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Some Reflexions on Implementation Issues of PROLOG 

INTRODUCTION 

M.Bruynooghe 

Departement Computerwetenschappen 
Katholieke Universiteit Leuven 

Celestijnenlaan, 200 A 
B 3030 HEVERLEE 

Current interest in PROLOG is high. This papers aims at opening 
a.discussion on implementation related issues which, in our opinion, can 
have ~ great impact on the acceptance of PROLOG as a valuable 
programming language. Our focus is on issues concerning users of todays 
PROLOG, not on implementation issues in current research on logic 
programming (parallellism, intelligent backtracking, special 
architecture, control). 

The issues are: 

the bad influence of cut on programming style but its necessity, in 
current implementations, to obtain efficient (time and space) 
execution of programs. 

Can/will everyone develop good (efficient) PROLOG programs or is this 
an art for a small club of skillful experts. 

an observed desire for standardisation. 

1 The influence of an implementation on programming style. 

The PROLOG community has gone a long way from the first PROLOG 
interpreters to current compilers promising to allow efficient execution 
without running out of space, even for infinite queries if they are 
determinate. 

In the first interpreters, we could distinguish two major work 
areas: 

a dictionary of clauses, spoiled but slowly because ·retract" does 
not free the space. 

2 an environmentstack ("trail" included or separate) which grows until 
backtracking liberates it. 
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This resulted in "dirty· programstyle, exemplified by the 
following: 

When you are affraid of running out of core, then: 

assert your useful results. 
fail and backtrack. 
restart, picking up your useful results and retract their assertion. 

It has been learned to separate the global/copystack from the 
environmentstack, to keep the environmentstack small by exploiting 
determinism and to apply garbage collection on the copystack. Also 
compilation techniques have been developped to obtain more efficiency. 

Does the combination of all these features provide the paradise 
for the purists among logic programmers willing to apply such an 
advanced programming technique as the usage of abstract data types? 

Let us look at a simple example: 

A procedure Partition(~. l, ll, 12) which separates a list l into a list 
11 of elements less than or equal to x, and a list 12 of elements 
greater than x. 

The datastructure can be implemented as follows: 

Empty(ll a test to see whether a list l is empty, also to initialize 
an empty list. 

A possible realisation is Empty(Nill <- (another one could be with 
difference lists: Empty(d(~.~ll <-

Select ll, ~. tail): a list 1 is separated into its first element x and 
its remainder (tail) (Fails for an empty list) 

Realisation: Select(~.l. ~. ll <-

Construct(~ . .iill,, ll: a list l is constructed with first element x and 
remainder tail 

Realisation: Construct(~. l, ~. ll <

Now Partition can be defined: 

Partition(~. l, l.1, ill <- Empty(ll, Empty(l.ll, Empty(ill 

Partition(~. l, l.1, ill <- Select(l, ~. l' ), ~ <= ~. 
Construct(~. l.1', ill, Partition(~. l', ll', ill 

Partition(~. l, ll, ill <- Select(1, ~. 1' l, ~ > K, 
Construct(~. ll', 12), Partition(K, 1·, ll, g·) 

To my knowledge, the best of all existing PROLOG systems cannot 
prevent that a heavy price is paid for this programming style: 



Efficiency: 
number of 
doubled. 

the recursive calls contain 4 calls instead of 2, the 
logical inferences required to obtain a solution is 

Space: current implementations are unable to recognize the 
determinism of the above program. Half of the calls will be 
considered as nondeterministic, backtrackpoints will be created and 
will stay on the environmentstack. Completion of a partition call 
will not free the environmentstack. As a consequence, references to 
the global/copystack are not removed and the potential for garbage 
collection is severely reduced. 

Preprocessing 
improve the situation. 
promising to automate 
arrive at: 

the calls to Empty, Select and Construct can 
A technique as ·partial evaluation" seems 

this. Doing the partial evaluation by hand, we 

Partition(x, Nil, Nil, Nil) <-
Partition(x, .i.-l.', .i.-l.1', ll) <- .i. <= K, Partition(x, l.', ll', ll) 
Partition(x, L.l,', l.1, Lil') <- .i. > X, Partition(x, l.', ll, ll') 

This solves the efficiency problem but not the space problem 
(to recognize the determinism of the base case (empty list), indexing on 
the second argument is necessary) 

To recognize determinism, a cut in the second clause is needed. 
At the same time, an experienced programmer will drop the condition in 
the third clause. We obtain: 

Partition(x, Nil, Nil, Nil)<-
Partition(lS,, §. . .J,,', §..li', 12') <- §. <= lS., I, Partition(,2i, .l', .ll', ill 
Partition(K, §..!,', ll, .i.-.!Z.') <- Partition(K, !,', l.1, ll.:J. 

This cut, an ugly feature to purists and beginners, changes the 
whole nature of the program. Now, the program Partition(x, !, ll, lll 
cannot be used to obtain all possible merges l of 11 and 12. This 
restriction on the use of Partition is not declared. As in most cases, 
it is the purpose of the cut to inform the execution mechanism about 
determinism, about the opportunity to optimise the execution of the 
program. At the same time, the possible use of the program is severely 
restricted. It is a sad fact that this guidance and its accompagnying 
restriction are not given on a more elegant and more explicit way. It is 
the obscurity of the cut which restricts the use of PROLOG, beyond toy 
examples, to skillful expert programmers having a good understanding of 
the underlying implementation. 

Actually, we can state two questions about the above program, 
(I am affraid that studying the manual of a particular implementation 
will not answer them): 

1 Is a cut needed in the first clause to recognize the determinism of 
the base case (Nil)? Not recognizing the base case as deterministic 
has a dramatic effect on memory usage, frames are locked on the 
stack! 
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2 Will tail recussion optimisation be obtained when the second clause 
is selected ? It cannot be applied at the time of unification with 
the heading because the call is nondeterministic (the third clause 
provides an alternative), it becomes deterministic only after 
execution of the cut; at that moment, the opportunity exists to 
collapse two stack frames into one. 

2 Applicability of PROLOG 

The application of PROLOG is rather limited. It is only used by 
skillfull experts, mainly in the field of artificial intelligence. Can 
it be applied to more conventional problem areas, where Fortran, Cobol, 
Basic or Pascal are used, i.e business applications? Recently, we 
conducted a few experiments. Our tools: a slow PROLOG interpreter 
written in Pascal (about 400 logical inferences per second on·a VAX 750) 
. the vendors Basic and Pascal compiler. 

Experiment 1 

A parser was developed by rather unexperienced programmer using a 
compiler generator system semantic actions hand-written. The result: 
2276 lines of Pascal. A parser which is roughly functionnally 
equivalent was written in PROLOG by an expert PROLOG programmer: 246 
lines of PROLOG (factor 9). Execution time (parsing the same file): 
52 s (seconds) with Pascal, 296 s with PROLOG (factor 5 - 6). 

Experiment 2 

A program with complex data structures. An unexperienced Pascal 
programmer: 2371 lines of code, a skillful PROLOG programmer: 136 
lines of PROLOG (factor 17). Both programs have roughly the same 
functional equivalence. Execution times: Pascal: 43 s, PROLOG: 119 s. 
(factor 3). 

Experiment 3 

A complex retrieval task involving 4 files on the vendors file system 
(RMS). A Basic program of 170 lines required an execution time of 
12.5 sec. A PROLOG program with exactly the same functionality 
required 70 lines (factor 12.5) and an execution time of 191 s. 
(factor .17). (Due to the experimental nature of the interface 
PROLOG-RMS, each call to the file system required a lot of additional 
logical inferences, also the program did more file accesses.). A, for 
PROLOG, simple optimisation (bringing a small part of 2 files in 
core) reduced the execution time to 47 s. (factor 4). 

Taking into account the slowness of the interpreter, an 



improvement of factor 5 to 10 (2000 - 4000 LIPS) seems not difficult to 
obtain, using compilation techniques, further improvements are 
possible.this suggests that PROLOG becomes a competitive language to be 
used on a large scale when: 

complex data structures are to be manipulated (making use of the full 
power of unification) 
a substancial amount of time is spend on file accesses. 

However, this require~: 

A robust interpreter, not running out of space while executing large · 
programs and sufficiently efficient. 

Easily extendible set of evaluable predicates, allowing to develop 
specific predicates for specific applications. e.g.: 

* connection with a particular file system or database 
* screen management functions 
* allowing to implement components with insufficient efficiency at a 

lower level. 

An environment allowing the development of good PROLOG programs by 
mediocre progranvners, this probably requires: 

* A cut free variant of PROLOG, making less an art of the writing of 
space efficient programs (see reflection 1) 

* An automatic optimiser based on partial evaluation techniques (see 
reflection 1) 

* Hore compile time verification (types, restrictions on the usage of 
procedures), (Preferably incremental and integrated in a syntax 
oriented editor) 

A lot of programming is involved with side effects which should be in 
a particular order. e.g. interaction with a terminal, producing a 
report. We need a well choosen set of metalevel predicates to control 
such side-effects. Some possibilites: 

* For_each <-'-2.D.d., actionl, e.g.: 
For_each (employee(x), compute_salary(x>> 

(Definition in Prolog : 
For_each(~.actionl <- ~. action, fail 
For_each(~.actionl <-

* Repeat_unt1l_exit(command), e.g.: 
Repeat_until_exit(Read_and_process(x)) 
The execution backtracks, reading commands until a special Nexit" 
call is executed and the infinite backtracking is destroyed. 

Although Prolog allows every expert to implement his own set of such 
metapredicates, some standardisation is desirable and integration of 



them in compiletime verification tools is needed. 

3 Portability of Prolog programs 

Currently, Prolog is not only a subject for research, but 
becomes accepted as a suitable language for implementing diverse 
applications (e.g. its role in the Japanese Fifth Generation Project and 
in the European ESPRIT project). This creates the problem of exchanging 
programs, of portability of programs. Although Edinburgh's OEC10 Prolog 
tends to be a de facto standard, different implementations exist and 
many more are likely to appear. Porting Prolog programs from one Prolog 
system to another is problematic due to : 

Differences in syntax. As far as the syntax is syntactical sugar for 
Horn clauses, automatic conversion seems not difficult. However, 
conversion to Horn clauses poses a problem when the syntax allows for 
alternatives (e.g. (P;Q) ) inside a clause, in cases where such an 
alternative contains different calls and one of them is a cut (scope 
of the cut). 
Differences 
extremely 
christmas 
high level 

in evaluable predicates. Although the core of Prolog is 
simple, manuals are becoming wieldy, they look like 
trees, full of evaluable predicates. Some have to do with 

control of the system, but others are extensively used 
inside programs. 

The observable desire to use Prolog as a programming language 
for large projects creates a need for standardisation of syntax and 
evaluable predicates. Is it possible to define a minimal set of 
evaluable predicates and to define all extensions as Prolog procedures? 
For reasons of efficiency, an implementor can provide these extensions 
at a lower level. Taking Edinburgh's Prolog as the de facto standard is 
probably not optimal, some reflection on the choice seems preferable. 



A Prological Definition or HASL a Purely Functional 
Language with Unification Based Conditional Binding 

Expressions 

Harvey Abram8on 

Department of Computer Science 
University of British Columbia 

Vancouver, B.C. Canada 

ABSTRACT 

We present a definition in Prolog of a new purely functional (applicative) 
language HASL (H. Abramson's .s\atic Language). HASL is a descendant of 
Turner's SASL and differs from the latter in several significant points: it includes 
Abramson's unification based conditional binding constructs; it restricts each 
clause in a definition of a HASL function to have the same arity, thereby compli
cating somewhat the compilation of clauses to combinators, but simplifying con
siderably the HASL reduction machine; and it includes the single element domain 
{Cail} as a component of the domain of HASL data structures. It is intended to 
use HASL to express the functional dependencies in a translator writing system 
based on denotational semantics, and to study the feasibility of using HASL as a 
t~nctional sublanguage of Prolog or some other logic programming language. 
Regarding this latter application we suggest that since a reduction mechanism 
exists for HASL, it may be easier to combine it with a logic programming 
language than it was for Robinson and Siebert to combine LISP and LOGIC into 
LOGLISP: in that case a fairly complex mechanism had to be invented to reduce 
uninterpreted LOGIC terms to LISP values. 

The definition is divided into tour parts. The first part defines the lexical 
structure or the language by means of a simple Definite Clause Grammar which 
relates character strings to "token" strings. The second part defines the syntactic 
structure or the language by means of a more complex Definite Clause Grammar 
and relates token strings to a parse tree. The third part is semantic in nature and 
translates the parse tree definitions and expressions to a variable-Cree string of 
combinators and global names. The fourth part of the definition consists of a set 
of Prolog predicates which specifies how strings of combinators and global names 
are reduced to "values", ie., integers, truth values, characters, lists, functions, 
fail, and has an operational flavour: one can think of this fourth part as the 
definition of a normal order reduction machine. 

April 24, 1983 



A Prological Definition of HASL a Purely Functional 
Language with Unification Based Conditional Binding 

Expressions 

1. Introduction 

Harvey A.bramson 

Department of Computer Science 
Ugiversity of British Columbia 

Vancouver, B.C. Canada 

In this paper we shall use Definite Clause Grammars (DCGs) and Prolog to present a 
definition of HASL, a purely functional language incorporating the unification based conditional 
expressions introduced in [Abramson,82aJ. 

Metamorphosis grammars were introduced in [Colmerauer, 78J and were shown to be effective 
in the writing of a compiler Cor a simple programming language. Definite Clause Grammars, a 
special case of metamorphosis grammars were introduced in [Pereira&Warren,80J and shown to be 
effective in "compiling", ie, translating a subset of natural language into first order logic. 
Metamorphosis grammars (M-grammars) have been used to describe several languages, namely 
ASPLE, Prolog, and a substantial subset of Algol-68 [Moss,81J, [Moss,79]; see also !Moss,82J for 
the use of Prolog and grammars as tools in language definition. Although neither M-grammars 
nor DCGs were mentioned in [Warren,771, that paper is of interest in the use of Prolog as a com
piler writing tool. The use of DCGs and Prolog for the implementation of SASL [Turner,76,79,81J, 
a purely applicative language, was reported in [Abramson,82b). 

The language HASL which we shall define below arose out of the Prolog implementation of 
SASL. One reason Cor defining the new language was to incorporate unification based conditional 
binding expressions; another was to simplify and clean up the combinator reduction machine 
introduced by Turner to evaluate SASL expressions; a third was to provide a possible functional 
sub language for Prolog; and a fourth was to provide a functional notation for a denotational 
semantics based translator writing system akin to Mosses' Semantics Implementation System 
[Mosses,79J but to be tied to DCGs. Although we do not present a purely logical definition or 
HASL, we feel that the departures from Horn clause logic in the definition presented below (the 
use or the cut for control; negation as failure; and extension or HASL 's database or globally 
defined functions) are not significant enough to mar the formality of the definition or its 
comprehensibility. The definition can be used as a specification of HASL, as an interpretive imple
mentation of HASL, and as a guide to a more efficient implementation of HASL in some system 
programming language. 

In section 2 we shall informally and briefly describe HASL. Section 3 contains a description 
or the general definition strategy: HASL expressions are compiled to variable-free strings of com
binators, global names, and uses or the two primitive operations of function application (->) 
and pair construction(:, like LISP's CONS). Following this are sections devoted to: the DCG for 
lexical analysis; the DCG and associated predicates which perform syntactic analysis and parse 
tree formation; the translation to combinators; and the HASL reduction machine. A final section 
will suggest some further work which we intend to pursue. 

8 
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2. HASL • Informally and Briefly 

HASL is descended from Turner's SASL (see (Turner,76,79,81)) and obviously owes much to 
it. We have ch05en to designate this language HASL not to suggest that what we present is 
totally original, but that there are enough departures from SASL to warrant a new designation. 

A HASL program is an expression such as 

[1,2,3J + + [4,5,61 

with value 

[1,2,3,4,5,6J 

or an expression with a list of equational definitions qualifying the expression: 

rx 
where 
x= hdy 
hd (a:x) = a, 
y = 3:y, 
r o == 1, 
f X = X * f(x-1) 

with value 6. 

We note in this list of definitions that 

[IJ A function such as/ may be defined by a list of clauses. The order of the clauses is impor
tant: in applying /to an argument the first clause will be "tried", then the second, etc. 

{2] In the definition of hd the argument must be a constructed pair, specified by (a:z) where : is 
the HASL pair constructor. Structure specifications may involve arbitrary list structures of 
identifiers and constants. 

[3J HASL makes use of lazy evaluation ((Henderson St Morris, 761) so that infinite lists such as y 
may be defined, and elements of such lists may be accessed, as in hd y without running into 
difficulties. · 

A list may be written as 

[l,2,3J 

which is syntactic sugaring for 

1: 2: 3: ll 
where IJ denotes the empty list and the notation 'string' is a sugaring for the list of character 
denotations: 

%s: %t: %r: %i: %n: %g: II 
There are functions such as number, logical, char and function which may be used to check 

the types of HASL data objects: 

number 12 = true 
logical 5 = false 
char % % = true 
function hd = true 

are all HASL expressions which have the value true. 

Functions may be added to HASL's global environment as follows: 



def 
string I] = true, 
string (a:x) = char a & string x, 
string x = false, 
cons ab= a:b 

-3-
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Each clause defining a HASL function / must have the same number of arguments or arity. Thus 
above, each clause in the definition of string has arity one. In the second clause for string how
ever, a single structured argument is designated. Although HASL functions may be written as if 
they had several arguments, such as cons above, HASL functions are all considered to have in fact 
single arguments. The single argument is a HASL data object which may be a character, a truth 
value, an integer, fail, a list of HASL objects, or a function of HASL objects to HASL objects. 
The value of such a function may be any HASL object - including a function. Thus the value of 

cons %a 

is the HASL function which puts %a in front of lists. 

The HASL object fail is the result of, for example, applying hd to a number: 

hd 5 = fail 

The object fail is not a SASL object and is one of our departures from that language. 

Another departure is in the introduction of the restricted unification based conditional bind
ing constructs {;. and -} of !Abramson,1982J. 

formals {- expl => exp2; exp3 

The meaning of this is that if e:epl can be unified to the list of formals, then the value of this 
expression is the value of e:ep2 qualified by the bindings induced by the match; otherwise, it is the 
value of e:ep9. This may be expressed somewhat inefficiently using the HASL conditional expres
sion (a-> b; c): 

(fail = f expl 
where f formals= exp2) -> 

exp3; 
(f expl 
where f formals = exp2) 

Thus the unification expression may be regarded as the definition and application of an 
anonymous function. 

The unification expression is in fact the basis of the compilation or HASL clausal definitions 
into a single function. If member is defined by the following clauses: 

def 
member a n = false, 
member a (a:x) = true, 
member a (b:x) = member ax 

then the HASL specification and interpreter treats this as: 

member xl x2 = 
a IJ {- xl x2 => false; 
a (a:x) {- xl x2 => true; 
a (b:x) {- xl x2 => member ax; 
fail 
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3. The Top Level of the HASL Speclftcatlon. 

A HASL expression denotes a value. We may express this by the notation 

hasl(Expression, Value). 

This relation requires some refinement, however. The expression is written as some sequence or 
characters, including spaces, carriage returns, etc., and the characters must be grouped into a 
sequence or meaningful HASL "tokens". These tokens must then be grouped into meaningful syn
tactie units determined by the syntax or HASL expressions. These two relations, the lexical and 
syntactic, are expressed by means ot two DCGs: one DCG defines the relation between a sequence 
or characters and a sequence of HASL tokens; a second DCG defines the relation between a 
sequence or HASL tokens and a representation of the syntactic structure or a HASL expression as 
a tree. 

Further, the expression of the relation between the tree and the value denoted by the origi
nal sequence of characters requires refinement. The tree represents the abstract syntax of the 
HASL expression. A semantic relation holds between this tree and a sequence of combinators, glo
bal names, function application operators (->) and pair construction operators (: ). This relation 
the ref ore defines a translation from a syntactically sweet string or ·symbols (HASL) to a 
mathematically equivalent - but rather unreadable - sequence of symbols suitable for mechanical 
evaluation or reduction. The reduction relation ( = > >) specifies how such a sequence of symbols 
is related to another sequence of symbols which is the head normal form of the first. A final rela
tion (> > >) between head normal form and HASL values (normal form) completes the 
specification of the relation hasl: 

hasl(Expression, Value) :
lexical(Expression, Tokens), 
syntactic(Tokens, Tree), 
semantic(Tree,Combinators), 
Combinators=>> HeadNormal, 
HeadNormal > > > Value. 

The lexical relation· may be specified in. terms of a relation lezemes (see next section): 

lexical(Expression, Tokens) :- lexemes(Tokens,Expression,O). 

and the syntactic relation may be specified in terms of a relation ezpression (see Section 5): 

syntactic(Tokens, Tree) :- expression(Tree, Tokens,11). 

The two relations lezemea and expression are defined below by definite clause grammars. 

4. The Lexical Speclflcatlon of HASL. 
This relation requires little comment. A sequence of characters such as 

"def tac O = 1, fac x = x • rac(x-1);" 

is grouped into the following string of tokens: 

ldef,id( rac ),constant(n um(O) ),op(3,cEQ),constant(num(l )),comma,id(fac ),id(x ), . 
op(3,cEQ),id(x ),op( 5,cMUL T),id(fac ),lparen,id(x ),op( 4,cSUB ),constant(num( 1 )), 
rparen,semicolon} 

Identifiers such as fac are represented by id{fac), constants such as O are represented by 
constant(num(O)}. Some reserved words and punctuation are represented by atoms such as def 
and comma. 

A sequence of definite clause rules such as 

11 
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tIDENT(id(ld))-> [id(Id)l. 

defines the function symbols which are the terminals for syntactic analysis. 

The complete Prolog specification or HASL is at the end or this report following the Refer
ences. 

5. The Syntactic Specification of HASL. 

As mentioned above, the syntactic relation is between token strings and parse trees which 
represent the abstract syntax or HASL expressions. 

The leaves or a parse tree may he identifiers such as id(fac), constants such as logical(true), 
num(12S}, char(C), fail, or they may be the names or certain known HASL combinators such as 
c.4DD Cor addition, or cMATCH used in unification, etc. These names follow the convention or a 
lower case c followed by some other letters (usually upper case), digits or underline characters. 

There are several kinds or branch nodes. A branch may be labeled by the HASL function 
application arrow (->) or by the HASL pair construction colon (:). The arrow associates to the 
left, the colon to the right. Thus the linear parse tree representation or a+ 1 is: 

cADD -> id(a) -> num(l) 

and that for hd 'abc' is: 

clID-> %a: %b: %c: [} 

Another kind of branch node is labeled with the functor where and has one subtree which is 
an expression and another which is the subtree Cor a list of definitions qualifying the expression: 

where(Exp,Defs) 

Global definitions are subtrees of a tree where the root is labeled with the functor global 

global(DeCs) 

To each definition there is a branch node labeled with the functor def and with three sub
trees: the name or the identifier being defined; the arity associated with the name being defined; 
and, the expression or list or clauses to be associated with the name. For a name with arity 0 
such as in: 

def b =a+ l; 

the definition node looks like: 

deC(id(b),O,cADD-->id(a)->num(l)) 

When a function is being defined, the a.rity is at least one, and the third argument is a list of 
clauses, each or the Corm: -

runc(Fseq,Exp) 

where Fseq is a list or arguments of length arity for the function being defined, and Ezp is the 
expression associated with that clause. Thus, the definition of member in Section 2 is represented 
in a parse tree as: 

def(id(member),2, 
!Cunc(!id( a )jflist(id(b ):id(x ))l,id(member)-> id(a)-> id(x )), 
runc(lid( a)I flist(id(a):id(x ))J ,logical( true ))I 
rune(! id( a)! con st( nil )J,logical( false) )J )] ) 

The functor flist is used to label a branch or a tree in which a list structured argument to a func
tion is specified. The context sensitive restriction that each clause defining a function have the 
s::i.me arity is specified by the predic:1te rr.eruedef which merges separate clauses for a runction into 

12 
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one node of the above description. (See the next two sections for further discussion of this restric
tion.} 

One other point to note is that a list of definitions of arity Osuch as 

lx,y,z) = x 

is represented as a list of definition nodes: 

[def(id(x},0,cHD->id(x)), 
def(id(y),0,cHD->(cTL->id(x))I 
def(id(z},0,cTL->(cTL->id(x))J 

This is specified by the predicate ezpandef. 

The last remaining kind of branch node is that for a unification based conditional binding 
expression. 

(a:x){-y=>x;fail 
y-}(a:x}=>x;fail 

would both be represented as: 

unify(flist(id( a):id(x }),id(y ),id(x ),fail) 

The DCG specifying the syntax of HASL is fairly straightforward. There is some slight intri
cacy in the specification of the grammar rules for expressions involving the HASL operators: 
operator precedence techniques are used to build the appropriate subtrees. 

The function symbols beginning with a lower case t are the terminals for this grammar and 
specify HASL tokens as defined by the lexical DCG. 

e. The Semantic Speclflcatlon of BASL. 

The semantic relation is one which holds between parse trees as specified in the previous 
section, and certain strings of combinators, constants, global names, and the primitive HASL 
operations of function application (->) and pair construction (:). These strings may in fact be 
regarded as modified parse trees in which the global, where, def, June, fti,t and unify nodes have 
been eliminated and replaced by variable-free subtrees. The elimination of these nodes depends 
on a discovery of the logician Schoenfinkel: that variables, although convenient, are not necessary. 

Schoenfinkel's discovery that variables can be dispensed with relies on a sort of cancellation 
related to extensionality. If in HASL we defined 

successor x = plus 1 x 
plus ab= a+ b 

then we could say that 

successor = plus 1 

for both sides, when applied to the same argument, are always equal. 

Schoenfinkel related a variable, an expression which may contain that variable, and an 
expression from which that variable had been abstracted (removed) with the aid of the following 
combinators: 

cS x y z = x z (y z) 
cK x y = x 
clx=x 

The specification or the abstraction or removal of a variable is given by the predicate abstrO: 
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abstrO(V,X->Y,cS->AX->AY) :- ! , 
abstrO(V,X,AX), 
abstrO(V, Y,A Y). 

abstrO(V,V,cl) :- !. 
abstrO(V,X,cK->X). 

Vis a variable, Xis an expression, and the third argument of abstrO is the expression with vari
able removed. So in the following: 

abstrO(id(x ),plus-> num(l )-> id(x),X). 

we have 

X = cS->(cS->(cK->plus)->(cK->num(l)))->cl 

with no variables, and only the constants plus and num(l}, the combinators and->. 

When the resulting expression is applied to an actual argument, these combinators, speaking 
anthropomorphically, place the actual arguments in the right places so that the evaluated result is 
the same as would be given (by extensionality) by evaluating the original expression with vari
ables and by making the appropriate substitutions or actual arguments for variables. The advan
tage or not using variables, of course, is that an environment is not necessary and that no substi
tution algorithm is necessary. 

It is clear, however, that this abstraction specification albeit elegant, leads to expressions 
much longer than the original. It is possible, however, to control the size of the resulting expres
sion by introducing combinators which are "optimizing" in the sense that if a variable which is 
being abstracted is not used in the original expression, then the resulting expression will not have 
any redundancies. Some of these optimizing combinators are described in· !Burge,1975J; a more 
effective set was introduced by Turner who also extended the notion of abstraction of variables to 
a context in which there was a primitive operation of pair construction in addition to the primi
tive (?peration of function application. 

The predicate for abstraction in the specification or HASL 's semantics is based on Turner's 
technique: abstract specifies how a list or variables is to be removed; abstr specifies how a single 
variable is removed; and combine specifies the optimizations which control the size of the resulting 
expressions.The first argument to abstract is a list uncurrying combinator which splits a structure 
into its components, and is an aspect or HASL 's (restricted) unification. Ir a formal argument on 
the left hand side of a clausal definition is being "opened up", the combinator (cU_s) is strict: if 
the actual argument does not have the appropriate list structure then the value fail must result; 
in other cases, the list uncurrying combinator (cU) need not be strict. 

Since constants may be HASL arguments, the abstraction predicate must specify what the 
resulting expression ought to be: in a strict position, removing a constant Crom an expression E 
means that when the resulting expression is applied to an actual argument, that argument must 
match exactly the removed constant, and so the parse tree is modified Crom E to cMATCH ---> 
X ---> E where Xis the constant being abstracted; otherwise the resulting tree is cK---> E. 

We may now examine the ,emantic relation in detail. The semantic relation specifies a 
traversal of the parse tree which results in a new tree Crom which all identifiers except global 
identifiers have been removed. For a subtree or the form X : Y or X ---> Y, the resulting tree is 
specified by: 

semantic(X:Y,Sx:Sy) :- semantic(X,Sx), semantic(Y,Sy). 
semantic(X-> Y,Sx->Sy) :- semantic(X,Sx), semantic(Y,Sy). 

Related to a subtree or the Corm where{Ezp,Defe) is a subtree Combinators specified by 

sema.ntic(where(Exp,Defs),Combinators) :- abstract_locals{where(Exp ,Defs ), Combinators). 

The predca.te abstract_locals reforms the where node into a subtree of the form AbsE ---> (cY --
> AbsD}: 

: 
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abstractJocals(where(Exp,Defs),AbsE->(cY->AbsD)) :
comp_defs(Defs,lds,Abs ), 
abstract(cU,Ids,Exp,AbsE), 
abstract(cU,Ids,Abs,AbsD ). 

c Y is HASL 's fixed point combinator whose reduction is defined as 

cY->X =>> Res :-X-> (cY-> X) =>> Res. 

This is read as: cY--->X reduces to Res if X--->(cY--->X) reduces to Res. In the 
abstracUocals predicate, Defs are compiled by comp_defs to a list of identifiers defined {Ids) and a 
list of defined expressions from which all local variables have been removed {Abs). The list of 
variables is abstracted from Ezp and from Abs, specifying the subtrees AbsE and AbsD, respec
tively. The abstraction of Ida from Abs is the method of implementing mutually recursive 
definitions. 

The predicate comp_defa builds the list ot identifiers and abstractions by compiling each 
definition in Def using the predicate comp_def. A definition of arity 0 is left unchanged by the 
first clause of comp_def. As was mentioned in Section 2, the clauses defining a function are com
piled as it one large unification expression had been specified. This compilation is specified by the 
predicate compJunc. The variables which are introduced by compJunc are of the Corm 
id{l},id(f}, etc., (these are not HASL variables) and must later be abstracted from Code0 which is 
returned by comp June to yield the Code tree for a definition: 

comp_der(der(Name,0,Def),def(Name,0,Def)) :- !. 
comp_def(def(Name,Arity ,Funcs),def(Name,Arity ,Code)) :
Arity > 0, 
comp_func(Funcs,Arity, CodeO}, 
generate_seq(Arity ,Ids), 
abstract( cU _s,lds, CodeO, Code). 

The predicate generate_aeq specifies a relation between Arity and the list of introduced identifiers 
Ids which later gets removed! 

A function is compiled clause by clause in reverse order. The last clause of any function is 
compiled by compJunc to 

cCONDF -> Abs-> fail 

where Ab8 is variable-free. cCONDF is a combinator defined as follows: 

cCONDF-> X-> Y =>>Res:-
X =>>Rx,!, 
condJail(Rx,Y,Res). 

and is read: cCONDF--->X---> Y reduces to Rea if Xreduces to Rz and if Rz is not fail as deter
mined by condJail; otherwise, condJail specifies that the value of Res is the value of the reduc
tion of Y. 

Remaining clauses defining a function are compiled by comp1Junc to: 

cCONDF -> Abs-> Sofar 

where Ab8 is the compiled clause and Sofar is the code for the clauses already compiled. 

A clause is compiled by the predicate comp_clauae: 

comp_clause(func(Fseq,Exp),Arity ,Abs) :
note_repeats(Fseq,MarkedFseq), 
semantic(Exp,Sexp ), 
abstract( cU _s,Ma.rkedFseq,Sexp,Aps ), 
generate_applies(Aps,Arity ,Abs). 
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[lJ The predicate note_repeats relates a. list or formals, Fseq, to a marked list or formals Afark
edFseq, where the second, third, etc., occurrences of a formal identifier id(x) have been 
replaced by match(id(x)). When id(x) is eventually abstracted Crom the right-hand side of a 
clause, this insures - by unification - that ea.ch occurrence of id(x} is matched to the same 
value. In the definition of member for example, 

member a (a:x) = true 

both occurrences of a must be bound to the same value. The abstract predicate treats 
repeated occurrences of an identifier in the way it treats constants. 

[21 Exp is related by the semantic relation to Sexp. 

(3J The marked formal sequence is abstracted from Sexp to yield Aps. 

[4J The identifiers id(l}, id{2}, etc., are introduced. 

The interested reader may follow on his own the specification of the semantic relation for 
subtrees labeled by the functor unify and for trees rooted at the functor global. It only needs to 
be said that a global definition such as 

def sue x = 1 + x; 

results in the following clause being added to HASL 's database: 

global(suc,cCl->cCONDF->(cADD-> num(l ))->fail). 

Global names in any HASL expression are replaced at reduction time by their value as specified 
by the second component of global. 

Some comments are due about the way we have compiled clauses into a function. In SASL, 
Turner allowed different clauses defining a function to have different arities. For example: 

rob= c 

r I= d 
fxyz=e 

Thus, when an application of / is encountered in a SASL expression, it is impossible to know in 
advance, ie, at compile time, how much of the SASL expression to the right of f would actually 
be used by /. To cope with this, Turner introduced what he called a combinator "TRY, with 
rather peculiar reduction rules" [Turner,1981J. We had earlier implemented SASL in Prolog, and 
the specification of TRY in logic caused an enormous amount of trouble: it seemed to require at 
reduction time a stack to hold everything to the right of/ in a SASL expression (ie, either to the 
end of the SASL expression, or to the first right parenthesis). The TRY combinator itself seemed 
to come in two arities: one of arity 3 for stacking everything to the right to be passed to each 
clause to be tried; and one of arity 2 to attempt clauses in order to find the applicable one. No 
other combinator seemed to require this explicit stack, but at reduction time the stack had to be 
passed as part of the state of the reduction to each combinator rule in case some clausally defined 
function were invoked. The presence of the stack in the logical specification seemed too opera
tional and too distasteful, and there seemed no way to write the SASL reduction rules completely 
without it. This may have been simply a result of our confusion; or more profoundly a case where 
Wittgenstein's dictum held: Was sich ueberhaupt sagen laesst, laeset sich klar eagen; und wovon 
man nicht reden kann, darueber muss man schweigen. At any rate, HASL was born partly as a 
result of the hassle of trying to clean up the SASL reduction machine. 

The cCONDF combinator was introduced to deal with a kind of conditional expression 
which arises often in dealing with unification based conditional binding expressions and in apply
ing clausally defined functions: we could simply use the cCOND combinator, but the resulting 
code would be longer. Either way is simpler and clearer than using the TRY combinator! It 
should finally be noted that the restriction t.hat all clauses defining a function have the same :uity 
- which makes use of the cCO!'.'DF combinator feasible for compiling functions - imposes no loss 
of generality on what c;;.n be exp;:-es.5cd ill lL\SL: the so!c lntercstir.g exa:;:p!e in [Turner,1981j 
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which makes use of different arities can be expressed without utilizing clauses of different arities. 

7. The Specfflcatlon of HASL Reduction. 
The specification of the HASL reduction relation consists mainly of a set of rules as to how 

the HASL combinators a.re reduced. The combinator cS, for example, introduced in the previous 
section, is reduced as follows: 

cS -> Z -> Y -> X => > Res :
z -> X-> (Y-> X) =>> Res. 

Here,"=>>" is the infix reduction operator. The above specification is read: cS ---> Z ---> Y 
---> Xreduces to Rea if Z ---> X---> {Y---> X} reduces to Rea. 

Associated with each combinator is an arity, for example: 

arity(cS,3) 

which indicates the number of arguments necessary for the reduction to take place. An expression 
such as 

cS-> X-> Y 

cannot be further reduced as it is already in head normal form. The reduction rules are listed in 
order of increasing arity; at the end of each group of rules for a given arity, there is a rule such 
as: 

C->X->Y=>>C->X->Y~ 
arity(C,D) , D >= 3, !. 

which would specify that cS --->_X •··> Yis already in head normal form. 

The general reduction rule is to reduce the leftmost node of the combinator tree (the left
most redex); if that node has not been reached, none of the combinator reduction rules apply. To 
handle the case of moving to the leftmost redex, the following (last but one) reduction rule 
applies: 

X-> Y-> Z =>>Res:
X-> Y=>> Rxy, 
not same(X-> Y,Rxy), 
Rxy-> Z =>> Res. 

The reduction rules a.re recursively applied to try and reduce X •··> Y to head normal form; if X 
•··> Yis not in head normal form, then R::y is head normal form for X---> Yand R::y ---> Z 
is reduced to Rea. 

The last reduction rule X => > X specifies that Xis already in head normal form. 

Some combinators, such as the combinator cCONDF, defined in the last section, recursively 
call on the reduction machine. So does the combinator cMATCHwhich specifies unification: 

cMATCH-> X-> Y -> Z =>>Rees:-
X =>> Redx, !, 
Z =>> Redz, !, 
eqnormal(Redx,Redz,Y,fail,Req), 
Req =>> Res. 

X and Z are reduced to Redx and Redz, respectively, and if they have the same normal form, Y 
is unified with Req and is reduced to Rea; otherwise, fail is unified with Req and a trivial reduc
tion reduces the entire match to fail. The binding of arguments to HASL formal variables -
another part or HASL 's restricted unification - is accomplished at the reduction stage by the com
binators simply placing rhe actual arguments in their proper places for evaluation! 

11-



- 11 -

HASL numbers, truth values, and characters are tagged by the functors num, logical and 
char. (Lists are tagged by :.) Various parts of the reduction machine use these functors for type 
checking. For example, the addition component of the "arithmetic unit" specifies that addition is 
strict: 

add(num(X),num(Y),num(Z)) :- Z is X + Y, !. 
add{X,Y,fail). 

HASL type checking functions such as number are defined globally and apply type checking com
binators such as 

cNUMBER -> X =>>Res:- type_check(num(X),Res). 

The predicate type_check is specified by: 

type_check(Form,logical(true )) :- Form, !. 
type _check(F orm,logical( false). 

The reduction from head normal Corm to normal Corm is specified by the relation > > > 
whcih also has the side effect or printing the value of the original HA.SL expression in an 
appropriate format. 

8. Appllcatlona, Conclusions, Further Work. 

Ill One of our interests is in building a logical translator writing system based on Scott
Strachey denotational semantics. The general idea is to use DCGs for lexical and syntactic 
analysis and to produce an applicative expression which denotes the "value" of a program. 
The applicative expression must then be reduced to its value. It is our intent to construct 
the system so that HASL expressions are used as the applicative expressions which denote 
the values of programs. 

Peter Mosses jMosses,1979J Semantics Implementation System (SIS, implemented in BCPL) 
provides a "hard-wired" model for this project. It allows one to specify a grammar and the deno
tational semantics of a language, and produces Cor any program in that language an applicative 
expression in a language called DSL which is a slightly sugared version of a lambda calculus 
language LAMB. As a first step in our project we will probably compile DSL expressions to com
binators and use the HASL reduction machine to reduce DSL expressions to the values which 
they denote. 

(21 HASL may be thought of as a functional sublanguage of Prolog. More generally, we can 
think of a deduction machine (eg, Prolog) which has a reduction machine (eg, HASL) as a 
component. Another model here is LOGLISP 1Robinson&Siebert,1980J in which LOGIC is 
the deduction machine and LISP is the reduction machine. In the case of LOGLISP, how
ever, it took quite a lot of work to define a suitable reduction mechanism for LISP: the 
notion or reduction or LISP expressions is fairly complex and is not identical to evaluation 
or LISP expressions. We suggest that since HASL is defined in terms oi a notion or reduc
tion ah initio, it is simpler and perhaps cleaner mathematically to consider a deduction
reduction machine with HASL as the reduction component. LOGLISP, however, treats the 
LOGIC machine and the LISP machine as equal components able to call on each other for 
computations; it remains to be investigated how HASL might call on the deduction 
machine. 

[3J The HASL reduction machine bas some notion of partial evaluation. If one defines 

def f cond a b = cond -> a ; b: 

then / true is the function which when applied to two arguments selects the first one. In 
terms or combinators, the reduction or J true is: 
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cC->(cBl->(cBl->cCl)->cCONDF-> 
cCOND->logical(true))->fail 

Another observation is that the abstraction or variables from an expression is a relation 
between a variable, an expression, and another expre55ion without that variable. The abstraction 
may be run "backwards" and a variable may be put into a variable-free combinator expression to 
get something more readable. For example, in: 

abstrO(id(x),E,cS->(cS->(cK->plus)->(cK->num(l)))->cI). 

we have 

E = plus->num(l)->id(x). 

HASL abstraction is more complicated than this, but in principle one may think of decom
piling variable-free expressions. 

One might think or combining these two observations to get a notion for a debugging 
method for applicative languages: a partially evaluated expression may have some variables put 
back into it, and then one might try using the lexical and syntactic DCGs as generators rather 
than as recognizers to produce a readable HASL expression. 

It may not be entirely frivolous to think in fact of generating programs which compute a 
given value. The reduction relation may be run backward to derive combinator strings which 
could be translated into HASL expressions. Of course there are infinitely many such expressions 
and most of them are trivial and/or uninteresting. Could one place constraints on the searching of 
the space of HASL expressions which compute a given value to produce interesting expressions? 

14) Pragmatically, Prolog is ideal for designing and testing experimental languages. One tends 
not to carry out language experiments other than on paper• or in one's head• if implemen
tation requires extensive coding in a low level language. But • the HASL interpreter 
described here, implemented in CProlog to run on a VAX 780 under Berkeley UNIX, is slow. 
A Prolog compiler which optimizes tail recursion and runs under UNIX is an absolute neces
sity. 
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/ • lexical rules • / 

reserved( true,constan t(logical(true )) ). 
reserved( 'TRUE' ,constan t(logical( true))). 
reserved(Calse,constant(Iogical( false))). 
reserved('F ALSE',constant(logical(false))). 
reserved(fail,constant(fail)). 
reserved('F AIL' ,constant(fail)). 
reserved( def,def). 
reserved('DEF ',def). 
reserved(where,where). 
reserved('WHERE' ,where). 

lexemes(X) - > space , lexemes(X). 
lexemes([XIY]) - > lexeme(X) , lexemes(Y). 
lexemes(U) -> 0-

lexeme(Token) -> 
word(W) , ! , { name(X,W), ( reserved(X,Token); id(X) =Token)}. 

lexeme(constant(Con)) -> constant(Con) , !. 
lexeme(Punct) -> punctuation(Punct), !. 
lexeme(op(Pr,Comb)) -> op(Pr,Comb), !. 

space-> " " , !. 
space-> (IOJ, !. /• carriage return •/ 

num(num(N)) -> number(Number) , ! , { name(N,Number) }. 

number([DIDsl) -> digit(D) , digits(Ds). 

digit(D) -> (DI , { D>47, D<58 }. /• 0 ... 9 •/ 

digits((DjDsl) -> digit(D) , digits(Ds). 
digits(!!) -> IJ. 

word([L ILsl) - > letter(L) , lords(Ls ). 

letter(L) -> IL}, { (L>96,L<123; L>64,L<90) }. /• •z, A-Z •/ 

lords(ILILsl)-> ( letter(L); digit(L)), lords(Ls). 
lords(!]) -> IJ. 

/• in op(N,O) N designates the binding power of the operator 0. •/ 
op(0,cAPPEND)-> "+ +", !. 
op(0,cCONS) -> ":" , !. 
op(l,cOR) -> "I" , !. 
op(2,cAND) -> "&" , !. 
op(3,cLSE) -> "<=" , !. 
op(3,cGRE) -> ">=", !. 
op(3,cNEQ) -> "=" , !. 
op(3,cEQ) -> "=" , !. 
op(3,cGR) -> ">" , !. ,. 
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op(3,cLS) -> "<" , !. 
op(4,cADD) -> "+" , !. 
op(4,cSUB) -> "-" , !. 
op(5,dvfUL T) --> "*" , !. 
op(5,cDIV) -> "/" , !. 
op(6,cB) -> "." , !. 
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hasl.J,tring(C:Cs)-> stringchar(C), hasl_string(Cs). 
hasl.J,tring(ni!) -> [l. 

hasl_char(C)-> "%" , stringchar(C), !. 

stringchar(char(A)) -> [CJ , { C =\= 39, name(A,[Cl) } , !. 
stringchar(char(""))-> """ , !. 

string(S) -> '"" , hasl_string(S) , "'" ,!. 

constant(N) - > num(N) , ! . 
constant(C) -> hasl_char(C), !. 
constant(S) -> string(S) , !. 
constant(nil) - > "IJ" , !. 

punctuation(tilde) -> ,,-,, , !. 
punctuation(comma) -> "," , !. 
punctuation(lparen) - > "(" , ! . 
punctuation(rparen) -> ")" , !. 
punctuation(condarrow) -> "->" , !. 
punctuation(rightcrossbow) -> "-}", !. 
punctuation(leftcrossbow) -> "{-", !. 
punctuation(lbrack) - > "I", !. 
punctuation(rbrack) ->"I",!. 
punctuation(unifyarrow) -> "=>", !. 
punctuation(semicolon) -> ";" , !. 

/• The following predicates constitute the interface 
between lexical and syntactic analysis. Predicates 
with names starting with 't', eg, tCOLON, are the 
terminals in syntactic analysis. 

*/ 

tCOLON -> !op(0,cCONS)j. 
tPLUSPLUS -> !op(0,cAPPEND)J. 
tCOMMA -> [commaj. 
tLBRACK -> [IbrackJ. 
tRBRACK -> lrbrackj. 
tLPAREN -> llparen]. 
tRPAREN -> [rparenJ. 
tUNIFYARROW -> [unifyarrowj. 
tLEFTCROSSBOW -> [IeCtcrossbowJ. 
tRIGHTCROSSBOW -> lrightcrossbowj. 
tCONTIARROW -> lcondarrowJ. 
tEQUAL -> lop(3,cEQ)J. 
tSE~.1ICOLON •-> [semico!onJ. 



I I 

tWHERE -> !whereJ. 
tDEF -> Ide~. 
tNOT -> !tilde). 
tNEGATE --> (op(4,cSUB)). 
tPLUS -> [op(4,cADD)J. 
tlDENT(id(Id))-> lid(Id)J. 
tCONSTANT(C) -> lconstant(C)I. 
tOP(Pr,Comb) -> lop(Pr,Comb)J. 
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/* syntactic rules*/ 

deC(global(Ds)) - > 
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tDEF , dets(Ds) , tSEMICOLON. 

definition{def(Id,Arity ,runc(Fseq,Exp))) -> 
tIDENT(Id), fseq(Fseq), ! , tEQUAL , expression(Exp), 
{ seq,Jength(Fseq,Arity) }. 

definition(Def) - > 
Cormal(Formal) , ! , tEQUAL , expression(Exp) , 
{ expandeC(deC(Formal,0,Exp ),Def) }. 

defs(Ds) -> definition(D), ! , { append_def(D,!J,Deftist) } , 
defs l(Deftist,Ds ). 

defsl(D,Ds) -> tCOMMA, definition(DeC) , ! , 
{ mergedef(D,Def,Dm) } , defsl(Dm,Ds). 

defsl(D,D) -> !J. 

fseq(Fseq) -> formal(Formal) , ! , fseql(Formal,Fseq). 

fseql(Fl,[FllFI) -> formal(F2) , ! , fseql(F2,F). 
fseql(F,F) -> []. 

formal(Id) -> tIDENT(Id), !. 
formal(const(C))-> tCONSTANT(C), !. 
formal(ftist(Flist)) -> tLBRACK, ftist(Flist), ! , tRBRACK. 
formal(ftist(Flist))-> tLPAREN, fprimary(Flist), ! , tRPAREN. 

ftist(Fl:F2) -> fprimary(Fl), ! , ffistl(F2). 
ftist(const(nil)) -> !J. 

ftistl(F) -> tCOMMA, ftist(F). 
llistl(const(nil)) -> IJ. 

fprimary(F) -> formal(Fl), ! , fprimaryl(Fl,F). 

fprimaryl(Fl,Fl:F)-> tCOLON , formal(F2), ! , fprimaryl(F2,F). 
fprimaryl(F,F)-> I}. 

expression(E) -> def(E). 
expression(E) -> unification(El) , ! , expression(El,E). 

expression(El,where(El,Ds)) -> tWHERE, defs(Ds). 
expression(E,E) -> [I. 

unification(unify(Fseq,El,E2,E3)) -> 
fseq(Fseq), tLEFTCROSSBOW, expression(El), tUNIFYARROW, 

expression(E2) , tSEMICOLON , expression(E3). 

unification(U) -> condexp(U). 

Z4 
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condexp(E) -> expl(El,0) , ! , condexpl(El,E). 

condexpl(El,cCOND -> El-> E2 -> E3)-> 
tCONDARROW , expression(E2) , ! , tSEMICOLON , condexp(E3). 

condexpl(El,unify(Fseq,El,E2,E3)) -> 
tRIGHTCROSSBOW, fseq(Fseq), tUNIFYARROW, 

expression(E2), tSEMICOLON, expression(E3). 
condexpl(E,E) -> IJ. 

expl(E,P) -> tPLUS , expl(El,6) , ! , exp2(El,E,P). 
expl(E,P)-> tNEGATE, expl(El,6), ! , exp2(cNEGATE -> El,E,P). 
expl(E,P)-> tNOT, expl(El,3), ! , exp2(cNOT-> El,E,P). 
expl(E,P) -> comb(El) , ! , exp2(El,E,P). 

/ • since : or cons is a primitive in HASL: • / 
exp2(El,E,0) -> tCOLON , expl(E2,0) , ! , exp2(El : E2,E,1). 

/• since + + or append is the only other zero level operator: •/ 
exp2(El,E,0)-> tPLUSPLUS, expl(E2,0), ! , exp2(cAPPEND-> El-> E2,E,1). 

/• : and + + are right associative; all others are left associative: • / 
exp2(El,E,P) -> tOP(Q,Op) , { P < Q } , ! , expl(E2,Q) , 

exp2(Op -> El '""""> E2,E,P). 

exp2(E,E,P) -> [I. 

comb(C)-> primary(P), ! , combl(P,C). 

combl(Pl,C) -> primary(P) , ! , combl(Pl -> P,C). 
combl(C,C) -> 0-

primary(L) -> tLBRACK, explist(L), ! , tRBRACK. 
primary(!)-> tIDENT(I), !. 
primary(C) -> tCONSTANT(C) , !. 
primary(E)-> tLPAREN, expression(E), ! , tRPAREN. 

explist(El : E2) -> expl(El,0) , ! , explistl(E2). 
explist(nil) -> a. 
explistl(E) -> tCOMMA , explist(E). 
explistl(nil) -> [I. 

/ • The following predicates are used to check that each clause 
defining a function has the same arity, and to merge all 
definitions made at the same time into a single list of 
definitions. 

•/ 

mergedef(Deflist,Def,Defmerge) :
flat(Def,FlatDer) , 
merge(Deflist,FlatDef ,Defmerge ). 

merge(Deftist,!DeflDefsJ,Defmerge) :-
merge(Detfo;t,Def,Deflistl) , 
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merge(Deftistl ,Defs,Defmerge ). 

merge(ldef(id(X),O,D )IDeflistJ, 
def( id(X), O,D 1 ), 
ldef(id(X),O,D )IDeflistl) :
write(X), 

- 19 -

write(' is a constant already defined: ') , 
write(D) , nl , 
write('definition ignored: ') , 
write(D 1) , nl. 

merge(ldef(id(X),N ,D )IDetlistj, 
def(id(X),N,Dl), 
ldef(id(X),N,IDllDl)IDeftistl) :- !. 

merge(!def(id(X),N,D)IDeflistJ, 
def( id(X),M,D 1 ), 
ldef(id(X),N,D )!Dellistl) :-
write('wrong number of arguments in definition of:') , 
write(def(id(X),M,Dl)) , 
write('should be ') , write(N) , nl. 

merge(ldef(id(Y),M,Dy )IDetlistj, 
def(id(X),N,D), 
[def(id(Y),M,Dy )jDeftistl) :
defined(X,Deflist,Dx) , ! , 
write(X) , 
write(' already defined: ') , 
write(Dx) , nl , 
write(def(id(X),N,D)), 
write(' ignored.') , nl. 

merge(Deftist, 
Def, 
!DefjDeftistJ ). 

defined(Y,ldef(id(Y),_,Dy )I..J,Dy ). 
defined(Y ,[def(id(X),...,_)IDeftistJ,Dy) :

defined(Y ,Deflist,Dy ). 

seqJength([FIGJ ,N) :- ! , 
seqJength(G,M) , 
N is 1 + M. 

seqJength(F, 1 ). 

append_def(def(A,B,C),Z,ldef(A,B,C) IZI) :- !. 
append_def(IXIYJ,Z,IXIWJ) :

append_def(Y,Z, W). 

ftat(def(X,Y,Z),def(X,Y,Z)). 
llat(!def(X,Y,Z)!DefsJ,ldef(X,Y,Z)IFDefsj) :

llat(Defs,FDefs) , !. 
flat(IDefHdjDerI'll,Flat) :

flat(DefHd,FlatHd) , 
fl.at(DerI'l,FlatTl) , 
append_def(F latHd ,Flat Tl ,Flat). 
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expandef(Defs,Def) :
expand(Defs,Defl) , 
ftat(Defl ,Def). 
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expand( def( flist(X:const(nil}),0,Exp ),Derx) :
expand{ def(X,O,Exp ),Defx ). 

expand(deC(flist(X:Y),O,Exp),IDerxlDefyl) :
expand(def(X,O,cHD -> Exp),Defx), 
expand(def(ftist(Y),0,cTL -> Exp},Defy). 

expand( deC(flist(X),O,Exp ),def(X,O,Exp )). 
expand( def(F ,0,Exp ),def(F ,O,Exp) ). 



/* semantic rules*/ 

semantic(X:Y,Sx:Sy) :
semantic(X,Sx) , 
semantic(Y,Sy). 

semantic(X-> Y,Sx->Sy) :-
seman tic(X,Sx) , 
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semantic{Y,Sy). 
semantic(where(Exp,Defs),Combinators) :

abstractJocals(w here(Exp ,Defs ), Combinators). 
semantic{unify(Fseq,El,E2,E3),cCONDF->Exp->Se3) :

semantic(El,Sel) , 
semantic(E2,Se2) , 
semantic(E3,Se3) , 
translate_unification{Fseq,Se l ,Se2,Exp ). 

semantic(global(Defs),global) :-
installdefs(Defs ). 

semantic(X,X). 

abstract(U ,nil,Abs,Abs ). 
abstract(U ,ftist(Flist ),Exp,Abs) :-

abstract(U ,F list,Exp,Abs ). 
abstract(U,IXIYl,E,Abs) :

abstract(U,Y,E,Absl), 
abstract(U ,X,Absl,Abs ). 

abstract(U,id(X),E,Abs) :-
abstr( id{X),E,Abs ). 

abstract(cU,const(X),E,cK -> E). 
abstract(cU_s,const(X),E,cMATCH -> X -> E). 
abstract(cU,~,match(X),E,cMATCH-> X-> E). 
abstract(U,(X : Y),E,U -> Abs) :-

abstract(U,Y,E,Absl), 
abstract(U ,X,Absl,Abs ). 

abstr(V,X -> Y,Abs) :
abstr(V,X,AX) , 
abstr(V, Y ,A Y) , 
combine{->,AX,AY,Abs), !. 

abstr(V,(X : Y),Abs) :
abstr(V,X,AX) , 
a~str(V,Y,AY) , 
combine(:,AX,AY,Abs), !. 

abstr(id(X),id(X),cl) :- !. 
abstr(V ,X,cK -> X). 

combine(->,cK-> X,cK-> Y,cK-> (X-> Y)). 
combine(->,cK -> X,cl,X). 
combine(->,cK--> (Xl -> X2),Y,cBl -> Xl -> X2 -> Y). 
combine(->,cK-> X,Y,cB-> X-> Y). 
combine(->,cB--> Xl -> X2,cK-> Y,cCl -> Xl -> X2-> Y). 
combine(->,X,cK-> Y,cC -> X-> Y). 
combine(->,cB--> Xl -> X2,Y,cSl -> Xl -> X2 -> Y). 
combine(->.X.Y,cS -> X-> Y). 
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combine(:,cK-> X,cK-> Y,cK-> (X: Y)). 
combine(:,cK -> X,Y,cB_p -> X -> Y). 
combine(:,X,cK -> Y,cC_p -> X -> Y). 
combine(:,X,Y,cS_p -> X -> Y). 

generateJeq(l,id(l)) :- !. 
generateJeq(N,Y) :-

NI is N - 1, 
genJeq(Nl ,id(N), Y). 

gen_seq(l,X,[id(l)IX)) :- I. 
genJeq(N,X,Y) :-

Nl is N - 1, 
genJeq(Nl, lid(N)IX), Y). 

generateJpplies(X,N,Y) :
generateJeq(N,Seq), 
genJpplies(X,Seq, Y). 

genJpplies(X,IHdlTIJ,Y) :-1, 
genJpplies(X-> Hd,Tl,Y). 

gen_applies(X,S,X -> S). 

restructure(X-> (Y -> Z),W) :- restruct(X,Y -> Z,W). 
restructure(X-> Y,X-> Y). 

restruct(X,Y -> Z,A -> Z ) :- restruct(X,Y,A). 
restruct(X,Y,X -> Y). 

comp_clause(func(Fseq,Exp ),Arity ,Abs) :-
noteJepeats(Fseq,MarkedFseq) , 
semantic(Exp,Sexp) , 
abstract(cUJ,MarkedFseq,Sexp,Aps) , 
generateJpplies(Aps,Arity ,Abs). 

compJunc([func(Fseq,Exp )jFuncsJ,Arity ,Code) :
comp_clause(func(Fseq,Exp ),Arity ,Abs) , 
complJunc(Funcs,Arity,cCONDF ->Abs-> fail,Code). 

compJunc(func(Fseq,Exp),Arity,cCONDF -> Abs-> fail) :
comp_clause(func(Fseq,Exp ),Arity ,Abs). 

comp lJunc(lfunc(Fseq,Exp )IFuncsJ,Arity ,So(ar, Code) :
comp_clause(Cunc(Fseq,Exp ),Arity ,Abs) , 
complJunc(Funcs,Arity,cCONDF ->Abs-> Sofar,Code). 

complJunc(runc(Fseq,Exp),Arity,Sofar,cCONDF ->Abs-> SoCar) :
comp_clause(runc(Fseq,Exp ),Arity ,Abs). 

comp_def(def(Name,0,Def),der(Name,0,Der)) :- !. 
comp_deC(deC(Name,Arity ,Funes ),deC(Name,Arity,Code )) :-

Arity > 0, I, 
compJunc(Funcs,Arity ,Code0) , 
generate_seq(Arity,Ids), 
abstract(cU_s,lds,Code0,Code). 
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comp_defs(!DefjDefsJ,Ids,Abs) :
comp_def(Def,def(id(Id),Arity ,Absl)) , 
comp_defsl(Defs,id(Id),Absl,lds,Abs). 

comp_defs 1 ([l ,Ids,Abs,lds,Abs }. 
comp_defs l(!Def!Defsj ,Idsln,Absln,Ids,Abs) :

comp_def(Def ,def(id(Id ),Arity ,Absl)) , 
comp_defsl(Defs,id(Id):Idsln,Absl:Absln,Ids,Abs). 

abstractJocals(where(Exp,Defs),AbsE-> (cY -> AbsD)) :
comp_defs(Defs,Ids,Abs) , 
abstract(cU,Ids,Exp,AbsE) , 
abstract(cU,Ids,Abs,AbsD ). 

translate_unification(Fseq,El,E2,Exp) :
noteJepeats(Fseq,MarkedFseq) , 
abstract(cU _s,MarkedFseq,E2,Abs) , 
restructure(Abs -> El,Exp). 

installdefs(Defs) :
comp_defs(Defs,Ids,Abs), 
install(Ids,Abs ). 

install(id(Id ):Ids,Def:Defs) :
global(Id,Defld) , ! , 
write(Id) , write(' already globally defined.') , 
write(' New definition ignored.') , nl , 
install(Ids,Defs ). 

install(id(Id ):Ids,Def:Defs) :
assertz(global(Id,Def)) , 
install(Ids,Defs ). 

install(id(Id ),Abs) :
global(Id,Defld) , ! , 
write(Id) , write(' already globally defined.'} , 
write(' New definition ignored.') , nl. 

install(id(Id ),Def) :-
assertz(global(Id ,Def)). 

member(Id,!Idj__J). 
member(Id,l__)Idsl) :- member(Id,Ids). 

noteJepeats(Fseq,Marked) :-
markJepeats(Fseq,IJ,~Marked). 

markJepeats(id(Id),In,In,match(id(Id))) :
member(Id,In), !. 

markJepeats(id(Id),In,!IdlinJ,id(Id)). 
markJepeats(flist(Flist),In,Out,ftistfMarked)) :

mark_repeats(F list,ln,Ou t,Marked ). 
markJepeats(Hd:Tl, In, Ou t,MarkedHd :Marked Tl) :

mar kJepeats(Hd ,In ,In 1,MarkedHd) , 
mark_repeats(Tl,Inl,Out,MarkedTl). 

markJepeats([HdlTlj,In,Out,[MarkedHdjMarkedTlj) :-
mark_rep~ats(Hd,!n,Inl,Marke<lHd) , 
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markJepeats(Tl,In 1, Out,MarkedTI). 
markJepeats(U ,In,In,[I). 
markJepeats( const( C),In,In,const( C) ). 

3J 



/ • reduction rules • / 

id(X) -> id(Y) =>>Res:
global(X,DeCX) , 
global(Y,DefY) , 
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DefX-> DefY =>> Res. 

id(X) = > > Def :-
glohal(X,Def) , ! . 

id(X) =>> _:
nl, 
write('not defined: ') , 
write(X) , nl , abort. 

cl-> X =>>Res:
X =>> Res. 

cY-> X =>>Res:-
X -> (cY -> X) => > Res. 

cHD-> (X: Y) =>>Res:- ! , 
X =>> Res. 

cHD-> X =>>Res:-
X = > > (Hd : Tl) , ! , 
Hd =>> Res. 

cTL -> (X : Y) = > > Res :- ! , 
Y =>> Res. 

cTL -> X =>>Res:-
X =>> (Hd: Tl),!, 
Tl=>> Res. 

cCHAR -> X =>>Res:
type_check(char(X),Res). 

cFAILUR~-> X =>>Res:
type_check(failure(X),Res). 

cLOGICAL -> X =>>Res:
type_check(logical(X),Res ). 

cFUNCTION -> X =>>Res:
type_check(function(X),Res ). 

cNUMBER-> X =>>Res:
type_check(num(X),Res). 

cNOT-> X =>>Res:
X =>>Rx,!, 
~1.oosc'R·· log1·c,,Hf-..Jc~) •~r:rnl(t··•"' R·e"' ~.&.i \ A. 1 -.....-.\ ..,_ o\.. ,1\,,,, 0 .1."'Ml,il, l "-\,, JI \. ..; J~ 
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cNEGATE-> X =>>Res:-
arith(sub,num(0),X,Res). 

num(X) -> Y => > num(X). 

logical(X) - > Y = > > logical(X). 

char(X) -> Y => > char(X). 

nil-> X =>> nil. 

C -> X => > C -> X :
arity(C,D) , 
0>=2,!. 

id(X) -> Y => > Res :
global(X,Def) , ! , 
Def-> Y =>> Res. 

id(X) -> Y => > Res :
nl, 
write('not defined: ') , 
write(X) , nl , abort. 

Y -> id(X) => > Res :
global(X,Der) , ! , 
Y-> Def=>> Res. 

Y -> id(X) => > Res :
nl, 
write('not defined: ') , 
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write(X), nl, Y -> fail=>> Res. 

(X: Y)-> num{l) =>>Res:-! , 
X =>> Res. 

(X: Y)-> num(Z) =>>Res:-!, 
Z > 1, 
Zl is Z - 1 , 
Y -> num(Zl) => > Res. 

(X: Y)-> Z =>>Res:-
z =>> num(Num), ! , 
X: Y-> num(Num) =>> Res. 

cK-> X-> Y =>>Res:-
X =>> Res. 

cU-> X-> Y =>>Res:-
X -> (cIID -> Y) -> (cTL -> Y) => > Res. 

cUJ-> X-> (Y: Z) =>>Res:-!, 
X-> Y-> Z =>> Res. 



cU_i:; -> X-> Y =>>Res:
y = > > (Hd : Tl) , ! , 
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X-> Hd-> Tl=>> Res. 
cU_i:; -> X-> Y =>> fail. 

cAND--> X-> Y =>>Res:-
X =>>Rx,!, 
choose(Rx,Y,logical(false),Res). 

cOR -> X-> Y =>>Res:-
X =>>Rx,!, 
choose(Rx,logical(true ), Y,Res). 

cEQ-> X -> Y =>> logical(Res) :
X =>>Rx,!, 
y =>>Ry'!' 
eqnormal(Rx,Ry,true,Calse,Res). 

cNEQ -> X -> Y = > > logical(Res) :
X =>>Rx,!, 
Y=>> Ry,!, 
eqnormal(Rx,Ry ,Calse,true,Res ). 

cAPPEND -> nil-> Z => > Z :- !. 
cAPPEND -> (X : Y) -> Z => > (X : Res) :- ! , 

cAPPEND-> Y-> Z=>> Res. 
cAPPEND -> X -> Y => > Res :

X =>> Resx, ! , 
not same(X,Resx) , 
cAPPEND-> Resx-> Y =>> Res. 

cLSE-> X-> Y =>>Res:-
cNOT -> (cGR -> X-> Y) =>>Res,!. 

cGRE-> X-> Y =>>Res:-
cNOT-> (cLS -> X-> Y) =>>Res,!. 

cLS -> X -> Y =>>Res:-
arith(Is,X,Y,Res) , !. 

cGR -> X-> Y =>>Res:-
arith(gr,X,Y,Res) , !. 

cADD -> X-> Y =>>Res:-
arith(a.dd,X,Y,Res) , !. 

cSUB-> X-> Y =>>Res:-
a.rith(sub,X,Y,Res) , !. 

cl\ruL T -> X -> Y => > Res :-
arith(mult,X,Y,Res) , !. 

cDIV -> X-> Y =>>Res:-
arith(div,X,Y,Rc.,), L 
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cCONDF -> X -> Y => > Res :
X =>>Rx,!, 
condJail(Rx,Y,Res). 

C->X->Y=>>C->X->Y~ 
arity(C,D) , 
0>=3,!. 

cCOND -> X-> Y -> Z =>>Res:
X =>> Resx, ! , 
choose(Resx,Y,Z,Res). 

cMATCH -> nil-> Y -> Z => > Res :
match(nil,Z,Y,Res). 

cMATCH -> num(X) -> Y -> Z => > Res :
match( num(X),Z, Y,Res ). 

cMATCH-> char(X)-> Y -> Z =>>Res:
match(char(X),Z,Y,Res). 

cMATCH-> logical(X)-> Y-> Z =>>Res:
match(logical(X),Z,Y,Res ). 

cMATCH-> X-> Y-> Z =>>Res:
X =>> Redx, ! , 
Z => > Redz , ! , 
eqnormal(Redx,Redz,Y,fail,Req) , ! , 
Req =>> Res. 

cS_p -> X -> Y -> Z =>> Res :-
(X -> Z): (Y -> Z) =>> Res. 

cB_p -> X-> Y -> Z =>>Res:-
X: (Y -> Z} =>> Res. 

cC_p -> X-> Y -> Z =>>Res:
X-> Z: Y =>> Res. 

cS -> Z -> Y -> X => > Res :-
Z -> X-> (Y-> X) =>> Res. 

cB -> X -> Y -> Z => > Res :-
X -> (Y -> Z) =>> Res. 

cC-> X-> Y-> Z =>>Res:-
X-> Z-> Y=>> Res. 

C->X->Y->Z=>>C->X->Y->Z~ 
arity(C,D) , 
D >= 4, !. 

cSl -> W -> X -> Y -> Z => > Res :-
W -> (X-> Z)-> (Y -> Z} =>> Res. 

cBl -> W -> X --> Y -> Z => > Res :-
W -> X-> (Y-> Z) =>> Res. 
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cCl -> W-> X-> Y-> Z =>>Res:
W -> (X -> Z)-> Y =>> Res. 

X-> Y-> Z =>>Res:
X-> Y =>> Rxy, 
not same(X-> Y,Rxy), ! , 
Rxy-> Z =>> Res. 

X=>> X. 

same(X,X). 

choose(logical(true),Y,Z,Res) :-
Y =>>Res,!. 

choose(logical{Calse),Y,Z,Res) :
z =>>Res, I. 

choose(X,Y,Z,fail). 

match(X,Y,Z,Res) :-
Y =>>Ry,!, 
eqnormal(X,Ry,Z,fail,R), ! , 
R =>>Res,!. 

eqnormal(X,Y,T,F,T) :-
equals(X,Y) , !. 

eqnormal(X, Y, T ,F ,F ). 

equals( num(X),n um(X) ). 
equals(char(X),char(X)). 
equals(logical(X),logical(X) ). 
equals(nil,nil). 
equals((A : B),(X : Y)) :

A=>> Reda, 
X =>> Redx, 
equals(Reda,Redx) , ! , 
equals(B,Y). 

isJailure((X -> Y)) :-
isJailure(X). 

isJailure(Cail). 

isJunction((X --> Y)) :- isJunction(X). 
isJunction(X} :- arity(X,_). 

arity(cl,l). 
arity(cY,l). 
arity(c V,l ). 
arity(cHD,l). 
arity(cTL,1). 
arity(cNOT,l). 
arity ( cFUN CTIO N, 1 ). 
arity(cCHAR,l). 
arity(cLOGICAL,l). 
arity( c J\iTnvIBER, 1 ). 
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arity(cF Ail..URE,l). 
arity(cK,2). 
arity(cU,2). 
arity(c U J, 2). 
arity(cEQ,2). 
arity(cNEQ,2). 
arity(cAND,2). 
arity(cOR,2). 
arity(cAPPEND,2). 
arity(cCONDF ,2). 
arity(cSUB,2). 
arity(cADD,2). 
arity(cMUL T,2). 
arity(cDIV,2). 
arity(cGRE,2). 
arity(cLSE,2). 
arity(cLS,2). 
arity(cGR,2). 
arity(cS,3). 
arity(cC,3). 
arity(cB,3). 
arity(cS_p,3). 
arity(cCOND,3). 
arity(cMA TCH,3 ). 
arity(cB_p,3). 
arity(cC_p,3). 
arity(cS,3). 
arity(cSl,4). 
arity(cBl,4). 
arity(cCl,4). 

type_check(Form,logical(true)) :- Form , I. 
type_check(Form,logical(false)). 

char(X) :- X => > char(_). 

logical(X) :- X = > > logical(_). 

num(X) :- X =>> num(_). 

f ailure(X) :- X = > > Rx , ! , isJailure(Rx ). 

list(X) :- id(list) -> X =-> > logical(true). 

function(X) :- X => > Rx , I , isJunction(Rx). 

add(num(X),num(Y),num(Z)) :- Z is X + Y , !. 
add(X,Y,fail). 

sub(num(X),num(Y),num(Z)) :- Z is X - Y , !. 
sub(X, Y ,fail). 

mult(num(X),num(Y),num(Z)) :- Z is X • Y, !. 
mult(X,Y,faH). 
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div(num(X),num(Y),num(Z)) :- Z is X / Y , !. 
div(X,Y,Cail). 

eq(X,Y) :- X =:= Y. 

gr(num(X),num(Y),logical(true)) :- X > Y , !. 
gr(num(X),num(Y),logic~l(false)) :- !. 
gr(X,Y,fcil). 

ls(num(X),num(Y),logical(true)) :- X < Y , !. 
ls(num(X),num(Y),logical{false)) :- !. 
ls(X,Y,fail). 

condJail(X,Y,X) :- not isJailure(X), !. 
condJail(_,Y,Ry) :- Y =>> Ry. 

arith( Operation ,X, Y ,Res) :-
X =>>Rx, 
y =>>Ry, 
a.rithop( Operation,Rx,Ry ,Res). 

arithop(add,X,Y,Z) :-
add(X,Y,Z). 

arithop(sub,X,Y,Z) :-
sub(X,Y,Z). 

arithop(mult,X,Y,Z) :-
mult(X,Y,Z). 

a.rithop(div ,X,Y,Z) :-
div(X,Y,Z). 

a.rithop(ls,X,Y,Z) :-
ls(X,Y,Z). 

arithop(gr,X,Y,Z) :-
gr(X,Y,Z). 

/• reduce to normal Corm */ 

red u celist( nil ,nil). 
reducelist(Hd : Tl,Nbd : Ntl) :- write(','), 

Hd =>> Redhd, ! , 
Redhd >>> Nhd, 
Tl=>> Redtl, ! , 
red ucelist(R edtl, N ti). 

reducestring(nil,nil). 
reducestring(char(C),cha.r(C)) :- write(C). 
reducestring(Hd : Tl,Nbd : Ntl) :-

Hd =>> Redhd, ! , 
reducestring(Redhd,Nbd) , 
Tl=>> Redtl, ! , 
reducestring(Redtl,Ntl). 

num(X) > > > num(X) :- write{X). 

ch3.:-{X) > > > ch:lr{X} :- write('%') , writ('(X) .. 

38 
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logical(X) > > > logical(X) :- write(X). 

X > > > fail :- isJailure(X) , write(fail). 

nil > > > nil :- write('!)'). 

Hd:Tl > > > Nstr :-
id(string) -> (Hd:Tl) =>> logical(true), ! , 
write("") , 
reducestring(Hd:Tl,Nstr) , 
write(' 111). 

Hd: Tl>>> Nhd: Ntl :-
id(list) -> (Hd:TI) ==> > logical(true) , ! , 
write('(') , 
Hd ==>> Redhd, f, 
Redhd >>> Nhd, 
Tl==>> Redtl, 
reducelist(Redtl,Ntl) , 
write(')'). 

Hd: Tl>>> Nhd: Ntl :-
Hd =>> Redhd, ! , 
Redhd >>> Nhd, 
write(':') , 
Tl=>> Redtl, 
Redtl > > > Ntl. 

X > > > X :• write(X). 
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We describe the design and the definition of a vitual Prolog 
machine. Like other computers, this virtual machine has an 
instruction set and a working storage (sstatements and data). 

The design of the instruction set is mainly based on the implemen
tation by D. Warren on the DEC10 where he used an abtract machine 
to explain the principles involved in his compiler. The organiza
tion of the working storage corresponds to the "non-structure 
sharing" technique of c.s. Mellish or the "copying" approach of M. 
Bruynooghe. 

One of our main purposes is of course to realise the idea of the 
virtual machine. The execution of a Prolog program on the vitual 
machine consists of two steps: 

Compilation of Prolog programs to virtual machine instructions. 
The compiler is written in Prolog and the compilation process 
should be completely reversible. 

Interpretation of the virtual machine instructions. An inter
preter is being developed in a high level language (Pascal and 
C) and it should be mainly portable. 

It is our goal to combine the advantages of both compiled Prolog 
(efficiency) and interpreted Prolog (adaptibility). We argue that 
this implemsntation is easily portable to different computer sys
tems be rewriting only that part of the interpreter which imple
ments the built-in procedures. 
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Prolog is a simple but powerful programming language based on 
symbolic logic. A lot of specific features such as declarative 
reading, incomplete data structures, unification and non determin
ism make Prolog programs very attractive and well suited for solv
ing a great variety of problems. There is a growing interest to 
use Prolog as a software tool to design and develop new projects. 
In order to support Prolog as a real programming language, we 
design a Prolog system having the following charateristics: 

the Prolog system has to be efficient: compared with other 
languages the execution time must be reasonable (maximum 3 or 4 
times slower) and the storage use may not overload the computer 
system. 

the Prolog system should be portable to a variety of machines 
and it should be easily adaptable to the specific capabilities 
of a particular computer. 

- Prolog programs have to be compiled to virtual machine instruc
tions which are completely machine independant. 

the data representation in the Prolog system should cover both 
Prolog implementations on conventional machines and on dedi
cated hardware. 

In the next section we describe the main features (storage areas 
and instructions) of the virtual machine. Some design decisions 
are discussed and compared.with the Prolog implementation of D. 
Warren [5]. Finally we discuss the current implementation and 
give some future developments. 

2. Description of the virtual Prolog machine. 

2.1. General processes. 

We design a virtual machine with an architecture which should 
support the efficient execution of Prolog programs. The execution 
mechanism of logic programs consists in constructing a sequence of 
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proof-trees according to the depth-first left-to-right search 
strategy [1] and to store in each node the appropriate variables 
and data. The fundamental questions we have to answer are of the 
form: "what does the machine do?" and "where and how does it 
represent its data?". 

A Prolog machine has to perform two kind of processes: a control 
process and a unification process. On a sequential machine archi
tecture these processes are alternated. The control process 
selects the next goal and the procedure definition, adjusts the 
proof-tree or restores the proof-tree to a previous state. The 
unification process is in fact a computation process which tests 
and assigns data or creates complex data structures. 

To represent the control information and the data structures 
involved in the execution of a Prolog program, the virtual machine 
will provide a complex run-time structure consisting of an 
environmentstack, a copystack and a resetstack (or trail). For 
complex terms we use the "structure copying" approach. 

The design of our virtual machine has strongly been influenced by 
the work of D. Warren [5] where he used an abstract machine to 
explain the Prolog compilation process. We also compile each Pro
log clause into a sequence of virtual machine instructions accord
ing to the following scheme: 

unification { 

control 
and 

data 

unification 

instructions 

'neck'instr 

'call'instr 
followed by 
its arguments 

' foot' instr 

2.2. The main working storage. 

head of the clause 

unification completed 

body of the clause 

completes execution of 
this clause 

The major data area of the virtual machine is the environ
mentstack. Like in block structured languages this stack is used 
to build a run-time environment for each goal (procedure call). 
When a new goal or subgoal is takled, a new stackframe is created 
and sp&~o is rese:::-7ed for tha variables and for li~ing (manage
ment) information. 
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The stack frames are linked in two kinds of lists: a father-list 
and an alternative list. Each stackframe belongs at least to one 
of the lists. The father-list corresponds to a path in the 
proof-tree from the root to the current node. The alternative 
list is a list of backtrackpoints or nodes with alternative 
choices. to solve the goal corresponding to the node. In figure 1 
we show for a given proof tree the corresponding environmentstack: 
P is the initial goal or problem, Di is a deterministic node and 
Bi is a backtrackpoint. 

B1 

father-list alternative list 

D3 B3 

D6 
proof tree (current goal D6) 

figure 1 

ENV 

environments tack 

The top element of the father-list and the alternative list is 
pointed by ENV respectively ALT. When a goal is successfully com
pleted and no alternative choices remain (no backtrackpoint), the 
top frame of the stack (father-list) is removed. When a goal 
fails, the last backtrackpoint becomes the current frame and an 
alternative clause is chosen to solve the current goal. 

Each stack frame also has space for the variables in the 
corresponding clause. Due to the general tree structures and the 
incomplete data structures in Prolog (dynamic data structures) it 
is not always possible to put the variable binding in the reserved 
space. When a variable's value is a constant (atom or integer) 
the value is put in the stack frame. When a variable is bound to a 
compound term ( functor and arguments) a ~ of this term is made 
and put on a second stack, the conystack, and a reference to this 
copy is put in the stack frame. Another reason for having two 
stacks is that on successful completion of a deterministic goal we 
will deallocate a stack frame and that for further computation we 
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still need the variable bindings. The value of a variable in the 
environmentstack can either be a constant, undefined (free vari
ables), a reference to a compound term on the copystack or a 
reference to another variable earlier in the environmentstack. 

The third working area of the virtual machine 
which is a trail or a push-down list. This 
the addresses of variables which need to be 
(free) on backtracking. 

is the resetstack 
area is used to store 
reset to undefined 

The copystack and the resetstack generally increase in size with 
each new goal and are reduced by backtracking. The top elements 
are pointed by COPY respectively RESET and the old values of these 
pointers are kept in the mangement information part of the last 
backtrack frame. The management info contains also the links of 
the father-list and the alternative list, and pointers to the 
current goal and the alternative clauses if any. 

Next to the working storage areas which are writable, we have the 
~ ~ for storing the code of the compiled program. Informa
tion in the code area is generally accessed in a "read-only" 
manner. 

2.3. The instruction set. 

According to the control process and the unification process we 
can classify the virtual machine instructions in two classes: the 
unification instructions and the control instructions. 

2.3.1. The unification instructions. 

The main computation in Prolog consists of a sequence of unifi
cations or pattern matching operations. Each unification involves 
matching two terms. One term is a "goal" ( or procedure call) 
followed by its parameters and is instantiated. The other is the 
uninstantiated "head" of a clause. The control instructions ver
ify that unification only takes place between a goal and a clause 
with the same name and arity. The unification process tries to 
match each of the arguments of the head of the clause against the 
corresponding arguments of the goal. 

Instead of using a general matching procedure, the head of a 
clause is translated into unification instructions, most of which 
are simple tests and assignments. The arguments of the goal are 
translated into a sequence of literals ( or "argument instruc
tions"). 

The variable$of a clause are categorised in three classes as fol
lows: 
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local variables: multiple occurences, with at least one in the 
body, numbered from 1 ton 

temporary variables: multiple occurences, all in the head of 
the clause, numbered from n+1 onwards 

void variables: single occurences. 

The unification instructions are: 

uvar(i) 
uref'(i) 
uint(j) 
uatom(a) 
uvoid : 
uterm(f'n,n): 

matching of' the free variable~ against ••• 
matching of the bound va,tiable i against .••• 
matching of' the integer value j against ••• 
matching of the atom a against ••• 
matching always succeeds 
matching of' the functor fn with arity n against ••• 

(the number of a variable refers to a variable in the current 
frame.) 

The literals (argument instructions) are: 

var(i) the free variable i 
ref(i) the bound variable i 
atom(a) . the atom a . 
void a void variable 
funct(fn,n) : the functor fn with arity n 

(the number of' a variable refers to a variable in the goal frame.) 

The next table gives an overview of the unification process: 

~ var ref atom int void funct 
d 

uvar assign assign assign assign assign copy 
assign 

uref' assign general case of case of success case of 
general 

uint assign case of fail test success fail . 
uatom assign case of test fail success fail 

uvoid assign success success success success skip 

·uterm copy case of fail fail skip test 
assign general assign 
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assign 
copy 
test 
case of: 
general: 

si~ple assigrenent 
copy a compound term 
simple test (and assignment) 
multiple test 
general unification algorithm 

Most of the unification instructions are simple test and assign
ment instructions. If one of the terms is a reference we have to 
dereference that term until we get its value (undef, atom, int or 
funct). We can avoid long reference chains if we use only refer
ences to compound terms or to free variables. (Otherwise the value 
is copied.) The length of the reference chain would be mostly one. 

There are two cases where we have to copy a compound term, depend
ing on its source: 

the compound term appears in the haed of the clause 

the compound term appears in the argument list of the goal. 
Since the argument list is accessed in a read-only manner, only 
the parts containing variables must be copied. Therefore the 
compound terms are marked with "labelvar" or "labelcons". 

There are three cases where the general unification algorithm can 
be invocated. This happens when two compound terms are to be uni
fied and neither of them is known at compile time. 

Remark that the virtual machine has no special instructions for 
initialising variables since the types "ref" and "var" indicate if 
a variable is free or bound. 

2.3.2. Control instructions. 

Each clause of a Prolog program is translated into a sequence 
of virtual machine instructions consisting of unification instruc
tions for the haed of the clause, literals for the argument lists 
and control instructions (neck, call and foot). 

neck(n) : unification is completed; n is the number of local 
variables to be kept on the current environment. 

call(p) this is a procedure call; a new frame is created, the 
call or return address is saved and a jump to address pis per
formed. 

foot: completes the execution of a goal, possibly removes the 
current frame and transfers control to the next instruction of 
the parent goal. 

A Prolog procedure is composed of one or more clauses and is 
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translated into a list of control instructions of the form: 

p: enter 
try(C1) 
try(C2) 

. 
trylast(Cn) 

enter: new procedure starts 
try(Ci) : execute the instructions of clause Ci and note that 

there are alternative choices (backtrackpoint). 
trylast(Cn) : execute the instructions of the clause Cn. 

Note that these instructions manage the different clauses of a 
procedure and that they are generated at the end of the compila
tion process. If we extend our Prolog system with built-in predi
cates for adding or deleting clauses, this part of the code must 
be changeable. 

Finally we have two control instructions which are strongly 
related to the Prolog source program: "cut" and "fail". 

cut(i) : i is the number of local variables; the alternative 
list must be adjusted and space can be recovered from the 
environments tack. 

- fail: forces backtracking. 

2.4. Example. 

As an example we show the quicksort program: source and virtual 
machine instructions. 

qsort(.(X,L),R,RO):-partition(L,X,L1 ,L2), 
qsort(L2 ,R1 ,RO), 
qsort(L1 ,R,.(X,R1)). 

qsort(nil,R,R). partition(.(X,L),Y,.(X,L1),L2):
lt(X,Y),!,partition(L,Y,L1,L2). partition(.(X,L),Y,11 ,.(X,L2)):
partition(L,Y,L1 ,12). partition(nil,_,nil,nil). 

3qsort1 uterm(. ,2) 
uvar(O) 
uvar(1) 
uvar(2) 
uvar(3) 
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3qsort2 uatom(nil) 
uvar(O) 
uref(O) 
neck(O) 
foot 

4r 



neck(?) 
call(partition,4) 
ref(1) 
ref(O) 
var(4) 
var(5) 
call(qsort,3) 
ref(5) 
var(6) 
ref(3) 
call(qsort,3) 
ref(4) 
ref(2) 
labelvar(1) 
fn(. ,2) 
ref(O) 
ref(6) 
foot 

4partition1 uterm(.,2) 4partition2 
uvar(O) 
uvar(1) 
uvar(2) 
uterm(. ,2) 
uref(O) 
uvar(3) 
uvar(4) 
neck(5) 
call(lt,2) 
ref(O) 
ref(2) 
cut(5) . 
call(partition,4) 
ref(1) 
ref(2) 
ref(3) 
ref(4) 
foot 

4partition3 uatom(nil) 4partition 
uvoid 
uatom(nil) 
uatom(nil) 
neck(O) 
foot 
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3qsort enter 
try(3qsort1) 
trylast(3qsort2) 

uterm(.,2) 
uvar(4) 
uvar(O) 
uvar(1) 
uvar(2) 
uterm(. ,2) 
uref(4) 
uvar(3) 
neck(4) 
call(partition,4) 
ref(O) 
ref(1) 
ref(2) 
ref(3) 
foot 

enter 
try(4partition1) 
try(4partition2) 
trylast(4partition3) 
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3. Implementation. 

As a first step in our Prolog system the Prolog source programs 
are compiled into a sequence of virtual machine instructions. A 
first version of the compiler has been written in Prolog itself. 
[6] The output consists of symbolic Prolog machine code as illus
trated in the previous example and of two tables: a functor table 
(names of the predicates and arity) and an atom table. 

The next step in our Prolog system is the interpretation of the 
virtual machine instructions. The interpreter should be query
oriented and has the following structure: 

init read-only part (code area) 
WHILE not end 

DO read query 
compile query (set Program Counter to first instr.) 
init working storage 
execute (Program Counter) 
remove query 

The initialisation part reads the symbolic code and transforms it 
into a sequence of word-codes which are loaded in the code area. 
The call instructions are divided in two classes: calls of evalu
able predicates (built-in procedures) and calls of user-defined 
procedures. In the WHILE-loop a query is read and compiled into a 
sequence of word-codes which are added to the code area. This 
compilation can result in extending the atom table and the functor 
table. After execution of the query, the code area and the tables 
are restored. 

In our prototype version we have split up the code in two parts: 

the executable part (unification and control instructions) is 
put in the code area 

the literal part (argument lists) is put on the copystack as a 
read-only segment. The literal part has the same structure as 
the compound terms except that a literal can be "var(j)" while 
a compound term on the copystack has the value "undef" instead 
of "var". 

Figure 3 gives an overview of the Prolog system. 
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Figure 3 

4. Design concepts. 

atom 
table 

functor 
table 

Having described the main features of our Prolog system, we now 
comment some design concepts and their consequences. 

- The "structure copying" approach is used as data representation 
technique for compound terms. Compared with the, implementation 
of D. Warren, in our system there is no need to split up the 
variables in globals and locals: they are all local. A com
pound term is copied on the copystack only if it has variables. 
In addition the copying ap~roach will behave better when a gar
bage collector is needed. L2] 

- For the head of a clause we generate exec~table code for all 
terms nested to any level. We also detect the first 
occurrences of the variables in the body of the clause and the 
arguments of the goals are marked with "var" or "ref". Due to 
this decision we have eliminated the need to initialise the 
variables and the specific initialization instructions. 

- The variables of the parent frame which are bound during the 
execution of a goal are never to be put on the resetstack 
because the arguments of the goal define which variables are 
free. 

- The Prolog system has a modular strucure. Optimizations and 
extensions of the system require only small adjustments. The 
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implementation of the "neck"-instruction is responsible for 
tail recursion optimization. If we will add the "occurcheck" 
to the unification process, we only have to extend the imple
mentation of "uref". 

- The Prolog system is easily portable to other machines. If we 
will take full use of the capabilities offered by the underly
ing machine, it is sufficient to adapt the implementation of 
the evaluable predicates or to add new built-in procedures. 

5. Future developments. 

The virtual machine described in this paper is being imple
mented. A prototype of this machine has been written in the 
language C (under the UNIX operating system) and some simple Pro
log programs have been tested. In comparison with the existing 
interpreter (written in C by M. Bruynooghe) our system behaves 
favourably in speed and space. For more complex programs we 
expect better results. Another implementation will be written in 
Pascal for machines with a Pascal-oriented architecture such as 
the PERQ. 

We further plan to set up a complete Prolog program environment 
for this Prolog system: 

- the current implementation will be optimized: tail recursion, 
clause selection based on the arguments, intelligent backtrack
ing ••• 

development of a Prolog debugging tool 

different modules of a Prolog program may be compiled and 
linked into one executable program. 

the list of built-procedures and utility programs has to be 
extended 

the Prolog system has to be• coupled with a relational data
base or with a database machine. 
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ABSTRACT 

As a software development tool of the Fifth 
Generation Computer Systems (FGCS) project, a personal 
sequential inference machine is now being developed. The 
machine is intended to be a workbench to produce a lot of 
software indispensable to our project. Its machine 
architecture is dedicated to effectively execute a logic 
programming language, named KLO, and is equipped with a 
large main memory, and devices for man-machine 
communication. We estimate its execution speed is about 
20K to 30K LIPS. This paper presents the design 
objectives and the architectural features of the personal 
sequential inference machine. 
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1. Introduction 

The final goal of the Fifth Generation Computer Systems (FGCS) 
project[l] is to develop the basic technology for a totally new 
computer system which has the ability to handle knowledge information. 
Inference is for the key mechanism in that system. That is the basic 
motivation why our project chose logic programming as the basic 
programming framework. 

As one of the actual programming languages based on logic, there 
is an on-going active move of using Prolog to build new computer 
applications, especially in the artificial intelligence area. 
However, the processing power of existing computers is not sufficient 
for this purpose. It is quite important for the project to rapidly 
establish the logic programming environments. To satisfy this aim, 
the Sequential Inference Machine (SIM) is under the development in 
ICOT. 

SIM is mainly intended to be a software development tool, 
however, the design of its architecture has many experimental aspects. 
It seemed to be difficult to design the ideal machine at once. So we 
have taken the following development steps: 

1) designing a new programming language based on logic. 

2) designing a personal sequential inference machine which is 
specialized for that new language. 

3) designing a new operating system running on that new machine. 

4) designing an advanced sequential inference machine based on 
the experiences from 1) - 3). 

As the first step, the logic programming language, called Kernel 
Language Version O (KLO), was designed to take the place of Prolog. 
KLO is mainly used to describe system software, such as the operating 
system kernel, compilers, and interpreters. Therefore KLO can be 
regarded as a conventional assembly language except for logic 
programming features. And a Personal Sequential Inference machine 
( called PSI: ) which is designed to execute KLO is now under the 
development as the second step. 

The following sections describe PSI design objectives, its system 
overview, and its machine architecture. 

2. Design Objectives 

As PSI is considered as a main computing tool in t.lie initial 
stage of the FGCS project, the main requirements for its design are 
the high performance and an easy-to-use man-machine interface. Since 
PSI must be available as soon as possible, the main efforts are 
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focused on designing its processing unit and memory unit. However, in 
another aspect, designing PSI can be considered as an experimental 
step toward the target inference machine. 

2.1 Performance Goal 

As a software development tool, an adequate execution speed and a 
sufficient . memory space must be provided in order to execute 
real-world applications. 

. On this point, it is suitable to compare them with the DEC-10 
Prolog system[2]. Because, it is the most popular one and its 
compiler generates very fast codes. 

However, the DEC-10 Prolog system is limited in its memory size 
(256K words) for users. It is relativity small for actual· Prolog 
applications. This limitation may cause a serious problem in its use. 
The lower execution speed might be compensated by longer processing . 
time, however, there is no way to continue the program execution if 
the system has used up such a memory space as a stack. From our 
experience in using the DEC-10 Prolog system, we estimated that at 
least a 10 times larger memory space must be necessary. In this 
situation, the virtual storage system would be an attractive feature, 
however, its implementation in the Prolog environment involves several 
problems to be studied. We have to study such problems· more deeply as 
the swapping ratio between main memory and secondary storage, namely 
the locality of memory accesses, effective cache control mechanism, 
and an effective garbage collection algorithm working real-time[3]. 
Therefore we decided to leave the virtual storage system as a future 
extension. Instead of it, PSI is equipped with a relatively large 
real memory, maximum 16M words. About execution speed, PSI is 
designed to attain 20K to 30K LIPS {Logical Inference Per Second) 
which is the similar performance to the DEC-10 Prolog compiler version 
running on DEC-2060. 

2.2 Personal Use 

PSI is designed as a self-contained, personal machine in order to 
provide its user with powerful computing facilities and an efficient 
programming environment. 

An easy-to-use, sophisticated man-machine interface is the most 
important features for software development tools. To provide good 
man-machine communications, PSI is equipped with a bit-mapped display 
device and a pointing device (a mouse). And a multi-window system is 
planned to be implemented on them. The input/output devices for 
Japanese characters will also be included, and PSI will support a word 
processing system for Japanese. 
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2.3 Local Area Network 

PSI is planned to be connected to a local area network in order 
to give its user a more productive environment. Although any kind of 
peripheral devices can be connected to PSI, an usual PSI system will 
have a limited number of devices according to its own system 
characteristics. 

Through a local area network, the distributed processing system 
connecting several PSI's can be built. Furthermore, the user can 
access other machines from PSI, such as a relational data base machine 
also being developed in the project, and conventional commercial 
machines. 

2.4 Flexibility 

PSI has adopted microprogrammed control for flexibility and 
extendability. 

The project has decided on KLO as a machine level language, 
however, its usefulness will be verified after PSI completes. In 
addition, the research and development of new programming languages, 
such as concurrent Prolog[4][5], is also one of the important subjects 
in the project. Therefore PSI must be able to execute those 
experimental languages as their test bed 

2.5 Evaluation 

Using PSI, several items of measurements are planned for 
evaluation on programs behavior and machine design. One is to 
evaluate characteristics about the execution profile of logic based 
programs. Another one is to evaluate the validity about PSI 
architecture and hardware design. Especially, the measurement of 
memory access characteristics including cache hit ratio is one of the 
important items, because memory access is the most frequent operation 
in inference machines. The next advanced models of SIM will be 
designed utilizing effectively these evaluation results. 

2.6 Specialized Hardware Supports 

As a first experimental inference machine, an effort has been 
made to introduce several specialized hardware supports suitable for 
executing a logic programming language in PSI. To improve unification 
speed, PSI has hardware buffers. The role of these buffers is to 
quickly refer to the binding values of variables. For dynamic data 
type checking, each word has an 8 bit data tag ( tag architecture). To 
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make memory access operations faster, the connection between the main 
memory and the processing unit was designed as tightly as possible. 

PSI design objectives can be summarized as the combination of 
high performance of the 32 bit "super mini-computer" with the good 
man-machine interface of the "super personal computer". 

3. System Overview 

One of the key factors to determine a machine architecture may be 
the design of the machine instruction set. PSI is a specialized 
machine for executing the logic prog,-amming language (KL0),however, it 
must have its own operating system to be a self-contained personal 
machine. This section briefly summarizes the software system and 
hardware configuration of PSI. 

3.1 Language System 

One advantage of a logic programming language is to use its 
non-determinism effectively. However the non-determinate operation is 
considered unnecessary for describing low-level system control such as 
the kernel of · operating systems, because it mainly consists of 
determinate operations and thus non-determinate operations would 
produce redundancy. In general, if a machine architecture is 
dedicated to some high- level programming language, it becomes 
difficult to implement its operating system in that language on the 
same machine. In this situation, a different programming language 
could be used for system description, however, this approach would 
degrade the uniformity of the system. And the machine architecture 
should support two different types of language processing. To make 
the entire system uniform, we decided to implement a PSI operating 
system based on the logic programming concept. KL0 has been designed . 
to make this possible. 

Figure 1 shows the language system hierarchy. The system 
programmer uses KL0 directly to develop a compiler, an interpreter, 
and operating system kernels. From the user's view point, KL0 can be 
regarded as a machine language of PSI, however, KL0 is basically a 
high-level, logic programming language. Its features are summarized 
as follows: 

o a subset of DEC-10 Prolog 

o an extended ability for hardware resource handling 

o an extended ability for interrupt handling and process control 
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o extended execution control facilities 

KLO includes the normal unification mechanism and clause handling 
mechanism like usual Prolog. From this view point the users can 
regard PSI as a complete Prolog machine. On the other hand, the users 
can also specify the machine level control with its extended 
facilities in KLO. 
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3.2 Operating System Support 

The kernel parts of the PSI operating system are written in KLO. 
These are transformed into internal machine forms by the compiler 
which is also written in KLO itself. Then PSI hardware/firmware 
directly executes those internal forms. Furthermore, time crucial 
parts of the operating system kernel, such as the garbage collector or 
process switcher, are executed directly with firmware. The 
applications programmers will use a higher programming language than 
KLO. This language is executed with the interpreter or is compiled by 
the compiler written in KLO into internal machine forms. 

From the software side, it can be said that the PSI operating 
system is written in completely a logic programming style. From the 
hardware side, it can also be said that PSI architecture supports the 
primitive kernel operating system functions. 

3.3 System Configuration 

Figure 2 shows the PSI system configuration. CPU has a 
microprogram sequencer. The capacity of its writable control storage 
is 16K words. The micro instruction is 64 bit long and is executed in 
less than 200 nsec. 

Main 
Memory 

Cache 

PSI 
CPU 

network 

IEEE 796 bus 

hard disk keyboard bitmap display mouse 

Figure 2. system configuration 

CPU interprets internal object forms of KLO with its micro-coded 
interpreter. Its hardware mechanism is mainly dedicated for the fast 
unification. It includes several discrete registers, register files, 
and an arithmetic operation unit. 
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The memory unit has a relatively large main memory instead of 
being equipped with a virtual memory system. A maximum of 16M 40 bit 
words can be installed. To shorten memory access time, PSI is 
equipped with a cache memory. It consists of 2 sets of 4K word 
memory, and a write-back strategy is adopted. Since several stack 
areas are required for interpretation of KLO and each stack area will 
arbitrary grow during program execution, PSI introduces logical memory 
addressing. Therefore the roles of the memory control unit are 
address translation and cache control. If the required data exist in 
the cache memory, PSI can fetch that data within one micro instruction 
cycle. 

A general purpose input/output bus is provided to PSI. To keep 
design simplicity and generality, JEEE-796 standard bus(MUL TIBUS) is 
adopted. As a minimum configuration, PSI supports a fixed head disk, 
a floppy disk, a key board, a bit-mapped display, a mouse, a printer, 
and a local area network interface. Since PSI is planned to be 
connected to a local area network, the peripheral devices may be 
selected according to their own characteristics. 

PSI also has an additional parallel interface port, in order to 
satisfy the requirement for connecting special 1/0 devices directly. 
For example.this parallel interface will be used to connect the 
relational data base machine or the voice recognition device, and etc. 

4. Machine Architecture 

The architecture of PSI was decided based on vanous 
considerations. A KLO program is compiled into the internal object 
forms of PSI. But the level of the object code has been decided to be 
higher than that of ordinary machine instructions. So PSI is regarded 
as a high level language machine. In order to attain high 
performance, PSI adopted a tag architecture. Furthermore, a cache 
memory and special purpose registers are provided to improve the 
unification speed. PSI always refers to memory with logical address, 
and also has hardware supports for multi-processing. 

4.1 How to Design the Machine Instruction Set 

KLO is a logic programming language, however, it is mainly used 
for system description. Therefore, performance in its execution is 
crucial. To take advantage of the source program information as much 
as possible, we decided to employ a compiler and thus PSI executes 
compiled codes instead of interpreting source codes directly. Even 
though, after compiling KLO, there still remains many operations to be 
performed only in execution time, such as unification, because of a 

60 
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dynamic feature of the logic programming language. Then several 
levels of machine instructions can be considered. 

The lowest one may be the conventional machine instruction level, 
and a KLO program would be compiled into small pieces of those 
primitive machine instructions. The highest one is the internal form 
which is translated one by one from a source statement of KLO. The 
desirable machine instruction level depends on the characteristics of 
the language. 

Originally, KLO contains two different groups of elements. The 
first group is user--defined clauses to be executed within the logic 
programming framework. Namely, it is executed based on unification 
and backtracking. The execution of them is slightly simple and 
dominated with memory access operations. Therefore, it is undesirable 
that such execution is broken into many small machine instructions, 
because many instruction fetches are needed. In addition to this, 
there is less room for macro optimization on the hardware side because 
of low level machine instructions. This results in increased 
redundancies in both execution time and memory usage. We considered 
that PSI should have these unification and backtrack control 
facilities by itself. 

The second group is built-in predicates for such operations as 
arithmetic operations and input/output operations[6]. Since the 
execution of them is performed determinately, their object codes can 
be represented in compact forms like conventional machine 
instructions. These built-in predicates are introduced not only to 
enhance the efficiency of frequently used operations but also to be 
able to include such primitive operations as register handling and 
direct memory manipulations used in the operating system. 

Consequently the PSI machine instruction set has two types in its 
internal object forms. The first one corresponds to user--defined 
clauses. Actually, such a clause is compiled . into the sequence of 
several internal object forms according to source clause definition. 
PSI interprets that sequence as a machine instruction on the whole. 
The others correspond to built-in predicates. Basically, a built-in 
predicate is compiled into one internal machine form. 

4.2 Internal Object Forms 

A KLO program is translated into the corresponding internal 
object form described above. How to represent data and clause is 
shown in this section. 

4.2.1 Internal Data Representation 
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Through examining PSI machine architecture, providing it with 
enough ability for increasing requirements from application areas is 
considered. At least 32 bits are necessary for representing 
sufficient magnitude of numbers and addressing space. In result, PSI 
employs a 40 bit word representation as shown in Figure 3. The upper 
8 bits represent tag bits (tag part), and the remaining 32 bits 
represent the data itself (data part). 2 bits of the tag part are 
used by the garbage collector and the remaining 6 bits indicate the 
type of data included in the data part. 

tag data 

32 

Figure 3. word format 

PSI has several internal data types corresponding to ones in KLO. 
The visible data types for user are listed below: 

o symbol 
o integer 
o real 
o vector 
o string 
o local variable 
o global variable 
o void variable 

(a) Symbol 

This indicates the identifier of an atom. In the data part, the 
symbol number corresponding to an atom is stored. The printing image 
of an atom is managed by the operating system. So there is no direct 
relation between the symbol number and its printing characters. 

(b) Integer, Real. 

These are numerical data on PSI. The value of them is stored m 
the data part. 

(c) Vector 

A vector is a block of continuous memory slots, and is used to 
represent various structured data such as binary trees. As shown in 
Figure 4, a vector is usually accessed by way of its descriptor. 
However, this representation always needs an extra memory access 
whenever a vector is accessed. Since it is supposed that the vector 
which has a few elements is frequently used in programs, the direct 
vector type is introduced in order to effectively access such vectors. 
The conventional list structure is an example, and its representation 
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is shown in Figure S. Comparing the performance of the structure 
sharing[7] with that of the copying strategy on structured data 
handling. PSI employs the structure sharing method similar to the 
DEC-10 Prolog. Therefore the structured data are manipulated as the 
pair of a structure (representing in a vector) and its values (located 
in the global stack). This address pair is. called a molecule. 

vect tag 1 

tag 2 

int N tag N 

Figure 4. vector representation 

vect 2 

int 

vect 2 

int 2 

vect 0 nil 

Figure 5. list representation 

(d) String 

elem 1 

elem 2 

elem N 

A string data type is introduced for manipulating a byte 
(CHARACTER), double bytes (KANJI). and a bit (FIGURE) string data. 
Like the vector representation, string data is also accessed by way of 
its descriptor. 

(e) Local/Global Variable 

This data type indicates a local/ global variable included in a 
clause. In the data part, the variable number is stored. The 
instance of a local variable is created in the local stack. The 
instance of a global variable is created in the global stack. Roughly 
speaking.the difference between the two is that the instances of local 
variables are cleared when the clause including them are executed 
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determinately, however, those of global variables are not cleared. 

(f) Void Variable 

This type means that the variable can have an arbitrary value, 
namely can be unified to any type of data. 

4.2.2 Clause Representation 

The definition of a clause in KLO is the same as the one in 
Prolog. It consists of a head predicate and several goal predicates. 
The compiler translates a clause into a corresponding internal object 
form. As shown in Figure 6, each clause is represented as continuous 
memory slots, called code, in PSI. A code is a similar data type to a 
vector, and consists of a clause header, head arguments, goal 
predicate name and its arguments. 

compile 

disc size 

code 
Header Part 

( reserved ) 

int TYPE I Narg I Nl Ng alternative claus~ _ 
for p 

Arguments L•var X 

of Head \ L-var y 

~.if code 

L-var 

L-var 
\. 

X 

z 
r 

BLT Goal, add z y 

--
Figure 6. clause representation 

A clause header consists of four words. The first word indicates 
the size of the code. The second word has an address to the code 
representing the next alternative clause. The third word is a 
reserved word. It might be used by the garbage collector. The last 
word indicates attributes of the clause. TYPE shows the clause type. 
For example, it is a unit clause, or having alternative clauses etc. 

---- ----- --



' i 

i 

' I 
i 

I I 
I 

Page 13 

Narg shows the number of arguments included in the head predicate. 
Nl/Ng shows the number of local/global variables included in this 
clause. 

Following a clause header, the head predicate arguments are 
located. Each argument is represented in the data types described in 
4.2.l. 

The remaining codes show the internal form of goals. There are 
two types of goal representation according as the called goal 
predicate is a built-in predicate or not. 

(a) User-Defined Predicate Call 

A goal . predicate name is compiled into the pointer to the code 
representing the called clause. This pointer is stored in the data 
part and the tag of this pointer is set to a code type. The goal 
arguments are arranged continuously, following this pointer. 

(b) Built-in Predicate Call 

In the data part, a compact representation of machine 
instructions is stored and it consists of an 8 bit operation code and 
three 8 bit operands. The role of built-in predicates is to create 
objects, test the attributes of objects, and manipulate objects etc. 
A built-in predicates is compiled into one word object code basically, 
so that it can be executed efficiently on PSI. 

Each goal is compiled into the pointer of the corresponding 
clause and its arguments. There are three connection types of goals, 
which l>SI can directly interpret with its fmnware interpreter. 

(a) AND Connection 

AND connection shows that the goals are combined as an AND node 
in the AND-OR search tree. Each goal is continuously located as shown 
in Figure 7-(a). AND connection means that each goal is executed 
sequentially and if a goal is failed, then backtracking occurs. 

(b) OR Connection 

This type is used to represent an OR connection included within a 
clause. OR connection shows that each goal is combined as an OR node 
in the AND-OR search tree. This connection is realized by an OR 
instruction as shown in Figure 7-(b). At first execution, the first 
goal is tried. When they fail, then the second goal is tried. Each 
branch of the OR connection can be composed of several goals. 
Therefore each branch of an OR connection is the same as an ordinary 
alternative clause except that they are included in only one clause 
and require no unification process. 
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(c) CASE connection 

H:- case(Indx,B1 ,82),B3. 

Header Part 

,- Arguments -
i- of Head -

BLT easel tndx 
-

BR 
-

Goa 1 82 

Goal B2 

BR 

I/ 
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Goal 83 
BR ~ 

Goal B3 
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Figure 7. . goa 1 connections Goal 83 

(c) CASE Connection 

CASE connection can be regarded as the arrangement of indexed 
goals. Figure 7-(c) shows the internal format of CASE connection. 
One of the goals is selected by the result of CASE instruction and if 
it is successively executed then the goal following the case block is 
executed next. Even if backtracking occurs, unlike OR connection, the 
remaining indexed goals are not executed. 

4.3 Execution of PSI Internal Object Forms 

For interpretation of the KLO program, the following four stacks 
are needed: 

o local stack 
o global stack 
o trail stack 
o control stack 

The use of these stacks' is similar to those of DEC-10 Prolog, 
however, the control stack is separated from the local stack in order 
to efficiently execute the extra control primitives of KLO. 
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The local stack is an instance region for local variables. 
Preceding the unification process. PSI allocates the stack entries 
according to the number of local variables included in a clause. 
These stack entries are popped up when the evaluation of the clause 
including them is determinately terminated, or unification fails. 
They are also cleared when it is pruned by a "cut" operation. 

The global stack is an instance region for global variables. 
Similar to the local stack, PSI allocates stack entries according to 
the number of global variables. These entries are only popped and . 
cleared when unification fails. In addition, a molecule generated 
during unification and some control information are also allocated in 
this stack. 

The trail stack is used for undoing variables when backtracking 
occurs. In .this stack, binding information ( i.e. the cell address 
where a value is stored during unification and whose content must be 
changed to 'undefined' when unificatoin fails) is stored When the 
instance value of a variable is modified, its old contents are also 
stored in the trail stack in addition to its cell address. 

In the control stack, various book-keeping information required 
for the execution control is stored. All of them are pointers which 
represent the execution environment of corresponding clauses. They 
are used to return to the calling clause, or to the backtrack point 
when unification fails. 

There are some data types dynamically generated during program 
execution. Some of them are described below. 

(a) Reference 

It indicates a pointer generated during unification. 

(b) Molecule 

PSI adopts the structure sharing method to represent structured 
data described before. Since a molecule consists of two words in PSI, 
it can not be located into a variable cell. Therefore, a molecule 
itself is allocated in the global stack, and the reference to it is 
located in the variable cell. 

4.4 Address space 

PSI has a 32 bit logical address space. It is composed of 256 
logically independent areas. The size of each area is 16M words, and 
managed by pages of lK words. The reason why the concept of area is 
introduced is as follows: 

(a) Since PSI supports multi-processing, it is desirable for the 
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operating system to assign completely independent areas to each 
process. 

(b) Since PSI firmware interpreter uses four stacks described in 
section 4.3, it is desirable to be able to expand each stack area 
independently. If these stacks are allocated to the same space, a 
collision between stack areas will occur. At that time, one of them 
must be moved to another space. This situation causes serious 
overhead time. 

Since four stacks are required for interpretation of a KLO 
program, it means that each process needs at least four areas for its 
execution environment. On the other hand, code areas might be shared 
among many processes. If four areas are assumed to be used for code 
areas, namely heap areas, a maximum of 63 processes can be created on 
PSI from 256 areas. 

Each area is divided into 16K pages. A page consists of 1K 
words. An area is managed by PSI operating system in page units. PSI 
allocates one page when a process needs more memory. On the other 
hand PSI disallocates some pages when a process release memory. 

In result, the memory address field is divided into an 8 bit area 
number, 14 bit page number, and 10 bit offset as shown in Figure 8. 

I AREA # I PAGE# I OFFSET 

~\, 
V /'--.:.....,,--1 

8 14 10 

Figure 8. address format 

The address translation mechanism is shown in Figure 9. The 
translation from a logical address to a physical address is performed 
with an area table and a page table. Each area table entry shows the 
base address of a page table located in the page map table 
corresponding to an area. And each page table entry shows the 
physical page address corresponding to a logical address page. As a 
first step to generate a physical address from a logical address, the 
area table is accessed using the area number, and a page table base 
address is obtained. Then the page map table is accessed using the 
sum of that page table base and a the page number. Finally 
concatenating the output of the page map table and the page offset, a 
24 bit physical address is obtained. 
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Figure 9. address translation 

To achieve address translation, it is common to use a Translation 
Lookaside Buffer(TLB). Each TLB entry contains a logical page address 
and corresponding physical page address. TLB is a sort of cache 
memory, and if the address pair corresponding to a logical address is 
stored in it, there is no reference to the translation table existing 
in the main memory. PSI does not adopt this method. Instead, the 
area table and the page map table are located in special fast memory. 
In result, the address translation process is performed within a micro 
instruction cycle. The reasons why TLB is not adopted are shown 
below: 

(a) If the address pair is not in TLB, the translation table in main 
memory must be accessed to generate a physical memory address. 

(b) Since the garbage collector must search all memory space, it is 
supposed that the memory access locality during garbage collection is 
not so high. Therefore, TLB might not work well in that situation. 

19 
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(c) PSI does not adopt virtual memory. The total amount of page map 
table entries can not exceed the number of physical pages. Since the 
maximum size of main memory is 16M words, it is sufficient to have 16K 
entries in the page map table. 

The size of an area can extend from one page to 16K pages. 
Before program execution, the maximum number of pages used in a area 
cannot be predicted. Furthermore, a process needs at least four 
areas, however, the utilization of each area is different among 
processes. Accordingly, as the number of page table entries increases 
during execution, a page table may collide with another page table 
within the page map table. To avoid that case when possible, it is 
desirable to locate each page table corresponding to an area as 
dispersively as possible. Also, the page map memory size should be 
larger than the number of physical pages. To satisfy this condition, 
PSI has a page map memory of 32K entries. Since the standard physical 
memory size is 4M words, the size of a page map memory is eight times 
larger than that of physical pages. 

If a page table collision occurs in page map memory, a trap 
occurs and page table relocation must be done. There are many 
algorithms to be considered. It is a future research theme to examine 
which algorithm is better. 

4.5 Hardware Supports for Fast Unification 

Unification plays an important role in executing a KLO program. 
To efficiently execute the unification process, the hardware support 
mechanism is indispensable. The major part of the unification process ·• 
is memory access and data type checking. The facilities employed in 
PSI are as follows: 

o Cache memory 
o Tag bits 
o Frame buff er 

(a) Cache Memory 

The merit of using cache memory is to reduce the cost of all 
memory accesses besides stack access. PSI adopts the write 
back-strategy for cache control, not the write-through strategy. A 
cache memory manages logical addresses. Therefore, if the accessed 
data exists in cache memory, no address translation is needed. The 
address translation is required only if a cache miss-hit occurs. PSI 
memory controller performs address translation during the cache memory 
access in parallel. This mechanism creates no overhead time for 
translation when the cache memory miss-hit occurs. 

(b) Tag Bits 

tO 
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A tag is essential to effectively interpret a data type. To 
realize fast unification depends on how rapidly the data types can be 
examined. For this aim, tag bits are attached to all data, and they 
specify the type of the data. A special hardware mechanism, which 
decodes tag bit pattern efficiently, is provided in PSI. 

(c) Frame Buffer 

Frame buffer is the set of special registers provided for the top 
of the stack frame. In this buffer, the arguments of a clause and the 
cells of local variables are stored. Most of the unification is done 
using this buffer. This reduces the number of memory accesses, and 
faster unification will be realized. Furthermore, using this buffer, 
Tail Recursion Optimization {TRO)[8] can be realized efficiently. 

4.6 OS Support 

Since PSI is designed as a self-contained system, it requires own 
operating system. This operating system consists of an end-user 
interface {command interpreter), a programming system {editor, 
debugger), a file system, and so on. To provide its users with a 
sophisticated programming environment, that operating system must be 
an easy-to-use system, and provide good man-machine communications. 
Considering that these systems are specified by KLO,it is desirable 
that PSI must have operating system support functions. 

To attain this objective, PSI has various hardware and r1rmware 
supports. For example, such primitive operations as a memory 
allocation or a garbage collection included in the memory management 
system is directly performed by r1rmware. The process switching of 
the process management system is also performed by r1rmware. 
Furthermore, PSI holds the process information in fast CPU memory in 
order to reduce process switching overheads. This is an essential 
hardware support in PSI, because KL0 requires larger execution 
environment than ordinary programming languages, and without that 
hardware support the contents of many base registers must be saved 
into the main memory at process switching. 

In addition to higher level operating system support, there are 
several KL0 built-in predicates which perform low level system 
control, such as hardware resource handling, direct memory 
manipulation, and input/output control. These built-in predicates are 
effectively executed by r1rmware. · 

Besides this support described, garbage free regions is 
introduced to support the operating system kernels. In this region no 
garbage collection is done. This means that a program running in this 
region can be executed even while a garbage collection process is 
being executed. Those special processes unconcerned with the . garbage 
collection are called supra GC processes. The aim of introducing this 
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GC-less process is to maintain good man-machine interface even when 
the garbage collector is working. 

Summarizing those, the hierarchy from the end-user interface 
language to the hardware on PSI is shown in Figure 10. 

APPLICATION END-USER 
LANGUAGE 

r USER INTERFACE ' \ 

EDITOR DEBUGGER COMPILER 

INTERPRETER KLO~ 

r SUBSYSTEM ' \. 

WINDOW SYSTEM 

FILE SYSTEM NETWORK SYSTEM KLO 

r KERNELSYSTEM \. .I 

MEMORY PROCESS DEVICE (supra-Ge) 
MANAGEMENT MANAGEMENT MANAGEMENT MODE 

KLO 

GARGAGE COLLECTOR FIRMWARE 
PROCESS SWITCH 

HARDWARE 

Figure 10. operationg system hierarchy 

5. Conclusion 

In this paper, we described the design objectives and the machine 
architecture of a Personal Sequential Inference machine, PSI. Its 
detail hardware design has almost been completed and the 
microprogrammed KLO interpreter is now under the design. The rough 
estimation of PSI execution speed is comparable to the compiled codes 
of DEC-10 Prolog system on DEC-2060. 

PSI is a first step toward the target inference machine which 
will be attained in ten years. For designing next advanced SIM, we 
are planning several evaluations on PSI. Many software products will 
also be made on PSI. We believe that PSI will be a powerful and 
useful workbe~ch for our project. 

rl 
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ABSTRACT 

This paper describes the basis of the design of a Prolog imple
mentation which is currently being built. This new implenenta
tion is intended to conbine a high degree of portability with 
speed and efficient utilisation of memory. Our approach is to 
compile Prolog clauses into instructions for a relatively 
high-level abstract machine. This abstract machine is imple
mented by an interpreter written in a high-level systems pro
gramming language ( C), giving a portable Prolog system. 

in order to 
well suited to 

is a small 
of the work. 

Some portability must be sacrificed, however, 
achieve the high speed required. The design is 
tailoring for particular machines, because ~here 
central core of the interpreter which does most 
This central core can be translated into assembly language or 
microcode ~hen necessary. 

An advantage of this approach is that it avoids the 
compiler/interpreter dichotomy found in DEC-10 Prolog and LISP 
systems with conpilers. All clauses are compiled, but conpila
tion is reversible so that it is not necessary to have a 
separate representation of the textual form of clauses. 

1. Introduction 

This paper describes some design principles behind current work at Oxford 
and Edinburgh Universities to build a new Prolog system. The desired qual
ities of the new system are that: 

(1) It should be highly portable. 

(2) It should be fast and 11se nemory efficiently; this requirenent 
directly conflicts with (1). 
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The approach we have chosen is to compile Prolog clauses into code for a 
relatively high-level (i.e. Prolog oriented) abstract machine. This 
abstract machine is implemented by an interpreter written in a high-level 
systems programming language (C). The compiler, and many of the evaluable 
predicates, are written in Prolog itself. This approach has allowed us to 
get a preliminary version of the system running fairly quickly. 

However, this system as it stands will not meet our requirement for speed. 
A certain amount of non-portable work will be necessary in order to achieve 
high speed on particular computers. Our intended methodology is to 
translate the most heavily used parts of the C code into assembly code, or 
microcode where possible (e.g. on the ICL Perq). This non-portable work 
is minimised because the central core of the interpreter is simpler and 
smaller than that of a direct Prolog interpreter. 

We have opted for the sructure-copying method of [Mellish 80) and 
[Bruynooghe 80], rather than structure-sharing [Warren 77}. An important 
reason for this is that structure-copying is expected to give better local
ity of reference and therefore better paging behaviour on virtual memory 
sys.terns. Another advantage is that it allows us to dispense with holding 
the Prolog form of all the clauses in the heap: our abstract machine is so 
arranged that we can reconstruct these terms when they are needed (i.e. in 
the implementation of the evaluable predicates 'clause' and 'retract') by 
effectively decompiling the compiled form of the clauses. 

Our storage management strategy is basically that of [Warren 77), i.e. 
there is a heap containing the program, a "lo.cal" stack for control infor
mation and variable bindings., a "global" stack for structures, and a 
"trail" stack which keeps track of when variables are bound so that they 
can be reset to "uninstantiated" at the appropriate time on backtracking. 
One change is that a reference count is maintained for each clause so that 
pointers to clauses (as returned by the predicate clause/3 in DEC-10 Pro
log) can safely be included in asserted terms. A consequence of this 
slightly complex memory management is that it is never necessary for a gar
bage collector to do a full sweep of the heap.; it only has to sweep the 
local and global stacks. 

As our run-time system is based on previously published work [Warren 77) 
[Warren 80), we will concentrate in the rest of this paper on the new part 
of our design which is the intermediate language. 

2. The Intermediate Language 

In this section we introduce the kernel of the intermediate language into 
which Prolog clauses are translated. Although this language subset has only 
seven instructions, it is sufficient; the only reason for extending it is 
for· efficiency as will be discussed later. We introduce it syntactically 
by discussion of the (reversible) cocpilation of a Prolog clause. The 
semantics of the language will be explicated in t.he following section by 
means of a simple interpreter for it written in Prolog. 

A c0t1piled clause has two main parts: an External Reference (XR) table, and 
a block of byte-codes. Let us consider the compilation of the clause: 
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p(tpl,tp2, ••• ) :- q(tql,tq2, ••• ), r(trl,tr2, ••• ). 

where the tpi, tqi and tri are arbitrary terms. The general fonn of the 
byte-code block is then: 

<code for tpl) 
<code for tp2) ... 
enter 
(code for tql) 
(code for tq2) ... 
call <XR offset for procedure q) 
<code for trl) 
<code for tr2) ... 
call (XR offset for procedure r) 
exit 

This introduces the three "control" instructions we need: 'enter', 'call' 
and 'exit'. The 'enter' instruction simply marks the division between the 
head and the body of the clause. Each 'call' has an argument (the next 
byte-code in the block) which refers to an entry in the XR table which is a 
reference to the required procedure. Finally, 'exit' marks the end of the 
clause. 

The terms which are the arguments of the head of a clause, and those which 
are the arguments of goals, are all translated in the same way. Each term 
is compiled into "data" instructions as follows: 

(1) If the term is atomic it is translated as 

const <XR offset> 

where the corresponding entry in the XR table is either an integer (if 
the term is an integer) or a pointer to an atom record. 

(2) If the term is a variable it is translated as 

var <number) 

where the variables in the clause are numbered in order of appearance. 

(3) If the term is compound it is translated as 

functor <XR offset) 
(code for 1st argument> 
(code for 2nd argument) 

pop 

The 'functor' ins true tion refers to an X..~ table entry which points to 
the corresponding functor record. It is followed by the compiled form 
of each of its arguments, followed by a 'pop' instruction. 
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For the purposes of the interpreter to be presented in the next section, we 
need to represent compiled code as Prolog data structures. Conpiled pro
cedures will be represented as assertions of the form: 

procedure( Name/Arity, List of Clauses). 

A clause will be represented by a term: 

clause( XR_Table, Number_of_Variables, List_of_Bytecodes) 

An XR table is also represented as a term: 

xrtable( ••• ) 

where the table entries are either integers, atoms, functors (written in 
the form Name/Arity), or procedures (written as procedure(Name/Arity)). 

For example, the compiled for.m of the procedure: 

append(nil,L,L). 
append(cons(X,Ll),L2,cons(X,L3)) :- append(Ll,L2,L3). 

looks like this: 

. procedure( append/3, [ 
clause( xrtable(nil), 1, 

[ const, 1, 
·var, 1, 
var, 1, 
exit]), 

% nil 
% L 
% L 

clause( xrtable(cons/2 ,procedure(append/3.)), 4, 
[ functor, 1, var, 1, var, 2, pop, % cons(X,Ll) 

var, 3, % L2 
functor, 1, var, 1, var, 4, pop, % cons(X,L3) 
enter, 
var, 2, var, 3, var, 4, call, 2, 
exit ] ) ]) • 

% append(Ll,L2,L3) 

1.• ~ Interpreter E?!_ ~ Intermediate Language 

We now present our mini-interpreter written in DEC-10 Prolog. For simpli
city, we use the unification and backtracking capabilities of Prolog rather 
than doing everything explicitly as is necessary in a real implementation. 
A consequence of this is that cut cannot easily be implemented in the 
mini-interpreter. 

The entry point to the interpreter is the procedure arrive/3. 
ments are the procedure to be called, a list of its arguments, 
tinuation list which represents goals still to be solved. E.g. 
one list to another we would call: 

Its argu
and a con
to append 

:- arrive(append/3,(cons(a,cons(b,nil)), cons(c,nil), L),[J). 
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This call should succeed, instantiating L to 

cons(a,cons(b,cons(c,nil))). 

There are two clauses for arrive/3 (Figure 1). The first of these finds 
any compiled clauses for the procedure. It then non-determinately selects 
(using member/2) the first clause, i.e. future failure will cause us to 
backtrack here and select another clause if there is one. Next it creates 
a new set of (uninstantiated) variables by means of the built-in predicate 
functor/3 which sets Vars to be the functor with name 'vars' and having 
Nvars uninstantiated arguments. Finally control is passed to execute/6 to 
execute the byte-code list (which we have called PC because it corresponds 
to the Program Counter in a real implementation). 

The second clause for arrive/3 allows the built-in predicates of Prolog to 
be used in the mini-interpreter. 

arrive(Proc,Args,Cont) :
procedure(Proc,Clauses), !, 
member(clause(XR,Nvars,PC),Clauses), 
functor(Vars,vars,Nvars), 
execute(PC,XR,Vars,Cont,Args,[}). 

arrive(Name/Arity,Args,Cont) :
Proc =•• [NamejArgs], 
call(Proc), . 
execute([exit],_,_,Cont,_,_). 

member(X,{XI 1). 
member(X,[_IL]) :- member(X,L). 

Figure!= arrive/1_ 

% Find clause list for Proc 
% Select one 
% Make new set of variables 
% Go to execute byte-codes 

% No compiled clauses: call 
% normal Prolog procedure 
% and continue 

The clauses for execute/6 (Figure 2) are all determinate, so that it resem
bles a CASE statement in other languages. Let us consider the data 
instructions first, assuming for now that they are in the head of a clause 
(i.e. before the 'enter' instruction). 

The 'const' instruction is fairly straightforward: it simply matches the 
first element of the argument list with the appropriate entry in the XR 
table. (arg(X,XR,Arg) unifies Arg with the Xth argument of the term XR.) 
If successful, it then tail-recursively calls execute/6 to execute the sub
sequent instructions with the rest of the argU1:1ent list. Note that if Arg 
was initially uninstantiated it will have become instantiated to the given 
constant. Similarly, 'var' matches the given variable with the current 
argument. 

For 'functor' we first check that the argument has the right principal 
functor (or instantiate it to the most general term with this principal 
functor if it is uninstantiated). If successful, we obtain the list Args 
of the arguments of Arg and go to execute subsequent instructions which are 
to be matched against them. There remains the list Arest of argunents to 
be matched after Arg. This list is stacked on Astack froc where it is 
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execute([const,XjPC],XR,Vars,Cont,[ArgjArest],Astack) :- !, 
arg(X,XR,Arg), % Match XR entry with Arg 
execute(PC,XR,Vars,Cont,Arest,Astack). 

execute( [var,VjPC] ,XR,Vars,Cont,[ArgjArest] ,Astack) :- ! , 
arg(V,Vars,Arg), % Match variable with Arg 
execute(PC,XR,Vars,Cont,Arest,Astack). 

execute([functor,XjPC],XR,Vars,Cont,{ArgjArest],Astack) :- !, 
arg(X,XR,Fatom/Farity), % Get functor from XR table 
functor(Arg ,Fatoa,Farity), % Match principal functors 
Arg ••. [Fatoal Args], % Get Args of Arg term 
execute(PC,XR,Vars,Cont,Args,[ArestlAstack]). 

execute([popjPC],XR,Vars,Cont,[],[ArgsfAstack]) :- !, % Pop Args off Astack 
execute(PC,XR,Vars,Cont,Args,Astack). 

execute([enterlPC],XR,Vars,Cont,[],{J) :- !, 
execute(PC,XR,Vars,Cont,Args,Args). % Initialise diff list: 

execute([call,XIPC],XR,Vars,Cont,[],Args) :- !, 
arg(X,XR,procedure(Proc)), % Extract proc name from XR 
arrive(Proc,Args,{frame(PC,XR,Vars)jCont]). % Save context & go 

execute( [exit] ,_,_,[frame(PC,XR,Vars) jcont] ,[] ,[]) :- ! , 
execute(PC,XR,Vars,Cont,Args,Args). % Resur.ie previous context 

execute( [exit] ,_,_, [ ] , [ ] , [ ] ) :- ! • % No previous context: stop 

Figure!= execute/! 

removed by the corresponding 'pop' ~nstruction. 

We have explained how the data instructions work in the head of a clause. 
It is the 'enter' instruction that ensures that they also work in the body, 
where what they are required to do is build up rather than take apart the 
argument list. What it does is initialise a difference list: a partially 
formed argument list is the difference between the 6th and 5th arguments of 
execute/6. For example, if two arguments have been processed we would get 
a goal of the form: 

:- execute(_,_,_,_,X, [ (arg l> ,<arg 2> IX]). 

Thus each data instruction encountered in the body appends an argur.1ent onto 
this argument list by instantiating the variable at the end of it to 
[<argument>l<new variable)]. It is interesting to see how this works for 
'functor': this is left as an exercise for the reader! 

The 'call' instruction terminates the difference list by instantiating the 
variable at the end to[]. It then goes off to arrive at the called pro
cedure with the new argut1ent list, first stacking all the infomation 
needed to resume this clause on the continuation list. 

Of the two clauses for 'exit', the first is selected when the continuation 
list is non-empty. It causes resumption of a clause after the successful 
completion of a 'call'. Note that it is necessary to reinitialise the 
difference list here so t,hat another argument list is cons~ructed for the 
next 'call'. The second clause for 'exit' terminates the program. 



- 7 -

4. Some Additions to the Intermediate Language - ------- -
It may be noticed that there is no point in returning from. the last 'call' 
in a clause and restoring its context only to imnediately 'exit' and 
restore a previous context. This can be avoided by introducing a new 
'depart' instruction which replaces the last 'call' and the subsequent 
'exit' (cf. [Warren 80]). The interpreter is easily extended to handle 
this new instruction by the addition of one more clause for execute/6: 

execute([depart,X],XR,Vars,Cont,[],Args) :- !, 
arg(X,XR,procedure(Proc)), 
arrive(Proc,Args,Cont). 

This is just like 'call' except that no continuation frame is stacked. 

Another inefficiency arises in the execution of 'functor' if it appears as 
the last argument in the clause head, or as the last argut:1ent of sooe other 
term. In either case there are no remaining arguments (Arest is[) or will 
be instantiated to {l later) but we are stacking Arest anyway and popping 
it back to no useful purpose when 'pop' is encountered. The cure is to 
introduce anothe.r new instruction, 'lastfunctor', which is like functor 
except that it has no corresponding 'pop'. It is interpreted thus: 

execute([lastfunctor,XIPC],XR,Vars,Cont,[Arg] ,Astack) :- !, 
arg(X,XR,Fatom/Farity), 
functor(Arg,Fatom,Farity), 
Arg ••• [FatomlArgs], 
execute(PC,XR,Vars,Cont,Args,Astack). 

Various other instructions can be introduced to save space in the clause 
representation or to gain speed. An example is <'immediate' N> which 
allows a SMall integer N to be represented directly in the byte-code block 
without the need for an XR table entry. It is also useful to provide 
instructions for the simpler built-in predicates such as integer/I, var/I 
etc. A possibility is to combine some of the instructions with their most 
cor.imon arguments to make new single-byte versions of two-byte instructions, 
but the trade-off with increasing the size of the interpreter needs to be 
studied empirically. 

5. Considerations for_! Practical Implementation 

The operation of our environment (or local) stack, which holds continuation 
and backtrack information as well as the argt.1t1ents of procedures and vari
able bindings, is based closely on [Warren 80]. At the point where we are 
about to colllI:lence execution of a byte-code block, the top frame of this 
stack is like this: 
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--------------CP (blank) 
CL (blank) 
XR {blank) 
BP 
BL 
TR 
G {blank) 
Argument I ... 
Argument m 
Var 1 {blank) 

••• 
Var n {blank) 

--------~-----
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Continuation {byte-code) Pointer 
Continuation Local stack frame 
XR table for continuation 
Backtrack Point {clause pointer) 
Backtrack Local frame 
Trail marker 
Global stack marker 

The first three words of the frame {marked blank because they have not yet 
been filled in) are for exactly the continuation information that was in 
the continuation stack of the mini-interpreter: the CL pointer allows 
access to the variables of the contination frame. The next four words are 
for control of backtracking. Then come the arguments to the procedure, 
which have already been filled in, followed by the variables which have 
not. 

An argument register, A, is initially set to point to Argument I. Each 
byte-coded instruction matches against the argument pointed to by A and 
then increments it. When a 'functor' instruction matches against an unin
stantiated argument, it creates a new term with uninstantiated arguments on 
the global stack, and A is then set to point to the first of these new 
arguments. The previous value of A is saved on a special stack so that it 
can be retrieved by the corresponding 'pop'. 

We do not actually have to initialise all the variables in the local stack 
frame to be "uninstantiated". The first occurrence of <'var' N) in a 
clause {for each N) is changed to be a new instruction ('firstvar' N) which 
simply assigns the value indicated by A to variable N. If a variable only 
appears once in a clause, there is no point in doing even this much work, 
so there is also a 'void' instruction which does nothing. 

Another improvement we can make is to overlap the variable and argument 
blocks in the stack frame. That is, if a variable appears at the top level 
in the head of a clause, e.g. L2. in append{[XILI] ,L2,[XjLJ]) :- ••• ), then 
we can use the appropriate argll!lerit slot for the variable value, thus sav
ing space and avoiding superfluous assignments. All that has to be done is 
rearrange variable frame offsets appropriately (variables are not actually 
nt.Dllbered l, •• ,n, but by their offsets in the frame), and use 'void' instead 
of 'f irstvar'. 

Without special-purpose hardware, there is bound to be inefficiency in the 
way we have described building terms: first we build the term with all its 
argur.tents uninstantiated, and then subsequent instructions match against 
these uninstantiated arguments and fill them in. This involves ( unneces
sary) testing to see if each argwnent is uninstantiated; also it is in gen
eral necessary when instantiating a variable to test whether or not it 



82 
- 9 -

should be put on the trail. We avoid all this checking, and the need for 
initialising the arguments of the constructed tem, by introducing a new 
mode of interpretation of our instruction set. This is called 'copy' mode, 
as opposed to 'match' mode which is what we have been discussing until now. 
In 'copy' mode data instructions simply copy the data they stand for over 
to A. 

This concept of interpreter modes can also be useful for debugging. In 
nonnal operation, the abstract machine goes to great lengths to throw away 
any information which it will not need again. When debugging, this is 
undesirable, so we plan to include a 'debug' mode in which more information 
is kept. 

One other cooplication should be mentioned. This is the problem described 
in [Warren 80] of dangling references arising from tail~recursion optimisa
tion. We follow his approach of putting variables which may give rise to 
this problem onto the global stack. For this purpose we require two new 
instructions which are global stack versions of 'var' and 'firstvar'. 

6. Related Work 

A compiler for Prolog has been written in POPll by c.s. Mellish at Sussex 
University. This actually compiles Prolog into the POPll abstract machine 
language which is then in turn compiled into real machine language. Advan
tages of this approach are (1) relative ease of implementation, and (2) 
instant access to a good programming environment. The long-term drawback, 
however, is that there is no possibili.ty of tailoring the memory management 
to the special needs of Prolog. The fully general POPll garbage collector 
has to be used (even for backtracking). 

Another approach has been taken by [McCabe 83]. His Abstract Prolog 
Machine is specified at a much lower level than ours, and depends on the 
availability of a LISP style garbage collector of some sort. 

7. Conclusions 

The design we have described is a compromise between pure interpretat-ion 
and pure compilation. Preliminary tests have shown our initial system to 
be comparable in speed with Pereira's C-Prolog interpreter· [Pereira 82]. 
It has the advantage over pure interpretation that it is easier to optimise 
for particular hardware: the kernel of the interpreter is relatively simple 
and compact and well suited to microcoding. 

Our design requires much less space for program storage than pure compila
tion, due to the relatively high level of the byte-code instructions, and 
to the fact that we do not need to store a separate representation of the 
Prolog source code. Also there is the advantage that there is no dichotomy 
between interpreted code (that you can debug) and conpiled code (which goes 
fast) as there is on the DEC-10 system. Finally, our design has the advan
tage of minimising the amount of machine-specific work which needs to be 
done in implementation. 
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It is our belief that people are going to want to run larger and larger 
("knowledge-based") programs, and that therefore the efficiency of both 
program storage and garbage collection will become increasingly important. 
Prolog does not require the generality of a LISP or POP garbage collector, 
so it should have an advantage over these languages if more efficient, 
special-purpose memory management is used. 
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In this session I would like to discuss research methodol,;gy, rather 
than programming methodology, of logic programming. As a basis for discus
sion I propose the following statements, interspersed with text that attempts 
to justify or explain them. 

1 Goals of research in logic programming 
Statement: Logic-programming share the goo.la of comp?.J..ter science 

at large. 

As I see it, there are no major differences between the goals of com
puter science at large and the goals of logic-programming. Both want to solve 
the problem: 
(*) How to make computers do what we want them to? 

This problem has two derivatives: 
(21) How to make it easy for us to make computers do what we want them to? 
( ) How to make computers do fast what we want them to? 

Using a more respectable jargon, the two derivative questions become: 
(1') How to program computers? 
(2') How to make computers run the programs fast? 

Many of us beleive that logic-programming may provide better solu
tions to these problems than the more conventional approaches to computer 
science. 

Statement: The basic method of computer science ia bootstrapping. 
Computer science offers one encompassing methodology for solving 

these two questions, namely bootstrapping. Apart from brilliant new ideas 
(which no methodology can promise to provide), the crucial factor dictating 
the ease in which we can program computers and build faster computers is 
the computerized support available to these tasks. More concretely, the ease of 
programming is determined mostly by the quality of the programming environ
ment available; and the possibility of building cheaper and faster computers is 
determined mostly by the quality of the CAD/CAM systems available. 

Logic programming has a lot to contribute to the general . thrust of 
bootstrapping, and also to provide some briliant new ideas of its own. 

2 Prolog 
Statement: Prolog ia an ezpreasive and efficient programming lan

guage, which we are still learning how to use. 
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Prolog is the first practical logic programming language. It is acquir
ing a growing group of users, who develop for it a rich set of programming 
idioms and techniques, and a refined programming style. Inspite of the initial 
dissatisfaction of Prolog's inventor, Alain Colmerauer, and others wjth the lan
guage, it turns out that its expressiveness is far greater than what was expected. 
It is surprising that such a simple language can lend itself to so many sophis
ticated and powerful programming techniques. Even after programming in 
Prolog for the past three years, lam still learning new methods and techniques 
of Prolog programming. 

Pro log falls short of the aspirations of the founders of logic program
ming in several respects: it has a rather inflexible control, and, to implement 
substantial systems, must resort to features that have only procedural mean
ing (cut, I/0, side-effects). Nevertheless, many of us beleive that Prolog, as 
it is, is a good programming language for many applications. To increase its 
effectiveness, Prolog requires improvements in its speed of execution and pro
gramming environment. 

Statement: Pro log akould be made to run /aster. 

The desire for greater speed needs no justification. If we had as many 
MegaLIPS as we have MIPS, then almost no programming task will have to be 
carried in a lower programming language. 

The speed of Prolog on a von Neumann machine can be increased in 
several ways. One is to improve the basic cycle of Prolog, the unification, by 
providing faster (cached, pipelined, multiported) memory access, by supporting 
the basic unification instructions in hardware or microcode, and by parallelizing 
the unification of subterms. Another is to incorporate in Prolog an abstract 
data-types mechanism, that will support in a logical way interface to efficient 
data-structures. Abstract data-types are needed in order to make more efficient 
use of the resources of the underlying hardware. If substantial systems are to 
be implemented in Prolog, then, given current technology, we cannot afford to 
represent everything as a list of elements. Mutable arrays, strings, and other 
efficient data-structures need to be supported. The only clean way to support 
these in the logic-programming framework is via predicates over abstract data
types. 

Improving Prolog's speed by incorporating high-level parallelism (in 
contrast to the low-level parallelism available in the unification algorithm), is 
discussed in the next section. 
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Statement: Prolog needs a better programming environment. Prolog 
programming environments are best implemented in Prolog. 

Given the short time they exist, and the number of man-years devoted 
to their development, some of the current Prolog programming environments 
are quite impressive. The main problem that prevents further, or faster, 
development, is that every new Prolog implementor reinvents the wheel. This 
phenomenon is most evident in the development of the Edinburgh Prolog 
family, in which every new implementator has implemented the programming 
environment from scratch. 

One of the most important properties of Prolog is that it is an excellent 
language for developing its own environment. By defining a small core-Prolog, 
which is expressive enough to implement a full environment, a new Prolog 
implementor can simply implement this core, and port the environment from 
a previous implementation. The availability of such a core will also support 
distributed implementation efforts, in which different tools are implemented in 
different locations. This is in contrast to the current situation, in which the 
burdon of implementing a reasonable environment for Prolog falls solely on the 
implementor of the core Prolog and its close associates. 

My experience suggests that a subset of the system pr4~dicates of 
Waterloo Prolog, or those of Edinburgh Prolog augmented with . the 'retry' 
and 'ancestor-cut' predicates, are expressive enough to implement almost any 
tooi desired. Many system predicates in Edinburgh Prolog are better viewed as 
utilities that are, in principle, implementable in core-Prolog, but are provided 
for the sake of convenience or efficiency. 

Statement: Prolog should be kept a small. 

There are two good reasons for keeping the core of Prolog small. 
One is intellectual economy. I think we are still learning how to program 
in Prolog. A baroque set of features (cf. IC-Prolog[4]) will prevent us from 
identifying what is essential and what is superfluous, and will not encourage the 
development of innovative programming techniques that squeeze every ounce 
of expressiveness from a small set of constructs. 

Another good reason to keep Prolog small is related to the discussion 
of programming environments and bootstrapping. If there is a small Prolog 
core, in which everything else is implemented, then: 
1. Developing a new or better Prolog requires less effort. 
2. A new Prolog implementation does not need a new environment. 
3. Sophisticated Prolog programming tools, that know about all core-Prolog 

system predicates, are easier to develop. 
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An example of an enhacement to Prolog that can be implemented 
in core-Prolog is a module and type system. Most current Prolog implemen
tations resemble an assembly language, rather than a high-level programming 
language, in their flat name space of procedures, and in their lack of support of 
any type system. It is clear that a facility for modular programming is neces
sary for substantial systems to be developed in Prolog by many programmers. 
MProlog [14] supports a notion of modules. However, its implementation is in a 
low-level language, and cannot be ported to other Prologs. On the ether hand, 
[5] showed that modules can be implemented easily in Prolog, by preprocessing, 
without affecting the Prolog core. Since the preprocessor is written in Prolog, 
it can be ported, in principle, to any compatible Prolog implementation. 

Another example is the Prolog-10 debugger [1]. It is implemented 
almost solely in Prolog, but pieces of it which are implemented in a lower 
level language (pseudo-Prolog), prevent it from being easily. ported to a new, 
compatible, Prolog implementation, such as CProlog. On the other hand, the 
debugging algorithms in [12] are implemented solely in Prolog. 

Inspite of what is said, investigating extensions to Prolog is still a 
useful activity. I beleive that any extension to Prolog's core should satisfy at 
least the following three criteria: 
1. It can be demonstrated, with non-toy examples, that the extension is 

useful. 
2. The extension cannot be implemented in Prolog (e.g by preprocessing). 
3. The extension can be implemented efficiently, and does not incure runtime 

overhead when not used. 
Examples of extensions that can be implemented in Prolog are second 

order predicates (setof, bagof) [15] and modules [5]. Examples of extensions 
whose implementation seem to induce run-time overhead even when not used 
are selective backtracking [10] and several other forms of more sophisticated 
control [4], [11]. 

In addition to supporting its own environment, I beleive that Prolog is, 
in principle, an ideal language for implementing a VLSI CAD system. The main 
requirements of such a system are the ability to integrate ·a large database with 
algorithms that manipulate it. No other programming language supports both 
database and algorithmic functions in the way Prolog does. The main obstacle 
to realize such a pratical system today seems to be Prolog's inefficiency. 

3 Concurrency 
Statement: Prolog is not suitable for expressing concurrency. 
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lnspite of its expressivness in general, Prolog has a major blind-spot: 
it is not suitable for expressing concurrency. This means that in order to 
build a Prolog machine we must either extend Prolog substantially, or use 
a lower programming language to implement multi-tasking. Needless to say, 
multi-tasking is an essential feature even in sequential computers. 

There have been many proposals to incincorpoe more so?histicated 
control-constructs to Prolog, to support coroutinning and concurrency, e.g. in 
IC-Prolog, Prolog-11, MU-Prolog, and Epilog, among others. It seems that none 
of those is both expressive and efficient enough to implement a multi-tasking 
operating system. 

Statement: Concurrency and don i-know nondeterminism {deep 
backtracking) do not miz well, but can be interfaced. 

The Relational Language of Clark and Gregory [2] and Concurrent 
Prolog [13] take a different approach. They give up Prolog's non-determinism 
(implemented by deep backtracking) for the sake of expressing concurrency. 
The memory management of these languages is very different from that of 
Prolog, therefore integrating the two efficiently on a von Neumann machine 
is a non-trivial problem. Also, my experience with programming in Concur
rent Prolog suggests that applications that require concurrency do not require 
non-determinism, and vice versa. A good interface between Prolog ( or a logic 
programming-based database machine) and concurrent logic-programming lan
guages are set expressions, or Prolog's setof predicate, as suggested by Clark 
and Gregory [3]. The availability and sufficiency of such an interface reduces 
the need for an immediate integration of the two languages. 

4 Parallelism 

Statement: Parallel ezecution of Prolog is difficult. 

Logic programs offer two kinds of parallelism: Or-parallelism and Ap.d
parallelism. Or-paralelism means trying several candidate clauses in parallel. 
And-parallelism means trying to solve several goals in a conjunction in parallel. 

One approach to designing a logic programming language for parallel 
computers is to patch Prolog. However, since Prolog was designed specifically 
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for efficient execution on a von Neumann machine, it is not clear that it is 
a good starting point. Adding Or-parallelism to Prolog is not so difficult 
concenptually. One problem is the cut. If cut is used to implement implicit 
negation (a substitute for if-then-else) and defaults, then Prolog programs 
may behave incorrectly when executed in Or-parallel mode. This is a difficult 
problem, due to the pervasiveness of this use of cut. Another problem is 
memory management. The overhead of maintaining seperate environments for 
the Or-parallel subcomputations may eliminate the benefits gained from their 
parallel execution. 

Incoprorating And-parallelism into Prolog is far more diffi~ult. 

Statement: And-parallelism and Or-parallelism have different ap
plications, and are beat explored independently. 

Since the problems of parallel computers are so difficult, and there is 
so little positive experience with them in other branches of computer science, 
I think it is much more sensible to start small. 

The first step is to examine the uses of the two kinds of parallelism. 
Or-parallelism is useful for speeding the solution of problems that require 
search. One significant class of search problems are database queries. In 
many applications, however, good algorithms can often provide a substitute for 
simple brute-force search. And-parallelism is useful for implementing parallel 
algorithms. The class of problems for which efficient parallel algorithms have 
been designed is increasing rapidly. The existence of computers that can 
actually run them will no doubt increase the pace in which they are produced. 
These observations suggest that And- and Or-parallelism have different, disjoint 
applications, which, at least initially, are best studied seperately. 

The design of an Or-parallel database machine is an important and 
challenging problem. The close relationship between logic programs and rela
tional databases suggests that ideas and concepts from relational databases can 
readily be put into use within the logic programming framework. 

Concerning And-parallel machines, my view is that simple languages 
such as the Relational Language and Concurent Prolog are a good starting 
point. These languages are expressive enough in their current form for a 
parallel implementation of them to be useful and interesting. Hence their 
incporporation with the more powerful features of sequential Prolog may be 
postponed until the problems of building a parallel machine for these simpler 
languages are better understood. 
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5 Logic vs. control 

Statement: Efficient algorithm, cannot alway, be obtained by twid
dling with the control of logic program,. 

Some of the research on logic programming was guided by the desire 
to find some 'philosopher's stone': a notation that eliminate the need to think 
algorithmically. Kowalski's celebrated equation [6]: 

Algorithm = logic + control 

have suggested to many [4],[7],[8],[10], that if only we could find the 'right' 
control regime; we could factor the task of devising and implementing efficient 
algorithms into two, independent subtasks: defining the logic of a solution to 
a problem, and converting it into an efficient algorithm by imposing control 
on it. I beleive that this interpretation of the equation is too strict. It is 
impossible, in general, to specify sophisticated algorithms-just by modifying 
the control component of a logic program. No massaging will make a logic 
program that specifies the exponential generate--and-test permutation sort into 
quicksort. The same statement is certainly true for less basic algorithms. 

Statement: Sopkiaticated control ha, large runtime overhead, hence 
it is beat implemented in an embedded language. 

The sophisticated control regimes developed in response to Kowalski's 
equation usually have an unacceptable runtime over head. Hence they cannot 
be incorporated in a base language. An alternative way to achieve sophisti
cated control is to implement embedded languages in Prolog. Implementing 
interpreters for embedded languages in Pro log is by now a well understood 
technique [9]. 

Statement: Compile-time optimizations are auperior to runtime op
timizations. 

One of the goals of sophisticated control is to make certain logic 
programs run faster. This approach may be called "runtime optimization". 

Whenever a runtime optimization of an inefficient logic program rep
resents a traektable algorithm, it is usually possible to implemente the algo
rithm directly in ordinary Prolog. The transformation of inefficient logic pro
grams to efficient Prolog programs may be called "compile-time optimization". 

It is my (unsupported) beleif that compile-time optimizations repre
sent a more promising approach than runtime optimizations. 
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6 The Fifth Generation Project 

Statement: Logic-programming machine, will require new solution, 
to old problems. 

One goal of the Fifth Generation project is to construct computers 
with a new machine language, based on logic. To realize such machines we will 
have to address many questions which are already solved for von Neumann 
computers. There is a lot to learn from the old solutions, but one measure for 
the viability of logic-programming is the quality of the new solutions it will 
provide to these old problems. 
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~ntroduction: "between the expectation and the reality lies 
the shadow" 

The paper comments on the view that Prolog, as an 
ixemplar of logic programming, is a candidate for a 
ipecification language and as such provides specifications 
:1th a declarative (standard model theoretic) reading, but 
rith the bonus that such specifications can be re-interpreted 
irocedurally and without change as providing implementations 
if the specifications. 

I As a specification, a Prolog p~ogram [A,G] is to be 
fhought of a sequent A=> G. It is well-known, however, that 
lrolog is an incomplete system: that is, there exist Prolog 
irograms [A,G] where A is a sequence of Horn clauses 
nd G a conjunction of predications such that the 
orresponding clausal sequent A=> G is a true -sequent and 
et the Prolog program [A,G] does not terminate 
uccessfully. A simple example illustrating this 
ncompleteness is the Prolog program [A,G] where A is the 
equence of clauses . 

1. mem(U,[VIL]) :- mem(U,L) 

2. mem(U,[UIL]) 

G is the goal statement 

mem(a,[alM]) 

, In executing the goal statement Prolog repeatedly uses 
lause 1 in the procedure for list -membership generating the 
~finite sequence of goal statements 
I 
I 

mem(a,[alM]) 
mem(a,M) 
mem(a,M1) where Mis bound to [V1IM1] 
mem(a,M2) where M1 is bound to [V2IM2] 

, Prolog does not prove the true sequent A => 
~m(a,[alM]). In fact, with 'mem' specified with the ordered 
air of clauses above in some more general sequence of 
lauses A , Prolog will not establish the truth of any 
~quent involving a call of 'mem' on a list with variable 
I• 1 ,1 . 

45 
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In this 
of A would 
Indeed, the 
reordering is 
ordering. In 
of clauses 

example a simple reordering of the clauses 
result in acceptable computational behaviour. 
set of Prolog proofs generated with the 
a superset of those generated with the original 
this particular example, with A the sequence 

1. mem(U,[UIL]~ 

2. mem(U,[VIL]) :- mem(U,L) 

the membership 
synthetically 
Thus, if G 

relation is very 
(constructively) as 

is a goal such as 

m em ( a • [ b I M ] ) 

well 
well 

behaved and acts 
as analytically. 

then the Prolog program succeeds with, for-example. M bound 
to· [ a IM• ] • 

Prolog programmers might rationalize the problem of 
which this example is a symptom by insisting that, although 
one wishes to take advantage of the model theoretiri semantics 
of Horn clauses in viewing a Prolog program as a lucid 
specification, one should be willing in Prolog as in any 
other language, to rewrite (transform) one's specification~ 
now viewed as a program, with the pragmatics of the 
procedural interpretation (defined by the particular 
interpreter or whatever) in mind. 

In the particular case of 'mem', and with the procedural 
interpretation of Prolog firmly in mind, one might 
rationalize away any unease with so~e argument that "it's 
obvious that one should have given the base case of the 
recursion first" and in this Prolog is no worse than a 
"conventional" applicative language where the "same thing" 
might have happened. Certainly Prolog programmers are well 
aware of the problem and acknowledge it (see for example 
Clocksin & Mellish, 1982). My readings, however, lead me to 
believe that many still do not treat the phenomenon with the 
seriousness it deserves. This note exploits one of my own 
five-finger exercises using Prolog in the hope of drawing 
further attention to the problem. 
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Let•s now turn to a more focal example: that of using 
rrolog to write a specification of a solution of the eight 
[ueens problem. We specify a board position by an ordered 
1air of row and column numbers (r,c) l=<r,c:<8 • We wish 
fo specify the set of subsets of size 8 such that no two 
,embers of a subset lie on the same row, column or diagonal. 
fe take advantage of the fact that the interpretation of a 
iequence of the eight numbers 1 to 8 as a set of ordered 
lairs (r,c) , where c is the r'th number in the sequence. 
luarantees that no two members of the set have the same row 
Ir column number. With this representation of subsets we 
iimply have to restrict the sequences to be such that no 
~o (r,c) pairs in the represented subset are-on the same 
jiagonal. 
! 

I With this preamble we might begin to specify a solution 
lo the eight queens problem with the Horn clause 
' 

1. queens(Q) :- perm([1,2,3,4,5,6,7,8),Q) , dsafe(Q) 

~th the intended interpretation that .perm(M,N) specifies 
~at the lists M and - N stand in the (symmetrical) 
~lation permutation to one another, and that the predicate 
psafe' will be suitably specified to capture the intended 
nterpretation discussed above. 

I So far, so good: the specification has a very clear 
Ddel theoretic (declarative) semantics contributing to our 
~tended interpretation - still to be filled out by 
becifications of 'perm' and 'dsafe'. Let's look at the 
bllowing specification taken from Clark , and McCabe's 
reatment of the eight-queens problem ( 1979): 
I 

1. perm([],[]) 

2. perm(L,[UlM]) :- inserted(U,L,L1) • perm(L1,M) 

3. inserted(U,[UIL],L) 

4. inserted(U,[VIL],[VIM]) :- inserted(U,L,M) 

1ere 'inserted(U,L,L1)' has the intended interpretation 
!at the list L is the list L1 with the element U 
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inserted at some (arbitrary) position. 

Again these specifications could be claimed to have 
clear and acceptable declarative readings. We will assume 
that 'dsafe' can be equally nicely specified - it has no 
detailed pedagogic role to play in our example. 

We seem then to have exploited the model theoretic 
semantics of Prolog to obtain a very clear and complete 
specification of a solution to the eight-queens problem by 
the set of Horn clauses 1.2 •••• Let us call this set of 
sentences "A" • The existence of a' solution to the eight 
queens problem could now be asserted by the sequent "A=> 
queens(Q)" • 

Prolog would instantiate Q properly. However, if 
clause 1 of the specification were changed to the apparently 
_equivalent clause 

1. queens(Q) :- perm(Q,[1.2,3,4,5,6,7,8]),dsafe(Q) 

leaving everything else unchanged, then Prolog would .D..Q..t 
instantiate Q • 

This remark is not intended as a criticism of Clark & 
McCabe, but to draw attention again to the difference between 
possible expectations and the reality. One has the 
expectation that a satisfactory axiomatization of 'perm' 
would necessary capture the symmetry of the· relation. The 
Prolog implementation of the axiomatization by Clark & McCabe 
does not. In the context of its sole use in a particular 
axiomatization of the eight-queens problem, the effects of 
asymmetry have been nullified: in· general, however, this 
might be treating the symptom rather than the disease and 
would become increasingly opaque in more complex problems 
involving deeper nestings of axiomatized relations. 

The difficulty of the Clark & McCabe axiomatization lies 
in the fact that if one backtracks to a call 
of perm(M,L) where M is a variable, then clause 4 for 
inserted is repeatedly used, each use generating a candidate 
permutation M consisting of a list with one more 
uninstantiated variable at its head and an uninstantiated 
variable tail, each of which candidate permutations finally 
fails the call perm(M,[]) - as, of course, it should! 
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, It might be thought this problem with 'perm' could be 
of Prolog in some :ol ved by using meta-logical features 

lpecification such as: 

1 • perm(L,M) :- nonvar(L) 
' ! 

' 
perm1(L,M) 

2. perm(L,M) :- nonvar{M) • ! , perm1 (M, L) 

3. perm 1 ( [], []) 

4. perm1(M,[UIL]) :- inserted(U,M,N) • perm1(N,L) 

5. etc., etc. 

!i th the intention that "perm 1" is only called with an I 

IPPropriately instantiated argument pair such that "inserted" 
1s well-behaved. This specification would certainly "solve" 
~e original problem associated with the eight-queens 
~ecification: however, the new specification of "perm" 
•haves in a similar way to the first for pairs of calls such 
~ "perm([1,2,3],(21L])" and "perm([2IL],[1,2,3])". 

ln order to emphasize the point made earlier about the 
btivation of this brief note, a digression is in order. The 
~llowing is a quotation from comments by an unknown referee 
~resumably chosen for his expertise) of an earlier version 
r this note: . 

" ••• ;for that matter any Prolog programmer 
knows or should know, that if he wants his predicate 
to work independently of the data flow he m.Y.at, be 
careful; hence program • • • is ..ll.Q.t to be written if 
one knows that L can be a free variable or 
"infinite" (i.e. end up with a free variable); 
further the problem is not necessary with "perm", it 
can be argued that it is with "inserted ": one 
should then write: 

inserted(U,V,L) :-
not var(V), !·, insert(U,V,L) 

where "insert" is given by 

insert(U,[UIL],L) 

insert(U,[VIL],[VIM) :- inserted(U,L,M) 

97 . 
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Admittedly this is a partial solution, but is 
it correct in all cases whe~e inserted is called; in 
particular perm([1,2,3],[2lL]) gives the two 
correct answers for L and M; similarly 
for perm([2IL],[1,2,3]) which fails ••• Hence 
there is a natural way to get it right." (My 
underlining - E.W.E.) 

Adopting the referee's suggestion, the 
specification of "perm" becomes: 

perm([],[]) ' 
perm(L,[UIM]) :- inserted(U,L,L1) , perm(L1,M) 
inserted(U,V,L) :/ not var(V), !, insert(U,V,L) 
insert(U,[UIL],L) 
insert(U,[VIL],[VIM) :- inserted(U,L,M) 

Note that the referee has essentially addressed 
the subproblem of non-termination by making one of 
"perm(M,L) 11 and "perm(L,M) 11 !..ail! I did not and 
still do not regard this as a "natural 11 way to get 
nil" right! 

Finally, to avoid potential misunderstandings 
let me stress ·that this somewhat curious digression 
has been made to emphasize that my men are not all 
strawl Some are flesh and blood and refereeing! 

Returning to the symmetry problem: in all 
cases the incompleteness stems fr·om the potential 
for generating objects from an infinite domain by 
backtracking. Both the specification of "mem" at 
the beginning of the paper and our specifications 
of "perm" give trouble for this reason. 

In the case of "mem" the difficulty was 
removed by a reordering of clauses with the result 
that no new candidate was generated "unnecessarily". 
In the case of "perm" the problem is deeper: it 
cannot be solved by reordering nor by meta-logical 
wizardy which indeed addressed the "wrong" 
problem. Equally important, this kind of 
incompleteness is potentially difficulty to detect -
particularly when the calls to an offending m-ary 
relation are part of higher relations themselves 
possibly with completeness constraints of their 
argument tuples. Thus, in our introductory 
pedagogic context. the call of 
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11 perm([1,2,3,4,5,6,7,8],Q)" comes from the body of 
the specification of "queens". Although, as already 
mentioned, once having diagnosed our difficulty, it 
is not onerous to change the call 
to 11 perm(Q,[1,2,3,4,5,6,7,8]) 11 , one could easily 
construct more sophisticated examples where the 
choice of appropriate orderings of argument tuples 
could become quite a tricky problem. 

In the· case of our illlustrative example 
of "perm", and having identified that the 
difficulty stems from the potential for "inserted" 
in the specifications above to generate an infinite 
sequence of objects each of which possesses a 
property which is going to lead to failure. we can 
see that it is possible to respecify "perm" to 
make this impossible. There are two interestingly 
different ways to do this. 

The property in the "perm" . specification is 
that each of the generated lists, L , say, has a 
length one greater than its predecessor and that the 
initiation of backtracking takes place by a failure 
of 11 perm(M,[]) 11 ! Recognition of this motivates the 
specification: 

1. perm(L,M) :- samelength(L,M) , perm1(L,M) 

2. samelength([],(]) 

3. samelength([UIL],[VIM]) :- samelength(L,M) 

4. < clauses specifying 11 perm1 11 as in Clark & 
McCabe specification above. say> 

With this specification, any call of "perm" 
with an argument tuple which fixes the common 
(finite) length of the argument lists will lead to 
"inserted" being called in a context in which 
generation of an infinite sequence of objects cannot 
occur. For example, one of our earlier "problem" 
calls 11 perm([2IL],[1,2,3]) 11 would now result in 
11 perm1([2IL],[1.2,3]) 11 being called in an 
environment in which L is bound to the list [X,Y]. 
In effect we have a call of 
11 perm1([2,X,Y],[1,2,3]) 11 : which call does not permit 
infinitary generation. 
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One might, somewhat impudently, present the 
specification with the motivation that the intended 
procedural reading is to be "well, we'll do a quick 
check that the two argument lists are indeed 
globally consistent with the relation of permutation 
before we get down to crossing the i's and dotting 
the t's" !!! Indeed, in the case 
where L and M are both explicit finite lists 
then "samelength" acts like this (apart from the 
tongue in cheek adjective "quick"). More generally 
however "samelength" acts tp construct the most 
general finite lists L and M which can satisfy 
"samelength(L,M)" and it has been introduced into 
the specification for just this reason. 

A second (and more "honest"?) way to 
axiomatization which is symmetric under 
interpreter is to use a subtler kind of 
and write the 'constructive' axioms: 

perm([],[]) 

obtain an 
the Prolog 
redundancy 

perm(X,Y) :- perm(X1,Y1) , inserted(U,X,X1) 
inserted(U,Y,Y1) 

with the previous axiomatization of "inserted". 

Here.we simply have the embarrassment that each 
of the permutations is generated twice! 

"This is a long cautionary tale" said the mouse. 

The Prolog "perm" saga ~oes not end here. What 
happens if one wants the~ of permutations of some 
finite list say? 

Sets of consequences in Prolog are handled by a 
non-logical operator "set-of" which essentially 
explores the whole potential sequent space 
aggregating appropriate instantions of variables in 
provable sequents. 

Certainly "set-of" 
axiomatization of "perm" 
"samelength" device within 
device. 

works with 
using the 

the domain of 

the 
covert 

this 
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However, "set-of" does JlQ.t work with the more 
·"honest" axiomatization immediately above and for 
the same reason as for previous failures: "set-of" 
eventually enters an infinite search space, and we 
once again have the problem of non-termination. 

We see here a subtle interaction in Prolog of 
incompleteness (in the obvious sense), and 
no~-logical operators specifically introduced to do 
what otherwise couldn't be done! 

' An adjournment 

Having got the bit between one's teeth and with 
the success of 'samelength' to motivate one. one can 
return to the original attempt at a direct symmetric 
specification of "perm" and try 

perm([],[]) 
perm([XIL],[XIM]) :- perm(L,M) 
perm([XIL],[YlM]) :- inserted(X,M,M1,Y,L,L1) , 

perm(L1,M1) 
inserted(X,[XIM],M,Y,[YIL],L) 
inserted(X,[XIM],M,Y,[Y1lL1],[Y11L2]) :

inserted(X1,M;M1,Y,L1,L2) 
inserted(X,[X1lM1],[X1IM2],Y,]YIL],L) :

inserted(X,M1,M2,Y1,L,L1) 
inserted(X,[X1lM1],[X1lM2],Y,[Y1lL1],[Y11L2]) :-

inserted(X,M1,M2,Y,L1,L2) 

where. inserted(X,L,L1,Y,M,M1) has the intended 
interpretation that L(M) is the list L1(M1) with 
X(Y) inserted in it. This is Prolog - symmetric and 
works with "set-of". (Of course, one should prove 
these statements?) 

The necessity for the 6-ary function and the 
multiplicity of cases in the model theoretic reading 
rather detract from any sense of achievement! 

summary 

The late Christopher Strachey told the story 
that whenever he gave talks on his design for the 
language CPL, he would inevitably be asked "but can 
it do so-and-so?" Strachey claimed that as the 
designer of a good programming language there were 
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only two possible answers he could give and they 
were either "of course it can!", or "of course it 
can't!" 

One of the difficulties with Prolog is that it 
does not meet this criterion and this note has 
attempted to give a simple example of an important 
way in which it fails. In a phrase: Prolog holds 
out promises it cannot fulfill. In particular, to 
have to consider potentially difficult proofs of 
termination of procedural readings of obviously true 
sequents, seems to run counter to one's intuition of 
what "logic programming" is all about. One of the 
reasons for the author's concern is that it is like 
Absys (Foster, 1969) in this. Examples of other 
ways in which Prolog fails to meet Strachey's 
criterion could be given. It may well be that there 
will emerge brands of logic programming languages 
that will be both pragmatically useful and which 
will indeed meet Strachey's criterion. It is 
consistent with the goals of much current research 
in Artificial Intelligence that the cause of 
difficulties arising from a first tentative 
specification might be automatically diagnosed and 
rectified by a suitable respecification and, as an 
issue in the study of knowledge representation and 
use, some form of the problems identified with 
Prolog above will have to be faced as part of that 
study as such. 

In the absence, however, of substantive 
progress on such issues it might be better to 
recognize that the goals of logic and the goals of 
programming should be regarded as essentially 
different unless proven otherwise. The goal of 
logic as usually conceived is to exhibit what things 
follow from what. The goal of programming as 
usually conceived is to exhibit how to construct 
something from oiher things. Although "what follows 
from what" certainly provides the framework in which 
a construction is demonstrated to be valid, to call 
this validation process "control", at least in the 
simplistic sense of current computational control 
structures, and to regard Prolog programming as 
"logic plus control" e.g. Kowalski~ 1979, is to 
stretch a good catchphrase too far. In what sense, 
for example, is it appropriate to regard the 
1 samelength' assertion as a control component of the 
specification of 'perm' in the example above? Like 
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most provoking catchphrases, "programming as logic 
plus control" can be given interesting 
interpretations. However, for now a better 
catchphrase, if one wants catchphrases at all, might 
be that "logic is (Prolog) programming minus 
control": a Prolog program, [A,G] , terminating 
or not, stripped of a particular procedural 
semantics with its particular concomittant 
'control', and re-interpreted as a sequent A=> 
G , is always, if true# demonstrably true in first 
order logic. (The asymmetry in the two catchphrases 
is, of course, only in the'eye of the believer!). 

As mentioned in the introduction, although the 
declarative aspect of computational text is very 
important and has been increasing illuminated by the 
study of the relation between logic and programming, 
the relationship between consequence and 
construction is very subtle, and its subtlety must 
be· respe_cted. 

The content of this note and, in particular, 
the relationship between consequence and 
construction, is being elaborated in a further 
technical report in preparation. The work is being 
conducted under Operating Grant Number A9123 from 
the Natural Sciences and Engineering Research 
Council of Canada. 
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We describe a polymorphic type scheme for Prolog which makes static type 

checking posslble. Polymorphism gives a gooa degree of flexlblllty to the type 

system. and makes it intrude very little on a user's programming style. The only 

additions to the language are type declarations. which an interpreter can ignore if it 

so desires. with the guarantee that a well-typed program will behave identically with 

or without type checking. Our implementation is discussed and we observe that the 

type resolution problem for a Prolog program is another Prolog < meta-> program. 

1 Introduction 

Prolog currently lacks any form of type checking. being designed as a language 

with a slng·le type C the term> . While this is useful for learning it initially and for fast 

construction of sketch programs, it has several deficiencies for its use as a serious 

tool for building large systems. 

We have observed that a theorem prover which reasons about Prolog programs 

can be more powerful .if it has type information available. One indication as to why 

this is so can be seen from the fact that the traditional definition of append has 

append< nil. 3. 3) deducible from its definition. 

One very good reason for a type system Is that it can provide a static tool for 

determining whether all the cases In a Prolog predicate have been considered. For 

example. a predicate defined by 

type neg list< list< int> . list< int>> 

neg list< cons<A. L>. cons( B. M> > .. negate CA. B>. neglist< L. M> 

will never succeed. since we have probably omitted the clause 
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negllst< nil. nil> -

A type system would enable us to detect this by checking for exhaustive specificatior 

of argument patterns tor a given data-type. Of course. if we really did want a 

certain case to fail. then adding a clause such as 

neg list< nil. nil) - fail 

would be an explicit way of requesting such an event without leaving first-order logic 

< and would facilitate tater reading of the program>. 

Moreover. our type system can be used as the basis of an encapsulatior 

providing an abstract data type facility. The ability to hide the internal details of c 

given object greatly aids the reliability of a large system built from a library o 

modules. 

Finally. we note that static type checking cannot of itself provide a great increase 

in speed of Prolog programs. due to the fact that term unification must still be 

performed. as in the dynamic case. However. typed Prolog can improve the speec 

of compiled clauses of a given predicate by using a mapping of data constructor~ 

onto small adjacent integers to enable faster selection of the clause( s> to be 

invoked. By far the greatest gain is that of programmer time provided by earl~ 

detection of errors. 

As far as we know this work is the first application of a polymorphic type schemE 

to Prolog, but related work includes Milner's work (41 on typing a simple applicative 

language which is used in the ML [31 type checker and the HOPE language whict 

uses a version of Milner's algorithm extended to permit overloading. However. thi: 

work differs from these In several respects. Firstly, the formulation of Prolog a: 

clauses means that the problems of generic and non-generic variables are muct 

reduced. All predicate and functor definitions naturally receive gener'::; polymorphic 

types which can be used at different type instances within the program whilst al 

variables receive non-generic types. Moreover. our formulation for Prolog removei 

a restriction in Milner's scheme in which all mutually recursive definitions can only bE 

used non-generically within their bodies. Thus in ML the ( rather contrived> progran 
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let rec Ix= x 

and f X = I ( x+ l ) 

and g x = if l<x> then l else 2 

would be ill-typed. Since all Prolog clauses are defined mutually recursively. this 

restriction would have the effect of making the polymorphism useless. 

2 Mathematics 

We assume the notion of substitution. a map from variables < and terms by 

extension> to terms. ranged over by 9 and t,. An invertible substitution is called a 

renaming. If a term. u. is obtained from another. v. by substitution then we say 

that u is an instance of v. and write u(v. We write usv if u(v and v(u. This means 

that u and v only differ in the names of their variables and that the substitutions 

involved are renamings. Also assumed is the notion of most-general unifier ( MGU> 

of two terms. 

For any class of objects S. the notation s* will be used to indicate the class of 

objects consisting of finite sequences of elements of S. 

3 Prolog 

The simple variant of Prolog we consider will be defined by the following syntax 

C we assume the existence of disjoint sets of symbols called Var. Pred and Functor. 

representing variables. predicates and functors symbols respectively>: 

Term · · - Var I Functor< Term*> 

Atom ::= Pred(Term*> 

Clause : : = Atom ... Atom* 

Sentence : : = Clause* 

Program : : = Sentence: Atom 

Resolvent : : = Atom• 

By definition of clause form each. implicitly universally quantified. variable appears 

In at most one clause. To make the formal description of typing simpler. we assume 

that the textual names of variables also follow this rule. A program then is given by 

a 1inite list of C Horn> clause declarations. followed by an Atom C short for atomic 

formula) • called the query. to evaluate in their context. It specifies an initial 

resolvent by taking the query and treating it as a· one-element list. 
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The evaluation mechanism for Prolog is very simple. and based on the notion 01 

SLD-resolution as the computation step: 

SLD-resolution is the one-step evaluation which transforms a Resolvent. Given a 

resolvent 

R = A1 ..... An 

we select an Atom. the selected atom. say Ak, < this Is often A1 In real Prolot 

interpreters) and perform resolution with it and a matching clause. So. choose a 

clause of the program. the selected clause. say Q, given by 

C +- 8 1 , ...• Bm 

and suppose that R has no variables in common with it < otherwise we must rename 

Its C Q's> free variables since they are implicitly universally quantified for the clause> . 

Now let 9 be MGU<Ak. C> if this exists. If it does. then we can rewrite R into R' 

given by 

9(A1 •...• Ak_1 • B1 , ..• Bm. Ak+-1 ... .. An). 

The most common form of Prolog interpreter uses k=l when this expression simplifies 

somewhat. 

An answer is produced when the resolvent is rewritten into a sequence of zerc 

atoms. The associated answer to such a rewriting sequence is the composition o 

most-general unifiers encountered during the rewriting process. or rather it~ 

restriction to the variables in the query. 

Observe that the above specification only told us how we could produce an answe1 

(if one exists> from a Prolog program. For computation the choices above ( the 

selected atom and clause> must be incorporated into a deterministic tree saarchin~ 

algorithm. which we take time to explain below for the reader's benefit. However. 

we would like to stress now that the results on type-checking given in section 5 wor• 

for any order of evaluation <choices of atoms and clauses> of Prolog programi 

< de c th-first/breadth-first/ coroutlning/ par alleD . 
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3. 1 Digression: SLD-trees 

The Idea of SLD-resolutlon above. leads to the Idea of an SLD-tree: whenever 

we are forced to select a clause then. instead of Irreversibly choosing a given 

matching clause. we construct a tree of resolvents Can SLO-tree> where a resolvent 

has a son resolvent for each clause which matches with the selected atom. A 

sensible computation ( the standard implementation of Prolog> is then to search this 

tree in depth-first left-right manner. 

Some branches die out. in that no clause matches the selected atom. whereas 

· others have more than one subtree contribute to the answer. This is often referred 

to as the non-determinacy of Prolog. 

Finally. we remark that there is never any need to seek alternatives to the 

selected atom - In fact doing so would merely lead to duptlcatlon of answers exhibited 

elsewhere in the SLD-tree. < For more details on this aspect see (1)). 

4 Types 

The scheme of types < Type> we allow are given by the following grammar and are 

essentially the same as those which occur in ML (31. We assume disjoint sets of type 

constructors CTcons. ranged over by roman words) and type variables (Tvar. ranged 

over by greek letters like a. P. 'Y>. These are also assumed to be disjoint from Var. 

Pred and Functor.· 

Type : : = Tvar I Tcons< Type*> 

Type will be ranged over by paT . .. 

variables. Otherwise it Is a polytype. 

A type is called a monotype if it has no type 

For examples. we suppose that Tcons Includes the nullary constructor int and the 

unary list. Example types are then 

list( a>. int. list< list< int>> • etc. 

Note that the third type is an instance of the first. 
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4. l Digression: the Unary Predicate Calculus 

The type systems used in r. 3.ny Al programs are variants or restrictions of th, 

Unary Predicate Calculus. However. UPC is not adequate as the single type sys ten 

tor an Al programming language. Rules such as 

C"I N. U integerCN> & int_listC U =:::r int_list<cons<N. U > 

< V U int_list< U ==:a ( L=nil V integer( car< U)) 

cannot be expressed In it. 

5 Well-typing of Prolog 

This section contains the central definition of a Prolog program being well-typed 

together with precursor and auxiliary definitions. Many. of the ideas appear in {4 

where a polymorphic applicative language is typed. but our formulation for Proto, 

poses new problems and simplifies old ones as we discussed in the introduction. 

Let Q the clause c~s, .... Bm and P be a finite subset of VarUPredUFuncto 

containing all the symbols of Q. We define a typing P of P to be an association c 

an extended type to each symbol occurring in Q. The types are members of a give 

algebra as defined . in section 4. Predicates and Functors are associated wit 

extended types as given below. Types and extended types will be written as 

superscript on the object they are associated with. ai and T will represent < non 

extended) types. For each variable X occurring in a. P will contain an element c 

mu mrm ~T, r{U QAt:m PfQfllAi;JlQ i;J AT ijfllY K rn Q, p WIii QArtli;Ufl ijfl QIQfflQnl m m 

form a0 P • · • • 0 k. For each functor f of arity k in Q, P will contain an element of th 

Term ,ca,.··· .ak>--r, 

Similarly. the clause Q will be written as a typed clause Q by the writing of a typ 

on each term < this includes variables> . 

As an example of a clause and its typing consider the clause Q. given by 

appCconsCA. U, M, cons CA. N)) - appC L. M. N> 

The set P = CA, L. M. N. app. cons} gives its set of symbols. and a typing < which wi 

turn out to be a well-typing considered later> can be given by P: 
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where T Is used for a shorthand for list< a> and the associated clause typing a given 

by: 

P _will be called the typed premise of Q due to the relation to theorem proving. 

Fortunately. it will turn out that most of the mess of types written above are inter

dependent and the above expression can be well-typed much more succinctly - see 

later. 

We will now define Q to be a · well-typing of Q under P. written P t- Q if the 

following conditions hold: 

l . P t- CA ... 8 1 ••..• Bm> if 

A = a<t[1 •...• t{k> and aP E:P 
with ( r, ..... Tk) S!p 

and P I- t{1 C 1 (i<k> 

and P t- 8 1 < l (i(m) . 

2. P I- A if A is an Atom and 

A - (tT1 t.Tk) d Pp - a 1 •...• 'I( an a E: 

with ( T1 •••.• Tk) (p 

and P t- tt1 < 1 (i(k) . 

:,, p t- u0 IT u IB a Term ana 
T T p -

U = Ht1 1, • , , , \ k) ana T E:P 

with ( ( T 1 • •••• T k) --o) (p 
- T ana P >- t1 1 < 1 <l'-'O • 

4. P t- xo If x0 E: P. 

Now. we will define a program to be well-typed under a typed premise P if each 
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of its clauses is well-typed under P and if its query atom Is. 

well-typed if each of its atoms are. 

Similarly a resolvent i~ 

Well-typing as a mathematical concept is of little use. unless we relate it 1< 

computation. This we will now do. under the motto ·well-typed programs do not gc 

wrong'". 

6 Well-typed programs do not go wrong 

What we desire to show. is the semantic soundness condition that if a progran 

can be well-typed. then one step of SLD-resolution will take a well-typed resolven 

into a new well-typed resolvent. Thus any SLD-evaluation of a well-typed progran 

will remain well-typed. It is trivially the case that the initial resolvent is well-typed i 

the program is. Moreover. we should show that the variables in the query can onl' 

be instantiated to terms specified by their types given by the well-typing. 

The first condition is simply proved: Let R be the resolvent A 1 •...• An and let C 

be a clause C ... B1 •...• Bm which has no variables in common with R C the cas, 

where Q and R have variables in common will be discussed later> . Without loss o 

generality <symmetry> let A 1 be the selected atom and suppose 8=MGUCA1. c: 

exists. The resolvent produced by one-step evaluation is R' given by 

We will now show hew to well-type this from the well-typing of R. 

Let us suppose that there is a P with typing P and associated well-typings R an1 

Q such that P I- R and P I- Q C note this provides well-typings Ai, C. Bi>. Moreover 

let us suppose that R and Q have no type variables In common C again. we wt 

discuss this later. but note that the typing rules never rely on the · absolute' names c 

the type variables> . 

Let the type of the predicate symbol of C in P be cP1• ···,Pk. Now the well-typini 

determines that C can be written cc s?'1 •...• sfk> and A1 as cc ti 1 •...• t[k) where 

( 0'1 • · · · • ok) '!!! ( P1 · · · · • Pk) 

( T 1 • ...• T k) ~ ( p 1 • ..•• pk) . 



I I 
. I 

8 
115 

This means that there Is a substitution t, on type variables < actually 

t,&rMGU( (a, •••.• ak). ( T, .. ... Tk))) such that ( T, .. ... Tk) = t,( ca, •...• ak)). 

The claim Is that 

gives a well-typing of A'. where applying t> < a type substitution> to a typed atom 

means that it is to be applied to the type variables in types associated with terms 

occurring within that atom. 

We now address the problem of there being variables. or type variables. in 

common between A and Q. These are really the same problem (the perennial one 

of renaming in Prolog>. A simple solut_ion is the following: Whenever we come to 

perform resolution between a clause Q and a resolvent A we rename Q such that all 

its variables ( using a renaming ,-> and all its type variables < using a renaming 71) 

are distinct from the variables <and type variables> in A and the other clauses. This 

can always be done since A can only contain a finite number of different variables. 

Moreover this does not change the meaning of Q. This strictly breaks the type 

scheme. since the new variables appearing in Q do not appear in P. However. a 

almpte addition to P or 1'< X> 71 <T> ror each vartabto x In tno or1g1na1 Q which appGarQd 

as xr In P serves to correct this and preserve the typing. we are now back In the 

case where Q and R have no variables or type variables in common. 

We now return to the problem of showing that a well-typed program can only 

instantiate the variables of its query to values having types as dictated by the typed 

premise. To see that this is the case. it is merely necessary to observe that each 

resolution step <as above> Is performed between an Atom. A. and a (type> Instance 

of a clause C ... 8 1 •...• Bm. such that the types ot A and this instance ot C are 

Identical except for the names of type variables. Thus variables in A can only be 

instantiated to Terms < possibly other variables> having identical types. The whole 

result is proved by induction on the length of computation leading to a refutation. 
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7 Specification of the type information to Prolog 

We suggest that the type specification be performed by annotations to the Prolog 

system. The well-typing required three sets of information to be supplied: 

- the types of the predicates 

- the types of the functors 

- the types of the variables. 

We suggest that declarations be supplied which give the type of the first two but the 

type of variables can easily be determined from them. This can be seen b-y 

observing that a well-typed Atom or Term labels the type of each argument Term. 

and so each variable is labelled with a type. The most-general unifier of all the 

types associated with a single variable C if it exists> gives a type for that variable. 

<This is also convenient since the scope of variables in Prolog is a single clause. 

whereas the other objects have a global scope.> 

It is convenient to specify the names of types along with the functors which create 

them from other types. This has been demonstrated by HOPE [21 and we do no1 

expect to better this idea. 

So one of the declarations. or meta-commands is one of the form 

Declaration : : = 'type' TconsCTvar*> '=>' Functor<Type*>*. 

Examples would be C the second somewhat improper> 

type llsHa> => nit. cons<a. lfst<a> > 
type int => 0. 1. -1. 2. -2. 3. -3. 

The second declaration specifies the type of predicates. Suggested syntax is 

Declaration : : = 'pred' Pred( Type*>. 

and an example for the 'equal' function defined by 

equalCX.X> ... 

would be 

ored equal< a. a>. 
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We note here. that. given the types of the functors. then would seem possible to 

determine the types of the predicates involved without any great amount of work c as 

in ML l41> . However. this seems to depend on an analysis of the whole program at 

once. rather than any form of interaction. 1 We would also claim that the 

documentation provided b~ the written form of the types facilitates human 

understanding of programs in much the same way that explicit specification of mode 

information C input/output use of parameters> for predicates does. 

7. 1 Abstract data types 

We observe that the above declarations furnish a form of abstract data typing. 

Providing a 'module' construct and . exporting from it a given type name. and 

predicates which operate on that type. but not the constructor functors for that type. 

enables us to use a type. but not to determine anything about its representation. 

HOPE has such a construct. and we think it would greatly benefit Prolog. 

8 Overloading 

The above discussion has centred on a formalism for well-typing Prolog. 

However. it does not allow for one feature which we have found to be useful. and 

which is very easy to build into the type system. This feature is overloading and 

appears in a similar form in HOPE l2l. 

The observation. is. that quite often. we may wish a given function. predicate or 

functor name to stand for more than one distinct operation. This Is common In 

mathematics and computer science. where an operator C eg '+') may be used to 

denote a different function at different types. In Prolog this can be useful too. For 

example. we may wish to have types specified by 

list<a> => nil. cons<a.listCa>> 

treeCa> => nil. leaf<a>. cons<tree<a>. tree<a> > 

where the constructors nil and cons<_._> have different meanings according to 

whether they act on lists or trees. C Of course we could give them different names. 

1 Moreover there is a small technical problem concerning recursive definitions which makes checking ot 
type specifications of such definitions much easier than their: derivation. 
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but this is not always helpful to the programmer.> 

Similarly. we may want certain predicate symbols to refer to different predicate 

according to the type of their arguments. A typical example would be some sort c 

'size' predicate. 

We formalise this by permitting the typed premises used above to contain mor1 

than one type associated with any given 1unctor or predicate symbol. 

9 Implementation 

We have built such a system in Prolog which implements the overloaded typ1 

checker by backtracking. Note that this is not particularly difficult since our well 

typing rules given in section 5 are essentially Horn clauses. There are merely tw, 

points to observe. Firstly, the ·occur-check' of unification <which Is often omitted b 

Prolog implementations> is essential for this typechecking scheme. Secondly. th, 

use ot ( can be simulated by instantiation of a copy of the functor or predicate typ 

and the use of a! by a common meta-linguistic predicate < numbervars> whic 

instantiates variables in a term to ground terms to avoid their further instantiation 

Copies of the code can be obtained from the authors or could be included as a 

appendix. 

That the well-typing rules < which define when a given program has a given type 

can be used to determine the type of a given program is a simple consequence c 

the Horn clause input/ output duality. Moreover. when the well-typing rules are use 

in the fashion on a given program. T say, then the standard SLD-resolution wi 

produce a terminating evaluation giving the most-general types associated with T 

The basic Idea is that If the well-typing problem has no solution. tu. the program i 

ill-typed. If it has exactly one ff$dhe program is well-typed. and if it has more tha 

one then some overloaded operator is ambiguous. 

10 Higher order objects 

This section is much more tentative and more in the manner of suggestion tha 

the rest of the paper and we would be grateful for any comments on its inclusion c 

its contents., It is included because we want to discuss the well-typing of objects whic 
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do not form part of first-order Prolog. jn particular the calf and univ operators. 

The definition of call is based on the fact that most Prolog implementations use 

the same set of symbols for predicates and functors < this causes no syntactic 

ambiguity> and thus a Term has a naturally corresponding Atom. Hence call is 

de1ined to be that predicate such that call< X> is equivalent to Y where Y is the Atom 

corresponding to the Term X. Thus call provides a method of evaluating a Term 

which has been constructed In a program and is accordingly related to EVAL In LISP. 

We would like to argue that such a predicate is more powerful than is required and 

. Indeed encourages both bad programming style and Inefficient code. It Is certainly 

the case that most uses of call are used in the restricted case of applying a certain 

functor passed as a parameter to arguments determined locally C as in mapping 

predicates> . Functions or predicates like EVAL or call do not appear to have 

sensible types and are thus generally omitted from strongly typed languages in favour 

of some form of APPLY construct. 

We would like then to change our definition of Prolog and its typing to introduce 

this construct. To do this we introduce a family of abstract data types. called 

predCa). predCa.,8). predCa • .S.x> .... 

and a family of predicates with types given by 

pred appfy<predCa>. a>. apptyCpredCa. IJ>. a.lJ>. 

The only way to Introduce object of type pred is by a special piece of syntax given by 

Term : : = 'Pred 

which has the effect of associating the definition of the given predicate with Term. 

which then receives the type pred < a 1 •.••• an> if th~ predicate has type ( a 1 •••.• an> . 

< It may be desirable to use such syntax as • foo/3 or • fooC_. _. _) if several 

predicates of different arities have the name foo. > Such values can only be used in 

apply and have the effect of using the associated predicate value together with Terms 

as arguments to produce an Atom to evaluate. It can be shown that such a scheme 

is type secure. For example. the map predicate can be defined and used by: 
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mapCF.consCA.L>.consCB.M» .. applyCF.A.B>. mapjL.M> 

map( F. nil. nil) .. 

neglistCX. Y> - map(· negate. X. Y> 

J ,<.C 

assuming tnat nGgate Is defined as a dladlc predicate. The type of map so defined 

would be < pred(a. /J). list<a>. list<.B> >. 

The other higher-order object frequently used is the univ predicate ( often writter 

·= .. ') which can be used to transform a Term Into a ltst of Terms derived from the 

farmer's top-level substructure. <This is typically used for analysing terms read with 

input functions.> Thus 

univ(f(gCX.a>. Y>. U.g<X.a>. Y]) 

is true. As it stands this clearly breaks the type-scheme we are proposing since the 

elements of the list represented by the second parameter need not be of the same 

type. We observe again. that such a predicate is not commonly used in its full 

generality. but rather to allow arbitrary terms to be input. As such. we suspect tha1 

introducing a new type 'input_term' which specifies the type of objects generated b~ 

input routines and giving univ the type < input_term. list< input_term> > • together with c 

notation for treating a Term as an input_term would give much of the power of uni\ 

within a strong typing discipline. 

The difficulty of typing univ arise from the conflation of object and meta levels ir 

one language. which requires the same object to simulatenously possess at least twc 

types. in a stronger sense than overloading. A satisfactory resolution of thif 

problem waits on the introduction of an explicit meta-level or the construction of c 

genuinely reflective Pro log [51. 

11 Conclusions and further work 

We have shown how to well-type that subset of Prolog described by flrst-orde1 

logic and indicated how this might be extended to allow higher order objects. It is ar 

interesting result that the well-typing problem for a Prolog program can itself be 

regarded as a Prolog meta-program. 
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Abstract 

A Parallel Inference System for Problem Solving (PRISM) 
developed at the University of Maryland. The system is designed to 
general experimental tool for the construction of large artificial 
gence problem solvers. 

124 

has been 
provide a 
intelli-

We present some of the basic facilities for controlling parallelism and 
inference provided by the system. PRISM is based on the concept of logic pro
gramming with a separate control componenent. The control may either be 
explicitly specified by the user in his input or alternatively determined 
dynamically by the system, which takes advantage of the implicit parallelism 
in the logic of the algorithm. The design makes the underlying virtual archi
tecture transparent to the user. The system supports both AND and OR parallel-
ism. 
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1. Introduction and Overview 

1.1. Introduction to Parallel Problem Solving 

In general, problem solving systems have been designed to be executed on 
sequential machines (i.e. a single processor architecture). However, the com
plexity of many interesting problems, makes the sequential implementation ot 
these problems infeasible in terms of speed and resource requirements. This 
implies that it is necessary to examine solutions to these problems in a dis
tributed environment, in order to determine if these solutions will prove more 
feasible in terms of speed and resources, than those in a sequential environ-

. ment. Further~ore, the investigation of distributed methods or problem solv
ing is suggested by the structure of the problems themselves. Many interest
ing AI problems are NP-complete and require exponential ·-time --on a determinis
tic machine, whereas they can be solved in polynomial and sometimes linear 
time- on a nondeterministic- -machine. -- A distributed system is necessary, to 
implement, nondeterministic solutions. 

A large amount of work has been done on parallel architectures [Computer 
1982a], [Computer 1982b] and algorithms tor parallel architectures [Kung 
1986]. Work has also been done on parallel languages and environments for 
parallel architectures for non-AI problems [Hewitt 1977], [Kahn 1977]. 

In the AI environment several researchers have suggested 
parallelize certain types or problems, however, few of these 
actually been implemented on a distributed .system. Kornfeld 
Lieberman [1981] describe systems and languages which have been 
parallel applications. 

methods to 
schemes have 
[1979], and 
designed for 

PRISM (a Parallel Inference System), which is an experimental tool for 
the · development or distributed AI problem solvers, has been developed at the -
University of Maryland and has been implemented on ZMOB (Rieger [1980]). 
PRISM is based on logic programming (Kowalski [1979]). 

1.2. Control in Logic Programs 

In conventional programming systems the logic and control of an algorithm 
are combined making it difficult to separate or to modify control without 
affecting the logic. Logic as the specification· language, is neutral - with 
respect to control and specifies only the problem semantics. The method or 
how the problem is to be solved is external to the logic specification. It has 
been shown (Kowalski[1979], Pereira[1978], van Emden[197~]) that the complete 
separation or logic (the specification to be executed) and control (the order 
in which tasks are executed) allows a great amount of flexibility during exe
cution, thus providing a natural parallel implementation or a program. 

This is true since the inherent nondete.rminism of logic pr~grams can be 
exploited in many different directions during excution. 

1. Top-down and bottom up execution or a program can be done in parallel. 

2. At any time during execution more than one possible goal node (procedure) 
can be invoked. 
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3. Since the order of execution of atoms in a goal is usually not specified 
we can sometimes separate the goal into several independent subgoals to 
be solved. 

Ct. 
4. Logic progljns are distinguished from other applicative languages such as 

LISP due 'to the fact that more than one procedure can match a procedure 
call. This seeming disadvantage on a sequential machine becomes an 
advantage in a highly parallel environment since all or some matching 
procedures can be executed in parallel. 

Thus, a primary issue in achieving a parallel system is developing an 
effective control specification that exploits parallelism. PRISM permits us 
to specify the problem independently of the control and allows us to experi
ment with alternative control possibilities for the same problem. 

l•.2.• ~ and Parallel Problem Solving 

PRISM has been implemented on ZM0B, which consists of a set of 256 Z80A 
microprocessors connected on a conveyor belt together with a host VAX-11/780 
minicomputer. A description of ZM0B is given in the following section. A 
description of how parallel problem solving is achieved using ZMOB is 
described in Section 1.3.2. 

l•.2.•l· ~ Description 

The particular system to be used is ZM0B, a parallel multi-microprocessor 
system developed at the University or Maryland (Rieger[ 1980]). ZMOB is to 
consist or 256 Z80A microprocessors connected to a host computer (VAX 11/780) 
which is to communicate between machines via a high speed 48 bit wide, 257 
stage shift register called the "Conveyor Belt" (Figure 1). The system is 
described in detail in Rieger[1980, 1981a, 1981b]. We shall briefly describe 
here only the communication features necessary to support PRISM. 

The Z80A is a microprocessor capable of executing 400,000 
instructions/second and has a 64K byte memory. Thus, the whole system is 
theoretically capable of executing 100 million instructions/second and has a 
memory capacity of 16 million bytes. Each processor is connected to the con
veyor belt via a collection of high-speed 8-bit I/0 registers and associated 
control circuitry, called the "Mail Stop". The registers are in charge of 
interrupt control, buffering and address control functions. 

In general, the Conveyor Belt moves 257 bit patterns (bins) each 48 bits 
wide. Each processor can theoretically consume any bin that is currently at 
its mail stop, but it can send out information only in its own bin. The 48-
bit message in the bin consists of four fields: 

CONTROL 

8 bi ts 

DATA 

16 bi ts 

Figure 1 

SOURCE 

12 bi ts 

DE ST! NA TI ON 

12 bi ts 
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The control bits allow the implementation of several communication stra
tegies: Let (C XS D) be the content of a bin on the Conveyor Belt, then dif
ferent control bits specify the following communication formats. 

1. Direct addressing - The message Xis sent to a processor whose physical 
address is D. 

2. Pattern matching - Message Xis sent to the first processor whose pattern 
(determined by Capability Code and Mask Registers in the Mail stop) 
matches D. 

3. Send to all Processors - Message Xis sent to all processors. 

4. Send to a set or Processors - Message Xis sent to all processors whose 
patterns match D. 

Additionally, different settings or Control Registers i~ the Mail Stop allow 
the following : 

s. Exclusive Source - This mode provides exclusive conversation between two 
processors and disables-interrupts from other processors. 

6. Readback - This mode allows an individual processor to inter~ept any of 
its own messages that went around the conveyor belt and was not consumed 
by any of the destination processors. 

The following examples illustrate the utility of the above formats. 

(3,5) Permits large blocks of data to be sent in a burst mode to all proces
sors from the host computer. (e.g. to load kernel programs or data to all 
processors). 

(2) Provides the ability to assign to each processor a relation. Logically 
the relation's name would be the pattern identifying this processor. 

( 4) ·- Allows .a. very useful. provision of clustering the system into independent 
sets of logically equivalent processors. 

(6,4) Can be used to send a message to a set of processors and in case it was 
not consumed to activate a recovery routine. 

l·l•_g• ~ Parallel Problem Solving System 

We find ·it useful to separate the static set or clauses representing the 
logic or a problem from the control which generates a search tree by applying 
these clauses to a goal clause. This distinction will be seen to be useful in 
experimenting with the control of a parallel logic programming system. 

In particular we shall distinguish three separate portions of the system 
to which we dedicate microprocessors. These are: 

(1) the problem solver (PS), 

(2) the extensional database (EDB), the set of assertions, and 

(3) the intensional database (IDB), the set or procedure clauses. 
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The PS administers the search space which consists of a tree of goal 

clauses. The root of the tree is the original goal, whereas successors of any 
clause C in the tree are resolvents obtained by resolving program clauses (EDB 
or IDB clauses) with an atom selected inc. Each leaf node in the tree is 
either the empty clause; or some indication that the respective branch of the 
search resulted in a failure; or an open goal clause not yet selected for 
expansion; or an active clause sent for expansion and not fully expanded. 

To generate the successors of an open clause C the PS has to select an 
atom and send it to that part of the system that handles unification of the 
atom with procedure heads in the EDB or the IDB. If the tree is distributed 
among several microprocessors, several atoms of different clauses can be 
selected simultaneously for expansion.· Atoms sent to the EDB/IDB for solving 
cause the return of infq'mation necessary for generating all successor clauses 
or c. 11., 

While waiting for the information the PS in each machine can treat other 
open clauses in the same way, so that the subproblems of several open nodes in 
the same machine can be solved in parallel and independent of each other. 

A second part of the system is in charge of the assertions and procedure 
clauses. This is subdivided further into the extensional database (EDB) con
sisting of all function-free ground assertions, and the intensional database 
(IDB) that constitute the procedure clauses and non-EDB assertions (i.e. 
those that contain variables and/or functions). 

This distinction was drawn primarily for two reasons. First, the EDB and 
IDB can use different unification algorithms. In particular, when matching an 
atom against an EDB entry, it is not necessary to invoke the occur check which 
is used to determine if a term substituted for a variable contains the vari
able. Second, there are many applications where the sizes of the EDB and IDB 
differ considerably. If the set or clauses is used as a database, the number 
of IDB clauses is likely to be relatively small, whereas there are many EDB 
clauses corresponding to a relational database in the usual sense. If, on the 
other hand, the set of clauses represents a program, there are usually few 
EDB-clauses, but the IDB clauses are generally numerous. In some instances we 
may wish not to make a distinction between EDB/IDB clauses. We want the sys
tem to be sufficiently flexible to be able to react in different ways. 

In addition to predicates contained in the EDB and IDB, systems usually 
contain predefined predicates, e.g. arithmetic predicates or equality predi
cates. Such atoms are evaluated directly in the PS where encountered and are 
not sent to the EDB or IDB for evaluation. 

Problems can arise if predicates are permitted to have side effects. One 
such side effect would be the ability to modify the database as, for example, 
contained in the PROLOG primitives ASSERT and RETRACT. As the system pursues 
different branches of the search tree in parallel, there is no way of deter
mining the exact point at which the side effects were executed. Since side 
effects in one branch can influence other branches of the search tree, this 
fact would render the overall behaviour of the system intolerably unpredict
able. 

For that reason in this first design, we do not allow any predicates with 
side effects in a goal clause (and hence they are not permitted in a procedure 
clause) thus restricting the system to pure logic. This means that such 
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extralogical tricks as modifications to the database to simulate global vari
ables are not permitted. or course, the system must provide features other 
than the ability to solve goal clauses, including such capabilities as adding, 
deleting, and modifying clauses. Such capabilities are provided at the top 
level only, so that there is no modification of a lmowledge base during prob-

. lem solving. 

The separation or the problem solving system into the problem solver, EDB 
search, IDB search, IDB monitor and VAX has isolated the functions in the sys
tem and has placed them on separate processors. The main link between the 
processors is the conveyor belt and message passing. There is an uniform mes
sage passing facility between machines. 

2. Control Issues 

2.1. · Problem Solving Process 

The problem solving process may be outlined as follows: 

(1) the problem to be solved is expressed as a conjunction or goals, each or 
whi9h is a subproblem to be solved; 

(2) one or more subgoals may be selected to be solved; 

(3) a subgoal is solved if it is matched by some assertion, or it is matched 
by a procedure which consists of a set of sµbgoals which can be solved. 

The repeated execution of steps (1), (2) and (3) results in a top-down execu
tion of a problem. One can specify a problem solving process which permits 
bottom-up, middle-out, top-down, or any combination or these reasoning 
methods. _ The initial PRISM system is restricted to top-down reasoning (back
ward chaining from the goal). 

£•£· f!2!! B:!!. !!!5!, Control Issues 

A goal tree is generated in the problem solving process •. The goal tree 
is formed initially by placing the conjunction of goals to be solved in the 
root node of the tree. In general the tree consists or a set of nodes, where 
each node· consists of a set of goals. How, given a node, there are several 
ways in which the node may be executed. One or more goals J.JJ8.Y be selected to 
be executed asynchronously. This possibility provides for user control of 
parallel execution. Subgoals in a node may be characterized to be dependent 
or independent of one another. A subgoal is dependent if its execution must 
await the successful execution of another subgoal in the same node. It is 
independent otherwise. An acyclic partial order expresses such a relationship 
among subgoals. At any stage of the execution of a node, all those subgoals 
which are independent may be executed asynchronously. However, goals which 
are candidates for simultaneous execution must be treated specially if they 
share unbound variables. 

A goal selected for execution must be matched against assertion or pro
cedure heads. There may be several assertion/procedure heads which match the 
given goal. Any procedure head which matches a goal can potentially lead to 
the solving of that goal, independent of any other procedure head that may 
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also match the goal. All matching procedure heads are therefore candidates 
for asynchronous execution. Furthermore, the user may wish to specify a par
tial order of execution of procedure bodies, in a similar manner to the par
tial ordering on subgoals within a node. Thus there is the possibility of 
specifying that certairi alternatives need be explored only if other alterna
tives have failed. 

An assertion or a procedure that matches a goal in a node causes a new 
node to be generated as a successor node to the node that contains the goal. 
The new node consists of all goals in the parent node where the selected goal 
is deleted and replaced by the body associated with the procedure head and the 
matching substitution is applied to the new node. In case of a· matching 
assertion, the body is empty and the new goal node has one less problem to be 
solved. When an empty node is generated, the problem has been solved. 

Executing a problem as outlined above leads to the generation of many 
nodes, each node of which can be in a partial state of execution. It is in a 
partial state when all assertion/procedure heads that match a subgoal have not 
been selected for execution. Thus, there is the option to select many nodes 
for asynchronous execution. 

All possible asynchronous operations may be executed on autonomous 
machines. 

_g_.J_. PRISM Control Facilities~ Language 

In the previous section we described the possibilities for parallelism in 
the control structure. Here we specify the support for controlling parallel
ism in PRISM. PRISM provides the ability to specify for every goal and pro
cedure body a partial order for execution. This partial order expresses the 
dependencies among the subgoals within a goal· (a procedure body may be con
sidered to be a goal). or within alternative procedures for solving the same 
goal. 

The partial order on subgoals in a goal are specified by a notation as 
explained in the following example. 

P <-. (G1,[a2,(G3,a4),G5],(G6,G7]). 
The procedure head is on the left hand side of the arrow, while the body is 
the right hand side. The body consists of a set of goals, separated by commas 
and formed into groups by properly nested pairs of parentheses and brackets. 
All groups of goals enclosed by parentheses, must be executed in a left-to
right sequence, i.e., the leftmost group in the sequence must be executed and 
solved before the remaining groups. Groups of goals .enclosed in brackets, may 
be executed independently of other groups in the same set of brackets, i.e., 
all groups in the bracket may be executed asynchronously. The partial order 
induced by the above notation is: 
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1--------------01---------------1 
I I I 
t t t 
G2 G3 G5 
I I I 
I t I 
I o4 I 
I I I 
t t t 
---------------------------------I 

t 
1------~---------------1 

The groups formed by G1; [G2{o3,o4),G5]; [G6,G7], must be executed from left 
to right since they are enclosed within parentheses, i.e. o1 must be executed 
and completed before any other group. Once G1 is completed, the groups o2; 
CG3,G4); o5 may be executed asynchronously since they are enclosed by a 
bracket. However, since o3; o4 are enclosed in parentheses, o3 must be exe
cuted and completed before o4 is initiated. The next group, [G6,o7] cannot be 
initiated until all groups to its left have been completed, i.e., goals 
G1,o2,o3,o4 and _G5• The goals 06; o7 may be executed asynchronously. 

In the case where no parenthesis or brackets are specified, PRISM assumes 
a default ordering. This default is user specifiable to be either left-to
right · ·or asynchronous. 

The user has the ability to specify a partial-like ordering of procedures 
with the same procedure name. The user is provided with a notation which per
mits assigning precedences to procedures. The semantics of the ordering is 
different than for the ordering of goals. The ordering specified on the pro
cedures is a recommendation on the likelihood of success when the procedure is 
executed. However, these recommendations may be ignored by the problem solv
ing system which could change the recommended ordering or perform them in 
parallel. Also · provided ls a capability to invoke a procedure only if other 
procedures have been executed and failed. The following notation is used as 
an example: 

1: P <- o1,o2 

1: p <- G3 

2: P <-- o4,o5,o6 

•3: P <-- o7 
4: P <-- 08,09 
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The integers represent the recommended order of execution. The asterisked 
integers represent a forced ordering. In the above example, the first two 
procedures (priority:1) may be executed simultaneously. The third procedure 
(priority:2) is less likely to succeed but may also be executed in parallel 
with the first two, or'even before them if the problem solver so decides. 
However, the fourth procedure (priority:*3) cannot be executed unless the 
preceding procedures have been completely executed. A default ordering is 
provided by PRISM when the procedures are not numbered. The recommended ord
ering is the sequence in which the procedures were present~d to the system. 

At the present time, no user facilities are provided for node selection. 
However, the PRISM problem solver is supplied with several evaluation func
tions to permit automatic selection of nodes to be expanded. 

1• The Problem Solving Machine(~) 

3-1• .TI!! !§!:1 Organization 

l•l·l· .TI!.!!. Role of !!!! PSM 

The Problem Solving Machine (PSM) is the core of the parallel problem 
solving system. At initiation time, a number of moblets (a moblet is a single 
ZMOB processing element) are designated as PSMs. The central task of the PSMs 
is to manage the search space. The complete separation of logic (the problem 
specification) and control (the strategy of solving the problem) allows a 
great degree of flexibility while executing the program. Not only can the 
search strategy be varied dynamically, but due to the inherently non
deterministic nature of logic programs, several mutually exclusive possibili
ties_may be explored simultaneously. The PSMs permit this inherent parallel
ism to be exploited during the course of solving a problem. 

Initially a goal, which represents the problem to be solved, is sent by 
the VAX to ZMOB and is read by some PSM. This PSM places the goal as the root 
of a proof tree. A goal is expanded by selecting an atom in the goal and 
replacing it by the body of a program clause that resolves with it. In this 
manner a new goal clause, which when solved, solves the original problem, is 
produced. When an atom is expanded, there may be several program clauses 
which resolve with it. These represent alternative ways to solve the same 
problem. These alternative subgoals lead to a branching in the search tree 
(OR branches). 

Thus at any given instant in the problem solution process the search 
space administered by each PSM consists of a tree of goal clauses. The rest 
of the search tree is the original goal with which the PSM was initiated. The 
successor of any clause in this tree is the resolvent obtained by resolving 
program clauses with some atom in the parent clause. Each leaf node in the 
tree can be in one of four states: 

the node represents the empty clause 

the node represents a failure node 
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• the node represents an open goal clause not yet selected for expansion. 

• the node represents an active goal clause selected for expansion, but not 
yet fully expanded. 

At any stage the PSM ~ust select an open clause from the search tree, and 
then select one or more atoms from this clause. This selected atom is then 
sent to an IDB and/or an EDB for expansion. While the IDB and/or EDB are 
working on this atom, the PSM can transfer its attention to other nodes in the 
search tree. An atom sent to the IDB may unify with one or more procedure 
heads, and all the corresponding bodies are sent back to the PSM which ini
tiated the search, either one at a time or all at once. In the case that more 
than one procedure body is returned for a given atom, several mutually 
exclusive subgoal clauses are generated. These mutually exclusive goals can 
then be solved independently in separate machines. 

Thus each PSM has the capability to dynamically send a goal to another 
PSM machine, if one is available. As with the goal tran·smitted by the VAX. to 
a PSM, the goal transmitted from one PSM to another becomes a root of a goal 
tree in the new PSM whose parent is the sending PSM. Each PSM can indepen
dently develop and manage the subtrees of the search space generated by the 
goal node transmitted to the PSM. Each PSM is autonomous except for the 
knowledge of the parent-child relationship. When a goal assigned to a PSM is 
completely solved it transmits the solution or failure to its parent PSM. The 
parent of the PSM to which the original goal was transmitted is the Host (VAX) 
machine. 

1•1•£• Conceptual~ of~~ 

This section presents a conceptual view of the program that drives the 
PSM in terms of the subtasks that compose it and their functional specifica
tions. 

The program which drives each PSM is composed of several subtasks. Each 
subtask operates independently of all other subtasks. These processes do not 
communicate directly with each other, instead they change global data struc
tures which then may affect another process. This independence makes it pos
sible to consider each process in isolation. This isolation makes the imple
mentation less error prone, and at the same time permits the single PSM pro
cess to be split across several machines if the need arises. 

The operation of these processes is controlled by a scheduler process 
which, based on the current state of the global data structures, determines 
which subtask to invoke next. Thus each process once invoked is allowed to 
proceed until completion (except in certain special cases, which result in its 
preemption). Once this process completes, it returns to the scheduler which 

, then applies a decision process to determine which subtask to invoke next. 
This can be represented by a recursive PROLOG program, of the form: 

S <- Di,Pi,S 
where Sis the scheduler and Di is a decision process which succeeds if pro
cess Pi is to be invoked next, and fails otherwise. 

There are six basic processes which compose the problem solver (aside 
from the scheduler). These are the initialization, input, selection, resolu
tion, output and finalization processes. 
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The scheduler, once invoked with the initial goal, unconditionally 
invokes the initialization process which creates all global data structures 
required by the PSM processes and sets them to their initial values. The 
scheduler then repeatedly invokes the input, output, selection and resolution 
processes, by using its· decision criteria. This continues until an answer is 
found or a termination signal is received. Once an answer (or all answers, as 
the case may be) is found, the finalization process is invoked. If all chil
dren PSMs of this PSM have completed already and returned their answers, this 
PSM transmits its answer to its parent. Otherwise, the finalization process 
creates a data structure which contains enough information to construct the 
answers when the children PSMs complete their tasks. Once this data structure 
is created the PSM is reinitialized and can accept queries. 

In this manner PSMs are not kept idle in case they complete before their 
children do. This also allows a PSM to be its own ancestor if so desired. 
Thus a cyclic graph of parent-child dependencies may be constructed. 

In addition to the six processes mentioned earlier, there are two low 
level processes which are totally independent of the scheduler and all other 
processes. These are the mailstop handlers. These processes are interrupt 
driven and are invoked whenever a message enters (leaves) the input (output) 
mailstop of the PSM. The input (output) mailstop handler merely places 
(removes) a message into (from) the input (output) queue and returns to the 
interrupted process. 

The input process understands the message formats of all possible mes
sages that can be received by the PSM. It selects a message from the input 
queue, decodes it and updates the appropriate global data structure with the 
information contained in the message. 

The output process understands the message formats of all messages that 
can be sent by the PSM. When invoked with a certain message type, it uses 
information from the appropriate data structure, and formats this information 
into the correct message format. This message is then placed into the output 
queue, ready to be sent out. 

The selection process directs the problem solving process by determining 
which clause, and which atom within the selected clause to operate on next. 
It is also responsible for the creation of new PSMs. 

The resolution process receives the procedure bodies for an atom that has 
been matched by the IDB and/or EDB. It then inserts a new clause into the 
proof tree. This new clause consists of the clause from which the atom was 
selected, with the atom deleted and the procedure body attached in its place. 
The unifying substitution is then applied to the new clause. 

1•£• Control in the ~ 

1•£•..!· Control Specification Support - Selection Process 

The selection procedure determines the control strategy of the system. 
The user is permitted to specify certain guidelines to direct the selection 
process. The selection procedure has four main selection functions. These 



11 

are: node (clause) selection, atom selection, procedure selection and PSM 
creation. 

~ selection is concerned with choosing a clause, from the search tree, from ,, 
which an atom is to be s~ected. Any node which has not been fully expanded, /,Q, 
is a candidate for selection. A fully expanded node consists or a clause 
whose selected atom has been expanded and all leaf nodes descended from the 
clause are either failure nodes or null clauses. A non-fully expanded node 
may be either an active or an open node. An active node is one from which one 
or more atoms have been selected for expansion, but which has not been fully 
expanded. An open node is one from which no atom has yet been selected for 
expansion. 

Atom selection is concerned with selecting an atom, for expansion, from a 
selected node in the search tree. There are several system defined and user 
defined constraints that will affect atom selection. 

As defined in section 2, the user has the ability to·specify which atoms 
in a clause may be executed in parallel and which must be done in sequence, 
i.e. a partial order on the execution of the atoms. These user specified con
straints- limit the atoms which can be selected at any stage.- Only those atoms 
which do not depend on any other atom or those for which the atoms they depend 
on_have already been solved are candidates for selection. 

· In addition to these user-defined orderings, there are certain orderings 
implied by the structure of the node itself. There are two basic ways in 
which the contents of a clause dictate the ordering on atom selection. These 
are: dependent atoms, and special predicates. 

Two or more atoms in a clause are said to be dependent when they share 
variables. In this case what is desired is the first (or all) binding(s) 
which cause the atoms to succeed. This can be accomplished either by process
ing the atoms in parallel and then intersecting-the sets or bindings for the 
shared variables, or by finding a binding which satisfies one predicate and 
then substituting it in the others and determining if they succeed with that 
binding. This can be repeated until some ·binding succeeds or all are 
exhausted (nested loops method). In either method a special AND node has to 
be generated with the dependent atoms as its children and one of the above 
techniques applied. In this system the nested loops method will be adopted 
since space limitations make the set of values method infeasible. 

The special predicates are a set of language supplied predicates whose 
semantics dictate that certain other predicates in the clause must be fully 
solved before these system defined predicates may be invoked, i.e., these 
predicates induce a partial ordering on the atoms in a clause. These predi
cates are: write, read, fail,/ (the cut operator), not, and the evaluable 
predicates (e.g., arithmetic operations). 

Once these user and system defined constraints have been satisfied, a set 
of atoms which are candidates for selection will remain. The atom selected 
from this set will be selected based on user or system supplied heuristics. 

Procedure selection is concerned with choosing which procedure body should be 
given the highest priority when several bodies match an atom which was sent 
for expansion. This decision is made by the IDB and is not influenced by the 
PSM. 
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PSM selection, is concerned with the decision of when to initiate another PSM 
with a subproblem. Whenever a branching of the search tree is induced by 
either multiple alternate subproblems (OR-branches) or by independent conjunc
tive subproblems (AND-branches), this branch becomes a candidate for execution 
in another PSM machine~ The actual process of determining when a new PSM is 
initiated is discussed in the following section. 

1•£•£· PSM Creation 

The decision of when to initiate another PSM with a subproblem is not an 
easy one. If the subproblem is too small, a large amount of overhead would be 
incurred to solve it. If the subproblem is too large, the parent PSM may com
plete before the child and remain idle until its children complete. In gen
eral it is extremely difficult if not impossible to determine how complex a 
subproblem is. Thus no attempt is made to determine the complexity of a sub
problem, in the initial system. Instead a new PSM is initiated every time a 
branching of the search tree takes place, and there is a PSM available. At 
any given instant, there may be several active branches within a PSM, and thus 
several candidate nodes which may be sent to other machines. In this case all 
or only some of these nodes may be shipped out. This is determined by the 
user or by system supplied heuristics. 

In order to reduce idle time, machines which have completed their alloted 
task are permitted to accept fresh queries, as follows. If no further pro
cessing can be done then either all possible .answers for the goals this PSM 
was invoked with have been found, or all paths resulted in failure, or all 
paths local to this PSM have been fully explored and there are some children 
of this PSM which have not yet completed their work. In the cases where all 
answers have been found or all paths have failed, this information is 
transmitted to the parent of this PSM, and the PSM state is restored to one in 
which a new query can be accepted. In the case where · all local paths have 
been explored and some chidren PSMs are still active, a data structure is con
structed which contains enough information to reconstruct the complete answer 
from the information in this PSM and from the answers from the currently 
active children PSM. Once this data structure is constructed, the local proof 
tree is destroyed and the PSM state is restored to one in which a new query 
can be accepted. 

In this manner PSMs are not kept idle in case they complete before their 
children do. This also allows a PSM to be its own ancestor if so desired. 
Thus a cyclic graph of parent-child.dependencies may be constructed. 

1•£•£•.!.• AND Parallelism 

An AND-branch in the search tree can be one of two types. The first type 
of AND-branch results when there is a conjunction of atoms which do not share 
variables. This results in a node which has as its children two or more sets 
of atoms which do not share variables. We shall refer to such an AND-node as 
an AND1-node. The second type of AND-branch results when there is a conjunc
tion of atoms which do share variables (dependent atoms). This results in a 
node which has as its children two or more sets of atoms which do share vari
ables •. These. children are ordered so that those atoms which bind variables 
are executed earlier than those atoms which use those variables. Such an 



13 

AND-node will be referred to as an AND2-node. 

The children of an AND2-node are currently always executed in the same 
machine since concurrent execution across machines requires an excessive 
amount of control and communication to synchronize the producers and consumers 
of the answers. Thus in the initial system the children of only AND 1-nodes 
are executed concurrently in separate machines. 

We previously defined a clause to be an AND 1-Node if it could be split 
into two or more sets of atoms that do not share variables. 

This definition must be revised when dealing with ordered clauses. For 
example let <- P(x),Q{x),R(y),T(y) be a clause. According to the definition 
above we create an AND 1-Node as follows: 

Now let· <-(P{x),(Q{x),R(y)],T(y)) be an ordered clause. The execution 
sequence imposed by the order in the clause does not allow a similar split. 
Thus a split may be performed only on sets of the clause that may be executed 
in parallel. Therefore the clause above is represented as: 

(P(x)[~)] T(y)) 

Q(x) R(y) 

The split would be executed dynamically after P was solved. 

J_.g_.g_.~ • .Q!! Parallelism 

An OR-branch is created in the search tree when there are several match
ing bodies for a selected atom. These several bodies are alternative ways of 
solving the selected subgoal and are thus independent. The existence of mul
tiple bodies then results in the formation of an OR-node with each of these 
bodies as a child. 

Since these children are independent of each other they may be executed 
in separate machines. However those bodies which should not be attempted 
until some other body fails are not scheduled for execution until the body it 
depends on has failed. 

J_.g_.J_. Handling Negation and the £!IT,(/) Operator 

In addition to imposing an implicit ordering on the atoms within a node, 
the cut(/) operator and negation both require special treatment in concurrent 
systems. 



1•,g,•1·1· ~ 9!,!(/) Operator 

The cut operator is a means of achieving determinism in sequential logic 
programs. The execution of a cut in the body of a procedure results in all 
alternatives for the parent node of the node containing the cut to be. dis
carded. However, in sequential execution all alternatives with higher prior
ity than the one containing the cut have already been completely executed 
before the one containing the cut. Thus the semantics of the cut operator are 
unclear for concurrent execution, since the alternative containing the cut may 
be executed concurrently with, or even before alternatives with higher prior
ity. This would lead to an incompatibility between sequential and concurrent 
execution of the same logic program. 

In the interest of preserving compatibility between the concurrent and 
sequential execution of logic programs containing the cut operator, we have 
defined the concurrent cut as detailed below. 

The presence of the cut operator causes an implicit ordering 
within the node containing the cut. The cut operator requires 
preceding it in the node to be processed before it. The invocation 
operator results in the following: 

of atoms 
all atoms 
of this 

(a) all bindings that have been computed for variables in atoms preceding the 
cut will not be recomputed in the event of a failure of some atom 
succeeding the cut 

(b) all alternative procedure bodies which have lower priority than the body 
containing the slash are discarded. However all higher priority bodies 
are still considered, i.e., if procedure P has 3 bodies and if the second 
(middle priority) body contains a cut then the third body will never be 
considered if the cut in the second is executed, but the first body will 
be unaffected. 

1.,g,.1.,g,. Negation 

The NOT meta-predicate defined in most sequential logic programming is an 
implementation of Negation-by-Failure [Clark 1978). In this scheme, the nega
tion of an atom is considered to hold if all attempts to prove the atom, fail. 
This is well defined in the case where all the arguments of the atom are con
stants. However this is not well defined when one or more of the arguments 
are unbound variables. This is because the atom could succeed with some par
ticular bindings for the free variables, and fail for some other bindings. 
Thus the behaviour -of the NOT meta-predicate can be anomalous in the case 
where all argumentds are not constants. The semantics of negation can be 
extended to handle atoms with variables as arguments by creating a set of 
bindings for which the atom fails and assuming the negation of the atom holds 
for precisely this set of bindings. This is how we define negation in PRISM. 

The NOT meta-predicate requires that all atoms preceding it in the node 
must have been solved before it is invoked. The execution of this meta
predicate results in the creation of a special negation node which has as 
children the predicates which are to be negated. These predicates are solved 
as if they were positive atoms for whom all answers are desired. When all 
these predicates have been solved, the sets of values bound to each variable 
will be c~mplemented with the domain over which they are defined. These 
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complements will be returned as answers by the negation node. 

4. Examples 2£ Control in PRISM 

In this section we provide an example of AND-parallelism and an example 
of OR-parallelism to illustrate some of the capabilities of PRISM. 

!!_ • l · Mm, Parallelism 

tree. 
This example of AND-parallelism provides a preorder traversal of a binary 

Let 
P(u,z) means that the preorder traversal of a binary tree u is z. 
t(y1,x,y2) denote a tree whose left branch is y1, whose root is x and 
whose right branch is y2• 

Append(y.1,y2 ,z) mean that-if y2 is appended to the tail of y1 the result 
is z. 

We may then write, 

1: P(nil,nil) <--
*2: P(t(y 1'x,y2) ,x.z) <--

([P(y 1,z1) ,P(y2,z2) J,Append(z1,z2,z)). 

1: Append (nil,y,y) <--
•2: Append (x.y,v,x.w) <-- Append (y,v,w). 

Thus, the base case, P(nil,nil) is always tested before the general case. 
When the preorder clause defined by •2 is executed, the preorder traversal of 
the left and right branches may be done asynchronously. 

Since the preorder traversal of the left branch is independent of the 
right branch, they may be executed asynchronously in different processors. 
Each of the sub-branches may again be split to be executed on different 
machines. Hence, a number of different PSMs can be executing the problem at 
the same time. Thus, the time to execute the search is proportional to the 
size of the longest branch, rather than the number of nodes in the tree as in 
a sequential search. 

Even if the problem is executed on a single machine, because one can be 
searching for matches on many nodes of the search tree, the multiple IDB 
machines can be working in parallel performing matching operations for each of 
the nodes in the search tree. 

4.2. OR Parallelism 

Consider a database problem whose database is shown below (Figure 2). 
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Extensional (Relational) Database 

MOTHER(Rita, Sally) 
MOTHER(Alice, Beth) 

- MOTHER(Laura, Christine) 

FATHER(Harry,Jack) 
FATHER(Harry, George) 
FATHER(Jack, Sally) 

Intensional Database 

GRANDPARENT(x,z) 
PARENT(u,z) 
PARENT(u,z) 

<- [Parent(x,y),Parent(y,z)] 
<- Mother(u,z) 
<- Father(u,z) 

Query: <- GRANDPARENT(x, Sally). 

Figure g. 

140 

We shall -describe how the problem might be solved -in PRISM. on the ZMOB 
system. We use the following abbreviations in the series of figures that fol
low. 

M-MOTHER 
F-FATHER 
G-GRANDPARENT 

R-RITA 
S-SALLY 
A-ALICE 
B-BETH 

H-HARRY 
G-GEORGE 
J-JACK 

We assume that there are only two moblets assigned to the EDB, one moblet 
/ F contains the /-table, and the other the M-table. We assume that the IDB is 

replicated on two moblets and two moblets are allocated to be PSMs. 

When the system is to be loaded, the ZMOB executive specifies the moblets 
allocated to the problem. The PRISM executive is informed of the machines and 
allocates the EDB, IDB, and PSMs to specific moblets. The data and programs 
are sent in a burst mode by the PRISM executive, resident in the host machine, 
to the appropriate moblets. Mask registers are set in the EDB moblets so that 
they can recognize the encoding for MOTHER and FATHER. The state of the sys
tem as would exist on ZMOB is illustrated in Figure 3. Processing of the 
query shown in Figure 2 is now described. 

1. The query is submitted by the user to the PRISM executive which sends a 
message requesting response from a free PSM. We assume that the PSM on 
the first moblet encountered responds and that the query is sent over the 
belt in a burst mode. Figure 4 shows the state of the system at this 
point. 

2. The PSM-1 forms a goal tree, and selects the only atom to be solved. It 
knows from preprocessing that the "G" predicate resides in an IDB 
machine. It sends it out to be matched against all procedure heads with 
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the same name. IDB-1 receives the request and also notes that there is 
only one response possible. See Figure 5. 

3- IDB-1 finds a single match, informs PSM-1 that it has a match and at the 
request of PSM-1 transmits the body of the procedure and the unifying 
substitution. See Figure 6. 

4. PSM-1 forms a new node (the resolvent clause) and selects the easier of 
the two subproblems to be solved, namely PARENT(y,S). It determines that 
the PARENT relation is intensional, and sends a message out to an IDB to 
be processed. Since IDB-1 is not busy, it accepts the message and now 
finds two matches. The PSM-1, in the meantime, determines that it has no 
work to be done since no additional responses are possible for the root 
node and it must wait for a response. 

5. PSM-1 is informed by IDB-1 when it has found all matches for PARENT(y,S). 
There a.re two responses. PSM-1 may request that both responses be 
transmitted (or it may be done one at a time). Assuming both are 
transmitted, the PSM forms two nodes (OR branches). Since a PSM is 
available, it transmits one of the two nodes to PSM-2 to be solved. Now, 
PSM-1 can send out -a request f'or MOTHER(y,S), while PSM-2 can send out a 
request for FATHER(y,S). These requests are sent out by pattern on the 
relation name and accepted by different moblets where the two relations 
are-stored. 

At this stage, two PSMs are cooperating in the solution of the problem, 
and two EDB machines are searching for data. The processing continues in a 
manner similar to the above description, until a solution is arrived at, as 
shown in Figure 3-9. 

The above illustrates how OR parallelism may be handled within PRISM. 
Both AND and OR parallelism may be executing simultaneously. Each of' the PSM 
machines may be working on a problem at some stage and all IDB and EDB 
machi~es may also be executing simultaneously • 

.2.• Summary and Future Work 

There have been several proposals to achieve parallelism in logic pro
gramming systems (Clark[1981], Hogger[1982], Pereira[1978], van Emden[1976], 
Wise[1982]). All these schemes, including PRISM provide natural ways of 
expressing algorithms for execution on conventional distributed architectures. 

PRISM provides an implementation of logic programs on a highly parallel 
architecture. The design exhibits a high degree of modularity and orthogonal
ity. By this we mean that portions of PRISM can be replaced by functionally 
similar modules with a minimum impact on the system. This provides a flexible 
tool to experiment with the implementation of various control strategies on 
diverse architectures. It provides full OR parallelism, partial AND parallel
ism and permits parallel asynchronous search for assertions and procedures. 
Parallelism is transparent to the user. We provide a proper interpretation of 
negation based on negation-by-failure. 

The system represents a first approach to developing an experimental tool 
for the design and implementation of large AI systems. There are many capa
bilities that need to be added in a second development. Some of' these are: 
co- routining; a full AND-parallelism; user specificable heuristics; typing of 
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variables; intelligent backtracking for arbitrary execution sequences; non
top-down search methods; and the ability to incorporate lemmas dynamically. 
These capabilities need to be incorporated into a coherent control language 
that would permit th.e user to specify di verse aspects of control to varying 
depths of detail while a problem is being solved. Some of the issues related 
to the above developments are explored below. 

The fundamental difficulty in distributed problem solving arises from the 
fact that distributed control has not been cohesively studied and it is hard 
to achieve effective global solutiQn by distribution of tasks: good local 
decisions are not necessarily a guarantee for an effective global procedure. 
Thus our efforts were aimed at the construction of a system that will be able 
to support various problem solving strategies without paying the price in 
efficiency of the execution. The main emphasis in our system was directed 
towards modularity, flexibility and adaptivity. We believe that a paper design 
is rarely as good as an effective implementation on a real parallel machine, 
which - will · enable modifications and enhancements with minimal -programming 
effort, and consequently were admittedly willing to make some compromises in 
the initial system. Consistent-with this philosophy the system components~ 
induce a logical network topology, and virtual processors may be added or 
deleted easily in our system without any changes to the rest of the system. 
Each set of machines is seen as a single machine to the rest of the system and 
any modifications and improvements to individual components may be made 
without effecting the rest of the system. In this section we briefly discuss 
some of the enhancements to PRISM that are currently under implementation or 
being investigated. 

Database Machines 

EDB - Today's databases are far larger than the memory capacity of a few 
hundred 64K microcomputers. Thus it will be useful to incorporate in our sys
tem a set of peripheral devices that will be attached to each EDB( or possibly 
shared by several EDBs) ~ This will -enable both an increased memory capacity 
and an ability to dynamically reconfigure the database machines in case of an 
unbalanced demand on one of the EDB machines. Additionally it will be con
structive to facilitate basic database operators such as join,projection for 
efficient data retrieval •. 

IDB - In the current implementation the set of intensional database 
axioms (IDB) is replicated over several machines. This philosophy was based on 
the assumption that the IDB is relatively small and therefore may be stored in 
one machine. This assumption simplified the communication protocols and the 
operation of each IDB machine. We are currently developing a scheme in which 
the IDB is distributed over several machines. Additionaly to achieve effec
tive performance from a highly parallel machine there is a need to control the 
ratio between the communication and the computation time, that is for a full 
utilization of a system it is desirable to increase the computation and 
minimize communication. In the system to date this control exists in the PSMs 
which may decide to solve a subproblem themselves rather than dispatch it to a 
different PSM. Similar techniques will be incorporated in the IDB. The IDB 
machine could perform several atomic resolution steps before returning the 
bodies and the unifiers to the PSM, thus increasing the ratio between computa
tion and communication involved in a single resolution step. This effect may 
be attained either by a partial compilation of the the IDB axioms, or by 
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parameterized execution of the IDB that will perform a number of resolution 
steps as indicated by the PSM that initiated the query. 

PSM - Machines Structure Sharing 

Currently there is no sophisticated memory management done in the PSM. 
The memory management schemes most commonly used in Prolog implementations are 
copying and structure sharing. The decision not to incorporate structure 
sharing in PRISM was motivated by two factors. Firstly an implementation of a 
straight forward structure sharing will result in a tremendous overhead in 
pointer chaining before each literal(clause) is sent for expansion or a 
cumbersome and inefficient resolution operation if the structure sharing is 
done across processors. Secondly, since more than one path in the proof tree 
is active during execution, a locking mechanism must be incorporated to disal
low bindings from two different paths to be applied to variables of the same 
literal simultaneously. 

Parallelism enhancements in the PSM. 

The_flexible implementation_of the_ selection procedures allows some 
dynamic exploitation of inherent parallelism in the program. This includes 
automatic detection of literals that do not share variables,and selecting 
literals that will maximize the degree of the parallelism in the new subgoal. 
Consider the goal: <- P(x),Q(x,y),R(y,z). It is quite clear that if Q is an 
EDB predicate, binding of x and yin Q will result in a new goal with two 
literals that do not share variables, and therefore maximize the parallelism 
in the clause. At the moment our system supports only local detection of 
parallelism, that is parallelism internal to a single clause. We are currently 
investigating partial compilation techniques to maximize global parallelism, 
during execution, and global planning strategies to optimize the performance 
of the system in terms of utilization of the computational power of ZMOB on 
the one hand and search space pruning on the other. 

It is evident that cooperative problem solving must be supported with 
communication channels between PSMs to minimize some of the redundant search, 
by sharing partial results, eliminating goals that are logically related ( by 
implication o:r subsumption) and task sharing. 

The notion of a PSM as defined in our system is problem independent,that 
is each PSM may accept any problem. We are investigating the possibility of an 
Expert PSM which is dedicated to the solution of a class of problems. This 
notion will minimize some of the effort spent by the PSM in the selection pro
cess by precompiling some or all-of the selection procedures. 

Our system is based on a goal driven procedure invocation. Some thought 
has been given to facilitation of data-driven procedural invocation, that will 
allow effective simulation of data-flow machines. 

Before any of the above enhancements are attempted we will need to per
form many experiments with PRISM to determine its strengths and weaknesses. We 
plan to experiment with algorithms by alternatively modifying the logic, the 
control, and the architecture. 



20 144 
6. Acknowledgements 

Work on this effort was supported by AFOSR grant number 82-0303 and by 
NSF grant number MCS-79-19418. 

1· References 

Chakravarthy[1982] 
Chakravarthy, U.S., Kasif, s., Kohli, M., Minker, J., Cao, D., "Logic 
Programming on ZMOB: A Highly Parallel Machine", Proc. 1982 International 
Conference on Parallel Processing, IEEE Press, 1982, New York, pp 347-
349. 

Clark[1978] 
Clark, K.L., "Negation as Failure", in Logic and Databases, H. Gallaire 
and J. Minker (Eds.), Plenum Press, 1978, New York. 

Clark[1981] 
Clark, K.L., Gregory, s., "A Relational Language for Parallel Program
ming", DOC 81/16, Dept •... of Computing, Imperial College, 1981, London. 

Computer[1982a] 
Computer, Vol. 15, No. 2, Special issue on Data Flow Systems, February 
1982, IEEE Press, New York. 

Computer[1982b] 
Computer, Vol. 15, No. 1, Special issue on Highly Parallel Computing, 
January 1982, IEEE Press, New York. 

Eisinger[1982] 
Eisinger, N., Kasif, s., Minker, J., "Logic. Programming: A Parallel 
Approach", Technical Report 1128, Dept. of Computer Science, University 
of Maryland, College Park, 1981. 

Hewitt[1977] 
Hewitt, c., "Viewing Control Sructures as Patterns of Passing Messages", 
Artificial Intelligence, Vol. 8, North-Holland Publishing Company, 1977, 
PP 323-364. 

Hogger[1982] 
Hogger, C.J., "Concurrent Logic Programming", in Logic Programming, K.L. 
Clark and S-A. Tarnlund (Eds.), Academic Press, 1982, New York. 

Kahn[ 1977) 
Kahn, G., MacQueen, D.B., "Coroutines and Networks of Parallel 
Processes", Proc. IFIP Congress 77, North Holland, Amsterdam, pp 564-569. 

Kornfeld[1979] 
Kornfeld, W.A., "Using Parallel Processing for Problem Solving", A.I. 
Memo No. 561, MIT A.I. Lab, December 1979, Cambridge, MA. 

Kowalsk1[1979] 
Kowalski, R.A., "Logic for Problem Solving", Elsevier North Holland Inc., 
1979, New York. 

Kung[1980] 
Kung, H.T., "The Structure of Parallel Algorithms", in Advances in Com
puters 1980 1 M.C. Yovits, Ed., Academic Press, 1980, pp 65-112. 



21 145 
Lieberman[1981] 

Lieberman, H., "Thinking About Lots of Things At Once Without Getting 
Confused", A.I. Memo No. 626, MIT A.I. Lab, May 1981, Cambridge, MA. 

Minker[1982] 
Minker_, J., Asper, C., Cao, D., Chakravarthy, U.S., Csoeke-Poeckh, A., 
Kasif, s., Kohli, M., Piazza, R., "Functional Specification of the ZMOB 
Parallel Problem Solving System", Technical Note Z-1, Dept. of Computer 
Science, University of Maryland, College Park, 1982 

Pereira[1978] 
Pereira, L.M., Monteiro, L.F., "The Semantics of Parallelism and Co
Routining in Logic Programming", Divisao de Informatica, Laboratorio 
Nacional de Egenhario Civil, December 1978, Lisbon. 

Rieger[1980] 
Rieger, c., Bane, J., Trigg, R., "ZMOB: A Highly Parallel Multiproces
sor•, TR-911; Dept. of Computer Science, University of Maryland, May 
1980, College Park, Mayland. 

Rieger[1981a] 
Rieger, c., Trigg, R., Bane, J., "ZMOB: A New Computing Engine for AI", 
TR-1028, Dept. of Computer Science, University of Maryland, March 1981, 
College Park, Maryland. 

Rieger[1981b] 
Rieger, c., "ZMOB: Hardware from a User's Point of View", TR-1042, Dept. 
of Computer Science, University of Maryland, April 1981, College Park, 
Maryland. 

van Emden[1976] 
van Emden, M.H., Lucena, G.H., de Silva, H.M., •Predicate Logic as a 
Language for .Parallel Programming'!., Research Report, Dept. of Computer 
Science, Univ. of Waterloo, Ontario. 

Wise[1982] 
Wise, 
Proo. 
1982, 

M.J., "A Parallel Prolog: The Construction of A Data Driven Model", 
1982 ACM Symposium on LISP and Functional Programming, ACM Press, 

New York, pp 56-66. 



VAX 

PROBLEM 
[olving 
1:'._.achine - 1 

. . . 

\. 

I ntensio na 1 
:Q:a ta.Q_ase - 1 

. .. -

PROBLEM 
Solving 
P'.achine - 2 

. . . 

[xtensional Datab se 

... 

Intensiona11 i 6 
Qa ta!?_ase - 2 

Fig. 3. 



I 
I 

PROBLEM 
[olving 
J:1achine - l 

+GP{x,s) 

+GP(x,s) 

l 

• 

M(R,S)~ 
M(R,M)+ 
M(B,F)+ 

Intensional 
!!a ta.Q_ase - l 

GP{ x,z)+P{ x,y), 
P{y,z). 

P{ u, v)+M( u, v). 

P( u.v)+F( u, v). 

- . . 

... 

. . . 

PROBLEM 
Solving 
J:!achine - 2 

F(H,J)+ 
F(H,G)+ · 
F(J,S)+ 

.[xtensional Qata-2_ se 

. . . 

lntensiona114 f 
_Qa ta.Q_ase - 2 

GP( x, :z)+P{ x ,y), 
P{x,z). 

P( u, v)+M( u, v). 

P(u,v)+F{u,v) • 

• 

Fig. 4 



PROBLEM 
~o1 vi ng 
Jiachir.e - 1 

+GP{x,s) 

+P(x,y}. P(y,s} 

+GP(x,s) 

. . . 

I ntensiona1 
:Q:a ta Q_a se - 1 

GP(x,z)+P(x,y}, 
P(y,z). 

P( u, v)+M( u, v). 

P( u, v}+F{ u, v). 

(1) MATCH+GP(x,s) 

. . . 

M{R,S},t;
M(R,M)+ 
M(B, F)+ 

.. . . 

PROBLEM 
Solving 
.ffachine - 2 

. . . 

F(H,J)+ 
F(H,G)+ · 
F(J,S)+ 

fxtensior.a1 Qata.Q_ase 

lntensional 148 
Qa ta.Q_ase - 2 

GP( x,z)+P( x,y), 
P(x,z). 

P( u, v}+M( u, v). 

P(u,v}+F(u,v) • 

. . . 

.,.. 

• 
• 

Fig. 5. 



PROBLEM 
~olving 
,11achine - 1 

, , 

+GP(x,s) 

+P(x,y), P(y,s) 

/ 
+P(x,y), M(y,s) 

VAX 

+-GP(x~s) 

. . . 

M(R,Sh 
M(R,M}+ 
M{B, F)+ 

Intensional 
:Q:a ta.Q_ase - 1 

GP( x,z)+P{ x,y), 
P(y,z). 

P( u, v)+M( u, v). 

P( u, v)+F( u, v). 

(1) MATCH+GP(x,s) 
(2} MATCH+ P(y,s) 

. . -

. . . 

. . . 

PROBLEM • 
Solving 
,!:!achine - 2 

+P(x,y), F(y,s) 

F(H,J}+ 
F(H,G}+ · 
F(J,S}+ 

.E_xtensional QataQ_ se 

... 

,. 

lntensional 1 /. Q 
Qa ta.Q_ase - 2 ...,. f 

GP( X ,z)+P( x,y). 
P(x,z). 

P( u, v)+M( u, v). 

P{u,v)+F(u,v). 

I 
• 
• 
• 

Fig. 6 • 



VAX 

PROBLEM 
Solving 
Eachine - 1 

+GP( x,s) 

+P( x.y), P(y,s) 

r-
+P(x,y), M(y,s) 

1 
+P{x,R) 

+GP( x,s) 

Intensional 
~a ta!lase - 1 

. . . 

GP( x,z)+P( x,y), 
P(y,z). 

P( u, v)+M( u, v). 

P( u,v)+F( u, v). 

(1) MATCH+GP(x,s) 
(2) MATCH+ P(y,s) 

. . -

(3) MATCH+M(y,S) 

M( R,S )-+: 
M(R,M}+ 
M(B, F)+ 

PROBLEM 
Solving 
flachine - 2 

+P(x,y), F(y,s) 

I 
....P( x,J) 

. . . 

(3) MATCH+F{y,S} 

F(H,J)+ 
F(H,G)+ · 
F(J,S)+ 

fxtensional Qata.e_ se 

... 

.!.ntensional 150 
Qata.e_ase - 2 

GP( x,z}+P( x,y), 
P(x,z). 

P( u, v)+M{ u, v). 

P(u,v)+F(u,v). 

I 
• 
• 
• 

Fig. 7. 



f.ROBLEM 
iolving 
t!adliPie - l 

+GP(x,s) 

+P( x,y), P(y,s) 

~ 
+P( x,y), M(y,s) 

I 
+P{ x,R) 

T~ 
+M(x,R) +F(x,R) 

VAX · 

+GP(x,s) 

Intensional 
:Q:a ta.Q_ase - 1 

GP( x,z)+P( x,y), 
P(y,z). 

P( u, v)+M( u, v). 

P( u, v)+F{ u, v). 

. . . 
(1) MATCH+GP(x,s) • F? MATCH+ -P(y,s) 
4 MATCH+ P(w,R) 

. .. .. 

( 3) MATCH+M(y ,S) 

M(R,Sh 
M(R,M)+ 
M(B, F)+ 

PROBLEM 
Solving 
ffachine - 2 

+P(x,y). F{y,s) 

I 
+P(x,J) 

/~ 
+M( x,J) +F(x,J) 

... 

(3) MATCH+F(y,S) 

F(H,J}+ 
F(H,G)+ · 
F(J,S)+ 

.E_xtensiona1 Q_ata.!!_ se 

... 

Intensional 151 
Qa ta.!?_ase - 2 

GP( x, z)+P ( x,y), 
P(x,z). 

P{ u, v)+M{ u, v). 

P{u,v)+F(u,v). 

(4) MATCH+P(x,J 

I 

• 

Fig. 8 • 

• 
• 
• 



):_ROBLEM 
~ol vi ng 
~.a ch i ne - 1 

,., 
+GP(x,s) 

+P(x,y), P(y,s) 

r-
+P(x,y), M(y,s) 

I 
+P( x,R) 

/~ 
+M(x,R) 

I 
F.11.IL 

VAX 

+GP(x,s) 

+F{x,R} 

-I 
FAIL 

Intensional 
Q:a ta.Q_ase - l 

GP(x,z)+P{x,y), 
P(y,z). 

P( u, v}+M( u, v). 

P( u, v)+F{ u, v}. 

... 
(1) MATCH+GP(x,s) 
(2) MATCH+-P(y,s) 
(4) MATO!+ P(w,R) 

- - -

(3) MATOl+M(y,S) 
(5) MATCH+M(x,R) 
(6) MATCH+M(x,J) 

M(R,Sh 
M(R,M)+ 
M(B,F)+ 

PROBLEM 
Solving 
J'.lachine - 2 

+P{x,y), F(y,s) 

I 
+P(x,J) 

I ~ 
+M(x,J) +F{x,J) 

I I . . . 
FAIL D 

(SUCCEED) 

X=H 

(3) MATCH+F(y,S) 
(5) MATCH+F{x,R) 
(6) MATCH+F(x,J) 

F(H,J)+ 
F(H,G)+ · 

· F(J,S)+ 

' . -

.(xtensional QataQ. se 

lntensional 152 
Qa ta.Q_ase - 2 

GP( x,z)+P( x,y), 
P(x,z). 

P(u,v)+M(u,v). 

P(u,v)+F{u,v). 

... 

(4) MATOl+P(x,J 

Fig. 9 



Control of Logic Programs Using Integrity Constraints 

Madhur Kohli Jack Minker 

Department of Computer Science 
University of Maryland 
College Park, MD 20742 

153 



15~ 
Abstract 

This paper presents a theory for the intelligent execution of function 
free logic programs. 

Generally, interpreters for logic programs have employed a simple search 
strategy for the execution of logic programs. This control strategy is 
'blind' in the sense that when a failure occurs, no analysis is performed to 
determine the cause of the failure and to determine the alternatives which may 
avoid the same cause of failure. 

When executing a logic program it is often_desirable to permit an arbi
trary selection function and to have several active nodes at any given time. 
It is also useful to be able to remember the causes of failures and use this 
information to guide the search process. 

In this paper we present a theory for using integrity constraints, 
whether user supplied or automatically generated during the search, to improve 
the execution of function free logic programs. Integrity constraints are used 
to guide both the forward and backward execution of the programs. The theory 
supports arbitrary node and literal selection functions and is thus tran
sparent to the fact whether the logic program is executed sequentially or in 
parallel. 
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1. Introduction 

1.1. ~ Problem 

This paper presents a theory for the intelligent execution of function 
free logic programs. 

Interpreters for logic programs have employed, in the main, a simple 
search strategy for the execution of logic programs. PROLOG (Roussel [1975], 
Warren [1979], Roberts [1977]), the best known and most widely used inter
preter for logic programs, employs a straightforward depth first search stra
tegy augmented by chronological backtracking to execute logic programs. This 
control strategy is 'blind' in the sense that when a failure occurs, no 
analysis is performed to determine the cause of the failure and to determine 
the alternatives which may avoid the same cause of failure. Instead the most 
recent node where an alternative exists, is selected. This strategy has the 
advantage that it is efficient in that no decisions need to be made as to what 
to select next and as to where to backtrack. However, the strategy is 
extremely inefficient when it backtracks blindly and thus repeats failures 
without analyzing their causes. 

Pereira [1982], Bruynooghe [1978] and others have attempted to improve 
this situation by incorporating the idea of intelligent backtracking within 
the framework of the PROLOG search strategy. In their work the forward execu
tion component remains unchanged, however, upon failure their systems analyze 
the failure and determine the most recent node which generated a binding which 
caused the failure. This then becomes the backtrack node. This is an 
improvement over the PROLOG strategy but still suffers from several drawbacks. 
Their scheme works only for a depth first search strategy and always back
tracks to the most recent failure causing node. Also, once the backtrack node 
has been selected, all information about the cause of the failure is dis
carded. This can lead to the same failure in another branch of the search 
tree. Pietrzykowski [1981] has considered intelligent backtracking in the 
framework of general first-order systems. 

A node in the search space is said to be closed when it has provided all 
the results possible from it. In most PROLOG based systems a node cannot be 
closed until every alternative for that node is considered. However, by using 
integrity constraints as will be shown later, a node can be closed once it is 
determined that exploring further alternatives for that node will not provide 
any more results. 

When executing a logic program it is often desirable to permit an arbi
trary selection function and to have several active nodes at any given time. 
It is also useful to be able to remember the causes of failures and use this 
information to guide the search process. 

In this paper we present a theory for using integrity constraints, 
whether user supplied or automatically generated during the search, to improve 
the execution of function free logic programs. Integrity constraints are used 
to guide both the forward and backward execution of programs. The theory sup~ 
ports arbitrary node and literal selection functions and is thus transparent 
as to whether the logic program is executed sequentially or in parallel. 
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In the rest of this section we define the class of logic programs to 
which this theory is applicable. In Section 2 we show how integrity con
straints can be used to guide the forward execution of the system. In Section 
3 we show how integrity constraints can be extracted from failure and pro
pagated up the search tree. In the Appendix we present the interpreter for 
this theory. 

1•£· Function~ Logic Programs 

1•£•1· Horn Clauses 

Horn clauses are a subset of the first order predicate calculus. The 
language of function free Horn clauses is defined below. 

A~ is a constant or variable. 

An atomic formula is a predicate letter of arity n > 1 whose arguments are 
terms, i.e., if Pis an n-ary predicate letter and t 1, ••• ,tn are terms then 
P(t 1, ••• ,tn) is an atomic formula. 

An atomic formula or its negation is a literal. The classical logical connec
tors - (not),/\ (and), V (or) and the universal quantifier V are used in con
structing clauses. 

A clause is a disjunction of literals all of whose variables are universally 
quantified. That is, B1 v ••• V 13ui V -A1 v ••• V -An is a clause. A clause can 
be written equivalently as (V xi) (B1 v ••• V Bm <- A1 /\. • ./\ An) where the xi' 
i=1, ••• ,k are all the variables in the atomic formulae Ai, Bj, i=1, ••• ,n, 
j:1, ••• ,m. Since all variables in a clause are universally quantified, the 
universal quantifier will be omitted in the rest of this paper. 

A Horn clause is a clause which has at most one positive literal, i.e., the 
clause above is Horn iff m < 1. 

A function free logic program is composed of function free Horn clauses 
as follows: 

1. Assertions are facts or general statements about the domain and are of 
the form 

2. Procedures are of the form: 
P{x 1, ••• ,~) <- P1( ••• ), ••• ,Pn( ••• ) 

which states that to solve P we must solve P1, ••• ,Pn. 

3. Goals or the problem to be solved are of the form 
<- P( ••• ),Q( ••• ), ••• ,S( ••• ) 

A function free logic program is defined in terms of the following: 

(1) Axioms 

(a) Domain Closure Axioms, which states that there is a finite set of 
constants c 1, ••• ,cn from which all constants in the knowledge base must 
be drawn. 
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(b) Unique Name Axioms, which state that the constants are unique i.e., 
(c 1,c2), ••• , (c 1,cn), ••• , (cn_,,cn) 

(c) Equality Axioms: 
reflexive (x = x) 
symmetric ((y = x) <- (x = y)) 
transitive ( (x = z) <- (x = y) /\ (y = z)) 
principle of substitution of equal terms 

P(y1,•••,Yn) <- P(x,, ••• ,Xn) /\ (x1=Y1> /\. • ./\(Xn = Yn) 
where Pis an n-ary predicate letter. 

(2) Assertions of the form 
P(x1, ••• ,Xn) <-

(3) Procedures of the form 
P(x1, ••• ,~) <- P1( ••• ), ••• ,Pm( ••• ) 

(4) A meta-rule: Negation as failure to prove positive literals. 
1978] and [Reiter 1978]). 

1.g.g. Integrity Constraints 

( [Clark 

An integrity constraint is an invariant that must be satisfied by the 
clauses in the knowledge base. That is, if T represents a theory of function 
free logic programs and IC represents a set of integrity constraints applica
ble to T, then TU IC must be consistent. 

Integrity constraints are closed function free Horn formulae of the form: 

(a) <- P1, ••• ,Pm, or 

(b) Q <- P1, ••• ,Pm, or 

(c) E1 V E2 V ••• V En<- P1, ••• ,Pm where the Ei, i:1, ••• ,n, are equality 
predicates i.e. each Ei is of the form xi= yi where at least one of the 
xi, Yi are variables. 

Thus, an integrity constraint of the form (a) above, represents negated 
data, in the sense that P 1 /\ P2 /\. • ./\Pm can never hold if T U IC is con
sistent. 

An integrity constraint of the form (b) above, states that if 
p 1 /\ P2 /\. • ./\ pm 

holds then Q must also hold. 

Integrity constraints of the form (c) above, represent dependencies 
between the arguments of P1,P2, ••• ,Pm. 
Consider the logic program: 

I P(x,y)<-F(x,y) I 
F(a,b)<- IT 

I 
I 

F(b,c)<-

and the associated integrity constraint 
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I 
I 

R(x,z)<-P(x,y),P(y,z)IIC 
I 
I 

In the above example, R(a,c) can be proven from T, by using negation by 
failure. P(a,b) and P(b,c) can be proven from T. R(a,c) can be proven from 
P(a,b) and P(b,c) and IC. Thus R(a,c) can be proven from TU IC. Thus TU IC 
is inconsistent. The above integrity constraint is violated by the logic pro
gram since TU IC is inconsistent. 

If, however, the clause: 
R(x,z) <- F(x,y),F(y,z) 

were added 
would not 
constraint 

to T, then TU IC would be consistent and the integrity constraint 
be violated. Similarly, one could leave the axiom as an integrity 

and add R(a,c) to the knowledge base and have a consistent theory. 

2. Goals and Integrity Constraints 

2.1. Integrity Constraints to Limit Forward Execution 

Though integrity constraints are not necessary for finding the solution 
of a given set of goals with respect to a given logic program (Reiter 
[1978]), they can greatly enhance the efficiency of the search process and 
thus improve the performance of the problem solver (McSkimin and Minker 
[1979], King [1981]). 

Integrity constraints enable the semantics of the given domain to direct 
the search strategy by enabling the problem solver to prune those alternatives 
which violate integrity constraints and thus focus the search. Thus, 
integrity constraints influence the forward execution of the problem solver by 
enabling it to detect which sets of goals are unsolvable. This avoids explor
ing alternatives which must fail after a, possibly lengthy, full search. 

Thus whenever a new set of subgoals is generated, this set can be tested 
to determine if it violates any integrity constraints. If so, the node in 
question can be discarded and another path considered. 

2.2. Implementation and Search Strategy 

There are several forms an integrity constraint may take (Section 1.2.2). 

Whenever a new set of goals is generated it must be tested to 
if it violates an integrity constraint. Though each of the forms 
and (c) above require slightly different treatments to determine if 
violated, the underlying mechanism for each is the same. 

determine 
(a), (b), 
they are 

Form (c) can be transformed into form (a) by moving the disjunction of 
equalities on the left into a conjunction of inequalities on the right, i.e., 

E1 V E2 V ••• V En<- P1, ••• ,Pm 
is equivalent to 
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These inequalities can then be handled by using predicate evaluation rather 
than negation. 

Form (b) can be interpreted to mean that solving Q is equivalent to solv
ing P,, ••• ,Pm and thus P1, ••• ,Pm can be replaced by Qin the set of goals. 

Since all that is 
integrity constraint 
algorithm can be used. 
side of some integrity 

required, is to determine if the literals in the 
occur in the goal clause, an extremely straightforward 
It is only necessary to determine if the right hand 

constraint can subsume the goal clause. 

A clause C subsumes a clause D iff there exists a substitution o- such 
that 

Co-SD 

By Co-we mean the result of applying a substitution set o-, which is composed 
of pairs of the form a1;xi where the xi are variables of C and the a1 are 
variables or constants, to C, i.e. each occurrence of xi inc is replaced by 
ai. 

The subsumption algorithm executes in linear time and does not increase 
the complexity of the search. 

This algorithm (Chang and Lee [1973]) is presented below: 

Let C and D be clauses. 
Let Q = {a1tx1, ••• ,an/xn} be a substitution set, where x 1, ••• ,~ are all 
the variables occurring in D and a 1, ••• ,8n are new distinct constants not 
occurring in C or D (Skolem constants) and the constants ai is to be sub
stituted for the variable xi, wherever it appears inc. 
Suppose D = L1 V L2 V ••• V Lui, 
then DO= L,o V L20 v ••• v LuiO 
DQ is a ground clause since all variables in D have been replaced by 
Skolem constants. 
Thus , -og = -L 1 Q /\ -L2Q /\. • ./\ -Lmg 

1: Let w = {-L1o, ... ,-~Q} 

2: Let k = 0 and u0 = {C} 

3: If uk contains the null clause then terminate; C subsumes D 
else let uk+1 = {resolvents of c1 and c2 I c 1 ~ uk and c2 ~ W} 

4: If uk+1 is empty then terminate; C does not subsume D 
else set k to k+1; go to Step 3. 
Consider now, how the yarious forms of integrity constraints can be used 

to limit the forward execution. 

If a constraint is a form (a) constraint then all that is required is to 
apply the subsumption algorithm to the newly generated goal clause. If the 
constraint subsumes the goal clause, the goal violates the constraint and 
should be deleted from the search space. 

Whenever a literal is solved, it must be determined whether 
with any literal in the right hand side of a form (c) constraint. 

it unifies 
If so, the 
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resulting substitution is applied to the constraint, the solved literal is 
deleted, and the resulting clause is added to the set of integrity con
straints. 
For example, if 

x1:x2 <- P(x,x1),P(x,x2) 
is a constraint and P(a,b) is solved then P(a,b) unifies with the right hand 
side of the above constraint with the substitution set {a/x, b/x1}. Applying 
this substitution to the above constraint, and noticing that P(a,b) has been 
solved permits the revised constraint 

X2=b <- P(a,x2) 
to be obtained. This is then added to the set of integrity constraints. 
Also, this allows any node containing P(a,x) to be considered as a purely 
deterministic node, since only one possible solution for P(a,x) exists. 

Finally form (b) constraints can be used as follows. If the right hand 
side of the constraint subsumes the goal then, the resulting substitution is 
applied to the left hand side of the constraint and a new alternative goal 
with the left hand side substituted for the right hand side of the constraint, 
is generated. For example, if 

Q(x,z) <- P1(x,y),P2(y,z) 
is a constraint, and the goal clause under consideration is 

<- R(a,u),P,(a,y),P2(Y,Z),S(Q,Z) 
then 

<- P1(x,y),P2(y,z) 
subsumes the goal with substitution {a/x}. Applying this substitution to <
Q(x,z) results in<- Q(a,z). Generating an alternative node with Q replacing 
P1,P2 then results in the above goal node being replaced by the following OR
node 

Parent Node 

R(a,u),P 1(a,x),P2(y,z),s(b,z) 

Whenever a violation of an integrity constraint occurs it is treated as a 
failure. This results in failure analysis and backtracking which are detailed 
in the next section. 

1· Local and Global Conditions 

Global conditions are integrity constraints which are applicable to every 
possible node in the search space. Local conditions are integrity constraints 
which are generated during the proof process and which are applicable only to 
the descendant nodes of some given node in the search space. 

In this section we show that both local and global conditions exist. We 
also show how implicit global and local conditions may be determined and how 
they can be used to improve the efficiency of a problem solver. We also show 
how both failure nodes and fully expanded nodes may be used to derive these 
conditions. 
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J•l· Failure 

The failure of a literal can provide valuable information for directing 
the search. A literal 'fails' when it cannot be unified with the head of any 
clause (intensional or extensional) in the knowledge base. Since this failure 
means that the literal cannot be proven in the current knowledge base, because 
of the assumption of failure by negation, the literal's negation can be 
assumed to hold. Thus, the negation of the literal can be viewed as an impli
cit integrity constraint, and the failure can be viewed as a violation of this 
integrity constraint. 

Thus, every failure can be viewed as a violation of some integrity con
straint, implicit or explicit. This allows us to extract useful information 
from every failure, and to use this information in directing the search. 
The possible causes of unification conflicts are: 

(a) The literal is a pure literal. That is, there is no clause in the 
knowledge base, which has as its head the same predicate letter as the 
literal selected. This implies that any literal having the same predi
cate letter as the selected literal, will fail anywhere in the search 
space. This information can be useful in terminating other branches or 
the search tree in which a literal containing this predicate letter 
occurs. Thus if P(a,x) is a pure literal, then all of its argument posi
tions can be replaced by distinct variables and the resulting literal can 
be added to the set of integrity constraints as a form (a) constraint, 
i.e., 

<- P(x,,x2) 
is added to the set of constraints. 

(b) There are clauses in the knowledge base which could unify with the 
selected literal, but which do not unify because of a mismatch between at 
least two constant names. This mismatch can occur in two ways: 

(1) one of the constant names occurs in the literal and the other occurs 
textually in the head of the clause with which it is being matched. 

(ii) both the constants, which are distinct, occur in only one of the 
literal or the clause head being matched, but are to be bound 
together by the repeated occurrence of a variable in the clause head 
or literal, respectively. 

In both cases (1) and (ii) it is obvious that the 
never succeed with that particular set of arguments. 
used as an integrity constraint by placing the literal 
straint. For example, if the selected literal is 

P(x,a,x) 
and the only P clauses in the knowledge base are 

P(nil,nil,nil) <-
P(z,z,b) <- P1(z,b),P2(z) 

selected literal can 
This information can be 
as a form (a) con-

then the unification fails and <-P(x,a,x) can be added to the set of integrity 
constraints. 
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1·£• Explicit and Implicit Integrity Constraints 

Integrity constraints may be either explicit or implicit. Explicit 
integrity constraints are those which are provided initially in the domain 
specification. These constraints affect the forward execution of the problem 
solver as detailed in Section 2. These constraints can also be used in the 
derivation of implicit constraints. 

Implicit integrity constraints are generated during the proof process, 
i.e., during the solution of a specific set of goals. These constraints arise 
out of the information gleaned from failure as shown in section 3.1, and from 
successes in certain contexts as will be shown in later sections. These 
integrity constraints may be considered to be implicit integrity constraints 
in the sense that they are not explicitly supplied integrity constraints but 
are derived from the proof process. 

l•l• Applicability of Integrity Constraints 

An integrity constraint may be globally or locally applicable. An 
integrity constraint is said to be globally applicable if it can be applied to 
any node in the search space. That is, it must be satisfied by every node on 
every success path in the proof tree. Explicit integrity constraints are 
always globally applicable since they are defined for the domain and are 
independent of any particular proof tree. Implicit integrity constraints may 
be either locally or globally applicable. 

A locally applicable integrity constraint is one which must be satisfied 
by a given node and all its children. Any node which is not part of the sub
tree rooted at the node to which the constraint is locally applicable, need 
not satisfy the constraint. Locally applicable integrity constraints are 
derived from the failure of some path in the search space. The analysis of 
the cause of the failure results in the generation of a locally applicable 
integrity constraint which is transmitted to the parent node of the failure 
node. This local integrity constraint·must then be satisfied by any alterna
tive expansions of the node to which it applies. This effectively prunes 
those alternatives which cannot satisfy the constraint. For example, consider 
the following logic program fragment, 

Logic Program: 
P(a,b) <-
Q(y,z) <- Q1(z,x), Q2(z,y) 
Q(y,z) <- Q3(z,y) 
Q1 (b,d) <-
Q2(b,b) <-
Q2(c,c) <-
Q2(c,b) <-
Q2(x,y) <- Q4(c,x) 
Q3(c,b) <-
Q4(x,x) <-

Query: 
<- P(x,y),Q(y,z) 
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Search Tree: 

( 1) 

<- f(!,z),Q(y,z) 

(2) l 
<- SC!~,.!> 

( 3) 

<- Q1 (z,x) <- S3<.!,E.> 

(4) 

<- g,cr~) (5) 

<- s, (E_,!_) 

l 
.Jess 

fail success 

fail 

From the proof tree, the following information can be exteracted. From node 
4, <- Q1(c,x) can be propagated as a global implicit constraint since<-
Q1(c,x) can never be solved. Also, z = c can be propagated as a local impli
cit constraint to node 3 and thus later prevent the generation of node 8. 
This constraint is local to node 3 and its children since that is the node 
that bound z to c. Thus, node 6 has inherited this local constraint and 
thereby prevents z from being bound to c. As can be seen from the example an 
alternative expansion of node 2 giving node 7 succeeds with z bound to c, 
which illustrates that z =cat node 3 is a local constraint. 

1•~• Fully Expanded Nodes 

Implicit integrity constraints can be derived not only from failures but 
also from fully expanded nodes. 

If the same local integrity constraint is generated by every expansion of 
a given node, then this constraint can be propagated globally, irrespective of 
whether or not some expansion of this node succeeded. Also any node which 
fails for every possible expansion, can be propagated as a global integrity 
constraint. 
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1•2· Generation and Propagation of Conditions 

Implicit integrity constraints are generated at the leaf nodes of the 
search space and are then propagated either globally or as locally applicable 
integrity constraints to some parent node of the leaf node. The rules for 
generating and propagating these dynamic constraints are detailed below. 

When a goal fails along all paths, then that goal along with its current 
bindings is propagated as a global integrity constraint. Thus, if 
P(d1 u2 ••• ,~), where the d1 , i = 1, ••• ,n are constants or variables, fails 
for 'every expansion of P, then<- P(dj u2 ••• ,dn) is a global integrity con
straint. This is because P(d 1 d 2 ••• ,dn)'can never succeed, given the current 
state of the knowledge base. ' ' 

Since that goal can never succeed with its current bindings, alternatives 
which give rise to different bindings for its arguments must be tried. Thus 
those nodes which created the failure causing bindings receive as local 
integrity constraints, the information that these bindings must not be 
repeated along alternative expansions of the nodes which created the bindings. 
That is, if P(d 1 u2 ••• ,dn) fails and there is some ancestor P' of P such 
that some di of Pi! b6und by some literal (other~!') in the clause con
taining P', then <- xi= di is a local integrity constraint for the clause 
containing P'. If there are several d. which have been bound in different 
clauses then the conjunction of these 5indings must be propagated to the bind
ing clauses. That is, if ~ ~ ••• ,p are constants, where ~- = d- i = 
1, ••• ,m; j = 1, ••• ,n, such taaf'pi wal bound by some ancestor pi 6f P,Jand if 
P1 is the most recent ancestor of P and Pm is the least recent ancestor of P, 
then<- x1 = ~1 is propagated to the clause containing P1 and<- x1 = ~1, x2 = 
p2, ••• ,xi= ~i is propagated to the clause containing Pi. This is because 
undoing the p1 binding at P1 may suffice to remove the cause of failure 
whereas at P2, undoing either of the p1 or ~2 bindings may suffice. We do not 
propagate <- x1 = ~1, x2 = ~2, ••• ,xi= ~i to every Pk since xi has been 
replaced by pi in Pi and thus does not occur in any Pk, k < i. 

Local constraints which are propagated to a node by a descendant of the 
node must then be propagated to all other descendants of that node. This is 
because, as was noted above, the binding of pi to xi in the node containing Pi 
was due to the selection of some atom other than Pi in that node. Thus, Pi 
will be present in every expansion of that node and the binding of pi to xi 
will cause Pi to eventually fail. 

Theorem: 

Consider a node P which has several children P1, P2, ••• , Pn. 
Associated with each Pi is a set of local integrity constraints generated 
by its descendent nodes. 
Let ICi be the set of local integrity constraints associated with each 
Pi. Then(')Ici is propagated to P. 

i 

Proof: 

Let !Ci be the set of local integrity constraints applicable to Pi, i.e., 
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ICi is the set of constraints generated by the descendents of Pi using 
the rules explained above. 
Let ICp be the set of local integrity constraints applicable to P, then 

f)rci~ICp• Let Y < (lrci, then Y < ICi "I/ i=1, ••• ,n and thus every Pi will 
fail for any bindingithat satisfies "'i. Thus since every P. fails, p must 

l. 
fail with any binding that satisfies 7. Thus Y<ICp i.e. 
'/ ~nrci => Y < ICp and0ICi :ICp• 

i l. 

4. Summary 

A theory has been developed for function-free logic programs to permit 
control of the search based both on domain specific information in the form of 
integrity constraints and on an analysis of failures. Integrity constraints 
limit search in the forward direction, while failures result in the creation 
of integrity constraints. Failure analysis is also used to determine back
track points which are more likely to succeed. The concepts of local and glo
bal constraints have been introduced and are to be used to inhibit exploring 
fruitless alternatives. Subsumption is employed to take advantage of the con
straints. A logic program is provided for an interpreter which will perform 
the above. 

We intend to incorporate these concepts into PRISM, a parallel logic pro
gramming system [Kasif,Kohli and Minker 1983], under development at the 
University of Maryland. 
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Appendix: TI!! Interpreter 

In this appendix we describe the interpreter, for function-free logic 
programs, which implements the theory described in the previous sections. 

~: An open node is a node which has not been selected for expansion. 

~: An active~ is a node which has been selected for expansion but has 
not yet been fully solved. 

~: A closed node is a node which has been completely expanded. 

1. Interpreter Specification 

1. Initialise the search space with the initial goals. 

2. Select an open node from the search space. Mark it as active. 

3. If the selected node is subsumed by a global integrity constraint then go 
to step 15. 

4. Select an atom from the selected node. 

5. Unify the selected atom with all procedure heads which have the same 
predicate letter. 

6. Delete all procedures which require bindings which violate the local 
integrity constraints of the selected node, from the set of procedures 
which were selected in step 5. 

7. If the set of procedures obtained after step 6 is empty, go to step 14. 

8. Add the set of selected procedures to the set of all selected but uncon
sumed procedures generated so far. 

9. Select one or more procedures from the set of unconsumed procedures. 

10. For each of the procedures selected in step 8: generate descendant nodes 
of the node which was expanded to obtain these procedures. The descen
dants are generated by replacing the selected literal by the body of a 
matching procedure, and applying the substitution obtained from the unif
ication process to the newly generated node. Mark the newly generated 
node as open. 

11. If any of the newly generated nodes is empty (null clause), STOP. 

12. Initialise the local constraint sets for the newly generated nodes, with 
the local constraint sets of their parent node. 

13. go to step 2. 

14. Add the selected node with all its current bindings to the list of global 
integrity constraints. 

15. Mark the current node as closed. For each ancestor node which made a 
binding in the current node, add a local constraint which is the negation 
of the bindings. 

16. Propagate the local constrint set to all children of each affected node. 

17. Go to step 2. 
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2. Logic Program f2!: ~ Interpreter 

In this section we define the logic program for the interpreter described 
in the previous section. 

A node is a 3-tuple 
n(state,clause,localic) 

where, state is either open, active or closed; clause 
represented by this node; localic is the set of local 

A body is a 2-tuple, 
b(clause,sublist) 

is the set of goals 
integrity constraints. 

where, clause is the procedure body; and, sublist is the substitution set gen
erated by unification of the literal and the procedure head. 

solve(goals,prog,ic) <-
init(goals,tree), 
interpret(tree,prog,ic). 

init(goals,tree) <
inittree(n(open,goals,nil),tree). 

interpret(tree,prog,ic) <-
empty(tree). 

interpret(tree,prog,ic) <-
selectnode(tree,node,newtree1), 
expandnode(node,newtree1,prog,ic,newtree,newic), 
interpret(newtree,prog,newic). 

expandnode(node,tree,prog,ic,newtree,newic) <-
icok(node,ic), 
selectatom(node,atom), 
unify(atom,prog,bodies), 
checklocalic(node,bodies,newbodies), 
insertbodies(newbodies,node,atom,tree,ic,newtree,newic). 

expandnode(node,tree,prog,ic,newtree,ic) <
not(icok(node,ic)), 
failurenode(node,tree,newtree). 

icok(node,ic) <-
empty(ic). 

icok(node,ic) <
selectic(ic,oneic,restic), 
not(subsume(oneic,node)), 
icok(node,restic). 

checklocalic(node,nil,nil,ic,ic) <- • 
checklocalic(n(x,y,lic),b(z,subs).restbodies,b(z,subs).newbodies,ic,newic) <

checklicok(lic,subs), 
checklocalic(n(x,y,lic),restbodies,newbodies,ic,newic). 
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failurebindings(~,bindings) creates a list of bindings in~' undoing any 
one or more of which may undo the cause of failure. 

addlocalic(parents,bindings,newparents) updates the local integrity constraint 
sets for parents with those elements of bindings which are applicable, and 
creates the new node list newparents. 

propagatelocalic(parents,~,newtree) propagates the local integrity con
straint sets of each element of parents to every child of that node. It gen
erates a newtree with all the newly modified nodes. 

addic(~,ic,newic) adds~ to the set of global integrity constraints ic 
to generate the new global integrity constraint set newic. 

selectic(ic,singleic,restic) selects an integrity constraint singleic from the 
set of integrity constraints ic and creates the set restic which is ic -
singleic. 
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checklocalic(n(x,y,lic),b(z,subs).restbodies,newbodies,ic,newic) <
not(checklicok(lic,subs)), 
addic(z,ic,newic1), 
checklocalic(n(x,y,lic),restbodies,newbodies,newic1,newic). 

checklicok(nil,subs) <-
checklicok(lic.restlic,subs) <-

not(member(lic,subs)), 
checklicok(restlic,subs). 

insertbodies(bodies,node,literal,tree,ic,newtree,ic) <-
not(empty(bodies)), 
inserttree(node,literal,bodies,tree,newtree). 

insertbodies(bodies,node,literal,tree,ic,newtree,newic) <
empty(bodies), 
addic(node,ic,newic), 
failurenode(node,tree,newtree). 

failurenode(node,tree,newtree) <
bindingnodes(node,tree,parents), 
failurebindings(node,bindings), 
addlocalic(parents,bindings,newparents), 
updatetree(parents,newparents,tree,newtree1), 
propagatelocalic(newparents,newtree1,newtree). 

where, 

1 tO 

inittree(node,tree) creates~ with node as its root node. 

inserttree(node,lit~ral,bodies,tree,newtree) creates a newtree which is formed 
from tree by generating children nodes 9f node by replacing literal in node by 
the atoms in each of the bodies and applying the substitutions to the newly 
generated nodes. 

updatetree(nodes,newnodes,tree,newtree) modifies tree to produce newtree by 
replacing each element of nodes in the tree by the corresponding element in 
newnodes. 

selectnode(tree,~,newtree) selects an open node from tree and creates a 
newtree which has node replaced by a new node marked as active. 

selectatom(node,atom) selects an atom from node. 

unify(atom,_rn,bodies) selects those procedures from ,rn which have the same 
name as atom. It then applies the unification algorithm to each of these pro
cedure heads and forms a list of those bodies which match the given atom, 
along with the resulting substitution lists. 

subsume(ic,node) determines whether the integrity constraint ic subsumes node. 

member(element,set) determines if element is a member of set. 

empty(list) determines if list is empty(nil). 

bindingnodes(node,tree,parents) sets parents to be the list of all ancestors 
of node which created a binding in node. 
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Abstract 

Concurren! Prolog is a logic-based concurrent 
programm,ng language which was designed and 
implemented on DEC-10 Prolog by E. Shapiro. In 
this paper, we show that the parallel computation in 
Concurrent Prolog is expressed in terms of message 
passings among distributed activities and that the 
language can describe parallel phenomena in the same 
way as Actor-formalism does. Then we examine the 
expressive power of communication mechanism based on 
shared logical variables and show that the language 
can express both unbounded buffer and bounded buffer 
stream communication only by read-only annotation 
and shared logical variables. Finally the new 
feature of Concurrent Prolog is presented, which 
will be very useful in describing the dynamic 
formation and reformation of communication network. 
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1. Introduction 

Concurrent Prolog was designed and implemented on the DEC-10 Prolog by E. 
Shapiro [l] for concurrent programming. As the Relational Language [2]. 
Concurrent Prolog adopts Or-parallelism as a basis for non-deterministic processing. 
and And-parallelism for description for parallel processes. Shared variables are 
used, with some control information uvariable annotation", as communication 
channels among concurrent processes. 

In the Relational Language, there are two kinds of the variable annotation. input 
and output, which are used for input suspension and output suspension respectively. 
On the contrary, in Concurrent Prolog, there is only one annotation. read-only 
annotation, which is a generalized idea of input annotation and by which we can 
also express the output suspension when an output buffer is full. This will be 
explained in the section 4. 

In the section 2, we review the Concurrent Prolog. In the section 3, the 
computation model of the language is presented and in the section 4 we examine 
the basic communication mechanism based on shared logical variables and derive 
the technique for implementing the bounded buffer communication in the language. 
In the section 5, we introduce the concept of the incomplete message as a new 
programming paradigm and explain briefly. In the section 6, we present a new 
feature of Concurrent Prolog which is very useful in describing the formation and 
reformation of the communication network. 

2. Review of the Concurrent Prolog 

2.1 Syntax of Concurrent Prolog 

In Concurrent Prolog, a program is represented as a list of guarded clauses. The 
form of a guarded clause is 

A :- 01, ... ,Gn I Bl, ... ,Bm. n.m >= 0. 

A guarded clause must have a guard bar "I". The left hand side of guard bar is 
called the guard sequence and the right hand side is called the goal sequence. The 
guard bar can be omitted when the guard sequence is empty, that is n=0. G's and 
B's are both lists of literals connected by logical AND. 

There are two kinds of logical AND's, which are parallel-AND and serial-AND. 

serial-AND 
parallel-AND 

u&" 
U II 

Their logical meaning are the same, but the way to interpret and execute is 
different. As it is clear from their name, goals connected by serial-AND must be 
executed in sequential order (left-to-right), and goals connected by parallel-AND 
must be executed in parallel. As for the operator precedence, 



"," is lower than "&", that is, 

f&g , p&q is equivalent to {f&g) • {p&q}. 

Current implementation of Concurrent Prolog only provides sequential-or mode. 
Therefore, alternative clauses are tried in the text order. 

On the notation, we adopt DBC-10 Prolog-like convention, for example, a word 
beginning with a capital letter denotes a variable. 

In Concurrent Prolog. variables can be accompanied with some special control 
information. "read-only" annotation, which can control the unification. Read-only 
annotation is denoted by •111 and can be attached to variables in the following way, 

X? where X is a variable. 
(JC~f.L 

The meaning of read-only annotation is that a variable) annotated by "?" must not be 
unified with a non-variable term. .The annotation can be attached to eadi ~ 7 
occurence of a variable, and will vanish when the variable will be instantiated to a 
non-variable term. Generally read-only annotation can be attached to the variables 
shared by concurrent processes in order to restrict the direction of data flow, where 
the process which annotates the shared variable can not instantiate the variable and 
wait for the variable to become instantiated by the other process which does not 
annotate it. This will be explained later again. 

2.2 Reduction 

In this section, the process of reduction is explained. Suppose that the goal A 
and the following program are given. 

Al:- 011 Bl. 
A2 :- 02 I B2 • 

. 
An:- Gn I Bn. 

where Oi and Bi {1 =< i =< n) are a guard sequence and a goal sequence 
respectively. 

Bach clause is classified into one of the three fallowing classes with respect to 
the goal A. 

1. Candidate Ai :- Oi I Bi. 

when, without instantiating variables annotated 
by "?" to non-variable terms, A and Ai can be unified · 
and Oi can be solved. 

2. Suspended Aj :- Oj I Bj. 

3 



when, except for instantiating read-only 
variables to non-variable terms, A and Aj can be 
unified and Gj can be solved. 

3. Failure 
otherwise. 

Each clause is checked in ~text order whether it can be a candidate, and the 
clause that is found to be a candidate first is selected. The selected clause, say A :
GilBi., is used to reduce the goal to the goal sequence Bi. Once the goal is reduced, 
checking of the rest of clauses will be abandoned. In this sense, the guard bar "I" 
acts as a cut symbol. 

When the goal has no candidate and has at least one suspended clause, it will be 
suspended until at least one candidate will be found or it will be failed (i.e. all the 
clauses will be classified into the failure). 

~ 
Since the instantiation of shared variables can be undo.¢ by ~ backtracking 

before the guard sequence is solved completely, the values of the shared variables 
will be hidden from other processes until the guard sequence is solved completely. 

Although Concurrent Prolog adopts And-parallelism. consistency check of values 
of shared variables will be replaced by the restriction that the process instantiating 
the shared variables must be one. However, which process can instantiate a shared 
variable need not be specified before the execution, as long as it is guaranteed that 
there can be only one such process even if it is determined dynamically in a 
non-deterministic way. 

3. The Computation Model 

In this section we present the Actor-like ·model [3,4] of the parallel e&..Q 
computation in Concurrent Prolog. For the simplicity, we assume that ev,'J_ goals 
are solved in Or-parallel mode, that is, all the alternatives are checked in parallel. 

First we define the term "event" which is a basic concept in order to formalize 
the computation model. 

"An event is a successful unification between a foal 
and a head of a clause and a successful solution o the 
guard sequence of that clause." 

Using this definition, we can specify the condition for an event to arise. 

"The condition for an event associated with a goal to 
arise is that the goal can be unified with a head of 
some clause and its guard sequence can be solved 
successfully." 

+ 
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Given a goal A and a clause A' :- Gl, ... ,GnlBl, ... ,Bm, we denote the event by 

A:A'. 

Once a goal A is unified with the head A' of a clause 

A' :- Gl, ... ,GnlBl,... Bm. 

that is, the event A:A' happens, then A is reduced to the goal sequence Bl, ... ,Bm 
which in tum begin to invoke other events, say Bl:Bl', ... ,Bn:Bn'. In this way, 
generally an event causes other events except the case in which a goal is unified 
with a clause with empty goal sequence, in this case the event causes nothing. 

Let's define the causal relation among events more precisely. 

"An event B, A:A', causes an event B', B:B', 
if and only if B is included in the set 

{ Bi I 1 =< i =< n } 

where A' is a head of the clause 

A' :- I Bl, ... ,Bn. " 

It is clear from the definition of an event that there can be no circular causal 
relation among events. 

We denote the causal relation "B causes B'" by 

B => B' 

Generally an event causes more than one events. 

Bl ;, 
B => B2 

~ B3 

The reflexive transitive closure of the causal relation => is denoted by ==>. By the 
relation ==>, an event Bl can be related to the event B2 indirectly caused by the 
event Bl. For example, Bl => B2, B2 => B3 then Bl ==> B3 and so on. 

Note that the relation ==> also can be interpreted as the semi-order relation of 
an activation of an event. "Bl ==> B2" can be read as that an activation of an event 
Bl precedes an ·activation of an event B2. 

Now we define the term "process". 

"A process initiated by an event B is a chain of events 
connected by the relation =>." 



Given a goal A and a clause A' :- Gl, ... ,GnlBl, ... ,Bm., a process initiated by the 
event A:A' can be thought as the solution process of the goal A using that clause. 
From this point view, it is clear that the time when a process terminates is the time 
when the goal A is solved completely. 

Since an event can cause more than one event, the chain of events (= process) 
looks like a tree (see figure). 

c..1 
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The terminal nodes of the tree correspond to the events each of which is a 
unification between a goal and a clause with an empty goal sequence. 

4. Interprocess communication 

In Concurrent Prolog, interprocess communication is realized by variables 
logically shared among processes. A process can send a message to other processes 
by instantiating a variable shared among them to the message. Since a destructive 
assignment to a logical variable is not permitted, communication using one variable 
cannot be done more than once. However, in general, because there is no 
restriction about the number of the processes sharing a variable, the message to 
which one of the processes instantiates the shared variable will be sent to the rest 
of processes at the same time. Therefore broadcasting of a message has been 
realized without any additional mechanism. 

Shared variables are created when, for example, a process forks to subprocesses. 

p(X) :- I q(X,Y),r(Y?). 

In the example above, the variable Y is shared between the processes, which are 
solution processes of the goal q and r respectively, and is used for communication 
between them. 

However, as mentioned above, communication using one shared variable cannot 
be done more than once. Therefore in order to enable the successive 
communication among processes, there must be some mechanism to create a new 
logically shared variable dynamically. Most general method for this is the technique 
of the stream communication which is well known by the work of Clark and 
Gregory [2]. 

In the stream communication. a shared variable is instantiated to a data structure 
which contains a message and a new uninstantiated variable. In the Relational 
Language, a list was used for such structure. 

[ <message>l<variable> ]. 

A variable contained in the structure is sent with a message from the sender to the 
receivers, becomes a new shared variable among processes and will be used for the 
next communication. Consequently as long as a process sends a message in this 
way, every time a message is sent, a new shared variable is created, so that the 
successive communication is established. 

In general, the successive communication consists of two phases. 

Phase 1 A shared variable is instantiated to a 
message. 

Phase 2 A new shared variable is created. 

In the phase 1, the action most essential to communication is performed. In the 
phase 2, what enables a next communication is performed. In the case of the 
stream communication, both phases are performed at the same time in the same 
process, the sender. However there is no reason for two phases to be performed in 
the same process and no restriction on the 
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execution order between the phase l and the phase 2. If we treat the two phases 
separately. we will be able to find several kinds of communication style based only 
on logically shared variables and read-only annotation. As an example. we present 
in this section the bounded buff er communication based on shared logical variables. 
which is implemented without introducing another annotation like the Relational 
Language. Before that, we summarize the unbounded buffer stream communication. 

[The Unbounded Buff er Communication] 

In the stream communication, both phases are performed at the same time in 
the sender of messages by instantiating a shared variable to a pair of a message and 
a variable. Therefore every time a sender sends a message, it gets a new "shared" 
variable, so that it can send a next message as soon as it sends a message. On the 
contrary, a receiver can read a message only after it is received and the receiver has 
to wait when it tries to read a message and no message is received yet. This "wait" 
mechanism is implemented by making the shared variable in the receiver read-only. 
Because there is no mechanism for inhibiting the sender to send a message, this 
type of communication realizes the unbounded buffer communication. Note that 
the essence of unbounded buffer communication is in the fact that both phases are 
performed in the same process, the sender of messages. 

As an example of the stream communication we show the program which 
describes the situation where there are two communicating processes, one of which 
sends an integer every time the process generates it and the other prints out an 
integer every time the process receives it. 

Goal:: integers(0,N) • outstream(N?). 

Program-I :: 
integers(I,[IIN]) :-

plus{I,1,J) I integers(J,N). 
outstream([IIN]) :-

write{I) I outstream(N?). 

[send] 

.... [receive] 

Note that "outstream" will be suspended when the variable N is not instantiated to a 
non-variable term, because of the condition for read-only variables. In the example 
above, message sendings and receivings are processed at the unification between a 
goal and a head of a clause. We could write the same program in more abstract 
level like below. 

Goal:: integers(0,N) , outstream(N). 

Program-2 :: 
integers(I,N) :-

send{I,N,M), plus{I,1,J} I integers(J,M). 
outstream(N) :-

receive(I,N? ,M), write{I) I outstream(M). 

In both predicates "send" and "receive", the first argument is a message, the second 
argument is a current communication variable and the third argument is a next 
communication variable. The program "send" and "receive" are: 

send(X,[XlM],M). 
receive(X.[XlM].M). 

8 



The advantages in using •send• and •receive• are to hide the internal structure to 
which the shared variable is instantiated and to modularize programs. In fact, even 
if we could use another data structures, say •stream{ <message>,<variable> )", instead of 
the list "[<message>l<variable>]", the programs which have to be changed are only 
"send" and "receive" {new codes are shown below) and no other programs including 
the user programs are kept unchanged. 

send{I,stream{I,M),M). 
receive{I,stream{I,M) ,M). 

On the other hand, we could say that using "send" and "receive" is to lose the 
simplicity of the Program-I. 

[The Bounded Buffer Communication] 

In the bounded buffer communication, to send a message is suppressed when 
messages, the number of which is equal to the size of the buffer, are kept unread in 
the buff er of the receiver. 

From the above analysis of communication through shared variables, we can 
naturally rmd the mechanism for this kind of communication. The key idea is the 
separation of the actors of two phases. 

The phase 1 {instantiation) is performed by the sender at the moment it send a 
message and the phase 2 is performed by the receiver when and only when it reads 
(picks up) a message from the buffer. Therefore the sender cannot send messages 
more than the buffer size if the receiver did not read the messages, that is, it did 
not generate new shared variables. 

We explain the method when the buffer size is equal to two, using the previous 
example. 

Goal:: integers(O,[X,YIZ]) , outstream([X,YIZ]). 

Program:: 
integers{I,N) :-

send(I,N? ,M), plus{I,l,J) I integers(J,M). 
outstream(N) :-

receive(I,N,M), write{I) I outstream(M). 

Note that the second argument of "send" is annotated as read-only, while in the 
previous example the second argument of "receive" is annotated as such. The 
following is a new code for "send" and "receive• programs in the bounded buffer 
communication. 

send(Msg,[MsglNewChannel],NewChannel). 
receive(Msg,[MsglNewChannel],NewChannel) :-

wait(Msg)lupdate_buff(NewChannel). 

Here again we use the list structure for implementing the stream. "wait(X)" is a 
system predicate which suspends when the argument "X" is not instantiated yet, and 
succeeds otherwise. "update_buff(X)" is a sequential Prolog program which takes a 
d-list as an ar~ument and instantiates the tail variable of it to a cons cell "[PIQ]" 
where both "P' and "Q" are uninstantiated variables. 



update_buff(X) :- var(X),!,X=[PIQ]. 
update_buff([XJYJ) :- update_buff(Y). 

1io 

The second argument of "receive" plays a role of a buffer consisting of slots 
(variables) which will be filled with messages by the sender. The buffer is updated 
by one slot when and only when the receiver picks up a message from the buff er, 
so that the length of the d-list (buff er) remains the same which corresponds to the 
buff er size. Although the sender shares the buffer with the receiver, it can not 
update the buffer and all it can do is to fill empty slots with messages if there is 
any such slot. When the size of buffer is equal to two, the buffer looks like: 

[X,YIZ]. 

For the sender, the buffer looks like one of the following. 

(1) [X,YIZ] 
(2) [YIZ] 
(3) Z 

where "X", "Y" and "Z" are all uninstantiated variables. (1) corresl)Onds the case in 
which the buffer is empty, that is, there is two empty slots and (2) corresponds to 
the case in which there is one room for sending a message. (3) corresponds to the 
case in which the buffer is full, that is, there is no room for sending a message. 
Because the second argument of "send" is treated as read-only, the reduction of 
"send" is suspended in the case (3). The figure below shows the situation where the 
sender tries to send three messages, "ab", "cd" and "ef" when the buffer is empty. 

the receiver 
[X,YIZ] 

[ab,YIZ] 

[ab,cdlZ] 

receive "ab" -

[cd,PIQ] 

the sender 
[X.YIZ] 

send "ab" 

[YIZ] , 

send "cd" 

z 

send "ef" is suspended 

[PIQ] 

send "ef" 

It is more convenient when we could parameterize the size of the buffer. 
Generally their usage are the following. 



In sender :: send(Msg,Channel?,NewChannel) 

In receiver At the rust communication 
:: open(Channel,N). 

receive{Msg,Channel,NewChannel) 

At the subsequent communications 
receive(Msg,Channel,NewChannel) 

1 8 1 

"open" takes two arguments, a communication variable "Channel" and a size of a 
buffer "N", and it instantiates the variable "Channel" to the d-list with the rust "N" 
arguments of it instantiated to variables. "open" is also a sequential Prolog program. 

open{X,O) :- !. 
open([XIY],N) :- Nl is N-1,open(Y ,Nl). 

The program above specifies the case in which the buffer size is more than or 
equal to one. Implementation of 0-Buffer communication is a little different from 
the above. The predicate "receive" is replaced by the following definition. 

receive(Msg,[MsglNew],New ). 

and their usage becomes: 

In sender :: same as above 
In receiver :: receive(Msg,Channel,NewChannel},wait(Msg) 

The bounded buffer communication is very important when there are several 
processes, each of which produces or consumes data in different speed. Suppose 
that, in the example above, the rate of integer generation in "integers" is much 
greater than that of data consumption in "outstream", in such case if we use the 
unbounded buffer .communication between two processes, the huge amount of 
unprocessed integers will be produced. The bounded buffer communication is a 
simple and efficient method to control and combine processes having different rate 
of data producing or consuming by controlling the production of data according to 
the consumption of them. 

As an example of the application of this bounded buffer communication, we 
can define a 2 x 2 communication switch which has two input ports and two output 
ports. It can receive inputs from two ports and sends them to the output port which 
has at least one empty slot. If both ports are not available, the "switch• is 
suspended. 

switch2x2{Inl,In2,0utl,Out2) :-
receive(M,Inl,Insl)&send(M,Outl,Outsl} I switch2x2(Insl,In2,0utsl,Out2). 

switch2x2(Inl,In2,0utl,Out2) :-
receive(M,In2,Ins2 )&send(M.Outl,Outsl} I switch2x2(Inl,Ins2,0utsl,Out2). 

switch2x2(Inl,In2,0utl,Out2) :- . 
receive(M,Inl,Insl)&send(M.Out2,0uts2) I switch2x2(Insl,In2,0utl,Outs2). 

switch2x2(Inl,ln2,0utl,Out2) :-
receive(M,In2,Ins2)&send(M,Out2,0uts2) I switch2x2(Inl,Ins2,0utl,Outs2). 

J I 



5. Incomplete Message 

As in the actor formalism, Concurrent Prolog is a model of the parallel 
computation and provides a communication methods through shared variables. A 
message will be sent by instantiating the shared variables. A message which 
contains a variable is called an incomplete message [5]. It makes a new variable 
shared by the sender and the receiver of the 

message, that is, it creates a new communication channel. It means that a 
communication channel can be made dynamically and it can be sent to other 
processes also. 

182 

The concept of an incomplete message is a large programming paradigm which 
includes the basic communication mechanism between processes, so-called pipeline 
processing on stream data, and yields new features of Concurrent Prolog. The close 
analysis of this concept is described in the paper of Shapiro and Takeuchi [5]. 

In this section, we review the key features of this concept according to the 
paper of Shapiro and Takeuchi [5]. 

(1) [Stream] Once a variable is instantiated, it· will never be rewritten except the 
case where the whole goals fail. Therefore it can not be used as a communication 
channel in the next message passing phase. In order to enable subsequent 
communication, in the stream communication generally a shared variable is 
instantiated to a list of a message and a variable which will be used in a next 
communication. In this sense, the stream communication is one of the examples of 
incomplete messages and provides a basic communication mechanism in Concurrent 
Prolog. 

(2) [Pipeline] In addition, incomplete messages make it possible to process partially 
obtained data in a pipeline style. Although pipeline processing on stream data is a 
new concept of programming languages, it is included naturally in the paradigm of 
the partially defined message. In some sense, usual message passing can be seen as 
a kind of pipeline processing on a sequence of commands generated incrementally. 

(3) [Response] When a process sends a message which requires a response, the 
response can not be sent through the same shared variable, since logical variables 
are single-assignment. The technique of the incomplete messages is also useful in 
this case, in which the sender sends a message that contains an uninstantiated 
variable, and then examines that variable in a read-only mode, which causes it to 
suspend until this variable gets instantiated to tb.e response by the recipient of the 
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message. However this is different from the examples above, because the process 
which instantiates a shared variable is the receiver of the message. In this case, 
once a message is sent to a process, the sender can run independently whether the 
receiver returns the response as long as the sender need not to refer to the . 
response. When the sender needs the response it is forced to wait until it will be 
instantiated. This behavior associated to a shared variable used in a response takes 
an advantage in writing a monitor of shared resources and highly reduces the 
overhead on the resource manager because the manager will never be locked and 
the request will never be refused. 

6. New Features of Concurrent Prolog 

In this section, we explain the another feature of the Concurrent Prolog not 
available in other concurrent programming languages. . 

The interprocess communication based on shared variables is not new method 
and has been implemented generally by sharing physical memory cells. The 
difference between the communication by the shared variables of Concurrent Prolog 
and that of traditional languages is the highly abstracted level of shared object. In 
traditional languages, the objects shared are physical objects such as memory cells or 
global variables. On the contrary, in Concurrent Prolog, the objects shared are 
highly abstracted logical variables which can be objects of the unification operation, 
a very high level operation. Because of this hip level abstraction, Concurrent 
Prolog can express very high level communicatJ.on style among parallel processes in 
a simple way, · that is, unifying two communication channels. 

The well-known "merge" program is an example of this feature. 

merge([AIXJ,Y.[AIZ]) :- I merge(X?,Y .Z). 
merge(X,[AJY],[AIZ]) :- I merge(X, Y?,Z). 
merge([l,Y,Y). 
merge(X,[],X). 

Goal:: p(X),q(Y),merge(X?,Y?,Z),r(Z?) 

This program merges two input streams into one stream. The first two clauses are 
used for this purpose. The rest two clauses describe the situation, where one of the 
input stream {say "X") reached the end, and the remaining stream C-Y") is unified 
with the output stream ("Z"). After this unification, data on the remaining stream 
("Y") are sent to the output stream ("Z") without any relay, because the input stream 
and the output stream are logically the same. The important point is that this 
change of the data flow can be performed only by the unification and that both the 
sender and the receiver never know the change of data flow (Figure) . 

⇒ 
.. -- --...... -0 
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The next program shows another example. 

switch({ on!X],{1,X). 
switch{[AIX],[AIY],Z) :- I switch{X?,Y,Z). 

Goal:: p(X), switch(X?,Y,Z), q(Y), r{Z). 

"switch" takes three arguments. The first argument is the input stream and the 
second and the third are the output streams. "switch11 program keeps the connection 
between the input stream and the second ar~ent until it will fmd the "on" 
message in the input stream. When "switch receives it, it changes the connection 
and thereafter it will pass input data to the third argument. Here again the 
important point is that the the data flow can be changed directly by the unification 
and it is hidden from both the sender and receivers {figure). 

0 t C switc~ 

0 
These two examples demonstrate the new feature of interprocess 

communication in Concurrent Prolog. Other powerful examples are presented in 
the paper [5]. 

7. Conclusion 

In this paper we present the computation model of Concurrent Prolog and 
explain mainly the interprocess communication based on the shared logical 
variables. 1) From the close analysis of the stream communication, we derived the 
mechanism for implementing the bounded buff er communication only by the 
read-only annotation. 2) We have shown briefly the basic programming paradigm 
"incomplete messages" as a source of the powerful programming technique. 3) We 
have shown the new features of Concurrent Prolog provamming which originate 
from the logical power of the unification. 
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Atst:ract 

An "intelligent" backtracking algorithm for depth-first search of the solution space 
generated during linear res:il.ution in fcil has been designed. It inspects only a small 
porticn of the total s:il.ut:im space, which consists of special graphs representing t.11e 
deductive stru:::ture of the proof. These graphs are generalization of AN D/0 R 
trees. Our (partially) complete search algorithm has natural potential fer paralJel 
implementat:i.cn. However, it may generate redurrlant refutati.ro.s; it seems that 
tlrls :is the effect of the prevailing design objective, which in our case was 
completeness of the method. 

A preliminary estimate of the efficiency of the algorithm has been carried out. 
It indicates expcnential speed-up over the worst case of linear backtracking. 

An implementation (3000 lines of PASCAL code, urrler CMS) has oow been 
completed. That atlows us to experiment with the algorithm and investigate 
certain open quest:kns. 

L Introduction 

Many researchers working in Artificial Intelligence and its awlicat:ims agree that 
an efficient ba::ktrceking mechanism will drasticalfy exparrl atplicability of Logic 
Program ming ([Warren et al 77], [Pereira and Porto 80], [Nau 82], [Stallman and 
SU$man 77]). One su:h algcrithm has been designed by M. Bruynooghe f78] and 
L.M. Pereira f79l, [80]. This paper presents an alternative and different awroach. 
Our method :is base:! on a graph-based, depth-first proof procedure [Cox and 
Pietrzykowski 81]. The basic notioo, on which thjs algorithm js based, :is the plan: 
a directed graph, rei;:resent:ing deductive strocture of the proof. The plan ~a 
natural generalization of AND/OR trees. 't'he unffi.caticns, generated during the 
proof, are kept in a separate graph strocture, called the graph of constraints. In 
tlrls way, even if backtracking along a particular path of tlie'pum-does oot lead to 
a rolution and tlrls path wfil have to be re-gene: ated, there :is oo need to re
gene:ate the unifications obtained along that path. 

Furthermere, our method :is awlicable to general first order log.:ic, without being 
restricted to Hern clauses. Als:>, as it will be demcnstrated later, intelligent plan
based deductim has natural potential fer a parallel implementation. 

Finally, it has to be emphasized that the prevailing design criteria of our 
algcrithm was compl.etenegs of search of the search-space. This has been achieverl, 
and the proof of (partial) completeness has been obtained [M atwin and 
Pietrzykowski 83]. However, a price which had to be paid :is redurrlancy (i.e. the 
same oolution may be obtained mere than once). Bruyncoghe-Pereira method does 
oot suffer from this deficiency, but then it is oot certain that their solution is a 
complete one. 



1st 
: Operat:i.oo of the Intelligent Backtracking System. 

befa:e mt:rodudng the algcr.il:hm and a ma:e complete example, let us ilJnstrate 
(he difference between "exhaustive" and "intelligent" backtracking using a very 
· mp.1e case. Assume t."iat the foUow:ing set of clauses :is given: 

P(x) Q{x). 
-P(u,v) V(u) w (v). 
-V(b). -V(a). 
-w (c). -w (d). 
-w (e). -w (f). 

-Q(z) S(t,s) T(s,z). 
-S (q,b). -S (q,c) 
-S (q,d) • -S (q,e) 
-T(b,a). 

I.early, with the lefu-to-rlght "reduction" (althol)3h "expansim" seems to be mere 
equate term) polic..y, the follow:ing plan, which in this case ?S just and AND/OR 
ee, :is obtained: 

-P (U,v) V(U) W (v) 

3, 
' ' ' 

P(x,y) Q(x) 
1 

-V(b) -vla) -W(c) ;.-, .... 
I ._ ...._' 

I ,. '• -w (d) -w (e) -w (£) 

2 

T(s,z) 

" ~ 5'' 6 
,I ' ' 'l.---------,, ' .. 

/ ' ' 
-V(q,c) -V(q,a) -V(q,e} 

-T(b,a) 

e cmtinuous lil'Es represent the AND arcs, the dotted are the o R arcs. 
bviously, in this tree there is a clash between ccnstant b, generated by arc 3, and 
i-..-. .... ,,...t a, generated by arc 6. One look at the pl.an cmvinces us that arc 3 :is 

culprit, and that a reduct:ioo following its alternative reme:lies the problem. 
owever, exhaustive bc.cktracking will perfcrm 33 redlct:i.a'ls [3*2 + 3*((4*2) + 1) = 
] befere generating the s:iluti.cn. The rearori · fer that is the fact that all the 
:tematives between the arcs 3 and 6 involved in the cooflict are tried by 

austive bcctracking. Our method is different: it only tries 6, 3 and the 
:tematives lying above them. In tlrls case, ooe reduct:::im replacing 3 with its 
:temative w:il.J. cb the job. In a reas:,nably balanced ~ND/OR tree, the number of 
:temative deduct:i.a'ls obtainable in between two mcrles :is of the order exponential 
rt the he:ight of the tree. Therefore, a method which operates only above the 

es w:ill be expmentiall.y faster than the worst:-case behaviour of exhaustive 
rcktracking discussed here. 

NI e shall row p.roc:eed with a mere thoiotJ3h discussim of our method, beginning 
ith the urrlerly.ing rot::ials and cmcepts. 
rhe basic stru::ture, involved in the algorithm i3 the pl.an. By a plan we 
hdetstand a ditecmd graph, rooes of which represent variants of clauses. One of 
lie nodes, referred to as TOP, reiresents the clause to be proven. Arcs of the 
~ camect pa:iJ:s of literals, belonging to in:lividual rooes. Each two literals, 
efi.rrlng ann · arc, are unifiable and of 0!_:PCSi.te sign. 't'here are two types of arcs: 
µB arcs and RED arcs (as proven in [Cox and Pietrzykowski 81], those two rules 
~ovide a complete set}. Infermally speaking, SUB arcs point "downwards'' in the 
Ian, while RED arcs point "upwards". Each ncx:le, except the ":'OP, :is entered by 
'actly me SUB arc (and, pc:mi.bly, by zero or mere RED arcs). The literal within 



a nooe, rointed to by a SUB arc, is the l<ev of t.li:is node. Each other literal of tJus 
rode is caTurl a goal. A goal is calJed c1cse1 ff there is an arc, originating in this 
goal, otherwise the goa1 is an open one. 

1:~ath each goa1 of t."1e plan we ae:oc:i.ate a set of arcs, called the set of 
potentials. They are the arcs which could have been generated i'1Stead of the one 
actuaJJy created. Let us ootice that, jf the plan :is a tree, then the initial value 
of all potentials represents all the OR arcs. In any case, this initial value :is static 
information. 

As mentime:l befcre, the information gathered as resu:!.t of unification :is kept 
se-parately, :in a special data strocture called the graph of constraints. 'I'his graph 
reflects the history of un:ificatims which have taken place in the proof during its 
pro9¾eEE. A rode of the graph of constraints, called a constraint, represents the 
infar'maticn atcut the bi.rrlings which have ben impcsed on a vanable during the 
history of proof. Therefore, presence of two di.tferent constants in a coostraint :is 
an irrlication of a clash. This clash is then mag:,ed on the plan. Each minimal set 
of plan arcs su:::h that its removal annihilates the clash is referred to as a ccnflict. 
The conflict set is the set of all su:::h cooflict:s for a given plan. In oome 
si.tuatiOns, e,,en though the cooflict set is empty, we want to create an artificial 
conflict set, in order to aEEure completeneEE. Artificial conflict set contains all 
the arcs entering unit clauses, and all the reduction arcs. 

F:inaily, our methoo introduces two other rotims, motivated by memory 
management problems. The algcrithm uses a repcsi.tory of plans, accompanied by 
their graphs of constraints and cmflict sets. This repcsi.tory, called the store 
resides on disk, and plans are fetdled from it and added to it. There is always 
me plan being operated m: it :is caned the table plan (or simply the table). 

With this bcekgrourrl, we can now fal.Jow the operation of our algorithm m the 
foll.owing set of clauses: 0 ~ 

A. P(x) Q(y) R(x,y) j<a,x) = TOP 
Ii z B. -P(a) 
10 , c. -}!_(t,y) 

D. -P(C) 
E. -Q(w) V(v,w) 
F. -R(z,z) 
G. -R(u,v) S(u) 
H. -S(a) 
L -V(b,b) 
J. -V(c,c) 

Initia1ly, the store :is empty. Clause A :is chosen as the TOP and a single-node 
plan consisting of A 1s generated. Since it is rot clcsed, it w:ill be further 
developed until. either a clcsed plan :is obtained or a non-empty ccnfl.ict set is 
generated. In our case, we get the following plan: 

plan Pl ""'A:.;.--------------.--------r 
.,-----., l 
B 

' ,8 E 
D 

I 
I 

L 

,'6 3 

J I 

F 'G C 



l CCllfUct set is (3, 1 A 5: 4). Suppose that 3 is 
-~ P2 is obtained and pl.aced in the store: 

1 89 

chcsen fer re mov~ the open 

~ P2!! (A} 

I ,·a (E ) 
D ;6 , 

I 
J 

he cmflict on the table is row (1 A 5, 4). If 1" 5 is chcsen, prunrring annihilates 
pl.an, as 5 has ro pd:ential and A is the TOP. With t.li.e choice of 4, open t;ilan 

3 is obtained and placed in store: 

P3 A 
2 ' 7 5 

' ' . ' . '8 E "G 
\, 

0 9' 3 , , , 
J I 

· e there are ro ma:e cmflicts on the table, one of the store pl.ans (suppa;e it 
P2) is placed on the table. Potential 6 is realized as an arc, which leads to a 

· t set (1 A 5, 6, 4) a, the table. S:ince choice of either 6 or 1 A 5 leads 
where, suppose that 4 is dlcsen and P4 is sent to store. 

A 
__ -#1 

, 
,' 8 
'o 6 

J 

' 7 ,. 
' 'G 

s the ccnflict set is again empty, cne of the store plans P4 and P3 is placed on 
ne table. Amume P3 is dlcsen; the only open goal is closed with its p::,tential 7 
pd a roluti.on is obtained: 

lan PS 
1'""'--
l 1 , ,. 

,'8 , 
D 

2 5 

6/ 3 , 
I 

Jt!. I H 

rt.ificlal caiflict set of PS is (1, 3, 5, 9). Femoval. of 5 and 9 leads rowhere as 
nere are ro potentia1s between these arcs and the top. Reol.acement of 1 by 8 is 
~ unproductive (the reader w:i11 easily see why). This ieaves us with 3 as a 
~aronable candidate far removal, which results in plan P6. 

I 

1,t.1,J...t /71· •lv'- L. rrtrr LA...., , , 



Plan P6 
"'----

A 
l 
, , 

/8 ,, 
D 

17 0 

E 

The only plans in store are now P4 and P6. ·with t.he choice of P6, potential J is 
realized and we get roluticn P7: 

'A 
l 

B , 
/' 

,.-· 8 E G C 
D 9 

J 

Since all attempts of obtaining new plans from its artificial cnflict set fail, the 
only remaining store pl.an, P4, is placed on the table. Tts potential 7 and then arc 
9 are realized, which gives a redurrlant solution identical to P7. The store is now 
empty and the algcrithm terminates. 

We have proven elsewhere [Matw:in, Pietrzykowski 831 that when our algorithm 
terminates, it generates all the existing proofs {partial completenee:;). 

3. Further Inhancements of the Algorithm 

There are at least three di.recti.als of further research, leading to potentially 
interesting enhancements of the algorithm. 

1. Different strategies fer nondeterminism. A number of rondeterm:in:istic choices 
is involved in the algcrithm. Two typ~ of such choices were menticned in 
the brief descr:ipt:i.oo in the preceding section: choice of the plan from the 
store to be placed on the table, and choice of a ccnfl.ict from the set of 
ccnflicts. It is rot clear, at this stage, what are the right criteria fer these 
choices. This is partia.il.arly important when the objective is to firrl a proof, 
rather than all the rx::s=;ible proofs. 1t seems that :in this case the right 
strategy may bring a.rout significant increase in efficiency. 

2. Applicability of the algorithm in the domain of expert systems. The 
researchers in expert systems point out that a method of limiting the search 
space is of great importance fer implementation of practical systems f'Nau 83]. 
The early work of [Stallman and Su..,:;sman 771 bears a good deal of 
resemblance to our methcrl, althotJ3h their awroach is lee; general. System 
ARS, repcrted in [Stallman and Sussman 77] implements a method of 
dependency directed backtracking, tailored to the particular environment of 
algebraic relatirnsh:ip; encountered in the analysis of electrlc circuits. 
Therefcre it seems that a met..11<xl like ours mav be productive, particularly in 
case of e:xpert S"JStems usi.ng fol or its derivatives (Skuce 831 to represent 
krowledge bases. 

3. Distributed implementation. Since no orderi...rig of conflicts in within the 



conflict set :is assumed, an :interesting parallel implementat:im seems pcssible. 
It will. :involve a number of proceS90rS, each of which would remove a ccnflict, 
carry out the neceg:iary pruming (if any) and develop the plan. The result of 
devel.opment :is placed in store, ready to be picked up by another proce$0t". 
The whole system stop; when the store becomes empty. Such a parallel, 
distributed implementat:ioo seems to be feasible. Let us ootice that the 
si.m:ilar awroach to Bruynooghe-Pereira method would not work, si.nce their 
algcrithm specifically orders the ccnflicts, which in turn allows t.hem to avoid 

'l the redurrlancy problem. 
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Losic Prosrammins is beins hailed bY many People as a Sood 
way towards a side-effect-free Prosrammins stYle. On the other 
hand, talkins about temporal effects or actions is the natural 
way of viewins manw common computational Phenomena, 
inPut/outPut or database update operations. 

such as 

The Purpose of this paper is to introduce some common 
sround in the form of loSical action swstems, a framework for 
dealins with actions that has its roots in losic Prosrammins. 
Prosrams consist of rules for action reduction; rules have 
Preconditions as Prolos-like Saal expressions and define state 
transitions in the form of deletion and/or creation of 
assertions. Concurrency of actions is suPPorted. Abstract data 
types can be defined. 



INTRODUCTION. 

Despite the defense b~ man~ People of a side-effect-free 
Prosrammins st~le, as in a 'Pure' losic Prosrammins s~stem, 
the fact remains that man~ common computational Phenomena are 
not naturall~ expressed without resortins to the notions of 
action and state transition+ 

Rather than considerins actions as imPure 
arisins within a Pure losic computation, wh~ not 
situation and consider losic computations as 
side-effect of action s~stems? 

side-effects 
invert the 

a normal 

We will Put forward a Proposal for a lansuase in which to 
describe losical action s~stems CLAS>, Providins a clear link 
between actions and normal losic Prosrammins. 

LoSic and unification are still the basis on ~OP of which 
LAS are conceived; however, actions are clearl~ separated from 
Purel~ deductive seals+ 

The lansuase can be seen as ~et another Proposal for 
exPressins concurrenc~. 

We will besin bw exPosins the main ideas behind LAS, and 
then move on to an obJect-oriented approach with abstract data 
t~Pe definitions. 

ACTIONS. 

Actions take Place on some world, modifwins it. Between 
occurrences of actiona we can refer to the state of the world. 

We represent a world in two Parts, each one of them a losic 
Prosramt 
(1) the rules of the world, definins relations that are not 

bound to chanse in time ; 
(2) the state of the world, containins assertions that ma~ 

chanse in time as the result of actions Performed on the 
world+ 

Let us look at an examPle. < Edinbursh Prolos swntax will 
be used, excePt for clause functor. ) 

Consider a blocks world. 
The world rules would contain definitions such as: 

tower(CBJ) <- on<B,floor). 

tower<B1.B2+Bn) <- on(B1,B2), tower(B2.Bn). 

A Particular world state would have assertions such as: 

on<a,b). 

on(b,floor). 



At anw time between actions it is Possible 
moal expression asainst the world, usins the 
state as a Joint loSic Prosram. 

to evaluate a 
rules and the 

In this example, one could evaluate the Soal 

<- tower(X). 

that would wield the solutions 

X=CbJ ; X=Ca,bJ • 

The action of movins 'a' to the 'floor' would rePlace the 
assertion 'on(a,b)' bw 'on<a,floor>'. As a conseauence we 
would have a new world state, and the same Soal '<-tower(X)' 
would now Produce the solutions 

X=CaJ ; X=CbJ + 

In seneral, an action will consist of a number of action 
steps {possiblw infinite). 

Each action step will result 
consistins of falsifwins (deletins> 
Previous state and/or makins true 
assertions. 

in a chanse of state, 
some assertions of the 

(creatins) some new 

The specification of an action step is an action 
is made UP of two Parts: the action reduction and 
conditions. 

rule. It 
the state 

The action reduction defines what new actions the action 
reduces to, bw virtue of the steP+ 

The state conditions are the Preconditions and the state 
transitions. 

Preconditions are soals that are evaluated asainst the 
world in its current state. 

State transitions tell what assertions must be deleted 
from, and what new ones added to, the current state to set the 
new state. 

For example, the notion that the action of movins A to B 
can be accomPlished if nothins is on toP of A and B, and as a 
result A ceases to be on toP of whatever it was before to be 
on toP of B, can be described bw the action rule: 

move<A,B) <= not on(_,A), 
not on<~,B>, 
on<A,_) -> on<A,B>. 



ACTION REDUCTION. 

When an action reduces to void (is finished>, as 
Precedins example, the action reduction Part of the 
Just the action - the rule head. 

in the 
r•Jle is 

In seneral, an action reduces to other actions. The action 
reduction Part of a rule is then of the form 

A-> NA 

where A is some action (the rule head>, and NA is an action 
expression referins to the new actions. 

How can actions relate to one another to f~rm an action 
exPressionT We fihd that we need two connectives: Parallel and 
seauence. 

Two actions in seauence are denoted b~ 'A,B' , meanins the 
•econd action (Bl can onl~ take Place after the first one <A> 
is finished. 

Two Parallel actions, written 'A/B' , ma~ take Place with 
no time constraints on one another. 

•An action exi:-ression is recursivel~ constructed from atomic 
.ac:t.ions and the Parallel. and seauence connectives. Relative 
P receden.ce between these .is such that "A/B, C' is the same as 
'(A/B),C' + 

In, an action s~stem there is alwaas an action exPression 
evolvin~ iri time and denotins at each moment the actions that 
are to be carri•d out in the world+ We call it the asenda. For 
ever~ action in the asenda that is read~ to be carried out 
(for example, Al and B1 in (A1,A2)/(B1,B2) >, the s~stem tries 
to aPPl~ an action step. 

The action reduction involved in a steP is like a 
rule for the read~ action in the asenda, keePins the 
structure of this action expression+ 

Thus, if we have the asenda 

A,B 

and the action reduction 

A-> A1/A2 

is Performed, the asenda becomes 

A1/A2,B 

rewrite 
overall 



meanins that after Al and A2 are both 
so independently of one another) Bis 

finished (havins done 
ready to take Place. 

Actions occur in time and time always runs forward, so 
there is no auestion of backtrackinS over action stePs, If an 
action is reauired and no rule for that action aPPlies in the 
current state, it Just means that the action must remain in 
the asenda waitins for the risht conditions to appear (when 
some other action chanses the state to that effect). This 
eventually entails the well-known Phenomena of deadlock and 
starvation. 

STATE TRANSITIONS. 

State transitions inside an action rule may be of three 
tYPeS 

( 1) -> A assertion A is created ; 
(2) A -> assertion A is deleted ; 
(3) A -)· NA assertion A is deleted and assertion 

NA is created+ 

Of course a tYPe 3 transition is no more than a tYPe 1 and 
a tYPe 2 Put tosether, but it makes for a more clear readins 
of the rule, especially if A and NA are for the same 
Predicate. In this case, a comPiler or interpreter can easily 
translate the transition into simPle assisnments on the 
chansins arsuments, with considerable speed-up over deletion 
and creation. 

RULE EVALUATION. 

Each rule is associated with a sinSle action (the rule 
head), so a ready action in the asenda can efficiently trisser 
its own rules, much as Prolos soals trisser their clauses. 

Rule evaluation besins with unification of the ready action 
with the rule head. 

If there are any tYPe 2 or tYPe 3 transitions in the rule, 
their left-hand side is resarded as a soal to be matched 
asainst an assertion in the current world state. All 
Precondition soals tosether with these transition soals, in 
the order in which they aPPear in the rule, form a Prolos soal 
expression that is evaluated. If a solution is found, then the 
rule aPPlies, and the transitions are carried out, deletins 
the assertions that matched the transition seals for the 
solution found. 

The action is replaced 
expression it reduced to, 
when this is void, 

in the 
with 

asenda b"::s 
the obvio1.Js 

the new action 
simPlifications 



There ma~ be several rules for a Siven action. Rules should 
be tried in the order in which the~ aPPear in the prosram. 
This Provides a simPle, elesant form of if-then-else. 

For example, the complete definition for the 'move' action 
in the blocks world misht be: 

move(A,floor> <= not on(_,A), 
on<A,_) -> on<A,floor). 

move<A,B) <= not on(_,A), 
not on(_,B), 
on<A,_) -> on<A,B>. 

Sivins Preference to 'move's to the 'floor', if destination 
is unspecified. 

SYNCHRONIZATION. 

What is usuall~ referred to as Process s~nchronization is 
achieved in a LAS b~ the combined effect of the seauence 
connective and state transitions seen b~ the •processes•. 

Imasine a sinsle cell buffer, defined b~ the followins 
actions t 

Put<X> <= empt~-> with(X). 

setCX) <= with(X) -> emPt~. 

A 'Put' action will onl~ be accomPlished if the buffer is 
empt~, and, conversel~, a 'Set' action can onlY be carried out 
if the buffer contains somethins. So actions seauenced after a 
'Put' will eventually have to wait for the 'Set' of a Previous 
token Put in the buffer, and actions seauenced after a 'Set' 
will eventuall~ ·have to wait for the 'Put• of the 
co~resPondins token, thus achievins synchronization of the two 
•processes• usins the buffer. 

CONCURRENCY. 

Parallel actions are Performed concurrentl~. So it is 
crucial that an~ sound implementation of the system be able to 
suarantee, Just before Performins a state transition, that the 
Preconditions of the rule still aPPlY+ In other words, care 
must be taken with resard to state transitions occurrins 
durins the evaluation of a rule. A number of techniGues exist 
for tacklins this Problem, dePendins on the actual hardware, 
but their discussion is outside the scoPe of this PaPer. 

Let us look at an implementation of a Gueue ih terms of its 
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accessins actions 'Put' and 'Set'. The aueue itself is 
imPlemented as a difference-list Q-T via an assertion 
'a(Q,T)', acted u~on bw 'Put' and 'Set' : 

Put(X) <= a(Q,X.T) -> a(Q,T), 

set<X> <= a(Q)T) -> a(NQ,T>, 
nonvar(Q), 
Q=(X.NQ). 

This aueue "Process• puts in a list all elements X for 
which a 'Put(X)' action is reauested, in the order in which 
these actions are Performed (since thew can alwaws be 
executed, apart from simultaneitw with 'Set' actions, this 
will be the order in which thew become readw in the asenda). 

This is in contrast to other formalisms, such as Concurrent 
Prolos [ShaPiro 83J, that deal with explicit streams and thus 
reauire the exPlicit merse of the various inPut streams to a 
aueue. 

Let us look at another classic examPle of concurrent 
Prosrammins, the Problem of the dinins Philosophers. Five 
Philosophers are seated around a table, with a fork between 
each two of them (five in all) and a central bowl of sPaSethi. 
Whenever a PhilosoPher stoPs thinkins because he sets hunsrw, 
he must Pick UP the two forks on his left and risht and besin 
eatins until satisfied, lettins then down the two forks and 
resumins his thinkins. 

'Philosophers - Pl, P2, P3, P4, P5 

Forks - fl, f2, f3, f4, f5 

World rules : 

forks(P1,f1,f2). 
forks(P2,f2,f3). 
forks(p3,f3,f4). 
forks(P4,f4,f5). 
forks(P5,f5,f1>. 

Initial world state: 

down(fl). 
down(f2>+ 
down(f3). 
down(f4). 
down(f5). 

-~ thinkinS(rl) / thin~in~(P2) / thinkinS(p3) ' 
thinkinS(P4) / thinkinS(P5). 



Action rules: 

thinkinS(X) -> hunsr~<X>. 

hunsr~<X> -> eatins<X> <= 
forks(X,L,R), 
downCL) -> withCX,L>, 
down(R) -> withCX,R). 

hunsr~(X) -> wants_forkCX,R> <= 
fork.s<X,L,R), 
down(L> -> with(X,L). 

hunsr~(X) -> wants_fork(X,L> <= 
forks<X,L,R>, 
down<R> -> with<X,R>. 

wants_fork(X,F> -> eatins(X) <= 
down(F) -> with<X,F). 

eatins<X> -> thinkins<X> <= 
withCX,L) -> down<L>, 
withCX,R> -> down<R>. 

Some comments are due. 
The first and last rule, of course, do not show an~ details 

about when to set hunsr~ or when to stoP eatins. For an actual 
simulation we should Provide adeauate mechanisms, sa~ a rando~ 
time lapse senerator. 

It is important to note that, in the last rule, the two 
'with' transition seals must match two distinct assertions and 
not the same one. T~P~ 2 or t~Pe 3 transitions inside the same 
rule alwa~s refer to distinct assertions, for it would make no 
sense to specif~ two deletions of a sinsle assertion. 

The aforementioned if-then-else effect of rule evaluation 
imPlies that, when a Philosopher sets hunsr~ and both his two 
forks are available, he will Pick them UP simultaneous!~. This 
fact entails that there is no deadlock or starvation if the 
s~stem starts from a non-deadlock initial state, as can be 
easil~ Proved. What haPPens is a transfer of 
deadlock/starvation monitorins to the underl~ins execution 
mechanism of LAS, when concurrent!~ tr~ins to aPPl~ action 
rules. We are in fact assumins that no read~ action is 
indefinite!~ Postponed if conditions indefinite!~ exist for 
its reduction. 

ABSTRACT DATA TYPES. 

One of the nice extensions of the action s~stem Presented 
so far is the introduction of abstract data t~Pe <ADT> 
definitions. This Provides a much needed modutarit~, in the 
form of local assertions that cannot be Sloball~ accessed, and 
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are manipulated onlY bY the actions interfacins the ADT obJect 
with the rest of the sYstem. 

A definition of a Gueue ADT misht be the followine : 

tYPe Gueue. 

PUt(X) <= G(Q,X.T) -> Q(Q,T). 

set(X) <= G(Q,T) -> G(NQ,T), 
nonvar(Q), 
G=<X.NQ). 

a<X,X>. 

* 
The first Part of an ADT definition, until the 

't', defines the external actions that may be used 
an obJect of the Siven tYPe+ 

In this example we have the Previouslw defined 
'Set' actions. 

character 
to access 

'Put' and 

The second Part of the definition, until the character '*'' 
defines internal rules and assertions, that cannot be accessed 
from the outside. 

The assertions correspond to the initial state of an 
obJect, when it is created. There can also exist, in the 
second Part of an ADT definition, an initial asenda '->A' to 
be launched uPon creation of an obJect. 

In the Precedins example the initial state is an emPtY 
aueue, as defined bY the assertion 'G(X,X)', and there are no 
internal actions or initial asenda. The assertion beins local, 
it won't be "seen• bY any outside Saal 'a(_,_)'. 

Havins defined an ADT, we must have means to create and 
kill obJects of that tYPe+ We use the system-defined actions 

create(ObJect,TYPe) 
and 

kill(ObJect) • 

Now actions directed at an obJect must refer to it. 
We use the notation 

ObJect:Action 

for that kind of actions. 

Let us look at a more complex examPle, 
video terminal. The keyboard is scanned 

a definition of a 
to set characters 



twPed in it. In the local mode each character is output on the 
screen; however, if the character is a 'send', character 
output is diverted to the outside of the terminal, until the 
character 'eot' is found, in which case there is a switchins 
back to local mode. The terminal can be accessed from the 
outside throush a 'Put(X)' action, resultins in character X 
beins disPlawed in the screen. 

This ADT has three Parameters, 'Kewboard', 'Screen' and 
'Out', which are SUPPosed to be ADT obJects themselves. 
'Kewboard' is supposed to be accessed·throush a 'Set' action, 
while 'Screen' and 'Out' throush a 'Put'+ 

twpe terminal(Kewboard,Screen,Out). 

Put<X> -> Screen:PutCX). 

t 

terminal<X> -> select<X> / Kewboard:set<NX>, terminal(NX). 

select(send) 
select(eot> 
select(X) -> 
select<X> -> 

local. 

<= local-> out. 
<= out-> local. 
Screen:Put<X> <= local. 
Out:Put(X) <= out. 

-> Ke~board:setCX>, te~minalCX). 

* 
External access is Permitted onl~ throush a 'Put' action. 

'terminal' and 'select' are internal actions 'terminal' 
Performs the endless loop of settins characters from the 
ke~board and Processins them; 'select' does this Processins. 

The initial state is local mode, and the terminal activity 
is started bw settins a character from the kewboard and 
enterins the loop. 

A terminal, beins accessed throush a 'Put', can serve as 
the 'Out' obJect of another terminal. We can for example link 
two terminals tosether: 

-> createCT1,terminal(k1,s1,T2>> / 
create(T2,terminal(k2,s2,T1)). 

DEDUCTION AS ACTION. 

We tackle here the Problem of treatins as an action 
work of a Prolos interpreter while tr~ins to execute a 
Keep in mind that backtrackins is •backward" as far as 

the 
Soal. 

the 
obJect lansuame ~oes, but is "forward• as re~ards 'the temporal 
activit~ (action) of the interpreter. 



A drawback of Prolos is revealed when we want to keeP track 
of different solutions to a seal while settins them on demand, 
alons with some other comPutation. The Problem lies in the 
fact that we are usins a sinsle interPreter, and backtrackins, 
that is needed locally to Provide the various solutions, is 
only available as a Slobal oPeration. 

'MetaPredicates• like 'setof' or 'all' only sive the whole 
set of solutions to a seal, and cannot be used in the desired 
coroutined way. 

A way out in the framework of LAS is to have 
interpreter defined as an ADT, accessible throush 
of Producins the next solution to a Seal. 

the Prolos 
the action 

We can then create an instance of the interpreter bY the 
action 

create<I,interPreter<G,T)) 

where G is the soal expression to be interpreted, and Tis the 
term whose instances we seek. 

TransPortins the name I of this Particular interpreter we 
can then set on demand the next solution, with the action 

Itnext(X) • 

As a result, Xis bound in the action environment to a COPY 
of the next instance of T found bY I to be a solution for G CT 
and G will remain unbound in the action environment). 

This is to say that several interpreter obJects are truly 
decoupled in the sense that theY don't share their bindins 
environments. Some more thousht should be Siven to this theme 
of sharins versus coPY, in the context of LAS+ 

There remains the Problem of failure. The action 'next' is 
always carried out, but it should Produce information 
resardins its outcome, that can be used in the action context. 

MaYbe this type of actions should really be 
losical Seal, with associated meanins the truth or 
of the Possibility of Performins the action. 

used as a 
falsehood 

We can turn this into a seneral Property of actions, with 
the assumption that the default boolean value of an action is 
true when the action is normally finished, and false if 
unfinished when the special action 'abort' is carried out, 
makins 1 imPossible 1 the whole action expression (asenda) where 
it occurs (it becomes empty). 

Remember that usins ADTs one has distinct asendas for 
obJect, and thus 'abort' can be used in a modular rather 
slobal way. One can, for example, implement a Unix-like 

each 
than 

shell 
usins the 'abort' action tris~ered bs the control_C tr3P to 
abort execution of the current command : 



t~Pe shell<InPut,Command_interPreter). 

commands(C) -> InPut!set(NC> / Command_interPreter!C , 
commands(NC). 

control_C_traP(C) -> InPut:set_ahead<NC> / check(C) , 
control_C_trap(NC>. 

checkc-c> -> Command-interpreter:abort. 
check(_) -> • 

-> InPut:set<C>, 
commands(C) / control_C_traP(C). 

* 
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The purpose of this note is to provide a brief overview of the field of 

expert systems, and to set forth some issues to be discussed in a panel ses

sion on the subject. The field of artificial intelligence has several objec

tives: 

(1) The development of computational models of intelligent behaviour- both 

cognitive and perceptual. 

(2) The engineering-oriented goal of developing programs that can solve prob

lems normally thought to require human intelligence. 

(3) The development of tools and techn;ques needed for the above two items. 

The development of a system intended to meet the needs of users and is 

intended to provide expert advice falls into the second category. 

The field of expert systems is relatively new. It extends back approxi

mately twenty years, although it is relatively recent that such systems have 

been referred to as expert systems. Although there has, in the past few years, 

been a great deal of work on this subject, the actual accomplishments have, at 

best, been modest. In using the term modest, it is meant that with respect to 

having expert programs used by individuals in their daily work, there are 

relatively few such systems. In the following section we briefly note some of 
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the expert systems that have been developed, and their status. In the last 

section we discuss several issues that must be addressed if expert systems are 

to become a reality. These issues are posed for discussion, and no positions 

are taken on them. The intent of the panel discussion is to explore the issues 

in great depth. 

2. Background in Expert Systems 

Early work in artificial intelligence was oriented towards providing gen

eral approaches to probelm solving. It was realized that.some of the problems 

being attacked were, perhaps, more difficult than anticipated. This was par

ticularly true with work in machine translation and natural language process

ing. Efforts to apply theorem proving techniques to arbitrary problems in 

diverse domains introduced combinatorial explosions. A move was therefore 

made towards specializing problems and building into application areas special 

knowledge focused on the domain of application. Systems that focus on specific 

problem domains, building in knowledge specific to that domain, have come to 

be called expert systems. 

There have been several phases in the development of Expert Systems. This 

may be illustrated by efforts leading to one successful system, MACSYMA, whose 

function is to act as an expert in the area of formal integration of func-

tions. It is perhaps of interest to note that throughout the development of 

MACSYMA the term "expert system" was never applied. The first stage was the 

demonstration that it was possible to perform symbolic integration on a com

puter. Jim Slagle's system, SAINT, was developed and was subsequently tested. 

It succeeded in passing an examination in integral calculus at MIT. Although 

it was successful, it was intended to be a research program, and not a fin

ished product that could be used by scientists and engineers. Following SAINT, 
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Joel Moses developed SIN, which was able to perform integration in a more 

powerful way than the Slagle program. It had more general rules built into it, 

and more explicit answers to problems whose integrals were already known. In 

the third stage, the system, MACSYMA, was developed to meet the day- to-day 

needs of scientists and engineers. Thus, after a long research and development 

stage, a final product was developed. Although MACSYMA is a successful system, 

in the sense that it is currently in use by scientists and engineers, many 

individuals fail to refer to it as an expert system. Neither MACSYMA, SAINT 

nor SIN are referred to as expert systems since the term was not in vogue when 

they were developed. It is clear, however, that all three systems would be 

referred to as expert systems were they developed today. 

There are several stages in the engineering of an expert system: 

Phase 1 - Research in which the feasibility of developing 

an expert system in a specific domain is established. 

Phase 2 - Development of and experimentation with a 

prototype system. 

Phase 3 - Field test the prototype system. 

Phase 4 - Use of the expert system in the field. 

In discussing the status of a particular "expert system", it is useful to 

distinguish its stage of development. There are four expert systems that are 

routinely in use: MACSYMA; DENDRAL(Feigenbaum et al. [1971]), an expert system 

that analyzes mass spectral patterns to determine the chemical structure of 

unknown compounds; R1 (McDermott [1981]), an expert system to determine com

puter layouts and configurations; and PUFF (Osborn et al.[1979]), an expert 

system that interprets pulmonary function tests. 
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A list of some representative expert systems and their domains of appli

cation appears in Table 1. A number of useful articles on expert systems 

appear in books (Michie (1979), Hayes-Roth et al.(1983), Webber et al. [1981), 

Szolovits et al.[1982)). Several comprehensive surveys have been written on 

expert systems (Duda et al.[1983), Buchanan (1982), Nau [1983)). See Reggia 

[1982) for a comprehensive list of references in expert systems oriented pri

marily towards medical applications. 
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I Expert System Domain Reference I 
I ldli Biagnosis or plant disease chilausky et ai. [ 1 §'16 J I 
I CASNET Glaucoma assessment and Weiss et al. [ 1978] I 
I therapy I 
I DENDRAL Mass spectroscopy Feigenbaum et al. [ 1971] I 
I interpretation I 
: Digitalis Advisor Digitalis dosing advice Go:r:ry et al.(1978] : 
I Dipmete:r Advisor Oil exploration Davis et al. [ 1981] I 
t El Analyzing electrical ci:rcui ts Stallman et al. [ 1977] I 
I Internist-I Internal medicine diagnosis Miller et al.(1982] I 
I HASP & SIAP Ocean Su:rveillence Nii et al. [ 1982] I 
I (signal processing) I 
I_KM_S ________________ _;_ _______ .,,..[ ___,,8-]---~I 

Medical consulting Reggia 19 0 
I MACSYMA Mathematical formula Moses [ 1971] I 
I manipulation I 
I MDX Medical consul ting Chand:raseka:ran et al. I 
I [1979]. I 
: Microprocessor Protein electrophoresis Weiss et al[1981] : 

EXPERT interpretation 
: MOLGEN Planning DNA experiments Martin et al. [ 1977] I 
I MYCIN Antimicrobial therapy Davis et al.[1977] 
I PROSPECTOR Geological mineral Hart et al.[1978] 
I exploration 
I PUFF Pulmonary function test Osborn et al.[1979] 
I interpretation 
I R 1 Computer layout and McDermott et al.[1981] 
I configuration 

TABLE 1 - Representative Expert System 

Expert systems have been implemented using a variety of different 

approaches: 

(1) Embedding control and inference in a program written in a language such 

as FORTRAN o:r PASCAL (Bleich [1972]). 

(2) statistical pattern classification techniques as the basis of making con

clusions. For example, Bayseian (Ben-Bassat [1980]), and linear discrim

inant function (Faught et al. [1979]), have been proposed. 

(3) Developing cognitive models of diagnostic :reasoning Reggia [1981]. 
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(4) Production rule based systems (Davis et al. (1977]). 

3. ISSUES 

There are a wide range of issues that have to be addressed before expert 

systems can reach full maturity. These range from the philosophical to the 

moral to research issues and to user acceptance. It is not intended that all 

of the items need be addressed before such systems can become a reality, but 

that a number of these issues must be developed before the field can reach 

maturity. 

1. Philosophical Issues 

a. What is meant by knowledge and how does one differentiate between 

data and knowledge? 

b. Will it ever be possible to capture all knowledge in a domain of 

real interest? 

c. Can one deal with systems in which there are significant gaps in 

knowledge, and how can one assess the effectiveness of such sys

tems? 

d. How does one differentiate an expert system from an application 

program? 

e. Can an expert system exhibit intelligence in the same sense as 

attributed to humans? 

2. Moral and Sociologic Issues 

a. Are there classes of expert systems that should never be attempted: 

they are morally repugnant? 

b. What are the legal problems? Who is responsible for adverse reac

tions when a medical expert system incorrectly diagnoses a patient? 

c. What are the potential social consequences of expert systems and 
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are they for the good, or wil they lead to major social problems? 

d. Who should build expert systems: domain experts, computer scien

tists, or both? 

3. Research Issues 

Knowledge Acquisition and Representation 

a. How does one identify and encode knowledge? 

b. What characteristics should a knowledge representation formalism 

have? 

c. How does one express temporal knowledge and physiological mechan

isms involved in the evolution of disease processes? 

d. How does one represent exceptions to situations? 

e. How does one explain the basis for the decision criteria and/or 

rules used in a knowledge based system? 

f. Should knowledge be augmented by using causal and mechanistic links 

that represent functional behavior? 

g. How does one obtain large, reliable data/knowledge bases? 

Inference and Uncertainty 

a. How does one deal with vagueness and ignorance? Are fuzzy logic 

(Zadeh [1978]) and statistical theories of evidence (Shafer [1976]) 

useful? 

b. In what ways is logical inference useful? 

c. Will indefinite data(i.e., data of the form p V q) be needed for 

expert systems? What are the implications with respect to the 

development of such a system or answers obtained during its use? 

d. How can logical inference handle exceptions? 

e. How is reasoning performed in the presence of ignorance and how can 
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a reasoning system recognize the limits of its knowledge? 

f. What is "common sense" knowledge, and how can it be embedded in 

expert systems? 

Control 

a. How is search controlled in an expert system? 

b. What is needed to permit the user to exercise control and to under

stand what the expert system is doing? 

c. Do current languages allow for control needed to find solutions to 

problems in an efficient manner? 

Explanation 

a. Explanation in terms of goals and its knowledge base is very use

ful. However, experts who provided a set of rules are likely to 

give explanations in terms of phy~iological mechanisms or disease 

processes. How can a system accomplish this? 

b. How does one provide explanations to different classes of users? 

That is, how does one maintain models of users and provide explana

tions to the various users according to the implied intent of the 

user? 

c. How can the user be aware of the significance of questions asked by 

an expert system? (e.g. the expert system may ask if a spinal tap 

has been performed, and the user should be able to understand why 

the question is being asked, as well as the fact that this test is 

potentially dangerous). 

4. System Assessment and User Acceptance 

a. How does one certify an expert system? 
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b. How does one assess system performance, particularly where the 

"correct" solution to the problems may not always be known? (e.g. 

medical diagnosis) 

b. How does one obtain large, reliable databases? 

c. How does one scale up a system from small experimental systems? 

What are the problems? 

d. How does one develop user friendly systems? 

e. How does one develop systems that can be transferred from the 

experimental laboratory to a remote user site? 

f. When will cost-effective systems be developed? 

g. How can user resistance to change be overcome? 

h. How will new knowledge and changes be made at the user sites? 

We have set forth some of the issues associated with developing expert 

systems. In the course of the panel discussion we will consider these issues. 
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Efficient response to queries addressed to a large data 
base is an important problem of knowledge representation. The 
problem and various solutions have been well researched for 
certain "conventional" (e.g. relational) data- models. The 
analogous problem has been tackled and solutions similar in 
spirit to those for relational models developed for data bases 
and queries expre~sed in Horn clause systems such as Prolog 
with the severe constraint that the "data base" is a set of 
ground instances of assertions. 

The situation becomes more interesting and challenging 
when the data base is deductive: e.g. a Prolog first-order 
theory. Basically the interest is in finding an automatic way 
of representing the first-order theory which facilitates, the 
dynamic reordering of residual literals and the selection of 
the next goal to be evaluated based on a ~hanging measure of 
the cost of-~valuating each goal in the residual query. 

The current paper presents paitial solutions which can be 
used to obtain dramatic reductions in search times. The paper 
also identifies some remaining and difficult problems. 

The methodology was designed with the processing of 
natural language queries in mind, but it is quite general in 
its domain of application. 
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There -is an increasing demand for large database systems 
that provide efficient inference capabilities. These are 
~bviously needed in question answering systems and expert 
systems, buf their potential rang~ of application is really 
very wide~ It is an advantage to allow any database user a 
uniform view of both explicit and implicitly represented 

· information. Accessing the databa~e through a deductive 
inference system offers the possibility of such freedom, 
first, in its ability to decide whether any particular 
proposition follows from what is represented in the database, 
and second, in its ability to use rules, meaning postulates 
and definitions of new terms and relations .as nonlogical 
axioms in ~aking such decisions. Thus, ·rather th~n having to 

·search for particular pieces of information, the user can 
simply ask whether or not a partiqular proposition foliows 
fr~m the database: · g·eneral rules can be introduced to cover 
large classes of particular facts and to define new terms that 
might b~ used in queries. 

K~eping the deductive access to a large database efficient 
requires, in the first place, that we deal with some of the 
~tandard database management pr_oblems, viz., · the problems of 
making search efficient and- of optimizing queries to minimize 
the need for sear-ch. Tl;lese problems are paricularly pressing 
when the database and access system are to be embedded in a 
larger design, such as a question.answering system. In this 
conte~t the system must interface with natural language 
processors, rather ·than with the typical brilliant and 
insightful human database user who· can learn how to avoid the 
system's weak spots. ·As a result, database queries cannot be 
expected to arrive_ i-n a for-m that is optimal from the point of 
view of efficiency. In this rep~rt we·will show how such 
standard database management problems can be handled in 
PROLOG, one of the most. efficient and most widely known 
_theorem proving systems. 

--------------------* The software described in this paper was designed and 
implemented by a research group.which included the authors, 
D. Wyatt; and A .. Young. This work is also described in Elcock 
et al.(forthcoming) and Stabler (1982). 
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PROLOG preliminaries. Since PROLOG is fairly well known 
and'there are good introductions to the language (e.g., 
Clocksin and Mellishi 1981) we will only briefly review some 
important features. PROLOG i 9 basically a Horn clause theorem 
prover.· It also· has metalog ical facilities that can provide 
higher order effects, and of course nonstandard effects can be 
obtained by quantifying over possible worlds (cf. Moore, 
1980). A clause is a first or~er prenex formula whose prefix 
consists of (only) u_niversal quantifiers and whose matrix is a 
disjunction of literals, where a literal is an atomic formula 
or the·negation of an atomic formula. Since the order of 
universal quantifiers makes no difference, they do not need to 
be written down. A Horn clause is a clause whose matrix 
contains at most one positive literal. The restriction to 
Harn ·clauses does not, in principle, prevent us from 
expressing anythlng that can ~e expressed in first order 
logic. The relevant results are these: for any formula F of 
first order predicate cal.culus, there is an· easily 

.constructible set S of c~auses which is inconsistent if, and 
only if, Fis (see e.g., Chang and Lee thm.4.1.)~ and for any 
set S of clauses there is an easily constructible set Hof 
sets of Horn clauses such fhat the~e is an inconsistent set in 
H'if, and only if, sis inconsistent (see e.g., Henschen and 
Wos, 1974). In spite of this generality in principle, though, 
some problems are much more feasible and natural when 
ex~ressed in noa-Horn clause.form. 

The restriction to the Horn clause subset of first .order 
logic is not the only special logical.problem that faces a 
PROLOG database system. In the first place, we should note 
that PROLOG does not· immediately provide-ideal inference 
capabilities even within the Horn- clause logic: it's failings 
are the familiar ones. It is.well known that "Horn•sets" are 
not decidable (Hermes, 1965), and so of course PROLOG cannot 
decide whether an arbitrary query of its Horn clause logic 
follows from ·the database or not, even given unlimited time 
and space. And'although it is easy to design proof methods 
for Horn clause logic which are complete in the sense that 
they will find _a proof of an arbitrary sentence if there is 
one, the most efficient theorem p~overs, like PROLOG, are not 
complete. They are even unsound in the sense that they will 
sometimes claim ·to have found a proof when there is no valid 
proof. Let's consider these problems briefly before 
considering the ~ore standard database problems. 

Soundness. It is well known that PROLOG will sometimes 
produce an invalid proof. For example, -given the database 
"p(X,X).", PROLOG will say that the query 11 p(Y,f(Y))." 
follows. The instance that follows, according to the PROLOG 
system, is the one in which Y=f(f(f~-■• {f(Y)))).... (Since 
this is an infinite expression, there wJll be trouble if 
PROLOG tries to print it out.) But obviously, 



.214 
Page 3 

"(E-y) (P(y,f{y)))" docs not follow from "(x) (P(x,x))". PROf.,OG 

gets this incorrect result because it does not do th~ "occurs 
check" in the .course of unification. What it does is this. 
When confronted with the query "p(Y,f(Y))" it tries to match 
it with the database clause "p(X,X)". It begins with the 
first argument; in effect, "Y" is substituted for "i". The 
result is "p(Y,Y).", and this is identical to the query up to 
the second argument. So now PROLOG tries to match the second 
arguments, which it does by substituting "f(Y)" for "Y". As a 
result, Y=f(f(f ••• (f(Y)))) ••• , and the query is judged to be 
an instance of the databas~ clause. Strictly speaking, this 
matching process is not the unification which is employed in 
sound, resolution procedures, because a variable cannot. 
properly be unified with any term which contains that 
variable.. Implementing unification correctly would involve 
performing an "occurs check" to .make sur·e that the variable 
does not occur in the term it is being unified with. 
Performing this check in every unification step is expensive, 
especially when t~e term~ being unified are large. Since the 
matching process without an o~curs check is so-much cheaper, 
-and since it is sufficient in most cases, most PROLOG 
implementatioris do not Dse strict ~nification. As noted 

·above, assuming that we do not want to just tolerate·errors, 
this means that the use:rs of thes·e systems must make sure they 
are not accepting conclusions based on unsound inference-s. 
There are a number of ways .to do this. · 

One way to. avoid unsound inferences is simply to require 
that only ground clauses occur in the database. -This 
restrict~on is perfectly straightforward, and it is obviously 
adequate since the database would then not contain ·any 
variables which might occur in terms tney would be matched 

. with.·· The problem is that this rest~iction is obviously going 
to eliminate the j;eatures which make logic programming 
languages particularly attractive. (Consider, for example, 
the features mentioned at the beginning of this paper.) · 

There are other similar and iess restrictive strategies. 
We can hope th.at programmers experienced.with PROLOG_will 
learn how to avoid creating a database in which unsound 
inferences will be made. If an unsound inference is going to 
cause trouble, they should block it. The problem then is not 
with th-·"systemlt datab~se whlch is provided by programmers, 
but with database.clauses which might be provided by naive 
useis. We do not want to require'the users to understand and 

·attend to such things as the peculiarities of the PROLOG 
·matching process. so we can either provide a complete system 

· to which the user cannot add information, or we can require 
that any information added be groupd·clauses •. The "system" 
database wou'id then be created by programmers famil.iar with 
PROLOG.' s matching process, and the ".user" database, if there 
is one, would not add any dangers.of uns6undness. This 
restriction on the users' database would certainly to be felt, 
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howe~er; it severely constrains what the user can do with the 
system. He would not,- for example, be able to add definitions 
of new relations in terms of relations already provided by the 
system. The only other alternative that seems to. be . 
available, though, would be to do the occurs check whenever 
non-ground clauses that could conceivably cause an error are 
used.· Since the main thrust of the present project is to 
allow the dat~base users the real advantages of accessing a 
database through an inference system (without errors, even· 
very unlikely ones!),· this last strategy is the only 
acceptable one, and is currently being explored. 

Completeness~ The second-problem that we would like our 
system to deal with as well as possible is that of avoiding 
attempts to- find proofs which are beyond the theoretical 
capabilities of PROLOG. We have already noted the obvious 
point that mere completeness is not going to do us any good if 
the proof proced~re is just not feasible. But the point of 
interest is that if finding a proof of some result is beyond 
PROLOG's theoretical capabilities, it is of course also beyond 
its practical capabilities. It is a good strategy to try to 

_keep the whole class of proofs that might be sought within the 
theoretical capabilities of PROLOG, and then to keep those 
proofs as efficient as possible. Sometimes a simple change in 
the databa~e, query, or proof strategy that brings a res~lt 
within the theoretical capabilities of the system also 
suffices to bring the result wi t·hin the practical capabilities 
of the system. 

Th~ following familiar sort of example illustrates this 
situation. (This example is taken from Moore(forthcoming), 
where it is used to illustrate the related problem of forward 
vs. backward chaining.·) One of ,the standard ways to define a 
relation is with "base rules" and "induction rules." For 
example, the one-place r~lation or property of being Jewish 
might be partially defined with a list of people who are 
Jewish and with the rule from the Talmud that a person is 
Jewish if the mother of that person is Jewish, as follows: 

jewish(bar-hillel}. 
jewish(X}:-jewish(mother(X}). 

Given this database, PROLOG will properly indicate that there 
is a proof of the query ~jewish(bar-hillel).". If, however, 
the clauses in the database are reversed,·putting the 
"induction rule" before the "base rule," PROLOG will never 
succeed in finding a proof of this query. -Because it uses a 
depth-first proof strategy and selects the first database 
clause first, it would never get to the second rule, the base 
rule, which it would need to use. It would "loop," using· the 
first rule, the "induction rule," over and over again. Since 
this sort of situa~ion is quite common, we can adopt the 
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strategy of alway~ putting "base" rule~ before "induction" 
rules. The problem is to recognize them. A crude 
approximation that will handle this case is to check each 
clause that is going· into the· database to see if it is a 
simple assertion, a unii clause with an empty body. If it is, 
put it at tbe beginning of the list of clauses which have the 
same predicate; otherwise, put it at the end of the list. 
(This is one of the things which is done by our predicate 
"update" which will be described in more detail later.) It 
should be noted, however, that- this ordering strategy will not 
work in, cases where the "base" rules are not simple 
assertions, and it will not.work in cases in which there is 
more than one· "induction rule." There are cases of 
incompleteness which cannot be remo_ved by any reordering of 
database clauses. (Cf. Elcock, 1982; 1983.) Thus,- our 
implementation of this ordering strategy is not.motivated so 
much by completeness considerations as by. feasibility: it is 

· gene·rally cheaper to find· s.olutions using unit clauses, so· 
·these should be tonsidered f~rst. 

Feasibility. Problems which are at prese-nt effe·ctively 
insurmountable also seem to face the general goal of staying 
within the practical limits-of the system. The use of a 
language .that has a formal, logical interpretation is no 
panacea for the standard sorts of programming problems; we do 
not have any mechanical method for transforming logically . 
correct but inefficient code into correct and efficient code. 
The ordering method just described will help in some cases. 
Another thing that. is done (by "update") to improve efficiency 
i~ that whenever a clause is added to the database, all 
instances of that clause -are deleted. So, for example, the 
addition of "p(X)." to the database will cause "p(a)." to be 
del~ted. And the addition of "p(X,Y)." will cause dp(X,X)." 
to be ·deleted. So a certain easy to find redundancy is 
automatically eliminated. Apart from such simple steps as· 
these, though, there is not much that can be done cheaply and 
easily to enlarge the class of feasible proofs except to 
provide as much time and space as is practical, to minimize 
the need for unnecessarily long searches, and to make searches 
of the database.as effi9ient as possible. Search efficiency· 
can be improved by indexing the database; unnecessary search 

·c,n be eliminated with appropriate goaL s~lection strategies 
and intelligent backtracking. Each of these method·s will now 
be considered in turn. Notice that none of them are theorem 
proving matters; they are metalogical operations that change 
the set of axioms from which we may draw inferences. They can 
be taken care of automatically, out of the sight of the user. 
The user should s~e only the improved efficiency. 

Indexing the database. A standard technique for making 
search efficient involves indexing the units of information so 
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that when an item is needed the whole memory does not need to 
be searched~ insiead the location of the needed information 
can be looked up in an array cir hash table. ·The DEC-10.PROLOG 
interpreter indexes database clauses according to their "head" 
predicates, i.e., according to the predicate in the head of 
each clau~e (Pereira et al., 1978). But when a relation is 
large, when there are many clauses with a particular head 
predicate, the searches will still be long.. In this 
situation, the standard strategy is to start secondary 
indexing on the arguments of the relations. A database that 
is indexed for every argument of every relation is said to be 
totally indexed or totally inverted. Some PROLOG 
implementations, s.uch as IC-PROLOG,. provide facilities for 
indexing according to the principal· functor of arguments to 
the head predicates in the database (Clark and McCabe, 1982). 
And in systems.like interpreted DEC-10 PROLOG, secondary 
indexing effects ca.n be obtained si-mply by building auxiliary 
predicates which incorporate names of the principal functors 
of the arguments. This technique was U$ed in the Edinburgh 
Chat-80 system (Warren, ·1981; Warren and Pereira, 1981), and 
we used it in our work. 

Goal selection strategies. The order in which the goals 
of a query are solved can make a substantial difference in 
resource use. Suppose, for example, that the· database has 
4000 clauses with the predicate "gl" and 1 clause with .the 
predicate "g2", and that all of these are ground clauses. 
Then, given the left-to-right selection method that is 
standard in PROLOG, and assuming that the database is totally 
indexed, it is much.more efficient to evaluate the query, 

g2 (X, Y) ,gl (X, Y}. 
than it is to evaluate the query~ 

. gl(X,Y),g2(X,Y). 
Evaluating the latter query could involve an enormous amount 
of backtracking. Evaluating "g2(X,Y)" first, on the other 
hand, immedi~tely provides the only instances of "X" and "Y" 
which could possibly satisfy the query. The indexing will 
allow this instance to be checked without a long search, and, 
in any ~ase, backtracking is more expensive than a simple 
search for a matching head predicate. so· in general, we want 
to evaluate the least expensive goals first. When the 
database is all ground clauses and the query has variables in 
all argument places, we can let the c,ost of a goal be the size 
of the relation, i.e., the number of clauses in the database 
whose heads have the same predicate as the goal. The cost 
function should be more elaborate, however, when the database 
contains clauses with variables (or terms-containing 
variables) or the query contains goals with non-variables. 

Let',s consider ~irst the·elaboration of the cost function 
which is needed to allow for queries with instantiated 
arguments. If a predicate is indexed in the database, then 
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a·ny "use-r" query of that predicate will be solved by first 
·converting it into its indexed form and then finding a 
solution to that "i~dexed" query. In a totally indexed 
database the cost of solving the original query will not in 
general depend on the size of its main predicate, but rather 
on the size of the sets of arguments that occur in each of the 
n-positions of any n-place prediGate in the query, since these 
are the.arguments to the indexed predicates. In order to 

. estimate the expense of finding a solution to a query (in a 
manner which will be described below) we can keep records of 
the sizes of the sets of arguments that occur in each place of 
every predicate. When all the database clauses are ground 
clauses, calculating the sizes of these sets is · 

1 straightforward. The sets s_imply include all the different 
te+ms. that occur in the relevant argument positions. 

This brings us to the question of how to elaborate the 
cost function to make it appropriate for a totally indexed 
database that is not restricted to ground cleuses~ In this 
situation, not all of the possibl~ instantiations of any 
par·ticulat: argument position need be explic1tly available; 
some of them will only.be found by the inference process. We 
do not want tri have to calculate .all of the·possible ·. 
instantiations ·of each predicate, so we need some reasonable 
way of estimating the number.of distinct-terms that could 
occur in each argument position. The details of the · 
calculation will not be described here, but roughly, we make 
worat-case assumptions that allow us to calculate the maximum 

1 number of possiple distinct provable instantiations of e.ach 
predicate. And th~n, thinking of each different pre~icate as 
a relation, we want some reasonable way of calculating the 
relation size. Again, we calculate relation sizes by making a 
worst-case ~stimation of the number of solutions one would be 
able to find to the query consisting of any particular 
predicates followed by the appropriate number of variables. 
We calculate these estimates and revise them when new 
information is added as part of the "updating" process. Given 
these estimates, we are able to use the same cost es.timation 
formula as was used in the Chat-80 system for ground clause 
databases. The cost of solving a goal ·is defined as the size· 
0f the relation divided by the product of the argument domain 
sizes associated with argument positions that are instantiated 
at the time a solution is•sought. . · 

Notice that, given this definition, the cost of a goal may 
change when other goals in the query are solved. For example, 

· in solving the query, 
g l ( X , Y) , g 2 ( Y , Z ) , g'3 ( Z·, a) • 

th~ solution of the first goal will instantiate the first 
argument of the second goal, making it cheaper to solve. And 
the solution to the second goal will leave no uninstantiated 
arguments in the third goal. So-if we want to plan our 
queries in such a way that the cheapest goal will always be 
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the next one solved, we will have to anticipa~e the 
instantiation of the relevant variables. This process 
interacts with the backtracking strategies described below, so 
let's consider those before describing how this query planning 
should be done. 

Selective backtracking. Sometimes PROLOG will do a lot of 
unnecessary backtracking in the course of finding the set of 
solutions to a query. Consider, for example, the query, 

bagof(X,h(X),B). 
where the unary predicate "h" is defined by the database 
clause, · 

h (X) :-gl (X) ,g2 (Y). 
And suppose the database provides some number n of solutions 
to the first goal, "gl (X)-", and some very, large number m of 
solutions to "g2(Y)". In finding the list B of solutions to 
"h(X)", a solution to the first goal "gl(X)" ~ill be found; 
the~ a solution to the second goal "g2(Y)" will b~ found and 

.the instance of "X" will be put in list B. The system will 
then backtrack to find all m ~olutions to the second goal, 
putting the first solution to the first goal in.the list B 
each time. Since we are only interested in getting the 
instances of "X" whi6h satisfy the g6als given, it is just a 
waste to get each such solution m times. We could use "setof" 
instead of "bagof" to get a nonredundant list of solutions, 
but this query also wastes the time to get all the redundant 
solutions before deleting them.· r'nterchanging the positions 
of "gl ('X) 11 and "g2 (Y) 11 do_es not ·improve things. And simply 
putting a cut into ·the original query somewhere will also not 
achieve the goal of getting a complete set of the .instances of 
"X 11 without this wasted effort. (In this case we could 
interchange the goals and put a cut between them, but this 
sort of solution will not always be available, as the examples 
below will illustrate.) Because it shares no variables with 
the head of the clause, the goal 11 g2(Y)" is, in effect, an 
independent subproblem; it must have a solution, but this is 
all we need to know to find all of the solutions to "h(X) 11 • 

Precisely the same situation arises if instead of having a 
definition of "h", we s.imply ask, 

bagof(X, (gl(X) ,g2(Y)} ,B) .-
We would like to be able to avoid the unnecessary backtracking 
in all such cases. 

This problem was handled in the Chat-80 system by putting 
independent subproblems inside braces,· and then changing the 
PROLOG interpreter so that it would evaluate queries 
containing such braces ~ppropriately. We used the standard 
interpreter and used new rules with cuts to achieve the same 
effect.• Thus, instead of evaluating a query like 

bagof (X, {gl (X) ,g2 (Y)) ,B). . 
or putting a rule in our database like, 

· h(X):-gl{X),g2(Y). 
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we would enter the auxiliary rule, 
r 1 ( Y) : -g 2 ( Y) , ! . 

, and then evaluate the eq~ivalent query, 
bagof(X, (gl(X) ,rl(Y)) ,B). 

or put the following equivalent rule into our database, 
h ( X) : -g 1 ( X) , r 1 ( Y) • 

The latter query and rule will yield the same results but 
without all the ~necessary backtracking.and inference. The 
body of the auxiliary rule is appropriately evaluated as an 
"independent subproblem." The savings in resource use can 
obviously be enormous. 

Extending this sort of treatment to more complicated 
queries and rules is not trivial, but not terribly hard 
either. Consider the follo·wing sort of case,· for example, 

h{X.,Z) :-gl(X) ,g2(Y) ,g3 (Z). 
In this case we do not want to enter the auxiliary rule, 

rl(Y,Z):~g2(Y)·,g3(Z),!. 
and change our original ruie to, 

. ·. h(X,Z):-gl(X),rl(Y,Z) .. 
since this procedure would only allow us to find one of the 
possibly many solutions to g3(Z). The moral of this sort of 
case is that no head variable should occur uninstantiated in a 

: subproblem when that subproblem is evaluated. Thus, although 
1 _"g3(Z)" s~ould not be includ~d in a subproblem in thii last 

·example, it could be included in a subproblem in 
_h(X,~)~-gl(X,Z);g2(Y),g3(Z). 

In this case the mentioned auxiliary rule would be 
appr·opr·iate, since the head variable "Z" will always be
-instantiated at.the time "g3(Z)" is evaluated, and so its 
occurrence in an independent subproblem wiil not restrict the 
number of solutions found. . · . 

. An6ther sort of case that can arise is that we may have 
i subproblems within subproblems. Consider for example the 

query., 
h(W) :-gl(X) -g2(X,Y) ,g3(X,Z). 

None of these goals contain head variables, so they can 
immediately be put into an independent subproblem. After the 
f.irst of these goals has been solved, though, the remaining 
two goals do not share any variablas, so they break into two 
further subproblems. Accordingly, the rule· wouia be handled 
by transforming it into, 

h (Wl: ..-r 1 ( X, Y, z) • 
and th~n we enter the following auxiliary iules~ 

r 1 ( X, Y , Z ) : -g 1 ( X) , r 2 ( X, Y) , r 3 ( X , Z ) , ! . 
•r2 (X, Y) :-g2 (X, Y), ! . 
r 3 ( X, Z) : -g 3 ( X, Z} , ! • 

The ratio'nale for doing this is just the same as ·above. 
Suppose for example,. that for some choice of "X" we are unable 
to prov·e "g3 (X, z) ". There is no point in_ backtracking to find 
other solutions to "g2(X,Y)", since the choice of "Y" is 
irrelevant to our problems with "g3(X,Z)". What we need to do 

... 
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is.-immediately go back to find another choice of "X". This is 
precisely what our new rules will accomplish. 

This g~ouping of goals into subproblems is sometimes going• 
to interact with our goal selection strategy. For example, 
after ordering the goals on the basis of solution cost, it may 
turn out that an independent subproblem is broken up by a goal 
containing a head variable. This sort of conflict is resolved 
with an optimizing algorithm which integrates the cost 
planning and the selective backtracking stra·tegies we have 
described. · · 

Optimizing,. The optimizing algorithm that was implemented 
is roughly the following: 

Giv·en a rule of. the form H:-Gl,G2, ••• Gn, 
(1) Order the list of goals, Gl, G2, •.• r Gn, according 

to solution cost, as discussed above. 
(2) Look through the goals, in order, to find head 

variables. 
(i). If such a a goal is found, it will be the cheapest 
goal containing a head variable, so move it to the front 
of the list of goals,. and assume for the remainder of the 

.optimizing process.that its arguments are instantiated. 
(S.ome of them· may 9ccur in other goals.) Consider oniy 
the remaining goals for the rest of the optimizing 
process •. Reorder· these goals according to cost, and 
repeat step (2). 
(ii) If no such goal containing head var:i:ables•is found, 
proceed to· the next s-tep. · · 

(3) Any goals that remain to be considered at this 
poin·t will not have any head variables at the time they 
are to be solved, so they constitute independent . 
subproblems. Take the first ~oal Gi on ·the list - it will 
be_ the cheapest - and check the following goal to see if 
it shares any variables with Gi; If it does, it is to be 
included in the same subproblem with_Gi, and check the 
next goal to see if it contains any of the same variables 
as Gi, and so·on until there are no more goals or until a 
goal with no variables ·in common with Gi are found. At 
this point we have a list of the goals in the Gi 
subproblem, and possibly also a list of remaining goals 
not in the Gt subproblem. Now enter an auxiliary rule, 
"the Gi rule," i~to the database. The Gi rule is given a 
unique head predicate and has as head arguments all the . 
variables· that occur in. the goals of the subproblem. '!'he 
body of the Gi rule consists of the 9oals in the Gi 
subproblem. We now want to optimiz€ the body of this rule 
as welli so assume foi the.remainder of the optimizing 
process that the variables in Gi are all instantiated. 
Reorder the rest of the goals in the body of Gi rule {if 
any) and perform-this step (3) again on these goals to 
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find subsubproblems. Finally, reorder the list of goals
outside of the Gi subproblem and perform this step (3) o~ 
them as well. 

This algorithm anticipates the instantiation of variables both 
in its cost calculations and in its recognition of independent 
subproblems. I_t appears to be a very expensive process, but 
it need only be done once for any rul~ being put into the 
database, and it can actually save an enormous amount of time. 

Suppose that our dat·abas·e contains one ground clause with 
the predicate "gl", -0ne hundred ground clauses with the 
predicate "g2"~ five hundred ground clauses wiih the predicate 
"g3", and nothing else except the follo~ing definition of the 
predicate "h": 

. h ( ·x ) : -g 3 ( Y) , g 2 C z , Y) , g 1 ( x) . 
Now consider the query, · 

setof(X,h(-X) ,S). 
This query is obviously maximally ineffi.cient, but our 
database is not really huge and so it may not be obvious that 
it would be worth.optimizing the rule for "h(X)". The actual 
processing times are as follows. Executing the maximally · 
inefficient qu~ry in fhe situation described takes 2291 ms. 
OptimiziQg the r~le for "h" tranforms it into, 

h{X):~gl(k),~l(Y,Z)~ · 
: and enters the auxiliary rules, -

· r 1 ( Y, z ) : -g 2 ( Y, z·) , r 2 ( z ) , ! . 
r 2 ( Z ) : -g 3 ( Z ) , l • . 

. This optimizing process takes· about· 280 ms. And executing the 
same "setof" query, but now with the optimized definition of 
"h" and the auxiliary rules, takes about 30.ms. Obviously, 
the optimizing is worthwhile in any case like this one. On a 

' larger·database, the improvements are even more dramatic, as 
would be expected. The optimizing code could also be compiled 
to improve its efficiency further once it has been p~t in the 
form in which we want to use it in any particular application. 

Conclusion. The work that has been desc-ribed here is 
aimed. at providing the basis for a feasible, pragmatic 

·deductive inference system. It is completely general and 
~ortable. The applications that this work is specifically· 
designed for are those -in which a user wants to have 
inte~active deductive access to a database ~hich may include 
general rules (expressions containing logical variables} as 
well as particular facts (expressions containing n6 
variables). This sort of application would go substantially 
beyond most previous logic programming projects which usually 
require.that the database contain only ground clauses or that 
the user cannot add new ·rules. It is precisely the more 
general sort of _database system that exploits the real 
advantages of a.deductive system, though, and this sort of 
system would be required in many question answering systems. 
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A LOGIC-BASED EXPERT SYSTEM FOR MODEL-BUILDING IN REGRESSION ANALYSIS 
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1. Introduction 

Methods of mathematical statistics and pattern recognition make a 

significant part of computer applications besides data processing. 

Although there are mimerous expert systems based on these methods 

/REG8l/, relatively few attempts have been made for automatic 

building of models, computations to be based on, as well as for 

automatic evaluation of results, which form a major part of brain
work. 

• 
This situation seems to be apt also to regression analysis, the 

most wide-spread method of mathematical statistics which has been 

referred to in altogether two publications on possible automation. 

In this paper application of logic programming in automatic model

building for regression analysis is presented, in connection with 

a drug design problem. After a survey of the regression problem 

/Chapter 2/, the drug design problem and the logical model for 

problem solving will be dealt with /Chapter 3/. Chapter 4 gives a 

summar:, of the program system implementing the model, while 

Chapter 5 reports on experiences with the system and evaluates the 

chosen logic programming method. 

HA joint company of the Institute for Coordination of Computer 
Techniques, Budapest, and the Institute of Enzymology, Biol. 
Res. Cent., Hungarian Academy of Sciences, Budapest • 
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2. The regression problem 

It is a frequent case that in regression equations of the form 

- = + e /1/ 

some of the :x1 column vector~ of !'matrix are binary vectors, i.e. 

the components of x. can take the discrete values of O or 1 only 
l. 

/DRA66/. Components of such vectors can be regarded as logical 

variables of values "true" or "false" and can be subjected to 

Boole / .Al'ID, OR, NOT/ operations. 

Suppose that a variable x. is assigned to the column vector x., 
l. l. 

and values of land O of x. correspond to the presence and 
l. 

absence of ~:1.• 

If the model permits to interpret physically a common variable for 

~i and ~j, a new vector ~ can be introduced, as the logical OR of 
xi and x. : _ _ _ , _ 

J ~ i= X4 off x1 • x, + XJ 

More generally 

Similarly, a new vector can be generated by performing the 

Boolean AND operation on original vectors xk: 
.e 

- r,..> -

i-- = /)i x,_ 

/2/ 

/3/ 

/4/ 

Logical combinations according to /3/ and /4/ might be useful in 

all cases when x.-s are not competely independent of each other 
J. 

ias it is the common case in many fields/. Caus.al interpretation 

of the regression equation requires, however, that each variable, 
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·- ... ___ ----·----·---
formed by Boolean operation, should have a meaningful inter-

pretation in the frame of the model investigated • 

.3. Prediction of drug activit:y 

Drug design aims at predicting biological activity of not yet 

synthetized or, at least, not yet tested compounds /HAN69/. In 

its most widely applied approaches /HAN6J, FRE'-64/, linear 

relationships between two groups of quantitative-descriptors are 

searched. The first group relates to the biological activity, the 

second one to the chemical structure of a series of organic 

compounds •. An important group of chemical descriptors is formed 

by the so-called "indicator" variables, giving the presence or 

absence of definite groups within the molecules /MAF..78/. In drug 

design methods like in the Free-Wilson approach, Fujita~Ban 

approach and Kubinyi's mixed method, eq. l. comprises exclusively 

·or additionally indicator variables asxi column vectors of¥. 
/FRE64, FUJ71, KUB76.3/. 

Indicator variables in eq., l. can be interpreted as logical 

variables and also combined in sense of eq. /3/ or- /4/ /GOL80/. 

Becaus,e of the high number of the possible logical combinations, 

the regression eq. l. cannot be solved with a pre-determined set 

of all combined variables. Input variable set of the normally 

used stepwise regression program might include only those logical 

combinations, which can be interpreted in the context of the 
biological activity investigated. 

Interpretation of the large quantity /sometimes several hundred/ 

of combined variables means a formidable work, which is burdened 

with errors of subjective decisions. We think that the high 

intellectual expenditures of such interpretations compose the 

main reason for the fact that logical combinations ar9 rarely 

used in drug design calculations /HAN75, ELG82/, though the first 



examples were published a long time ago ,BOC65, KOP65, SCHA75, 

h'1JB762/. 

In order to find physical interpretation for the combined 

variables by logical programming, a logical model of the drug

receptor "reaction", the ultimate scene of the drug action is 

needed. Here we give only an informal summary of the most 

important concepts we .have used in our model. 

It is supposed that all compounds act with the same "reaction 

mechanism" on the same macromolecule /receptor/ within a living 

cell. Measured biological activity values used in eq. l. are 

originated almost exclusively from this reaction. 

Structure of the compound series can be described as aggregate of 

unique groups /occuring only in some compounds/ and of the 

re.maiDing part of the molecule /supposed to be common in all 

compounds/. Indicator variables of eq. l. denote the presence 

or absence of single groups in each compound. 

Contributions of the i-th and the j-th indicator variables /Y;i 
and~ to the biological activity of all compounds are expressed 

as the regression coefficients b. and b .• b. and b. depend, in 
J. J J. J 

the first place, on the sets of chemical and physical properties 

/C. and E./ of the chemical groups ~-, and ~-• 
1 J J. J 

There are two cases: 

1. Contributions of ~and~ are independent from each other. 

2. Contributions of ~ and "Q depend on each other. 

In this latter case, it is supposed that '{i and~ enter into an 

"interaction". Such interaction can be originated e.g. from the 

formation of an intramolecular chemical bond between the 
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substituents /FUJ71/. An interaction between ~,and "3 depends on 

the "environmental" conditions in addition to the properties of 

~ and l'j • Most important groups of the environmental conditions 
are the 

electronic connections between two groups, transmitted through 

the common part of all molecules, and 

- through-space connections between two groups being able to 
reach each other. 

Let describe bi; and JAJ.J the two sets of connecti~ns between ~ 
and (\1 • 

The sets ¾, f"2 , •• f'Q are constructed in such manner, that they 

give a possible full description of the. meanings of ~' t°f. ••• 
~~groups, attaching all to the same position (~) of the 

common part of molecules. 

A variable resulted from logical addition oft, f1.., • • • "4, where 

N c: G. according to eq. 3. can be interpreted as the largest 

common subset within E .. , f 1 , •••• EN which, in the same time, 

does not occur in the fft<tt' E'N+t. ••• f~ property sets of the 

remaining !t.1+.t , 'tt.itt, ••• 't~ groups attaching to ~ • 

Logical multiplication of f1 and "{'1. according to eq. 4. can be 

interpreted as an indication to an interaction, r1 • 

I1 occurs if properties of 'Ci and °1 • e:. e £, _ and z ! 6 £; 
enable chemical or physical 'mo9'ification" of ~..£ and \j trough 

the connections M'.e:: IA••andb••6a°••• 
I -4 1 r-'a ;,,.a "f 

Thus, they can be represented in form of a production rule /SH076/ 

/5/ 

Subsets of properties can cause several interactions. On the other 

hand, an interaction can be triggered by several combination of 
property sets. 
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4. Computer implementation of the model 

Biological activities and chemical structural descriptors of the 

tested compound a.re the starting data of the calculations. 

Structural descriptors can be divided into two classes: binary 

indicator variables and continuous physico-chemical, quantum

chemical variables. Values of these continuous variables can be 

calculated by other programs or retrieved from the data base 

stored in the system. They can be transformed in different ways 

/addition, subtraction, taking logarithm/. Structural formulae 

of the compounds with activities to be predicted also belong to 

the starting data set. 

First step of the program is to solv.e a so-called Fujita-Ban 

equation system /FUJ71/ using the measured activities and the 

indicator variables. The solution serves as input for the 

logical interpretation of the possible logical additions. 

In the PROLOG program providing the interpretation, each chemical 

group /nsubstituent"/ is charac~erized by a chemical property set. 

If a contraction /i.e. logical addition/ is carried out, common 

pa.rt of the property sets of the groups is generated. A 

contraction is pemitted only if the property set of the other 

chemical groups at the same substitution site do not imply this 

common part. As interpretation of the contracted variables the 

resulted common property sets are considered. 

After the evaluation of the possible interpretations the 

computation goes on in an interactive way so that the user 

decides on the contractions of the substituents step by step. 

After the user's giving two or more substituents to be contrac

ted, the system computes the new regression equation, its 

statistics and optionally the estimated biological activities 

of the untested compounds. If the user accepts the equation, 

the next contraction will be carried out on the base of the 

new indicator variable set, otherwise the processing continues 
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using the previous variable set. Contractions of indicator 

variables are carried out at each substitution-site, one by one. 

Having performed all necessary contractions, generation of 

interaction variables follows. An interaction variable corresponds 

to the common presence of substituent M.at site I and substituent 
Nat site J /logical 'AND' relation/. 

Value of this variable isl for a given compound if this 'and' 

relation is true, otherwise it is O.The system generates all 

interaction variables with value= l for two or more tested 

compounds, and calculates frequencies for them. 

The user gives a lower frequency limit f1 • This specifies that 

henceforth interaction variables of frequency greater than or 
equal to f1 are treated only. 

The interaction variables are then prescreened: the progr~ lists 

the variables with statistics informing about their importance. 

If a vari~ble is redundant in statistical poilitt of -.:iew, it is 

ignored. The accepted interaction variables are added to the set 

of variables, and the!f11so passed to the program giving automatic 
interpretation. 

Using the built-in automatic deductive m.echanism, this program 

tries to prove the interaction rules stored in its data base. 

If the proving procedure is successful, the user is informed 

about the result as a possible interaction. The interpreted 

interaction variable can be included in the input data set for 

the calculation of the final regression equation. This input 

involves not only the original, contracted and interaction 

variables but the continuous ones as well. There are two means 

for computing the final equation: interactive or automatic 

stepwise regression analysis. As result of the numerical 

calculations one gets the regression equation corresponding 

to the wanted quantitative structure-activity relationship, 
·-- ··--·- ---· ____ ..,, 



its statistical characteristics and the estimated activities of 

the tested and untested compounds. 

5. Experiences. SUmma.rz 

The system is implemented on the Siemens 7536 computer of the 

Institute for Coordination of Computer Techniques, in FORTRAH 

and MPROLOG • li'O?ROLOG is a modular version of PROLOG, being 

developed by the Institute. Besides its comfortable program 

development facilities it permits modular structuring of the 

program. 

. ' 

In order to test drug design performance of the system, earlier 

results were recalculated and new problems were solved. 

Recalculating_one of our earlier series of structure-activity 

regression equations /DAR80/ resulted significant and meaningful 

equations in all of the 8 cases investigated. In addition, an 

earlier version of the system helped in a great extent to 

calculate quantitative structure~activity relationships for 

anti:f'u.ngal nitroalcohols /LOP83/. In summary, the mechanical 

interpretation of the combined variables seems to be a helpful 

tool in model-building for drug design. 

On the other hand, drug design has been a favourite field of 

logical programming for a long time. Besides a system for 

predicting drug interaction /DAR75, FUT76, FUT771, DAR78, FUT79/, 

a carcinogenity prediction system /FUT771/ and a system for 

calculation of physicochemical properties of organic compounds 

/DAR782/ have been implemented. The expert system in question 

has an additional feature relative to them: the general nature 

of the problem and the model formulated permits our program 

system, with minor changes, to be applied in numerous other 

fields as v:ell. 



Among others, potential application fields are the quality 

control, geology, town planning, environment protection, all 

of them dealing frequently with regression models including 

yes/no variables and their combinations. The fact, that 

interpretation of the combined variables, a bottleneck of 

the model-building, could be performed by a relatively short 

program shows,that logical programming is a powerful tool in 

constructing small expert systems. 

,I 

{-
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DEVELOPING EXPERT SYSTEMS BUILDERS IN LOGIC PROGRAMMING 

Eusenio Oliveira 
Dept. Informatica, 
Universidade Nova de Lisboa 
Quinta da Torre 
2825, Monte da CaParica 

ABSTRACT 

We intend to develop a set of kits to build ExPert SYstems 
usins Prolos. Two Principal modules, a Knowledse Base 
acauisition and consultation subswstems are now Presented. 

Several knowledse representation structures and mixed 
inference mechanismes are Proposed for the sake of system 
efficiencw. Finallw some explanation capabilities derived 
accordinslw with used inference methods are also imPlemented 
and Presented • 

• Introduction 

Knowledse Based Swstems are twPical, useful and Practical 
Artificial Intellisence aPPlications. 

Knowledse Representation schemas, Problem Solvins methods, 
Natural Lansuase interfaces, Knowledse acauisition 
capabilities, Plausible reasonins are several imPortant 
techniaues we can find inside AI to build UP more intellisent 
swstems to Perform expert's knowledse into a sreat variety of 
domains. 

Knowledse is the very fundamental component 
swstems. Nevertheless, if such systems maw obey the 
of beins • Knowledse rich even if they are methods 
efficiency and friendliness must not be neslected for 
of usefulness. 

of such 
paradism 

POO r •, 
the sake 

Our experience with ExPert Systems <ES) -- Knowledse Based 
Swstems embodwins knowledse of one or more experts in a 
siven domain (medicine, seolosw, ecoloSY, business ••• ) -- save 
us some particular insishts in such a tradeoff. So,a number of 
desisn ideas we now Present evolved from Past work in ORBI+ 

ORBI [PERJ is an ExPert System desisned for environmental 



resource evaluation, wri~ten in PROLOG and runnins on a PDP 
11/23 which sives advice about resions aPtitudes and 
resources. It has a dYnamic Knowledse Base entered and 
modified by experts (not Prosrammers> and suPPorts its 
decisions with more or less detailed exPlanations about its 
reason ins. 

One of the fundamental lessons of ORBI 
imPlementation is PROLOG suitability to 
declarative manner structured knowledse 
(semantic networks, Production rules ••• ) as 
lansuase, relational database, intermediate 
of this with the same clear formalism (Horn 

develoPment .and 
encode in a 

about the world 
well as the auerw 
interpreters, all 
clause losic). 

One of the important drawbacks of most existins systems is 
that they reflect specific domain Particulariti•s loosins all 
the seneralitw. 

Other critical Point of such systems is the difficult 
acauisition of new knowledse and modification of old one 
directly from experts without the need for computer scientists. 

attempts at seneralizins 
Present domain independent 

framework to deal with at least 

Recent developments show some 
Pre-existins ES, trYins to 
mechanisms and to be a Seneral 
some classes of worlds. 

It is our aim to develop more versatile, Powerful and 
simPle Expert Systems Builders usins Losic Prosrammins • 

• swstem orsanization 

Our system is able to acauire interactively all the 
concepts of each new world, to represent them internalw, 
to relate them, to disPlaw them in a comprehensive manner on 
user's demand. It must have an efficient and versatile 
Procedural behaviour to achieve intended results well enoush 
SUPPorted with explanations. 

The swstem can be resarded as two main cooPeratins modules : 

Knowledse Base Acauisition Subsystem (KBAS) 
Consultation Subsystem <CS) 

KBAS suides the exPert accePtins his structured knowledse, 
individualizes and defines domain concepts, keeps all existent 
relationshiPs, so enterins a complete new world into the 
swstem. 



.Knowledse Base 

Each entity is a triPle <concept, attribute, value>. With 
these entities a conceptual semantic network is built uP,whose 
nodes, corresPondins to sinsle concepts (for example 
"disease"), are expanded on records with several fields (for 
example meanins, number of attributes ••• ). One of these fields 
is Pointins another tree of concept's attributes each of which 
with its own characteristics. 

We can see this Part of Knowledse Base as orsanized 
three layers : 

into 

Templates, abstracted schemas for concePts's 
characteristics and rule models. 

concept( n. of attributes, attributes names, 
dependencies, contributions, meanins>. 

Conceptual network, 
Particular domain concepts. 

connect ins and namins all 

For e:<amPle : 

therapy( 3, attrbtrp(_,_,_), Cdisease,PacientJ, 
CnoneJ,Cmedical adviceJ). 

--- Concepts tree, Particularizins for each concept all its 
attributes characteristics. Note that the second arsument of 
the Predicate rePresentinS a sPec~fic concept is a new data 
structure whose instantiations represent all the attributes 
characteristics under that concept. After havins selected a 
specific concept Predicate, its attributes Predicates are 
directly accessed by means of that second attribute. 

For e:-tamPle : 

attrtrp( 'attribute name', 'attr. 1Jnities', 
'how is obtained'). 

attrtrp('attribute name',••• ) • 

• • • 

All this contextual knowledse is once for all entered bY 
the expert and then it suides the consultation subsystem over 
the Protocol session. It also Sives the structure of knowledse 
which can be consulted by the user. 

This feature which is called metaknowledse or selfknowledse 
rePresents a kind of introspective caPabilitY of knowins about 
its own knowledse and showins it. Of course that Prolos's 



ProPert~ of Prosrams 
Possibilit~. 

seen as data facilitates this 

This kind of knowledse archet~Pes is also important to 
check rule acGuisition. In fact, the other knowledse base 
maJor component is a set of Production Rules each of which 
embodies a chunk of expert domain knowledse, drawins 
inferences from some concept attribute value to other one. We 
can disPla~ the KBAS module as followins: 

---------------------------------------------------------
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

USER 

-----------------------------------------I 

I ---------------1 
I 
I 
I 
I 
I 
I 
1· 

l 
I 
I 
I 
I 
I 
I 
I 

I Acauisition I 

Knowledse Base 

I Context 
I Network. 

·1 

----------------- I 
I Rule 
I Acauisitior1 

I Rule 
I Set 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

Sel fl'-.nowledse I 
I 
I 
I 

I 
I 

USER 

---------------------------------------------------------

Rule acauisition is done in a flexible st~lized lansuase 
where several words are recosnized as oPerators (where, if, 
else, or, and, not ••• >, others as concept attribute's names 
and its specific values, and finall~ other ones as functions 
like (eaual, sreater,lesser,different ••• ). It is obvious that 
Prolos non unit clauses < declarativlY : 'Head' if 'body') are 
clearly suitable to represent Production rules ( 'conclusion' 
if 'Permises'). 



After beins checked for sYntatic and 
consistency <reaardins contextual network) 

mostly semantic 
Production rules 

.are PrecomPiled in an internally Procedural form and are 
modularly intesrated. A Prolos Procedure ( a set of Prolos 
clauses ) looks into an intermediate file to where the inPuted 
rule was sent reads it and build the correspondent new clause. 

Durina such an oPeration optimizations are done to avoid 
duplication of evaluable Predicates into rule's bodies in case 
of comPlicated concatenations of boolean operators ('or's" 
inside "and's", •ored" branches with same concept attribute's 
name>, and so imProvins rule's fireins efficiencw. 

Note, however, that thew can be disPlaYed asain in the same 
form as thew had been entered, bw means of a· decomPilation 
module which translates them back from internal representation 
to the more friendlw inPut lanauase. 

Rules which shall caPture experts knowledae as near as 
Possible its Primitive form, must, if necessarw, enable 
several conclusions and complex Permises. This is a clear and 
natural way of trYins to Prove several conclusions (Soals) in 
a Pre-determinate seauence. 

When the expert Sives such a comPlex rule 
those alternative conclusions of the rule are 
if the first one fails, second shall imediatlw 
on. This kind of asresate often corresponds 
orsanization in expert's head. What I mean 
-determinism is not alwaws the best waw to deal 
representation. 

he means that 
connected and 

be tried and so 
to knowledse 

is that non
with knowledse 

Note that later, if the swstem keeps track of its 
successfullw fired rules it will know not onlw which was the 
riSht conclusion but also that other ones aPPearins before in 
the same rule were tried and failed. 

So, rules space is orsanized as a set of rules subsets 
(also known as knowledse sources), resardins each concept's 
attribute, and each rule can either have several alternative 
conclusions or onlw one. 

This is a verw nice imProvement. In fact, other 
swstems like Emwcin CVMEJ, onlw have verw simPle 

well known 
r1Jles with 

one conclusion and a conJunction of sinsle Permises. 

Our rules can, if necessarw, be much more complete as seen 
in the followins example : 



disease name = influenza 

if 
s~ndrome name = headache 

and 
s~ndrome duration > two daws 

and • • • 
or 
swmPtom name = feever 

and 
(s~mPtom intensit~ > moderate 

or . . . ) 
and + • • 

else 
disease name = • • • 

if • • • 

Rules can also be inspected about theirs components, 
concept attributes which contribute for them can also 
retrieved, on demand, b~ searchin~ into theirs bodies. 

Several other anotations like rule's name, author and 
are also·siven~ 

and 
be 

data 

S~stem has a few meta-rules. Meta-rules embodie knowled~e 
about rules themselves. One meta-rul~ asks the expert if he 
wants to encode such an ordered a)ternative conclusions and, 
if it is the case, instructs him about rule's form. 



Knowledse Base is structured as followins: 

KNOWLEDGE BASE 

Templates Meta-Rules 

IConcePtual Network! 
I I 

I --------------- I 
I I Concepts I 
I --------------- I 

I --------------- I 
I I Attrib1Jtes I 
I --------------- I 
l I 

Trissers 

.summarizins 

R1Jle Set 

Concept l 
I attribute I 
I r1Jle s1Jbset I 

ConcePt 
I attrib1Jte 
I r1Jle s1Jbset 

When a session besins and if user's Ca certain domain 
exPert> Password enables him to access knowledse base buildins 
he can either enter a comPletlw new knowledse base or consult 
an old one for UPdatins. 

UPdates are kePt in a seParate file to be 
alternativlw or if modifications are definitive the 
will contain the old one alreadw updated. 

consulted 
new file 

Durins knowledse base buildins, the user is on 
hierarchical waw asked for I 

concept's names, theirs short mnemonics, 
theirs mutual relations, number of attributes, meanins. 

-- concept attribute's names, Possible values, its unities 
(if mesurable), how shall thew be known to the swstem. 

-- Which are the attributes values (if there are 
Presence is able to directlw senerate a set of 

ans) ~.Jho·:;e 
h':::!Pothesi s? 



expectations to be verified later on+ Such 

(called 'tri!Sers') will be resPonsaole for win 
an information 

of efficienc~ 
~Yr~ns ev~~Y~~~cn ~recess er ~he consultation session, 
aPProachins once more experts way of reasonins. 

Simple or complex rules are entered, checked, comPiled, 
retrieved and orsanized into knowledse sources. 

Guided modifications can be done either into the rules or 
concept network. 

If Selfknowledse module is 
information can be accessed 
clearl~ Presented. 

activated 
Cincludins 

all knowledse 
rules bodies) 

base 
and 

Once asain Prolos and its assotiated"Horn clause losic it 
is a very natural formalism to encode knowledse either facts 
or rules • 

• ~onsultation and Inference mechanisms 

Consultation subsystem, a module under development, uses a 
selected Knowledse Base (for examPle a certain medical field), 
Previousl~ build UP b~ means of KBAS module, to interact 
ProPerl~ with the user. Note that an~ user (and not only 
domain experts) are now able to use Consultation s~stem. 

In each session, as result of such an interaction, all 
needed information is collected. A dynamic context network is 
built UP accordinsl~ to the static one, and the conclusion is 
reached in an efficient way usins Production rules selected 
from respective knowledse sources. ExPlanations are also 
obtained. 

From KBAS the s~stem already knows Possible top soals <ex. 
theraP~, disease). It also knows the set of •trissers• 
(h~Pothesis Senerators>, and between them those whose values 
shall be asked for at the besinins of the session. 

So, a Protocular session when consultation starts, collects 
these Possible hiShl~ discriminator~ information. 

At that moment inference ensine is aPPlied to these two 
extremes of the sPace Problem (data and toP soal) to find the 
solution. 



---------------------------------------------------------C S 

I Dwnamic context! 

Output 
I ExPlanation 
l module 

I Plausible 
l reasonins 

Inference 

+Inference methods 

I UPPer level I 
1----------------1 
I I 
I AGENDA l 
I I 
I I 
I I 
I I 
I l 
I I 

Ensine 

Expert s~stems can be used in a number of aPPlications so 
diferentiated as diasnosis, Plan, desisn and education amens 
others. 

It becomes verw difficult to Present enoush seneralized 
techniaues to cover all these Possibilities. Nevertheless, 
several reasonins method~ should be available to sive 
versatilitw to each particular class of swstems. 

As Prolos is our uniaue imPlementation 
sussested stratesw is backward chainins (Soal 
dePth first with backtrakins. This is also the 
bw well known ES like Mwcin ( Shortliffe) as 
derived essential swstem (EMYCIN). 

lansuase, 
directed) 
stratesw 

well as 

the 
and 

used 
its 

However if search space is verw larse Cnamelw if the 
tree has a bis amount of Parallel branches near the 
simPle toP down becomes inefficient and other search 
must be Pursued. 

Proof 
root), 

methods 

Our inference ensine takes advantase of initial data token 
from the user and of Knowledse Base information about 
hwPothesis senerators to Prune, earlier, the search space 
tree. A little cwclic interpreter takes these data, asks KB 



for aPProPriate (matched with that data) 'trissers• and, if 
thew exist, climbs UP the tree, suessins some hwPothesis and 
trwins to Prove them all the Possible waws around. If it is 
the case, these hwPothesis (now intermediate conclusions), are 
asserted in an •asenda•, a Sloballw accessible data structure, 
and the cwcle is repeated with these asserted facts and other 
Possible •trissers•. 

Verw manw initial Possibilities can 
search space will become more workable 
hierarchical senerate and test method+ 

so be 
with 

discarded 
this kind 

and 
of 

When this cwcle is over the inference ensine still keeps 
the main obJective it wants to achieve (top soal> and 1 asenda 1 

has all Proved intermediate conclusions. At this moment the 
swstem can choose between two reasonins methods : forward 
chainins from asserted data or backward chainins from toP soal 
till it meets assertions in •asenda • or in the data base. 

1 Asenda 1 has a sesmented structure with an individualized 
UPPer level. So, as forward chainins Proceeds, not everw 
asserti6n in the 1 asenda 1 is taken into account but onlw those 
in UPPer level, rePreasentins nodes nearer toP Seal, avoidins 
combinatorial explosion of search Paths+ In each cwcle nodes 
directlw connected with those ones but one steP UP the tree 
are tr~ed to be Proved. This imPlies a reconfisuration of the 
UPPer level •asenda•, deletins assertions from which the c~cle 
had started and the assertion of Proved new ones. Such a 
Process ma~ continue till top soal is reached if desired. 

If backward chainins is choosen, which depends 
effi~ienc~ considerations, the inte~Preter looks for the 
Soal clause, tr~ to Prove its bod~ and So on recursivel~ 
it meets data or alread~ Proved facts on the •asenda'. 

on 
toP 

till 

These methods imPlw, of course, that 1 asenda 1 access 
mediates each decision steP+ 

.ExPlanations 

Mixins h~Pothesis seneration with forward and backward 
chainins mechanisms makes explanation task not so easw as if 
it was onlw one direction inference (for example toP down like 
in Orbi or M~cin>. 

Durins computation all Proved 
special data structured arsument or 
the •asenda". Thew are connected 
dePendins how thew were infered or 
Paths. We keep this executed code, a 
and then we look at it as data to 

steps are carried on a 
convenientlw asserted in 

bw different constructs 
if thew are alternative 
kind of Prosram's trace, 
be manipulated. Prolos's 



Prosrams declarativitY is once more very much aPPreciated. 

An aProPriate outPut Procedure deals with these constructs 
buildins UP an enoush understandable output exPlanation, where 
we can distinsuish between inPut data, suessed information and 
step by step infered conclusions. 

Already used in Drbi the system will also disPose of 
another interpreter which discriminates inside rule's body 
deterministic Parts from non-deterministic ones, comPutins the 
former and delawins the latter. This interPreter, like other 
ones into the sYstem, is of course written in Prolos. 

An exemPle of a compound explanation will be: 

ExPlaned answer for •x• : 

1 E1 is a valid intermediate conclusion because : 

•A• was •iven for wou 
and 1 B1 is a fact 
and to the auestion •c• wou answerd •n• 

still another explanation for 1 E 1 is: 
I already know 1 F 1 

and the truth of •F• implies 1 E 1 

and finallw from •E• I can deduce •x• • 

• conclusion 

Under development is a kit of Prosrams to build 
Swstems in several knowledse domains. At Present 
our atention at swstem architecture and convenient 
representation structures, selfknowledse inference 
and explanation capabilities. 

UP Expert 
we focused 

knowledse 
mechanisms 

Other components like natural lansuase interface and 
Plausible reasonins models will be later on implemented. 

We Propose to combine several knowledse representation 
structures as semantic networks and Production rules, to use a 
meta-knowledse module to Suide user's consultation, to aPPlw 
hwPothesis seneration and bidirectional inference. Composed 
but understandable explanations are already sussested. 

Prolos is our uniaue imPlementation lansuase and a verw much 
suitable one. 
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ABSTRACT 

This paper describes a prototype knowledge based system which answers 
English questions about some of the products supplied by a garden store. 
The system answers questions such as 

what can I use to kill snails ? 

is there anything I can use that will fertilize my lawn ? 

what can I use to kill weeds in my lawn in spring ? · 

does product A kill dandelions in less than 20 days ? 

in less than one second each, and it produces a helpful phrase when it 
cannot answer a question. 

The syntax, semantics and knowledge needed by the system are written in 
the language Prolog. The behavior of the system indicates that Prolog 
appears to be a good language for the construction of practical knowledge 
based systems which can answer questions in ordinary English. 
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1. INTRODUCTION 

This paper describes KB01, a prototype knowledge based system which 
answers English questions about some of the products supplied by a 
garden store. The system matches, to a certain extent, the behavior of a 
helpful, knowledgeable assistant in a store which sells products such as 
domestic pesticides and weed-killers. 

Some questions which produce brief, but useful and accurate answers, 
are: 

what products do you sell ? 

what is each product that you sell for ? 

what can I use to kill snails ? 

is there anything I can use that will fertilize my lawn ? 

what can use to kill weeds in my lawn in spring ? 

what can use to kill weeds around my fence ? 

do I need a sprayer to use product A ? 

what is the response time of weeds to product A ? 

does product A kill dandelions in less than 20 days ? 

The present system only answers questions about certain house and 
garden products. Questions which lie outside this scope, such as 

is there a bus stop near here ? 

are answered with a sentence such as 

I'm sorry, I don't know the word: bus 

The system has been written to explore the feasibility of building useful 
knowledge bases in the programming language Prolog (1, 2). Prolog 
appears promising as a notation for implementing knowledge based natural 
language systems, since knowledge rules and grammar-like rules can be 
written down and executed more or less directly (3, 4, 5). 

In the case of our KB01 system, it was not necessary to write an 
inference engine or a parser. Both of these items were covered by the use 
of the built in inference method of Prolog. We have used an efficient 
implementation of Prolog (7) on an I BM mainframe computer. In terms of 
coverage of a part of English, our results are promising. In terms of 
performance, we ·find that no question takes more than 1 second to 
answer, even when our computer is heavily loaded with work by other 
users. Our coverage and performance results are consistent with those 
reported by (3, 5, 9), namely, that efficient Prolog programs can be 
written for useful natural language access to knowledge bases. 
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Section 2 of this paper describes the input-output behavior of the KBOl 
system by means of some annotated examples. Section 3 outlines the 
internal design of the syntactic and semantic components of the English 
interface of KBOl, while Section 4 describes the knowledge base. Section 
5 consists of conclusions and directions for future work. 
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2. INPUT-OUTPUT BEHAVIOR OF KBO1 

A user of the KBO1 system types English questions on a keyboard, and 
gets answers on a screen. In the following example session, a question 
starts after a prompt symbol ">>" and ends with a question mark "?". 
The answer produced by the system follows the question. Comments 
which we have added appear in parentheses after answers. 

>> 

what products do you sell ? 

product A 
product B 
product C 
product D 
product E 
product F 

(the system has simply listed the products. 
for examples with more products, it would print 
just the kinds of products) 

>> 

what do you know about ? 

product A kill weed 
product B kill pest 
product C kill pest 
product D kill insect 
product E kill insect 
product F kill weed 
product F fertHize lawn 

(the system has listed the products in its knowledge base, 
with one or more intended uses for each product. English 
output generation is minimal) 

>> 

what is each product that you sell for ? 

product A kill annualweed 
product A kill perennialweed 

product B kill garden pest 

product C kill garden pest 

product D kill crawlinginsect 
product D kill flyinginsect 
product D kill hop pi ngi nsect 
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product E kill crawlinginsect 
product E kill flyinginsect 
product E kill hoppinginsect 

product F kill annualweed 
product F kill perennialweed 
product F fertilize lawn 

>> 

(this question has put more emphasis on intended use than 
the last, so the system has answered in more detail ) 

when should I use product· F ? 

spring 
fall 

>> 
what can I use to kill snails ? 

product B 
product C 

>> 

what can I use to kill snails on my vegetables ? 

product C 

>> 

(the product product B is not for use on food, and so is 
not suggested in this answer) 

what can I use to kill weeds ? 

product A 
product F 

(these are the suitable products known to the system) 

>> 

what are the weeds ? 

annualweed 
perennialweed 
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(the system has listed, without much detail, the kinds of weeds) 

>> 
what a re weeds ? 

sorry, I don't know 

(we have reached a limit of the knowledge in the system) 



>> 

what are the perennial weeds ? 

bahiagrass 
bull thistle 
clover 
dandelion 
kentucky bluegrass 
poison ivy 
poison oak 
yellow oxalis 
oxalis 

>> 

(the system has understood this as a request for 
a detailed answer) 

is there anything I can use that will fertilize my lawn ? 

product F 

(a suitable product is suggested) 

>> 
what can I use to kill weeds in my lawn in spring ? 

product F 

(the same product can be used) 

>> 
what can I use to kill weeds around mv, fence ? 

product A 
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(product F is for lawns, but elsewhere we can use something stronger) 

>> 
do need a sprayer to use product A ? 

yes 

>> 
can I use product A without a sprayer ? 

sorry, no 

>> 
what are the precautions I should follow in using product A ? 

avoid contact with eyes 
keep children and pets away till spray has dried 
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avoid contamination of food 
if accidental spray then wash off with water 

>> 

what is the response time of weeds to product A ? 

annualweed 5 days 
perennialweed 15 days 

>> 

what is the response time of each product that kills annual weeds ? 

product A 5 days 
product F unknown 

>> 

what can I use on dandelions ? 

product A 
product F 

>> 

what can I use on dandelions that will kill them in less than 20 days ? 

product A 

>> 

does product A kill dandelions in less than 20 days ? 

yes 

>> 

does product A kill dandelions in less than 2 days ? 

sorry, no 

This session shows that the KBOl system has considerable knowledge of 
the properties of a few products and their intended uses. As with all 
knowledge bases known to us, there are limits to the domain which is 
covered. However, when a question cannot be answered, the user sees 
reasonable replies such as "I'm sorry, I don't know", or "I don't 
understand the word: bus". Although the domain of competence is much 
smaller than that of most adult people, these phrases carry about the 
same information as an immediate reply from a person who does not know 
the answer to a question. 

It would appear worthwhile to extend KBOl so that it would explain its 
answers when asked to do so. For example, it would be helpful to know 
why product B cannot be used to kill snails on vegetables. The 
techniques described in (8) could be used to do this. 
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In this section, we have described the input-output behavior of KB01. 
The next section outlines the design of the English interface, while 
section 4 describes the knowledge base. 
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3. THE ENGLISH INTERFACE 

Our two main goals in designing the English interface were simplicity and 
modularity. We wanted to keep the interface simple so as to be able to get 
a system working within a short time. On the other hand, we made the 
interface modular so that it can form a basis more elaborate English input 
processing. The interface uses full dictionary lookup for every word in 
the sentence. Thus it is distinct from a 'keyword' interface, in which 
some words may simply be ignored. 

Our main simplification is to make lexical analysis deterministic. This 
means that only one morphological token is associated with each word, an 
assumption which does not hold in general, but which which turns out not 
to be a serious limitation in our present application. This simplifying 
assumption allows us to complete the lexical analysis before starting a 
syntactic parse. In a later version of the interface we would expect to 
drop the deterministic assumption, but to retain modularity and efficiency 
by using coroutining techniques in Prolog (6). 

Some other design desicisions which we made to keep the English inteface 
simple were as follows. 

We only deal with fairly simple ellipsis, namely an elided subject in a 
conjunction of verb phrases. We feel that any serious treatment of ellipsis 
would need to manipulate information from several sentences in a dialog. 
The present system works one ·sentence at a time. 

We do not generate a syntactic tree. 
representation directly during parsing. 
checks are made early in the anaylsis 
unfruitful parses. 

Rather, we construct a semantic 
This is efficient, since semantic 

of a sentence, helping to prune 

We do not treat extra position, although some common cases of left 
extraposition can be handled by an easy extension of the present system. 

We also do not make a syntactic check of gender and number agreement, 
since we have found that it can only be used constructively in some rare 
cases in which it may disambiguate an attachment problem. (Even then, 
semantic checks may be enough.) In the same vein, no analysis is made of 
verb tense. 

We made the English interface modular by clearly separating a number of 
functional components, and by classifying each component as either 
specific to our present application, or general. The main components are: 
a lexical analyser, a dictionary, a syntactic parser, semantic rules, and 
an output package. The lexical analyser and the syntactic parser are 
general purpose. The dictionary and the semantic rules each have a 
general subcomponent and an application-specific subcomponent, while the 
output package is application specific. 

The lexical analyzer reads a question from the terminal, groups the 
characters into words, and looks up the words in the dictionary to find 
the corresponding morphological tokens (e.g. noun, verb, preposition). 
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As mentioned above, the dictionary consists of a general and a specific 
part. The general part contains entries that are likely to be needed in 
any application in English, such as articles and the forms of the verb 'to 
be'. The specific part contains entries for items such as product names 
for the KBOl application. 

The syntactic analyzer consists of a set of rules, written in the manner of 
a definite clause grammar (4). The rules are executed top-down by 
Prolog's built-in inference mechanism, hence there is no distinct syntactic 
parser component in KBOl. The bodies of the grammar rules contain the 
usual calls to nonterminal symbols, and also contain calls to the semantic 
rules that construct a representation of the meaning of the sentence which 
is being parsed. If a fruitless parse is being attempted, the calls to the 
semantic rules will fail, causing a new parse to be sought before too much 
effort has been wasted. 

The function of the semantic rules is to translate groups of syntactic 
items into a semantic representation of a question. The semantic 
representation, which we describe in detail below,. is a Prolog statement 
roughly equivalent to 'the set of all X such that p(X) is true in the 
knowledge base', where X and p may be structured terms. In particular, 
p may contain further set-formation terms. The general part of the 
semantic rules component treats items such as quantification and the verb 
'to be' which would be needed in most applications, while the specific part 
deals with items such as the kinds of objects to which it is reasonable to 
apply domestic chemical products. 

The output component uses the information which is retrieved from the 
knowledge base, together with syntactic information about the question 
which caused the retrieval, to generate the answer that is diblayed on the / /""> 
screen. r 
Since KBO1 is designed to answer questions, the syntactic component of 
the English interface only accepts questions. These may be wh-questions, 
(such as 'what ... ', 'when ... ', 'how ... ' etc.) or nexus questions 
('does ... ', 'is there ... ', etc). Verbs are accepted both in the active and 
the passive forms, and they can be followed by any number of 
complements. Nouns can be preceded by any number of adjectives, and 
double nouns are accepted (e.g. 'poison ivy'). Nouns can have simple 
complements ('persistence of product A') or double complements 
('response of bluegrass to product A'). The syntax covers the usual 
articles and prepositions, a few pronouns ('you', 'them', 'anything', ... ) 
and some auxiliary verb forms ('can', 'should', ... ) . Relative clauses are 
accepted, and there can be conjunctions of relative clauses, verb 
phrases, or verb complements. 

The concepts represented inside the parser are of two types, which we 
call Entities and Properties. A complete meaning representation, in terms 
of Entities and Properties, is constructed from the morphological token 
stream by the syntactic and semantic rules. Entities are either Objects, or 
sets of Objects, the latter being represented by 'set(Q, O)', where Q is a 
quantifier ('each', or 'all') and O is an Object. 

lG2 
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Objects can be named, or can be defined. A named Object is represented 
as 'T:X', where T is the name of the type of the Object. If X is a free 
variable, then we say that the Object is abstract, that is, it is an 
unspecified Object of type T. If X has a value, then we say that the 
Object is concrete, and that X is its name. Thus 'perennialweed:X' is an 
abstract Object, while 'perennialweed:clover' is a concrete Object. 

Defined Objects have the form 

Abstract_ Object ! Property 

(read 'Abstract Object such that Property') where the Abstract Object is 
T:X and X appears,in the Property. -

A simple Property is just a Prolog predicate. Properties may also be 
quantified, in the form 

for(Qantifier, Object, Property) 

Conjunctions of Properties are also Properties. 

Here are some concepts and their internal representations: 

product_A 

a weed 

the weeds 

all weed kilf ers 

item: product_A 

weed:X 

set(each, weed:X) 

set(all, item:I ! use(I, kill-weed:W, S)) 

persistence of each product 
time:T ! for(each, 'item: I, use(I, *, persistence(T))) 

There are semantic predicates that link concepts to form new concepts. 
They link subject and verb, verb and object, verb and complement, and 
adjective and noun. The domain-independent part of the definition of 
these predicates deals with the handling of quantification and the verb 'to 
be', while the domain-dependent part contains only quantifier-free 
definitions . 

. After a syntactic and semantic parse succeeds in producing a data 
strucure corresponding to an input question, the data structure is 
transformed into a Prolog query which can be applied to the knowledge 
base. The essence of the transformation is to insert a call to the Prolog 
meta-predicate 'all', which computes the set of all items which satisfy a 
given property. 

For example, for the question 

'what is the response time of weeds to product A ?' 

the query 
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set(response):R ! 

all (T, use(product A, kill-weed: any, response(T)), R) 

is generated. This query, when executed against the knowledge base, 
retrieves the answer to the original question and binds the answer to the 
variable R. 

Special care was taken to give informative, rather than yes-no, answers 
to nexus questions. To see that this is essential, rather than simply 
desirable, consider the question 

'do you sell anything that kills bluegrass ?' 

Very few people would be satisfied with only the answer 'yes', so the 
system generates the query 

set(item):1 ! all(P, use(P, kill-weed:bluegrass, M), 1). 

which retrieves a list of suitable products. 

On the other hand, a yes-no question such as 

'does product A kill dandelions in less than 20 days ?' 

is translated into the query . 

yesno ! use(product_A, kill-weed:dandelion, response(T)) & 

typedlt(T ,20.days) 

This section has described the design' of the parts of the KB01 system 
that translate a question in English into a query for the knowledge base. 
The next section describes the knowledge base. 
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4. THE KNOWLEDGE BASE 

The last section described the mapping of an English question into either 
a form 

yesno ! p(X) 

or a form 
set(items): X ! p(X) 

where p(X) is, in general, an abitrary Prolog goal expression. This 
section describes the underlying knowledge base which provides answers 
to the mapped queries. 

The knowledge base consists of two components, both of which are 
domain-specific. The first component contains an is-a hierarchy, while 
the second contains knowledge about the products and how they may be 
used. 

The hierarchy contains assertions such as 

setname(weed) 
setname(annualweed) 
weed(annualweed) 
an n ualweed (bluegrass) 

together with an immediate membership predicate 'mem', a transitive 
membership predicate 'member', and an 'isa' predicate. Thus 
mem(bluegrass, annualweed) holds, while mem(bluegrass, weed) fails, but 
member(bluegrass, weed) holds. Similarly isa(bluegrass, bluegrass), 
isa(bluegrass, annualweed), and isa(bluegrass, weed) all hold. The 
'mem' predicate is also written in infix form as':', e.g. 

mem(bluegrass, annualweed) ' 

is written annualweed: bluegrass. 

The type-hierarchy is actually a directed acyclic graph rather than a 
tree, as there are statements such as 

homepest (fly) 
flyinginsect(fly) 

The hierarchy allows questions to be answered at an appropriate level of 
detail. For example 

'what can I kill with product A ?' 

yields the answer 'weeds', while 

'what weeds can I kill with product A ?' 

yields 



annual weeds 
perennial weeds 
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The main body of knowledge about the products is stored in the second 
component of the knowledge base. It consists of 

(i) an input component, which maps sub-queries of the form 

use(Subject, Verb-Object, Modifiers) 

into calls to some basic clauses about the products, 

(ii) the basic clauses themselves, e.g. 

can_use(product_A, kill, weed:Y:Z) <- weed:Y:Z 

and, 

(iii) an output component which contains information about which kinds of 
questions (yesno, set) require which kinds of answer format. 

The knowledge base is used as follows. A query such as 

'what should I use in spring to kill weeds in my lawn ?' 

is presented to the knowledge base as 

set(item) :X ! 
all(S, use(S, kill-weed:any, 

environment(plant: lawn). season (spring)), X). 

Here all (S, use(S, .... ), X) returns in X the set of all subjects S such 
that one can use S for the indicated purpose. The call 

use(S, kill-weed: any, environment(plant: lawn). season(spring)) 

is mapped by the knowledge base into 

can use(S, kill, weed:any) & 
envTronment(S, kill, weed:any, plant:lawn) & 
season(S, kill, weed:any, spring) 

Thus a subject S is retrieved if it can be used to kill some Object 0, the 
Object O matches weed: any in the type hierarchy, and the modifiers 
environment and season are satisfied. 

The knowledge base contains basic clauses such as 

can use(product F, kill, weed:Y:Z) <- weed:Y:Z 
envTronment(product F, kill, weed:*, plant: lawn). 
season(product_F, *-;*, spring). 
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which cause the original call to use(S, ... ) to succeed with S = 
product_F. 

As mentioned above, the general form of an internal query to the 
knowledge base is 

use(Subject, Verb-Object, Modifiers) 

where Modifiers is a list made up from some of the predicates: 
environment, season, persistence, response (e.g. response time of a weed 
to a weed-killer), ingredient, assume, precaution, directions (i.e. 
directions for use, and how (precautions and directions). The modifiers 
in the list may be negated, and the list denotes a,conjunct. 

The predicates for how, precaution and direction are special in that they 
store English text which can be retrieved, but which cannot be checked 
in detail. Thus one can ask 'what are the directions for· using product A 
?' which yields the query 

set(direction): S ! 
all(D, use(product_A, V-O, direction(D), S) 

and the answer 

apply with hand trigger sprayer 
one application kills most weeds 
less effective if rain within 24 hours 

However the question 'does product A kill most weeds in one application ?' 
yields 'Sorry, I don't understand'. 

The remaining predicates can be used e'ither for retrieval or for checking, 
and there is some overlap between these and the retrieval-only 
predicates. Thus the question 'what vegetables can I spray with product 
D ?' yields the query 

set(vegetable) :S ! 
all(V, use(product D, V-O, 

environment(vegetable:V). 
assume(equipment(sprayer))), S) 

which retrieves into S the answer 'any'. 

One can also ask the checking question 'can tomatoes be sprayed with 
product D ?' which yields a yesno query similar to the one above, but for 

environment( vegetable: tomato) 

and leads to the answer 'yes'. 

The use of retrieval-only predicates to store English sentences is mainly a 
matter of convenience. If detailed questions about, e.g., directions for 
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the use of a product, were expected, then the knowledge could be moved 
to predicates which could be used both for retrieval and checking. 

To summarize, the knowledge base consists of a hierarchy together with 
specific knowledge about products and their uses. An incoming internal 
query from the English interface is transformed into a Prolog goal, the 
goal is executed against the knowledge, and the result is sent to the 
output component of the system. 
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5. CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK 

The KBOl system is at present a prototype. Our experience in bringing 
it to its present level of behavior indicates that Prolog is well-matched to 
the task of building a knowledge based natural language system. The 
system answers non-trivial questions in under one second of real time on 
an I BM mainframe computer. 

While certain simplifications were made in order to build a demonstrateable 
system in a short time, the English language interface performs full 
dictionary lookup and parsing. The system was built in a modular manner, 
and we have separated the reusable parts from the domain dependent 
parts. 

Adding new words and their meanings the system is rather 
straightforward. Many extensions to the syntactic parser could be made 
without having to change other parts of the system. For example. we 
could improve the present treatment of left extraposition just by 
modifying the parser. In fact, 'what' is already treated like an extraposed 
noun, and 'when' like an extraposed complement. 

A major improvement would be to handle anaphora, mainly ellipsis and 
pronoun reference beyond the scope of one sentence. However, this is 
still a research area needing much work. An interesting point is that , 
people sometimes make outside references not only to a previous question, 
but also to previous answers. To resolve such references, we must have 
access to a representation of the previous answers. 

Another interesting enhancement would be the treatment of cardinal and 
fuzzy quantifiers. This would require that we modify the semantic rules 
that handle quantification, and that we define the equivalent of the 'all' 
meta-predicate for the new quantifiers. A nice possibility is a generalized 
'all' meta-predicate with an extra argument which would impose conditins 
on the number of solutions. · 

In summary, the direct representation of syntax, semantics and 
knowledge in the language Prolog appears to be a good approach to the 
construction of useful knowledge based systems which can answer 
questions in ordinary English. 
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ABSTRACT: The programming language PR0L0G suggests a natural way of com
bining programming and deductive database queries by treating both programs 
and data as assertions in a database. We explore some issues in the implementa
tion of databases and expert systems in PR0L0G. We show that some simple 

• extensions to PR0L0G will allow for the convergence of many concepts from rela
tional databases and expert systems into a uniform formalism for the manage
ment of both data and knowledge. 

1. Introduction 
The programming language PR0L0G .. , has been an interesting step in 

modem language design. By its nature of design, PR0L0G includes a database 
and is hence a suitable language for database applications, particularly rela
tional databases. Due to its symbolic nature and deductive capabilities, PR0L0G 
is also a suitable language for expert systems implementations. Thus PR0L0G 
seems a good candidate language for implementing both databases and expert 
systems. 

· In this paper we explore some issues which arise in the implementation of 
databases and expert systems in PR0L0G. We show that some simple extensions 
to PR0L0G will allow for the convergence of many concepts from relational data
bases and expert systems into a single formalism. This formalism can be used to 
approach both database management and knowledge-base management in a uni
form manner. 

Our extensions to PR0L0G are, however, intended to preserve the flavor of 
PR0LOG as a language. For instance, we show that the concept of functional 
dependency in relational databases is essentially equivalent to some PR0LOG 

:.:: 1 >.· ''.ouis'1,. that-integrity-constraints may simply be treated as PR0L0G assertions.
and that explanations and transparent reasoning in expert systems can be 
viewed as PR0L0G execution traces. Many of the issues presented here grew out 
of the work on EDD (Expert Database Designer), a PR0LOG based expert system 
for database design [Parsaye 82]. . 

This paper is organized as follows: In section 1.1 we give a brief description 
of the language PR0L0G. In section 2 we relate · standard relational database 

- concepts and terminology with PR0LOG. We suggest an extension to PR0LOG 
mode declarations, show the relationship between cuts and functional dependen
cies, and show how integrity constraints can be treated. Section 3 is devoted to 
PR0L0G optimization issues for large database applications. We present a 
classification scheme for PR0L0G clauses and propose the "independence 
assumption" for optimization. We also suggest how the notions of transactions 

•) Authar's Address: Computer Science Research International, 6420 W"tls..liire Blvd., Suite 
2000, Los .Angeles, CA 90048 . 
.. ) fn this paper PR0L0G essentially refers to the language originally defined by (Co1meraue:r 
75) and implemented by (Warren 77]. 
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and serializability can be easily introduced into PROLOG. In section 4 we focus 
on expert system applications. We propose a uniform view of database and 
knowledge-base management and illustrate two closely related approaches to 
knowledge representation in PROLOG. We also show how features such as expla
nations and transparent reasoning can be naturally programmed in PROLOG. 

1.1 'lb.e Language PROLOG 

In the context of this paper, it is particularly interesting to compare the 
development of PROLOG as a language to similar developments in data models 
and database languages. 

Early database systems, e.g. IMS or CODASYL, use data structures such as 
trees or networks to store data Users of IMS store and retrieve data by explicit 
insertion and retrieval operations which act upon tree structures, and in this 
sense deal with a structure oriented language. On the other hand more recent 
database systems, e.g. relational databases, hide the underlying data structures 
and implementation details from the user, and present associations and rela
tionships in a non-navigational form. . 

Similarly, in programming languages such as FORTRA..1'\J", LISP or ADA one has 
to create data structures such as arrays, lists or stacks, store bis data within 
these structures and later retrieve the data by navigational searches. On the 
other hand, in a database oriented language, such as PROLOG, the user can be 
unaware of the underlying implementation methods used for storing much of his 
data, and simply ask for data items to be stored and retrieved, just as he would 
ask a relational database system for storage and retrieval of data. 

Software development in PROLOG can thus be mostly based on "progra:rn
ming by assertion and query" [Robinson 80], rather than by insertion and 
searohs of data structures. Moreover, the style of PROLOG programming is 
decla:rati.ve, in· the sense that a predicate (procedure) definition explicitly 
includes both the input and output parameters. Thus in PROLOG the distinction 
between°input parameters and output parameters is much less prominent than 
in other languages, as seen by the examples below. 

We now present a very brief and informal description of PROLOG, proceed
ing mostly by example. A detailed and comprehensive description of the 

· lru;iguage. can be found in [Clocksin & Mellish 81], or (Pereira, Pereira & Warren 
71). . ' 

The basic building blocks of PROLOG programs are clauses. A clause in 
PROLOG is a predicate name, called a functor, with some arguments. For 
instance 

father(john. mary). 
square(3, 9). 

are clauses, where 'father' and 'square' are functors and 'john', 'mary', 3 and 9 
are arguments. 

Arguments may be constants or variables, and conventionally, non-numeric 
constants are denoted by lower case letters, while variables must start with 
uppercase letters, e.g. as in father(X, mary). 

In PROLOG clauses can be assarted. to be true, in which case they are 
included in the PROLOG "database". The PROLOG database contains all facts 
which are asserted to be true. For instance, 
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assert(father(john. mary)). 
will include father(john, mary) in the database and 

retract(father(jobn, mary)). 
will remove it. 

I · In PROLOG, clauses are used to make sentences. A sentence in PROLOG 
may be a simple unit clause, such as father(john, mary). or it may involve the 
conctii:icmal construct denoted by" :- ", and better understood as "if". 

For example, the conditional sentence 
parent(X, Y) :- mother(X,Y) . . . 

means that "for all X and Y", parent(X, Y) is true if mother(X, Y) is true. Thus 
essentially " A :- B " means that A is logically implied by B. • 

Clauses on the right hand side of a " :- " can be joined together by "and" and 
"or" constructs denoted by"," and";" respectively, as in 

parent(X. Y) :- mother(X,Y) ; father(X. Y) . 
which means that "for all X and Y", parent(X, Y) is true if either mother(X, Y) is 
true "or" father(X, Y) is true. 

Let us make two simple technical notes here. First that sentences in PRO
LOG must end with a period. Second that due to the universal quantification 

· above, the range of each variable in PROLOG is essentially a sentence, i.e. two 
occurances of the same variable name within two sentences are totally unre
lated. The PROLOG compiler will internally rename variables to avoid conflicts. 

Unlike equational programming languages, such as OBJ [Goguen & Tardo 79] 
or HOPE [Burstall et al. 80], PROLOG allows variables on the right hand side of a 
conditional which do not appear on the left hand side. Such variables are 
~tended to be e:z:istentially <p.t.a:ntified. For instance the sentence 

grandfather(X, Y) :- father(X, Z), parent(Z, Y). 
:,means that"for all X and Y''r Xis the grandfather of Y if "there exists., some Zin :.;••c>··'.'.'·''r:··· 

the database, such that Xis the father of Z and Z is a parent of Y. 
In PROLOG, conditional clauses may be stored in the database just as data 

are, i.e. programs are really treated as data in a database. This uniform view of 
: .::::7"7:-:both. programs~-and .data· as items--in~a high level . database -ts· p-erhaps the major · . · · t1 :·;; t.::Lz'.1 .. ·(:Ei 

· reason for the elegance of the PROLOG programming style. 
Once one has adapted this database view of programming, one may natur

ally wonder about queries to the database; Simple queries may relate to simple 
facts such as: "Is father(john, mary) true in the database?", which may simply 
require a look up in the database, However, one may also ask more complex 
queries. 

We generally refer to an attempt to answer a query in the PROLOG database 
as an attempt to satisfy a. goal (or to prove a goaJ.}. For instance, in the exam
ple above "father(jobn, mary)" is the goal, and it can be satisfactorily proved if 
father(john, mary) has been asserted in the database. 

One may also try to prove goals with variables, in which case PROLOG will 
try its best to find a match for the variables to satisfy the goal. For instance, an 
attempt to prove "father(X, mary)" will succeed provided that the condition (X = 
john) is .. true. Note that this is not an assignment (PROLOG is assignment free), 

•) Logically speakmg, PR0L0G sentences are Horn Clauses [Horn 51]. 
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but a binding of a variable to a value as in pure lJSP. Such bindings are dis
carded upon the completion of the query. 

Now, how about conditional clauses? Since the interpretation of the condi
tional construct " :- " is that the right hand side logically implies the left hand 
side, the validity of the left hand side can be established by proving the right 
hand side. This new goal may itself in turn be part of a conditional clause, ... , and 
so on. Thus execution of programs in PR0L0G essentially consists of attempts to 
establish the validity of goals, by chains of pattern matching on asserted 
clauses. 

To prove a goal PR0L0G searches its database for a clause that would match 
the goal, by using the process of unification (Robinson 65]. If a conditional 
clause whose left hand side matches the goal is found, PR0L0G tries to satisfy 
the set of goals on the right hand side of ":-" in a left to right order. If no match
ing clause can be found, fauure will be reported. 

It must be noted that PR0L0G includes no explicit negation symbol, and 
negation is essentially treated as unprovability, i.e. the failure to establish a 
goal from a set of axioms [Clark 79]. This closely resembles the closed world 
assumption [Reiter 78]. 

If PR0L0G does not succeed in establishing a g.oal in a chain of deductive 
goals at a :first try, it will backtrack, i.e. go to the last goal it had proved and try 
to satisfy it in a different way. For instance, suppose that we have the sentences 
( or program) 

parent(X, Y) :- mother(X,Y); father(X.Y). (•) 
grandfather(X, Y) :- parent(Z, Y), father(X, Z). (••) 

and that the following facts have also been asserted: 
father(john, mary) .. 
father(paul,jobn). 
mother(jennifer, mary). 
Then to prove "grandfather(X, mary)", by using (•) and( .. ) above, first the 

goal "parent(Z, mary)" will be tried. This in turn will result in an attempt to 
prove "mother(Z, mary)" and will succeed with (Z: jennifer). Tb.en, going back 
to the ti grandfather" clause again, the next goal in- the conjunction should be 
proved. So "father(jennifer, Y}" will be tried and will fail. At this point PR0L0G 
will go back (i.e. backtra~k), discard the assumption (Z : jennifer) and try to 
prove "parent(Z, Y)" again. This time (Z :::: john) will result, after trying 
"father(Z, mary)". Then the eventual binding (Y :::: paul) will be returned, after 
trying "father(X, john)". 

Let us note that in the grandfather "program" here there are nn explicit 
input or output parameters, i.e. one may either invoke grandfather(X, mary}, or 
grandfather{paul, Y). This style of declarative programming in PR0L0G can 
often be used to great advantage to develop software very rapidly. However, if a 
parameter in a program is always intended to be an input or output, the com
piler can be signaled to generate optimized code by including mode declarations 
of the form 

:-mode square-root(+, -). 
which means that the square root function is never intended to be used to multi
ply a number by itself. Thus the user has the choice of running a program in 
both directions or not, as he sees flt. 
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On one hand, the series of steps taken by the PROLOG c·ompiler in proving a 
goal essentially amount to deduction. On the other hand an attempt to prove a 
goal "father(X, Y)" can also be looked at as a procedure call to the predicate 
father. Thus the use of the term "logic programming" is quite apt here. 

Calls in PROLOG can also be recursive, as in 
connected(X, Y) :- edge(X, Z), connected(Z, Y). 

which deals with connectivity in graphs described in terms of edges. The PRO
LOG compiler [Warren 77] uses tail recursion optimization to great advantage in 
such cases. 

Now, for expression evaluation. In the author's opinion, one of the most 
inconvenient features of symbolic languages such as LISP has been the relation 
between quotation and evaluation. The PROLOG approach to evaluation is 
exactly the opposite of LISP, i.e. evaluation does not take place until it is forced 
to. This is specially relevant to arithmetic expressions and removes the need for 
quotes. Thus (2 + 3) can be evaluated to 5 when the need arises, by using the 
PROLOG infix operator "is", i.e. ''Xis (2 + 3)" binds X to 5. However, again note 
that this is not assignment. 

Finally, one other feature of PROLOG which we need to mention is the "cut", 
denoted by .. , ... The cut is used to control backtracking in PROLOG. It is just 
treated as a goal itself, and can be used in any conjunction or disjunction of 

· goals. Any attempt to satisfy "!" will succeed immediately fo~ the first time, hut 
will signal the compiler never to try it again. In fact an attempt to "retry'' a cut 
will fail the parent goal invoking it, e.g. in 

a(X) :- b(X,Y), !, c{Y,Z), d(Z} .. 
backtracking can take place between c and d, but PROLOG will never backtr~ck 
to b. The cut can thus be used to gain efficiency and control in programs. 

· · · Many more examples of PROLOG programs, and a more detailed description 
of the language and its use may be found in in (Clocksin & Mellish 81], or / 
[Pereira, Pereira & Warren 7/J. _ i-· 

2. PROLOG and Relational Databases 
,·'··" · It . ts: well known that relational data oases can be viewed as ·logical· predi-

cates [Nicolas 77J Essentially, each table in a relational database can be con
sidered as the 'extensional' specification of a predicate. Each PROLOG predicate 
on the other hand, can be viewed as the 'intensional' specification of a relation 
or table. Moreover, it is also well known that most 'assertions', dependencies 
and integrity constraints in relational databases can be expressed as Horn 
Clauses [Fagin 80], which are essentially PROLOG sentences. Thus there is a 
natural correspondence between PROLOG and :relational databases. 

However, there are differences between existing relational concepts and 
PROLOG. In the next 3 sections we outline some of these dit!erences and show, 
how with some simple extensions, they can be reconciled. 

2.1 Schemas and Types 
Relational databases usually rely on a typed system of logic and include 

schema information which determines the type and domain of attributes. PRO
LOG currently lacks these notions and relies on an untyped system of logic. 

However, as [Nicolas 78] shows, an untyped system of logic can be easily 
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used to represent typed logic. For instance, the typed assertion 
V XdNT p(X) 

can be represented as the untyped sentence 
VX (integer(X) & p(X)), 

where & denotes conjunction. 
The addition of schema and type information to PROLOG without affecting 

the flavor of the language is quite easy. PROLOG already includes mode declara
tions of the form: 

:-mode employee(+,+,-). 
which, for selected predicates, can be used to signal the compiler as to which 
parameters are intended as input and output. 

To declare schemas, we suggest adding schema declarations of the form 
:-schema employee(name, age, salary). 

Similarly, we can add type information of the form 
:-type employee(string[12], integer[3], integer[?]). 

However, we believe that the inclusion of type information need nai be man
datory and the user should be allowed to exclude type declarations for small 
relations, or when he sees fit . 

. The gain from havim:g the declarations is two fold: on one hand they can be 
used for type checking and error detection, on the other they can be used by 
the compiler to achieve considerable enhancement in performance. 

We feel that a major shortcoming of most current PROLOG implementations 
is that the compiler can not be informed that the argument to· a square root 
function is intended to be an integer (rather than an arbitrary list). or that a 
social security number is a string of 9 digits. In most large database applica
tions one needs to specify some type information and fixed length record sizes. 
We believe that before PROLOG can be used in a "real" large database application 
it should be extended to allow for the inclusion of type information within pro
grams. 

2.2 Functional Dependencies J 

PROLOG currently inc!udes no notions of dependencies and normalization so 
far. These concepts were introduced into relational database theory since they 
are needed for design and for the avoidance of update anomalies. We believe 
that these concepts should be introduced into PROLOG in order to make it suit
able for database applications. Moreover, in section 3.3 we show how functional 
dependencies can sometimes be used for optimization purposes. 

Functional dependencies are simple enough to preserve the elegance of the 
PROLOG programming style. However. we feel that the addition of more complex 
dependencies, such as MVD's (Zaniolo 78] [Fagin 78] or E1IVD's [Parker & Par
saye 80], may add an unnecessary amount of complexity to PROLOG programs. 

Functional dependency information can be added to PROLOG in a manner 
similar to the type and sche_ma information. However, interestingly enough, not 
only can this concept be incorporated into PROLOG quite naturally, but it gives 
rise to a different style of PROLOG programming. 

In relational database terminology [Armstrong 77], the existence of a func
tional dependency A->B in a schema p(A,B) means that for each A there is only 
one B such that p(A,B) is true, e.g. X->Y in father(X, Y) means that each child 
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has at most one father. 
We suggest the introduction of functional dependencies into PR0L0G pro

grams by declarations of the form 
:- dependency(A->B) in p(A, B). 
:- dependency(AB->C) in q(A,B,C). 

At first a functional dependency may seem similar to a PR0L0G construct of 
the form . 

... , p(A.B), !, ... 

which fails the parent goal invoking p(A,B) if any goal following the cut fails. If a 
binding for A is supplied by the parent goal the cut is essentially equivalent to 
having the dependency (A->B) in p(A,B). In this case after fai.µng p(A. B) once, 
one could not hope to .find a new value for B by retrying p(A,B). • 

However, if B is supplied by the parent goal and A is to be found by invoking 
p(A, B) then the the cut and the dependency are not equivalent, since the cut 
still forces the search to end. We feel that sometimes this use of cuts is against· 
the general PR0L0G philosophy that programs can be run in both directions 
when desired. 

In general there has been a good deal of dissatisfaction with cuts in PR0LOG 
anyway. We suggest that in many cases functional dependencies would be a 
much better alternative to cuts. Functional dependencies can often be used to 
write "cut-free", but efficient PR0L0G programs, by directing the execution of 
programs in a manner which is dependent on the mode of procedure calls. Thus 
witJ:?. the above functional dependency, in evaluating /} 

q(A,B) :- ... , p(A, B), ... r::>~ 

there is an implicit cut after p(A, B} in the evaluation of q(a,B}, but not in the 
evaluation of q(A,b). Moreover, note that the two sided declaration 

:- dependency(A<->B) in p(A,B). 
can be used to achieve a symmetric effect. 

Of course, there are cases where one wishes to terminate the search after 
one unsuccessful attempt even though there is no dependency, in which case a 
cut will have to be used. However, this ge,nerally reduces the elegance and tran-

·.sparency:otthe "cut~free_" PR0L0G programming style"'··•:·'..: · ·.,·- · 

2.3 Integrity Constraints · 
Enforcing database style integrity constraints expressed by Horn Clauses is 

very· natural in PR0L0G and is essentially a form of integrity enforcement by 
query modification [Stonebraker 75]. 

Clauses are usually added to the PR0L0G database by the predicate 
'assert', which adds almost anything to the database, without any integrity 
checks. To enforce integrity, we suggest the use of a predicate 'add' to assert 
facts which are subject to an integrity check. 'Add' is itself defined in PR0L0G by 

add(C) :- not(invalid(C)), assert(C). •• 
Conditions which should not be allowed in the database are indicated by the 

predicate 'invalid'. Thus, to enforce an integrity constraint on a predicate we 
add an assertion about invalidity. For instance, assume that we wish to enforce 

•) Provided the integrity of the database has been preserved, as discussed in section 2.3 . 
.. ) Where 'not' denotes negation as unprovability. 
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the fact that an employee whose age is less than 19 can not earn over 100,000, 
i.e. that in 

employee(Name, Age, Salary) 
Salary should be less than 100,000 if Age is less than 19. We can simply add the 
assertion 

invalid(employee(Name, Age, Salary}) ·- (Age < 19) , (Salary> 100,000). 
Thus the assertion 

add(employee(johnson, 18, 120,000)) 
will fail, since 

invalid(employee(johnson, 18, 120,000)) 
will succeed. 

Functional dependencies are a special form of integrity constraint and will 
hence have to be enforced during addition of new data. A functional dependency 
(A->B) in p(A,B) can be enforced by simply adding the constraint 

invalid(p(A, B)) :- p(X,B), not(eq(X,A)), 
where 'eq' is defined by eq(X.X). 

One may also wish to deal with the validity of responses, i.e. to ensure that 
returned values are consistent. Then one can define 

return(A) :- A, not(invalid(A)). 
to return results. Updates to the database can then be treated by combining 
additions and deletions. 

The discussion above is aimed at integrity constraints that are usually 
placed on relational databases, i.e. constraints which essentially deal with unit 
clauses. We feel that enforcing constraints on non-unit clauses will often involve 
such a great deal of computation as to make it practically non-feasible. 

3. Large PROLOG Databases 
Having considered some high level database and language issues, we now 

focus on large database implementation and optimization issues relating to PRO
LOG. 

Currently, all implementations of PROLOG either reside totally in core or 
rely on virtual memory. This proves to be sufficient for general programming 
and very small databases, but is certainly inadequate for serious database appli
cations. However, we believe that with a suitable implementation strategy PRO
LOG can also be successfully used in conjunction with very large databases. 

Moreover, since large databases are almost always shared by many users, 
we also need to consider PROLOG in a multiuser database context. We shall deal 

· with these issues in the next three sections. 

3.1 'lb.e Independence Assumption. 
Much of the appeal of PROLOG has been the unification of the concepts of 

programming and querying into a single discipline by treating programs and 
data in a unified manner at the user level. However, while the user may be 
unaware of this distinction. we feel that for optimization purposes, a PROLOG 
implementor should separate these facts and deal with them accordingly. 

Clauses in PROLOG can be classified into three categories: 
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a) Non-'Ll:nit Qauses, i.e. clauses with both a left and a right hand side, e.g. 
clauses of the form p(A,B) :- q(A, C), r(C, B, X). 

b) Unit-Clauses with variables, i.e. clauses with no right hand side, but with 
a variable argument, e.g. clauses of the form p(a,X). 

c) Ground-Unit Cla:uses, i.e. clauses with no right hand side, and with no 
variable arguments, e.g. clauses of the form p(a, b, c). 

Almost all of the information stored in current relational databases is of 
type c), while PR0L0G 'programs' mostly contain clauses of types a) and b). 

Currently most PR0L0G implementations store and retrieve data by 
directly accessing a predicate's clause and (sometimes) bashing on one or more 
of the arguments. Moreover, almost all implementations use the same hashing 
method for clauses of class a), b) and.c). In most large database applications 
this is simply an unacceptable implementation strategy since the size of and fre
quency of access and updates to data can be very different from the correspond
ing size and frequency for programs. Hence different hashing and indexing 
methods for these different categories of clauses are called for. 

At first it may seem that the presence of a large number of 'database facts' · 
of type c} and 'programs' of type a) for a given functor name can cause a prob
lem since it may not be clear what form of hashing or indexing should be used 

. for that functor name. However, we suggest that ~his need not be the case, and 
that the above classification can be used to implement large deductive data
bases more efficiently by making the following independence assurnptico· 

For ea.ch given functor name, it is unlikely thaJ: there a.re a large number 
of Non-'Ll:nit clauses· and a. large number of Ground~nit clauses al: tha same 
time. It is also unl:ilcely that there are a. large number of Unit-clauses with vari
ables for any given functor name. 

Assuming that Non-unit clauses are essentially 'programs' and Ground-Unit 
clauses are mostly 'data·. the independence assumption means that programs 
and data are usually referred to with different functor names.·· The user may, if 
he wishes, indicate whether a functor name will be used for large database appli
cations by a declaration of the form 

:- largedata(employee(name, social-security-no, salary)). 
;;_;~~•···, ... , Diffe.ren.t hashing = .. and. indexing sch~mes may thus. be. ,.used for- these 

different classes. It would also be desirable to provide indices not only on the 
first argument but on other arguments of a predicate as specified by the user 
with a declaration of the form , 

:-index(B), index(C} in p(A, B, C). 
which provide extra indices for B and C. 

In this context, an interesting form of indexing for use in conjunction with 
deductive database systems has recently been proposed by [Lloyd 82]. 

3.2 Transactions, Concurrency. 
Currently PR0L0G is really only for single user personal databases, and 

includes no notions of transactions and concurrency control. Large databases 
are almost always accessed by more than one user, and there is a need for con
trolling the interleaving of the different user's programs in order to preserve the 
consistency of the database. 

If PR0L0G is to be used in large database applications, there will be need 
for sharing parts of databases between different PR0L0G programs. This is not 
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directly related to expert system issues, but a PROLOG based expert system 
may need to access a shared database, say of patient medical records. 

There will also be a need for including some form of transaction 
specification facility in PROLOG. There is also a need for the modification of 
most PROLOG implementations so that they would provide better interaction 
facilities with operating systems. 

The introduction of transactions and concurrency control would require 
that some specified parts of a program be indicated as "atomic" actions, which 
are not interleaved with other programs. This is really a very simple point, and 
we are including it mostly for the sake of completeness. 

To illustrate the concept of atomicity, consider a PROLOG transaction which 
performs transfers between accounts, i.e. the predicate 

transfer(Accountl, Account2, Amount) :-
balance(Accountl, X), balance(Account2, Y), 
Z is (X + Amount), Wis (Y -Amount), 
retract(balance(Accountl, X)), retract(balance(Account2, Y)). 
add(balance(Accountl, Z)), add(balance(account2, W)). 

The interleaving of the execution of this predicate with another user pro
gram such as 

printsum(Accountl, Account2) :
balance(Accountl, X), balance(Account2, Y), 
Wis (X + Y), print(W). 

may result in inconsistent results. Thus the user needs to specify that he wishes 
'transfer' to be an atomic action on the shared database. 

We suggest adding simple declarations of the form 
:- atom.ic(transfer(account, account, amount)). 

to specify that a predicate should be implemented as an atomic transaction. 
The method of concurrency control can of course be left to the database operat
ing system. 

3.3 Implementing the •Setof' Predicate 
Some PRO LOG implementations provide a predicate 'set of' which retrieves 

· all instances of variables satisfying a predicate (or conjunction of predicates),· ,,:c 
e.g. 

setof(X, (p(X, a, Y), q(Y,b), r(Y,c)), L) 
retrieves into L all X for which p, q and r are true. Of course in many situations 
the order in which the predicates are evaluated can make a big difference. This 
form of conjunctive query optimization occurs quite frequently in database 
applications. Both System R [Astrahan et al. 76] and CHAT-BO [Warren & Pereira 
61] deal with this issue by looking up relation sizes and reordering conjunctions. 

We feel that the need for introducing this optimization into CHAT-BO is sim
ply an indication of the fact that such a feature is missing from the basic PRO
LOG implementations. If PROLOG is to be used as a 'database' language, such 
feature would be necessary. It would not be bard to add such a feature essen
tially as CHAT-BO has implemented it. 

Moreover, sometimes it might be possible to do even more optimization by 
using functional dependencies. A user can specify the order of the evaluation of 
conjuncts in his programs if he wishes, but any given order is not optimized for 
different modes of procedure calls. Again due to the PROLOG philosophy that 
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programs should be runnable in both directions it would be a good idea to allow 
the optimization to vary with the mode of the procedure call. Often it is possible 
to optimize in these situations if a functional dependency is known, e.g. if we 
know that 

dependency(A->B) in q(A,B) 
then in the evaluation of 

setof(X, (p(X, Y), q(a, Y)), L) 
it would usually be advantageous to evaluate q before p. This is also helpful in 
CHAT-80 like applications. 

4. Some Expert System Issues 
So far, we have discussed the appeal of PROLOG in database applications. 

Due to its symbolic nature and deductive capabilities, PROLOG is also a suitable 
vehicle for implementing expert systems. In the past few years, PROLOG has 
been the major language for expert system i~plementations in Europe. Some 
such systems, e.g. [Pereira & Porto 82], [Pe1111"ra et al. 82], [Darvas et al. 79], i ~ 
[Markusz BO] among others, offer encouraging results. 

In the next sections we discuss the appeal of PROLOG's uniform approach to 
data and programs in expert system applications and and show how issues such 

.as knowledge representation, explanations, transparent reasoning and inheri
tance can be dealt with. 

4.1 Databases and Knowledge-bases . 
Currently, most expert systems dealing with databases have two distinct 

notions of data.base management and knowledge-base management [Davis & 
Lenat 8Z]. Often, the interaction between the knowledge-base and the database 
is not as smooth and well coordinated as one would Wish. 

As we have discussed before, PROLOG treats both programs and data in. a 
uniform way. In expert systems applications, this can be looked upon as a single 
view of both 'data' and 'knowledge'. We suggest that this single view of both data 
and knowledge can be . used to approach both database management and . 
knowledge-base management in a uniform and elegant manner . 

.. :; Looking back at the history of computing systems, one can view;tbis as part 
of a general trend towards the development of very high level interfaces for 
interactive systems. The user interfaces of the computing systems of the 1960's 
were essentially based on the notion of file management, while since the early 
1970's there has been a distinct trend towards high level database management. 
As (Ohsuga 82] points out, the user interfaces of the computing systems of the 
late 1980,.s and beyond are very likely to be mostly based on knowledge-bases. 
This signifies a general trend towards a uniform and high level style of interac
tive computing based on intelligent knowledge-based interfaces. We believe that 
PROLOG'S uniform view of data and knowledge is a good basis for this gradual 
movement towards this for'm of knowledge-based interactive computing. 

PROLOG is particularly useful in expert system applications which need to 
use large databases in one of the following ways: 

a) They need to interact with large amounts of 'data' stored in databases, 
e.g. as in the RX system [Blum 82] which bases its inferences on a large database 
of medical case histories. 

b) They need to use a database to store a large amount of 'knowledge' in 
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terms of a large number of rules which pertain to an area of expertise, e.g. 
expert systems which deal with a manufacturing environment [FGCS 81]. 

Of course, there are also many cases where both of the above conditions are 
~ satisfied. The advantage of using PROLOG in such applications is that the unified 

manner in which PROLOG approaches both data and programs (and in this case 
'knowledge') results in a uniformity of design which facilitates the interaction 
between the human expert, the knowledge engineer and the expert system. As 
[Buchanan 79] points out, uniformity in design and representation is of great 
value in the development of expert systems. 

We feel that in due course of time, most computing environments will be 
eventually liberated from the concept of a file system and will exclusively deal 
with unified databases and knowledge-bases. We also believe that due to its uni
formity of approach, PROLOG is an excellent vehicle for this transition. 

4-.2 Knowledge Representation 
Since PROLOG programs are essentially a subset of the sentences of first 

order logic, a natural knowledge representation method in PROLOG is a "logic 
flavored" knowledge representation method similar to MRS [Genesereth 81b]. 
Such representation has many advantages, but as we shall discuss later, it need 
not necessarily be the sole conceptual representation method for expert sys
tems developed in PROLOG. 

In the logical approach, the world is viewed in terms of 'predicates', and 
knowledge is essentially captured in terms of logical implications, i.e. produc
tion system like rules, or 'if then else' conditions. Such representation is in a 
way similar to the methods used by Rl [McDermott 80]. PROLOG sentences offer 
a convenient way of representing such rules, both in terms of 'deep' and 'sur
face' rules [Hart 82]. 

For instance, this form of representation is quite useful in the development 
of expert systems for diagnostic applications [King 82]. SUBTI..E [Genesereth et 
al. 81a] uses an essentially similar approach. For example, a basic and general 
rule about the malfunctioning of structured components, say in an instrument 
diagnosis expert system, would be 

malfunction(X) :- subcomponent(X, Y), malfunction{Y). 
where the subcomponent information can itself be included in the database, as 
shown for example by 

subcomponent(instrument, sensor). 
subcomponent(instrument, connector). 
subcomponent(instrument, display). 

Specific structure relating to connectivity can be represented by assertions of 
the form 

connector-input(X) :- sensor-output(X). 
display-input(X) :- connector-output(X). 

On the other hand, assertions of the form 
malfunction(connector) :-

CODJ?.ector-input(X), connector-output(Y), not( eq(X, Y)). 
can be used to reflect the input/output relationships for the components. 

In this example, note how easy it is to deal with the knowledge-base about 
the structure of the components just as one deals with a relational database 
containing parts and components information. Moreover, sometimes in the 
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course of diagnosis and repair of an instrument, the expert system may wish to 
gather information about the availability of "field replaceable units" from a com
mon shared database. This can again be handled quite naturally by using the 
framework suggested in the previous sections. 

However, the logical knowledge representation method need not be the only 
knowledge representation method used in conjunction with PR0L0G. We feel 
that the "None for all, but any for some" truism of programming languages also 
applies to knowledge representation methods, i.e. that there is no knowledge 
representation method that is good for all applications, but that any knowledge 
representation method is perhaps good for some application. This suggests that 
one may use PR0L0G in conjunction with difierent knowledge representation 
methods in different applications. We must, however, point out that the 
differences in these approaches are essentially conceptual and in many cases 
one approach may easily be translated into the other without much difficulty. 

Another approach to knowledge representation would be a semantic net
work like approach, e.g. as suggested in [Brachman BO]. However, as [Deliyanni 
& Kowalski 79] point out, PR0L0G's lpgical form can be closely linked to seman..: 
tic network based knowledge representation techniques [Findler 80]. Moreover, 
in database applications, semantic network like representations may also be 
viewed as using some form of Entities and Relationships. EDD [Parsaye 82] uni
formly uses the Entity-Relationship model [Chen 76] both for database schema 
design and for capturing the knowledge used in the design process by viewing 
Entity-Relationship diagrams as semantic networks.• 

An example of a situation in which an Entity-Relationship like representa
tion is intuitively appealing is in expert systems for office automation or in data
base design. AJJ [Deliyanni & Kowalski 79] showed, in such cases one can simply 
capture the schema. structure of the Entity-Relationship diagram by assertions 
of the form 

relationship( employment, department, employee). 
attribute(employee, name). . 
attribute( employee, social-security-number). 
attribute( employee, department-number). 

which reflect the fact that "employment•: is a relationship between the entities 
''department" and "employee'..';:and that "name", "social-,security-number" and• 
"department-number" ar~ attributes of the entity employee. The translation of 
this representation to a logical form is very similar to the translation of Entity
Relationship diagrams into relational schemas, i.e. it involves the transformation 
of entities into relation names and attributes into arguments. For instance, the 
entity "employee" will be transformed into a relation schema 

:-schema employee(name, social-security-number, department-number). 
which can later be used to store information such as 

em.ployee{jones, 558 53 8973, departmet-4). 
Thus, as is the case with Entity-Relationship diagrams and relational sche

mas, the logical and network-like representation methods can easily be 
translated into each other. 

•) The fact that with very simple modiftcations, semantic networks diagrams can be easily 
transformed into Entity-Relationship diagramB has been part of computer science folklore 
for some time now. 
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Another issue that is sometimes quite important in knowledge representa
tion is that of subtypes and i:nheritance. For instance, it is sometimes very use
ful to a user to deal with both "employees" and "managers", and record the fact 
that each manager is also an employee. Th.ere is a lot that can be said about 
suchpolyrnorphic type structures in theoretical terms [Parsaye Bl], [Mac Queen 
82], but in most practical cases these issues are quite simple to deal with. 

As mentioned in section 2.1, types can be captured in untyped logic by the 
use of conjunctions, and thus such properties can easily be included in PROLOG 
programs by assertions of the form 

employee(X) :- manager(X). 

which specifies that each manager is an employee. 
The inclusion of such conjunctions in PROLOG programs is no more easy or 

difficult than explicit type declarations for variables in a typed language, but 
this approach provides the flexibility of having or not having the types as 
desired. 

4.3 Explaining Facts and Deductions 
It is well known that relational databases can be viewed as logical theories 

[Nicolas 77], [Jacobs 81]. With this view, almost all data stored in, and queries 
posed to, current relational database systems deal with facts which are ground 
literal logical assertions or Ground-Unit PROLOG clauses. Such sentences 
correspond to what might be termed who and what facts and queries, e.g. "Who 
is the manager of department X" or "What is the salary of the oldest employee". 

In expert system applications, 'knowledge' is captured in terms of facts 
which pertain to some form of expertise and need to be represented as non
ground literal clauses, i.e. Non-Unit clause sentences in PROLOG. Queries 
corresponding to such facts might be termed how and. why questions, e.g. ."Yfuy 
did you recommend antibiotics for this patient", or "How did you know that this 
patient has diabetese". 

Such queries are important since in the development of expert systems, it 
is often necessary to query the system about the knowledge used, and the series 
of deductive steps taken, in a deduction . .This form of transparent reasoning, i.e. 
the.ability of the expert system to explain,and justify its actions and derivations 
'is of utmost importance in the development of expert systems; without it the 
gradual enrichment of a simple set of rules into a non-trivial knowledge base 
would be almost impossible. 

In such cases, it is not only necessary to explain the method of deduction 
and the knowledge used in the derivation of the answer, but to record why some 
piece of knowledge is in the database. For instance, it is usually necessary to 
record the actual patient case history which results in the addition of a rule to a 
MYCIN like system in order to facilitate future debu.gging [Shortliffe 76]. 

Once again, by involdng the uniformity of PROLOG's approach to knowledge 
and data, we suggest that explanations pertaining to both data and knowledge 
may be treated in a uniform manner. The basic idea is rather simple: each 
derivation in. PROLOG essentially has the form of a proof tree whose leaves 
correspond to 'basic facts' or data, while the rest of the nodes reflect the struc
ture of the proof. 

The basic facts (i.e. the leaves) are obtained by some empirical means, e.g. 
laboratory tests, physicians observations, etc. The justification for these facts 
can be stored in terms of assertions in the PROLOG database itself, by using 
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assertions like justification(fact, reason), which record a basic reason for a basic 
fact, e.g. 

:- Justification(blood-count(johnson, 130), "test on 11 /7 /82"). 
Then the predicate "justify" can be used to justify basic facts by 
justify(X) :- justification(X, Y), print(Y). 

Such method may also be used for justifying the addition of non-unit 
clauses to the PROLOG database, e.g. 

:- ju.stification(rule 133, "patient case history 173"). 
· Moreover, the steps involved in the deduction are essentially those steps 

involved in pattern matching and unification Most PROLOG implementations 
offer debugging facilities which allow the user to trace the steps in the execution 
corresponding to a certain predicate. We suggest that similar technique can 
also be used in explanations, e.g. suppose we have 

grandfather(X, Y) :- father(X, Z). parent(Z. Y). 
parent(X, Y) :- mother(X,Y) ; father(X. Y). 
father{john. mary). 
mother(mary, paul). 

A first level explanation of "grandfather(john, paUl)" can be obtained by following 
_ the steps of the unification, i.e. 

grandfather(john, paul) since father{john, mary), parent(mary, paul). 
A further level of explanation may then be obtained by 
parent(mary, pau1) since mother(mary, paul). 
Now let "trace(X, Y)" give Y as the top level goals which were used in the 

derivation of X. The predicate "justify" can then be extended to the trace and 
be used to give explanations by using "explain", where 

explain(X) :- justify{X). 
explain(X) :- trace(X, Y), explain(Y). 
explain(X ', • Y) :- explain(X), explain(Y). 
Another interesting issue is to ask "why not'' questions, e.g. "Why is not john 

the father of mary?". A simple answer to this can be that this fact is non
~·-- existent in'the d~tabase, but sometimes 'there may .be, need for:the display of 

partial deductions that fail. This is quite· interesting to program in PROLOG, and 
is left to the reader as an exercise. 

There are of course many other issues that need to be dealt with in the con
text of multi.:level explanations. A number of these issues are discussed in 
[Swartout 81], and a good deal more work remains to be done on the subject. 

5. Conclusions 
We have shown how PROLOG can be used to arrive at a uniform and high 

level approach to both database management and knowledge-base management. 
We have also pointed out the appeal of this single approach to the management 
of both data and knowledge in expert system applications. As a language, PRO
LOG holds a lot of promise. We believe that with the advent of architectures 
more suited to its implementation (FGCS 81], PROLOG will become a dominant 
force in computing in the 1980's. 
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In the current literature PROLOG is often connected with databases, eg (Warren 81), (Lloyd 82). That 
intuition is, in our opinion, correct. Nevertheless, two main points have been missed: how to organize large 
PROLOG databases and why they should be superior to the conventional, eg relational, ones. In this paper, we 
concentrate on the former question. We start by discussing the advantages of PROLOG over the relational model 
of data. Then we outline simple PROLOG solutions to several database problems. However, some of the most 
difficult issues of database management do not depend on the language used for defining and manipulating 
databases. 

We describe a database support system for PROLOG implemented at the Institute of Informatics, Warsaw 
University. According to the taxonomies of (Lloyd 82), our efforts may be described as an interpreted approach, 
providing ( currently)limited database management system capabilities. 

The system is primarily meant for the storage, retrieval and modification of a form of PROLOG clauses. Unit 
clauses designated by PROLOG are managed by the support system which stores them on disk. Other clauses are 
treated in the standard way by the PROLOG interpreter. When a clause from disk is required, the interpreter 
issues a query to the support system. Then the system performs preliminary unification and returns all the 
clauses possibly matching the query( one at a time). The final unification and the binding of variables are 
performed by the interpreter. 

To cope with growing ftles the database organization and access method is dynamic and based on extendible 
hashing (Fagin 79), augmented to allow partial-match retrieval (Lloyd 80). A general method has been developed 
for handling incomplete information (Chomicki 83). This method is used for storing, retrieving and modifying 
unit PROLOG clauses with variables. 

2.PROLOG compared to relational languages 

2.1.Relational model of data 

Base relations are represented in PRO LOG as procedures consisting only of unit clauses. 
Domains are not directly mapped to the constructs of the language. They may be defined as unary (not 

necessarily base) relations, but then unit clauses of a n-ary relation should be augmented by the calls to the 
procedures defining its domains, so the clauses are no more unit. Or, to achieve more restrictive typing, domains 
may be treated as functors. But then, for the matching to succeed, queries should submit appropriate domain 
(functor) names. 

Attributes are implicit in the order of relation columns. Their naming for further reference may be locally 



(within a clause) obtained by introducing appropriately riamed PROLOG variables. 
Keys(unique tuple identifiers) are in no way supported by PROLOG and, if required, should be defined as 

integrity constraints( cf section 2.5). 
Throughout this paper, we use the original PROLOG notation (Roussel 75). Predicate names are in 

uppercase, variable names - in lowercase. The goal(procedure head) of the clause is preceded by the "+" 
character, the premisses - by the"·" character. 

2.2.Relational algebra 

As the following examples show, PROLOG easily supports relational algebra (Ullman 80) operators: 
selection, projection and join. 

Example l. 
Let R be a binary relation with two numeric attributes: A and B. 
Selection: 
dA-s(R) 
d,.,.,(R) 
ds<A(R) 
Projection: 
,rA (R) 

Equijoin: 
R"S 

+Rl(S,x) -R(S,x). 
+R2{x,x) -R(x,x). 
+R3{x,y) -R(x,y) -LESS(S,x). 

+R4(x) -R(x,y). 

+RS(x,y ,z) -R(x,y) -S(y,z). 

Conjunction of selection conditions may be expressed by their enumeration in clause premisses and 
disjunction • by clause variants. Hence in PROLOG the selection condition is in disjunctive normal form. 

Now consider set-theoretic operators: union and difference. (or equivalently (Ullman 80): union and 
division). Union is straightforwardly modelled by clause variants. To defme set difference we should resort to 
some form of negation. 

Example 2 . 
. Suppose we write down the difference as 

+Q(x,y) -R(x,y) -NOT(S(x,y)). 
If no clause def ming R contains variables, the argument of NOT 
will be ground and NOT will be evaluated correctly in the standard way. 

23.Nulls 

The difficulty in defining relational algebra operators in the presence of null(undefmed) values has been 
recognized for some time already: (Codd 79), (Vassiliou 80). There are two ways of representing nulls in 
PRO-LOG: as variables or as ground terms. . 

If null is represented as an unbound variable~ the semantics of stored null values ('missing', 'any', 'not 
applicable')may be enforced by restricting the result of the query (by the predicates differentiating several sorts 
of nulls). Furthermore, the standard predicates, eg EQUAL or LESS, should be extended to capture properties of 
different nulls. 

If nulls are represented as ground terms, a null matches only either a variable or itself b the query. This 
disallows the interpretation of a null as an 'any' value matching all the values. 

In our opinion, different nulls should be differently represented. More general nulls, eg 'missing' or 'any', 
expressing possible relevance of the information in a clause to many queries, should be handled as variables. More 
specific ones, eg 'not applicable', matching no value in a query except itself and a variable, may be treated like a 



ground term. Various null values and their semantics are described in: (ANSI 75), (Vassiliou 80), (Zaniolo 82). 
Note that representing null value as a variable may lead to well known problems with negation in PROLOG: 
(Clark 79), (Naish 83). 

Example 3. 
Returning to Example 2, let us define a clause +R(5,g) with the variable g 
standing for the 'any' null value. 
Now writing 

+Q(x,y) -R(x,y) -NOT(S(x.y)). 
fails to produce the desired result: "all the elements of R 
which are not in S". 
To see that, it is sufficient to make both procedures R(and S) 
consist only of one unit clause: +R(5,g). (and +S(5,2).). 
The query: "is Q non-empty? ", expressed as 

-Q(u,w) 
fails instead of producing a positive answer. 

The above effect may be partly remedied by extending NOT, like EQUAL or LESS, to capture the semantics 
of nulls. 

2.4.Views 

Precisely in the same way as queries (relational algebra expressions), database views may be defined in 
PROLOG. However it is unclear how to do view updates. Currently in PROLOG, modifying the view has no 
effect on the underlying base relations. Each updating user must access base relations. So PROLOG views do not 
fulfill their fundamental role of protection mechanisms, hiding information from users. An explicit translation of 
view updates to the updates of the underlying base relations is required. That translation is determined by the 
semantics of relations and attributes involved. Sevaral strategies have been proposed in: (Dayal 82), (Bancilhon 
81), (Paolini 82), (Siklossy 82). A general mechanism should allow the definition of procedures updating base 
relations and triggered by view updates (Shipman 81). Such a mechanism is outlined in section 2.5. 

It is rather obvious that PROLOG clauses, containing eg recursive calls, are more general than relational 
views. Nevertheless it is an open problem whether the strategies for updating relational views may be generalized 
to arbitrary PROLOG views. 

2.5.Integrity constraints 

Furthermore, it is not well known how to impose integrity constraints in PROLOG. The constraints assert 
about the consistency of the database, so they should be defined at some meta-PRO LOG level. The only solution 
of that problem we know of was proposed in (Bowen 81 ). It requires major changes in the PRO LOG interpreter. 
As it supports arbitrary assertions expressed in first order logic, the computational complexity of its 
implementation would be enormous. We think of developing a less powerful but simpler and more efficient 
method, outlined below. 

Pattern-directed procedure invocation in PRO LOG may be used to solve the problems of integrity constraints 
enforcement, view updates and general triggers. We define two database modification operators: INSERT(clause) 
and DELETE(clause). They are hidden from the user who sees only "safe" (consistency preserving) operators: 
INCLUDE(clause) and EXCLUDE(clause) defined as 

+INCLUDE(c)-INSERTSAFE(c)-INSERT(c). 
+£XCLUDE(c) -DELETESAFE(c) -DELETE(c). 



Both INSERTSAFE and DELETESAFE are defined as conjunctions of individual integrity constraints: 

+INSERTSAFE(c) -ISl{c) ... -ISk(c). 
+DELETESAFE(c)-DSl(c) ... DSp(c). 

The problem is how to get the individual integrity constraints. They may be generated manually from 
informal specifications. 

Example 4. 
In the relation R first attribute functionally determines the 
second attribute. 
+ISI(R(x,y)) -R(x,yl) -NOT(EQUAL(y,yl)) -/ -FAIL 
+ISl{R(x,y )). 

Example S. 
The domain of the ftrst attribute of S contains the domain 
of the second attribute of R. 
+1S2(R(x,y)) -S(y). 
+1S2(S{y)). 
+DS2(S(y)) -R(x,y) -/ -FAIL 
+DS2(S(y)). 
+DS2(R(x,y)). 

As may be seen from the above examples, one of the pair of constraints on insertion ( deletion) is often 
tautologically true and may be omitted in the definition of INSERTSAFE (DELETESAFE). However we do not 
addre·ss here further issues of optimizing constraint checking, referring the reader to (Nicolas 82) and (Blaustein 
81). 

Triggers (Eswaran 76) provide an interesting alternative ( or complement) to assertions. In tead of checking 
the constraints, we may pref er to correct their violations. Now 

+INCLUDEl(c)-INSERTTRIGGER(c) -INCLUDE(c). ' 
+EXCLUDEl{c)-DELETETRIGGER(c) -EXCLUDE(c). 

and 

+INSERTTRIGGER(c) -ITl{c) .•. -ITm(c). 
+DELETETRIGGER(c)-DTl{c) •.. -DTn{c). 

The execution of a trigger may obviate integrity checking as seen below. 

Example 6. 
All the assertions from Example S may be replaced by three triggers: 

+ITl(R(x,y)) -INSERT{S{y)). 
+DTl(S{y)) -R(x,y) -DELETE(R{x,y)) -DTl{S(y)) ·/. 
+DTl{S{y)). 

Triggers may perform view updates identically as corrective actions above. 
Our approach to the consistency of PROWG databases is rather preliminary. In fact, we omitted the most 



difficult problems of: 
• supporting transactions (multiple actions) as consistency units (Eswaran 75) 
• backing out the transactions violating database consistency 
· efficient checking of arbitrary integrity assertions during 
or at the end of a transaction. 

We do not think that the solution of the above problems is any easier with PRO LOG than with conventional 
programming languages. 

3.System architecture 

System architecture may be described as an hierarchy of six levels. This paper discusses only the lowest four. 
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1.SPOQUEL is a SEQUEL-like query language described in (Kluzniak 83b). The interpreter of SPOQUEL is 
written in PROLOG. 
2. The PRO LOG interpreter (Kluzniak 83a) underwent only a minor change by incorporating new database 
primitives described in the next section. 
3. Upon receiving a request from PRO LOG, the addressing layer forwards the request to specific database pages. 
This layer perl'orms also simple catalog management to keep track of defmitions of relations. 
4.Preunification filters out clauses retrieved by page handling layer and not matching the clause passed from 
PROLOG as the argument of the request. The variables are not instantiated, but only the matching clauses are 
returned. The unification is completed by the interpreter. 
S. The page handling layer performs software paging and, retrieves (inserts,deletes) tuples and auxiliary 
inf onnation from core buffers. The tuples are stored as variable-length and arbitrarily nested records. The page 
size is 2048 bytes. 
6.Physical block 1/0 which supports paging is based on the file system of the underlying operating system. 

Now consider the (relatively) easy-to-do alternatives marked by dashed lines. 
The effects of their introduction would be limited to to the layer of their application. 

I.Another high-level user interl'ace, eg Query-By-Example, may be implemented in PROLOG analogously to 
SPOQUEL. 
2.Another front~nd would make possible to get into our system beside PROLOG. We actually had to develop 



such a front-end for the purpose of testing. 
3.If dynamic hashing does not turn out to perform satisfactorily in some applications, we may choose to replace 
it by another addressing scheme, eg multidimensional binary search trees. Such a possibility was outlined in 
(Chomicki 83). 
4.Ctirrently the preunification adheres to standard PROLOG semantics. However, it would be easy to adapt the 
preunification to somewhat different requirements, eg pattern-matching in text. 
5. The variable-length records are flexible but may tum out to be inefficient, requiring an additional level of 
indirection. For conventional formatted databases, fixed length records should rather be considered. 
6.lt is also conceivable to bypass the file system and perform the 1/0 directly without protection and 
bookkeeping overhead. 

On the whole, the interfaces between the layers are narrow, the layers are loosely coupled and besides there 
seems to be a high potential of asynchronous processing. 

The PROLOG interpreter and the support system are written in CDL-2 (Koster 75), a highly modular 
language. CDL-2 gives the possibility of gluing high-level control and parameter-passing structures together with 
assembler macros. The support system consists of 3000 lines of source code. About 15% of code are written in 
MACR0-11 assembler. The system is being developed on the SM-4 minicomputer (functionally equivalent to 
PDP-11/40) under the RSX-llM operating system. 

4. Database Support System. 

In our database support system we have implemented extendible hashing scheme based on (Fagin 79) with an 
extension to partial-match retrieval along the lines proposed by (Lloyd 82). That method was chosen because of 
very good search performance which doesn't deterioriate for dynamic (growing and shrinking) files. This method 
is simple to implement, even with an extension to handle partial-match queries typical for PROLOG oriented 
databases. 

This scheme has been adapted to handle incomplete information (Chomicki 83). 
In the sequel we shall refer to PROLOG unit clauses as tuples. 

4.1. Extendible hashing. 

Extendible hashing is a method for handling dynamic files. There is a hash function h from the key space 
(domains of attributes) of the tuples to the set of bit strings of length k 

h: K-')Bk 
The details of the hash function will be discussed in section 4.2. 
The file is structured into directory and database level. 
The directory contains pointers to database pages and is characterized by a number, called the depth of the 

directory. The directory entries are indexed by all bit strings of the length d ( d(=k) and d is the current depth of 
the directory. We called these bit strings (after (Lloyd 82 )) the indexing strings. 

When a directory entry is indexed by the string bl.. •.. bd it means that the database page, pointed at by this 
entry, stores all the tuples for which h(K) starts with bl. •... bd. 

There are 2**d entries in the directory. 
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Database pages contain tuples. The order of tuples is immaterial. They are stored in structured compact form 
as variable-length arbitrarily-nested records. Each database page has a header which contains the local depth d' 
for this page. The local depth of a page is d' (d'{=d) iff there are 2**(d-d') entries in the directory, pointing at 
that page. · 

In Figure 4.1 the local depth of database page pointed at by the first directory entry is 2 and depth of the 
directory is 3. That means that this page contains all tuples for which h(K) agrees with 000 on the first 2 places. 
Thus the 001 entry also points at this database page. 

Suppose that we want to insert a new tuple with a key KO. We calculate h(K0) and select its frrst d bits. Next 
we do a simple computation to fmd a coresponding entry in the directory. Following the pointer we fmd a 
database page on which a tuple should be placed. When this page is already full and d)d' then t splits into two 
database pages. 
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Fig4.2 

A new, initialy empty, database page is allocated and the tuples from the full page are hashed again. If the 
d'+ 1 th bit from h(K) of a tuple is 1 it is put on the new page. Otherwise it remains on the old one. The new 
tuple is treated identically. The local depths of both pages are set to d'+l. 

If the database page is full and local depth is equal to the depth of directory ( d=d') then the directory 
doubles in size as shown on the Figure 4.3 and the database page splits. The depth of the directory is increased 
by 1. 
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l'here is no need to access database pages during the doubling of the directory. When the directory exceeds 
one page, new directory page must be allocated during its doubling. However it does not happen very often. 

In the case when the file is shrinking significantly after a large number of deletions and dictionary occupied 
many pages, it can be reduced twice in size. 

4.2. Partial-match retrieval using extendible hashing. 

The hash function h : A-)Bk where A - set of all domains of relation's attributes is constructed. We are using 
one hash function ( a kind of square hashing) for all attributes (but different hash functions can be constructed 
for each domain). The hash function uses as arguments the top level functor of clause attributes. 

Let the value of the attribute ai in a query be vi for i= l , ... ,n. The fmal string which indexes a directory entry 
is constructed by selecting bits from each h(vi) according to a predefined choice vector {il,i2, .... ,id) where 
d-depth of the directory. The m'th position in the indexing string will be filled by the first so far unused bit in 
the string h{ vim). 

Example 7. 

When ( 4, 1,4,2) is a choice vector then the indexing string contains 
• first bit from the string h(v4), 
• first bit from the string h{vl), 
- second bit from the string h{ v4 ), 
- first bit from the string h{v2). 
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The methods of designing choice vectors are not considered here. The reader is ref erred to (Lloyd 80 ) and 
(Lloyd 82) for a discussion of this issue. 

A partial-match query is a query in which an arbitrary subset of the attributes of the tuple is specified. 
A query and a tuple match if all theirs specified attributes values are equal . 
The result set of a query is the set of all pages where a matching tuples may reside. 
When an incomplete query is considered and the choice vector indicates a bit from the unspecified attribute 

on the m'th place, then result set doubles, because both 0 and 1 should appear on the m'th place of all 
appriopriate indexing strings. 

Example 8 

For a relation T, choice vector (1,2,1) and the value of the hash function 
for the second attribute h(GREEN)=0l0 the query 
-T(x,GREEN,15) has the result set indexed by strings: 
000, 001, 100, 101. 

For a fully specified (complete) query only one page adclress is computed, so no more than two page accesses are 
necessary to fmd an answer. 

4.3. Storage and retrieval of incomplete tuples. 

The value of 'any' is introduced which is equivalent to PROLOG variable in the sense that 'any' matches 
every value in each domain and itself. When incomplete tuples appear, the set of tuples possibly matching a 
query grows exponentialy with the number of any-valued (unspecified) attributes. 

Example 9 

The query -S(TOKYO,1964) has four poSStole matchings: 
+S(any,any), +S(any,1964), +S(TOKYO,any), +S(TOKYO,1964). 

When an unspecified attribute provides no bits for the choice vector, the tuple is treated as complete. 
We implemented a parametrized family of methods of the storage and retrieval of incomplete tuples. 
Let m be the length of choice vector for the relation F and t an incomplete tuple to be inserted into F. 

There are two extremal methods : 
Method m ( full replication) 

- compute the result set of t and put a copy of t on each database page of this set. This method is 
time-optimal because the number of page accesses it requires is equal to the cardinality of the result set of a 
query. 

However it gives a high storage redundancy• in the worst case 2**m. 
Method 0 (no replication) 

• put t on an arbitrary chosen page from the result set of t. This method is space-optimal, but search time can 
be unacceptable, requiring an access to each page, for we have no cues whether and where the incomplete tuples 
matching the query reside. 

There is a family of intermediate methods numbered from 1 to m-1. 
Methodi 

• tuples from each database page indexed by string bl. .. bi-1 bi bi+l.. .. bm obtained by Method i-1 are 
specified in the following way : 

if the i-th bit of the choice vector is given and equal ci then move the tuple to the database page indexed by 
the string bl.. bl.. .•. bi-1 ci bi+l •... bm, 
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otherwise put the tuple on both database pages indexed by strings b 1.. •. bi-1 0 bi+ l.. ... bm and b 1.. ...• bi-1 1 
bi+l. •.•. bm. 

In other words, to insert a tuple t, the set of indexing strings is constructed. First i-bits are selected in the 
way described in the previous section. Then to each of them m-i bits are appended and the copies of t are put on 
each indexed database page. 

The parameter i, called any-depth, can be chosen by the user or be given by a system option. 
It should be taken into account that the properties of Method i are changing during file evolution. As long as 

the depth of the directory is less qr equal than any-depth, full replication is performed. 
When a choice vector is chosen then attributes which can assume the value of 'any' should rather not serve as 

a source of bits for the choice vector, because the result set for unspecified queries and consequently the number 
of accesses to database pages are growing. 

4.4. Modyfing a file with incomplete tuples. 

A partial orderinge' is defined (interpreted as " h is no less precise then t2 ") among the tuples as follows : 
tl{" t2 iff tl=(al, ..... an), t2=(bl, ..... ,b2) and ai=bi or bi=any for all i=l, ... ,n. 

To insert a tuple we simple put it on the database page determined by an any-depth parameter in the way 
de cribed in previous sections . 

The deletion from a file has a tuple t0 as an argument and is defined in two basic ways. 
A. Delete tuple ( delete no less precize) : delete all tuples t such that t~ t0. 
B. Delete this tuple ( exact delete) : delete only those tuples t such that t=t0. 

Example 10. 

The request of deleting all tuples of relation R with first attribute equal to 1 
may result in deleting 

A. +R(l,YELLOW), ••.. ,+R(l,GREEN), +R(l,any) 
B. +R(l,any). 

The deletion of all tuples matching this tuple is not acceptable for it causes unintended loss of information. 
In the above example • 

+R(l,YELLOW), ..... , +R(l,GREEN), +R(l,any), 
+R(any,YELLOW), ...•. , +R(any,GREEN), +R(any,any). 

Update is implemented as consecutive deletion and insertion in two variants. 
1. Delete this tuple(tl),Insert(t2) - to update exactly one tuple. 
2. Delete tuple( t1 ),Insert( t2) - to replace a set of tuples by one tuple. 

4.4. Additional aspects of implementation. 

Descriptions of all relations ( PROLOG procedures) which are stored in the database are in a catalog. 
For each relation the catalog contains : 
- the unique identifier, 
- the cardinality, 
- the choice vector, 
- the any-depth, 
- the current depth of the directory, 
- the address of the directory descriptor. 
Each relation has its own directory. During the session the catalog resides in core and at the end of the 

$ession it is copied back to disk as the header of the database. 

--------



During query evaluation or modification preunification, which directly corresponds to unification in 
PROLOG, is performed on all levels. Only the binding of variables is left to the PRO LOG interpreter. 

There is a stack of queries which is used to handle of backtracking. Matching tuples are returned to the 
PROLOG interpreter one by one. The computation continues and, after backtracking, may return to one of the 
previous queries and request another matching tuple. 

The stack for each query contains : 
- indexing string which determines the address of last accessed database page; 
- location of the last returned tuple on the database page; 
- the pattern of indexing string ( the string with 1 on the places fixed by specified attributes of query or 
tuple) which is used to fmd the next elements of a query result set; 

- the local depth of database page during last matching. 
A priority mechanism connected with buffer management is used for optimizing number of page accesses. 

The database page, on which more than one tuple matching a query reside, is kept in a buffer so long as it is 
possible. ' 

However for a queiy which required many backtracking, in particular for a nested query , we cannot avoid 
- many disk accesses for the same database page. 

Another problem arises when, between two matchings for the same query (before backtracking), the 
database page on which we found last matching tuple splits. For example it can occur during the checking of 
integrity constraints for insertion, when a few additional tuples are stored. In this case the order of tuples is 
changed as an effect of a database page spliting, so the the next tuple is undefmed. 

Our solution is provisional. We retrieve all matching tuples from both old and new pages. It causes that some 
of the matching tuples are returned twice to the PROLOG interpreter like in the case of replication of 
incomplete tuples when the interpreter also receives duplicates and handles them. It seems that duplicate 
elimination would require quite a lot of additional data structures so we postponed it to the future development 
of the system. · 

4.6. 'Interface with PRO LOG~ 

The interface between the PROLOG interpreter and the support system is very simple. The interpreter sends 
a request which is fulfilled and, if necessary, the matching clauses are returned one by one. The requests are · 
treated by PROLOG like 1/0 commands. 
The requests are : • 
Create relation(name, cardinality, any-depth) - adds a description of relation to the catalog and creates a new 
directoiy for it. The system creates a rest ofa description. (The choice vector may be also a request parameter). 
Drop relation(name) - deletes all tuples (if there are any), frees all database and directoiy pages and removes a 
relation from catalog. 
Insert tuple(relation name, tuple address) - inserts a tuple to database. 
Delete tuple(relation name, tuple address) and Delete this tuple(relation name, tuple address) - deletes tuples or 
tuple in the way described in section 4.4. 
Delete all tuples(relation name)- deletes all tuples of an indicated relation. 
Give first tuple(relation name, queiy pattern address, request number) • returns first tuple matching specified 
query pattern and pointer to the request stack entry which contains description of this request. 
Give next tuple(relation name, queiy pattern address, request number) - returns next tuple matching specified 
query pattern (generally after backtracking). The pointer to request stack entry doesn't change. 

The PROLOG interpreter and support system are working as synchronous processes. 

,5.Conclusions 

Our proposals in section 2.3 and 2.4 demonstrated the conceptual conciseness of PRO LOG in dealing with 
several database problems. The implementation of simple integrity assertions and triggers does not require any 
extensions of the language. The deductive capabilities of PROLOG are unquestionable. This all makes PRO LOG 
an attractive programming language for an implementor of sophisticated user interfaces for databases. However, 



using PROLOG in an actual database application requires further development of database management system 
mechanisms. 

No form of recovery, concurrency control and protection is provided in our system, so it is certainly not a 
"full-fledged" database management system. It is nevertheless, to our knowledge, the first attempt to handle 
non-toy PROLOG databases. Other approaches: (Lloyd 82), (Kunifuji 82), (Warren 81) neglected the problems 
of: efficient secondary storage organization and access, the support for null values and views, and even the 
simplest integrity checking. We have proposed solutions for the above problems and incorporated the solutions 
into an actual system. The experience with this system will certainly give further arguments for (or against) the 
use of PRO LOG in the database area. 
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Abstract 

Security and integrity are two important and 

inter-related aspects of data base systems, and 

data base management languages must make provision 

for the specification and enforcement of such 

constraints. In the case of the data base 

language Query-by-Example a style for handling 

certain types of security and integrity 

constraints has been developed by Zloof. 

An alternative approach to integrity in QBE 

is presented here which is based on the idea of 

consistency of the data in the data base. This 

approach allows for a more general type of 

constraint which includes the handling of 

functional, multivalued and em.bedded-multivalued 

dependencies, as well as the more conventional and 

simpler type of integrity constraints in a uniform 

manner. 

Both security and integrity constraints have 

been implemented in Prolog as part of a logic data 

base. 
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30.6 

M H Williams, J C Neves, S O Anderson 

1 • INTRODUCTION 

One of the important functions of any data base 

management system 

stored within the 

is to preserve the integrity of any data 

data base by ensuring that it is 

consistent with the prescribed properties of such data 

(integrity constraints). Integrity constraints. can be 

classified into three types (Ullman [ 1 ], Nicolas and 

Yazdanian [2]) : 

(a) Value-based constraints. These are conditions which 

the values of the domain elements must satisfy. They are 

usually restrictions on the range of values which a field 

can assume or are concerned with non- structural 

relationships amongst various fields. For example in the set 

of relations given in.Appendi<:!: 1 one might.wish to impose 

restrictions such as: 

(i) The weight of a part is always less than 100 units 

( simple restriction on range). 

(ii) An entry may only appear in the supplier_parts 

table if an entry for the supplier concerned exists in the 

supplier table (existence check). 

(iii) Any supplier from Vienna or Athens must have a 

status which is at least 20 (non-structural relationship), 

etc. 

( b) Structural or "Value-oblivious" constraints.. These 

are restrictions concerned not with the value in any 

- 2 -
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particular field of a tuple but with whether certain fields 

of one tuple match those of another. Three specific types 0f 

structural constraints are addressed in this paper: 

-(i) Functional Dependencies. If X and Y are two sets of 

attributes from some relation scheme, then X functionally 

determines Y ( or Y functionally depends on X), written "X -> 

Y", if any pair of tuples which agree in the components for 

all attributes in set X must likewise agree in all 

components corresponding to attributes in set Y. 

Examples of functional dependencies in the set of 

relations in Appendix 1 include: 

sno -> sname (corresponding to each 
supplier number is a unique name), 

sno, pno -> qty (corresponding to each 
supplier/part number combination is 
associated an unique quantity), 

and so on. It has been shown [3] that any set of functional 

dependencies can be transformed to an equivalent set in 

which all functional dependencies have the form "X -> Y" 

where Y is a singleton set. 

(ii) Multivalued Dependencies. If X and Y are two sets 

of attributes from some relation scheme then X 

mul tidetermines Y ( or there is a multivalued dependency of Y 

on X), written "X ->-> Y", if corresponding to a given set 

of values for the attributes of X there is a set of zero or 

more associated values for the attributes of Y, and this set 

of Y-val ues is independent of the values of any attributes 
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not contained in XU Y. 

An example of a multivalued dependency taken from the 

relation scheme in Appendix 2 (taken from Ullman [1 ]) is: 

course->-> period, room, teacher 

that is, associated with each "course" is a set of "period

room- teacher" triples which does not depend on any other 

attributes. For example, given the pair of tuples: 

cs2a 
cs2a 

3 
5 

601 
302 

jones j 
smith t 

a.dams a 42 
zebedee e 67 

one would expect to be able to exchange (3, 601, jones j) 

with (5, 302, smith t) and obtain two valid tuples, viz: 

cs2a 
cs2a 

5 
3 

302 
601 

smith t 
jones j 

adams a 42 
zebedee e 67 

However, it is not possible to exchange one or two fields of 

the triple without exchanging all of them, eg: 

cs2a 5 601 smith t adams a 42 

is not in the data base since "course ->-> room" does not 

hold. 

(iii) Embedded Multivalued Dependencies. These are 

multivalued dependencies which do not apply in the full set 

of data but which become applicable when the data set is 

reduced by projection. Formally, given a relation scheme R, 

an embedded multivalued dependency is one which holds only 

when any relation r in R is projected onto some subset X [ 

- 4 -
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R. For example, in the relation scheme presented in Appendix 

2, the multivalued dependency "course->-> prerequisite'! 

does not hold since tuples such as: 

cs2a zebedee e cs1b 1978 

are not present in the data base. However, if the data in 

progresstable is projected onto the subset {course, student, 

prerequisite} giving: 

cs2a adams a cs1a 
cs2a adams a cs1b 
cs2a zebedee e cs1a 
cs2a zebedee e cs1b 

then "course->-> prerequisite" does hold, as does "course 

->-> student". 

(c) Transition constraints. These are restrictions on 

the way in which the data base may change; or, more 

specifically, the relationship between the states of the 

data base before and after any change is made. They include 

restrictions on the way in which: 

(i) Values in a single field may change, e.g. values 

such as age or salary may only increase, marital status may 

only change in a particular way, etc. 

(ii) Values in a set of fields (possibly in different 

relations) may change, e.g. the amount of special low

interest-rate loan may be increased only if the grade of the 

employee is above a certain level, etc. 

- 5 -
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Security, on the other hand, is concerned with who may 

access what information in the data base and what operations 

may be performed. The distinction between security and 

integrity constraints is not always clear as will be seen in 

later sections. 

Zloof [4] has developed mechanisms for handling 

security and integrity constraints within the data base 

language Query-by-Example (QBE). The approach used for 

handling integrity constraints is a trivial extension of the 

concept of transition constraints in which constraints may 

be placed on insert, delete and update operations as well as 

on print operations. The problem with such an approach is 

that it is not possible to make any general statements about 

the data in the data base without a detailed history of the 

data base. 

The object of this paper is to present a slightly 

different approach which includes all three types of 

constraints, and which does lend itself to statements about 

the properties of data in the data base. 

The following section gives a brief introduction to 

Query-by-Example, while section 3 looks briefly at the 

specification of security constraints (a slight variation 

from Zloof's approach). The remainder of the paper is 

devoted to the integrity constraints and implementation 

details. 
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2. QUERY-BY-EXAMPLE - THE BASIC LANGUAGE 

Query-by-Example [5] is a two-dimensional language 

which is designed for use at a terminal and makes use of a 

special-purpose screen editor to compose queries. On 

striking a particular key, the user is presented with the 

skeleton of a table as follows: 

I 
I 
I -------------,------------------------------1 
I 

The four areas delimited by this skeleton are: 

( 1 ) I (2) 
I -------------,------------------- - ·--------

('.3) I (4) 

( 1 ) Table name field, 

(2) Column name field,, 

(3) Tuple command field , and 

(4) Tuple entry field. 

Using the screen editor the user may position the 

cursor in any of these four areas in order to insert a 

command and/or a variable or constant element. The 

formulation of queries is achieved by setting up tuples 

containing variables, constants and conditions. An attribute 

which is to be displayed is indicated to the system by 

typing " " P• ' followed possibly by a variable name and 

possibly by a condition, in the column corresponding to that 

attribute. In our implementation lower-case letters have 

311 
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been used in place of upper-case letters for the basic 

operations. 

For example, to print the status of a particular 

supplier, say "clark", given the data base of Appendix 1 , 

the user may enter the table name "suppliers" in the table 

name field, viz (the parts which the user might enter are 

underlined " __ "): 

suppliers l 
I 
I 
I ------------1--------------------------------I 
I 

Since the relation already exists in the data base the 

column headings (attributes of suppliers) can be generated 

by the system, i.e.: 

suppliers I sno sname status city 
I 
I 
I ------------,----------------------------
1 
I 

One can now enter "cl ark" in the sname field and II p.X 11 in 

the status field as follows: 

suppliers l sno sname status city 
I 
I 
I ------------,----------------------------
: clark p.X 

Any character sequence beginning with a lower case 

letter, such as II clark", is taken to be a constant 

representing a specific value, while one beginning with an 

upper case letter or an underline symbol " tf is taken to be 

31l 
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a variable. Thus this is interpreted as a request to print 

the status of any supplier whose name is "clark". 

Similarly to print the details of any supplier whose 

status exceeds 10, one may enter: 

suppliers l sno sname status city 
I 

I ------------1-------------------------------
1, p.X p.Y A A>10 p.C p. : : 

or one may write the command "p." in the tuple command field 

as follows: 

suppliers l sno sname status city 
I 
I 
I ------------1----------------------------

P• ! X Y A::A>10 C 

where the infix operator "::" is used as a syntactic aid and 
' 

is to be read as "such that". 

A query may require more than one relation in which 

case appearances of the same variable name in different 

parts of a query represent the same value. For example, to 

display the names of all suppliers who supply parts which 

are red, one may enter: 

- 9 -
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parts l pno pname colour weight 
I 
I 
I --------1------------------------------
l X red 

supplier_ps.rts l sno pno qty 
I 
I 
I -----------------1----------------l y X 

suppliers l sno sname status city 
I 
I 
I ------------,----------------------------
1 Y p.Z 

- 10 -

Complex conditions are handled by use of a separate 

condition box. For example, suppose that one wishes to 

display the names of all suppliers for whom the quantity of 

part number 2 lies between 100 and 300. One may enter: 

suppliers l sno sname status city 
I 
I 
I ------------1----------------------------
: X p.Y 

supplier_ps.rts l sno pno qty 
I 
I 
I -----------------,------------------
: X 2 Z 

I I 1--------------------1 l CONDITIONS i 
I I 1--------------------1 
l Z>99 and Z<301 l 

Besides the query operator "p." there are three other 

---~ - ------ -----
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operators: " . " l.. (Insert), "d." (Delete) and "u." (Update). 

As an illustration of the use of "i.", consider the addition 

of a new part tuple to the relation parts: 

parts i pno pname colour weight 
I 

I --------,------------------------------
i. i 7 washer red 10 

3. SECURITY IN QUERY-BY-EXAMPLE 

Security constraints take the form of an authorization 

for a user to perform certain operations on a relation. For 

example, if one wishes to permit a user John to perform 

print, update and insert operations on the relation 

suppliers, this may be specified as follows: 

suppliers l s?io sname status city 
I 
I 
I -------------------------,----------------------------

i. au tr ( p • , u • , i. ) . j ohn l A B C · D 

where once again lower case letters have been used and the 

final ". " J.. omitted [4]. 

The presence of a variable in each field of the 

relation indicates that John has access to that field. If 

the variable Chad been omitted and the status field left 

blank, this would indicate that John does not have access to 

the status field. Just as in other QBE statements, one may 

add conditions to these variables or link them to fields in 

other relations. 

015 
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A more complex example which illustrates this imposes 

the constraint that John may only read details from the 

supplier_parts relation if the status of the supplier is 

less than 30 or the supplier comes from Paris. This is 

specified as follows: 

supplier_parts l sno pno qty 
I 
I 
I -------------------,----------------

1.autr(p.) .john l A B C 

suppliers l sno sname status city 
I 
I 
I ------------,----------------------------
1 A E F 

I I ,---------------------, 
l CONDITIONS l 
I , I ,---------------------, l E<3O or F=paris I 

In each case the entry in the tuple-command-field has 

the form: 

i .autr( <access rights lists>) .<user> 

The <access rights list> is a list of one or more of 

the four rights "p.", " . " J.. , n " u. or "d. 11 while < user> is the 

name of the user to whom access is to be granted. In 

generalizing these two items, following the philosophy of 

QBE, variables may be used. Similarly if the keyword II all. 11 

is used in the table-name-field it will refer to all 

-- 12 -
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relations. Thus the constraint: 

all. I 
I 
I 
I 
I ---------------,-------------------

i .autr(X). Y l 

will allow any user to perform any operation on any 

relation. 

4. REALIZATION IN PROLOG 

each 

In our initial implementation of QBE in Prolog [6], 

QBE request (insertion, deletion, update, print, 

constraints) was translated directly into Prolog and applied 

to the data base. However, when we changed our approach to 

integrity constraints and adopted the approach which will be 

described in the next section, a different implementation 

strategy was called for. 

In the current system (which runs both on a PDP 11/34 

and a DEC 10 machine), each QBE request is translated into a 

clause in a meta-language which is then interpreted using 

the remainder of the data base. 

The following notation is used to express object-level 

knowledge in the meta-language: 

(1) A rule clause is represented as: 

p <- [q1, q2, ••• , qn, {s}]. 

which stands for p :- q1 ,q2, ••• ,qn. 
while the strings in braces!} is used 
to store information for recreating the 

- 13 -
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original QBE request. 

(2) A goal clause is represented by: 

<- [q1,q2, ••• ,qn]. 

which stands for?- q1,q2, ••• ,qn. 

(3) A fact or assertion is represented 
as: 

p. 

which stands for p. 

The usual interpretations are to be understood for 

rules, goals and assertions [7]. The use of the meta-

- 14 -

language at the object-level has the great advantage of 

allowing one to use clauses and predicates as terms. 

5. EXTENSION TO HANDLE INTEGRITY CONSTRAINTS 

The general philosophy beh~nd the approach described 

here is that any constraint which is currently operative 

must apply to all data in the data base. Thus whenever a new 

constraint is defined, it is immediately checked against the 

data in the data base. If any of the data does not satisfy 

the constraint, the exceptions are reported and the user is 

given the opportunity of either updating the data or 

revising the constraint. If all the data does satisfy the 

new constraint, it is stored and used to check all 

insertions and update operations conducted in the future. 

Ttree new operators are ln'croduced for this pur·pose: 
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ic. - insert a new constraint 

de. - delete an existing constraint 

pc. - print constraints 

The form of a constraint definition is similar to that 

of a query. As a simple example, consider the insertion of 

the constraint that the value in the quantity field of each 

supplier_parts tuple should be greater than zero. To do this 

one may enter: 

supplier_parts : sno pno qty 
I 
I 
I -----------------1------------------

ic. : X::X>O 

or one may use the condition box as follows: 

which is 

To 

supplier_parts : sno pno qty 
I• 
I 
I -----------------1----------------

ic. l X 

I I ,----------------, 
l CONDITIONS l 
I I 1----------------1 l X > 0 l 

translated by the system to yield: 

supplier parts( , , X) <-
[ X>O, -

{X>O} 
] . 

ensure that a tuple may only exist in the 

31, 
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supplier_parts relation if a tuple for the supplier 

concerned exists in the suppliers relation, one may have: 

supplier_parts l sno pno qty 
I 
I 
I -----------------,----------------

ic. l X 

suppliers l sno sname status city 
I 
I 
I ------------,----------------------------
: X 

which is translated by the system to yield: 

supplier parts(X, , 
[ suppliers(X, 

]. {} 

_) <-
_, _)' 

A more complicated value-based constraint is the 

restriction that any supplier from Vienna or Athens must 

have a status which is at least 20. To specify this, one 

has: 

suppliers l sno sname status city 
I 
I 
I ------------,----------------------------

ic. l X Y 

I I ,--------------------------------------------------, 
l CONDITIONS t 
I I ,--------------------------------------------------, i (Y = vienna or Y = athens) implies (X >= 20) i 

which is translated by the system to yield: 

- 16 -
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supfliers(_, _, X, 
not (Y=vienna 
not (Y=athens 
{ (Y=vienna or 

]. 

Y) <-
or X>=20) and 
or X>=20), 
Y=athens) implies (X>=20)} 

Functional dependencies are specified in the condition 

box using the format: 

<var> -> <var> 

or (<varlist>) -> <var> 

For example, in the parts relation, suppose that "pno 

-> weight". This can be specified as a constraint as 

follows: 

parts l pno pname colour weight 
I 

I --------,------------------------------
ic. l X Y 

I I ,----------------, 
l CONDITIONS l 
I I ,----------------, 
I I 
I X -) Y 1 

which is translated as follows: 

parts(X, , , Y) <-
[ parts(X, _, _, U), 

Y=U, 

J. 
{ 1 ->4} 

This can be read as : 

- 17 -
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for all X, A, B, Y: 
if there exists R, S, U such that 
if parts(X, R, S, U) and Y=U are true 
then parts(X, A, B, Y) is true. 

When this command is given, the data base will be checked 

immediately to ensure that the data already present 

satisfies this condition. Provided it does, the constraint 

will be added to the data base. Thereafter whenever the user 

inserts or updates a tuple in the parts relation it attempts 

to deduce "weight" from "pno" and fill it in automatically 

for the user. 

Multivalued dependencies are specified in a similar way 

using the format: 

<X> ->-> <:Y> 

where <X> and <Y> each stand for either a single variable or 

' a variable list enclosed in parentheses. Thus in the example 

from Appendix 2 one might express the constraint: 

timetable : course period room teacher student mark 
I 
I 
I ----------,---------------------------------------------

ic. l W X Y Z 

I I ,----------------------, 
l CONDITIONS i 
I I ,----------------------, 
l W ->-> (X, Y, Z) l 

which is formalized as follows: 
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timetable(W, X, Y, Z, R, S) <-
[ timetable(W, A, B, C, M, N), 

timetable(W, A, B, C, R, S), 
timetable(W, X, Y, Z, M, N), 
{1->->(2,3,4)} 

] . 

Once again when this command is given the data base is 

checked for any violations. If violations arise they are 

reported, if not the constraint is added to the data base. 

Thereafter whenever an insertion or update operation causes 

this constraint to be invoked, the system generates (and 

displays) the full set of tuples which need to be added to 

the data base in order to maintain consistency. If the user 

is content with the set of tuples generated, the system adds 

the full set to the data base, otherwise the 

insertion/update operation is abandoned. 

Embedded multivalued dependencies are specified using 

the format: 

<X> ->-> <Y> /<Z> 

where <X>, <Y> and <Z> each stand for· either a single 

variable or a variable list in parentheses. This is 

interpreted as X multidetermines Y if the set of attributes 

Z is removed. For example, to express the fact that "course 

->-> prerequisite" if the relation "progresstable" in 

Appendix 2 is projected onto the subset (course, student, 

prerequisite}, one may enter: 
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progresstable l course student prerequisite year 
I 
I 
I ----------------,---------------------------------------

ic. i X Y Z 

I I ,----------------, 
i CONDITIONS ; 
I I ,----------------, 
i X ->-> Y/Z ; 

which is translated by the system to yield: 

progresstable(X, A, Y, Z) <-
[ progresstable(X, B, C, 

progresstable(X, A, C, 

]. 
frogresstable(X, B, Y, 
1->->3/4} 

E), 
R)' 
s), 

When this command is given, the data base is checked 

for consistency. If violations arise the user is prompted to 

correct them or abort the constraint. Once the constraint 

is added to the data base, any further insertions or update 

operations are checked against the constraint and where 

required the system will generate the full set of tuples 

needed to fulfil any particular operation, prompting the 

user for the additional information (year) required to 

complete each tuple. 

Transition constraints, which are concerned with the 

way in which values in the data base may change, are 

expressed using a pair of entries for the relation in 

question. The field in this relation which is to be 

controlled, will be represented by two different variables -

- 20 -
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the one occurring in the line with the ic command in the 

tuple-command-field represents the new 

variable, the other the old value. 

value of the 

For example, suppose that one wishes to place a 

constraint on the status of a supplier whereby it can only 

increase, one might enter: 

suppliers l sno sname status city 
I 
I 
I ------------1----------------------------

ic. l N X 
I 
I 
I 

I 
I N y 

I I 1-----------------1 I CONDITIONS l 
I I 1-----------------1 l X>=Y l 

which is translated by the system to yield: 

suppliers(N, , X, ) <-
[ suppliers(N~ , Y, 

X>=Y, 

J. 
{X>=Y} 

) - ' 

Similarly one might impose a constraint on the age or 

salary of an employee whereby the values of these fields for 

a particular employee can only increase. In the case of 

marital status the only permissible transitions may be: 
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single ---> married 
married ---> divorced or widowed 
divorced ---> married 
widowed ---> married 

which may be specified as follows: 

employee I empno ename salary status grade 
I 
I 
I -----------1----------------------------------------

ic. i N X 
I 
I 
I 
I 

l N single 

I I ,---------------------------, 
l CONDITIONS l 
I I ,-------- ------------------, 
l X=married or X=single l 

employee l empno ename salary status grade 
I 

\ -----------,---------------------------------------
ic. l N X 

I 
I 
I 
I 

I N married 

I I ,------------------------------------------1 
: CONDITIONS l 
I I ,------------------------------------------, 
I X=married or X=divorced or X=widowed l 

and so on. This is translated by the system to yield: 

- 22 -
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employee(N, , , X, _) <-
[ employee(N, _, _, single, _), 

X=married or X=single, 
!X=married or X=single} 

] . 
employee(N, , , X, ) <-

[ employee(N, -; , married, _), 
X=married or X=divorced or X=widowed, 
{X=married or X=divorced or X=widowed} 

] . 

Alternatively the four constraints may be combined into 

a single one using two variables. 

As an example of a more complex form of constraint, 

consider the restriction that the value of a loan may only 

increase (or decrease) if the grade of the employee is 

greater than 5. This might be specified as follows: 
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loantable i empno loan 
I 
I 
I ------------1-------------

ic. i X NL 
I 
I 
1 
I 

l X OL 

employee l empno ename salary status grade 
I 
I 
I -----------1----------------------------------------
: X y 

I I 1----------------------------1 i CONDITIONS i 
I 1 ,----------------------------, 
l (Y<=5) implies (NL=OL) l 

This is translated by the system to yield: 

loantable(X, NL)<-
[ loantable{X, OL), 

employee(X, , , , Y) , 
not Y<=5 or NL=OL, 
{(Y<=5) implies (NL=OL)} 

J. 

The complete syntax of these constraints is given in 

Appendix 3, 

6. OVERLAP OF INTEGRITY AND SECURITY CONSTRAINTS 

The transition constraints discussed in the previous 

section deal only with the way in which data in the data 

base may change (i.e. te apdc.-:ed). It does not cater :or 

transitions involving insertion or deletion. 

- 24 -
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Thus suppose one wishes to impose the constraint that a 

loan may only be granted to an employee with grade between 5 

and 8, but once an employee has been granted a loan, if his 

grade changes to a value outside the range 5-8, he will not 

lose his existing loan. This type of constraint is not a 

simple property of the data (i.e. one cannot conclude that 

any employee who has a loan, must have a grade in the range 

5 to 8). However, it can be handled using a security 

constraint, eg. 

loantable : empno loan 
I 

I --------- ------,-------------
i.autr( i.) .X : A B 

~mployee l empno ename salary status grade 
I 
I 
I -----------,---------------------------------------
: A C 

I I ,-----------------------, 
l CONDITIONS l 
I I ,-----------------------, l ( C>=5) and ( C<=8) 

Likewise the example considered by Nicolas and 

Yazdanian [2] in which a constraint needs to be placed on 

the system to prevent employees whose income is less than 

some value (say 5000) from being deleted, can be treated as 

follows: 

- 25 -
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employee i empno ename salary status grade 
I 
I 

-----------------!---------------------------------------1 

l.autr(d.).X l A B C D E 

I I ,-------------------1 
i CONDITIONS i 
I I 1-------------------1 

. l C>=5000 l 

7. CONCLUSIONS 

The specification and enforcement of integrity 

constraints in a data base system is essential in order to 

guarantee the consistency of data within the data base. The 

role of security constraints is to control the types of 

operations which individual users may perform on the data 

base. The two types of constraints overlap to some extent. 

This paper presents an integrated approach for 

specifying generalized integrity and security constraints 

within the data base management language Query-by-Example. 

The important aspects of this approach are: 

(a) It caters for all three types of integrity 

constraints in a generalized and consistent manner. 

(b) It treats integrity constraints as properties of 

the data applying to all data in the data base, rather than 

as properties of particular operations (as proposed by Zloof 

r ., 1 \ 
L'+J/. 

(c) It ensures that the user is aware of the 
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implications of any operation producing changes in the data 

base which affect fields involved in 

embedded-multivalued dependencies. 
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Appendix 1: A simple business data base 

Consider a simple business data base which contains: 

(i) A relation "parts" with attributes (columns): pno, 

pname, colour and weight. 

( ii) A relation "suppliers" with attributes: sno, 

sname, status and city. 

( iii) A relation "supplier_parts" with attributes: sno, 

pno and qty. 

(iv) A relation "employee" with attributes: empno, 

ename, salary, status and grade. 

loan. 

( v) A relation "loan table" with attributes: empno and 

Suppose that the current content of each relation is: 

parts i pno pname colour weight 
I --------1------------------------------l 1 nut red 12 
l 2 bolt green 17 
i 3 screw blue 17 
l 4 screw red 14 
l 5 cam blue 1 2 
i 6 cog red 19 

Table 1.1 - The parts relation 

- 30 -
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1 . I supp iers I sno sname status city 
I ----------,-------------------------------
: 1 smith 20 vienna 
I 2 jones 10 paris 
I 3 blake 30 paris 
I 4 clark 20 vienna 
l 5 adams 30 athens 

Table 1.2 - The suppliers relation 

supplier_parts sno pno qty 
----------------- -----------------

1 1 300 
1 2 200 
1 3 400 
1 4 200 
1 5 100 
1 6 1-00 
2 1 300 
2 2 400 
3 2 200 
4 2 200 
4 4 300 
4 5 ' 400 

Table 1.3 - The supplier_parts relation 

employee l empno ename salary status grade 
I ---------,------------------------------------
: 12 morley 6500 married 10 
I 7 warren 7135 single 7 
l 15 exner 4475 single 4 
l 17 berry 5345 married 12 
l 5 john 6725 widowed 9 

Table 1.4 - The employee relation 

loantable I empno loan 
I ------------,-------------
: 7 570 
l n 1500 

Table 1.5 - The loantable relatio 

335 
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Appendix 2: A simple departmental data base 

Consider a simple departmental 

contains: 

data base which 

(i) A relation "timetable" with attributes: course, 

period, room, teacher, student, grade. 

( ii) A relation "progress table" 

course, student, prerequisite, year. 

with attributes: 

Suppose that the current content of the data base is: 

timetable l course period room teacher student grade 
I ----------,-------------------------------------------------
1 cs2a 3 601 jones j adams a 42 
l cs2a 5 302 smith t zebedee e 67 

Table 2.1 - The timetable.relation 

progresstable l course student prerequisite year 
I --------------,------------------------------------------
1 cs2a adams a cs1a 1978 
: cs2a adams a cs1 b 1979 
l cs2a zebedee e cs1a 1978 
l cs2a zebedee e cs1b 1979 

Table 2.2 - The progresstable relation 
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Appendix 3: Concrete syntax of the data base query language 

Extended-Query-by-Example 

The basic Extended-Query-by-Example (EQBE) format is as 

follows: 

Table-name-field l Column-name-field 
I ----------------------,--------------------

Tuple-command-field l Tuple-entry-field 
I 
I 

I I 1---------------------------1 l CONDITIONS l 
I I ,---------------------- ----, l Condition-entry-field l 

where the syntax of each of these components is defined as: 

bl f . d (II. II I ta e-name- iel ::= i. 1 "u.") string-constant ·: 

[ " ti p. l "d."] [string-constant] 

"all." 

column-name-field : : = [ "p. "] [string-constant] 

tuple-entry-field : : = [ "p. "] [ example-element 

[ "::" relation] l p-relation] 

l string-constant l integer 

authorization : : = "autr" [ "(" access-rights-list ") "] 

user-list 

tt " 

access-rights- list : : = access-right ( "," access-right)* 

example-element 

" " I ". II I "d " I " " access-right ::= p. 1 .i.. 1 • 1 u. 

user-list ::= list l example-element l string-constant 

1 . t "(" t . t t "It t. t t)*")" is ::= s r.i.ng-cons an ,( , s ring-cons an 

33r 
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tuple-command-field : : = r ft. " 
L J.C • 

"d n I n n 
C. I pc. 

( 1f - " 1. • "d." j "u.." " n) p. 

[authorization]] 

condition-entry-field ::= functional-dependency 

multivalued-dependency 

embedded-multivalued-dependency 

boolean-expression 

functional-dependency : : = set "->" example-element 

multivalued-dependency : : = set "->->" set 

embedded-multivalued-dependency::= set"->->" set"/" set 

set : : = "(" example-element ( "," example-element)* ")" 

l example-element 

boolean-expression ::= boolean-secondary 

("implies" boolean-secondary)* 

boolean-secondary : : = boolean-term ("or" boolean-term)* 

boolean-term ::= boolean-factor ("and" boolean-factor)* 

boolean-factor ::= ["not"] boolean-primary 

boolean-primary::= boolean-constant i relation 

1 "(" b 1 . 1 oo ean-expressJ.on tt) If 

boolean-constant : := "true" : "false" 

relation : : = numeric-exp relational-op numeric-exp 

string-exp relational-op string-exp 

p-relation ::= relational-op (numeric-exp : string-exp) 

numeric-exp ::= [add-op] numeric-term 

(add-op numeric-term)* 

numeric-term ::= factor (multiply-op factor)* 

factor::= [function-designator] numeric-variable 
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l numeric-constant "(" . ")" numeric-exp 

multiply-op : : = "*" : "/" 

dd "+ It I II It a . - op : : = · 1 -

function-designator::= " " I max. 1 
n • n I min. 1 "ave." 

l "cnt." If ti sum. 

string-exp : : = string-primary ( "+" string-primary)* 

string-primary::= string-variable l string-constant 

integer ::=digit+ 

string-constant ::= ('""'"non-quote-character*'"""')+ l 

lower-case-letter letter-or-digit* 

string-variable ::= example-element 

numeric-variable ::= example-element 

example-element ::= capital-letter letter-or-digit* 

l underscore letter-or-digit* 

letter-or-digit ::= lower-case-letter : digit 
' 

capital-letter : : = "A" l "B" l "C" l "D" l "E" "F" 

"G" "H" "I" "J" "K" "L" 

"M" "N" "O" "p" "Q" "R" 

"S" "T" "U" "V" "W" "X" 

"Y'' "Z'' 

lower-case-letter ::= "a" "b" If CH I "d" I tt e" I "f" I I I 

"g" "h" ti." "j" "k" "l" J. 

"m" "n" tt " " tt "q" " r" 0 p 

"s" "t" "u" " " "w" "xn V 

" It " II y z 

digit : : = "O" I "1 " "2" "3" "4" "5" I 

"6" I "7" I "8" I "9" I I I 
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where the notation used is that given by Williams[~]. 
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Abstract 

A desirable feature of any high-level data 

base query system is that it should be user

friendly. This should ex tend beyond the provision 

of a query syntax which is easy to use, to some 

attempt at intelligent helpfulness or co

operativeness. In particular additional knowledge 

about the structure of the data in a data base or 

the incomplete data contained in a query may be 

used to benefit the user. In this respect, despite 

its simplicity and ease of use, the data base 

management language Query-by-Example is relatively 

inflexible. 

This paper looks at several ways in which the 

co-operativeness of Qu~ry-by-Example can be 

improved. These are concerned with incomplete 

queries (i.e. queries in which certain information 

has been omitted), incomplete updates and queries 

which fail as a result possibly of misconceptions 

on the part of the user. Consideration is also 

given to how these are implemented in Prolog. 
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1. Introduction 

The application of first order logic and resolution 

based theorem proving to machine intelligence problems 

started during the early 1970 's. Recently, logic programming 

has received a considerable boost due to its choice as the 

basis of the core programming languages for the Japanese 

Fifth Generation Computer Systems [1 ]. 

Prolog [2] is a qualified implementation of Horn 

clauses which has become important as a vehicle for 

Artificial Intelligence applications. In particular there 

is growing interest in its use for data base applications 

[3]. Since Prolog itself is not very convenient as a query 

language, various researchers have sought to develop other 

user interfaces to Prolog data bases. These include natural 

language interfaces [4] and Que11y-by-Exam~le [5]. 

Query-by-Example (QBE) is a non-procedural data base 

query language developed by Zloof [6] in which queries are 

expressed by filling in skeleton tables with examples of the 

result required. In a human factors experiment conducted by 

Thomas and Gould [7] to determine the ease of use of data 

base query languages, the advantages of QBE over SQUARE and 

SEQUEL were clearly demonstrated. In particular they found 

that subjects using QBE required about one-third the 

training time, were somewhat faster in expressing queries 

and were about twice as accurate [7]. 

In view of this and the similarity between the syntax 

2 
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of Prolog goals and QBE [8], an implementation of QBE 

interfacing with a logic data base has been realized in 

Prolog. Details of the implementation are given in [5]. 

Despite its simplicity and ease of use, QBE is 

relatively inflexible and makes no attempt at intelligent 

helpfulness or co-operativeness. This paper consider some 

ways in which the co-operativeness of QBE can be improved. 

2. Incomplete queries 

In QBE all queries must be expressed in full in a 

manner which reflects the way in which the data has been 

stored in the data base. However, the inexperienced or 

casual user may have difficulty in remembering the internal 

.structure of the data and the way in which any particular 

query must be framed in order to reflect this. On the other 

hand the experienced user may find the process a little 

clumsy and look for short cuts. The idea of an incomplete 

query may appeal to either type of user. 

In QBE any simple query which involves the join of two 

relations makes use of a common variable which occurs in one 

field of each of the two relations. 

For example, given the data base in Appendix 1, suppose 

that the user wants to find the names of all suppliers who 

supply part number 2. The parts which he/she might enter 

are underlined " ". Toe entry r:iight be: 
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suppliers l sno sname status city 
I 
I 
I ------------------,-------------------------------------
: S p.N 

supplier_parts l sno pno qty 
I 
I 
I ------------------,------------------------
: S 2 

The common variable here which serves to join the two 

relations is S. Such a variable will be referred to as a 

link variable, and the fields of the two relations which are 

linked together (sno of suppliers and sno of supplier_parts) 

will be referred to as link fields. 

In general there is no choice in the pair of link 

fields which can be used to join two relations together. For 

example, in the case of the relations suppliers and 

supplier_parts, the field sno of relation suppliers and 

field sno of relation supplier_parts are the only possible 

pair of fields which can be used to join these two 

relations. 

In some cases it may not be possible to join relations 

directly and a join may only be effected via one or more 

intermediate relations. 

For example, suppose that the user wishes to retrieve 

the names of all suppliers who supply at least one red part. 

The essential information in this query is: 

3~5 
4 
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suppliers l sno sname status city 
I 
I 
I ------------,----------------------------------
1 
I p.N 

I parts I pno pname colour weight 
I 

I ------------1------------------------------------
: red 

although the complete query is: 

suppliers l sno sname status city 
I 
I 
I ---------------,-------------------------------------
: S p.N 

supplier parts l sno pno qty 
- I 

I 
I ---------------,------------------------
: S X 

parts l pno pname colour weight 
I 

I ---------------,---------------------------------- ----
l X red 

where Sand X are both link variables and supplier_parts is 

an intermediate relation. 

Since in general link variables are not an essential 

part of a query but rather a result of the way in which data 

are stored in the sys tern, it should be possible for the user 

to omit link variables from any query ( together with any 

empty in termed ia te tables which may result). Any query in 

which one or more of the link variables have been omitted 

will be referred to as an incomplete query. 

5 
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However, there is one snag with the omission of the 

link variables. Consider the query: 

suppliers l sno sname status city 
I 
I 
I ---------------1-------------------------------------
: p.N 

supplier parts l sno pno qty 
- I 

I ---------------1------------------------
: 2 p.X 

If this is treated as an incomplete query the system would 

attempt to link together these two requests. The result 

might be: 

suppliers · I sno sname status city 
I ---------------1-------------------------------------I s p.N 

supplier parts l sno pno qty 
- I ---------------1------------------------

l S 2 p.X 

which would be interpreted as "print the name of each 

supplier who supplies part number 2 and the quantity 

supplied" • On the other hand, the original query is 

sufficient in its own right being interpreted as "print the 

names of all suppliers and the quantities of part number 2 

as supplied by different suppliers". The latter is a form of 

OR-query. 

In gener~l an incomplete ~uery will have the sa~e ~or:n 

as an OR-query and the system will be unable to distinguish 

6 
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between the two. Thus it must be assumed that an incomplete 

query will not involve an OR-condition aI1.d that the user 

will indicate when an incomplete query has been issued. 

In the next section the underlying data structures and 

the general approach to implementation of incomplete queries 

are discussed. 

3. Implementation of incomplete queries 

If a user wishes to issue an incomplete query, the 

query is entered in exactly the same way as any other query 

except that a different key (for example, a special function 

key in the keyboard) is used to signal the end of the query. 

When the system is presented with an incomplete query, 

it attempts to link together the separate parts of the 

request. If it succeeds in find~ng appropriate links, the 

resulting query will be displayed in full to the user. If 

this resulting query satisfies the user, he/she indicates 

acceptance of the query by pressing the key normally used at 

the end of a complete query; if it is not what the user 

wants, a different key is used to indicate to the system to 

continue its search. If no suitable links can be found, the 

system reports this to the user. 

To illustrate this, consider a request for the names of 

any suppliers who supply widgets and to whom one does not 

owe money at the present moment. IQ and CQ are used to 

denote the keys corresponding to Incomplete Query and 
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Complete Query respectively. The dialogue might be as 

follows (commentary is in/* ••• */ brackets): 

suppliers i sno sname status city 
I 
I 
I ------------------,-------------------------------------
1 p.N 

parts I pno pname colour weight 
I 

I ------------------,------------------------------- -------
: widget 

supplier_balance l sno amountowed 
I 
I 
I ------------------,--------------------
: X: :X=<O 

IQ /* signals the end of an incomplete query * / 

The infix opera tor ti::"• is used for syntactic 

convenience only and is to be read as ti such that". 

In response to this the system mlght display: 

8 
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suppliers l sno sname status city 
I ------------------1-------------------------------------
: A p.N 

supplier_parts l sno pno qty 
I ------------------,----------------------
: A B 

parts l pno pname colour weight 
I ------------------1---------------------------------------
: B widget 

supplier_balance l sno amountowed 
l ------------------1--------------------
: A X::X=<O 

3.1. Formal specification of links 

The data structure used to represent the data base 

relations and the connections between the relations is an 

undirected graph. 

Fig 1 is a diagrammatic representation of the graph 

representing the links of the data base in Appendix 1. Every 

data base relation is represented by a vertex or node, 

called a relation node, and for every two nodes, if the same 

attribute occurs in both relations, an edge will connect the 

pair. This edge is labelled with the pair of attribute names 

from the two relations. 

350 

9 
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suppliers 

product
-parts 

351 
10 

prodno:prodno] 

supplier
-parts 

sales 

~:::~::::sno] 
supplier
-balance 

sales
-people 

Fig 1 - The graph structure representing the link 
dictionary for the data base given in 
Appendix 1. 

This information is represented within the 

language system by a set of clauses of the form: 

link(RELATION NAME 1, RELATION NAME 2, 
[ 

query 

ORDERED SEQUENCE OF LINK FIELDS OF RELATION 1: 

] ) . ORDERED SEQUENCE OF LINK FIELDS OF RELATION 2 

setofnodes(GRAPH NAME, 
[ 

SET OF GRAPH NODES 
] ) . 

In Appendix 2 the link dictionary for the data base in 

Appendix is given. Also prese:r.:ted is the Prolog progr!:".m 

for searching for a path linking any pair of relations in 
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the data base. 

The link dictionary described can be accessed by the 

user through the normal query mechanism, thus enabling the 

user to examine or update the structure of the data in the 

data base. 

For example, suppose that the user wants to find which 

relations are linked with which • The entry might be: 

p.links l 
I 
I 
I ----------,-----------
1 
I 

CQ /* signals the end of a complete query*/ 

The system will respond by displaying for each relation R a 

list of relations linked to R, e.g. 

links l supplier_parts 
I --------,-----------------
: supplier balance 
l suppliers 
l parts 
I product_parts 

3.2. Handling join conditions 

In order to handle joln conditions the system 

determines the number N of unlinked components of the 

request and then seeks to establish the paths linking them 

together. 

11 
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For example, suppose that the user wants to find the 

names of any suppliers to whom no money is owed at the 

present moment and who supply part number 1023. The entry 

might be: 

suppliers ! sno sname status city 
I 
I 
I ------------,----------------------------
: X p.N 

supplier_balance ! sno amountowed 
I 

I -------------------,-----------------
: X A: :A=<O 

product_parts l prodno pno nor~qd 
I 
I 
I ----------------1----------------------
l 1023 

IQ /* signals the end of an incomplete query*/ 

where the user has partially specified the links by using 

the variable X to link relation suppliers with relation 

supplier_balance. 

Given a query which contains join conditions, the paths 

linking the different components of the whole request may be 

established using: 

(i) - relation merging; that is, if two 
relations x and y which form part of the 
query are related to each other through 
the join variables A1, A2, .•• , An 
( n>=1), merge relations x and y by 
performing joins between relations x and 

353 
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y. Repeat this operation until no 
further merges are possible. 

(ii) - graph generation; that ls, look 
for paths which connect the remaining 
unlinked components of the graph ( these 
must involve intermediate relations). 

Let join-relation be the relation obtained by the join 

of relation suppliers with relation supplier_balance. Then 

the graph for the unlinked components of the initial request 

is as shown in Fig 2. 

join
-relation 

Fig 2 - Graph structure after merging. 

product
-parts 

The start node is indicated on the graph by an arrow, 

and double bars have been used to distinguish the final 

node. As a response, the system might display: 

13 
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suppliers i sno sname status city 
I ------------,----------------------------
1 X p.N 

supplier_balance i sno amountowed 
I -------------------,-----------------
1 X A: :A=<O 

supplier_parts I sno pno qty 
I -----------------1----------------: x y 

product_parts l prodno pno noreqd 
I ----------------,----------------------
: 1023 Y 

4. Incomplete updates 

The ideas outlined in the previous section apply also 

to update operations. 

For example if the user wishes to set the quantity to 

zero for all suppliers living in London, he/she might enter: 

supplier_parts I sno pno qty 
I 
I 
I -----------------1----------------------

u l o 

suppliers I sno sname status city 
I 

I -----------------1---------------------------------------
: london 

IQ /* signals the end of an incomplete query * / 

to which the system will respond with: 

..355 

14 
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supplier_parts l sno pno qty 
l -----------------1----------------------

u l Q o 

suppliers i sno sname status city 
t 

-----------------1------------------------------------- ►-l Q london 

In addition this link information may also be used in 

the case of update operations to ensure that when the user 

attempts to update a value in a link field of some relation, 

he/she is reminded of the possibility that the corresponding 

link field in some other relation may need to be updated 

too. In such a case the system might ask the user whether 

he/she wishes the same operation to be performed in the 

corresponding link field in the appropriate relation. 

For example, if the user wishes to change the supplier 

number 13 to 3, the user might enter: 

suppliers l sno sname status city 
I 

\ ------------,-------------------------------------
u l 3 

I 
I 
I 
I 

l 13 

CQ /* signals the end of a complete query*/ 

The system should then ask the user whether in addition 

he/she wishes to perform the following updates: 

35G 
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supplier_parts l sno pno qty 
I -------------------1----------------------

u : 3 
l 13 

supplier_balance : sno amountowed 
I -------------------,--------------------

u l 3 
l 13 

In such case the user must indicate whether he wishes the 

additional update operations to be performed or rejected. 

5. Queries which fail 

In formulating a query a user inevitably makes certain 

presuppositions about the data present in the data base. 

These presuppositions are inherent in the information 

contained in the query and are an indication of what the 

user believes about the state of the information in the data 

base. 

A data base query can be viewed either as requesting 

the selection of a subset (termed the response set) from a 

set of qualified instances in the data base, or as 

expressing some general belief about the data in the data 

base. In either case queries presented in QBE are translated 

into an intermediate meta language before being presented as 

a conjecture that a resolution-based theorem prover (e.g. 

Prolog) attempts to prove. This meta language is a graph 

structure, the nodes of which represent both data base 

relations and conditions imposed on the relation's 

16 
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attr lbute( s) • 

The query graph is divided into connected subgraphs, 

each of which in itself constitutes a well-formed query in 

the meta language and is translated into a conjecture that 

can be presented to the theorem prover to be proved (i.e. 

each connected subgraph corresponds to a presupposition the 

user has made about the domain of discourse) • 

The next section discusses how the presuppositions 

inherent in these subgraphs can be used to provide a more 

co-operative response to users for both queries that request 

the selection of a subset of qualified instances in the data 

base and YES-NO queries. 

5.1. Constructing corrective indirect answers 

When dealing with queries requesting the selection of 

qualified instances in the data base (i.e. with queries 

defining a property of data base objects) consider the 

situation where the system fails to prove the conjecture 

(the initial query returns the empty set as an answer). In 

this case, on request from the user, the system will try to 

establish the user's presuppositions by translating each 

connected subgraph into a conjecture to be proved. This 

approach ensures that should a presupposition fail, an 

appropriate corrective indirect answer [9] will be returned 

to the user. 

For example, suppose that the user wishes to retrieve 

17 
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the numbers of all suppllers living in London who supply 

part number 2. The entry might be: 

.suppliers I sno sname status city 
I 
I 
I ---------------,---------------------------------------
: p.X y 

supplier parts l sno pno qty 
- I 

I 
I ---------------,----------------------
: X Z 

I I 1----------------------, 
1 CONDITIONS i 
I I ,----------------------, l Z=2 and Y=london 

CQ /* signals the end of a complete query * / 

This query is based on the following presuppositions 

(i.e. the preconditions for the correctness of any direct 

answer): 

( i) There are suppliers. 
( ii) There are suppliers who supply parts. 
( iii) There are suppliers supplying part number 2. 
(iv) There are suppliers living in London. 
( v) There are suppliers living in London who supply 

part number 2. 

Should any of these presuppositions fail to be true, 

the system would, in general, respond with an empty list or 

"NULL". If, however, this query were addressed to a human 

being one might expect a more co-operative respom1e which 

identifies the failing presupposition(s). 

35i 
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A complex query asking for the display of certain data 

items subject to a variety of retrieval conditions will be 

decomposed into a number of basic components in the meta 

language (i.e. connected subgraphs), each of which are 

acceptable queries in their own right. With each sub-query 

is associated a subset of the original set of 

presupposition(s). In the case of the above example, this 

can be represented diagramatically as: 

[X:X] 
suppliers(X,_,_,Y) supplier_parts(X,Z,_) 

,. 

Y=lond on Z=2 

Fig 3 - The complete query. 

suppliers(X,_,_,Y) supplier_parts(X,Z,_) 

Y=lond on Z=2 

Fig 4 - Two first-level components 
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---------------------- -------------------------suppliers(X,_,_,Y) supplier_parts(X,Z,_) 
---------------------- -------------------------

Fig 5 - Two second-level components 

which will be translated by the system to yield: 

<- suppliers(X, , Y), 
Y=london, 
supplier_parts(X, Z, _), 
Z=2. 

This clearly consists of two components: 

<- suppliers(X, 
Y=london. 

, Y) , 

<- supplier_parts(X, Z, _), 
Z=2. 

each of these jn turn depend on components: 

' <- suppliers(X, _, _, Y). 

<- supplier_parts(X, Z, _). 

In this case the system's response "NULL" will be 

produced only in the case where the top level query has 

failed but all sub-queries have succeeded. Otherwise the 

message "NULL-LOWER LEVEL QUERY FAILED" will be displayed. 

On request the system will attempt to determine the 

cause of failure. If any sub-query fails and its failure 

contributes to the failure of the top level query, then: 

- the failure of the sub-query will be 
reported back together with any other 
sub-query on the same level which 
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contributes to the failure of the top 
level query, 

- any higher level failing sub-queries, 
not failing due to failure of component 
sub-queries, will be also reported back. 

In the current implementation this is achieved by 

typing the keyword "WHY". 

For example, if the query described above is presented 

to the system but the system fails to find any supplier 

living in London, it will respond with: 

suppliers i sno sname status city 
I ------------,-· - -----------------------------------
: p.X london 

results: NULL /* the empty set*/ 

that is, the system recognizes the failure of the component: 

' <- suppliers(X, Y), 
Y=london. 

and responds appropriately. 

On the other hand, an OR-query fails if and only if all 

of its sub-queries fail. If one succeeds, the query as a 

whole succeeds, even if all the others fail. Such a 

situation might contribute to the misinterpretation by the 

user of the system's response due to the false assumptions 

made about the way the answer was inferred. 

For example, suppose that the user wishes to retrieve 

the names of all suppliers who live in London or Paris. The 

en try might be: 
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suppliers l sno sname status city 
I 
I 
I ------------,---------------------------------------
: p.X london 
I 
I 
I 
I 
1
1 p.Y · paris 

CQ /* signals the end of a complete query * / 

, to which the system' s answer is: 

results I sname 
I ----------,------
: jones 
l blake 

But it is known (see Appendix 1) that Jones and Blake 

both live in Paris, and that no one is in London. That is, 

the user can think of suppliers living in London and living 

in Paris to be correct, an~ carry on with a frustrating 

series of questions, or worse, misinterpret the system's 

response. To avoid such a situation, the user can, as soon 

as the answer has been displayed, request further 

information about the process used in the evaluating of the 

query. The result might be: 

suppliers I sno sname status city 
I ------------,---------------------------------------
: p.X london 

results: NULL /* the empty set*/ 

which indicates to the user that the presupposition that 

some suppliers were living in London is incorrect. 
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To the extent that update operations involve an initial 

request ( query) aimed at 

instances or tuples in the data 

locating 

base, a 

certain qualified 

similar type of 

analysis as the one described above would apply in the case 

of failure. 

In the case of a query which expresses some property of 

the data base as a whole, should the system fail to prove 

the conjecture, an attempt is made to prove the negation of 

the conjecture in order to answer "NO". Should the sys tern 

fail to prove or disprove a given conjecture an answer of 

"DON'T KNOW" is returned to the user. This is the case when 

neither a "YES" nor "NO" answer is possible from the axioms 

in the data base. 

If the answer is "NO" or "DON'T KNOW" an analysis of 

the presuppositions made might follow if requested. 

6. Conclusions 

Most query systems currently available respond to 

queries in a very literal manner, giving an answer to what 

the user actually asked for - no more and no less. Though 

the responses are literally correct, such rigidity can be 

very unhelpful at times, and a more flexible system is 

desirable. This flexibility in the interpretation of queries 

in a manner which ls both natural and of benefit to the user 

is termed co-operativeness. 

This paper outlines several ways in which the query 
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language QBE can be made more co-operative. These features 

have been added to a version of QBE implemented in Prolog, 

which is running under UNIX on both a PDP 11/34 and a DEC 

10 system. 

The main features of such a system are: 

( i) A link dictionary has been implemented which 

contains information about the data base relations and the 

linkages between them. This facility was interfaced with 

the query facility to provide the user with the means to 

examine how the data in the data base are organized and how 

they should be accessed and used. 

(ii) The system attempts to handle incomplete queries 

and updates by filling in link variables. This can be of 

use to casual users of the data base who do not have the 

details of the structure of the data base at their 

fingertips, as well as to experienced users who seek short 

cuts. 

(iii) The system reminds users of possible side effects 

when updates are performed on link variables. 

(iv) The system attempts to provide a helpful response 

when a complex query fails to give the user an indication of 

why it failed. The same tabular form is used to explain the 

reasoning it followed to arrive at the answer as that used 

to enter the initial request. 

Acknowledgements 

24 



JC Neves and M H Williams 

The work of one of the authors, J C NEVES, was 

supported by the Calouste Gulbenkian Foundation under grant 

14/82 and by an ORS award from the Cornmi ttee of Vice

Chancellors and Principals of the Universities of the United 

Kingdom. 

JC NEVES is on leave from Minho University, Largo do 

Paco, 4700 BRAGA, PORTUGAL. 

~66 

25 



JC Neves and M H Williams 

7. References 

[1] T. Moto-0ka et al, Challenge for knowledge information 

processing systems, in: Fifth Generation Computer Systems 

(North-Holland, .Amsterdam, 1982) 3-89. 

[2] D. H. D. Warren, Implementing Prolog - Compiling 

Predicate Logic Programs. Technical Report 39 and 40, 

Department of Artificial 

Edinburgh, 1977. 

Intelligence, University of 

[3] H. Gallaire and J. Minker (eds), Logic and data bases, 

Plenum Press, New York, 1.978. 

[4] F. C. N. Pereira and D. H. D. Warren, Definite clause 

grammars for language analysis - a survey of the formalism 

and a comparison with augmented transition 

Artifi;ial Intelligence 13 (1980) 231-278. 

networks, 

[5] J. C. Neves, S. 0. Anderson and M. H. Williams, A Prolog 

implementation of Query-by-Example, in: Proceedings of the 

7th International Computing Symposium, March 22-24, 1983, 

Nurnberg, Germany. 

[6] M. M. Zloof, Query-by-Example: A data base language, IBM 

Systems Journal 16(4) (1977) 324-343. 

[7] J. C. Thomas and J. D. Gould, A psychological study of 

Query-by-Example, Proc. National Co~;uter Cor.ference (1975) 

439-445, 

26 



JC Neves and M H Williams 

[8] M. H. van Emden, Computation and deductive information 

retrieval, in: Formal Description of Programming Concepts 

(North-Holland, Amsterdam, 1978). 

[9] S. J. Kaplan, Co-operative responses from a portable 

natural language query system, Artificial Intelligence 19 

(1982) 165-187. 

27 



JC Neves and M H Williams 

Appendix 1: A simple business data base 

The examples in this i;:aper make use of the following 

relations: 

(i) A relation called i;:arts with attributes (columns): 

pno (i;:art number), pname (part name), colour and weight. 

(ii) A relation called suppliers with attributes: sno 

(supplier number), sname (supplier name), status and city. 

(iii) A relation called supplier_parts with attributes: 

sno (supplier number), pno (i;:art number) and qty (quantity 

supplied). 

(iv) A relation called supplier_balance with 

attributes: sno (supplier number) and amountowed. 

(v) A relation called sales_people with attributes: 

salesno (sales number) and salesname. 

(vi) A relation called product_i;:arts with attributes: 

prodno (product number), pno (part number) and noreqd 

(number of i;:arts required). 

(vii) A relation called sales with attributes: salesno 

(sales number), 

(quantity sold). 

prodno (product number) and qtysold 

Typical values of these relations are as follows: 
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parts l pno pname colour weight 
I --------1------------------------------
l 1 nut red 12 
i 2 bolt green 17 
l 3 screw blue 17 
l 4 screw red 14 
l 5 cam blue 1 2 
l 6 cog red 19 

Table 1.1 - The parts relation 

suppliers l sno sname status city 
I ------------,------------------------------
: 1 smith 20 vienna 
l 2 jones 10 paris 
l 3 blake 30 paris 
l 4 clark 20 vienna 
l 5 adams 15 athens 

Table 1.2 - The suppliers relation 

supplier_parts l sno pno qty 
I -----------------,----------------
: 1 1 300 
l1 2 200 
l1 3 400 
l 1 4 200 
l 1 5 , 100 
l 1 6 1 oo 
l 2 1 300 
l 2 2 400 
l 3 2 200 
l 4 2 200 
l 4 4 300 
l 4 5 400 

Table 1.3 - The supplier_parts relation 

supplier_balance l sno amountowed 
I -------------------,--------------------
1 1 100 
i 2 90 
i 3 0 
l 4 0 
l 5 145 

1 ,! . ...,. - T::e s,1ppller_balance relation 
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sales_people i salesno salesname 
I ---------------,-----------------------
: 1 flanagan 
I 2 ellis 
l 3 smith 
l 4 schafer 

Table 1.5 - The sales_people relation 

product_parts l prodno pno noreqd 
I ----------------,----------------------------
1 1027 1 350 
l 1~3 1 ~o 

1028 1 100 
1033 3 275 
1040 4 435 
1072 5 555 
1045 2 315 
2001 6 125 
1067 5 111 

Table 1.6 - The product_parts relation 

l salesno 
I 

sales prodno qtysold 
--------,---------------------------------

: 1 
l 1 
l 2 
l 3 
i 3 
l 4 

' 

1023 
1027 
1028 
1033 
1040 
1072 

100 
45 
40 

150 
75 
20 

Table 1.7 - The sales relation 
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Appendix 2: The link dictionary for the data base 

in Append ix 1 • 

The link dictionary for the data base in Appendix 1. 

link(supplier parts, supplier balance, [sno]:[sno]). 
link(suppliers, supplier_balance, [sno]:[sno]). 
link( supplier_parts, prod uct_parts, [~no]: [pno]). 
link(parts, product parts, [pno]:[jnoj). . 
link(sales, product-parts, [prodno :[prodno]). 
link(sales_people, sales, [salesno :[salesno]). 
link(supplier_parts, suppliers, I sno]:4sno]). 
link(supplier_parts, parts, [pno]:[pnoJ). 

setofnodes(graph, [supplier_balance, product_parts, sales, 
sales people, suppliers, parts, 
supplier_parts]). 

The Prolog program for searching for a pa th linking any 

pair of relations in the data base: 

clause 1 

clause 2 
clause 3 

clause 4 
cle.use 5 

?- op(40, xfx, :). 

/* declare "·" infix operator */ 

path(GRAPH, X, Y, PATH)<
setofnodes(GRAPH, SET), 
member(X, SET), 
member(Y, SET) 
walk( GRAPH, [X j, Y, PATH). 

walk( GRAPH, [ Y l L] , Y, [ Y l L]) • 
walk(GRAPH, [xi1], Y, PATH) <-

( 
link(X, Z, ); 

link( Z, X, _) 
) ' 
not(member(Z,L)), 
walk(GRAPH, [z,XJL], Y, PATH). 

member(X, [X l ] ) . 
r,inmho,...(Y r 1vl \ (' -
~-" ._ .. .:. .. ..,; '-" ,._ \.: .. J i.. l ,._ -1 j ' 

member(X, Y). 
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' ABSTRACT 

LPaper presents a specialized data base model of a newly developed 
I functional prograMming language with graphical front PROGRAPH, and 
I discusses the advantages of using it as a host from PROLOG. On the 
· basis of an example there is a description of a method of converting 

(via PROI.ro} an arbitrary query into a wff containing only data 'i:ia.se and 
computational predicates. Afterwards such a wff is formulated in 
PROGRAPH and computed (again a series of examples and a method 
provided}. 

1. Introduction 

Logic programming approach proves, beyond any doubt, to ce the rnost 

universal and flexible mechanism for data base queries ( [ 6 ] , [ 7 ] I 
etc.}. Its power becomes particularly visible when a query L-rwolves a 1 

more advanced conceptual structure and requires non trival computations. 

However, for the full success of logic programing in this area is 

handicapped by the following shortcomings: 

(i} awkwardness of executing queries, which involve universal 

quantifcation. The usual method of converting them into negated 

existential qualification of negated formula ([ 5 ]} leads often to 

considerable inefficiency of the search procedure. Moreover, universal 
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qualification generally accompanies implication inside of the query what 

in tenn proouces non Hom clauses. 

(ii) communication with data base only via unification of the unit 

clauses brings various dilemnas: the unit clauses with a small number 

of variables increase flexibility in formulating queries but also 

increase depth of deduction while unit clauses with a large number of 

variables may dangerously expend the size of the data base 

~epresentaticn am conseqently leads to the losf of efficiency. 

(iii) relational data base model (which becomes a consequence of the 

unit clause approach discussed in (ii)) may causes lose of important 

infonnation al::out the overall structure of data base which could be used 

as valuable heuristical guidelines for an efficient search procedure 

which is the foundation of the computation of queries. 

Int.he following we shall propose an alternative approach which 

deals with the data base model as well as with the computation of 

queries. It will be based on a newly developed programming language 

PROGRAPH ([ 3 ], [ 4 J) which will be used as a host system for logic 

programin;, particularly in the area of interface with a data base. 

2. PROGRAPH Data Base. 

We will start our presentation from the description of the data 

base model. It can be viewed as a combination of a particular case of 
' 

the relational model with some network model influences. However, these 

similarities maybe more misleadin; then helpful and the best way would 

be to consider it on its own. 

We shall present three different but strictly equivalent 

definitions of the model. Later we shall refer to any of them: 

whichever appear to be most convenient. 

A. Directed graph rrodel. 

The PROGRAPH data base can be defined as a directed graph with 

labelled arcs. We shall call it graph database or shortly GD. We 

assume that the graph is connected. The set of nodes N of GD is 

partitioned into two distinct categories: abstract records and data 
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records. While abstract records are abstract elements without any 

particular qualities the data records are trees where leaves are 

elementary data of basic types like integer, real, boolean, strings of 
characters, etc. 

Among the abstract records there is one specifically distinguished 

called root and denoted as ~ The arcs GD are labelled by a 

string of characters which are called attributes. 

B. Functional Model. 

This model is called functional database of FD. It consists of a 

set elements identical to nodes N of GD and a set of partial multivalued 

functions with domains and ranges in N. Each of these functions 

correspoms to a distinct attribute of GD in a one-to-one manner: if F 

is a function of FD then the domain of Fis a subset of N consisting of 

all nodes where any arc of GP with the attribute F originates while 

range is the set of all nodes where such an arc ends. The connectivity 

comiticn can be easily expressed in terms of FD. 

c. Relational Model. 

This model called relational database (RD) is a simple variation of 

the functional model. It is defined as a set of partial binary relations 

over N. If P is a relation of RD then P(x,y) holds iff y P(x) where 

P(x) is defined in terms of FD. (The notational ambiguity is hopefully 
resolved by the reader). 

Now we shall present an example of a PROGRARI database using 1::oth 

GD and RD models. Construction of the FD model for this example is left 
for the reader 
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This GD represents a structure composed of departments, students 

majoring, courses offered, courses taken as well as the names of 

departments and students and numbers of courses. The integers inside of 

nodes have no semantic significance and are used only as a way of 

referring to individual abstract records nodes in further discussion. 

For example: nodes 1, 2 correspond to departments: 1 to Mathematics 

while 2 to Computer Science 3, 4, 7, 8 are students with names JOHN, 

llJCY, MARY and PAUL respectively. The data records have no identifying 

numbers and we refer to them via the corresponding data. 

A useful way of looking at the above GD is to compress it into a 
map as presented below. 

D€-PT-

Fig. 2 

1' l_....Ll J,-
1 \l'""TI"" '::: 

The map is obtained by recursively collapsing all the arcs with the 

same attribute originating in a node into one, following by collapsing 

the corresponding end nodes of these arcs. The circle nodes of the map 

corresponds to sets of abstract records of GD while triangle nodes 

correspond to sets of data records. 

Now we represent database of Fig. 1 as RD in the form of binary 

tables. We use the numbers attached to appropriate nodes as entries to 

the tables arove while the heading of a table corresponds to a relations 

name (attribute). 
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DEPI' 

r:r 

1 ~TH 

2 <XMP 

3 JOHN 

4 I1JC'.{ 

7 [l,1ARY 

8 PAUL 

M1\JORS 

1 3 

1 4 

2 7 

2 8 

NUMBER 

5 1003 

6 2003 

9 2003 

10 3003 

OFFERS TAKES 

1 5 3 6 

1 6 4 5 

2 9 4 6 

2 10 7 6 

7 9 

8 6 

8 9 

Fig. 3 

It is easy to note that the graphical structure presented on Fig. 1 

and even more clearly on Fig. 2 contains valuable information on 

efficient implementing the data base. It suggests keys, access 

structures and storage allocation. In contrast in the flat tables of 

the relational model described on Fig. 3 this potentially useful 

informaticn is lost: it can only be recovered by converting the tables 

into a graphical or functicnal structure. 

3. Canbining logic. progranming with PRCGRAPH. 

In the following we shall present a proposal on how to deal with 

problems of logic programming mentioned in the Introduction. Our 

aproach will use the PROORAPH data rese model and programming technique~ 

Our presentaticn will be based en examples. 

I.et us consi,der the following query: 

"are all the students regular, where regular means faithful but not 

overzealous? A faithful student takes at least one course from the 

department in which he/she majors, while overzealous takes all the 
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courses from such a department". 

Now we shall present the same query as a mixture of predicate logic 

and PROI.ro: 

(i) vx regular (x) 

(ii) regular(x) := faithful(x), notoverzealous(x) 

(iii) faithful(x) := 3 y 3 z[(DEPI'(f ,y) /\ MAJORS(y,x)) ::i 

(TAKES(x,z) /\ OFFF.RS(y,z))J 

In the above query and following it definitions, let us distinguish 

two types of predicates: defined predicates like regular, faithful and 

notoverzealous and evaluation predicates, like DEPI', MAJORS, TAKFB and 

OFFERS. The former we denote by using bold face lett.ers while the 

latter by capitals. The defined predicates occur, at least once, on the 

left hand side of PROLOG expressions while evaluation predicates are 

attributes of the PRCX1RAPH data base or computation predicates like x~ 

or :x+y=z (absent in our example). 

Now we are ready to describe th,,rocessing of the query. We apply 

PROI.ro mechanism to replace all occurences of the defined predicates, 

starting with the actual ouery in formula (i). (Let us note that the 

query is not negated or skolemized.) 

These replacements will follow the rules of logic programming with 

the understanding that occurrences of universally qualified variables 

are treated as constants. Substituting (ii) into (i) with the 

appropriate unification, we obtain: 

(v) V x(faithful(x) /\ notoverzealous(x)). 

At that moment the comma ',' separating the two subgoals is converted 

into conjunction (' /\ '). ~ we continue our activity substituting into 

(v) the formulae (iii) and (iv) to obtain, after _easy optimization: 

(vi) 'tfX 3 y[(DEPT(t ,y) /\ MAJORS(y,x)) :> 

( 3 z (TAKES ( x, z) /\ OFFERS ( y, z}) /\ 

3u(TAKES(x,u) /\-, OFFERS(y,u))J 

Let us note that (vi) does not contain any defined predicates and 

PROI.ro phase of processing is therefore terminated. 
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I n general the situation is more involved because in the presence 

of recursive definitions such a state cannot be achieved, but it is not 

a new phenomenon: PROLOG will deal with it in the same way as it 

usually does with recursion. It should be mentioned that the whole 

mechanism described aoove can be wit.hout t..~e difficulties implemented in 

PROLCX:;. 

Before we move to the next stage of producing a prograph 

corresp:,nding to the formula (vi) let us provide some information a.rout 

PRCX;RAPH. 

PROGRAPH is a programming functional language with a graphical I 
I 

front. It follows the direction of the Graphical Programming Language, j 

GPL [2] developed at the University of Utah and dedicated to their data 

flow computer DDM 1 [l]. However, PROGAA.PH goes much further then GPL 

allowing: comp:,se operation, introduction of user defined subroutine, 

explicit indicaticn of !X)ssible parallelism of computation and what is 

most irn!X)rtant, it provides a mechanism for database access and update 

activities, which does not violate the functional character of the 

language. An experimental version of PROGRAm is currently implemented 

en PERO graphics station. 

A PR(X;RAfH equivalent of 'program' is called 'prograph'. Generally 

speaking a prograph is a network of boxes connected by wires. A box, 

corresponds to a specific operation provided by the system (called 

primitive) or defined by a user. Such an operation is performed on 

datas supplied to its input and the results are delivered as outputs. 

The wires naturally connect inputs and outputs of distinct ooxes without 

producing loops. 

Now we shall introduce a few PROGRAPH primitives, necessary to 

present our query as a prograph. 

Let F be an attribute of a PROGRAPH data base which we shall 

interpret, for the moment, as a binary relation. Let X be sets of nodes 

of data base applied respectively to input - top wire and Y resulting 

from output - bottom wire. As a matter of fact, inputs always are 

provided by top wires while outputs always are delivered by the 1::ottom 
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The rox '-f-' , called access, means that Y= F[X] (in functional 

notaticn) while ~ • inverse access, means Y = r 1[xJ. /"c,,, let x, 

y be single records provided as inputs of the box ·Lt] called 

application. Then the output z = F(x,y) (using relational notation). 

In this case the output is obviously of the type boolean, however 

PRCGRAPH does not require specification of types of datas. 
I 

Let us introduce two obvious primitives: ~ arrl $111el 
I 

oval boxes are used here only for visual ef feet so the user can easily/ 

distinguish logical operations. 

Finally, we shall present two so-called composed operations (all 

the above ones are simple): EXISTS and FUR ALL. 

:,::;: FOR Al L :·:·:·::r-:-:::·:,:·:;:·:::•:•:·:·:::·:,:·:·:·:·:-:·:· 

p 

♦ 

The number of inputs can vary while there must be one and only one 

called multiple whidl is signified by the ..I.. It should be mentioned 

that multiple input does not have to be first to the left but it must 

not be more than one such input. It should be mentioned that the 

multiple input dOes not have to be first to the left. 
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denotes an arbitrary prograph with k+l inputs (k~O) and one output of 

the type boolean. The semantics of these operations is: if x,y,, .• ,yk 

are values of inputs then the values of outputs are respectively: 

3 x ( ~ E X /\ P ( x, y, , .•• , Yk) and r/ x ( x E X :J P ( x, Y,, ... Yk)) 

It is worth to note that the PRCGRAPH definitions of quantifiers satisfy 

the basic properties of predicate logic: that is 

♦ 
is equivalent to 

10 
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~w we are ready to present the PRCX;RA.m equivalent of the formula (vi) 

;::::;:, FOR ALL 

! 
~ 

ANO 

♦ 

Fig. 4 

11 
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Note thc:1.t letters cl..; ~Jo and g are not part of the PROGRAPH 

descriptiai: they are introduced as references to appropriate EXISTS 

and roR ALL boxes. 

Now we shall present an informal description of how the prograph of 

Fig. 4 is derived. 

First let us construct the following graphics presentation of the 

formula (VI) called outline which will be useful for our explanation. 

DE=-PT 

Fig. 5 

The outline is a directed graph with nodes corresponding to 
' 

distinct variables in formula {VI). . The labelled arcs correspond to 

predicates (or negated predicates) of (VI) in such a way that R labels 

arc originating in the node m and ending in n iff R(m,n) occurs in (VI). 

In order to derive the prograph of Fig. 4 we introduced a partial order 

among the arcs the outline which is imposed in natural way by the 

directions of arcs. 

Now we can proceeded with constructing the prograph starting with a 

. minimal arc (in this case: DEPr) and create: 
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Then we progress along outline and arrive at the end node of this arc 

(in this case node y), and create EXISTS box ~ since y is 

existentially quantified in (VI). 

We proceed in an analogous manner with arc MAJORS: we introduce and 

create ~ box FOR ALL. 

The rational behind the box is somewhat more complex so we will provide 

the reader with some additional explanation. Let us consider the top of 

the prograph of Fig. 5: 

DEPT 

EXISTS 

where y0 is the input to 

\ MAJORS 

I 

\MAJOR/ 
! 

and ~ the output. Obviously, 

y0 satisfies DEPI'(~ ,y0 ) am x E x0 iff MAJORS(y0 ,x). Therefore x E Xo 

iff DEPT( ~ ,y0 ) /\ MAJORS(y0 ,x) so in view of formula (vi) and 

definitiai of semantics of operation FOR ALL the introduction of the box 

is justified. Following the ordering of outline on Fig. 5 we arrive in 

node x and note that there are 2 arcs org~"'}yng in x,both 
labelled TAKES. Therefore we introduce TAKES and branch the 

outp.rt. The corresponding branches are directed to EXISTS 1-..oxes and 
.• 

respectively, which corresponds to z and u, variables of Fig. 5. 

Now both arcs OFFERS and 7OFFERS ·end in the node y (already 

traversed). In this case we fill the boxes O and J1 with the 
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operations: 

i I 
OFFERS 7 

i 
and ! OFFERS respectively 

( ~flT ) ' i' ~ 

It is worth noticing that the first input wire corresponding toy 

variable originates in the rox<X, has been transmitted into j3 (first 

input wire) and branches there to arrive as first input to C and 

[' respectively. 

inputs to ~ 
" Finally outputs of boxes t and i} are joined as 

box according to the conjunction of both 

existential subexpressions 3 z( .•• ) and 3u( .•. ) in formula (VI). 

The above descriptiai of an algorithm for producing a prograph from 

a well formed formula, as we mentioned already, is fairly infernal and 

sketchy. However, there is a formal algorithm performing this task 

which is unfortunately too lengthy to be described here and will be a 

subject. of a separate publication. 

To further convince the reader that the proposed approach is 

useful, we will present two more examples of data base queries and their 

PROGRAm representation. 

First query: 

'does exist a course offered by the department of mathematics 

such that every student majoring in math takes this course' 
' Here is this query presented as a iff formula of predicate logic: 

(viii) 3x3z V y[(DEPI'(~ ,x) /\ NAME(x,MATH) A MAJORS(x,y)):) 

(OFFERS(x,Z) TAKES(y,z))] 

Given below is an equivalent PRCXiRAPH formulatiai: 

14 
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'MATH" 

\ MAJORS / OFFERS / 

I 
;r 

NAME 

EXISTS 

I 
, I 

TAKES 

AHO 

Fig. 6 

Now we shall present a ~ · version of the formula {viii) with 

a secorxl and third quantifier reversed, so the prefix looks as follows: 

:9xVy3z and the matrix is unchanged. 

15 



'MATH" 
r===r-

OFFERS / 
i 

! 

! 
iAKES 

I 

♦ 

♦ 

ANO 

Fig. 7 

The reader is encouraged, to find how the reversal of qualifiers effects 

the changes in corresp:mding prographs. 

4. Conluding Ranarks. 

The presented results have a preliminary character, but in the 

author's opinion, leave no doubt that the appr~ch is worth p1rsuing. 

Since an experimental version of PROGRAPH is already functioning on a 

PERO graphics station we intend to use it for a thorough series of 

experiments with a variety of data base queries formulated in terms of 

16 



PROGRAPH. The next stage will be to introduce an interface with a 

PROLOG implementation (unfortunately such one is not, at present, 

available on PERQ). This can be achieved by establishing appropriate 

communicaticn with another computer or porting PRCX;RAm onto a computer 

system where PROIOO is available. Finally, we would like to experiment 

with the combinaticn of both as a uniform environment. 

17 
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Abstract 

R e 1 a t i o n a 1 D a t a B a s e s 
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Quinta da Torre 
2825 Monte da CaParica 

PORTUGAL 

We have developed a Seneral Purpose Prosram <written in 
Prolos) which uses information sathered interactively from the 
user to senerate specific menu based consultation Prosrams, 
tailored to suit the relational data base and access 
reauirements of each aPPlication. Every menu allows for auite 
Seneral relational aueries, comPrisins universal and 
existential auantifications, conJunctions, disJunctions, and 
nesation as non-provability. Some of the relational data base 
access concepts emPloYed concern imPlicit fields, special 
access Predicates, references to text strinss stored on disk, 
findins complete descriPtions from Partial ones, etc •• 

We claim the sreat usefulness of this Prosram: for those 
who have data to store and retrieve the onlY work is to Plan a 
relational data base; the consultation Prosram is almost 
instantl~ made. 

The use of Prolos was Paramount for the ease of desisn and 
imPlementation of this system. 



Introduction 

We have developed a Seneral PUrPose Pros ram (written in 
ProloS) which uses information sathered interactively from the 
user to senerate sPecific menu based consultation Prosrams, 
tailored to suit the relational data base and access 
rerauirements of each aPPlication. Every menu allows for auite 
seneral relational aueries, comPrisins universal and 
existential Quantifications, conJunctions, disJunctions, and 
nesation as non-provability. Some of the relational data base 
access concepts emPloYed concern imPlicit fields, special 
access Predicates, references to text strinss stored on disk, 
findins complete descriPtions from Partial ones, etc •• 

We claim the sreat usefulness of this prosram for 
who have data to store and retrieve the onlY work is to 
relational data base; the consultation Prosram is 
instantly made. 

those 
Plan a 
almost 

The use of Prolos was Paramount for the ease of desisn and 
implementation of this swstem. Indeed, Prolos as lansuase 
CW. Clocksin, c. Mellish 81] comPrises in itself relational 
aueries, and relational data bases are inherent to it. 
Additionallw, it incorporates a search stratesw for data 
retrieval, besides beins a Powerful swmbol maniPulatins 
lansuase on its own. Thus it is ideally suited for Piecewise 
Prosram Seneration this is so because Prolos clauses 
are extremely modular and need nol have any side-effects. 
ConseauentlY, the aPPlication dePendent clauses of the 
consultation Prosram are simPlY added to its aPPlication 
independent core. 

Furthermore, aueries are easily built alons successive menu 
steps because Prolos clauses do not have to return complete 
data structures, but mas cooperate instead to their successive 
refinement. 

The user relational data base is Just a Prolos subProsram, 
in the form of unit clauses, which is added to the 
consultation part. UPdatinS is simply Performed with an 
editor, which in some swstems may be called from within 
Prolos. The criticism that the address sPace Puts a limit on 
the data base size is waved in the 32-bit address machines. In 
smaller address space machines, one can set UP several Prolos 
Jobs to hold data base Parts, and have them communicate 
throush a messase aueue handler. We have done so on a 
PDP 11/23 runnins under RT11-XM. 



Basic Notions 

Data are SUPPlied, as in all relational data bases, as 
n-tuPles of arsuments of relations (or Predicates>, and stored 
as Prolos unit clauses. Each arsument (or field) has a meanins 
dependent on the Predicate and arsument Position. 

For Print out Purposes, a headins for each field is 
reouested from the user. The consultation Prosram assumes 
identical headinss correspond to similar fields, for all data 
base relations. 

A distinction is drawn between 'outPut-onl~' ·and 'both-wa~' 
arsuments: the forme~ are onlY used for output and cannot be 
instantiated in oueries, the latter can be used for data 
retrieval as well, and so can be instantiated in oue~ies. 

We have developed some optional features to increase data 
base compactness and imProve access. They are: 

- References to texts. Sometimes there are non
formatted informations that are best kePt as texts. We 
use fields of the form t( File, Number) to refer to 
a text under the Siven Number in the Siven File. Such 
fields are viewed as output-only and we have a special 
Predicate (in Prolos) to retrieve such texts. 

- ImPlicit fields. It is useful for derived infor
mation (imPlicit fields) to be built from actual 
fields of a data base Predicate, so as to avoid 
duplication. To this end we Provide two different 
imPlementations ♦ They should be chosen accordins to 
how often the derived information is reouired. For the 
imPlicit fields freouentlY used, an interface 
Predicate is created that calls the corresPondins data 
base one and builds all such fields. For infreouentlw 
used imPlicit fields, ancillary conditions are emPlow
ed to define them. Each such condition is only 
activated whenever the corresPondent imPlicit field is 
reouired. A data base Predicate maY be ausmented with 
both kinds of imPlicit fields. 

- Special access Predicates. Information maY need some 
PreProcessinS before beins output or retrieved from an 
exPlicit or imPlicit field+ We tackle this bY allowins 
special user defined Predicates to be called when 
accessins such fields. As an examPle consider the case 
of lists. One may be interested in obtainins not a 
list but one of its elements; Pretty-printins may also 
be reauired. 



To build a GuerY one needs to know the tYPe of operation 
envisased, the losical connectives and predicates involved, as 
well as a specification of which fields have an inPut value 
imPosed and which are to be out2ut. Additionally, a reauest 
can be made for similar fields to hold the same value, or for 
a set of answers to be Partitioned relative to the different 
values of one or more fields. 

The first menu Presented to the user offers 
Guantifier/operations as well as calls to 
independent from the consultation prosram Proper 
that finds comPlete desisnations from Partial 
'oracle'). ExamPles of auantifiers are 

one all how manw 

and of oPerations on numeric fields are 

a choice of 
subProsrams 

Ce.s. the one 
ones the 

sum mean least value sreatest value 

Next, for describins the information in auestion, the user 
is Presented, in a first stase, with two more menus. One 
allows the choice of a data base predicate (or interface 
Predicate if anw), and of a combination of its fields and 
their mode of access. Another menu follows, to select between 
launchins the auerw to obtain an answer (the specification is 
assumed comPlete) or to connect the Partial specifification to 
what follows with an and/ andnot /or/ ornot operator. The 
completion of the specification is then resumed from the first 
stase. 

The specification of anw field maw be a combination of four 
modes : 

- a value is inPut 

- a value is to be output 

- output is to be srouPed accordinS to its different 
values 

- the information in this field must match the 
information in similar field(s) (i.e., 
identical output headinss> occurins in 
already incorporated in the auerY 

those with 
Predicates 

All non-contradictory combinations of these can be 
the consultation Prosram reJectinS anY inconsistency 
course one cannot sive two different values to be 

made, 
of 

matched 



simultaneouslw, but can Sive a value and ask it to be outPut 
as well. OutPut-onlw fields, too, cannot be inPut a value. 

The followins section 
features. 

A Consultation Prosram 

thoroushlw examPlifies these 

We now describe in some detail a real data base swstem made 
under a contract with JNICT - 'Junta Nacional de Investisacao 
Cientifica e Tecnolosica' <National Science and Technolosw 
Research Council) - reSardins data on FACC - 'Fundo de APoio 
'a Comunidade Cientifica' (Scientific Communitw Support Fund) 
- concernins research centers (about 200), their orsanics Cone 
Per center and Per wear), and aPPlications for fundins (about 
500 Per Year) CL. Moniz Pereira, M. Filsueiras 82J. 

The extensional data base Predicates were desisned as 
follows : 

center( Number_c, Initials, Sector, District, Info_c) 

orsanic(Number_c, Year, Director_Title, Director_Name, Info_o) 

aPPlication( Number_c, TwPe, Year, Item, Researchers, 
Value_aPPlied, Value_sranted, Process-no, Status) 

where Number_c is the center humber, and Info_c, Info_o 
and Item are references to texts on disk, containins inform
ation about the center, the orsanic and the item(ns) refered 
in the aPPlication, respectively. Three sPeci•l features were 
used: 

- center name: this was made an imPlicit field of the 
data base Predicate center, and was defined as a 
reference to text with the form t( cent, Number_c ). 
We used an interface Predicate to imPlement it thoush 
the use of an ancillarw condition would be more 
efficient as the field is an outPut-onlw one and not 
so often used 

- director name: for outPut we built another imPlicit 
field of the form Director_title: Director_name 
(where •:• is an infix operator) imPlemented throush 
an ancillary condition 

- researchers : this field is either O (zero 
researchers involved or unknown), or of the 

: no 
form 



N1+N2+ ••• <'+' beins another infix operator) where 
N1, N2, ••• are researcher numbers. When retrievins 
the aPPlications a siven researcher is involved in, we 
want to find fields containins his number. When output 
is wanted from this field, we do not want numbers but 
names, so we build a list of references to texts that 
have the form t( researcher, N ). AccordinSlY, we 
use two special Predicates to access the field, one 
for when it is inPut, the other for when it must be 
output. 

We illustrate the consultation Prosram with a small 
ficticious data base. In the Protocol below, user answers 
follow the PromPt •:• and commentary comes between braces. 

{ the first menu is} 

one) all) how)manw s)um m)ean s>reatest l)east o)racle bye 
: one 

a)PPlication c)enter o>rsanic . ~ 
• 0 

{ sive me one} 

error 
{application} 

n)umber_c t)wPe w)ear 
vs)ranted 

i)tem r)esearchers 
va)PPlied 

: n 61 
P)rocess_no s)tatus all)fields ! error 

: Y 1980 
: va1 
: vs1 
• + 

a)nswer and andn)ot or orn)ot error 
: a 

value_sranted 
value_aPPlied 

25 
25 

{ no. of center 61 
in the year 1980, 
the value aPPlied, 
the value sranted, 
and nothins else} 

{answer} 

{ return to the initial situation after the answer} 

one) all) how)manw s)um m)ean s)reatest l)east o)racle bwe 
: 0 

{ the oracle obtains a complete desisnation of one or more 
researchers or centers as desired, whose Partial desisnation 
is known} 



, I 
l I: 

I 

I I 
' ' 

I I 

! I 

I I 
, I 

I j 
: i 

r)esearchers c)enters 
: C 

write in one line onl\:I the Partial desisnation \:IOU know 
and capitalize Proper and common names; 
the usual abreviations are allowed if ended with a dot. 
t c. de Informatica 

identification no. 61 
Centro de Informatica Universidade Nova de Lisboa 

.3iS 

m)ore a)nother 
: m 

{ here one ma~ reauest comPlete 
desisnations for the same Partial one, 
or sUPPl~ another Partial desisnation, 
or(!) terminate} 

unknown 

r)esearchers c)enters 
: ! 

< consultation ends and the s~stem 
returns to the initial situation} 

{ sive me all about an aPPlication from center no. 61} 

one) all> how)man\:I s>um m)ean s)reatest l)east o)racle 
: one 

a)PPlication c)enter o>rsanic 
: a 

error 

n>umber_c t)~pe \:l)ear i)tem r)esearchers 
va)PPlied vs)ranted p)rocess_no s)tatus all)fields ! ·error 

: n 61 
: all 
• • 
a)nswer 
• • a 

number_c 
t~Pe 
\:lear 
item 

and 

researchers 
value_aPPlied 
value_sranted 
Process-no 
status 

andn)ot or orn)ot error 

61 
2 
1980 
visit of David Warren 
Luis Moniz Pereira 
25 
25 
347 
ok 



346 

{ how many are the applications?} 

one) all) how)manY •>um m)ean s>reatest l)east o>racle bye 
: how 

a)PPlication c>enter o)rsanic 
: a 

error 

{ a ! would return the system to the initial situation} 

n)umber_c t)ype y)ear 
va)PPlied vs>ranted 

i)tem r)esearchers 
p)rocess-no s)tatus all)fields 

: ! 
{ no further sPecification is intended; 

! is Siven since the specification has ended} 

a)nswer and andn)ot or orn)ot error 
: a 

n•Jmber 21 

error 

one) all) how)manY s)um m)ean s)reatest l)east o)racle bye 
: all { Sive me for all} 

a)PPlication c)enter o)rsanic error 
: C {centers} 

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me 

: n'l' 
• . 'i' 
• l . 

{ their number and 
their initials, 

all)fields error 

: d* srouPins them by district <*>} 
• • 
a)nswer and andn)ot or orn)ot error 
: a 

initials-number_c bY district 
* lisboa : 

ciPd 76 
SPb 19 

* Porto • + 

SPO '40 
deafeuP 44 

is 206 
SPCV 20 

cemup 15 

SPIT! 7 

••• 

demfeuP 11 



{ Sive me, for all centers, their na~e, 
srouPins them b~ district and b~ sector} 

one) all) how)man~ s)um m)ean S)reatest l)east o)racle 
: all 

a)PPlication c)enter o)rsanic 
t C 

error 

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me 

error 

all)fields error 
t na1 
ts* 
: d* 
• • 
a)nswer and andn)ot or orn)ot error 
t a 

name bw seetor-district 
* lisboa iPsfl : 

Centro de Informatica e Pesauisa Para o Desenvolvimento 
Instituto de Soldadura 
Sociedade Portusuesa de Matematica 

* Porto iPsfl ♦ • 

Sociedade Portusuesa de Ornitolosia 

* lisboa sovernment ♦ • 

Direccao-Geral do Saneamento Basico 

* lisboa ensino_inic ♦ • 

, ~: Centro de Fisica Nuclear da Universidade de Lisboa 
Centro de Informatica Universidade Nova de Lisboa 

* Porto ensino_inic 
i 

♦ • 

i Centro de Ensenharia Mecanica da Universidade do Porto 

* lisboa ensino ♦ • 

DePartamento de Estudos Classicos 

* Porto ensino • • 
DePartamento de Ensenharia Mecanica 

da Faculdade de Ensenharia da Universidade do Porto 
DePartamento de Ensenharia Quimica 

da Faculdade de Ensenharia da Universidade do Porto 
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one) all) how)man~ s)um m)ean S)reatest l)east o)racle b~e 
: s { Sive me the sreatest value} 

a)PPlication c)enter o)rsanic error 
: a { in an aPPlication} 

n)umber_c 
va)PPlied 

: ~ 1980 
: vs? 
• • 

t)~Pe ~)ear i>tem r)esearchers 
vs)ranted p)rocess_no s)tatus all)fields 

{ for the Year 1980 
that was Sranted} 

a)nswer and andn)ot or orn)ot error 
: a 

sreatest value_sranted 400 

error 

{ Sive me, for all aPPlications, the item and the center name 
SrouPed by district} 

one) all) ho~)man~ s)um m)ean S)reatest l)east o)racle bYe 
: all 

a)PPlication c)enter o)rsanic 
t a 

error 

n)umber_c t)ype y)ear 
va)PPlied vs)ranted 

• . ? 
• l . 
• • ! 

i)tem r)esearchers 
p)rocess_no s)tatus all)fields error 

{ to refer the name and the district one needs to consider the 
center ; to do so, a conJunction is made of the Previous 
Partial reauest with an additional specification} 

a)hswer and andn)ot or orn)ot error 
t and 

a)PPlication c)enter o>rsanic 
t C 

error 

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me 

• n= • 
• na'? • 
• d* • 
• • 

all)fields error 
{ it is necessary that the center to which we refer 
now be the same center assumed in the specification 
of the application ; thus then= ; = allows in 
in seneral to link amons themselves successive 
Partial specifications} 



a)nswer and andn)ot or orn)ot error 
: a 

item-name bw district 
* Porto : 

Varian twPe atomic absortion esPectrofotometer 
DePartamento de Ensenharia Quimica 

da Faculdade de Ensenharia da Universidade do Porto 

fundins of non-Profitable Private institution 
Sociedade Portusuesa de Ornitolosia 

* lisboa + • 

fundins of non-Profitable Private institution 
Centro de Informacao e Pesauisa Para o Desenvolvimento 

visit of Dr. Fullwear to Alcabidexe 
Institute de Soldadura 

fundins of non-Profitable Private institution 
Sociedade Portusuesa de Matematica 

+ • • 

{ sive me all about everw center not in the district of Lisbon} 

one) all> how)manw s)um m)ean s>reatest l)east o)racle bwe 
: all 

a)PPlication c)enter o)rsanic ! error 
: a • 

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me 

: all 
• .. 

all)fields error 

a)nswer and andn)ot or orn)ot error 
: andn { here the Partial specification is comPleted with the 

nesation of a conJuncted additional specification 
andn; it is also Possible to continue with an 
alternative or or with a nesated alternative orn} 

a)PPlication c)enter o>rsanic 
: C 

error 

n)umber_c i)nitials s)ector d)istrict in)fo_c na)me 

: n= 
: d lisboa 
+ • 

all)fields error 
{ the center is the s~me} 



a)nswer and andn)ot or orn)ot error 
: a 

number_c - initials - sector - district - info_c - name 

40 sPo iPsfl Porto address! 
Sociedade Portusuesa de Ornitolosia 

15 cemuP ensino_inic Porto address2 
Centro de Ensenharia Mecanica da Universidade do Porto 

11 demfeuP ensino Porto address3 
DePartamento de Ensenharia Mecanica 

da Faculdade de Ensenharia da Universidade do Porto 

44 deafeuP ensino Porto address3 
Departamento de Ensenharia Quimica 

da Faculdade de Ensenharia da Universidade do Porto 

{ Sive me all about each orsanic in 1980} 

~00 

one) all) how)man~ s)um m)ean s>reatest l)east o)racle b~e 
: all 

a)PPlication c)enter o)rsanic 
: 0 

error 

n>umber_c ~)ear dt)itle dn)ame i)nfo_o d)irector 
all)fields ! error 

: all 
: Y 1980 
♦ • 

a)nswer and andn)ot or orn)ot error 
: a 

number_c - ~ear - info_o - director 

11 1980 info! Prof:Vasco Sa 
61 1980 info2 Prof:Candido Marciano da Silva 

one) all) how)man~ s)um m)ean s>reatest l)east o)racle b~e 
: how 

a)PPlication c)enter o)rsanic ! error 
: error { "how• was not intended ; the Prosram is 

[EXECUTION ABORTEDJ automatically restarted after an error} 
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one) all) how)manY s)um m)ean s)reatest l)east o)racle bye 
: ho 
what T < ho is not an oPtion} 

: 0 

r>esearchers c)enters 
: r 

write in one line only the Partial desisnation you know 
and capitalize Proper and common names; 
the usual abreviations are allowed if ended with a dot. 
: Guedes 

identification no. 1 
Dr Joao Guedes de Carvalho 44 

m)ore a)nother 
: m 

identification no. 2 
Dr Rodriso Guedes de Carvalho 44 

m>ore 
: ! 

a)nother 
< .return to the initial situation} 

one> all) how>many s)um m)ean s)reatest l)east o)racle bye 
< exit from Prosram} 

BYe ! 

Generatins Consultation Prosrams 

The consultation Prosram described in the last section was 
desisned from scratch, imPlemented and thoroushlY tested in a 
man-month on a PDP-11/23 with 128KB central memory and 2 
floPPY-disks (RX02). Soon it was felt that a 
'meta-consultation Prosram' was within· reach and would be 
extremely useful. In fact the data base dependent sections of 
the consultation Prosram were easily set apart, and Provision 
was made to senerate these sections from answers caJoled from 
the user about his data base. In some 6 man-days the senerat
ins Prosram in Prolos was finished and tested. 

It is our strons conviction that all this was onlY Possible 
throush the use of Prolos. 

Generated Prosrams are concise (contain exactly what is 
needed to imPlement the featur~s selected by the user) and to 



some extent are Protected from errors (e.s. duplicate names). 
Obviously, the user must Provide any Prolos subProsram or 
special access Predicate alluded to when seneratins the 
consultation Prosram. 

Below, we Present a sample session with the Seneratins 
Prosram, resardins the consultation ProSram of the Previous 
section. Asain we use 't' to Prompt the user. 

Hello ! 
In case you have anY doubt tYPe 'T' for help. 

output file T:? 
Please Sive the name of the file where the consultation 

Prosram is soins to be written to. 
output file T : face 

data base file T: nucl 

Password - •no• if none T : xxx 

do you need intesers sreater than 16383 T : Yeah 
acceptable answers - CYes,noJ 
do you need intesers sreater than 16383 T : Yes 

Now, some auestions concernins auantifiers and subProSrams 
called from the 1st menu of the access Prosram. 

do YOU need arithmetic T : yes 
Which of the followinS do you need -

sum T: yes 
mean T : Yes 
Sreatest value T: Yes 
least value T: Yes 
do you need other functions T : no 

are there references to texts in the data base T: yes 
do You want to include an 'oracle' T:? 
The oracle is a subProSram that finds complete desisnations 

from Partial ones. The complete desisnations should be 
srouPed into different files accordins to their mean
inss - for instance, names of People, orsanizations. 

do you want to include an 'oracle' T: yes 

mnemonic for srouP of desisnations T: c 
rest of name T : enters 
file containins this srouP T : cent 

more sroups T : yes 



I , : 

I 

'I 

mnemonic for SrouP of desisnations 7: r 
rest of name 7: esearchers 
file containins this srouP 1: researcher 

more srouPs 1: no 

do YOU want to make calls to other subProsrams 7: no 

Questions concernins data base Predicates, their fields and 
access to them -

mnemonic for data base Predicate 1: c 
rest of name 1: enter 

Predicate name 1: dbase 
Predicate name already in use; try another 
Predicate name 1: center 

no. of exPlicit fields for this Predicate 1: 5 

do YOU want an interface Predicate for this db one 7 t ~es 

name of the interface Predicate 1: cent 

no. of imPlicit fields created by this interface 1: 1 

an imPlicit field is V6 
what is the Prolos condition for it - do not use blanks - 1 
: V6=t(cent,V1) 
V6=t(cent,V1) ok 1: ~es 

mnemonic for Predicate field 1 : n 
rest of name 1: umber_c 
headins for output 1: number_c 
a normal field 1: 1 
A normal field is a both-way field that needs no sPecial 

Predicates to be accessed. 
a normal field 1: ~es 

mnemonic for Predicate field 1: n 
field mnemonic already in use; try another 
mnemonic for Predicate field 1: i 
rest of name 1: nitials 
headins for output 1: initials 
a normal field 1: ~es 

mnemonic for Predicate field 1 + s • 
rest of name 1 • ector • 
headins for output 1 + sector • 

normal field 1 • ~es a • 

mnemonic for Predicate field 1 • d • 
rest of name 1 • istrict • 



headins for output ? • . . 
a normal field?: no 
a both-wa~ field: no 

district 

an outPut onl~ field? : Yes 
access b~ special Predicate? : no 

mnemonic for Predicate field 
rest of name 1 • fo_c • 
headins for outPut 1 • info_c • 
a normal field 1 • Yes • 

mnemonic for Predicate field 
rest of name? : me 
headins for outPut T : name_c 
a normal field?: no 
a both-wa~ field: no 

1 • in • 

1 • na + 

an output only field?: Yes 
access b~ special Predicate? : no 

an~ imPlicit field created b~ ancillar~ conditions? : no 

more data base Predicates?: Yes 

mnemonic for data base Predicate T : o 
rest of name T: rsanic 
Predicate name T: orsanic 

no. of exPlicit fields for this Predicate?: 5 

do ~ou want an interface Predicate for this db one T: no 

mnemonic for Predicate field? : n 
rest of name T: umber_c 
headins for output?: number_c 
a normal field?: Yes 

mnemonic for Predicate field?: Y 
rest of name?: ear 
headins for output?: Year 
a normal field?: ~es 

mnemonic for Predicate field T: dt 
rest of name?: itle 
headins for output?:* 
a normal field?: no 
a both-way field: no 
an output onl~ field?: no 
access b~ special Predicate T: no 

mnemonic for Predicate field T: dn 
rest of name?: ame 
headins for outPut T: * 
a normal field? : no 
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a both-way field 1: no 
an outPut only field 1: no 
access by sPecial Predicate 1: no 

mnemonic ~or predica~e fie1d?; i 
rest of name T: nfo_o 
headins for output T: info_o 
a normal field 1: no 
a both-way field 1: no 
outPut onlY field 1: ~es 
access bY sPecial Predicate 1: no 

any imPlicit field created bY ancillary conditions T: ~es 

mnemonic for field created b~ an ancillar~ condition?: d 
rest of name T: irector 
headins for output 1: director 

result is V6 
what is the ancillar~ condition - do not use blanks - 1 
: V6=V3tV4 
V6=V3tV4 ok 1: ~es 

more ancillar~ conditions 1: no 

more data base Predicates T : ~es 

mnemonic for data base Predicate 1: a 
rest of name 1: PPlication 
Predicate name T: aPPlication 

no. of exPlicit fields for this Predicate 1: 9 

do ~ou want an interface Predicate for this db one 1: no 

mnemonic for Predicate field 1: n 
rest of name 1: umber_c 
headins for output?: number_c 
a normal field T: ~es 

mnemonic for Predicate field 1 + t + 

rest of name T + ~Pe • 
headins for outPut 1 • t~Pe • 
a normal field 1 • ~es • 
mnemonic for Predicate field T • i • 
rest of name 1 • tem • 
headins for output 1 • item • 
a normal field 1 • no • 

both-wa~ field 1 + a • no 
an output onl~ field 1 • ~es • 
access b~ special Predicate T + no • 
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mnemonic for Predicate field? : r 
rest of name? : esearchers 
headins for output?: researchers 
a normal field?: no 
a both-wa~ field? : Yes 
access b~.sPecial Predicate? : Yes 
when a value is inPut?: Yes 

if inPut value is V and field value is V4 
what is the Prolos condition - do not use blanks - T 
: res_in(V,V4) 
res_in<V,V4) ok T : Yes 

and when a value is output T : Yes 

if output value is X4 and field value is V4 
what is the Prolos condition - do not use blanks - T 
: res_names(V4,X4) 
res_names(V4,X4} ok T : yes 

mnemonic for Predicate field?: va 
rest of name T : PPlied 
headinS for output T : value_aPPlied 
a normal field? : Yes 

mnemonic for predicate field? : vs 
rest of name?: ranted 
headins for outPut? : value_sranted 
a normal field?: Yes 

mnemonic for predicate field T: P 
rest of name?: rocess_no 
headins for output?: Process_no 
a normal field T: ~es 

mnemonic for Predicate field? : s 
rest of name T: tatus 
headins for output T: status 
a normal field T: Yes 

an~ imPlicit field created b~ ancillar~ conditions T: no 

more data base Predicates ? • . . no 

Your consultation Prosram is in file face 
Don't forset aPPendins to it the definitions of the special access 

Predicates ~ou mentioned here. 
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Conclusions 

Prolos is an excellent unrivaled lansuase for this tYPe of 
aPPlication, but there is still room for imProvement throush 
research. In Particular, larse data bases reauire more 
indexins facilities, and multi-user access with on-line 
uPdatins Poses special Protection Problems. ImPosins intesritY 
constraints is also besinnins to be explored in the context of 
losic Prosrammins. Query Plannins and more int4isent access 
mechanisms in Seneral are also in order. 
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ABSTRACT 

'lllis paper describes a way of buildin;J an intelligent interface 
between a huna.n am a canputer. We first examine the ma.in 
characteristics of such a systen £ran three points of viEM: the user, 
the expert in the definition of appl icatioos am the canputer 
scientist. Qir job is to fim an appropriate fonnalisn that can 
describe the different aspects of our systen: natural language 
understandi?:g, knailedge representation, explanation and caitrol 
mechanisns, plan generation, relational databases am meta-knc:wledge 
representation. Finally, ~ cx:>nclude by p:>inti?:g rut sane remaining' 
problems that will require additiormal basic researdl. 

'llle job described here has been implanentai in PROIOG caiputi?:g 
language en the CII HB 68 of the IRISA. Qir assistant interfaces an 
application, called Cigare, W'lOSe role is to help :pecple in sched.ulin;J 

· meeti?:gs. 

15eWros: Office autanation, kncwlaige representation, natural 
la?:gUage, relational databases am cognitive IOOdelin;J. 

1 INrroDUCrION . . 
' IJhe close -incera.ctionsbetween the fields of canputer science am 

oognitive psychology have given rise to what is generally known as 
hu-nan info:rna.tion processi?:g ncdels of cognitive processes. In this 
paper, ~ describe an intelligent interface between a h\Jl1an am a 
specialized cx:nputer (such as: text-editor, interactive queey systen, 
electronic-ma.il, ••• } • We call this interface a user assistant. Its 
role is to be an expert of the functions of the application to which it 
is connectai am to provide a friendly environnent to :pecple who wish 
to use this application.In this job,we look on our assistant fran three 
points of view: 

-the user's p:,int of viEM. He uses the application via the 
interface. Veey often, he is not a canputer professional. 



-the cx:mputer scientist' s point of viar,. Its role is to build a 
man-na.dline interface adaptable to varirus kinis of applications. 

-the expert's !X)int of viar,. An expert is a specialist in the 
definition of applications. His task is to s~cify to the assistant the 
different parameters of the application he wants to interface. 

In the next section, our purpose is to gather sane of the ItDSt 
interest.in3 characteristics a hunan-canputer interface must have, fran 
the user• s !X)int of viar,. In section 3, we take up the expert position 
and we describe what structures are necessary so as to enable the expert 
to describe prc:perly the different aspects of the application he wants to 
interface. Finally, in section 4, we describe the ma.in problems the 
carputer scientist is ex>nfronted to. 

'lllis job is an attempt to fonnalize · aIXi to solve sane of the 
proble:ns we have met in rur investigations. We don't claim to solve al 1 
the diffia.uties and we think that a lot of basic research rana.ins to be 
done. 

2 A FRIENDLY INTERFACE FOR USERS 

With the help of psychologists and application builders, we have 
brrught rut sane of the ma.in prc:perties an intelligent interface must 
have (11): 

2.1_ Understaming the User's Requests: 

Interactin.;J with a canputer in a "natural" way is much more 
perceived as "user frienily". In fact, it will be always necessary for 
users to make the effort of leamir.g what a system is capable of doir.g, 
but natural language 'NOuld mirumize the efforts of lea.ming how to make 
the system do it. In addition, natural lar.guage allows a casual user to 
use nore advanced capabilities of a system with::)ut kncwing the exact 
came.ms. ait, as yet, due to the vast atnmt of infonnation to store, 
the data.in of the disCOJrse has to be highly restricted. 'llle assistant 
has, in fact, to know far more than the syntactic rules that allow 
translating natural language into a fonnal representation (cf. section 
4) • In order to avoid frustatin,;J the user, the datain of the discourse 
has to be carefully stuiied for the assistant can understan::1 
.imrtediately nost of the iq>uts aIXi the rest after one or two rephrasings. 

In other respects, sane experiences have sh:Jwn that when users have 
sate difficulties to express a request (especially a request for help), 
the best solution is that the assistant provides them with a menu driven 
dialog. H:,,,.rever, this menu driven dialog has to be carefully stu:lied in 
order to take into acccunt the ma.in problems a user can meet. 

When the user expresses himself in. a "natural" way, most of his 
requests will not ex>rresp:mi exactly to the input fonns of the service 
actions. 'lhe user assistant must therefore have the capability of 
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nappi03 a given request into the apprcpriate canman:is of the seIVice that 
fulfil that request. 

It is also .inportant that the assistant generates 
what it has llllderstood in a request and that 
ackncwledgement fran its user before it sen:is a 
application. 

2.2_ Resp:,ndi19 Intelligently to the User's Inquiries: 

a paraphrase of 
it waits for an 
canrran:i to the 

In order to be really friendly arrl helpful, the assistant must be 
able to answer questions abc:ut: 

-infonnationsthe user has already submitted, 
-the current state of tne application; 
-the lin.:,uistic canpetence of the assistant (\'vOrds or granrca.tical 

structures it knews). The user may ask for exenples of sentences the 
assistant can parse. 

-hew to perfonn a given task, 
-which tasks the user may perfonn at that precise rrarent, 
-why he can't perfonn a task, 
-why arrl hew the assistant has made sane deductions (ex: hc:M it has 

solved unkncwn references). 
In the answer of the assistant, a recall of the question has to be 
mentionned so as to ensure the user that the assistant has l.mderstocx:1 
prcperly his question. 

2.3 Detecti03 User's Failures arrl Ma.kin;J Explicit the Systen Limits: 

Ibth the user an:i the assistant may fail for various reasons. We 
differentiate two types of failures: input an:i m:::>del failures. Input 
failures are due en the cne harrl to gramm.tical arrl sanantic mistakes 
fran the user arrl on the other hand to lin.:,uistic structures the 
assistant doesn't knew arrl to misperception of a \'vOrd when using voau 
tennina.ls. M:>del failures are due to tre user's ignorance or bad 
understandi.03 of sane aspects of the application. 

'!he assistant has to detect these failures arrl to pr01Tide 
explanations to its user. Concerni03 input failures, the assistant has 
to p,int rut unkncwn words, sarantic incompatibilities an:i sentenc:-e 
structures it can't parse. \'hen it meets an unkncwn word in a sentence, 
it ItUst try to deduce the rreanin;J of this -word fran the renain:ier of the 
sentence. If it succeeds, it has then to ask the user for a 
confinnation. Concerning nodel failures, it must p:,int out false 
presupp::>sitions, ina::tI1?lete requests an:i unkncwn actions to the 
application. It must be really infonnative (but not too talkative 1), 
shewing clearly arrl explicitly why it cannot accept a request. It must 
prOITide explanations, exatples arrl alternatives or restatenents. 

2.4_Acquirim kncwledge: 
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'lhe user assistant is particular to a user. Consequently, it nust 
be a::laptable to his sensibility and habits. It nust be able to learn 
sane new infomation, so as: 

-to increase its liIJ;JUistic cacpetence. Olr assistant can learn new 
syn0¥N3 of w::>rds that it already kncws. 'lhe user as just to declare: ''X 
is a syn~ of Y" • We think that the acquisition of new w::>nis and new 
gramra.tical structures has to be done by a hunan expert in liIJ;JUistics 
because ItDSt of the users have not the required cx:mpetence to perfann 
this task. 

-to take into aca:,unt behavia.Jr specifications, in 0rc1..er to avoid 
disturbance to its user. 'lhe user may give inst.ructions to its 
assistant, such as "My neetin3salways take place in roan no 210. 11 • 'lhey 
play the role of default cptions. 

3 ROLE OF THE EXPERr 

'lhe assistant, ag:,lication indepeooant, is wilt by a canputer 
scientist. To interface a given application, sane parameters of the 
assistant have then to be instantiated,'lhis is the role of the expert. 
The tINo na.in classes of pa.raneters are the li03Uistic parameters and the 
pa.rcmeters that describe the functions of the ag:,lication. The 
specification of these parameters is done via a specific laIJ;JUage. 

3.1_ The Linpistic Paraneters: 

In the previc:us section, \-.le have explainai that the , datiain of the 
discc:urse has to be restricted. Consequently, it is not possible to 
store in oor assistant, once for ever, all the vocarula.ry of a given 
laIJ;JUage. 'lhat :rreans . that the expert will have to fi.na , for each 
application to interface, all the required vocabulary so as to allOW' the 
user to express h:imself in natural laIJ;JUage with sufficiently varic:us 
expressions. Some w::>nis, 'such as articles and prepositions are CClmlDn to 
all the applications rut nost of the ""°rds are application depen:iant. In 
order to limit the job .of the user, it is useful to :inplenent in the 
assistant, once for ever, a set of rules that describe the various 
nD:r::pb:>logies (plural, feminine, conjugation fonns ••• ) of any given \t,'Onl. 
So, the expert has only to specify the infinitive form of verts, the 
mas0.1lin siIJ;J\llar of adjectives, etc... Ebr each of these ""°rds, the 
expert has to give: 

-the syntactic category of the ""°ro (noon, verb ••• ) , 
-if this \e.Oni accepts canplements. 

This last point leads us to introduce senantic features so as to enable 
the expert to precise what kini of ccmplement is acceptable. As we are 
concerned by a sna.11 subset of natural larguage, it is possible to define 
semantic categories in a finite number and to include each ""°ro in, at 
least, one of these categories. We think that these categories are 
limited to the set of categories of objects on which the application 
operates (hunan, time, place ••• ) • Finally, the structr..1...-re of a lexical 



itan is can!X)sed of: 
-a 'WOrd, 
-a syntactic feature (nam, verb, •.• ), 
-a sanantic feature, linked to the word itself (except for verbs 

whe...re this feature is the feature of an acceptable subject), 
-a list of sanantic features of acceptable canplerents, with the 

preposition that introduce than. 
Exanple: 
WOID(assanbly,nam,meeting, (of,hunan). (of,place) .nil). 

'!he rules that describe the grammatical structures are application 
independant. '!he nain rules are implenented in the assistant once for 
ever. H::Mever, we think it is :important t0 allow the expert to add new 
grarmatical structures and descriptions of idiana.tic expressions. 'Ibis 
can be done via a specific larl3'uage [ 6]. 

3.2_ The Description Of The Application: 

'Ihe expert describes a m::xiel of the application to the assistant. 
The first goal of this description is to make the assistant "understand" 
the kirrl of request the user has submitted. 'Ihe secorrl role is to enable 
the assistant to help the user. 'Ihe word "understand" means, here, to 
firrl the exact meaning of a request with regard to the functions of the 
application. It also rreans to verify if this request is possible 
con.siderin; the previais actions the user has perfonned am the data 
transmitta:1 by the application. 

'lb rrodel an application, the first task is to decanpose it into 
basic actions. An action will be identified by a set of significant 
patterns to firrl in the aitput fonn produced fran the user's request. 
Next, it is necessary to describe the corrlitions under 'Which an action 
may be perfonned. These corrli tions express that, previaisly, sane 
actions rrust have (or mist not have) been perfonned by the user arrl (or) 
sore infonnation nust have (or rrust not have) been transmitted by the 
application. 'lhese infonnation are the result of the user's actions or 
the result of other useri s actions in the case of multi-users 
applications. Finally, for each action, an exhaustive list of tasks the 
assistant has to do is described in tenns of infonna.tion to add to a 
contextual database and camarrls to send to the application.A rule that 
describes a basic action of. an application is of trie fonn : 
RUIE(<identification>, 

<list of patterns to firrl in the request>, 
<ccnditions >, 
<inforrcation to add to the contextual database>. 
<camarrls to send to the application> ) • 

4 ARCHI~RE OF THE SYSTEM : THE COMPUI'ER SCIENTISI' POINI' OF VIEl'l. 

'Ihe job of the canputer scientist is to build a systan that takes 



into account both the different parameters specified by the expert and 
the huna.n-crnputer interactions oonstraints \t.e have point out in sectwn 
2. In this sectwn, \t.e first examine the lirguistic eatp0nent ani next 
see hJw the request is interpreted. Finally, w1e explain hew the 
assistant can provide help to its user. 

We first assume that the hunan and the machine interact in a way 
that can be described by a prcxiuction systan. Indeed, w1e think that the 
fonna.lisn of production systems arrl logic is a gocrl fonnalisn that has 
been really successful in providing insights in both theoretical and 
practical aspects of ccrrputing science. '!hen, \t.e have to specify: 

-A general structure to describe the rules of this prcxiuction 
systan, 

-the process by which rules are selected for execution, am hew to 
express it, 

-the structure of the info:ona.tion utilized by the rules, 
-hew the infonnation reflects the current state of the kno,iledge on 

which the systan q:>erates, 
-the q:>eratwns on the rules (rcodifications, •••• ) • 

Figure l sh:Jws the overall structure of a user assistant: 
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'lhe goal of the lin:;JUistic canponent is to generate a foi:mal 
representation of the meanirg of the natural larguage sentences of the 
user. Actually, there exist na.ny varicus ways to represent fo:ona.lly a 



natural larguage sentence. We think that the fonnalisn adcpted arrl 
described by [6], [8] and [17] is very '.I.ell adaoterl to our problem. In 
this fonnalism, the stooy of determiners have been looked at in detail so as 
to refine the range of quantifiers. In ad.di tion, sane tools have been 
added so as to represent better sane structures such as questions 
beginirg by : vhy, H::1.v many, Ib.v rruch ar.d. the expression of time. '!his 
representation is in higher level logical fo:rm. For instance, the question 

''Who are the i:articipants of the meetin:J A ? " 
has the followir:g forn:al representation : 
QUESI'ICN(SEI'-OF(x),. meetins 1A) .particip:tnt-of(x,A)) 

Olr p:rrser is canposed of two ent;ities: a lexicon arrl a set of rules 
that describe the grarmatical structures of ·french. We think that it is 
important that these rules may also be appliei backward, for sentence 
synthesis. In fact, a lot of job remains to be done abcut this prd:>lem. 
The rrain problem:. \\e are ccnfronted to about sentence synthesis is that 
we must specify all the syntactic constraints, so as to have a 
correct rutput, arrl to ensure ourselves that all the information the 
logical fonn contains has teen synthetised in a correct way. 

In rur system, a sentence is parsed by a grannar where: 
(1) 'lhe axions are a finite set of nodes : 

imperative •••• 
declarative, 

(2) The non-terminal symbols (SN, 'EN, Verb ••• ) have the general 
fonn: · 
X(<syntactic features>,<satantic feature>,<fonnal representation>) 

The syntactic features (gender & number) arrl the satantic feature (hunan, 
place, ••• ) are the features that result of the parse of the sentence 
substructure represented by X. 

(3) The terminal symbols, that are the lexical items. 
(4) The rules, that have the fonn: · 

X(l(SY~., ••• SY,L-),g(S~, ••• SE;c,} ,h(F,, ••• F-')) -> 
y~ (SY4; I SE-1 ,F~) • • • • • Yi. {SY_i I SE,i, F .c-> 

are applicable iff sl(SY4;, ••• SY"-) and s2(SE-t, ••• SE_:v are true. Where: 
- SY stands for the syntactic features, _ 
- SE stands for the semantic feature, 
- F for the fonnal representation of a substructure of a sentence. 
sl and s2 are functions that express coniitions, such as 

patten1-rre.tchir:g, between features that cane fran each non terminal 
symbol an the right part an the rule. 1 and g are functions that 
describe lUN to mild the syntactic arrl semantic features of the non 
temtl.na.l symbol on the left part of the rule fran the features on the 
right part of that rule. f describes row to build the fonnal 
representation of the sub-expression parse::!. by the rule. 'lhe main 
problem is that the meanir:g of a canplex expression has to deperrl only on 
the rceanir:g of its subexpressions. Every \I.ell fonned subexpression is 
then considered as a unit of meanirg that can be inte;rated in a laxger 
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expression. 

Finally, the lexicon and the rules of the parser are considered as a 
database so as to enable the system to give infonnation aba.lt its 
llll3'llistic cx::rrpetence (cf. the nice job referred in (14]). 'lbis 
structure also allows us to implement procedures that detect, in a simple 
way, gramrca.tical mistakes ani semantic inconsistencies. 

4. 2 The contextual database : 

We think that it is :important that a request don't be treated as an 
isolated event. A context is built up so as the repeated exchan;es 
between the user and his ma.chine may be CCX1Sidenrl as approaching a simple 
but real conversation. An hna.ge of all the exchan;es between the user 
and his assistant and between the assistant and the application is stored 
in a contextual database. 'lbe contextual database is local to a user and 
is CXJtJX)Sed of a list of facts that represent: 

(1) 'lbe infonna.tion the user has transmitted to the application via 
his assistant. 'lhis can be looked as an historical database. 

(2) Info:rmations aba.lt the state of the dialog between the user and 
his interface (what the user knows and what he is talkin;J abalt) • 

(3) The infonna.tion the application has transmitted. 
(4) Some behavia.ir specifications, given by the user. 

'the contextual database plays the role of a short te.nn meno:ry .- All the 
facts are represented in the same way: 
FACr ( <kim of fact> , <infonna.tion>, < sairce of the infonna.tion>) • 
The argunent "srurce of the infonna.tion" allows the assistant to explain, 
at cU:¥ t:une, the origin of the inf0tmaticn (inheritance or deduct:ion, 
default cption, the user' s request) • 

4.3_ Intezpretation Of The User's Request: 

We have examine in 
describe an application. 
Rule( <nane> ,Cl,C2,L,T). 
Where: 

sect:ion 3 the structure of the rules that 
In cur job, a rule is of the fomu 

-Cl is a set of cxnlitions on the existence of s::xne facts, stonrl in 
the contextual database, 

-C2 is a set of patterns to find in the logical fonn produced frau 
the user's request. C2 allows an efficient preselection of rules and is a 
tool for user guidance (cf. 4.4), 

-L is a list of infonna.tion to collect in the logical fonn . Sare 
control procedures, linked to the infornations, are described. here (cf. 
example), 

-Tis a list of actions to perfonn (ccmnands to.send to the applica
tion and infornation to store iil the contextual database). 
Let's look at an example: 
RULE(p::>sitive answer to an invitation, 

facts(exist(meeting).to be invited.(user,rreeting) .nil), 
pattems_to_find(agrearient=to_ccme.nil), 



to_collect(dates(c:ky<=31 and S<=ti.rre<-20).nil), 
actions(addCD(positive answer(user).dates(<dates>).nil). 
snAPP(positive_answer(user, <dates>) .nil) .nil)). 

addCD stands for "add to the contextual database" 
smAPP stands for "send a::mra.rrl3 to the application" 

After the parsing process of the user's request, the interpreter eva .. 
luates the Cl and C2 of each rule. Thus, a preselection of (one or rrore) 
applicable rules is done. Then, the interpretor asks the user for a confir 
mation of its understanding. If it is correct, L and T of these rules are 
execu~ed. If it is not correct, the user has to say 'Which rule is applica
ble, 1.f any. The user may also ask for help- (cf. user guidance nodule). 

4. 4 User G.lidance: 

One of our main principles is to never left the user to himself. 
The assistant nust be able to help the user at his request or when it 
detects scme failures. User guidance is a very vast problem, let's lock 
at scme aspects of it: 

( 1) What is the 1 inguistic coz:pus necessary to express requests for 
help? Is natural language \<Jell adapted? 

( 2) When the assistant is not able to answer a question, hav to make 
it. express the reasons why it cannot (instead of the laconic expression 
"I don' t knew")? Hew to nake it propose al terna.tives? 

( 3) Hew to help the user to plan his ~ix? 
(4) How to leam to IlOV'ices the main functions of an application? 
(5) Ii:::M to be really very infonnative, without excess? Ebr 

instance, is it possible to define different levels of infonnation? 

Despite the current interest in user guidance, \<ile think that the 
design of a helpful and infonnative interface ranains to be done. 
Hewever, &)IIe very interesting and valuable results have been obtained in 
sare w:::n::'ks such as : [2], [14], [17], .... In rur job, the fo:onalisn 
of the :rules that describe an application allc:ws the assistant to prOITide 
SCXTE explanations: 

- When the user doesn't know which actions he rray J:)Crfonn. at a pre
cise m:::irrent, it is fran the conte.'{t and through the evaluation of Cl of 
all the rules that the assistant ai ves him the list of t.½e actions he is 
allowed to perfonn. ~ 

- If the user doesn't know how to perfonn a given action, the des
cription of the L of that rule gives him the arrount of knowledge required 
to perfonn this action. 

- The evaluation of the Cl and the addCD of T of all the rules allows 
the assistant to generateplans [9] and to p:rop::>se tothe user various chains 
of actions (or subgoals) to reach the requested goal. This is a -way to 
learn to novices how to use the application. 

- When the user wants to perfonn an action that is not allowed, the 
evaluation and the description of the Cl of that rules gives the reasons 
why this action is not p::>ssible, and under which conditions it ~uld be 
p::>ssible. 



. Actually, the user is guided by a IIEnU-driven language to fonnulate 
his request ~or help. Requests for help in natural language are, indeed, 
very difficult to express and to be interpreted. 

5 CON:!LUSICN. 

We have presente:3. here a hunan-canputer interface which is to be 
used by a large and casual public. We have check off what must be the 
main prcperties of such an interface. 'lhe fo:cmalisn adopte:3. here, based 
UfOn logic, reveals itself to be quite robust and general. This interface 
has rr:w to be teste:3. by users. 

Ha,rever, a lot of job remains to be done, especially in the 
follcwin:;J areas: 

*Ha,r to respcn:i rcore intelligently to incorrect inputs an:i to 
questions aba.lt the kncwledge. 

'irHcw to 1:uil t an expert that is able of reasonin;J· on incanplete 
kncwledge. 

"'Iicw to process some lin:JUistic problems s~"l as fuzzy expressions. 
~ to 1:uild an efficient "expert" to manage knc:wledge 

ac:quisitiai. 

The job \'Ve have presente:3. here has been :implatented in PROI.OO on the 
CII-HB 68 of the IRI~. 'Ihe implE!Ilentation has lasted the equivalent. of 
14 rconth~ for Ol'.le person, but sane 'WOI'k renains to be daie to increase 
the perfo.mances. 'Ihe application that our assistant interfaces is 
called CIGARE, its role is to help pec:ple in schedulin:;J meetin;s. We 
also inten::l to connect this interface to a text editor. 
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CaParica 

A descriPtion is siven of the main ideas used in the desisn 
of SPIRAL, a kernel for a natural lansuase interface aimed at 
seneralitw in linsuistic abilitw and domain Portabilitw+ 

Thoush Prolos is used to implement the interface, swntactic 
analwsis is not Performed via metamorphosis, definite-clause, 
or extraPosition srammar formalisms, but rather b~ means of a 
3-level bottom-up extensible Parser makins use of rewrite 
rules+ The aPPlication of each of these rules is controled bw 
a module capable of embodwins non-swntactic knowledse+ 

Swntactic and semantic anal~ses are seParatel~ done, but 
semantic tests are embedded in the Parser resultins in a 
substantial decrease of ambisuit~. The· aPPlication dependent 
Parts of the semantic anal~ser constitute a separate module. 
To make it eas~ to adapt the interface to new aPPlications, a 
set of Predicates is Provided to helP in the definition of 
that module. 



Introduction 

• • + • realitw maw avoid the oblisation to be 
ini{restins, b•Jt ( ••• ) h•~pothesis ma·~ not.• 

Dea~ and the Compass, J. L. Borses 

Results from research on natural lansuase understandins 
swstems made durins the last 15 wears, either imPlicitlY (by 
failins to meet certain reGuirements), or exPlicitlY, Point 
out the need for world knowledse, inference, context analysis 
and the like when trYins to analYse a natural lansuase 
sentence (this need is more acute when Phenomena such as 
anaphora (reference Problem) is dealt with [G. Hirst 81]). 

One of the main Problems with the losic srammar formalisms 
Proposed so far (metamorphosis srammars [A. Colmerauer 75,78J, 
definite-clause srammars [F. Pereira, D. Warren 80], and 
extraPosition Srammars CF. Pereira 81J), as well as with their 
concrete aPPlications (from CR. Pasero 73] to CF. Pereira 
83]), is that no Provision is made to check each sYntactic 
analysis step for consistency with respect to meanins. In this 
sense, sYntactic analysis is carried out blindly. Introduction 
of tests in the srammar rules, tYPification [V. Dahl 77J and 
slot-filler based aPProaches CM. McCord 80,81], CF. Pereira 
83J, are inciPien~ steps toward the use of non-sYntactic 
knowledse to suide Parsins. But in Present day sYstems, 
whenever such knowledse is used it must be intersPersed within 
the srammar rules and there is no neat separation at this 
level between the syntactic and the non-syntactic modules 
even if semantic analwsis is Performed after sYntactic 
analYsis. 

In what follows I Present the main ideas underlwins SPIRAL, 
an open kernel for a Seneral natural lansuase interface that 
sives an answer to the above criticism and simultaneously 
tries to keep a hish desree of Portabilitw between 
aPPlications. 

In SPIRAL a 3-level Parser is 
analwsis. The second and third 
interleaved fashion so that the 
level results on the flw. The 

used to perform sYntactic 
levels are executed in an 
third level checks second 

non-sYntactic knowledse the 
extended to include criteria third level has can easilw be 

based on knowledse from discourse context, world knowledse1 



inference, and so forth. This way it is Possible to have a 
desirable interaction between two hishlY modular devices, one 
workins on the syntactic features and beins controlled by the 
other which uses more comPlex forms of knowledse. 

Syntactic and semantic analyses ars seParatelY done, but 
semantic tests are embedded in the Parser resultins in a 
substantial decrease of ambisuitY. The aPPlication dependent 
Parts-of the semantic analyser constitute a seParate module. 
To make it easy to adaPt the interface to new aPPlications, a 
set of Predicates is Provided to help in the definition of 
that module. 

Syntactic Analysis 

"I state; you, if You wish, refute.• 

The Aristos J. Fowles 

A first Point of diversence from the metamorphosis, 
definite-clause and extraposition Srammar formalisms (referred 
to as 'losic srammars' in what follows) is the Parsins 
strateSY+ The SPIRAL Parser makes use of a bottom-up techniGue 
better suited to accePt external Suidance and to analyse 
elliPtic sentences and all forms of extraPosition <I have no 
intention of enterins the old and tired top-down versus 
bottom-up controversy - Please cf. the Guotation above ; 
thoush many PeoPle tend to admit that the former is more 
efficient than the latter, this is false at least for 
(unbiased) context-free srammars CM. KaY 80]). The stress Put 
on the two linsuistic Phenomena above (elliPsis and 
extraPosition) follows from the Purpose of not restrictins 'ab 
ovo' the interface capabilities, and also from the relatively 
hish freGuencY of such forms in Portusuese, the lansuase 
actually analysed bY SPIRAL+ 

While rules of a losic srammar constitute an indivisible 
Prosram workinS on normally 3 tYPes of data (surface 
representations, non-terminals and syntactic structures>, 
SPIRAL is stratified into levels accordinS to the functions 
Performed and the kinds of data dealt with. 

Rewrite rules in SPIRAL are in some extent similar to the 
rules in losic srammars. Obviously they occur in inverted 
forms, in accordance with the bottom-up Parsins strateSY 
while in a losic Srammar we have, for instance, 

a -> bl, b2 •••' bn 



in SPIRAL the same rule will aPPear as 

bi, b2 •••' bn -> a 

There is no distinction between terminals and 
non-terminals. A sentence is represented by the list of the 
lexical representations for its words, and the lexical 
representations can have Prolos variables to hold information 
for future use. Lists of lexical representations are what 
actually aPPears on both sides of the rewrite rules. Hence 
there are no restrictions on a rule's risht-hand side, in 
contradistinction with losic srammars' left-hand sides. 

Besides the lexical one, two other representation forms are 
used : one for what I call meanins-cells Cm-cell, for short)~ 
and another for Phrase structures built from them. 

Am-cell tries to rePresent anw contisuous words SrouP that 
is meaninsful on its own when isolated from the rest of the 
sentence. m-cells may contain other m-cells and be conJoined 
to Sive am-cell. Some of them-cell tYPes SPIRAL currentls 
works with are t 

- noun Phrase 

- verb 

- complement (an adJective sroup, 
a Prepositional Phrase, or an adverb) 

- subPhrase (relative clause> 

- wh-Guestion 

For instance, in the sentence 

'The system uses techniGues to encode a more 
seneral model that are very efficient' 

there are them-cells 

- the SYStem 

- techniG•Jes 

- 1Jses 

- to encode a more seneral model 

- that are very efficient 

the last two of them containins 

- encode - a more seneral model 

- are - ver'3 efficient 



Phrase structures are represented by a 3-Place 
whose three arsuments in a siven instant describe of a 

Lt 23 

f1Jncto r 
Phrase 

- its main m-cells (either a verb, or noun-Phrases - verbs 
are envisased as Phrase 'functors'), 

comPlements that await attachement to nouns or verbs 
(this simPlifies the treatment of extraPosition>, 

- subPhrases found so far. 

We can now examine how the SPIRAL Parser works. On a first 
level of Processins words are conflated whenever Possible ; 
information from deleted words instantiate variables that 
occur on the lexical representations of the remainins words. 
This is a deterministic Pass and results from aPPlYins rewrite 
rules like the followins (in Edinbursh syntax, with '-)' as 
infix operator), 

C determiner(Quant,Asr), noun<N,Quant,Asr) I R J 

-> C r,oun<N,Quant,Asr> I R J ♦ 

This rule states that a determiner followed by a noun is 
deleted if both have the same asreement. Moreover, the 
~uantification expressed by the determiner is saved in the 
lexical noun rePresentation. This particular rule is a Prolos 
unit clause but some other rules have a clause body to test 
their aPPlicabilitY+ After the first level, a second level 
analyses word SrouPs to obtain m-cells+ This is done by 
aPPlYins recursive rewrite rules with the followins format I 

: - • + • 

where •-->' and '-' are infix operators. Such a rule means 
that M_cell is the result of analYsins the first list of 
lexical representations, the second one beins what is remnant. 
Like for the first level rules, clause bodies may imPose 
conditions on rule aPPlication. 

Each m-cell extracted by the second level is embedded into 
the current Phrase structure by a third level of Processins to 
Produce a new Phrase structure. Each clause head in the third 
level has the format 

---> 

where '+' and '--->' are infix oPerators - its meanins is 
obvious. A monitor is used to control the second and third 



levels forcins their interleaved execution. 
defined bw the followins two clauses 

This monitor is 

mon( LO, PO, Ln, Pn ) :-

mon( L, P, L, P ). 

LO --> Ll - M 
M + PO ---> Pl , 
mon( Ll, Pl, Ln, Pn ). 

So, whenever the third level fails bw findins out that a 
m-cell is extraneous to the current Phrase structure, 
backtrackins to the second level takes Place. In this 
situation, either an alternative analwsis exists, or the 
monitor stops Producins the Phrase structure built so far and 
the rest of the sentence that remains to be anal~sed. A second 
level clause body maw include a call to the monitor forcins a 
recursive analwsis to be Performed. 

The first and second levels are Purely swntactic, thoush 
the latter uses semantic tests to ensure correct attachment of 
complements to nouns. Both work by aPPlYinS rewrite rules from 
two distinct sets comPrisins, respectively, about 10 and 25 
rules. The third level must decide on whether am-cell can or 
cannot be added to the current Phrase structure. This 
important function, that imposes a check on each syntactic 
analwsis step, is based, for the time beins, on criteria 
concernins the Phrase structure and some knowledse about 
complements and verb arsuments (nouns are tYPed and for verbs 
a slot-filler aPProach is used, as in CV. Dahl 77], CM. McCord 
80,81]). Those criteria can easily be extended to more 
sophisticated ones based on knowledse from discourse context, 
world knowledse, inference, and so forth. 

This way it is Possible to 
between two hishlY modular 
syntactic features and dealins 
the other usins more complex 
Phrase structures. 

have a desirable interaction 
devices, one workins on the 
with lexical representations, 
forms of knowledse to build 

In summarw, the characteristics of these 3 levels in SPIRAL 
are as follows : 

1st level - has some 10 rewrite rules transformins a 
list of lexical entries into another such list. 

2nd level - has some 25 recursive rewrite rules that 
from a list of lexical entries Produce one m-cell and 
remainins list ; each m-cell is Passed to the 3rd 
level (as soon as Produced) and if not accePted, 
alternative rules (if any) are aPPlied ; otherwise, 
the Processor stops sivins as result the Phrase 
structure built sc fer (if ans), and the remnant list. 



3rd level - builds the Phrase structure from the 
m-cells extracted by the 2nd level controllins it by 
accePtins or reJectins m-cells; the 3rd level is 
also responsible for the treatment of extraPosition, 
Passivization, and comPosite nouns (like 'the dos, the 
cat and the mouse'). 

When the end of the sentence is reached, another SPIRAL 
module is launched to check the Phrase structure built for the 
sentence and to carry on with elliPsis analysis if needed. At 
Present only a few inciPient anaphoric forms are analysed by 
SPIRAL and by methods not comPletelY adeauate. Personal and 
Possessive Pronouns are solved by searchins a noun list (built 
durins the lexical analysis) and selectins a noun from it ; 
some kinds of elliPsis are solved by the introduction and 
dereferencins of a Pronoun, and some others are treated bY 
comParins Phrase structures. The seneral Philosophy Prescribed 
in CG. Hirst 81J will sooner or later be adoPted in SPIRAL+ 
Nevertheless, the semantic tests used in the second and third 
levels, tosether with the slot-filler aPProach, Provide a lot 
of information extremely useful in solvin~ ambisuities. This 
fact allows for Present methods to work well in many 
instances. A similar situation is encountered in the 
case-srammar aPProaeh, aualified in CG+ Hirst 81J as •••• a 
firm base for anaPhora resolution•, thoush only information 
from cases is used. 

To help fix ideas, two (simPlified) examples of sentence 
analysis follow - the two sentences are from CF+ Pereira 
B1,83J. The functor PS(_,_,_) is used for Phrase structures 
(see above for a description of its arsuments), and * and 
\ ___ / are used to mark, resPectivelY,. a failure at the third 
level, and the words activatins a second level rewrite rule+ 
ImPortant information bound to variables on the lexical 
representations of nouns or verbs is shown informally 
followins them and within Parentheses <e.s., mouse(the) 
represents the noun 'mouse' containins the information from 
the determiner 'the') ; in verbs, subJect always Precedes 
direct obJect. Numbers within braces denote comments to be 
found after each fisure. 

The second examPle shows that a sentence violatins the Ross 
complex-NP constraint will not be accepted by SPIRAL for 
ease of exposition the determiners are droPPed+ 



InP•Jt sentence : the mouse that the cat chased saueaks 

After 1st level : mouse(the) that cat(the) chased saueaks 

2nd, 3rd levels: 
\ _____________ / 

{1} 

I 
/ 

recursive anal~sis on; 

Ps(that(mouse(the)),_,_) 
l 
I 
l 
I 
I 

cat(the) chased , ______ / \ ____ / 
I I ! ____________ • _________ , 

l I + 

I 
Ps(that(mouse(the))tcat(the),_,_) I 

l I 

'---------------•----------------1 
l 

Ps(chased(cat(the),mouse(the)),_,_) 
l 

sa1Jeaks 
\ _____ / 

I 
I 
l 
I 
I 
I 
l 
I 
I 
l 
I 

'-------------------·------------------1 
I 
* {2} 

end of recursive anal~sis {3} 

Ps(_,_,xl=chased(cat(the),mouse(the,that(xl)))) 
I 
I 
I 
I 
I 

mouse(the,that(x1)) \ _________________ / 
I 

1--------------•-------------' 
I 

sa•Jeaks 
\ _____ / 

I 
I 
I 
I 

Ps(mouse(the,that(xl)),_,xl= ••• ) 
I 

I 
I 

'----------------------------·---------------------------1 
I 

Ps(saueaks(mouse(the,that(xl))),_, 
x1=chased(cat(the),mouse(the,that(x1)))) 

Result saueaks(mouse(the,that(x1))) & 
xl=chased(cat(the),mouse(the,that(x1))) 



{1} - the relative will be anal~sed throush a recursive 
anal~sis. 

{2} - 'saueaks' cannot be added to 'chased(the cat,the 
mouse)' because a Phrase cannot have two main verbs, 
resultins in a failure at the 3rd level and the end of 
the recursive anal~sis. 

{3} - from the recursive anal~sis results a Phrase 
structure that is Passed as a subPhrase to the 3rd 
level b~ the rule launchins the recursive anal~sis; 
this rule is also responsible for the bindins of 
'that(xl)' to the noun 'mouse' and for the ante
Position of this noun to the remnant sentence. 

Input sentence: 

the mouse that the cat that chased likes fish saueaks 

After 1st level : 

2nd, 3rd levels: 

mouse that cat that chased likes fish 
saueaks 

, ________ / 
I 

I 
recursive analwsis on: 

ps(that(mouse),_,_) 
I 
I 
I 
I 
I 
I 
I 
I 
I 

cat that chased likes ••• , ______ / 
I 

I 
recursive anal~sis on: 

ps(that(cat),_,_) 
I 
I 
I 
I 

chased , ____ / 
I 

1 ____ • _____ 1 

I 

likes , ___ / 
I 
I 
I 
I 

Ps(chased(cat,_),_,_) 
I 

I 
I 1 __________ • __________ 1 

I 
* {1} 

t • • 

end of recursive analysis <2> 



Ps(that(mouse),_,xl=chased(cat(that(xl),~)> 
I 
I 
I 
I 

cat(that(xl)) \ ___________ / 
I 

1--------------·------------' 
l 

Ps(that(mouse)tcat(that(x1)),_,x1= ••• ) 
I 

likes 
\ ___ / 

I 
I 
I 
I 

1 ________________________ • _________________________ 1 

I 

fish 
\ __ / 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Ps(likes(cat(that(x1>>,mouse),_,x1=•••> I 
I I 

'-----------------------------·---------------------------1 
I 
* {3} 

end of recursive anal~sis {4} 

Ps(_,_,xl=chased(cat(that(xl),_) & 
x2=likes(cat(that(x1>>,mouse(that(x2))) 

mouse(that(x2)) \ _____________ / 
I 

'-------------------·-----------------' 
I 

Ps(mouse(that(x2)),_,xl=+••&x2=•••> 
I 

fish 
\ __ / 

I 
I 
I 
I 
I 
I 

'------------------------·----------------------' I 

PS(mouse(that(x2))tfish,_,xl=•••&x2=•••> 
I 

saueaks 
\ _____ / 

I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 

'-----------------------------·------------------------1 
I 
* {5} 

{1} - a Phrase cannot have two main verbs, then 'likes' can 
not be added to 'chased(cat, somethinS)'. 

{2} - the subPhrase Just found is added to the Phrase 
structure that alreadw existed. Note that 'chased' is 
treated as transitive thoush with a direct obJect not 
stated - a common situation with certain verbs. 

(3} - 'fish' cannot be added to 'likes(cat,mouse)' bw the 



reason in {1} above. 

{4} - the two subPhrases found so far are conJoined. 

{5} - the anal~sis fails as 'saueaks' is intransitive. 

If 'fishes' occurred instead of 'fish' and if a mouse could 
in an~ wa~ fish saueaks (and in Poetr~ - at least this is 
obviousl~ Possible>, the followins anal~sis would be arrived 
at t 

fishes(the mouse (that< 

saueaks) 

likes(the cat(that chased somethins>, 
the mouse>>, 

To illustrate other capabilities of the s~ntactic anal~ser 
in SPIRAL some sentences that it accepts are listed below, the 
last of which because a direct translation from Portusuese is 
not correct in Enslish words within Parentheses do not 
appear in the Portusuese version. 

the author wrote a book in 1910. 

in 1875 the author decided to write a book. 

the works that the author wrote are for the Piano. 

the author that wrote in Venice a book. 

the work that in 1920 was written bw the author. 

the author that was born in London and whose work was 
written in Paris. 

the author whose work was written in the 18th centurw. 

the Piano is the instrument for which the work was 
written. 

the authors in whose centuries works have been written. 

the work A is older than the work B. 

who wrote books 1 

who wrote the oldest book 1 

which are the works that were written in the 20th 
centurw 1 



which are the works from the 19th centurw? 

in which centur~ was born the author? 

the author wrote all his works in London. 

the author that was born in the Place where (he) wrote 
his works. 

Lexical Analwsis 

In order to use dictionaries similar in content to current 
dictionarw books (and this should be a Soal for anw natural 
lansuase interface) some kind of suffix analwsis must be 
Performed at the lexical recosnition stase. This need is still 
more ursent when analwsins lansuases like Portusuese or French 
that make swstematic use of inflections and conJusations, for 
substantial savinss in dictionarw space can then be sleaned. 

To this end, I built (tosether with Antonio Porto, and much 
in the vein of CP. Sabatier, J+F+ PiGue 82]) a lexical 
analwser usins a set of inflection/conJusation rules alons 
with a dictionarw containins word roots, words that constitute 
excePtions to the Siven set of rules or that are not described 
bw them, and words that have no suffixes. For each inPut word 
(represented bw the list of its characters in reverse order> 
the analwser tries a direct dictionarw entrw and subseGuentlw 
(either bw a failure in this attempt, or bw a failure at the 
swntactic or semantic levels) performs suffix analwsis. The 
current set of rules for Portusuese <some 80 Prolos clauses) 
covers 4 verbal conJusations in the 1st and 3rd Persons, 
sinsular and Plural, 4 tenses and Pronominal conJusation for 
all this, as well as almost all inflections accordins to 
sender and number some 17 different forms of Plural. 
TwPicallw a clause sPecifwins a verb root imPlicitlw defines 
some 68 different forms for it ! 

The counterparts to the dictionarw compactness attained bw 
this method are : 

- some Problems of rePresentation duplication if word 
surface representation is to be kePt for future use 

- the dilemma of either allowins stranse words to be 
accepted as valid bw the inflection/conJusation rules, 
or burdenninS the lexical analwser with tests 

- an unfelt loss of efficiency 



Concernins the dilemma above, if one accepts that the user 
should be responsible for the use of, e.s., 'writed' instead 
of 'wrote', there should be no damase if the natural lansuase 
interface understands it accordins to the Seneral rules. This 
is all the more so if the natural lansuase interface Provides 
a ParaPhrase of what has been understood after anal~sins a 
sentence - a research direction that will be taken soon. 
Obviousl~, for those not sharins this Point of view there 
remains the Possibilit~ of Providins tests to filter erroneous 
words. 

Lexical ambiSuit~ is treated b~ backtrackins from the 
syntactic anal~ser. Some experiments on co-routinins the 
lexical and syntactic analysers were made with some success b~ 
Antonio Porto usins his ideas on control CA. PQrto 82J, and 
will be Pursued in due course. 

Semantic Anal~sis 

For sake of modularity and SeneralitY, the semantic 
anal~ser uses an intermediate semantic representation (ISR) 
form to build a Prolos seal expression from a syntactic 
structure. An ISR form consists of Prolos soals, obJect (in 
seneral, entity) descriPtions and auxiliar Pseudo-soals <used 
to Pass information while buildins the ISR form). ObJect 
descriPtions are used the same way as in CA. Walker, A. Porto 
83] ; in SPIRAL they occur under the form of a 3-Place functor 

oCT~PetVar, Guant, Cond) 

containins the obJect tYPe, the Prolos variable associated 
with it, its auantification, and a definins condition in ISR 
that may contain other obJect definitions. 

For instance, to the sentence 

'the works from the authors of each century' 

corresponds the followins ISR expression and Prolos seal 

oCworktW, each, 
o(authortA, each, 

o(centur~:c, each,_) & 
author<A,D> & centurY(D,C> > & 

work(W,A> > 



set(work/author/centurw) : Swac <
all(Swa/C, 

sen_centCC> & 
all(Sw/A, 

Swac) 

author<A,D) & centurw<D,C) & 
allCW, workCW,A>, Sw>, 

Swa >, 

whefe 'all' is the Predicate defined in CL. Moniz Pereira, 
A. Porto 81] and 'sen_cent' is a generator of suitable century 
val1Jes. 

ISR expressions are built from the swntactic structure bw 
some general Predicates, Plus a separate set of aPPlication 
dependent ones, that define the semantics for verb and its 
complements, verb and its arguments, and noun and its 
comPlements. Writing such Predicates for a Particular 
aPPlication is made easw bw the use of Pseudo-goals and some 
Pre-defined Predicates coPing with them (adding a Prolog goal 
to a condition, substitutins a Pseudo-seal bw a Prolog Saal, 
choosing and insertins Prolos seals from a list, and so 
forth). 

When translatins an ISR expression to a Prolog one, scoPinS 
Problems concernins distributive auantifiers (such as 'each') 
and assresations (such as 'averase') CF. Pereira 83] are dealt 
with. 

Efficiencw and Future Work 

SPIRAL has been implemented using the RT-11 ProloS 
interpreter bw Clocskin, Mellish, Bwrd and Fisher CW. 
Clocksin, c. Mellish, R+ Fisher 80] and adapted bw A+ Porto 
and I to run under an RT-11 Extended Memory environment on a 
PDP-11/23 machine with floppy-disks. The program currently 
occupies some 15K (16-bit) words (in terms of nicely Presented 
Prolos text about 23 pases as follows : 5 for the lexical 
analwser (includins a common dictionarw>, 9 for the swntactic 
analwser, 3 for the semantic one, and 6 for the current 
aPPlication dePendent Parts the aPPlication dictionarw 
included). The remainins SK left free are what is needed as 
workspace. Future extensions under these conditions maw force 
the use of a two-Job partition as in CL+ Moniz Pereira, P. 
Sabatier, E. Oliveira 82] or CL+M+ Pereira, A. Porto 82] - it 
is no noveltw that a PDP-11/23 is a somewhat restricted 
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Response times, thoush no exact benchmarks have been made, 
are comparable to those described in CL.H. Pereira, P. 
Sabatier, E. Oliveira 82J or CL.M. Pereira, A. Porto 82J and 
var~ from less than 1 second for most sentences, to 10 or more 
seconds for ver~ complex ones - these times are better than 
those obtained b~ a Lisp Prosram that attempts to understand 
noun compounds, runnins on a PDP 2060 (it takes some 5 seconds 
to anal~se 'slass wine slass') cn.B. McDonald 82J. 

These results are auite satisfactor~ takins into account 
the machine used - whenever the 5th seneration machines CT. 
Motooka (ed.) 82J, CD. Warren 82J become a realit~ this 
section will stand as an examPle of concern with anachronistic 
valu~s. 

As alread~ stated, SPIRAL is thousht of as an open (as an~ 
spiral!) kernel for a natural lansuase interface and this 
means that man~ research directions are open to further extend 
its abilities. Amons them, those concerned with the followins, 
to be explored soon: 

- actions to be Performed when a sentence 
understood or is ambiSuous (dialosues with 
and ParaPhrasins will be sousht) 

cannot be 
the user 

- means to help confi~urate the interface to a new 
domain (wherever Possible those used in CM. Filsueiras, 
L. Moniz Pereira 82J) 
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PRESENTATION {Long abstract) 

We shall show that the resolution strategy implemented in most of the 
PROLOG interpretors may be equivalently viewed as a particular equation sol
ving in an associated algebraic specification. We suggest and illustrate 
possible applications of this approach to analysis of PROLOG programs. 

The basic point of this work is a rigorous correspondence between a 
PROLOG program and his translation -if any- into an algebraic specification. 
Most of the studies about PROLOG semantics [Vako76J are devoted to the "pure 
PROLOG 11 , i.e. PROLOG (restricted to first order logic programming) without 
11 control 11 nor evaluable predicates. By 11 control 11 we mean two things : the 
famous 11 cut11 operator and the strategy of choosing the clauses and the lit
terals to be solved. Our aim is to integrate the second element into these
mantics in order to get a kind of operational semantics taking in account 
this aspect of the control. 

In fact, the logical part of a PROLOG program get rise, in numerous 
programs, to a rapid understanding and easy verification of the program pro
perties, analogous to partial correctness proof of programs [C1Ta77J. But 
halting problems or invertibility aspects give unexpected and sometimes dif
ficult to manage behaviours, even of simple programs. A programmer is not 
only interested to know if his goal is a logical consequence of the axioms, 
but essentially interested to know how his goal will be satisfied, if there 
is no infinitely nested loop or if he will obtain all the solutions {the 
completness in this sense has to be defined), in which order, etc .... Lot of 
these questions have an empirical answer, without any aid of known semantic 
models. 

On the other side, algebraic specifications have teen extensively 
studied with practical (operational) and semantical points of view [AOJ78, 
GH78J. Some specifications can be viewed as equational theories. In our ap
proach, specifications are only viewed as a practical way to describe envi
ronments and programs in the same formalism and are limited to so-called 
"specification with constructors" similar to equational theories with cons
tructors of [HH80J but with conditional axioms. 



This work should have various applications. Behaviour studies of 
PROLOG programs or equivalent program transformations are part of them. Some 
examples of non trivial programs have been studied by this method, like per
mutations, eight-queens problem and Baxter example [Ba81J. Practical limita
tions of this approach come from the type of conditional axioms which can be 

easily studied. 

Each time the specification is a canonical and complete TRS the situ
ation is quite agreable: it is in fact possible to use directly properties 
of the specification fo order to transform or modify the programs. 

In the general case of equalitarian axioms, the main difficulties 
seem to come out from the few existing works on such axiomatisation and the 
equalitarian TRS that can be defined on. Some constraints can be given such 
that numerous interesting programs fall down in this class, but the practical 
study of derivations remains difficult. It seems to us that a usefull tool 
could be a PROLOG progranming environment in which narrowing of transformed 
goals cou,ld be formally analyzed. Nevertheless, difficulties come from two 
levels 

1) Semantical level : in all the cases, the obtained specification is 
a partial algebra, because of the manipulation of partial func
tions. 

2) Operational level : the generalized TRS did not have been enough 
studied until now [Re82, Ka83J. The corresponding notions of cano
nical and complete TRS remain to be better known. 

It seems to us that these difficulties reflect well the situation we 
feel in PROLOG programming : difficulties to specify the error cases in a 
satisfactory manner (frequently only positive cases are spe.cified), quasi
impossibilities to have a clear idea of the set of produced solutions, his 
completness, except by personal conviction of the programmer. 

Finally, our study can be viewed from a dual point of view 

- Conversion of an abstract data type into a PROLOG program. So it is 
a way to get a direct and efficient implementation of the transitive 



Various papers are dealing with correspondence between specifications 
or functional programming and PROLOG [VaMa81, B081]. Generally the correspon
dence shows that PROLOG is a suitable specification approach. But the corres
pondence is not always very precisely stated. 

We will define a strict correspondence by the following manner: 

- To any predicate we associate a functional decomposition. A predi
cate of arity n is said I-decomposable, iff there exists an equiva
lent function of arity n-1 with corresponding domains. This notion 
can be generalized into k-decomposability. 

- To any PROLOG program that can have a functional decomposition, it 
is possible to associate a specification with constructors. If the
re is no functional decomposition, the transformation is trivial 
and of few interest. In all the cases the transformation is a one 
to one correspondence. 

- We show that the resolution of a PROLOG goal, using the usual in
terpretor strategy, is exactly the same as to solve an equation 
(the transfonned goal) using a strategy called l-i-resolution. If 
the specification is an equational theory, this problem reduces to 
an unification problem solved by l-i-resolution (this approach uses 
a relation called 11 narrowing 11 ). 

- Finally we use this transfonnation in order to study the solutions 
of the goal equations, in particular the capacity of invertibility 
of a program. 

This approach gives an operational characterization of PROLOG pro
grams admitting such an analysis (functional decomposition plus specification 
with particular properties). The approach is completely symetric and the ob
tained class is not restrictive : it has the power of computable functions. 
So it is possible to have dual point of view: in one sense PROLOG realizes 
an operational implementation of conditional algebraic specifications, on 
the other the models of the specification can be models of the PROLOG 
program. 



closure of the l-i-narrowing. In this case we shall speak of 11 com
pilation of specifications into a PROLOG program". 

- Conversion of a PROLOG program into an abstract data type. This is 
a way to verify the original program structure (by typing the ele
ments, verifying completness •.. ) and, eventually, to modify it 
using correct transformations. 
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Currently PROI.00 implements resolution by means of symbolic substitution. 
The result is that symbolic operations (eg on lists) in PROLOG are 
reversible, whilst data operations (eg arithmetic) are not. This paper 

proposes an adaption to the resolution principle called the Finite 
Canputation Principle (FCP). Using FCP, symbolic substitution is still 
available rut is perfonned by a special predicate. 

FCP gives the UNO :important ber:iefits of Order independence and control 
over infinite processes. In addition, FCP improves reversibility and 
simplifies the connection of logic to existing languages. 

A logic language called Prolog M has been -implemented using FCP .• This 
provides standard negation, disjunction., conjunction, universal 
quantifiers and existential quantifiers. An important feature of the 
implementation is that if UNO Prolog M.·programs are equivalent according 
to the tautologies of Predicate Calculus, then these two programs will 
generate identical answers. 
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During the 1970s the author was actively involved in the hardware and 

software design of the ICL Content Addressable File Store ( CAFS) . It was 
during this period that a method of rraking queries to a database without 
the reference to relation or file names [2] was proposed. This shorthand 
was made possible by including a limited mathematical model in the 
language interpreter. This mxlel being made up of joins of relations. 
This technique has proved successful with database users but was limited 
to joins of physical relations - i.e. conjunctions of predicates. It was 

as a result of trying to generalise this nod.el that it was realised hoN 
useful Prolog might be in this area. 

Prolog is order sensitive. Despite the name, Prolog is not a true logic 
language and the database query below must be written in a particular 
order. 

Manweight(x,w) , w < 20 
w < 20, Manweight(x,w) 

.:,rksl 
Errors! 

In a database query, it is essential that the tenns can be written in any 
order. warren [7] recognises this in his CHAT80 database system. In CHA.TSO 

additional features are included to allCM order independence. 

Prolog is very likely to go infinite. For example, Define Append in the 
standard way and then rrake the follc:Ming queries: 

Append(x, (4) ,w) 

Append{ (4) ,y,w) 

Append{(4) ,y,w) , y:=w 

prints infinite fornula 
or infinite mmt>er of values 

prints w== (4.y) 

or infinite list of values. 
just does oothing 1 

In this last example, Prolog is trapped in a silent contradiction. One 
predicate generating an infinite number of instances of they and w 
variables, whilst the subsequent predicate y = w always fails. In a 
large machine with almost unlimited storage resources such an infinite 

contradiction could be a very expensive bug. 
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'Ihe Finite Canputation Principle (FCP) nakes two tltlngs p:>ssible: 

True order iooeperdence 
No infinite processes 

Ordinary resolution is still available using a pattern na.tching predicate. 
However, FCP allows cperations on lists or sets of data to be carried rut 
m::>re securely. 

'Ihe p::,wer of FCP appears when it is used in recursive definitions. Thus, 
most of the paper is ooncerned with explaining the cperation of a number 
of key exanples - in particular APPEND. The paper then hints at what 
may be fX)Ssible in the future. · 

1.1 R:>taticn 

Prolog M uses a LISP like notation for predicates. However, for clarity 
this paper uses the conventional na.thema.tical notation. Nevertheless, so 
that the flavour of Prolog M is not lost, the Prolog M syntax is often 
written alorg side in curly brackets. 

Prolog M means Prolog ~th a M:xiel[l,2]. It is hoped to describe the rccdel 
aspect of Prolog Min a forthcaning issue of the ICL technical journal. 
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2. '!BE FINI'l'E CCHUIM'ICl!l PRDCIPLE .(FCP) 

The basic notion of the Finite Conputation Principle is one that arises 

£ran the nature of logic programming. Sane expressions written in a logic 
programming language nay result in the infinite generation of data or sane 
other endless process. FCP seeks to flag up infinite processes and put 
off their evaluation until the last possible nanent by which time they nay 
beccme finite processes as a result of infonnation returned £ran other 
processes. 'l'hi.s is done by incluling in every wilt in predicate a test 
for the oooditioo. that DBkes it infinite. 

FCP detects that a process is infinite and then applies axioms and 
theorans to eventually create a finite process in the manner indicated 
bela,,: 

(~for:m. using 
,xians and=====:;;:::=== 

theorems) 

===-=====-====<==================="' 
(if still infinite) 

A process is either an atomic predicate, meta predicate (such as 
conjunction) or a user defined predicate. CUrrent Prolog M only uses the 
axions of logic to attempt to render a process finite. 

To a limited degree CHAT80 uses something similar to FCP to delay the 
execution of negated predicates. The crucial feature about FCP is that 
every predicate should be able to identify the conditions that might make 
it infinite. It is then possible, as indicated above, to delay the 
execution of infinite predicates, even in recursive definitions. 

In a fully w::,rking version of Prolog M, the optimal delaying of processes 
would also be included, as indeed it was in the ICL CAFS database system 

[3]. 
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3. ATCMIC PREDICATm 

Atomic predicates flag infinite if their use \\OUJ.d generate an infinite 
solution set. Fbr exarcple: 

x=6 FINITE: aily cne solutioo 

x=y INFINITE: (1,1)(2,2)(3,3) ••• 

2=4 FINI'm: ID solutioos 

X = y + Z INFINITE: (l=l+o) (2=1+1) •••• 

(2,3) = u • X FINITE: u is head of list ie 2 and 
xis tail of list ie (3) 

In Prolog M these have the syntax (=,x,6), (=,x,y), (=,2,4), 
(+,x,y,z), (.,(2,3),u,x) respectively. 

Infinity is flagged by including in the definition of the predicate, code 
which will set an infinite flag for certain combinations of free 
variables. 

4. LEFr TO RIGfr PREDICATE 

Predicates are nonnally executed fran left to right: 

w < 20_,.!_Manllleight(x,w) { ((<,w,20){Manweight,x,w)) } 

Provided both are finite then the whole expression is finite. In this 
case the first atanic predicate is infinite and so the whole expression is 
infinite. 
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Conjunction all<MS the machine to apply the axions of logic to detennine a 
finite ordering. 'lbus, if we write the following: 

w < 20 & Manweight(x,w) { (&(<,w,20){Manweight,x,w)) } 

'lh.e machine will attEnl}?t execution fran left to right: 

w < 20 , Manweight(x,w) 

The result is infinite and so using the axiom A & B <-> B & A the 
reverse ordering is tried: 

Manweight(x,w) , w < 20 

If we assume manweight has instance FRED,18 then execution is as foll<MS: 

? w < 20 & Manweight(x,w) ,~~f >lbim x m FRFD am w m 1a1 

1==:: ~201<=====:;:==="I 
If there had been nested conjunctions, these would be collapsed down so 
that ( (A & B) & C) \oJO\lld be replaced, by (A & B & C) • 
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6. DI~W 

Disjunctions of two or rrore predicates are executed as two quite separate 
processes. 'Ihus: 

(x = 3 or x = 4) & f(x) 

is executed as two processes: 

X = 3 & f(x) 
X = 4 & f(;x) 

First, xis given the value 3 
value 4 and f is again executed. 
processes must be finite. 

7. EXIS'lDTIAL amN'l'Ili'IC'ATIW 

{ (&(or(=,x,3) (=,x,4)) (f,x)) } 

{ (&(=,x,3)(f,x)) } 
{ (&(=,x,4)(f,x)) } 

and f is executed. Second x is given the 
For a disjunction to be finite both these 

If there exist values of xl,x2, ••• that satisfy an expression p then the 
expression q is executed: 

sane(:xl,x2, ••• )(p), q { (sane(xl,x2, ••• )p)} 

We evaluate this by forcing xl,x2, •• to be variables local top. 'nlus, 
they start off initially as free variables. If there are instances of 
these variables locally in p then the expression q is executed. 

441 
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a. NEX;ATICE 

Negation is implemented by transfonning the negated expression so that the 
not is rroved to a subexpression using one of the three axions: 

not(p&q) -> notp or notq { (not(&,p,q)) --> 
(or(not,p}(not,q)) } 

not(p or q) -> notp & notq { (not(or,p,q} )--> 
(&,(not,p}(not,q)) } 

notnotp -> p { (not(not;p))-->p} 

Eventually, the expression cannot be changed because none of these trans
fo:rms can be applied. It will then be found that p is either an atomic 
predicate or an existential quantifier. We therefore actually execute the 
not(p) predicate. The not means no instances. Thus, the not is 
executed by checking that the predicate p has indeed no instances. If 
this is the case, then w1e alla,.r execution of any statements that folla,.r. 
This is "Negation as Failure" [4]. In the example: 

not.6=7 & X = 9 { (&(not(=,6,7))(=,x,9)) } 

six does not equal seven, there is no instance, and so the next term x=9 
is executed. 

Negation has its own special infinities. A negation is finite only if all 
the free variables of p are externally bound. Thus, the free variable of 
the expression x = 6 is x. Therefore, for not x = 6 to be finite, x 
must be bound at the time when the not is executed. Clearly, if x had 
been free then there ...ould be an infinite number of x values not equal to 
six. Again by trapping this infinite case it is possible for other 
processes to bind x. 

450 
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8.1 SPECAL CASE 

Suppose an expression not p has free variables and is therefore 
infinite. It is sanetirnes p::>ssible, v.hen the expression p starts with the 
quantifier some, to manipulate p to give a new expression p' which 
generates the bindings for these free variables. The resulting expression 
p'&not p nON bein; finite. For example, the infinite statement 

not sane(x)(r(x)&not h(x,y)) 
{(not(sane(x}(&,(r,x)(not(h,x,y)}}}) } 

can be rendered finite by noving h(x,y), the negated tepn in p, outside: 

sane(x)h(x,y) & not sane(x)(r(x)&not h(x,y)) 

This new term now creates a finite set of bindings for y. A general 
.theoren for transforming p top' is given in reference [1]. 

Universal quantifiers are equivalent to negative existential quantifiers 
and so they are transfonned before execution using the axion: 

all (xl,x2, ••• ) (p) -> notsane(xl,x2, ••• ) (not p) 

{ (all(xl, ••• }p)-->(not(sane(xl, •• )(not p}}} } 
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10. DEFINITICES 

Definitions allow complex expressions to be represented by a single 
predicate. Consider the definition: 

anplifier{vo,vi) <- vo = 6 * y & y =vi+ 12 

When this is called using the query ?amplifier(l2,w), the variable vo 
inside the definition takes on the value 12 while the variable vi points 
to an identical location in store tow and hence become equivalent. The 
variable y is local to the definition and so there is an implicite 
existential quantifier. 

This definition is fully reversible, so we can either ask the question 
?anplifier(l2,w): 

vo=6*y & y=vi+l2 

I::~, y = 21=====:>l~fore vi= -10,I 
and sow= -10 

or the reverse question ?anplifier(x,-10): 

vo=6*y & y =vi+ 12 

~1 
y=2 
therefore l <:========= 
VO= 12 and 
therefore x = 12 

We can nON define another predicate representing two amplifiers in cascade 
and still have reversibility: 

aqJS(vo,vi) <- aq,lifier(vo,x) & anplifier(x,vi) 
Tenn 1 or 2 being automatically selected depending whether vo or vi is 
bound. 

~51 
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10.1 REXIJBSIVE IEFINITICE 

Consider the operation of append. This can be defined by the single 
recursive definition which appends list x to list y to give list z: 

aa:,eo:i(x,y,z) <- x = () & y = z or 
x = u.x• & z=u.z' & aa:,ern(x' ,y,z') 

This definition states that if x is an arpty list then lists y and z are 
equal. Otherwise, if~ strip u off lists x and z then the remaining lists 
x' and z' are related by the · append predicate. When used in recursion 
neither or nor & are order independent. This is because recursive 
calls to the append predicate always have the possibility of being 
infinite and so should always be written last. It may be sensible in some 
future inplementation to autanatically place such recursive calls last 
thus restoring order independence. 

Using FCP this definition gives the follarrlng results.. Readers interested 
in the details-of the exemtion are refered to the appropriate appendix. 

?ag>end((2),(3),z) 
?ag>end(x,y,(2,3)) 

?ag>end(x,(2),z) 

?aa:,eo:1((2),y,z) 

z = (2,3) 
X = (l y = (2,3) 
X = (2) y = (3) 
X = (2,3) y = () 

infinite flag set 

infinite flag set 

APPm>IX 1 

APPD\1DIX 2 

APPm>IX 3 

Notice how FCP correctly traps the infinite.process. Contradictions as 
mentioned earlier can therefore be trapped before execution: 

?ag>end{(2) ,y,z) & y = z 
flags infinite 

Without this facility a naive user could be faced with some expensive 
caaputer bills! 
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Suppose we define a factorial predicate fact'(x,n) which gives the 
factorial x of a number n. When x and n are both free we find that 
fact• executes an actual infinite loop. To prevent this infinite loop 
we precede fact' by the predicate free: 

fact(x,n) <- free(x,n), fact'(x,n) 

The predicate free flags infinite if all its arguments are free. Thus by 
detecting that x and n are both free, factorial is now secure against 
infinite loops. 

Notice that appem did not require any such trap to stay finite. 

11. 'lBE FUTURE 

Prolog Muses the axians of logic to transform an infinite expression to a 
finite expression. However, the capabilities of the language could be 
considerably extended if the user were also able to define his own 
infinite to finite axians and theorems. Bela.v is a simple example of an 
axian to alla.v a natural way of writj,ng a range of numbers: 

x > xmin &: x < xnex & integer(x) <- range(x,xm:i.n,xnex) 
{ (define (&(>,x,xrnin){<,x,xrnax)(integer,x)) (range,x,xrnin,xrnax) )} 

It is na.v !X)ssible to write the query: 
?x > 1 &: x < 12 &: integer(x) 

and obtain the integers 2,3, ••• 10,11 using the range predicate. 

We can define new functions in the same way that we can bind variables to 
values. For example: 

quadfn(x) = "x1"x + 2*x - 4" 

{(=,quadfn,'(larnbda(x)(plus(times,x,x)(times,2,x),-4)))} 
binds the function variable quadfn to "x*x + 2*x - 4 11 using a lambda 
expression. The function quadfn can then be used in an equality predicate: 

y = quadfn(x) { (=,y, (quadfn,x)) } 
Unlike nonnal equality, this is finite only if x is bound. 
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455 

Predicates are often defined in tenns of a forward and reverse fllllction. A 

reversible quadratic function quad(y,x) is defined as the conjunction 
of quadfn and quadreversefn. The appropriate function being chosen by 
FCP. 

12. CXBDJSICN 

Prolog M is still in its infancy. There are at least three important 
questions left lll'l.answered: 

1. By trapping the generation of infinite fonnulas, 
will FCP make conventional resolution nore 
flexible? 

2. can trace facilities easily explain why programs 
are infinite? 

3. can we easily include user defined.theorems? 

The auth::)r is grateful to the late Roy Mitchell, Vic Maller, Nonrian Truman, 
Martin Stears and the other members of the ICL Systems Strategy Centre, 
Stevenage who have helped to fonnulate and develcp the ideas in this 
paper. 
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Appemix .. l Alp-rldfoniard 
What is the result of appending (2) to (3)? 

?append((2),(3),z) 

X = U • X 1 & z = u. z' & append(x' ,y,z') 

lx = 2, 
=> therefore 

INFINITE I 
•===> therefore ===> y = (3), x' = () 

u = 2, x'=() · delay but append((),(3),z') 

lu = 2 

lz' = (3) 
!therefore 
!ANSWER z = (2,3) 

Atpndix 2a Afflerld backwards 

gives: · z •_=_(3_) ___ _ 

I 
I 

I<======· 

What two lists appended together give the enpty list? 

?append(x,y,()) 

X = (} & y = z 

==> X = () ==>lz = (), therefore, y = () 
.____ ANSWER X = () y = () 

X = U • X1 & z = u. z' & ag>end(x' ,y, z') 

infinite z = () 
=> therefore•===> therefore, fails, 

delay NO ANSWER 
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AJpndix 2b 
vmat two lists appended together give the list (3}? 

?append(x,y, (3}) 

X = (} & y = z 

==> X = () ===> z = (3}, therefore, y = (3) 

ANSWER X = (), y = (3} 

X = U • X 1 & z = u·. z' 

> 
infinite lz = (3) 
therefore ===> therefo. re 
delay · u = 3, z' = () 

& append(x' ,y,z') 

lz' = 0 
=>lappend(x' ,y, (}} 

lgives one solution 
l ( see appendix 2a) 

Ix' = 0, = 0 

x' = () 
u=3 
therefore 
X = (3} 

<============= 

ANSWER x = (3), y = (} 
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~ 2c 
What two lists appended together give the list (2,3)? 

?append(x,y,(2,3)) 

X = () 

=> X = (} 

X = U • X 1 

& y = z 

===> z = ( 2, 3) therefore 
ANSWER x= (), y=(2,3) 

& z=u • z' & ~(x' ,y ,z') 

z = (2,3) z' = (3) 
.:__> linflllite 

therefore > therefore > append{x' ,y, (3)) 

gives two solution 
(see appendix 2b) 
x' = (), y = (3) 

delay 

x' = () or (3) 

u=2 
therefore 
x = (2) or (2,3) 
ANSWER x = (2) 

ANSWER x = (2,3) 
y = (3) 

y = () 

u = 2, z' = (3) 

x' = (3), y = () 

<============= 
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Afp!D:lix 3 Append infinite 
What are all the lists which end with a 2? 

?append(x,(2),z) 

X = () 

X = U • X 1 

& y = z 

y = (2) 
====>: therefore z = (2) 

ANSWER X = (} y = (2) 

& z = u. z' & ~(x',y,z') 

I INFINITE I INFINITE I I append ( x' , ( 2) , z' ) 
=> therefore ====> th.erefore ===> therefore a soln i.s 

delay delay .!' = () z' = (2) 

EB/SAC. 
SALLY836:EB 83/6 

z' = (2) ,u=freel 
therefore <====== 
ANSWER INFINITE 



A NOTE ON COMPUTATIONAL COMPLEXITY OF LOGIC PROGRAMS 4 b 1 

(Preliminary· Draft) 

Abstract 

Andrzej Lingas 
Software Systems Research Center 

Linkoping University 
S-581 83 Linkoping, Sweden 

Shapiro de:6.n:ed three complexity-measures over logic programs- goal-size, length 
· and depth - .·and showed their relation to complexity measures for alternating 
Turing machines. We, introduce the fourth complexity measure - conjunctive 
goal-size - and employing the known ideas of Turing-machine complexity theory 
we analyze the relation- among the complexity measures over logic programs. In 
particular, for any deterministic logic progrtam of conjunctive goal-size S(n) and 
length L(n) we can construct an equivalent deterministic logic program of depth 
O(log(L(n)) .and length; O(L(n));. and if the program: is strongly deterministic 
then we can :construct another equivalent strongly deterministic logic program 
of goal-size O(log(S(n)) + log(L(n))) and length O(S(n)L(n)). 

I ntroductio~ 

The idea of procedural· interpretation to Horn-clause logic begun a new era 
in logic programming. ~Today, the programming language Prolog, based on .. this 
idea, is a viewed as a start· point to the basic programming language. of the fifth 
generation computer systems [FGCS81]. 

The standard method of execJting a program in Prolog is by so called 1back
tracking, consuming a .large amount of time and space. In order to achieve the 
planned speed up in time performance, Japaneses have to improve backtracking 
by mixing with other methods, for instance,bottom-up, and work out an efficient 
parallel implementation of Prolog. A solid,·.analysis of the computationalr com
plexity of logic programs should .precede th'0 speed up e:fforts. , 

In a large part our goal is i to use the. similarity betweem logic programs 
and alternating Turing machines: in order to derive relationships among various 
complexity measures over logic programs .. Efficient implementing of logic pro
grams in various computational models may benefit fr.om these results. As· these 
results rephrase in part::-known facts from Turing machine theorJi in the language 
of logic programming, they seem lto be of smaller importance for abstract com
plexity theory. The other our goal is to comment informally on the possibility of 
a fast parallel implementation of logic programs, and, on complexity of bottom
up computations of logic programs that are neglected in the logic programming 
society. 
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Basic Notions 

We totally adopt 1Shapiro's definitions· of definite clauses,·,goals, conjunc
tive goals, clause's head and bodY, logic program, goal reduction, substitution, 
uniti.er, derivation and refutation of a goaLfrom a logic program, the phrase "a 
program P solves a goal", refutation tree, length, depth, goal-size of refutation 
( see (Sh82a]). 

The author came to the conclusion that. it is natural and convenient to:.allow 
also variable:.·free initial. axioms as input data. 
Initial axioms are inserted in the list of axioms of a lo~c program before starting 
its computation. 
A pair ( G, A) consisting of an initial gdal G (possibl~,: a. conjunctive goal) :and a 
set of initialL.axioms is called an initial goal~axiom pair. 
A goal-axiom pair (G,A) has a refutationifrom a logic program P if G.,has a 
refutation from PUA in the Shapiro's sense. 
The interpretation of :a logic program P, .. .I(P), is the set of ,all variable-free 
goal-axiom pairs that are constructable from predicates, constants and functors 
appearing in ithe language in which P is wr,itten, and·:ihave a refutation from P. 
Following our modification of logic program semantics in comparison with Shapiro, 
we redefine complexity.·measures· over logic programs as follows:: 

A logic program Pis respectively of goal-size, depth,::length complexity C(n) if 
for any goal,;axiom pair. in I(P) o.f size n there respectively exists a refutation of 
goal~size, depth, length: C( n). 

For the· definitions:: of non-deterministic and deterministic :'Turing machine 
the reader. is·:referred to (CKSh82}. 

Moreover we use the following definitions: 

(1) An axiom is a clause with the empty body. 
(2) Given a :computation of a logic program, C, a reduction step of C is the 
reduction of.a chosen goal to a sequence ofnew goals by a single application of 
a clause in the program. 
(3) Let P, R be a logic program .and a refutation, respectively,;· 
The conjunctive goal-size of R is, the maximum size of the current list of: goals 
at any reduction step of R ( respectively, goal size ia:the maximum size of any 
unit goal at.any step of R ). P is of conjunctive goal-size complexity U:(n) if 
for any goal-:axiom pair Gin I(P) of size n· there is a refutation of G from P of 
conjunctive goal-size <U(n). 
The non-deterministic length of R is the number of nodes in the refutation tree 
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such tha.t there are at .least two clauses whose heads~ match the: goal chosen to 4 b:J 
reduce. P is of non-deterministic: length complexity N(n) if for· any goal-axiom 
pair G in I(P) of size n there is a refutation of G from P of non-deterministic 
length <N(n). 
If N(n)-o then Pis strongly deterministic~ 
If every goal-axiom pair in I(P) admits only one refutation then:P is determinis
tic, see [H8l]. 
0 bviously I if P is strongly deterministic then it is deterministic.. The notion of 
strong determinism for logic programs corresponds to that of determinism for 
Turing machines. 
(4) We assume a standard list representation. The term O denotes the empty 
list, and the.: term [X IYJ standSI . .for a list whose head is X and tail is:,.,y. A 
string a1a2 ... a"' is represented by the list [a1l[a2l[ ... lan]]J, With. the exception 
of Theorem 3 integers ,n are represented as n-fold composition of the functor 
s applied to~the constant 0. Writing a logic program, we· skip·the clauses and 
axioms defining the arithmetic predicates of:=, <, <; >, >. Finally, we assume 
that we can::test .equality ·between an atom and term by applying a standard 
equality anddnequality ·:predicate·s built in the formalism of logic programs. 
(5) According to the assumed string representation (see 4), Turing machine M 
is equivalentcto a logic ·program :P if after .erasing the square brackets and the 
symbol" I" in the words of L(M), we obtain I(P). 

Relationships among Complezity Measures ouer Logic Programs 

In the following remark, WEr.can find :a couple of obvious)observations on 
complexity measures over logic programs. ;j 

Remark 1. Let P be a logic program of depth complexity D(n), conjunctive 
goal-size complexity G(n) and length complexity L(n)~: The following inequalities 
hold: 

D(n)<L(n) : 
L(n)<dG(n) where d is·.a constant uniform:'in P. 
Moreover, ifwe restrict-initial goals to single.!goals then;we have L(n)<cD(n)+1-

l where c is the maximum number of goals in a clause of P. · 

In several computational models, the .depth complexity is:ca natural lower 
bound on the time taken by parallel evaluation. ln._the computational model 
of logic programming it is hard to approximate the lower bound with efficient 
parallel computations .. Simply, solving a conjunctive goal with shared variables 
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cannot be spawned directly. 
By virtue of the , following theorem1 for any logic program there ·exists 

an equivalent logic program of fairly· small depth. The proof is by applying 
Savitch's trick, originally applied to simulate non-deterministic space bounded 
Turing 1:0-achines by deterministic, ones ( see [Sa70] )1 and then, by time bounded 
alternating Turing machines [CKS80] .. 

Theorem 1. Any logic program P .of length complexity.£( n) and non-deterministic 
.length complexity N(n) can be transformed into a logic program Q such that a 
goal-axiom pair ((G1, G2, ... , Gl), (Ai, A2, ... , A1;)) of size n is in l(P) if and only if 
there exists a:refutation of the corresponding goal-axiom pair (p([G1l[G2 l[ ... jGz]]], [1, 
r log(L(n))l, (p([A1 IX], [X], 0), p([A2 IX], [X], 0), ... , p([A1; IX], [X], 0))) from Q of 
depth flog(L(n))l, length 4L(n) and non-deterministic length N(n). If the pro
gram Pis deterministic:(respectively, strongly deterministic) then Q is also deter
ministic (respectively, strongly deterministic}. 
Proof. To form the cla,uses of Q ,, 1We use only the predicate p(X~, Y, i). It reads: 

If X and Y are lists representing;:goals and i is a natural number then the goals 
from X can .be reduced to those from Y in12' reduction steps. : 

For each clause A+-B11 ... , B1;. of .P, the program Q contains the axiom . 
p([AIX], [B11[B2! ... [BilX]]],0). Note that the predicates from P become functors 
here. Next, Q contain&,the axiom :p(□, [), 0).tsaying that we can reduce the empty 
list of goals to itself in one reduction step. The only clause with non-empty body 
in Q is as follows: 

p(X,Y,s(i))< +- p(X,Z,i},p(Z,Y,j). 

Given a refutation of G,from P, of length L(n), there exists a refutation of G from 
P, say R, such that at,each reduction step. in R the ,first clause on the current 
list of goals is chosen to reduce and R is of length L(n). Having R, we form a 
refutation of the corresponding initial goal ,from Q by applying. the only clause 
of Q in depth-first manner, and .then, the axioms of .Q. As a result, we obtain 
a refutation ,whose tree has, leaves labelled::by instantiated predicate p(X~ Y, 0) 
corresponding to single:.reduction steps of R. The length of the. refutation does 
not exceed 2flog(L(n))+1l - 1. Its non-deterministic length is the same as that 
of R. If R is .the only refutation .of the initial goal-axiom pair from P then it is 
the only refutation of the corresponding initial goal-axiom pair· from Q. 
Conversely, given a refutation of the corresponding goal from Q, we can easily 
find out a refutation of G from P · I 
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In Savitch's simulation of non-deterministic space bounded Turing machines ~ b5 
with deterministic space bounded Turing machines, the intermediate 
tape configuration ( corresponding to the intermediate list of goals Z in the 
above proof) is determined by exhaustive search (see [Sa70]). In the proof of 
Theorem 1, the intermediate list of goals substituted for Z is the outcome of 
calling p(X, Z,j) ( in Concurrent Prolog [Sh82b}, the basic clause in Q would 
be rather written as p(X, Y, s(j)) +- p(X, Z, j), p(Z?, Y, j) ). From the point of 
deterministic simulation, our method of finding the intermediate state is more 
efficient than Savitch's one if the non-deterministic length complexity of P is 
small, and worse otherwise. 
The first who showed; how to simulate Turing machines with logic programs 
was Tarlund [T67]. Shapiro proved a close relationship between complexity of 
alternating Turing machines and complexity of logic programs [Sh82a}. The 
following theorem reveals relationships between complexity of non-deterministic 
Turing machines and complexity ·of logic programs ( In thi·s theorem, as well as 
in Theorem 3 and Corollary 1 and 2 we informally use the notion of simulation 
whose meaning can be deduced from the proof of Theorem 3 ). 

Theorem 2. Any multi tape ( deterministic) Turing machine operating in time 
T(n), and space S(n) can be simulated by a (strongly deterministic, respec
tively) logic program of length complexity O(T(n)), and conjunctive goal-size 
complexity O(S(n)). Conversely, any (strongly deterministic) logic program of 
length complexity L(n), and conjunctive goal-size complexity S(n) can be trans
formed into an equivalent (deterministic, respectively) Turing machine operating 
in time O(L(n) X S(n)2), and space O{S(n)). 
Hint. Note that a single reduction step can be simulated by a deterministic 

_ Turing machine in time O(S(n)2) (see [R65]) and read the proof of Theorem 4.4 
and 5.4 in [Sh82a]. 1 

By Theorem 1 and 2 we obtain the following corollary: 

Corollary 1. Any (deterministic) Turing machine operating in time T(n), and 
space S(n) can be simulated by a (strongly deterministic, respectively)· logic 
program of depth complexity O(log(T(n)), length complexity O(T(n)), and con
junctive goal-size complexity O(S(n)). 

· Probably, several important problems solvable by deterministic Turing 
machines in polynomial time are not solvable in parallel time O(logkn), i.e. by 
parallel machines with polynomial number of proces·sors with fixed fan-in and 
fan-out, running in time O(logkn) ( see [B77],[CKS81] ). As by Corollary 1, 
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deterministic Turing machines operating in polynomial time can be simulated by 
deterministic logic programs of logarithmic. depth complexity, probably a small 
depth complexity of a logic program does not ensure the existence of a fast 
parallel implementation of the program, in the general case. It seems that the 
requirements that a logic program should satisfy to admit an essential parallel 
speed up are more complex. In the next section, we shall briefly discuss this 
problem from the point of view of bottom-up computations. Here, we infor
mally propose the following requirements, coherent with the top-down nature of 
derivations from logic programs. 

Let P be a logic program of length complexity L{n). For i, :j, let Ri,;(n) be the 
equivalence relation between conjunctive goals such that G1Ri,;(n)G2 if and only 
if for any goal-axiom pair of size n, G, any refutation of G from P with the the 
i -th element G1 performs the same i-th through j-th reduction steps as any 
refutation of G from P with the i-th element G2 • In other words, to determine 
the i-th through j-th reduction steps of a refutation of G from P whose i-th 
element is G1 it is sufficient to know a representative of the equivalence class of 
R,,;(n) for G1. Suppose that for n E N there exists a tree Tn of fixed degree 
with leaves consecutively labeled by 1 through L{n), and a number mn. such that 
for any subtree of T n with the leftmost leaf labelled by i and the rightmost leaf 
labelled by i, the number of equivalence classes of Ri.;(n) is at most mn., In the 
simplest case, the tree Tn. may correspond to the refutation tree of P. Given an 
goal-axiom pair of size n, G, we can recursively find a refutation of G from P 
(if it exists) by applying divide and conquer strategy induced by Tn. and trying 
all representatives of the equivalence classes- of Ri,;( n) in parallel. Provided that 
T n and the representatives are given, the refutation can be determined in time 
O(log(mn) X height(T.,,,)) with the use of 0(2log(mA)Xheight(TA)) processors. In 
particular, if m,,, is a constant uniform inn and height(T.,,,) = O(logn), P can be 
implemented in parallel time O(logn). The. reader can find more details about 
this approach, expressed rather in terms of Turing machines, in (L83]. Here, we 
offer only the following simple example. 

Example 1 

Let us consider the following logic program, delmem(Z, X, Z', H), where 
Z is an input linear list of a constant length over a finite alphabet E, X is an " 
input list over E organized as a complete binary tree of height H, Z' is the out
put list composed of all the elements of Z that are not in X, member(A, Z), 
notmember(A, Z), delete(A, Z, Z') stand for the standard predicates testing mem
bership of Ain Z and deleting A from Z { i.e. Z' = Z - A ) respectively ( see 

6 



[CM81J ), we may assume without loss of generality these standard predicates to 
be available primitives since they are applied to sublists of the input list Z which 
is of fixed length in this example. 

delmem(Z,X, Z',H) +- delmem(Z,X, Z',O,H). 

delmem(Z,.[X I Y],Z',K,H) +-

K < H, delmem(Z,X, Z", s(K), H), delmem(Z", Y, Z', s(K), H). 

delmem( Z, A, Z', H, H.) +- member(A, Z), del(A, Z, Z'). 

delmem(Z,A, Z,H,H) +-· notmember(A, Z). 

Note that if we neglect labels, the form of a refutation tree of P for any goal
axiom pair with the input list X of length n is totally determined by n. Let 
T,,, be a tree of such a form, with leaves consecutively labelled by 1 through 
n. Clearly, if i and j are the labels of the rightmost and the leftmost leaf in a 
subtree of T,,,, then the i-th through j-th reduction steps in any refutation of 
an goal-axiom pair with the · input list X of length n from our logic program 
is a refutation of the goal delmem(U, Y, U', k, h) corresponding to the root of 
the subtree. Thus, the i-th through j-th steps are totally determined by the 
instantiation:. of Z, U. Therefore, the equivalence classes of the relation R,,;(n) 
can be identified with the possible instantiations of Z. As the input list Z is of a 
fixed length,. the number of possible instantiations of Z is a constant uniform in 
n. Hence, the number m,,, is a constant uniform in n here. It is not difficult to 
see that the language specified by de(mem(Z,X,Z',K,H) is regular but in the 
general case, the language specified by a logic program for which m,,, = 0(1) is 
not necessarily regular [183]. The tree T,,, induces the same divide and conquer 
strategy as the recursive definition of delmem(Z, Y, Z', k, h), therefore, we do 
not need to transform P in this respect. To try all of the representatives of 
equivalence classes of the relations R,,;(n), equivalently all possible instantiations 
of U, it is sufficient to add the following clauses with B ranging over all possible 
instantiations of Z: 

delmen(Z, [XI Y], Z', K, H)+-

K < H,delmem(Z,X,B,s(K),H),delmem(B,Y,Z',s(K),H). 

It is easy to see that by fully using the OR-parallelism introduced by the above, 
additional clauses, clelmem(Z, Y, Z', k, h) can be implemented in parallel time 
O(logn).1 
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The following theorem relates time and space complexity of Turing machines 4 6 
to goal-size complexity of logic programs. The proof is analogous to the proof 
of Chandra et al. showing Uc>oDTIME(c5 <"">) C ASPACE(S(n)) [CKSh82]. 

Theorem 3. Let M be a deterministic Turing machine operating in time T(n) 
and space S(n). M can be simulated by a strongly deterministic logic program 
Q of goal-size complexity O(logT(n) + logS(n)). 
Outline of Proof. We assume several restrictions on M fallowing the proof of 
Theorem 3.4 in [CKS80]. In particular, M has only one tape, on the tape the 
input word is written, M accepts an input by entering its unique accepting state 
qA with the head scanning the T(n) + 1st tape square, etc. (see [CKS80] for 
details). A computation of M on the input word is described as a sequence of 
configurations, each in the form aq{j where ap describes the contents of squares 
0 through 4T(n), q is the current state of M and the head of M points the 
rightmost symbol of a. 

For any four symbols from the tape alphabet and the set of states of M, 
6_ 1, 60 , 61 , 62 , among which at most one represents state of M, there is unique 
symbol 6 such that for any j if 6-1, 60, 61, 62 occupy positions j-1,i,i+l,i+2 
in a configuration of M 1 then 6 occupies the position j in the next configuration 
of M. For each such quintuple 6-1, 60, 61, 62 , 6, the program. Q contains the 
axiom next(6_1 , 60 , 61, 62, 6) .. The basic predicate in Q is accept(j, t, a). It says 
that in the t - th configuration. of the computation of M, the j - th square 
contains the symbol a. 
To prove the theorem we cannot represent the integers j, t using. the unary nota
tion defined in the previous section. Here the integer of binary representation 
bi, ... , bi is written as [bzl[ ... lb1]]. The successor predicate is defined as follows: 

suc([llX], [OIY]) +- suc(X, Y). 

suc([OIX], [l!X]). 

sue([], 1). 

The definitions of the predicates of < and < for this specific representation of 
integers are left to the. reader. 
The main clause in Q is as follows: 

accept(j, u, X) +- suc(t1 u) 1 suc(i, j), accept(i1 t, Y) 1 



suc(j, k), accept(k, t, W), 

suc(k, l), accept(l, t, T), 

next(Y, Z, W, T). 

To verify the initial contents of the tape we use the clauses accept(j, O,X) +

inpt.1.t(i, X). The integers occurring in any derivation of accept(T(n)+ 1, T(n), qA) 
from P have binary representation of the length not exceeding f min{log(T(n)), 
log(S(n))}l. To prove the theorem, we show by induction that accept(}, t, a) can 
be proved in O(L(n)) reduction steps if and only if the given interpretation of 
accept(i, t, a) is right. 1 

By Theorem 2 and 3 we obtain the following corollary: 

Corollary 2 .. Any strongly deterministic logic program of length complexity 
L(n) and conjunctive goal-size complexity S(n) can be simulated by a strongly 
deterministic logic program of length complexity O(L(n) X S(n)2), and goal-size 
complexity O(log(L(n)) + log(S(n))). 

Bottom - up Computations of Logic Programs and their Complexity 

. That what we mean by a computation of a logic program P might be 
specified as a top-down computation of P. A bottom-up computation of Pis a 
reversed (top-down) computation of P, and can be briefly described as follows. 

The computation starts from a set of instantiated axioms. At each step 
we non-deterministically pick a clause of P, A+-B1 ', ~ ', ... , B1c' ( it might be 
an axiom, Le. k = 0). Then we non-deterministically choose a sequence 
Bi, B2 , ••• , B1r. from the. list of current axioms in order to unify it with the body 
of the previously chosen clause. The unification is via a substitution 9 and the 
axiom AD. is added to the current list of axioms. The computation terminates 
when there exists a substitution. 9 unifying each initial goal with a member of 
the current list of axioms. The. definitions of of derivation, refutation of an 
initial goal-axiom pair from P etc. as well as the definitions of depth, length 
and conjunctive goal-sfae complexity for bottom-up computations are similar to 
those for top-down computations, and are left to the reader. 

Remark 2. If a logic program is of bottom-up depth complexity D(n), bottom-up 
length complexity L(n), bottom-up goal-size complexity U(n), then it is of depth 
complexity D(n), length complexity L(n) and goal-size complexity U(n). 
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Choosing a. clause a.ta. step of a bottom'."up computation of Panda sequence Lt +( 
of some current axioms in order to unify with the body of the clause, we do not 
know whether it leads to a proof of the initial goals. Moreover, the number of 
possible choices of the sequence of some current axioms may be of order nk where 
k is the number of goals in the body of the chosen clause. That is why programs 
in Prolog are executed in a top-down manner. We may argue that if the program 
P is non-deterministic. then choosing a clause in a top-down computation in 
order to unify its head with the selected goal, we neither know whether it will 
solve the goal. However, if we do not loop then we may backtrack in case of 
failure like the running Prolog interpreters whereas the definition of failure for 
a bottom-up computation is not clear. Neverthless, it is author's feeling that 
for an important class of logic programs bottom-up computations are essentially 
more efficient than (top-down) computations. This class may include so called 
dynamic programming procedures which recursively generate a lot of symmetric 
subgoals in order to solve the original goal. 

An example of a logic program for the dynamic programming procedure of 
Cocke, Kasa.mi and Young, accepting wordsfrom the language L(G) where G = 
(N,E,P,S) is a context-free grammar in Chomsky normal form (see [AHU74]), 
is shown as Program L 

Program 1 

PA(i, j) +- qA(i, i, j). for A E N, 
qA(i, le, j) +- s(s(k)) < j, qA(i, s(k), j). for A E N, 

qA(i, k, j) +- i < k < j, Ps(i, k), Pc(k, j). for A--J>BC E P, 
PA(i, s(i)) +- i < n, input(a, i). for A-+a E P. 

The program is design.·to succeed on the goal-axiom pair consisting of the goal 
Ps(O, n) and the axioms input(wi, i). where w1 , ... w" is the input word if and 
only if the input word belongs to L( G). In the worst case we may have to 
backtrack an exponential in n number of times in order to find a (top-down) 
computation accepting w whereas a bottom'."'up computation yields an answer in 
O(n3) deduction steps if it proves a new goal at each deduction step. Why are 
bottom-up computations successful here? Simply, there are only O(n3 ) variable 
free goals that can be solved by Program 1 starting from the initial axioms. 

Definition 1. Let R be a refutation. The goal number of R is the total number 
of distinct goals in the nodes of the refutation tree. A logic program P is of 
goal number complexity G(n) if for any goal A in I(P) of size n there exists a 
refutation of A from P of goal number <G(n). 
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Our observation about bottom-up computations of Program 1 can be generalized 
as follows: 

Remark 3. Let P be a logic program. P is of goal-number complexity G(n) 
if and only if it is of bottom-up· length complexity G(n). Moreover, if P is of 
goal-size complexity U(n) then it· is of goal number complexity du(n.) where dis 
a constant uniform in P. 

The analogous remark for {top-down) computations would not be true. Simply, 
it might happen that to solve a given goal, we have to solve the same goal several 
times. In implementing (top-down) computations we can get rid of the above 
inefficiency by dynamically extending the original set of axioms of P by the 
solved intermediate goals. 

By Theorem 2 and Remark 2 and 3, we can observe that any·Turing machine 
operating in polynomial time can. be simulated by a logic p~ogram of polynomial 
goal number complexity. 

In a simple parallel implementation of bottom-up computations, we do not 
encounter the problem. of variable sharing for subgoals of equal rank. Therefore, 
the depth complexity · and the time taken by a single deduction step seem 
to decide about the time performance of a bottom-,up computation of a logic 
program of polynomial goal number complexity, in a parallel computational 
model. The recent paper of Lewis and Statman [LS8?] has shown the prob
lem of unification between :first order terms to be complete in co-NLog Space. 
Therefore, the existence of a parallel algorithm for the unification problem 

· operating in time O(lognlr.) and using a polynomial in n number of processors 
.· ' 

would imply the existence of such algorithms for any problem from NLog Space 
or co-NLog Space, which seems unlikely. Hence, we cannot count on a parallel 
implementation of the single deduction or reduction step in time O(lognlr.). If 
the logic program P in Theorem .. 1 is not patological then the bottom-up depth 
complexity of the resulting program Q is equal to the depth complexity of Q. 
Therefore, by Remark 2, we can usually apply Theorem 1 in order to compress 
the bottom-up depth complexity. The following theorem, analogous to Theorem 
1, shows how to achieve this for any logic program. 

Theorem 4. Let P be a logic program of bottom-up length complexity L(n). 
Let Bi, ... , Bm be the list of all axioms in P. P can be transformed into a logic 
program Q such that a goal-axiom pair ((G1, ... , G1r.), (A1, ... , Ai)) is in J(P) if 
and· only if the corresponding goal-axiom pair {p( [B1 I[ ... IBm]J, [ G 1 I [ ... [ G 1r. 1-111 
, f log(L(n))l), (p([X], [A1 IX], 0), ... , p([X], [A,IX], 0))) has a refutation from Q of 
depth f log(L(n))l + flog(n + L(n))l. 
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Outline of Proof. The proof is again by applying Savitch's trick, analogously as 
in the proof of Theorem 1. Here the predicate p(X, Y, i) says: 

If X and Y are lists of axioms and i is natural number then the axioms in Y 
can be derived from those in X in 2i (bottom-up) deduction steps. 

The axioms -chosen from the current list of axioms in order to unify with the 
body of chosen clause may occupy various_positions on the list. Therefore, we 
include in Q the following clauses to pull the chosen axioms :to the front of 
the list (because the list of axioms may be of length n + L(n) we again apply 
Savitch's trick). 

p(X,Y,O) +- q(X,Y,rlog(n+L(n))l). 

q(X, Y, s(j)), +- q(X, Z, j), q(Z, Y, j). 

q([Xl[YIZ]],[Yl[XIZ]],'.O) +- X=/;Y. 

q(X,X,O). 

Finally, for each clause A+-B1, ·-, B,,, in P :we have the corresponding axiom 
q([B1 l( ... [B,,, IX] ... ), [Al [B1 l(.:.l[B,,, IX] ... ], 0).11 

In the above theorem, the program Q is non-deterministic even if the program 
Pis strongly; deterministic (compare with Theorem l). 

Possible Extensions 

(1) The goal-:size complexity of Q'ain Theorem 1 mightibe as large as L(n) X U(n) 
if Pis of goal-size complexity U(n). It seems possible to generalize Theorem 1 by 
showing a trade off between the depth complexity and the goal-size complexity 
of Q. 
(2) It is possible to formalize the notion of simulation or introduce a more general 
concept of equivalence, among logic programs and Turing machines. 
(3) It would be interesting to design a parallel algorithm for, the unification 
problem operating in time O(n01) and using (nP) processors where a < 1 and 

P<l. 
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ON THE FIXED-POINT SEMANTICS OF HORN CLAUSES 
WITH INFINITE TERMS 

M.Falaschi, G,Levi, C,Palamidessi 
DiPartimento di Informatica 
Univirsita' di Pisa, Ital~ 

1. INTRODUCTION 

Infinite terms (streams) have been introduced in 
several PROLOG-like lansuases C2,J~4,8,10J in order to 
define Parallel communicatins Processes. The resultins 
operational semantics is auite similar to Kahn-McQueen's 
model C5J, characterized bw asents which communicate throush 
channels. Most of the above mentioned lansuases are anno
tated versions of PROLOG. Hence some of the most relevant 
.features of PROLOG, such as the abilit~ to define relations, 
set lost. 

If infinite terms are added to pure PROLOG (i.e. Horn 
clauses>, the definiti6n of a "Sood• fixed-Point semantics 
is still an open problem. In C1J a sreatest fixed-point con
struction is Proposed. Such solution, however, is not satis
factorv, because: 
i) the sreatest fixed-Point semantics sives a non-emPtv 

denotation not onl~ to nonterminatins Procedures which 
comPute infinite terms, but also to "bad" standard non7 
terminatins Prosrams; 

ii) the construction is not alwaws effective, i.e. there 
exist Prosrams whose Sreatest fixed-Point cannot be com
puted. 

In this PaPer we Propose two semantics based on a least 
fixed Point construction. In the first· semantics we only 
consider all the finite aPProximations of an infinite term, 
while the second se~antics allows to handle infinite terms. 
The lansuase we will consider is a manw sorted version of 
PROLOG. Its swntax will be defined in the next section. It 
is worth notins that the sortins mechanism will allow us to 
distinsuish finite and infinite terms. 

2. SYNTAX AND DERIVATION RULE 

The lansuase alphabet is composed by; 

1) A set S of identifiers for the representation of the 
sorts. A sorts is! 



, I 

I I 

! 

I I 

I I 

a) simPle ifs belonss to s. The set of simPle sorts is 
Partitioned into two disJoint classes, canonical and 
non-canonical sorts, to coPe with .finite and infinite 
data structures resPectivelv. 

b) functional ifs belonss to s*--> S. If s has the 
form: s 1 x • • • x sn --> s', and at least one of the si 's 
is non-canonical, thens' is non-canonical too. 

c> relational ifs belonss to S. 
2) A familv C of sets of constant swmbols indexed bw simPle. 

sorts. Ifs is a non-canonical sort, then the set of con
stants of sorts contains the special svmbol w 1 , which 
~enotes an undefined (not vet evaluated) data structure. 

3) A familv D of sets of data constructor svmbols indexed bv 
functional sorts. 

4) A family V of numerable sets of variable svmbols indexed 
b!:I simple sorts. 

5) A familY R of sets of Predicate svmbols indexed bv rela
tional sorts. 

The lansuase data 
data constructors to 
sorts. Hore Preciselv, 

i) a constant svmbol 

structures are obtained bv aPPlvins 
variables and constants of suitable 

a term of sorts is: 
of sorts. 

. ii) a variable swmbol of sort s. 
iii> a data cor,structor application d(t 1 , ••• ,tn> such that 

.t1 , •··• • ,tn are data terms of sorts s 1 , • • • ,sn and d 
belonss to D and has sort~ x ••• x ~--> s. 
A term which contains at least one occurrence of an 
undefined constant swmbol is called suspension and 
deno.tes a not cotr1Pletel1::1 evaluated data structure. 
Because of the condition,in t.b>, if one of .the t 1 's 
.hiB~ ... a non-canonical sort (briefly is nor,-canonical>, 
then also the term is non-canonical. In tact, the 
result of the aPPlication of a data constructor to its 
components Carsuments> is a suspension if some of its 
components are suspensions. 

The lansuase basic construct is the atomic formula. 
An atomic formula is a Predicate aPPlication P<t 1 , ••• ,tn > 
such that t 1 ,. •. ,tn are data terms ot sort s 1 , ••• ,sn resPec
tivelv, and Pis a Predicate s~mbol of sort s 1 x ••• x Sn• 

A set of atomic formulas can be interpreted as a col
lection of Processes or asents C2,7J connected b~ channels .• 
Each atomic f_orm•Jla denotes a Process. There e>d sts a chan
nel connectins processes. Ph and~, if there exists a vari
able svmbol which occurs in the atomic formulas denotins \ 
and ~. The basic activit~ is messase Passins throush chan
nels and reconfisuration of the collection of Processes. 
Informations can pass throush a channel in both directions. 
This is not the case of the SCA model C7J, as well as of the 
Kahn-McOueen model C5J. 



The d~namic behaviour of the collection of Processes is 
specified b~ a set of clauses, which are expressions of the 
lansuase defined as follows: 
1> A definite clause is a formula of the form: 

A <- - B1 , • • • , Bn 
where A and the Bi's are atomic form1Jlas. If n=O the 
clause is called "unit clause• and is denoted as follows: 

A <-- ..:l 
All the variables occurrins in a clause are viewed as 
universal!~ auantified. 

2) A nesative clause (Soal statement> is a formula of the 
form: 

<-- A1 , • + +, A111 

where the A1 's are atomic formulas. If m=O it is a null 
clause denoted b~ 

<--..\ <or □ > 
From a losical viewpoint, the s~mbol •,• denotes the losical 
connective AND, the s~mbol "<--• denotes the losical imPli
cation, and A is the neutral element with respect to the 
operator•,•, that is<-- A,..\=<-- A 

The notion of derivation of a soal -statement from a 
siven soal statement and a prosram is essentiall~ the same 
defined for PROLOG C6J, and is based on resolution C9J. The 
onl~ trivial difference has to do with sort checkins. 
The relation (J . 

G 1--> G' w 
denotes that the soal state~ent <-- G' is derivable from the 
soal statement <-~ G and the Prosram W, with the substitu
tion 8, which is the composition of all the substitutions 
used in the elementar~ derivations. 

If, for some fJ, the relation 

G 1-8-> ..:l 
w 

holds, then<-- G is refutable in w. 
Our interpretation of soal statements and clauses is 

·exactl~ the same siven b~ Kowalski C6J for PROLOG. However, 
we think of a soal statement as denotins a collection of 
Processes. The derivation of a new soal statement 
corresponds to a reconfi~uration of the collection. Each 
elementar~ variable bindins in a unification can be seen as 
a messase Passins from a Producer to a consumer. Our 
interpretation is motivated b~ the fact that we view 
Processes as non terminatins procedures which Produce (or 
consume) infinite data structures. Such Procedures have an 
empt~ denotation in PROLOG, both from the operational and 
the fixed-Point semantics viewpoint. 
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3. OPERATIONAL SEMANTICS 

In standard Horn Clause Losic the concept of computa
tion of a soal statement is essential lid based on the re.f•Jta
tion of that soal statement, (i,e, the derivation of the 
null clause>, and therefore on the concept of termination. 
In other words, the result of a computation of a soal state~. 
ment (i.e. its operational semantics) is the relation esta
blished, for each Predicate in the soal, b~ the substitu
tions determined in all the Possible refutations C6J. 

This definition of operational semantics results inade
auate to describe Processes which handle infinite terms 
(streams). Consider, for examPle, the followins Prosram: 

W = (list<x,x,L> <-- list<s<x>,L>> 
where the sort of xis •naturals• <canonical sort>, the sort 
of L is •streams of natural' <non canoriical sort>, ••• 
denotes the stream of naturals constructor, and •s• denotes 
the successor constructor on naturals (for the sake of sim
PlicitY we will use 1 instead of s<O>, 2 instead of s<s<O>>, 
etc,). 

Since the soal statement <-- listCO,L) has no refuta-
.. tions in W, the ·denotation of the Predicate list siven by 

the standard operational semantics is an emPt~ relation. 
In SPite of this, a derivation of listCO,L) Produces, step 
by step, the substitutions: 

L = O+L 
L = 0+1+L 
L = 0.1.2.L etc ••• 

It is easy to see that an infinite computation of this 
soal statement will lead L to be instanced to the infinite 
list of natural numbers. In seneral ever~ Process which Pro
duces infinite terms has the same Problems with resPect to 
its semantics definition, since its computation necessaril~ 
does not terminate. 

The solution we Propose is based on the introduction 
for each Predicate s~mbol P which is non-canonical Ci,e+ 
which handles infinite terms>, of a terminal clause (unit 
clause) defined as follows: 
If P has sort s 1 x ••• x sn, then the terminal clause has the 
form PCt1 , ••• ,tn> <-- , where each t 1 is: 
- . a v a r i able of so rt s1 , i f s I i s canon i ca 1 
- the undefined cor,stant sYmbol w51 , if s 1 is non..,canonical. 

The terminal clause is added onlld if there exists no 
unit clause, in the Prosram, for which there is a superposi
tion. This condition is necessarld because it must not be 
Possible to introduce new solutions b~ addins a terminal 
clause. The new terminal clause must onl~ allow termina
tion. 



Note that if there exists a terminal clause, for which 
there exists a superposition with the new one, then it con-
tains some non-canonical terms that can be substituted 
with w. For this reason the termination is suarant~ed in 
this case. 

In our example the terminal clause is 
list(n,w) <--A 

This clause allows the seal statement <-- listCO,L) to have 
a refutation. The values that it computes for Lare of the 
form: w, o.w, 0.1.w, 0.1.2.w, etc ••• 

The s~mbol w, in this example, looks like the empty
list constant, and the values for L look like standard fin
ite lists. Their Prasmatics however is auite different, 
since the Prosrammers can think in terms o~ infinite lists 
a~d not be worried about artificial terminal cas~s, which 
can be inserted systematically by the interpreter. 
The introduction of the terminal clause is similar to the 
termination rule for infinite data productors Proposed in 
C7J. In that case a Process Producins a (potentiallw> infin~ 
ite data structure terminates when all the Processes which 
consume that data structure have terminated (l~zy · evalua
tion>. We obtain the same behaviour by exPloitinS the non
determinism of the lansuase. A process which produces a 
(potentially) infinite stream, at each stream aPProximation 
can be reduced to A. However, if there exist consumins 
Processes, the Process has an alternative reduction which 
Produces a refinement of the stream. 

The operational semantics is defined as follows: 

If Wis a set of clauses, and Pis a Predicate swmbol of 
so~t s1 x ••• x ¾, then the operational semantics of Pin W 
is~ 

D0 ( P, W) = < ( t , ••• , t 0 ) I t 1 has sort s1 , i = 1 , •• • 0, n 
and P < t 1 , • ·• • , t 0 ) I w; A } 

where W' is the union of the Prosram Wand 
terminal clauses, added accordinsl~ to 
described. 

EXAMPLE 1) 
listCn,n.L> <-- list<s<n>,L> 

of 
the 

P(s(n),k.L,~) <-- P(n,L,m) , Prod(k,m,~) 
P<O,L,1> <--A 

all 
rule 

of its 
above 

Assume <-- Prod<k,m,~> be refutable iff Y results to 
be the Product of m and k. 
list<n,L) is the Process which Produces the stream L of 
al! the natural numbers ctartins frcm n. 
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6 4+4 
P(n,L,m> defines the relation •mis the Product of the 
first n numbers in the stream L•. 
Then, consider the Prosram: 

1) fact<n,m) <-- list<l,L> , P<n,L,m) 
2) P(s(n),k.L,~l <-- P(n,L,m) , Prod(k,m,~) 

W'= .3) PCO,L,1) <--..l 
4) list<n,n.L) <-- list<s<n>,L> 
5) list<n,w) <-- .,l <terminal clause) 

Note that 5 is the onl~ terminal clause, since the 
clause P<x,w,y)(--.,\ will not satisf~ our condition. 

factin~m> defines the relation 'mis the factorial of 
o•. 
We will now Sive an examPle of computation. For the 
sake of simPlicitw, the second clause will be rewritten 
in the form: 

P<s<n>,k.L,k*m> <-- P<n,L,m) 
where the swmbol '*' is interPreted as the Product 
operator on natural numbers. 

Initial soal statement: 
<-- factC2,x> 

bw clause 1),and the substitution x=m: 
<-- list(1,L) , PC2,L,m> 

bw clause 2, and the substitution L=k+L1 , m=k*m,: 
< - - 1 is t C 1 , i'~ •. L1 ) , P (1 , L1 , m 1 ) 

bw clause 2, and the substitution L1 =k 1 .L2 , m1 =k,*ml 
.. <-- 1 is t ( 1 , k + k 1 • L2 ) , P CO , L 2 , 1t,2 ) 

bw clause J, and the substitution m2 =1: 
<-- list(1,k,k1 +L2 > 

bw clause 4, and the substitution k=l: 
<-- list(2,k1 .L2 > 

bw clause 4, and the substitutiqn k1 =2: 
<-- listC3,L2 > 

bw clause 5, and the substitution L2 =w: 
<-- .,\ 

The .resultinS substitution for H is: 
x=m=k*m,=k*k,*m 2 =k*k 1 =k 1 =2 

The resultins substitution for L •is: 
L=k+L1 =k,L 1 ,L2 =1,2.w 

Note that, to have a refutation, at least two elements 
of the list L have to be computed. 



4. FIXED POINT SEMANTICS: FINITE APPROXIMATIONS 

The fixed Point semantics for a Prosram Wis defined as 
a model of the set of clauses WU {terminal clauses}, 
obtained as the least fixed Point of a transformation which 
is defined on the set of the interpretations of W C1,10,11J. 

The interpretations of Ware defined over an abstract 
domain U, which is a famil~ of sets u5 ,. each set beins 
indexed b~ a sorts occurrins in w. 
Each U5 is defir,ed as follows: 
1) All the constant s~mbols of sorts, occurrins in W, are 

in U5 (note that ifs is a non-canonical sort, also w 5 is 
a constant s~mbol of sorts and then also~ belonss to 
Us > • 

2) For each data constructor s~mbol of sorts x ••• x sn--> s, 
U 5 contairis all the terms d<t 1 , ... ,tn> such that t 1 , ••• ,tn 
belonss to U5 , ••• ,u 5 , respectivelw. 

I n 

Note that U contains the standard manw sorted Herbrand 
Universe as a Proper subset, i.e. the set of all the sround 
terms in which none of the w5 occ•Jrs. In addition U con
tains suspensions, i.e. non comPletelw evaluated data, where 
both undefined and standard constant s~mbols occur. 
Finallw, U contains also the fullw undefined terms, i.e. the 
terms w5 • 

The He~brand Base B of Wis the set of all the sround 
atomic formulas: for each Predicate P occurrins in W, of 
sort 51 x ••• x Sn, and for each n-tuple of terms t 1 , ••• ,t11 

belonsins to u5 ••••• Us resPectiveh,, PCt 1 , ••• ,t11 > belonss 
to B. 1 n 

A Herbrand Interpretation I of Wis anw subset of B 
contairdns A. 

The set~ of all the Herbrand InterPretations of W is 
partiallw ordered b'.:I the relations (set inclusion). As is 
the case for standard Horn clauses, <d,s> is a complete lat
tice, i.e. for everw Possibl'.:1 non finite s•Jbset"' of ;J., 
there exists lub<4'> and slb<.t>. 

It is possible to associate, to an'.:I Prosram W, a 
transformation T on. the.domain of interPretations, defined 
in the followins wa'.:I: 

T(I)={AIA<--B1 ,. .. ,Bn is a !:!round instance of a clause of W' 
and B 1 , • • • Bn E I } U < A } 

where W' is the union of the set W and of the terminal 
clauses for w. 

It is well-known that the transformation Tis monotonic 
and continuous C6J. 



Since Tis monotonic, there exists: 

I,= min{II I=TCI)} 

Horeover, since Tis continuous: 

IF= U yk ({A)) 
k!:O 

8 ~31 

The fixed Point semantics of a Predicate P, of sort 
s x ••• x sn, in a Prosram Wis defined as follows: 

DF CP,W) = <<t1 , • • ,tn > I t 1E U51 , • • •, tnE Usn' P<t1, • •. ,tn > f I } 

The eGuivalence of the operational and fixed-point semantics 
come~ directl~ from the similar result for PROLOG. 

5. FIXED-POINT SEHANTICSl INFINITE TERMS. 

Now we want to define an alternative fixed-Point seman
tics, which reflects the idea that non-canonical data, con
tainins the s~mbols w5, are suspensions, that is Partial 
aPProximations ·of infinite terms. 

A term containins occurrences of the s~mbol ~ cannot 
be transformed into an infinite term conta1nins no 
occurrences of ws, because it would be necessar~ an infinite 
number of derivations. However it is Possible to compare two 
suspensions to establish which is a better aPProximation. 

Consider, for example, the Process P<n,L> which 
duces the stream of all the odd numbers startins from 
n is odd, and the stream of the even numbers _startins 
n~ if n is even. Such Process is defined b~ the clause: 

1. P<n,n.L> <-- P<~<s<n>>,L> 

while the terminal clause is: 

2. P<n,w) <-- A 

Pro
n, if. 
.from 

One of the streams Produced b~ the Process P, startins from· 
O, is Lt = 0.2.w, obtained b~ aPPl~ins clause 1 twice and 
clause 2 once. 
Another stream is L2 = 0.2.4.w, obtained b~ aPPl~ins clause 
1 three times, and clause 2 once. 
L1 is a better approximation than L2 of the st.ream which 
tould be obtained startins from O and aPPl~ins clause 1 for
ever: 

0.2.4.6. •. • 

Clearl~ L1 cannot be compared to an~ of the streams 
obtainable, for examPle, startin~ from 1 Cl.w ,1.3.w, 
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etc.). 

It is then necessary to define a partial orderinS < on 
the elements of A <~round terms), which corresponds t6 the 
concept of "better approximation•. 

i) For anw c~nstant ~Ymbol c of sorts, c 5 < c 5 and, ifs is 
non-canonical, w5 ~ ~• 

ii) For anw constructor sYmbol of sort s1 x ••• x sn--> s: 
a) if ti=w5., i=1, ••• ,m, then d(t1 , ••• ,tn>=ws 
b) if ti< t~', i=1, ••• ,m, then d<t 1 , ••• ,tn><d<t{,•••'t~) 

A similar Partial orderins is defined on the Herbrand 
Base 8, as follows: 

For any Predicate swmbol P of sort s 1 x ••• x s., and for anw 
t 1 , ••• , t .. , t{, ••• ,t.~ of sorts s 1 , ••• ,~ .. : 

if ·ti < t ( i = 1 , • • , m , then P ( t 1 , ••• , tm ) < P ( t { , • • • , t ~ ) 

Furthermore, it is necessarw to introduce in the 
universe U all the infinite terms which are limits of mono
tonic seauences of terms. Similarlw, it is necessary to 
introduce in the base Ball the atomic formulas which con-

~ tain infinite terms and which are limits of monotonic 
seauences of atomic formulas. 

An interpretation of Wis anw subset of B which con
tains A and which does not contain anw Pair formulas A and 
A' , such that A< A' • 

Obviously, the interpretation containins atomic formu
las in which the~e occur infinite terms can be resarded as 
limits of monotonic seauences of interPretations without 
infinite terms. 

Let p be a function which t~ansforms subsets of B Ccon
tainins A> into interpretations. It is defined as follows: 
ifs is a subset of B then 

p(S) = S -: <A( AES , 3A'E S, A<A'} 

In other words p eliminates all those atomic formulas 
for which there exists in Sa better aPProx~mation. 

The set of the interpretations of W is partially 
ordered bw the relation< defined as follows: if I,J belonss 
to : 

I<J iff VA E I 3A' E J A<A' 

or, eouivalentl~: 
I<J iff IE u(J) 

where u is defined as follows: 



' ! 

o-( I) = {A I :I A' E: I A<A'} U { ..l } 

Note that, if I is an interPretation: pCo-<I>>=I 

10 

The set~ of the interpretations is a complete lattice 
with respect to <, and it holds, if J. is a subset of;, : 

Slb<l> = pCU u<t>> 
lub<.G> = slb<.l'> 

where ,t' = -CI' I VIE la I< I'} 

Note that A' is never emPtw, because it contains at 
least p<B>. In Particular, if Lis finite: 

lub<.t> = P <U u <.t> > 

The transformation T' associated to • - Prosram W is 
defined jn the followins waw: 

T'(I) = p({AI A<--B 1, ••• ,Bn is a sround instance 
of a clause of W', and B1 , •• ,BnEu(I>)U-C..l}) 

where W' is the union of Wand of the terminal clauses of w. 

tain 
also 
must 

- u(I) occurs in the definition of I because, if a cer
aPProximation of a data structure is computed, then 

any less defined ~PProximation of such a data structure 
be considered as computed. 

It can easily be Proved that T' is monotonic and con
tinuous, hence there exists the least fixed-Point I{ of T' 
and: 

I ' = U T ' 11( { ..\ } ) 

f ·~ 
The second .. fixed-Point semantics is defined analosously to 
the first: 

D,,<P,W>=-C(t1, • • • ,tn) lt1E U51, • • •, tnE Usn' P_(t,, • • • ,tn LE o-(If )) 

It is worth notins that in the Pre~ious semantics, the 
lub of the chain yk(-C..l)) contains onl1;1 finite aPProxima
tions (suspensions>, while, for this semantics, the lub of 

.T'k({..\}) can contain also infinite terms. 
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SOB! ASPECTS O! 7BE .STATlC S:EMAN7ICS Ol .tCGIC PB.OGIUl!S i.ITH 
!OIA£IC FUBCtIOBS 
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le comsider logic programs in the Horn clauses fora of logic 
vith monadic functions, ana prese.nt two aiEroaches tc derive a 
set o.f eg:aations from a given set of clauses.·- The derivation is 
obtained bJ a data f·lov analysis o.f the -vai:iables, involved in 
each clausa.l definition. .Bach equation expresses the semantics 
of a procedure, by means of a set elt"J.z:essiClJJ which, .hJ 
transformation of the set of equations, can te recluced to a 
solved form •. The set expression thus obtained .rei:i:ese.nts, for 
each i:.rocedu.ce its greatest., approximate., set of solutioas;· i.e. 
a set w.hich contains the denotation defi11ed, f c.:r: the same 
pi:ocedure, .hJ the standai:d semantics. '.the approximate solutions 
caA be seen in the contest cf abstract in~~rpcetatioas of 
prograu. to get, by a static analJ.sis of their definitions., 
some 0£ their _properties. 7.he apprc:zimate sclutio.ns, being 
e.zpres.sed by means of set e.xpressions, coula tJteD le used as a 
toc.l for program verificatio.n a.nd constructicn. 

1 •. 11110DUC7IOI 

le p:esent an approach to t!ie stat.ic anal1sis of programs, 
written in a s.iaple logic language, aefiued as in 11-21, where 
procedures are de.fined by . .means of Hoi:n clauses vith monadic 
fa.nctlons,. and where aJ..l clauses ai:E no11 negati-ve. . T.h 1:1s a sort 
of ~EJ:J s.i•ple PBOiOG J3-SJ.. ' 

We .first define aJ1 algebraic semantics cf clausal definitions, 
in the sense of i:epresenting possible .set cf solutions for a 
procedure, by means of equations and set expressions. 

By static semantics of a program ve 1eaD all that can de 
de~uced. statically, about the set of solutions 101: a logic 
progEam, as expressed by its standard seia~tics i2J. 

the aias cf this paper fall into the same f.tame110-ck of J6J, b,at 
for iogic languages instead of algoxith•ic languages. As in 
J6l, 1e get set e~fress~ons which rep.tesent ie the most gene.ta! 

1 



case, appxoximation to the set of denotations of a procedure as 
defined by the sta~dard semantics. ie also consider And/Or 
g.raf.lis 17-81, i:epresentation of p.cog:i::ams instead of flow-cha.rts. 
7hus, di£ferently from J9J, we do net tr] tc get set eipressions 
which denote the exact set of solutions, tut only an 
approximation of it. At present the wcrk is auch .sEmpllfied, 
vitb resfect to J6J and J9J, since we consider problems 
originated onl7 by the use of mo.nadic functions, tr.e-ated 
s1mbolically, w1thout looking. fct noY, for Ute fix~oints of 
tbeix associated symbolic eipression. 

The same problem as been tackled for monadic lcgic ii:ograms ~ith 
monadic functions; -the next Section will give a brief .s1J11mar1 of 
results obtained, for that case, in J 10 t.. Sec·tion J will 
present two approaches to deduce, staticallJ, a set cf eguations 
from a given set of clauses. In Section 4 we vill pre.sent 
transfromations of such equations tc get a set cf eguations in 
solved for•- Section 5 contains fev considerations on thE 
defined transformations and their z:elatio!l.s to ether works. 
Section 6 eitend.s the results of tbe previous sEctions, to 
clausal definitio.n vith monadic functiolls. ie conclude 11ith a 
brief suamaLJ in Section 7 •. 
Appendix 1, at the end of thE pai:er, gives an examtle of the 
coast.ructio.u of a set o.f eguations for a given set of clauses, 
in the monadic case; Appendix 2 gives an e:xa•_Ele cf a set of 
eguaticns that can be obtained, according tot.he secona appr-0acli 
presented in Section 3. I-n A.PEEDdii 3 a set cf a~iom.s is given 
to .be used fo.i: tran.sfor:mati.-0ns of eguatioas obtaine<1 she.n 
£unctions u:e used in clausai defiDiticGs. 

2 •. BJSULTS ZBO! 7BE !OBADIC CASE 

Given a set of clauses A, definin9 n pi:ocedua::es Pi, aonadic, ve 
consiaer the set of clauses defining each :Et0cedu.1:e.and its 
co.1:resio-11dent A.nd/0.r graph,17-Sj. Then ve trace tbe values ilov 
0£ the variable appearing at the rcot cf the And/Or gx:aph. The 
denotation of a Erocedure Pi, Dh(Ii), (results cf the procedure 
PiJ, can be deri~ed in terms of unicn and intersection of 
deuotatioDs of the predicates involved in the definition of Pi. 
Thus we can de.rive, say, a_n 0/0 graih, cci:resio11dent to the 
And10·1: gi:aph in object, by interpreting And nodes and or nodes, 
respectively as intersection and union Cf-EJ:ations, and replacing 
each ato•ic formulas Qj {X) (where X .is the variable traced), by 
the coz:respondeut set Dh fQj). By Db {Pi) we denote the de.notation 
of ·the predicate Ei, as defined by the operational semantics 
associated to Byperresolution and Instantiatio11 u1le.s, I 2J. 
ApEendi% 1 show~ an eiampie of the all process; from the 0/U 
graph there obtained, the following eguation can be dexived: 

n JD k 
(Pi}== ( 0 {Qj)) tl (f. ( 0 (Bj})] D ( 0 99.! (gj. {Sj})) tJ {a} U {h} 

j= 1 j=1 j:1 

2 
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Whexe: 
each {BjJ, {Qj} denotes the set of values, solutions of 

procedures Bj aJid Oj, resFectively, de~ived from 
the static anaiysis of their clausal defiDition. 

{f.7}, is a notation vbicb, given a SEt (er set e~Eression) T, 
denotes a set of data that, using a common set notation, 
can be e.ipressed as: { f 1.J) 1 1 e 1' } • 

.!2.!(gj, (Bj}) denotes:- a set expression T such that: 
(gj. 7} e {Bj} ; 

- the empty set, U, cthe.twise. 
le have -called •R!~• the function vhicb _produces a set of 
eguatio.a such as the above one, starti11g fi:ca a given set of 
clauses •. fhen ve shov, inductively, that when predicates are 
de.fiJJed by clauses vhere: fu:.actio.n.s sJmliols axe not used or 
else, they are used not .cecursivelJ, then the set e.xpressi·on 
deJioted by {Pl can.be computed to a set of values such that the 
following relatio.n ho.lds: 

t E JJ.h (P) if:f t E {P} i.e. llh (P).= ( PJ 

lhen clauses use function s1mbol.s recarsi vely, ei·thei: directlJ 
0.1:. not. that is, 11hen clauses are such as follows: 

OJ: 
i (.f (X)) <- Q ,1) , P (X) 

P (X) <- Q (.X) ,B (X) 
c 4:f fJ)) <-11 CXJ 

the.ave Deduce equations of the fer ■: 

!P} == If. 7} 

vhei:e t contains re£erences to the symbolic set JP} itself • .I.n 
those cases we neea to f.ind the fiipci.nt of Euch set expressions 
1. Then, if ve ace able to find a nQtation for such fiipoints so 
that by replacement of T in (f.1} we get a nctatioa which is 
recu.Esi~e, hut self-contained and, if we are t.hen al:le to define 
u.nio.n and intersection betvEen such sets then we ca~ i:epresent 
tbe demotation of a predicate bJ a set expression which is 
fi.Jlite, independent o:f otJier predicates and which cam be built 
hJ tlle static analysis of clauses. In f10J we suggest such a 
notation a.nd give tranformation .cu.les fer deducing such 
notations from the set of eguatio.ns obtained ill the fi.Est place. 
on the other hand ve show that those set e:xi:ressioiu: can be left 
sya~clic, and transformed Clf~TJ•s are only partially 
transformed), · to obtain a sEt cf eguaticns, in scl1ed for•, 
which £ep£esent a new set of clauses. the ne~ set of clauses are 
the seapli£ied version of the set of clauses given in the first 
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place. thus, we defined an.algoi:itha lJg~~! such that the 
following 4iagra ■ coD•utes: 

DB 

Deduce 
A------->EA 

7 
r 
a 
n 
s 
f 

------>EA' 

fig. 1 

lfhere DH=(.DhU1).DhlP2·), •••• Dh{Pn)J, for alJ. predicates P1 ••• Pn 
defined in A a.11d A•. 

I · "!hat is, tJae set of eq..ua tions EA• ca.n also te dEJ:i ved from a set 
of clauses A', such that: de.noting by Dh {Pi), the denotation 

A 
of Pi as defined .by the standard .se1a.11tics, vhen Pi is defined 
in a set of clauses A; the11: A' and A ai:e such that, for all 
: .. procedui::es Pi defined in A., £i is defined also in l" and: 

Dh CEi) = Db (Pi) :: Dh fPi) if clauses in A de net contai.n 
l A' 1ocal variabies; 

Db (Pi)~ Dh (Pi) otber~ise. 
A A1 

ftoi::eover, A• can be ohtainE d by ·trans£ or 1a ti ens cf A. 

Eg ua ti ens .BA•• obtained by transforming eguations EA, may 
co..ntain references to s1mbolic sets J.EiJ, 11here Pi is an 
undefi.ned predicate. such symbclic SEts ca.n he eliminated 
(i:eplaced by the empty set {J). In any case such eguations 
eithEr represent a ground set of values ex else,-they may be 
considered as. 1:=atter:n.s fo.c the computation of tbea. 'they can 
al.so tE used as a tool. fo:c programs develci•ent and programs 
co11position, 11here symbolic set are used to define parametric 
specifications .. 

3. 2110 A.PPllOACBBS 'lO T . .BB EXTiN~ION 01 .DEt0CE 

'lo introduce the problem of static semantics, for n-adic 
programs, let•s consider the follc•iDg clau.sEs: 

1) 11 (a,b) <-
2) P (a.X) <-
3) PUC. Y) <-Q (X, I) ,.P (X, Y) 

4 
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IIJ R (J.l) <- C (.J,2) Z (2.I) 

In gEnEral we h.ave clauses such aE: 

PCJ1,. 12, ••• Xn)<- t1(t11, •• tm1J, ••• Qn(tn1, •••• tnl) 

For the mo•ent ve do not consider functions, thus •e assume all 
. terms tij to be variables, ~ither local ct ~ct. 

lie de11cte bJ JP} a set of tuples, each one of •·bicb is ■ea.nt to 
represent a solution for E, acco~ding with the definition of 
Dh U) ill the .1tue case. 

Let•s observe that Db(P) in case of clause 1) is given ty 
{<a,b.>}; thus an obvious vay to acdifJ t.he lll.!~ function. , is 
to produce the same resul.ts for clau,1;es which·ate asse.ttions. on 
the ct.her .laalld, follo11ing the same ap,Proach, for the ·second 
clausE ve get · a tu,Ple such as {<a, 1>], 11hexe 1, IIEans "all 
possible values", J10J • 
.lo% tlle saJ1e c·ia use it is: 

DhiPJ=t <a, t>.I ~ t e B~rtrand universe} 

if we let (?J denote the Her~rand Universe of the set 
defining P, we can represent DhlP) as: {a} X Ii}. 
way ,to. make tJaings egual. is then to define thE 
pi:oducts betwee• sets as usual, sc that: 

of c1auses. 
l.n obvious 
cartesia.11 

{<a,'l>}=={a} X 121 -
as if 3 11~re an ether constant sy.11bcl •.. 7he seaalltics cf (<a, 1>} 
has to .he defied as Dh (E) above, so tba-t tPJ and D.11 (P) 
reeresent the same set of valuEs. 1n genezal, a tuple as 
<a,.t,i.c,d> i:eprese.nts a set o.f tuples whose first tvo and last 
tvo projections are fiied, and the middle cne is one of all 
possible data •. Given the meaning of such a notation, :we can 
redEfine ]educe so that, for all assei:tions, the following set 
eiEression will. be constructed: 

ill C: flt1 ,t2 , •••• ,tn)<-

for a.ll vi= ti if tiis a constant symbol 

v. = •1• if t. is a ,ariable •. 
~ ' 

Let P be a m-adic procedure and let it be def.i.ned bJ n 
assertio~s; then we can deduce t~e £olloving eguation: 

1 1 1 2 2 2 n n n 
fE}== ( < •1 • v2 , ..... vm>,<v1 • Yi ••••"m>, •••• <11 • '2••••v.,.>J 

If a procedu.re 
(.P} , we de.fine 
(P}_ j, j= 1: m. 
j-th ai:gu ■ent 

P has m argume.nts, than 9iven the set of tuples 
them projections of (PJ, eacb one dEnoted by 
Thus. each {P}_j dEmote the ~et cf values for the 

of predicate P, and it is dE_fi11ed l::y: 
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jJ?}_j== { vJ J ~ i= 1:n and -11 < v~, •• vj , •• -v1> e U} } 

Given {P} as above, it is, obviousl1: 

n 
(i} £ Il lP)~j 

j=1 

The sa:se holds when we Deduce each IE}_j, by t.he data £1011 
analysis of vatiables, for all other tJfe cf cla11ses. lie 
present two approaches: one leads to a set of eguations which 
allows to £ind, for each given procedure Ei, an aiproximation of 
Dh Ui)'; the other approac.b. leads to a set cf eg11ations 11bich 
cou.ld be :re£ined to find an approximation of Dh (P.i), -v.hich. is 
the closest one that can he found statically, by the data flow 
analysis of variables. 

3.1 jjrst .!E(lJ:OfSJ! . , 

Like ~or the monadic• case, we consider the And/Or gEaph which 
correspond to a clause: then we ti:ace the -val1Je flcus of .!J:! 
E,iab:1,.§, .ll.9llllent§ .9! !l!!! 123di_e.1.! 12~4.!!.9 defi.ned. .Por each 
variable Xi such t.hat its trace hinds it tc the j-th axgument of 
a call to _11:cocedui:e Q, ve consider {C}_j as the set originating 
values for that variable. As in the 11011adic case 11e then 
inteJ:fJ:et a.s intersectio.n all And nodes and as union a11 or 
nod.as. Just as an examplE, let u.s see that, Ercceediag as 
abcye, fox clause 3 we ■oul.d deduce: 

{E}_ 1== {Q}_ 1 0 {.FJ_ 1 
(P}_2== iQ}_2 0 11}_2 

ibile fox clauses 4: 

{E}_ 1:= {Q}.;..1 
{P}_:2= {1}_2 

lie ca,n see that {P}_1 X {E}_2 derived abovE, do 12ot 
coi:rectly the semantics of P as defined by the 
se~ant.ics for the corresponding ciauses. ln general, 
assertions, (P} and Dh(P), represent the sase set cf 
all other clauses we have: 

Db (P) i {P} 

represent 
standard 

while for 
data, for 

that is, tlae static semantics, def.ined l:ly the data flow a.nal.ysis 
of variables, defines for a predicate P, a denctation which 
contains the denotation defined by the standard semantics. lie 
can easily see that, for eiample, the standard .semantics defines 
for E, relati-velJ to clause 4, the following: 

Dh(i)=={ <t1,t2) J Y<t1,k) e Dh(C) and <k,t2> E th(l) } 
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while the set e.zi:ression we get for Ii}, can be.ezpres..sed as: 

{I?}== {<t1 ,t2 > I ¥- k1 ,k2 : <t1, k1 > e 1,1 and <k2, t2> E {Fl } 

to conclude, given a set of clauses A, for eacb pi:edicate Pi, 
defi.ned in A, by this approach 'i1E 11culd get a set cf eguations 
as fcllovs: 

n 
{Pi}:=. U 

j=1 

m 
IT {~i}j-k 

k=; 1 
foe Ei de£ined ty D clauses, 
and Pi being .a 1-adic i:rccedure •. 

(Pi}j-k== T for 7 a set exi:.r;essian defi.ni..ng the set 
0£ possible values foi: the k-th ai:gument 
of Pi, defined by the j-th clause. 

Let• s cbsei:·ve _ that this va y ve find the greatest appi:oxima tion 
of each Dh(Pi) that can be found by tbis 1ethcd. iet•s also 
ohser-Ye that the set of eg·uations EA a.re such tllat the follo11i.119 
diagram conmutes: 

]~~!! 
DB CA) <-·------1------------>EA 

J I 
I ~ I 
I t J 
I i: I 
j a J 
i D I 

fig. 2 

J s • 
J f • 
+ 'V' 

DH (1 1 ) <~----

Where DB (.IJ: {Db iP1) • l>.b (l:2) , •••• Dh (.En) J 
A. A . A 

.DB (A•)= {Db (P 1),, Db IP2) , ••• Dh Un) l, ana Db {.Ei), · Db (Pi) 
J' A1 A' I A' 

de£inea in section 2, fig •. 1. 
In .fact ve can easily prove that, gi ve.n a clause 1i tll local 
vai:iables tlaat binds together some procedure calls, ignori.119 
.local variables completely, we get a11 a Etrc:zimatic.n of its 
denotation, which is the denotation of an analogous clause, 
vhei:e all local variables, in all irccedure calls are different, 
one fro ■ each ether. 7hat is. given, .foE examRle: 
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Indeed ve find the denotation of Pde.fined as: 

PCl,l)<- Q(X,Z1), £(Z2,Y), B(I,Z3}, !(Z4,ZS) 

Th.as 11e get a set of equations EA, that can also te derived from 
a set of clauses A', such that the denotatioE c.f all ftocedures, 
defined in i ate containea· in tbe denotation of the sa~e 
procedures defined in A•. I • . E. 
Dh (Ei) f Dh (Pi) for all procedures Pi •. 

1 1 1 

The previous telation shows that by ignoring 1ocal variables, 
the method of data flow analysis of vaxia.hles, e.11su.te partial 
consistenc_y vi th .standard se.mantics • .I.11 fact, ·the aet.llod allows 
to .find sets of values such that, so1e of the values a.te coi:rect 
soluticns, ~bile others aren•t. Yet no value, outside tbose 
sets, can be a cotrect solatioD. 

To obtain a set expression for P reiresenti~g a set, nearer to 
DhtP). we should define, given clause q above, two subsets for 
{Cl and jl}, 1,g} and {!} respectively, such that: 

1,g1~= t<t1 .,t2·> J ]ta: <t1 ,t2> E {C) ,,U!,g <t2,t3) e {l}} 

Ill= t<t1 ,t2> · J 3 ta: <t1 , t2> e (11 ,g~ <ta,t1 > e ltl J 

7hE previous sets can also be obtained as follows: 

~)== Hn n ( Hl}_ 1 X ( {Q}_2 n {F)_ 1)) 

(1}-== {F} n I {F}_ 1 n (C}_2) X {P}_2)) 

Then, defiaing fP}_1 and (E}_2 we should consider {~)_1 and 
(1}_2 instead of {Q} and ff). let, alt.hcugh ~} a:nd {l} 
repi:esent the set o.f tuples of t and l, satisfJing clause 4, 
because of the carte.sian product x, (PJ vculd _still be greater 
than Dh(R); i.e.: -denoting by Ul the set ottained hJ 
considering {21 and {!) instead of HH a:11d {.F}, it is: 

Dh (i) ~ {!} ~ {i} 

Thus (£} would still he an approximation of th{P) • 
.Everything 11reviously said about (ia:c-tial ccnsistenc1, still 
holds. Yet fl} is less approximate than (P}. 

!he SEt eipression {El, represents the least aEfroximation we 
can get for the set of solutions of i, bJ the static analysi~ of 
its clausal definiton, Lollowing the af~rcach of tracing 
vaEiables. ?hi~ happens just because the clausal definition of 
P was such that only tMo procedure calls shared a variable. In 
general if a procedure calls a~E such that each cne shaLes one 
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(ot ■01:e), variable vith othe.cs, the.n the least approxiaatE 
soluticn need to be found by an iterati~e trccess: 
1) First defi~e each {~!} for each procedure call; this would 

give a restriction of {Qi} in tei:ms cf cthet irccedures with 
vhich Qi sha.ces its argumenu. Since the saae is done for all 
p.rocedure calls, there may be tuples cf ether frocedures, 
satisfyi.ag the sharing conditions with Qi, which do not 
satisfy other sharing conditions in the same clause. this, in 
geDeral, •Eans that: · 

2) ie need to ~efine a {-'i}' identical to l~jJ tut ••ere the 
sets involved are the restricted ones, •lJ's instead of 
{!} ~s- l 

3) !he process of refining (.SU} has tc go en until we get two 
sets, sa1 {.gi} • and {.Q!J", such tha·t, eitbei: 1,g.-i} •= {_gi) "• or 
else lQi}" is emptJ. 

!hi~, informally described, refining EECcess, •ill terainate. 
Let•s i.a fact reai.nd ,.that, foi: all predicates C and!, vith t110 
arguae.nts (tlle same holds fer predicate vi th a.DJ JI uaber of 
ai:guaeDts), it is: 

1,1 ~ -{Q}_ 1 X (QJ_2, 

JQJ:! Hi} n ( {Q}_ 1 X {C)_2 l 

and also: 

and 

( {QJ_ 1 n {:f}_ 1) X C (Q}_2 n {F}_2) ~ IQ}_ 1 X HH_.2 and 

, 101_ 1 n 1.r1_ 1> x ·, fQJ_2 n tPJ_2l n 101 s <t,1_ 1 x ,~1_2Jn 101& 101 

thus, the refining functioJl is monotone descendent and it stops, 
either -producing an eaptJ se·t, (), oi: p:cducing t.be same set •. 
lloreower·• a he.a the .Process stops• all sets such as [g} and (l} , 
represent, the e:xact set of tupl.es satisf.11.ng al.l conditions in 
the clause.·. 2.han the set of sclution.s fer the ~rcced11xe defined 
by t.he clause· i.n object, should he bui.ld in ter:as o.f t.hese last 
sets •. 

!he abcve pi:ocess can be defined, perhaps- ■ore cleai:.ly, if we 
consider all va.ciables, Either lccals ci: .not, i11vclved in a 
clau~e •. lor each variable VE defime a set expression 
rep . .tesenting its possible values, deducing s-uch set e.xpression 
fro.■ tbe And/0.r g.rap.h of the clause. illus. given a clause such 
as: 

PCi1, 12, ••• Jn)<- Q1Ct11, •• tm1) ••• , tn(tm1, •••• t~k) 

.J.et• s denote by X the set 11. X2, •• ,l.n ana bJ Y the set 
Y1,t2, ••• lv of local variables in the p.rEviuoos clausE. then for 
soae of the a.llove tij it is eitlJeE 

tij ~ X • OJ: 7ij ~ Y • 

9 
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Consider the J.nd/Or graph, G, cori:esponde-n·t tc the abcne c.lause, 
and ttace all variables in it. Then for each vuiatle Zi, with 
Zi e X , or Zi E Y, consider the subgtafb G2i of G vbich 
ccrtes,cnd to the trace of Zi, and tras£crn it as fcllc~s: 

-the toot is labe1led bj { a1ZiJ 

-all And nodes become nones; all Gr nodes 1:ecome U nodes; 

-all nodes QjCtj1, •••• tja), are replaced by an 
arcs leading out, .respectivelJ, to a nodElatellEd 
Qj(tj1, •••• tjm) such tbat therE eiists a k= ~:r, 
tj.t=Zi. .1i,pelldix 2 gives an eza•ple. 

node 11ith k 
:ty {CjJ_.k; for 
11ith 1.Ss~r and 

lie can deduce { a1Qj}, in the same va1 11E deduced W), by 
defining such {a1Qj} in terms of {Cjj and {u1Zi}, depending on 
the variables of Qj in the clause. Ma 1d.ng suxe that by i 11e 
alva1s get a di.f.fetent set identifier, we can get a set of 
eguations which can be transformed i11to S<lllE solved for,11, 1:J a 
tran.sfor•ation p:toces.s analogous to the one presented in ne.xt 
section. 'the set of equations in solved .foi:a, thus ol':taine,a, 
can bE transformed again bJ the abcve mentioned refini.ng 
functicn. 

1:he set of eguations VE get hJ this ai:fi:cach can te summa.1:ized 
,as follovs: Given a set of clauses A, , 
'"- let P be the set of procedure sya.bols, dEf ined, oJ: just 
used, in c1ansal de.finitions of A; 
- let'{P1,R2, •••• Pll} e P , be the set of procedure defined in 
A; 
then, fox a1l Pi an equation is built which leeks as fellows: 

u m , 
Ui}= U ( IIfajX. h 

. .j= 1 Jt= \ Jlc! 
with x e Xij and Xij the, set 

jk 

o.f Yariables, terms of Pi in the j-th clause. 

I.et Z;j be the set of a1.l variable s111hcls, lccal ,01: net, in the 
j-th clause defineg Pi, then: Por each variab1e s1mbol 
Yj.t e Zij' we have a set of equations as fol.lo11s: 

{ajJ }== 1 •here Tis a set expression containing 
jk sjmbolic sets such as (ajCw}. 

For eacb froceduxe Qw, called in 
have a set o.f eguations such as: 

r 

the j-th clause defining Pi, we 

I ajCvJ= fQv} n f II {ajY l ) 
s=l js 

Qw, in the j-th clause defining 

if r-1 is the numbe~ of 
argument of cw and all ?· 5 
are the vatiables, texas 1of 

ii. 

-- ~- ·--------~---------------
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4. 7BJJSIOB8J1l01 01 EQUAtlONS 

We vill only consider the approach seen in 3.1, since we believe 
that t.lie ·transfar.aatio.ns 11e are gcitg ta define, can be 
accordingly aodified to he applied to equations as aefined in 
3.2 atove.. · 

%bus, from J.1 above, •e bave that: given a set cf ciauses J, 
DedueetJ), _pi:odaces a .set of eguations, as in the ao11adic case, 
vith the further complications of fJ:Ojectic~s. Js to transfo~m 
the .se-t cf eguations define iD 3. 1 aboYe, let as chserve that 
the beat result ve· would iite to get, is a "a se-t of eguaticns, 
eacla one o.f vhic.b associates a gi:ou.nd set (a set of cons·tant 
s71.bcls), to a procedure. Si.nee so.me procedures may .te defined 
in t_er ■s of ·11ndefi.ned procedures, and since 11e believe that this 
is a useful inforaation to keep, we want final set expressions, 
associated to procedures to mantai.n such i:e;fere.nces •.. 'lh us: 

lie .say that a set of eguations is in '!ill~~ !2t.1•, if and ODlJ 
if., each eguation has the for■: 

{Pi)==t o.r {Pi}j_lt= 1: 

for al.l p.roceaure s1mbols Pi, and al.I int~gez j and k, and a.ll 
set ex,.ression ! such that: 

1) ! i.s a ground set; else 
2) t i.s the eaEtJ set {} ; else 
3) 2 is a set expression which containssy•bolic sets (Qj} and 
such tJiat {Qj} does .not appear on the left-band aiae of a.ny 
o·Uae.E _eguation (Qj is an u.ndef.ined procedure). 

le define .now the .following tran.sfcu:11a Uc.11 algcri th.a 

_ti::a.nsu: 
1) 8EFlJ :cule BB 1; 
2) apply EB, until possible; 
3) apply s azicas, u.ntil possible; 

.D II 

l1G.t all eguations o:f the for•: {Pi)-== U II (Pi} j_k 
j=1 .k= 1 

replaces each occurence 0£ '(Ri}_k•, in all set eziressions of 
all cthe:i: eguatioJJ.s, hJ 

J1 
U {ij j_k 

j=1 

11 



Since from Deduce ~e get equations such as, for examFlE: 

{P}= 4 JP} 1_ 1 X •• )C {P) 1_m) O ........ a ((l:} u_ 1 X •• X lI) u_m) 

(P} 1_ 1= ( (M}_ 1 n {i} _2) X ( {1:} _ 1 n fD}_J) · 
••• {Pl 1_•=·-····--·--· ·-· ••• 

(P} u_ 1=•••• ·--IP} u_ a==•••~--••• 

{111 =: (111} 1_ 1 X •• X {PJ} 1_mm) tJ ••• o ((!J Jc-1 X •• X {!} k_1n) 
••• 

Bul.e liB1 allows to eliminate all references of -· tyi:e 1 {P}_v• 
and replaces them by a more detailed set exi.ce~sion in terms of 
• {Pl j_• • • s. BJ BB 1, · the previous e:xample 11ould be ti:ansfor11ed 
in: 
{P}== ( (Pl 1_ 1 X •• XiPJ 1_m) U •••••• U ( U}u_ 1 X •• X(P] u_m) 

{I?} 1_ 1== ({ll}_ 1 n {'l}_2) X ( ((P} 1_ 1 u •• a U} n_ 1) n {DJ_3) 
••••••• 

with a.ll. otbeJ: eguations modified accc.tdinglJ. 

JliJ1i'1..!!i9D Bule IEB) 

Given an eguation such as: {Pi}j_l== 1 
such that 'lco11tains' {Pi}j_.k•, replaces 1 {Pi}_j_k• iJJ T, by the 
e11i:t1 set l]. 

-Ror all set expressions t: 
{} 1l 1 -== 1 
n n 1 := u 
-for all gxound sets D i 

i 

n 
i=1,n: fI £ is dE~ined as usual; 

i=1 i 
Opei:ations of 
moreovEr s 
dist:cibu tvi t_y 

O and n are 
will contain 
of u alld n. 

defined for ground sets as nsual; 
axic11s Jo:c asscciati,itJ aDd 

iu1e IB1 defined 
rule E& above, to 
the monadic case 
obsei:vation that, 

for the monadic case, as bee~ modified 
take i.nto account projecticDS cf tui:les. 
rule Ei was an obvious conseguEnce of 

given a recui:sive clause such as: 

PCl) <- Q(X),B{X),P(X) 

into 
.For 
the 

accoi:ding to its ~tandard semantics, no denotations, different 
from those generated by all other clauses defiEing E, ~ill be 
gene.Ia ted bJ that clause. In the n-adic case, the analogous. 

12 
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llappe.as for recursion over the saae arguaent <1f a-Erocedure. 
7llat is, consider the foliowing clause: 

P (X,X) <-P ll,Z) ,BU, I) 

Prom the standard semantics we have ttat the i;:cevicas clause 
adds tuples tc the denotation of E, defined ty the ether clauses 
defining P, in the sense that it adds tui;les whe.te onlJ the 
second elemeats may he new. Said it anothEr way, considering 
the greatest set of solutions fc.:c E, de.noted bJ: 
Dh(P)-1 X ~h(P)-2, the above ciause may ad~ ele•ents to DhCP)-2, 
not to Dh(P)•1. Thus, si11ce :we are ncv looking fc1: the greatest 
a,P.E.EC:ziaatio11 o£ Dih(P), 11e can collside.r the atove clause having 
the saae greatest set of solutions of P def.ined as: 

P CJ.J) <-P• (X,J) ,:& {Z, Y) 

P (X,l) <-P 1 (J, l) 

and where P' is defined as the 1:est of P. 
defined h1 u clauses and the one considered 
k-th, then P' is defined so that: 

k-1 u 
DhfP')== UJ>h,P)i D ( U DhU)j 

i=l j=k+1 

that is, if 2 was 
1re1iou~l1 vas the 

1lh•s ve define .JB so that each time 11e have egua·tions such as: 

{.P}i_j= {{P}i_j O '11) X ( ••• 

we replaces all occui:eoces of • (PJ i __ j •, en tlJe left hand side 0£ 
Uae pr,nicus eguatio11, hy the empty set • (} •• 

!.ransf1 as defined above 11il.l certainly stops, since tlae nuaber 
of substitutions BR1 has to do is finite: aoi:eo~er, each 
substitution i.Ioduces a set of equations such that the sa11e type 
of sets {P]_k, foi all predicates, will not appear a~ymore in 
an1oae clause, unless Pis undEfi.ned (thus nc eguation exists 
fer (I}); ll1 needs to be done onlJ once. 
The sa ■e, oz course, b.ol.ds for EB; 
S axio,as ai:e obviouslJ convergent, and a point. vi.11 le reached 
so that no o.ne of them can be ai::Elied anyaci:e. 

luEther transf:comations a.re defined bJ the ~allowing algorithm: 

7:ca11sf2 

1) ai:ElY liB2; 
2) aEply !B; 
3) aEply S axic•s; 
4) repeat from 1) 
any ac.re. 

to 3) until all of t.hea. ca11nct be applied 
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B~Elacement .!.!!1.§ 2 (BR2} 

Given an eguations of type: {P}Lk= 1 
where i is a set eipxession; ~eplaces each occurence of• {P}j_k• 
by Tin all set ex~ressions of all otbet eguaticEE. 

EB and S axioms are define as in lE~ill• 

Bule Bi2 is a transformation aaalcgous tc BB1. 

t1ansf1 sto{ls, as 11el.l as 'Iransfj does. tet•s in fact observe 
that: . 
BB2 is applied after i~§£1 is ccmpletEd; nc eguaticn. such as 
(P}j_K=i, will be such that T contains '{F]j_i• itself (because 
of !Ji in __.ID!§i 1) ;. 
At each step, BB2 eliminates all references tc sets such as 
• l P} j_.k•; thus, the next time 1lB2 won •t be applied to the same 
eguation: since this-applies to all eguation.s ana since there 
are a finite number of eguatio11s, after a 11bile, BB2 aill not be 
aEplicable anyaore. · 
Eecause of the same sort of considerations, about EB·aud s 
uicas, we can conclude that ~t!.!!§f2 terai»atES, F~oducing a set 
oz eguatioas each oDe of 11hich has associated: eithe.t a ground· 
set, CL I} oi: else a set exp.cessioD ccntaiDing i:e.ferences to 
undefined procedui:es, i.e. it produces a set of eg~ations in 
solved .!.9ll. 

At the e11d, since refe.1:ences to {E}j_k do not appear in any set 
ezpression and since they where built jost fer the sake of 
transformations, all eguations for such set~ can ie eli•inated; 
a.ll that vi.11 remain is a set of eguaticns, fci: the Frocedures 
defined in tlie set of clauses given in the f ii:st place. 

5. f .Ei BElUBIS OJI 1:RABS!'OBMA7IONS 

The transformation process, presented im Section 4. is such that 
the follo~i.ng diagram commutes: 

C: -

~:9.S.! 
DB (.l) <-------- ------------)!JI 

I 1 I 
I J j 2 
I J J .t 
I r J I a 
I ]~ a J I n 
I .n ,J J s 
J t l f 
J 1 I 1 
J I J 

'1, I I 
DH,A')<--------- •----------->!1 1 

Ded.Y.£.! 

'I 
r 
a 

+ n fig. 3 
s 
f ... 
"' 
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In fact, l&.!!1§!1 and 7ransf2 stcEs, ircducing a 
equations, EA•, in solved form; thus, the aigocith• 
T.raDsf 1 followed by .I!A.!!§!2 is so.11112lete. It ensu.res a 
to the set of eguations given in the first place. 

set of 
give.n tJ 
solution 

Furthermore, the set of equations EA•, can te deducea from a set 
of clauses A', such that A and A' have the ~ame greatest 
aRpi:oxi•ate set of solutions, .!U!, with: .fill=fl!CP1) ••••• RJ!(Pn)J, 
vhere each R.b (.Pi) . is the greatest set of approximate solutions 
of Pi1 for all .PJ:ocedu.res Pi defiDed in A. 
In fact, BB·1, BB2 and s axioms, d_o net alte.r the se ■a.ntics of 
the .set o:f eguations the1 are applied to; t.bu.s, the set of 
clauses correspondent to the set of eguations. tefore and after 
BB1, iB2 and s axioms, can be cbtal~ea bJ a similar 
transformation of clauses in A •. 

T.he tra.nsforaation process given in Sec-. q, is e9oi 1alent to the 
non•deterainistic algorithm, give.n in 111 J • which ti:ansform a 
given set of eguations into another one. in soved fc~a, to find 
an eJficieat unification algorithm. BB1 aJJd 5B2 are analogoas 
to '.JAriabl§ lliaination•• J11--12J, and to thE JU!j.2Jdi,D.9 
transfi:oaatioll defined in Program Transforaatio.ns. J13-14J. EB 
is analogous to the transformation vbich e.tases e13uations such 
as x=x. ~n J11J, and Compaction in 112j. Also· EB is Equivalent 
to J:eirese.nt by (} the failurE of transfctaa ticns. t 111 for 
eguaticns: :r-=t, •here t coutaiu x., 

.For all procedures Pi, defined in I and J', their denotations, 
as defJned by the standard sEmantics is such that: 

Db Ui) ~ Dh (Ri) th us .OB (A) ~ DB (J•) 
1 1 1 

vith DB(A). DB(J').Dh (P~) and Db (Pi) defined as foi: fig. 1, 2. 
. A 11 

The above results is due to the methcd c.f ~ct conside.ting local 
variables at all, as -it has been shown in SEctio.n 3. 1. 

6. ClltJ,SAL ll.llllH7iONS WltB l!OliADlC lU:NCJIOliS 

I.a SEc·tion 2 ve introduced a .notation fer function~, used in 
j10J. low •e axe going to see how to exte~d results cf previous 
sections J-4, for clauses with fumcticns. 

Runcticns can be, either in terms of pxocedure teing defined by 
a clause or else. te terms of Erccedure calls. 
J.et•s fir.st obse.r~e that: 

PfftiJJ<- Q1(J), •••• Qn(X) is equivalent to: 

P (f (.J) <-P' ll) 
P' UJ <-Q1 (X) ••••••On (X) 

15 
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7herefcre, we can consider {P'} to be eg~ivalent to {P} vbere 
the clausal definition of P does .net ccntain a111 function, on 
its defini tioII fai:t. I. e. 

·. n 
{P}== {f. [P•J) and (E'}= fl {Ci} 

i= 1 

' 
Shus fer the above definition of i, ve can deducE: 

n 
UJ= {.f. ( fl {Ci})} 

i=1 

1ha.s. 11hen functio.as are terJlls of a procedure .tei.ng defined l:y a 
clause, the result of thE procedu.:re, xe1ati'Ve1J to that 
particular argument, in that particulac cla-use, is given by: 

{P} j_k== {£. 7} 

vbere 7 is derived in the same •ay as ~n 3.1, as if the function 
f didn•t appear at all •. 

On the other hand if a variable x, a.cguaent cf a procedure 
defi»itiou, is also the acgu~ent of a fumctica •g•, in a 
procedure caJ.l to Q. then, instead of considering {Q}_.k, we 11ill 
.con.sider: dom (g,, HH_k). Which is a conseguEDce cf the meaning 
of .9.9..1 (Section ~), and the consideration that: 

PIX)<- Q If fl) 

is such that the solutions·for P, vill te all those values •v•, 
such tbat: f(v) E ~blQ), i.E. a set D such tbat 'ff.CJ• e (Q}. 
lo:c example, from: 

Pjf(X),g(I),m(n{Z)))<~ Q(X,h{Y)J, R(m(X),Z) ve have: 

(P} 1_ 1== {f. ( JOJ_ 1 n _g.Q_! (m, {R} _ 1))} 
fl!] 1_2= {g • .9.!t!(h, JC}_2)} 
(Pl 1_3·= {m. jn. IB}_2]} 

!he second approach in 3.2, needs tote sJ.i9htly modified 
accoi:ding to the previous notaticns. 

Fci: 11hat co:ncern transfor.mations, rule EB 1 and BB2 need to be 
modified so that replacements are not app.lied to i:eferences io 
non-atomic sets (i.e. sets sucb as (f.'l}) a.nd in ai:guments of 
them function. 7he solved focm of .set EXEression.s is thus, 
sucb that symbolic sets, defined bJ ether eguaticm~ may appear 
on.ly in set expressions which are part of non-atcaic sets, oc 
argume11t of the function .Q.2.!• Everything previously said about 
transformations in SectioD 4, still held~. 

16 
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At this point a further transformation can te done to expand a 
bit 11ore set expressions in .non-ato.aic sets, aDd in argwaent.s of 
do ■, to get .scme more information atout tbe .results of 
procedures, avoiding .non termina ticrn cf transfcrmatic.ns, because 
of recursive set expressions. Altl:ough it will Dct be dealt with 
in this paper, we believe a notation, for non-atomic sets, can 
be found, such that, by a simila.E precess cf ~ramsfcrmations, 
the fixpciut of such set expressions can te derived. He vill 
the.a .be able to represe.n·t data, .built b1 recursive .aiplicatio.ns 
of functions, .hJ a self-contained, .Eecursive symbolic 
ezp.ression. !or the moment ve Eropose the fcllcving .further 
ti:a11sfcrmatio11s, for the set of equations obtained J:y tlle 
modified algorithms 7ransiJ and 1,1.nsf2. 

,J.ransf3: 

- applJ BBl so that replacemts take pl.aces im J1c.11-ato11ic sets 
and in set exEres2ions, argument of~-
- given a·set o.f a eguations, choose cne of the fer•: (P}j k==1:; 
1) reElace each occurense of the left hand side of the-given 
eguatioD, by its right ha.11d·side 1 in ill set upressions of 
other eguations •. 
2) aEply ss axiom~; 
.3J choose an eguation of the fora {.P} ik=-=1, which has not been 
chcasen Jet: 
4) repeat 1-3, u.nUl all eguations have .teen cbcosen o.nce •. 

Axioas SS (old S axioas plus axioms for non-atomic sets and do• 
exEre.ssions) are listed in Appendix 3. 7hEJ can te prottd 
convergent and consistent •ith Ue meaning cf .ncn-atomic sets 
and tbe 4.9.1 function •. %he set expressions still represent 
approxi•ate soluticns of procedures. 

7 •. C05CJ.USJ:O.RS 

We have considered logic programs in the Born clauses fora of 
logic wit.la monadic functions. lie ha,e the.n presented two 
approaches tc derive, from a given set of clauses a set of 
eguatic11s. ,the set of eguations obtai11ed re,1:esent, fo..r each 
procedure, its greatest, appro.ximate, set o.f solutions; i.e. a 
set 11hich co.atai.ns the denotation de.fined bJ the standard 
se aa ll tic.s. 

Bguations .are derived .from clauseJ: bJ a data flew analysis, fo.c 
the Yariab.les involved i.n the clause, carried on o-ver the 
co.r:respondent And/Cr g.caph. 

Given a set of eguatio.ns (derived as in the first cne 
aEprcaches presented), we define a transformation 
which reduces eguations to a sol~ed fora. 7he set cf 
thus obtained is such that each equation ex,Eresses, 
ez_p.cession, the set o.f appro:xima te sol·uticns fer 

of the two 
algorithm 
eguations 
.by a set 

a given 

17 
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procedure. By aFproximate set of soluticns for a procedures, we 
Dean a set of values {when possible) scue cf ~hich a~e coirect 
soluticus for the given procedures, while scme others are ~rong 
soluticns. In aDy case, no other values, outside the afpro.rimate 
set cf sclutions, can be correct. 

The aim of t~e paper is not to find tLanfox1aticns in order to 
obtain more efficient programs, as it is the case for Program 
transformations and SJnthesis J1J-14-15J. our aim instead, is to 
fi»d some properties of a program, ftom the static amalysis of 
its definition, in the framewoLk of Abstract lzterpretations of 
Progra11, 161. lt is because of this that., foi: eJraaple, we 
believe that refences to undefined procedures should 1:e kept in 
set expressions, for they coul.d be used a.s a tcol fer program 
vei:ificatioll, 1rogi:am construction a.nd co•i:osition cf programs 
which have been defined SEFaratelJ. 
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Jj.f !IDll 1 

E (X) <-Q 1 (X) , •••• Q.n (X) 
.E If (XI) <..,;B1 fJ), ••• ·.Bm (X) 
P ,x) <-S 1 (g.1 (X)), ••. S.k (g.k (l)) 
E (a)<- R (b) <-

Its correspondent And/0.r: graph can be drav.D as follow~: 

Prem the pre~ious graph, ve can deduce the following: 

{f. ( ) } ·•~.6 

{R1} .J.·~ ~11} 
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APPEND.IX 2 

(i} 

A 
(C}_4 IF}_ 1 

lR}== ll} X {Yl X {Z} 

111== t tQl_ 1 n 101_2> n tlil _2 
ll}== {0]_3 ntP}_2 
Ul== l1l}_3 
111== IQJ_4 n 1.11_ 1 
Ii 1}= {PJ_3 n !R}_ 1 

1'}-== {Q} n (il} X (.I} X (l} X {W}) 
ll }== IQ J n ( ( I 1 X ( I} X ( li 1} ) 
UJ= lB} n ( 1~ 1} X (.X} X {Z}) 

{ i 1} . 

~ 
11}_3 JB}_ 1 

{Z] 
I 

[B}_3 

1- Por all set expressio.ns A and B, suc.h that .A a.nd Bare 
ground sets: 

- Au B -== t ~' X € A or XE E} 
- An B== l X j XE A ana Xe E} 

2- .Eor all set expression D . . 
- D 0 n -== D' 

- i: n u = {} 
- D u l?J == (:} 
- t n {?} = D - fD u B) n D = D n (D u B) .=D n tB 0 D) -- D 
- .D n B) 0 D = D u (D n 13) .= D u If n t> :: Jj 

20 
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3) lor all atomic sets D, and all ncn-atcaic EetE B 

- D n H == n 
q) Por all .u·_on-atomic sets, and for all l,v a.11d n: 

-ff .f.f ••• ff -UJ •• J = U 
l v 11 

- lt • .OJ o ff • f?}}= {f • f?JJ 
l l 1 

· -(f .DJ n lf • {?}}== {f .DJ 
l l l 

5) For all non-atomic sets and all set eiireEsic~s a, 
D and all 1~· k, s: -------.. ---· ···--· -·- ·- . 

Jf .BJ n (f • DJ={} iff l'i'k 
l k 

- ff • {f • BJ J u If • ff • J>}} == (f • C {f • BJ u ff • .DJ)) 
l k l s l k - s 

- ff - Jf • HJ} n {f - {f • D} l == {f - ({f .BJ n {i .;. D}) J 
1 Jt l s l k E 

-Ror all functions f: 

h.!Cg, U )== U 

- and for all ground sets D: 

.2.9.! (g., D)={} 

-Per all set eipressions T: 

doa(g, 7) U .9.2.!S(g, T)--j.2._!fg, T) 
m<g, i> n mcg, T>=m,g, T> 
..9.2.1(9, {g.t})== T 

D .D _ 
lli (g, U ~ )= U .9.2.! (g, T ) 

i=1 i i=1 i 
D D 

S9.!(9,fl7)== fl.9.2.1(9,7) 
i=1 i i=1 i 
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Abstract. The PaPer Presents an extension to PROLOG that 
allows to directlw express concurrenc~ and swnchronization. 
This is achieved bw i~troducins the concept of class, a sort of 
cluster made of concurrent atoms. In seneral, a set of 
clauses involvins classes is eauivalent to a denumerable infin
jte set of Pure PROLOG clauses. First, s~ntax and operational 
semantics of our extension are defined. Then a first order 
semantics is Siven that sliShtl~ seneralizes classical PROLOG 
model-theoretic semantics; a fixPoint semantics is also Siven. 
Finallw, an example illustrate the expressive Power of the 
ewt.ension + 

1.· INTRODUCTION 

Recent achievements in hardware technolos~ made it feasi
ble the development of machines that can directl~ execute losic 
Prosrammins lansuases. Amons these, PROLOG is the most relevant 
both for theoretical and for Practical reasons C2,6J. However, 
PROLOG is not satisfactor~ enoush to conveniently exPress the 
concurrent features that hardware Provides nowada~s. As a 
matter of fact, PROLOG procedures can be naturallw ·executed 
either in a Parallel or in a co-routinins fashion. The former 
re•imen is simPlw achieved by simultaneousl~ rePlacins a set of 
independent atoms in the current Soal. Co-routininS occurs when 
the same variables ar• shared by different atoms, thus realiz
ins a sort of as~nchronous communication. Unfortunatel~, there 
is no exPlicit way of s~nchronizin~ the computations of two or 
more concurrent Processes, as is reGuired when they cooperate 
to solve the same problem. 

In order to solve this limitation, a number of extensions 
to PROLOG have been introduced C3,4,7,9J. All these extensions 
allow to write clauses with more than one atom in their left
hand side, e.s. 

ACx,y) & B(y,z) <-- C<x,s,z>, DCz,w> 
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2 

where variable~ acts as a s~nchronous communication channel 
between atoms A and B. The intended oPerational meanins of 
such a clause is that suitable instances of atoms C and D can 
be replaced for an instance of A and D, onl~ when both of them 
are Present at the same time in the soal. 

_ The aim of this PaPer is to sive a formalization of the 
above oPerational meanins within a losic framework, so that all 
the aPPealins semantic features of PROLOG carry over this 
extension. Moreover, we claim that the notions of synchroniza
tion and communication will be better understood and exPressed 
b~ Precisely statins the meanins of clauses such as the one 
above. 

First, the PaPer describes the syntax of both the left
and risht-hand sides. of clauses alons with the lansuase opera
tional semantics; then it defines a first order semantics which 
is a straishtforward seneralization of the one-siven by vanEm
den and Kowalski CSJ. A fixPoint semantics is also siven, and 
the three different semantics are shown to be eauivalent. 
Finally, ihe PaPer shows how a concurrent Prosram can be 
translated in a Pure PROLOG Prosram, senerallY composed by a 
denumerable set of clauses. 

2+ SYNTAX AND OPERATIONAL SEMANTICS 

In this section we will sive the syntax of our extension 
to PROLOG in two steps. First, we will introduce concr~~i JUtD
tax. It is an abbreviation for some constructs of the abstract 
;;;:;tax that will be defined later. 

The concrete svntax of the lansuase is the followins. 

A Prosram is a set of clauses. 

A clause is a sentence of the form 

X <--Bl+•••+ Bm 

where Xis a clas$ and each Bi is an atom. 
The f.ormula B1 + ••• + Bm is the (Possibly empty) body of the 
clause and Xis its header. 

A class either is an atom or has the form 

(A&X) 

where A is an atom and Xis a class. 
The natation (X&A> is completely eauivalent to <A&X). 
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An atom has the form 

A(t1, ••• ,tn) 

where A is a Predicate s~mbol and each ti is a term, i=1, ••• ,n. 

A term is built b~ variables and constr•Jctor aPPlications to 
terms. 

A Soal is of the form 

<--Bl+••• + Bm m;?;O. 

The concrete s~ntax allows to abbreviate soals and bodies 
by usins the connective+. Let us now define abstract syntax 
that Sives to+ a meanins in t~rms both of standard first order 
losic connectives, and of classes. 

The formula 

Al + •.; + An 

is an abbreviation for 

< Al A • • • /\ An> V 
<Xll A ••• A Xlk1.> V 
•••• 
(XP1 ~ ••• A XPk~) V 

<Al& • • • &An> 

where: 
~ each XiJ is a class built with atoms Ak; 
- each Ak belonss exactl~ to one class XlJ; 
- P+2 is the r,umber of all the Possible conJunctions of distinct 

classes obtainable from Al, ••• ,An. Actual!~, 

" Pf2= Ls<n,ld 
IC ,.,t 

s(n,k) beins the Stirlins number of second kind that counts 
the number of Partitions ink classes of n obJects. 

In the formulas above, we have intentionally omitted 
Parenthesis, understandins that both & and t be risht associa
tive. 

Example 1. The formula A + B t C abbreviates 

(A /1. B /\ C> Y (A&B /\ C> V (A&C /\ B> V <A /\ B&C> V <A&B&C) 
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The followins distributive axioms hold that relate classi
cal connectives and classes. 

1+ (A V B>&C = <A&C) · V <B&C) 
2. (A /\ B> &C = «A&C) A B> V <A A (B&C» 

A clause of the form 

X <-- Bl t ••• + Bm 

is an abbreviation for one of the followins 

a> 
b) 

if m=O 
if m>O 

X 
A1&CA2&c ••• &<Ak&X) ••• >1Y 
,(A1&(A2&c ••• &(Ak& (B1 + ••• t Bm)) ••• ))) 

---·-·----
for each finite multiset of atoms <CA1,A2, ••• ,Akl} (com
pound brackets <C and J} enclose multiset elements>. 

The intuitive meanins of the clause 

X <-- B1 + ••• + Bm <*> 

is that all the atoms occurrins in class X must s~nchronize to 
be rePlaced with the body B1 + ••• + Bm. Itam Cb> above can be 
better understood by considerinS that, if the atoms in class X 
occur as Part of a larser class Y, they can still be replaced 

·with Bl+ ••• + Bm that,.in turn, will sYnchronize themselves 
with the remainins atoms of Y. On the contrary, if only some 
atoms of X are present in the soal, the~ cannot be replaced by 
clause <*>• Hen~e, the symbol •&• occurrins in a class does in 
no way be interpreted as a classical •A•, since the truth value 
of a class does not functionally ~ePend on the truth values of 
the atoms it is composed with. We will come asain on this issue 
in example 2 below. 

A {concurrent) computation of a soal sis a seouence of 
soals s=s1,s2, ••• , where each s<i+l> is derived from Si. 

A ( cor,c•J r rent) ref•Jtation of s is a computation endins 
with the empt~ soal. 

Given a soal s of the form 

<-- G1 + ♦ ♦ • + Gm 

and a .c 1 a•Jse 

Al&; •• &An <~- Bl + • • ♦ + Bk 
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we can derive a new soal Si 

<-- CB 1J>- + •. • + CB kJ:>,. + [GG"1J;i.., + • • • + CGsmJA 

if and onl1:1 if 

510 

CJ' is a permutation of the indexes of s ar,d )... is a unifier 
such that 
C 66" i J.>,. =CA i J>,. i = 1 , • • • , n • 

Example 2. Let us have the followins sround clauses 

1. A <-- D 
2. ·A&B <-- E 

and the soal 

<--A+ B + C (S) 

The soal can be nondeterministically computed in the two fol
lowins wa1:1s. 

<--A+ B + C 
<-- D + B + C 

a> 

<--A+ B + C 
<--- E + C 

b) 

Let us examine what haPPens when abstract s1:1ntax is used 
in Place of the concrete one. The soal is 

,(AABAC) A ,(AAB&C) A ,(A&B~C) A -,(A&C B> ~ ,<A&B&C) (aS) 

The clauses 1 and 2 will orisinate a denumerable set of 
clauses, but onl1:1 the followin• can be aPPlied to the soal. 

1 a• A V ,D 2a+ A&B V -,E 
tb •. A&B V-,D&B 2b. A&B&C V ,E&C 
le• A&C V ,D&C 
1d. A&B&C V -,D&B&C 

For simPlicitY sake, let us consider onlw computation (b>, 
which leads to 

,<EAC) /\ ,<E&C> 

which is ex~ressed in concrete swntax exac~lY as 

<--· E + C • 

--·•-'<• ---·--- . ····- --------------·--------------· ·---~-,,-------
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The result of computation (b) is a conJunction of the two 
clauses above since clause 2a and 2b may be aPPlied to the 
third and the fifth conJuncts of the orisinal soal, resPec
tivelY. The other conJuncts can obviously be disresarded, 
since it is sufficient to refute a sinsle conJunct to refute a 
whole conJunction. 

Now we .can better understand why the clause 

A&B <-- E 

corresponds to infinitlY many clauses, each -addins a finite 
class as •context• to A&B. The soal, when written in its 
abstract form (as>, allows to better sinsle out two conJuncts 
(the last two in Cas>> which are worth to be noticed. In the 
f.irst A and B are S!:mchronized, in the 'other A and B are s!:ln
chronized also with c. Hence, also the last conJunct Cin which 
A&B&C occurs> must be replaced, resultiris in E&C. The way+ has 
beins defined assures that the synchronization between A&B and 
C is inherited by E. 

Finally, remark that a clause in concrete swntax in sen
eral corresponds to infinite clauses in abst~act svntax, but 
only a finite number of them will be actuallv used in a compu
tation. The effectiveness of the definition of computation is 
then Preserved. 

Comins back to our example, notice that in computation .(a) 
all the five conJuncts corresPondins to the expansion of D + B 
+ C will be obtained from (as). In fact, clause la aPPlies to 
the first two conJuncts of <as>, and 1b-d to exactly one of the 
remainins conJuncts. 

3. MODEL-THEORETICAL AND FIXPOINT SEMANTICS 

The construction of a Herbrand model for a set of clauses 
involvins classes needs onlY to sliShtlY chanse the one siven 
bv vanEmden and Kowalski C5J. The difference is related to the 
fact that the model of a class is not the intersection of the 
models of the atoms that occur in it. If so, •g• would be noth
ins more than the classical 'A', thus vanishins our Proposal to 
describe a s~nchronization mechanism. 

Par abus de lansase, we will call Herbrand base for a Pro
sram S the set of all multisets of Sround atoms 

ft -< C F' < t , • • • , t > , • •• , Pl( < ti(,, • • • , t,, ) J) 
i -l-1. 1.h ~ . "' 

where. 
- P, a re. Predicate s~mbo 1 s occ•J rr ins in S, 
- J is the rank of P/ , 
- trg are sro1Jnd terms. 
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A Herbrand interpretation is anw subset of the Herbrand 
base. 

Given a Herbrand interpretation 1: 

i) a sround class Xis TRUE under l if and only if the mul
tiset of its atoms belonss to 1; 

ii) a conJunction of sround clauses ClA ••• ACm is TRUE under I 
if and only if all Ci's ar£> ___ !,R~_E •Jnde~ I; 

iii) a disJunction of sround (both Positive and nesative> 
classes x1v ••• vxm is TRUE under l if and only if at least 
one Xi is TRUE ~nder I· -- --------------' -

iv> the negation of a sround class ,Xis TRUE under I if and 
onl~ if X does not belons tor; 

v> a universall~ auantified clause C is TRUE under I if and 
only if all its sround instances are TRUE under I. 

A Herbrand model of a Program S is an~ interpretation 
under which all the clauses of Sare TRUE. 

The semantics of a Prosram Sis the minimal Herbrand model 
of S, which results to be the intersection of all the Herbrand 
models of s. 

Note that the above definition of truth values of a for
mula under an interpretation is given in terms of abstract syn
tax onlw. Extendins it to concrete syntax is an easy task. Let 
us simply give here the extension in the case of clauses. 
A sround clause X <-- B1+ ••• 4Bm is TRUE under I if and onlY. if 
for each finite multiset of ground atoms {[·A1, ••• ,A~J}, k~O, 
the di sJ•Jnct i or, 

A1&(A2&C ••• &<Ak&X) ••• ))V 
,CA1&(A2&< ••• &CAk& <Bf-+••• t Bm>) ••• ))) 

is TRUE •Jnder I. 

The definition of the fixPoint semantics for a Prosram S 
in abstract syntax is Guite standard. 

The set of interpretations of a Pro9ram S is Partially 
ordered by standard set inclusion. 

Given an interpretation I for a Prosram S, the continuous 
transformation T associated to S yields a new interpretation 
I'+ I' contains the multiset of sround atoms of a class Xl if 

-- ·- --------------·------ - --- ----
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and onl~ if there exists a sround instance of a clause of S 

X 1 V -,X2 V • • • V ,Xn n>O 

and the multiset of sround atoms of each Xi, i=2, ••• ,n, belonss 
to I+ 

As usual, an interpretation I is closed under a transfor
mation T if and onl~ if I contains T<I>. 

The semantics of a Prosram Sis the intersection of all 
the closed interpretations of S, which can be easil~ Proved to 
be the fixPoint of the above defined continuou~ transformation 
T. 

The followins theorem holds. 

EQUIVALENCE THEOREM. 
The operational, model-theoretic and fixPoint semantics 
are all eauivalent. 

The Proof of the theorem relies on the followins lemmas. 

LEMMA 1. 
The model theoretic semantics is eauivalent to the fix
Point semantics. 

This lemma is a corollar~ of the more Seneral theorem statins 
that the set of the Herbrand models of a Prosram Sis eaual to 
the set of all the' interpretations closed under the continuous 
transformation T associated to s. 

LEMMA 2. 
The operational semantics is eauivalent to the fixPoint 
semantics. 

This lemma can easil~ be Proved, since when there is a refuta
tion of a Prosram s· and a sround class X, the multiset of 
sround atoms of X belonss to the fixPoint of the transformation 
T associated to s. 

4. CONCURRENT PROGRAMS AND PROLOG PROGRAMS 

We will now briefl~ discuss the relationshiPs. between a 
Pure ~ROLOG Prosram and a concurrent Prosram in which classes 
occur. Actuall~, for each concurrent Prosram there exists an 
eauivalent PROLOG Prosram which is denumerabl~ infinite. 

'-----------~ .. -- ... -----------
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As defined above, a clause of the form 

X <--Bl+ ••• + Bm 

corresponds to a denumerable set of clauses 

A 1 & ( A2 & ( • • • & ( Ak &X) • • • ) ) v 
,<Al&(A2l( ••• &(Ak& <Bf-+ ••• t Bm)) ••• ))) 

each Ai beins an atom. 

51 'I 

Let us now translate a clause in which classes occur into a 
Pure PROLOG clause, i,e. let us translate tlasses. 

First, a total orderins relation > is imposed on the 
Predicate swmbols. Then, the class 

A 1 ( t 11 , • • • , t 1 n i. > & ••• & Aid tk 1 , ••• , tl'-.nK ) 

where ACitl>>Ai for all i=l,.,.,k-1, 
sinsle atom 

Q ( t 11 , • • • , t 1 "1. ., t21 , ••• , tlu,k > 

is translated into the 

where Q belonss to a denumerable infinite set of new Predicate 
swmbols. The translation function must be a biJection. 

Note that the rank of Q is determined as the sum of the 
ranks of all the Ai's occurrins in the class. For instance, the 
class 

A1<x,w>&A2Cx,z,w) 

is translated into the followins atom 

O(:,:,'::ln<,z,w). 

Notice also that the condition un the orderin~ amons atoms in a 
class is not a restriction, since the relative position of 
atoms in a class is both swntacticallw and semanticallw 
irrelevant. 

The followins fact is obviously true. 

FACT. Given a translation from classes to atoms and two classes 
X and Y unifiable by ~, the translations of X and Y are 
still 1Jnifiable bY A• 

We will now show that a concurrent computation of a soal 
is eauival€nt to a finite set of PROLOG computation. As men
tioned above, the infinity of the translated Pro~ram does not 
affect the effectiveness of the comPutations, because only a 
finite number of the clauses obtained bY translation will 
actually be used in a comPutation • 

.. ····-··-··--·-·--·--··· -------
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Recall that a concurrent soal 

<--Bl+ ••• + Bm 

81S 

corresponds to the followins conJunction of PROLOG seals (let 
1 ! Bi be the trar,slation of atom Bi, QiJ the translatior, of the 

iJ-th class, a the translation of B1& ••• &Bm>. 

<<-- B1 /\ • • • /\ Bm > A 
<<-- 011 /\ • • • " (Uk.,_) " • • • 
(<:-- Qp1 A • • • /\ Qpkp > /\ 
<-· .. fl 

A step in a concurrent:comPutation of a soal is then eauivalent 
to a step of standard PROLOG computation on suitable selected 
Soals cominS from the.translation+ Of course, these must con
tain an instance of the header of the clause to be aPPlied+ 
Needless to sa~, a concurrent refutation corresponds to a set 
of PROLOG computations, one of which is a refutation. 

The above remarks allow us to state the followins theorem. 

COMPLETENESS THEOREM 
An~ unsatisfiable (i.e. havins no model) set consistins of 
a concurrent soal and a concurrent ~rosram has a refuta
tion. 

5. AN EXAMPLE 

In order to illustrate the expressive Power of our Propo
sal, let us write a Pro~ram that imPlements a •semaPhore•, 
throush which a set of Jobs can be s~nchronized. The Prosram 
consists of four clauses definins the two classical Pri.mitives 
on semaphores P and v, and of two clau~es imPlementins a aueue. 

1. p(sem-id,Job-id)&sem(sem_id,O,a) 
<-- enaueue(Job-id,a,a') + sem<sem_id,O,a') 

2. p(sem-id,Job_id)&sem(sem_id,s(n>,NIL> 
<-- sem(sem_id,n,NIL> + .ack(Job_id) 

J. v(sem_id,Job-id)&sem(sem_i~,O,Job_id'.a) 
<-- sem(sem_id,O,a> + ack<Job-id> + ack(Job_id') 

4. v<sem-id,Job_id>&sem(sem_id,n,NIL) 
<-- sem(sem_id,s(n),NIL> + ack(Job_id) 

5. enaueue<Job_id,NIL,Job_id.NIL) <--
6. enaueue(Job_id,Job_id'.a,Job_id'.a') 

<-- enaueue(Job_id,a,a') 

~--------······ -- '"'·-··. ·····. -~ ·--------•-·-·--- ·- ... -~---------
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Natural numbers are rePresent~d by O and successor (s); aueues 
by lists endins with NIL (the empty oueue); semaphores bY their 
name, a natural number variable and a aueue. Semaphores are 
handled throush P and v. A Job Job_id callin9 Pon a semaphore 
sem-id is allowed to Proceed runnins if the value of the sema
Phore (the second arsument of sem_id> is not o. Otherwise it is 
stoPPed and its identifier is enaueued. A Job callins v either 
Cre)starts a stoPPed Job, if any, and deoueues its identifier, 
or increment~ the semaPhore value. In both cases the callins 
·Job is resumed by sendins it an acknowledsement (the definition 
and use of clauses ack is not shown here>. 

While clauses 5 and 6 are auite standard, clauses 1-4 are 
concurrent. Note that Processes P <or v> and sem share the 
variable sem_id, and sYnchronize bY communicatins throush it. 
This example shows that this kind of interaction, and also more 
complicated waYs of synchronous communication, can be naturally 
and exPlicitlY described by havins more than one atom in a 
clause header. In fact, the specification of Process sem, that 
manases the value and the aueue of anY semaPhore, is isolated 
from those Processes (p and v) that actually exploit the sema
Phore mechanism. 

6. CONCLUSIONS 

We have defined a first order semantics for an extension 
to PROLOG, based on a synchronization and communication Primi
tive. The expressive Power of the resultinS lansuase is 
stronser than the one of PROLOG+ An intuitive arsument to this 
claim can be found in the fact that a Prosram involvins such a 
feature corresponds to a denumerable infinite set of Pure 
clauses+ Furthermore, standard PROLOG Prosrams can be struc
tured as modules, and the Possibly concurrent interactions 
amons them can be naturally described in terms of the above 
Primitive. 

A similar solution to the Problem of exPressins concurrent 
Prosrams in losic has been Presented by Monteiro CSJ. In his 
Proposal, PROLOG is extended with the concept of event, thus 
leadins to a temporal losic Prosrammins lansuase. 

Our future work will concern the Possibility of introduc
ins a seauential operator, followins C7J, and of sivins it a 
Precise losic meanins. Furthermore, we intend to enrich con
current Prosrams with the caPabilitY of Processins infinite 
streams of data, as done in ClJ. Finallw, it is worth investi
satins on a concept of module that provide mechanisms to encap
sulate losic Prosrams. 
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ABSTRACT 

A conpi1er is proposed that maps Prolog clauses into a 
language (LCA/1) with clauses annotated according to functional 
dependencies. LCA/1 has a demand driven computation rule and 
allows to cope vith streams and lazy constructors. 

The compi1ation eliminates the non-determinism related to 
the choice of the literal to compute and guarantees an 
efficient computation. 
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1. Introduction. 

Non-d€terminism in Pro1og comes in two f.lavours [1]. The 
first one is related to the full declarative programming style 
and comes from the absence of any ordering in the literals 
occurring both in the cJ.ause right-part and in the goal. The 
second one is rel.ated to the relational cal.cul.us and comes £rom 
the existence of·superposal:t1e clauses (i.e.._clauses vhose left 
parts atomic formulas are unifiab1e).· 

.Both 0£ the above~.:features_contribute to making Prolog a 
milestone 0£ the logic based programming languages and, at the 
same ti.111e, the basis £or al1 the ··applications where calculus 
and reasoning merge: expert systems, relational. knowledge base 
management, software systems specifications and various A.I. 
applications are only some of them I 2,3, 4 J. 

Nevertheless, all these powerful Prolog aspects cause a high 
complexity in the Prolog run-time support because a non 
accurate choice of the literal to he computed can make bighly 
non-deterministic even potentially deterministic computations. 
This is a direct conseguence of the first type of 
non-determinism because Prol.og programs do not expl.icitly state 
for each variable vhich literals "co.mpate" the value and which 
litera.ls use such _a. -value •. 

Obvious.ly, ·specific interpreters choose particular 
strategies such· as the left _to right evaluation of t.he 
literals, but this .is a very strict choice and does .not solve 
the problem. Incidental.ly, it is vorth to .Dote that this kind 
of compl.exity cannot .te reduced by running programs on 
efficient and Prolog oriented machines. 

In order to avoid the first tipe of non-determinism and to 
speed up the computation of those rel.ations which are 
(multi-output) functioDs, manJ authors [S,6,7] have 
experimented contro.l l.anguages to attach a.lgorithms to Prolog 
_programs {SJ. The autb.qrs have considered some logically based 
functional. l.anguages {9,10] and dezined a functional. l.ogic 
language, LCA {11], which is a clause language vith terms 

·constrained to be either 'input or output terms. LCA could 
integrate Pro1og, as an algorithmic component which all.ovs to 
explicitly express programs involving functions and to compute 
them in a simpl.e and efficient way. 

Nevertheless, all the proposed 
inadequate. In fact all of tbe.m 
respect to decl.arativeness: i.e. 
contain procedural features. 

ou.r aim is: 

solutions are partiallJ 
ioose transparenc~ with 

the resulting p~ograms 

to save the P.rolog expressive power with its uniform viev of 
relations and functio~s; 

- to develop a technique for automatically eliminating the 
first type of non-determinism by attaching algorith•s to 
clauses. 

- to develop an efficient interpreter ab.le to compute the 
intermediate form obtained with the above step. 
The basic idea to achieve this goal is to define a language 
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{LCA/1, a generalization of LCA} vhose programs are sets of 
tt.fully annotated" (Horn) c.lauses. Full annotation .means that 
all the variables (not the terms) occurring in a clause (or 
goal) are annotated as 1Npat or OOTput variables •. Different 
occurrences of the same variable are possibly annotated in 
Jii1:ferent ways. The ••£ul.ly annotatedvt c1auses Jllust obe,1 some 
syntactic constraints ensuring that each OUT variable can be 
computed in exactly one wa,1. 

ne .language interpreter has been .defined along the .lines of 
the interpreter a.lread~ given for LCA. Its main features are: 

a demand driven computation rule; 
the ability to hand.le lazy data constructors; 
the ability to handle only the second {and rea11y semantic) 
t~pe of non-determinism. 
The second step is to define a translator from Prolog 

programs :illto fu11,1 annotated programs. ~he translator 
associates to each clause of a Prolog program a set of folly 
annotated c.lauses. Each of them expresses both the specif.le 
state that the vatiables in a goal must satisfy in order to 
apply the c1ause (i.e. the variables vhich are already bound or 
not), and a specific functional dependency among the atomic 
formu1as (i.e. vhich comFutes what). All the ful.ly annotated 
clauses, associat~d- to ~ach clause, only depend upo~ the 
variables occurring'in the clause and are not superposable. 

The compilation of .Ero.log progra.ms onto a demand driven 
machine seems a promising solutioll to save on one hand, a.11 the 
features of Prolog programming and, on the other hand, to earn 
the efficiency of running programs on a demand driven 
architecture. 

Section 2 will give a brief introduction to LCA/1. Sections 
3 and 4 treat the translation in detail, while section 5 will 
describe the LCA/1 interfreter. 

2. The lCA/1 language. 

In this section ve ~ill not describe all the details of 
LCA/1, because it is guite similar to other proposals [11], but 
~e will point out the main differences. 

The first one is that in a term the occurrence of a variab1e 
symbol xis a.lways annotated by IN or OUT. ~e call these terms 
fully annotated data terms and we refer to variables annotated 
by IN (O0T) as input (output) variables. 

The atomic formula will contain onlJ fully annotated data 
terms. 

Let us introduce some definitions: 

- constant grm: a term ~ithout variables; 
- input tm;~: a term with input variables only; 
- .2.B!EY! !§~~: a ter~ with at least one output variable. 

The following are examp.les of fully annotated clauses:' 
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* {s(x IN) 1 Y 1N ,:z. OUT) <-- *(x IN ,y IN ,w OUT),+ (If IN ,y IN ,z OUT) 
*(s(x,N),.YIN'z,N) <- *{X1N,.J1N••ouT),+(v,N,J,N,z,N) (*) 
* { S ( X IN J II Y o u T , z o UT ) <-- * (X , ·N , Yo uT' v o u T) , + (., 1 N , .J I N . • Z o u T ) 
BEV (X: IN• J I H , V ·ouT) <- BEV {J; 1 N.,Z 0 uT) ,APP (Z_.N ,x IN .nil.,V.ouT) 
REV {X IN. y OUT , VIN l <- BEV (y OUT ,z IN) ,APP (ZOUT ,x,N .nil,v IN) 

11here sand • are function symbol.s and*,+, REV and APP are 
predicate symbo1s. 

The predicate* ho1ds if the third argument is egua1 to the 
product o.f the first two arguments, and the predicate UV ho.ids 
if the first argument is the reverse 1ist of the second 
argument. ttoreover, the intended meaning of the first clause 
of* is that, for any i and y, the result of the product of 
s(x) and y is the sum of J with the product of x and y, while 
the second clause of* means that for any trip1e of numbers x, 
y and z, z is the resul.t of the product of s(x) and y if z is· 
the sum 0£ .J with the product of x and y. 

Examples of fully annotated goals are the .following: 

<-- * (S (S (OJ j ,s (0) ,x OUT) 
<-- *(s{s(x 1NJ),s{.y 0 uT),z 0 uTl,+{s(s(O));x0 uT's(s{s(O)))J 
<-- BEV(a.b.c.nil,Z 0 uT) 
<-- REY(a.x 0 uT•c.ni1,c.t.a.nil) 

The.syntax of the language h'a~ to satisfy some constraints 
to have the desired properties. ID the following, we assume 
familiarity with the terminology and the notatioB used in [1]. 

Let H '".(a} (.M ouT (a)) be the multiset of the input (outpat) 
variahl.es of an atomic formula a. 

Let H<-- a1,a2., ••• .,an be a clause, where Bis the conclusion 
atomic formula, the ai•s are the atomic conditions, and all the 
atomic formulas are fully annotated (a1,a2,~ •• ,an can also 
indicate a goal). 

Condition 1. 
---1:l'f-Foi each 

1.2) ror each 
be a set. 

clause and for each ai, MIN (H) n !f ouT(ai) = J. 
clause or goal the multiset U MouT{ai) must 

i E { 1,n] 

~his condition ensures that ever~ variable is computed in 
exactly one wa1 by only one atomic formula. 

Condition 2. 
--Toreach atomic for~ula ai in a clause or goal; each 

variable belonging to l:1 1 N (ai) must belong to MO uT (ak) (or to 
.M,N{H) in the case of a clause), where ak is an atoaic 
formula of the clause or goal such that i ';' ..k. 

This condition forbids to have atomic formulas whose input 
variables do .not occur as output variables of ·other atomic 
formulas. 

Condition 3. 
--!he-iultiset M1N(H) must be a set. 
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This condition is complementary to Co~dition 1 (about the. 
unigueDess of the computations), and forbids to put conditions 
on the input Yariables of the conclusion atomic formula; i.e. 
the unification process does not need to contro1 egualitJ on 
the input variables. Th.is allows to have a simple and 
(possibly) parall.el. unification algorithm. 

constraints on the va1ues computed by different variables 
are allowed and efficiently handled by the primitive predicate 
EQp._ The semantics of EQp corresponds ~o the Prolog assertion: 

EQp(x, ••• ,x)<-- D (EQ1 (x,x) <-- □}. 

p+1-times 

Note that because of Conditions 1,2 and 3 all 
s1mbols occurring in MouT{li), must belong either to 
to K--ouT(ai) 1 for some ai in the clause, or must not 

variab1e 
!5 IN {H) or 
occur in 

the~clause right part. 
As a conseguence, any out_put 

one atomic .formula only or must 
of all the terms oz the Herbrand 

variable is either computed by 
be considered bound to the set 
Universe. 

l.CA/1 is a generalization of LCA {11] mainly motivated by 
the compilation of Prolog·· clauses. such a generalization is 
obtained by redefining the term s-tructure and l:y relaxing some 
constraints of l.CA. Nevertheless, the main properties of the 
LCA semantics are saved in the ope.rational semantics of l.CA/1. 
Thus, the definiti-0n -0£ the LCA/1 interpreter is structura1ly 
similar to the one de£ined in (11]. Section 5 briefly analJses 
the externa1 evaluation rn1e and the new formulation of the 
computation rule needed to handle full annotations. 

3. The compiler. 

The compiler from Prolog into LCA/1 is a mapping of clause 
structures of Prolog into LCA/1 ones. 

This mapping is based on the concept of state of the 
computation, i.e. the state of the variables during the 
computation of the current goal: each var~able can be already 
bound (totally or partially computed) or not. The variab1e can 
be considered, i.n the first case, as a possible input and, in 
the secoDd case, as a possible output for an atomic £ormula. 

A second aspect of the concept of state is related to the 
applicability of a clause. LCA/1 allows to explicitly define, 
for each conclusion atomic formula, vhich variabl.es are assumed 
to be .i.nput (and thus must be bound to a value by the 
unification), and which variables are assumed to be output (and 
,.ill have a value "computed 11 by the clauseJ at resolution time. 

The first aspect of state is also present in Prolog (bound 
and unbound variables in the unification process). 

The main idea of the transformation is that a Prolog atomic 
formula implicit1y expresses a finite number of possible 
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different states (the second 
combinatorially depends upon the 
in the clause. A Prolog clause 
of fully an.notated clauses, 
·particular st.ate. 

aspect) and this number 
number of variables occurring 

can then be mapped into a set 
each of them expressing a 

As an example of the transformation, the three clauses in 
(*J are some of .the eight fully annotat~d clauses defined by 
the folloving 2rolog clause= 

.._.(s{x) ,y,z) <-- *.{x,_y,v),+(v,y,z). 
Let us take the first clause of(*), i.e.: 

*(s(x.JNJ,1,N,ZouT) <-- *{JC1N•Y1N ,WouTL,+(v,N•l',N,ZouTl•~ 
This clause explicitly defines a state of applicahi.lity, 

where tbe variables % and y must be hound and where the 
variable z is computed by the ·the clause itself_. 

4. The transformation. 

In order to formally define the transformation from PROLOG 
programs into LCA/1 programs ve vi11 use the following simple 
structurEs. 

DEFINITION 1 {Y.,griable §EQUeD~ or §_eguence). 
To each term t we can associate the variable sequence 

containing all the variacle occurrences as found by a Rre-order 
term traversing process. 

As an exampie, <x,~,i,2> is the sequence associated to the 
ter.m f (.x, 9 {Y ,xJ ,z). 

1f tis a constant term, the sequence associated tot is the 
empty seguence. Let s be the sequence of length n associated 
to the term t, s[iJ (or t[iJJ, for each ie {1,nJ, sel.ect.s the 
i-th variable ins. · 

rn the £ollowing, the concept of sequence vi11 be 
generalized to atomic formulas by associating to each-- formula 

.of the form P(t1, ••• ,tk) the seguence obtained by concatenating 
the seguences s1, ••• ,sk associated to the terms t1, ••• ,tk 
respectively. 

DEP1NITION 2 (gAnotateg segy~~). s 
Lets be a segueace of length n, ve define {IN,OUTJ a.s tbe 

set of all the annotated sequences generated bys. 

The annotated seguence ve{IN,OUT}s. differs from s because, 
for each i e [ 1,n J, v[ i] is the variable s{ i] annotated by IB or 
b~ CUT. We call v{i] an annotation for the variable s[i]. 

7he set {IN,OUT}8 contains exactly 2" annotated sequences. 

DE~INITION 3 (2J!Be!ii!!ti~ seg~~)-
Let she a sequence ~lld v .be an annotated sequence of the 

same length of s, we define a substitution as the pair (s,v) •. 

'-
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DEPINITION 4 {§YRStitUY,.Q.!! applicability). 
Lett be a term and S be the sllbstitution (r,v), ve say that 

Sis app1icahle tot il£ r is equal to the sequence associated 
to t. 

The app1ication 0£ S to the term t results in the term t• 
such that: 

• · ¥ieI 1,n], 
if n is the length of s. 

t•[ i] = v[i], 

The· transformation maps a clause c into a set U{c) of 
annotated clauses. lt will he described in a tvo step process._ 
First of al.1, given a clause c of the form B<--L, ve compute 
the set o• (c) of partially annotated clauses. The clauses in 
u•tc) have a11 the variables occurring in. H replaced by 
annotated variables. Zn the first step, the 1oca1 variables of 
c {i.e. variables not occurring in the c1ause conclusion) are 

· ignored. 
The second step takes care of the l.ocal variables bJ 

providing the computation of a £ully annotated clause for each 
clause in the set U'{c) • .In the same way, t-he second step is 
al::le to provide the transformation of a goal statement into the 
correspo.nding .fully .. annotated goal • 

. -·- ...... 

4.1 The computation of u•(c). 

Let c be the clause B<--11, ••• ,l.ll, the computation of u•(c) 
proceeds as follows: 

1) Define {IN,ODTJ 5 , 

associated to H. 
where s is the variable sequence 

2) Compute the subset K ~ {.lll,OUT} 5 which contains all the 
annotated sequences having multiple occurrences of the same 
variahie annotated bJ IN. Note that, the set K could be 
empty. The set is empty i£ and onlJ if the sequences does 
not contain multiple occurrences of the same variable. 

3) Vre{IN,OU:J:} 5 -K, let {s,r) be a substitution. Compute 
H•<--L' U1 (c) as follows: 

+ B' 
of 

+ L' 

is the atomic formula resulting from the application 
{s,r) to H; 
is the sequence 11 1 , ••• ,lm' such that: 
n <= m, and 
¥iE[1,n], and for each variable x occurring both in 
li and in the sequences, li' contains z annotated as 
follows: 
1) if x occurs in r annotated bJ 

occurrence of xis replaced in li' 
2) if x occurs in r only annotated by 

the following holds: 

.IN., then each 
by .J: IN. 

OUT., then one of 

a) 3 je{ 1 ,n J suc.h that i;tj and lj' al.ready contains 
an occurrence of XouT• Then each occurrence of 
xis replaced in li' by x,N• 
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b) ¥ je[ 1, n ], such t.ha t i 7 j, .lj • does not contain 
occurrences of XouT• Then 
1) if li contains exactly one occurrence of i, 

then the _ occurrence . of x is rep.laced in 1i • 
by XouT • 

2) i£ li contains p+1 occurrences of x, then 
+ the first occurrence of xis rep.laced in 

J.i• b.1 .xouT and all the other occurrences 
are rep1aced by different renamings of x 
annotated by OUT •. 

+ let .x1 0 uT , ••• ,XPouT he the above 
introduced·renamings. ~hen 

· EQp (x 1N ,x11N 4• • • ,xp 1N) 

is a SEecia1 atomic for•u1a lu• in L• for 
some u e {n+1,a]. 

-4) lr/- rEK, .we add to the set resulting from step 3) the clause 

H1 <--11•,•~-,ln•, ••• ,lh 1 , ••• ,1m• (ll <-= h < JD) 

obtained as follows: 
+ for each variable x 

x1 IN, ••• ,xp 1N _ . .be a 
first. Then· 

occurring in r more than once, let 
renaming for each occurrence but the 

EQp (JC IN ,.%1. IN ,. ~ • ,Xp IN ) 

is an atomic formula .lu• for so.me u e [h+1,m] 
+ 1et r• be the annotated sequencer whose variables are 

r~named according to the above st:ep, then (s,r•) is sti.11 
a substitution and H'<--.11•, ••• ,ln•, ••• ,lh' is the result 
of step 3) appliEd to (s,r•). 

4.2 .Example. 

Let us consider the clause c: 
A(.x,d(JC)) <-- B(X,l'),E(JC,X) 

where dis a function s1mbol, A,B and E are predicate symbo.ls 
and x, l' are ~he variables occurring in the clause such that y 
only is loca1. Then, the computation of. u• (c) proceeds as 
fo1lows: 

1 ) s=<.x, :x> 
{:IN,OOTJ5 = {<x IN , JC IN> ,<x IN ,x ouT > ,<x: ouT ,:x IN>, <iouT ,lCouT >.} 

2) K={<.x IN ,x IN>} 

3) lr/- SE {<J: 1N ,XouT>,<XouT1X1N>,<.1:ouT,XouT>l 
+ s:: ( J[ IN ' X OUT ) 

H'=A (X IN, d (Xo 111 )) 

1.•~B(:x iN,Y) ,E(x,N ,x,N )

+ s=<x OUT ,x ltl > 
H'=A(x 0 uT ,d(x,N)) 
L'=B(x,N ,y) ,E(x 1N ,x,N) 

+ s=<xOUT , X OUT> 
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H'=A (X 0 uy ,d (XouT)) 
I.'=B(XouT1Y) ,.E(X1N ,x,N) 
.Q~ 

8 

I.•=B (X IN ,1> ,E (.x-ouT .x1 0uT) ,EQ1 (X IN ,x1 IN ) 

4) V r E {<z,N ,x,N >J 
-+ EQ1 (x,N ,x1 ,N ) 
+ r•=<x 1N ,x1 ,N > 

H•=A (X IN ,d (X1 IN ) ) 

1.:s=B{.x,N ,J) ,E(x,N 1X,N) ,.EQ1 {x.N ,x1,N) 

52.6 

The comRutation defines two u•(cJ, each one containing four 
f u.lly an.notated clauses, which differ in ·· the right part of the 
clause obtained from the substitution s=<xouy,XouT> •. 

4.3 BemaJ:ks about u•(c) 

i~S!.E9§i:ti.2.!!.1 
For each Prolog clause c, u•(c) contains at 

clause. Horeover, u•(c) contains exactly the clause 
conclusion atomic formula of c has no variables • 

.£~2.22§ill2!! ~ 

least one 
c iff.the 

U'{c) as computed by steps 1)-4) is not unique • .In £act, 
step 3.2) could lead to more than one U'(c), if more than one 
atoi:ic formu.la in the right part contaills a variable which, in 
the sequencer, is on.l.f annotated bJ OUT. 

Actually, we are not concerned 11ith the choice of U'(c), 
although the problem of choosing the best atomic formula is the 
key issue for optimizatio~. 

RI'.2I!2§iti2!! 1 
7he following properties hold for the annotations oz the 

clauses in 0'(c): 

f~Eert? j No conclusion atomic formu.la contains more than one 
occurrence of the same variable annotated by IB, as 
guaranteed by the subset K in steps 2) and .Q). 

Proeerti: 1 No clause right part contains more than one. 
occurrence of the same variable annotated by OUT, as 
·g11ar an teed by step 3). 

Property .a For each clause vJiose concl.usion atom.ic formula 
contains a variable annotated by OUT, only one of the 
following cases holds: 

1-the same v.ariahle annotated by .I:N occurs in the 
conclusion atomic formula also; 

2-the same variab.le annotated hJ OUT occurs in exactly one 
atomic formula in the clause right part; 

J-t.he same variable a.nnotated by OUT occurs in the 
conclusion atomic formula only. 
This property is guaranteed by the variable rena~ings 
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introduced in point 2.b.2 of step 3} • 

.:fropert_y ,! Par each variable annotated by IB in a clause 
atomic £ormula,.only one 0£ the following cases holds: 

- the same variable aJlllotated hJ IN occurs in. the clause 
concl.usion; 
-·the same variable annotated by OUT occurs in exacUy 

another atomic formul.a of the clause right part. 
This property is guaranteed by point 1) and 2.a) of step 

3). 

4.4. The computation of U{c) 

7he computation of U(c) provides ~he annotation of the J.ocal 
variables occurring in c. Local variables are· variables which 
occur only in the right part of the clause._Snch variables are 
left unchanged liy the computation of O'(cJ. Thus the following 
p.roperty holds: 

P.roposi,tion .! 
¥ c = B<--L. c E u • (c) i£f there exists I.• such that: 

H<--:t.• E U (c). 

Thus, i.ri order to obtain U(c:) , for each clause c of u• (c), 
only L• has to be computed. 

Let H<--11, ••• ,ln be a clause in U'(c), then U(c) contains 
H<--.1 P , ••• ,lm• (n<=m) such that:-

S} ¥ i e [ 1,n) such that li is al.readJ a 
atomic formula (i.e., li does not contain 
then 1i'=li; 

£u1ly annotated 
loca.l variables) 

·6) .I.et i E [ 1,n] be such that 1i co.ntains at least a local 
variable .x, then one of the £olloving cases ho.lds: 
1) 3 j e [ 1, n ), such that i 7 j and lj• · contains an occurrence 

of X0uT. Then each occurrence o.f JC is replaced in li • by 
XIN • 

2) v, j E [ 1.n ], suc.h that i;tj, lj• does not co.ntain 
occurrences of .XouT, then: 
a) if li contains exactly one occurrence of x, then the 

occurrence of xis replaced in li' by XouT• 
b) if 1i conta.iJls p+1 occurrences of x, then the 

following steps are performed: 
the first occurrence of xis replaced in li' hJ 
XouT and all the other occurrences by renamings of 
x annotated tJ OUT. 

- .let .x 1 ouT , ••• , xp ouT be the above introduced 
annotated renamings for .x. Then 

EQp (x ,N , :z:1 IN , ••• ,xp,N ) 
is the atomic formula lu•, for some u E [n+1,m ], 
added to t:he right pa.r~ of the'tra.nsformed clause. 

• ! 
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4.5 Exa.mple 

As aD example of computation, 1et us 
computation of -O{c1) and U(c2) in the case of 
predicates for the addition: 

c1: +{O,y,y) <--
c2: + (s (x) ,:t ,s (z)) <-- + (x,.r ,z) 

w.here sis the successor function. 

consider the 
the fol.loving 

U(c1t={+{0,1·,N,y1,N) <-- EQ1(y 1N ,y1 1N) (1) 
+(O.,y,N,1ouT) <-- (2) 
+(011ouT•Y1N) <-- (3) 
+(O,youT 1 YoUT) <--} (4) 

U(c2)={+(s(x 1N),Y,N1s(z 1N}} <-- +{x,N,1,N,z,N) (5) 
+(s(x,N),J~,S(ZouT» <-- +(x,N .J,N ,ZouT) (6) 
+{s(.x,N) ,YouT·,S{Z,N)) <-- +(x,N •l'ouT'z,N) (J) 
+(s(x,N) •IouT ,s(ZouT )J <- +(x,N ,YouT ,zouT) (8} 
+{s(X 0 UT) ,Y,N ,s(z,N)) <-- +(XouT•.Y,N ,z,N) (9) 
+ (s (XouT) ,y IN ~s (ZouT)) <-- + (.XouT ,Y,N ,ZouT) f10) 
+{s(xouT> ,YouT ,s(z,N )) <-- +(XouT•IouT ,z,N) (11) 
+(s(XouTl,Y 0 uT ,S(ZouT)) <-- +(XouT,YouT ,zouTl} (12) 

llote that U {c1) and U (c2) are unique. 

4.6. Remarks about U{c). 

Because of Proposition 4, some properties, already given for 
the set U'(c), hold for the set O(c) as vel.l. In the 
following, we state the properties vhich hold for the set U(c) 
and we show hov the clauses in U{c) satisfy t.he conditions 
give11 for the anDotated clauses of J.CA/1. 

f.[.QJ?QSiti.Q!! j~ 
Proposition 1 holds in the case of O(c) also. However, U{c) 

could contain exactly one clause c•, such that c 7c•, depending 
on the occurre11ce of .local variables inc • 

.f!:.2122siti.2.D ~ 
Proposition 2 holds in the case of O(c) also. In fa~t. i.n 

addition to the non-unigueness of U'(c) (caused by step J.2), 
step 6) could hold for more than one U(c) for similar 
motivations. The remarks given about U'(c), concerned vith the 
choice of the best atomic formula, apply to U(c) as vell. 

ftOEQ§itJa~_g 1~ 
. Properties of u• tc}, involving only the clause conclusion, 

obviously hold even for U(c), namely properties 1 and 3 of 
Proposition 3. in addition, clauses in U(c) satisfy Properties 
2 and 4 because of steps 5) and 6). 
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we vil.l now show that, if 
condi~ions given for the cl.auses 
Section 2 are satisfied. 

Proposition 3• holds, t.he 
of the 1anguage introduced in 

- Condition 1 Point 1 is achieved hy 
Ri:oposiilon J'•, because, vhen it is applied 
atomic formula, the first case holds. Point 
by property 2• of Proposition 3 1 •. 

property 4• of 
to the conclusion 

2 is guaranteed 

~gitioB 1 The condition immediate1y £oll.ovs from property 
'4 1 of Proposition 3•. 

- Condition 3 The condition is guaraateed by property 1• of 
Proposition -3•. 

As a final remark 1et us note that property 3 of Proposition 
3 is not. Essential aDd follows directly from the other 
properties in the Proposition. 

Fina1ly, a few -w.o.rds about the goal. A goal. is a special 
clause structure whose left part is •empty", and, thus, it only 
has 1ocal variables. The com~utation of U'(c), in the case of a 
goal c, is the set {c]. Given u•(c)={cJ, the computation of 
U {c) proceeds as inA:;he case of any other clause structure • .It 
results in the-· set {c71 ) whose unique clause is a fully 
annotated goal and satisfies all'the above propositions. 

4.7 E:xamFle 

As an example of a goal computation l.et us consider the 
foll.owing clause c: 

<-- + l31 u, V) 
The computation of c is: 

U (c) = {<-- + {3,uOUT ,VouT) J 

Note that the solution is unique. 

5. The language interFreter. 

Whil.e .mentioning the laiiguage features, ve pointed out i.n 
Section 2 how LCA/1 is a ge.nerali2ation of LC!, proposed for 
functional (even if non-deter.ministic) computations in 
.Prolog-like programming envirome.nts. 7hus the l.anguage 
:interpreter we propose is defined al.ong the same l.ines of the 
·tcA interpreter given in [11). it has a simil.ar algebraic 
definition and it handles some features, like lazy constuctors 
and streams, in exactl~ the same vay. 

Nevertheless, some relevant differences must be considered, 
mainly with respect to: 

the evaluation order of the goal atomic formulas; 
- the clause unification mechanism. 
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5.1 The evaluation order and the demand driven rule. 

The evaluation order of atomic formulas in a fully annotated 
goal is established on the basis of a demand driven rule. 

Each fullJ annotated goal contains so~e of the fol.loving 
three types of atomic formulas: 

1) constant formulas: atomic formulas whose terms are only 
constant terms; 

2) inJ?!!t formu1~2: ··· atomic formulas whose terms ai:e either 
constant or input terms and contain at least.one input term; 

3) output formul~: atomic formulas containing at least one 
output term. 

The first t:110 types of formulas correspond to foraulas which 
only put constraints OD the goal or on the values of the 
variables occurring in the goal. As a matter of fact, atoaic 
formulas, whose predicate symbol is EQp, are of the second type 
and their evaluation constraints the evaluation of the formulas 
which use the same variables. Annotations allov us to define 
.9.!QRil each variable annotated bJ OUT which occurs in a goal 
and such that: 
+ the varia.b1e does not occur annotated by IN in the goal 

or 
+ the variable occurs annotated by 1N in input formulas only. 

Xhus a goal could be partitioned into two parts. One part 
consists of the set of all t.he atomic formulas which contain at 
least one occurrence of a global. This part provides the 
computations of the "results11 of the goal evaluation. 

The atomic formulas of the second part do J1ot contain 
globals and -0nly provide the computations of intermediate (and, 
possibly unessential) values. 

The evaluation of a goal proceeds as follows: the constant 
formulas are evaluated first, then the iDput formulas 
containing globals are considered. Finally, when the goal does 
not contain any constant nor input formolas with globals, the 
output formulas which contain at least one global are 
evaluated .. 

The evaluation of an atomic formula of the secoDd or third 
type could require the evaluation of output formulas .includi11g 
atomic formulas not containing globals. In the case of the 
evaiuation of formu1as not containing globals, 1nput formulas 
are evaluated first. 

Note that the order is statically defined by the 
input-output relation among atomic formulas. The relation is 
i.Ilduced by the occurrence of the same variable aJ1J1otated by IB 
and OUT respectively in different atomic formulas. The relation 
we have defined is a .E.grtia1 order. Hence the choice of the 
formula, where more than one choice is possible, is unessential 
to a right seguentialization of ~he computation. 
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5.2 ~he clause application mechanism 

The c.lanse application •echanisa allows to app1J a clause to 
an .atomic :formula in the goal, and·resu.lts in the eva.luation of 
goa.l atomic formulas._ Whenever the· value of a variable is 
needed to app.ly a . cl.aase, the . : atomic formal.a computing that 
variab1e is ~e.lectea (by the Demand Driven Bule) for the 
eva.lu·ation. · 

The mechanism is •a.inly based on a tern unification 
mechanism vhich·provides: 

• the binding of -the .input · .. variahl.es which occur in the 
coac'J.usion atomic formula of the c.lause with the 
correspondi.llg input or constant terms of the goal ato■ic 
formula; · 

• the binding of the output variables which occur in the goa1 
atomic :formula with the corresponding output or constant 
terms of the coDClusion atomic formula of the c.lause. 

Thus, the application of the unification to teras is not 
symmetric. In fact, unification behaves, on one haad, like a 
match of input terms-·in the goal atomic formula to input terms 
in the clause conclusion, and, on the other hand, 1ike a match 
of output terms in the clause conclusion to the output terms in 
the goal atomic formula. . . 

The unification of a term in the goal atomic £0.rlllula, tg, 
with the corresponding term in the clause conclusion, tc, has 
the fol.loving properties • 

.fn>Eosition .2 
The term tg is unifiable vit.h tc if one of the fol.lowing 

cases holds: 
_1) tg is a constant ter11; 
2) tg is aD inFut term and tc is either an input or a coDstant 

t-erm; 
3) tg is an output term and tc is either an output or a 

constant term • 

.f.I:op9sition § 
The unification of tg and tc results in the pair of unifiers 

( .a ,N•~ouT) respectively fer input and output variables, i£ and 
only if: 
1) tg is a constant term and .a,N is such that: 

tg = [tcJ., 
II, IN 

Note that, if tc is an output term, the unification 
requires the evaluation of the right part of the clause in 
order to compute the output variables occurring in tc. 

2). tg is an input term and i..,N is such that: 

tg = [tcJl 
IN 



.. ~32 
14 

In this case, the unification could require the 
evaluation of the goal in order to compute the variables 
occurring as inputs in tg and corresponding to terms 
(different from varia£1es) in tc. 

3) tg i.s an output term such that: 
3.1) tg is an output ~ariable. Then 

= tc 

that is, louT contains a binding oft.he variable tg to 
t.he ter.m tc. Moreover, tc must be a constant term o.c an 
output term containing only output variables. 

3.2) tg is a term of the form f(tg1, ••• , tgk) (where f is a 
data constructor and at ·least one of the tgi•s is an 
output term), then: 

{tgJ'l = [tc] 1 
AouT ,., IN 

If this iilii. :the case and if tc is an output variable, 
the unification needs the eva1uation of the right part of 
the cl.ause to obtain for tc the term f(tc1, -~•• tck). 
Then, the unification· proceeds through the unification of 
tgi, tci for .each i. from 1 to k. 

Note that, because of 3.1, if. t.c is an output variable, its 
value f(tc1, ••• , tck) contains output variables on11- Thus, to 
obtain an uni:fica tion, tg must also be a term containing output. 
variables only. · 

A special case arises when ~c is an output variable which 
does not occur in the right part of the clause, i.e. there a.ce 
no atomic :formulas in the goal which can compute values for the 
variable • .In this case the variable is considered bound to all 
terms of the Her.brand Universe, and the value of the variable 
is denoted by HU. The match of such a variable to an output 
term tg must bind the variables in tg to HO also. 

5. 3 .Exam.Ple 

As an example of a computat.io.n of a ful.lj' annotated program, 
let us consider the evaluation of the goal in the exalllple i.n 
4.7 with the clauses U(c1) and U(c2) in 4.5. 

<-- '+ {3, U OiJT I VOUT ) 

resolved by {8) 

with: ). ~H: {J:~N =2} 

i:uT= (UOUT -=1~uT ,voUT =s(z!uT)} 

deriving: 
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(8) 

f8J 

i:N ·= {X~N =OJ 
') 2 _ '! "1 1 · _ 2 -1 _ 2 
"'ouT- "'ouTU{.YouT -youT • 2 ouT-S(ZouT )} 

<-- + (0,_l'!uT ,z!uT ) 

{4) 

.· 3 

l,N = {} 
'!3 '12 { 2 _ 3 2 _ 3 } 
"'ouT= "'ouTU YouT -YouT • 2 ouT-YouT 

-·□ 
'I• - 13 U {v3 =HU J "'ouT - "'ouT .l OUT 

6. Conclusio• 

.The design of new machines for logic based 1anguages, 
including the functio~a1 ones, reguires the project of 
unconventional architectures oriented to efficiently handle the 
language computation rules. 

Thus it is important to define a (small) nucleus of 
primitive rules which, on one hand, guarantees to express each 
language computation step and, on the other haDd, becomes a 
model to tailor the language architecture. 

In this trend, we have considered the selection 
formulas in the goals of a ~rolog computation. As 
fact, the selection has a remarkable relevance in 
i~plementation because: 

of atomic 
a mat·ter of 
the Prolog 

the selection affects the efficiency of the computations: 
i.e. it 4 can cause too 1ong computations; 
the selection reguires a specific mechanisa vhich. can even 
affect the efficien~y of the mecbanism to handle the 
non-determinism. 
Actually, t:he selection is handled. in two dif£erent vays. 

The first, common to all the Prolog implementations, makes a 
static seiection. This is achieved either by ordering the 
atomic formulas from left to right (12], or bJ using 
annotations {SJ. The former does not cope vith · ezficiencJ, 
while the latter looses the declarative transparency and.does 
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not guarantees efficienci. 
The dynamic handling of the selection is the second approach 

[13). it allo.s e££icient computations but requires mechanisms 
which are complex and hard to build. 

A promising solution to this problem seeas to be a 
compilation of the Prolog clauses illto fully annotated clauses. 

An annotatio~ assigns a role to atomic formulas bJ 
distinguishing between the one vhich, for a given variable, 
must compute a value and the ones vhich will use that value • 
.In this va.1, a functional. dependency is statically imposed on 
the atomic formulas. Then the selection is handled by means of 
a demand-driven mechanisD • 

.In addition to it, the proposed compil.ation allows us to 
reduce both the overhead of the unification mechanism (vhich 
becomes a •atching mechanism) and of the computation 
environment (onlI the output terms unifiers, AouT, must be 
kept). 

However, some opeB guestions can be considered. 
The firs~ is the choice of the object program when more than 

one is possible. The choice is semanticall.y unessential (as ve 
will point out in the foll.owing) and does not affect the design 
or the efficiency of.the tlemand-driven mechanism. However, it 
is essential .in order to .shorten the computations. 

Given a sets of Horn clauses, the choice solutions are 
strictly related to a selection function vhich guarantees, for 
each goal for s, a derivation (if any) with the smallest 
number of· input clauses [14]. 

The use of partially anDotated clauses (cl.auses like those 
occurring in u• (c}) together vith the results concerning the 
superposition [15] seems a promising approach towards the 
definition of such a functioD. 

.For what the semantics is concerned, it is 
that any object obtained by the compilation 
eguivalent to the original Prol9g set of 
program). 

si.mple to prove 
is semantical.ly 
clauses (source 

proble~s arising from 
the derivation of the fullj 

case of the LUSH resolution 

The proof could ignore the 
superposable clauses and show that 
annotated clauses is a special 
applied to .Horn clauses. 

Finally, the progra.mming environment, the proposa1 al.lows to 
define, deserves some remarks. 

Programming applications often need to integrate declarative 
programming vith procedural one. Such an integration will 
allow to easily combine declarative and procedural knowledge 
(i.e. algorithms) and is currently been pursued by several 
projects, notably Bobinson•s LOGLISP [16~ 

. To obtain it, attention has to be put on the integration 
level which must allow, on one hand, to easily merge 
declarative with procedural computations, and on the other 
hand, to maintain, as small as possible, the nucleus for the 
different types of computation. 
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LCA/1 seems a good candidate for the integration level, in 
particular it allows the same nucleus to compute both 
declarative and procedural programs. !oreover, the proposed 
compile£ could he 1ightly aodi£ied in order to be ·applied to 
programs of partially annotated clauses, thus including pure 
Prolog programs, l.CA_ programs and programs whose clauses 
contain both Prolog and I.CA atomic £oraulas. 
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CONTROL OF ACTIVITIES IN THE OR-PARALLEL TOKEN MACHINE 
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Stockholm, Sweden 

ABSTRACT 

A machine model consisting of a limited number of processors, a token pool and 
a storage has been defined, [HaCi]. A token represents the state of a pro
icess, which in turn executes a branch in the search tree of a logic program. 
!Tokens in the token pool correspond to processes which are ready for execution 
but not allocated a processor. Processors execute processes as presecribed by 
jthe tokens and create new tokens. During an Or-parallel execution the number 
of processes usually exceedes the number of available processors. The problem 

;of controlling the number of activities can be divided into two subproblems: 
(1) controlling the traversal of the search tree and (2) prunning some 
branches of the search tree. The solution to (1) can been seen as a scheduling 
problem and will be discussed in a forthcoming paper. To solve (2) we device 
a mechanism for prunning the search tree, removing from the system tokens 
representing no longer needed computations, when only one solution to a prob
lem or a subproblem is required. We show how the mechanism is incorporated 
into the Or-parallel token machine without imposing any process hierarchy or 
message passing. We define a translation of the extended source language pro
grams, (Ha,HHT], into sequences of abstract machine instructions and define 
the interpretation cycle of a processor for the extended instruction set. 
Finally we discuss how the mechanism can be generalised to pruning of the 
trees when at most n solutions is reguired, and for guarded clauses [ClGr,Sh]. 
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AN OR-PARALLEL TOKEN MACHINE 

Seif Haridi and Andrzej Ciepielewski 
Department of Telecommunication and Computer Systems 

Royal Institute of Technology 
Stockholm, Sweden 

ABSTRACT 

~achine model consisting of a limited number of processors, a token pool and 
\torage is defined. A token represents the state of a process, which in turn 
lcutes a branch in the search tree of a logic program. Tokens in the token 
~l correspond to processes which are ready for execution but not allocated a 
' ,cessor. Processors execute processes as presecribed by the tokens and 
)ate new tokens. A processor executes a compiled form of the programs. We 
rine the translation of programs into sequences of abstract machine instruc
fns and define the interpretation cycle of a processor. 

1 Introduction 
! 

in clause programs can be executed in different modes without changing their 
1:ning up to termination. The most common mode is Prolog · s left-to-right 
:ection of subgoals and depth-first traversal of the search tree using back
cking. Instead of a sequential exploration of alterantive solutions, the 
rch tree can be traversed in parallel. This mode has been lately called 
jparallelism. It can be implemented on a single processor [RoSi], but comes 
'st to its right when a large number of processors is used. 

; goal of our research is a multiprocessor architecture for efficient execu-
1 

in of Or-parallelism. We share this goal with a growing number of research-
1 

:: (CoKil, CEKM], [Po], [UmTal and [FNMJ. We have already defined an inter-
lter for Or-parallelism and investigated the feasibility of using structure 
iring in a distributed implementation [CiHa83A,CiHa838]. In this inter
'lter, we have studied, in detail, the problem of managing simultaneously 
,eral binding environments. The interpreter evaluates programs in their 
ltract source form and creates a computation process for each alternative 
deterministic branch. 
this paper we define an abstract machine model consisting of a limited 
ber of processors, a pool of tokens and a storage. The unlimited number of 
pesses in our interpreter is now mapped onto the finite number of proces
js. A processor executes a compiled form of programs. Subgoals are 
~cted in a specific order as defined by the sequence of instructions. We 
lcribe the translation of logic programs into sequences of the abstract 
~ine instructions and define the semantics of the instructions. The 
~ruction set we define here is similar to that of the sequential machine 
!cribed in [Ha Sal. Finally, we discuss methods for controlling the amount 
~arallelism and compare our machine with other proposals. 
i 
I Abstract machine model 
! 

bgic program consists of an initial call and a set of relations. A rela
~ consists of a number of clauses, where each clause is either an assertion 
I 

•n implication. An implication has a head and a body. The body is a literal 
~ conjunction of literals. 
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Ex 1: The following is a program for list-permutation; it consists of two 
relations: p(ermutel and d(elete): 

1. p((].[]). 

2 . p ( x s , [ y I y s l l +-- d ( x s , y , z s I g. p ( z s , y s l . 

1. d([xlxs],x,xs). 
2. d([xlxsl,y,[xlys]) +--d(xs,y,ys). 

and a possible initial call: 

p((1,2].ysl 

Let us denote the i'th clause of a relation r by r.i, then p.1 and d.1 are 
assertions, and p.2 and d.2 are implications. 

Execution of a program can be described by a search tree. A node in such a 
tree represents the state of a subcomputation: a sequence of goals and a bind
ing environment: 

<Goal1>,<Goal2>, ... ,<Goaln> , E. 
l. 

A binding environment consists of contexts containing the values of the 
ables in the invoked clauses, one context for each clause invocation. 
dren of a node represent the states reached after executing a goal 
given state. 

vari
Chil

in the 

Ex 2: The following figure illustrates the initial four levels of the search 
tree corresponding to the program in Ex 1. Notice that each goal consists of a 
literal and a context name 1. which identifies the context containing the 
values of the variables oc2uring in the literal. In the figure, the environ
ments E. are not shown, instead literal substitution of values for variables 
. l. . is used when possible. 
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0: <p([1,2],ys).10> , E0 

1: <d([1,2),y,zs),11>,<p(zs,ys),11> , E1 

2: <p((2],ys),11> , E2 3: <d((2],y,ys),12>,<p(zs,ys),11> , E3 

4: <d([2],y,zs),12>,<p(zs,ys),12> , E4 

5: <p([1],ys),11> , EB 6: <d((l,y,ys),13>,<p(zs,ys),11> , E9 

In the interpreter described in [CiHa82A,CiHa83B], a process is created for 
the root of the search tree. It starts a child process for each clause of the 
relation chosen by the current goal and then terminates. A newly created pro-
cess executes unification and if it fails, 
creates children processes and then terminates. 

it terminates, otherwise it 
A branch of computation ter-

~inates successfully when there are no more goals to solve. A solution can be 
extracted from the binding environment. 

Ex 3: Four snapshots of possible generations of processes for the search tree 
in Ex 2, where the state of each process is shown. Processes are about to 
perform a unification step. Current goals are indicated by upward arrows. 
Environments are also shown in detail where the value of a variable is either 
unbound or a pair: (Source Term.Context Name). 

Snapshot 1: the process corresponding to node 0: 

0: <p([1,2],ys),10> E0 

E0 = 10 -I ys unbound\ 

Snapshot 2: the process corresponding to node 1: 
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1: <d(xs,y,zs),11>,<p(zs,ys),11> E1 

E1 = 10 -fys/ [y!ysl,11 l 
11 - XS [1,2],-

y unbgund 
ys ynbound 
ZS unbound 

Snapshot 3: the processes corresponding to nodes 2 and 3: 

2 : J< p ( z s , y s ) , 1 1 > 
1' 

E2 = 10 -JysJCylys],11J 

11 - XS [1,2),-
y 1 ' -
ys ynbound 
ZS [2), -

E2 ) 3: l<ct(xs,y,ys),12>,<p(zs,ys),11> } EJ\ 
1 

E3 = 10 -\ysj [ylysl,11 ! 
11 - XS {1,2),-

12 -

y ynbound 
ys unbound 
zs Cxjys],12 

X 1 ' -
Xi [2], -
y y,11 
y! unbound 

Snapshot 4: the processes corresponding to nodes 4 and 5, we assume that the 
process corresponding to node 6 and its children have already terminated. 

4: Bd(xs,y,zs),12>,<p(zs,ys),12> } E4 , 
E4 = 10 -jysj {ylys] ,111 

11 -XS [1,2),-
y 1 I -

ys [y,ys),12 
ZS [ 2], -

12 - XS [ 2], -
y unboung 
ys unbound 
ZS ynbound 

5: \<p(zs,ys) ,11> 
~ 

11 - XS [1,2),
y 2,-

Ea\ 

ys unbound 
zs {xlysl,12 

12 - X 1, -
XS (2),

y y,11 
ys [] 

Efficient methods for maintaining a separate address space for each binding 
environment are described in [CiHa83A,CiHa83B]. For the rest of this paper it 
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is enough to realise that a variable can be accessed or updated through the 
unique name: <Environment name.Context name.Variable name>. 

A computation described by our earlier interpreter may be visualised as an 
unlimited number of processes and a storage for binding environments and pro
grams. 

processes 

storage 

In the machine model we present here, the unlimited number of processes is 
mapped onto a finite number of processors. On this conceptual level we can 
picture the machine as consisting of a token pool, a set of processors and a 
storage. Storage is divided into a static memory for programs and dynamic 
memory for the binding environments and other management information. Tokens 
in the pool represent processes which are ready for execution but are not 
allocated a processor. Processors execute processes as prescribed by the 
tokens and create new tokens. Processors communicate with the storage to 
access program and data. 

static memory 

program 

dynamic memory 

environments g, 

mana ement info 

token pool 

processors 

storage 

The above abstraction is similar to the one presented by Darlington and Reeve 
in the description of ALICE (DaRe]. It is very useful for handling problems of 
parallel computations. Furthermore, it can be a starting point for many dif
ferent architectures. 

As mentioned above, the state of a process consists of a list of goals and a 
binding environment. Such a state will be represented in our machine by a 
token residing in the token-pool or in one of the processors, and by a possi
bly empty list of continuation frames residing in the dynamic memory. 
A token consists of the following fields: 
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1. Literal reference (L), 
2. Context name (C), 
3. Environment name (E), 
4. Continuation-Frame reference (CF) and 
5. other information to be described later. 

A continuation frame has the following fields: 

1. Literal reference (L), 
2. Context name (C) and 
3. Continuation-Frame reference (CF). 

In the next section, when the machine instructions are specified, the L-field 
in tokens and continuation frames will be a reference to an instruction. 

Literals of a clause are selected form left to right. This implies that the 
head of the goal-list is always the current goal and the tail are the remain
ing goals. The Land C fields of a token represent the current goal, whereas 
its continuation frames represent the remaining goals. 
These ideas are illustrated by the following snapshot~ which correspond to 
those of Ex 3. 

TOKEN CONTINUATION FRAME 

fL Jc.. lcFJI 
Snapshot 1: there is one initial token having the current 
<p([1,2],ys),10>, and no continuation frame, i.e. field CF is nil. 

't I 10 I ED I 
p((1,2].ys) 

goal 

Snapshot2: one token with the current goal <d(xs,y,zs),11>, the remaining goal 
<p(zs,ys),11> is represented by a continuation frame. 

l(!iil El I ~ "?-· )_11 )_;JI 
p(xs,Cylys]) .. -d(xs,y,zs) g. p(zs,ys). 

Snapshot 3: two tokens, the one corresponding to node 3 has a continuation 
frame. 
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p(xs,Cylys]) +-d(xs,y,zs) & p(zs,ys). d( [xlxs] ,y, [xlys]) +-d(xs,y,ys). 

Snapshot 4: evident. 

12 E4 12 .nil 

~ 
p(xs,Cylys]) +-d(xs,y,zs) & p(zs,ys). 

Continuation frames are read-only data objects. This allows several tokens to 
share continuation frames. 

1 3. Translation of programs into machine code 

In this section, we describe the translation of Horn clauses into machine 
code. We give also a short summary of the instructions and their effect. The 
exact specification of the interpretaion cycle of a processor is given in 
Section 5. Notice that the machine code representation of terms is not giverr. 

We use the following metavariables, which may be indexed, to range over basic 
syntactic entities: 

Terms: 
Relation names: 

t,q, r, s. 
RI s. 

By ft and tR we mean a reference to the representation of the term t and to 
the relation {clause) R respectively. 

An assertion having m variables: 

is translated into: 

fR - ENTER-UNIFY m (tt1 tt2 ... ftn) 
RETURN 

An implication with only one literal in its body and having m variables: 
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R ( t , ... , t ) +--
1 n 

s 1 ( q 1 • • • • I qm 1 ) • 

is translated into: 

tR - ENTER-UNIFY m ( tt1 ... ttn) 
ONLY-CALL ts1 (tq1 ... tqm1) 

An implication with two or more literals in its body and having m variables: 

is translated into: 

tR - ENTER-UNIFY m ( tt1 ... ttn) 
FIRST-CALL tS1 (tq1 ... tqm1) 
CALL ts2 (tr1 ... trm2) 

LAST-CALL tSl (tst ... tsml) 

A Relation R consisting of several clauses, Ct C2 ... Cn, is translated into: 

fAR-cH01cE 1tc1 tc2 ... tcN>\ 

tc1 - Code for 
clause C1 

t C2 - Code for 
clause C2 

ten - Code for 
clause en 

A processor f~tches a token and executes the instruction it refers to. After 
the instruction is performed the processor may create none, one or more tokens 
according to the interpreted instruction. As mentioned earlier every token 
has a list of continuation frames. The description that follows, of the 
instructions, will be relative to the token being interpreted, so "Remove 
first continuation frame" actually means to remove the first continuation 
frames from the list associated with the interpreted token. 

(1) ENTER-UNIFY m (tt1 tt2 ... ttn) : 
Create a variable-context form variables in current environment. Execute 
a unification step; the callers parameters are referred to in the inter
oreted token. 
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(3) RETURN 
Return control to the caller. The next instruction to be executed is 
stored in the first continuation frame. 

(4) ONLY-CALL ts (tt1 ... ttnl: 
Transfer control and parameters to S; this instruction is used where there 
is exactly one literal in the body of a clause and therefore no continua
tion frames are created. 

(5) FIRST-CALL ts (tt1 ... ttn) 
Create a continuation frame; save next instruction in it and link it first 
in the continuation frame list; transfer control and parameters to S. 

(6) CALL ts (tt1 ... ttn) : 
Remove the fir~t continuation frame; link first a continuation frame 
referring to next instruction: transfer control to s. 

(7) LAST-CALL ts (tt1 ... ttn) : 
Remove the first continuation frame; transfer control to s. 

( 8) PAR-CHOICE ( t C1 tc2 ... ten) : 
Create n tokens each having its own environment; i.e. n parallel activi
ties are initiated. The created tokens share the continuation frame list 
of the interpreted token. 

4. Notational Conventions 

The next section specifies the interpretation cycle of a processor. We 
present here the essential characteristics of the specification language used 
there. The language used may be considered as an imperative fraction of Meta
IV [BjJo]. 

4.1. Types of Objects 

The elementary type NAT is the class of all natural numbers 0, 1, ... and the 
type BOOL is the class of truth values~ and false. Elementary types like 
unbound is meant to be the singleton set with the element unbound. 

Lists 

The type of lists of objects each having the type A is denoted by 
A* 

The list of the objects e1, e2, ... ,en in this order is formed using 
<e1,e2, ... ,en> 

An empty list is denoted by nil. The following operations apply to a list 1 
where 1 = <e1,e2, ... ,en>: 

l[i] == ei (yields the i'th element of a list), 
!.!ill l == n (the length of the list 1) 
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Reference types 

Let A be a type then 
tA 

is the type of references (addresses) of objects of type A. If i has the type 
tA, then the operation it returns the object a of type A referred by i other
wise it returns nil. 

Cartesian products 

The type of heterogenous n-tuples for which the first object is of type A1, 
the second object is of type A2, etc. is denoted by 

A 1 A2 ... An 

An object of this type is treated as a list of length n. 

Abstract Types 

Abstract types of compound objects may be specified by means of the following 
rules: 

( 1) A = B1 I B2 I ... I Bn 
This rule defines the abstract type named A (a type identifier) to be the 
union of the (disjoint) types defined by B1, 82, ... , Bn, where Bi are type 
identifiers or type expressions as defined above. 

( 2 ) A : : 8 1 8 2 . . . Sn 

This rule defines the type A to be the type of A-tagged n-tuples of the type 
(81 82 ... Bn). An A-tagged n-tuple object is formed with the expression 

mk-A(e1 ,e2, ... ,en) 
where 'mk-' is the so called make constructor. The above expression generates 
the tuple <e1,e2, ... ,en> equipped with the tag 'A'. 

(3) A= 81 82 ... Bn 
The same as rule (2) however tuples are not tagged. 

4.2. Statements 

A crucial statement used in the specification below is 

(def x: e; 
s 

) 

where xis an identifier, e is an expression possibly having some side effect 
(e.g. a procedure returning a value), and Sis a statement. The expression e 
is evaluated first, then all occurrences of x in Sare replaced by the value 
returned bye, finally Sis evaluated in this context. More generally in the 
construct 
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(def mk-A(x1,x2, ... xnl = e: 
s 

) 

e is evaluated to yield an A-tagged n-tuple, the immediate components of which 
are then denoted by x1, x2, ... , xn in the evaluation of the statement S. 

The other forms of statements are familiar from other imperative languages 
(Pascal etc.). For example sequential statement composition has the form: 

(S1;S2; ... ;Sn), 
cases have the form: 

cases eo: C e1 - s1, e2- s2, ... , en-sn) 
and the indexed iteration: 

.:f.ru: i = m 1Q n sJ.Q. S(i) 
A definition of a procedure F returning a value in our specification language 
is assigned a type of the form: 

F: 81 82 ... 8n => 8 (n > 0) 
! telling that F has n arguments that are of the types 81, B2, ... , 8n and 

returns a value of the type 8. 
If F does not return a value, i.e. is applied for its side effect only, F will 
get a type of the form 

F: 81 82 en=> 

S. Specification of the processor cycle 

The instructions introduced in the previous sections are executed by each pro
cessor. Here, we define the basic execution cycle of the processor and the 
exact meaning of the instructions. 

5.1. Instruction set 

A program consists of the initial call and a sequence of instructions. 

Program= INIT-CALL Code 
Code= Instruction* 

There are following instructions: 

Instruction= INIT-CALL I FIRST-CALL I CALL I LAST-CALL I ONLY-CALL I 
PAR-CHOICE I ENTER-UNIFY I RETURN 

With the following syntax: 
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!NIT-CALL :: tinstruction Nat (tParameterl* 
FIRST-CALL :: tinstruction (tParameterl* 
CALL :: tinstruction (tParameterl* 
LAST-CALL :: tinstruction (tParameterl* 
ONLY-CALL :: tinstruction (tParameterl* 
PAR-CHOICE : : (tinstruction)* 
ENTER-UNIFY :: Nat (tParameterl* 
RETURN :: nil 

Both Parameters and instructions are stored in the static memory. 

5.2. Tokens and continuation frames 

The state of a process is represented by a token and a list of read-only con
tinuation frames stored in the dynamic memory. Here follows the definition of 
a token (Token) and a continuation frame (Cont-Frame) which were schematically 
introduced in Section 2. 
Token :: tinstruction Context-Name tEnvironment tcont-Frame (tParameter)* 
Cont-Frame :: tinstruction Context-Name tCont-Fram 

tEnvironment refers to the process's environment directory, 
is used to lookup the designated context in this directory. 
the list of parameters in a call instruction. 

5.3. Execution cyc1e 

and Context-Name 
(tParameterl* is 

In each cycle a processor fetches a token from the token pool, fetches the 
referred intruction from the static storage, and finally decodes and executes 
the instruction. A result of an instruction is none, one or more tokens. No 
more tokens means that this branch of the search tree has terminated, either 
with success or with failure. One token means that the current branch is con
tinued. More tokens means that a nondeterministic point has been encountered 
and a fork into new branches has occurred. 

The interpretation cycle of a processor is shown below. A number of auxiliary 
functions, or procedures, are used there. These functions are divided mainly 
into two groups: (1) functions operating on the token pool, and (2) functions 
operating on the dynamic storage for managing environments and variable
contexts. 

Token management 

FetchToken : => Token 
Delivers a token form the token pool to the calling processor. 

SendToken Token=> 
Sends a token to the token pool. 
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Binding environment management 

The following operations are described in detail in [CiHa83A,CiHa838]: 
DuplicateEnv : tEnvironment => tEnvironment 

Creates a logical copy of the input environment and returns a reference to 
the newly created environment. 

ReleaseEnv : tEnvironment => 
Reclaims the storage of the input environment and all its contexts that 
are no longer accessible. 

SendSolution : tEnvironment => 
SendSolution(e) extracts the bindings of the variables in the first con
text in e and then performs a ReleaseEnv operation. 

NewContext : tEnvironment Nat=> Context-Name 
NewContext(e,n) creates a new context of n variables in e and returns its 
name. 

Unify: (fparameter)* Context-Name (tparameter)* Context-Name tEnvironment => 
BOOL 
Unify executes of the unification algorithm, it accesses and assigns 
values of variables. 

One more auxiliary function is 
Nextlnstr : tinstruction => tinstruction 

Nextlnstr(i) returns a reference to the instruction following it. 

Here follows the processor cycle. 
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Instruction-Processor processor() ~ 
(cycle 

(def mk-Tokenli,c,e,cf,ps): FetchToken(); 
cases it : 

mk-FIRST-CALL(i1 ,ps1) -
1.9..!tl cf1 : New(mk-Cont-Frame(Nextlnstr(i),c,cf)); 
SendToken(mk-Token(i1,c,e,cf1,ps1)) 

) I 

mk-CALL(i1,ps1) -
(-9.!tl mk-Cont-Frame( , , cf1) : cft; 
def cf2 : New(mk-Cont-Frame(Nextinstr(i),c,cf1)); 
SendToken(mk-Token(i1,c,e,cf2,ps1)) 

) I 

mk-LAST-CALL(i1,ps1) -
(def mk-ContFrame( , ,cf1) : cft; 
SendToken(mk-Token(i1,c,e,cf1,ps1)) 

) . 
mk-ONLY-CALL(i1,ps1) -

SendToken(mk-Token(i1,c,e,cf,ps1)), 
mk-PAR-CHOICE(is) -

550 

( .:fru:. i = 1 1.Q. .ill! is .Q.Q 

SendToken(mk-Token(is[i],c,DuplicateEnv(e),cf,ps)); 
ReleaseEnv(e) 

) ' 
mk-ENTER-UNIFY(n,ps1) -

(-9.!tl c1: NewContext(e,n); 
.if. Unify(ps,c,ps1,c1,e) ~ 

SendToken(mk-Token(Nextinstr(i),c1,e,cf,nil)) 
else !Failure 

ReleaseEnv(e) 
) . 

mk-RETURN ( I -
(.if cf=nil then 

SendSolution(e) 

~ 

!Success 

(def mk-Cont-Frame(i1,c1,cf1) : cft; 
SendToken(mk-Token(i1,c1,e,cf,nil))) 

) 
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6. Discussion 

During an Or-parallel execution the number of processes, as prescribed by 
their tokens, usually exceeds the number of available processors. The problem 
of storing the state information during the traversal of a search tree is not 
special for our parallel machine. In a sequential machine, information about 
not yet executed alternatives must be saved. Breadth-first traversal of the 
search tree usually leads to a combinatorial explosion of the space require
ment. Therefore, practical logic programming systems control the traversal of 
the search tree usually by using a depth-first traversal strategy combined 
with a mechanism for pruning some branches of the search tree. Such a mechan
ism takes the form of a rudimenary Cut (Slash) operator as in Prolog, or 
intelligent backtracking or both. 
Similarly, any feasible parallel machine should incorporate mechanisms for 
(1) controlling the traversal of the search tree, and 
(2) pruning some branches of the search tree. 

The first issue can be reduced to that of adopting a proper policy for 
scheduling the tokens on the available processors. For instance, if the token 
pool has the form of a LIFO queue, and each processor keeps always one of the 
tokens it produces and sends the other tokens to the queue, our parallel 
machine would then work as a 'broad' depth-first machine, investigating in 
parallel a number of branches that is equal to the number of processors. That 
is to say, having n processors we get approximately n Prolog machines working 
in papallel. The centralised access of such a token pool would presumably 
create a bottle-neck in the system and have to be approximated by partitioning 
the token pool on the processors. This issue will be treated in a forthcoming 
paper. 

The second issue requires either an extension to the source language, or a 
seperate control language. Very often one would like to get exactly one solu
tion for a subgoal. This happens, for example, when the relation defined is 
in fact a function for certain patterns of arguments, or when it is a test 
predicate with all arguments instantiated, or for several other reasons. Once 
a solution for a goal is found, the other branches in the search tree having 
the same goal can be pruned. Translating this into our machine means that a 
mechanism for aborting certain tokens should be available. Such a mechanism 
does not require any process hierachy nor message passing between processes. 
The extended machine incorporating a mechanism solving this, and other prob
lems, is described in another paper [CiHa83C]. 

Our abstract machine can, be classified as an unconventional control-driven 
machine [Tr]. The execution sequence is decided by the flow of control in 
tokens. It is interesting to compare it with a data-driven abstract machine 
proposed by Umeyama and Tamura[UmTa]. In their proposal a program is 
represented by a dataflow graph. Tokens carry instantiated goals, subtitution 
sets or both. Tokens are dynamically tagged to distinguish different invoca
tions of the same clause. Tokens with the same tag must be matched during the 
execution. We consider the dataflow principle is an unnecessary complication 
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in an Or-parallel machine, because of the overheads in both creating unique 
tags and matching tokens with the same tag. Dataflow is not needed because 
the control flow of the programs can be determined at compile time regardless 
of the arrival of data. The dataflow principle might be interesting when some 
form of and-parallelism is considered. 
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A~stract 

He have developed a ~ualitative model of· the heart for the 
simulation of its electrical behaviour. The mod.el was used to 
automatically gen_erate a knowle•\ge-base _of all physiologically 
possible combinations of cardiac ar~hythmias and their 
corresp-ondil'ig ECG ~tescriot ions. The knowle•:~ge thus generated 
was ve·rified by carcliologists and is used by a medical expert 
system. The model of the heart is formally expressed in a · 
sunset of the first-order _loaic. The qualitative simulation is 
oarrted ~ut by a sim~le and ifficient inference mechantsm 
i~plement~d in Prolog. 

introduction 

we ha~e df~etoped the diagnostic part of an expert system 
for the diagnosis and treatment of patients with cardiac 
arrhythRias to be used at the U~iversity Medical Centre" 
in Ljublja~a. In the paQer we concentrate on the ECG 
interpretation module which new includes a qualitative model of 
the heart. There were at least four reasons for deepening the 
system's knowledoe by including the model. The physiological 
knawte~Je about ~he h1art is of great importan~e for: 

t1ndfng the causes of arrhythmias, 
- for choosing an ipprcpriate treatment of diseas•s, 
- for intellfgg~t explanation of the system's answers, 
- for automiticatly generating the electrocardiographic 

knowledoe-baze for the combinations of single arrhythmias 
already knQWtl to the system. 

This last reason was: in fact ot..1t· im1nediate goal. 

')W" m<:·!!el ts r~uaLitative and developed along similar lines as 
~.g. the work of Forbus (1982) or·de Kleer (1977). One reason 
why a ijualitative moJel is a natural choice is that the 
pl~ysiological de:rcript1ons of the heart are largely 
,P~al tt.3t ive. Another rea:ron is that for a computer simulation 
63:.ed on a qua tit itat ive moclel, numerical .. values of the model 
~ar~meters !or a given Qatient wo~ld.be-needed. Such parametrs, 
however, practically cannot be measure<f.·A similar aproach to 
:ned1cat diagn.:His is eii:mptifj'ed in··tr-re CA~NET syst~m O-leis-s, 
>, I.) ~ 1 k C ',.Is k i ' A 1'!1 are l ' 197 8 ) .- . ·" ,. . _.. . . . . 

• • I • -~..;_ 

... 
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lnteroretatibn of ECG 

!-,q, 1 shows two EC5 diacirams, the first for a normal heart, ~na ~he iecanct for ventrlcular tachicardia, one of the 
arrhythmias t~at are handled by the system. The ECG is in the 
svst~m represented by its auatitative description rather than 
b~ an actual voltag~ vs. time relationship. The description of 

~ a given ECG di3gram consists of elementary patterns present in 
tne ECG diagram and the relations betwien these patterns. 

The medical literature on the relationship oetween various 
heart disorder's an,j their corresponding ECG diagrams (e.g. 
Phi~bs 1973, Mandel 1930) is quite indicative of the nature 
of these elementary patterns. However, we could not find any 
definite· proposal, or formalisation, of a complete and compact 
set of such patterns. The language that we desi~ned for 
£! e s c r i b t r'I g S : G c o n s i s t s o f · a s e t o f t O at t r i bu t e s , e a ch o f 
whjch having typically~ or 4 values. Fig. 1 sbows two ~xamples 
of su~h ctescrtptions. 

R. 

8.S 

normal sinus rhvthm 

rhythm: regular, . 
fre~uency: between_6Q_1QO, 
frequency_P: ~etween-~O-1OO, 
reoutar_P: normal, 
reiation_P-~Rs: after_P_0RS, 
regular_PR: normal, 
regutar_@Rs: normal 

ventricular tachycardia 

rhythm: regular, 
frequency: between_1OO_2so, 
regular_P: absent, 
regular_QRS: wide 

~1a. 1: Two ECG diag~ams and their qualitative descriptions. 

f:1e conS"trLJction of a l<nowte,tge-lo.:1se which covers the relation 
~etweeH 26 simpte cardiac arrhythmias and their corresponding 
~~b diagr:1ms was relatively straightforward. It was completed 
1n consultation with cardiologists in about three months. The 
relation between the ~rrhythmias and ECG is in the system 
represented by rvles of the form: 

if diagnosis then ECG-Jescription 

f- or ex amp t e: 

i!. 
then -

ventricular tachicardia 
rhythm is regular and 
freqt,et1cy is between i:lO .;rnd 250 and ••• 
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.l\,:cordfngty, .this pat·t of the knowledoe-base is used not to 
confirm s~me ~iagnosis, but to eliminate those diagnoses that 
cor1tra,::$1ct the ~>"ati,rnt's ECG. The remainina set of 
nan-erimin~t~d diagnoses (typically a few ai~gnoses> is then 
input to~ lhe differential ~iagnosis in which clinical data is 
ustd. The clinical knowledge r~nks the remaining arrhythmias by 
estimat.ing their relative likeliness. 

fhis kno~leige-b3se is, however, not sufficient for dealing 
with th! m~re diffi~ult problem of diagnosing the patients with 
mull iple arrhythmias. As the- number of ·combinatorial Ly possible 
muttiple a~rhythmias Ccombi~ed of 2, J, 4 etc. single ones> · 
excee~s hundred thousa~d, the direct specification of their EC& 
dezor,pttons by exhaustive manual tabulation is practically · 
t~postbte. Also, there is no systematic and exhaustive 
tre~tment of muttjple arrhythmias in the me~tcal literature. 

Thts conclusion motivated, among other reasons, the dev-e-lopment 
of a model af the heart to facilitate th~ a~tomatic derivation 
if the relat1on between multiple heart failures and th~ir 
corresponding ECG desgriptions. With the introduction of the 
model, the knowledoj base was "deepened" as illustrated in 
t-1g~ 2. 

'' sna l low" 
k PIOW l e•.!ge 

"a·e~p" 
know l e~•ge 

cardiac 
arrhythmias 

ECG. 
descriptions 

heart t-~lllfphysiological model of 
disorders constraints ~~~the heart 

f-,a. 2: "S~iallow" at1d "deep" diagnostic knowledqe~ ln the deen 
k·nowle•~ge diagnos-es are defined in terms of heart 
clisordet·s, if a set of disorders is physiologically 
p,,ssib.le it instantiates the m•:>del of the heart; 
the corresponding ECG is derived by running the model. 

Tne model of the heart 

t-or its electrical behaviour, the heart can be reuresented as a 
network consisti~g of: impulse generators, impulse propagation 
paths and summation elements for impulses as shown in Fig. J. 
In the medical literature we can find the following definition 
of the cardiac arrhythmias: The cardiac rhythm - be it normal 
or abnormal - can be characterized and classified with respect 
t~ the characteristics of impulse origin, discharge sequence 
a~d !mputse conduction CWHO/!SFC Task Force 1979). These 
characteristics are or following types: A generator can be 
silent, or ~n extra (ectopic) gener~tor may appear; impulse 
rwcpag3tior1 paths can be partially or totally blocked, or 
extra pati-,s may apoear, ••• 
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Ftg. J: A scheme of. the heart and the overall logic of the model. 

!h~ stale of the heart ts repres•nted by the states of its 
pa~·ts (4 •impulse ger1erators, 2 prop.agation paths and the rate 
of at~ia an~ ventricles). Each simple arrhythmia is defined as 
tt, e .at,.'! or m a t st a t e o f on e o f t he he art par- t s ; o t her p a r t s are 
assumed to be normal. Two or more arrhythmias can be combined 
if they de not contradict <e.g. are not defined by different 
states of the s~me heart part). 

There are a•:"!•1it tonal physiological constraints on the state of 
the heart. ~he constraints in-the model are based on an 
assumption that malfunctions of impulse generators, giving 
pe~manent rhythm can be mutually ce~bined cinly if there is a 
complete conduction block between them. Even if these 
malfunctic~s are sometimes physiologically possible, they 
cannot be seen on the surface ECG leads and ar~ never 
consid~red by physicians. 

lne model defines relations between parts of the heart, 
electrical impul:es and corresponding ECG descriptions. 
Formally, it is expressed as a set of if-then rules in a 
clausal form of the first-order logia. It was possible to 
order the list of rules according to the following principle: 
For each pair of rules R1 and R2, R2 may proceed Rt only if no 
literal in the consequent of R2 occurs in th~ antecedent of Rt. 
This 1mpl1es that there is no cyclic or recursive rules. This 
constraint on the list of rules facilitates fast, one pass 
execution of the model. 

The inference mechanism that runs the model for a given 
multtple arrnythmia is relativly simple. The model of the heart 
1s first instantiated with the state of the heart parts. The 
states~, t~e heart parts are added to ~he set of rules as unit 



clauses. Then the inference mechanism sequentially passes 
through t~e rules ~nd by ~pplyi~g ~odus ponens derives all 
p,,sif1ve· facts. One_pass through the _ordered list of rules 

surft~es far generatt~g all possible ECG descriptions which 
co~respond to this multiple cardiac ~rrhythmia. 

Rules, 62 of them, define relattons of the following types: 

1, (ge11erator)i---....-... impulse 

2. tillpulse 4 prap.agat ion path ~ impulse . -

J. impulse:::0-·· _ 
_ + impulse 

impulse . . . . 

4. tmpuls~ 

i mpu l s e ----...i ECG-description 

.... 
An example of a rule ts: 

if the~e are ectopic impulses at the His bundle and in the 
- supraventricles originatfng'at the AV focus 

551-

then this results tn the following ECG features: either a short 
- PR interval, or no P wave, or P wave after the QRS complex 

fhese thr~e cases r~sult from the "qualitative summation" (as· 
also ·percieved in the ECG diagram> of two signals which can be 
relatively shifted in time in three ways as shown i~ Fig. 4. 

_,.. ___ _ 
'i""litativ~ • 
st.tmmator 

-A-
-three pos~i"l,le resu..l-fs. 
ctt seett o~ -tke ECG 

Fia, 4: The q~alitative summation of ECG patterns. 
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Lmptementation and results 

We r a n t h e sys t e m• f or a l l c om b i n at i on s o f s i mp l e c a rd i a c 
arrhythmias. A large proportion of the corresponding states of 
U1e heart parts were recognized as physiologically impossib·le. 
For the physiologically possible arrhythmias the model 
g trn er a t ed c or r e s po n d i n g ECG de s c r i p t i on s • Th e f o l l ow i n g t ab t e 
shows the number of mathematically and physiologically possible 
arrhythmias a9ainst the numher of their constftuent single 
arrhy t hm i -iS. 

No. of const itue.nt 
.al"'rhythmtas 1 2 3 4 5 6 7 

No, of mathematical 
cc:'!lbtr..3tions 23+3 253 1771 8855 33649 100947 . . . . 

No. ot p ~1 'f's i o t o g i c a l l y 
poss i.b ,. e c ,,:nb in at ions 13+3 85 231 163 73 20 0 

Note· that some arrhythmias cannot occt1r alone <e.g. blocks>, 
but only in c~mbination with others (e.g. sinus rhythm>. Three 
arrhythmias cannot be combined with others. 

Tne whole system is implemented in Prolog on OEC-10 (Pereira, 
Pereira, Warren 1978). The compiled program generated ECG 
descriptions for ~ll combinations of arrhythmias in 340 CPU 
seconds. 

The thus obtained knowledge-base of ECG descriptions for all 
possible multiple arrhythmias can be used for diagnosis.· If an 
eipla:1ation is requested· then for a given ECG description the 
corresponding states of the heart parts are retrieved by table 
look-up. The model is then re-run for thise states and its 
trace can serve as an explanation. We have not yet found an 
ett,oient implementation of the model to be run in the inverse 
dtreot1on, Le. from the ECG toward the diagnoses. 

Conclusion 

The mcdet facilitated, as our main result, the automatic 
dertvat1an of an exhaustive catalog of multiple arrhythmias and 
their corresponding qualitative ECG descriptions. 

fhe pr~sent system handles ~!8 combinations of arrhythmias, all 
or them physiologically possible and m~jority of them can be 
observed in everyday clinical praxis. The importance of 
recoan1tion of these arrhythmias is very different. Sometimes 
t~e 2:agna~!s of certain ~~ythm disturbances is critical for 
the treat,11er1t. On the oth.~r hat1d, some arrhythmias are only of 
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thecretical interest wit~out practical consequences for the 
patient. · · 

T~e model af the hea~t also provides a good basis for the 
system's expla~ation of its own reasoning, and (as hoped)-for 
the treatme~t decision~maki~g. We are planning to extend the 
model in two directions: 

- to handle the mechanical activity of the heart as well as 
electrical, 

- to provide causal reasoning about the ef~ects of drugs and 
thetr interac.tion f_or treatment decision-making. 
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0. Introduction 

In this paper we show how a large subset of first order logic can be rea
sonably efficienty interpreted. Logic programming has usually been res
tricted to a conditional type of statements called Horn clauses. General 
logical statements that are natural to write cannot directly be expressed 
by Horn clauses. This is due to the fact that Horn clauses express only the 
"if-halves• of "iff-definitions·. This has meant that this that are easily 
expressed in first order logic has been done in meta-logic. For example, 
negation has been treated as nonprovability and special 'setof' contructs 
have been devised to find all the solutions to a relation. 
To solve these problems we construct an abstract machine called 'gepr 
(=goal, environment, program and resumption register). The ideas of the 
· gepr · machine resemble the ·seed· machine for function.al programming 
languages [La63][He80], which describes what state transitions that are 
allowed. Although we have used a version of Horn clauses to describe the 
state transitions, they could equally well have been described in an 
imperative language. 
The basis for the interpreter are the rules of a natural deduction system 
as shown in [Ha81]. 

1 • s·ample programs 

A program consists of a set of relation definitions, where a relation is a 
predicate-logic statement of one of the forms: 

1. relation_name(term1 ,term2 , ... ,termn) <-> arbitrary logic statement 

2. relation_name(term1 ,term2 , ..• ,termn) -> arbitrary logic statement 

3. relation_name(term1,term2 , ... ,termn) <- arbitrary logic statement 

4. ... relation_name(term1,term2 , ... ,termn) 

We also apply a rule of implicit quantification for the variables not being 
quantified: 

Variables occuring in the "head" of the relation are universally quan
tified over the whole statement, while the other variables are existen
tially quantified over the right hand side of the relation definition. 

For example 
list(w) <-> w=Cl or w=Cxlyl & list(y) 

actually means in logic 
Vw( list(w) <-> 3x3y (w=Cl or w=Cxlyl & list(y)) 

To be able to interpret the statement above, we break it down further into 
the conjunction of two statements: 

and 
Yw( list(w) -> 3x3y (w=Cl or w=Cxlyl & list(y)) 

Vw( list(w) <- 3x3y (w=Cl or w=Cxlyl & list(y)) 

The fourth type of statement given above, the negation, is also transformed 
into an implication. For example, 

.., member Ix, Cl ) . 
is transformed to 

member(x,[)) -> False. 
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Some more examples: 

The full definition set of 'member': 
., member(x,[Jl. 
member(x,[yjz]l <-> x=y or member(x,z). 

56L 

The predicate 'class' tests if all members of 'sl' take course c, or 
for a certain course finds all its members etc. 

class(c,sl) <-> Vs (takes_course(s,c) <-> member(s,sl)l. 

takes_course(x,yJ <-> x=D & y=Ct or 
x=J & y=C1 or 
x=J & y=C3. 

maths_course(z) <-> z=C1 or z=CJ. 

A ·maths major· is a person who takes all maths courses: 
maths_major(x) <-> Vy (maths_course(y) -> takes(x,y)). 

This enables us to find out that maths_major(Jl is true, or even makes it 
possible to find all "maths majors" with a variant of the 'class' predicate 
above. 

2. Types 

To simplify the description of the interpreter below, we here introduce a 
type concept in first order logic. What we actually do is that we have a 
convenient way to define relations that are true iff their arguments are in 
a certain domain. We will not here try to make an exact definition of the 
transformation between our simplified notation and logic, but just show a 
few examples. 

Having the type definition 

TYPEDEF formula= And(formula,formula) 

we get the corresponding logic statement 

Or(formula,formula) Eq(term,term) 

formula(x) <-> 3y3z(x=And(y,z) & formula(y) & formula(z) or 
3y3z(x=Or(y,z) & formula(y) & formula(z) or 
3y3z(x=Eq(y,z) & termly) & term(z)). 

To be able to define a list of a certain type 

TYPEDEF list(t) = [] Ctllist(t)l 

we find it convenient to use schemas in first order logic: 

list(t)(x) <-> x=Cl or 3y3z( x=Cylzl & t(y) & list(tl(z) ). 

(A schema can take a relation as an argument!, 
Obvious abbreviations are also used in the type definitions. 

3. Formulas 

The full type definition of a formula looks like this 
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TYPEDEF formula= And(formula,formula) ! Or(formula,formula) 
Imp(formula,formula) ! False ! 
Eq(term,term) ! Rel(name,list(term)) ! 
All(list{name),formula) ! Exist{list(name),formula). 

TYPEDEF term= Var(name) ! Dstruct(name,list(term)l 

and the relation 'name' is appropriately defined. 

For example, the formula ·vy (maths_course(y) -> takes(x,y))" has a 
corresponding abstract tree: 

All(['y'], 
Imp(Rel('maths_course' ,[Var('y' )]), 

Rel(· takes', [Var( ·x·), Var( 'y') J))) 

The formula ·vs {takes(s,c) <-> member(s,sl))" is first split into the con
junction of two formulas 

"Vs ((takes(s,c) -> member(s,sl)) & (member(s,sl) -> takes(s,c)l )" 
which has the corresponding abstract tree 

All ( [' s'], 

And(Imp(Rel('takes' ,[Var('s'),Var('c')]), 
Rel('member' ,(Var('s' ),Var('sl' )])), 

Imp(Rel('member' ,[Var('s'),Var('sl' )]), 
Rel ( · takes · , [Var ( · s · ) , Var ( · c · ) l ) ) ) ) 

4. A program 

The type definitions are extended by 

TYPEDEF program= list(relation) 

TYPEDEF relation= Reldef(name,backdef,forwarddef). 

TYPEDEF backdef = list( assertion ! !implication ). 

TYPEDEF forwarddef = list(rimplication). 

TYPEDEF assertion= Assert(list(name),list(term)). 

TYPEDEF !implication= Limp(list(name),list(term),formula) 

TYPEDEF rimplication = Rimp(list(name),list(term),formula) 

Each relation definition definition set is split into two parts, one for 
the forward implications (->) and one for the backward implications (<-). 
This corresponds to the types 'forwarddef' and 'backdef' above, each con
sisting of a list of assertions er implications. 
The relation 'member' 

-. member(x,[J). 
member(x,(ylzl) <-> x=y or member(x,z). 

is transformed to 
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C Reldef ( 'member' , C Limp ( ( · x · , 'y' , · z' I , 
{Var( 'x') ,Dstruct{'. ·. [Var( 'y') ,Var( 'z' )] )] , 
Or(Eq(Var( 'x') ,Vari 'y')), 

Rel( 'member', {Var( 'x') ,Var( 'z' )] ) ) )] , 
{ R imp ( ( ' x ' l , 

[Var( 'x') ,Dstruct( · [] ·, [] )] , 
False), 

Limp ( [ ' x' , 'y' , 'z' J , 
[Var( 'x') ,Dstruct{ •.', [Var( 'y'), Var( 'z' )] )] , 
Or(Eq(Var( ·x·) ,Var( 'y')), 

Rel ( 'member· , [ Var ( · x · ) , Var ( · z · l] ) ) ) J ) ) 

5. The environment 

The values of the variables during a computation are found in the environ
ment. 

TYPEDEF environment= list(<Context(loc,context),loc>) 

TYPEDEF context= list(Binding(name,value)) 

TYPEDEF value= <term,loc> ! STAR ! UNBOUND 

where loc is an integer. 

A formula is always considered in a certain context, and this context is 
conveniently referred by a location (an integer). 

If we have the formula 

3x,y,z ( 3z,x ( q(x,y,z) -> r(x,y) ) & s(x,z) & p(x,y,z)) 

we will in a procedural interpretation get the following: 
After having "performed" the outermost existential quantifier the variables 
x,y and z are known. We then have 

[] 10 
x UNBOUND 
y UNBOUND 
z UNBOUND 

and the current context is 10. 
If we then immediatly perform 

10 11 
z UNBOUND 
X UNBOUND 

(1 10 
X UNBOUND 
y UNBOUND 
z UNBOUND 

[<Context([], 
(Binding('x' ,UNBOUND), 
Binding( 'y' ,UNBOUND), 
Binding ( 'z' , UNBOUND)]), 10> l 

the inner quantifier we get 

[<Context(lO, 
( Binding ( 'x' , UNBOUND), 
Binding ( 'y' , UNBOUND l)) , 11 >, 

<Context((], 
[Binding{'x' ,UNBOUND), 
Binding('y' ,UNBOUND)' 
Binding ( 'z' , UNBOUND)]) , 10>] 

The value of variable 'x' in context 11 we quite naturally find in context 
11, but the variable 'y' can't be found in context 11. We then follow the 
static chain which is given by the first argument of a context. The static 
chain of context 11 is 10, while context 10 does not have any static chain. 
We have a special notation for the value of a variable in a certain 
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context: the variable 'x' in context 11 is written <Var('x' ),11>. 

&. The 'gepr' machine 

5G6 

The basis for the 'gepr' machine is a state transition system. We have a 
set of state transition rules 

state. --> state. 1 l l+ 

The behaviour of the machine is described*by the transitive closure of the 
transition relation, which we write as ·-->' and is defined by 

* terminal-state--> terminal-state 

* state--> terminal-state if state-*> state 1 and 
state1 --> terminal-state 

Each 'state' consists of four 'registers': 

G Goal-stack 
E Environment 
P Program 
R Resumption register to handle backtracking 

We have already shown the types of E and P, and R will be elaborated when 
we come to 'or' in formulas. 
The goal-stack is perhaps the most complex type of the 'gepr'-machine. It 
contains information in very goal directed manner of what that has to be 
done. Since the machine has two major modes of execution, backwatd proof 
and forward proof mode, the goal-stack contains two types of items. (The 
special •goal· Fail may also occur on the goal-stack). 

TYPEDEF goalstack = list(goal) 
TYPEDEF goal= B(<formula,loc>, conclusion_environment) ! 

F(list(<formula,loc>), <formula,loc>, conclusion_environment) 
Fail 

TYPEDEF conclusion_environment = ... almost the same as environment ... 

The backward proof mode of execution corresponds roughly to the normal 
"Prolog" mode of execution, while the forward mode is needed to handle 
implications in formulas. 
We start with explaining the backward proof mode, but first we show how to 
initialize the 'gepr' machine. 

If we want to evaluate a formula 'f' in a program 'p', the 'gepr'-machine 
starts with 

G E 
([B(<f,[]>,(])], (], 

p R 
p, Cl> 

i.e. the goal-stack G contains just the item B(<f,(J~;[]). This mea~s that 
we are going to perform a backward proof off in an empty context. The con
text is empty because we assume that all variables are explicitly quanti
fied in the formula, and contexts will be created for those variables. 
The second argument of B (the conclusion_environment) is also empty ini
tially. 
The environment is empty since we don't have any bindings of any variables 
when we start. 
The resumption register i~ empty since we have no backtracking points. 
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A successful final state of the 'gepr' machine is 

([], e, p, r) 

where the bindings of the variables are found in the environment e. If we, 
for some reason, want another solution, the machine may be restarted again 
with the information in the resumption register. This is shown below in the 
'Fail'-transition. 
It may also happen that the whole computation fails. This is the case if 
the final state is 

( [Faillgs], e, p, Cl) 

We are now ready to show the state transition rules, i.e. rules that con
vert one state of the 'gepr' machine to the next. Each rule corresponds to 
a rule in a natural deduction system. 

7. Backward proof 

7. 1. And 

If we in a natural deduction system are going to prove "f1 & f2", we first 
prove ft separately and then prove f2. Due to the '&' introduction rule we 
have 

ft f2 

ft & f2 

which is read backwards in a backward proof. In the 'gepr' machine this 
corresponds to the state transition 

( [ B ( <And ( f 1 , f2) , l>, ce) I gs] , 
((B(<f1,l>,ce),B(<f2,l>,ce)lgs], e, 

e, p, r) 
P, r) 

--> 

Since no new variables are introduced, the context •1· is unchanged. The 
rest of the goal-stack is 'gs', and is left untouched by the transition. 

7. 2. Or 

If we want to prove "f1 or f2" we may either prove f1 or f2: 

f1 f1 
or 

f1 or f2 f 1 or f2 

And the corresponding transition 

([B(<Or(f1,f2),1>,cellgs],e,p,r) --> 
( [B(<f1 ,1>,ce) jgs] ,e,p, [GEP( [B(<f2,1>,ce) lgs] ,e,p) Ir]) 

The computation continues with a backward proof of f1, while we have saved 
the contents of the registers G, E and Pon the resumption stack for the 
alternative computation. If we, for any reason, fail with proving f1, we 
may retry and prove f2. A failure of a computation is indicated by a spe
cial •goal" called 'Fail' on the goal-stack. Although we have not yet shown 
how a 'Fail' gets to the goal-stack, we here show how the 'gepr machine 
reacts. 
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([Failjgs],e, p,[GEP(gs1,e1,pt)lrtl) --> 
(gs1; e1,p1,r1). 

It may however occur that the resumption stack is empty. We then don"t have 
any valid alternatives and the whole computation has failed. 

([Faillgs],e,p,[]) no solution! 

The type of the resumption stack is called 'dump": 
TYPEDEF dump= list(GEP(list(goal),environment,program)) 

7. 3. False 

The simplest way to fail in a backward proof is to find an explicit 'False' 
in the goal-stack. The "gepr' machine simply converts this to Fail. 

([B(<False,_>,_)lgs],e,p,r) --> 
([Fail], e,p,r). 

7.4. Exists 

If a group of variables are existentially quantified, we allocate a storage 
for those variables and initialize them to unbound. This will effect the 
environment. In natural deduction this becomes 

f(v) 

3v(f(v)) 

and the proof may continue backwards from 'f(v)". 

([B(<Exist(vs,f),l>,ce)lgs],e,p,r) --> 
([B(<f,11>,ce)lgs], et,p,r) if newenv(vs,l,e,UNBOUND)=[l1,e1]. 

where et is the new environment and 11 is the location of the new context. 
The type of the function newenv is 

TYPEOF newenv(list(name),loc,environment,value)=[loc,environment] 
For example, the first environment shown on page 5 could have been created 
by newenv(['x', 'y", 'z'],[1,(1,UNBOUNO). 

7.5. For all 

A group of variables may alternatively be universally quantified. In the 
natural deduction system we mark the variables (with a star) so they cannot 
become bound. 

f(*v) 

Yv ( f ( V)) 

The "gepr' machine makes almost the same things as for an existential 
quantification, but all the variables are bound to the special value 
'STAR". 

([B(<All(vs,f),l>,ce)lgs],e,p,r) --> 
([B(<f,11>,ce)lgs], et,p,r) if newenv(vs,l,e,STAR)=Cl1,e1]. 

When such a variable is found during a unification, it cannot be bound, and 
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will remain having the value 'STAR'. This is quite natural since a univer
sally quantified variable cannot be restricted to a special value. 

7.6. Equality 

The special atomic relation '=' also gets a special treatment. In a back
ward proof however, the treatment seems to be quite normal. We just invoke 
unification: 

We have two cases 

or 

([B(<Eq(t1 ,t2) ,l>,ce) lgs] ,e,p,rl --> 
gepr(gs,e1,p,r) 

if unify([<t1,l>],[<t2,l>],ce,el = e1 and 
et /= Fail 

([B(<Eq(t1,t2),l>,cellgs],e,p,r) --> 
gepr([Fail],e,p,r) 

if unify([<t1,l>],[<t2,l>l,ce,e) = e1 and 
e1 = Fail 

The function 'unify' returns the new environment in case of success, other
wise it returns the constant 'Fail'. The type of 'unify' is 

TYPEOF unify(list(<term,loc>l,list(<term,loc>l, 
conclusion_environment, environment) = (environment ! Fail) 

The unification differs from a standard unification in several ways. 
When we want to get the value of a variable, we always first look in the ce 
('conclusion_envirionment') for reasons which will be explained later. If 
the variable is unbound there we then use the normal environment. 
As already mentioned, the STAR variables are not allowed to be bound to be 
bound to anything, and no variable is allowed to become bound to a STAR 
variable. There is however one exception when we can convert a proof made 
with a binding to a STAR variable to a proof without such a binding. In 
natural deduction we may have 

tr 

B(x,*y) 

3x B(x,*yl 

where B(x,*y) is an arbitrary complex formula containing x and y. If we 
have to assume x=*y in order to perform the proof Il, we can convert the 
whole proof Il to a new proof that does not need that assumption. Since 

lT2 

B(*y,*y) 

3>< 8(x,*y) 

is a valid step in natural deduction, and the proof IT2 does not contain any 
assumptions on *Y, the formula "3x B(x,*y)" is valid. What is crucial is 
that the existentially quantified variable must 'declared' after the 
universally quantified variable (the 'STAR' variable). 
This mechanism allows us to conclude that 

Vx3y (x=y) is true 
while 

3xVy (x=y) is false 
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Which one of the variables that is 'declared' first is easily tested by 
comparing the location numbers of the variables. In this case it is impor
tant to follow the static chain to get the true location of the variable. 

Although not strictly necessary we have also chosen to implement unifica
tion so that it can handle cyclic structures (Ha81]. 

7.7. Atomic relation 

In a backward proof when an atomic relation is encounted, we need the pro
gram to find the definition of that relation. There may be none, one or 
several such relation definitions. We take them in the defined order of 
the backward definition set and perform a unification, which may change the 
environment. In natural deduction we write 

Yx1, .. xn( relation_name(q1, .. ,qn) <- f ) f q1=r1 .. qn=rn 
---------------------------------------------------------------------

relation_name(r1, .. ,rn) 

Above the line we have three parts: a part of the relation definition set, 
the formula f (which is the right hand side of the relation definition), 
and a group of equalities generated during unification. If are able to 
prove fin backward mode we may then conclude the formula thatiis written 
under the line. 
In the 'gepr' machine we first find all the definitions of the relation. 
This is done by the function 'getbackdef'. For each of the relation defini
tions found we stack a unification request on the resumption stack. This is 
done by the function 'newdumpb'. Finally we invoke failure so that the top 
item (if any) of the resumption stack will be used. 

((B(<Rel(rn,ts),l>,ce)lgsl,e,p,r) --> 
([Fail],e,p,r1) if getbackdef(p,rn) = stmts and 

newdumpb(ts,stmts,l,ce,gs,e,p,r)=r1 

Although it looks a bit complicated, the function 'newdump~· is very sim
ple: 

TYPEOF newdumpb(list(term),backdef,loc,conclusion_environment,list(goal), 
environment,program,dump)=dump 

newdumpb(_,Cl,_,_,_,_,_,r)=r. 
newdumpb(ts,Cstmlstms],l,ce,gs,e,p,r) = 

[GEP([B(<Unify(ts,stm),l>,ce)lgs],e,p)lnewdumpb(ts,stms,l,ce,gs,e,p,r)l. 

The type of the variable 'stmts' above is 'backdef' (see page 4), which 
means that we actually have two types of clauses: assertions and relations. 
We don't show the assertions here since they are identical to a relation 
with an always true right hand side. 
When the 'gepr' machine finds a unification request on top of the goal
stack it first allocates space for the new variables and then performs the 
unification. 
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We then have two cases: 
([B(<Unify(ts1,Limp(vs,ts2,f)l,11>,ce)lgs],e,p,r) --> 

or 

((B(<f,12>,cellgs]. e2,p,r)) 
if newenv(vs,[],e,UNBOUND) = [12,e1] and 

unify(ctermlist(ts1,l1),ctermlistlts2,12),ce,e1) = e2 and 
e2/=Fail 

([B(<Unify(ts1,Limp(vs,ts2,f)) ,11>,cellgs],e,p,r) --> 
([Fail], e2,p,r) ) 

if newenv(vs,[],e,UNBOUND) = [12,e1] and 
unify(ctermlist(ts1,11),ctermlist(ts2,12l ,ce,e1l = e2 and 
e2=Fail 

The type of 'ctermlist' is 
TYPEOF ctermlist(list(term),locl=list(value) 

ctermlist([l,_l = {]. 
ctermlist([alas],l) = [<a,l>lctermlist(as,l)]. 

7.8. Implies 

s=ro 

Finally, here is the rule that changes the execution mode from backward 
proof to forward proof. In natural deduction we have 

f 1[ 1] 

1T 

f2 
--------[1] 
f1->f2 

The expression under the line is true if we by starting by assuming ft can 
prove f2. This proof is marked with 1T in the figure above. During that 
compution certain conclusions may have been drawn, which obviously depend 
on the assumption f1, and they must therefore be discharged after the sub
proof. This is schematically indicated by "(1]" in the figure. We solve 
this problem by having a local 'conclusion environment' for all subcomputa
tions. By this, local conclusions don't effect the global status of the 
computation (the environment). 
In the 'gepr' machine we have 

([B(<Imp(f1 ,f2) ,l>,ce) lgsl ,e,p,r) --> 
( CF ( [ < f 1 , l> l , < f2, l> , ce) I gs l , e, p, r) 

The formula f1 is called the "premise goal". In general we may have a list 
of "premise goals", but at start there is just one. 
We are now ready for 

8. Forward proof 

The action in forward proof mode generally depends on the form of the prem
ise goal. 

8. 1. And 

The first rule is a simple rewrite 
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([F([<And(f1,f2),l0>lfrl,<cf,l>,ce)lgsl,e,p,r) --> 
(CF ( C < f 1 , 10>, < f2, 10> I fr l , <cf, l>, ce) I gs l , e, p, r) 

which extends the list of premise goals. 

8. 2. Or 

If the first premise goal is an 'or'-form we have 

f1 or f2 

f1[1] 

1r 1 

f2[1] 

lr2 

1r f1 or f2 cf cf 

5=t1 

which we convert to -----------------------------(1][2] 
cf cf 

That is, to prove that f1 or f2 implies cf we have to prove that ft implies 
cf and f2 implies cf. The conclusions drawn at these subcomputations must 
as usual be removed after the computation. 
This means that 

([F([<Or(f1,f2),l0>lfrl,<cf,l>,ce)lgsl,e,p,r) --> 
((F((<f1,l0>lfrl,<cf,l>,ce),F((<f2,l0>lfr],<cf,l>,ce)lgs],e,p,r) 

8.3. Exist 

If variables are existentially quantified in the premise goal we get 

f(*v)(1] 

tr 

3v(f(v)) cf 
---------------------[1] 

cf 

We try to perform a proof of 'cf' starting from the premise goal f(*v). 
All the existentially quantified variables have the value STAR, and have to 
follow the rules of a STAR variable. In 'gepr' we get 

((F((<Exist(vs,f),l0>lfr],<cf,l>,ce)lgs],e,p,r) --> 
([F([<f,11>lfr],<cf,l>,ce)lgs],e1,p,r) if newenv(vs,10,e,STAR) = [11,e1] 

8.4. For all 

Similarly for universal quantification we have 

Vv(f(v)) 

f(v) 

1r 

cf 

and for 'gepr' 
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([F([<All(vs,f),lO>lfr],<cf,l>,cellgs],e,p,r) --> 
([F([<f,11>lfr),<cf,l>,cel lgs],e1,p,r) if newenv(vs,10,e,UNBOUND) = [11,e1] 

8.5. False 

If the premise i~ false we can end the subcomputation with success without 
further computations. 

False 

cf 

And for 'gepr· the computation continues with 'gs': 

((F((<False,lO>lfrl,<_,_>,_llgs],e,p,r) --> 
(gs, e,p,r) 

8.6. Implies 

Even in forward proof mode an implication can be found in the premise goal. 

f1->f2 
rr1 

f1 f1-> f2 
rr which is converted to ----------------------------

f2 
cf 

rr2 

cf 

We first try to perform the backward proof ff1, and then the forward proof 
rr2. 

([F([<Imp(f1,f2),lO>lfr],<cf,l>,cellgs],e,p,r) --> 
((B(<f1,10>,ce),F((<f2,lO>lfr],<cf,l>,ce)lgs],e,p,r) 

8.7. Equality 

If an equality is found in the premise goal-list, we may use this equality 
anywhere in the subproof. The situation is very different from ordinary 
unification, almost the opposite. We first look for the value of a variable 
in the normal environment (e), and only if the value is UNBOUND or STAR we 
look in the conclusion environment (ce). If it necessary to bind a variable 
in order to succeed in the conclusion unification, the new value is only 
stored in the conclusion environment. 
If the conclusion unificatior fails, it must be remembered that a false 
premise implies everything, so we have actually succeeded! 
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Two cases: 
([F([<Eq(t1,t2),lO>lfrl,<cf,l>,ce)lgsl,e,p,r) --> 
((F(fr,<cf,l>,ce1)lgs],e,p,r) 

or 

where 

if cf/= <False,_> 
and concunify((<t1,lO>l,C<t2,lO>],ce,e) = ce1 
and cet/=Fail 

([F([<Eq(t1,t2),lO>lfr],<cf,l>,ce)lgs],e,p,r) --> 
(gs, e,p,r) 

if concunify([<t1,10>l,[<t2,10>],ce,e) = ce1 
and cet=Fail 

TYPEOF concunify (list ( <term, loc>), list ( <term, loc>), con_clusion_environment, 
environment) = (conclusion_environment ! Fail) 

In the code above we check so that the conclusion formula isn't an expli
citly 'False' formula. If concunify succeeds we would otherwise be sure 
that the computation whould fail. To avoid this we test for that special 
case, and we treat it separately. In this case the only solution for suc
cess is to use some sort of 'negative' unification which generates assump
tions like 'x*17'. The advantage of this is a wider domain of executable 
programs, while the disadvantage is increased nondeterminism. In this paper 
we will not elaborate this mechanism further. 

8.8. Atomic relation 

When we find an atomic relation in the premise goal-list, we try to find 
its definition set in the program. If there are several definitions we take 
the fi~st and save the rest on the resumption stack. The case in natural 
deduction when we have found one definition: 

Vx ( relation_name ( q 1, .. , qn) <- fl relation_name(r1, .. ,rn) q1=r1, .. ,qn=rn 
----------------------------------------------------------------------------

f 

1f 

cf 

Above the line we have three parts: a part of the relation definition set, 
the premise goal, and a group of equalities generated during unification. 
We then have to perform the proof ff. 
As in backward proof mode we first find the definition set and stack the 
alternative definitions on the resumption stack. We then invoke failure so 
the top item on the resumption stack will be used. 

([F([<Rel(rn,ts),lO>lfr],<cf,l>,ce)Jgs],e,p,r) --> 
gepr([Faill,e,p,r1) 

if getforwarddef(p,rn) = stmts and 
newdumpf(ts,stmts,10,fr,cf,.l,ce,gs,e,p,rl=r1 

where 
TYPEOF newdumpf(list(term),forwarddef,loc,list(<formula,loc>),<formula,loc>, 

loc,conclusion_environment,list(goal),environment, 
program,dump)=dump. 

newdumpf(_,[],_,_,_,_,_,_,_,_,rl=r. 
newdumpf(ts,(stmlstms],10,fr,cf,l,ce,gs,e,p,r) = 
[GEP([F((<Unify(ts,stm),lO>lfr],<cf,l>,ce)lgs],e,p)I 

newdumpf(ts,stms,10,fr,cf,l,ce,gs,e,p,r)]. 
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In 'gepr' machine we may encounter 'unifications' in forward proof mode. 
The unification may either fail or succeed. 

We have two cases: 

or 

([F([<Unify(ts1,Rimp(vs,ts2,f)l,l0>lfr],<cf,11>,ce)lgs],e,p,r) --> 
((F(fr,<cf,11>,cellgs],_,_,r) 

if newenv(vs,[],e) = [12,et] 
and unify(ctermlisttts1,10),ctermlist(ts2,12),ce,e1) = e2 
and e2=Fail 

([F([<Unify(ts1,Rimp(vs,ts2,fl),l0>lfr],<cf,11>,cellgs],e,p,r) --> 
((F(C<f,l2>lfr],<cf,11>,ce)lgs],e2,p,r) 

if newenv(vs,[],e) = (12,e1] 
and unify(ctermlist(ts1,10),ctermlist(ts2,l2),c.e,e1) = e2 
and e2/=Fail 

9. Discussion 

It is important to stress that we have not devised a complete theorem 
prover. This means that there is a domain of formulas that we are unable to 
prove. We claim however that these formulas usually are not computationally 
useful. To include them in the set of formulas we can prove would increase 
the nondeterminism and degrade the system performance. 
One improvement towards a more complete system was the 'negative' unifica
tion which was discussed on page 14. Since we have not yet been able to use 
the system for large problems, we not yet sure whether this complication 
would be worthwile. We do however already know that there is a wide domain 
of programs where the system has proven to be quite useful. 
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:ABSTRACT 

We present a formalism and a techni~ue by which left and/or 
]ri9ht contextual constraints can be easily expressed and computed 
:efficiently in Prolog grammars (avoiding transport of variables>: 
ithe Contextual Grammars (CG), interpreted in PROLOO II. 

Each rule has the form: 

_NT- -> CONTEXT BODY. 

~h-e-r.e .NT _1,;s: .a: non-te-rminal s"mbol. BODY is a sequence of one OT" 

~r~ _i.~~-m••.· tiepclra~a-d_: h1f, b,lanlc~t Each item. is e ith•r a non-te-r:ni <icil 
~V':"-b;~.1~;.:~ te,-.,n_in•I :·svillbol or-_a condit~on. Symbols and conditions_ 
51'a·,e.1"ms: (as in M•tamo-r"phosis· or Definite Clause45 grammars>, BODY 
~4'4f•'ll;a-:·1t~p-tQ. - ,_·. ;. . - -

If": CONTEXT is no~t emptv, . it has the form: 

-C L * R > 

~- and ·R ·ar.e sequences of rion-terminal and/or' terminal symbols 
~•para.ted bv point_s,. We -read it as: 

·. _ Apply NT {f, · in the derivation tree, 
1t L pr~i~d~~ Nt, and 
2 r ·R f o:l'louui · NT . 

.; o,.: R ma" be empty~ 

ro1' example, the foLlowin-g is a sample contextual gT'ammar <terminal 
fymb~ls are in brackets, and conditions are preceded ~Y "+">: 
! 

sentence(S) -> np(_> vp CS>. 
· np C.X. '() ->· noun<X> Cand:J noun CV>. 
npCX> -.> noun ( X >. 
no_un <day> -> Cdayl. 
noun<night) -:> CnightJ 
vpCS> -> verb (S). 
vp(S) ~:> verb(S> preposition npC_ ). 

p1'epositian -:, Cca1ithJ. 
... 
.. -



(a) verb(alternate(X,Y>> --> 

(~) verb(alternate(X,Y)) --> 

{ npCX. Y) # > 
+different<X,Y> 
CalteT'nateJ. 

< noun(X) 4t CtllithJ. noun<Y> > 
+differentcx.'v> 

. Cal ternates l. 

The sentences produced/analysed from (a) are: 

day and night altern~te. 
night and day alternate. 

and from Cb): 

day alternates with night. 
night alternates with d~ij. 

Th• techni~ue consists in building, ,uring tie parsing, an inter
nal derivation graph G containing the sufficie.nt info,-mation to re
cover the context whenev•r a contextual constratnt must be satis•ied 
before the rule mu'St be applied. To each node Nl (cor,-,sponding to a 
non~terminal or terminal symbol) of Q, are associated four nodes NJ, 
Nk, Nl and Nm: 

NJ is the left sibling of Ni; NJ is the left sibling of the 
parent of Ni if Ni has no left sibling; 

Nk is the first child or Ni; Nk is NIL if Ni has no children; 

Nl is the last child of Ni; Nl is Nk if Ni has one child; Nl 
is Nk is NIL if Ni has no childl"en; 

Nm is the right sibling of Ni; Nm is the right sibling of the 
parent of Ni if Ni has no right siblingi 

The right sibling and the left sibling of the axiom-symbol of the gram
mar are NIL. 

Here, for example, is the final derivation graph of the sentence: 

day alternb~es with night. 
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11 ll 11 
NIL NIL NIL NIL 

Cont~xtual constraints are computed directlt from G. When any part 
of a context .is not yet known <as for example right context of a 
symbol in a left-to~right parser>, the computation is delaved by 
means of the GELER (FREEZE) predicate. - . 



Abstract 

CURRENT TRENDS IN LOGIC GRA~MARS 

Veronica Dahl 
Computing Sciences Department 

Simon Fraser University 
Burnaby, BC VSA 1S6 

This paper surveys several logic grammar form-alisms, relates 

them to some recent trends in linguistics and advocates the use 

of logic grammars for natural language processing. contrary to 

many recent approaches that resort to augmenting essentially 

context-free grammars, it also tries to make a case for not 

outruling conte.xt-sensi ti vity or transformations .. Finally, it 

presents a ,,new logic grammar formalism jointly deve.loped by 
,-,i-:•-

". •. ,·,s 

!ichael McCord and the author, the main features of which are: a 

metagrammatical treatment of coordination that relieves the 

grammar writer from having to describe coordinating rules 

ex:plici tly; a modular treatment of semantics based upon simple 

information given locally to each rule~ and an automated 

building-up of the sentence's representation structure. 
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1• Introduction 

Among the computational formalisms for describing and 

processing language, logic grammars have been drawing attention 

since their introduction in 1975 (Colmerauer 1975). 

Logic grammars resemble type-0 grammars, except that the 

grammar symbols may have arguments, and that procedures may be 

invoked from the rules (e.g. to serve a·s applicability 

constraints). Derivations involve unifying (Robinson 1965) 

symbol strings rather than just replacing them. Since the logic 

grammar formalism is a part of the Prolog · programming language 

, (Colmerauer 1975, Pereira L et al, 1978), logic grammars written 

to describe a :Language can be interpreted by Prolog as analysers 

for th,at language., • Thus relieved fro11 the operational concerns 

parsing,,,,. the user can. develop very clear and concise 
'~. fc ,_,:,:.: .. ••' ,., 

_-.:·•.,:.:': J. 

"analysers"just· by writing a set of logic'gra111.11ar rules that 

describe a language and giving it to J?rolog. Logic grammars have 

been favourably compared with a widely used formalism for 

processing language: augmented transition networks (ATNs) 

introduced in 1970 (Woods 1970). They have been argued to be 

' clearer, more concise and in practice mox:e powerful, while at 

least as efficient,. as ATM's (Pereira & Warren, 1980}. 

The first sizable application for logic grammars was a 

Spanish/French consul table database system (Dahl 1977, 1981, 1982) 

which was later adapted to Portuguese by H. Coelho and L. Pereira 
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(1), and to English, by F. Pereira and David Warren (2); and has 

since inspired the development of several other applications 

(e.g. Coelho 1979,McCord 1980, F. Pereira & Warren 1931). This 

system has bee'l shown to be comparable in efficiency with the 

LUNAR system (Hoods et al., 1972), (cf. Pereira & Warren, 

1980,p.276), thus joining the appeal of practical feasibility to 

the elegance and expressive power of the logic grammar approach. 

P'urther logic grammar applications include (Silv·a et al. 1979, 

Simmons and Chester 1979, Sabatier 1980, Pereira et al. 1982). 

However the experience gained in the aforementioned applications 

has motivated the development of alternative logic grammar 

formalisms, some restricting and others at1gmenting the power of 

the original for.ma.l.ism as described in (Colmerauer 1975). 

This paper attempts to fill a gap by examining the evolution 

of logic grammars, c·omparing the alternative proposals, and 

discussing them with respect to recent trends in both theoretical 

linguistics and natural language processing. It also motivates 

and briefly presents a new logic grammar formalism, called 

"modifier structure grammars" (MSGs), developed jointly by 

Jllichael r-tcCord and the author (Dahl and Mccord 1983) • Its main 

features are: a metagrammatical (user-invisible) treatment of 

coordination,. a modular treatment of semantics, and an automatic 

build-up of the parsed sentence's representation. 

( 1) Personal Comm uni cation, 1978. 
(2) Personal Communication, 1980. 
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Section 2 describes logic grammars in in tui ti ve, user-biased 

terms. Section 3 presents different types of logic grammars; 

Section 4 compares them with respect to expressive power, in 

particular through the example of how ·they allow to express 

movement of constituents. Section 5 discusses pros and cons of 

choosing relatively evolved grammar formalisms, and makes a case 

for choosing logic grammars independently of the degree of 

evolution needed. section 6 briefly presents our new logic 

grammar formalism (fllSGs), and Section 7 contains some concluding 

thoughts. 

2. !hu i§. A logic gramma~? 

._ Logic grammars can be thought of as ordinary grammars, in 

vhi.~h the _symbols. may. have argu11ents. These arguments are either 

constants 
C . • . • , 

variables· or functional expressions, and the fact that 
·.-,,·; 

they variables inplies that substitutions are 

sometimes needed in order to apply a grammar rule. For instance, 

consider the following grammar: 

1) Sentence (fact (P) ) --> proper-noun (N) , verb (N ,.F) • 

2) proper-noun ( mary) -> [ mary ]. 

3) proper-noun ( john} --> [john]. 

4) verb (N, laughs {N)) --> [laughs J. 

5} verb (N, smiles (N)) --> [ smiles). 

in which (as throughout this paper) constants are in lower-case 
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letters, variables start with a capital, consecutive terminal 

symbols are represented as square-bracketed lists, and non-

terminals are in lower-case letters. The comma stands for 

"concatenation", and the end of a rule is signalled by a period. 

Having defined these rules to Prolog, if we now, foe instance, 

want to analyse the sentence "Mary smiles", we merely write the 

question: 

? sentence(X,"mary laughs", [ ]) 

This amounts to a request that Prolog find a value for X that 

represents the surface form nMary smiles" with respect to this 

grammar. What happens in the Pro1og execution of the parsing 

:procedure can be summarized in the top-down. left-to-eight 

derivation tree depicted in Fig. 1,- where each ru.le application 

is labelled by the idantif ication of the rule invo.lved and by the 

set of substitutions of terms for variables that are needed in 

order to apply the rule. 

sentence {X) 

\ 
rule 1 

X <- fac~~~-) _____ _ 
----- l 

proper-noun (N) verb (N,F) 

\ rule 2 
N <- mary 

mary '

rule 4 
F <- smiles (mar1 

smiles 

Figure 1. Derivation tree for "Mary laughs". 
Only successful rule applications are shown here. Prolog 

backtracks upon unsuccessful ones. Through the substitutions 

employed, Prolog finds the representation 
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X = fact(smiles(mary)) 

for the sentence given. 

Arguments allow for information to be shared by various 

grammar symbols, and to be carried along a derivation. In our 

example, they serve to build up a desired representation for a 

surface sentence. In procedural terms, gram.mar symbols can be 

thought of as producers and consumers of structur·e: the "proper

noan" symbol produces the value "mary", which is then consumed by 

•verb" in order to produce the structure "smiles{mary)", from 

which the final structure "fact (smiles (mary))" is constructed 

by "sentence". 

Other uses i.n natural language processing include: syntactic 

ana semantic Checks (e.g. gender and numbec, semantic type or 

cl.ass), carryingextraposed constituents across phrases, etc. 

For instance, we may check semantic accord by declaring Hary 

and John to be of type "human", and requiring that the arguments 

of "laughs" and "smiles" also be human. ie use a functional 

symbol "-", in infix -notation {allowed by Prolog) in order to 

int.roduce this semantic information. The above grammar becomes: 

1) sentence {fact (F)) --> proper-noun (N) , verb (N ,F) 

2) proper-noun (human-mary) --> [mary]. 

3) proper-noun (human-john) --> [john]. 

4) verb (human-N, laughs {N)) --> (laughs]. 
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5) verb (human-N, smiles{~) --> [smiles]. 

(Notice that variable names are local to each rule - i.e., 

variables with the same name are unrelated if they belong to 

different rules.) 

ie have enforced semantic agreement through unification, i.e., 

in the Prolog matching of terms. Proper nouns introducing non

humans nov fail to be coupled with such verbs as "laughs" and 

"smiles". 

Another 

grammars 

brackets}. 

i.-eplaced 

way is through procedure calls, 

in the form of Prolog calls (that 

For instance, rule 4} could 

allowed in logic 

we note between 

have instead been 

4) verb (11, laughs (lf)) --> [laughs J, human (N) • 

and ve would have added a Prolog definition for the procedure 

called, e.g.: 

human (mary). 

human {john). 

Kore general procedures can, of course, be written in Prolog, 

e.g. "every child is human", noted: 

human (x) : - c.hild (x) 

and read: "if x is a child then xis human". 
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The first formulation of the parsing problem in terms of logic 

was obtained by A. Colmerauer and R. Kowalski, while trying to 

express Colmerauer•s Q-System (Colmerauer 1973) in logic. 

idea evolved into a very elegant and efficient 

This 

Prolog 

implementation of metamorphosis g~~mma~§ {Colmerauer 1975), that 

we shall call I!Gs. 

An 8G rule has the form: 

s .).--> f 

where S is a nonterminal (logic) grammar symbol, J.. is a string 

of terminals a.nd, aontermina1s,.. and ~ is like J... except that it 

say ·also incittde·Proiog procedure calls.* 

Examples of such rules are: 

a,. { b ] --> (b J, a 

verbroot (X), pluralmark --> [W], concat ([X],[s],W) 

where a Prolog predicate concat {x,y,zj is assumed, that holds if 

z is the concatenation of x and y. 

A special case of l'JGs was later included in DEC-10 Prolog 

* The actual implementation in fact requires J... to be a string 
of nonterminals, but we shall disregard the restriction since it 
has been shown (Colmerauer 1975) to involve no loss with respect 
to the full MG form. 



I• 
I 

I 

I 

586 

PAGE 9 

(Pereira, Pereira & Warren 1978) and baptised definite £la~fil!. 

gram£§ (DCGs). DCG rules have the form: 

s -->f 

where s and ~ are as above. 

2 are of this type. 

All the rules presented in section 

The main motivation for introducing DCGs was ease of 

implementation coupled with no substantial loss in power {in the 

sense that OCGs can also basically describe type-0 languages -

although less straightforwardly) • 

~~,Eosition grammars (XGs) (Pereira, to appear) were 

designed in order to refer to unspecified strings of symbols in a 

rule, thus •aking it easier to describe left extraposition of 

constituents. 

XGs allow rules of the form 

s • • • s etc. s • • • s --> r 
1 2 k-1 k 

where the "· ... " specify gi'lps (i.e., arbitrary strings of g.rammar 

symbols), and r 

terminals. 

and the s 
}... 

are strings of terminals and non-

The general meaning of such a rule is that any sequence of 

symbols of the form 

s x s· x etc. s x s 
1 1 2 2 k-1 k-1 k 
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with arbitrary x s, can be rewritten into r xx •.• x 
i 1 2 k-1 

(i.e., the s. •s are rewritten into r, and the intermediate gaps 
'-

(x( 1 s) are rewritten sequentially to the right of r. For 

instance, the XG rule: 

relative-marker ••• complement--> (that]. 

allovs to skip any intermediate substring app·earing after a 

relative marker* in the search for an expected complement, and 

then to subsume both ma-rlter and complement into the relative 

pronoun "that", vhich is placed to the left of the skipped 

substring. 

The next section shows this rule at work in a parsing context. 

!lltrictiQ!l g,1:ammars (RGs) (Hirschman & Puder, 1982) are not, 

strictly speaking, logic grammars, since the gram11ar symbols may 

not include any argu~ents. But they are implemented in Prolog 

and provide an instance of what seems to be a popular tendency in 

natural language processing nowadays: they involve sets of 

context-free definitions augmented with grammatical constraints 

or restrictions. In RGs, these appear in the form of procedures 

: interleaved among the context-free definitions. 
I 

For instance, the RG rule 

* i.e .. , 
clause. 

a symbol that announces the beginning of a relative 



PAGE 11 

predicate::= verb, object, verb-object 

states that "predicate" can be rewritten into "verb object", 

provided that the "verb-object" restriction is satisfied (this 

restriction could for instance state that if the object is nil, 

the verb must be intransitive).. Restrictions need to be defined 

separately, using such available primitives to traverse the tree 

as "up", and "down"; and explicitly stating parameters foe its 

starting point in the tree and in the vord stream. 

What are the consequences of choosing one of these grammar 

formalisms to write a natural language processor? From a 

theoretical point of view, the power of HGs, DCGs and XGs is 

similar in that they can all serve to describe type-0 languages. 

From a practical point of view, however, their possibilities 

differ. In this section we shall illustrate this point by study 

ing how easily and concisely each of these formalisms allows to 

describe those rules involving constituent movement and ellision. 

RGs, although not dealing specifically with movement, are also 

considered. 

Let us consider for instance the noun phrase: 

the man that John saw 

which can be thought of as the surface expression of the more 
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canonica 1 form: 

the man (John saw the man], 

where the second occucrence of "the man" has been shifted to the 

left and subsumed into the relative pronoun "that". 

A simple grammar for ( very restricted) sentences in canonical 

form could be: 

(1) sentence--> noun-phrase, verb-phrase. 

{2) noun-phrase --> determiner,noun,relative. 

(3) noun-phrase --> pcoper-.name. 

(4) ver.b-phrase --> verb. 

(5) verb-phrase --> trans-verb, direct-object. 

(6) relative --> [ ]. 

(7) direct-object--> noun-phrase. 

(8) determiner --> [the]. 

(9) noun--> [man]. 

(10) proper-name--> [john]. 

(11) verb--> [laughed]. 

(12} trans- verb --> f saw]. 
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We shall successively modify this grammar (referred to as Gin 

all t~at follow~) in orner to describe the relativization process 

within various logic grammar formalisms. 

~ithin dGs, all we need is to add the following rul~s: 

(6'l relative--> relative-marker. sentence. 

(5') verb-phrase --> moved-d obj, transitive-verb •. 

(13) relative-marker, noun-phrase,moved-dobj --> rel-pronoun,noun-phra 

(14) relative-pronoun --> [that]. 

Figure 2 depicts the derivation tree for our sample noun 

phrase "the ma.n that John saw". we abbreviate some of the 

grammar symbols. Rule numbers appear as left-hand side.labels. 



noun-phrase 

(?.)l_ 
,---- r-

det noun 

(8) (9) 1 
the man 
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-1 
rel 

(6.) I 
J;i:ii"i;k_e_r ___ s_e_n tence 

(1) \ 

noun-phrase verb-phrase 
(5') \ 

,-----7 
moved-dobj ___ ,...__ ___ , tc-verb 

c,2,_l 
(13) 

rel-pro 
c 14) l 

that 

noun-phrase 

(13}' 

proper- na11e 

c 10) l 
John 

saw 

Figure 2. MG derivation tree for "The man that John saw". 
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Of course, for such a parse to be of any use, we need to 

construct a representation for the sentence while we pdcse it. 

But for the time being we shall ignore sy;nbol arguments in order 

to concentrate upon the particular problem of moving 

constituents. 

l.'!ovement rules and DCGs. ---- ----
rn terms of DCG rules, the simplest possible· modification to 

the original grammar G is to allow a direct object to be ellided, 

e.g. by adding the rule: 

(7 •) direct-object --> ( ]. 

But, because this rule lacks the contextual inforaation found in 

(13), a direct object is now susceptible of being ellided even 

outside a re1ati ve cla11se. In order to prevent it, a usual 

technique is to control rule application by adding extra 

arguments. In our example, we only need to add a single argument 

that we carry within the §.fil!U.!1£~, _y~rb-Eh~~g and direct-oQ.j~ct 

symbols, and that takes the value "nil" if the direct object in 

the verb phrase of the sentence is not ellided, and the value 

"ellided" if it is. The modified rules are the following: 

(0) sentence--> sent(nil). 

(1) sent(E) --> noun-phrase, verb-phrase{E). 

(4) verb-phrase (nil) --> verb. 

(S) verb-phrase(E) --> transitive-verb, direct-object{E}. 



(6') relative--> relative-pronoun, sent(E). 

(7) direct-object(nil) --> noun-phrase. 

(7') direct-object(ellided) --> [ J. 

(13) relative-pronoun--> (that]. 

PAGE ·16 

:Figure 3 shows the DCG derivation tree for 0 The man that John saw 

laughed". Substitutions of terms for variabl•s are shown as 

right-hand side labels. 



,-

sentence 
(0) \ 

sent (nil) 
( 1) \ 

noun-phr:1se 
( 2} \ 

r----7-·---1 
det noun rel 

(8) \ (9) \ (6') ' 
the man 

verb-phrase (nil) 

(4) I 
verb 

-i-----, 
( 11} \ 

laughed 

rel-pro 
{ 13) 

that 

sent (E) 

(1) \ r-..;.. ___ 7 

(3nh (;~TE) 
c1b~opl-name ,- ---7 

tr-vb d-obj{E) 

John 
(12)\ (7') l E <--

saw 
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ellided 

Figure 3. DCG derivation tree for the sentence "The man that John 
saw laughed". 
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While, as we have seen, MGs express movement by actually 

moving constituents around, DCGs must carry all information 

relative to movements within extra arguments. XGs, on the other 

hand, can capture left extraposition in an economical fashion: by 

actually skipping intermediate substrings rather than shifting 

the constituents that follow. Thus, our initial grammar can be 

modified to handle relativization simply by adding the XG rules: 

(6') relative--> relative-marker, sentence 

(13) relative-marker ••• direct-object--> relative-pronoun. 

(14) relative-pronoun--> [that]. 

Figure 4 shows the XG derivation tree for "The man that John saw 

laughed". 



-, -
det 

< 8) I 
the 

noun 
(9) \ 

man 

sentence 

r~_,)_l __ . __ 
noun-phrase verb-phrase 

c 2> \ - c 11 ) I ·· 
1 laughed ---7 

relative 

{ 6 t) ' 

r-------1 
rel-mk sentence 

r~> J....._ ___ 7 

noun-phrase verb-phrase 
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,-l----7 P> I 
prop-name 

{13) 

rel-pro 
(14) I 

that 

( 10) 

john 

tr-vb -obj 

sa:w 

Figure 4. XG derivation tree for "The man that John saw laughed". 
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Restrictions can be used in RGs for the purpose of enforcing 

context sensitive constraints, but transformatioas seem to 

require an RG extension - possibly in the form of an additional 

component - , which is presently under study. {Hirsch11an & 

Puder, 1982) 

An interesting feature of RGs is that a parse tree is 

! automatically constructed during the parse (i.e._ the tree

building parameters are hidden from the user). This makes a 

grammar clearer, but at the same time less flexible: only the 

history of rule applications is recorded, whereas in ao.y other 

logic grammar the user may build up (through explicit parameters) 

any desired representation for the sentences parsed. The effects 

of context sensitivity, on the other hand, are ensured .by giving 

each restriction access to the entire previously constructed 

parse tree. This need is the main difference between 

restrictions and tha standard Prolog calls allowed in logic 

grammars (which are also,. after all, procedure calls interspersed 

within the roles). 

In short, where DCGs accommodate context-sensitive constraints 

within user-controlled parameters, RGs enforce them through 

restrictions placed upon a system-controlled parse tree. This 

concept would result in a higher level formalism if it gave the 

user a fairly complete independence from parse tree concerus. 

However, efficient exploitation of XGs requires some knowledge of 
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the parse tree, and the user needs to express restrictions in the 

lower level terms of tree traversal rather than in the typically 

declarative, operationally independent fashion of loyi~ grammars. 

Work in theoretical linguistics has lately been departing from 

transformational theory (Chomsky 1965), largely because 0£ the 

subtelty of rules involved and the suppleme.ntary devices needed 

(e.g. co-indexing, filters, etc.} and because of the complexity 

of dealing with semantics within the transformational panadigm. 

Work by Montague {Montague 1976) and Gazdar (Gazdar 1981) 

resulted in a simpler and more intuitive formalization of 

semantics based upon the rule-to-rule hypothesis (Bach 1976): to 

each syntactic rule corresponds a structually analogous, semantic 

rule for building up logical representations. 

Gazdar•s framework, in particular, can deal with a wide range 

of syntactic phenomena within a phrase-structure theory that has 

a node admissibility interpretation rather than a generative one. 

This new outlook, augmented by metag.rammatical devices (such as 

categories with gaps, metarules and rule-schemata) elegantly 

captures such important constructs as coordination and unbounded 

dependencies. Gazdar•s "augmented phrase structure" approach has 

influenced research in AI, where the transformational approach 

had also been losinq adepts, as it was also felt to deal 

insufficiently with semantics and, moreover, with sentence 

analysis - AI's main concern in natural language processing. 
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Among the systems inspired by this approach are (Joshi 1982, 

Robinson 1982, Schubert & Pelletier 1982). 

Logic grammars, from all our previous discussion~ would St:H:HD 

to provide an adequate computational framework within which to 

implement the augmented phrase structure approach. 

descriptive point of view,. as we have seen,. "logica.l" context

free rules ara more powerful than standard ones because of 

parameters in grammar symbols, and .unification. Procedure calls 

are moreover an inherent feature that is useful for representin.g 

1 constraints. 

But, although any logic grammar supports at least this, the 

user need not be restricted to context-free type rules. MGs or 

XGs will moreover provide for generalized type-o rules, and even 

.for the handling of gaps, 

e f£ icie ncy. 

while maintaining high standards of 

Extra power available, therefore, can only represent a gain, 

since it does not preclude resorting to more elementary 

approaches as a special case. In this respect we support Berwick 

and Weinberg's contention that there is a possible tradeoff 

between parsing efficiency and descriptive apparatus,. and that "a 

language that is quite •high up• in the Chomsky hierarchy - e.g. 

a strictly context-sensitive language - may in fact be parsed 

more rapidly than languages lower down in the hierarchy - e.g. 

faster than some context-free languages if the gain ia 

succinctness is enough to offset the possible increase in parsing 
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time" (Berwick & Weinberg, 1982). 

our approach is therefore that of continuing research on logic 

grammar ex tensions that may be useful in view of a r:10.t"c po;.erf lll 

and elegant, while still efficient, treatment of some natur~l 

language processing phenomena. In the next section we describe a 

new logic grammar £ormalism developed in particular for dealing 

metagrammatically with coordination, but that exhibits several 

other features that are interesting by themselves. 

e.sec..rch by Mic.~G.el Mc.Cord ( Mc Core\ l'lgo., 11'& 
6. Modifier structure grammars (MSGs) s ru,\/.ltect i"' i.-,te.-red:i"'!J id.ec..s ior pro<.e&i>iv-
- -------- • •-------- --- -- t"'rc..l lc:."'5'u,~e H,v-out)I., lo~ic ~,c....,""'i..~.s, 1., 

j,c..rtiCMlo..r, H,1! 11\ot-iO\/'\ o.(. ""'Odi+ler ~tr1Actwre i;...,.c,\ H,~ trec.t""'a"'~ of ~e"""'-"'tic ;.,.ferjo.,.,eh,t.-0,.. ~re~e"'l~ 
t~e-re &ee.W\ecA 'I. 1,:,-ro-i" i"'~ 4-rc.M~ wo'f"k to-r solvi"'.5 .-.o ... br-ivic..l lc..,.5-..c...5e -lovoce.s&i.,.~ ~robl.eMs., SIAC~ ~s 

~ol"..;\i.-.ci..ho~.Joint research with ~ichael McCord in view of a logic grammar, 

11etagrammatical treatment of coordination, resulted in the 

development of a system consisting of: a) a new formalism for 

logic grammars, which we call modifi~ structure g1=a!!!.l!a£2. {MSGs), 
uoe{wl +or Mc..ki"'.£> W\Oc:li .£.ie"" ~tnAd:IAY-e iw-. pLic.il ill\ ~he :;1rC..IMW1otC:..V" J 

h} an interpreter (or parser) for MSGs which also takes all the 

responsibility for the syn tactic aspects of coordination, and c) 

a semantic interpretation component which produces logical forms 
(o.s i"' Mc.Cov--c>i it) 

from the output of the parser and deals with scoping problems~ 
whicl,,. G\.lso i.-.cl .. d~ si:,ec.i+fc n.tles fov- -Se'Mc.."'tic i"'te.rpreb::.Lo ... of 

i,,1:11$/1 fJi-.:D coocd:tnation. The whole system is 

implemented in Prolog-10 (Pereira, Pereira & Warren 1978). Here 

we make a brief presentation of this system. 

description can be found in {Dahl S McCord, 1983). 

MSG rules ace of the form: 

A Sem --> B 

A complete 
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PAGE 2q, 

where A--> B is an XG rule and Semis a term called a 2u~nSi£ 

il.m!!, -which plays a role in the semantic interpretation of a 

phrase analysed by application of the rule. The semantic item is 

(as in {McCord 1981)) of the form 

Operator - LogicalForm 

where, roug h.ly, Logica lForm is the part of the logical form of 

the sentence contributed by the rule, and operatdr determines tha 

way in which this partial structure combines with others. Sem 

may be a "trivial" sem if nothing is con tcibuted. 

ihen a sentence is analysed, a structural representation, in 

tree form, called "modi.fier structure" is automatically formed by 

, the parser. Each of its nodes contains not only syntactic 

information but also the semantic information Sem supplied in the 

grammar,·· which determines the node •s contribution to the logical 

form of the se.ntence ( this contribution is for the node alone, 

and does not refer to the daughters of the node, as in Gazdar•s 

approach (Gazdar, 1981)}. 

The semantic interpretation component first reshapes this tree 

into another MS tree where the scoping of quantifiers is closer 

to the intended semantic relations than to the (surface) 

syntactic ones. It then takes the reshaped tree and translates 

it into logical form. The modifiers actually do their work of 

modification in this second stage, 

It should be noted that the 

th rough their semantic items. 

addition of simple semantic 
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indicators within grammar rules contributes to maintain, from the 

user's point of view, a simple correspondence between syntax and 

semantics. This is similar in intention to the ritle-by-rule 

hypothesis mentioned before {Bach 1976), but is differently 

realized: instead of a rule-to-rule correspondence, we have a 

correspondence between each non-trivial expansion of a non

terminal and a logical operator. That is, each time the parser 

expands a non-terminal symbol into a (non-empty) ·body, a logical 

operator labels the expansion and will be later used by the 

semantic component, interacting with other logical operators 

found in the parse tree obtained.. The complexity of dealing with 

quantifier scoping and its interaction with coordination is 

screened away from the user. 

iit.h respect to coordination, the HSG grammar should not 

aention conjunction at alI. The interpreter l\as a genera.l 

facility for treating certain words as "demons" (cf. Winograd 

197~, which trigger a backing up in the parser history that vill 

help reconstruct ellisions and recognize the meaning of the 

coordinated sentence. 

This proceeds in a manner similar to that of the SYSCONJ 

facility for augmented transition networks (Woods 1973, Bates 

1978), except that, unlike SYSCONJ, it can also handle embedded 

coordination and interactions with extraposition. The use of 

modifier ~tructures and the associated se~antic int~rpretation 

component, moreover, permits in general a good treatment of 
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scoping problems involving coordination. Finally, 
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the system 

seems reasonably efficient (cf. timings for our sampla grammar in 

{Dahl and i1cCord, 1983) ) • 

Logic gram~ars, as we have seen, need not sacrifice efficieacy 

to the goals of power and elegance. They seem to be evolving -

like other computational formalisms - into hig~er level tools 

which allow the user to spare mechanizable efforts in order to 

concentrate on as yet unmechanizable, creative tasks. 

We view MSGs as a step in that direction, 

advantages of automatising the treatment 

with the main 

of coordination, 

'providing a modular treatment or semantics, and allowing the user 

not to worry oYer structure building. 

The latter feature may be an attractive one for logic grammars 

in general to retain, since it makes a grammar easier to write 

and read, and more concise. 

Since, moreover, logical structure desired fdr a sentence's 

final representation ij also automatically built up, from a fev 

simple semantic indicators in the grammar rules, it becomes 

easier to adapt a grammar to alternative domains of application: 

modifying the logical representation obtained need only involve 

the semantic components of each rule. 

This modulaC' isolation of structure lends grammars a 
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syntactico-semantic flavour. 
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It may be viewed as a way out of 

the dilemma on vhether the semantic component should be separate 

or intermingled with the syntactic on~. Compromising on 

manipulating static semantic indicators during the syntactic 

parse while using them dynamically during the semantic one may 

well prove to he the way of combining the advantages of both 

approaches while minimizing the disadvantages. 
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The area of data bases is the area of Computer science most likely to be inves
ted by a new methodology -should one say a new technology- based on logic 
programming. This survey investigates various approaches to the merging of 
these two worlds, trying to straighten out the advantages, problems and applica
tions of each of them. 

INTRODUCTION 

The area of data bases is one more area of computer science subject to being 
taken over by a new methodology -should one say a new technology- based 
on logic programming. This paper surveys the various approaches to merging 
these two fields, depending on viewpoints adopted for one's problem analysis ; 
the logic data base field starts from logic and tries to enhance it with data 
base assets, be they data access techniques or data base features ; on the 
converse deductive data bases are built from existing data base systems by 
enhancing them with deductive, and other, capabilities. These two viewpoints, 
although yielding different systems and being interesting for different types 
of applications and goals, are rather complementary and share many common 
problems. The paper concludes that enough of the theoretical aspects of the 
deal are well-known and that it is time now for practical applications as well 
as theoretical improvements. 

The paper is divided into five sections. The first section presents the four 
approaches to linking data bases and logic ; the first three to be described 
in sections 2 through 4 adopt the logic viewpoint and culminate into full blown 
logic database ; section 5 presents the deductive database approach. 
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One should take note that the modeling power of logic databases will not be 
discussed in this overview because the paper does not deal at all with work 
on knowledge representation formalisms. 

Section I : Logic programming - Data Bases 

The first to realize the potential of logic programming for data bases was 
probably C.GREEN (1) who, although he did not know about logic program
ming which did not exist at that time, described how to connect logic-based 
Question-Answering system to data Base systems. Since that time various 
papers, books and workshops dedicated to that subject have brought up 
the subject (2, 3, 4, 5, 6) without fully clarifying the relationships between 
the two fields. · 

In order to study this relationship closely, we first decompose a logic pro
gramming system and a data base system into their respective components. 
A logic programming system, PROLOG being the most well known example 
of them, is made of a deductive component (A) and of a rudimentary access 
component (B) which provides the· deductive component with individual 
tuples ; the query to A may be a relational expresssion (usually a negative 
clause in PROLOG) ; the interface between A and B is a relation. 

A database system is made of a data description and data manipulation 
component (C), a data access expression optimizer (D), and a data access 
component (E) ; query relational expressions are submitted to (C) or to 
(D) ; interface between (C) and (D) is a relational expression, usually of 
the relational algebra ; interface between (D) and (E) is at the relation 
level, bringing back full sets of tuples instead of individual tuples as (B). 

A B 
i 

lpression 

! ► Deduction 
Relation Acces 

elementaire 
par n-uple ! 

Repr. Connaissances I 
I ' ------- ..... .- -- -- -

-~-. 

escription des Donnee 

Manipulation 
des donnees 

C 

Expressi<2_n ... 
---

Acces evolue 
jointures, ••• 

D 

Acces direct 

► 

Relati~n 
-

Acces optimise F 
par relation 

E 



With such decompositions in mind, four types of connections can easily 
be thought of : 

PROLOG+ : Some relations are defined as being managed by a mechanism 
of type E, thus giving a system made of : 

A #(B+E) 

PROLOGDB : PROLOG formulas can be considered as being a full fledged 
query language for a database access system (D-E) ; thus 
we obtain : 

A#(D+E) 

Logic Data Base : This is the natural extension of the previous two approa
ches where one builds above or aside PROLOG a true data base system, 
with a description and manipulation language, including capabilities for 
integrity constraints expressions etc... Although it is not necessary to include 
capabilities of type D or E they will be included if only for performance 
reasons ; thus we obtain : 

C#A#,(D+E) 

with C # A as a minimum system. 

Deductive Database : The goal here is to provide extensions to conventional 
database systems which have well-known limitations, 
if only for the query languages which need to be 
embedded into foreign programming languages. The 
systems so obtained are of the type : 

A# C#D#E 

or even C'# A #C #D #E 

when one combines this deductive database approach with the logic database 
one. Logic covers various aspects that the query language covers inade
quately: views, optimizing techniques, theoretical understanding of important 
problems such as incomplete information handling, ••. 
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Section 2 : PROLOG+ 

It is known that PROLOG-like access to individual data is not well-suited 
to relations which would be stored in secondary memory, due to the fact 
that data is requested one at a time. Also it is known that even in primary 
memory there are ways to index data which make it faster to retrieve 
(e.g indexing on specific fields of a relation rather than sequential access 
on its name). On the contrary database systems are very much concerned 
with the efficiency of data retrieval. PROLOG+ systems are nothing more 
than systems in which some relations have been declared as database rela
tions or DB-relations and handled by a DB-like access mechanism (indexing, 
B*-tree, multiple hashing, ••• ). Such systems have already been built ; PRO
LOG-like access is simulated for the DB relations by buffering the set 
of tuples retrieved in one operation, and giving PROLOG one tuple at a 
time from this buffer. See eg (7). It is clear that this approach is an easy 
way to enhance PROLOG, and for some well defined large applications 
of PROLOG, worth implementing. It is surprising that no such a large scale 
application has been reported up to now. 

Section .3 : PROLOG BD 

Recall the configuration of such systems : 

A_#(D+E) 

Such a system can be seen as a PROLOG+ system in which instead of inter
facing with the DB system at the relation level, one interfaces at the resol
vent level : given DB-relations, given other relations (called PROLOG rela
tions or P-relations to distinguish them from DB-relations), given a PROLOG 
program including clauses mixing P-relations and DB-relations, one would 
like to optimize access to P-expressions i.e. to expressions containing P
rela tions only, rather than to evaluate each P-relation when, in the deductive 
part of PROLOG, it becomes the leftmost literal of the resolvent (as done 
in PROLOG+). There are several ways to do this which are examined below. 
First let see why one would want to do such global retrieval as opposed 
to an individual, relation-based retrieval ; among the possible reasons one 
which is most appealing is that it is known that DB systems behave more 
efficiently than virtual memory systems, that they have quite efficient 
optimizers, that they offer set-operators which can be very much optimized 
and even executed through specific hardware (the database machines). 

The connection sketched above is in principle easy to imagine. A major 
initial decision to be made is how much control over the evaluation process 
is left to the programmer ; in other words the decision is to be made whe
ther the programmer can decide (i.e can tell the system) when a (sub-) 
expression is to be sent to the database system, how much data is to be 
brought back, etc. 



Making such a possibility explicit in the hands of the programmer requires 
an extension of the logic language, namely that a set of system predicates 
be added which allows to express information about retrieval, insertion, 
deletion, etc., thus makin,g a "data sublanguage" out of PROLOG by exten
ding it. Such an explicit control has been defined and advocated in (8) ; 
it could be a basis of some of the 5G languages. One could perharps also 
adapt to DB the technique of (9). These approaches are certainly worth 
experimenting, but we believe it is not easy : it is certainly not a simple 
matter to find logic programmers knowledgeable enough to make the right 
decisions about these retrieval expressions. Nevertheless it is the one which, 
in the short term, could prove the most effective ; one should bear in mind, 
though, that some DB researchers express concern about optimization pro
blems and believe that DB access optimizing is a formidable task that 
needs much processing power, which is sometimes· counter-intuitive, and 
which is usually better carried out by general programs. 

If the responsability of the decision is to be taken by the system and not 
by the programmer, it remains two basic roads. The first is the compilation 
technique in which one translates an initial request into a DB-expression 
which is then sent to the DB-system ; thus there is a clear cut separation 
between deduction (generation of an evaluable expression) and access. The 
second technique is the interpretation one, in which both processes are 
intermixed. 

. 9!meilation 

This technique has been widely studied (10) and has led to several implemen
tations and approaches depending on the complexity of the logic program. 

Case l 

There is no recursive axiom in the program for defining P-relations 
in terms of DB-relations. 

This case is without difficulties. There are two ways to deal with it. 
One can modify the logic interpreter so that it delays evaluation of 
DB-relations until the resolvent involves DB-relations only ; this might 
perharps be done by ·· using Geier (Freeze) predicate from PROLOG 
II. Alternatively one could write a translator which acts as a meta-inter
preter as done in (11, 12). 

Case 2 

There exist recursive axioms in the program ; an example of such 
a case would be a transitive closure relation supposed to be a P-relation 
and defined in terms of itself (hence the recursivity) and a DB-relation. 
Whereas in case l all that was to be done was a macro-expansion, 
one is now confronted to a true program generation problem ; at least 
in principle two classes of solutions have been studied : 

pseudo-compilation : This is an extension of case 1, i.e the recursive 
program is not translated into an iterative one, 
or into an evaluable formula ; rather it generates 



a sequence of evaluable formulas each correspon
ding to an alternative solution used on backtracking 
when the logic interpreter, or the user asks for 
additional solutions. An example extracted from 
(7) follows : 

given ancestor(X, Y) + parent(X, Y) 

ancestor(X, Y) + ancestor(X,Z), ancestor(Z, Y) 

and a query + ancestor(X, Y) 

the system will generate the following evaluab~e formulas : 

[edb(parent,X, Y)] then 

[edb(parent,X,Z), edb(parent,Z, Y)] then 

[edb(parent,X,Z), edb(parent,Z,Z 1 ), edb(parent,Z 1, Y)] 

where edb(parent,-,-) is a relation evaluable by the DB ; such formulas 
evaluation can be optimized. Other examples show that additional 
capabilities (one should notice the example used a non-trivial recursion) 
such as negqtion and mixed relations . can be handled too. A mixed 
relation is a relation defined by a program which includes assertions 
i.e positive litterals as well as conditionals (general axioms as above). 

Although such systems are, in principle, simple enough, their drawback 
is a redundancy which is obvious from the example above : consecutive 
formulas share common literals which will be evaluated several times ; 
getting rid of this redundancy at the deductive system level amounts 
to a true compilation (see next) ; getting rid of it at the DB level 
is not a classical operation of such systems. 

True compilation : It is possible to generate truly iterative programs 
involving purely evaluable DB-relations starting 
from recursive logic programs including both P
relations and DB-relations. Several techniques have 
been proposed (13, 14, 15). 

In (13) recursive programs of the regular type (in the formal language 
sense) only can be handled ; it is not surprising that such a class of 
programs can be translated into iterative programs, as this is well 
known from automata theory. In (14) various extensions to the regular 
programs are given, without reaching the full power of logic programs. 

(15) describes the most general approach as of to-day, it is based on 
connection graphs, a well-known technique (16) ; the basic idea is to 
generate a program which is a loop around the cycle(s) in the connection 
graph, collecting all DB-relations involved in this process until the 
exit of the loop. A simple example is in order (15) : given the following 
connection graph and a query s(? ,a). 



1p(Wl,Zl) l t(Yl,Zl) , s(Yl,Wl) , s(?,a) 

7m(Xl,Yl) , t(Yl,Zl) s(Xl,Zl) 

, f(Yl,Zl) t(Yl,Zl) 
corresponding to the program 

s(Xl,Zl) + m(Xl,Yl), t(Yl,Zl) 

t(Yl,Zl) + s(Yl,Wl), p(Wl,Zl) 

t(Yl,Zl) + f(Yl,Zl) 

with p,m,f DB-relations, the program to be generated goes along the 
loop collecting p-tuples, each of them driving an inner evaluation 
loop of m-tuples and f-tuples as can be seen by looking at the succes
sive evaluable formulas : 

m(?,Yl), f(Yl,a) 

m(?, Y2), m(Y2, Y 1 ), f(Y 1, W2), p(W2,a) (r2) 

m(?, Y3), m(Y3, Y2), m(Y2, YI), f(Yl,W2), p(W2, W3), p(W3,a) (r3) 
• 

The program is : 

Zl = a 
edb(p,W2,Zl); edb(m,X,Yl) ; edb(f,Yl,Zl) ; print(X) 
enqueue(Q, W2) values of W2 will drive an outer loop 
foo = m(X2, Y2), m(Y2, Y 1 ), f(Y 1, W2) to be evaluated, starting from 

f for each value of W2 
i = 2 
while (Q I empty) do 

od 

while (Qllempty) do W2=Deque(Ql) ; edb(foo) ; print(Xi) ; od 
does what was expected, see(r2) above 

Ql = Q 

Q = empty 
while (Ql I empty) do W3 = Deque(Ql) ; edb(p(W2, W3) ; 

enqueue(Q, W2) ; od 
collects now values for W2 as in r3 above 

replace m(Xi,Yi) by m(X. 1,Y. 1), m(Y. 1,Yi) in foo; i=i+l 
i+. l+ l+ prepare for a new outer loop 



This program is, on the surface, satisfactory ; the authors state that 
its only limitation is due to the fact that the form of the initial querv 
must be known (here s(?,a)). There may be another difficulty which 
is that, in order for the program to stop, the enqueue operation is 
not a mere "push" : it must check that the value has not been pushed 
i.e. enqueued before ; this may be a practical limitation of the system. 

Another approach, without any . of these limitations maybe under way 
(17) but not enough is known about it at this time. 

Interpretation 

These techniques intermix deduction and evaluation steps ; in fact 
what was described in section 2 for PROLOG+ was already an interpre
tation. Other schemes have been presented, starting from the idea 
that unification done tuple at a time was not precisely adapted to 
systems in which DB-relations were handled ; such a case was argued 
in MRPPS (4) where the concept of Il-unification was developed. A 
more systematic study in terms of PROLOG implementation is described 
in (11) where the basic idea is the . following : rather than storing at 
each node of the proof tree the whole set of unifications (as a table), 
it is possible either to store a unification set only at the root and 
to store at each node the computation rules which will allow to compu
te their new unification sets from their parent node, or to store unifi
cation sets at the leaves and at each node the information which allows 
to compute their unification set from their descendent nodes. Examples 
are described in (11) although a complete implementation of PROLOG 
based on this has not been realized. 

Such techniques would be interesting for parallel PROLOG implemen
tations. 

Section 4 : Logic DB 

This approach is the most natural one for all those who believe logic pro
gramming to be a universal programming language. Their arguments are 
strong, we adhere to them basically. A database, as seen by KOWALSKI 
(6,18) is a collection of HORN clauses including functions if one wishesto 
(already an extension of conventional DB), atop of which it suffices to 
build DB functionalities. 

A starting point is that PROLOG, including its set-of extension is relational
ly complete, i.e. can express all queries expressed in relational algebra, 
the common base language to all relational DB systems (with operators 
such as union, projection, join, division, ••• ) ; such a result although interes
ting is well-known since CODD results on equivalence between relational 
calculus (i.e. logic) and relational algebra. Of course the set-of construct 
gives all that is needed to express aggregation constructs, averages, ••• 



However, PROLOG and logic provide more than a conventional query lan
guage because the expressive power of logic programming is at least that 
of least fixed points, an example of which being transitive closures : 

lfp(R,R*) can be expressed as a simple PROLOG program computing the 
least fixed point R* for any PROLOG relation R. In specific cases, it 
is simpler to compute the closure directly, as in 

ancestor(X, Y) + parent(X, Y) 

ancestor(X, Y) + parent(X,Z), ancestor(Z, Y) 

Some limitations of the approach should nevertheless be phrased : 

- It must clearly be connected to a DB system as described in Section 
3 if only for efficiency problems ; this is clear for example in (19) 
where a set of queries to a DB system expressed in PROLOG had 
to be optimized before being sent to the DB system ; although one 
could argue that one of the major difficulties (duplicates) in the 
answers came from the PROLOG evaluation scheme itself, not from 
logic, this is still a problem to be faced in general. 

- HORN clauses, if relationally complete, are not sufficient to express 
naturally all queries that one would like to ask using logic itself 
(6,18) : find all suppliers · supplying all pieces needed for project 
"au. 

Such a query. involves conditionals within conditionals ; this is tran
slated into negation within the body of a clause and is not properly 
handled by PROLOG unless specific attention is paid. 

- Iritegrity constraints, time-constraints involves additional mechanisms 
which resemble plan-generation techniques ; non-monotonic reasoning 
is also necessary ; possible solutions are presented in (6,18,20). 

Some realizations have been reported along these lines, eg (21,22). The 
first one is a PROLOG implementation of QBE, while the other is a des
cription of a system where PROLOG is an intermediate language target 
for a QBE external language as well as an SQL external language and a 
relational algebra external language. In the PROLOG implementation of 
QBE (21) it is shown how to simply take into account integrity constraints 
on inserts and deletes using a technique which was also used in (23), the 
catchall clause. That logic database approach is typically an approach 
which is closest to Artificial Intelligence, at least to the theorem proving 
part of Artificial Intelligence if not to the knowledge representation one. 
Systems built in that perspective include (4, 24). Powerful non-HORN theo
rem provers can be used, plan-generation techniques can be expressed. 
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Section 5 : Deductive Data Bases 

The bias introduced in developing deductive database systems is that DB 
systems can be enhanced by adding to conventional retrieval capabilities 
of data explicitly introduced, that of retrieval through deduction mechanisms 
using general laws. This extension, introduced at first purely for retrieval 
purposes turns out to have many more facets which are briefly examined. 

Conventional DB's manipulate facts only (the tuples of the relations). The 
general laws they use are so-called integrity constraints (IC), used to vali
date updates of facts. All queries are evaluated with respect to facts 
only. 

In deductive DB's general laws can be partitioned in two sets : IC's and 
deductive rules (DR). Queries are then evaluated with respect to facts 
and DR's. But IC's will also need to be evaluated with respect to facts 
and DR's. This makes it more difficult of course to check IC's which thus 
require deductive capabilities. Deductive databases (DDB's) are made of 
a collection of solutions to various problems whose conventional solutions 
in DB's have to be adapted in this new context. To understand these new 
solutions, old problems and solutions must first be reviewed. 

Conventional DB's enforce implicit assumptions for retrieval : 

- Closed world assumption (3, 36) : all facts not known to be true, 
i.e not stored as tuples, are false 

-, R(al , ••• ,an) iff < al , ... ,an > 4 R 

- Unique names : elements with different names are different 

'r/ b,c b-/:c 

- domain closure : there are no other elements than those stored in 
the DB. 

The first two hypotheses combined allow negation evaluation (recall that 
NOT is an operator in relational algebra). The third one allows evaluation 
of queries such as 'r/ xP(x),... It could be dispensed of if one restricted 
the allowable queries to meaningful subsets of the syntactically correct 
queries, thus reducing to range-restricted queries. 

'r/ x(Q(x) + P(x)) is evaluable without hypothesis(3) 

while 'v xP(x) is not. 

These conventional assumptions have to have counterparts in any formalized 
view of conventional DB's. After this formalization is done, it is possible 
to extend it to DDB's. Two formal views of conventional DB's have been 
studied (25, 5) : a model-theoretic view (MTV) and a proof-theoretic (PTV) 
one. Without going into details, the MTV assumes that the set of facts 
is an interpretation E, a model, of a theory made of IC's and that query 
evaluation is done in E, abiding to the above three assumptions. Although 
such a view deals with problems such as query evaluation and optimization, 



choice of conceptual schemas, etc ••• it does generalize to DDB's and incom
plete information problems. The PTV sees a conventional DB as a first-order 
theory T plus a set of closed formulas, the IC's. The theory T is made 
of facts (positive HORN formulas) and a set of particularization axioms. 
These particularization axioms (Domain closure, Uniqueness of names, 
completion, equality) are the formal translation of the above three as
sumptions. The DB is still not a DOB but deduction could be used to handle 
T ; this may be unwise and in any implementation this is likely to be dealt 
with at a metalevel, i.e integrated to the query algorithm. Nevertheless 
PTV is very useful in terms of the generalizations it suggests : 

- DDB's which are obtained via a third class of axioms, the deductive 
rules (DR) mentioned earlier. 

- DB's which allow disjunctive information, leading to incomplete 
information (5, 26, 27). 

DDB's are subject to new problems, in that the axioms introduced in T 
may be inconsistent with some general deductive laws ; it is well known 
that such is the case between disjunctive axioms and those (in T) accounting 
for CWA. 

, R(al, ••• ,an) iff { T,DR} \-f- R(al, ••• ,an) 

cannot be accepted as such : 

Cat(X) -+ Black(X) U White(X) (DR) 

Cat(Felix) + 

axioms in T 

t-f- Black(felix) hence -, Black(Felix) 

l-f- White(felix) hence , White(Felix) 

These two informations are contradictory with the unique DR. Solutions 
to handle this are partially known (5, 26, 27) and consist either in restricting 
general laws (DR) to regular clauses with adequate axioms T' instead of 
T, or in dealing with incomplete information systems. 

It must be emphasized again that this theoretical view (regular clauses 
+ axioms T') is not to be implemented as such ; again, implementation 
goes through some meta-rules rather than using T' axioms ; for instance 
negation as failure (33) and range-restricted formulas (35). 

There are two ways to exploit a DOB. Most of the systems realized today 
use the deductive approach where data is actually deduced when needed. 
In the generative approach (28), deductive rules are used as generative 
rules : each time data is entered, all information derivable from it, or 
with its help, is derived and generated (stored in the DB) ; of course supres
sing data becomes a non-trivial process, akin to Truth Maintenance Systems 
in AI since generation is similar to forward system in AI. The generation 
task appears to be prohibitive in terms of computation overhead, but it 
may not be so depending on the context of application. 



Finally, one should note that DDB's are not yet fully understood ; however 
they already permit various generalizations of conventional DB's among 
which generalized notions of views, integrity constraints, query languages, 
data dependencies studies, etc (29, 30, 31, 32, ••• ). Obviously, not all of 
these notions have an acceptable treatment : among them one can mention 
update of views, recursive DR's, checking IC's, etc. 

It should be clear from the above discussion how close are some of the 
problems which are dealt with both from the DB viewpoint and from 
the logical one ; what to emphasize and how to solve problems, is where 
these two fields separate. 

CONCLUSION 

In this overview paper, two main trends for enhancing data bases on one side, 
logic on the other, have been examined. Both aim at bridging the gap between 
DB and logic. One puts the emphasis on efficiency, the other on functionalities. 
As a result there is no single logic & DB system : a taxonomy of systems inclu
ding DB's, knowledge-based systems, logic interpreters handling large sets of 
assertions, etc can be developed ; corresponding to this taxonomy which is 
rather intuitive and well-known, another one has been proposed here according 
to the emphasis on logic or on DB's : PROLOG+, PROLOGDB, logic DB, deduc
tive DB. Yet, another- taxonomy is still . to be developed : it has to do with 
the types of axioms that could be sufficient for the purpose of each type of 
system corresponding to the above taxonomies. As an example, consider recursive 
axioms : what is the complexity of such axioms when one adopts the deductive 
DB perspective ? Isn't it sufficient to have the power of transitive closure ? 
Then, isn't it possible to take advantage of such a simplification in the deductive 
system to be built. Such questions are important and the task of finding such 
a taxonomy is now to be undertaken. It may be presently undertaken in the 
framework of the Japanese 5G Project which aims at the same objective : 
bring together logic and database system. One should note that we have not 
covered the use of logic as an implementation language for interfacing DB's, 
e.g. for a natural language interface (19) or for menus and other tools (37). 
Finally recall that an important topic has not been discussed here at all : the 
knowledge representation problem and the contribution of logic databases to 
it. 
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Computing with Sequences 

c.o.s.Moss. Feb 1933 

Abstract 

All Prolog implementations deal implicitly with sequences 
of solutions to problems by means of backtracking: if one 
solution to a subproblem is rejected another is presented. A 
number of implementations also provide predicates which provide 
sets or bags {sets mith possibly repeated elements) of 
solutions. Sut in these case the system finds all the s.olutions 
before proceeding. It is suggested here that an implementation 
of bags, or sequences, which finds only one solution at a time 
can be integrated easily with exis~ing implementation techniques 
for Prolog. 

This technique has a number of advantages over similar 
proposals. If it is combined with subprograms which exhibit 
tail recursion, then one can write logically correct programs to 
process sets of solutions which do not use extra memory. These 
can include prog~am~ which reduce solutions (e.g. count, sum or 
averaga solutions) aithout using •impure• techniques. However 
thetechnique involves little overhead in programs mhich do not 
use it, unlike cenain other proposals for coroutining. 

This_ will have particular advantage in database 
applications ■here large amounts of infor,aation must be 
retrieved serially fro• secondary storage. It also has 
potential application for parallelism since the next solution of 
the subproblem may be pre-evaluated on a parallel processor, 
without changing the normal interpretation of Prolog clauses. 

Introduction 

The normal mode of evaluation in Prolog may be termed a 
•semi-lazy• evaluation of all the solutions of a goal. In other 
words, one solution is computed to a subproblem, and the 
c~mputation is then suspended until another solution is 
required. This produces the very attractive •stack" discipline 
which characterises Prolog and contributes significantly to its 
speed and memory efficiency. 

But in many cases one wishes to talk about "all" solutions 
to a problem. A facility is provided in several Prolog 
implemantations (e.g. Warren Cl98ZJ) by an evaluable predicate 
which produces the solutions as a list: 
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6.2..~ 
The predicate "setof(A,B,C)tt means that C is a list of the 

variables A which solve the problem a. 

In many situations, particularly if one wishes to nest 
calls to such a pradicat~, it is desirable to provide the 
solutions as a set, in which any duplicate solutions have been 
removed. But this clearly en~ails extra work, and presents 
Questions if som3 of the solution3 contain uninstantiated 
variables (does one want the most general or most specific 
answers?). Hence some implementations also provide a "bagof" 
predicate which is defined in the same way, but can contain 
duplicate answers. But this is also implemented by producing 
all solutions to the problem at one time 3nd therefore involves 
allocating (implicitly) enough space to hold all the solutions. 

Because of this, many programmers will persist in using the 
impure "hacks• that were common in Prolog before these 
oredicates were introduced. These involve making temporary 
assertions in the database to hold information which is not lost 
on backtracking. Apart from the loss of speed from using these 
techniques, programs can become obscure, as the technique 
effectively introduces global variables into a language which 
avoids their use otherwise. In the context of parallelism, such 
usage is doubly suspect. 

Using Sequences 

The introduction of sequences has tmo parts: an evaluable 
predicate and a •lazy• way of processing Conly) lists. We sill 
introduce a new predicate called "seqot•. It has the same 
definition as nsetof• or "bagof" except that solutions produced 
in the list may be repeated, and the order of solutions is 
defined by the program. i.e. 

seqaf(A,B,C) means that the list of all solutions for A in 
Qoal Bis a list C. 

Let us demonstrate the use of this oy sho~ing a procedure 
which computes the average population of all countries in a 
database. 

averagepop(A) <- saqof(B, (population(C,D), country(C)), E), 
average(E,O,O,A). 

average(nil,O,O,O). 
average(nil,A,S,A,B). 
average(A.B,C,D,E) <- averageCB, C+A, D+l, E). 

Here "averagepop" computes the average population and 
"average" is a general procedure tor computing averages, working 
in a "bottom-up" fashion so that tail recursion is applicable. 
Note that infix function calls to arithmetic predicates are 
assumed. A aefinition of all predicates used may be found at 
the end. 
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The meaning of this program may be 3ppreciated quite 
separately from the method of implementation: "seqof" ganerates 
a list containing the populations of every country in the 
database, and "average" acts recursively on this list to produce 
the average. 

However the implementation suggested is as foll~ws: 
seqof(A,B,C) evaluates B until a single solution is found, ~hen 
it binds C to A.x (where xis defined belo~), or if no solution 
is found then C is bound to nil. Control then passes to the 
subgoals following seqof - in this case "average" (unlass C is 
already bound fully to~ list in which case the next solution of 
Sis found). Execution proceeds normally until an attempt is 
made to bind a non-variable to the lazy list object, the value 
called "x" above. If this is normal list-processing, then it 
mill be an attempt to bind it to some term •o.en, or "nil". At 
this point, control is returned to "seqof" and another solution 
is attempted. If it is found, then the value D mill be 
instantiated and processing returns to the list consuming 
orocedure. 

One valuable aspect of this control mechanism is that the 
0 seqof• procedure can be programmed so that when control returns 
to it, it can detect whether any. valid references still exist to 
the first solution (because of backtracking points etc), and if 
no~, can delete that solution from the ~tack. In this may, the 
qlobal stack space used can be reclaimed and a list of all 
solutions used without consuming an equivalent amount of stack 
soace. 

A Database Example 

As a further example of the use of this approach, consider 
another database query. Buneman et al CI982J consider queries 
such as: 

"find the names of employees who are under 30 years of age 
and are paid more than the average salary for all all 
employees." 

In a typical database query language this might be 
expressed: 

retrieve NAME from EMPLOYEE ~here AGE<JO and 
SALARY> average(retrieve SALARY from EMPLOYEE). 

They demonstrate that this can be expressed in a purely 
functional query language by an expression 

!EMPLOYEE o IC£CAGE,30Jo LT, CSAL,AVESALJ o GTJ o ANO) o *NAME; 

where "o" represents 
function which computes 
stream of all employees, 
following predicate, and 

function composition, AVESAL is a 
the average salary,"!" generates a 

"IC" restricts this stream by the 
»*~ converts a straam of values into a 

6.25 



Page 4 

character stream. 

A system such as Chat-80 {Warren, Per•ira 1979) might 
represent this as a Prolog query in the form: 

ans(ANS) <= seqofC~, employea(d) & a~eCB,C) & C<30 
& salaryCa,O) £ D>E &n&me(B,A), ANS) 

& seqof(F, employeeCG) & sa13rtCG,F), H) 
& average(H,O,Q,E). 

While this (relational) form of the enquiry is not as 
concise as the functional form it has an important advantage. 
The variable •e• ~hich represents the average salary is 
independent of the expression in which it appears and it is 
clearly not necessary to compute it for aach employee. In the 
Chat-80 system the query would be rearranged and constraints 
inserted to ensure that it is only calculated once (Warren 
19al). In a functional system, the optimiser has to recognize a 
"constant subexpression". 

The processing of the query clearly involves two passes 
over the employee relation, mhich may be presumed to be large 
and stored in a database. When computing the average salary 
there is only a need to retain the partially computed average. 
The second pass generates the names of employees, which mill 
presumably be p~inted out and also not stored. 

Buneman et al point out that there is a further possible 
optiai.sation for this query: if there are no employees less 
than 30 it is unnecessary to compute the average salary. The 
im~lementation of sequences proposed here mould not easily allo• 
for this. 

Implementation Details 

This discussion has ignored the vital implementation 
details of how the stack is organized to handle several 
different "control points" simultaneously (and one must remember 
that seqof may be called at several points in direct or indirect 
recursion). There are in fact a number of possible 
implementations and which is used may depend on several factors. 

1. One can implement full "spaghetti stacks• in which 
several computations can interleave. This is the approach of 
Clark and McCabe (1979]. This does not unfortunately mesh very 
well mith existing implementation techniques. 

z. One can start a new stack for the seqof predicate 
separate from the old stack. In fact it is possible to consider 
this as a completely separata uprocess", as ~ill be explored 
below, and in a virtual memory environment where address space 
is no problem (though real mamory is) this may well be the best 
solution. 
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3. One can allocate (by some heuristic) a certain 3pace on 
the stack for the seqof process in addition to that consumed by 
the first solution and start the following processes above this. 
On return to the interruptad process, it performs a "context 
switch" ~hich resets the t>p of av3ilaDla stack space to the 
credefinad space. If this space is filled, it is then necassary 
to "stack-shift" the rest of th9 stack to make space. 
Fortunately this is an operation which is alraady done by 
several implementations to allow for the several different 
storage areas used by Prolog. 

be better 
penalty on 

handling 
goals is 

The advantage of methods 2 and 3 (and there may 
methods) is that they do not incur a large time 
normal execution. The convenient and efficient stack 
of Prolog is preserved and the normal sequencing of 
only interrupted when treating a "lazy" list. 

It is however necessary to modify the unification routine 
to recognize a nem object - the lazy list. However this does 
not affect the binding variables to the object, only the attempt 
to match it with another list object (list functor or nil). 
Hence the modification is limited to the case of binding a 
functor to a functor and even in compiled code this is 
normally performed by a subroutine. It is to be hoped that with 
the gradual introduction of microcoding for unification this 
mill not be a significant problem and be outweighed by the 
saving in space achieved. 

So■e other uses of this technique 

This technique opens up new possibilities for Prolog 
evaluation, of which three will be explored briefly. 

1. Input-Output in Prolog programs is generally handled in 
a manner which is both semantically impure and obscure from a 
programming point of view. Consider the following programming 
fragment found in several systems: 

getCX) :- repeat, getO(X), X = '', !. 

repeat. 

repeat:- repeat. 

Here the predicate "get0° unifies the next character in the 
input (of some unspecifi&d file) with the parameter X. If it is 
not a space, then the system backtracks to getO, which is not 
implemented as a procedure with backtrack points. However 
backtracking to "repeat" always succeeds and the next character 
of the input is read. Thus 0 gat" reads the next non-blank 
character from the input. However, ooth "getO" and 0 get• are 
oradicates which have side-effects. Backtracking over the input 
file does not "rewind" the file as one might expect. 

6.2.l-
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Let us suppose that input-output ~redicates were defined in 
terms of tne seqof predicate. Thus, for instance, a call to the 
Predicate fileCA,8) binds 9 to a character in file A. A call to 
seqofCB,fileCA,B),C) binds C to the list of characters in file 
A. If this is the predicate used then correct backtracking 
behavior will be acheived automatically ~ith more economical use 
of storage. Of course a mora sophisticated implementation might 
vield even greater economy. 

2. Consider the following use of seqof: 

seqofCA, proclCB,A), C>, seqofCD, proc2CC,O), B). 

Here procl and proc2 are two processes which each •consume• 
a list which is their first parameter and produce answers which 
are their second parameter. If the first parameter is 
considered a list of input messages, then the behavior Qf these 
two processes may considered to be one of message passing from 
one to the other. Initially procl is invoked and produces a 
message A. Then procZ is invoked and produces an ansmer o. 
When it tries to consume the second message, control is passed 
back to procl. Notice that there does not need to be any 
one-to-one correspondence between the number of messages 
orovided by procl and proc2. Also deadlock is easily detected. 

3. It is possible to replace any subgoal in a Prolog 
orogram by a pair of goals which are equivalent: 

go.al CA,.• ,Z> to 

seqof(A: •• :z, goalCA, •• ,Z)~ C>, solnCC,A: •• :z> 

ahere A: ... :z represents a tuple of the variables appearing 
in the goal and soln is defined conceptually by· 

soln(A.B, A). 

soln(A.S, C) :- soln(S, CJ. 

Thus we may consider any subgoal in a Prolog pro~ram as a 
separate subprocess which generates a sequence of solutions 
which is then passad on to its neighbors. It is possible to 
implement these in the most convenient manner: one possibility 
that is attractive is for a subgoal to produce exactly one more 
solution than has yet been demanded by the other goals. Then 
when the next subgoal backtracks there will be a solution 
immediately available. However the demand for new processes 
will not grow exponentially as could be the case if indefinite 
parallelism were allowed. 

Conclusion 

The introduction of the seqof predicate and the "partially 
evaluated 11st" technique has introduced into Prolog a very 
li~ited form cf ccroutinin;. It has the advantage of preserving 

6.2:H 
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the behavior of µrograms written for a left-to-right depth first 
evaluator 3nd avoiding the overhead ~hich has accompanied ~any 
other proposals for coroutining. It has the disadvantage of 
being so~ewhat "delicate" in its sp3ce-saving value: if the 
user leaves otrier references to tha list at SOffle point after the 
seqof call, than it ~ay not je possible to discard the 
1ntermad1ate solutions. 

Definition of predicates usad 

In the following definitions, the name of the predicate is given 
first followed by the number of its parameters; then an English 
definition of the predicate in mhich variables A,B,C etc. are 
used to represent the 1st, 2nd, 3rd etc. parameters of the 
predicate respectively. 

bagof/3 the bag of all solutions for A in goal 8 is a list 
c. 

seqof/3 the sequence of all solutions for A in goal Bis a 
list C. 

setof/3 the set of all solutions for A in goal Bis a list 
c. 

averagepop/1 -- the average population of all countries is A. 

average/4 - the average value of sublist A of a list, having 
a parti~l total of B from C items in the head of the 
list, is D. 

population/2 -- the population of A is B. 

country/1 A is a country. 

soln/2 -- Bis a member of the sequence A. 

employee/! -- A is the identification of an employee 

age/2 -y the age of employee A is B 

salary/2 -- the salary of employee A is 8 

name/2 -- the name of employee A is 8 
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