Jul 14 21:53 1984 critical.ih Page 1

/% CRITICAL. IH: Management of critical regions and interrupts

INTERFACE

Fernando
Updated: July 14, 1984

WARNING: This material is CONFIDENTIAL and proprietary
to Quintus Computer Systems, Inc.

Copyright (C) 1984, Quintus Computer Systems, Inc.
All rights reserved.

e+ 1+t + 1+ smomam

]

Interface Specification for Critical Sections (version of 7/14/84)
Fernando Pereira
Quintus CONFIDENTIAL

The critical section mechanism allows C or Prolog code to block until
explicitly unblocked the occurrence of selected classes of events. The main
concepts are that of an event, wich is any kind of abrupt bump to the flow
of execution of system code, and that of an event type, which is a class

of events that have boradly the same kind of effect. For example, events
that one way or the other make the system jJump to the top level, such as
EV_ABORT, have all the event type ABORT_EVtype. It is possible to define an
arbitrary number of event types; the classification of events in types is
left to those people who define new events: they will know (I hope) what
kind of behavior their rnew events cause.

Events are blocked and unblocked by a pair of operations, which for C are
actually expanded in—-line for efficiency. A critical section is the stretch
of code between a block/unblock pair. Blocking of event types is stacked,
that is if an an event type is blocked several times without being
urnblocked, the same number of unblockings is required to allow events of
that type to take action again. This way, functions that call other other
functions within critical sections need not know whether the called
functions have their own critical sections for the same type.

The two operations are:

BlockEvents (type) [block_events(Type) from Prologl
Block all events of type ‘type?'!. If an event of this type is called
for while the type is blocked, the event number is recorded for
later execution. If several events occur while their type is
blocked, only the last one is remembered.

UriblockEvents (type) [unblock_events(Type) from Prologl

Urblock all events of type ‘type’. If events of the blocked type
coccured while the type was blocked, the last one is fielded now,

Jul 14 21:53 1984 critical.ih Page 2

unless other blockings of the same type are still active.

Advice on the Use of Critical Sections

- - e el coeee cames e

Critical sections should be used whenever the occurrence of an event of a
given type might leave some critical data in a corrupted state. For example,
when new clauses are being added to the clause chain for a procedure, there
might be an interval in which the pointers are not consistent. That interval
should be a critical section for events of the ABORT_EVtype type, otherwise
the code area might be corrupted.

Currently, there are four event types: ABORT_EVtype already discussed,
NULL_EVtype for events that are never blocked, EMUL_EVtype for events that
need a tidy emulator state (this must be defined by someone) and CONT_EVtype
for events that will jsut continue the execution, maybe changing some atomic
flags.

*/
/% Number of different event types %/
&define EV_TYPES 4

/% Current event types */

£define NULL_EVtype 7 /¥ nothing at all —— never block these! */
£define ABORT_EVtype 1 /% events that bump us right to the top %/
£define EMUL_EVtype 2 /% events that rneed a tidy emulator state %/
Ldefine CONT_EVtype 3 /% events that just continue */
/% e R

Block event types

coame. cus0a sosen so0eo wrms emse meawe seste seese oo oo samee oo conne. */

/% Block one type of event. Expanded in-line. */
extern int ev_blocked[l;
L£define BlockEvents(T) (ev_blocked(Tl++)
/% Out—-of-lirne version to be called from Prolog */
extern void block_events (/% int */);
/W e e ————————— e -

Unblock event types

e e ——————— —— - */

/% Unblock one type of event #/
extern int field_event (/¥ int %*/);
/% An arithmetic test rather than a if is used so that the

whole test will be an expression, making C syntax problems
on macro expansion less likely.

Jul 14 21:53 1984 critical.ih Page 3

*/

fdefine UnblockEvents(T) ((——ev_blocked[T]
ev_happened(T]

== 0 &&
1= EV_NULL)

/% OQut—-of-line version to be called from Prolog. *#/

extern void unblock_events (/% int */);

? field_event(T)

/% —- ——————————

Test for blocked event

*/

*/

@)

Jul 14 21:54 1984 critical.c Page 1

/% CRITICAL.C: Management of critical regions and interrupts

Fernando
Updated: July 14, 1984

oseus 02000 50008 0000 e SUED SSONR $0008 0000 EESP SYERD $0008 $0030 HCS savER Sa0Sp Seaes S0000 Gmmae Summe Sefms SONSD £2008 Sve0 SFS Semse SOSEP SO00a S0 SO SuBMD Somup So0es S0003 S0 SEete Swese Sasve S2000 S0003 e SEEYe SINMD Sem S000 SH SSNRD SOMD SOND TS SwRS SIHEP Serwe Setes Seam Sese

WARNING: This material is CONFIDENTIAL and proprietary
to Quintus Computer Systems, Inc.

Copyright (C) 1984, Quintus Computer Systems, Inc.
All rights reserved.

o ———— 4

*/
£irnclude “"critical.ih”

/¥ Level of event type blocking, suspended events. For simplicity,
no more than one suspended event per type. */

public int ev_blockedLEV_TYPES], ev_happenedlEV_TYPES];
/% Event type table */

private int ev_typell = {

NULL_EVtype, /% EV_NULL -— no event at all %/
NULL_EVtype, /% EV_NOTHING */

NULL_EVtype, /% EV_START {(must check this...) %/
NULL_EVtype, /% EV_DIE (never blocked) */
ABORT_EVtype, /% EV_IOERR %/

ABORT_EVtype, /% EV_ARITH */

ABORT_EVtype, /% EV_EOF %/

ABORT_EVtype, /% EV_SIGNAL */

ABORT_EVtype, /% EV_ABORT */

NULL _EVtype, /% unused */

NULL_EVtype, /¥ unused */

EMUL _EVtype, /% EV_OVSTACK =/

EMUL_EVtype, /% EV_OVHEARP */

EMUL_EVtype, /% EV_OVTRAIL */

EMUL_EVtype, /% EV_OVPDL %/

EMUL_EVtype, /% EV_OVSYMATOM */

EMUL_EVtype, /% EV_OVSYMPROC */

EMUL_EVtype /% EV_OVCODE */

¥

fdefine EV_BLOCKABLE EV_OVCODE /% the last event in the table %/

/% - - — - ——

Test for blocked event
———————————————————————————————— */

public Bool EventBlocked(ev)
int ev;

Jul 14 21:54 1984 critical.c Page 2

>

int evtype;

if (ev ¢ EV_NULL |l ev) EV_BLOCKABLE) return false;

evtype = ev_typelevl;

if (ev_blockedlevtypel > @) {
ev_happenedlevtypel = ev;
return true;

>

return false;

/% - -

Field the saved event for an event type just unblocked

oose oo - o — — — -

*/

/% This function returns an int to typecheck with the funny

*/

inline code of UnblockEvernts (critical. ih)

public int field_event (evtype)
int evtype;

{

¥

/*

int event = ev_happenedlevtypel;
ev_happenedlevtypel = EV_NULL;

if (event '= EV_NULL) PrologEvent (event);
return eventg

block_events and unblock_events

public void block_events(evtype)
int evetype;

{

¥

BlockEvents (evtype) ;

public void unblock_events (evtype)
int evtype;

{

>

/%

urnblock_events (evtype) ;

[*/

FINIS

