
PRISM 
A Parallel Inference System for Problem Solving 

Simon Kasif Madhur Kohli Jack Minker 

Department of Computer Science 
University of Maryland 
College Park, MD 20742 

(301) 454-4251 
MINKER@ UMCP-CS 

1.2.3 



I ~ 
I 

Abstract 

A Parallel Inference System for Problem Solving (PRISM) 
developed at the University of Maryland. The system is designed to 
general experimental tool for the construction of large artificial 
gence problem solvers. 
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has been 
provide a 
intelli-

We present some of the basic facilities for controlling parallelism and 
inference provided by the system. PRISM is based on the concept of logic pro­
gramming with a separate control componenent. The control may either be 
explicitly specified by the user in his input or alternatively determined 
dynamically by the system, which takes advantage of the implicit parallelism 
in the logic of the algorithm. The design makes the underlying virtual archi­
tecture transparent to the user. The system supports both AND and OR parallel-
ism. 
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1. Introduction and Overview 

1.1. Introduction to Parallel Problem Solving 

In general, problem solving systems have been designed to be executed on 
sequential machines (i.e. a single processor architecture). However, the com­
plexity of many interesting problems, makes the sequential implementation ot 
these problems infeasible in terms of speed and resource requirements. This 
implies that it is necessary to examine solutions to these problems in a dis­
tributed environment, in order to determine if these solutions will prove more 
feasible in terms of speed and resources, than those in a sequential environ-

. ment. Further~ore, the investigation of distributed methods or problem solv­
ing is suggested by the structure of the problems themselves. Many interest­
ing AI problems are NP-complete and require exponential ·-time --on a determinis­
tic machine, whereas they can be solved in polynomial and sometimes linear 
time- on a nondeterministic- -machine. -- A distributed system is necessary, to 
implement, nondeterministic solutions. 

A large amount of work has been done on parallel architectures [Computer 
1982a], [Computer 1982b] and algorithms tor parallel architectures [Kung 
1986]. Work has also been done on parallel languages and environments for 
parallel architectures for non-AI problems [Hewitt 1977], [Kahn 1977]. 

In the AI environment several researchers have suggested 
parallelize certain types or problems, however, few of these 
actually been implemented on a distributed .system. Kornfeld 
Lieberman [1981] describe systems and languages which have been 
parallel applications. 

methods to 
schemes have 
[1979], and 
designed for 

PRISM (a Parallel Inference System), which is an experimental tool for 
the · development or distributed AI problem solvers, has been developed at the -
University of Maryland and has been implemented on ZMOB (Rieger [1980]). 
PRISM is based on logic programming (Kowalski [1979]). 

1.2. Control in Logic Programs 

In conventional programming systems the logic and control of an algorithm 
are combined making it difficult to separate or to modify control without 
affecting the logic. Logic as the specification· language, is neutral - with 
respect to control and specifies only the problem semantics. The method or 
how the problem is to be solved is external to the logic specification. It has 
been shown (Kowalski[1979], Pereira[1978], van Emden[197~]) that the complete 
separation or logic (the specification to be executed) and control (the order 
in which tasks are executed) allows a great amount of flexibility during exe­
cution, thus providing a natural parallel implementation or a program. 

This is true since the inherent nondete.rminism of logic pr~grams can be 
exploited in many different directions during excution. 

1. Top-down and bottom up execution or a program can be done in parallel. 

2. At any time during execution more than one possible goal node (procedure) 
can be invoked. 



2 

3. Since the order of execution of atoms in a goal is usually not specified 
we can sometimes separate the goal into several independent subgoals to 
be solved. 

Ct. 
4. Logic progljns are distinguished from other applicative languages such as 

LISP due 'to the fact that more than one procedure can match a procedure 
call. This seeming disadvantage on a sequential machine becomes an 
advantage in a highly parallel environment since all or some matching 
procedures can be executed in parallel. 

Thus, a primary issue in achieving a parallel system is developing an 
effective control specification that exploits parallelism. PRISM permits us 
to specify the problem independently of the control and allows us to experi­
ment with alternative control possibilities for the same problem. 

l•.2.• ~ and Parallel Problem Solving 

PRISM has been implemented on ZM0B, which consists of a set of 256 Z80A 
microprocessors connected on a conveyor belt together with a host VAX-11/780 
minicomputer. A description of ZM0B is given in the following section. A 
description of how parallel problem solving is achieved using ZMOB is 
described in Section 1.3.2. 

l•.2.•l· ~ Description 

The particular system to be used is ZM0B, a parallel multi-microprocessor 
system developed at the University or Maryland (Rieger[ 1980]). ZMOB is to 
consist or 256 Z80A microprocessors connected to a host computer (VAX 11/780) 
which is to communicate between machines via a high speed 48 bit wide, 257 
stage shift register called the "Conveyor Belt" (Figure 1). The system is 
described in detail in Rieger[1980, 1981a, 1981b]. We shall briefly describe 
here only the communication features necessary to support PRISM. 

The Z80A is a microprocessor capable of executing 400,000 
instructions/second and has a 64K byte memory. Thus, the whole system is 
theoretically capable of executing 100 million instructions/second and has a 
memory capacity of 16 million bytes. Each processor is connected to the con­
veyor belt via a collection of high-speed 8-bit I/0 registers and associated 
control circuitry, called the "Mail Stop". The registers are in charge of 
interrupt control, buffering and address control functions. 

In general, the Conveyor Belt moves 257 bit patterns (bins) each 48 bits 
wide. Each processor can theoretically consume any bin that is currently at 
its mail stop, but it can send out information only in its own bin. The 48-
bit message in the bin consists of four fields: 

CONTROL 

8 bi ts 

DATA 

16 bi ts 

Figure 1 

SOURCE 

12 bi ts 

DE ST! NA TI ON 

12 bi ts 
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The control bits allow the implementation of several communication stra­
tegies: Let (C XS D) be the content of a bin on the Conveyor Belt, then dif­
ferent control bits specify the following communication formats. 

1. Direct addressing - The message Xis sent to a processor whose physical 
address is D. 

2. Pattern matching - Message Xis sent to the first processor whose pattern 
(determined by Capability Code and Mask Registers in the Mail stop) 
matches D. 

3. Send to all Processors - Message Xis sent to all processors. 

4. Send to a set or Processors - Message Xis sent to all processors whose 
patterns match D. 

Additionally, different settings or Control Registers i~ the Mail Stop allow 
the following : 

s. Exclusive Source - This mode provides exclusive conversation between two 
processors and disables-interrupts from other processors. 

6. Readback - This mode allows an individual processor to inter~ept any of 
its own messages that went around the conveyor belt and was not consumed 
by any of the destination processors. 

The following examples illustrate the utility of the above formats. 

(3,5) Permits large blocks of data to be sent in a burst mode to all proces­
sors from the host computer. (e.g. to load kernel programs or data to all 
processors). 

(2) Provides the ability to assign to each processor a relation. Logically 
the relation's name would be the pattern identifying this processor. 

( 4) ·- Allows .a. very useful. provision of clustering the system into independent 
sets of logically equivalent processors. 

(6,4) Can be used to send a message to a set of processors and in case it was 
not consumed to activate a recovery routine. 

l·l•_g• ~ Parallel Problem Solving System 

We find ·it useful to separate the static set or clauses representing the 
logic or a problem from the control which generates a search tree by applying 
these clauses to a goal clause. This distinction will be seen to be useful in 
experimenting with the control of a parallel logic programming system. 

In particular we shall distinguish three separate portions of the system 
to which we dedicate microprocessors. These are: 

(1) the problem solver (PS), 

(2) the extensional database (EDB), the set of assertions, and 

(3) the intensional database (IDB), the set or procedure clauses. 
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The PS administers the search space which consists of a tree of goal 

clauses. The root of the tree is the original goal, whereas successors of any 
clause C in the tree are resolvents obtained by resolving program clauses (EDB 
or IDB clauses) with an atom selected inc. Each leaf node in the tree is 
either the empty clause; or some indication that the respective branch of the 
search resulted in a failure; or an open goal clause not yet selected for 
expansion; or an active clause sent for expansion and not fully expanded. 

To generate the successors of an open clause C the PS has to select an 
atom and send it to that part of the system that handles unification of the 
atom with procedure heads in the EDB or the IDB. If the tree is distributed 
among several microprocessors, several atoms of different clauses can be 
selected simultaneously for expansion.· Atoms sent to the EDB/IDB for solving 
cause the return of infq'mation necessary for generating all successor clauses 
or c. 11., 

While waiting for the information the PS in each machine can treat other 
open clauses in the same way, so that the subproblems of several open nodes in 
the same machine can be solved in parallel and independent of each other. 

A second part of the system is in charge of the assertions and procedure 
clauses. This is subdivided further into the extensional database (EDB) con­
sisting of all function-free ground assertions, and the intensional database 
(IDB) that constitute the procedure clauses and non-EDB assertions (i.e. 
those that contain variables and/or functions). 

This distinction was drawn primarily for two reasons. First, the EDB and 
IDB can use different unification algorithms. In particular, when matching an 
atom against an EDB entry, it is not necessary to invoke the occur check which 
is used to determine if a term substituted for a variable contains the vari­
able. Second, there are many applications where the sizes of the EDB and IDB 
differ considerably. If the set or clauses is used as a database, the number 
of IDB clauses is likely to be relatively small, whereas there are many EDB 
clauses corresponding to a relational database in the usual sense. If, on the 
other hand, the set of clauses represents a program, there are usually few 
EDB-clauses, but the IDB clauses are generally numerous. In some instances we 
may wish not to make a distinction between EDB/IDB clauses. We want the sys­
tem to be sufficiently flexible to be able to react in different ways. 

In addition to predicates contained in the EDB and IDB, systems usually 
contain predefined predicates, e.g. arithmetic predicates or equality predi­
cates. Such atoms are evaluated directly in the PS where encountered and are 
not sent to the EDB or IDB for evaluation. 

Problems can arise if predicates are permitted to have side effects. One 
such side effect would be the ability to modify the database as, for example, 
contained in the PROLOG primitives ASSERT and RETRACT. As the system pursues 
different branches of the search tree in parallel, there is no way of deter­
mining the exact point at which the side effects were executed. Since side 
effects in one branch can influence other branches of the search tree, this 
fact would render the overall behaviour of the system intolerably unpredict­
able. 

For that reason in this first design, we do not allow any predicates with 
side effects in a goal clause (and hence they are not permitted in a procedure 
clause) thus restricting the system to pure logic. This means that such 
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extralogical tricks as modifications to the database to simulate global vari­
ables are not permitted. or course, the system must provide features other 
than the ability to solve goal clauses, including such capabilities as adding, 
deleting, and modifying clauses. Such capabilities are provided at the top 
level only, so that there is no modification of a lmowledge base during prob-

. lem solving. 

The separation or the problem solving system into the problem solver, EDB 
search, IDB search, IDB monitor and VAX has isolated the functions in the sys­
tem and has placed them on separate processors. The main link between the 
processors is the conveyor belt and message passing. There is an uniform mes­
sage passing facility between machines. 

2. Control Issues 

2.1. · Problem Solving Process 

The problem solving process may be outlined as follows: 

(1) the problem to be solved is expressed as a conjunction or goals, each or 
whi9h is a subproblem to be solved; 

(2) one or more subgoals may be selected to be solved; 

(3) a subgoal is solved if it is matched by some assertion, or it is matched 
by a procedure which consists of a set of sµbgoals which can be solved. 

The repeated execution of steps (1), (2) and (3) results in a top-down execu­
tion of a problem. One can specify a problem solving process which permits 
bottom-up, middle-out, top-down, or any combination or these reasoning 
methods. _ The initial PRISM system is restricted to top-down reasoning (back­
ward chaining from the goal). 

£•£· f!2!! B:!!. !!!5!, Control Issues 

A goal tree is generated in the problem solving process •. The goal tree 
is formed initially by placing the conjunction of goals to be solved in the 
root node of the tree. In general the tree consists or a set of nodes, where 
each node· consists of a set of goals. How, given a node, there are several 
ways in which the node may be executed. One or more goals J.JJ8.Y be selected to 
be executed asynchronously. This possibility provides for user control of 
parallel execution. Subgoals in a node may be characterized to be dependent 
or independent of one another. A subgoal is dependent if its execution must 
await the successful execution of another subgoal in the same node. It is 
independent otherwise. An acyclic partial order expresses such a relationship 
among subgoals. At any stage of the execution of a node, all those subgoals 
which are independent may be executed asynchronously. However, goals which 
are candidates for simultaneous execution must be treated specially if they 
share unbound variables. 

A goal selected for execution must be matched against assertion or pro­
cedure heads. There may be several assertion/procedure heads which match the 
given goal. Any procedure head which matches a goal can potentially lead to 
the solving of that goal, independent of any other procedure head that may 
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also match the goal. All matching procedure heads are therefore candidates 
for asynchronous execution. Furthermore, the user may wish to specify a par­
tial order of execution of procedure bodies, in a similar manner to the par­
tial ordering on subgoals within a node. Thus there is the possibility of 
specifying that certairi alternatives need be explored only if other alterna­
tives have failed. 

An assertion or a procedure that matches a goal in a node causes a new 
node to be generated as a successor node to the node that contains the goal. 
The new node consists of all goals in the parent node where the selected goal 
is deleted and replaced by the body associated with the procedure head and the 
matching substitution is applied to the new node. In case of a· matching 
assertion, the body is empty and the new goal node has one less problem to be 
solved. When an empty node is generated, the problem has been solved. 

Executing a problem as outlined above leads to the generation of many 
nodes, each node of which can be in a partial state of execution. It is in a 
partial state when all assertion/procedure heads that match a subgoal have not 
been selected for execution. Thus, there is the option to select many nodes 
for asynchronous execution. 

All possible asynchronous operations may be executed on autonomous 
machines. 

_g_.J_. PRISM Control Facilities~ Language 

In the previous section we described the possibilities for parallelism in 
the control structure. Here we specify the support for controlling parallel­
ism in PRISM. PRISM provides the ability to specify for every goal and pro­
cedure body a partial order for execution. This partial order expresses the 
dependencies among the subgoals within a goal· (a procedure body may be con­
sidered to be a goal). or within alternative procedures for solving the same 
goal. 

The partial order on subgoals in a goal are specified by a notation as 
explained in the following example. 

P <-. (G1,[a2,(G3,a4),G5],(G6,G7]). 
The procedure head is on the left hand side of the arrow, while the body is 
the right hand side. The body consists of a set of goals, separated by commas 
and formed into groups by properly nested pairs of parentheses and brackets. 
All groups of goals enclosed by parentheses, must be executed in a left-to­
right sequence, i.e., the leftmost group in the sequence must be executed and 
solved before the remaining groups. Groups of goals .enclosed in brackets, may 
be executed independently of other groups in the same set of brackets, i.e., 
all groups in the bracket may be executed asynchronously. The partial order 
induced by the above notation is: 
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t t t 
G2 G3 G5 
I I I 
I t I 
I o4 I 
I I I 
t t t 
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t 
1------~---------------1 

The groups formed by G1; [G2{o3,o4),G5]; [G6,G7], must be executed from left 
to right since they are enclosed within parentheses, i.e. o1 must be executed 
and completed before any other group. Once G1 is completed, the groups o2; 
CG3,G4); o5 may be executed asynchronously since they are enclosed by a 
bracket. However, since o3; o4 are enclosed in parentheses, o3 must be exe­
cuted and completed before o4 is initiated. The next group, [G6,o7] cannot be 
initiated until all groups to its left have been completed, i.e., goals 
G1,o2,o3,o4 and _G5• The goals 06; o7 may be executed asynchronously. 

In the case where no parenthesis or brackets are specified, PRISM assumes 
a default ordering. This default is user specifiable to be either left-to­
right · ·or asynchronous. 

The user has the ability to specify a partial-like ordering of procedures 
with the same procedure name. The user is provided with a notation which per­
mits assigning precedences to procedures. The semantics of the ordering is 
different than for the ordering of goals. The ordering specified on the pro­
cedures is a recommendation on the likelihood of success when the procedure is 
executed. However, these recommendations may be ignored by the problem solv­
ing system which could change the recommended ordering or perform them in 
parallel. Also · provided ls a capability to invoke a procedure only if other 
procedures have been executed and failed. The following notation is used as 
an example: 

1: P <- o1,o2 

1: p <- G3 

2: P <-- o4,o5,o6 

•3: P <-- o7 
4: P <-- 08,09 
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The integers represent the recommended order of execution. The asterisked 
integers represent a forced ordering. In the above example, the first two 
procedures (priority:1) may be executed simultaneously. The third procedure 
(priority:2) is less likely to succeed but may also be executed in parallel 
with the first two, or'even before them if the problem solver so decides. 
However, the fourth procedure (priority:*3) cannot be executed unless the 
preceding procedures have been completely executed. A default ordering is 
provided by PRISM when the procedures are not numbered. The recommended ord­
ering is the sequence in which the procedures were present~d to the system. 

At the present time, no user facilities are provided for node selection. 
However, the PRISM problem solver is supplied with several evaluation func­
tions to permit automatic selection of nodes to be expanded. 

1• The Problem Solving Machine(~) 

3-1• .TI!! !§!:1 Organization 

l•l·l· .TI!.!!. Role of !!!! PSM 

The Problem Solving Machine (PSM) is the core of the parallel problem 
solving system. At initiation time, a number of moblets (a moblet is a single 
ZMOB processing element) are designated as PSMs. The central task of the PSMs 
is to manage the search space. The complete separation of logic (the problem 
specification) and control (the strategy of solving the problem) allows a 
great degree of flexibility while executing the program. Not only can the 
search strategy be varied dynamically, but due to the inherently non­
deterministic nature of logic programs, several mutually exclusive possibili­
ties_may be explored simultaneously. The PSMs permit this inherent parallel­
ism to be exploited during the course of solving a problem. 

Initially a goal, which represents the problem to be solved, is sent by 
the VAX to ZMOB and is read by some PSM. This PSM places the goal as the root 
of a proof tree. A goal is expanded by selecting an atom in the goal and 
replacing it by the body of a program clause that resolves with it. In this 
manner a new goal clause, which when solved, solves the original problem, is 
produced. When an atom is expanded, there may be several program clauses 
which resolve with it. These represent alternative ways to solve the same 
problem. These alternative subgoals lead to a branching in the search tree 
(OR branches). 

Thus at any given instant in the problem solution process the search 
space administered by each PSM consists of a tree of goal clauses. The rest 
of the search tree is the original goal with which the PSM was initiated. The 
successor of any clause in this tree is the resolvent obtained by resolving 
program clauses with some atom in the parent clause. Each leaf node in the 
tree can be in one of four states: 

the node represents the empty clause 

the node represents a failure node 
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• the node represents an open goal clause not yet selected for expansion. 

• the node represents an active goal clause selected for expansion, but not 
yet fully expanded. 

At any stage the PSM ~ust select an open clause from the search tree, and 
then select one or more atoms from this clause. This selected atom is then 
sent to an IDB and/or an EDB for expansion. While the IDB and/or EDB are 
working on this atom, the PSM can transfer its attention to other nodes in the 
search tree. An atom sent to the IDB may unify with one or more procedure 
heads, and all the corresponding bodies are sent back to the PSM which ini­
tiated the search, either one at a time or all at once. In the case that more 
than one procedure body is returned for a given atom, several mutually 
exclusive subgoal clauses are generated. These mutually exclusive goals can 
then be solved independently in separate machines. 

Thus each PSM has the capability to dynamically send a goal to another 
PSM machine, if one is available. As with the goal tran·smitted by the VAX. to 
a PSM, the goal transmitted from one PSM to another becomes a root of a goal 
tree in the new PSM whose parent is the sending PSM. Each PSM can indepen­
dently develop and manage the subtrees of the search space generated by the 
goal node transmitted to the PSM. Each PSM is autonomous except for the 
knowledge of the parent-child relationship. When a goal assigned to a PSM is 
completely solved it transmits the solution or failure to its parent PSM. The 
parent of the PSM to which the original goal was transmitted is the Host (VAX) 
machine. 

1•1•£• Conceptual~ of~~ 

This section presents a conceptual view of the program that drives the 
PSM in terms of the subtasks that compose it and their functional specifica­
tions. 

The program which drives each PSM is composed of several subtasks. Each 
subtask operates independently of all other subtasks. These processes do not 
communicate directly with each other, instead they change global data struc­
tures which then may affect another process. This independence makes it pos­
sible to consider each process in isolation. This isolation makes the imple­
mentation less error prone, and at the same time permits the single PSM pro­
cess to be split across several machines if the need arises. 

The operation of these processes is controlled by a scheduler process 
which, based on the current state of the global data structures, determines 
which subtask to invoke next. Thus each process once invoked is allowed to 
proceed until completion (except in certain special cases, which result in its 
preemption). Once this process completes, it returns to the scheduler which 

, then applies a decision process to determine which subtask to invoke next. 
This can be represented by a recursive PROLOG program, of the form: 

S <- Di,Pi,S 
where Sis the scheduler and Di is a decision process which succeeds if pro­
cess Pi is to be invoked next, and fails otherwise. 

There are six basic processes which compose the problem solver (aside 
from the scheduler). These are the initialization, input, selection, resolu­
tion, output and finalization processes. 
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The scheduler, once invoked with the initial goal, unconditionally 
invokes the initialization process which creates all global data structures 
required by the PSM processes and sets them to their initial values. The 
scheduler then repeatedly invokes the input, output, selection and resolution 
processes, by using its· decision criteria. This continues until an answer is 
found or a termination signal is received. Once an answer (or all answers, as 
the case may be) is found, the finalization process is invoked. If all chil­
dren PSMs of this PSM have completed already and returned their answers, this 
PSM transmits its answer to its parent. Otherwise, the finalization process 
creates a data structure which contains enough information to construct the 
answers when the children PSMs complete their tasks. Once this data structure 
is created the PSM is reinitialized and can accept queries. 

In this manner PSMs are not kept idle in case they complete before their 
children do. This also allows a PSM to be its own ancestor if so desired. 
Thus a cyclic graph of parent-child dependencies may be constructed. 

In addition to the six processes mentioned earlier, there are two low 
level processes which are totally independent of the scheduler and all other 
processes. These are the mailstop handlers. These processes are interrupt 
driven and are invoked whenever a message enters (leaves) the input (output) 
mailstop of the PSM. The input (output) mailstop handler merely places 
(removes) a message into (from) the input (output) queue and returns to the 
interrupted process. 

The input process understands the message formats of all possible mes­
sages that can be received by the PSM. It selects a message from the input 
queue, decodes it and updates the appropriate global data structure with the 
information contained in the message. 

The output process understands the message formats of all messages that 
can be sent by the PSM. When invoked with a certain message type, it uses 
information from the appropriate data structure, and formats this information 
into the correct message format. This message is then placed into the output 
queue, ready to be sent out. 

The selection process directs the problem solving process by determining 
which clause, and which atom within the selected clause to operate on next. 
It is also responsible for the creation of new PSMs. 

The resolution process receives the procedure bodies for an atom that has 
been matched by the IDB and/or EDB. It then inserts a new clause into the 
proof tree. This new clause consists of the clause from which the atom was 
selected, with the atom deleted and the procedure body attached in its place. 
The unifying substitution is then applied to the new clause. 

1•£• Control in the ~ 

1•£•..!· Control Specification Support - Selection Process 

The selection procedure determines the control strategy of the system. 
The user is permitted to specify certain guidelines to direct the selection 
process. The selection procedure has four main selection functions. These 



11 

are: node (clause) selection, atom selection, procedure selection and PSM 
creation. 

~ selection is concerned with choosing a clause, from the search tree, from ,, 
which an atom is to be s~ected. Any node which has not been fully expanded, /,Q, 
is a candidate for selection. A fully expanded node consists or a clause 
whose selected atom has been expanded and all leaf nodes descended from the 
clause are either failure nodes or null clauses. A non-fully expanded node 
may be either an active or an open node. An active node is one from which one 
or more atoms have been selected for expansion, but which has not been fully 
expanded. An open node is one from which no atom has yet been selected for 
expansion. 

Atom selection is concerned with selecting an atom, for expansion, from a 
selected node in the search tree. There are several system defined and user 
defined constraints that will affect atom selection. 

As defined in section 2, the user has the ability to·specify which atoms 
in a clause may be executed in parallel and which must be done in sequence, 
i.e. a partial order on the execution of the atoms. These user specified con­
straints- limit the atoms which can be selected at any stage.- Only those atoms 
which do not depend on any other atom or those for which the atoms they depend 
on_have already been solved are candidates for selection. 

· In addition to these user-defined orderings, there are certain orderings 
implied by the structure of the node itself. There are two basic ways in 
which the contents of a clause dictate the ordering on atom selection. These 
are: dependent atoms, and special predicates. 

Two or more atoms in a clause are said to be dependent when they share 
variables. In this case what is desired is the first (or all) binding(s) 
which cause the atoms to succeed. This can be accomplished either by process­
ing the atoms in parallel and then intersecting-the sets or bindings for the 
shared variables, or by finding a binding which satisfies one predicate and 
then substituting it in the others and determining if they succeed with that 
binding. This can be repeated until some ·binding succeeds or all are 
exhausted (nested loops method). In either method a special AND node has to 
be generated with the dependent atoms as its children and one of the above 
techniques applied. In this system the nested loops method will be adopted 
since space limitations make the set of values method infeasible. 

The special predicates are a set of language supplied predicates whose 
semantics dictate that certain other predicates in the clause must be fully 
solved before these system defined predicates may be invoked, i.e., these 
predicates induce a partial ordering on the atoms in a clause. These predi­
cates are: write, read, fail,/ (the cut operator), not, and the evaluable 
predicates (e.g., arithmetic operations). 

Once these user and system defined constraints have been satisfied, a set 
of atoms which are candidates for selection will remain. The atom selected 
from this set will be selected based on user or system supplied heuristics. 

Procedure selection is concerned with choosing which procedure body should be 
given the highest priority when several bodies match an atom which was sent 
for expansion. This decision is made by the IDB and is not influenced by the 
PSM. 
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PSM selection, is concerned with the decision of when to initiate another PSM 
with a subproblem. Whenever a branching of the search tree is induced by 
either multiple alternate subproblems (OR-branches) or by independent conjunc­
tive subproblems (AND-branches), this branch becomes a candidate for execution 
in another PSM machine~ The actual process of determining when a new PSM is 
initiated is discussed in the following section. 

1•£•£· PSM Creation 

The decision of when to initiate another PSM with a subproblem is not an 
easy one. If the subproblem is too small, a large amount of overhead would be 
incurred to solve it. If the subproblem is too large, the parent PSM may com­
plete before the child and remain idle until its children complete. In gen­
eral it is extremely difficult if not impossible to determine how complex a 
subproblem is. Thus no attempt is made to determine the complexity of a sub­
problem, in the initial system. Instead a new PSM is initiated every time a 
branching of the search tree takes place, and there is a PSM available. At 
any given instant, there may be several active branches within a PSM, and thus 
several candidate nodes which may be sent to other machines. In this case all 
or only some of these nodes may be shipped out. This is determined by the 
user or by system supplied heuristics. 

In order to reduce idle time, machines which have completed their alloted 
task are permitted to accept fresh queries, as follows. If no further pro­
cessing can be done then either all possible .answers for the goals this PSM 
was invoked with have been found, or all paths resulted in failure, or all 
paths local to this PSM have been fully explored and there are some children 
of this PSM which have not yet completed their work. In the cases where all 
answers have been found or all paths have failed, this information is 
transmitted to the parent of this PSM, and the PSM state is restored to one in 
which a new query can be accepted. In the case where · all local paths have 
been explored and some chidren PSMs are still active, a data structure is con­
structed which contains enough information to reconstruct the complete answer 
from the information in this PSM and from the answers from the currently 
active children PSM. Once this data structure is constructed, the local proof 
tree is destroyed and the PSM state is restored to one in which a new query 
can be accepted. 

In this manner PSMs are not kept idle in case they complete before their 
children do. This also allows a PSM to be its own ancestor if so desired. 
Thus a cyclic graph of parent-child.dependencies may be constructed. 

1•£•£•.!.• AND Parallelism 

An AND-branch in the search tree can be one of two types. The first type 
of AND-branch results when there is a conjunction of atoms which do not share 
variables. This results in a node which has as its children two or more sets 
of atoms which do not share variables. We shall refer to such an AND-node as 
an AND1-node. The second type of AND-branch results when there is a conjunc­
tion of atoms which do share variables (dependent atoms). This results in a 
node which has as its children two or more sets of atoms which do share vari­
ables •. These. children are ordered so that those atoms which bind variables 
are executed earlier than those atoms which use those variables. Such an 
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AND-node will be referred to as an AND2-node. 

The children of an AND2-node are currently always executed in the same 
machine since concurrent execution across machines requires an excessive 
amount of control and communication to synchronize the producers and consumers 
of the answers. Thus in the initial system the children of only AND 1-nodes 
are executed concurrently in separate machines. 

We previously defined a clause to be an AND 1-Node if it could be split 
into two or more sets of atoms that do not share variables. 

This definition must be revised when dealing with ordered clauses. For 
example let <- P(x),Q{x),R(y),T(y) be a clause. According to the definition 
above we create an AND 1-Node as follows: 

Now let· <-(P{x),(Q{x),R(y)],T(y)) be an ordered clause. The execution 
sequence imposed by the order in the clause does not allow a similar split. 
Thus a split may be performed only on sets of the clause that may be executed 
in parallel. Therefore the clause above is represented as: 

(P(x)[~)] T(y)) 

Q(x) R(y) 

The split would be executed dynamically after P was solved. 

J_.g_.g_.~ • .Q!! Parallelism 

An OR-branch is created in the search tree when there are several match­
ing bodies for a selected atom. These several bodies are alternative ways of 
solving the selected subgoal and are thus independent. The existence of mul­
tiple bodies then results in the formation of an OR-node with each of these 
bodies as a child. 

Since these children are independent of each other they may be executed 
in separate machines. However those bodies which should not be attempted 
until some other body fails are not scheduled for execution until the body it 
depends on has failed. 

J_.g_.J_. Handling Negation and the £!IT,(/) Operator 

In addition to imposing an implicit ordering on the atoms within a node, 
the cut(/) operator and negation both require special treatment in concurrent 
systems. 



1•,g,•1·1· ~ 9!,!(/) Operator 

The cut operator is a means of achieving determinism in sequential logic 
programs. The execution of a cut in the body of a procedure results in all 
alternatives for the parent node of the node containing the cut to be. dis­
carded. However, in sequential execution all alternatives with higher prior­
ity than the one containing the cut have already been completely executed 
before the one containing the cut. Thus the semantics of the cut operator are 
unclear for concurrent execution, since the alternative containing the cut may 
be executed concurrently with, or even before alternatives with higher prior­
ity. This would lead to an incompatibility between sequential and concurrent 
execution of the same logic program. 

In the interest of preserving compatibility between the concurrent and 
sequential execution of logic programs containing the cut operator, we have 
defined the concurrent cut as detailed below. 

The presence of the cut operator causes an implicit ordering 
within the node containing the cut. The cut operator requires 
preceding it in the node to be processed before it. The invocation 
operator results in the following: 

of atoms 
all atoms 
of this 

(a) all bindings that have been computed for variables in atoms preceding the 
cut will not be recomputed in the event of a failure of some atom 
succeeding the cut 

(b) all alternative procedure bodies which have lower priority than the body 
containing the slash are discarded. However all higher priority bodies 
are still considered, i.e., if procedure P has 3 bodies and if the second 
(middle priority) body contains a cut then the third body will never be 
considered if the cut in the second is executed, but the first body will 
be unaffected. 

1.,g,.1.,g,. Negation 

The NOT meta-predicate defined in most sequential logic programming is an 
implementation of Negation-by-Failure [Clark 1978). In this scheme, the nega­
tion of an atom is considered to hold if all attempts to prove the atom, fail. 
This is well defined in the case where all the arguments of the atom are con­
stants. However this is not well defined when one or more of the arguments 
are unbound variables. This is because the atom could succeed with some par­
ticular bindings for the free variables, and fail for some other bindings. 
Thus the behaviour -of the NOT meta-predicate can be anomalous in the case 
where all argumentds are not constants. The semantics of negation can be 
extended to handle atoms with variables as arguments by creating a set of 
bindings for which the atom fails and assuming the negation of the atom holds 
for precisely this set of bindings. This is how we define negation in PRISM. 

The NOT meta-predicate requires that all atoms preceding it in the node 
must have been solved before it is invoked. The execution of this meta­
predicate results in the creation of a special negation node which has as 
children the predicates which are to be negated. These predicates are solved 
as if they were positive atoms for whom all answers are desired. When all 
these predicates have been solved, the sets of values bound to each variable 
will be c~mplemented with the domain over which they are defined. These 
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complements will be returned as answers by the negation node. 

4. Examples 2£ Control in PRISM 

In this section we provide an example of AND-parallelism and an example 
of OR-parallelism to illustrate some of the capabilities of PRISM. 

!!_ • l · Mm, Parallelism 

tree. 
This example of AND-parallelism provides a preorder traversal of a binary 

Let 
P(u,z) means that the preorder traversal of a binary tree u is z. 
t(y1,x,y2) denote a tree whose left branch is y1, whose root is x and 
whose right branch is y2• 

Append(y.1,y2 ,z) mean that-if y2 is appended to the tail of y1 the result 
is z. 

We may then write, 

1: P(nil,nil) <--
*2: P(t(y 1'x,y2) ,x.z) <--

([P(y 1,z1) ,P(y2,z2) J,Append(z1,z2,z)). 

1: Append (nil,y,y) <--
•2: Append (x.y,v,x.w) <-- Append (y,v,w). 

Thus, the base case, P(nil,nil) is always tested before the general case. 
When the preorder clause defined by •2 is executed, the preorder traversal of 
the left and right branches may be done asynchronously. 

Since the preorder traversal of the left branch is independent of the 
right branch, they may be executed asynchronously in different processors. 
Each of the sub-branches may again be split to be executed on different 
machines. Hence, a number of different PSMs can be executing the problem at 
the same time. Thus, the time to execute the search is proportional to the 
size of the longest branch, rather than the number of nodes in the tree as in 
a sequential search. 

Even if the problem is executed on a single machine, because one can be 
searching for matches on many nodes of the search tree, the multiple IDB 
machines can be working in parallel performing matching operations for each of 
the nodes in the search tree. 

4.2. OR Parallelism 

Consider a database problem whose database is shown below (Figure 2). 
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Extensional (Relational) Database 

MOTHER(Rita, Sally) 
MOTHER(Alice, Beth) 

- MOTHER(Laura, Christine) 

FATHER(Harry,Jack) 
FATHER(Harry, George) 
FATHER(Jack, Sally) 

Intensional Database 

GRANDPARENT(x,z) 
PARENT(u,z) 
PARENT(u,z) 

<- [Parent(x,y),Parent(y,z)] 
<- Mother(u,z) 
<- Father(u,z) 

Query: <- GRANDPARENT(x, Sally). 

Figure g. 

140 

We shall -describe how the problem might be solved -in PRISM. on the ZMOB 
system. We use the following abbreviations in the series of figures that fol­
low. 

M-MOTHER 
F-FATHER 
G-GRANDPARENT 

R-RITA 
S-SALLY 
A-ALICE 
B-BETH 

H-HARRY 
G-GEORGE 
J-JACK 

We assume that there are only two moblets assigned to the EDB, one moblet 
/ F contains the /-table, and the other the M-table. We assume that the IDB is 

replicated on two moblets and two moblets are allocated to be PSMs. 

When the system is to be loaded, the ZMOB executive specifies the moblets 
allocated to the problem. The PRISM executive is informed of the machines and 
allocates the EDB, IDB, and PSMs to specific moblets. The data and programs 
are sent in a burst mode by the PRISM executive, resident in the host machine, 
to the appropriate moblets. Mask registers are set in the EDB moblets so that 
they can recognize the encoding for MOTHER and FATHER. The state of the sys­
tem as would exist on ZMOB is illustrated in Figure 3. Processing of the 
query shown in Figure 2 is now described. 

1. The query is submitted by the user to the PRISM executive which sends a 
message requesting response from a free PSM. We assume that the PSM on 
the first moblet encountered responds and that the query is sent over the 
belt in a burst mode. Figure 4 shows the state of the system at this 
point. 

2. The PSM-1 forms a goal tree, and selects the only atom to be solved. It 
knows from preprocessing that the "G" predicate resides in an IDB 
machine. It sends it out to be matched against all procedure heads with 
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the same name. IDB-1 receives the request and also notes that there is 
only one response possible. See Figure 5. 

3- IDB-1 finds a single match, informs PSM-1 that it has a match and at the 
request of PSM-1 transmits the body of the procedure and the unifying 
substitution. See Figure 6. 

4. PSM-1 forms a new node (the resolvent clause) and selects the easier of 
the two subproblems to be solved, namely PARENT(y,S). It determines that 
the PARENT relation is intensional, and sends a message out to an IDB to 
be processed. Since IDB-1 is not busy, it accepts the message and now 
finds two matches. The PSM-1, in the meantime, determines that it has no 
work to be done since no additional responses are possible for the root 
node and it must wait for a response. 

5. PSM-1 is informed by IDB-1 when it has found all matches for PARENT(y,S). 
There a.re two responses. PSM-1 may request that both responses be 
transmitted (or it may be done one at a time). Assuming both are 
transmitted, the PSM forms two nodes (OR branches). Since a PSM is 
available, it transmits one of the two nodes to PSM-2 to be solved. Now, 
PSM-1 can send out -a request f'or MOTHER(y,S), while PSM-2 can send out a 
request for FATHER(y,S). These requests are sent out by pattern on the 
relation name and accepted by different moblets where the two relations 
are-stored. 

At this stage, two PSMs are cooperating in the solution of the problem, 
and two EDB machines are searching for data. The processing continues in a 
manner similar to the above description, until a solution is arrived at, as 
shown in Figure 3-9. 

The above illustrates how OR parallelism may be handled within PRISM. 
Both AND and OR parallelism may be executing simultaneously. Each of' the PSM 
machines may be working on a problem at some stage and all IDB and EDB 
machi~es may also be executing simultaneously • 

.2.• Summary and Future Work 

There have been several proposals to achieve parallelism in logic pro­
gramming systems (Clark[1981], Hogger[1982], Pereira[1978], van Emden[1976], 
Wise[1982]). All these schemes, including PRISM provide natural ways of 
expressing algorithms for execution on conventional distributed architectures. 

PRISM provides an implementation of logic programs on a highly parallel 
architecture. The design exhibits a high degree of modularity and orthogonal­
ity. By this we mean that portions of PRISM can be replaced by functionally 
similar modules with a minimum impact on the system. This provides a flexible 
tool to experiment with the implementation of various control strategies on 
diverse architectures. It provides full OR parallelism, partial AND parallel­
ism and permits parallel asynchronous search for assertions and procedures. 
Parallelism is transparent to the user. We provide a proper interpretation of 
negation based on negation-by-failure. 

The system represents a first approach to developing an experimental tool 
for the design and implementation of large AI systems. There are many capa­
bilities that need to be added in a second development. Some of' these are: 
co- routining; a full AND-parallelism; user specificable heuristics; typing of 
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variables; intelligent backtracking for arbitrary execution sequences; non­
top-down search methods; and the ability to incorporate lemmas dynamically. 
These capabilities need to be incorporated into a coherent control language 
that would permit th.e user to specify di verse aspects of control to varying 
depths of detail while a problem is being solved. Some of the issues related 
to the above developments are explored below. 

The fundamental difficulty in distributed problem solving arises from the 
fact that distributed control has not been cohesively studied and it is hard 
to achieve effective global solutiQn by distribution of tasks: good local 
decisions are not necessarily a guarantee for an effective global procedure. 
Thus our efforts were aimed at the construction of a system that will be able 
to support various problem solving strategies without paying the price in 
efficiency of the execution. The main emphasis in our system was directed 
towards modularity, flexibility and adaptivity. We believe that a paper design 
is rarely as good as an effective implementation on a real parallel machine, 
which - will · enable modifications and enhancements with minimal -programming 
effort, and consequently were admittedly willing to make some compromises in 
the initial system. Consistent-with this philosophy the system components~ 
induce a logical network topology, and virtual processors may be added or 
deleted easily in our system without any changes to the rest of the system. 
Each set of machines is seen as a single machine to the rest of the system and 
any modifications and improvements to individual components may be made 
without effecting the rest of the system. In this section we briefly discuss 
some of the enhancements to PRISM that are currently under implementation or 
being investigated. 

Database Machines 

EDB - Today's databases are far larger than the memory capacity of a few 
hundred 64K microcomputers. Thus it will be useful to incorporate in our sys­
tem a set of peripheral devices that will be attached to each EDB( or possibly 
shared by several EDBs) ~ This will -enable both an increased memory capacity 
and an ability to dynamically reconfigure the database machines in case of an 
unbalanced demand on one of the EDB machines. Additionally it will be con­
structive to facilitate basic database operators such as join,projection for 
efficient data retrieval •. 

IDB - In the current implementation the set of intensional database 
axioms (IDB) is replicated over several machines. This philosophy was based on 
the assumption that the IDB is relatively small and therefore may be stored in 
one machine. This assumption simplified the communication protocols and the 
operation of each IDB machine. We are currently developing a scheme in which 
the IDB is distributed over several machines. Additionaly to achieve effec­
tive performance from a highly parallel machine there is a need to control the 
ratio between the communication and the computation time, that is for a full 
utilization of a system it is desirable to increase the computation and 
minimize communication. In the system to date this control exists in the PSMs 
which may decide to solve a subproblem themselves rather than dispatch it to a 
different PSM. Similar techniques will be incorporated in the IDB. The IDB 
machine could perform several atomic resolution steps before returning the 
bodies and the unifiers to the PSM, thus increasing the ratio between computa­
tion and communication involved in a single resolution step. This effect may 
be attained either by a partial compilation of the the IDB axioms, or by 
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parameterized execution of the IDB that will perform a number of resolution 
steps as indicated by the PSM that initiated the query. 

PSM - Machines Structure Sharing 

Currently there is no sophisticated memory management done in the PSM. 
The memory management schemes most commonly used in Prolog implementations are 
copying and structure sharing. The decision not to incorporate structure 
sharing in PRISM was motivated by two factors. Firstly an implementation of a 
straight forward structure sharing will result in a tremendous overhead in 
pointer chaining before each literal(clause) is sent for expansion or a 
cumbersome and inefficient resolution operation if the structure sharing is 
done across processors. Secondly, since more than one path in the proof tree 
is active during execution, a locking mechanism must be incorporated to disal­
low bindings from two different paths to be applied to variables of the same 
literal simultaneously. 

Parallelism enhancements in the PSM. 

The_flexible implementation_of the_ selection procedures allows some 
dynamic exploitation of inherent parallelism in the program. This includes 
automatic detection of literals that do not share variables,and selecting 
literals that will maximize the degree of the parallelism in the new subgoal. 
Consider the goal: <- P(x),Q(x,y),R(y,z). It is quite clear that if Q is an 
EDB predicate, binding of x and yin Q will result in a new goal with two 
literals that do not share variables, and therefore maximize the parallelism 
in the clause. At the moment our system supports only local detection of 
parallelism, that is parallelism internal to a single clause. We are currently 
investigating partial compilation techniques to maximize global parallelism, 
during execution, and global planning strategies to optimize the performance 
of the system in terms of utilization of the computational power of ZMOB on 
the one hand and search space pruning on the other. 

It is evident that cooperative problem solving must be supported with 
communication channels between PSMs to minimize some of the redundant search, 
by sharing partial results, eliminating goals that are logically related ( by 
implication o:r subsumption) and task sharing. 

The notion of a PSM as defined in our system is problem independent,that 
is each PSM may accept any problem. We are investigating the possibility of an 
Expert PSM which is dedicated to the solution of a class of problems. This 
notion will minimize some of the effort spent by the PSM in the selection pro­
cess by precompiling some or all-of the selection procedures. 

Our system is based on a goal driven procedure invocation. Some thought 
has been given to facilitation of data-driven procedural invocation, that will 
allow effective simulation of data-flow machines. 

Before any of the above enhancements are attempted we will need to per­
form many experiments with PRISM to determine its strengths and weaknesses. We 
plan to experiment with algorithms by alternatively modifying the logic, the 
control, and the architecture. 
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M(R,M}+ 
M(B, F)+ 

PROBLEM 
Solving 
flachine - 2 

+P(x,y), F(y,s) 

I 
....P( x,J) 

. . . 

(3) MATCH+F{y,S} 

F(H,J)+ 
F(H,G)+ · 
F(J,S)+ 

fxtensional Qata.e_ se 

... 

.!.ntensional 150 
Qata.e_ase - 2 

GP( x,z}+P( x,y), 
P(x,z). 

P( u, v)+M{ u, v). 

P(u,v)+F(u,v). 

I 
• 
• 
• 

Fig. 7. 



f.ROBLEM 
iolving 
t!adliPie - l 

+GP(x,s) 

+P( x,y), P(y,s) 

~ 
+P( x,y), M(y,s) 

I 
+P{ x,R) 

T~ 
+M(x,R) +F(x,R) 

VAX · 

+GP(x,s) 

Intensional 
:Q:a ta.Q_ase - 1 

GP( x,z)+P( x,y), 
P(y,z). 

P( u, v)+M( u, v). 

P( u, v)+F{ u, v). 

. . . 
(1) MATCH+GP(x,s) • F? MATCH+ -P(y,s) 
4 MATCH+ P(w,R) 

. .. .. 

( 3) MATCH+M(y ,S) 

M(R,Sh 
M(R,M)+ 
M(B, F)+ 

PROBLEM 
Solving 
ffachine - 2 

+P(x,y). F{y,s) 

I 
+P(x,J) 

/~ 
+M( x,J) +F(x,J) 

... 

(3) MATCH+F(y,S) 

F(H,J}+ 
F(H,G)+ · 
F(J,S)+ 

.E_xtensiona1 Q_ata.!!_ se 

... 

Intensional 151 
Qa ta.!?_ase - 2 

GP( x, z)+P ( x,y), 
P(x,z). 

P{ u, v)+M{ u, v). 

P{u,v)+F(u,v). 

(4) MATCH+P(x,J 

I 

• 

Fig. 8 • 

• 
• 
• 



):_ROBLEM 
~ol vi ng 
~.a ch i ne - 1 

,., 
+GP(x,s) 

+P(x,y), P(y,s) 

r-
+P(x,y), M(y,s) 

I 
+P( x,R) 

/~ 
+M(x,R) 

I 
F.11.IL 

VAX 

+GP(x,s) 

+F{x,R} 

-I 
FAIL 

Intensional 
Q:a ta.Q_ase - l 

GP(x,z)+P{x,y), 
P(y,z). 

P( u, v}+M( u, v). 

P( u, v)+F{ u, v}. 

... 
(1) MATCH+GP(x,s) 
(2) MATCH+-P(y,s) 
(4) MATO!+ P(w,R) 

- - -

(3) MATOl+M(y,S) 
(5) MATCH+M(x,R) 
(6) MATCH+M(x,J) 

M(R,Sh 
M(R,M)+ 
M(B,F)+ 

PROBLEM 
Solving 
J'.lachine - 2 

+P{x,y), F(y,s) 

I 
+P(x,J) 

I ~ 
+M(x,J) +F{x,J) 

I I . . . 
FAIL D 

(SUCCEED) 

X=H 

(3) MATCH+F(y,S) 
(5) MATCH+F{x,R) 
(6) MATCH+F(x,J) 

F(H,J)+ 
F(H,G)+ · 

· F(J,S)+ 

' . -

.(xtensional QataQ. se 

lntensional 152 
Qa ta.Q_ase - 2 

GP( x,z)+P( x,y), 
P(x,z). 

P(u,v)+M(u,v). 

P(u,v)+F{u,v). 

... 

(4) MATOl+P(x,J 

Fig. 9 




