
A NOTE ON COMPUTATIONAL COMPLEXITY OF LOGIC PROGRAMS 4 b 1

(Preliminary· Draft)

Abstract

Andrzej Lingas
Software Systems Research Center

Linkoping University
S-581 83 Linkoping, Sweden

Shapiro de:6.n:ed three complexity-measures over logic programs- goal-size, length
· and depth - .·and showed their relation to complexity measures for alternating
Turing machines. We, introduce the fourth complexity measure - conjunctive
goal-size - and employing the known ideas of Turing-machine complexity theory
we analyze the relation- among the complexity measures over logic programs. In
particular, for any deterministic logic progrtam of conjunctive goal-size S(n) and
length L(n) we can construct an equivalent deterministic logic program of depth
O(log(L(n)) .and length; O(L(n));. and if the program: is strongly deterministic
then we can :construct another equivalent strongly deterministic logic program
of goal-size O(log(S(n)) + log(L(n))) and length O(S(n)L(n)).

I ntroductio~

The idea of procedural· interpretation to Horn-clause logic begun a new era
in logic programming. ~Today, the programming language Prolog, based on .. this
idea, is a viewed as a start· point to the basic programming language. of the fifth
generation computer systems [FGCS81].

The standard method of execJting a program in Prolog is by so called 1back­
tracking, consuming a .large amount of time and space. In order to achieve the
planned speed up in time performance, Japaneses have to improve backtracking
by mixing with other methods, for instance,bottom-up, and work out an efficient
parallel implementation of Prolog. A solid,·.analysis of the computationalr com­
plexity of logic programs should .precede th'0 speed up e:fforts. ,

In a large part our goal is i to use the. similarity betweem logic programs
and alternating Turing machines: in order to derive relationships among various
complexity measures over logic programs .. Efficient implementing of logic pro­
grams in various computational models may benefit fr.om these results. As· these
results rephrase in part::-known facts from Turing machine theorJi in the language
of logic programming, they seem lto be of smaller importance for abstract com­
plexity theory. The other our goal is to comment informally on the possibility of
a fast parallel implementation of logic programs, and, on complexity of bottom­
up computations of logic programs that are neglected in the logic programming
society.

1

Basic Notions

We totally adopt 1Shapiro's definitions· of definite clauses,·,goals, conjunc­
tive goals, clause's head and bodY, logic program, goal reduction, substitution,
uniti.er, derivation and refutation of a goaLfrom a logic program, the phrase "a
program P solves a goal", refutation tree, length, depth, goal-size of refutation
(see (Sh82a]).

The author came to the conclusion that. it is natural and convenient to:.allow
also variable:.·free initial. axioms as input data.
Initial axioms are inserted in the list of axioms of a lo~c program before starting
its computation.
A pair (G, A) consisting of an initial gdal G (possibl~,: a. conjunctive goal) :and a
set of initialL.axioms is called an initial goal~axiom pair.
A goal-axiom pair (G,A) has a refutationifrom a logic program P if G.,has a
refutation from PUA in the Shapiro's sense.
The interpretation of :a logic program P, .. .I(P), is the set of ,all variable-free
goal-axiom pairs that are constructable from predicates, constants and functors
appearing in ithe language in which P is wr,itten, and·:ihave a refutation from P.
Following our modification of logic program semantics in comparison with Shapiro,
we redefine complexity.·measures· over logic programs as follows::

A logic program Pis respectively of goal-size, depth,::length complexity C(n) if
for any goal,;axiom pair. in I(P) o.f size n there respectively exists a refutation of
goal~size, depth, length: C(n).

For the· definitions:: of non-deterministic and deterministic :'Turing machine
the reader. is·:referred to (CKSh82}.

Moreover we use the following definitions:

(1) An axiom is a clause with the empty body.
(2) Given a :computation of a logic program, C, a reduction step of C is the
reduction of.a chosen goal to a sequence ofnew goals by a single application of
a clause in the program.
(3) Let P, R be a logic program .and a refutation, respectively,;·
The conjunctive goal-size of R is, the maximum size of the current list of: goals
at any reduction step of R (respectively, goal size ia:the maximum size of any
unit goal at.any step of R). P is of conjunctive goal-size complexity U:(n) if
for any goal-:axiom pair Gin I(P) of size n· there is a refutation of G from P of
conjunctive goal-size <U(n).
The non-deterministic length of R is the number of nodes in the refutation tree

2

such tha.t there are at .least two clauses whose heads~ match the: goal chosen to 4 b:J
reduce. P is of non-deterministic: length complexity N(n) if for· any goal-axiom
pair G in I(P) of size n there is a refutation of G from P of non-deterministic
length <N(n).
If N(n)-o then Pis strongly deterministic~
If every goal-axiom pair in I(P) admits only one refutation then:P is determinis­
tic, see [H8l].
0 bviously I if P is strongly deterministic then it is deterministic.. The notion of
strong determinism for logic programs corresponds to that of determinism for
Turing machines.
(4) We assume a standard list representation. The term O denotes the empty
list, and the.: term [X IYJ standSI . .for a list whose head is X and tail is:,.,y. A
string a1a2 ... a"' is represented by the list [a1l[a2l[... lan]]J, With. the exception
of Theorem 3 integers ,n are represented as n-fold composition of the functor
s applied to~the constant 0. Writing a logic program, we· skip·the clauses and
axioms defining the arithmetic predicates of:=, <, <; >, >. Finally, we assume
that we can::test .equality ·between an atom and term by applying a standard
equality anddnequality ·:predicate·s built in the formalism of logic programs.
(5) According to the assumed string representation (see 4), Turing machine M
is equivalentcto a logic ·program :P if after .erasing the square brackets and the
symbol" I" in the words of L(M), we obtain I(P).

Relationships among Complezity Measures ouer Logic Programs

In the following remark, WEr.can find :a couple of obvious)observations on
complexity measures over logic programs. ;j

Remark 1. Let P be a logic program of depth complexity D(n), conjunctive
goal-size complexity G(n) and length complexity L(n)~: The following inequalities
hold:

D(n)<L(n) :
L(n)<dG(n) where d is·.a constant uniform:'in P.
Moreover, ifwe restrict-initial goals to single.!goals then;we have L(n)<cD(n)+1-

l where c is the maximum number of goals in a clause of P. ·

In several computational models, the .depth complexity is:ca natural lower
bound on the time taken by parallel evaluation. ln._the computational model
of logic programming it is hard to approximate the lower bound with efficient
parallel computations .. Simply, solving a conjunctive goal with shared variables

3

cannot be spawned directly.
By virtue of the , following theorem1 for any logic program there ·exists

an equivalent logic program of fairly· small depth. The proof is by applying
Savitch's trick, originally applied to simulate non-deterministic space bounded
Turing 1:0-achines by deterministic, ones (see [Sa70])1 and then, by time bounded
alternating Turing machines [CKS80] ..

Theorem 1. Any logic program P .of length complexity.£(n) and non-deterministic
.length complexity N(n) can be transformed into a logic program Q such that a
goal-axiom pair ((G1, G2, ... , Gl), (Ai, A2, ... , A1;)) of size n is in l(P) if and only if
there exists a:refutation of the corresponding goal-axiom pair (p([G1l[G2 l[... jGz]]], [1,
r log(L(n))l, (p([A1 IX], [X], 0), p([A2 IX], [X], 0), ... , p([A1; IX], [X], 0))) from Q of
depth flog(L(n))l, length 4L(n) and non-deterministic length N(n). If the pro­
gram Pis deterministic:(respectively, strongly deterministic) then Q is also deter­
ministic (respectively, strongly deterministic}.
Proof. To form the cla,uses of Q ,, 1We use only the predicate p(X~, Y, i). It reads:

If X and Y are lists representing;:goals and i is a natural number then the goals
from X can .be reduced to those from Y in12' reduction steps. :

For each clause A+-B11 ... , B1;. of .P, the program Q contains the axiom .
p([AIX], [B11[B2! ... [BilX]]],0). Note that the predicates from P become functors
here. Next, Q contain&,the axiom :p(□, [), 0).tsaying that we can reduce the empty
list of goals to itself in one reduction step. The only clause with non-empty body
in Q is as follows:

p(X,Y,s(i))< +- p(X,Z,i},p(Z,Y,j).

Given a refutation of G,from P, of length L(n), there exists a refutation of G from
P, say R, such that at,each reduction step. in R the ,first clause on the current
list of goals is chosen to reduce and R is of length L(n). Having R, we form a
refutation of the corresponding initial goal ,from Q by applying. the only clause
of Q in depth-first manner, and .then, the axioms of .Q. As a result, we obtain
a refutation ,whose tree has, leaves labelled::by instantiated predicate p(X~ Y, 0)
corresponding to single:.reduction steps of R. The length of the. refutation does
not exceed 2flog(L(n))+1l - 1. Its non-deterministic length is the same as that
of R. If R is .the only refutation .of the initial goal-axiom pair from P then it is
the only refutation of the corresponding initial goal-axiom pair· from Q.
Conversely, given a refutation of the corresponding goal from Q, we can easily
find out a refutation of G from P · I

4

In Savitch's simulation of non-deterministic space bounded Turing machines ~ b5
with deterministic space bounded Turing machines, the intermediate
tape configuration (corresponding to the intermediate list of goals Z in the
above proof) is determined by exhaustive search (see [Sa70]). In the proof of
Theorem 1, the intermediate list of goals substituted for Z is the outcome of
calling p(X, Z,j) (in Concurrent Prolog [Sh82b}, the basic clause in Q would
be rather written as p(X, Y, s(j)) +- p(X, Z, j), p(Z?, Y, j)). From the point of
deterministic simulation, our method of finding the intermediate state is more
efficient than Savitch's one if the non-deterministic length complexity of P is
small, and worse otherwise.
The first who showed; how to simulate Turing machines with logic programs
was Tarlund [T67]. Shapiro proved a close relationship between complexity of
alternating Turing machines and complexity of logic programs [Sh82a}. The
following theorem reveals relationships between complexity of non-deterministic
Turing machines and complexity ·of logic programs (In thi·s theorem, as well as
in Theorem 3 and Corollary 1 and 2 we informally use the notion of simulation
whose meaning can be deduced from the proof of Theorem 3).

Theorem 2. Any multi tape (deterministic) Turing machine operating in time
T(n), and space S(n) can be simulated by a (strongly deterministic, respec­
tively) logic program of length complexity O(T(n)), and conjunctive goal-size
complexity O(S(n)). Conversely, any (strongly deterministic) logic program of
length complexity L(n), and conjunctive goal-size complexity S(n) can be trans­
formed into an equivalent (deterministic, respectively) Turing machine operating
in time O(L(n) X S(n)2), and space O{S(n)).
Hint. Note that a single reduction step can be simulated by a deterministic

_ Turing machine in time O(S(n)2) (see [R65]) and read the proof of Theorem 4.4
and 5.4 in [Sh82a]. 1

By Theorem 1 and 2 we obtain the following corollary:

Corollary 1. Any (deterministic) Turing machine operating in time T(n), and
space S(n) can be simulated by a (strongly deterministic, respectively)· logic
program of depth complexity O(log(T(n)), length complexity O(T(n)), and con­
junctive goal-size complexity O(S(n)).

· Probably, several important problems solvable by deterministic Turing
machines in polynomial time are not solvable in parallel time O(logkn), i.e. by
parallel machines with polynomial number of proces·sors with fixed fan-in and
fan-out, running in time O(logkn) (see [B77],[CKS81]). As by Corollary 1,

5

deterministic Turing machines operating in polynomial time can be simulated by
deterministic logic programs of logarithmic. depth complexity, probably a small
depth complexity of a logic program does not ensure the existence of a fast
parallel implementation of the program, in the general case. It seems that the
requirements that a logic program should satisfy to admit an essential parallel
speed up are more complex. In the next section, we shall briefly discuss this
problem from the point of view of bottom-up computations. Here, we infor­
mally propose the following requirements, coherent with the top-down nature of
derivations from logic programs.

Let P be a logic program of length complexity L{n). For i, :j, let Ri,;(n) be the
equivalence relation between conjunctive goals such that G1Ri,;(n)G2 if and only
if for any goal-axiom pair of size n, G, any refutation of G from P with the the
i -th element G1 performs the same i-th through j-th reduction steps as any
refutation of G from P with the i-th element G2 • In other words, to determine
the i-th through j-th reduction steps of a refutation of G from P whose i-th
element is G1 it is sufficient to know a representative of the equivalence class of
R,,;(n) for G1. Suppose that for n E N there exists a tree Tn of fixed degree
with leaves consecutively labeled by 1 through L{n), and a number mn. such that
for any subtree of T n with the leftmost leaf labelled by i and the rightmost leaf
labelled by i, the number of equivalence classes of Ri.;(n) is at most mn., In the
simplest case, the tree Tn. may correspond to the refutation tree of P. Given an
goal-axiom pair of size n, G, we can recursively find a refutation of G from P
(if it exists) by applying divide and conquer strategy induced by Tn. and trying
all representatives of the equivalence classes- of Ri,;(n) in parallel. Provided that
T n and the representatives are given, the refutation can be determined in time
O(log(mn) X height(T.,,,)) with the use of 0(2log(mA)Xheight(TA)) processors. In
particular, if m,,, is a constant uniform inn and height(T.,,,) = O(logn), P can be
implemented in parallel time O(logn). The. reader can find more details about
this approach, expressed rather in terms of Turing machines, in (L83]. Here, we
offer only the following simple example.

Example 1

Let us consider the following logic program, delmem(Z, X, Z', H), where
Z is an input linear list of a constant length over a finite alphabet E, X is an "
input list over E organized as a complete binary tree of height H, Z' is the out­
put list composed of all the elements of Z that are not in X, member(A, Z),
notmember(A, Z), delete(A, Z, Z') stand for the standard predicates testing mem­
bership of Ain Z and deleting A from Z { i.e. Z' = Z - A) respectively (see

6

[CM81J), we may assume without loss of generality these standard predicates to
be available primitives since they are applied to sublists of the input list Z which
is of fixed length in this example.

delmem(Z,X, Z',H) +- delmem(Z,X, Z',O,H).

delmem(Z,.[X I Y],Z',K,H) +-

K < H, delmem(Z,X, Z", s(K), H), delmem(Z", Y, Z', s(K), H).

delmem(Z, A, Z', H, H.) +- member(A, Z), del(A, Z, Z').

delmem(Z,A, Z,H,H) +-· notmember(A, Z).

Note that if we neglect labels, the form of a refutation tree of P for any goal­
axiom pair with the input list X of length n is totally determined by n. Let
T,,, be a tree of such a form, with leaves consecutively labelled by 1 through
n. Clearly, if i and j are the labels of the rightmost and the leftmost leaf in a
subtree of T,,,, then the i-th through j-th reduction steps in any refutation of
an goal-axiom pair with the · input list X of length n from our logic program
is a refutation of the goal delmem(U, Y, U', k, h) corresponding to the root of
the subtree. Thus, the i-th through j-th steps are totally determined by the
instantiation:. of Z, U. Therefore, the equivalence classes of the relation R,,;(n)
can be identified with the possible instantiations of Z. As the input list Z is of a
fixed length,. the number of possible instantiations of Z is a constant uniform in
n. Hence, the number m,,, is a constant uniform in n here. It is not difficult to
see that the language specified by de(mem(Z,X,Z',K,H) is regular but in the
general case, the language specified by a logic program for which m,,, = 0(1) is
not necessarily regular [183]. The tree T,,, induces the same divide and conquer
strategy as the recursive definition of delmem(Z, Y, Z', k, h), therefore, we do
not need to transform P in this respect. To try all of the representatives of
equivalence classes of the relations R,,;(n), equivalently all possible instantiations
of U, it is sufficient to add the following clauses with B ranging over all possible
instantiations of Z:

delmen(Z, [XI Y], Z', K, H)+-

K < H,delmem(Z,X,B,s(K),H),delmem(B,Y,Z',s(K),H).

It is easy to see that by fully using the OR-parallelism introduced by the above,
additional clauses, clelmem(Z, Y, Z', k, h) can be implemented in parallel time
O(logn).1

7

The following theorem relates time and space complexity of Turing machines 4 6
to goal-size complexity of logic programs. The proof is analogous to the proof
of Chandra et al. showing Uc>oDTIME(c5 <"">) C ASPACE(S(n)) [CKSh82].

Theorem 3. Let M be a deterministic Turing machine operating in time T(n)
and space S(n). M can be simulated by a strongly deterministic logic program
Q of goal-size complexity O(logT(n) + logS(n)).
Outline of Proof. We assume several restrictions on M fallowing the proof of
Theorem 3.4 in [CKS80]. In particular, M has only one tape, on the tape the
input word is written, M accepts an input by entering its unique accepting state
qA with the head scanning the T(n) + 1st tape square, etc. (see [CKS80] for
details). A computation of M on the input word is described as a sequence of
configurations, each in the form aq{j where ap describes the contents of squares
0 through 4T(n), q is the current state of M and the head of M points the
rightmost symbol of a.

For any four symbols from the tape alphabet and the set of states of M,
6_ 1, 60 , 61 , 62 , among which at most one represents state of M, there is unique
symbol 6 such that for any j if 6-1, 60, 61, 62 occupy positions j-1,i,i+l,i+2
in a configuration of M 1 then 6 occupies the position j in the next configuration
of M. For each such quintuple 6-1, 60, 61, 62 , 6, the program. Q contains the
axiom next(6_1 , 60 , 61, 62, 6) .. The basic predicate in Q is accept(j, t, a). It says
that in the t - th configuration. of the computation of M, the j - th square
contains the symbol a.
To prove the theorem we cannot represent the integers j, t using. the unary nota­
tion defined in the previous section. Here the integer of binary representation
bi, ... , bi is written as [bzl[... lb1]]. The successor predicate is defined as follows:

suc([llX], [OIY]) +- suc(X, Y).

suc([OIX], [l!X]).

sue([], 1).

The definitions of the predicates of < and < for this specific representation of
integers are left to the. reader.
The main clause in Q is as follows:

accept(j, u, X) +- suc(t1 u) 1 suc(i, j), accept(i1 t, Y) 1

suc(j, k), accept(k, t, W),

suc(k, l), accept(l, t, T),

next(Y, Z, W, T).

To verify the initial contents of the tape we use the clauses accept(j, O,X) +­

inpt.1.t(i, X). The integers occurring in any derivation of accept(T(n)+ 1, T(n), qA)
from P have binary representation of the length not exceeding f min{log(T(n)),
log(S(n))}l. To prove the theorem, we show by induction that accept(}, t, a) can
be proved in O(L(n)) reduction steps if and only if the given interpretation of
accept(i, t, a) is right. 1

By Theorem 2 and 3 we obtain the following corollary:

Corollary 2 .. Any strongly deterministic logic program of length complexity
L(n) and conjunctive goal-size complexity S(n) can be simulated by a strongly
deterministic logic program of length complexity O(L(n) X S(n)2), and goal-size
complexity O(log(L(n)) + log(S(n))).

Bottom - up Computations of Logic Programs and their Complexity

. That what we mean by a computation of a logic program P might be
specified as a top-down computation of P. A bottom-up computation of Pis a
reversed (top-down) computation of P, and can be briefly described as follows.

The computation starts from a set of instantiated axioms. At each step
we non-deterministically pick a clause of P, A+-B1 ', ~ ', ... , B1c' (it might be
an axiom, Le. k = 0). Then we non-deterministically choose a sequence
Bi, B2 , ••• , B1r. from the. list of current axioms in order to unify it with the body
of the previously chosen clause. The unification is via a substitution 9 and the
axiom AD. is added to the current list of axioms. The computation terminates
when there exists a substitution. 9 unifying each initial goal with a member of
the current list of axioms. The. definitions of of derivation, refutation of an
initial goal-axiom pair from P etc. as well as the definitions of depth, length
and conjunctive goal-sfae complexity for bottom-up computations are similar to
those for top-down computations, and are left to the reader.

Remark 2. If a logic program is of bottom-up depth complexity D(n), bottom-up
length complexity L(n), bottom-up goal-size complexity U(n), then it is of depth
complexity D(n), length complexity L(n) and goal-size complexity U(n).

9

Choosing a. clause a.ta. step of a bottom'."up computation of Panda sequence Lt +(
of some current axioms in order to unify with the body of the clause, we do not
know whether it leads to a proof of the initial goals. Moreover, the number of
possible choices of the sequence of some current axioms may be of order nk where
k is the number of goals in the body of the chosen clause. That is why programs
in Prolog are executed in a top-down manner. We may argue that if the program
P is non-deterministic. then choosing a clause in a top-down computation in
order to unify its head with the selected goal, we neither know whether it will
solve the goal. However, if we do not loop then we may backtrack in case of
failure like the running Prolog interpreters whereas the definition of failure for
a bottom-up computation is not clear. Neverthless, it is author's feeling that
for an important class of logic programs bottom-up computations are essentially
more efficient than (top-down) computations. This class may include so called
dynamic programming procedures which recursively generate a lot of symmetric
subgoals in order to solve the original goal.

An example of a logic program for the dynamic programming procedure of
Cocke, Kasa.mi and Young, accepting wordsfrom the language L(G) where G =
(N,E,P,S) is a context-free grammar in Chomsky normal form (see [AHU74]),
is shown as Program L

Program 1

PA(i, j) +- qA(i, i, j). for A E N,
qA(i, le, j) +- s(s(k)) < j, qA(i, s(k), j). for A E N,

qA(i, k, j) +- i < k < j, Ps(i, k), Pc(k, j). for A--J>BC E P,
PA(i, s(i)) +- i < n, input(a, i). for A-+a E P.

The program is design.·to succeed on the goal-axiom pair consisting of the goal
Ps(O, n) and the axioms input(wi, i). where w1 , ... w" is the input word if and
only if the input word belongs to L(G). In the worst case we may have to
backtrack an exponential in n number of times in order to find a (top-down)
computation accepting w whereas a bottom'."'up computation yields an answer in
O(n3) deduction steps if it proves a new goal at each deduction step. Why are
bottom-up computations successful here? Simply, there are only O(n3) variable
free goals that can be solved by Program 1 starting from the initial axioms.

Definition 1. Let R be a refutation. The goal number of R is the total number
of distinct goals in the nodes of the refutation tree. A logic program P is of
goal number complexity G(n) if for any goal A in I(P) of size n there exists a
refutation of A from P of goal number <G(n).

10

Our observation about bottom-up computations of Program 1 can be generalized
as follows:

Remark 3. Let P be a logic program. P is of goal-number complexity G(n)
if and only if it is of bottom-up· length complexity G(n). Moreover, if P is of
goal-size complexity U(n) then it· is of goal number complexity du(n.) where dis
a constant uniform in P.

The analogous remark for {top-down) computations would not be true. Simply,
it might happen that to solve a given goal, we have to solve the same goal several
times. In implementing (top-down) computations we can get rid of the above
inefficiency by dynamically extending the original set of axioms of P by the
solved intermediate goals.

By Theorem 2 and Remark 2 and 3, we can observe that any·Turing machine
operating in polynomial time can. be simulated by a logic p~ogram of polynomial
goal number complexity.

In a simple parallel implementation of bottom-up computations, we do not
encounter the problem. of variable sharing for subgoals of equal rank. Therefore,
the depth complexity · and the time taken by a single deduction step seem
to decide about the time performance of a bottom-,up computation of a logic
program of polynomial goal number complexity, in a parallel computational
model. The recent paper of Lewis and Statman [LS8?] has shown the prob­
lem of unification between :first order terms to be complete in co-NLog Space.
Therefore, the existence of a parallel algorithm for the unification problem

· operating in time O(lognlr.) and using a polynomial in n number of processors
.· '

would imply the existence of such algorithms for any problem from NLog Space
or co-NLog Space, which seems unlikely. Hence, we cannot count on a parallel
implementation of the single deduction or reduction step in time O(lognlr.). If
the logic program P in Theorem .. 1 is not patological then the bottom-up depth
complexity of the resulting program Q is equal to the depth complexity of Q.
Therefore, by Remark 2, we can usually apply Theorem 1 in order to compress
the bottom-up depth complexity. The following theorem, analogous to Theorem
1, shows how to achieve this for any logic program.

Theorem 4. Let P be a logic program of bottom-up length complexity L(n).
Let Bi, ... , Bm be the list of all axioms in P. P can be transformed into a logic
program Q such that a goal-axiom pair ((G1, ... , G1r.), (A1, ... , Ai)) is in J(P) if
and· only if the corresponding goal-axiom pair {p([B1 I[... IBm]J, [G 1 I [... [G 1r. 1-111
, f log(L(n))l), (p([X], [A1 IX], 0), ... , p([X], [A,IX], 0))) has a refutation from Q of
depth f log(L(n))l + flog(n + L(n))l.

11

4t1

Outline of Proof. The proof is again by applying Savitch's trick, analogously as
in the proof of Theorem 1. Here the predicate p(X, Y, i) says:

If X and Y are lists of axioms and i is natural number then the axioms in Y
can be derived from those in X in 2i (bottom-up) deduction steps.

The axioms -chosen from the current list of axioms in order to unify with the
body of chosen clause may occupy various_positions on the list. Therefore, we
include in Q the following clauses to pull the chosen axioms :to the front of
the list (because the list of axioms may be of length n + L(n) we again apply
Savitch's trick).

p(X,Y,O) +- q(X,Y,rlog(n+L(n))l).

q(X, Y, s(j)), +- q(X, Z, j), q(Z, Y, j).

q([Xl[YIZ]],[Yl[XIZ]],'.O) +- X=/;Y.

q(X,X,O).

Finally, for each clause A+-B1, ·-, B,,, in P :we have the corresponding axiom
q([B1 l(... [B,,, IX] ...), [Al [B1 l(.:.l[B,,, IX] ...], 0).11

In the above theorem, the program Q is non-deterministic even if the program
Pis strongly; deterministic (compare with Theorem l).

Possible Extensions

(1) The goal-:size complexity of Q'ain Theorem 1 mightibe as large as L(n) X U(n)
if Pis of goal-size complexity U(n). It seems possible to generalize Theorem 1 by
showing a trade off between the depth complexity and the goal-size complexity
of Q.
(2) It is possible to formalize the notion of simulation or introduce a more general
concept of equivalence, among logic programs and Turing machines.
(3) It would be interesting to design a parallel algorithm for, the unification
problem operating in time O(n01) and using (nP) processors where a < 1 and

P<l.

Acknowledgements

I would like to express my appreciation to Jan Komorowski, and Jan Maluszynskii:
for their encouragment: and remarks.

12

------- ------- --- --~

! i

References ::

[AHU74] Aho, A.V., J.E. Hopcroft, and J.D. Ullman; The design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
[B77] Borodin, A.B., On relating time and space to, sfae and depth, SIAM J.
Compt., voL 6(4), 1977.

[CKS81J Chandra,A.K., D.C. Kozen, L.J. Stockmeyer, Alternation, Journal of
the ACM 28(1), 1981. .

[CM81J Clocksin, W.F·. and C.S. Mellish,~ Programming in Prolog, Springer­
Verlag, 1981..

[H81j Hogger, C.J., Derivation of Logic Programs, Journal of the ACM 28(1),
1981.

[FGC81] Proceedings of International Conference on Fifth Generation Computer
Systems, Tokyo, 1981. :,

[L83} Lingas,: A., Languages with Sparse Computations, i~ preparation.
[LS8?] Lewis, H.R. and. R. Statman, Uniiiability is Complete for;co-NLog Space,
unpublished:manuscript, 198?.

[R65] Robinson, J.A., A machine.oriented logic based:on the reduction principle,
Journal of the ACM 12, January,'. 1965.

[Sa70J Savitch, W.J., Relationships BetweeTL·Non-deterministic and Deterministic
Tape Complexities, JCSS 4(2), 1982.

[Sh82a] Shapiro,E.Y., Alternation and the Computational Complexity oftLogic
Programs, International Conference on Logic Programming, Marseil, 1982. ·,[Sh82bJ
Shapiro,E.Y., A Subset of Concurrent Prolog and Its Interpreter, unpublished
manuscript, 1982.

[T77J Tarlund, S.A., Horn Clause-Computability, BIT 17, 1977!:'

13

