s selected by the user) and to

some extent are Protected from errors (e.s. duplicate names).
Obviously, the user must Provide any Prolos subProsram or
special access Predicate alluded to when seneratins the
consultation Prosram.

Below, we Present a sample session with the Seneratins
Prosram, resardins the consultation ProSram of the Previous
section. Asain we use 't' to Prompt the user.

Hello !
In case you have anY doubt tYPe 'T' for help.

output file T:?
Please Sive the name of the file where the consultation

Prosram is soins to be written to.
output file T : face

data base file T: nucl

Password - •no• if none T : xxx

do you need intesers sreater than 16383 T : Yeah
acceptable answers - CYes,noJ
do you need intesers sreater than 16383 T : Yes

Now, some auestions concernins auantifiers and subProSrams
called from the 1st menu of the access Prosram.

do YOU need arithmetic T : yes
Which of the followinS do you need -

sum T: yes
mean T : Yes
Sreatest value T: Yes
least value T: Yes
do you need other functions T : no

are there references to texts in the data base T: yes
do You want to include an 'oracle' T:?
The oracle is a subProSram that finds complete desisnations

from Partial ones. The complete desisnations should be
srouPed into different files accordins to their mean
inss - for instance, names of People, orsanizations.

do you want to include an 'oracle' T: yes

mnemonic for srouP of desisnations T: c
rest of name T : enters
file containins this srouP T : cent

more sroups T : yes

I , :

I

'I

mnemonic for SrouP of desisnations 7: r
rest of name 7: esearchers
file containins this srouP 1: researcher

more srouPs 1: no

do YOU want to make calls to other subProsrams 7: no

Questions concernins data base Predicates, their fields and
access to them -

mnemonic for data base Predicate 1: c
rest of name 1: enter

Predicate name 1: dbase
Predicate name already in use; try another
Predicate name 1: center

no. of exPlicit fields for this Predicate 1: 5

do YOU want an interface Predicate for this db one 7 t ~es

name of the interface Predicate 1: cent

no. of imPlicit fields created by this interface 1: 1

an imPlicit field is V6
what is the Prolos condition for it - do not use blanks - 1
: V6=t(cent,V1)
V6=t(cent,V1) ok 1: ~es

mnemonic for Predicate field 1 : n
rest of name 1: umber_c
headins for output 1: number_c
a normal field 1: 1
A normal field is a both-way field that needs no sPecial

Predicates to be accessed.
a normal field 1: ~es

mnemonic for Predicate field 1: n
field mnemonic already in use; try another
mnemonic for Predicate field 1: i
rest of name 1: nitials
headins for output 1: initials
a normal field 1: ~es

mnemonic for Predicate field 1 + s •
rest of name 1 • ector •
headins for output 1 + sector •

normal field 1 • ~es a •

mnemonic for Predicate field 1 • d •
rest of name 1 • istrict •

headins for output ? • . .
a normal field?: no
a both-wa~ field: no

district

an outPut onl~ field? : Yes
access b~ special Predicate? : no

mnemonic for Predicate field
rest of name 1 • fo_c •
headins for outPut 1 • info_c •
a normal field 1 • Yes •

mnemonic for Predicate field
rest of name? : me
headins for outPut T : name_c
a normal field?: no
a both-wa~ field: no

1 • in •

1 • na +

an output only field?: Yes
access b~ special Predicate? : no

an~ imPlicit field created b~ ancillar~ conditions? : no

more data base Predicates?: Yes

mnemonic for data base Predicate T : o
rest of name T: rsanic
Predicate name T: orsanic

no. of exPlicit fields for this Predicate?: 5

do ~ou want an interface Predicate for this db one T: no

mnemonic for Predicate field? : n
rest of name T: umber_c
headins for output?: number_c
a normal field?: Yes

mnemonic for Predicate field?: Y
rest of name?: ear
headins for output?: Year
a normal field?: ~es

mnemonic for Predicate field T: dt
rest of name?: itle
headins for output?:*
a normal field?: no
a both-way field: no
an output onl~ field?: no
access b~ special Predicate T: no

mnemonic for Predicate field T: dn
rest of name?: ame
headins for outPut T: *
a normal field? : no

I !

. i ..

. i

I
. I

a both-way field 1: no
an outPut only field 1: no
access by sPecial Predicate 1: no

mnemonic ~or predica~e fie1d?; i
rest of name T: nfo_o
headins for output T: info_o
a normal field 1: no
a both-way field 1: no
outPut onlY field 1: ~es
access bY sPecial Predicate 1: no

any imPlicit field created bY ancillary conditions T: ~es

mnemonic for field created b~ an ancillar~ condition?: d
rest of name T: irector
headins for output 1: director

result is V6
what is the ancillar~ condition - do not use blanks - 1
: V6=V3tV4
V6=V3tV4 ok 1: ~es

more ancillar~ conditions 1: no

more data base Predicates T : ~es

mnemonic for data base Predicate 1: a
rest of name 1: PPlication
Predicate name T: aPPlication

no. of exPlicit fields for this Predicate 1: 9

do ~ou want an interface Predicate for this db one 1: no

mnemonic for Predicate field 1: n
rest of name 1: umber_c
headins for output?: number_c
a normal field T: ~es

mnemonic for Predicate field 1 + t +

rest of name T + ~Pe •
headins for outPut 1 • t~Pe •
a normal field 1 • ~es •
mnemonic for Predicate field T • i •
rest of name 1 • tem •
headins for output 1 • item •
a normal field 1 • no •

both-wa~ field 1 + a • no
an output onl~ field 1 • ~es •
access b~ special Predicate T + no •

405

mnemonic for Predicate field? : r
rest of name? : esearchers
headins for output?: researchers
a normal field?: no
a both-wa~ field? : Yes
access b~.sPecial Predicate? : Yes
when a value is inPut?: Yes

if inPut value is V and field value is V4
what is the Prolos condition - do not use blanks - T
: res_in(V,V4)
res_in<V,V4) ok T : Yes

and when a value is output T : Yes

if output value is X4 and field value is V4
what is the Prolos condition - do not use blanks - T
: res_names(V4,X4)
res_names(V4,X4} ok T : yes

mnemonic for Predicate field?: va
rest of name T : PPlied
headinS for output T : value_aPPlied
a normal field? : Yes

mnemonic for predicate field? : vs
rest of name?: ranted
headins for outPut? : value_sranted
a normal field?: Yes

mnemonic for predicate field T: P
rest of name?: rocess_no
headins for output?: Process_no
a normal field T: ~es

mnemonic for Predicate field? : s
rest of name T: tatus
headins for output T: status
a normal field T: Yes

an~ imPlicit field created b~ ancillar~ conditions T: no

more data base Predicates ? • . . no

Your consultation Prosram is in file face
Don't forset aPPendins to it the definitions of the special access

Predicates ~ou mentioned here.

I

Conclusions

Prolos is an excellent unrivaled lansuase for this tYPe of
aPPlication, but there is still room for imProvement throush
research. In Particular, larse data bases reauire more
indexins facilities, and multi-user access with on-line
uPdatins Poses special Protection Problems. ImPosins intesritY
constraints is also besinnins to be explored in the context of
losic Prosrammins. Query Plannins and more int4isent access
mechanisms in Seneral are also in order.

References

L.M. Pereira, M. Filsueiras

82 Manual de Utilizacao da Base de Dado~ FACC
DePartamento de Informatica
Universidade Nova de Lisboa

W+ Clocksin, C+ Mellish

81 Prosrammins in Prolos
SPrinser Verlas

.t-ODELLING HU-Wi-a::K>Ul'ER. INI'ERACrICH3

IN A FRIENDLY I~.

Patrick SAINT-DIZIER
UNIVERSITE DE RENNFS I

I.R.I.$.A.
Canq:>us de beaulie.i

35042 RmNES FRANCE

ABSTRACT

'lllis paper describes a way of buildin;J an intelligent interface
between a huna.n am a canputer. We first examine the ma.in
characteristics of such a systen £ran three points of viEM: the user,
the expert in the definition of appl icatioos am the canputer
scientist. Qir job is to fim an appropriate fonnalisn that can
describe the different aspects of our systen: natural language
understandi?:g, knailedge representation, explanation and caitrol
mechanisns, plan generation, relational databases am meta-knc:wledge
representation. Finally, ~ cx:>nclude by p:>inti?:g rut sane remaining'
problems that will require additiormal basic researdl.

'llle job described here has been implanentai in PROIOG caiputi?:g
language en the CII HB 68 of the IRISA. Qir assistant interfaces an
application, called Cigare, W'lOSe role is to help :pecple in sched.ulin;J

· meeti?:gs.

15eWros: Office autanation, kncwlaige representation, natural
la?:gUage, relational databases am cognitive IOOdelin;J.

1 INrroDUCrION . .
' IJhe close -incera.ctionsbetween the fields of canputer science am

oognitive psychology have given rise to what is generally known as
hu-nan info:rna.tion processi?:g ncdels of cognitive processes. In this
paper, ~ describe an intelligent interface between a h\Jl1an am a
specialized cx:nputer (such as: text-editor, interactive queey systen,
electronic-ma.il, ••• } • We call this interface a user assistant. Its
role is to be an expert of the functions of the application to which it
is connectai am to provide a friendly environnent to :pecple who wish
to use this application.In this job,we look on our assistant fran three
points of view:

-the user's p:,int of viEM. He uses the application via the
interface. Veey often, he is not a canputer professional.

-the cx:mputer scientist' s point of viar,. Its role is to build a
man-na.dline interface adaptable to varirus kinis of applications.

-the expert's !X)int of viar,. An expert is a specialist in the
definition of applications. His task is to s~cify to the assistant the
different parameters of the application he wants to interface.

In the next section, our purpose is to gather sane of the ItDSt
interest.in3 characteristics a hunan-canputer interface must have, fran
the user• s !X)int of viar,. In section 3, we take up the expert position
and we describe what structures are necessary so as to enable the expert
to describe prc:perly the different aspects of the application he wants to
interface. Finally, in section 4, we describe the ma.in problems the
carputer scientist is ex>nfronted to.

'lllis job is an attempt to fonnalize · aIXi to solve sane of the
proble:ns we have met in rur investigations. We don't claim to solve al 1
the diffia.uties and we think that a lot of basic research rana.ins to be
done.

2 A FRIENDLY INTERFACE FOR USERS

With the help of psychologists and application builders, we have
brrught rut sane of the ma.in prc:perties an intelligent interface must
have (11):

2.1_ Understaming the User's Requests:

Interactin.;J with a canputer in a "natural" way is much more
perceived as "user frienily". In fact, it will be always necessary for
users to make the effort of leamir.g what a system is capable of doir.g,
but natural language 'NOuld mirumize the efforts of lea.ming how to make
the system do it. In addition, natural lar.guage allows a casual user to
use nore advanced capabilities of a system with::)ut kncwing the exact
came.ms. ait, as yet, due to the vast atnmt of infonnation to store,
the data.in of the disCOJrse has to be highly restricted. 'llle assistant
has, in fact, to know far more than the syntactic rules that allow
translating natural language into a fonnal representation (cf. section
4) • In order to avoid frustatin,;J the user, the datain of the discourse
has to be carefully stuiied for the assistant can understan::1
.imrtediately nost of the iq>uts aIXi the rest after one or two rephrasings.

In other respects, sane experiences have sh:Jwn that when users have
sate difficulties to express a request (especially a request for help),
the best solution is that the assistant provides them with a menu driven
dialog. H:,,,.rever, this menu driven dialog has to be carefully stu:lied in
order to take into acccunt the ma.in problems a user can meet.

When the user expresses himself in. a "natural" way, most of his
requests will not ex>rresp:mi exactly to the input fonns of the service
actions. 'lhe user assistant must therefore have the capability of

410

nappi03 a given request into the apprcpriate canman:is of the seIVice that
fulfil that request.

It is also .inportant that the assistant generates
what it has llllderstood in a request and that
ackncwledgement fran its user before it sen:is a
application.

2.2_ Resp:,ndi19 Intelligently to the User's Inquiries:

a paraphrase of
it waits for an
canrran:i to the

In order to be really friendly arrl helpful, the assistant must be
able to answer questions abc:ut:

-infonnationsthe user has already submitted,
-the current state of tne application;
-the lin.:,uistic canpetence of the assistant (\'vOrds or granrca.tical

structures it knews). The user may ask for exenples of sentences the
assistant can parse.

-hew to perfonn a given task,
-which tasks the user may perfonn at that precise rrarent,
-why he can't perfonn a task,
-why arrl hew the assistant has made sane deductions (ex: hc:M it has

solved unkncwn references).
In the answer of the assistant, a recall of the question has to be
mentionned so as to ensure the user that the assistant has l.mderstocx:1
prcperly his question.

2.3 Detecti03 User's Failures arrl Ma.kin;J Explicit the Systen Limits:

Ibth the user an:i the assistant may fail for various reasons. We
differentiate two types of failures: input an:i m:::>del failures. Input
failures are due en the cne harrl to gramm.tical arrl sanantic mistakes
fran the user arrl on the other hand to lin.:,uistic structures the
assistant doesn't knew arrl to misperception of a \'vOrd when using voau
tennina.ls. M:>del failures are due to tre user's ignorance or bad
understandi.03 of sane aspects of the application.

'!he assistant has to detect these failures arrl to pr01Tide
explanations to its user. Concerni03 input failures, the assistant has
to p,int rut unkncwn words, sarantic incompatibilities an:i sentenc:-e
structures it can't parse. \'hen it meets an unkncwn word in a sentence,
it ItUst try to deduce the rreanin;J of this -word fran the renain:ier of the
sentence. If it succeeds, it has then to ask the user for a
confinnation. Concerning nodel failures, it must p:,int out false
presupp::>sitions, ina::tI1?lete requests an:i unkncwn actions to the
application. It must be really infonnative (but not too talkative 1),
shewing clearly arrl explicitly why it cannot accept a request. It must
prOITide explanations, exatples arrl alternatives or restatenents.

2.4_Acquirim kncwledge:

411

'lhe user assistant is particular to a user. Consequently, it nust
be a::laptable to his sensibility and habits. It nust be able to learn
sane new infomation, so as:

-to increase its liIJ;JUistic cacpetence. Olr assistant can learn new
syn0¥N3 of w::>rds that it already kncws. 'lhe user as just to declare: ''X
is a syn~ of Y" • We think that the acquisition of new w::>nis and new
gramra.tical structures has to be done by a hunan expert in liIJ;JUistics
because ItDSt of the users have not the required cx:mpetence to perfann
this task.

-to take into aca:,unt behavia.Jr specifications, in 0rc1..er to avoid
disturbance to its user. 'lhe user may give inst.ructions to its
assistant, such as "My neetin3salways take place in roan no 210. 11 • 'lhey
play the role of default cptions.

3 ROLE OF THE EXPERr

'lhe assistant, ag:,lication indepeooant, is wilt by a canputer
scientist. To interface a given application, sane parameters of the
assistant have then to be instantiated,'lhis is the role of the expert.
The tINo na.in classes of pa.raneters are the li03Uistic parameters and the
pa.rcmeters that describe the functions of the ag:,lication. The
specification of these parameters is done via a specific laIJ;JUage.

3.1_ The Linpistic Paraneters:

In the previc:us section, \-.le have explainai that the , datiain of the
discc:urse has to be restricted. Consequently, it is not possible to
store in oor assistant, once for ever, all the vocarula.ry of a given
laIJ;JUage. 'lhat :rreans . that the expert will have to fi.na , for each
application to interface, all the required vocabulary so as to allOW' the
user to express h:imself in natural laIJ;JUage with sufficiently varic:us
expressions. Some w::>nis, 'such as articles and prepositions are CClmlDn to
all the applications rut nost of the ""°rds are application depen:iant. In
order to limit the job .of the user, it is useful to :inplenent in the
assistant, once for ever, a set of rules that describe the various
nD:r::pb:>logies (plural, feminine, conjugation fonns •••) of any given \t,'Onl.
So, the expert has only to specify the infinitive form of verts, the
mas0.1lin siIJ;J\llar of adjectives, etc... Ebr each of these ""°rds, the
expert has to give:

-the syntactic category of the ""°ro (noon, verb •••) ,
-if this \e.Oni accepts canplements.

This last point leads us to introduce senantic features so as to enable
the expert to precise what kini of ccmplement is acceptable. As we are
concerned by a sna.11 subset of natural larguage, it is possible to define
semantic categories in a finite number and to include each ""°ro in, at
least, one of these categories. We think that these categories are
limited to the set of categories of objects on which the application
operates (hunan, time, place •••) • Finally, the structr..1...-re of a lexical

itan is can!X)sed of:
-a 'WOrd,
-a syntactic feature (nam, verb, •.•),
-a sanantic feature, linked to the word itself (except for verbs

whe...re this feature is the feature of an acceptable subject),
-a list of sanantic features of acceptable canplerents, with the

preposition that introduce than.
Exanple:
WOID(assanbly,nam,meeting, (of,hunan). (of,place) .nil).

'!he rules that describe the grammatical structures are application
independant. '!he nain rules are implenented in the assistant once for
ever. H::Mever, we think it is :important t0 allow the expert to add new
grarmatical structures and descriptions of idiana.tic expressions. 'Ibis
can be done via a specific larl3'uage [6].

3.2_ The Description Of The Application:

'Ihe expert describes a m::xiel of the application to the assistant.
The first goal of this description is to make the assistant "understand"
the kirrl of request the user has submitted. 'Ihe secorrl role is to enable
the assistant to help the user. 'Ihe word "understand" means, here, to
firrl the exact meaning of a request with regard to the functions of the
application. It also rreans to verify if this request is possible
con.siderin; the previais actions the user has perfonned am the data
transmitta:1 by the application.

'lb rrodel an application, the first task is to decanpose it into
basic actions. An action will be identified by a set of significant
patterns to firrl in the aitput fonn produced fran the user's request.
Next, it is necessary to describe the corrlitions under 'Which an action
may be perfonned. These corrli tions express that, previaisly, sane
actions rrust have (or mist not have) been perfonned by the user arrl (or)
sore infonnation nust have (or rrust not have) been transmitted by the
application. 'lhese infonnation are the result of the user's actions or
the result of other useri s actions in the case of multi-users
applications. Finally, for each action, an exhaustive list of tasks the
assistant has to do is described in tenns of infonna.tion to add to a
contextual database and camarrls to send to the application.A rule that
describes a basic action of. an application is of trie fonn :
RUIE(<identification>,

<list of patterns to firrl in the request>,
<ccnditions >,
<inforrcation to add to the contextual database>.
<camarrls to send to the application>) •

4 ARCHI~RE OF THE SYSTEM : THE COMPUI'ER SCIENTISI' POINI' OF VIEl'l.

'Ihe job of the canputer scientist is to build a systan that takes

into account both the different parameters specified by the expert and
the huna.n-crnputer interactions oonstraints \t.e have point out in sectwn
2. In this sectwn, \t.e first examine the lirguistic eatp0nent ani next
see hJw the request is interpreted. Finally, w1e explain hew the
assistant can provide help to its user.

We first assume that the hunan and the machine interact in a way
that can be described by a prcxiuction systan. Indeed, w1e think that the
fonna.lisn of production systems arrl logic is a gocrl fonnalisn that has
been really successful in providing insights in both theoretical and
practical aspects of ccrrputing science. '!hen, \t.e have to specify:

-A general structure to describe the rules of this prcxiuction
systan,

-the process by which rules are selected for execution, am hew to
express it,

-the structure of the info:ona.tion utilized by the rules,
-hew the infonnation reflects the current state of the kno,iledge on

which the systan q:>erates,
-the q:>eratwns on the rules (rcodifications, ••••) •

Figure l sh:Jws the overall structure of a user assistant:

Contextual

Da:tal:ase

Inte:rpretor

data commands

'APPLICATICN

Lin;JUistic

Cooponent

4.1_ The Lin:;JUistic Conponent:

data

User Guidance

fig. 1

USER

lexicon

Lin;JUistic
O:lta-base

nod.el of the

a: lication

~ 13

'lhe goal of the lin:;JUistic canponent is to generate a foi:mal
representation of the meanirg of the natural larguage sentences of the
user. Actually, there exist na.ny varicus ways to represent fo:ona.lly a

natural larguage sentence. We think that the fonnalisn adcpted arrl
described by [6], [8] and [17] is very '.I.ell adaoterl to our problem. In
this fonnalism, the stooy of determiners have been looked at in detail so as
to refine the range of quantifiers. In ad.di tion, sane tools have been
added so as to represent better sane structures such as questions
beginirg by : vhy, H::1.v many, Ib.v rruch ar.d. the expression of time. '!his
representation is in higher level logical fo:rm. For instance, the question

''Who are the i:articipants of the meetin:J A ? "
has the followir:g forn:al representation :
QUESI'ICN(SEI'-OF(x),. meetins 1A) .particip:tnt-of(x,A))

Olr p:rrser is canposed of two ent;ities: a lexicon arrl a set of rules
that describe the grarmatical structures of ·french. We think that it is
important that these rules may also be appliei backward, for sentence
synthesis. In fact, a lot of job remains to be done abcut this prd:>lem.
The rrain problem:. \\e are ccnfronted to about sentence synthesis is that
we must specify all the syntactic constraints, so as to have a
correct rutput, arrl to ensure ourselves that all the information the
logical fonn contains has teen synthetised in a correct way.

In rur system, a sentence is parsed by a grannar where:
(1) 'lhe axions are a finite set of nodes :

imperative ••••
declarative,

(2) The non-terminal symbols (SN, 'EN, Verb •••) have the general
fonn: ·
X(<syntactic features>,<satantic feature>,<fonnal representation>)

The syntactic features (gender & number) arrl the satantic feature (hunan,
place, •••) are the features that result of the parse of the sentence
substructure represented by X.

(3) The terminal symbols, that are the lexical items.
(4) The rules, that have the fonn: ·

X(l(SY~., ••• SY,L-),g(S~, ••• SE;c,} ,h(F,, ••• F-')) ->
y~ (SY4; I SE-1 ,F~) • • • • • Yi. {SY_i I SE,i, F .c->

are applicable iff sl(SY4;, ••• SY"-) and s2(SE-t, ••• SE_:v are true. Where:
- SY stands for the syntactic features, _
- SE stands for the semantic feature,
- F for the fonnal representation of a substructure of a sentence.
sl and s2 are functions that express coniitions, such as

patten1-rre.tchir:g, between features that cane fran each non terminal
symbol an the right part an the rule. 1 and g are functions that
describe lUN to mild the syntactic arrl semantic features of the non
temtl.na.l symbol on the left part of the rule fran the features on the
right part of that rule. f describes row to build the fonnal
representation of the sub-expression parse::!. by the rule. 'lhe main
problem is that the meanir:g of a canplex expression has to deperrl only on
the rceanir:g of its subexpressions. Every \I.ell fonned subexpression is
then considered as a unit of meanirg that can be inte;rated in a laxger

415

expression.

Finally, the lexicon and the rules of the parser are considered as a
database so as to enable the system to give infonnation aba.lt its
llll3'llistic cx::rrpetence (cf. the nice job referred in (14]). 'lbis
structure also allows us to implement procedures that detect, in a simple
way, gramrca.tical mistakes ani semantic inconsistencies.

4. 2 The contextual database :

We think that it is :important that a request don't be treated as an
isolated event. A context is built up so as the repeated exchan;es
between the user and his ma.chine may be CCX1Sidenrl as approaching a simple
but real conversation. An hna.ge of all the exchan;es between the user
and his assistant and between the assistant and the application is stored
in a contextual database. 'lbe contextual database is local to a user and
is CXJtJX)Sed of a list of facts that represent:

(1) 'lbe infonna.tion the user has transmitted to the application via
his assistant. 'lhis can be looked as an historical database.

(2) Info:rmations aba.lt the state of the dialog between the user and
his interface (what the user knows and what he is talkin;J abalt) •

(3) The infonna.tion the application has transmitted.
(4) Some behavia.ir specifications, given by the user.

'the contextual database plays the role of a short te.nn meno:ry .- All the
facts are represented in the same way:
FACr (<kim of fact> , <infonna.tion>, < sairce of the infonna.tion>) •
The argunent "srurce of the infonna.tion" allows the assistant to explain,
at cU:¥ t:une, the origin of the inf0tmaticn (inheritance or deduct:ion,
default cption, the user' s request) •

4.3_ Intezpretation Of The User's Request:

We have examine in
describe an application.
Rule(<nane> ,Cl,C2,L,T).
Where:

sect:ion 3 the structure of the rules that
In cur job, a rule is of the fomu

-Cl is a set of cxnlitions on the existence of s::xne facts, stonrl in
the contextual database,

-C2 is a set of patterns to find in the logical fonn produced frau
the user's request. C2 allows an efficient preselection of rules and is a
tool for user guidance (cf. 4.4),

-L is a list of infonna.tion to collect in the logical fonn . Sare
control procedures, linked to the infornations, are described. here (cf.
example),

-Tis a list of actions to perfonn (ccmnands to.send to the applica
tion and infornation to store iil the contextual database).
Let's look at an example:
RULE(p::>sitive answer to an invitation,

facts(exist(meeting).to be invited.(user,rreeting) .nil),
pattems_to_find(agrearient=to_ccme.nil),

to_collect(dates(c:ky<=31 and S<=ti.rre<-20).nil),
actions(addCD(positive answer(user).dates(<dates>).nil).
snAPP(positive_answer(user, <dates>) .nil) .nil)).

addCD stands for "add to the contextual database"
smAPP stands for "send a::mra.rrl3 to the application"

After the parsing process of the user's request, the interpreter eva ..
luates the Cl and C2 of each rule. Thus, a preselection of (one or rrore)
applicable rules is done. Then, the interpretor asks the user for a confir
mation of its understanding. If it is correct, L and T of these rules are
execu~ed. If it is not correct, the user has to say 'Which rule is applica
ble, 1.f any. The user may also ask for help- (cf. user guidance nodule).

4. 4 User G.lidance:

One of our main principles is to never left the user to himself.
The assistant nust be able to help the user at his request or when it
detects scme failures. User guidance is a very vast problem, let's lock
at scme aspects of it:

(1) What is the 1 inguistic coz:pus necessary to express requests for
help? Is natural language \<Jell adapted?

(2) When the assistant is not able to answer a question, hav to make
it. express the reasons why it cannot (instead of the laconic expression
"I don' t knew")? Hew to nake it propose al terna.tives?

(3) Hew to help the user to plan his ~ix?
(4) How to leam to IlOV'ices the main functions of an application?
(5) Ii:::M to be really very infonnative, without excess? Ebr

instance, is it possible to define different levels of infonnation?

Despite the current interest in user guidance, \<ile think that the
design of a helpful and infonnative interface ranains to be done.
Hewever, &)IIe very interesting and valuable results have been obtained in
sare w:::n::'ks such as : [2], [14], [17], In rur job, the fo:onalisn
of the :rules that describe an application allc:ws the assistant to prOITide
SCXTE explanations:

- When the user doesn't know which actions he rray J:)Crfonn. at a pre
cise m:::irrent, it is fran the conte.'{t and through the evaluation of Cl of
all the rules that the assistant ai ves him the list of t.½e actions he is
allowed to perfonn. ~

- If the user doesn't know how to perfonn a given action, the des
cription of the L of that rule gives him the arrount of knowledge required
to perfonn this action.

- The evaluation of the Cl and the addCD of T of all the rules allows
the assistant to generateplans [9] and to p:rop::>se tothe user various chains
of actions (or subgoals) to reach the requested goal. This is a -way to
learn to novices how to use the application.

- When the user wants to perfonn an action that is not allowed, the
evaluation and the description of the Cl of that rules gives the reasons
why this action is not p::>ssible, and under which conditions it ~uld be
p::>ssible.

. Actually, the user is guided by a IIEnU-driven language to fonnulate
his request ~or help. Requests for help in natural language are, indeed,
very difficult to express and to be interpreted.

5 CON:!LUSICN.

We have presente:3. here a hunan-canputer interface which is to be
used by a large and casual public. We have check off what must be the
main prcperties of such an interface. 'lhe fo:cmalisn adopte:3. here, based
UfOn logic, reveals itself to be quite robust and general. This interface
has rr:w to be teste:3. by users.

Ha,rever, a lot of job remains to be done, especially in the
follcwin:;J areas:

*Ha,r to respcn:i rcore intelligently to incorrect inputs an:i to
questions aba.lt the kncwledge.

'irHcw to 1:uil t an expert that is able of reasonin;J· on incanplete
kncwledge.

"'Iicw to process some lin:JUistic problems s~"l as fuzzy expressions.
~ to 1:uild an efficient "expert" to manage knc:wledge

ac:quisitiai.

The job \'Ve have presente:3. here has been :implatented in PROI.OO on the
CII-HB 68 of the IRI~. 'Ihe implE!Ilentation has lasted the equivalent. of
14 rconth~ for Ol'.le person, but sane 'WOI'k renains to be daie to increase
the perfo.mances. 'Ihe application that our assistant interfaces is
called CIGARE, its role is to help pec:ple in schedulin:;J meetin;s. We
also inten::l to connect this interface to a text editor.

REFERENCFS

[1] oomow D.G., KAPIAN R.M., KAY M., WIN:X;RAD T. Gl.5: a frane
driven-dialog systan. A.I. Vol 8 no 1 1977.
[2] KA,PIAN S.J. Cooperative ResFOflSes £ran a port.able · Nat;ural Language

_ Query Systan. Artificial Intelligence n° 19 ~ 1982. _
[3] DC1iI.E J. A glinpse en truth maintenance. Proc. of the IJCAI 79 •
[4] GROSS M. Methodes en syntruce. He:cmann. PARIS 1975.
[SJ HIRSH1AN L., PUDER K Restriction Grarma.rs in PROI.OO. logic
prog:rarrming conference, t-B.rseille 1982.
[6] M<XDRD M.C. Usin:;J slots and m:xlifiers in logical gramrra.rs for natural
lan:JUage. Tedmi.cal report n:::> 69-80. Univ. of Kentucky, Lexington, 1982.
[7] MINSKY M. A framework fur representin:;J kncwledge, in P. Winston(ed).
[8] MOORE R.C. Problems in logical fonn. SRI project report • April 1981.
[9] Nll.SS'.)N N. Principles of artificial intelligence. Tioga Pub. Co
1980.
[10] NOR-11:ER B. Le Systane SAPHIR. ERL!. 1982.
[11] CIJINiaJ R., SAINl'-DIZIER P. Man-machine interface for large public
applications. IEEE Seminar Zurich March 1982.
[12] PEREIRA F. Extraposition Grannars. I.Dgic progranming 'WOI'kshcp.
Debrecen, Hungary 1980.
[13] REITER R., NASH-WEBER B. Anaphora an:i logical fonn: on fonna.l
meaning representatiai for natural lan:JUage. 5th IJCAI.

41t

-----·--,., , oi \I~". ti, 1 E ,.
- - '·'\ ./

[14] ~IER P~.MJORBI: an expert system for envirormental
re1source evaluation thra.:igh natural lan::;uage. logic Prcararkrg
Conference, Marseille, 14-17 september 1982. -..,- -~NV\

_-l) [15] SAINI'-DIZIER P. sane aspects of knavledge representation in an
intelligent M:m-Machine interface. '!he Mind an:i Machine Cbrgress,
Middlesex polytechnic, London, April 1983.
[16] SHANK R.C., ABELSON R.P. Scripts, plans, goals and understaniirg.
Lawrence Erlbaum Press, Hills'.iale N .J. 1977.
[17] WARREN , PEREIRA i~= An efficient easily adaptable system for
intel:pretirg natural lan::;uage. Pesearch report 1981.
[18] BE~ P., QUINIOO R., QUIN'IUN .P. ,SAINT-DIZIER P. ,TRILLIN3 L.
Dialogue et representation des infonnation dans un systane de messagerie
intelligent. Pesearch report no IRISA 185. January 1983.

Abstract

A K e r n e 1 f o r a G e n e r a 1

N a t u r a 1 L a n s u a s e I n t e r f a c e

M i s u e 1 F i 1 s u e i r a s

Nucleo de Intelisencia Artificial

DePartamento de
Universidade Nova
Quinta da Torre
2825 Monte da
PORTUGAL

Informatica
de Lisboa

CaParica

A descriPtion is siven of the main ideas used in the desisn
of SPIRAL, a kernel for a natural lansuase interface aimed at
seneralitw in linsuistic abilitw and domain Portabilitw+

Thoush Prolos is used to implement the interface, swntactic
analwsis is not Performed via metamorphosis, definite-clause,
or extraPosition srammar formalisms, but rather b~ means of a
3-level bottom-up extensible Parser makins use of rewrite
rules+ The aPPlication of each of these rules is controled bw
a module capable of embodwins non-swntactic knowledse+

Swntactic and semantic anal~ses are seParatel~ done, but
semantic tests are embedded in the Parser resultins in a
substantial decrease of ambisuit~. The· aPPlication dependent
Parts of the semantic anal~ser constitute a separate module.
To make it eas~ to adapt the interface to new aPPlications, a
set of Predicates is Provided to helP in the definition of
that module.

Introduction

• • + • realitw maw avoid the oblisation to be
ini{restins, b•Jt (•••) h•~pothesis ma·~ not.•

Dea~ and the Compass, J. L. Borses

Results from research on natural lansuase understandins
swstems made durins the last 15 wears, either imPlicitlY (by
failins to meet certain reGuirements), or exPlicitlY, Point
out the need for world knowledse, inference, context analysis
and the like when trYins to analYse a natural lansuase
sentence (this need is more acute when Phenomena such as
anaphora (reference Problem) is dealt with [G. Hirst 81]).

One of the main Problems with the losic srammar formalisms
Proposed so far (metamorphosis srammars [A. Colmerauer 75,78J,
definite-clause srammars [F. Pereira, D. Warren 80], and
extraPosition Srammars CF. Pereira 81J), as well as with their
concrete aPPlications (from CR. Pasero 73] to CF. Pereira
83]), is that no Provision is made to check each sYntactic
analysis step for consistency with respect to meanins. In this
sense, sYntactic analysis is carried out blindly. Introduction
of tests in the srammar rules, tYPification [V. Dahl 77J and
slot-filler based aPProaches CM. McCord 80,81], CF. Pereira
83J, are inciPien~ steps toward the use of non-sYntactic
knowledse to suide Parsins. But in Present day sYstems,
whenever such knowledse is used it must be intersPersed within
the srammar rules and there is no neat separation at this
level between the syntactic and the non-syntactic modules
even if semantic analwsis is Performed after sYntactic
analYsis.

In what follows I Present the main ideas underlwins SPIRAL,
an open kernel for a Seneral natural lansuase interface that
sives an answer to the above criticism and simultaneously
tries to keep a hish desree of Portabilitw between
aPPlications.

In SPIRAL a 3-level Parser is
analwsis. The second and third
interleaved fashion so that the
level results on the flw. The

used to perform sYntactic
levels are executed in an
third level checks second

non-sYntactic knowledse the
extended to include criteria third level has can easilw be

based on knowledse from discourse context, world knowledse1

inference, and so forth. This way it is Possible to have a
desirable interaction between two hishlY modular devices, one
workins on the syntactic features and beins controlled by the
other which uses more comPlex forms of knowledse.

Syntactic and semantic analyses ars seParatelY done, but
semantic tests are embedded in the Parser resultins in a
substantial decrease of ambisuitY. The aPPlication dependent
Parts-of the semantic analyser constitute a seParate module.
To make it easy to adaPt the interface to new aPPlications, a
set of Predicates is Provided to help in the definition of
that module.

Syntactic Analysis

"I state; you, if You wish, refute.•

The Aristos J. Fowles

A first Point of diversence from the metamorphosis,
definite-clause and extraposition Srammar formalisms (referred
to as 'losic srammars' in what follows) is the Parsins
strateSY+ The SPIRAL Parser makes use of a bottom-up techniGue
better suited to accePt external Suidance and to analyse
elliPtic sentences and all forms of extraPosition <I have no
intention of enterins the old and tired top-down versus
bottom-up controversy - Please cf. the Guotation above ;
thoush many PeoPle tend to admit that the former is more
efficient than the latter, this is false at least for
(unbiased) context-free srammars CM. KaY 80]). The stress Put
on the two linsuistic Phenomena above (elliPsis and
extraPosition) follows from the Purpose of not restrictins 'ab
ovo' the interface capabilities, and also from the relatively
hish freGuencY of such forms in Portusuese, the lansuase
actually analysed bY SPIRAL+

While rules of a losic srammar constitute an indivisible
Prosram workinS on normally 3 tYPes of data (surface
representations, non-terminals and syntactic structures>,
SPIRAL is stratified into levels accordinS to the functions
Performed and the kinds of data dealt with.

Rewrite rules in SPIRAL are in some extent similar to the
rules in losic srammars. Obviously they occur in inverted
forms, in accordance with the bottom-up Parsins strateSY
while in a losic Srammar we have, for instance,

a -> bl, b2 •••' bn

in SPIRAL the same rule will aPPear as

bi, b2 •••' bn -> a

There is no distinction between terminals and
non-terminals. A sentence is represented by the list of the
lexical representations for its words, and the lexical
representations can have Prolos variables to hold information
for future use. Lists of lexical representations are what
actually aPPears on both sides of the rewrite rules. Hence
there are no restrictions on a rule's risht-hand side, in
contradistinction with losic srammars' left-hand sides.

Besides the lexical one, two other representation forms are
used : one for what I call meanins-cells Cm-cell, for short)~
and another for Phrase structures built from them.

Am-cell tries to rePresent anw contisuous words SrouP that
is meaninsful on its own when isolated from the rest of the
sentence. m-cells may contain other m-cells and be conJoined
to Sive am-cell. Some of them-cell tYPes SPIRAL currentls
works with are t

- noun Phrase

- verb

- complement (an adJective sroup,
a Prepositional Phrase, or an adverb)

- subPhrase (relative clause>

- wh-Guestion

For instance, in the sentence

'The system uses techniGues to encode a more
seneral model that are very efficient'

there are them-cells

- the SYStem

- techniG•Jes

- 1Jses

- to encode a more seneral model

- that are very efficient

the last two of them containins

- encode - a more seneral model

- are - ver'3 efficient

Phrase structures are represented by a 3-Place
whose three arsuments in a siven instant describe of a

Lt 23

f1Jncto r
Phrase

- its main m-cells (either a verb, or noun-Phrases - verbs
are envisased as Phrase 'functors'),

comPlements that await attachement to nouns or verbs
(this simPlifies the treatment of extraPosition>,

- subPhrases found so far.

We can now examine how the SPIRAL Parser works. On a first
level of Processins words are conflated whenever Possible ;
information from deleted words instantiate variables that
occur on the lexical representations of the remainins words.
This is a deterministic Pass and results from aPPlYins rewrite
rules like the followins (in Edinbursh syntax, with '-)' as
infix operator),

C determiner(Quant,Asr), noun<N,Quant,Asr) I R J

-> C r,oun<N,Quant,Asr> I R J ♦

This rule states that a determiner followed by a noun is
deleted if both have the same asreement. Moreover, the
~uantification expressed by the determiner is saved in the
lexical noun rePresentation. This particular rule is a Prolos
unit clause but some other rules have a clause body to test
their aPPlicabilitY+ After the first level, a second level
analyses word SrouPs to obtain m-cells+ This is done by
aPPlYins recursive rewrite rules with the followins format I

: - • + •

where •-->' and '-' are infix operators. Such a rule means
that M_cell is the result of analYsins the first list of
lexical representations, the second one beins what is remnant.
Like for the first level rules, clause bodies may imPose
conditions on rule aPPlication.

Each m-cell extracted by the second level is embedded into
the current Phrase structure by a third level of Processins to
Produce a new Phrase structure. Each clause head in the third
level has the format

--->

where '+' and '--->' are infix oPerators - its meanins is
obvious. A monitor is used to control the second and third

levels forcins their interleaved execution.
defined bw the followins two clauses

This monitor is

mon(LO, PO, Ln, Pn) :-

mon(L, P, L, P).

LO --> Ll - M
M + PO ---> Pl ,
mon(Ll, Pl, Ln, Pn).

So, whenever the third level fails bw findins out that a
m-cell is extraneous to the current Phrase structure,
backtrackins to the second level takes Place. In this
situation, either an alternative analwsis exists, or the
monitor stops Producins the Phrase structure built so far and
the rest of the sentence that remains to be anal~sed. A second
level clause body maw include a call to the monitor forcins a
recursive analwsis to be Performed.

The first and second levels are Purely swntactic, thoush
the latter uses semantic tests to ensure correct attachment of
complements to nouns. Both work by aPPlYinS rewrite rules from
two distinct sets comPrisins, respectively, about 10 and 25
rules. The third level must decide on whether am-cell can or
cannot be added to the current Phrase structure. This
important function, that imposes a check on each syntactic
analwsis step, is based, for the time beins, on criteria
concernins the Phrase structure and some knowledse about
complements and verb arsuments (nouns are tYPed and for verbs
a slot-filler aPProach is used, as in CV. Dahl 77], CM. McCord
80,81]). Those criteria can easily be extended to more
sophisticated ones based on knowledse from discourse context,
world knowledse, inference, and so forth.

This way it is Possible to
between two hishlY modular
syntactic features and dealins
the other usins more complex
Phrase structures.

have a desirable interaction
devices, one workins on the
with lexical representations,
forms of knowledse to build

In summarw, the characteristics of these 3 levels in SPIRAL
are as follows :

1st level - has some 10 rewrite rules transformins a
list of lexical entries into another such list.

2nd level - has some 25 recursive rewrite rules that
from a list of lexical entries Produce one m-cell and
remainins list ; each m-cell is Passed to the 3rd
level (as soon as Produced) and if not accePted,
alternative rules (if any) are aPPlied ; otherwise,
the Processor stops sivins as result the Phrase
structure built sc fer (if ans), and the remnant list.

3rd level - builds the Phrase structure from the
m-cells extracted by the 2nd level controllins it by
accePtins or reJectins m-cells; the 3rd level is
also responsible for the treatment of extraPosition,
Passivization, and comPosite nouns (like 'the dos, the
cat and the mouse').

When the end of the sentence is reached, another SPIRAL
module is launched to check the Phrase structure built for the
sentence and to carry on with elliPsis analysis if needed. At
Present only a few inciPient anaphoric forms are analysed by
SPIRAL and by methods not comPletelY adeauate. Personal and
Possessive Pronouns are solved by searchins a noun list (built
durins the lexical analysis) and selectins a noun from it ;
some kinds of elliPsis are solved by the introduction and
dereferencins of a Pronoun, and some others are treated bY
comParins Phrase structures. The seneral Philosophy Prescribed
in CG. Hirst 81J will sooner or later be adoPted in SPIRAL+
Nevertheless, the semantic tests used in the second and third
levels, tosether with the slot-filler aPProach, Provide a lot
of information extremely useful in solvin~ ambisuities. This
fact allows for Present methods to work well in many
instances. A similar situation is encountered in the
case-srammar aPProaeh, aualified in CG+ Hirst 81J as •••• a
firm base for anaPhora resolution•, thoush only information
from cases is used.

To help fix ideas, two (simPlified) examples of sentence
analysis follow - the two sentences are from CF+ Pereira
B1,83J. The functor PS(_,_,_) is used for Phrase structures
(see above for a description of its arsuments), and * and
\ ___ / are used to mark, resPectivelY,. a failure at the third
level, and the words activatins a second level rewrite rule+
ImPortant information bound to variables on the lexical
representations of nouns or verbs is shown informally
followins them and within Parentheses <e.s., mouse(the)
represents the noun 'mouse' containins the information from
the determiner 'the') ; in verbs, subJect always Precedes
direct obJect. Numbers within braces denote comments to be
found after each fisure.

The second examPle shows that a sentence violatins the Ross
complex-NP constraint will not be accepted by SPIRAL for
ease of exposition the determiners are droPPed+

InP•Jt sentence : the mouse that the cat chased saueaks

After 1st level : mouse(the) that cat(the) chased saueaks

2nd, 3rd levels:
\ _____________ /

{1}

I
/

recursive anal~sis on;

Ps(that(mouse(the)),_,_)
l
I
l
I
I

cat(the) chased , ______ / \ ____ /
I I ! ____________ • _________ ,

l I +

I
Ps(that(mouse(the))tcat(the),_,_) I

l I

'---------------•----------------1
l

Ps(chased(cat(the),mouse(the)),_,_)
l

sa1Jeaks
\ _____ /

I
I
l
I
I
I
l
I
I
l
I

'-------------------·------------------1
I
* {2}

end of recursive anal~sis {3}

Ps(_,_,xl=chased(cat(the),mouse(the,that(xl))))
I
I
I
I
I

mouse(the,that(x1)) \ _________________ /
I

1--------------•-------------'
I

sa•Jeaks
\ _____ /

I
I
I
I

Ps(mouse(the,that(xl)),_,xl= •••)
I

I
I

'----------------------------·---------------------------1
I

Ps(saueaks(mouse(the,that(xl))),_,
x1=chased(cat(the),mouse(the,that(x1))))

Result saueaks(mouse(the,that(x1))) &
xl=chased(cat(the),mouse(the,that(x1)))

{1} - the relative will be anal~sed throush a recursive
anal~sis.

{2} - 'saueaks' cannot be added to 'chased(the cat,the
mouse)' because a Phrase cannot have two main verbs,
resultins in a failure at the 3rd level and the end of
the recursive anal~sis.

{3} - from the recursive anal~sis results a Phrase
structure that is Passed as a subPhrase to the 3rd
level b~ the rule launchins the recursive anal~sis;
this rule is also responsible for the bindins of
'that(xl)' to the noun 'mouse' and for the ante
Position of this noun to the remnant sentence.

Input sentence:

the mouse that the cat that chased likes fish saueaks

After 1st level :

2nd, 3rd levels:

mouse that cat that chased likes fish
saueaks

, ________ /
I

I
recursive analwsis on:

ps(that(mouse),_,_)
I
I
I
I
I
I
I
I
I

cat that chased likes ••• , ______ /
I

I
recursive anal~sis on:

ps(that(cat),_,_)
I
I
I
I

chased , ____ /
I

1 ____ • _____ 1

I

likes , ___ /
I
I
I
I

Ps(chased(cat,_),_,_)
I

I
I 1 __________ • __________ 1

I
* {1}

t • •

end of recursive analysis <2>

Ps(that(mouse),_,xl=chased(cat(that(xl),~)>
I
I
I
I

cat(that(xl)) \ ___________ /
I

1--------------·------------'
l

Ps(that(mouse)tcat(that(x1)),_,x1= •••)
I

likes
\ ___ /

I
I
I
I

1 ________________________ • _________________________ 1

I

fish
\ __ /

I
I
I
I
I
I
I
I
I

Ps(likes(cat(that(x1>>,mouse),_,x1=•••> I
I I

'-----------------------------·---------------------------1
I
* {3}

end of recursive anal~sis {4}

Ps(_,_,xl=chased(cat(that(xl),_) &
x2=likes(cat(that(x1>>,mouse(that(x2)))

mouse(that(x2)) \ _____________ /
I

'-------------------·-----------------'
I

Ps(mouse(that(x2)),_,xl=+••&x2=•••>
I

fish
\ __ /

I
I
I
I
I
I

'------------------------·----------------------' I

PS(mouse(that(x2))tfish,_,xl=•••&x2=•••>
I

saueaks
\ _____ /

I
I
I
I
I
I
I
I
I
l
I

'-----------------------------·------------------------1
I
* {5}

{1} - a Phrase cannot have two main verbs, then 'likes' can
not be added to 'chased(cat, somethinS)'.

{2} - the subPhrase Just found is added to the Phrase
structure that alreadw existed. Note that 'chased' is
treated as transitive thoush with a direct obJect not
stated - a common situation with certain verbs.

(3} - 'fish' cannot be added to 'likes(cat,mouse)' bw the

reason in {1} above.

{4} - the two subPhrases found so far are conJoined.

{5} - the anal~sis fails as 'saueaks' is intransitive.

If 'fishes' occurred instead of 'fish' and if a mouse could
in an~ wa~ fish saueaks (and in Poetr~ - at least this is
obviousl~ Possible>, the followins anal~sis would be arrived
at t

fishes(the mouse (that<

saueaks)

likes(the cat(that chased somethins>,
the mouse>>,

To illustrate other capabilities of the s~ntactic anal~ser
in SPIRAL some sentences that it accepts are listed below, the
last of which because a direct translation from Portusuese is
not correct in Enslish words within Parentheses do not
appear in the Portusuese version.

the author wrote a book in 1910.

in 1875 the author decided to write a book.

the works that the author wrote are for the Piano.

the author that wrote in Venice a book.

the work that in 1920 was written bw the author.

the author that was born in London and whose work was
written in Paris.

the author whose work was written in the 18th centurw.

the Piano is the instrument for which the work was
written.

the authors in whose centuries works have been written.

the work A is older than the work B.

who wrote books 1

who wrote the oldest book 1

which are the works that were written in the 20th
centurw 1

which are the works from the 19th centurw?

in which centur~ was born the author?

the author wrote all his works in London.

the author that was born in the Place where (he) wrote
his works.

Lexical Analwsis

In order to use dictionaries similar in content to current
dictionarw books (and this should be a Soal for anw natural
lansuase interface) some kind of suffix analwsis must be
Performed at the lexical recosnition stase. This need is still
more ursent when analwsins lansuases like Portusuese or French
that make swstematic use of inflections and conJusations, for
substantial savinss in dictionarw space can then be sleaned.

To this end, I built (tosether with Antonio Porto, and much
in the vein of CP. Sabatier, J+F+ PiGue 82]) a lexical
analwser usins a set of inflection/conJusation rules alons
with a dictionarw containins word roots, words that constitute
excePtions to the Siven set of rules or that are not described
bw them, and words that have no suffixes. For each inPut word
(represented bw the list of its characters in reverse order>
the analwser tries a direct dictionarw entrw and subseGuentlw
(either bw a failure in this attempt, or bw a failure at the
swntactic or semantic levels) performs suffix analwsis. The
current set of rules for Portusuese <some 80 Prolos clauses)
covers 4 verbal conJusations in the 1st and 3rd Persons,
sinsular and Plural, 4 tenses and Pronominal conJusation for
all this, as well as almost all inflections accordins to
sender and number some 17 different forms of Plural.
TwPicallw a clause sPecifwins a verb root imPlicitlw defines
some 68 different forms for it !

The counterparts to the dictionarw compactness attained bw
this method are :

- some Problems of rePresentation duplication if word
surface representation is to be kePt for future use

- the dilemma of either allowins stranse words to be
accepted as valid bw the inflection/conJusation rules,
or burdenninS the lexical analwser with tests

- an unfelt loss of efficiency

Concernins the dilemma above, if one accepts that the user
should be responsible for the use of, e.s., 'writed' instead
of 'wrote', there should be no damase if the natural lansuase
interface understands it accordins to the Seneral rules. This
is all the more so if the natural lansuase interface Provides
a ParaPhrase of what has been understood after anal~sins a
sentence - a research direction that will be taken soon.
Obviousl~, for those not sharins this Point of view there
remains the Possibilit~ of Providins tests to filter erroneous
words.

Lexical ambiSuit~ is treated b~ backtrackins from the
syntactic anal~ser. Some experiments on co-routinins the
lexical and syntactic analysers were made with some success b~
Antonio Porto usins his ideas on control CA. PQrto 82J, and
will be Pursued in due course.

Semantic Anal~sis

For sake of modularity and SeneralitY, the semantic
anal~ser uses an intermediate semantic representation (ISR)
form to build a Prolos seal expression from a syntactic
structure. An ISR form consists of Prolos soals, obJect (in
seneral, entity) descriPtions and auxiliar Pseudo-soals <used
to Pass information while buildins the ISR form). ObJect
descriPtions are used the same way as in CA. Walker, A. Porto
83] ; in SPIRAL they occur under the form of a 3-Place functor

oCT~PetVar, Guant, Cond)

containins the obJect tYPe, the Prolos variable associated
with it, its auantification, and a definins condition in ISR
that may contain other obJect definitions.

For instance, to the sentence

'the works from the authors of each century'

corresponds the followins ISR expression and Prolos seal

oCworktW, each,
o(authortA, each,

o(centur~:c, each,_) &
author<A,D> & centurY(D,C> > &

work(W,A> >

set(work/author/centurw) : Swac <
all(Swa/C,

sen_centCC> &
all(Sw/A,

Swac)

author<A,D) & centurw<D,C) &
allCW, workCW,A>, Sw>,

Swa >,

whefe 'all' is the Predicate defined in CL. Moniz Pereira,
A. Porto 81] and 'sen_cent' is a generator of suitable century
val1Jes.

ISR expressions are built from the swntactic structure bw
some general Predicates, Plus a separate set of aPPlication
dependent ones, that define the semantics for verb and its
complements, verb and its arguments, and noun and its
comPlements. Writing such Predicates for a Particular
aPPlication is made easw bw the use of Pseudo-goals and some
Pre-defined Predicates coPing with them (adding a Prolog goal
to a condition, substitutins a Pseudo-seal bw a Prolog Saal,
choosing and insertins Prolos seals from a list, and so
forth).

When translatins an ISR expression to a Prolog one, scoPinS
Problems concernins distributive auantifiers (such as 'each')
and assresations (such as 'averase') CF. Pereira 83] are dealt
with.

Efficiencw and Future Work

SPIRAL has been implemented using the RT-11 ProloS
interpreter bw Clocskin, Mellish, Bwrd and Fisher CW.
Clocksin, c. Mellish, R+ Fisher 80] and adapted bw A+ Porto
and I to run under an RT-11 Extended Memory environment on a
PDP-11/23 machine with floppy-disks. The program currently
occupies some 15K (16-bit) words (in terms of nicely Presented
Prolos text about 23 pases as follows : 5 for the lexical
analwser (includins a common dictionarw>, 9 for the swntactic
analwser, 3 for the semantic one, and 6 for the current
aPPlication dePendent Parts the aPPlication dictionarw
included). The remainins SK left free are what is needed as
workspace. Future extensions under these conditions maw force
the use of a two-Job partition as in CL+ Moniz Pereira, P.
Sabatier, E. Oliveira 82] or CL+M+ Pereira, A. Porto 82] - it
is no noveltw that a PDP-11/23 is a somewhat restricted

I I

~33

Response times, thoush no exact benchmarks have been made,
are comparable to those described in CL.H. Pereira, P.
Sabatier, E. Oliveira 82J or CL.M. Pereira, A. Porto 82J and
var~ from less than 1 second for most sentences, to 10 or more
seconds for ver~ complex ones - these times are better than
those obtained b~ a Lisp Prosram that attempts to understand
noun compounds, runnins on a PDP 2060 (it takes some 5 seconds
to anal~se 'slass wine slass') cn.B. McDonald 82J.

These results are auite satisfactor~ takins into account
the machine used - whenever the 5th seneration machines CT.
Motooka (ed.) 82J, CD. Warren 82J become a realit~ this
section will stand as an examPle of concern with anachronistic
valu~s.

As alread~ stated, SPIRAL is thousht of as an open (as an~
spiral!) kernel for a natural lansuase interface and this
means that man~ research directions are open to further extend
its abilities. Amons them, those concerned with the followins,
to be explored soon:

- actions to be Performed when a sentence
understood or is ambiSuous (dialosues with
and ParaPhrasins will be sousht)

cannot be
the user

- means to help confi~urate the interface to a new
domain (wherever Possible those used in CM. Filsueiras,
L. Moniz Pereira 82J)

Acknowledsements

Antonio Porto, with whom I had man~ fruitful discussions on
these (and other) matters, save me an invaluable help on the
development of the semantic anal~ser.

Luis Moniz Pereira is thanked for all his enliShtenins
comments.

References

A. Colmerauer

75 Les Grammaires de Metamorphose
Groupe d'Intellisence Artificielle
Universite' d'Aix-Marseille II

78 Metamorphosis Grammars
in Natural Lansuase Communication with Computers
ed+ L. Bole
Lecture Notes in Computer Science
SPrinser Verlas

W. Clocksin, C. Mellish, R. Fisher

80 The RT-11 Prolos Swstem <Version NU7 with ToP Level)
Software Report 5a (2nd ed.)
Department of Artificial Intellisence
Universitw of Edinbursh

V • Dahl

77 Un Swsteme Deductif d'Interrosation de Banaue de
Donnees en EsPaSnol

These de 3eme Cwcle
Groupe d'Intellisence Artificielle
Universite' d'Aix-Marseille II

M. Filsueiras, L. Moniz Pereira

82 Relational Data Bases 'a la carte
DePartamento de Informatica, Universidade Nova de Lisboa

Proceedinss of the Losic Prosrammins Workshop 83, Portusal

G. Hirst

81 Anaphora in Natural Lansuase Understandins : a survew
Lecture Notes in Computer Science 119
SPrinser Verlas

M. Ka~

80 Alsorithm Schemata and Data Structures in Swntactic
Process ins

Palo Alto Research Center, Xerox

M. McCord

80 Usins Slots and Modifiers in Losic Grammars for
Natural Lansuase

Technical RePort No. 69A-80
Computer Science DePartment, University of Kentuckw

in Artificial Intellisence 18(3), 1982

81 Focalizers, the ScoPins Problem and Semantic
Interpretation Rules in Losic Grammars

Technical RePort No. 81-81
Computer Science DePartment, University of Kentucky

in Proceedinss of the Workshop on Losic Prosrammins for
Intellisent Systems
Losicon Inc., 1981

D. B+ McDonald

82 Understandins Noun Compounds
Ph+D• Thesis
Department of Computer Science, Carnesie-Mellon Universitw

L • . Moniz Pereira, A. Porto

81 All Solutions
Losic Prosrammins Newsletter, 2, Autumn 81

82 A Prolos ImPlementation of a Larse System on a Small
Machine

Proceedinss of the First International Losic Prosrammins
Conference, Marseille, France

L. Moniz Pereira, P. Sabatier, E. Oliveira

82 ORBI : An ExPert-SYstem for Environmental Resource
Evaluation throush Natural Lansuase

Proceedinss of the First International Losic Prosrammins
Conference, Marseille, France

T. Motooka (ed.)

82 Proceedinss of the International Conference on the
Fifth Generation Computer Systems, Tokyo, Japan, 1981

North-Holland

R. Pasero

73 Representation du Francais en Losiaue du Premier Ordre
en Vue de Dialosuer avec un Ordinateur

These de 3eme Cwcle, Groupe d'Intellisence Artificielle
Universite' d'Aix-Marseille II

4~5

F. Pereira

81 Extraposition Grammars
American Journal of Computational Linsuistics, vol. 7, 4

83 Losic for Natural Lansuase Analysis
Technical Note 275
SRI International

F. Pereira, D. Warren

80 Definite Clause Grammars for Lansuase Analysis -
A Survey of the Formalism and a ComParison with
Ausmented Transition Networks

Artificial Intellisence, 13

J. F. Piaue, P. Sabatier

82 An Informative, Adaptable and Efficient Natural
Lansuase Consultable Data Base System

Proceedinss of the European Conference on Artificial
Intellisence, Orsaw, France

A. Porto

82 EPilos: A Lansuase for Extended Prosrammins in Losic
Proceedinss of the First International LoSic Prosrammins
Conference, Marseille, France

A. Walker, A. Porto

83 KB01 : A Knowledse Based Garden Store Assistant
Proceedinss of the Losic Prosrammins Workshop 83, Portusal

to appear as an IBM Research Report

D. Warren

82 A View of the Fifth Generation and Its ImPact
Technical Note 265
SRI International

AN OPERATIONAL ALGEBRAIC SEMANTICS OF PROLOG PROGRAMS

DERANSART Pierre

INRIA

Demaine de Voluceau - Rocquencourt

BP 105

78153 Le Chesnay

April 1983

Abstract We shall show that the resolution strategy implemented in most of
the PROLOG interpretors may be equivalently viewed as a particular
equation solving in an associated algebraic specification. We
suggest and illustrate possible applications of this approach to
analysis of PROLOG programs.

Keywords PROLOG - ALGEBRAIC ABSTRACT DATA TYPES - PROGRAMMING ENVIRONMENT.

PRESENTATION {Long abstract)

We shall show that the resolution strategy implemented in most of the
PROLOG interpretors may be equivalently viewed as a particular equation sol
ving in an associated algebraic specification. We suggest and illustrate
possible applications of this approach to analysis of PROLOG programs.

The basic point of this work is a rigorous correspondence between a
PROLOG program and his translation -if any- into an algebraic specification.
Most of the studies about PROLOG semantics [Vako76J are devoted to the "pure
PROLOG 11 , i.e. PROLOG (restricted to first order logic programming) without
11 control 11 nor evaluable predicates. By 11 control 11 we mean two things : the
famous 11 cut11 operator and the strategy of choosing the clauses and the lit
terals to be solved. Our aim is to integrate the second element into these
mantics in order to get a kind of operational semantics taking in account
this aspect of the control.

In fact, the logical part of a PROLOG program get rise, in numerous
programs, to a rapid understanding and easy verification of the program pro
perties, analogous to partial correctness proof of programs [C1Ta77J. But
halting problems or invertibility aspects give unexpected and sometimes dif
ficult to manage behaviours, even of simple programs. A programmer is not
only interested to know if his goal is a logical consequence of the axioms,
but essentially interested to know how his goal will be satisfied, if there
is no infinitely nested loop or if he will obtain all the solutions {the
completness in this sense has to be defined), in which order, etc Lot of
these questions have an empirical answer, without any aid of known semantic
models.

On the other side, algebraic specifications have teen extensively
studied with practical (operational) and semantical points of view [AOJ78,
GH78J. Some specifications can be viewed as equational theories. In our ap
proach, specifications are only viewed as a practical way to describe envi
ronments and programs in the same formalism and are limited to so-called
"specification with constructors" similar to equational theories with cons
tructors of [HH80J but with conditional axioms.

This work should have various applications. Behaviour studies of
PROLOG programs or equivalent program transformations are part of them. Some
examples of non trivial programs have been studied by this method, like per
mutations, eight-queens problem and Baxter example [Ba81J. Practical limita
tions of this approach come from the type of conditional axioms which can be

easily studied.

Each time the specification is a canonical and complete TRS the situ
ation is quite agreable: it is in fact possible to use directly properties
of the specification fo order to transform or modify the programs.

In the general case of equalitarian axioms, the main difficulties
seem to come out from the few existing works on such axiomatisation and the
equalitarian TRS that can be defined on. Some constraints can be given such
that numerous interesting programs fall down in this class, but the practical
study of derivations remains difficult. It seems to us that a usefull tool
could be a PROLOG progranming environment in which narrowing of transformed
goals cou,ld be formally analyzed. Nevertheless, difficulties come from two
levels

1) Semantical level : in all the cases, the obtained specification is
a partial algebra, because of the manipulation of partial func
tions.

2) Operational level : the generalized TRS did not have been enough
studied until now [Re82, Ka83J. The corresponding notions of cano
nical and complete TRS remain to be better known.

It seems to us that these difficulties reflect well the situation we
feel in PROLOG programming : difficulties to specify the error cases in a
satisfactory manner (frequently only positive cases are spe.cified), quasi
impossibilities to have a clear idea of the set of produced solutions, his
completness, except by personal conviction of the programmer.

Finally, our study can be viewed from a dual point of view

- Conversion of an abstract data type into a PROLOG program. So it is
a way to get a direct and efficient implementation of the transitive

Various papers are dealing with correspondence between specifications
or functional programming and PROLOG [VaMa81, B081]. Generally the correspon
dence shows that PROLOG is a suitable specification approach. But the corres
pondence is not always very precisely stated.

We will define a strict correspondence by the following manner:

- To any predicate we associate a functional decomposition. A predi
cate of arity n is said I-decomposable, iff there exists an equiva
lent function of arity n-1 with corresponding domains. This notion
can be generalized into k-decomposability.

- To any PROLOG program that can have a functional decomposition, it
is possible to associate a specification with constructors. If the
re is no functional decomposition, the transformation is trivial
and of few interest. In all the cases the transformation is a one
to one correspondence.

- We show that the resolution of a PROLOG goal, using the usual in
terpretor strategy, is exactly the same as to solve an equation
(the transfonned goal) using a strategy called l-i-resolution. If
the specification is an equational theory, this problem reduces to
an unification problem solved by l-i-resolution (this approach uses
a relation called 11 narrowing 11).

- Finally we use this transfonnation in order to study the solutions
of the goal equations, in particular the capacity of invertibility
of a program.

This approach gives an operational characterization of PROLOG pro
grams admitting such an analysis (functional decomposition plus specification
with particular properties). The approach is completely symetric and the ob
tained class is not restrictive : it has the power of computable functions.
So it is possible to have dual point of view: in one sense PROLOG realizes
an operational implementation of conditional algebraic specifications, on
the other the models of the specification can be models of the PROLOG
program.

closure of the l-i-narrowing. In this case we shall speak of 11 com
pilation of specifications into a PROLOG program".

- Conversion of a PROLOG program into an abstract data type. This is
a way to verify the original program structure (by typing the ele
ments, verifying completness •..) and, eventually, to modify it
using correct transformations.

BIBLIOGRAPHY

[ADJ78J GOGUEN J .A., THATCHER J .W., WAGNER E.G.

[Ba81J

An Initial Algebra Approach to the Specification Correctness and
Implementation of Abstract Data Types in "Current Trends in Program
ming Methodology11 •

Chap. IV (R. Yeh, ed) - pp. 80-149 - Prenctice Ha-1 1978.

BAXTER L.
The Versatility of PROLOG.
SIGPLAN Notices - York University.

I

1_~ [BD81J BERGMAN M., DERANSART P.
i Abstract Data Type and Rewriting System:: Application to the Pro

granvning of Algebraic Abstract Data Types in PROLOG.
CAAP 81 - Trees in Algebra and Programming - 6th Colloquium -
March 81 - LNCS 112.

[ClTa77J CLARK K., TARNLUND S.A.

[GH78J

[HH80J

A First Order Theory of Data and Programs.
Proc. IFIP 77 - pp. 939-944.

GUTTAG J.V., HORNING J.J.
The Algebraic Specification of Abstract Data Types.
Acta Informatica 10 (1978) - pp. 27-52.

HUET G., HULLOT J.M.
Proofs by Induction in Equational Theories with constructors.
Rapport INRIA n° 28.

[H080J

[Ka83J

[Re82J

HUET G., OPPEN D.
Equations and Rewrite Rules : a Survey.
"Formal Languages : Perspectives and Open Problems".
Ed. Book R. - Academic Press 1980 - Also TR-CSL-111.
SRI International - January 1980.

KAPLAN S.
An Abstract Data Type Specification Language.
(French) Thesis - University of Orsay - February 3, 1983.

REMY J.L.
Conditional Rewrite Rules Systems and Applications to Algebraic
Data Types.
(French) Doctorat Thesis - University of Nancy - July 13, 1982.

,J
[VaKo76J VAN EMDE,,M.H., KOWALSKI R.

The Semantics of Predicate Logic as Programming Language.
JACM 23 - 1976 - pp. 733-742.

[VaMa81J VAN EMDE/M.H., MAIBAUM T.S.E.
Equations compared with Clauses for Specification of Abstract
Data Types.
Advance in Data Base Theory - Vl - Ed. Gallaire, Minker, Nicolas -
Plenum Press. - 1981.

INTERNATIOOAL COMPU1'ERS LIMITED
SYSTEMS SI'RATIDY CENTRE

FINITE aM?O'l!ATICN PRINCIPLE

An Alternative Method
Of Mapting Resolutiai

Far Ipgic Pro)xauud.ng

page 1 of 18

443
REF: EB 83/6

DA.TE: 4th May 83

Currently PROI.00 implements resolution by means of symbolic substitution.
The result is that symbolic operations (eg on lists) in PROLOG are
reversible, whilst data operations (eg arithmetic) are not. This paper

proposes an adaption to the resolution principle called the Finite
Canputation Principle (FCP). Using FCP, symbolic substitution is still
available rut is perfonned by a special predicate.

FCP gives the UNO :important ber:iefits of Order independence and control
over infinite processes. In addition, FCP improves reversibility and
simplifies the connection of logic to existing languages.

A logic language called Prolog M has been -implemented using FCP .• This
provides standard negation, disjunction., conjunction, universal
quantifiers and existential quantifiers. An important feature of the
implementation is that if UNO Prolog M.·programs are equivalent according
to the tautologies of Predicate Calculus, then these two programs will
generate identical answers.

page 2 of 18

During the 1970s the author was actively involved in the hardware and

software design of the ICL Content Addressable File Store (CAFS) . It was
during this period that a method of rraking queries to a database without
the reference to relation or file names [2] was proposed. This shorthand
was made possible by including a limited mathematical model in the
language interpreter. This mxlel being made up of joins of relations.
This technique has proved successful with database users but was limited
to joins of physical relations - i.e. conjunctions of predicates. It was

as a result of trying to generalise this nod.el that it was realised hoN
useful Prolog might be in this area.

Prolog is order sensitive. Despite the name, Prolog is not a true logic
language and the database query below must be written in a particular
order.

Manweight(x,w) , w < 20
w < 20, Manweight(x,w)

.:,rksl
Errors!

In a database query, it is essential that the tenns can be written in any
order. warren [7] recognises this in his CHAT80 database system. In CHA.TSO

additional features are included to allCM order independence.

Prolog is very likely to go infinite. For example, Define Append in the
standard way and then rrake the follc:Ming queries:

Append(x, (4) ,w)

Append{ (4) ,y,w)

Append{(4) ,y,w) , y:=w

prints infinite fornula
or infinite mmt>er of values

prints w== (4.y)

or infinite list of values.
just does oothing 1

In this last example, Prolog is trapped in a silent contradiction. One
predicate generating an infinite number of instances of they and w
variables, whilst the subsequent predicate y = w always fails. In a
large machine with almost unlimited storage resources such an infinite

contradiction could be a very expensive bug.

I I

page 3 of 18

'Ihe Finite Canputation Principle (FCP) nakes two tltlngs p:>ssible:

True order iooeperdence
No infinite processes

Ordinary resolution is still available using a pattern na.tching predicate.
However, FCP allows cperations on lists or sets of data to be carried rut
m::>re securely.

'Ihe p::,wer of FCP appears when it is used in recursive definitions. Thus,
most of the paper is ooncerned with explaining the cperation of a number
of key exanples - in particular APPEND. The paper then hints at what
may be fX)Ssible in the future. ·

1.1 R:>taticn

Prolog M uses a LISP like notation for predicates. However, for clarity
this paper uses the conventional na.thema.tical notation. Nevertheless, so
that the flavour of Prolog M is not lost, the Prolog M syntax is often
written alorg side in curly brackets.

Prolog M means Prolog ~th a M:xiel[l,2]. It is hoped to describe the rccdel
aspect of Prolog Min a forthcaning issue of the ICL technical journal.

page 4 of 18

2. '!BE FINI'l'E CCHUIM'ICl!l PRDCIPLE .(FCP)

The basic notion of the Finite Conputation Principle is one that arises

£ran the nature of logic programming. Sane expressions written in a logic
programming language nay result in the infinite generation of data or sane
other endless process. FCP seeks to flag up infinite processes and put
off their evaluation until the last possible nanent by which time they nay
beccme finite processes as a result of infonnation returned £ran other
processes. 'l'hi.s is done by incluling in every wilt in predicate a test
for the oooditioo. that DBkes it infinite.

FCP detects that a process is infinite and then applies axioms and
theorans to eventually create a finite process in the manner indicated
bela,,:

(~for:m. using
,xians and=====:;;:::===

theorems)

===-=====-====<==================="'
(if still infinite)

A process is either an atomic predicate, meta predicate (such as
conjunction) or a user defined predicate. CUrrent Prolog M only uses the
axions of logic to attempt to render a process finite.

To a limited degree CHAT80 uses something similar to FCP to delay the
execution of negated predicates. The crucial feature about FCP is that
every predicate should be able to identify the conditions that might make
it infinite. It is then possible, as indicated above, to delay the
execution of infinite predicates, even in recursive definitions.

In a fully w::,rking version of Prolog M, the optimal delaying of processes
would also be included, as indeed it was in the ICL CAFS database system

[3].

page 5 of 18

3. ATCMIC PREDICATm

Atomic predicates flag infinite if their use \\OUJ.d generate an infinite
solution set. Fbr exarcple:

x=6 FINITE: aily cne solutioo

x=y INFINITE: (1,1)(2,2)(3,3) •••

2=4 FINI'm: ID solutioos

X = y + Z INFINITE: (l=l+o) (2=1+1) ••••

(2,3) = u • X FINITE: u is head of list ie 2 and
xis tail of list ie (3)

In Prolog M these have the syntax (=,x,6), (=,x,y), (=,2,4),
(+,x,y,z), (.,(2,3),u,x) respectively.

Infinity is flagged by including in the definition of the predicate, code
which will set an infinite flag for certain combinations of free
variables.

4. LEFr TO RIGfr PREDICATE

Predicates are nonnally executed fran left to right:

w < 20_,.!_Manllleight(x,w) { ((<,w,20){Manweight,x,w)) }

Provided both are finite then the whole expression is finite. In this
case the first atanic predicate is infinite and so the whole expression is
infinite.

page 6 of 18

Conjunction all<MS the machine to apply the axions of logic to detennine a
finite ordering. 'lbus, if we write the following:

w < 20 & Manweight(x,w) { (&(<,w,20){Manweight,x,w)) }

'lh.e machine will attEnl}?t execution fran left to right:

w < 20 , Manweight(x,w)

The result is infinite and so using the axiom A & B <-> B & A the
reverse ordering is tried:

Manweight(x,w) , w < 20

If we assume manweight has instance FRED,18 then execution is as foll<MS:

? w < 20 & Manweight(x,w) ,~~f >lbim x m FRFD am w m 1a1

1==:: ~201<=====:;:==="I
If there had been nested conjunctions, these would be collapsed down so
that ((A & B) & C) \oJO\lld be replaced, by (A & B & C) •

page 7 of 18

6. DI~W

Disjunctions of two or rrore predicates are executed as two quite separate
processes. 'Ihus:

(x = 3 or x = 4) & f(x)

is executed as two processes:

X = 3 & f(x)
X = 4 & f(;x)

First, xis given the value 3
value 4 and f is again executed.
processes must be finite.

7. EXIS'lDTIAL amN'l'Ili'IC'ATIW

{ (&(or(=,x,3) (=,x,4)) (f,x)) }

{ (&(=,x,3)(f,x)) }
{ (&(=,x,4)(f,x)) }

and f is executed. Second x is given the
For a disjunction to be finite both these

If there exist values of xl,x2, ••• that satisfy an expression p then the
expression q is executed:

sane(:xl,x2, •••)(p), q { (sane(xl,x2, •••)p)}

We evaluate this by forcing xl,x2, •• to be variables local top. 'nlus,
they start off initially as free variables. If there are instances of
these variables locally in p then the expression q is executed.

441

pa.ge 8 of 18

a. NEX;ATICE

Negation is implemented by transfonning the negated expression so that the
not is rroved to a subexpression using one of the three axions:

not(p&q) -> notp or notq { (not(&,p,q)) -->
(or(not,p}(not,q)) }

not(p or q) -> notp & notq { (not(or,p,q})-->
(&,(not,p}(not,q)) }

notnotp -> p { (not(not;p))-->p}

Eventually, the expression cannot be changed because none of these trans
fo:rms can be applied. It will then be found that p is either an atomic
predicate or an existential quantifier. We therefore actually execute the
not(p) predicate. The not means no instances. Thus, the not is
executed by checking that the predicate p has indeed no instances. If
this is the case, then w1e alla,.r execution of any statements that folla,.r.
This is "Negation as Failure" [4]. In the example:

not.6=7 & X = 9 { (&(not(=,6,7))(=,x,9)) }

six does not equal seven, there is no instance, and so the next term x=9
is executed.

Negation has its own special infinities. A negation is finite only if all
the free variables of p are externally bound. Thus, the free variable of
the expression x = 6 is x. Therefore, for not x = 6 to be finite, x
must be bound at the time when the not is executed. Clearly, if x had
been free then there ...ould be an infinite number of x values not equal to
six. Again by trapping this infinite case it is possible for other
processes to bind x.

450

page 9 of 18

8.1 SPECAL CASE

Suppose an expression not p has free variables and is therefore
infinite. It is sanetirnes p::>ssible, v.hen the expression p starts with the
quantifier some, to manipulate p to give a new expression p' which
generates the bindings for these free variables. The resulting expression
p'¬ p nON bein; finite. For example, the infinite statement

not sane(x)(r(x)¬ h(x,y))
{(not(sane(x}(&,(r,x)(not(h,x,y)}}}) }

can be rendered finite by noving h(x,y), the negated tepn in p, outside:

sane(x)h(x,y) & not sane(x)(r(x)¬ h(x,y))

This new term now creates a finite set of bindings for y. A general
.theoren for transforming p top' is given in reference [1].

Universal quantifiers are equivalent to negative existential quantifiers
and so they are transfonned before execution using the axion:

all (xl,x2, •••) (p) -> notsane(xl,x2, •••) (not p)

{ (all(xl, ••• }p)-->(not(sane(xl, ••)(not p}}} }

page 10 of 18

10. DEFINITICES

Definitions allow complex expressions to be represented by a single
predicate. Consider the definition:

anplifier{vo,vi) <- vo = 6 * y & y =vi+ 12

When this is called using the query ?amplifier(l2,w), the variable vo
inside the definition takes on the value 12 while the variable vi points
to an identical location in store tow and hence become equivalent. The
variable y is local to the definition and so there is an implicite
existential quantifier.

This definition is fully reversible, so we can either ask the question
?anplifier(l2,w):

vo=6*y & y=vi+l2

I::~, y = 21=====:>l~fore vi= -10,I
and sow= -10

or the reverse question ?anplifier(x,-10):

vo=6*y & y =vi+ 12

~1
y=2
therefore l <:=========
VO= 12 and
therefore x = 12

We can nON define another predicate representing two amplifiers in cascade
and still have reversibility:

aqJS(vo,vi) <- aq,lifier(vo,x) & anplifier(x,vi)
Tenn 1 or 2 being automatically selected depending whether vo or vi is
bound.

~51

page 11 of 18

10.1 REXIJBSIVE IEFINITICE

Consider the operation of append. This can be defined by the single
recursive definition which appends list x to list y to give list z:

aa:,eo:i(x,y,z) <- x = () & y = z or
x = u.x• & z=u.z' & aa:,ern(x' ,y,z')

This definition states that if x is an arpty list then lists y and z are
equal. Otherwise, if~ strip u off lists x and z then the remaining lists
x' and z' are related by the · append predicate. When used in recursion
neither or nor & are order independent. This is because recursive
calls to the append predicate always have the possibility of being
infinite and so should always be written last. It may be sensible in some
future inplementation to autanatically place such recursive calls last
thus restoring order independence.

Using FCP this definition gives the follarrlng results.. Readers interested
in the details-of the exemtion are refered to the appropriate appendix.

?ag>end((2),(3),z)
?ag>end(x,y,(2,3))

?ag>end(x,(2),z)

?aa:,eo:1((2),y,z)

z = (2,3)
X = (l y = (2,3)
X = (2) y = (3)
X = (2,3) y = ()

infinite flag set

infinite flag set

APPm>IX 1

APPD\1DIX 2

APPm>IX 3

Notice how FCP correctly traps the infinite.process. Contradictions as
mentioned earlier can therefore be trapped before execution:

?ag>end{(2) ,y,z) & y = z
flags infinite

Without this facility a naive user could be faced with some expensive
caaputer bills!

page 12 of 18

Suppose we define a factorial predicate fact'(x,n) which gives the
factorial x of a number n. When x and n are both free we find that
fact• executes an actual infinite loop. To prevent this infinite loop
we precede fact' by the predicate free:

fact(x,n) <- free(x,n), fact'(x,n)

The predicate free flags infinite if all its arguments are free. Thus by
detecting that x and n are both free, factorial is now secure against
infinite loops.

Notice that appem did not require any such trap to stay finite.

11. 'lBE FUTURE

Prolog Muses the axians of logic to transform an infinite expression to a
finite expression. However, the capabilities of the language could be
considerably extended if the user were also able to define his own
infinite to finite axians and theorems. Bela.v is a simple example of an
axian to alla.v a natural way of writj,ng a range of numbers:

x > xmin &: x < xnex & integer(x) <- range(x,xm:i.n,xnex)
{ (define (&(>,x,xrnin){<,x,xrnax)(integer,x)) (range,x,xrnin,xrnax))}

It is na.v !X)ssible to write the query:
?x > 1 &: x < 12 &: integer(x)

and obtain the integers 2,3, ••• 10,11 using the range predicate.

We can define new functions in the same way that we can bind variables to
values. For example:

quadfn(x) = "x1"x + 2*x - 4"

{(=,quadfn,'(larnbda(x)(plus(times,x,x)(times,2,x),-4)))}
binds the function variable quadfn to "x*x + 2*x - 4 11 using a lambda
expression. The function quadfn can then be used in an equality predicate:

y = quadfn(x) { (=,y, (quadfn,x)) }
Unlike nonnal equality, this is finite only if x is bound.

page 13 of 18

455

Predicates are often defined in tenns of a forward and reverse fllllction. A

reversible quadratic function quad(y,x) is defined as the conjunction
of quadfn and quadreversefn. The appropriate function being chosen by
FCP.

12. CXBDJSICN

Prolog M is still in its infancy. There are at least three important
questions left lll'l.answered:

1. By trapping the generation of infinite fonnulas,
will FCP make conventional resolution nore
flexible?

2. can trace facilities easily explain why programs
are infinite?

3. can we easily include user defined.theorems?

The auth::)r is grateful to the late Roy Mitchell, Vic Maller, Nonrian Truman,
Martin Stears and the other members of the ICL Systems Strategy Centre,
Stevenage who have helped to fonnulate and develcp the ideas in this
paper.

[l] BABB E

[2] BABB E

[3] BABB E

page 14 of 18

SYSTEM IDDELLING LANGUAGE {SML) For Enquiries to
a Business or Scientific t-b:lel.
ICL Technical Note TN 82/1, 1982

Joined Nonnal Fonn: A storage encoding for
relational databases.
ACM Trans. on Database Systems. Decanber 1982

Implanenting a Relational Database by means of
Specialised Hardware.
ACM TODS, June 1979

[4 J CI.ARK K & Logic Prograrmrl.ng,
TARNilJND S.A. (:Eds) Academic Press, 1982

[SJ cux:KSIN W Sc Programming in PROLOG,
MELLISH C Springer-Verlag, 1981

[6] KOWAL.SKI R A Logic For Problan Solving,
North Holland 1979

[7] WARREN D

[8] WARREN D &

PEREIRA F

Efficient Processing Of Interactive Relational
Database Queries Expressed In Logic,
Edinburgh DAI Research Paper No 156

An Efficient Easily Adaptable Systan For
Interpreting Natural Language Queries,
Edinburgh DAI research paper no 155

page 15 of 18

Appemix .. l Alp-rldfoniard
What is the result of appending (2) to (3)?

?append((2),(3),z)

X = U • X 1 & z = u. z' & append(x' ,y,z')

lx = 2,
=> therefore

INFINITE I
•===> therefore ===> y = (3), x' = ()

u = 2, x'=() · delay but append((),(3),z')

lu = 2

lz' = (3)
!therefore
!ANSWER z = (2,3)

Atpndix 2a Afflerld backwards

gives: · z •_=_(3_) ___ _

I
I

I<======·

What two lists appended together give the enpty list?

?append(x,y,())

X = (} & y = z

==> X = () ==>lz = (), therefore, y = ()
.____ ANSWER X = () y = ()

X = U • X1 & z = u. z' & ag>end(x' ,y, z')

infinite z = ()
=> therefore•===> therefore, fails,

delay NO ANSWER

page 16 of 18

AJpndix 2b
vmat two lists appended together give the list (3}?

?append(x,y, (3})

X = (} & y = z

==> X = () ===> z = (3}, therefore, y = (3)

ANSWER X = (), y = (3}

X = U • X 1 & z = u·. z'

>
infinite lz = (3)
therefore ===> therefo. re
delay · u = 3, z' = ()

& append(x' ,y,z')

lz' = 0
=>lappend(x' ,y, (}}

lgives one solution
l (see appendix 2a)

Ix' = 0, = 0

x' = ()
u=3
therefore
X = (3}

<=============

ANSWER x = (3), y = (}

page 17 of 18

~ 2c
What two lists appended together give the list (2,3)?

?append(x,y,(2,3))

X = ()

=> X = (}

X = U • X 1

& y = z

===> z = (2, 3) therefore
ANSWER x= (), y=(2,3)

& z=u • z' & ~(x' ,y ,z')

z = (2,3) z' = (3)
.:__> linflllite

therefore > therefore > append{x' ,y, (3))

gives two solution
(see appendix 2b)
x' = (), y = (3)

delay

x' = () or (3)

u=2
therefore
x = (2) or (2,3)
ANSWER x = (2)

ANSWER x = (2,3)
y = (3)

y = ()

u = 2, z' = (3)

x' = (3), y = ()

<=============

page 18 of 18

Afp!D:lix 3 Append infinite
What are all the lists which end with a 2?

?append(x,(2),z)

X = ()

X = U • X 1

& y = z

y = (2)
====>: therefore z = (2)

ANSWER X = (} y = (2)

& z = u. z' & ~(x',y,z')

I INFINITE I INFINITE I I append (x' , (2) , z')
=> therefore ====> th.erefore ===> therefore a soln i.s

delay delay .!' = () z' = (2)

EB/SAC.
SALLY836:EB 83/6

z' = (2) ,u=freel
therefore <======
ANSWER INFINITE

A NOTE ON COMPUTATIONAL COMPLEXITY OF LOGIC PROGRAMS 4 b 1

(Preliminary· Draft)

Abstract

Andrzej Lingas
Software Systems Research Center

Linkoping University
S-581 83 Linkoping, Sweden

Shapiro de:6.n:ed three complexity-measures over logic programs- goal-size, length
· and depth - .·and showed their relation to complexity measures for alternating
Turing machines. We, introduce the fourth complexity measure - conjunctive
goal-size - and employing the known ideas of Turing-machine complexity theory
we analyze the relation- among the complexity measures over logic programs. In
particular, for any deterministic logic progrtam of conjunctive goal-size S(n) and
length L(n) we can construct an equivalent deterministic logic program of depth
O(log(L(n)) .and length; O(L(n));. and if the program: is strongly deterministic
then we can :construct another equivalent strongly deterministic logic program
of goal-size O(log(S(n)) + log(L(n))) and length O(S(n)L(n)).

I ntroductio~

The idea of procedural· interpretation to Horn-clause logic begun a new era
in logic programming. ~Today, the programming language Prolog, based on .. this
idea, is a viewed as a start· point to the basic programming language. of the fifth
generation computer systems [FGCS81].

The standard method of execJting a program in Prolog is by so called 1back
tracking, consuming a .large amount of time and space. In order to achieve the
planned speed up in time performance, Japaneses have to improve backtracking
by mixing with other methods, for instance,bottom-up, and work out an efficient
parallel implementation of Prolog. A solid,·.analysis of the computationalr com
plexity of logic programs should .precede th'0 speed up e:fforts. ,

In a large part our goal is i to use the. similarity betweem logic programs
and alternating Turing machines: in order to derive relationships among various
complexity measures over logic programs .. Efficient implementing of logic pro
grams in various computational models may benefit fr.om these results. As· these
results rephrase in part::-known facts from Turing machine theorJi in the language
of logic programming, they seem lto be of smaller importance for abstract com
plexity theory. The other our goal is to comment informally on the possibility of
a fast parallel implementation of logic programs, and, on complexity of bottom
up computations of logic programs that are neglected in the logic programming
society.

1

Basic Notions

We totally adopt 1Shapiro's definitions· of definite clauses,·,goals, conjunc
tive goals, clause's head and bodY, logic program, goal reduction, substitution,
uniti.er, derivation and refutation of a goaLfrom a logic program, the phrase "a
program P solves a goal", refutation tree, length, depth, goal-size of refutation
(see (Sh82a]).

The author came to the conclusion that. it is natural and convenient to:.allow
also variable:.·free initial. axioms as input data.
Initial axioms are inserted in the list of axioms of a lo~c program before starting
its computation.
A pair (G, A) consisting of an initial gdal G (possibl~,: a. conjunctive goal) :and a
set of initialL.axioms is called an initial goal~axiom pair.
A goal-axiom pair (G,A) has a refutationifrom a logic program P if G.,has a
refutation from PUA in the Shapiro's sense.
The interpretation of :a logic program P, .. .I(P), is the set of ,all variable-free
goal-axiom pairs that are constructable from predicates, constants and functors
appearing in ithe language in which P is wr,itten, and·:ihave a refutation from P.
Following our modification of logic program semantics in comparison with Shapiro,
we redefine complexity.·measures· over logic programs as follows::

A logic program Pis respectively of goal-size, depth,::length complexity C(n) if
for any goal,;axiom pair. in I(P) o.f size n there respectively exists a refutation of
goal~size, depth, length: C(n).

For the· definitions:: of non-deterministic and deterministic :'Turing machine
the reader. is·:referred to (CKSh82}.

Moreover we use the following definitions:

(1) An axiom is a clause with the empty body.
(2) Given a :computation of a logic program, C, a reduction step of C is the
reduction of.a chosen goal to a sequence ofnew goals by a single application of
a clause in the program.
(3) Let P, R be a logic program .and a refutation, respectively,;·
The conjunctive goal-size of R is, the maximum size of the current list of: goals
at any reduction step of R (respectively, goal size ia:the maximum size of any
unit goal at.any step of R). P is of conjunctive goal-size complexity U:(n) if
for any goal-:axiom pair Gin I(P) of size n· there is a refutation of G from P of
conjunctive goal-size <U(n).
The non-deterministic length of R is the number of nodes in the refutation tree

2

such tha.t there are at .least two clauses whose heads~ match the: goal chosen to 4 b:J
reduce. P is of non-deterministic: length complexity N(n) if for· any goal-axiom
pair G in I(P) of size n there is a refutation of G from P of non-deterministic
length <N(n).
If N(n)-o then Pis strongly deterministic~
If every goal-axiom pair in I(P) admits only one refutation then:P is determinis
tic, see [H8l].
0 bviously I if P is strongly deterministic then it is deterministic.. The notion of
strong determinism for logic programs corresponds to that of determinism for
Turing machines.
(4) We assume a standard list representation. The term O denotes the empty
list, and the.: term [X IYJ standSI . .for a list whose head is X and tail is:,.,y. A
string a1a2 ... a"' is represented by the list [a1l[a2l[... lan]]J, With. the exception
of Theorem 3 integers ,n are represented as n-fold composition of the functor
s applied to~the constant 0. Writing a logic program, we· skip·the clauses and
axioms defining the arithmetic predicates of:=, <, <; >, >. Finally, we assume
that we can::test .equality ·between an atom and term by applying a standard
equality anddnequality ·:predicate·s built in the formalism of logic programs.
(5) According to the assumed string representation (see 4), Turing machine M
is equivalentcto a logic ·program :P if after .erasing the square brackets and the
symbol" I" in the words of L(M), we obtain I(P).

Relationships among Complezity Measures ouer Logic Programs

In the following remark, WEr.can find :a couple of obvious)observations on
complexity measures over logic programs. ;j

Remark 1. Let P be a logic program of depth complexity D(n), conjunctive
goal-size complexity G(n) and length complexity L(n)~: The following inequalities
hold:

D(n)<L(n) :
L(n)<dG(n) where d is·.a constant uniform:'in P.
Moreover, ifwe restrict-initial goals to single.!goals then;we have L(n)<cD(n)+1-

l where c is the maximum number of goals in a clause of P. ·

In several computational models, the .depth complexity is:ca natural lower
bound on the time taken by parallel evaluation. ln._the computational model
of logic programming it is hard to approximate the lower bound with efficient
parallel computations .. Simply, solving a conjunctive goal with shared variables

3

cannot be spawned directly.
By virtue of the , following theorem1 for any logic program there ·exists

an equivalent logic program of fairly· small depth. The proof is by applying
Savitch's trick, originally applied to simulate non-deterministic space bounded
Turing 1:0-achines by deterministic, ones (see [Sa70])1 and then, by time bounded
alternating Turing machines [CKS80] ..

Theorem 1. Any logic program P .of length complexity.£(n) and non-deterministic
.length complexity N(n) can be transformed into a logic program Q such that a
goal-axiom pair ((G1, G2, ... , Gl), (Ai, A2, ... , A1;)) of size n is in l(P) if and only if
there exists a:refutation of the corresponding goal-axiom pair (p([G1l[G2 l[... jGz]]], [1,
r log(L(n))l, (p([A1 IX], [X], 0), p([A2 IX], [X], 0), ... , p([A1; IX], [X], 0))) from Q of
depth flog(L(n))l, length 4L(n) and non-deterministic length N(n). If the pro
gram Pis deterministic:(respectively, strongly deterministic) then Q is also deter
ministic (respectively, strongly deterministic}.
Proof. To form the cla,uses of Q ,, 1We use only the predicate p(X~, Y, i). It reads:

If X and Y are lists representing;:goals and i is a natural number then the goals
from X can .be reduced to those from Y in12' reduction steps. :

For each clause A+-B11 ... , B1;. of .P, the program Q contains the axiom .
p([AIX], [B11[B2! ... [BilX]]],0). Note that the predicates from P become functors
here. Next, Q contain&,the axiom :p(□, [), 0).tsaying that we can reduce the empty
list of goals to itself in one reduction step. The only clause with non-empty body
in Q is as follows:

p(X,Y,s(i))< +- p(X,Z,i},p(Z,Y,j).

Given a refutation of G,from P, of length L(n), there exists a refutation of G from
P, say R, such that at,each reduction step. in R the ,first clause on the current
list of goals is chosen to reduce and R is of length L(n). Having R, we form a
refutation of the corresponding initial goal ,from Q by applying. the only clause
of Q in depth-first manner, and .then, the axioms of .Q. As a result, we obtain
a refutation ,whose tree has, leaves labelled::by instantiated predicate p(X~ Y, 0)
corresponding to single:.reduction steps of R. The length of the. refutation does
not exceed 2flog(L(n))+1l - 1. Its non-deterministic length is the same as that
of R. If R is .the only refutation .of the initial goal-axiom pair from P then it is
the only refutation of the corresponding initial goal-axiom pair· from Q.
Conversely, given a refutation of the corresponding goal from Q, we can easily
find out a refutation of G from P · I

4

In Savitch's simulation of non-deterministic space bounded Turing machines ~ b5
with deterministic space bounded Turing machines, the intermediate
tape configuration (corresponding to the intermediate list of goals Z in the
above proof) is determined by exhaustive search (see [Sa70]). In the proof of
Theorem 1, the intermediate list of goals substituted for Z is the outcome of
calling p(X, Z,j) (in Concurrent Prolog [Sh82b}, the basic clause in Q would
be rather written as p(X, Y, s(j)) +- p(X, Z, j), p(Z?, Y, j)). From the point of
deterministic simulation, our method of finding the intermediate state is more
efficient than Savitch's one if the non-deterministic length complexity of P is
small, and worse otherwise.
The first who showed; how to simulate Turing machines with logic programs
was Tarlund [T67]. Shapiro proved a close relationship between complexity of
alternating Turing machines and complexity of logic programs [Sh82a}. The
following theorem reveals relationships between complexity of non-deterministic
Turing machines and complexity ·of logic programs (In thi·s theorem, as well as
in Theorem 3 and Corollary 1 and 2 we informally use the notion of simulation
whose meaning can be deduced from the proof of Theorem 3).

Theorem 2. Any multi tape (deterministic) Turing machine operating in time
T(n), and space S(n) can be simulated by a (strongly deterministic, respec
tively) logic program of length complexity O(T(n)), and conjunctive goal-size
complexity O(S(n)). Conversely, any (strongly deterministic) logic program of
length complexity L(n), and conjunctive goal-size complexity S(n) can be trans
formed into an equivalent (deterministic, respectively) Turing machine operating
in time O(L(n) X S(n)2), and space O{S(n)).
Hint. Note that a single reduction step can be simulated by a deterministic

_ Turing machine in time O(S(n)2) (see [R65]) and read the proof of Theorem 4.4
and 5.4 in [Sh82a]. 1

By Theorem 1 and 2 we obtain the following corollary:

Corollary 1. Any (deterministic) Turing machine operating in time T(n), and
space S(n) can be simulated by a (strongly deterministic, respectively)· logic
program of depth complexity O(log(T(n)), length complexity O(T(n)), and con
junctive goal-size complexity O(S(n)).

· Probably, several important problems solvable by deterministic Turing
machines in polynomial time are not solvable in parallel time O(logkn), i.e. by
parallel machines with polynomial number of proces·sors with fixed fan-in and
fan-out, running in time O(logkn) (see [B77],[CKS81]). As by Corollary 1,

5

deterministic Turing machines operating in polynomial time can be simulated by
deterministic logic programs of logarithmic. depth complexity, probably a small
depth complexity of a logic program does not ensure the existence of a fast
parallel implementation of the program, in the general case. It seems that the
requirements that a logic program should satisfy to admit an essential parallel
speed up are more complex. In the next section, we shall briefly discuss this
problem from the point of view of bottom-up computations. Here, we infor
mally propose the following requirements, coherent with the top-down nature of
derivations from logic programs.

Let P be a logic program of length complexity L{n). For i, :j, let Ri,;(n) be the
equivalence relation between conjunctive goals such that G1Ri,;(n)G2 if and only
if for any goal-axiom pair of size n, G, any refutation of G from P with the the
i -th element G1 performs the same i-th through j-th reduction steps as any
refutation of G from P with the i-th element G2 • In other words, to determine
the i-th through j-th reduction steps of a refutation of G from P whose i-th
element is G1 it is sufficient to know a representative of the equivalence class of
R,,;(n) for G1. Suppose that for n E N there exists a tree Tn of fixed degree
with leaves consecutively labeled by 1 through L{n), and a number mn. such that
for any subtree of T n with the leftmost leaf labelled by i and the rightmost leaf
labelled by i, the number of equivalence classes of Ri.;(n) is at most mn., In the
simplest case, the tree Tn. may correspond to the refutation tree of P. Given an
goal-axiom pair of size n, G, we can recursively find a refutation of G from P
(if it exists) by applying divide and conquer strategy induced by Tn. and trying
all representatives of the equivalence classes- of Ri,;(n) in parallel. Provided that
T n and the representatives are given, the refutation can be determined in time
O(log(mn) X height(T.,,,)) with the use of 0(2log(mA)Xheight(TA)) processors. In
particular, if m,,, is a constant uniform inn and height(T.,,,) = O(logn), P can be
implemented in parallel time O(logn). The. reader can find more details about
this approach, expressed rather in terms of Turing machines, in (L83]. Here, we
offer only the following simple example.

Example 1

Let us consider the following logic program, delmem(Z, X, Z', H), where
Z is an input linear list of a constant length over a finite alphabet E, X is an "
input list over E organized as a complete binary tree of height H, Z' is the out
put list composed of all the elements of Z that are not in X, member(A, Z),
notmember(A, Z), delete(A, Z, Z') stand for the standard predicates testing mem
bership of Ain Z and deleting A from Z { i.e. Z' = Z - A) respectively (see

6

[CM81J), we may assume without loss of generality these standard predicates to
be available primitives since they are applied to sublists of the input list Z which
is of fixed length in this example.

delmem(Z,X, Z',H) +- delmem(Z,X, Z',O,H).

delmem(Z,.[X I Y],Z',K,H) +-

K < H, delmem(Z,X, Z", s(K), H), delmem(Z", Y, Z', s(K), H).

delmem(Z, A, Z', H, H.) +- member(A, Z), del(A, Z, Z').

delmem(Z,A, Z,H,H) +-· notmember(A, Z).

Note that if we neglect labels, the form of a refutation tree of P for any goal
axiom pair with the input list X of length n is totally determined by n. Let
T,,, be a tree of such a form, with leaves consecutively labelled by 1 through
n. Clearly, if i and j are the labels of the rightmost and the leftmost leaf in a
subtree of T,,,, then the i-th through j-th reduction steps in any refutation of
an goal-axiom pair with the · input list X of length n from our logic program
is a refutation of the goal delmem(U, Y, U', k, h) corresponding to the root of
the subtree. Thus, the i-th through j-th steps are totally determined by the
instantiation:. of Z, U. Therefore, the equivalence classes of the relation R,,;(n)
can be identified with the possible instantiations of Z. As the input list Z is of a
fixed length,. the number of possible instantiations of Z is a constant uniform in
n. Hence, the number m,,, is a constant uniform in n here. It is not difficult to
see that the language specified by de(mem(Z,X,Z',K,H) is regular but in the
general case, the language specified by a logic program for which m,,, = 0(1) is
not necessarily regular [183]. The tree T,,, induces the same divide and conquer
strategy as the recursive definition of delmem(Z, Y, Z', k, h), therefore, we do
not need to transform P in this respect. To try all of the representatives of
equivalence classes of the relations R,,;(n), equivalently all possible instantiations
of U, it is sufficient to add the following clauses with B ranging over all possible
instantiations of Z:

delmen(Z, [XI Y], Z', K, H)+-

K < H,delmem(Z,X,B,s(K),H),delmem(B,Y,Z',s(K),H).

It is easy to see that by fully using the OR-parallelism introduced by the above,
additional clauses, clelmem(Z, Y, Z', k, h) can be implemented in parallel time
O(logn).1

7

The following theorem relates time and space complexity of Turing machines 4 6
to goal-size complexity of logic programs. The proof is analogous to the proof
of Chandra et al. showing Uc>oDTIME(c5 <"">) C ASPACE(S(n)) [CKSh82].

Theorem 3. Let M be a deterministic Turing machine operating in time T(n)
and space S(n). M can be simulated by a strongly deterministic logic program
Q of goal-size complexity O(logT(n) + logS(n)).
Outline of Proof. We assume several restrictions on M fallowing the proof of
Theorem 3.4 in [CKS80]. In particular, M has only one tape, on the tape the
input word is written, M accepts an input by entering its unique accepting state
qA with the head scanning the T(n) + 1st tape square, etc. (see [CKS80] for
details). A computation of M on the input word is described as a sequence of
configurations, each in the form aq{j where ap describes the contents of squares
0 through 4T(n), q is the current state of M and the head of M points the
rightmost symbol of a.

For any four symbols from the tape alphabet and the set of states of M,
6_ 1, 60 , 61 , 62 , among which at most one represents state of M, there is unique
symbol 6 such that for any j if 6-1, 60, 61, 62 occupy positions j-1,i,i+l,i+2
in a configuration of M 1 then 6 occupies the position j in the next configuration
of M. For each such quintuple 6-1, 60, 61, 62 , 6, the program. Q contains the
axiom next(6_1 , 60 , 61, 62, 6) .. The basic predicate in Q is accept(j, t, a). It says
that in the t - th configuration. of the computation of M, the j - th square
contains the symbol a.
To prove the theorem we cannot represent the integers j, t using. the unary nota
tion defined in the previous section. Here the integer of binary representation
bi, ... , bi is written as [bzl[... lb1]]. The successor predicate is defined as follows:

suc([llX], [OIY]) +- suc(X, Y).

suc([OIX], [l!X]).

sue([], 1).

The definitions of the predicates of < and < for this specific representation of
integers are left to the. reader.
The main clause in Q is as follows:

accept(j, u, X) +- suc(t1 u) 1 suc(i, j), accept(i1 t, Y) 1

suc(j, k), accept(k, t, W),

suc(k, l), accept(l, t, T),

next(Y, Z, W, T).

To verify the initial contents of the tape we use the clauses accept(j, O,X) +

inpt.1.t(i, X). The integers occurring in any derivation of accept(T(n)+ 1, T(n), qA)
from P have binary representation of the length not exceeding f min{log(T(n)),
log(S(n))}l. To prove the theorem, we show by induction that accept(}, t, a) can
be proved in O(L(n)) reduction steps if and only if the given interpretation of
accept(i, t, a) is right. 1

By Theorem 2 and 3 we obtain the following corollary:

Corollary 2 .. Any strongly deterministic logic program of length complexity
L(n) and conjunctive goal-size complexity S(n) can be simulated by a strongly
deterministic logic program of length complexity O(L(n) X S(n)2), and goal-size
complexity O(log(L(n)) + log(S(n))).

Bottom - up Computations of Logic Programs and their Complexity

. That what we mean by a computation of a logic program P might be
specified as a top-down computation of P. A bottom-up computation of Pis a
reversed (top-down) computation of P, and can be briefly described as follows.

The computation starts from a set of instantiated axioms. At each step
we non-deterministically pick a clause of P, A+-B1 ', ~ ', ... , B1c' (it might be
an axiom, Le. k = 0). Then we non-deterministically choose a sequence
Bi, B2 , ••• , B1r. from the. list of current axioms in order to unify it with the body
of the previously chosen clause. The unification is via a substitution 9 and the
axiom AD. is added to the current list of axioms. The computation terminates
when there exists a substitution. 9 unifying each initial goal with a member of
the current list of axioms. The. definitions of of derivation, refutation of an
initial goal-axiom pair from P etc. as well as the definitions of depth, length
and conjunctive goal-sfae complexity for bottom-up computations are similar to
those for top-down computations, and are left to the reader.

Remark 2. If a logic program is of bottom-up depth complexity D(n), bottom-up
length complexity L(n), bottom-up goal-size complexity U(n), then it is of depth
complexity D(n), length complexity L(n) and goal-size complexity U(n).

9

Choosing a. clause a.ta. step of a bottom'."up computation of Panda sequence Lt +(
of some current axioms in order to unify with the body of the clause, we do not
know whether it leads to a proof of the initial goals. Moreover, the number of
possible choices of the sequence of some current axioms may be of order nk where
k is the number of goals in the body of the chosen clause. That is why programs
in Prolog are executed in a top-down manner. We may argue that if the program
P is non-deterministic. then choosing a clause in a top-down computation in
order to unify its head with the selected goal, we neither know whether it will
solve the goal. However, if we do not loop then we may backtrack in case of
failure like the running Prolog interpreters whereas the definition of failure for
a bottom-up computation is not clear. Neverthless, it is author's feeling that
for an important class of logic programs bottom-up computations are essentially
more efficient than (top-down) computations. This class may include so called
dynamic programming procedures which recursively generate a lot of symmetric
subgoals in order to solve the original goal.

An example of a logic program for the dynamic programming procedure of
Cocke, Kasa.mi and Young, accepting wordsfrom the language L(G) where G =
(N,E,P,S) is a context-free grammar in Chomsky normal form (see [AHU74]),
is shown as Program L

Program 1

PA(i, j) +- qA(i, i, j). for A E N,
qA(i, le, j) +- s(s(k)) < j, qA(i, s(k), j). for A E N,

qA(i, k, j) +- i < k < j, Ps(i, k), Pc(k, j). for A--J>BC E P,
PA(i, s(i)) +- i < n, input(a, i). for A-+a E P.

The program is design.·to succeed on the goal-axiom pair consisting of the goal
Ps(O, n) and the axioms input(wi, i). where w1 , ... w" is the input word if and
only if the input word belongs to L(G). In the worst case we may have to
backtrack an exponential in n number of times in order to find a (top-down)
computation accepting w whereas a bottom'."'up computation yields an answer in
O(n3) deduction steps if it proves a new goal at each deduction step. Why are
bottom-up computations successful here? Simply, there are only O(n3) variable
free goals that can be solved by Program 1 starting from the initial axioms.

Definition 1. Let R be a refutation. The goal number of R is the total number
of distinct goals in the nodes of the refutation tree. A logic program P is of
goal number complexity G(n) if for any goal A in I(P) of size n there exists a
refutation of A from P of goal number <G(n).

10

Our observation about bottom-up computations of Program 1 can be generalized
as follows:

Remark 3. Let P be a logic program. P is of goal-number complexity G(n)
if and only if it is of bottom-up· length complexity G(n). Moreover, if P is of
goal-size complexity U(n) then it· is of goal number complexity du(n.) where dis
a constant uniform in P.

The analogous remark for {top-down) computations would not be true. Simply,
it might happen that to solve a given goal, we have to solve the same goal several
times. In implementing (top-down) computations we can get rid of the above
inefficiency by dynamically extending the original set of axioms of P by the
solved intermediate goals.

By Theorem 2 and Remark 2 and 3, we can observe that any·Turing machine
operating in polynomial time can. be simulated by a logic p~ogram of polynomial
goal number complexity.

In a simple parallel implementation of bottom-up computations, we do not
encounter the problem. of variable sharing for subgoals of equal rank. Therefore,
the depth complexity · and the time taken by a single deduction step seem
to decide about the time performance of a bottom-,up computation of a logic
program of polynomial goal number complexity, in a parallel computational
model. The recent paper of Lewis and Statman [LS8?] has shown the prob
lem of unification between :first order terms to be complete in co-NLog Space.
Therefore, the existence of a parallel algorithm for the unification problem

· operating in time O(lognlr.) and using a polynomial in n number of processors
.· '

would imply the existence of such algorithms for any problem from NLog Space
or co-NLog Space, which seems unlikely. Hence, we cannot count on a parallel
implementation of the single deduction or reduction step in time O(lognlr.). If
the logic program P in Theorem .. 1 is not patological then the bottom-up depth
complexity of the resulting program Q is equal to the depth complexity of Q.
Therefore, by Remark 2, we can usually apply Theorem 1 in order to compress
the bottom-up depth complexity. The following theorem, analogous to Theorem
1, shows how to achieve this for any logic program.

Theorem 4. Let P be a logic program of bottom-up length complexity L(n).
Let Bi, ... , Bm be the list of all axioms in P. P can be transformed into a logic
program Q such that a goal-axiom pair ((G1, ... , G1r.), (A1, ... , Ai)) is in J(P) if
and· only if the corresponding goal-axiom pair {p([B1 I[... IBm]J, [G 1 I [... [G 1r. 1-111
, f log(L(n))l), (p([X], [A1 IX], 0), ... , p([X], [A,IX], 0))) has a refutation from Q of
depth f log(L(n))l + flog(n + L(n))l.

11

4t1

Outline of Proof. The proof is again by applying Savitch's trick, analogously as
in the proof of Theorem 1. Here the predicate p(X, Y, i) says:

If X and Y are lists of axioms and i is natural number then the axioms in Y
can be derived from those in X in 2i (bottom-up) deduction steps.

The axioms -chosen from the current list of axioms in order to unify with the
body of chosen clause may occupy various_positions on the list. Therefore, we
include in Q the following clauses to pull the chosen axioms :to the front of
the list (because the list of axioms may be of length n + L(n) we again apply
Savitch's trick).

p(X,Y,O) +- q(X,Y,rlog(n+L(n))l).

q(X, Y, s(j)), +- q(X, Z, j), q(Z, Y, j).

q([Xl[YIZ]],[Yl[XIZ]],'.O) +- X=/;Y.

q(X,X,O).

Finally, for each clause A+-B1, ·-, B,,, in P :we have the corresponding axiom
q([B1 l(... [B,,, IX] ...), [Al [B1 l(.:.l[B,,, IX] ...], 0).11

In the above theorem, the program Q is non-deterministic even if the program
Pis strongly; deterministic (compare with Theorem l).

Possible Extensions

(1) The goal-:size complexity of Q'ain Theorem 1 mightibe as large as L(n) X U(n)
if Pis of goal-size complexity U(n). It seems possible to generalize Theorem 1 by
showing a trade off between the depth complexity and the goal-size complexity
of Q.
(2) It is possible to formalize the notion of simulation or introduce a more general
concept of equivalence, among logic programs and Turing machines.
(3) It would be interesting to design a parallel algorithm for, the unification
problem operating in time O(n01) and using (nP) processors where a < 1 and

P<l.

Acknowledgements

I would like to express my appreciation to Jan Komorowski, and Jan Maluszynskii:
for their encouragment: and remarks.

12

------- ------- --- --~

! i

References ::

[AHU74] Aho, A.V., J.E. Hopcroft, and J.D. Ullman; The design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
[B77] Borodin, A.B., On relating time and space to, sfae and depth, SIAM J.
Compt., voL 6(4), 1977.

[CKS81J Chandra,A.K., D.C. Kozen, L.J. Stockmeyer, Alternation, Journal of
the ACM 28(1), 1981. .

[CM81J Clocksin, W.F·. and C.S. Mellish,~ Programming in Prolog, Springer
Verlag, 1981..

[H81j Hogger, C.J., Derivation of Logic Programs, Journal of the ACM 28(1),
1981.

[FGC81] Proceedings of International Conference on Fifth Generation Computer
Systems, Tokyo, 1981. :,

[L83} Lingas,: A., Languages with Sparse Computations, i~ preparation.
[LS8?] Lewis, H.R. and. R. Statman, Uniiiability is Complete for;co-NLog Space,
unpublished:manuscript, 198?.

[R65] Robinson, J.A., A machine.oriented logic based:on the reduction principle,
Journal of the ACM 12, January,'. 1965.

[Sa70J Savitch, W.J., Relationships BetweeTL·Non-deterministic and Deterministic
Tape Complexities, JCSS 4(2), 1982.

[Sh82a] Shapiro,E.Y., Alternation and the Computational Complexity oftLogic
Programs, International Conference on Logic Programming, Marseil, 1982. ·,[Sh82bJ
Shapiro,E.Y., A Subset of Concurrent Prolog and Its Interpreter, unpublished
manuscript, 1982.

[T77J Tarlund, S.A., Horn Clause-Computability, BIT 17, 1977!:'

13

ON THE FIXED-POINT SEMANTICS OF HORN CLAUSES
WITH INFINITE TERMS

M.Falaschi, G,Levi, C,Palamidessi
DiPartimento di Informatica
Univirsita' di Pisa, Ital~

1. INTRODUCTION

Infinite terms (streams) have been introduced in
several PROLOG-like lansuases C2,J~4,8,10J in order to
define Parallel communicatins Processes. The resultins
operational semantics is auite similar to Kahn-McQueen's
model C5J, characterized bw asents which communicate throush
channels. Most of the above mentioned lansuases are anno
tated versions of PROLOG. Hence some of the most relevant
.features of PROLOG, such as the abilit~ to define relations,
set lost.

If infinite terms are added to pure PROLOG (i.e. Horn
clauses>, the definiti6n of a "Sood• fixed-Point semantics
is still an open problem. In C1J a sreatest fixed-point con
struction is Proposed. Such solution, however, is not satis
factorv, because:
i) the sreatest fixed-Point semantics sives a non-emPtv

denotation not onl~ to nonterminatins Procedures which
comPute infinite terms, but also to "bad" standard non7
terminatins Prosrams;

ii) the construction is not alwaws effective, i.e. there
exist Prosrams whose Sreatest fixed-Point cannot be com
puted.

In this PaPer we Propose two semantics based on a least
fixed Point construction. In the first· semantics we only
consider all the finite aPProximations of an infinite term,
while the second se~antics allows to handle infinite terms.
The lansuase we will consider is a manw sorted version of
PROLOG. Its swntax will be defined in the next section. It
is worth notins that the sortins mechanism will allow us to
distinsuish finite and infinite terms.

2. SYNTAX AND DERIVATION RULE

The lansuase alphabet is composed by;

1) A set S of identifiers for the representation of the
sorts. A sorts is!

, I

I I

!

I I

I I

a) simPle ifs belonss to s. The set of simPle sorts is
Partitioned into two disJoint classes, canonical and
non-canonical sorts, to coPe with .finite and infinite
data structures resPectivelv.

b) functional ifs belonss to s*--> S. If s has the
form: s 1 x • • • x sn --> s', and at least one of the si 's
is non-canonical, thens' is non-canonical too.

c> relational ifs belonss to S.
2) A familv C of sets of constant swmbols indexed bw simPle.

sorts. Ifs is a non-canonical sort, then the set of con
stants of sorts contains the special svmbol w 1 , which
~enotes an undefined (not vet evaluated) data structure.

3) A familv D of sets of data constructor svmbols indexed bv
functional sorts.

4) A family V of numerable sets of variable svmbols indexed
b!:I simple sorts.

5) A familY R of sets of Predicate svmbols indexed bv rela
tional sorts.

The lansuase data
data constructors to
sorts. Hore Preciselv,

i) a constant svmbol

structures are obtained bv aPPlvins
variables and constants of suitable

a term of sorts is:
of sorts.

. ii) a variable swmbol of sort s.
iii> a data cor,structor application d(t 1 , ••• ,tn> such that

.t1 , •··• • ,tn are data terms of sorts s 1 , • • • ,sn and d
belonss to D and has sort~ x ••• x ~--> s.
A term which contains at least one occurrence of an
undefined constant swmbol is called suspension and
deno.tes a not cotr1Pletel1::1 evaluated data structure.
Because of the condition,in t.b>, if one of .the t 1 's
.hiB~ ... a non-canonical sort (briefly is nor,-canonical>,
then also the term is non-canonical. In tact, the
result of the aPPlication of a data constructor to its
components Carsuments> is a suspension if some of its
components are suspensions.

The lansuase basic construct is the atomic formula.
An atomic formula is a Predicate aPPlication P<t 1 , ••• ,tn >
such that t 1 ,. •. ,tn are data terms ot sort s 1 , ••• ,sn resPec
tivelv, and Pis a Predicate s~mbol of sort s 1 x ••• x Sn•

A set of atomic formulas can be interpreted as a col
lection of Processes or asents C2,7J connected b~ channels .•
Each atomic f_orm•Jla denotes a Process. There e>d sts a chan
nel connectins processes. Ph and~, if there exists a vari
able svmbol which occurs in the atomic formulas denotins \
and ~. The basic activit~ is messase Passins throush chan
nels and reconfisuration of the collection of Processes.
Informations can pass throush a channel in both directions.
This is not the case of the SCA model C7J, as well as of the
Kahn-McOueen model C5J.

The d~namic behaviour of the collection of Processes is
specified b~ a set of clauses, which are expressions of the
lansuase defined as follows:
1> A definite clause is a formula of the form:

A <- - B1 , • • • , Bn
where A and the Bi's are atomic form1Jlas. If n=O the
clause is called "unit clause• and is denoted as follows:

A <-- ..:l
All the variables occurrins in a clause are viewed as
universal!~ auantified.

2) A nesative clause (Soal statement> is a formula of the
form:

<-- A1 , • + +, A111

where the A1 's are atomic formulas. If m=O it is a null
clause denoted b~

<--..\ <or □ >
From a losical viewpoint, the s~mbol •,• denotes the losical
connective AND, the s~mbol "<--• denotes the losical imPli
cation, and A is the neutral element with respect to the
operator•,•, that is<-- A,..\=<-- A

The notion of derivation of a soal -statement from a
siven soal statement and a prosram is essentiall~ the same
defined for PROLOG C6J, and is based on resolution C9J. The
onl~ trivial difference has to do with sort checkins.
The relation (J .

G 1--> G' w
denotes that the soal state~ent <-- G' is derivable from the
soal statement <-~ G and the Prosram W, with the substitu
tion 8, which is the composition of all the substitutions
used in the elementar~ derivations.

If, for some fJ, the relation

G 1-8-> ..:l
w

holds, then<-- G is refutable in w.
Our interpretation of soal statements and clauses is

·exactl~ the same siven b~ Kowalski C6J for PROLOG. However,
we think of a soal statement as denotins a collection of
Processes. The derivation of a new soal statement
corresponds to a reconfi~uration of the collection. Each
elementar~ variable bindins in a unification can be seen as
a messase Passins from a Producer to a consumer. Our
interpretation is motivated b~ the fact that we view
Processes as non terminatins procedures which Produce (or
consume) infinite data structures. Such Procedures have an
empt~ denotation in PROLOG, both from the operational and
the fixed-Point semantics viewpoint.

' !

I I

I !

3. OPERATIONAL SEMANTICS

In standard Horn Clause Losic the concept of computa
tion of a soal statement is essential lid based on the re.f•Jta
tion of that soal statement, (i,e, the derivation of the
null clause>, and therefore on the concept of termination.
In other words, the result of a computation of a soal state~.
ment (i.e. its operational semantics) is the relation esta
blished, for each Predicate in the soal, b~ the substitu
tions determined in all the Possible refutations C6J.

This definition of operational semantics results inade
auate to describe Processes which handle infinite terms
(streams). Consider, for examPle, the followins Prosram:

W = (list<x,x,L> <-- list<s<x>,L>>
where the sort of xis •naturals• <canonical sort>, the sort
of L is •streams of natural' <non canoriical sort>, •••
denotes the stream of naturals constructor, and •s• denotes
the successor constructor on naturals (for the sake of sim
PlicitY we will use 1 instead of s<O>, 2 instead of s<s<O>>,
etc,).

Since the soal statement <-- listCO,L) has no refuta-
.. tions in W, the ·denotation of the Predicate list siven by

the standard operational semantics is an emPt~ relation.
In SPite of this, a derivation of listCO,L) Produces, step
by step, the substitutions:

L = O+L
L = 0+1+L
L = 0.1.2.L etc •••

It is easy to see that an infinite computation of this
soal statement will lead L to be instanced to the infinite
list of natural numbers. In seneral ever~ Process which Pro
duces infinite terms has the same Problems with resPect to
its semantics definition, since its computation necessaril~
does not terminate.

The solution we Propose is based on the introduction
for each Predicate s~mbol P which is non-canonical Ci,e+
which handles infinite terms>, of a terminal clause (unit
clause) defined as follows:
If P has sort s 1 x ••• x sn, then the terminal clause has the
form PCt1 , ••• ,tn> <-- , where each t 1 is:
- . a v a r i able of so rt s1 , i f s I i s canon i ca 1
- the undefined cor,stant sYmbol w51 , if s 1 is non..,canonical.

The terminal clause is added onlld if there exists no
unit clause, in the Prosram, for which there is a superposi
tion. This condition is necessarld because it must not be
Possible to introduce new solutions b~ addins a terminal
clause. The new terminal clause must onl~ allow termina
tion.

Note that if there exists a terminal clause, for which
there exists a superposition with the new one, then it con-
tains some non-canonical terms that can be substituted
with w. For this reason the termination is suarant~ed in
this case.

In our example the terminal clause is
list(n,w) <--A

This clause allows the seal statement <-- listCO,L) to have
a refutation. The values that it computes for Lare of the
form: w, o.w, 0.1.w, 0.1.2.w, etc •••

The s~mbol w, in this example, looks like the empty
list constant, and the values for L look like standard fin
ite lists. Their Prasmatics however is auite different,
since the Prosrammers can think in terms o~ infinite lists
a~d not be worried about artificial terminal cas~s, which
can be inserted systematically by the interpreter.
The introduction of the terminal clause is similar to the
termination rule for infinite data productors Proposed in
C7J. In that case a Process Producins a (potentiallw> infin~
ite data structure terminates when all the Processes which
consume that data structure have terminated (l~zy · evalua
tion>. We obtain the same behaviour by exPloitinS the non
determinism of the lansuase. A process which produces a
(potentially) infinite stream, at each stream aPProximation
can be reduced to A. However, if there exist consumins
Processes, the Process has an alternative reduction which
Produces a refinement of the stream.

The operational semantics is defined as follows:

If Wis a set of clauses, and Pis a Predicate swmbol of
so~t s1 x ••• x ¾, then the operational semantics of Pin W
is~

D0 (P, W) = < (t , ••• , t 0) I t 1 has sort s1 , i = 1 , •• • 0, n
and P < t 1 , • ·• • , t 0) I w; A }

where W' is the union of the Prosram Wand
terminal clauses, added accordinsl~ to
described.

EXAMPLE 1)
listCn,n.L> <-- list<s<n>,L>

of
the

P(s(n),k.L,~) <-- P(n,L,m) , Prod(k,m,~)
P<O,L,1> <--A

all
rule

of its
above

Assume <-- Prod<k,m,~> be refutable iff Y results to
be the Product of m and k.
list<n,L) is the Process which Produces the stream L of
al! the natural numbers ctartins frcm n.

' ' ' ' '

' . '

I !

I I

I !

6 4+4
P(n,L,m> defines the relation •mis the Product of the
first n numbers in the stream L•.
Then, consider the Prosram:

1) fact<n,m) <-- list<l,L> , P<n,L,m)
2) P(s(n),k.L,~l <-- P(n,L,m) , Prod(k,m,~)

W'= .3) PCO,L,1) <--..l
4) list<n,n.L) <-- list<s<n>,L>
5) list<n,w) <-- .,l <terminal clause)

Note that 5 is the onl~ terminal clause, since the
clause P<x,w,y)(--.,\ will not satisf~ our condition.

factin~m> defines the relation 'mis the factorial of
o•.
We will now Sive an examPle of computation. For the
sake of simPlicitw, the second clause will be rewritten
in the form:

P<s<n>,k.L,k*m> <-- P<n,L,m)
where the swmbol '*' is interPreted as the Product
operator on natural numbers.

Initial soal statement:
<-- factC2,x>

bw clause 1),and the substitution x=m:
<-- list(1,L) , PC2,L,m>

bw clause 2, and the substitution L=k+L1 , m=k*m,:
< - - 1 is t C 1 , i'~ •. L1) , P (1 , L1 , m 1)

bw clause 2, and the substitution L1 =k 1 .L2 , m1 =k,*ml
.. <-- 1 is t (1 , k + k 1 • L2) , P CO , L 2 , 1t,2)

bw clause J, and the substitution m2 =1:
<-- list(1,k,k1 +L2 >

bw clause 4, and the substitution k=l:
<-- list(2,k1 .L2 >

bw clause 4, and the substitutiqn k1 =2:
<-- listC3,L2 >

bw clause 5, and the substitution L2 =w:
<-- .,\

The .resultinS substitution for H is:
x=m=k*m,=k*k,*m 2 =k*k 1 =k 1 =2

The resultins substitution for L •is:
L=k+L1 =k,L 1 ,L2 =1,2.w

Note that, to have a refutation, at least two elements
of the list L have to be computed.

4. FIXED POINT SEMANTICS: FINITE APPROXIMATIONS

The fixed Point semantics for a Prosram Wis defined as
a model of the set of clauses WU {terminal clauses},
obtained as the least fixed Point of a transformation which
is defined on the set of the interpretations of W C1,10,11J.

The interpretations of Ware defined over an abstract
domain U, which is a famil~ of sets u5 ,. each set beins
indexed b~ a sorts occurrins in w.
Each U5 is defir,ed as follows:
1) All the constant s~mbols of sorts, occurrins in W, are

in U5 (note that ifs is a non-canonical sort, also w 5 is
a constant s~mbol of sorts and then also~ belonss to
Us > •

2) For each data constructor s~mbol of sorts x ••• x sn--> s,
U 5 contairis all the terms d<t 1 , ... ,tn> such that t 1 , ••• ,tn
belonss to U5 , ••• ,u 5 , respectivelw.

I n

Note that U contains the standard manw sorted Herbrand
Universe as a Proper subset, i.e. the set of all the sround
terms in which none of the w5 occ•Jrs. In addition U con
tains suspensions, i.e. non comPletelw evaluated data, where
both undefined and standard constant s~mbols occur.
Finallw, U contains also the fullw undefined terms, i.e. the
terms w5 •

The He~brand Base B of Wis the set of all the sround
atomic formulas: for each Predicate P occurrins in W, of
sort 51 x ••• x Sn, and for each n-tuple of terms t 1 , ••• ,t11

belonsins to u5 ••••• Us resPectiveh,, PCt 1 , ••• ,t11 > belonss
to B. 1 n

A Herbrand Interpretation I of Wis anw subset of B
contairdns A.

The set~ of all the Herbrand InterPretations of W is
partiallw ordered b'.:I the relations (set inclusion). As is
the case for standard Horn clauses, <d,s> is a complete lat
tice, i.e. for everw Possibl'.:1 non finite s•Jbset"' of ;J.,
there exists lub<4'> and slb<.t>.

It is possible to associate, to an'.:I Prosram W, a
transformation T on. the.domain of interPretations, defined
in the followins wa'.:I:

T(I)={AIA<--B1 ,. .. ,Bn is a !:!round instance of a clause of W'
and B 1 , • • • Bn E I } U < A }

where W' is the union of the set W and of the terminal
clauses for w.

It is well-known that the transformation Tis monotonic
and continuous C6J.

Since Tis monotonic, there exists:

I,= min{II I=TCI)}

Horeover, since Tis continuous:

IF= U yk ({A))
k!:O

8 ~31

The fixed Point semantics of a Predicate P, of sort
s x ••• x sn, in a Prosram Wis defined as follows:

DF CP,W) = <<t1 , • • ,tn > I t 1E U51 , • • •, tnE Usn' P<t1, • •. ,tn > f I }

The eGuivalence of the operational and fixed-point semantics
come~ directl~ from the similar result for PROLOG.

5. FIXED-POINT SEHANTICSl INFINITE TERMS.

Now we want to define an alternative fixed-Point seman
tics, which reflects the idea that non-canonical data, con
tainins the s~mbols w5, are suspensions, that is Partial
aPProximations ·of infinite terms.

A term containins occurrences of the s~mbol ~ cannot
be transformed into an infinite term conta1nins no
occurrences of ws, because it would be necessar~ an infinite
number of derivations. However it is Possible to compare two
suspensions to establish which is a better aPProximation.

Consider, for example, the Process P<n,L> which
duces the stream of all the odd numbers startins from
n is odd, and the stream of the even numbers _startins
n~ if n is even. Such Process is defined b~ the clause:

1. P<n,n.L> <-- P<~<s<n>>,L>

while the terminal clause is:

2. P<n,w) <-- A

Pro
n, if.
.from

One of the streams Produced b~ the Process P, startins from·
O, is Lt = 0.2.w, obtained b~ aPPl~ins clause 1 twice and
clause 2 once.
Another stream is L2 = 0.2.4.w, obtained b~ aPPl~ins clause
1 three times, and clause 2 once.
L1 is a better approximation than L2 of the st.ream which
tould be obtained startins from O and aPPl~ins clause 1 for
ever:

0.2.4.6. •. •

Clearl~ L1 cannot be compared to an~ of the streams
obtainable, for examPle, startin~ from 1 Cl.w ,1.3.w,

9

etc.).

It is then necessary to define a partial orderinS < on
the elements of A <~round terms), which corresponds t6 the
concept of "better approximation•.

i) For anw c~nstant ~Ymbol c of sorts, c 5 < c 5 and, ifs is
non-canonical, w5 ~ ~•

ii) For anw constructor sYmbol of sort s1 x ••• x sn--> s:
a) if ti=w5., i=1, ••• ,m, then d(t1 , ••• ,tn>=ws
b) if ti< t~', i=1, ••• ,m, then d<t 1 , ••• ,tn><d<t{,•••'t~)

A similar Partial orderins is defined on the Herbrand
Base 8, as follows:

For any Predicate swmbol P of sort s 1 x ••• x s., and for anw
t 1 , ••• , t .. , t{, ••• ,t.~ of sorts s 1 , ••• ,~ .. :

if ·ti < t (i = 1 , • • , m , then P (t 1 , ••• , tm) < P (t { , • • • , t ~)

Furthermore, it is necessarw to introduce in the
universe U all the infinite terms which are limits of mono
tonic seauences of terms. Similarlw, it is necessary to
introduce in the base Ball the atomic formulas which con-

~ tain infinite terms and which are limits of monotonic
seauences of atomic formulas.

An interpretation of Wis anw subset of B which con
tains A and which does not contain anw Pair formulas A and
A' , such that A< A' •

Obviously, the interpretation containins atomic formu
las in which the~e occur infinite terms can be resarded as
limits of monotonic seauences of interPretations without
infinite terms.

Let p be a function which t~ansforms subsets of B Ccon
tainins A> into interpretations. It is defined as follows:
ifs is a subset of B then

p(S) = S -: <A(AES , 3A'E S, A<A'}

In other words p eliminates all those atomic formulas
for which there exists in Sa better aPProx~mation.

The set of the interpretations of W is partially
ordered bw the relation< defined as follows: if I,J belonss
to :

I<J iff VA E I 3A' E J A<A'

or, eouivalentl~:
I<J iff IE u(J)

where u is defined as follows:

' !

o-(I) = {A I :I A' E: I A<A'} U { ..l }

Note that, if I is an interPretation: pCo-<I>>=I

10

The set~ of the interpretations is a complete lattice
with respect to <, and it holds, if J. is a subset of;, :

Slb<l> = pCU u<t>>
lub<.G> = slb<.l'>

where ,t' = -CI' I VIE la I< I'}

Note that A' is never emPtw, because it contains at
least p. In Particular, if Lis finite:

lub<.t> = P <U u <.t> >

The transformation T' associated to • - Prosram W is
defined jn the followins waw:

T'(I) = p({AI A<--B 1, ••• ,Bn is a sround instance
of a clause of W', and B1 , •• ,BnEu(I>)U-C..l})

where W' is the union of Wand of the terminal clauses of w.

tain
also
must

- u(I) occurs in the definition of I because, if a cer
aPProximation of a data structure is computed, then

any less defined ~PProximation of such a data structure
be considered as computed.

It can easily be Proved that T' is monotonic and con
tinuous, hence there exists the least fixed-Point I{ of T'
and:

I ' = U T ' 11({ ..\ })

f ·~
The second .. fixed-Point semantics is defined analosously to
the first:

D,,<P,W>=-C(t1, • • • ,tn) lt1E U51, • • •, tnE Usn' P_(t,, • • • ,tn LE o-(If))

It is worth notins that in the Pre~ious semantics, the
lub of the chain yk(-C..l)) contains onl1;1 finite aPProxima
tions (suspensions>, while, for this semantics, the lub of

.T'k({..\}) can contain also infinite terms.

BIBLIOGRAPHY

1. APt, K.R. and M.H. van Emde~. •contributions to the
theory of losic Prosrammins•. J. ACM 29 (1982).

11 48~

2. Bellia,M., Dameri,E., Desano,P., Levi,G. and M.Martelli.
•Applicative Communicatins Processes in First Order
Losic•. S~mPosium on Prosrammins. Lecture Notes.in Com
puter Science 137 CSPrinser Verlas, 1982) 1-14.

3. Clark,K.L. and S.Gresorw. •A relational lansuase for
Parallel Prosrammins•. Proc. of Functional Prosrammins
Lansuases and Computer Architecture Conf. (1981) 171-
178.

4+ Hannson,A., Haridi,S. and s.A.Tirnlund. •Properties of a
Losic Prosrammins Lansuase•. Losic Prosrammins, Clark
and Tarnlund Eds. (Academic Press, 1982) 267-280.

5, Kahn,G. and D.B.MacQueen. •coroutines and networks of
Parallel Processes•. Information Processins 77, North
Holland (1977), 993-998.

6, Kowalski,R. 'Predicate losic as·a Prosrammins lansuase•.
Proc.IFIP Cons. 1974, North-Holland Pub+ Co., Amsterdam,
1974, PP,569-574+

7 •.. M.onte i ro, L. • An eHtensi on to Horn Clause LoSic al 1 owi n!:l
. the definition of concurrent Processes•. Proc.1.c.F.P,C,

<Eds: J.Diaz, I.Ramos>, LNCS 107, SPrinser-Verlas 1981.

a. Pereira,L.M. •A PROLOG demand-driven comPutation inter
preter•. Losic Prosrammins Newsletter 4 (1982), 6-7.

9. Robinson,J.A. •A machine-oriented loSic based on the
resolution Principle'. J.ACM 12 (1965>~ PP.23-41.

10, Van Emden,M.H. and G.J. de Lucena. 'Predicate losic as a
lansuase for Parallel Prtisrammins•. Losic Prosrammins,
Clark and T~rnlund Eds. <Academic Press, 1982) 189-198.

11. Van Emden,M.H., Kowalski,R. •The semantics of predicate
lo!.iic as a Pro·srammins lans1.1ase 1 • J.ACM vol.23 {1976)
n.4, PPt733-742.

I !

I i

I !

' I

I !

_4 85

SOB! ASPECTS O! 7BE .STATlC S:EMAN7ICS Ol .tCGIC PB.OGIUl!S i.ITH
!OIA£IC FUBCtIOBS

.JBS21ilC'l

Patrizia Asirelli

Is t. di Elab. dell •Informa.zione - c. J.B.
1. S. Maria, 46 - 156100 PlSl - Italy

le comsider logic programs in the Horn clauses fora of logic
vith monadic functions, ana prese.nt two aiEroaches tc derive a
set o.f eg:aations from a given set of clauses.·- The derivation is
obtained bJ a data f·lov analysis o.f the -vai:iables, involved in
each clausa.l definition. .Bach equation expresses the semantics
of a procedure, by means of a set elt"J.z:essiClJJ which, .hJ
transformation of the set of equations, can te recluced to a
solved form •. The set expression thus obtained .rei:i:ese.nts, for
each i:.rocedu.ce its greatest., approximate., set of solutioas;· i.e.
a set w.hich contains the denotation defi11ed, f c.:r: the same
pi:ocedure, .hJ the standai:d semantics. '.the approximate solutions
caA be seen in the contest cf abstract in~~rpcetatioas of
prograu. to get, by a static analJ.sis of their definitions.,
some 0£ their _properties. 7.he apprc:zimate sclutio.ns, being
e.zpres.sed by means of set e.xpressions, coula tJteD le used as a
toc.l for program verificatio.n a.nd constructicn.

1 •. 11110DUC7IOI

le p:esent an approach to t!ie stat.ic anal1sis of programs,
written in a s.iaple logic language, aefiued as in 11-21, where
procedures are de.fined by . .means of Hoi:n clauses vith monadic
fa.nctlons,. and where aJ..l clauses ai:E no11 negati-ve. . T.h 1:1s a sort
of ~EJ:J s.i•ple PBOiOG J3-SJ.. '

We .first define aJ1 algebraic semantics cf clausal definitions,
in the sense of i:epresenting possible .set cf solutions for a
procedure, by means of equations and set expressions.

By static semantics of a program ve 1eaD all that can de
de~uced. statically, about the set of solutions 101: a logic
progEam, as expressed by its standard seia~tics i2J.

the aias cf this paper fall into the same f.tame110-ck of J6J, b,at
for iogic languages instead of algoxith•ic languages. As in
J6l, 1e get set e~fress~ons which rep.tesent ie the most gene.ta!

1

case, appxoximation to the set of denotations of a procedure as
defined by the sta~dard semantics. ie also consider And/Or
g.raf.lis 17-81, i:epresentation of p.cog:i::ams instead of flow-cha.rts.
7hus, di£ferently from J9J, we do net tr] tc get set eipressions
which denote the exact set of solutions, tut only an
approximation of it. At present the wcrk is auch .sEmpllfied,
vitb resfect to J6J and J9J, since we consider problems
originated onl7 by the use of mo.nadic functions, tr.e-ated
s1mbolically, w1thout looking. fct noY, for Ute fix~oints of
tbeix associated symbolic eipression.

The same problem as been tackled for monadic lcgic ii:ograms ~ith
monadic functions; -the next Section will give a brief .s1J11mar1 of
results obtained, for that case, in J 10 t.. Sec·tion J will
present two approaches to deduce, staticallJ, a set cf eguations
from a given set of clauses. In Section 4 we vill pre.sent
transfromations of such equations tc get a set cf eguations in
solved for•- Section 5 contains fev considerations on thE
defined transformations and their z:elatio!l.s to ether works.
Section 6 eitend.s the results of tbe previous sEctions, to
clausal definitio.n vith monadic functiolls. ie conclude 11ith a
brief suamaLJ in Section 7 •.
Appendix 1, at the end of thE pai:er, gives an examtle of the
coast.ructio.u of a set o.f eguations for a given set of clauses,
in the monadic case; Appendix 2 gives an e:xa•_Ele cf a set of
eguaticns that can be obtained, according tot.he secona appr-0acli
presented in Section 3. I-n A.PEEDdii 3 a set cf a~iom.s is given
to .be used fo.i: tran.sfor:mati.-0ns of eguatioas obtaine<1 she.n
£unctions u:e used in clausai defiDiticGs.

2 •. BJSULTS ZBO! 7BE !OBADIC CASE

Given a set of clauses A, definin9 n pi:ocedua::es Pi, aonadic, ve
consiaer the set of clauses defining each :Et0cedu.1:e.and its
co.1:resio-11dent A.nd/0.r graph,17-Sj. Then ve trace tbe values ilov
0£ the variable appearing at the rcot cf the And/Or gx:aph. The
denotation of a Erocedure Pi, Dh(Ii), (results cf the procedure
PiJ, can be deri~ed in terms of unicn and intersection of
deuotatioDs of the predicates involved in the definition of Pi.
Thus we can de.rive, say, a_n 0/0 graih, cci:resio11dent to the
And10·1: gi:aph in object, by interpreting And nodes and or nodes,
respectively as intersection and union Cf-EJ:ations, and replacing
each ato•ic formulas Qj {X) (where X .is the variable traced), by
the coz:respondeut set Dh fQj). By Db {Pi) we denote the de.notation
of ·the predicate Ei, as defined by the operational semantics
associated to Byperresolution and Instantiatio11 u1le.s, I 2J.
ApEendi% 1 show~ an eiampie of the all process; from the 0/U
graph there obtained, the following eguation can be dexived:

n JD k
(Pi}== (0 {Qj)) tl (f. (0 (Bj})] D (0 99.! (gj. {Sj})) tJ {a} U {h}

j= 1 j=1 j:1

2

I

I I

Whexe:
each {BjJ, {Qj} denotes the set of values, solutions of

procedures Bj aJid Oj, resFectively, de~ived from
the static anaiysis of their clausal defiDition.

{f.7}, is a notation vbicb, given a SEt (er set e~Eression) T,
denotes a set of data that, using a common set notation,
can be e.ipressed as: { f 1.J) 1 1 e 1' } •

.!2.!(gj, (Bj}) denotes:- a set expression T such that:
(gj. 7} e {Bj} ;

- the empty set, U, cthe.twise.
le have -called •R!~• the function vhicb _produces a set of
eguatio.a such as the above one, starti11g fi:ca a given set of
clauses •. fhen ve shov, inductively, that when predicates are
de.fiJJed by clauses vhere: fu:.actio.n.s sJmliols axe not used or
else, they are used not .cecursivelJ, then the set e.xpressi·on
deJioted by {Pl can.be computed to a set of values such that the
following relatio.n ho.lds:

t E JJ.h (P) if:f t E {P} i.e. llh (P).= (PJ

lhen clauses use function s1mbol.s recarsi vely, ei·thei: directlJ
0.1:. not. that is, 11hen clauses are such as follows:

OJ:
i (.f (X)) <- Q ,1) , P (X)

P (X) <- Q (.X) ,B (X)
c 4:f fJ)) <-11 CXJ

the.ave Deduce equations of the fer ■:

!P} == If. 7}

vhei:e t contains re£erences to the symbolic set JP} itself • .I.n
those cases we neea to f.ind the fiipci.nt of Euch set expressions
1. Then, if ve ace able to find a nQtation for such fiipoints so
that by replacement of T in (f.1} we get a nctatioa which is
recu.Esi~e, hut self-contained and, if we are t.hen al:le to define
u.nio.n and intersection betvEen such sets then we ca~ i:epresent
tbe demotation of a predicate bJ a set expression which is
fi.Jlite, independent o:f otJier predicates and which cam be built
hJ tlle static analysis of clauses. In f10J we suggest such a
notation a.nd give tranformation .cu.les fer deducing such
notations from the set of eguatio.ns obtained ill the fi.Est place.
on the other hand ve show that those set e:xi:ressioiu: can be left
sya~clic, and transformed Clf~TJ•s are only partially
transformed), · to obtain a sEt cf eguaticns, in scl1ed for•,
which £ep£esent a new set of clauses. the ne~ set of clauses are
the seapli£ied version of the set of clauses given in the first

3

place. thus, we defined an.algoi:itha lJg~~! such that the
following 4iagra ■ coD•utes:

DB

Deduce
A------->EA

7
r
a
n
s
f

------>EA'

fig. 1

lfhere DH=(.DhU1).DhlP2·), •••• Dh{Pn)J, for alJ. predicates P1 ••• Pn
defined in A a.11d A•.

I · "!hat is, tJae set of eq..ua tions EA• ca.n also te dEJ:i ved from a set
of clauses A', such that: de.noting by Dh {Pi), the denotation

A
of Pi as defined .by the standard .se1a.11tics, vhen Pi is defined
in a set of clauses A; the11: A' and A ai:e such that, for all
: .. procedui::es Pi defined in A., £i is defined also in l" and:

Dh CEi) = Db (Pi) :: Dh fPi) if clauses in A de net contai.n
l A' 1ocal variabies;

Db (Pi)~ Dh (Pi) otber~ise.
A A1

ftoi::eover, A• can be ohtainE d by ·trans£ or 1a ti ens cf A.

Eg ua ti ens .BA•• obtained by transforming eguations EA, may
co..ntain references to s1mbolic sets J.EiJ, 11here Pi is an
undefi.ned predicate. such symbclic SEts ca.n he eliminated
(i:eplaced by the empty set {J). In any case such eguations
eithEr represent a ground set of values ex else,-they may be
considered as. 1:=atter:n.s fo.c the computation of tbea. 'they can
al.so tE used as a tool. fo:c programs develci•ent and programs
co11position, 11here symbolic set are used to define parametric
specifications ..

3. 2110 A.PPllOACBBS 'lO T . .BB EXTiN~ION 01 .DEt0CE

'lo introduce the problem of static semantics, for n-adic
programs, let•s consider the follc•iDg clau.sEs:

1) 11 (a,b) <-
2) P (a.X) <-
3) PUC. Y) <-Q (X, I) ,.P (X, Y)

4

I I

IIJ R (J.l) <- C (.J,2) Z (2.I)

In gEnEral we h.ave clauses such aE:

PCJ1,. 12, ••• Xn)<- t1(t11, •• tm1J, ••• Qn(tn1, •••• tnl)

For the mo•ent ve do not consider functions, thus •e assume all
. terms tij to be variables, ~ither local ct ~ct.

lie de11cte bJ JP} a set of tuples, each one of •·bicb is ■ea.nt to
represent a solution for E, acco~ding with the definition of
Dh U) ill the .1tue case.

Let•s observe that Db(P) in case of clause 1) is given ty
{<a,b.>}; thus an obvious vay to acdifJ t.he lll.!~ function. , is
to produce the same resul.ts for clau,1;es which·ate asse.ttions. on
the ct.her .laalld, follo11ing the same ap,Proach, for the ·second
clausE ve get · a tu,Ple such as {<a, 1>], 11hexe 1, IIEans "all
possible values", J10J •
.lo% tlle saJ1e c·ia use it is:

DhiPJ=t <a, t>.I ~ t e B~rtrand universe}

if we let (?J denote the Her~rand Universe of the set
defining P, we can represent DhlP) as: {a} X Ii}.
way ,to. make tJaings egual. is then to define thE
pi:oducts betwee• sets as usual, sc that:

of c1auses.
l.n obvious
cartesia.11

{<a,'l>}=={a} X 121 -
as if 3 11~re an ether constant sy.11bcl •.. 7he seaalltics cf (<a, 1>}
has to .he defied as Dh (E) above, so tba-t tPJ and D.11 (P)
reeresent the same set of valuEs. 1n genezal, a tuple as
<a,.t,i.c,d> i:eprese.nts a set o.f tuples whose first tvo and last
tvo projections are fiied, and the middle cne is one of all
possible data •. Given the meaning of such a notation, :we can
redEfine]educe so that, for all assei:tions, the following set
eiEression will. be constructed:

ill C: flt1 ,t2 , •••• ,tn)<-

for a.ll vi= ti if tiis a constant symbol

v. = •1• if t. is a ,ariable •.
~ '

Let P be a m-adic procedure and let it be def.i.ned bJ n
assertio~s; then we can deduce t~e £olloving eguation:

1 1 1 2 2 2 n n n
fE}== (< •1 • v2 , vm>,<v1 • Yi ••••"m>, •••• <11 • '2••••v.,.>J

If a procedu.re
(.P} , we de.fine
(P}_ j, j= 1: m.
j-th ai:gu ■ent

P has m argume.nts, than 9iven the set of tuples
them projections of (PJ, eacb one dEnoted by
Thus. each {P}_j dEmote the ~et cf values for the

of predicate P, and it is dE_fi11ed l::y:

s

jJ?}_j== { vJ J ~ i= 1:n and -11 < v~, •• vj , •• -v1> e U} }

Given {P} as above, it is, obviousl1:

n
(i} £ Il lP)~j

j=1

The sa:se holds when we Deduce each IE}_j, by t.he data £1011
analysis of vatiables, for all other tJfe cf cla11ses. lie
present two approaches: one leads to a set of eguations which
allows to £ind, for each given procedure Ei, an aiproximation of
Dh Ui)'; the other approac.b. leads to a set cf eg11ations 11bich
cou.ld be :re£ined to find an approximation of Dh (P.i), -v.hich. is
the closest one that can he found statically, by the data flow
analysis of variables.

3.1 jjrst .!E(lJ:OfSJ! . ,

Like ~or the monadic• case, we consider the And/Or gEaph which
correspond to a clause: then we ti:ace the -val1Je flcus of .!J:!
E,iab:1,.§, .ll.9llllent§ .9! !l!!! 123di_e.1.! 12~4.!!.9 defi.ned. .Por each
variable Xi such t.hat its trace hinds it tc the j-th axgument of
a call to _11:cocedui:e Q, ve consider {C}_j as the set originating
values for that variable. As in the 11011adic case 11e then
inteJ:fJ:et a.s intersectio.n all And nodes and as union a11 or
nod.as. Just as an examplE, let u.s see that, Ercceediag as
abcye, fox clause 3 we ■oul.d deduce:

{E}_ 1== {Q}_ 1 0 {.FJ_ 1
(P}_2== iQ}_2 0 11}_2

ibile fox clauses 4:

{E}_ 1:= {Q}.;..1
{P}_:2= {1}_2

lie ca,n see that {P}_1 X {E}_2 derived abovE, do 12ot
coi:rectly the semantics of P as defined by the
se~ant.ics for the corresponding ciauses. ln general,
assertions, (P} and Dh(P), represent the sase set cf
all other clauses we have:

Db (P) i {P}

represent
standard

while for
data, for

that is, tlae static semantics, def.ined l:ly the data flow a.nal.ysis
of variables, defines for a predicate P, a denctation which
contains the denotation defined by the standard semantics. lie
can easily see that, for eiample, the standard .semantics defines
for E, relati-velJ to clause 4, the following:

Dh(i)=={ <t1,t2) J Y<t1,k) e Dh(C) and <k,t2> E th(l) }

6

I !

I !

491

while the set e.zi:ression we get for Ii}, can be.ezpres..sed as:

{I?}== {<t1 ,t2 > I ¥- k1 ,k2 : <t1, k1 > e 1,1 and <k2, t2> E {Fl }

to conclude, given a set of clauses A, for eacb pi:edicate Pi,
defi.ned in A, by this approach 'i1E 11culd get a set cf eguations
as fcllovs:

n
{Pi}:=. U

j=1

m
IT {~i}j-k

k=; 1
foe Ei de£ined ty D clauses,
and Pi being .a 1-adic i:rccedure •.

(Pi}j-k== T for 7 a set exi:.r;essian defi.ni..ng the set
0£ possible values foi: the k-th ai:gument
of Pi, defined by the j-th clause.

Let• s cbsei:·ve _ that this va y ve find the greatest appi:oxima tion
of each Dh(Pi) that can be found by tbis 1ethcd. iet•s also
ohser-Ye that the set of eg·uations EA a.re such tllat the follo11i.119
diagram conmutes:

]~~!!
DB CA) <-·------1------------>EA

J I
I ~ I
I t J
I i: I
j a J
i D I

fig. 2

J s •
J f •
+ 'V'

DH (1 1) <~----

Where DB (.IJ: {Db iP1) • l>.b (l:2) , •••• Dh (.En) J
A. A . A

.DB (A•)= {Db (P 1),, Db IP2) , ••• Dh Un) l, ana Db {.Ei), · Db (Pi)
J' A1 A' I A'

de£inea in section 2, fig •. 1.
In .fact ve can easily prove that, gi ve.n a clause 1i tll local
vai:iables tlaat binds together some procedure calls, ignori.119
.local variables completely, we get a11 a Etrc:zimatic.n of its
denotation, which is the denotation of an analogous clause,
vhei:e all local variables, in all irccedure calls are different,
one fro ■ each ether. 7hat is. given, .foE examRle:

7

Indeed ve find the denotation of Pde.fined as:

PCl,l)<- Q(X,Z1), £(Z2,Y), B(I,Z3}, !(Z4,ZS)

Th.as 11e get a set of equations EA, that can also te derived from
a set of clauses A', such that the denotatioE c.f all ftocedures,
defined in i ate containea· in tbe denotation of the sa~e
procedures defined in A•. I • . E.
Dh (Ei) f Dh (Pi) for all procedures Pi •.

1 1 1

The previous telation shows that by ignoring 1ocal variables,
the method of data flow analysis of vaxia.hles, e.11su.te partial
consistenc_y vi th .standard se.mantics • .I.11 fact, ·the aet.llod allows
to .find sets of values such that, so1e of the values a.te coi:rect
soluticns, ~bile others aren•t. Yet no value, outside tbose
sets, can be a cotrect solatioD.

To obtain a set expression for P reiresenti~g a set, nearer to
DhtP). we should define, given clause q above, two subsets for
{Cl and jl}, 1,g} and {!} respectively, such that:

1,g1~= t<t1 .,t2·> J]ta: <t1 ,t2> E {C) ,,U!,g <t2,t3) e {l}}

Ill= t<t1 ,t2> · J 3 ta: <t1 , t2> e (11 ,g~ <ta,t1 > e ltl J

7hE previous sets can also be obtained as follows:

~)== Hn n (Hl}_ 1 X ({Q}_2 n {F)_ 1))

(1}-== {F} n I {F}_ 1 n (C}_2) X {P}_2))

Then, defiaing fP}_1 and (E}_2 we should consider {~)_1 and
(1}_2 instead of {Q} and ff). let, alt.hcugh ~} a:nd {l}
repi:esent the set o.f tuples of t and l, satisfJing clause 4,
because of the carte.sian product x, (PJ vculd _still be greater
than Dh(R); i.e.: -denoting by Ul the set ottained hJ
considering {21 and {!) instead of HH a:11d {.F}, it is:

Dh (i) ~ {!} ~ {i}

Thus (£} would still he an approximation of th{P) •
.Everything 11reviously said about (ia:c-tial ccnsistenc1, still
holds. Yet fl} is less approximate than (P}.

!he SEt eipression {El, represents the least aEfroximation we
can get for the set of solutions of i, bJ the static analysi~ of
its clausal definiton, Lollowing the af~rcach of tracing
vaEiables. ?hi~ happens just because the clausal definition of
P was such that only tMo procedure calls shared a variable. In
general if a procedure calls a~E such that each cne shaLes one

8

' i

, I
' i

I I i

(ot ■01:e), variable vith othe.cs, the.n the least approxiaatE
soluticn need to be found by an iterati~e trccess:
1) First defi~e each {~!} for each procedure call; this would

give a restriction of {Qi} in tei:ms cf cthet irccedures with
vhich Qi sha.ces its argumenu. Since the saae is done for all
p.rocedure calls, there may be tuples cf ether frocedures,
satisfyi.ag the sharing conditions with Qi, which do not
satisfy other sharing conditions in the same clause. this, in
geDeral, •Eans that: ·

2) ie need to ~efine a {-'i}' identical to l~jJ tut ••ere the
sets involved are the restricted ones, •lJ's instead of
{!} ~s- l

3) !he process of refining (.SU} has tc go en until we get two
sets, sa1 {.gi} • and {.Q!J", such tha·t, eitbei: 1,g.-i} •= {_gi) "• or
else lQi}" is emptJ.

!hi~, informally described, refining EECcess, •ill terainate.
Let•s i.a fact reai.nd ,.that, foi: all predicates C and!, vith t110
arguae.nts (tlle same holds fer predicate vi th a.DJ JI uaber of
ai:guaeDts), it is:

1,1 ~ -{Q}_ 1 X (QJ_2,

JQJ:! Hi} n ({Q}_ 1 X {C)_2 l

and also:

and

({QJ_ 1 n {:f}_ 1) X C (Q}_2 n {F}_2) ~ IQ}_ 1 X HH_.2 and

, 101_ 1 n 1.r1_ 1> x ·, fQJ_2 n tPJ_2l n 101 s <t,1_ 1 x ,~1_2Jn 101& 101

thus, the refining functioJl is monotone descendent and it stops,
either -producing an eaptJ se·t, (), oi: p:cducing t.be same set •.
lloreower·• a he.a the .Process stops• all sets such as [g} and (l} ,
represent, the e:xact set of tupl.es satisf.11.ng al.l conditions in
the clause.·. 2.han the set of sclution.s fer the ~rcced11xe defined
by t.he clause· i.n object, should he bui.ld in ter:as o.f t.hese last
sets •.

!he abcve pi:ocess can be defined, perhaps- ■ore cleai:.ly, if we
consider all va.ciables, Either lccals ci: .not, i11vclved in a
clau~e •. lor each variable VE defime a set expression
rep . .tesenting its possible values, deducing s-uch set e.xpression
fro.■ tbe And/0.r g.rap.h of the clause. illus. given a clause such
as:

PCi1, 12, ••• Jn)<- Q1Ct11, •• tm1) ••• , tn(tm1, •••• t~k)

.J.et• s denote by X the set 11. X2, •• ,l.n ana bJ Y the set
Y1,t2, ••• lv of local variables in the p.rEviuoos clausE. then for
soae of the a.llove tij it is eitlJeE

tij ~ X • OJ: 7ij ~ Y •

9

- - ------ ------- --~- -------

I.
I

Consider the J.nd/Or graph, G, cori:esponde-n·t tc the abcne c.lause,
and ttace all variables in it. Then for each vuiatle Zi, with
Zi e X , or Zi E Y, consider the subgtafb G2i of G vbich
ccrtes,cnd to the trace of Zi, and tras£crn it as fcllc~s:

-the toot is labe1led bj { a1ZiJ

-all And nodes become nones; all Gr nodes 1:ecome U nodes;

-all nodes QjCtj1, •••• tja), are replaced by an
arcs leading out, .respectivelJ, to a nodElatellEd
Qj(tj1, •••• tjm) such tbat therE eiists a k= ~:r,
tj.t=Zi. .1i,pelldix 2 gives an eza•ple.

node 11ith k
:ty {CjJ_.k; for
11ith 1.Ss~r and

lie can deduce { a1Qj}, in the same va1 11E deduced W), by
defining such {a1Qj} in terms of {Cjj and {u1Zi}, depending on
the variables of Qj in the clause. Ma 1d.ng suxe that by i 11e
alva1s get a di.f.fetent set identifier, we can get a set of
eguations which can be transformed i11to S<lllE solved for,11, 1:J a
tran.sfor•ation p:toces.s analogous to the one presented in ne.xt
section. 'the set of equations in solved .foi:a, thus ol':taine,a,
can bE transformed again bJ the abcve mentioned refini.ng
functicn.

1:he set of eguations VE get hJ this ai:fi:cach can te summa.1:ized
,as follovs: Given a set of clauses A, ,
'"- let P be the set of procedure sya.bols, dEf ined, oJ: just
used, in c1ansal de.finitions of A;
- let'{P1,R2, •••• Pll} e P , be the set of procedure defined in
A;
then, fox a1l Pi an equation is built which leeks as fellows:

u m ,
Ui}= U (IIfajX. h

. .j= 1 Jt= \ Jlc!
with x e Xij and Xij the, set

jk

o.f Yariables, terms of Pi in the j-th clause.

I.et Z;j be the set of a1.l variable s111hcls, lccal ,01: net, in the
j-th clause defineg Pi, then: Por each variab1e s1mbol
Yj.t e Zij' we have a set of equations as fol.lo11s:

{ajJ }== 1 •here Tis a set expression containing
jk sjmbolic sets such as (ajCw}.

For eacb froceduxe Qw, called in
have a set o.f eguations such as:

r

the j-th clause defining Pi, we

I ajCvJ= fQv} n f II {ajY l)
s=l js

Qw, in the j-th clause defining

if r-1 is the numbe~ of
argument of cw and all ?· 5
are the vatiables, texas 1of

ii.

-- ~- ·--------~---------------

10

I
' I

..

4. 7BJJSIOB8J1l01 01 EQUAtlONS

We vill only consider the approach seen in 3.1, since we believe
that t.lie ·transfar.aatio.ns 11e are gcitg ta define, can be
accordingly aodified to he applied to equations as aefined in
3.2 atove.. ·

%bus, from J.1 above, •e bave that: given a set cf ciauses J,
DedueetJ), _pi:odaces a .set of eguations, as in the ao11adic case,
vith the further complications of fJ:Ojectic~s. Js to transfo~m
the .se-t cf eguations define iD 3. 1 aboYe, let as chserve that
the beat result ve· would iite to get, is a "a se-t of eguaticns,
eacla one o.f vhic.b associates a gi:ou.nd set (a set of cons·tant
s71.bcls), to a procedure. Si.nee so.me procedures may .te defined
in t_er ■s of ·11ndefi.ned procedures, and since 11e believe that this
is a useful inforaation to keep, we want final set expressions,
associated to procedures to mantai.n such i:e;fere.nces •.. 'lh us:

lie .say that a set of eguations is in '!ill~~ !2t.1•, if and ODlJ
if., each eguation has the for■:

{Pi)==t o.r {Pi}j_lt= 1:

for al.l p.roceaure s1mbols Pi, and al.I int~gez j and k, and a.ll
set ex,.ression ! such that:

1) ! i.s a ground set; else
2) t i.s the eaEtJ set {} ; else
3) 2 is a set expression which containssy•bolic sets (Qj} and
such tJiat {Qj} does .not appear on the left-band aiae of a.ny
o·Uae.E _eguation (Qj is an u.ndef.ined procedure).

le define .now the .following tran.sfcu:11a Uc.11 algcri th.a

_ti::a.nsu:
1) 8EFlJ :cule BB 1;
2) apply EB, until possible;
3) apply s azicas, u.ntil possible;

.D II

l1G.t all eguations o:f the for•: {Pi)-== U II (Pi} j_k
j=1 .k= 1

replaces each occurence 0£ '(Ri}_k•, in all set eziressions of
all cthe:i: eguatioJJ.s, hJ

J1
U {ij j_k

j=1

11

Since from Deduce ~e get equations such as, for examFlE:

{P}= 4 JP} 1_ 1 X ••)C {P) 1_m) O a ((l:} u_ 1 X •• X lI) u_m)

(P} 1_ 1= ((M}_ 1 n {i} _2) X ({1:} _ 1 n fD}_J) ·
••• {Pl 1_•=·-····--·--· ·-· •••

(P} u_ 1=•••• ·--IP} u_ a==•••~--•••

{111 =: (111} 1_ 1 X •• X {PJ} 1_mm) tJ ••• o ((!J Jc-1 X •• X {!} k_1n)
•••

Bul.e liB1 allows to eliminate all references of -· tyi:e 1 {P}_v•
and replaces them by a more detailed set exi.ce~sion in terms of
• {Pl j_• • • s. BJ BB 1, · the previous e:xample 11ould be ti:ansfor11ed
in:
{P}== ((Pl 1_ 1 X •• XiPJ 1_m) U •••••• U (U}u_ 1 X •• X(P] u_m)

{I?} 1_ 1== ({ll}_ 1 n {'l}_2) X (((P} 1_ 1 u •• a U} n_ 1) n {DJ_3)
•••••••

with a.ll. otbeJ: eguations modified accc.tdinglJ.

JliJ1i'1..!!i9D Bule IEB)

Given an eguation such as: {Pi}j_l== 1
such that 'lco11tains' {Pi}j_.k•, replaces 1 {Pi}_j_k• iJJ T, by the
e11i:t1 set l].

-Ror all set expressions t:
{} 1l 1 -== 1
n n 1 := u
-for all gxound sets D i

i

n
i=1,n: fI £ is dE~ined as usual;

i=1 i
Opei:ations of
moreovEr s
dist:cibu tvi t_y

O and n are
will contain
of u alld n.

defined for ground sets as nsual;
axic11s Jo:c asscciati,itJ aDd

iu1e IB1 defined
rule E& above, to
the monadic case
obsei:vation that,

for the monadic case, as bee~ modified
take i.nto account projecticDS cf tui:les.
rule Ei was an obvious conseguEnce of

given a recui:sive clause such as:

PCl) <- Q(X),B{X),P(X)

into
.For
the

accoi:ding to its ~tandard semantics, no denotations, different
from those generated by all other clauses defiEing E, ~ill be
gene.Ia ted bJ that clause. In the n-adic case, the analogous.

12

' I

llappe.as for recursion over the saae arguaent <1f a-Erocedure.
7llat is, consider the foliowing clause:

P (X,X) <-P ll,Z) ,BU, I)

Prom the standard semantics we have ttat the i;:cevicas clause
adds tuples tc the denotation of E, defined ty the ether clauses
defining P, in the sense that it adds tui;les whe.te onlJ the
second elemeats may he new. Said it anothEr way, considering
the greatest set of solutions fc.:c E, de.noted bJ:
Dh(P)-1 X ~h(P)-2, the above ciause may ad~ ele•ents to DhCP)-2,
not to Dh(P)•1. Thus, si11ce :we are ncv looking fc1: the greatest
a,P.E.EC:ziaatio11 o£ Dih(P), 11e can collside.r the atove clause having
the saae greatest set of solutions of P def.ined as:

P CJ.J) <-P• (X,J) ,:& {Z, Y)

P (X,l) <-P 1 (J, l)

and where P' is defined as the 1:est of P.
defined h1 u clauses and the one considered
k-th, then P' is defined so that:

k-1 u
DhfP')== UJ>h,P)i D (U DhU)j

i=l j=k+1

that is, if 2 was
1re1iou~l1 vas the

1lh•s ve define .JB so that each time 11e have egua·tions such as:

{.P}i_j= {{P}i_j O '11) X (•••

we replaces all occui:eoces of • (PJ i __ j •, en tlJe left hand side 0£
Uae pr,nicus eguatio11, hy the empty set • (} ••

!.ransf1 as defined above 11il.l certainly stops, since tlae nuaber
of substitutions BR1 has to do is finite: aoi:eo~er, each
substitution i.Ioduces a set of equations such that the sa11e type
of sets {P]_k, foi all predicates, will not appear a~ymore in
an1oae clause, unless Pis undEfi.ned (thus nc eguation exists
fer (I}); ll1 needs to be done onlJ once.
The sa ■e, oz course, b.ol.ds for EB;
S axio,as ai:e obviouslJ convergent, and a point. vi.11 le reached
so that no o.ne of them can be ai::Elied anyaci:e.

luEther transf:comations a.re defined bJ the ~allowing algorithm:

7:ca11sf2

1) ai:ElY liB2;
2) aEply !B;
3) aEply S axic•s;
4) repeat from 1)
any ac.re.

to 3) until all of t.hea. ca11nct be applied

13

B~Elacement .!.!!1.§ 2 (BR2}

Given an eguations of type: {P}Lk= 1
where i is a set eipxession; ~eplaces each occurence of• {P}j_k•
by Tin all set ex~ressions of all otbet eguaticEE.

EB and S axioms are define as in lE~ill•

Bule Bi2 is a transformation aaalcgous tc BB1.

t1ansf1 sto{ls, as 11el.l as 'Iransfj does. tet•s in fact observe
that: .
BB2 is applied after i~§£1 is ccmpletEd; nc eguaticn. such as
(P}j_K=i, will be such that T contains '{F]j_i• itself (because
of !Ji in __.ID!§i 1) ;.
At each step, BB2 eliminates all references tc sets such as
• l P} j_.k•; thus, the next time 1lB2 won •t be applied to the same
eguation: since this-applies to all eguation.s ana since there
are a finite number of eguatio11s, after a 11bile, BB2 aill not be
aEplicable anyaore. ·
Eecause of the same sort of considerations, about EB·aud s
uicas, we can conclude that ~t!.!!§f2 terai»atES, F~oducing a set
oz eguatioas each oDe of 11hich has associated: eithe.t a ground·
set, CL I} oi: else a set exp.cessioD ccntaiDing i:e.ferences to
undefined procedui:es, i.e. it produces a set of eg~ations in
solved .!.9ll.

At the e11d, since refe.1:ences to {E}j_k do not appear in any set
ezpression and since they where built jost fer the sake of
transformations, all eguations for such set~ can ie eli•inated;
a.ll that vi.11 remain is a set of eguaticns, fci: the Frocedures
defined in tlie set of clauses given in the f ii:st place.

5. f .Ei BElUBIS OJI 1:RABS!'OBMA7IONS

The transformation process, presented im Section 4. is such that
the follo~i.ng diagram commutes:

C: -

~:9.S.!
DB (.l) <-------- ------------)!JI

I 1 I
I J j 2
I J J .t
I r J I a
I]~ a J I n
I .n ,J J s
J t l f
J 1 I 1
J I J

'1, I I
DH,A')<--------- •----------->!1 1

Ded.Y.£.!

'I
r
a

+ n fig. 3
s
f ...
"'

' I

In fact, l&.!!1§!1 and 7ransf2 stcEs, ircducing a
equations, EA•, in solved form; thus, the aigocith•
T.raDsf 1 followed by .I!A.!!§!2 is so.11112lete. It ensu.res a
to the set of eguations given in the first place.

set of
give.n tJ
solution

Furthermore, the set of equations EA•, can te deducea from a set
of clauses A', such that A and A' have the ~ame greatest
aRpi:oxi•ate set of solutions, .!U!, with: .fill=fl!CP1) ••••• RJ!(Pn)J,
vhere each R.b (.Pi) . is the greatest set of approximate solutions
of Pi1 for all .PJ:ocedu.res Pi defiDed in A.
In fact, BB·1, BB2 and s axioms, d_o net alte.r the se ■a.ntics of
the .set o:f eguations the1 are applied to; t.bu.s, the set of
clauses correspondent to the set of eguations. tefore and after
BB1, iB2 and s axioms, can be cbtal~ea bJ a similar
transformation of clauses in A •.

T.he tra.nsforaation process given in Sec-. q, is e9oi 1alent to the
non•deterainistic algorithm, give.n in 111 J • which ti:ansform a
given set of eguations into another one. in soved fc~a, to find
an eJficieat unification algorithm. BB1 aJJd 5B2 are analogoas
to '.JAriabl§ lliaination•• J11--12J, and to thE JU!j.2Jdi,D.9
transfi:oaatioll defined in Program Transforaatio.ns. J13-14J. EB
is analogous to the transformation vbich e.tases e13uations such
as x=x. ~n J11J, and Compaction in 112j. Also· EB is Equivalent
to J:eirese.nt by (} the failurE of transfctaa ticns. t 111 for
eguaticns: :r-=t, •here t coutaiu x.,

.For all procedures Pi, defined in I and J', their denotations,
as defJned by the standard sEmantics is such that:

Db Ui) ~ Dh (Ri) th us .OB (A) ~ DB (J•)
1 1 1

vith DB(A). DB(J').Dh (P~) and Db (Pi) defined as foi: fig. 1, 2.
. A 11

The above results is due to the methcd c.f ~ct conside.ting local
variables at all, as -it has been shown in SEctio.n 3. 1.

6. ClltJ,SAL ll.llllH7iONS WltB l!OliADlC lU:NCJIOliS

I.a SEc·tion 2 ve introduced a .notation fer function~, used in
j10J. low •e axe going to see how to exte~d results cf previous
sections J-4, for clauses with fumcticns.

Runcticns can be, either in terms of pxocedure teing defined by
a clause or else. te terms of Erccedure calls.
J.et•s fir.st obse.r~e that:

PfftiJJ<- Q1(J), •••• Qn(X) is equivalent to:

P (f (.J) <-P' ll)
P' UJ <-Q1 (X) ••••••On (X)

15

---·------· - •··--

500

7herefcre, we can consider {P'} to be eg~ivalent to {P} vbere
the clausal definition of P does .net ccntain a111 function, on
its defini tioII fai:t. I. e.

·. n
{P}== {f. [P•J) and (E'}= fl {Ci}

i= 1

'
Shus fer the above definition of i, ve can deducE:

n
UJ= {.f. (fl {Ci})}

i=1

1ha.s. 11hen functio.as are terJlls of a procedure .tei.ng defined l:y a
clause, the result of thE procedu.:re, xe1ati'Ve1J to that
particular argument, in that particulac cla-use, is given by:

{P} j_k== {£. 7}

vbere 7 is derived in the same •ay as ~n 3.1, as if the function
f didn•t appear at all •.

On the other hand if a variable x, a.cguaent cf a procedure
defi»itiou, is also the acgu~ent of a fumctica •g•, in a
procedure caJ.l to Q. then, instead of considering {Q}_.k, we 11ill
.con.sider: dom (g,, HH_k). Which is a conseguEDce cf the meaning
of .9.9..1 (Section ~), and the consideration that:

PIX)<- Q If fl)

is such that the solutions·for P, vill te all those values •v•,
such tbat: f(v) E ~blQ), i.E. a set D such tbat 'ff.CJ• e (Q}.
lo:c example, from:

Pjf(X),g(I),m(n{Z)))<~ Q(X,h{Y)J, R(m(X),Z) ve have:

(P} 1_ 1== {f. (JOJ_ 1 n _g.Q_! (m, {R} _ 1))}
fl!] 1_2= {g • .9.!t!(h, JC}_2)}
(Pl 1_3·= {m. jn. IB}_2]}

!he second approach in 3.2, needs tote sJ.i9htly modified
accoi:ding to the previous notaticns.

Fci: 11hat co:ncern transfor.mations, rule EB 1 and BB2 need to be
modified so that replacements are not app.lied to i:eferences io
non-atomic sets (i.e. sets sucb as (f.'l}) a.nd in ai:guments of
them function. 7he solved focm of .set EXEression.s is thus,
sucb that symbolic sets, defined bJ ether eguaticm~ may appear
on.ly in set expressions which are part of non-atcaic sets, oc
argume11t of the function .Q.2.!• Everything previously said about
transformations in SectioD 4, still held~.

16

' i

; i

I I

, I

501

At this point a further transformation can te done to expand a
bit 11ore set expressions in .non-ato.aic sets, aDd in argwaent.s of
do ■, to get .scme more information atout tbe .results of
procedures, avoiding .non termina ticrn cf transfcrmatic.ns, because
of recursive set expressions. Altl:ough it will Dct be dealt with
in this paper, we believe a notation, for non-atomic sets, can
be found, such that, by a simila.E precess cf ~ramsfcrmations,
the fixpciut of such set expressions can te derived. He vill
the.a .be able to represe.n·t data, .built b1 recursive .aiplicatio.ns
of functions, .hJ a self-contained, .Eecursive symbolic
ezp.ression. !or the moment ve Eropose the fcllcving .further
ti:a11sfcrmatio11s, for the set of equations obtained J:y tlle
modified algorithms 7ransiJ and 1,1.nsf2.

,J.ransf3:

- applJ BBl so that replacemts take pl.aces im J1c.11-ato11ic sets
and in set exEres2ions, argument of~-
- given a·set o.f a eguations, choose cne of the fer•: (P}j k==1:;
1) reElace each occurense of the left hand side of the-given
eguatioD, by its right ha.11d·side 1 in ill set upressions of
other eguations •.
2) aEply ss axiom~;
.3J choose an eguation of the fora {.P} ik=-=1, which has not been
chcasen Jet:
4) repeat 1-3, u.nUl all eguations have .teen cbcosen o.nce •.

Axioas SS (old S axioas plus axioms for non-atomic sets and do•
exEre.ssions) are listed in Appendix 3. 7hEJ can te prottd
convergent and consistent •ith Ue meaning cf .ncn-atomic sets
and tbe 4.9.1 function •. %he set expressions still represent
approxi•ate soluticns of procedures.

7 •. C05CJ.USJ:O.RS

We have considered logic programs in the Born clauses fora of
logic wit.la monadic functions. lie ha,e the.n presented two
approaches tc derive, from a given set of clauses a set of
eguatic11s. ,the set of eguations obtai11ed re,1:esent, fo..r each
procedure, its greatest, appro.ximate, set o.f solutions; i.e. a
set 11hich co.atai.ns the denotation de.fined bJ the standard
se aa ll tic.s.

Bguations .are derived .from clauseJ: bJ a data flew analysis, fo.c
the Yariab.les involved i.n the clause, carried on o-ver the
co.r:respondent And/Cr g.caph.

Given a set of eguatio.ns (derived as in the first cne
aEprcaches presented), we define a transformation
which reduces eguations to a sol~ed fora. 7he set cf
thus obtained is such that each equation ex,Eresses,
ez_p.cession, the set o.f appro:xima te sol·uticns fer

of the two
algorithm
eguations
.by a set

a given

17

50:L
... --------~--

procedure. By aFproximate set of soluticns for a procedures, we
Dean a set of values {when possible) scue cf ~hich a~e coirect
soluticus for the given procedures, while scme others are ~rong
soluticns. In aDy case, no other values, outside the afpro.rimate
set cf sclutions, can be correct.

The aim of t~e paper is not to find tLanfox1aticns in order to
obtain more efficient programs, as it is the case for Program
transformations and SJnthesis J1J-14-15J. our aim instead, is to
fi»d some properties of a program, ftom the static amalysis of
its definition, in the framewoLk of Abstract lzterpretations of
Progra11, 161. lt is because of this that., foi: eJraaple, we
believe that refences to undefined procedures should 1:e kept in
set expressions, for they coul.d be used a.s a tcol fer program
vei:ificatioll, 1rogi:am construction a.nd co•i:osition cf programs
which have been defined SEFaratelJ.

BB.llUiENCES

111 Kc ■alski, B.A. - Predicate logic as £rogramming Language,
Px0c. Information Ptocessing 74, North folland Pub. co.,
Amsterdam, p~.569-574, 1914.

j 21 Van Emden. ft. B. and Kavalsli J. A. - 'ibe Se.mantics of
Predicate Logic as a Programming I.anguagE, ~ournal ACM, Vol.
23. No •. 4. PP•_ 733-74.2. Oct. 1916.

J3J Col•erauer, A. et a1. Un .Systeme de Co•mu.nication
Boa.me-!Sachine en Francais - Eappo.rt preliminai.re, Gi:oupe de
iesea.rche en lnt. Art., Uni~Ersite d'Ai~ - ftarseille
l11.1iny 1 1972.

JQJ la.rren,D., Rereira, x., lereira, F. - ~BOLCG:
and its impieAentation ccmi:arEd to LISP, Pzcc.
and Prog. Lang., 5:IGPI.A?i Notices, Vol. 12, No.
lievs. No. 64, pp-. 109-115, Aug. _.1917.

t_he language
symi;. on A.I.
8, and SIG.ART

151 Clark,K. t. and l!cCabe, f. - IC-Ii<llCG ..ce:te.rence !\anual, CCD
Besearch Beport, Imperial College, London, 1979.

J6l Ca11sot.P., cousot, B.- Abstract lntE.rFtEtatio11: A Unified
lattice Analysis of Ero grams by Construction or
.l_pproxi.mation o·f Fixpoints. In : SIGAC7/SJ:GPI.Ali Conf. Bee.
of the Fourth AC! 5Jmp. on PrinciplE of ErogramDing
Languages; Los Angeles, Cal., ja~. 17-19, I~• .238-252, 1977

Jil lo•alski, B.A. togic for Eroblem Solving; Artificial
Intelligence se.ries, (Nilsson, N. t. ed.), Ho.r:th Bolland,
1979.

I 8 l I.eYi, G., Siro-.ich, F .- Generalized Jnd/Or
Axtificial Intelligence, 7, pp. 243-259, 1Si6

J9J fta~gue-Ruche•, G.- Eguations booleen~es genetalisees et
Semantigue des progra~mes en logigue du ,remier ordi:e
1onadig~es. PhD Thesis, Ecole lormale Superieure, Faris.

J10J JsiEelli, P. - Born Clauses Ferm cf lcgic: Algebraic Static
Semantics of Frograms. Int. Rep. I.E.I., B82-23, 1982.

18

-------------------------------~----,., _____ ,_ -----

' !

I

; I

i '
' I

: i

, I

503

1111 lartelli, A., lto.atanari, o.- An .Efficient Unification
AlgoritJam, AC! Trans. on Prog. tang. and Systems, Vol. 4, n.
2, April 198,.

J 12 J Cclaeraaer, A. -
Prcgra~ming, !.t •
.ErEss, 1982.

PBOIOG and Infinite JreEs, ia Logic
Clark and s.-A. t~rnlund eds., Accademic

J tJI Jursta.11, B. a.• Dar.l.iagtoa, J. - A transfor.ma·tion s1stem fo.c
develoEing recursive programs. Journal of thE AC! 44, No. 1,
46-61, 1977.

J 14 J Clark, X.L., Darlingtoa, J. - Jlgoi:it.hm classification
through s1nthesi.s. .The Computer Journal 23, Bo • . 1, 1980 •.

J1SJ Eursta.11, B.I.: Recursive progra~s: ltoc.f, transformation
a.na SJllthesis •. In •Rivista di IDfcr•atica·• 7, PF• .. 25-42,
1976.

Jj.f !IDll 1

E (X) <-Q 1 (X) , •••• Q.n (X)
.E If (XI) <..,;B1 fJ), ••• ·.Bm (X)
P ,x) <-S 1 (g.1 (X)), ••. S.k (g.k (l))
E (a)<- R (b) <-

Its correspondent And/0.r: graph can be drav.D as follow~:

Prem the pre~ious graph, ve can deduce the following:

{f. () } ·•~.6

{R1} .J.·~ ~11}

I -

!

APPEND.IX 2

(i}

A
(C}_4 IF}_ 1

lR}== ll} X {Yl X {Z}

111== t tQl_ 1 n 101_2> n tlil _2
ll}== {0]_3 ntP}_2
Ul== l1l}_3
111== IQJ_4 n 1.11_ 1
Ii 1}= {PJ_3 n !R}_ 1

1'}-== {Q} n (il} X (.I} X (l} X {W})
ll }== IQ J n ((I 1 X (I} X (li 1})
UJ= lB} n (1~ 1} X (.X} X {Z})

{ i 1} .

~
11}_3 JB}_ 1

{Z]
I

[B}_3

1- Por all set expressio.ns A and B, suc.h that .A a.nd Bare
ground sets:

- Au B -== t ~' X € A or XE E}
- An B== l X j XE A ana Xe E}

2- .Eor all set expression D . .
- D 0 n -== D'

- i: n u = {}
- D u l?J == (:}
- t n {?} = D - fD u B) n D = D n (D u B) .=D n tB 0 D) -- D
- .D n B) 0 D = D u (D n 13) .= D u If n t> :: Jj

20

I I

I I '

'
, I

I I

------- -·-------- -- -- ----.

3) lor all atomic sets D, and all ncn-atcaic EetE B

- D n H == n
q) Por all .u·_on-atomic sets, and for all l,v a.11d n:

-ff .f.f ••• ff -UJ •• J = U
l v 11

- lt • .OJ o ff • f?}}= {f • f?JJ
l l 1

· -(f .DJ n lf • {?}}== {f .DJ
l l l

5) For all non-atomic sets and all set eiireEsic~s a,
D and all 1~· k, s: -------.. ---· ···--· -·- ·- .

Jf .BJ n (f • DJ={} iff l'i'k
l k

- ff • {f • BJ J u If • ff • J>}} == (f • C {f • BJ u ff • .DJ))
l k l s l k - s

- ff - Jf • HJ} n {f - {f • D} l == {f - ({f .BJ n {i .;. D}) J
1 Jt l s l k E

-Ror all functions f:

h.!Cg, U)== U

- and for all ground sets D:

.2.9.! (g., D)={}

-Per all set eipressions T:

doa(g, 7) U .9.2.!S(g, T)--j.2._!fg, T)
m<g, i> n mcg, T>=m,g, T>
..9.2.1(9, {g.t})== T

D .D _
lli (g, U ~)= U .9.2.! (g, T)

i=1 i i=1 i
D D

S9.!(9,fl7)== fl.9.2.1(9,7)
i=1 i i=1 i

505

21

--------------------------- __ ., ________ _

1

A FIRST ORDER SEMANTICS OF A CONNECTIVE
SUITABLE TO EXPRESS CONCURRENCY

PierPaolo Desano Stefano Diomedi

DiPartimento di Informatica

Universita' desli Studi di Pisa

506

Abstract. The PaPer Presents an extension to PROLOG that
allows to directlw express concurrenc~ and swnchronization.
This is achieved bw i~troducins the concept of class, a sort of
cluster made of concurrent atoms. In seneral, a set of
clauses involvins classes is eauivalent to a denumerable infin
jte set of Pure PROLOG clauses. First, s~ntax and operational
semantics of our extension are defined. Then a first order
semantics is Siven that sliShtl~ seneralizes classical PROLOG
model-theoretic semantics; a fixPoint semantics is also Siven.
Finallw, an example illustrate the expressive Power of the
ewt.ension +

1.· INTRODUCTION

Recent achievements in hardware technolos~ made it feasi
ble the development of machines that can directl~ execute losic
Prosrammins lansuases. Amons these, PROLOG is the most relevant
both for theoretical and for Practical reasons C2,6J. However,
PROLOG is not satisfactor~ enoush to conveniently exPress the
concurrent features that hardware Provides nowada~s. As a
matter of fact, PROLOG procedures can be naturallw ·executed
either in a Parallel or in a co-routinins fashion. The former
re•imen is simPlw achieved by simultaneousl~ rePlacins a set of
independent atoms in the current Soal. Co-routininS occurs when
the same variables ar• shared by different atoms, thus realiz
ins a sort of as~nchronous communication. Unfortunatel~, there
is no exPlicit way of s~nchronizin~ the computations of two or
more concurrent Processes, as is reGuired when they cooperate
to solve the same problem.

In order to solve this limitation, a number of extensions
to PROLOG have been introduced C3,4,7,9J. All these extensions
allow to write clauses with more than one atom in their left
hand side, e.s.

ACx,y) & B(y,z) <-- C<x,s,z>, DCz,w>

I ' I

: !

i i

I

501-

2

where variable~ acts as a s~nchronous communication channel
between atoms A and B. The intended oPerational meanins of
such a clause is that suitable instances of atoms C and D can
be replaced for an instance of A and D, onl~ when both of them
are Present at the same time in the soal.

_ The aim of this PaPer is to sive a formalization of the
above oPerational meanins within a losic framework, so that all
the aPPealins semantic features of PROLOG carry over this
extension. Moreover, we claim that the notions of synchroniza
tion and communication will be better understood and exPressed
b~ Precisely statins the meanins of clauses such as the one
above.

First, the PaPer describes the syntax of both the left
and risht-hand sides. of clauses alons with the lansuase opera
tional semantics; then it defines a first order semantics which
is a straishtforward seneralization of the one-siven by vanEm
den and Kowalski CSJ. A fixPoint semantics is also siven, and
the three different semantics are shown to be eauivalent.
Finally, ihe PaPer shows how a concurrent Prosram can be
translated in a Pure PROLOG Prosram, senerallY composed by a
denumerable set of clauses.

2+ SYNTAX AND OPERATIONAL SEMANTICS

In this section we will sive the syntax of our extension
to PROLOG in two steps. First, we will introduce concr~~i JUtD
tax. It is an abbreviation for some constructs of the abstract
;;;:;tax that will be defined later.

The concrete svntax of the lansuase is the followins.

A Prosram is a set of clauses.

A clause is a sentence of the form

X <--Bl+•••+ Bm

where Xis a clas$ and each Bi is an atom.
The f.ormula B1 + ••• + Bm is the (Possibly empty) body of the
clause and Xis its header.

A class either is an atom or has the form

(A&X)

where A is an atom and Xis a class.
The natation (X&A> is completely eauivalent to <A&X).

3

An atom has the form

A(t1, ••• ,tn)

where A is a Predicate s~mbol and each ti is a term, i=1, ••• ,n.

A term is built b~ variables and constr•Jctor aPPlications to
terms.

A Soal is of the form

<--Bl+••• + Bm m;?;O.

The concrete s~ntax allows to abbreviate soals and bodies
by usins the connective+. Let us now define abstract syntax
that Sives to+ a meanins in t~rms both of standard first order
losic connectives, and of classes.

The formula

Al + •.; + An

is an abbreviation for

< Al A • • • /\ An> V
<Xll A ••• A Xlk1.> V
••••
(XP1 ~ ••• A XPk~) V

<Al& • • • &An>

where:
~ each XiJ is a class built with atoms Ak;
- each Ak belonss exactl~ to one class XlJ;
- P+2 is the r,umber of all the Possible conJunctions of distinct

classes obtainable from Al, ••• ,An. Actual!~,

" Pf2= Ls<n,ld
IC ,.,t

s(n,k) beins the Stirlins number of second kind that counts
the number of Partitions ink classes of n obJects.

In the formulas above, we have intentionally omitted
Parenthesis, understandins that both & and t be risht associa
tive.

Example 1. The formula A + B t C abbreviates

(A /1. B /\ C> Y (A&B /\ C> V (A&C /\ B> V <A /\ B&C> V <A&B&C)

I
I I

I
'

I

- 504-

4

The followins distributive axioms hold that relate classi
cal connectives and classes.

1+ (A V B>&C = <A&C) · V <B&C)
2. (A /\ B> &C = «A&C) A B> V <A A (B&C»

A clause of the form

X <-- Bl t ••• + Bm

is an abbreviation for one of the followins

a>
b)

if m=O
if m>O

X
A1&CA2&c ••• &<Ak&X) ••• >1Y
,(A1&(A2&c ••• &(Ak& (B1 + ••• t Bm)) •••)))

---·-·----
for each finite multiset of atoms <CA1,A2, ••• ,Akl} (com
pound brackets <C and J} enclose multiset elements>.

The intuitive meanins of the clause

X <-- B1 + ••• + Bm <*>

is that all the atoms occurrins in class X must s~nchronize to
be rePlaced with the body B1 + ••• + Bm. Itam Cb> above can be
better understood by considerinS that, if the atoms in class X
occur as Part of a larser class Y, they can still be replaced

·with Bl+ ••• + Bm that,.in turn, will sYnchronize themselves
with the remainins atoms of Y. On the contrary, if only some
atoms of X are present in the soal, the~ cannot be replaced by
clause <*>• Hen~e, the symbol •&• occurrins in a class does in
no way be interpreted as a classical •A•, since the truth value
of a class does not functionally ~ePend on the truth values of
the atoms it is composed with. We will come asain on this issue
in example 2 below.

A {concurrent) computation of a soal sis a seouence of
soals s=s1,s2, ••• , where each s<i+l> is derived from Si.

A (cor,c•J r rent) ref•Jtation of s is a computation endins
with the empt~ soal.

Given a soal s of the form

<-- G1 + ♦ ♦ • + Gm

and a .c 1 a•Jse

Al&; •• &An <~- Bl + • • ♦ + Bk

l-
1

!

5

we can derive a new soal Si

<-- CB 1J>- + •. • + CB kJ:>,. + [GG"1J;i.., + • • • + CGsmJA

if and onl1:1 if

510

CJ' is a permutation of the indexes of s ar,d)... is a unifier
such that
C 66" i J.>,. =CA i J>,. i = 1 , • • • , n •

Example 2. Let us have the followins sround clauses

1. A <-- D
2. ·A&B <-- E

and the soal

<--A+ B + C (S)

The soal can be nondeterministically computed in the two fol
lowins wa1:1s.

<--A+ B + C
<-- D + B + C

a>

<--A+ B + C
<--- E + C

b)

Let us examine what haPPens when abstract s1:1ntax is used
in Place of the concrete one. The soal is

,(AABAC) A ,(AAB&C) A ,(A&B~C) A -,(A&C B> ~ ,<A&B&C) (aS)

The clauses 1 and 2 will orisinate a denumerable set of
clauses, but onl1:1 the followin• can be aPPlied to the soal.

1 a• A V ,D 2a+ A&B V -,E
tb •. A&B V-,D&B 2b. A&B&C V ,E&C
le• A&C V ,D&C
1d. A&B&C V -,D&B&C

For simPlicitY sake, let us consider onlw computation (b>,
which leads to

,<EAC) /\ ,<E&C>

which is ex~ressed in concrete swntax exac~lY as

<--· E + C •

--·•-'<• ---·--- . ····- --------------·--------------· ·---~-,,-------

i !

511_

6

The result of computation (b) is a conJunction of the two
clauses above since clause 2a and 2b may be aPPlied to the
third and the fifth conJuncts of the orisinal soal, resPec
tivelY. The other conJuncts can obviously be disresarded,
since it is sufficient to refute a sinsle conJunct to refute a
whole conJunction.

Now we .can better understand why the clause

A&B <-- E

corresponds to infinitlY many clauses, each -addins a finite
class as •context• to A&B. The soal, when written in its
abstract form (as>, allows to better sinsle out two conJuncts
(the last two in Cas>> which are worth to be noticed. In the
f.irst A and B are S!:mchronized, in the 'other A and B are s!:ln
chronized also with c. Hence, also the last conJunct Cin which
A&B&C occurs> must be replaced, resultiris in E&C. The way+ has
beins defined assures that the synchronization between A&B and
C is inherited by E.

Finally, remark that a clause in concrete swntax in sen
eral corresponds to infinite clauses in abst~act svntax, but
only a finite number of them will be actuallv used in a compu
tation. The effectiveness of the definition of computation is
then Preserved.

Comins back to our example, notice that in computation .(a)
all the five conJuncts corresPondins to the expansion of D + B
+ C will be obtained from (as). In fact, clause la aPPlies to
the first two conJuncts of <as>, and 1b-d to exactly one of the
remainins conJuncts.

3. MODEL-THEORETICAL AND FIXPOINT SEMANTICS

The construction of a Herbrand model for a set of clauses
involvins classes needs onlY to sliShtlY chanse the one siven
bv vanEmden and Kowalski C5J. The difference is related to the
fact that the model of a class is not the intersection of the
models of the atoms that occur in it. If so, •g• would be noth
ins more than the classical 'A', thus vanishins our Proposal to
describe a s~nchronization mechanism.

Par abus de lansase, we will call Herbrand base for a Pro
sram S the set of all multisets of Sround atoms

ft -< C F' < t , • • • , t > , • •• , Pl(< ti(,, • • • , t,,) J)
i -l-1. 1.h ~ . "'

where.
- P, a re. Predicate s~mbo 1 s occ•J rr ins in S,
- J is the rank of P/ ,
- trg are sro1Jnd terms.

51~

7

A Herbrand interpretation is anw subset of the Herbrand
base.

Given a Herbrand interpretation 1:

i) a sround class Xis TRUE under l if and only if the mul
tiset of its atoms belonss to 1;

ii) a conJunction of sround clauses ClA ••• ACm is TRUE under I
if and only if all Ci's ar£> ___ !,R~_E •Jnde~ I;

iii) a disJunction of sround (both Positive and nesative>
classes x1v ••• vxm is TRUE under l if and only if at least
one Xi is TRUE ~nder I· -- --------------' -

iv> the negation of a sround class ,Xis TRUE under I if and
onl~ if X does not belons tor;

v> a universall~ auantified clause C is TRUE under I if and
only if all its sround instances are TRUE under I.

A Herbrand model of a Program S is an~ interpretation
under which all the clauses of Sare TRUE.

The semantics of a Prosram Sis the minimal Herbrand model
of S, which results to be the intersection of all the Herbrand
models of s.

Note that the above definition of truth values of a for
mula under an interpretation is given in terms of abstract syn
tax onlw. Extendins it to concrete syntax is an easy task. Let
us simply give here the extension in the case of clauses.
A sround clause X <-- B1+ ••• 4Bm is TRUE under I if and onlY. if
for each finite multiset of ground atoms {[·A1, ••• ,A~J}, k~O,
the di sJ•Jnct i or,

A1&(A2&C ••• &<Ak&X) •••))V
,CA1&(A2&< ••• &CAk& <Bf-+••• t Bm>) •••)))

is TRUE •Jnder I.

The definition of the fixPoint semantics for a Prosram S
in abstract syntax is Guite standard.

The set of interpretations of a Pro9ram S is Partially
ordered by standard set inclusion.

Given an interpretation I for a Prosram S, the continuous
transformation T associated to S yields a new interpretation
I'+ I' contains the multiset of sround atoms of a class Xl if

-- ·- --------------·------ - --- ----

: I

513

8

and onl~ if there exists a sround instance of a clause of S

X 1 V -,X2 V • • • V ,Xn n>O

and the multiset of sround atoms of each Xi, i=2, ••• ,n, belonss
to I+

As usual, an interpretation I is closed under a transfor
mation T if and onl~ if I contains T<I>.

The semantics of a Prosram Sis the intersection of all
the closed interpretations of S, which can be easil~ Proved to
be the fixPoint of the above defined continuou~ transformation
T.

The followins theorem holds.

EQUIVALENCE THEOREM.
The operational, model-theoretic and fixPoint semantics
are all eauivalent.

The Proof of the theorem relies on the followins lemmas.

LEMMA 1.
The model theoretic semantics is eauivalent to the fix
Point semantics.

This lemma is a corollar~ of the more Seneral theorem statins
that the set of the Herbrand models of a Prosram Sis eaual to
the set of all the' interpretations closed under the continuous
transformation T associated to s.

LEMMA 2.
The operational semantics is eauivalent to the fixPoint
semantics.

This lemma can easil~ be Proved, since when there is a refuta
tion of a Prosram s· and a sround class X, the multiset of
sround atoms of X belonss to the fixPoint of the transformation
T associated to s.

4. CONCURRENT PROGRAMS AND PROLOG PROGRAMS

We will now briefl~ discuss the relationshiPs. between a
Pure ~ROLOG Prosram and a concurrent Prosram in which classes
occur. Actuall~, for each concurrent Prosram there exists an
eauivalent PROLOG Prosram which is denumerabl~ infinite.

'-----------~ .. -- ... -----------

9

As defined above, a clause of the form

X <--Bl+ ••• + Bm

corresponds to a denumerable set of clauses

A 1 & (A2 & (• • • & (Ak &X) • • •)) v
,<Al&(A2l(••• &(Ak& <Bf-+ ••• t Bm)) •••)))

each Ai beins an atom.

51 'I

Let us now translate a clause in which classes occur into a
Pure PROLOG clause, i,e. let us translate tlasses.

First, a total orderins relation > is imposed on the
Predicate swmbols. Then, the class

A 1 (t 11 , • • • , t 1 n i. > & ••• & Aid tk 1 , ••• , tl'-.nK)

where ACitl>>Ai for all i=l,.,.,k-1,
sinsle atom

Q (t 11 , • • • , t 1 "1. ., t21 , ••• , tlu,k >

is translated into the

where Q belonss to a denumerable infinite set of new Predicate
swmbols. The translation function must be a biJection.

Note that the rank of Q is determined as the sum of the
ranks of all the Ai's occurrins in the class. For instance, the
class

A1<x,w>&A2Cx,z,w)

is translated into the followins atom

O(:,:,'::ln<,z,w).

Notice also that the condition un the orderin~ amons atoms in a
class is not a restriction, since the relative position of
atoms in a class is both swntacticallw and semanticallw
irrelevant.

The followins fact is obviously true.

FACT. Given a translation from classes to atoms and two classes
X and Y unifiable by ~, the translations of X and Y are
still 1Jnifiable bY A•

We will now show that a concurrent computation of a soal
is eauival€nt to a finite set of PROLOG computation. As men
tioned above, the infinity of the translated Pro~ram does not
affect the effectiveness of the comPutations, because only a
finite number of the clauses obtained bY translation will
actually be used in a comPutation •

.. ····-··-··--·-·--·--··· -------

10

Recall that a concurrent soal

<--Bl+ ••• + Bm

81S

corresponds to the followins conJunction of PROLOG seals (let
1 ! Bi be the trar,slation of atom Bi, QiJ the translatior, of the

iJ-th class, a the translation of B1& ••• &Bm>.

<<-- B1 /\ • • • /\ Bm > A
<<-- 011 /\ • • • " (Uk.,_) " • • •
(<:-- Qp1 A • • • /\ Qpkp > /\
<-· .. fl

A step in a concurrent:comPutation of a soal is then eauivalent
to a step of standard PROLOG computation on suitable selected
Soals cominS from the.translation+ Of course, these must con
tain an instance of the header of the clause to be aPPlied+
Needless to sa~, a concurrent refutation corresponds to a set
of PROLOG computations, one of which is a refutation.

The above remarks allow us to state the followins theorem.

COMPLETENESS THEOREM
An~ unsatisfiable (i.e. havins no model) set consistins of
a concurrent soal and a concurrent ~rosram has a refuta
tion.

5. AN EXAMPLE

In order to illustrate the expressive Power of our Propo
sal, let us write a Pro~ram that imPlements a •semaPhore•,
throush which a set of Jobs can be s~nchronized. The Prosram
consists of four clauses definins the two classical Pri.mitives
on semaphores P and v, and of two clau~es imPlementins a aueue.

1. p(sem-id,Job-id)&sem(sem_id,O,a)
<-- enaueue(Job-id,a,a') + sem<sem_id,O,a')

2. p(sem-id,Job_id)&sem(sem_id,s(n>,NIL>
<-- sem(sem_id,n,NIL> + .ack(Job_id)

J. v(sem_id,Job-id)&sem(sem_i~,O,Job_id'.a)
<-- sem(sem_id,O,a> + ack<Job-id> + ack(Job_id')

4. v<sem-id,Job_id>&sem(sem_id,n,NIL)
<-- sem(sem_id,s(n),NIL> + ack(Job_id)

5. enaueue<Job_id,NIL,Job_id.NIL) <--
6. enaueue(Job_id,Job_id'.a,Job_id'.a')

<-- enaueue(Job_id,a,a')

~--------······ -- '"'·-··. ·····. -~ ·--------•-·-·--- ·- ... -~---------

11

Natural numbers are rePresent~d by O and successor (s); aueues
by lists endins with NIL (the empty oueue); semaphores bY their
name, a natural number variable and a aueue. Semaphores are
handled throush P and v. A Job Job_id callin9 Pon a semaphore
sem-id is allowed to Proceed runnins if the value of the sema
Phore (the second arsument of sem_id> is not o. Otherwise it is
stoPPed and its identifier is enaueued. A Job callins v either
Cre)starts a stoPPed Job, if any, and deoueues its identifier,
or increment~ the semaPhore value. In both cases the callins
·Job is resumed by sendins it an acknowledsement (the definition
and use of clauses ack is not shown here>.

While clauses 5 and 6 are auite standard, clauses 1-4 are
concurrent. Note that Processes P <or v> and sem share the
variable sem_id, and sYnchronize bY communicatins throush it.
This example shows that this kind of interaction, and also more
complicated waYs of synchronous communication, can be naturally
and exPlicitlY described by havins more than one atom in a
clause header. In fact, the specification of Process sem, that
manases the value and the aueue of anY semaPhore, is isolated
from those Processes (p and v) that actually exploit the sema
Phore mechanism.

6. CONCLUSIONS

We have defined a first order semantics for an extension
to PROLOG, based on a synchronization and communication Primi
tive. The expressive Power of the resultinS lansuase is
stronser than the one of PROLOG+ An intuitive arsument to this
claim can be found in the fact that a Prosram involvins such a
feature corresponds to a denumerable infinite set of Pure
clauses+ Furthermore, standard PROLOG Prosrams can be struc
tured as modules, and the Possibly concurrent interactions
amons them can be naturally described in terms of the above
Primitive.

A similar solution to the Problem of exPressins concurrent
Prosrams in losic has been Presented by Monteiro CSJ. In his
Proposal, PROLOG is extended with the concept of event, thus
leadins to a temporal losic Prosrammins lansuase.

Our future work will concern the Possibility of introduc
ins a seauential operator, followins C7J, and of sivins it a
Precise losic meanins. Furthermore, we intend to enrich con
current Prosrams with the caPabilitY of Processins infinite
streams of data, as done in ClJ. Finallw, it is worth investi
satins on a concept of module that provide mechanisms to encap
sulate losic Prosrams.

51t

12

F:EFERENCES

1+ Bellia,M., Dameri,E., Desano,P., Levi,G., and Martelli,M.
APPiicative communicatins processes in First Ord~r Losic.
Proc. 5th Int. s~mPosium on Prosrammins, Torino 1982,
SPrinSer Verlas LNCS, 1-14+

2 • Co 1 mer a·u e r , A • , Kano u i , H • , Pase r o , R • , and Rousse 1 , P • Un
sist,me de communication homme-machine en fran;ais.
GrouPe d'Intellisence Artificielle, Universite' d'Aix
Harseille, Luminw (1972).

Desano,P. Una classe
deterministiei Paralleli.

di schemi ricorsivi non-
Calcolo, 14 (1977), 97-119.

4+. Diomedi,S. Sulle· basi teoriche di comunicazione e con
correnza nei linsuassi basati sulla losica. Tesi di
laurea, DiP, di Informatica, Univ+ di Pisa, 1983.

5+ vanEmd~n,H.H., and Kowalski,R.A. The semantics of Predi
cate losic as a Prosrammins lansuase. J,ACM 23, 1976,

. 733-742 +

6+ Kowalski,R,A, Losic for Problem Solvin~. Artificial Intel
lisence Series, N.J. Nilsson ed., North-Holland, 1979.

·Monteiro,L+F• A Horn-like
currency. Proc. 1st Int.
seille (1982>, 1-8.

losic for sPecif~inS con
LoSic Prosrammins Conf., ·Mar~

8 Mont~iro,L+F+ A proposal for· distributed Prosrammins in
losic. Unpublished manuscript.

9+ Pereira,L,M, and Monteiro,L.F, The semantics of Parallel
ism and co-routinins in losic prosrammins. COLLOQUIA
MATHEMATICA SOCIETATIS JANOS DOLYAI, no. 26, North
Holland, Amsterdam (1981), 611-657.

This work has been Partially supported bY Ministero della Pub
blica Istruzione.

ON COHP1LING PROLOG PBOGRAMS ON DEMAND DRIVEN AECBIT.ECTUBES.

Be1lia M.(*). Levi G.(*), Martelli H. {+)

(*) Dipartimento di ~nformatica
University of Pisa (1tal~)

{+) CNUCE Institute of CNR
Pisa {italy)

ABSTRACT

A conpi1er is proposed that maps Prolog clauses into a
language (LCA/1) with clauses annotated according to functional
dependencies. LCA/1 has a demand driven computation rule and
allows to cope vith streams and lazy constructors.

The compi1ation eliminates the non-determinism related to
the choice of the literal to compute and guarantees an
efficient computation.

1 519

1. Introduction.

Non-d€terminism in Pro1og comes in two f.lavours [1]. The
first one is related to the full declarative programming style
and comes from the absence of any ordering in the literals
occurring both in the cJ.ause right-part and in the goal. The
second one is rel.ated to the relational cal.cul.us and comes £rom
the existence of·superposal:t1e clauses (i.e.._clauses vhose left
parts atomic formulas are unifiab1e).·

.Both 0£ the above~.:features_contribute to making Prolog a
milestone 0£ the logic based programming languages and, at the
same ti.111e, the basis £or al1 the ··applications where calculus
and reasoning merge: expert systems, relational. knowledge base
management, software systems specifications and various A.I.
applications are only some of them I 2,3, 4 J.

Nevertheless, all these powerful Prolog aspects cause a high
complexity in the Prolog run-time support because a non
accurate choice of the literal to he computed can make bighly
non-deterministic even potentially deterministic computations.
This is a direct conseguence of the first type of
non-determinism because Prol.og programs do not expl.icitly state
for each variable vhich literals "co.mpate" the value and which
litera.ls use such _a. -value •.

Obvious.ly, ·specific interpreters choose particular
strategies such· as the left _to right evaluation of t.he
literals, but this .is a very strict choice and does .not solve
the problem. Incidental.ly, it is vorth to .Dote that this kind
of compl.exity cannot .te reduced by running programs on
efficient and Prolog oriented machines.

In order to avoid the first tipe of non-determinism and to
speed up the computation of those rel.ations which are
(multi-output) functioDs, manJ authors [S,6,7] have
experimented contro.l l.anguages to attach a.lgorithms to Prolog
_programs {SJ. The autb.qrs have considered some logically based
functional. l.anguages {9,10] and dezined a functional. l.ogic
language, LCA {11], which is a clause language vith terms

·constrained to be either 'input or output terms. LCA could
integrate Pro1og, as an algorithmic component which all.ovs to
explicitly express programs involving functions and to compute
them in a simpl.e and efficient way.

Nevertheless, all the proposed
inadequate. In fact all of tbe.m
respect to decl.arativeness: i.e.
contain procedural features.

ou.r aim is:

solutions are partiallJ
ioose transparenc~ with

the resulting p~ograms

to save the P.rolog expressive power with its uniform viev of
relations and functio~s;

- to develop a technique for automatically eliminating the
first type of non-determinism by attaching algorith•s to
clauses.

- to develop an efficient interpreter ab.le to compute the
intermediate form obtained with the above step.
The basic idea to achieve this goal is to define a language

2
52.D

{LCA/1, a generalization of LCA} vhose programs are sets of
tt.fully annotated" (Horn) c.lauses. Full annotation .means that
all the variables (not the terms) occurring in a clause (or
goal) are annotated as 1Npat or OOTput variables •. Different
occurrences of the same variable are possibly annotated in
Jii1:ferent ways. The ••£ul.ly annotatedvt c1auses Jllust obe,1 some
syntactic constraints ensuring that each OUT variable can be
computed in exactly one wa,1.

ne .language interpreter has been .defined along the .lines of
the interpreter a.lread~ given for LCA. Its main features are:

a demand driven computation rule;
the ability to hand.le lazy data constructors;
the ability to handle only the second {and rea11y semantic)
t~pe of non-determinism.
The second step is to define a translator from Prolog

programs :illto fu11,1 annotated programs. ~he translator
associates to each clause of a Prolog program a set of folly
annotated c.lauses. Each of them expresses both the specif.le
state that the vatiables in a goal must satisfy in order to
apply the c1ause (i.e. the variables vhich are already bound or
not), and a specific functional dependency among the atomic
formu1as (i.e. vhich comFutes what). All the ful.ly annotated
clauses, associat~d- to ~ach clause, only depend upo~ the
variables occurring'in the clause and are not superposable.

The compilation of .Ero.log progra.ms onto a demand driven
machine seems a promising solutioll to save on one hand, a.11 the
features of Prolog programming and, on the other hand, to earn
the efficiency of running programs on a demand driven
architecture.

Section 2 will give a brief introduction to LCA/1. Sections
3 and 4 treat the translation in detail, while section 5 will
describe the LCA/1 interfreter.

2. The lCA/1 language.

In this section ve ~ill not describe all the details of
LCA/1, because it is guite similar to other proposals [11], but
~e will point out the main differences.

The first one is that in a term the occurrence of a variab1e
symbol xis a.lways annotated by IN or OUT. ~e call these terms
fully annotated data terms and we refer to variables annotated
by IN (O0T) as input (output) variables.

The atomic formula will contain onlJ fully annotated data
terms.

Let us introduce some definitions:

- constant grm: a term ~ithout variables;
- input tm;~: a term with input variables only;
- .2.B!EY! !§~~: a ter~ with at least one output variable.

The following are examp.les of fully annotated clauses:'

521
3

* {s(x IN) 1 Y 1N ,:z. OUT) <-- *(x IN ,y IN ,w OUT),+ (If IN ,y IN ,z OUT)
*(s(x,N),.YIN'z,N) <- *{X1N,.J1N••ouT),+(v,N,J,N,z,N) (*)
* { S (X IN J II Y o u T , z o UT) <-- * (X , ·N , Yo uT' v o u T) , + (., 1 N , .J I N . • Z o u T)
BEV (X: IN• J I H , V ·ouT) <- BEV {J; 1 N.,Z 0 uT) ,APP (Z_.N ,x IN .nil.,V.ouT)
REV {X IN. y OUT , VIN l <- BEV (y OUT ,z IN) ,APP (ZOUT ,x,N .nil,v IN)

11here sand • are function symbol.s and*,+, REV and APP are
predicate symbo1s.

The predicate* ho1ds if the third argument is egua1 to the
product o.f the first two arguments, and the predicate UV ho.ids
if the first argument is the reverse 1ist of the second
argument. ttoreover, the intended meaning of the first clause
of* is that, for any i and y, the result of the product of
s(x) and y is the sum of J with the product of x and y, while
the second clause of* means that for any trip1e of numbers x,
y and z, z is the resul.t of the product of s(x) and y if z is·
the sum 0£ .J with the product of x and y.

Examples of fully annotated goals are the .following:

<-- * (S (S (OJ j ,s (0) ,x OUT)
<-- *(s{s(x 1NJ),s{.y 0 uT),z 0 uTl,+{s(s(O));x0 uT's(s{s(O)))J
<-- BEV(a.b.c.nil,Z 0 uT)
<-- REY(a.x 0 uT•c.ni1,c.t.a.nil)

The.syntax of the language h'a~ to satisfy some constraints
to have the desired properties. ID the following, we assume
familiarity with the terminology and the notatioB used in [1].

Let H '".(a} (.M ouT (a)) be the multiset of the input (outpat)
variahl.es of an atomic formula a.

Let H<-- a1,a2., ••• .,an be a clause, where Bis the conclusion
atomic formula, the ai•s are the atomic conditions, and all the
atomic formulas are fully annotated (a1,a2,~ •• ,an can also
indicate a goal).

Condition 1.
---1:l'f-Foi each

1.2) ror each
be a set.

clause and for each ai, MIN (H) n !f ouT(ai) = J.
clause or goal the multiset U MouT{ai) must

i E { 1,n]

~his condition ensures that ever~ variable is computed in
exactly one wa1 by only one atomic formula.

Condition 2.
--Toreach atomic for~ula ai in a clause or goal; each

variable belonging to l:1 1 N (ai) must belong to MO uT (ak) (or to
.M,N{H) in the case of a clause), where ak is an atoaic
formula of the clause or goal such that i ';' ..k.

This condition forbids to have atomic formulas whose input
variables do .not occur as output variables of ·other atomic
formulas.

Condition 3.
--!he-iultiset M1N(H) must be a set.

4

This condition is complementary to Co~dition 1 (about the.
unigueDess of the computations), and forbids to put conditions
on the input Yariables of the conclusion atomic formula; i.e.
the unification process does not need to contro1 egualitJ on
the input variables. Th.is allows to have a simple and
(possibly) parall.el. unification algorithm.

constraints on the va1ues computed by different variables
are allowed and efficiently handled by the primitive predicate
EQp._ The semantics of EQp corresponds ~o the Prolog assertion:

EQp(x, ••• ,x)<-- D (EQ1 (x,x) <-- □}.

p+1-times

Note that because of Conditions 1,2 and 3 all
s1mbols occurring in MouT{li), must belong either to
to K--ouT(ai) 1 for some ai in the clause, or must not

variab1e
!5 IN {H) or
occur in

the~clause right part.
As a conseguence, any out_put

one atomic .formula only or must
of all the terms oz the Herbrand

variable is either computed by
be considered bound to the set
Universe.

l.CA/1 is a generalization of LCA {11] mainly motivated by
the compilation of Prolog·· clauses. such a generalization is
obtained by redefining the term s-tructure and l:y relaxing some
constraints of l.CA. Nevertheless, the main properties of the
LCA semantics are saved in the ope.rational semantics of l.CA/1.
Thus, the definiti-0n -0£ the LCA/1 interpreter is structura1ly
similar to the one de£ined in (11]. Section 5 briefly analJses
the externa1 evaluation rn1e and the new formulation of the
computation rule needed to handle full annotations.

3. The compiler.

The compiler from Prolog into LCA/1 is a mapping of clause
structures of Prolog into LCA/1 ones.

This mapping is based on the concept of state of the
computation, i.e. the state of the variables during the
computation of the current goal: each var~able can be already
bound (totally or partially computed) or not. The variab1e can
be considered, i.n the first case, as a possible input and, in
the secoDd case, as a possible output for an atomic £ormula.

A second aspect of the concept of state is related to the
applicability of a clause. LCA/1 allows to explicitly define,
for each conclusion atomic formula, vhich variabl.es are assumed
to be .i.nput (and thus must be bound to a value by the
unification), and which variables are assumed to be output (and
,.ill have a value "computed 11 by the clauseJ at resolution time.

The first aspect of state is also present in Prolog (bound
and unbound variables in the unification process).

The main idea of the transformation is that a Prolog atomic
formula implicit1y expresses a finite number of possible

5

different states (the second
combinatorially depends upon the
in the clause. A Prolog clause
of fully an.notated clauses,
·particular st.ate.

aspect) and this number
number of variables occurring

can then be mapped into a set
each of them expressing a

As an example of the transformation, the three clauses in
(*J are some of .the eight fully annotat~d clauses defined by
the folloving 2rolog clause=

.._.(s{x) ,y,z) <-- *.{x,_y,v),+(v,y,z).
Let us take the first clause of(*), i.e.:

*(s(x.JNJ,1,N,ZouT) <-- *{JC1N•Y1N ,WouTL,+(v,N•l',N,ZouTl•~
This clause explicitly defines a state of applicahi.lity,

where tbe variables % and y must be hound and where the
variable z is computed by the ·the clause itself_.

4. The transformation.

In order to formally define the transformation from PROLOG
programs into LCA/1 programs ve vi11 use the following simple
structurEs.

DEFINITION 1 {Y.,griable §EQUeD~ or §_eguence).
To each term t we can associate the variable sequence

containing all the variacle occurrences as found by a Rre-order
term traversing process.

As an exampie, <x,~,i,2> is the sequence associated to the
ter.m f (.x, 9 {Y ,xJ ,z).

1f tis a constant term, the sequence associated tot is the
empty seguence. Let s be the sequence of length n associated
to the term t, s[iJ (or t[iJJ, for each ie {1,nJ, sel.ect.s the
i-th variable ins. ·

rn the £ollowing, the concept of sequence vi11 be
generalized to atomic formulas by associating to each-- formula

.of the form P(t1, ••• ,tk) the seguence obtained by concatenating
the seguences s1, ••• ,sk associated to the terms t1, ••• ,tk
respectively.

DEP1NITION 2 (gAnotateg segy~~). s
Lets be a segueace of length n, ve define {IN,OUTJ a.s tbe

set of all the annotated sequences generated bys.

The annotated seguence ve{IN,OUT}s. differs from s because,
for each i e [1,n J, v[i] is the variable s{ i] annotated by IB or
b~ CUT. We call v{i] an annotation for the variable s[i].

7he set {IN,OUT}8 contains exactly 2" annotated sequences.

DE~INITION 3 (2J!Be!ii!!ti~ seg~~)-
Let she a sequence ~lld v .be an annotated sequence of the

same length of s, we define a substitution as the pair (s,v) •.

'-

i •

6

DEPINITION 4 {§YRStitUY,.Q.!! applicability).
Lett be a term and S be the sllbstitution (r,v), ve say that

Sis app1icahle tot il£ r is equal to the sequence associated
to t.

The app1ication 0£ S to the term t results in the term t•
such that:

• · ¥ieI 1,n],
if n is the length of s.

t•[i] = v[i],

The· transformation maps a clause c into a set U{c) of
annotated clauses. lt will he described in a tvo step process._
First of al.1, given a clause c of the form B<--L, ve compute
the set o• (c) of partially annotated clauses. The clauses in
u•tc) have a11 the variables occurring in. H replaced by
annotated variables. Zn the first step, the 1oca1 variables of
c {i.e. variables not occurring in the c1ause conclusion) are

· ignored.
The second step takes care of the l.ocal variables bJ

providing the computation of a £ully annotated clause for each
clause in the set U'{c) • .In the same way, t-he second step is
al::le to provide the transformation of a goal statement into the
correspo.nding .fully .. annotated goal •

. -·-

4.1 The computation of u•(c).

Let c be the clause B<--11, ••• ,l.ll, the computation of u•(c)
proceeds as follows:

1) Define {IN,ODTJ 5 ,

associated to H.
where s is the variable sequence

2) Compute the subset K ~ {.lll,OUT} 5 which contains all the
annotated sequences having multiple occurrences of the same
variahie annotated bJ IN. Note that, the set K could be
empty. The set is empty i£ and onlJ if the sequences does
not contain multiple occurrences of the same variable.

3) Vre{IN,OU:J:} 5 -K, let {s,r) be a substitution. Compute
H•<--L' U1 (c) as follows:

+ B'
of

+ L'

is the atomic formula resulting from the application
{s,r) to H;
is the sequence 11 1 , ••• ,lm' such that:
n <= m, and
¥iE[1,n], and for each variable x occurring both in
li and in the sequences, li' contains z annotated as
follows:
1) if x occurs in r annotated bJ

occurrence of xis replaced in li'
2) if x occurs in r only annotated by

the following holds:

.IN., then each
by .J: IN.

OUT., then one of

a) 3 je{ 1 ,n J suc.h that i;tj and lj' al.ready contains
an occurrence of XouT• Then each occurrence of
xis replaced in li' by x,N•

5J.5
7

b) ¥ je[1, n], such t.ha t i 7 j, .lj • does not contain
occurrences of XouT• Then
1) if li contains exactly one occurrence of i,

then the _ occurrence . of x is rep.laced in 1i •
by XouT •

2) i£ li contains p+1 occurrences of x, then
+ the first occurrence of xis rep.laced in

J.i• b.1 .xouT and all the other occurrences
are rep1aced by different renamings of x
annotated by OUT •.

+ let .x1 0 uT , ••• ,XPouT he the above
introduced·renamings. ~hen

· EQp (x 1N ,x11N 4• • • ,xp 1N)

is a SEecia1 atomic for•u1a lu• in L• for
some u e {n+1,a].

-4) lr/- rEK, .we add to the set resulting from step 3) the clause

H1 <--11•,•~-,ln•, ••• ,lh 1 , ••• ,1m• (ll <-= h < JD)

obtained as follows:
+ for each variable x

x1 IN, ••• ,xp 1N _ . .be a
first. Then·

occurring in r more than once, let
renaming for each occurrence but the

EQp (JC IN ,.%1. IN ,. ~ • ,Xp IN)

is an atomic formula .lu• for so.me u e [h+1,m]
+ 1et r• be the annotated sequencer whose variables are

r~named according to the above st:ep, then (s,r•) is sti.11
a substitution and H'<--.11•, ••• ,ln•, ••• ,lh' is the result
of step 3) appliEd to (s,r•).

4.2 .Example.

Let us consider the clause c:
A(.x,d(JC)) <-- B(X,l'),E(JC,X)

where dis a function s1mbol, A,B and E are predicate symbo.ls
and x, l' are ~he variables occurring in the clause such that y
only is loca1. Then, the computation of. u• (c) proceeds as
fo1lows:

1) s=<.x, :x>
{:IN,OOTJ5 = {<x IN , JC IN> ,<x IN ,x ouT > ,<x: ouT ,:x IN>, <iouT ,lCouT >.}

2) K={<.x IN ,x IN>}

3) lr/- SE {<J: 1N ,XouT>,<XouT1X1N>,<.1:ouT,XouT>l
+ s:: (J[IN ' X OUT)

H'=A (X IN, d (Xo 111))

1.•~B(:x iN,Y) ,E(x,N ,x,N)

+ s=<x OUT ,x ltl >
H'=A(x 0 uT ,d(x,N))
L'=B(x,N ,y) ,E(x 1N ,x,N)

+ s=<xOUT , X OUT>

i •

H'=A (X 0 uy ,d (XouT))
I.'=B(XouT1Y) ,.E(X1N ,x,N)
.Q~

8

I.•=B (X IN ,1> ,E (.x-ouT .x1 0uT) ,EQ1 (X IN ,x1 IN)

4) V r E {<z,N ,x,N >J
-+ EQ1 (x,N ,x1 ,N)
+ r•=<x 1N ,x1 ,N >

H•=A (X IN ,d (X1 IN))

1.:s=B{.x,N ,J) ,E(x,N 1X,N) ,.EQ1 {x.N ,x1,N)

52.6

The comRutation defines two u•(cJ, each one containing four
f u.lly an.notated clauses, which differ in ·· the right part of the
clause obtained from the substitution s=<xouy,XouT> •.

4.3 BemaJ:ks about u•(c)

i~S!.E9§i:ti.2.!!.1
For each Prolog clause c, u•(c) contains at

clause. Horeover, u•(c) contains exactly the clause
conclusion atomic formula of c has no variables •

.£~2.22§ill2!! ~

least one
c iff.the

U'{c) as computed by steps 1)-4) is not unique • .In £act,
step 3.2) could lead to more than one U'(c), if more than one
atoi:ic formu.la in the right part contaills a variable which, in
the sequencer, is on.l.f annotated bJ OUT.

Actually, we are not concerned 11ith the choice of U'(c),
although the problem of choosing the best atomic formula is the
key issue for optimizatio~.

RI'.2I!2§iti2!! 1
7he following properties hold for the annotations oz the

clauses in 0'(c):

f~Eert? j No conclusion atomic formu.la contains more than one
occurrence of the same variable annotated by IB, as
guaranteed by the subset K in steps 2) and .Q).

Proeerti: 1 No clause right part contains more than one.
occurrence of the same variable annotated by OUT, as
·g11ar an teed by step 3).

Property .a For each clause vJiose concl.usion atom.ic formula
contains a variable annotated by OUT, only one of the
following cases holds:

1-the same v.ariahle annotated by .I:N occurs in the
conclusion atomic formula also;

2-the same variab.le annotated hJ OUT occurs in exactly one
atomic formula in the clause right part;

J-t.he same variable a.nnotated by OUT occurs in the
conclusion atomic formula only.
This property is guaranteed by the variable rena~ings

9

introduced in point 2.b.2 of step 3} •

.:fropert_y ,! Par each variable annotated by IB in a clause
atomic £ormula,.only one 0£ the following cases holds:

- the same variable aJlllotated hJ IN occurs in. the clause
concl.usion;
-·the same variable annotated by OUT occurs in exacUy

another atomic formul.a of the clause right part.
This property is guaranteed by point 1) and 2.a) of step

3).

4.4. The computation of U{c)

7he computation of U(c) provides ~he annotation of the J.ocal
variables occurring in c. Local variables are· variables which
occur only in the right part of the clause._Snch variables are
left unchanged liy the computation of O'(cJ. Thus the following
p.roperty holds:

P.roposi,tion .!
¥ c = B<--L. c E u • (c) i£f there exists I.• such that:

H<--:t.• E U (c).

Thus, i.ri order to obtain U(c:) , for each clause c of u• (c),
only L• has to be computed.

Let H<--11, ••• ,ln be a clause in U'(c), then U(c) contains
H<--.1 P , ••• ,lm• (n<=m) such that:-

S} ¥ i e [1,n) such that li is al.readJ a
atomic formula (i.e., li does not contain
then 1i'=li;

£u1ly annotated
loca.l variables)

·6) .I.et i E [1,n] be such that 1i co.ntains at least a local
variable .x, then one of the £olloving cases ho.lds:
1) 3 j e [1, n), such that i 7 j and lj• · contains an occurrence

of X0uT. Then each occurrence o.f JC is replaced in li • by
XIN •

2) v, j E [1.n], suc.h that i;tj, lj• does not co.ntain
occurrences of .XouT, then:
a) if li contains exactly one occurrence of x, then the

occurrence of xis replaced in li' by XouT•
b) if 1i conta.iJls p+1 occurrences of x, then the

following steps are performed:
the first occurrence of xis replaced in li' hJ
XouT and all the other occurrences by renamings of
x annotated tJ OUT.

- .let .x 1 ouT , ••• , xp ouT be the above introduced
annotated renamings for .x. Then

EQp (x ,N , :z:1 IN , ••• ,xp,N)
is the atomic formula lu•, for some u E [n+1,m],
added to t:he right pa.r~ of the'tra.nsformed clause.

• !

10

4.5 Exa.mple

As aD example of computation, 1et us
computation of -O{c1) and U(c2) in the case of
predicates for the addition:

c1: +{O,y,y) <--
c2: + (s (x) ,:t ,s (z)) <-- + (x,.r ,z)

w.here sis the successor function.

consider the
the fol.loving

U(c1t={+{0,1·,N,y1,N) <-- EQ1(y 1N ,y1 1N) (1)
+(O.,y,N,1ouT) <-- (2)
+(011ouT•Y1N) <-- (3)
+(O,youT 1 YoUT) <--} (4)

U(c2)={+(s(x 1N),Y,N1s(z 1N}} <-- +{x,N,1,N,z,N) (5)
+(s(x,N),J~,S(ZouT» <-- +(x,N .J,N ,ZouT) (6)
+{s(.x,N) ,YouT·,S{Z,N)) <-- +(x,N •l'ouT'z,N) (J)
+(s(x,N) •IouT ,s(ZouT)J <- +(x,N ,YouT ,zouT) (8}
+{s(X 0 UT) ,Y,N ,s(z,N)) <-- +(XouT•.Y,N ,z,N) (9)
+ (s (XouT) ,y IN ~s (ZouT)) <-- + (.XouT ,Y,N ,ZouT) f10)
+{s(xouT> ,YouT ,s(z,N)) <-- +(XouT•IouT ,z,N) (11)
+(s(XouTl,Y 0 uT ,S(ZouT)) <-- +(XouT,YouT ,zouTl} (12)

llote that U {c1) and U (c2) are unique.

4.6. Remarks about U{c).

Because of Proposition 4, some properties, already given for
the set U'(c), hold for the set O(c) as vel.l. In the
following, we state the properties vhich hold for the set U(c)
and we show hov the clauses in U{c) satisfy t.he conditions
give11 for the anDotated clauses of J.CA/1.

f.[.QJ?QSiti.Q!! j~
Proposition 1 holds in the case of O(c) also. However, U{c)

could contain exactly one clause c•, such that c 7c•, depending
on the occurre11ce of .local variables inc •

.f!:.2122siti.2.D ~
Proposition 2 holds in the case of O(c) also. In fa~t. i.n

addition to the non-unigueness of U'(c) (caused by step J.2),
step 6) could hold for more than one U(c) for similar
motivations. The remarks given about U'(c), concerned vith the
choice of the best atomic formula, apply to U(c) as vell.

ftOEQ§itJa~_g 1~
. Properties of u• tc}, involving only the clause conclusion,

obviously hold even for U(c), namely properties 1 and 3 of
Proposition 3. in addition, clauses in U(c) satisfy Properties
2 and 4 because of steps 5) and 6).

5.29

11

we vil.l now show that, if
condi~ions given for the cl.auses
Section 2 are satisfied.

Proposition 3• holds, t.he
of the 1anguage introduced in

- Condition 1 Point 1 is achieved hy
Ri:oposiilon J'•, because, vhen it is applied
atomic formula, the first case holds. Point
by property 2• of Proposition 3 1 •.

property 4• of
to the conclusion

2 is guaranteed

~gitioB 1 The condition immediate1y £oll.ovs from property
'4 1 of Proposition 3•.

- Condition 3 The condition is guaraateed by property 1• of
Proposition -3•.

As a final remark 1et us note that property 3 of Proposition
3 is not. Essential aDd follows directly from the other
properties in the Proposition.

Fina1ly, a few -w.o.rds about the goal. A goal. is a special
clause structure whose left part is •empty", and, thus, it only
has 1ocal variables. The com~utation of U'(c), in the case of a
goal c, is the set {c]. Given u•(c)={cJ, the computation of
U {c) proceeds as inA:;he case of any other clause structure • .It
results in the-· set {c71) whose unique clause is a fully
annotated goal and satisfies all'the above propositions.

4.7 E:xamFle

As an example of a goal computation l.et us consider the
foll.owing clause c:

<-- + l31 u, V)
The computation of c is:

U (c) = {<-- + {3,uOUT ,VouT) J

Note that the solution is unique.

5. The language interFreter.

Whil.e .mentioning the laiiguage features, ve pointed out i.n
Section 2 how LCA/1 is a ge.nerali2ation of LC!, proposed for
functional (even if non-deter.ministic) computations in
.Prolog-like programming envirome.nts. 7hus the l.anguage
:interpreter we propose is defined al.ong the same l.ines of the
·tcA interpreter given in [11). it has a simil.ar algebraic
definition and it handles some features, like lazy constuctors
and streams, in exactl~ the same vay.

Nevertheless, some relevant differences must be considered,
mainly with respect to:

the evaluation order of the goal atomic formulas;
- the clause unification mechanism.

I
I • 530

12

5.1 The evaluation order and the demand driven rule.

The evaluation order of atomic formulas in a fully annotated
goal is established on the basis of a demand driven rule.

Each fullJ annotated goal contains so~e of the fol.loving
three types of atomic formulas:

1) constant formulas: atomic formulas whose terms are only
constant terms;

2) inJ?!!t formu1~2: ··· atomic formulas whose terms ai:e either
constant or input terms and contain at least.one input term;

3) output formul~: atomic formulas containing at least one
output term.

The first t:110 types of formulas correspond to foraulas which
only put constraints OD the goal or on the values of the
variables occurring in the goal. As a matter of fact, atoaic
formulas, whose predicate symbol is EQp, are of the second type
and their evaluation constraints the evaluation of the formulas
which use the same variables. Annotations allov us to define
.9.!QRil each variable annotated bJ OUT which occurs in a goal
and such that:
+ the varia.b1e does not occur annotated by IN in the goal

or
+ the variable occurs annotated by 1N in input formulas only.

Xhus a goal could be partitioned into two parts. One part
consists of the set of all t.he atomic formulas which contain at
least one occurrence of a global. This part provides the
computations of the "results11 of the goal evaluation.

The atomic formulas of the second part do J1ot contain
globals and -0nly provide the computations of intermediate (and,
possibly unessential) values.

The evaluation of a goal proceeds as follows: the constant
formulas are evaluated first, then the iDput formulas
containing globals are considered. Finally, when the goal does
not contain any constant nor input formolas with globals, the
output formulas which contain at least one global are
evaluated ..

The evaluation of an atomic formula of the secoDd or third
type could require the evaluation of output formulas .includi11g
atomic formulas not containing globals. In the case of the
evaiuation of formu1as not containing globals, 1nput formulas
are evaluated first.

Note that the order is statically defined by the
input-output relation among atomic formulas. The relation is
i.Ilduced by the occurrence of the same variable aJ1J1otated by IB
and OUT respectively in different atomic formulas. The relation
we have defined is a .E.grtia1 order. Hence the choice of the
formula, where more than one choice is possible, is unessential
to a right seguentialization of ~he computation.

52>1
13

5.2 ~he clause application mechanism

The c.lanse application •echanisa allows to app1J a clause to
an .atomic :formula in the goal, and·resu.lts in the eva.luation of
goa.l atomic formulas._ Whenever the· value of a variable is
needed to app.ly a . cl.aase, the . : atomic formal.a computing that
variab1e is ~e.lectea (by the Demand Driven Bule) for the
eva.lu·ation. ·

The mechanism is •a.inly based on a tern unification
mechanism vhich·provides:

• the binding of -the .input · .. variahl.es which occur in the
coac'J.usion atomic formula of the c.lause with the
correspondi.llg input or constant terms of the goal ato■ic
formula; ·

• the binding of the output variables which occur in the goa1
atomic :formula with the corresponding output or constant
terms of the coDClusion atomic formula of the c.lause.

Thus, the application of the unification to teras is not
symmetric. In fact, unification behaves, on one haad, like a
match of input terms-·in the goal atomic formula to input terms
in the clause conclusion, and, on the other hand, 1ike a match
of output terms in the clause conclusion to the output terms in
the goal atomic formula. . .

The unification of a term in the goal atomic £0.rlllula, tg,
with the corresponding term in the clause conclusion, tc, has
the fol.loving properties •

.fn>Eosition .2
The term tg is unifiable vit.h tc if one of the fol.lowing

cases holds:
_1) tg is a constant ter11;
2) tg is aD inFut term and tc is either an input or a coDstant

t-erm;
3) tg is an output term and tc is either an output or a

constant term •

.f.I:op9sition §
The unification of tg and tc results in the pair of unifiers

(.a ,N•~ouT) respectively fer input and output variables, i£ and
only if:
1) tg is a constant term and .a,N is such that:

tg = [tcJ.,
II, IN

Note that, if tc is an output term, the unification
requires the evaluation of the right part of the clause in
order to compute the output variables occurring in tc.

2). tg is an input term and i..,N is such that:

tg = [tcJl
IN

.. ~32
14

In this case, the unification could require the
evaluation of the goal in order to compute the variables
occurring as inputs in tg and corresponding to terms
(different from varia£1es) in tc.

3) tg i.s an output term such that:
3.1) tg is an output ~ariable. Then

= tc

that is, louT contains a binding oft.he variable tg to
t.he ter.m tc. Moreover, tc must be a constant term o.c an
output term containing only output variables.

3.2) tg is a term of the form f(tg1, ••• , tgk) (where f is a
data constructor and at ·least one of the tgi•s is an
output term), then:

{tgJ'l = [tc] 1
AouT ,., IN

If this iilii. :the case and if tc is an output variable,
the unification needs the eva1uation of the right part of
the cl.ause to obtain for tc the term f(tc1, -~•• tck).
Then, the unification· proceeds through the unification of
tgi, tci for .each i. from 1 to k.

Note that, because of 3.1, if. t.c is an output variable, its
value f(tc1, ••• , tck) contains output variables on11- Thus, to
obtain an uni:fica tion, tg must also be a term containing output.
variables only. ·

A special case arises when ~c is an output variable which
does not occur in the right part of the clause, i.e. there a.ce
no atomic :formulas in the goal which can compute values for the
variable • .In this case the variable is considered bound to all
terms of the Her.brand Universe, and the value of the variable
is denoted by HU. The match of such a variable to an output
term tg must bind the variables in tg to HO also.

5. 3 .Exam.Ple

As an example of a computat.io.n of a ful.lj' annotated program,
let us consider the evaluation of the goal in the exalllple i.n
4.7 with the clauses U(c1) and U(c2) in 4.5.

<-- '+ {3, U OiJT I VOUT)

resolved by {8)

with:). ~H: {J:~N =2}

i:uT= (UOUT -=1~uT ,voUT =s(z!uT)}

deriving:

15

(8)

f8J

i:N ·= {X~N =OJ
') 2 _ '! "1 1 · _ 2 -1 _ 2
"'ouT- "'ouTU{.YouT -youT • 2 ouT-S(ZouT)}

<-- + (0,_l'!uT ,z!uT)

{4)

.· 3

l,N = {}
'!3 '12 { 2 _ 3 2 _ 3 }
"'ouT= "'ouTU YouT -YouT • 2 ouT-YouT

-·□
'I• - 13 U {v3 =HU J "'ouT - "'ouT .l OUT

6. Conclusio•

.The design of new machines for logic based 1anguages,
including the functio~a1 ones, reguires the project of
unconventional architectures oriented to efficiently handle the
language computation rules.

Thus it is important to define a (small) nucleus of
primitive rules which, on one hand, guarantees to express each
language computation step and, on the other haDd, becomes a
model to tailor the language architecture.

In this trend, we have considered the selection
formulas in the goals of a ~rolog computation. As
fact, the selection has a remarkable relevance in
i~plementation because:

of atomic
a mat·ter of
the Prolog

the selection affects the efficiency of the computations:
i.e. it 4 can cause too 1ong computations;
the selection reguires a specific mechanisa vhich. can even
affect the efficien~y of the mecbanism to handle the
non-determinism.
Actually, t:he selection is handled. in two dif£erent vays.

The first, common to all the Prolog implementations, makes a
static seiection. This is achieved either by ordering the
atomic formulas from left to right (12], or bJ using
annotations {SJ. The former does not cope vith · ezficiencJ,
while the latter looses the declarative transparency and.does

16

not guarantees efficienci.
The dynamic handling of the selection is the second approach

[13). it allo.s e££icient computations but requires mechanisms
which are complex and hard to build.

A promising solution to this problem seeas to be a
compilation of the Prolog clauses illto fully annotated clauses.

An annotatio~ assigns a role to atomic formulas bJ
distinguishing between the one vhich, for a given variable,
must compute a value and the ones vhich will use that value •
.In this va.1, a functional. dependency is statically imposed on
the atomic formulas. Then the selection is handled by means of
a demand-driven mechanisD •

.In addition to it, the proposed compil.ation allows us to
reduce both the overhead of the unification mechanism (vhich
becomes a •atching mechanism) and of the computation
environment (onlI the output terms unifiers, AouT, must be
kept).

However, some opeB guestions can be considered.
The firs~ is the choice of the object program when more than

one is possible. The choice is semanticall.y unessential (as ve
will point out in the foll.owing) and does not affect the design
or the efficiency of.the tlemand-driven mechanism. However, it
is essential .in order to .shorten the computations.

Given a sets of Horn clauses, the choice solutions are
strictly related to a selection function vhich guarantees, for
each goal for s, a derivation (if any) with the smallest
number of· input clauses [14].

The use of partially anDotated clauses (cl.auses like those
occurring in u• (c}) together vith the results concerning the
superposition [15] seems a promising approach towards the
definition of such a functioD.

.For what the semantics is concerned, it is
that any object obtained by the compilation
eguivalent to the original Prol9g set of
program).

si.mple to prove
is semantical.ly
clauses (source

proble~s arising from
the derivation of the fullj

case of the LUSH resolution

The proof could ignore the
superposable clauses and show that
annotated clauses is a special
applied to .Horn clauses.

Finally, the progra.mming environment, the proposa1 al.lows to
define, deserves some remarks.

Programming applications often need to integrate declarative
programming vith procedural one. Such an integration will
allow to easily combine declarative and procedural knowledge
(i.e. algorithms) and is currently been pursued by several
projects, notably Bobinson•s LOGLISP [16~

. To obtain it, attention has to be put on the integration
level which must allow, on one hand, to easily merge
declarative with procedural computations, and on the other
hand, to maintain, as small as possible, the nucleus for the
different types of computation.

· 17

LCA/1 seems a good candidate for the integration level, in
particular it allows the same nucleus to compute both
declarative and procedural programs. !oreover, the proposed
compile£ could he 1ightly aodi£ied in order to be ·applied to
programs of partially annotated clauses, thus including pure
Prolog programs, l.CA_ programs and programs whose clauses
contain both Prolog and I.CA atomic £oraulas.

,ll.FEBBNCIS

[1) Kowalski, B.A. Predicate Logic as a Prograaming Language.
Information Processing '74, Borth· Bolland. 1974, pp.
556-5711.

[2] Kowalski, B. A. Logic
Intelligence Series,
1979 •.

for Probiem Solving. Artificia1
H.J. Nilsson Ed., Borth Bol1and,

£ 3] Logic Prograia11ting •. CJ.ark X. L •. · and S. A. Tarn1und Eds. ,
Academic Press, 1982.

[4] Proceedings of the 1st I~t•l Logic Programming Conference.
Marseille, 1982.

[5] Clark, K •• .Mccabe, F.- and Gregory, S. lC-PBOtOG Language
Features. In { 3], pp. 253-2.66 ...

{6] Gallaire, H. and Lasserre c. HetaleveJ. Control £or Logic
Programs. in [3], pp.173-185.

(7) Pereira, L.M. and Porto, A. Intelligent Backtracking and
Sidetracking. in Horn Clause programs - The Theory.
Departamento de Informatica, Universitade Bova de Lisboa,
Bep. 2/79 CIUNt, October 1979.

[8] Kowalski* R.A. Algorithm=Logic+Control. Comm. of A.C.M.,
22, 1979, pp. 424-431.

(9] Bellia ~-, Degano P. and Levi G. The call hI name
semantics of a clause language vith functions. In [3], pp.
281-298. .

(10]Bellia, H • ., Dameri, L, Degano, P., Levi, G. and Martel.li,
.rs. Applicative Com.municating .Processes in First Order
Logic. Lecture Notes in Computer Science, 137, Springer
Verlag, 1982, pp. 1-14.

[11]Bellia, a., Dameri, E., Degano, P._Levi, G. and ttartelli,
!. A lormal ~odel for Demand-driven I.mplementatiODs of
Rewriting systems and its Application to Prolog Processes.
I.E.i • .Internal Beport. IEI-B81-3, 1981. .

{12Jaoss, C. 7he comparison 0£ several Prolog systems. 2roc.
of First Logic Programming Workshop, Debrecen,
1980,pp.198-200. ,

[l3)Pereira, L.H. and Porto, A. Selective Backtracking. In
[3 J, p:p.107-116.

[14)Hill, R. LUSH-Resolution and its compliteness. DCL !!emo
No-78, Dniv. of Idimburgh, 1974.

(15JSato, !I. and Tamaky, H. Enumeration of success patterns in
Logic Programs. 70 be presented at 10th ICALP.

(16)Robi.nson, J.A. and Sibert, E.E. LOGLISP: an al.ternative to
PBCLOG. Machine Intel1igence No.10, 1982, pp. 399-420.

CONTROL OF ACTIVITIES IN THE OR-PARALLEL TOKEN MACHINE

Andrzej Ciepielewski and Seif Haridi
Department of Telecommunication and Computer Systems

Royal Institute of Technology
Stockholm, Sweden

ABSTRACT

A machine model consisting of a limited number of processors, a token pool and
a storage has been defined, [HaCi]. A token represents the state of a pro
icess, which in turn executes a branch in the search tree of a logic program.
!Tokens in the token pool correspond to processes which are ready for execution
but not allocated a processor. Processors execute processes as presecribed by
jthe tokens and create new tokens. During an Or-parallel execution the number
of processes usually exceedes the number of available processors. The problem

;of controlling the number of activities can be divided into two subproblems:
(1) controlling the traversal of the search tree and (2) prunning some
branches of the search tree. The solution to (1) can been seen as a scheduling
problem and will be discussed in a forthcoming paper. To solve (2) we device
a mechanism for prunning the search tree, removing from the system tokens
representing no longer needed computations, when only one solution to a prob
lem or a subproblem is required. We show how the mechanism is incorporated
into the Or-parallel token machine without imposing any process hierarchy or
message passing. We define a translation of the extended source language pro
grams, (Ha,HHT], into sequences of abstract machine instructions and define
the interpretation cycle of a processor for the extended instruction set.
Finally we discuss how the mechanism can be generalised to pruning of the
trees when at most n solutions is reguired, and for guarded clauses [ClGr,Sh].

References

[ClGr] KL Clark, S Gregory, A Relational Language for Parallel Programming,
in proceedings of ACM Symposium on Functional Programming Languages
and Computer Architecture, October 1981

[Hal S Haridi, Logic Programming Based on a Natural Deduction System, PhD
Thesis, TRITA-CS-8104, Royal Institute of Technology, Stockholm 81

[HaCI] S Haridi, A Ciepielewski, An Or-parallel Token Machine, in this
proceedings.

• [HHT] A Hansson, S Haridi, s-A T~rnlund, Properties of a Logic Programming
Language, in Logic Programming edited by KL Clark and S-A Tirnlund,
Academic Press 82

i

! (Sh] E Y Shapiro, A Subset of Concurrent Prolog and its Interpreter, SRI
International, January 1983, also to appear as TR-003 , ICOT, TOKYO.

AN OR-PARALLEL TOKEN MACHINE

Seif Haridi and Andrzej Ciepielewski
Department of Telecommunication and Computer Systems

Royal Institute of Technology
Stockholm, Sweden

ABSTRACT

~achine model consisting of a limited number of processors, a token pool and
\torage is defined. A token represents the state of a process, which in turn
lcutes a branch in the search tree of a logic program. Tokens in the token
~l correspond to processes which are ready for execution but not allocated a
' ,cessor. Processors execute processes as presecribed by the tokens and
)ate new tokens. A processor executes a compiled form of the programs. We
rine the translation of programs into sequences of abstract machine instruc
fns and define the interpretation cycle of a processor.

1 Introduction
!

in clause programs can be executed in different modes without changing their
1:ning up to termination. The most common mode is Prolog · s left-to-right
:ection of subgoals and depth-first traversal of the search tree using back
cking. Instead of a sequential exploration of alterantive solutions, the
rch tree can be traversed in parallel. This mode has been lately called
jparallelism. It can be implemented on a single processor [RoSi], but comes
'st to its right when a large number of processors is used.

; goal of our research is a multiprocessor architecture for efficient execu-
1

in of Or-parallelism. We share this goal with a growing number of research-
1

:: (CoKil, CEKM], [Po], [UmTal and [FNMJ. We have already defined an inter-
lter for Or-parallelism and investigated the feasibility of using structure
iring in a distributed implementation [CiHa83A,CiHa838]. In this inter
'lter, we have studied, in detail, the problem of managing simultaneously
,eral binding environments. The interpreter evaluates programs in their
ltract source form and creates a computation process for each alternative
deterministic branch.
this paper we define an abstract machine model consisting of a limited
ber of processors, a pool of tokens and a storage. The unlimited number of
pesses in our interpreter is now mapped onto the finite number of proces
js. A processor executes a compiled form of programs. Subgoals are
~cted in a specific order as defined by the sequence of instructions. We
lcribe the translation of logic programs into sequences of the abstract
~ine instructions and define the semantics of the instructions. The
~ruction set we define here is similar to that of the sequential machine
!cribed in [Ha Sal. Finally, we discuss methods for controlling the amount
~arallelism and compare our machine with other proposals.
i
I Abstract machine model
!

bgic program consists of an initial call and a set of relations. A rela
~ consists of a number of clauses, where each clause is either an assertion
I

•n implication. An implication has a head and a body. The body is a literal
~ conjunction of literals.

2

Ex 1: The following is a program for list-permutation; it consists of two
relations: p(ermutel and d(elete):

1. p((].[]).

2 . p (x s , [y I y s l l +-- d (x s , y , z s I g. p (z s , y s l .

1. d([xlxs],x,xs).
2. d([xlxsl,y,[xlys]) +--d(xs,y,ys).

and a possible initial call:

p((1,2].ysl

Let us denote the i'th clause of a relation r by r.i, then p.1 and d.1 are
assertions, and p.2 and d.2 are implications.

Execution of a program can be described by a search tree. A node in such a
tree represents the state of a subcomputation: a sequence of goals and a bind
ing environment:

<Goal1>,<Goal2>, ... ,<Goaln> , E.
l.

A binding environment consists of contexts containing the values of the
ables in the invoked clauses, one context for each clause invocation.
dren of a node represent the states reached after executing a goal
given state.

vari
Chil

in the

Ex 2: The following figure illustrates the initial four levels of the search
tree corresponding to the program in Ex 1. Notice that each goal consists of a
literal and a context name 1. which identifies the context containing the
values of the variables oc2uring in the literal. In the figure, the environ
ments E. are not shown, instead literal substitution of values for variables
. l. . is used when possible.

3

0: <p([1,2],ys).10> , E0

1: <d([1,2),y,zs),11>,<p(zs,ys),11> , E1

2: <p((2],ys),11> , E2 3: <d((2],y,ys),12>,<p(zs,ys),11> , E3

4: <d([2],y,zs),12>,<p(zs,ys),12> , E4

5: <p([1],ys),11> , EB 6: <d((l,y,ys),13>,<p(zs,ys),11> , E9

In the interpreter described in [CiHa82A,CiHa83B], a process is created for
the root of the search tree. It starts a child process for each clause of the
relation chosen by the current goal and then terminates. A newly created pro-
cess executes unification and if it fails,
creates children processes and then terminates.

it terminates, otherwise it
A branch of computation ter-

~inates successfully when there are no more goals to solve. A solution can be
extracted from the binding environment.

Ex 3: Four snapshots of possible generations of processes for the search tree
in Ex 2, where the state of each process is shown. Processes are about to
perform a unification step. Current goals are indicated by upward arrows.
Environments are also shown in detail where the value of a variable is either
unbound or a pair: (Source Term.Context Name).

Snapshot 1: the process corresponding to node 0:

0: <p([1,2],ys),10> E0

E0 = 10 -I ys unbound\

Snapshot 2: the process corresponding to node 1:

4

1: <d(xs,y,zs),11>,<p(zs,ys),11> E1

E1 = 10 -fys/ [y!ysl,11 l
11 - XS [1,2],-

y unbgund
ys ynbound
ZS unbound

Snapshot 3: the processes corresponding to nodes 2 and 3:

2 : J< p (z s , y s) , 1 1 >
1'

E2 = 10 -JysJCylys],11J

11 - XS [1,2),-
y 1 ' -
ys ynbound
ZS [2), -

E2) 3: l<ct(xs,y,ys),12>,<p(zs,ys),11> } EJ\
1

E3 = 10 -\ysj [ylysl,11 !
11 - XS {1,2),-

12 -

y ynbound
ys unbound
zs Cxjys],12

X 1 ' -
Xi [2], -
y y,11
y! unbound

Snapshot 4: the processes corresponding to nodes 4 and 5, we assume that the
process corresponding to node 6 and its children have already terminated.

4: Bd(xs,y,zs),12>,<p(zs,ys),12> } E4 ,
E4 = 10 -jysj {ylys] ,111

11 -XS [1,2),-
y 1 I -

ys [y,ys),12
ZS [2], -

12 - XS [2], -
y unboung
ys unbound
ZS ynbound

5: \<p(zs,ys) ,11>
~

11 - XS [1,2),
y 2,-

Ea\

ys unbound
zs {xlysl,12

12 - X 1, -
XS (2),

y y,11
ys []

Efficient methods for maintaining a separate address space for each binding
environment are described in [CiHa83A,CiHa83B]. For the rest of this paper it

5

is enough to realise that a variable can be accessed or updated through the
unique name: <Environment name.Context name.Variable name>.

A computation described by our earlier interpreter may be visualised as an
unlimited number of processes and a storage for binding environments and pro
grams.

processes

storage

In the machine model we present here, the unlimited number of processes is
mapped onto a finite number of processors. On this conceptual level we can
picture the machine as consisting of a token pool, a set of processors and a
storage. Storage is divided into a static memory for programs and dynamic
memory for the binding environments and other management information. Tokens
in the pool represent processes which are ready for execution but are not
allocated a processor. Processors execute processes as prescribed by the
tokens and create new tokens. Processors communicate with the storage to
access program and data.

static memory

program

dynamic memory

environments g,

mana ement info

token pool

processors

storage

The above abstraction is similar to the one presented by Darlington and Reeve
in the description of ALICE (DaRe]. It is very useful for handling problems of
parallel computations. Furthermore, it can be a starting point for many dif
ferent architectures.

As mentioned above, the state of a process consists of a list of goals and a
binding environment. Such a state will be represented in our machine by a
token residing in the token-pool or in one of the processors, and by a possi
bly empty list of continuation frames residing in the dynamic memory.
A token consists of the following fields:

6

1. Literal reference (L),
2. Context name (C),
3. Environment name (E),
4. Continuation-Frame reference (CF) and
5. other information to be described later.

A continuation frame has the following fields:

1. Literal reference (L),
2. Context name (C) and
3. Continuation-Frame reference (CF).

In the next section, when the machine instructions are specified, the L-field
in tokens and continuation frames will be a reference to an instruction.

Literals of a clause are selected form left to right. This implies that the
head of the goal-list is always the current goal and the tail are the remain
ing goals. The Land C fields of a token represent the current goal, whereas
its continuation frames represent the remaining goals.
These ideas are illustrated by the following snapshot~ which correspond to
those of Ex 3.

TOKEN CONTINUATION FRAME

fL Jc.. lcFJI
Snapshot 1: there is one initial token having the current
<p([1,2],ys),10>, and no continuation frame, i.e. field CF is nil.

't I 10 I ED I
p((1,2].ys)

goal

Snapshot2: one token with the current goal <d(xs,y,zs),11>, the remaining goal
<p(zs,ys),11> is represented by a continuation frame.

l(!iil El I ~ "?-·)_11)_;JI
p(xs,Cylys]) .. -d(xs,y,zs) g. p(zs,ys).

Snapshot 3: two tokens, the one corresponding to node 3 has a continuation
frame.

54~
7

p(xs,Cylys]) +-d(xs,y,zs) & p(zs,ys). d([xlxs] ,y, [xlys]) +-d(xs,y,ys).

Snapshot 4: evident.

12 E4 12 .nil

~
p(xs,Cylys]) +-d(xs,y,zs) & p(zs,ys).

Continuation frames are read-only data objects. This allows several tokens to
share continuation frames.

1 3. Translation of programs into machine code

In this section, we describe the translation of Horn clauses into machine
code. We give also a short summary of the instructions and their effect. The
exact specification of the interpretaion cycle of a processor is given in
Section 5. Notice that the machine code representation of terms is not giverr.

We use the following metavariables, which may be indexed, to range over basic
syntactic entities:

Terms:
Relation names:

t,q, r, s.
RI s.

By ft and tR we mean a reference to the representation of the term t and to
the relation {clause) R respectively.

An assertion having m variables:

is translated into:

fR - ENTER-UNIFY m (tt1 tt2 ... ftn)
RETURN

An implication with only one literal in its body and having m variables:

a

R (t , ... , t) +--
1 n

s 1 (q 1 • • • • I qm 1) •

is translated into:

tR - ENTER-UNIFY m (tt1 ... ttn)
ONLY-CALL ts1 (tq1 ... tqm1)

An implication with two or more literals in its body and having m variables:

is translated into:

tR - ENTER-UNIFY m (tt1 ... ttn)
FIRST-CALL tS1 (tq1 ... tqm1)
CALL ts2 (tr1 ... trm2)

LAST-CALL tSl (tst ... tsml)

A Relation R consisting of several clauses, Ct C2 ... Cn, is translated into:

fAR-cH01cE 1tc1 tc2 ... tcN>\

tc1 - Code for
clause C1

t C2 - Code for
clause C2

ten - Code for
clause en

A processor f~tches a token and executes the instruction it refers to. After
the instruction is performed the processor may create none, one or more tokens
according to the interpreted instruction. As mentioned earlier every token
has a list of continuation frames. The description that follows, of the
instructions, will be relative to the token being interpreted, so "Remove
first continuation frame" actually means to remove the first continuation
frames from the list associated with the interpreted token.

(1) ENTER-UNIFY m (tt1 tt2 ... ttn) :
Create a variable-context form variables in current environment. Execute
a unification step; the callers parameters are referred to in the inter
oreted token.

9

(3) RETURN
Return control to the caller. The next instruction to be executed is
stored in the first continuation frame.

(4) ONLY-CALL ts (tt1 ... ttnl:
Transfer control and parameters to S; this instruction is used where there
is exactly one literal in the body of a clause and therefore no continua
tion frames are created.

(5) FIRST-CALL ts (tt1 ... ttn)
Create a continuation frame; save next instruction in it and link it first
in the continuation frame list; transfer control and parameters to S.

(6) CALL ts (tt1 ... ttn) :
Remove the fir~t continuation frame; link first a continuation frame
referring to next instruction: transfer control to s.

(7) LAST-CALL ts (tt1 ... ttn) :
Remove the first continuation frame; transfer control to s.

(8) PAR-CHOICE (t C1 tc2 ... ten) :
Create n tokens each having its own environment; i.e. n parallel activi
ties are initiated. The created tokens share the continuation frame list
of the interpreted token.

4. Notational Conventions

The next section specifies the interpretation cycle of a processor. We
present here the essential characteristics of the specification language used
there. The language used may be considered as an imperative fraction of Meta
IV [BjJo].

4.1. Types of Objects

The elementary type NAT is the class of all natural numbers 0, 1, ... and the
type BOOL is the class of truth values~ and false. Elementary types like
unbound is meant to be the singleton set with the element unbound.

Lists

The type of lists of objects each having the type A is denoted by
A*

The list of the objects e1, e2, ... ,en in this order is formed using
<e1,e2, ... ,en>

An empty list is denoted by nil. The following operations apply to a list 1
where 1 = <e1,e2, ... ,en>:

l[i] == ei (yields the i'th element of a list),
!.!ill l == n (the length of the list 1)

10

Reference types

Let A be a type then
tA

is the type of references (addresses) of objects of type A. If i has the type
tA, then the operation it returns the object a of type A referred by i other
wise it returns nil.

Cartesian products

The type of heterogenous n-tuples for which the first object is of type A1,
the second object is of type A2, etc. is denoted by

A 1 A2 ... An

An object of this type is treated as a list of length n.

Abstract Types

Abstract types of compound objects may be specified by means of the following
rules:

(1) A = B1 I B2 I ... I Bn
This rule defines the abstract type named A (a type identifier) to be the
union of the (disjoint) types defined by B1, 82, ... , Bn, where Bi are type
identifiers or type expressions as defined above.

(2) A : : 8 1 8 2 . . . Sn

This rule defines the type A to be the type of A-tagged n-tuples of the type
(81 82 ... Bn). An A-tagged n-tuple object is formed with the expression

mk-A(e1 ,e2, ... ,en)
where 'mk-' is the so called make constructor. The above expression generates
the tuple <e1,e2, ... ,en> equipped with the tag 'A'.

(3) A= 81 82 ... Bn
The same as rule (2) however tuples are not tagged.

4.2. Statements

A crucial statement used in the specification below is

(def x: e;
s

)

where xis an identifier, e is an expression possibly having some side effect
(e.g. a procedure returning a value), and Sis a statement. The expression e
is evaluated first, then all occurrences of x in Sare replaced by the value
returned bye, finally Sis evaluated in this context. More generally in the
construct

11

(def mk-A(x1,x2, ... xnl = e:
s

)

e is evaluated to yield an A-tagged n-tuple, the immediate components of which
are then denoted by x1, x2, ... , xn in the evaluation of the statement S.

The other forms of statements are familiar from other imperative languages
(Pascal etc.). For example sequential statement composition has the form:

(S1;S2; ... ;Sn),
cases have the form:

cases eo: C e1 - s1, e2- s2, ... , en-sn)
and the indexed iteration:

.:f.ru: i = m 1Q n sJ.Q. S(i)
A definition of a procedure F returning a value in our specification language
is assigned a type of the form:

F: 81 82 ... 8n => 8 (n > 0)
! telling that F has n arguments that are of the types 81, B2, ... , 8n and

returns a value of the type 8.
If F does not return a value, i.e. is applied for its side effect only, F will
get a type of the form

F: 81 82 en=>

S. Specification of the processor cycle

The instructions introduced in the previous sections are executed by each pro
cessor. Here, we define the basic execution cycle of the processor and the
exact meaning of the instructions.

5.1. Instruction set

A program consists of the initial call and a sequence of instructions.

Program= INIT-CALL Code
Code= Instruction*

There are following instructions:

Instruction= INIT-CALL I FIRST-CALL I CALL I LAST-CALL I ONLY-CALL I
PAR-CHOICE I ENTER-UNIFY I RETURN

With the following syntax:

12

!NIT-CALL :: tinstruction Nat (tParameterl*
FIRST-CALL :: tinstruction (tParameterl*
CALL :: tinstruction (tParameterl*
LAST-CALL :: tinstruction (tParameterl*
ONLY-CALL :: tinstruction (tParameterl*
PAR-CHOICE : : (tinstruction)*
ENTER-UNIFY :: Nat (tParameterl*
RETURN :: nil

Both Parameters and instructions are stored in the static memory.

5.2. Tokens and continuation frames

The state of a process is represented by a token and a list of read-only con
tinuation frames stored in the dynamic memory. Here follows the definition of
a token (Token) and a continuation frame (Cont-Frame) which were schematically
introduced in Section 2.
Token :: tinstruction Context-Name tEnvironment tcont-Frame (tParameter)*
Cont-Frame :: tinstruction Context-Name tCont-Fram

tEnvironment refers to the process's environment directory,
is used to lookup the designated context in this directory.
the list of parameters in a call instruction.

5.3. Execution cyc1e

and Context-Name
(tParameterl* is

In each cycle a processor fetches a token from the token pool, fetches the
referred intruction from the static storage, and finally decodes and executes
the instruction. A result of an instruction is none, one or more tokens. No
more tokens means that this branch of the search tree has terminated, either
with success or with failure. One token means that the current branch is con
tinued. More tokens means that a nondeterministic point has been encountered
and a fork into new branches has occurred.

The interpretation cycle of a processor is shown below. A number of auxiliary
functions, or procedures, are used there. These functions are divided mainly
into two groups: (1) functions operating on the token pool, and (2) functions
operating on the dynamic storage for managing environments and variable
contexts.

Token management

FetchToken : => Token
Delivers a token form the token pool to the calling processor.

SendToken Token=>
Sends a token to the token pool.

13

Binding environment management

The following operations are described in detail in [CiHa83A,CiHa838]:
DuplicateEnv : tEnvironment => tEnvironment

Creates a logical copy of the input environment and returns a reference to
the newly created environment.

ReleaseEnv : tEnvironment =>
Reclaims the storage of the input environment and all its contexts that
are no longer accessible.

SendSolution : tEnvironment =>
SendSolution(e) extracts the bindings of the variables in the first con
text in e and then performs a ReleaseEnv operation.

NewContext : tEnvironment Nat=> Context-Name
NewContext(e,n) creates a new context of n variables in e and returns its
name.

Unify: (fparameter)* Context-Name (tparameter)* Context-Name tEnvironment =>
BOOL
Unify executes of the unification algorithm, it accesses and assigns
values of variables.

One more auxiliary function is
Nextlnstr : tinstruction => tinstruction

Nextlnstr(i) returns a reference to the instruction following it.

Here follows the processor cycle.

14

Instruction-Processor processor() ~
(cycle

(def mk-Tokenli,c,e,cf,ps): FetchToken();
cases it :

mk-FIRST-CALL(i1 ,ps1) -
1.9..!tl cf1 : New(mk-Cont-Frame(Nextlnstr(i),c,cf));
SendToken(mk-Token(i1,c,e,cf1,ps1))

) I

mk-CALL(i1,ps1) -
(-9.!tl mk-Cont-Frame(, , cf1) : cft;
def cf2 : New(mk-Cont-Frame(Nextinstr(i),c,cf1));
SendToken(mk-Token(i1,c,e,cf2,ps1))

) I

mk-LAST-CALL(i1,ps1) -
(def mk-ContFrame(, ,cf1) : cft;
SendToken(mk-Token(i1,c,e,cf1,ps1))

) .
mk-ONLY-CALL(i1,ps1) -

SendToken(mk-Token(i1,c,e,cf,ps1)),
mk-PAR-CHOICE(is) -

550

(.:fru:. i = 1 1.Q. .ill! is .Q.Q

SendToken(mk-Token(is[i],c,DuplicateEnv(e),cf,ps));
ReleaseEnv(e)

) '
mk-ENTER-UNIFY(n,ps1) -

(-9.!tl c1: NewContext(e,n);
.if. Unify(ps,c,ps1,c1,e) ~

SendToken(mk-Token(Nextinstr(i),c1,e,cf,nil))
else !Failure

ReleaseEnv(e)
) .

mk-RETURN (I -
(.if cf=nil then

SendSolution(e)

~

!Success

(def mk-Cont-Frame(i1,c1,cf1) : cft;
SendToken(mk-Token(i1,c1,e,cf,nil)))

)

15 551

6. Discussion

During an Or-parallel execution the number of processes, as prescribed by
their tokens, usually exceeds the number of available processors. The problem
of storing the state information during the traversal of a search tree is not
special for our parallel machine. In a sequential machine, information about
not yet executed alternatives must be saved. Breadth-first traversal of the
search tree usually leads to a combinatorial explosion of the space require
ment. Therefore, practical logic programming systems control the traversal of
the search tree usually by using a depth-first traversal strategy combined
with a mechanism for pruning some branches of the search tree. Such a mechan
ism takes the form of a rudimenary Cut (Slash) operator as in Prolog, or
intelligent backtracking or both.
Similarly, any feasible parallel machine should incorporate mechanisms for
(1) controlling the traversal of the search tree, and
(2) pruning some branches of the search tree.

The first issue can be reduced to that of adopting a proper policy for
scheduling the tokens on the available processors. For instance, if the token
pool has the form of a LIFO queue, and each processor keeps always one of the
tokens it produces and sends the other tokens to the queue, our parallel
machine would then work as a 'broad' depth-first machine, investigating in
parallel a number of branches that is equal to the number of processors. That
is to say, having n processors we get approximately n Prolog machines working
in papallel. The centralised access of such a token pool would presumably
create a bottle-neck in the system and have to be approximated by partitioning
the token pool on the processors. This issue will be treated in a forthcoming
paper.

The second issue requires either an extension to the source language, or a
seperate control language. Very often one would like to get exactly one solu
tion for a subgoal. This happens, for example, when the relation defined is
in fact a function for certain patterns of arguments, or when it is a test
predicate with all arguments instantiated, or for several other reasons. Once
a solution for a goal is found, the other branches in the search tree having
the same goal can be pruned. Translating this into our machine means that a
mechanism for aborting certain tokens should be available. Such a mechanism
does not require any process hierachy nor message passing between processes.
The extended machine incorporating a mechanism solving this, and other prob
lems, is described in another paper [CiHa83C].

Our abstract machine can, be classified as an unconventional control-driven
machine [Tr]. The execution sequence is decided by the flow of control in
tokens. It is interesting to compare it with a data-driven abstract machine
proposed by Umeyama and Tamura[UmTa]. In their proposal a program is
represented by a dataflow graph. Tokens carry instantiated goals, subtitution
sets or both. Tokens are dynamically tagged to distinguish different invoca
tions of the same clause. Tokens with the same tag must be matched during the
execution. We consider the dataflow principle is an unnecessary complication

::, 5 2
16

in an Or-parallel machine, because of the overheads in both creating unique
tags and matching tokens with the same tag. Dataflow is not needed because
the control flow of the programs can be determined at compile time regardless
of the arrival of data. The dataflow principle might be interesting when some
form of and-parallelism is considered.

References

[BjJo] D sj,rner, C 8 Jones (eds), The VOM: The Meta Language, Lecture Notes
in Computer Science 61, Springer-Verlag 1980

[CiHa83A] A Ciepielewski, S Haridi, Storage Models for Or-parallel execution
of Logic Programs, TRITA-CS-8301, Royal Institute of Technology,
Stockholm 83

[CiHa838] A Ciepielewski, S Haridi, A Formal Model for Or~parallel execution
of Logic Programs, to appear in IFIP 83, North Holland P. C., Mason
(ed)

[CiHa83C] A Ciepielewski, S Haridi, Control of Activities in an Or-parallel
Token Machine, in this proceedings.

[CoKi] JS Conery, 0 F Kibler, Parallel Interpretation of Logic Programs, ACM
Symposium on Functional Programming Languages and Computer Architec
ture, October 1981

[DaRel J Darlington, M Reeve, ALICE: A Multiprocessor Reduction Machine for
the Parallel Evaluation of Applicative Languages. Proceeding of ACM
Conference on Functional Programming Languages and Computer Architec
ture, 1981.

[EKM] N Eisinger, 8 Kasit, J Minker, Logic Programming a Parallel Approach,
First Logic Programming Conf., Marseille 1982

[FNM] K Furukawa, K Nitta, Y Matsumoto, Prolog Interpreter Based on Concurrent
Programming, in proceedings of the First International Logic Program
ming Conference, Marseille 82

[HaSa] S Haridi, D Sahlin, An Abstract Machine for LPLO TRITA-CS-8302, Royal
Institute of Technology, Stockholm 83

[Pol G H Pollard, Parallel Execution of Horn Clause Programs, PhD Thesis,
Imperial College of Science and Technology, University of London, 1981

[Tr] PC Treleaven, DR Brownbridge, R P Hopkins, Data-Driven and Demand
Driven Computer Architecture, ACM Computing Surveys, vol 14, No 1,
March 1982

[RoSi] J A Robinson, e E Siebert, LOGLISP: Motivation, Design and Implementa
tion, in Logic Programming edited by KL Clark and S-A TArnlund,
Academic Press 82

[UmTa] S Umeyama, K Tamura, Parallel Execution of Logic Programs, in proceed
ings of the 10 Symp. on Computer Architecture, Stockholm 83

55~

AN EXPERIMENT IN AUTOMATIC SYNTHESIS OF EXPERT KNOWLE~GE
THROUGH QUALITATIVE MODELLING

I.Mozetie Ci>, !.Bratko Ct,2>, N.Lavrae Ct)

C1J Institute Jozef St!fan, Jamova 39, Ljubljana, Yuooslavi~
(2) Fa·culty of Electrical Engineering, Trzaska. 25, Ljubljana

A~stract

He have developed a ~ualitative model of· the heart for the
simulation of its electrical behaviour. The mod.el was used to
automatically gen_erate a knowle•\ge-base _of all physiologically
possible combinations of cardiac ar~hythmias and their
corresp-ondil'ig ECG ~tescriot ions. The knowle•:~ge thus generated
was ve·rified by carcliologists and is used by a medical expert
system. The model of the heart is formally expressed in a ·
sunset of the first-order _loaic. The qualitative simulation is
oarrted ~ut by a sim~le and ifficient inference mechantsm
i~plement~d in Prolog.

introduction

we ha~e df~etoped the diagnostic part of an expert system
for the diagnosis and treatment of patients with cardiac
arrhythRias to be used at the U~iversity Medical Centre"
in Ljublja~a. In the paQer we concentrate on the ECG
interpretation module which new includes a qualitative model of
the heart. There were at least four reasons for deepening the
system's knowledoe by including the model. The physiological
knawte~Je about ~he h1art is of great importan~e for:

t1ndfng the causes of arrhythmias,
- for choosing an ipprcpriate treatment of diseas•s,
- for intellfgg~t explanation of the system's answers,
- for automiticatly generating the electrocardiographic

knowledoe-baze for the combinations of single arrhythmias
already knQWtl to the system.

This last reason was: in fact ot..1t· im1nediate goal.

')W" m<:·!!el ts r~uaLitative and developed along similar lines as
~.g. the work of Forbus (1982) or·de Kleer (1977). One reason
why a ijualitative moJel is a natural choice is that the
pl~ysiological de:rcript1ons of the heart are largely
,P~al tt.3t ive. Another rea:ron is that for a computer simulation
63:.ed on a qua tit itat ive moclel, numerical .. values of the model
~ar~meters !or a given Qatient wo~ld.be-needed. Such parametrs,
however, practically cannot be measure<f.·A similar aproach to
:ned1cat diagn.:His is eii:mptifj'ed in··tr-re CA~NET syst~m O-leis-s,
>, I.) ~ 1 k C ',.Is k i ' A 1'!1 are l ' 197 8) .- . ·" ,. . _..

• • I • -~..;_

...

5 511

lnteroretatibn of ECG

!-,q, 1 shows two EC5 diacirams, the first for a normal heart, ~na ~he iecanct for ventrlcular tachicardia, one of the
arrhythmias t~at are handled by the system. The ECG is in the
svst~m represented by its auatitative description rather than
b~ an actual voltag~ vs. time relationship. The description of

~ a given ECG di3gram consists of elementary patterns present in
tne ECG diagram and the relations betwien these patterns.

The medical literature on the relationship oetween various
heart disorder's an,j their corresponding ECG diagrams (e.g.
Phi~bs 1973, Mandel 1930) is quite indicative of the nature
of these elementary patterns. However, we could not find any
definite· proposal, or formalisation, of a complete and compact
set of such patterns. The language that we desi~ned for
£! e s c r i b t r'I g S : G c o n s i s t s o f · a s e t o f t O at t r i bu t e s , e a ch o f
whjch having typically~ or 4 values. Fig. 1 sbows two ~xamples
of su~h ctescrtptions.

R.

8.S

normal sinus rhvthm

rhythm: regular, .
fre~uency: between_6Q_1QO,
frequency_P: ~etween-~O-1OO,
reoutar_P: normal,
reiation_P-~Rs: after_P_0RS,
regular_PR: normal,
regutar_@Rs: normal

ventricular tachycardia

rhythm: regular,
frequency: between_1OO_2so,
regular_P: absent,
regular_QRS: wide

~1a. 1: Two ECG diag~ams and their qualitative descriptions.

f:1e conS"trLJction of a l<nowte,tge-lo.:1se which covers the relation
~etweeH 26 simpte cardiac arrhythmias and their corresponding
~~b diagr:1ms was relatively straightforward. It was completed
1n consultation with cardiologists in about three months. The
relation between the ~rrhythmias and ECG is in the system
represented by rvles of the form:

if diagnosis then ECG-Jescription

f- or ex amp t e:

i!.
then -

ventricular tachicardia
rhythm is regular and
freqt,et1cy is between i:lO .;rnd 250 and •••

555

.l\,:cordfngty, .this pat·t of the knowledoe-base is used not to
confirm s~me ~iagnosis, but to eliminate those diagnoses that
cor1tra,::$1ct the ~>"ati,rnt's ECG. The remainina set of
nan-erimin~t~d diagnoses (typically a few ai~gnoses> is then
input to~ lhe differential ~iagnosis in which clinical data is
ustd. The clinical knowledge r~nks the remaining arrhythmias by
estimat.ing their relative likeliness.

fhis kno~leige-b3se is, however, not sufficient for dealing
with th! m~re diffi~ult problem of diagnosing the patients with
mull iple arrhythmias. As the- number of ·combinatorial Ly possible
muttiple a~rhythmias Ccombi~ed of 2, J, 4 etc. single ones> ·
excee~s hundred thousa~d, the direct specification of their EC&
dezor,pttons by exhaustive manual tabulation is practically ·
t~postbte. Also, there is no systematic and exhaustive
tre~tment of muttjple arrhythmias in the me~tcal literature.

Thts conclusion motivated, among other reasons, the dev-e-lopment
of a model af the heart to facilitate th~ a~tomatic derivation
if the relat1on between multiple heart failures and th~ir
corresponding ECG desgriptions. With the introduction of the
model, the knowledoj base was "deepened" as illustrated in
t-1g~ 2.

'' sna l low"
k PIOW l e•.!ge

"a·e~p"
know l e~•ge

cardiac
arrhythmias

ECG.
descriptions

heart t-~lllfphysiological model of
disorders constraints ~~~the heart

f-,a. 2: "S~iallow" at1d "deep" diagnostic knowledqe~ ln the deen
k·nowle•~ge diagnos-es are defined in terms of heart
clisordet·s, if a set of disorders is physiologically
p,,ssib.le it instantiates the m•:>del of the heart;
the corresponding ECG is derived by running the model.

Tne model of the heart

t-or its electrical behaviour, the heart can be reuresented as a
network consisti~g of: impulse generators, impulse propagation
paths and summation elements for impulses as shown in Fig. J.
In the medical literature we can find the following definition
of the cardiac arrhythmias: The cardiac rhythm - be it normal
or abnormal - can be characterized and classified with respect
t~ the characteristics of impulse origin, discharge sequence
a~d !mputse conduction CWHO/!SFC Task Force 1979). These
characteristics are or following types: A generator can be
silent, or ~n extra (ectopic) gener~tor may appear; impulse
rwcpag3tior1 paths can be partially or totally blocked, or
extra pati-,s may apoear, •••

55G

Ftg. J: A scheme of. the heart and the overall logic of the model.

!h~ stale of the heart ts repres•nted by the states of its
pa~·ts (4 •impulse ger1erators, 2 prop.agation paths and the rate
of at~ia an~ ventricles). Each simple arrhythmia is defined as
tt, e .at,.'! or m a t st a t e o f on e o f t he he art par- t s ; o t her p a r t s are
assumed to be normal. Two or more arrhythmias can be combined
if they de not contradict <e.g. are not defined by different
states of the s~me heart part).

There are a•:"!•1it tonal physiological constraints on the state of
the heart. ~he constraints in-the model are based on an
assumption that malfunctions of impulse generators, giving
pe~manent rhythm can be mutually ce~bined cinly if there is a
complete conduction block between them. Even if these
malfunctic~s are sometimes physiologically possible, they
cannot be seen on the surface ECG leads and ar~ never
consid~red by physicians.

lne model defines relations between parts of the heart,
electrical impul:es and corresponding ECG descriptions.
Formally, it is expressed as a set of if-then rules in a
clausal form of the first-order logia. It was possible to
order the list of rules according to the following principle:
For each pair of rules R1 and R2, R2 may proceed Rt only if no
literal in the consequent of R2 occurs in th~ antecedent of Rt.
This 1mpl1es that there is no cyclic or recursive rules. This
constraint on the list of rules facilitates fast, one pass
execution of the model.

The inference mechanism that runs the model for a given
multtple arrnythmia is relativly simple. The model of the heart
1s first instantiated with the state of the heart parts. The
states~, t~e heart parts are added to ~he set of rules as unit

clauses. Then the inference mechanism sequentially passes
through t~e rules ~nd by ~pplyi~g ~odus ponens derives all
p,,sif1ve· facts. One_pass through the _ordered list of rules

surft~es far generatt~g all possible ECG descriptions which
co~respond to this multiple cardiac ~rrhythmia.

Rules, 62 of them, define relattons of the following types:

1, (ge11erator)i---....-... impulse

2. tillpulse 4 prap.agat ion path ~ impulse . -

J. impulse:::0-·· _
_ + impulse

impulse

4. tmpuls~

i mpu l s e ----...i ECG-description

....
An example of a rule ts:

if the~e are ectopic impulses at the His bundle and in the
- supraventricles originatfng'at the AV focus

551-

then this results tn the following ECG features: either a short
- PR interval, or no P wave, or P wave after the QRS complex

fhese thr~e cases r~sult from the "qualitative summation" (as·
also ·percieved in the ECG diagram> of two signals which can be
relatively shifted in time in three ways as shown i~ Fig. 4.

_,.. ___ _
'i""litativ~ •
st.tmmator

-A-
-three pos~i"l,le resu..l-fs.
ctt seett o~ -tke ECG

Fia, 4: The q~alitative summation of ECG patterns.

558

Lmptementation and results

We r a n t h e sys t e m• f or a l l c om b i n at i on s o f s i mp l e c a rd i a c
arrhythmias. A large proportion of the corresponding states of
U1e heart parts were recognized as physiologically impossib·le.
For the physiologically possible arrhythmias the model
g trn er a t ed c or r e s po n d i n g ECG de s c r i p t i on s • Th e f o l l ow i n g t ab t e
shows the number of mathematically and physiologically possible
arrhythmias a9ainst the numher of their constftuent single
arrhy t hm i -iS.

No. of const itue.nt
.al"'rhythmtas 1 2 3 4 5 6 7

No, of mathematical
cc:'!lbtr..3tions 23+3 253 1771 8855 33649 100947

No. ot p ~1 'f's i o t o g i c a l l y
poss i.b ,. e c ,,:nb in at ions 13+3 85 231 163 73 20 0

Note· that some arrhythmias cannot occt1r alone <e.g. blocks>,
but only in c~mbination with others (e.g. sinus rhythm>. Three
arrhythmias cannot be combined with others.

Tne whole system is implemented in Prolog on OEC-10 (Pereira,
Pereira, Warren 1978). The compiled program generated ECG
descriptions for ~ll combinations of arrhythmias in 340 CPU
seconds.

The thus obtained knowledge-base of ECG descriptions for all
possible multiple arrhythmias can be used for diagnosis.· If an
eipla:1ation is requested· then for a given ECG description the
corresponding states of the heart parts are retrieved by table
look-up. The model is then re-run for thise states and its
trace can serve as an explanation. We have not yet found an
ett,oient implementation of the model to be run in the inverse
dtreot1on, Le. from the ECG toward the diagnoses.

Conclusion

The mcdet facilitated, as our main result, the automatic
dertvat1an of an exhaustive catalog of multiple arrhythmias and
their corresponding qualitative ECG descriptions.

fhe pr~sent system handles ~!8 combinations of arrhythmias, all
or them physiologically possible and m~jority of them can be
observed in everyday clinical praxis. The importance of
recoan1tion of these arrhythmias is very different. Sometimes
t~e 2:agna~!s of certain ~~ythm disturbances is critical for
the treat,11er1t. On the oth.~r hat1d, some arrhythmias are only of

554

thecretical interest wit~out practical consequences for the
patient. · ·

T~e model af the hea~t also provides a good basis for the
system's expla~ation of its own reasoning, and (as hoped)-for
the treatme~t decision~maki~g. We are planning to extend the
model in two directions:

- to handle the mechanical activity of the heart as well as
electrical,

- to provide causal reasoning about the ef~ects of drugs and
thetr interac.tion f_or treatment decision-making.

Ack now l e~ge,ne n t

n,e authors would (ike to thank cardiologists prof. M. Hot'!.vat,
~- ·Rode, 8. eeraek and A. Grad of the University Medical Centre
in Ljubljana for the consultat1ons in the development of the
know l ectge-base •

. RHerences

.:.

·ctJ ~e Kleer-J. (1977) Multiple representations of knowledge in
a mechanics problem-solver. Proceedings of IJCAI 1977.

L~J Forbus K.O. (1982) Qualitative Process Theory. MIT, AI L~b,
A.l. Memo 664.

LJJ Mandel W.J. (1980) Cardiac Arrhythmias. J.B. Lippincott Co.

l4J Pereira F ■ 1 Pereira L.M, War·ren 0.H.0. (1978) User's Guide
to DEC-tO Prolog. University of Edinburgh, Dept. of AI.

L,J Phtbbs 8. (1973) The· Cardiac Arrhythmias. The C.V. Mosby Co.

L.oJ Weiss S.M ■ t Kulikowski C.A., Amarel S. (1.978) A model-based
method tor computer-aided medical decision-making.
Art1ficial Intelltgence, Vol. ·tt, pp. 145-172.

LtJ WH9/!SFC Task Force, Classification of cardiac arrhythmias
and conduction disturbances. American Heart Journal,
Vol. 98, Ne. 2, Auq. 1979.

EVALUATION OF LOGIC PROGRAMS
BASED ON NATURAL DEDUCTION

Seif Haridi and Oan Sahlin
Department of Telecommunication and Computer Systems

Royal Institute of Technology
Stockholm, Sweden

(D R A F T)

~60

- 2 - 561

0. Introduction

In this paper we show how a large subset of first order logic can be rea
sonably efficienty interpreted. Logic programming has usually been res
tricted to a conditional type of statements called Horn clauses. General
logical statements that are natural to write cannot directly be expressed
by Horn clauses. This is due to the fact that Horn clauses express only the
"if-halves• of "iff-definitions·. This has meant that this that are easily
expressed in first order logic has been done in meta-logic. For example,
negation has been treated as nonprovability and special 'setof' contructs
have been devised to find all the solutions to a relation.
To solve these problems we construct an abstract machine called 'gepr
(=goal, environment, program and resumption register). The ideas of the
· gepr · machine resemble the ·seed· machine for function.al programming
languages [La63][He80], which describes what state transitions that are
allowed. Although we have used a version of Horn clauses to describe the
state transitions, they could equally well have been described in an
imperative language.
The basis for the interpreter are the rules of a natural deduction system
as shown in [Ha81].

1 • s·ample programs

A program consists of a set of relation definitions, where a relation is a
predicate-logic statement of one of the forms:

1. relation_name(term1 ,term2 , ... ,termn) <-> arbitrary logic statement

2. relation_name(term1 ,term2 , ..• ,termn) -> arbitrary logic statement

3. relation_name(term1,term2 , ... ,termn) <- arbitrary logic statement

4. ... relation_name(term1,term2 , ... ,termn)

We also apply a rule of implicit quantification for the variables not being
quantified:

Variables occuring in the "head" of the relation are universally quan
tified over the whole statement, while the other variables are existen
tially quantified over the right hand side of the relation definition.

For example
list(w) <-> w=Cl or w=Cxlyl & list(y)

actually means in logic
Vw(list(w) <-> 3x3y (w=Cl or w=Cxlyl & list(y))

To be able to interpret the statement above, we break it down further into
the conjunction of two statements:

and
Yw(list(w) -> 3x3y (w=Cl or w=Cxlyl & list(y))

Vw(list(w) <- 3x3y (w=Cl or w=Cxlyl & list(y))

The fourth type of statement given above, the negation, is also transformed
into an implication. For example,

.., member Ix, Cl) .
is transformed to

member(x,[)) -> False.

- 3 -

Some more examples:

The full definition set of 'member':
., member(x,[Jl.
member(x,[yjz]l <-> x=y or member(x,z).

56L

The predicate 'class' tests if all members of 'sl' take course c, or
for a certain course finds all its members etc.

class(c,sl) <-> Vs (takes_course(s,c) <-> member(s,sl)l.

takes_course(x,yJ <-> x=D & y=Ct or
x=J & y=C1 or
x=J & y=C3.

maths_course(z) <-> z=C1 or z=CJ.

A ·maths major· is a person who takes all maths courses:
maths_major(x) <-> Vy (maths_course(y) -> takes(x,y)).

This enables us to find out that maths_major(Jl is true, or even makes it
possible to find all "maths majors" with a variant of the 'class' predicate
above.

2. Types

To simplify the description of the interpreter below, we here introduce a
type concept in first order logic. What we actually do is that we have a
convenient way to define relations that are true iff their arguments are in
a certain domain. We will not here try to make an exact definition of the
transformation between our simplified notation and logic, but just show a
few examples.

Having the type definition

TYPEDEF formula= And(formula,formula)

we get the corresponding logic statement

Or(formula,formula) Eq(term,term)

formula(x) <-> 3y3z(x=And(y,z) & formula(y) & formula(z) or
3y3z(x=Or(y,z) & formula(y) & formula(z) or
3y3z(x=Eq(y,z) & termly) & term(z)).

To be able to define a list of a certain type

TYPEDEF list(t) = [] Ctllist(t)l

we find it convenient to use schemas in first order logic:

list(t)(x) <-> x=Cl or 3y3z(x=Cylzl & t(y) & list(tl(z)).

(A schema can take a relation as an argument!,
Obvious abbreviations are also used in the type definitions.

3. Formulas

The full type definition of a formula looks like this

- 4 -

TYPEDEF formula= And(formula,formula) ! Or(formula,formula)
Imp(formula,formula) ! False !
Eq(term,term) ! Rel(name,list(term)) !
All(list{name),formula) ! Exist{list(name),formula).

TYPEDEF term= Var(name) ! Dstruct(name,list(term)l

and the relation 'name' is appropriately defined.

For example, the formula ·vy (maths_course(y) -> takes(x,y))" has a
corresponding abstract tree:

All(['y'],
Imp(Rel('maths_course' ,[Var('y')]),

Rel(· takes', [Var(·x·), Var('y') J)))

The formula ·vs {takes(s,c) <-> member(s,sl))" is first split into the con
junction of two formulas

"Vs ((takes(s,c) -> member(s,sl)) & (member(s,sl) -> takes(s,c)l)"
which has the corresponding abstract tree

All ([' s'],

And(Imp(Rel('takes' ,[Var('s'),Var('c')]),
Rel('member' ,(Var('s'),Var('sl')])),

Imp(Rel('member' ,[Var('s'),Var('sl')]),
Rel (· takes · , [Var (· s ·) , Var (· c ·) l))))

4. A program

The type definitions are extended by

TYPEDEF program= list(relation)

TYPEDEF relation= Reldef(name,backdef,forwarddef).

TYPEDEF backdef = list(assertion ! !implication).

TYPEDEF forwarddef = list(rimplication).

TYPEDEF assertion= Assert(list(name),list(term)).

TYPEDEF !implication= Limp(list(name),list(term),formula)

TYPEDEF rimplication = Rimp(list(name),list(term),formula)

Each relation definition definition set is split into two parts, one for
the forward implications (->) and one for the backward implications (<-).
This corresponds to the types 'forwarddef' and 'backdef' above, each con
sisting of a list of assertions er implications.
The relation 'member'

-. member(x,[J).
member(x,(ylzl) <-> x=y or member(x,z).

is transformed to

- 5 -

C Reldef ('member' , C Limp ((· x · , 'y' , · z' I ,
{Var('x') ,Dstruct{'. ·. [Var('y') ,Var('z')])] ,
Or(Eq(Var('x') ,Vari 'y')),

Rel('member', {Var('x') ,Var('z')])))] ,
{ R imp ((' x ' l ,

[Var('x') ,Dstruct(· [] ·, [])] ,
False),

Limp ([' x' , 'y' , 'z' J ,
[Var('x') ,Dstruct{ •.', [Var('y'), Var('z')])] ,
Or(Eq(Var(·x·) ,Var('y')),

Rel ('member· , [Var (· x ·) , Var (· z · l]))) J))

5. The environment

The values of the variables during a computation are found in the environ
ment.

TYPEDEF environment= list(<Context(loc,context),loc>)

TYPEDEF context= list(Binding(name,value))

TYPEDEF value= <term,loc> ! STAR ! UNBOUND

where loc is an integer.

A formula is always considered in a certain context, and this context is
conveniently referred by a location (an integer).

If we have the formula

3x,y,z (3z,x (q(x,y,z) -> r(x,y)) & s(x,z) & p(x,y,z))

we will in a procedural interpretation get the following:
After having "performed" the outermost existential quantifier the variables
x,y and z are known. We then have

[] 10
x UNBOUND
y UNBOUND
z UNBOUND

and the current context is 10.
If we then immediatly perform

10 11
z UNBOUND
X UNBOUND

(1 10
X UNBOUND
y UNBOUND
z UNBOUND

[<Context([],
(Binding('x' ,UNBOUND),
Binding('y' ,UNBOUND),
Binding ('z' , UNBOUND)]), 10> l

the inner quantifier we get

[<Context(lO,
(Binding ('x' , UNBOUND),
Binding ('y' , UNBOUND l)) , 11 >,

<Context((],
[Binding{'x' ,UNBOUND),
Binding('y' ,UNBOUND)'
Binding ('z' , UNBOUND)]) , 10>]

The value of variable 'x' in context 11 we quite naturally find in context
11, but the variable 'y' can't be found in context 11. We then follow the
static chain which is given by the first argument of a context. The static
chain of context 11 is 10, while context 10 does not have any static chain.
We have a special notation for the value of a variable in a certain

- 6 -

context: the variable 'x' in context 11 is written <Var('x'),11>.

&. The 'gepr' machine

5G6

The basis for the 'gepr' machine is a state transition system. We have a
set of state transition rules

state. --> state. 1 l l+

The behaviour of the machine is described*by the transitive closure of the
transition relation, which we write as ·-->' and is defined by

* terminal-state--> terminal-state

* state--> terminal-state if state-*> state 1 and
state1 --> terminal-state

Each 'state' consists of four 'registers':

G Goal-stack
E Environment
P Program
R Resumption register to handle backtracking

We have already shown the types of E and P, and R will be elaborated when
we come to 'or' in formulas.
The goal-stack is perhaps the most complex type of the 'gepr'-machine. It
contains information in very goal directed manner of what that has to be
done. Since the machine has two major modes of execution, backwatd proof
and forward proof mode, the goal-stack contains two types of items. (The
special •goal· Fail may also occur on the goal-stack).

TYPEDEF goalstack = list(goal)
TYPEDEF goal= B(<formula,loc>, conclusion_environment) !

F(list(<formula,loc>), <formula,loc>, conclusion_environment)
Fail

TYPEDEF conclusion_environment = ... almost the same as environment ...

The backward proof mode of execution corresponds roughly to the normal
"Prolog" mode of execution, while the forward mode is needed to handle
implications in formulas.
We start with explaining the backward proof mode, but first we show how to
initialize the 'gepr' machine.

If we want to evaluate a formula 'f' in a program 'p', the 'gepr'-machine
starts with

G E
([B(<f,[]>,(])], (],

p R
p, Cl>

i.e. the goal-stack G contains just the item B(<f,(J~;[]). This mea~s that
we are going to perform a backward proof off in an empty context. The con
text is empty because we assume that all variables are explicitly quanti
fied in the formula, and contexts will be created for those variables.
The second argument of B (the conclusion_environment) is also empty ini
tially.
The environment is empty since we don't have any bindings of any variables
when we start.
The resumption register i~ empty since we have no backtracking points.

56G
- 7 -

A successful final state of the 'gepr' machine is

([], e, p, r)

where the bindings of the variables are found in the environment e. If we,
for some reason, want another solution, the machine may be restarted again
with the information in the resumption register. This is shown below in the
'Fail'-transition.
It may also happen that the whole computation fails. This is the case if
the final state is

([Faillgs], e, p, Cl)

We are now ready to show the state transition rules, i.e. rules that con
vert one state of the 'gepr' machine to the next. Each rule corresponds to
a rule in a natural deduction system.

7. Backward proof

7. 1. And

If we in a natural deduction system are going to prove "f1 & f2", we first
prove ft separately and then prove f2. Due to the '&' introduction rule we
have

ft f2

ft & f2

which is read backwards in a backward proof. In the 'gepr' machine this
corresponds to the state transition

([B (<And (f 1 , f2) , l>, ce) I gs] ,
((B(<f1,l>,ce),B(<f2,l>,ce)lgs], e,

e, p, r)
P, r)

-->

Since no new variables are introduced, the context •1· is unchanged. The
rest of the goal-stack is 'gs', and is left untouched by the transition.

7. 2. Or

If we want to prove "f1 or f2" we may either prove f1 or f2:

f1 f1
or

f1 or f2 f 1 or f2

And the corresponding transition

([B(<Or(f1,f2),1>,cellgs],e,p,r) -->
([B(<f1 ,1>,ce) jgs] ,e,p, [GEP([B(<f2,1>,ce) lgs] ,e,p) Ir])

The computation continues with a backward proof of f1, while we have saved
the contents of the registers G, E and Pon the resumption stack for the
alternative computation. If we, for any reason, fail with proving f1, we
may retry and prove f2. A failure of a computation is indicated by a spe
cial •goal" called 'Fail' on the goal-stack. Although we have not yet shown
how a 'Fail' gets to the goal-stack, we here show how the 'gepr machine
reacts.

- 8 -

([Failjgs],e, p,[GEP(gs1,e1,pt)lrtl) -->
(gs1; e1,p1,r1).

It may however occur that the resumption stack is empty. We then don"t have
any valid alternatives and the whole computation has failed.

([Faillgs],e,p,[]) no solution!

The type of the resumption stack is called 'dump":
TYPEDEF dump= list(GEP(list(goal),environment,program))

7. 3. False

The simplest way to fail in a backward proof is to find an explicit 'False'
in the goal-stack. The "gepr' machine simply converts this to Fail.

([B(<False,_>,_)lgs],e,p,r) -->
([Fail], e,p,r).

7.4. Exists

If a group of variables are existentially quantified, we allocate a storage
for those variables and initialize them to unbound. This will effect the
environment. In natural deduction this becomes

f(v)

3v(f(v))

and the proof may continue backwards from 'f(v)".

([B(<Exist(vs,f),l>,ce)lgs],e,p,r) -->
([B(<f,11>,ce)lgs], et,p,r) if newenv(vs,l,e,UNBOUND)=[l1,e1].

where et is the new environment and 11 is the location of the new context.
The type of the function newenv is

TYPEOF newenv(list(name),loc,environment,value)=[loc,environment]
For example, the first environment shown on page 5 could have been created
by newenv(['x', 'y", 'z'],[1,(1,UNBOUNO).

7.5. For all

A group of variables may alternatively be universally quantified. In the
natural deduction system we mark the variables (with a star) so they cannot
become bound.

f(*v)

Yv (f (V))

The "gepr' machine makes almost the same things as for an existential
quantification, but all the variables are bound to the special value
'STAR".

([B(<All(vs,f),l>,ce)lgs],e,p,r) -->
([B(<f,11>,ce)lgs], et,p,r) if newenv(vs,l,e,STAR)=Cl1,e1].

When such a variable is found during a unification, it cannot be bound, and

- 9 -

will remain having the value 'STAR'. This is quite natural since a univer
sally quantified variable cannot be restricted to a special value.

7.6. Equality

The special atomic relation '=' also gets a special treatment. In a back
ward proof however, the treatment seems to be quite normal. We just invoke
unification:

We have two cases

or

([B(<Eq(t1 ,t2) ,l>,ce) lgs] ,e,p,rl -->
gepr(gs,e1,p,r)

if unify([<t1,l>],[<t2,l>],ce,el = e1 and
et /= Fail

([B(<Eq(t1,t2),l>,cellgs],e,p,r) -->
gepr([Fail],e,p,r)

if unify([<t1,l>],[<t2,l>l,ce,e) = e1 and
e1 = Fail

The function 'unify' returns the new environment in case of success, other
wise it returns the constant 'Fail'. The type of 'unify' is

TYPEOF unify(list(<term,loc>l,list(<term,loc>l,
conclusion_environment, environment) = (environment ! Fail)

The unification differs from a standard unification in several ways.
When we want to get the value of a variable, we always first look in the ce
('conclusion_envirionment') for reasons which will be explained later. If
the variable is unbound there we then use the normal environment.
As already mentioned, the STAR variables are not allowed to be bound to be
bound to anything, and no variable is allowed to become bound to a STAR
variable. There is however one exception when we can convert a proof made
with a binding to a STAR variable to a proof without such a binding. In
natural deduction we may have

tr

B(x,*y)

3x B(x,*yl

where B(x,*y) is an arbitrary complex formula containing x and y. If we
have to assume x=*y in order to perform the proof Il, we can convert the
whole proof Il to a new proof that does not need that assumption. Since

lT2

B(*y,*y)

3>< 8(x,*y)

is a valid step in natural deduction, and the proof IT2 does not contain any
assumptions on *Y, the formula "3x B(x,*y)" is valid. What is crucial is
that the existentially quantified variable must 'declared' after the
universally quantified variable (the 'STAR' variable).
This mechanism allows us to conclude that

Vx3y (x=y) is true
while

3xVy (x=y) is false

569
- 10 -

Which one of the variables that is 'declared' first is easily tested by
comparing the location numbers of the variables. In this case it is impor
tant to follow the static chain to get the true location of the variable.

Although not strictly necessary we have also chosen to implement unifica
tion so that it can handle cyclic structures (Ha81].

7.7. Atomic relation

In a backward proof when an atomic relation is encounted, we need the pro
gram to find the definition of that relation. There may be none, one or
several such relation definitions. We take them in the defined order of
the backward definition set and perform a unification, which may change the
environment. In natural deduction we write

Yx1, .. xn(relation_name(q1, .. ,qn) <- f) f q1=r1 .. qn=rn

relation_name(r1, .. ,rn)

Above the line we have three parts: a part of the relation definition set,
the formula f (which is the right hand side of the relation definition),
and a group of equalities generated during unification. If are able to
prove fin backward mode we may then conclude the formula thatiis written
under the line.
In the 'gepr' machine we first find all the definitions of the relation.
This is done by the function 'getbackdef'. For each of the relation defini
tions found we stack a unification request on the resumption stack. This is
done by the function 'newdumpb'. Finally we invoke failure so that the top
item (if any) of the resumption stack will be used.

((B(<Rel(rn,ts),l>,ce)lgsl,e,p,r) -->
([Fail],e,p,r1) if getbackdef(p,rn) = stmts and

newdumpb(ts,stmts,l,ce,gs,e,p,r)=r1

Although it looks a bit complicated, the function 'newdump~· is very sim
ple:

TYPEOF newdumpb(list(term),backdef,loc,conclusion_environment,list(goal),
environment,program,dump)=dump

newdumpb(_,Cl,_,_,_,_,_,r)=r.
newdumpb(ts,Cstmlstms],l,ce,gs,e,p,r) =

[GEP([B(<Unify(ts,stm),l>,ce)lgs],e,p)lnewdumpb(ts,stms,l,ce,gs,e,p,r)l.

The type of the variable 'stmts' above is 'backdef' (see page 4), which
means that we actually have two types of clauses: assertions and relations.
We don't show the assertions here since they are identical to a relation
with an always true right hand side.
When the 'gepr' machine finds a unification request on top of the goal
stack it first allocates space for the new variables and then performs the
unification.

- 11 -

We then have two cases:
([B(<Unify(ts1,Limp(vs,ts2,f)l,11>,ce)lgs],e,p,r) -->

or

((B(<f,12>,cellgs]. e2,p,r))
if newenv(vs,[],e,UNBOUND) = [12,e1] and

unify(ctermlist(ts1,l1),ctermlistlts2,12),ce,e1) = e2 and
e2/=Fail

([B(<Unify(ts1,Limp(vs,ts2,f)) ,11>,cellgs],e,p,r) -->
([Fail], e2,p,r))

if newenv(vs,[],e,UNBOUND) = [12,e1] and
unify(ctermlist(ts1,11),ctermlist(ts2,12l ,ce,e1l = e2 and
e2=Fail

The type of 'ctermlist' is
TYPEOF ctermlist(list(term),locl=list(value)

ctermlist([l,_l = {].
ctermlist([alas],l) = [<a,l>lctermlist(as,l)].

7.8. Implies

s=ro

Finally, here is the rule that changes the execution mode from backward
proof to forward proof. In natural deduction we have

f 1[1]

1T

f2
--------[1]
f1->f2

The expression under the line is true if we by starting by assuming ft can
prove f2. This proof is marked with 1T in the figure above. During that
compution certain conclusions may have been drawn, which obviously depend
on the assumption f1, and they must therefore be discharged after the sub
proof. This is schematically indicated by "(1]" in the figure. We solve
this problem by having a local 'conclusion environment' for all subcomputa
tions. By this, local conclusions don't effect the global status of the
computation (the environment).
In the 'gepr' machine we have

([B(<Imp(f1 ,f2) ,l>,ce) lgsl ,e,p,r) -->
(CF ([< f 1 , l> l , < f2, l> , ce) I gs l , e, p, r)

The formula f1 is called the "premise goal". In general we may have a list
of "premise goals", but at start there is just one.
We are now ready for

8. Forward proof

The action in forward proof mode generally depends on the form of the prem
ise goal.

8. 1. And

The first rule is a simple rewrite

- 12 -

([F([<And(f1,f2),l0>lfrl,<cf,l>,ce)lgsl,e,p,r) -->
(CF (C < f 1 , 10>, < f2, 10> I fr l , <cf, l>, ce) I gs l , e, p, r)

which extends the list of premise goals.

8. 2. Or

If the first premise goal is an 'or'-form we have

f1 or f2

f1[1]

1r 1

f2[1]

lr2

1r f1 or f2 cf cf

5=t1

which we convert to -----------------------------(1][2]
cf cf

That is, to prove that f1 or f2 implies cf we have to prove that ft implies
cf and f2 implies cf. The conclusions drawn at these subcomputations must
as usual be removed after the computation.
This means that

([F([<Or(f1,f2),l0>lfrl,<cf,l>,ce)lgsl,e,p,r) -->
((F((<f1,l0>lfrl,<cf,l>,ce),F((<f2,l0>lfr],<cf,l>,ce)lgs],e,p,r)

8.3. Exist

If variables are existentially quantified in the premise goal we get

f(*v)(1]

tr

3v(f(v)) cf
---------------------[1]

cf

We try to perform a proof of 'cf' starting from the premise goal f(*v).
All the existentially quantified variables have the value STAR, and have to
follow the rules of a STAR variable. In 'gepr' we get

((F((<Exist(vs,f),l0>lfr],<cf,l>,ce)lgs],e,p,r) -->
([F([<f,11>lfr],<cf,l>,ce)lgs],e1,p,r) if newenv(vs,10,e,STAR) = [11,e1]

8.4. For all

Similarly for universal quantification we have

Vv(f(v))

f(v)

1r

cf

and for 'gepr'

- 13 -

([F([<All(vs,f),lO>lfr],<cf,l>,cellgs],e,p,r) -->
([F([<f,11>lfr),<cf,l>,cel lgs],e1,p,r) if newenv(vs,10,e,UNBOUND) = [11,e1]

8.5. False

If the premise i~ false we can end the subcomputation with success without
further computations.

False

cf

And for 'gepr· the computation continues with 'gs':

((F((<False,lO>lfrl,<_,_>,_llgs],e,p,r) -->
(gs, e,p,r)

8.6. Implies

Even in forward proof mode an implication can be found in the premise goal.

f1->f2
rr1

f1 f1-> f2
rr which is converted to ----------------------------

f2
cf

rr2

cf

We first try to perform the backward proof ff1, and then the forward proof
rr2.

([F([<Imp(f1,f2),lO>lfr],<cf,l>,cellgs],e,p,r) -->
((B(<f1,10>,ce),F((<f2,lO>lfr],<cf,l>,ce)lgs],e,p,r)

8.7. Equality

If an equality is found in the premise goal-list, we may use this equality
anywhere in the subproof. The situation is very different from ordinary
unification, almost the opposite. We first look for the value of a variable
in the normal environment (e), and only if the value is UNBOUND or STAR we
look in the conclusion environment (ce). If it necessary to bind a variable
in order to succeed in the conclusion unification, the new value is only
stored in the conclusion environment.
If the conclusion unificatior fails, it must be remembered that a false
premise implies everything, so we have actually succeeded!

- 14 -

Two cases:
([F([<Eq(t1,t2),lO>lfrl,<cf,l>,ce)lgsl,e,p,r) -->
((F(fr,<cf,l>,ce1)lgs],e,p,r)

or

where

if cf/= <False,_>
and concunify((<t1,lO>l,C<t2,lO>],ce,e) = ce1
and cet/=Fail

([F([<Eq(t1,t2),lO>lfr],<cf,l>,ce)lgs],e,p,r) -->
(gs, e,p,r)

if concunify([<t1,10>l,[<t2,10>],ce,e) = ce1
and cet=Fail

TYPEOF concunify (list (<term, loc>), list (<term, loc>), con_clusion_environment,
environment) = (conclusion_environment ! Fail)

In the code above we check so that the conclusion formula isn't an expli
citly 'False' formula. If concunify succeeds we would otherwise be sure
that the computation whould fail. To avoid this we test for that special
case, and we treat it separately. In this case the only solution for suc
cess is to use some sort of 'negative' unification which generates assump
tions like 'x*17'. The advantage of this is a wider domain of executable
programs, while the disadvantage is increased nondeterminism. In this paper
we will not elaborate this mechanism further.

8.8. Atomic relation

When we find an atomic relation in the premise goal-list, we try to find
its definition set in the program. If there are several definitions we take
the fi~st and save the rest on the resumption stack. The case in natural
deduction when we have found one definition:

Vx (relation_name (q 1, .. , qn) <- fl relation_name(r1, .. ,rn) q1=r1, .. ,qn=rn
--

f

1f

cf

Above the line we have three parts: a part of the relation definition set,
the premise goal, and a group of equalities generated during unification.
We then have to perform the proof ff.
As in backward proof mode we first find the definition set and stack the
alternative definitions on the resumption stack. We then invoke failure so
the top item on the resumption stack will be used.

([F([<Rel(rn,ts),lO>lfr],<cf,l>,ce)Jgs],e,p,r) -->
gepr([Faill,e,p,r1)

if getforwarddef(p,rn) = stmts and
newdumpf(ts,stmts,10,fr,cf,.l,ce,gs,e,p,rl=r1

where
TYPEOF newdumpf(list(term),forwarddef,loc,list(<formula,loc>),<formula,loc>,

loc,conclusion_environment,list(goal),environment,
program,dump)=dump.

newdumpf(_,[],_,_,_,_,_,_,_,_,rl=r.
newdumpf(ts,(stmlstms],10,fr,cf,l,ce,gs,e,p,r) =
[GEP([F((<Unify(ts,stm),lO>lfr],<cf,l>,ce)lgs],e,p)I

newdumpf(ts,stms,10,fr,cf,l,ce,gs,e,p,r)].

- 15 -

In 'gepr' machine we may encounter 'unifications' in forward proof mode.
The unification may either fail or succeed.

We have two cases:

or

([F([<Unify(ts1,Rimp(vs,ts2,f)l,l0>lfr],<cf,11>,ce)lgs],e,p,r) -->
((F(fr,<cf,11>,cellgs],_,_,r)

if newenv(vs,[],e) = [12,et]
and unify(ctermlisttts1,10),ctermlist(ts2,12),ce,e1) = e2
and e2=Fail

([F([<Unify(ts1,Rimp(vs,ts2,fl),l0>lfr],<cf,11>,cellgs],e,p,r) -->
((F(C<f,l2>lfr],<cf,11>,ce)lgs],e2,p,r)

if newenv(vs,[],e) = (12,e1]
and unify(ctermlist(ts1,10),ctermlist(ts2,l2),c.e,e1) = e2
and e2/=Fail

9. Discussion

It is important to stress that we have not devised a complete theorem
prover. This means that there is a domain of formulas that we are unable to
prove. We claim however that these formulas usually are not computationally
useful. To include them in the set of formulas we can prove would increase
the nondeterminism and degrade the system performance.
One improvement towards a more complete system was the 'negative' unifica
tion which was discussed on page 14. Since we have not yet been able to use
the system for large problems, we not yet sure whether this complication
would be worthwile. We do however already know that there is a wide domain
of programs where the system has proven to be quite useful.

10. References

[La63] Landin, P J, The Mechanical Evaluation of Expressions, Computer
Journal, 6 (4), 308-20, 1963

[He80] Henderson, P, Functional Programming, Prentice-Hall International,
1980

[Ha81] Haridi, s, Logic Programming Based on a Natural Deduction System,
thesis, Royal Institute of Technology 1981, Stockholm

[HHT82l A Hansson, S Haridi, s-A T~rnlund, Properties of a Logic Program
ming Language, in Logic Programming edited by KL Clark and S-A
T~rnlund, Academic Press 82

0+5
CONTEXTUAL GRAMMARS IN PROLOG

I

I Paul SABAT IER

'Laboratoire d'Automatique et de Linguisti~ue
Universite Paris 7
Tour Centrale 9 eme
2 Place Jussieu
75005 PARIS

:ABSTRACT

We present a formalism and a techni~ue by which left and/or
]ri9ht contextual constraints can be easily expressed and computed
:efficiently in Prolog grammars (avoiding transport of variables>:
ithe Contextual Grammars (CG), interpreted in PROLOO II.

Each rule has the form:

_NT- -> CONTEXT BODY.

~h-e-r.e .NT _1,;s: .a: non-te-rminal s"mbol. BODY is a sequence of one OT"

~r~ _i.~~-m••.· tiepclra~a-d_: h1f, b,lanlc~t Each item. is e ith•r a non-te-r:ni <icil
~V':"-b;~.1~;.:~ te,-.,n_in•I :·svillbol or-_a condit~on. Symbols and conditions_
51'a·,e.1"ms: (as in M•tamo-r"phosis· or Definite Clause45 grammars>, BODY
~4'4f•'ll;a-:·1t~p-tQ. - ,_·. ;. . - -

If": CONTEXT is no~t emptv, . it has the form:

-C L * R >

~- and ·R ·ar.e sequences of rion-terminal and/or' terminal symbols
~•para.ted bv point_s,. We -read it as:

·. _ Apply NT {f, · in the derivation tree,
1t L pr~i~d~~ Nt, and
2 r ·R f o:l'louui · NT .

.; o,.: R ma" be empty~

ro1' example, the foLlowin-g is a sample contextual gT'ammar <terminal
fymb~ls are in brackets, and conditions are preceded ~Y "+">:
!

sentence(S) -> np(_> vp CS>.
· np C.X. '() ->· noun<X> Cand:J noun CV>.
npCX> -.> noun (X >.
no_un <day> -> Cdayl.
noun<night) -:> CnightJ
vpCS> -> verb (S).
vp(S) ~:> verb(S> preposition npC_).

p1'epositian -:, Cca1ithJ.
...
.. -

(a) verb(alternate(X,Y>> -->

(~) verb(alternate(X,Y)) -->

{ npCX. Y) # >
+different<X,Y>
CalteT'nateJ.

< noun(X) 4t CtllithJ. noun<Y> >
+differentcx.'v>

. Cal ternates l.

The sentences produced/analysed from (a) are:

day and night altern~te.
night and day alternate.

and from Cb):

day alternates with night.
night alternates with d~ij.

Th• techni~ue consists in building, ,uring tie parsing, an inter
nal derivation graph G containing the sufficie.nt info,-mation to re
cover the context whenev•r a contextual constratnt must be satis•ied
before the rule mu'St be applied. To each node Nl (cor,-,sponding to a
non~terminal or terminal symbol) of Q, are associated four nodes NJ,
Nk, Nl and Nm:

NJ is the left sibling of Ni; NJ is the left sibling of the
parent of Ni if Ni has no left sibling;

Nk is the first child or Ni; Nk is NIL if Ni has no children;

Nl is the last child of Ni; Nl is Nk if Ni has one child; Nl
is Nk is NIL if Ni has no childl"en;

Nm is the right sibling of Ni; Nm is the right sibling of the
parent of Ni if Ni has no right siblingi

The right sibling and the left sibling of the axiom-symbol of the gram
mar are NIL.

Here, for example, is the final derivation graph of the sentence:

day alternb~es with night.

d•II

11 ll 11
NIL NIL NIL NIL

Cont~xtual constraints are computed directlt from G. When any part
of a context .is not yet known <as for example right context of a
symbol in a left-to~right parser>, the computation is delaved by
means of the GELER (FREEZE) predicate. - .

Abstract

CURRENT TRENDS IN LOGIC GRA~MARS

Veronica Dahl
Computing Sciences Department

Simon Fraser University
Burnaby, BC VSA 1S6

This paper surveys several logic grammar form-alisms, relates

them to some recent trends in linguistics and advocates the use

of logic grammars for natural language processing. contrary to

many recent approaches that resort to augmenting essentially

context-free grammars, it also tries to make a case for not

outruling conte.xt-sensi ti vity or transformations .. Finally, it

presents a ,,new logic grammar formalism jointly deve.loped by
,-,i-:•-

". •. ,·,s

!ichael McCord and the author, the main features of which are: a

metagrammatical treatment of coordination that relieves the

grammar writer from having to describe coordinating rules

ex:plici tly; a modular treatment of semantics based upon simple

information given locally to each rule~ and an automated

building-up of the sentence's representation structure.

PAGE 2

1• Introduction

Among the computational formalisms for describing and

processing language, logic grammars have been drawing attention

since their introduction in 1975 (Colmerauer 1975).

Logic grammars resemble type-0 grammars, except that the

grammar symbols may have arguments, and that procedures may be

invoked from the rules (e.g. to serve a·s applicability

constraints). Derivations involve unifying (Robinson 1965)

symbol strings rather than just replacing them. Since the logic

grammar formalism is a part of the Prolog · programming language

, (Colmerauer 1975, Pereira L et al, 1978), logic grammars written

to describe a :Language can be interpreted by Prolog as analysers

for th,at language., • Thus relieved fro11 the operational concerns

parsing,,,,. the user can. develop very clear and concise
'~. fc ,_,:,:.: .. ••' ,.,

_-.:·•.,:.:': J.

"analysers"just· by writing a set of logic'gra111.11ar rules that

describe a language and giving it to J?rolog. Logic grammars have

been favourably compared with a widely used formalism for

processing language: augmented transition networks (ATNs)

introduced in 1970 (Woods 1970). They have been argued to be

' clearer, more concise and in practice mox:e powerful, while at

least as efficient,. as ATM's (Pereira & Warren, 1980}.

The first sizable application for logic grammars was a

Spanish/French consul table database system (Dahl 1977, 1981, 1982)

which was later adapted to Portuguese by H. Coelho and L. Pereira

580

PAGE 3

(1), and to English, by F. Pereira and David Warren (2); and has

since inspired the development of several other applications

(e.g. Coelho 1979,McCord 1980, F. Pereira & Warren 1931). This

system has bee'l shown to be comparable in efficiency with the

LUNAR system (Hoods et al., 1972), (cf. Pereira & Warren,

1980,p.276), thus joining the appeal of practical feasibility to

the elegance and expressive power of the logic grammar approach.

P'urther logic grammar applications include (Silv·a et al. 1979,

Simmons and Chester 1979, Sabatier 1980, Pereira et al. 1982).

However the experience gained in the aforementioned applications

has motivated the development of alternative logic grammar

formalisms, some restricting and others at1gmenting the power of

the original for.ma.l.ism as described in (Colmerauer 1975).

This paper attempts to fill a gap by examining the evolution

of logic grammars, c·omparing the alternative proposals, and

discussing them with respect to recent trends in both theoretical

linguistics and natural language processing. It also motivates

and briefly presents a new logic grammar formalism, called

"modifier structure grammars" (MSGs), developed jointly by

Jllichael r-tcCord and the author (Dahl and Mccord 1983) • Its main

features are: a metagrammatical (user-invisible) treatment of

coordination,. a modular treatment of semantics, and an automatic

build-up of the parsed sentence's representation.

(1) Personal Comm uni cation, 1978.
(2) Personal Communication, 1980.

S81

Section 2 describes logic grammars in in tui ti ve, user-biased

terms. Section 3 presents different types of logic grammars;

Section 4 compares them with respect to expressive power, in

particular through the example of how ·they allow to express

movement of constituents. Section 5 discusses pros and cons of

choosing relatively evolved grammar formalisms, and makes a case

for choosing logic grammars independently of the degree of

evolution needed. section 6 briefly presents our new logic

grammar formalism (fllSGs), and Section 7 contains some concluding

thoughts.

2. !hu i§. A logic gramma~?

._ Logic grammars can be thought of as ordinary grammars, in

vhi.~h the _symbols. may. have argu11ents. These arguments are either

constants
C . • . • ,

variables· or functional expressions, and the fact that
·.-,,·;

they variables inplies that substitutions are

sometimes needed in order to apply a grammar rule. For instance,

consider the following grammar:

1) Sentence (fact (P)) --> proper-noun (N) , verb (N ,.F) •

2) proper-noun (mary) -> [mary].

3) proper-noun (john} --> [john].

4) verb (N, laughs {N)) --> [laughs J.

5} verb (N, smiles (N)) --> [smiles).

in which (as throughout this paper) constants are in lower-case

582

PAGE 5

letters, variables start with a capital, consecutive terminal

symbols are represented as square-bracketed lists, and non-

terminals are in lower-case letters. The comma stands for

"concatenation", and the end of a rule is signalled by a period.

Having defined these rules to Prolog, if we now, foe instance,

want to analyse the sentence "Mary smiles", we merely write the

question:

? sentence(X,"mary laughs", [])

This amounts to a request that Prolog find a value for X that

represents the surface form nMary smiles" with respect to this

grammar. What happens in the Pro1og execution of the parsing

:procedure can be summarized in the top-down. left-to-eight

derivation tree depicted in Fig. 1,- where each ru.le application

is labelled by the idantif ication of the rule invo.lved and by the

set of substitutions of terms for variables that are needed in

order to apply the rule.

sentence {X)

\
rule 1

X <- fac~~~-) _____ _
----- l

proper-noun (N) verb (N,F)

\ rule 2
N <- mary

mary '

rule 4
F <- smiles (mar1

smiles

Figure 1. Derivation tree for "Mary laughs".
Only successful rule applications are shown here. Prolog

backtracks upon unsuccessful ones. Through the substitutions

employed, Prolog finds the representation

58~

PAGE 6

X = fact(smiles(mary))

for the sentence given.

Arguments allow for information to be shared by various

grammar symbols, and to be carried along a derivation. In our

example, they serve to build up a desired representation for a

surface sentence. In procedural terms, gram.mar symbols can be

thought of as producers and consumers of structur·e: the "proper

noan" symbol produces the value "mary", which is then consumed by

•verb" in order to produce the structure "smiles{mary)", from

which the final structure "fact (smiles (mary))" is constructed

by "sentence".

Other uses i.n natural language processing include: syntactic

ana semantic Checks (e.g. gender and numbec, semantic type or

cl.ass), carryingextraposed constituents across phrases, etc.

For instance, we may check semantic accord by declaring Hary

and John to be of type "human", and requiring that the arguments

of "laughs" and "smiles" also be human. ie use a functional

symbol "-", in infix -notation {allowed by Prolog) in order to

int.roduce this semantic information. The above grammar becomes:

1) sentence {fact (F)) --> proper-noun (N) , verb (N ,F)

2) proper-noun (human-mary) --> [mary].

3) proper-noun (human-john) --> [john].

4) verb (human-N, laughs {N)) --> (laughs].

PAGE 7

5) verb (human-N, smiles{~) --> [smiles].

(Notice that variable names are local to each rule - i.e.,

variables with the same name are unrelated if they belong to

different rules.)

ie have enforced semantic agreement through unification, i.e.,

in the Prolog matching of terms. Proper nouns introducing non

humans nov fail to be coupled with such verbs as "laughs" and

"smiles".

Another

grammars

brackets}.

i.-eplaced

way is through procedure calls,

in the form of Prolog calls (that

For instance, rule 4} could

allowed in logic

we note between

have instead been

4) verb (11, laughs (lf)) --> [laughs J, human (N) •

and ve would have added a Prolog definition for the procedure

called, e.g.:

human (mary).

human {john).

Kore general procedures can, of course, be written in Prolog,

e.g. "every child is human", noted:

human (x) : - c.hild (x)

and read: "if x is a child then xis human".

PAGE 8

The first formulation of the parsing problem in terms of logic

was obtained by A. Colmerauer and R. Kowalski, while trying to

express Colmerauer•s Q-System (Colmerauer 1973) in logic.

idea evolved into a very elegant and efficient

This

Prolog

implementation of metamorphosis g~~mma~§ {Colmerauer 1975), that

we shall call I!Gs.

An 8G rule has the form:

s .).--> f

where S is a nonterminal (logic) grammar symbol, J.. is a string

of terminals a.nd, aontermina1s,.. and ~ is like J... except that it

say ·also incittde·Proiog procedure calls.*

Examples of such rules are:

a,. { b] --> (b J, a

verbroot (X), pluralmark --> [W], concat ([X],[s],W)

where a Prolog predicate concat {x,y,zj is assumed, that holds if

z is the concatenation of x and y.

A special case of l'JGs was later included in DEC-10 Prolog

* The actual implementation in fact requires J... to be a string
of nonterminals, but we shall disregard the restriction since it
has been shown (Colmerauer 1975) to involve no loss with respect
to the full MG form.

I•
I

I

I

586

PAGE 9

(Pereira, Pereira & Warren 1978) and baptised definite £la~fil!.

gram£§ (DCGs). DCG rules have the form:

s -->f

where s and ~ are as above.

2 are of this type.

All the rules presented in section

The main motivation for introducing DCGs was ease of

implementation coupled with no substantial loss in power {in the

sense that OCGs can also basically describe type-0 languages -

although less straightforwardly) •

~~,Eosition grammars (XGs) (Pereira, to appear) were

designed in order to refer to unspecified strings of symbols in a

rule, thus •aking it easier to describe left extraposition of

constituents.

XGs allow rules of the form

s • • • s etc. s • • • s --> r
1 2 k-1 k

where the "· ... " specify gi'lps (i.e., arbitrary strings of g.rammar

symbols), and r

terminals.

and the s
}...

are strings of terminals and non-

The general meaning of such a rule is that any sequence of

symbols of the form

s x s· x etc. s x s
1 1 2 2 k-1 k-1 k

PAGE 10

with arbitrary x s, can be rewritten into r xx •.• x
i 1 2 k-1

(i.e., the s. •s are rewritten into r, and the intermediate gaps
'-

(x(1 s) are rewritten sequentially to the right of r. For

instance, the XG rule:

relative-marker ••• complement--> (that].

allovs to skip any intermediate substring app·earing after a

relative marker* in the search for an expected complement, and

then to subsume both ma-rlter and complement into the relative

pronoun "that", vhich is placed to the left of the skipped

substring.

The next section shows this rule at work in a parsing context.

!lltrictiQ!l g,1:ammars (RGs) (Hirschman & Puder, 1982) are not,

strictly speaking, logic grammars, since the gram11ar symbols may

not include any argu~ents. But they are implemented in Prolog

and provide an instance of what seems to be a popular tendency in

natural language processing nowadays: they involve sets of

context-free definitions augmented with grammatical constraints

or restrictions. In RGs, these appear in the form of procedures

: interleaved among the context-free definitions.
I

For instance, the RG rule

* i.e .. ,
clause.

a symbol that announces the beginning of a relative

PAGE 11

predicate::= verb, object, verb-object

states that "predicate" can be rewritten into "verb object",

provided that the "verb-object" restriction is satisfied (this

restriction could for instance state that if the object is nil,

the verb must be intransitive).. Restrictions need to be defined

separately, using such available primitives to traverse the tree

as "up", and "down"; and explicitly stating parameters foe its

starting point in the tree and in the vord stream.

What are the consequences of choosing one of these grammar

formalisms to write a natural language processor? From a

theoretical point of view, the power of HGs, DCGs and XGs is

similar in that they can all serve to describe type-0 languages.

From a practical point of view, however, their possibilities

differ. In this section we shall illustrate this point by study

ing how easily and concisely each of these formalisms allows to

describe those rules involving constituent movement and ellision.

RGs, although not dealing specifically with movement, are also

considered.

Let us consider for instance the noun phrase:

the man that John saw

which can be thought of as the surface expression of the more

PAGE 12

canonica 1 form:

the man (John saw the man],

where the second occucrence of "the man" has been shifted to the

left and subsumed into the relative pronoun "that".

A simple grammar for (very restricted) sentences in canonical

form could be:

(1) sentence--> noun-phrase, verb-phrase.

{2) noun-phrase --> determiner,noun,relative.

(3) noun-phrase --> pcoper-.name.

(4) ver.b-phrase --> verb.

(5) verb-phrase --> trans-verb, direct-object.

(6) relative --> [].

(7) direct-object--> noun-phrase.

(8) determiner --> [the].

(9) noun--> [man].

(10) proper-name--> [john].

(11) verb--> [laughed].

(12} trans- verb --> f saw].

sc;o

PAGE 13

We shall successively modify this grammar (referred to as Gin

all t~at follow~) in orner to describe the relativization process

within various logic grammar formalisms.

~ithin dGs, all we need is to add the following rul~s:

(6'l relative--> relative-marker. sentence.

(5') verb-phrase --> moved-d obj, transitive-verb •.

(13) relative-marker, noun-phrase,moved-dobj --> rel-pronoun,noun-phra

(14) relative-pronoun --> [that].

Figure 2 depicts the derivation tree for our sample noun

phrase "the ma.n that John saw". we abbreviate some of the

grammar symbols. Rule numbers appear as left-hand side.labels.

noun-phrase

(?.)l_
,---- r-

det noun

(8) (9) 1
the man

5i1

PAGE 14

-1
rel

(6.) I
J;i:ii"i;k_e_r ___ s_e_n tence

(1) \

noun-phrase verb-phrase
(5') \

,-----7
moved-dobj ___ ,...__ ___ , tc-verb

c,2,_l
(13)

rel-pro
c 14) l

that

noun-phrase

(13}'

proper- na11e

c 10) l
John

saw

Figure 2. MG derivation tree for "The man that John saw".

542,

PAGE 15

Of course, for such a parse to be of any use, we need to

construct a representation for the sentence while we pdcse it.

But for the time being we shall ignore sy;nbol arguments in order

to concentrate upon the particular problem of moving

constituents.

l.'!ovement rules and DCGs. ---- ----
rn terms of DCG rules, the simplest possible· modification to

the original grammar G is to allow a direct object to be ellided,

e.g. by adding the rule:

(7 •) direct-object --> (].

But, because this rule lacks the contextual inforaation found in

(13), a direct object is now susceptible of being ellided even

outside a re1ati ve cla11se. In order to prevent it, a usual

technique is to control rule application by adding extra

arguments. In our example, we only need to add a single argument

that we carry within the §.fil!U.!1£~, _y~rb-Eh~~g and direct-oQ.j~ct

symbols, and that takes the value "nil" if the direct object in

the verb phrase of the sentence is not ellided, and the value

"ellided" if it is. The modified rules are the following:

(0) sentence--> sent(nil).

(1) sent(E) --> noun-phrase, verb-phrase{E).

(4) verb-phrase (nil) --> verb.

(S) verb-phrase(E) --> transitive-verb, direct-object{E}.

(6') relative--> relative-pronoun, sent(E).

(7) direct-object(nil) --> noun-phrase.

(7') direct-object(ellided) --> [J.

(13) relative-pronoun--> (that].

PAGE ·16

:Figure 3 shows the DCG derivation tree for 0 The man that John saw

laughed". Substitutions of terms for variabl•s are shown as

right-hand side labels.

,-

sentence
(0) \

sent (nil)
(1) \

noun-phr:1se
(2} \

r----7-·---1
det noun rel

(8) \ (9) \ (6') '
the man

verb-phrase (nil)

(4) I
verb

-i-----,
(11} \

laughed

rel-pro
{ 13)

that

sent (E)

(1) \ r-..;.. ___ 7

(3nh (;~TE)
c1b~opl-name ,- ---7

tr-vb d-obj{E)

John
(12)\ (7') l E <--

saw

PAGE 17

ellided

Figure 3. DCG derivation tree for the sentence "The man that John
saw laughed".

545

PAGE 18

While, as we have seen, MGs express movement by actually

moving constituents around, DCGs must carry all information

relative to movements within extra arguments. XGs, on the other

hand, can capture left extraposition in an economical fashion: by

actually skipping intermediate substrings rather than shifting

the constituents that follow. Thus, our initial grammar can be

modified to handle relativization simply by adding the XG rules:

(6') relative--> relative-marker, sentence

(13) relative-marker ••• direct-object--> relative-pronoun.

(14) relative-pronoun--> [that].

Figure 4 shows the XG derivation tree for "The man that John saw

laughed".

-, -
det

< 8) I
the

noun
(9) \

man

sentence

r~_,)_l __ . __
noun-phrase verb-phrase

c 2> \ - c 11) I ··
1 laughed ---7

relative

{ 6 t) '

r-------1
rel-mk sentence

r~> J....._ ___ 7

noun-phrase verb-phrase

PAGE 19

,-l----7 P> I
prop-name

{13)

rel-pro
(14) I

that

(10)

john

tr-vb -obj

sa:w

Figure 4. XG derivation tree for "The man that John saw laughed".

5i1-

PAGE 20

Restrictions can be used in RGs for the purpose of enforcing

context sensitive constraints, but transformatioas seem to

require an RG extension - possibly in the form of an additional

component - , which is presently under study. {Hirsch11an &

Puder, 1982)

An interesting feature of RGs is that a parse tree is

! automatically constructed during the parse (i.e._ the tree

building parameters are hidden from the user). This makes a

grammar clearer, but at the same time less flexible: only the

history of rule applications is recorded, whereas in ao.y other

logic grammar the user may build up (through explicit parameters)

any desired representation for the sentences parsed. The effects

of context sensitivity, on the other hand, are ensured .by giving

each restriction access to the entire previously constructed

parse tree. This need is the main difference between

restrictions and tha standard Prolog calls allowed in logic

grammars (which are also,. after all, procedure calls interspersed

within the roles).

In short, where DCGs accommodate context-sensitive constraints

within user-controlled parameters, RGs enforce them through

restrictions placed upon a system-controlled parse tree. This

concept would result in a higher level formalism if it gave the

user a fairly complete independence from parse tree concerus.

However, efficient exploitation of XGs requires some knowledge of

5ii

!?AGE 21

the parse tree, and the user needs to express restrictions in the

lower level terms of tree traversal rather than in the typically

declarative, operationally independent fashion of loyi~ grammars.

Work in theoretical linguistics has lately been departing from

transformational theory (Chomsky 1965), largely because 0£ the

subtelty of rules involved and the suppleme.ntary devices needed

(e.g. co-indexing, filters, etc.} and because of the complexity

of dealing with semantics within the transformational panadigm.

Work by Montague {Montague 1976) and Gazdar (Gazdar 1981)

resulted in a simpler and more intuitive formalization of

semantics based upon the rule-to-rule hypothesis (Bach 1976): to

each syntactic rule corresponds a structually analogous, semantic

rule for building up logical representations.

Gazdar•s framework, in particular, can deal with a wide range

of syntactic phenomena within a phrase-structure theory that has

a node admissibility interpretation rather than a generative one.

This new outlook, augmented by metag.rammatical devices (such as

categories with gaps, metarules and rule-schemata) elegantly

captures such important constructs as coordination and unbounded

dependencies. Gazdar•s "augmented phrase structure" approach has

influenced research in AI, where the transformational approach

had also been losinq adepts, as it was also felt to deal

insufficiently with semantics and, moreover, with sentence

analysis - AI's main concern in natural language processing.

59;

PAGE 22

Among the systems inspired by this approach are (Joshi 1982,

Robinson 1982, Schubert & Pelletier 1982).

Logic grammars, from all our previous discussion~ would St:H:HD

to provide an adequate computational framework within which to

implement the augmented phrase structure approach.

descriptive point of view,. as we have seen,. "logica.l" context

free rules ara more powerful than standard ones because of

parameters in grammar symbols, and .unification. Procedure calls

are moreover an inherent feature that is useful for representin.g

1 constraints.

But, although any logic grammar supports at least this, the

user need not be restricted to context-free type rules. MGs or

XGs will moreover provide for generalized type-o rules, and even

.for the handling of gaps,

e f£ icie ncy.

while maintaining high standards of

Extra power available, therefore, can only represent a gain,

since it does not preclude resorting to more elementary

approaches as a special case. In this respect we support Berwick

and Weinberg's contention that there is a possible tradeoff

between parsing efficiency and descriptive apparatus,. and that "a

language that is quite •high up• in the Chomsky hierarchy - e.g.

a strictly context-sensitive language - may in fact be parsed

more rapidly than languages lower down in the hierarchy - e.g.

faster than some context-free languages if the gain ia

succinctness is enough to offset the possible increase in parsing

600

PAGE 23

time" (Berwick & Weinberg, 1982).

our approach is therefore that of continuing research on logic

grammar ex tensions that may be useful in view of a r:10.t"c po;.erf lll

and elegant, while still efficient, treatment of some natur~l

language processing phenomena. In the next section we describe a

new logic grammar £ormalism developed in particular for dealing

metagrammatically with coordination, but that exhibits several

other features that are interesting by themselves.

e.sec..rch by Mic.~G.el Mc.Cord (Mc Core\ l'lgo., 11'&
6. Modifier structure grammars (MSGs) s ru,\/.ltect i"' i.-,te.-red:i"'!J id.ec..s ior pro<.e&i>iv-
- -------- • •-------- --- -- t"'rc..l lc:."'5'u,~e H,v-out)I., lo~ic ~,c....,""'i..~.s, 1.,

j,c..rtiCMlo..r, H,1! 11\ot-iO\/'\ o.(. ""'Odi+ler ~tr1Actwre i;...,.c,\ H,~ trec.t""'a"'~ of ~e"""'-"'tic ;.,.ferjo.,.,eh,t.-0,.. ~re~e"'l~
t~e-re &ee.W\ecA 'I. 1,:,-ro-i" i"'~ 4-rc.M~ wo'f"k to-r solvi"'.5 .-.o ... br-ivic..l lc..,.5-..c...5e -lovoce.s&i.,.~ ~robl.eMs., SIAC~ ~s

~ol"..;\i.-.ci..ho~.Joint research with ~ichael McCord in view of a logic grammar,

11etagrammatical treatment of coordination, resulted in the

development of a system consisting of: a) a new formalism for

logic grammars, which we call modifi~ structure g1=a!!!.l!a£2. {MSGs),
uoe{wl +or Mc..ki"'.£> W\Oc:li .£.ie"" ~tnAd:IAY-e iw-. pLic.il ill\ ~he :;1rC..IMW1otC:..V" J

h} an interpreter (or parser) for MSGs which also takes all the

responsibility for the syn tactic aspects of coordination, and c)

a semantic interpretation component which produces logical forms
(o.s i"' Mc.Cov--c>i it)

from the output of the parser and deals with scoping problems~
whicl,,. G\.lso i.-.cl .. d~ si:,ec.i+fc n.tles fov- -Se'Mc.."'tic i"'te.rpreb::.Lo ... of

i,,1:11$/1 fJi-.:D coocd:tnation. The whole system is

implemented in Prolog-10 (Pereira, Pereira & Warren 1978). Here

we make a brief presentation of this system.

description can be found in {Dahl S McCord, 1983).

MSG rules ace of the form:

A Sem --> B

A complete

601

PAGE 2q,

where A--> B is an XG rule and Semis a term called a 2u~nSi£

il.m!!, -which plays a role in the semantic interpretation of a

phrase analysed by application of the rule. The semantic item is

(as in {McCord 1981)) of the form

Operator - LogicalForm

where, roug h.ly, Logica lForm is the part of the logical form of

the sentence contributed by the rule, and operatdr determines tha

way in which this partial structure combines with others. Sem

may be a "trivial" sem if nothing is con tcibuted.

ihen a sentence is analysed, a structural representation, in

tree form, called "modi.fier structure" is automatically formed by

, the parser. Each of its nodes contains not only syntactic

information but also the semantic information Sem supplied in the

grammar,·· which determines the node •s contribution to the logical

form of the se.ntence (this contribution is for the node alone,

and does not refer to the daughters of the node, as in Gazdar•s

approach (Gazdar, 1981)}.

The semantic interpretation component first reshapes this tree

into another MS tree where the scoping of quantifiers is closer

to the intended semantic relations than to the (surface)

syntactic ones. It then takes the reshaped tree and translates

it into logical form. The modifiers actually do their work of

modification in this second stage,

It should be noted that the

th rough their semantic items.

addition of simple semantic

PAGE 25

indicators within grammar rules contributes to maintain, from the

user's point of view, a simple correspondence between syntax and

semantics. This is similar in intention to the ritle-by-rule

hypothesis mentioned before {Bach 1976), but is differently

realized: instead of a rule-to-rule correspondence, we have a

correspondence between each non-trivial expansion of a non

terminal and a logical operator. That is, each time the parser

expands a non-terminal symbol into a (non-empty) ·body, a logical

operator labels the expansion and will be later used by the

semantic component, interacting with other logical operators

found in the parse tree obtained.. The complexity of dealing with

quantifier scoping and its interaction with coordination is

screened away from the user.

iit.h respect to coordination, the HSG grammar should not

aention conjunction at alI. The interpreter l\as a genera.l

facility for treating certain words as "demons" (cf. Winograd

197~, which trigger a backing up in the parser history that vill

help reconstruct ellisions and recognize the meaning of the

coordinated sentence.

This proceeds in a manner similar to that of the SYSCONJ

facility for augmented transition networks (Woods 1973, Bates

1978), except that, unlike SYSCONJ, it can also handle embedded

coordination and interactions with extraposition. The use of

modifier ~tructures and the associated se~antic int~rpretation

component, moreover, permits in general a good treatment of

I·
!

scoping problems involving coordination. Finally,

PAGE 26

the system

seems reasonably efficient (cf. timings for our sampla grammar in

{Dahl and i1cCord, 1983)) •

Logic gram~ars, as we have seen, need not sacrifice efficieacy

to the goals of power and elegance. They seem to be evolving -

like other computational formalisms - into hig~er level tools

which allow the user to spare mechanizable efforts in order to

concentrate on as yet unmechanizable, creative tasks.

We view MSGs as a step in that direction,

advantages of automatising the treatment

with the main

of coordination,

'providing a modular treatment or semantics, and allowing the user

not to worry oYer structure building.

The latter feature may be an attractive one for logic grammars

in general to retain, since it makes a grammar easier to write

and read, and more concise.

Since, moreover, logical structure desired fdr a sentence's

final representation ij also automatically built up, from a fev

simple semantic indicators in the grammar rules, it becomes

easier to adapt a grammar to alternative domains of application:

modifying the logical representation obtained need only involve

the semantic components of each rule.

This modulaC' isolation of structure lends grammars a

.•

I
I.

syntactico-semantic flavour.

PAGE 27

It may be viewed as a way out of

the dilemma on vhether the semantic component should be separate

or intermingled with the syntactic on~. Compromising on

manipulating static semantic indicators during the syntactic

parse while using them dynamically during the semantic one may

well prove to he the way of combining the advantages of both

approaches while minimizing the disadvantages.

PAGE 28

liEFERENC.ES

Bach, E. (1976). An extension of classical transformational
grammar.Mimeo, Univ. of Massachusetts, Amherst, MA.

Bates, ~- (1978}. The theory and practice of augmented transition
networks. In: L. Bole (ed.) Natural Language Communication with
Computers. {Springer, Berlin, May 1978).

Berwick, R. C. and Weinberg, A. s. (1982). Parsing
Efficiency, computational Complexity, and the
Evaluation of Grammatical Theories. Linguistic ·
Inquiry, vol. 13, No. 2, Spring 1982, pp. 165-1_91.

Chomsky, N. (1965). Aspects of the Theory of syntax
MIT Press, Cambridge, Massachusetts.

Coelho, H. M. F. (1979). .A program conversing in
Portuguese providing a library service. Ph.D. Thesis,
Univ. of Edinburgh.

Colme.rauer, A.. (1973). Les systemes-Q ou un formalisme
pour analyser et synthetiser des phrases sur ordination.
Publication interne No 43, Dept. d 1Informatigue,
tJniversite de Montreal.

Colmerauer, A. (1975). Les grammaires de metamorphose.
Groupe d'Intelligence Artificielle, Univ. de
ftarseille-Luminy. As "Metamorphosis Grammars" in:
L. Bole (ed.), Natural Language Communication with
computers (Springer, Berlin, May 1978).

Dahl, V. (1977). Un systeme deductif d'interrogation
de banques de aonnees en espagnol. These de Doctorat
de Specialite, Univ. d'Aix-Marseille.

Dahl, v. (1981). Translating Spanish into logic through
logic. American Journal of Computational Linguistics,
Vol. 7, No. 3, pp. 149-164.

Dalt 1, V. (1982) • on database systems development
through logic. ACM Transactions on Database Systems,
Vol.7, No. 1, ,arch 1982, pp.102-123.

Dahl, V. and McCord, M. (1983). Treating coordination
in logic grammars. Internal report, Univ. of KentQcky.

Gazdar, G. (1981). Unbounded dependencies and coordinate
structure. Linguistic Inguiry, Vol.12, No.2,
Spring, 1981.

•

PAGE 29

Hirshman, L. and ?uder, K. (1982) • Restriction grammar
in Prolog. Proc. First International Logic
Programming Conference, Marseille, pp.85-90.

Joshi, A. (1982). Phrase Structure Trees Bear More ?ruit
than You iould Have Thouaht. American Journal of
Computational Linguistics. Vol.8, No.1, Jan-aarct 1932.

Kowalski, R. A. (1979) • Logic for problem solving.
North-Holland Elsevier, New York, 1979.

!cCord, M.. (1980). Using slots and modifiers in logic
grammars for natural language. In: Artificial Intelligence.

KcCord, M. { 1981) • Focalizers, the scoping probl"em,
and semantic interpretation rules in logic grammars.
University of Kentucky.

Montague, (1974). English as a formal language.
In: Thomason, R. H. (ed.), Formal Philosophy: selected
papers of Richard Montague. Yale Univ. Press,
New Haven, CT., pp.188-221.

Pasero, R. (1982). A dialogue in natural language.
Proc. First International Logic Progranu1ing
Conference, Marseille, France, pp.231-239.

Pereira, F. (to appeatj.
To be published in:
linguistics.

Extraposition grammars.
American Journal of computational

Pereira, F. and Warren, D. (1980). Definite clause
grammars for natural language analysis - a survey
of the formalism and a comparison with augmented
transition networks. Artifical Intelligence 13
(1980), pp. 231-278.

Pereira, F. and Warren, D. { 1981) • An efficient easily
adaptable system for interpreting natural language
queries. Dept. of AI, Univ. of Edinburgh.

Pereira, L., Pereira, F. and Warren, D. {1978).
User's guide to DECsystem-10 Prolog. Div. de
Informatica, LNEC, Lisbon and Dept. of AI, Univ.
of Edinburgh.

Pereira, L. M. et al. (198'.'). ORB! - An expert system
for environmental resource evaluation through
natural lanquage. TTniversidade Nova de Lisboa.

Robinson, J. A. (1965). A machine-oriented logic
based on the resolution principle. J. ACM 12, pp.25-41.

,,.

?AGE 30

Robinson, J. (1982). Diagram: A grammar for dialogues.
Comm. AC~, January 1982, Vol.25, No.1.

Sabatier, P. {1980). Dialogues en francais avec un
ordinateur. Groupe d'Intelligence Artificielle,
Univ. d'Aix-Marseille.

Silva, G. M. T. et al. (1979). A knowledge-based automated
message understanding methodology for an advanced
indications system. Rome Air Development Center,
Report RADC-TR-79-133.

Simmons, R. F. and Chester, D. (1979). Relating
sentences and semantic networks with clausal l_ogic.
Dept. of Co"puter Science, Univ. of Texas.

Schubert, L. and Pelletier, F. (1982). From English
to Logic: Context-Pree Computation of
"Conventional" Logical Translation. American
Journal of Computational Linguistics, Vol.8, No.l,
,Jan-l'larch 1982.

Winograd, T. (1972). Understanding natural language.
Cognitive Psychology, 3, pp.90-93.

Woods, w. A. (1970). Transition network grammars for
natural language analysis. c. ACM 13.

Woods, W. A., Kaplan, R. t'l. and Nash-Webber, B. [1972).
The lunar sciences natural language information system:
final report, BBN Report 2378.

ABSTRACT

LOGIC DAT A BASES VS DEDUCTIVE DA TA BASES

Working Paper to be presented at the

Logic Programming Workshop 1983

ALBUFEIRA - PORTUGAL

Herve GALLAIRE
Laboratoires de MARCOUSSIS

Centre de Recherches de la C.G.E.
Route de Nozay

91460 MARCOUSSIS - FRANCE

608

The area of data bases is the area of Computer science most likely to be inves
ted by a new methodology -should one say a new technology- based on logic
programming. This survey investigates various approaches to the merging of
these two worlds, trying to straighten out the advantages, problems and applica
tions of each of them.

INTRODUCTION

The area of data bases is one more area of computer science subject to being
taken over by a new methodology -should one say a new technology- based
on logic programming. This paper surveys the various approaches to merging
these two fields, depending on viewpoints adopted for one's problem analysis ;
the logic data base field starts from logic and tries to enhance it with data
base assets, be they data access techniques or data base features ; on the
converse deductive data bases are built from existing data base systems by
enhancing them with deductive, and other, capabilities. These two viewpoints,
although yielding different systems and being interesting for different types
of applications and goals, are rather complementary and share many common
problems. The paper concludes that enough of the theoretical aspects of the
deal are well-known and that it is time now for practical applications as well
as theoretical improvements.

The paper is divided into five sections. The first section presents the four
approaches to linking data bases and logic ; the first three to be described
in sections 2 through 4 adopt the logic viewpoint and culminate into full blown
logic database ; section 5 presents the deductive database approach.

60'7

One should take note that the modeling power of logic databases will not be
discussed in this overview because the paper does not deal at all with work
on knowledge representation formalisms.

Section I : Logic programming - Data Bases

The first to realize the potential of logic programming for data bases was
probably C.GREEN (1) who, although he did not know about logic program
ming which did not exist at that time, described how to connect logic-based
Question-Answering system to data Base systems. Since that time various
papers, books and workshops dedicated to that subject have brought up
the subject (2, 3, 4, 5, 6) without fully clarifying the relationships between
the two fields. ·

In order to study this relationship closely, we first decompose a logic pro
gramming system and a data base system into their respective components.
A logic programming system, PROLOG being the most well known example
of them, is made of a deductive component (A) and of a rudimentary access
component (B) which provides the· deductive component with individual
tuples ; the query to A may be a relational expresssion (usually a negative
clause in PROLOG) ; the interface between A and B is a relation.

A database system is made of a data description and data manipulation
component (C), a data access expression optimizer (D), and a data access
component (E) ; query relational expressions are submitted to (C) or to
(D) ; interface between (C) and (D) is a relational expression, usually of
the relational algebra ; interface between (D) and (E) is at the relation
level, bringing back full sets of tuples instead of individual tuples as (B).

A B
i

lpression

! ► Deduction
Relation Acces

elementaire
par n-uple !

Repr. Connaissances I
I ' -------- -- -- -

-~-.

escription des Donnee

Manipulation
des donnees

C

Expressi<2_n ...

Acces evolue
jointures, •••

D

Acces direct

►

Relati~n
-

Acces optimise F
par relation

E

With such decompositions in mind, four types of connections can easily
be thought of :

PROLOG+ : Some relations are defined as being managed by a mechanism
of type E, thus giving a system made of :

A #(B+E)

PROLOGDB : PROLOG formulas can be considered as being a full fledged
query language for a database access system (D-E) ; thus
we obtain :

A#(D+E)

Logic Data Base : This is the natural extension of the previous two approa
ches where one builds above or aside PROLOG a true data base system,
with a description and manipulation language, including capabilities for
integrity constraints expressions etc... Although it is not necessary to include
capabilities of type D or E they will be included if only for performance
reasons ; thus we obtain :

C#A#,(D+E)

with C # A as a minimum system.

Deductive Database : The goal here is to provide extensions to conventional
database systems which have well-known limitations,
if only for the query languages which need to be
embedded into foreign programming languages. The
systems so obtained are of the type :

A# C#D#E

or even C'# A #C #D #E

when one combines this deductive database approach with the logic database
one. Logic covers various aspects that the query language covers inade
quately: views, optimizing techniques, theoretical understanding of important
problems such as incomplete information handling, ••.

611

Section 2 : PROLOG+

It is known that PROLOG-like access to individual data is not well-suited
to relations which would be stored in secondary memory, due to the fact
that data is requested one at a time. Also it is known that even in primary
memory there are ways to index data which make it faster to retrieve
(e.g indexing on specific fields of a relation rather than sequential access
on its name). On the contrary database systems are very much concerned
with the efficiency of data retrieval. PROLOG+ systems are nothing more
than systems in which some relations have been declared as database rela
tions or DB-relations and handled by a DB-like access mechanism (indexing,
B*-tree, multiple hashing, •••). Such systems have already been built ; PRO
LOG-like access is simulated for the DB relations by buffering the set
of tuples retrieved in one operation, and giving PROLOG one tuple at a
time from this buffer. See eg (7). It is clear that this approach is an easy
way to enhance PROLOG, and for some well defined large applications
of PROLOG, worth implementing. It is surprising that no such a large scale
application has been reported up to now.

Section .3 : PROLOG BD

Recall the configuration of such systems :

A_#(D+E)

Such a system can be seen as a PROLOG+ system in which instead of inter
facing with the DB system at the relation level, one interfaces at the resol
vent level : given DB-relations, given other relations (called PROLOG rela
tions or P-relations to distinguish them from DB-relations), given a PROLOG
program including clauses mixing P-relations and DB-relations, one would
like to optimize access to P-expressions i.e. to expressions containing P
rela tions only, rather than to evaluate each P-relation when, in the deductive
part of PROLOG, it becomes the leftmost literal of the resolvent (as done
in PROLOG+). There are several ways to do this which are examined below.
First let see why one would want to do such global retrieval as opposed
to an individual, relation-based retrieval ; among the possible reasons one
which is most appealing is that it is known that DB systems behave more
efficiently than virtual memory systems, that they have quite efficient
optimizers, that they offer set-operators which can be very much optimized
and even executed through specific hardware (the database machines).

The connection sketched above is in principle easy to imagine. A major
initial decision to be made is how much control over the evaluation process
is left to the programmer ; in other words the decision is to be made whe
ther the programmer can decide (i.e can tell the system) when a (sub-)
expression is to be sent to the database system, how much data is to be
brought back, etc.

Making such a possibility explicit in the hands of the programmer requires
an extension of the logic language, namely that a set of system predicates
be added which allows to express information about retrieval, insertion,
deletion, etc., thus makin,g a "data sublanguage" out of PROLOG by exten
ding it. Such an explicit control has been defined and advocated in (8) ;
it could be a basis of some of the 5G languages. One could perharps also
adapt to DB the technique of (9). These approaches are certainly worth
experimenting, but we believe it is not easy : it is certainly not a simple
matter to find logic programmers knowledgeable enough to make the right
decisions about these retrieval expressions. Nevertheless it is the one which,
in the short term, could prove the most effective ; one should bear in mind,
though, that some DB researchers express concern about optimization pro
blems and believe that DB access optimizing is a formidable task that
needs much processing power, which is sometimes· counter-intuitive, and
which is usually better carried out by general programs.

If the responsability of the decision is to be taken by the system and not
by the programmer, it remains two basic roads. The first is the compilation
technique in which one translates an initial request into a DB-expression
which is then sent to the DB-system ; thus there is a clear cut separation
between deduction (generation of an evaluable expression) and access. The
second technique is the interpretation one, in which both processes are
intermixed.

. 9!meilation

This technique has been widely studied (10) and has led to several implemen
tations and approaches depending on the complexity of the logic program.

Case l

There is no recursive axiom in the program for defining P-relations
in terms of DB-relations.

This case is without difficulties. There are two ways to deal with it.
One can modify the logic interpreter so that it delays evaluation of
DB-relations until the resolvent involves DB-relations only ; this might
perharps be done by ·· using Geier (Freeze) predicate from PROLOG
II. Alternatively one could write a translator which acts as a meta-inter
preter as done in (11, 12).

Case 2

There exist recursive axioms in the program ; an example of such
a case would be a transitive closure relation supposed to be a P-relation
and defined in terms of itself (hence the recursivity) and a DB-relation.
Whereas in case l all that was to be done was a macro-expansion,
one is now confronted to a true program generation problem ; at least
in principle two classes of solutions have been studied :

pseudo-compilation : This is an extension of case 1, i.e the recursive
program is not translated into an iterative one,
or into an evaluable formula ; rather it generates

a sequence of evaluable formulas each correspon
ding to an alternative solution used on backtracking
when the logic interpreter, or the user asks for
additional solutions. An example extracted from
(7) follows :

given ancestor(X, Y) + parent(X, Y)

ancestor(X, Y) + ancestor(X,Z), ancestor(Z, Y)

and a query + ancestor(X, Y)

the system will generate the following evaluab~e formulas :

[edb(parent,X, Y)] then

[edb(parent,X,Z), edb(parent,Z, Y)] then

[edb(parent,X,Z), edb(parent,Z,Z 1), edb(parent,Z 1, Y)]

where edb(parent,-,-) is a relation evaluable by the DB ; such formulas
evaluation can be optimized. Other examples show that additional
capabilities (one should notice the example used a non-trivial recursion)
such as negqtion and mixed relations . can be handled too. A mixed
relation is a relation defined by a program which includes assertions
i.e positive litterals as well as conditionals (general axioms as above).

Although such systems are, in principle, simple enough, their drawback
is a redundancy which is obvious from the example above : consecutive
formulas share common literals which will be evaluated several times ;
getting rid of this redundancy at the deductive system level amounts
to a true compilation (see next) ; getting rid of it at the DB level
is not a classical operation of such systems.

True compilation : It is possible to generate truly iterative programs
involving purely evaluable DB-relations starting
from recursive logic programs including both P
relations and DB-relations. Several techniques have
been proposed (13, 14, 15).

In (13) recursive programs of the regular type (in the formal language
sense) only can be handled ; it is not surprising that such a class of
programs can be translated into iterative programs, as this is well
known from automata theory. In (14) various extensions to the regular
programs are given, without reaching the full power of logic programs.

(15) describes the most general approach as of to-day, it is based on
connection graphs, a well-known technique (16) ; the basic idea is to
generate a program which is a loop around the cycle(s) in the connection
graph, collecting all DB-relations involved in this process until the
exit of the loop. A simple example is in order (15) : given the following
connection graph and a query s(? ,a).

1p(Wl,Zl) l t(Yl,Zl) , s(Yl,Wl) , s(?,a)

7m(Xl,Yl) , t(Yl,Zl) s(Xl,Zl)

, f(Yl,Zl) t(Yl,Zl)
corresponding to the program

s(Xl,Zl) + m(Xl,Yl), t(Yl,Zl)

t(Yl,Zl) + s(Yl,Wl), p(Wl,Zl)

t(Yl,Zl) + f(Yl,Zl)

with p,m,f DB-relations, the program to be generated goes along the
loop collecting p-tuples, each of them driving an inner evaluation
loop of m-tuples and f-tuples as can be seen by looking at the succes
sive evaluable formulas :

m(?,Yl), f(Yl,a)

m(?, Y2), m(Y2, Y 1), f(Y 1, W2), p(W2,a) (r2)

m(?, Y3), m(Y3, Y2), m(Y2, YI), f(Yl,W2), p(W2, W3), p(W3,a) (r3)
•

The program is :

Zl = a
edb(p,W2,Zl); edb(m,X,Yl) ; edb(f,Yl,Zl) ; print(X)
enqueue(Q, W2) values of W2 will drive an outer loop
foo = m(X2, Y2), m(Y2, Y 1), f(Y 1, W2) to be evaluated, starting from

f for each value of W2
i = 2
while (Q I empty) do

od

while (Qllempty) do W2=Deque(Ql) ; edb(foo) ; print(Xi) ; od
does what was expected, see(r2) above

Ql = Q

Q = empty
while (Ql I empty) do W3 = Deque(Ql) ; edb(p(W2, W3) ;

enqueue(Q, W2) ; od
collects now values for W2 as in r3 above

replace m(Xi,Yi) by m(X. 1,Y. 1), m(Y. 1,Yi) in foo; i=i+l
i+. l+ l+ prepare for a new outer loop

This program is, on the surface, satisfactory ; the authors state that
its only limitation is due to the fact that the form of the initial querv
must be known (here s(?,a)). There may be another difficulty which
is that, in order for the program to stop, the enqueue operation is
not a mere "push" : it must check that the value has not been pushed
i.e. enqueued before ; this may be a practical limitation of the system.

Another approach, without any . of these limitations maybe under way
(17) but not enough is known about it at this time.

Interpretation

These techniques intermix deduction and evaluation steps ; in fact
what was described in section 2 for PROLOG+ was already an interpre
tation. Other schemes have been presented, starting from the idea
that unification done tuple at a time was not precisely adapted to
systems in which DB-relations were handled ; such a case was argued
in MRPPS (4) where the concept of Il-unification was developed. A
more systematic study in terms of PROLOG implementation is described
in (11) where the basic idea is the . following : rather than storing at
each node of the proof tree the whole set of unifications (as a table),
it is possible either to store a unification set only at the root and
to store at each node the computation rules which will allow to compu
te their new unification sets from their parent node, or to store unifi
cation sets at the leaves and at each node the information which allows
to compute their unification set from their descendent nodes. Examples
are described in (11) although a complete implementation of PROLOG
based on this has not been realized.

Such techniques would be interesting for parallel PROLOG implemen
tations.

Section 4 : Logic DB

This approach is the most natural one for all those who believe logic pro
gramming to be a universal programming language. Their arguments are
strong, we adhere to them basically. A database, as seen by KOWALSKI
(6,18) is a collection of HORN clauses including functions if one wishesto
(already an extension of conventional DB), atop of which it suffices to
build DB functionalities.

A starting point is that PROLOG, including its set-of extension is relational
ly complete, i.e. can express all queries expressed in relational algebra,
the common base language to all relational DB systems (with operators
such as union, projection, join, division, •••) ; such a result although interes
ting is well-known since CODD results on equivalence between relational
calculus (i.e. logic) and relational algebra. Of course the set-of construct
gives all that is needed to express aggregation constructs, averages, •••

However, PROLOG and logic provide more than a conventional query lan
guage because the expressive power of logic programming is at least that
of least fixed points, an example of which being transitive closures :

lfp(R,R*) can be expressed as a simple PROLOG program computing the
least fixed point R* for any PROLOG relation R. In specific cases, it
is simpler to compute the closure directly, as in

ancestor(X, Y) + parent(X, Y)

ancestor(X, Y) + parent(X,Z), ancestor(Z, Y)

Some limitations of the approach should nevertheless be phrased :

- It must clearly be connected to a DB system as described in Section
3 if only for efficiency problems ; this is clear for example in (19)
where a set of queries to a DB system expressed in PROLOG had
to be optimized before being sent to the DB system ; although one
could argue that one of the major difficulties (duplicates) in the
answers came from the PROLOG evaluation scheme itself, not from
logic, this is still a problem to be faced in general.

- HORN clauses, if relationally complete, are not sufficient to express
naturally all queries that one would like to ask using logic itself
(6,18) : find all suppliers · supplying all pieces needed for project
"au.

Such a query. involves conditionals within conditionals ; this is tran
slated into negation within the body of a clause and is not properly
handled by PROLOG unless specific attention is paid.

- Iritegrity constraints, time-constraints involves additional mechanisms
which resemble plan-generation techniques ; non-monotonic reasoning
is also necessary ; possible solutions are presented in (6,18,20).

Some realizations have been reported along these lines, eg (21,22). The
first one is a PROLOG implementation of QBE, while the other is a des
cription of a system where PROLOG is an intermediate language target
for a QBE external language as well as an SQL external language and a
relational algebra external language. In the PROLOG implementation of
QBE (21) it is shown how to simply take into account integrity constraints
on inserts and deletes using a technique which was also used in (23), the
catchall clause. That logic database approach is typically an approach
which is closest to Artificial Intelligence, at least to the theorem proving
part of Artificial Intelligence if not to the knowledge representation one.
Systems built in that perspective include (4, 24). Powerful non-HORN theo
rem provers can be used, plan-generation techniques can be expressed.

G11-

Section 5 : Deductive Data Bases

The bias introduced in developing deductive database systems is that DB
systems can be enhanced by adding to conventional retrieval capabilities
of data explicitly introduced, that of retrieval through deduction mechanisms
using general laws. This extension, introduced at first purely for retrieval
purposes turns out to have many more facets which are briefly examined.

Conventional DB's manipulate facts only (the tuples of the relations). The
general laws they use are so-called integrity constraints (IC), used to vali
date updates of facts. All queries are evaluated with respect to facts
only.

In deductive DB's general laws can be partitioned in two sets : IC's and
deductive rules (DR). Queries are then evaluated with respect to facts
and DR's. But IC's will also need to be evaluated with respect to facts
and DR's. This makes it more difficult of course to check IC's which thus
require deductive capabilities. Deductive databases (DDB's) are made of
a collection of solutions to various problems whose conventional solutions
in DB's have to be adapted in this new context. To understand these new
solutions, old problems and solutions must first be reviewed.

Conventional DB's enforce implicit assumptions for retrieval :

- Closed world assumption (3, 36) : all facts not known to be true,
i.e not stored as tuples, are false

-, R(al , ••• ,an) iff < al , ... ,an > 4 R

- Unique names : elements with different names are different

'r/ b,c b-/:c

- domain closure : there are no other elements than those stored in
the DB.

The first two hypotheses combined allow negation evaluation (recall that
NOT is an operator in relational algebra). The third one allows evaluation
of queries such as 'r/ xP(x),... It could be dispensed of if one restricted
the allowable queries to meaningful subsets of the syntactically correct
queries, thus reducing to range-restricted queries.

'r/ x(Q(x) + P(x)) is evaluable without hypothesis(3)

while 'v xP(x) is not.

These conventional assumptions have to have counterparts in any formalized
view of conventional DB's. After this formalization is done, it is possible
to extend it to DDB's. Two formal views of conventional DB's have been
studied (25, 5) : a model-theoretic view (MTV) and a proof-theoretic (PTV)
one. Without going into details, the MTV assumes that the set of facts
is an interpretation E, a model, of a theory made of IC's and that query
evaluation is done in E, abiding to the above three assumptions. Although
such a view deals with problems such as query evaluation and optimization,

choice of conceptual schemas, etc ••• it does generalize to DDB's and incom
plete information problems. The PTV sees a conventional DB as a first-order
theory T plus a set of closed formulas, the IC's. The theory T is made
of facts (positive HORN formulas) and a set of particularization axioms.
These particularization axioms (Domain closure, Uniqueness of names,
completion, equality) are the formal translation of the above three as
sumptions. The DB is still not a DOB but deduction could be used to handle
T ; this may be unwise and in any implementation this is likely to be dealt
with at a metalevel, i.e integrated to the query algorithm. Nevertheless
PTV is very useful in terms of the generalizations it suggests :

- DDB's which are obtained via a third class of axioms, the deductive
rules (DR) mentioned earlier.

- DB's which allow disjunctive information, leading to incomplete
information (5, 26, 27).

DDB's are subject to new problems, in that the axioms introduced in T
may be inconsistent with some general deductive laws ; it is well known
that such is the case between disjunctive axioms and those (in T) accounting
for CWA.

, R(al, ••• ,an) iff { T,DR} \-f- R(al, ••• ,an)

cannot be accepted as such :

Cat(X) -+ Black(X) U White(X) (DR)

Cat(Felix) +

axioms in T

t-f- Black(felix) hence -, Black(Felix)

l-f- White(felix) hence , White(Felix)

These two informations are contradictory with the unique DR. Solutions
to handle this are partially known (5, 26, 27) and consist either in restricting
general laws (DR) to regular clauses with adequate axioms T' instead of
T, or in dealing with incomplete information systems.

It must be emphasized again that this theoretical view (regular clauses
+ axioms T') is not to be implemented as such ; again, implementation
goes through some meta-rules rather than using T' axioms ; for instance
negation as failure (33) and range-restricted formulas (35).

There are two ways to exploit a DOB. Most of the systems realized today
use the deductive approach where data is actually deduced when needed.
In the generative approach (28), deductive rules are used as generative
rules : each time data is entered, all information derivable from it, or
with its help, is derived and generated (stored in the DB) ; of course supres
sing data becomes a non-trivial process, akin to Truth Maintenance Systems
in AI since generation is similar to forward system in AI. The generation
task appears to be prohibitive in terms of computation overhead, but it
may not be so depending on the context of application.

Finally, one should note that DDB's are not yet fully understood ; however
they already permit various generalizations of conventional DB's among
which generalized notions of views, integrity constraints, query languages,
data dependencies studies, etc (29, 30, 31, 32, •••). Obviously, not all of
these notions have an acceptable treatment : among them one can mention
update of views, recursive DR's, checking IC's, etc.

It should be clear from the above discussion how close are some of the
problems which are dealt with both from the DB viewpoint and from
the logical one ; what to emphasize and how to solve problems, is where
these two fields separate.

CONCLUSION

In this overview paper, two main trends for enhancing data bases on one side,
logic on the other, have been examined. Both aim at bridging the gap between
DB and logic. One puts the emphasis on efficiency, the other on functionalities.
As a result there is no single logic & DB system : a taxonomy of systems inclu
ding DB's, knowledge-based systems, logic interpreters handling large sets of
assertions, etc can be developed ; corresponding to this taxonomy which is
rather intuitive and well-known, another one has been proposed here according
to the emphasis on logic or on DB's : PROLOG+, PROLOGDB, logic DB, deduc
tive DB. Yet, another- taxonomy is still . to be developed : it has to do with
the types of axioms that could be sufficient for the purpose of each type of
system corresponding to the above taxonomies. As an example, consider recursive
axioms : what is the complexity of such axioms when one adopts the deductive
DB perspective ? Isn't it sufficient to have the power of transitive closure ?
Then, isn't it possible to take advantage of such a simplification in the deductive
system to be built. Such questions are important and the task of finding such
a taxonomy is now to be undertaken. It may be presently undertaken in the
framework of the Japanese 5G Project which aims at the same objective :
bring together logic and database system. One should note that we have not
covered the use of logic as an implementation language for interfacing DB's,
e.g. for a natural language interface (19) or for menus and other tools (37).
Finally recall that an important topic has not been discussed here at all : the
knowledge representation problem and the contribution of logic databases to
it.

ACKNOWLEDGMENTS

Views expressed here result from many years of studies in common with J.M.
NICOLAS, and also discussions with J. MINKER ; our collaboration started
with the logic and databases publication and is still continuing. The influence
of R. KOWALSKI and of R. REITER's work should be obvious throughout.

(,2.0

REFERENCES

(l) GREEN C., "Theorem proving by resolution as a basis for Question-Answe
ring systems", Machine Intelligence 4 (MELTZER, B., and MICHIE, D.,
eds), American Elsevier Pub. Co., NEW-YORK (1969), pp. 137-147

(2) GALLAIRE H., MINKER J., eds, "Logic and Data Bases Plenum Press,
NEW-YORK (1978).

(3) NICOLAS J.M. and SYRE J.C., "Natural question-answering and automatic
deduction in the system SYNTEX", Proc. IFIP 74, North-Holland, AMSTER
DAM (1974), pp. 595-599

(4) MINKER J., "An Experimental relational database system based on logic"
in (2), pp. 107-147

(5) REITER R., "Towards a logical reconstruction of relational database theory",
unpublished manuscript

(6) KOWALSKI R.A., "Logic as a database language", Proc. advanced seminar
on TIDB, Cetraro (Sept. 1981)

(7) BRUYNOOGHE M., nPROLOG-C implementation", University of LOUVAIN,
1981

(8) MIYAZAKI N., "A data sublanguage approach to inferfacing predicate logic
and relational databases", ICOT report, 1982

(9) CLARK K.L. and Mc CABE F., "The Control facilities of IC-PROLOG",
In "Expert Systems in the Micro Electronic Age" (Ed. MICHIE), EDINBURGH
University Press, 1979

(IO) GALLAIRE H., MINKER J. and NICOLAS J.M., "An overview and intro
duction to logic and databases", in (2).

(II) CHAKRAVARTY U.S., MINKER J. and TRAN D., "Interfacing predicate
logic languages and relational databases", Proc. 1st Int. Conf. on logic
programming, MARSEILLE (Sept. 1982), pp. 91-98

(12) KUNIFUJI S. and YOKOTA H., "PROLOG and relational databases for
fifth generation computer systems", ICOT Report presented at CERT 82
workshop "Logical Bases for Databases".

(13) CHANG C.L., "DEDUCE 2 : further investigations of deduction in relational
databases", in (2), pp. 201-236

(14) MINKER J. and NICOLAS J.M., "On recursive axioms in deductive data
bases", Information Systems 7,4 (1982)

(15) HENSCHEN L. and NAQVI S., "Compiling recursive databases", submitted
to JACM (1982)

(16) SICKEL S., "A search technique for clause interconnectivity graphs", IEEE
Transactions on computers, Vol. C-25, n° 8, 1976

(17) NAQVI S., FISHMAN D. and HENSCHEN L.J., "An Improved compiling
technique for first-order databases", Presented at CERT 82 Workshop "Lo
gical Bases for Databases", Bell laboratories and Northwestern University

(18) KOWALSKI R., "Logic Programming", Invited paper IFIP PARIS Sept. 19-23

(19) WARREN O.H.D., "Efficient processing of interactive relational database
queries expressed in logic", Proc. 7th VLDB Conf., CANNES (Sept.1981),
pp. 272-281

(20) BOWEN K.A. and KOWALSKI R.A., "Amalgamating language and meta
language in logic programming", in "Logic programming" (K.1 CLARK and
S.A. TARNLUND eds), Academic Press, LONDON (1982), pp. 153-172

(21) NEVES J.C., ANDERSON S.O. and WILLIAM H., "A PROLOG implementation
of Query-by-Example", Proceedings 7th Int. Computing Symposium, March
22-24, 1983, NURNBERG

(22) LI O.Y. and HEATH F.G., "ILEX : an intelligent relational database system",
HERIOT-WA TT University, Dept. of Electrical and Electronic Engineering,
EDINBURGH 1982

(23) GRUMBACH A., "Knowledge Acquisition in PROLOG", 1st Int. Logic Pro
gramming Conf., Sept. 14-17th, MARSEILLE

(24) KELLOGG C. and TRAVIS L., "Reasoning with data in a deductively
augmented data management system", in Advances in Database Theory,
Vol.I (Plenum 1981), pp.261-295 (H.GALLAIRE, J. MINKER, J.M. NICOLAS
editors)

(25) NICOLAS J.M. and GALLAIRE H., "Database : theory vs. interpretation",
in (2), pp. 33-54

(26) BOSSU G. and SIEGEL P., "La saturation au secours de la non monotonicite",
These de 3e cycle, Universite de MARSEILLE-LUMINY, MARSEILLE (Jun.-
19 81), to appear in A .I.

(27) MINKER J., "On indefinite databases and the closed world assumption",
Proc. 6th Conf. on Automated Deduction, in Lecture Notes in Computer
Science, Vol. 138, Springer-Verlag, NEW-YORK (1982)

(28) NICOLAS J.M. and YAZDANIAN K., "An outline of BDGEN : a deductive
DBMS", Techn. Rep., ONERA-CERT, TOULOUSE (Oct. 1982)

(29) NICOLAS J.M. and YAZDANIAN K., "Integrity checking in de_ductive data
bases", in (2), pp. 325-344

(30) BLAUSTEIN B. T ., "Enforcing database assertions : techniques and appli
cations", Ph.D. Thesis, HARVARD Univ., CAMBRIDGE (Aug. 1981)

(31) PIROTTE A., "High level database query languages", in (2), pp. 409-436

(32) FAGIN R., "HORN Clauses and databases dependencies", J.ACM 29,4 (Oct.
1982), pp. 9 52-985

(33) CLARK K.L., "Negation as failure", in (2), pp. 293-322

(34) GALLAIRE H., MINKER J. and NICOLAS J.M., "Logic and Databases -
An overview and survey", Joint report CER T-CGE-Univ. of MARYLAND

(35) DEMOLOMBE R., "Utilisation du calcul des predicats com me langage d' inter
rogation des bases de donnees", These de doctorat d'Etat, ONERA-CERT,
TOULOUSE, Feb. 1982

(36) REITER R., "On closed world databases", in (2), pp. 55-76

{37) PEREIRA L., FIGUEIRO M : Relational Databases a· la carte, Centro de
Informatica, Universidade Nova de Lisboa, PORTUGAL

Computing with Sequences

c.o.s.Moss. Feb 1933

Abstract

All Prolog implementations deal implicitly with sequences
of solutions to problems by means of backtracking: if one
solution to a subproblem is rejected another is presented. A
number of implementations also provide predicates which provide
sets or bags {sets mith possibly repeated elements) of
solutions. Sut in these case the system finds all the s.olutions
before proceeding. It is suggested here that an implementation
of bags, or sequences, which finds only one solution at a time
can be integrated easily with exis~ing implementation techniques
for Prolog.

This technique has a number of advantages over similar
proposals. If it is combined with subprograms which exhibit
tail recursion, then one can write logically correct programs to
process sets of solutions which do not use extra memory. These
can include prog~am~ which reduce solutions (e.g. count, sum or
averaga solutions) aithout using •impure• techniques. However
thetechnique involves little overhead in programs mhich do not
use it, unlike cenain other proposals for coroutining.

This_ will have particular advantage in database
applications ■here large amounts of infor,aation must be
retrieved serially fro• secondary storage. It also has
potential application for parallelism since the next solution of
the subproblem may be pre-evaluated on a parallel processor,
without changing the normal interpretation of Prolog clauses.

Introduction

The normal mode of evaluation in Prolog may be termed a
•semi-lazy• evaluation of all the solutions of a goal. In other
words, one solution is computed to a subproblem, and the
c~mputation is then suspended until another solution is
required. This produces the very attractive •stack" discipline
which characterises Prolog and contributes significantly to its
speed and memory efficiency.

But in many cases one wishes to talk about "all" solutions
to a problem. A facility is provided in several Prolog
implemantations (e.g. Warren Cl98ZJ) by an evaluable predicate
which produces the solutions as a list:

Page Z

6.2..~
The predicate "setof(A,B,C)tt means that C is a list of the

variables A which solve the problem a.

In many situations, particularly if one wishes to nest
calls to such a pradicat~, it is desirable to provide the
solutions as a set, in which any duplicate solutions have been
removed. But this clearly en~ails extra work, and presents
Questions if som3 of the solution3 contain uninstantiated
variables (does one want the most general or most specific
answers?). Hence some implementations also provide a "bagof"
predicate which is defined in the same way, but can contain
duplicate answers. But this is also implemented by producing
all solutions to the problem at one time 3nd therefore involves
allocating (implicitly) enough space to hold all the solutions.

Because of this, many programmers will persist in using the
impure "hacks• that were common in Prolog before these
oredicates were introduced. These involve making temporary
assertions in the database to hold information which is not lost
on backtracking. Apart from the loss of speed from using these
techniques, programs can become obscure, as the technique
effectively introduces global variables into a language which
avoids their use otherwise. In the context of parallelism, such
usage is doubly suspect.

Using Sequences

The introduction of sequences has tmo parts: an evaluable
predicate and a •lazy• way of processing Conly) lists. We sill
introduce a new predicate called "seqot•. It has the same
definition as nsetof• or "bagof" except that solutions produced
in the list may be repeated, and the order of solutions is
defined by the program. i.e.

seqaf(A,B,C) means that the list of all solutions for A in
Qoal Bis a list C.

Let us demonstrate the use of this oy sho~ing a procedure
which computes the average population of all countries in a
database.

averagepop(A) <- saqof(B, (population(C,D), country(C)), E),
average(E,O,O,A).

average(nil,O,O,O).
average(nil,A,S,A,B).
average(A.B,C,D,E) <- averageCB, C+A, D+l, E).

Here "averagepop" computes the average population and
"average" is a general procedure tor computing averages, working
in a "bottom-up" fashion so that tail recursion is applicable.
Note that infix function calls to arithmetic predicates are
assumed. A aefinition of all predicates used may be found at
the end.

Page 3

The meaning of this program may be 3ppreciated quite
separately from the method of implementation: "seqof" ganerates
a list containing the populations of every country in the
database, and "average" acts recursively on this list to produce
the average.

However the implementation suggested is as foll~ws:
seqof(A,B,C) evaluates B until a single solution is found, ~hen
it binds C to A.x (where xis defined belo~), or if no solution
is found then C is bound to nil. Control then passes to the
subgoals following seqof - in this case "average" (unlass C is
already bound fully to~ list in which case the next solution of
Sis found). Execution proceeds normally until an attempt is
made to bind a non-variable to the lazy list object, the value
called "x" above. If this is normal list-processing, then it
mill be an attempt to bind it to some term •o.en, or "nil". At
this point, control is returned to "seqof" and another solution
is attempted. If it is found, then the value D mill be
instantiated and processing returns to the list consuming
orocedure.

One valuable aspect of this control mechanism is that the
0 seqof• procedure can be programmed so that when control returns
to it, it can detect whether any. valid references still exist to
the first solution (because of backtracking points etc), and if
no~, can delete that solution from the ~tack. In this may, the
qlobal stack space used can be reclaimed and a list of all
solutions used without consuming an equivalent amount of stack
soace.

A Database Example

As a further example of the use of this approach, consider
another database query. Buneman et al CI982J consider queries
such as:

"find the names of employees who are under 30 years of age
and are paid more than the average salary for all all
employees."

In a typical database query language this might be
expressed:

retrieve NAME from EMPLOYEE ~here AGE<JO and
SALARY> average(retrieve SALARY from EMPLOYEE).

They demonstrate that this can be expressed in a purely
functional query language by an expression

!EMPLOYEE o IC£CAGE,30Jo LT, CSAL,AVESALJ o GTJ o ANO) o *NAME;

where "o" represents
function which computes
stream of all employees,
following predicate, and

function composition, AVESAL is a
the average salary,"!" generates a

"IC" restricts this stream by the
»*~ converts a straam of values into a

6.25

Page 4

character stream.

A system such as Chat-80 {Warren, Per•ira 1979) might
represent this as a Prolog query in the form:

ans(ANS) <= seqofC~, employea(d) & a~eCB,C) & C<30
& salaryCa,O) £ D>E &n&me(B,A), ANS)

& seqof(F, employeeCG) & sa13rtCG,F), H)
& average(H,O,Q,E).

While this (relational) form of the enquiry is not as
concise as the functional form it has an important advantage.
The variable •e• ~hich represents the average salary is
independent of the expression in which it appears and it is
clearly not necessary to compute it for aach employee. In the
Chat-80 system the query would be rearranged and constraints
inserted to ensure that it is only calculated once (Warren
19al). In a functional system, the optimiser has to recognize a
"constant subexpression".

The processing of the query clearly involves two passes
over the employee relation, mhich may be presumed to be large
and stored in a database. When computing the average salary
there is only a need to retain the partially computed average.
The second pass generates the names of employees, which mill
presumably be p~inted out and also not stored.

Buneman et al point out that there is a further possible
optiai.sation for this query: if there are no employees less
than 30 it is unnecessary to compute the average salary. The
im~lementation of sequences proposed here mould not easily allo•
for this.

Implementation Details

This discussion has ignored the vital implementation
details of how the stack is organized to handle several
different "control points" simultaneously (and one must remember
that seqof may be called at several points in direct or indirect
recursion). There are in fact a number of possible
implementations and which is used may depend on several factors.

1. One can implement full "spaghetti stacks• in which
several computations can interleave. This is the approach of
Clark and McCabe (1979]. This does not unfortunately mesh very
well mith existing implementation techniques.

z. One can start a new stack for the seqof predicate
separate from the old stack. In fact it is possible to consider
this as a completely separata uprocess", as ~ill be explored
below, and in a virtual memory environment where address space
is no problem (though real mamory is) this may well be the best
solution.

Pa~e 5

3. One can allocate (by some heuristic) a certain 3pace on
the stack for the seqof process in addition to that consumed by
the first solution and start the following processes above this.
On return to the interruptad process, it performs a "context
switch" ~hich resets the t>p of av3ilaDla stack space to the
credefinad space. If this space is filled, it is then necassary
to "stack-shift" the rest of th9 stack to make space.
Fortunately this is an operation which is alraady done by
several implementations to allow for the several different
storage areas used by Prolog.

be better
penalty on

handling
goals is

The advantage of methods 2 and 3 (and there may
methods) is that they do not incur a large time
normal execution. The convenient and efficient stack
of Prolog is preserved and the normal sequencing of
only interrupted when treating a "lazy" list.

It is however necessary to modify the unification routine
to recognize a nem object - the lazy list. However this does
not affect the binding variables to the object, only the attempt
to match it with another list object (list functor or nil).
Hence the modification is limited to the case of binding a
functor to a functor and even in compiled code this is
normally performed by a subroutine. It is to be hoped that with
the gradual introduction of microcoding for unification this
mill not be a significant problem and be outweighed by the
saving in space achieved.

So■e other uses of this technique

This technique opens up new possibilities for Prolog
evaluation, of which three will be explored briefly.

1. Input-Output in Prolog programs is generally handled in
a manner which is both semantically impure and obscure from a
programming point of view. Consider the following programming
fragment found in several systems:

getCX) :- repeat, getO(X), X = '', !.

repeat.

repeat:- repeat.

Here the predicate "get0° unifies the next character in the
input (of some unspecifi&d file) with the parameter X. If it is
not a space, then the system backtracks to getO, which is not
implemented as a procedure with backtrack points. However
backtracking to "repeat" always succeeds and the next character
of the input is read. Thus 0 gat" reads the next non-blank
character from the input. However, ooth "getO" and 0 get• are
oradicates which have side-effects. Backtracking over the input
file does not "rewind" the file as one might expect.

6.2.l-

Page 6

Let us suppose that input-output ~redicates were defined in
terms of tne seqof predicate. Thus, for instance, a call to the
Predicate fileCA,8) binds 9 to a character in file A. A call to
seqofCB,fileCA,B),C) binds C to the list of characters in file
A. If this is the predicate used then correct backtracking
behavior will be acheived automatically ~ith more economical use
of storage. Of course a mora sophisticated implementation might
vield even greater economy.

2. Consider the following use of seqof:

seqofCA, proclCB,A), C>, seqofCD, proc2CC,O), B).

Here procl and proc2 are two processes which each •consume•
a list which is their first parameter and produce answers which
are their second parameter. If the first parameter is
considered a list of input messages, then the behavior Qf these
two processes may considered to be one of message passing from
one to the other. Initially procl is invoked and produces a
message A. Then procZ is invoked and produces an ansmer o.
When it tries to consume the second message, control is passed
back to procl. Notice that there does not need to be any
one-to-one correspondence between the number of messages
orovided by procl and proc2. Also deadlock is easily detected.

3. It is possible to replace any subgoal in a Prolog
orogram by a pair of goals which are equivalent:

go.al CA,.• ,Z> to

seqof(A: •• :z, goalCA, •• ,Z)~ C>, solnCC,A: •• :z>

ahere A: ... :z represents a tuple of the variables appearing
in the goal and soln is defined conceptually by·

soln(A.B, A).

soln(A.S, C) :- soln(S, CJ.

Thus we may consider any subgoal in a Prolog pro~ram as a
separate subprocess which generates a sequence of solutions
which is then passad on to its neighbors. It is possible to
implement these in the most convenient manner: one possibility
that is attractive is for a subgoal to produce exactly one more
solution than has yet been demanded by the other goals. Then
when the next subgoal backtracks there will be a solution
immediately available. However the demand for new processes
will not grow exponentially as could be the case if indefinite
parallelism were allowed.

Conclusion

The introduction of the seqof predicate and the "partially
evaluated 11st" technique has introduced into Prolog a very
li~ited form cf ccroutinin;. It has the advantage of preserving

6.2:H

Page 7

the behavior of µrograms written for a left-to-right depth first
evaluator 3nd avoiding the overhead ~hich has accompanied ~any
other proposals for coroutining. It has the disadvantage of
being so~ewhat "delicate" in its sp3ce-saving value: if the
user leaves otrier references to tha list at SOffle point after the
seqof call, than it ~ay not je possible to discard the
1ntermad1ate solutions.

Definition of predicates usad

In the following definitions, the name of the predicate is given
first followed by the number of its parameters; then an English
definition of the predicate in mhich variables A,B,C etc. are
used to represent the 1st, 2nd, 3rd etc. parameters of the
predicate respectively.

bagof/3 the bag of all solutions for A in goal 8 is a list
c.

seqof/3 the sequence of all solutions for A in goal Bis a
list C.

setof/3 the set of all solutions for A in goal Bis a list
c.

averagepop/1 -- the average population of all countries is A.

average/4 - the average value of sublist A of a list, having
a parti~l total of B from C items in the head of the
list, is D.

population/2 -- the population of A is B.

country/1 A is a country.

soln/2 -- Bis a member of the sequence A.

employee/! -- A is the identification of an employee

age/2 -y the age of employee A is B

salary/2 -- the salary of employee A is 8

name/2 -- the name of employee A is 8

References

P. ouneman, R.E. Frankel, R. Nikhil [1982J: An
Implementation Technique for Database Juery languages. ACM
Trans. on Database Systems. 7/2, ppl64-ld6.

K.L. Clark, f. McCabe [1979): fhe Con~rol Facilities of

Page 8

IC-Prolog. In O. Michie Ced): :xpert Systams in the
Microelectronic ag~. E.U.P.

O.H.O. ~arren, c.c.N. Pereira [1978]: An efficient easily
adaptable system for interpretin9 natural langua~e queries.
D.A.I. ?aper 155, Univ. of Edinburgh.

O.H.O. Warren Cl981J: 2fficient Processing of
Relational Database queries express~d in logic.
PP272-28l.

Interactive
YLDB Cont.

O.H.O. ~arren [1932]: Highar order extensions to Prolog: are
they needed? Machine Intelligence 10, pp441-454.

