192

LOGICAL ACTION SYSTEMS

Antonio Forto

lerartamento de Informatics
Uriiversidade Novas de Lisbos
2825 Monte da Cararics
Fortugal

ABSTRACT.

Logic rrodramming is being hailed by mang reorle 35 2 doo0d
way towards z side-effect-free rrodgramming stzle, On the other
nandy talking about temroral effects or sctions is the matursl
wag of viewindg manwg common comrutational shenomenss such a3
inrFut/outrut or databasse urdate orerations. ’

The rurrose of this rarer 1is 1o introduce some common
ground in the form of lodical action sustemss a3 framework for
dealing with actions that has its roots in lodic rrodgramming,.
FProdrams consist of rules for actionmn reductions rules have
rreconditions as Prolog-like so0a3l exrressions and define staste
transitions in the form of deletion and/or creation of
sssertions. Concurrence of actiomns is surrorted., Abstract dats
tures can be defined.

INTRODUCTION.,

llesrite the defense by many reorle of 2 side-effect-free
rrogramming stules 35 in 3 ‘FPure’ lodic rrosgramming ssstems
the fact remsins that mang common comrutationzl mheromenz are
not naturally exrressed without resorting to the nrotions of
action and state transition.

Rather than considering actions 235 imrure side-effects
arising within & Pure logic computations why rot invert +the
situstion and consider logic comrutstions as 3 normal
side-effect of action sustems?

We will rut forward a3 srorosal for 2 lansgusge in which to
describe logical action sustems (LAS)s rroviding 3 clear 1link
between actions and normal lodic rrodramming, _

Lodic and unification are still the basis omn tor of which
LAS are conceivedi howevery sctions are clearly serarzted from
rurely deductive dgosls.

The landgusdge can be seen as uet zanother rroroszl for
exrressing concurrency.

We will bedgin by exrosing the main ideas behind LAS» anid
then move on to an obJdect-oriented arrrosch with abstrasct dats
tyre definmitions.

ACTIONS.

Actions take rlace on some worlds modifueinmg it. BRetween
accurrences of actions we can refer to the state of the world.

We rerresent 3 world in two rartss each one of them a3 lodic

Frogramsé

(1) the rules of the world; defininmg relstions that are not
pound to chandge in time 3

(2 the state of the world: containing assertioms that maw
change in time 38 the result of sctions rerformed on the

world.

Let us look a3t anm examrle, (Edinbursgh Frolog sumtax will

be usedy excert for clsuse functor. 7
Comnsider & blocks world,
The world rules would contain defimitions such as ¢

tower{LEB]) <- on{(Bsfloord.

tower{(Bl1.B2,.Bn) <- on{(B1sE2), tower{B2.Enm).

Er

A rarticular world state would have assertions such as
on{ashd),

onf{bsfloor).

194

At any time between actions it is rossible to evaluate 2
go0a3l exrression asdgainst the worlds using the rules 3nd the
state 3s 3 Joint lodgic srogram.

In this examrley one could evaluaste the doal
“— tower(X).
that would uwield the solutions
X=Lbl § X=CLarbl .

The action of movimg ‘3’ to the ‘floor’ would rerlace the
gssertion ‘on{asb)’ by ‘oni{zsfloor)’, As 3 cCcoOnNsequUence e
would have 3 new world states and the same dHoal ‘<-tower(X)’
would now rroduce the solutions

X=La31 3 X=L[bl .

In deneralsy an action will consist of 2 nrnumber of action
sters (rossibly infinite).

Each sction ster will result in 2 chande of staters
consistindg of falsifuing (deleting) some a3ssertions of the
previous state and/or making true (creatindg) some new
assertions.

The srecification of an sction ster is an action rule. It
.is made ur of two rarts ! the sction reduction and the state
conditions.

The action reduction defirnes w%at new actions the action
reduces tor by virtue of the ster.

The state conditions zre the epreconditions and the state
transitions.

Preconditions are doals +that are evaluated agzinst +the
world in its current state.

State transitions tell what assertionms must be deleted
fromy» and what new ones added to» the current state to get the
new state.

For examrlesy the notion that the sction of moving A +to R
can be asccomrlished if nothimg is on tor of A and By and 23s 3
result A ceasses to be on tor of whatever it was before +to be
on tor of Bs can be described by the asctiom rule @

move(AsRB) <= nrot on(_.sA)s
rnot on{(_»B)»
orn(As_) - on(AsB).

ACTION REDUCTION.

When an action reduces to void (is finished)s as in the
rrecedindg examrles the sction reduction rart of the rule is
Just the action - the rule head.

In denersly an asction reduces to other sctions. The sction
reduction rart of a rule is thern of the form

A -> NA

where A is some action (the rule head)s and NA is an action
exrression referind to the new asctions.

How can asctions relate to one another to form an action
expression? We find that we need two connectives! earallel and
seaUence.

Two actions in sequence are denoted by ‘A*E’ » mesning the

%_ second action (B) can only take rlace after the first one (A)

is finished,

Two parallel actions, written ‘A/B’ » maw taske rlace with
nao time constrzints on one another,

An action exrression is recursively constructed from atomic
actions and the rarallel and seauence connectives. Relative
- precedence between these is such that ‘A/B»C’ is the same 3s

‘{A/BYSCY : '

In an action sustem there is alwaus an action exrression
evolving in time and denoting st esch moment the actions that
are to be carried out in the world, We e3ll it the adgenda. For
evers action in the adends that is ready to be carried out
(for examrler Al and Bl in (AL1,A2)/(RB1:E2))» the sustem tries
to arrlye 3n action ster.

The sction reduction involved inm a3 ster is like 3 reuwrite
rule for the resdw action in the adgendas keering +the overazll
structure of this sction exrression.

Thusy if we have the adendsa
AsB
and the sction reduction
A -3 AL/A2
is Performedy the adenda becomes

A1/A2sR

196

meaning that after Al and A2 are both finmnished <(having done
s0 inderendently of one another) B is ready to take rlace.

Actions occur in time and time aslwags runs forwards S0
there is no auestion of backirscking over sction steers. If an
action is required and no rule for that sction arrlies in the
current stater it Just means that the zction must remain in
the sdends waiting for the right conditions to asrrpear (when
some other action chandes the stste to +that effect). This
eventualls entasils the well-kriown rhenomensa of deadlock and
starvation.

STATE TRANSITIONS.

State transitions inside an asction rule mayw be of three
tures o

{1 -> A assertion A& is created 3
(2 A - assertion A is deleted 3
(3) A - NA assertion A is deleted and assertion

NA is created.,

Of course a3 ture 3 transition is no more tham 3 ture 1 and
8 tyre 2 rut todethers but it makes for 3 more clear resading
of the ruler esrecizslly if A 3nd NA 3re for the same
predicate, In this casey 3 comriler or intersreter can easils
translate the +transition into simrle assidgnments on the
changing ardumentsy with considerable sreed-ur over deletion
and cresation.

RULE EVALUATION.

Each rule is sssociated with 2 single action (the rule

nead)s so 3 ready action in the zdenda czn efficiently trigder
its own ruless much a3s Frolog dgosls tridger their clauses.

Rule evalustion bedins with unification of the reads sction
with the rule head.

If there are sny ture 2 or ture 3 transitions in the rules
their left-hand side is redarded 283 & d03l to pe wmatched
agasinst an assertion in the current world state. All
precondition dgosls together with these transition dosls: in
the order in which thew arrear in the rulesr form 2 Frolod gozl
exrression that is evaluasated, If 3 solution is found, then the
rule arrliessy and the transitions are carried outy deleting
the sssertions that mastched +the +tramsition so3ls for the
solution found.

The action is rerlaced in the sdenda b»w the rnew action
exrression it reduced to» with the obvious simrlifications
whern thic iz void,

19+

There mav be several rules for 2 dgiven action. Rules should
be tried in the order in which thew arrear in the rrogram.
This rrovides 3 simrler elesant form of if-then-else.

For examrles the comrlete definition for the ‘move’ action
in the blocks world mizght be

move(Asfloor) <= not on{(_sA)s
orn(As_) -> on(Astloor).

move(AsB) <= not on(_sA);
rnot on{_sB)»s
on{As_) -> on{AsR).,

diving rpreference to ‘move’s to the ‘floor’y if destinstion
is unsrecified.

SYNCHRONIZATION,

What is usuzslly referred to as process sunchronization is
achieved in 8 LAS by the combined effect of +the seauence
connective and state transitions seen by the "srocesses®.

Imadgine a2 single cell buffers defined bw the following
actions ¢

Fut(X) <= emepty - with(X).
dget(X) <= with(X) -> emprty.

A ‘Put’ sction will only be accomrlished if the buffer is
emrtyr a3nds converselur 2 ‘get’ sction can onlyw be carried out
if the buffer contains something., So actions seauenced after =
‘Put’ will eventually have to wait for the ’get’ of 3 rrevious
tokernn Put in the buffers and sctions sequenced after &8 det’
will evemtually have to wait for the ‘rut’ of the
corresronding tokens thus aschieving sunchronization of the two
*rrocesses® using the buffer.

CONCURRENCY.

Farallel zsctions are rerformed concurrentle, So it is
crucial that any sound imrlementation of the sustem be able to
dguarantees Just before rerforming 3 state transitions that the
rreconditions of the rule still serlu. In other wWwordss care
must be taken with redgard to state transitions occurring
during the evaluation of 3 rule. A number of techrigues exist
for tackling this rroblems derending on the sctusl hardwsres
put their discussion is outside the score of this rarer.

Let us look 2t an imrlementation of a3 queue in terms of its

198

sccessing actions ‘rut’ snd ‘get’., The q@ueue itself is
imrlemented 33 8 difference-list (-7 vis an assertion
‘a(Q@»T)’y aeoted uron Dy ‘=ut’ and ‘det’ ¢

PUb(X) <= a(QrX.T) =% allsT).
get(X) <= a(QsT) =& a(NQRsT)s
nonvar(Qls
Q=(X. NG .

This queue "mrocess® rFuts in a8 1list 3l1ll elements X for
whnich a8 ‘Put(X)’ 3ction is recuestedy in the order in which
these actions are rerformed (since thew can slwauys te
executeds arart from simultasneits with ‘det’ 3actionmnss this
will be the order in which thew become reads in . the agenda).

This is in contrast to other formalismss such as Concurrent
Frolog [Shariro 8315 that deal with exrlicit streams asnd thus
reauire the exrlicit merde of the various inrut streams to 2
Quee.

Let us 1look a3t another classsic examrle of concurrent
rrodrammingy the rroblem of the diming shilosorhers. Five
rhilosorhers are seated sround a3 tabler with 3 fork between
each two of them (five in 23ll) and a8 central bowl of sragethi.
Whenever a3 rhilosorher stors thinking because he dets hundgryy
e must rick ur the two forks on his left and right and bedin
eating until satisfied, lettind then down the two forks and
resuming his thinkind,

'Philosophegs - ply 22y 3y r4y #5
Forks - f1lsy 25 3y f4, 5
World rules ¢

forks(rlyfl.7T2).
forks(e2, 25132,
forks(r3sf3+f4).,
forks(r4sf4,73).
forks(rSyf3sfld.

Initial world state?d

down(fi).
down(f2).
down(f3).,
down(f4).
down(f3).

Initial sdgends

~r thinking(el) / thinking(s2) / thinkins{=3) /

thinking(=4) / thinking(#3).

199

Action rules !

thinking(X) -* hungry(X).

nungre(X) -» eating(X) <=
forks(XsLsR)>y
down(L) - with(XsLJs
down(R) -» with(XsRJ.,

hungrg(X) -» wants_fork{XsR) o=
forks(XsLsR)y
down{L) - with(XsL).

hundrwe(X) -» wants_fork(XsL) <=
forks(XsLsR)y
down(R) -> with(XsR).

wants._fork(X,»F) -> eating(X)y <=
down(F) - with(XsF).

eating(X) ~» thinking(X) <=
with(XsL) -> down{(L})s
With(XsR) - down(R).

Some comments are due.

The first and last rule» of courses do not show any details
about when to dget hundgry or when to stor eating. For an zctusl
simulation we should rrovide adecuate mechanisms: saw 2 randonm
time larse denerator.

It is imrortant to note thats in the 1last rules the two
‘with’ transition doals must match two distinct assertions and
not the same one, Ture 2 or ture 3 transitions inside the same
rule alwasgs refer to distinct sssertionss for it would make no
sense to srecify two deletions of a3 single assertion.,

The aforementioned if-them-else effect of rule evalusation
imrlies thats when 3 rhilosorner dgets hunsgre and pboth his two
forks are availables he will rick them ur simultaneouslu. This
fsct entails that there is rno deadlock or starvation if +the
sdstem starts from 2 non-deadlock imitisl states a3s canm be
easily rroved, What narrens is 3 transfer of
deadlock/starvation monitoring to the underluwing execution
mechanism of LAS» when concurrently +truing to arrly action
rules, We are in fact assuming that no resdy action is
indefinitely rostroned if conditions indefinitelwy exist for
its reduction.

ABSTRACT DATA TYPES.

Orne of the nice extensions of the sction sustem rresented
so far 18 the introduction of abstract data ture (ADT)
definitions. This rrovides 2 much needed modulsritss in bthe
form of local assertions thst carnnot be globzslly sccessed: and

200

are manirulated only by the actions interfacing the AINT obJdect
with the rest of the sgstem.

A defimition of 3 cueue ADT might be the following ¢
ture queue.
FUt(X) <= @(QsX:T) - a(Q>T).

get(X) <= @(QsT) -> a(NQsT)>s
nonvar(Q),
A=(X.NQ3 .

a{XrX).
X

The first rart of an ADT defimitionms wuntil the character
‘¥’y defines the external asctions that mas be used to asccess
an obJdect of the diven ture.

In this examrle we have the rreviously defined ‘rfut’ and
‘det’ actions.

The second rpart of the definitions until the character "%/,
defines internal rules and assertions» that cannot be accessed
from the outside.

The assertions corresrond to the initisl state of an
obJectsy when it is created. There can a3lso exists inm the
second rart of an ADT definition»y am initial asdenda ‘'-*A’ +to
e launched uron crestion of an obdect.

In the rreceding examrle the initial staste is an emerty
quueudey a3s defined by the assertion ‘c(XyX)’y a3nd there are no
internal sctions or initisl sdgenda. The assertion being locals
it won't be "seen® bw ang outside dgoa8l ‘{_sy.)’.

Having defined arn ANT» we must have means to create and
kill obJects of that ture. We use the sustem-defined actions

create(DbdectsyTure)
and
kill(Obdect) .

Now actions directed st an obJeét must refer +to 1it.
We use the notation

ObdecttAction
for that kind of actions.

lLet uws look at 2 more comrley emamrley 3 definitiom of &
video terminal. The lkesboard is scsnned to det characters

201

tured in it. In the loczl mode each character is outrut on the
screeny howevers if the charascter is 3 ‘send’s character
outrut is diverted to the outside of the terminaly wuntil the
character ‘eot’ is foundsy in which case there is 23 switching
back to locsl mode. The terminal can be accessed from the
outside throusgh 8 ‘Put(X)’ actions resulting in charscter ¥
beind disrlaved in the screen.

This AIT has three rarzmeters:s ‘Kegboard’s ‘Screen’ and
‘Qut’s which are surrosed +to be ADT obdects themselves.
‘Kesboard’ is surrosed to be accessed throudgh a ‘get’ actions
while ‘Screen’ and ‘0ut’ throush s ‘rFut’,

tere terminal{KevbosrdsScreens:0ut).,
#ut(X) ->» Screentrut(X).
i

terminal(X) - select(X) / Keuboardidet(NX)s terminal (NX).

select(send) <= localy—} out.
select(eot) <= out -+ local.
select{(X) -» Screentrut(X) <= locsal.

select(X) - Outlirut(X) <= out.
local.

-» Kewboardiget(X)r terminal(X).

X

External access is rermitted only through a3 ‘rut’ action.
‘terminal’ and ‘select’ are internal actions - ‘terminsl’
rerforms the endless loor of dgetting charascters from the
kesboard and rrocessing them? ‘select’ does this rrocessing.

The initisl state is local modes and the terminal activituy
is started by gettingd & charascter from the hkeswboard and
entering the loor.

A terminal, being accessed throusgh 3 'rut’s can serve as
the ‘0Out’ obdect of asnotner terminal. We can for examele link

+

two terminals todether ¢

-> create(Tisterminal(klssl»T2)) /
create(T2rterminal (k2ys32yT1)) .

DEDUCTION AS ACTION.

We tackle here the rroblem of tresting ss an action the
wark of a3 Frolog interrreter while truing to execute 3 s=osl.
Keer in mind that backtrackindg is “"bachkward® as far &8s +the
ohdect langusse Zoers: but is "forward® sc rezards the temroral
activitze (action) of the inmterrreter.

207

A drawback of Prolog is revezsled when we want to keesr trach
of different solutions to a3 go03l while dettind them on demands
alond with some other comrutation. The eroblem 1lies in the
fact that we are using 2 single interrreters and backtrachking,
that is needed locally to =rovide the various solutionss is
only available a3s 3 dglobal oreration.

*Metarredicates® like ‘setof’ or “2ll’ only dgive the whole
set of solutions to a3 Hosls and cannot be used in the desired
coroutined way.

A way out in the framework of LAS is +to have +the Frolos
interrreter defined 3s am ANTs accessible through the action
of rroducing the next solution to a3 doazl.

We can then create an instance of the interrreter by the

action
create(lrinterrreter(G,T))

where G is the g0zl exrression to be interrreteds and T is the
term whose instances we seek.

Transrorting the name I of this esarticular intersrreter we
can then det on demand the next solutions with the action

Itrnext(X) .

As a3 resulty X is bound in the action environment to 3 cory
of the next instance of T found by I to be 3 solution for 6 (T
and G will remain unbound in the action environment).

This is to sauy that severazsl interrreter obdects are trulyg
decourled in the sense that thew don‘’t share their binding
environments. Some more thoudght should be diven to this theme
of sharing versus corys in the context of LAS.

There remains the rroblem of failure. The asction ‘next’ is
alwaws carried outy but it should sroduce information
redarding its outcomes that cam be used in the sction comtext.

Maube this ture of actions should resllsy be used as 2
lodical Zoasly with associasted mesning the truth or falsehood
of the rpossibility of rerforming the action.

We can turn this into 2 denersl rrorerty of asctionss with
the assumrtion that the defsult boolean value of an action is
true when the action is normally finishedr and false if
unfinished when the srecial action ‘abort’ 1is carried outs
making "imrossible® the whole action exrression (adenda) where
it occurs (it becomes emriuld.,

Remember that usimg ADTs one has distinct zdendss for each
obJectr and thus ‘zbort’ can be used in 3 modular rather than
global waw. One cans for examrley imrlement 3 Unix-like shell
using the ‘azbort’ ascticrn trigsered b the control.l trar to
abort execution of the current command 3

£ 03

tuere shell(InrutsCommand_intersrreter).

¥

commands(C) - Inrutiget(NC) / Command_interrreteriC »
commands{(NC).

control_C_ trar(C) - Ineputiget_shead(NC) / check(l)

control_C.trar(NC),.

check("C) -» Command.interrreterizbort.
check(.) -=» .

->» Inrutiget(C)s
commands(C) / control_C_trar(C).

REFERENCE.
LShariro 831
Ehud Shariro.

A Subset of Concurrent Frolod and its intersreter.
The Weizmann Institute of Science.

