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Losic Prosrammins is beins hailed bY many People as a Sood 
way towards a side-effect-free Prosrammins stYle. On the other 
hand, talkins about temporal effects or actions is the natural 
way of viewins manw common computational Phenomena, 
inPut/outPut or database update operations. 

such as 

The Purpose of this paper is to introduce some common 
sround in the form of loSical action swstems, a framework for 
dealins with actions that has its roots in losic Prosrammins. 
Prosrams consist of rules for action reduction; rules have 
Preconditions as Prolos-like Saal expressions and define state 
transitions in the form of deletion and/or creation of 
assertions. Concurrency of actions is suPPorted. Abstract data 
types can be defined. 



INTRODUCTION. 

Despite the defense b~ man~ People of a side-effect-free 
Prosrammins st~le, as in a 'Pure' losic Prosrammins s~stem, 
the fact remains that man~ common computational Phenomena are 
not naturall~ expressed without resortins to the notions of 
action and state transition+ 

Rather than considerins actions as imPure 
arisins within a Pure losic computation, wh~ not 
situation and consider losic computations as 
side-effect of action s~stems? 

side-effects 
invert the 

a normal 

We will Put forward a Proposal for a lansuase in which to 
describe losical action s~stems CLAS>, Providins a clear link 
between actions and normal losic Prosrammins. 

LoSic and unification are still the basis on ~OP of which 
LAS are conceived; however, actions are clearl~ separated from 
Purel~ deductive seals+ 

The lansuase can be seen as ~et another Proposal for 
exPressins concurrenc~. 

We will besin bw exPosins the main ideas behind LAS, and 
then move on to an obJect-oriented approach with abstract data 
t~Pe definitions. 

ACTIONS. 

Actions take Place on some world, modifwins it. Between 
occurrences of actiona we can refer to the state of the world. 

We represent a world in two Parts, each one of them a losic 
Prosramt 
(1) the rules of the world, definins relations that are not 

bound to chanse in time ; 
(2) the state of the world, containins assertions that ma~ 

chanse in time as the result of actions Performed on the 
world+ 

Let us look at an examPle. < Edinbursh Prolos swntax will 
be used, excePt for clause functor. ) 

Consider a blocks world. 
The world rules would contain definitions such as: 

tower(CBJ) <- on<B,floor). 

tower<B1.B2+Bn) <- on(B1,B2), tower(B2.Bn). 

A Particular world state would have assertions such as: 

on<a,b). 

on(b,floor). 



At anw time between actions it is Possible 
moal expression asainst the world, usins the 
state as a Joint loSic Prosram. 

to evaluate a 
rules and the 

In this example, one could evaluate the Soal 

<- tower(X). 

that would wield the solutions 

X=CbJ ; X=Ca,bJ • 

The action of movins 'a' to the 'floor' would rePlace the 
assertion 'on(a,b)' bw 'on<a,floor>'. As a conseauence we 
would have a new world state, and the same Soal '<-tower(X)' 
would now Produce the solutions 

X=CaJ ; X=CbJ + 

In seneral, an action will consist of a number of action 
steps {possiblw infinite). 

Each action step will result 
consistins of falsifwins (deletins> 
Previous state and/or makins true 
assertions. 

in a chanse of state, 
some assertions of the 

(creatins) some new 

The specification of an action step is an action 
is made UP of two Parts: the action reduction and 
conditions. 

rule. It 
the state 

The action reduction defines what new actions the action 
reduces to, bw virtue of the steP+ 

The state conditions are the Preconditions and the state 
transitions. 

Preconditions are soals that are evaluated asainst the 
world in its current state. 

State transitions tell what assertions must be deleted 
from, and what new ones added to, the current state to set the 
new state. 

For example, the notion that the action of movins A to B 
can be accomPlished if nothins is on toP of A and B, and as a 
result A ceases to be on toP of whatever it was before to be 
on toP of B, can be described bw the action rule: 

move<A,B) <= not on(_,A), 
not on<~,B>, 
on<A,_) -> on<A,B>. 



ACTION REDUCTION. 

When an action reduces to void (is finished>, as 
Precedins example, the action reduction Part of the 
Just the action - the rule head. 

in the 
r•Jle is 

In seneral, an action reduces to other actions. The action 
reduction Part of a rule is then of the form 

A-> NA 

where A is some action (the rule head>, and NA is an action 
expression referins to the new actions. 

How can actions relate to one another to f~rm an action 
exPressionT We fihd that we need two connectives: Parallel and 
seauence. 

Two actions in seauence are denoted b~ 'A,B' , meanins the 
•econd action (Bl can onl~ take Place after the first one <A> 
is finished. 

Two Parallel actions, written 'A/B' , ma~ take Place with 
no time constraints on one another. 

•An action exi:-ression is recursivel~ constructed from atomic 
.ac:t.ions and the Parallel. and seauence connectives. Relative 
P receden.ce between these .is such that "A/B, C' is the same as 
'(A/B),C' + 

In, an action s~stem there is alwaas an action exPression 
evolvin~ iri time and denotins at each moment the actions that 
are to be carri•d out in the world+ We call it the asenda. For 
ever~ action in the asenda that is read~ to be carried out 
(for example, Al and B1 in (A1,A2)/(B1,B2) >, the s~stem tries 
to aPPl~ an action step. 

The action reduction involved in a steP is like a 
rule for the read~ action in the asenda, keePins the 
structure of this action expression+ 

Thus, if we have the asenda 

A,B 

and the action reduction 

A-> A1/A2 

is Performed, the asenda becomes 

A1/A2,B 

rewrite 
overall 



meanins that after Al and A2 are both 
so independently of one another) Bis 

finished (havins done 
ready to take Place. 

Actions occur in time and time always runs forward, so 
there is no auestion of backtrackinS over action stePs, If an 
action is reauired and no rule for that action aPPlies in the 
current state, it Just means that the action must remain in 
the asenda waitins for the risht conditions to appear (when 
some other action chanses the state to that effect). This 
eventually entails the well-known Phenomena of deadlock and 
starvation. 

STATE TRANSITIONS. 

State transitions inside an action rule may be of three 
tYPeS 

( 1) -> A assertion A is created ; 
(2) A -> assertion A is deleted ; 
(3) A -)· NA assertion A is deleted and assertion 

NA is created+ 

Of course a tYPe 3 transition is no more than a tYPe 1 and 
a tYPe 2 Put tosether, but it makes for a more clear readins 
of the rule, especially if A and NA are for the same 
Predicate. In this case, a comPiler or interpreter can easily 
translate the transition into simPle assisnments on the 
chansins arsuments, with considerable speed-up over deletion 
and creation. 

RULE EVALUATION. 

Each rule is associated with a sinSle action (the rule 
head), so a ready action in the asenda can efficiently trisser 
its own rules, much as Prolos soals trisser their clauses. 

Rule evaluation besins with unification of the ready action 
with the rule head. 

If there are any tYPe 2 or tYPe 3 transitions in the rule, 
their left-hand side is resarded as a soal to be matched 
asainst an assertion in the current world state. All 
Precondition soals tosether with these transition soals, in 
the order in which they aPPear in the rule, form a Prolos soal 
expression that is evaluated. If a solution is found, then the 
rule aPPlies, and the transitions are carried out, deletins 
the assertions that matched the transition seals for the 
solution found. 

The action is replaced 
expression it reduced to, 
when this is void, 

in the 
with 

asenda b"::s 
the obvio1.Js 

the new action 
simPlifications 



There ma~ be several rules for a Siven action. Rules should 
be tried in the order in which the~ aPPear in the prosram. 
This Provides a simPle, elesant form of if-then-else. 

For example, the complete definition for the 'move' action 
in the blocks world misht be: 

move(A,floor> <= not on(_,A), 
on<A,_) -> on<A,floor). 

move<A,B) <= not on(_,A), 
not on(_,B), 
on<A,_) -> on<A,B>. 

Sivins Preference to 'move's to the 'floor', if destination 
is unspecified. 

SYNCHRONIZATION. 

What is usuall~ referred to as Process s~nchronization is 
achieved in a LAS b~ the combined effect of the seauence 
connective and state transitions seen b~ the •processes•. 

Imasine a sinsle cell buffer, defined b~ the followins 
actions t 

Put<X> <= empt~-> with(X). 

setCX) <= with(X) -> emPt~. 

A 'Put' action will onl~ be accomPlished if the buffer is 
empt~, and, conversel~, a 'Set' action can onlY be carried out 
if the buffer contains somethins. So actions seauenced after a 
'Put' will eventually have to wait for the 'Set' of a Previous 
token Put in the buffer, and actions seauenced after a 'Set' 
will eventuall~ ·have to wait for the 'Put• of the 
co~resPondins token, thus achievins synchronization of the two 
•processes• usins the buffer. 

CONCURRENCY. 

Parallel actions are Performed concurrentl~. So it is 
crucial that an~ sound implementation of the system be able to 
suarantee, Just before Performins a state transition, that the 
Preconditions of the rule still aPPlY+ In other words, care 
must be taken with resard to state transitions occurrins 
durins the evaluation of a rule. A number of techniGues exist 
for tacklins this Problem, dePendins on the actual hardware, 
but their discussion is outside the scoPe of this PaPer. 

Let us look at an implementation of a Gueue ih terms of its 
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accessins actions 'Put' and 'Set'. The aueue itself is 
imPlemented as a difference-list Q-T via an assertion 
'a(Q,T)', acted u~on bw 'Put' and 'Set' : 

Put(X) <= a(Q,X.T) -> a(Q,T), 

set<X> <= a(Q)T) -> a(NQ,T>, 
nonvar(Q), 
Q=(X.NQ). 

This aueue "Process• puts in a list all elements X for 
which a 'Put(X)' action is reauested, in the order in which 
these actions are Performed (since thew can alwaws be 
executed, apart from simultaneitw with 'Set' actions, this 
will be the order in which thew become readw in the asenda). 

This is in contrast to other formalisms, such as Concurrent 
Prolos [ShaPiro 83J, that deal with explicit streams and thus 
reauire the exPlicit merse of the various inPut streams to a 
aueue. 

Let us look at another classic examPle of concurrent 
Prosrammins, the Problem of the dinins Philosophers. Five 
Philosophers are seated around a table, with a fork between 
each two of them (five in all) and a central bowl of sPaSethi. 
Whenever a PhilosoPher stoPs thinkins because he sets hunsrw, 
he must Pick UP the two forks on his left and risht and besin 
eatins until satisfied, lettins then down the two forks and 
resumins his thinkins. 

'Philosophers - Pl, P2, P3, P4, P5 

Forks - fl, f2, f3, f4, f5 

World rules : 

forks(P1,f1,f2). 
forks(P2,f2,f3). 
forks(p3,f3,f4). 
forks(P4,f4,f5). 
forks(P5,f5,f1>. 

Initial world state: 

down(fl). 
down(f2>+ 
down(f3). 
down(f4). 
down(f5). 

-~ thinkinS(rl) / thin~in~(P2) / thinkinS(p3) ' 
thinkinS(P4) / thinkinS(P5). 



Action rules: 

thinkinS(X) -> hunsr~<X>. 

hunsr~<X> -> eatins<X> <= 
forks(X,L,R), 
downCL) -> withCX,L>, 
down(R) -> withCX,R). 

hunsr~(X) -> wants_forkCX,R> <= 
fork.s<X,L,R), 
down(L> -> with(X,L). 

hunsr~(X) -> wants_fork(X,L> <= 
forks<X,L,R>, 
down<R> -> with<X,R>. 

wants_fork(X,F> -> eatins(X) <= 
down(F) -> with<X,F). 

eatins<X> -> thinkins<X> <= 
withCX,L) -> down<L>, 
withCX,R> -> down<R>. 

Some comments are due. 
The first and last rule, of course, do not show an~ details 

about when to set hunsr~ or when to stoP eatins. For an actual 
simulation we should Provide adeauate mechanisms, sa~ a rando~ 
time lapse senerator. 

It is important to note that, in the last rule, the two 
'with' transition seals must match two distinct assertions and 
not the same one. T~P~ 2 or t~Pe 3 transitions inside the same 
rule alwa~s refer to distinct assertions, for it would make no 
sense to specif~ two deletions of a sinsle assertion. 

The aforementioned if-then-else effect of rule evaluation 
imPlies that, when a Philosopher sets hunsr~ and both his two 
forks are available, he will Pick them UP simultaneous!~. This 
fact entails that there is no deadlock or starvation if the 
s~stem starts from a non-deadlock initial state, as can be 
easil~ Proved. What haPPens is a transfer of 
deadlock/starvation monitorins to the underl~ins execution 
mechanism of LAS, when concurrent!~ tr~ins to aPPl~ action 
rules. We are in fact assumins that no read~ action is 
indefinite!~ Postponed if conditions indefinite!~ exist for 
its reduction. 

ABSTRACT DATA TYPES. 

One of the nice extensions of the action s~stem Presented 
so far is the introduction of abstract data t~Pe <ADT> 
definitions. This Provides a much needed modutarit~, in the 
form of local assertions that cannot be Sloball~ accessed, and 
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are manipulated onlY bY the actions interfacins the ADT obJect 
with the rest of the sYstem. 

A definition of a Gueue ADT misht be the followine : 

tYPe Gueue. 

PUt(X) <= G(Q,X.T) -> Q(Q,T). 

set(X) <= G(Q,T) -> G(NQ,T), 
nonvar(Q), 
G=<X.NQ). 

a<X,X>. 

* 
The first Part of an ADT definition, until the 

't', defines the external actions that may be used 
an obJect of the Siven tYPe+ 

In this example we have the Previouslw defined 
'Set' actions. 

character 
to access 

'Put' and 

The second Part of the definition, until the character '*'' 
defines internal rules and assertions, that cannot be accessed 
from the outside. 

The assertions correspond to the initial state of an 
obJect, when it is created. There can also exist, in the 
second Part of an ADT definition, an initial asenda '->A' to 
be launched uPon creation of an obJect. 

In the Precedins example the initial state is an emPtY 
aueue, as defined bY the assertion 'G(X,X)', and there are no 
internal actions or initial asenda. The assertion beins local, 
it won't be "seen• bY any outside Saal 'a(_,_)'. 

Havins defined an ADT, we must have means to create and 
kill obJects of that tYPe+ We use the system-defined actions 

create(ObJect,TYPe) 
and 

kill(ObJect) • 

Now actions directed at an obJect must refer to it. 
We use the notation 

ObJect:Action 

for that kind of actions. 

Let us look at a more complex examPle, 
video terminal. The keyboard is scanned 

a definition of a 
to set characters 



twPed in it. In the local mode each character is output on the 
screen; however, if the character is a 'send', character 
output is diverted to the outside of the terminal, until the 
character 'eot' is found, in which case there is a switchins 
back to local mode. The terminal can be accessed from the 
outside throush a 'Put(X)' action, resultins in character X 
beins disPlawed in the screen. 

This ADT has three Parameters, 'Kewboard', 'Screen' and 
'Out', which are SUPPosed to be ADT obJects themselves. 
'Kewboard' is supposed to be accessed·throush a 'Set' action, 
while 'Screen' and 'Out' throush a 'Put'+ 

twpe terminal(Kewboard,Screen,Out). 

Put<X> -> Screen:PutCX). 

t 

terminal<X> -> select<X> / Kewboard:set<NX>, terminal(NX). 

select(send) 
select(eot> 
select(X) -> 
select<X> -> 

local. 

<= local-> out. 
<= out-> local. 
Screen:Put<X> <= local. 
Out:Put(X) <= out. 

-> Ke~board:setCX>, te~minalCX). 

* 
External access is Permitted onl~ throush a 'Put' action. 

'terminal' and 'select' are internal actions 'terminal' 
Performs the endless loop of settins characters from the 
ke~board and Processins them; 'select' does this Processins. 

The initial state is local mode, and the terminal activity 
is started bw settins a character from the kewboard and 
enterins the loop. 

A terminal, beins accessed throush a 'Put', can serve as 
the 'Out' obJect of another terminal. We can for example link 
two terminals tosether: 

-> createCT1,terminal(k1,s1,T2>> / 
create(T2,terminal(k2,s2,T1)). 

DEDUCTION AS ACTION. 

We tackle here the Problem of treatins as an action 
work of a Prolos interpreter while tr~ins to execute a 
Keep in mind that backtrackins is •backward" as far as 

the 
Soal. 

the 
obJect lansuame ~oes, but is "forward• as re~ards 'the temporal 
activit~ (action) of the interpreter. 



A drawback of Prolos is revealed when we want to keeP track 
of different solutions to a seal while settins them on demand, 
alons with some other comPutation. The Problem lies in the 
fact that we are usins a sinsle interPreter, and backtrackins, 
that is needed locally to Provide the various solutions, is 
only available as a Slobal oPeration. 

'MetaPredicates• like 'setof' or 'all' only sive the whole 
set of solutions to a seal, and cannot be used in the desired 
coroutined way. 

A way out in the framework of LAS is to have 
interpreter defined as an ADT, accessible throush 
of Producins the next solution to a Seal. 

the Prolos 
the action 

We can then create an instance of the interpreter bY the 
action 

create<I,interPreter<G,T)) 

where G is the soal expression to be interpreted, and Tis the 
term whose instances we seek. 

TransPortins the name I of this Particular interpreter we 
can then set on demand the next solution, with the action 

Itnext(X) • 

As a result, Xis bound in the action environment to a COPY 
of the next instance of T found bY I to be a solution for G CT 
and G will remain unbound in the action environment). 

This is to say that several interpreter obJects are truly 
decoupled in the sense that theY don't share their bindins 
environments. Some more thousht should be Siven to this theme 
of sharins versus coPY, in the context of LAS+ 

There remains the Problem of failure. The action 'next' is 
always carried out, but it should Produce information 
resardins its outcome, that can be used in the action context. 

MaYbe this type of actions should really be 
losical Seal, with associated meanins the truth or 
of the Possibility of Performins the action. 

used as a 
falsehood 

We can turn this into a seneral Property of actions, with 
the assumption that the default boolean value of an action is 
true when the action is normally finished, and false if 
unfinished when the special action 'abort' is carried out, 
makins 1 imPossible 1 the whole action expression (asenda) where 
it occurs (it becomes empty). 

Remember that usins ADTs one has distinct asendas for 
obJect, and thus 'abort' can be used in a modular rather 
slobal way. One can, for example, implement a Unix-like 

each 
than 

shell 
usins the 'abort' action tris~ered bs the control_C tr3P to 
abort execution of the current command : 



t~Pe shell<InPut,Command_interPreter). 

commands(C) -> InPut!set(NC> / Command_interPreter!C , 
commands(NC). 

control_C_traP(C) -> InPut:set_ahead<NC> / check(C) , 
control_C_trap(NC>. 

checkc-c> -> Command-interpreter:abort. 
check(_) -> • 

-> InPut:set<C>, 
commands(C) / control_C_traP(C). 

* 
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