
I

1

Swedish Institute of
Computer Science

SlctS

SICS R88007
Research Report
ISSN 0283-3638

SICStus Prolog User's Manual

by
Mats Carlsson and Johan Widen

Swedish Instil ute of Computer Science

SIC St us Prolog User's Manual

:20 Fl•brna.ry Hl88

This ma.nua.l is based 011 DECsyst.em-10 PilOLOG USER'S MANUAL by

D.L. BoWl'Jl. L. B?rd. F.C.N. Pereira.
1.11. Pereira., D.II.D. Warren

ivlo<lified for SlCStus J>rnlog b,v !-.Ia.ts Carlsson and Johan Widen

This ma.nua.l rnrrl'sponds to Sicstus version 0.6.

/

hi trod uction 1

Introduction

Prolog is a simple but powerful programming language developed at the University of Marseilles
[Roussel 75], as a practical tool for programming in logic [Kowalski 74] [van Emden 75] [Colmerauer
75]. From a user's point of view the major attraction of the language is ease of programming. Clear,
readable, concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this book,
and for those who have some prior knowledge of logic programming, a summary of the language is
included. See chapter 5 [Prolog Intro], page 71.

This manual describesjaProlog system developed at the Swedish Institute of Computer Science.
The system consists of a iV.A.1\.f emulator written in C, a library and runtime system written in C
and Prolog and an interpreter and a compiler written in Prolog. The Prolog engine is a Warren
Abstract Machine (\VAM) emulator ["\Varren 83]. Two modes of compilation are available: in-core
i.e. incremental, and file-to-file.

When compiled, a procedure will run about 10 times faster and use store more economically.
However, it is recommended that the new user should gain experience with the interpreter before
attempting to use the compiler. The interpreter facilitates the development and testing of Prolog
programs as it provides powerful debugging facilities. It is only worthwhile compiling programs
which are well-tested and are to be used extensively.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax and built-in predi
cates, and is largely compatible with DECsystem-10 Prolog and Quintus Prolog. It also contains
primitives for demand-driven and object oriented programming.

Certain aspects of the Prolog system are unavoidably installation dependent. Whenever there
are differences, this manual describes the SICS installation which runs under Berkeley UNIX. See
chapter 7 [Installation Intro], page 101.

This manual is based on the DECsystem-10 Prolog USER'S MANUAL by D.L. Bowen (editor),
L. Byrd, F.C.N. Pereira, LJvI. Pereira, D.H.D. Warren.

i

...

'

2 SICStus

•

"

;

'

•

Notational Conventions 3

Notational Conventions

Predicates in Prolog are distinguished by their name and their arity. The notation name/arity
is therefore used when it is necessary to refer to a predicate unambiguously; e.g. concatenate/3
specifies the predicate which is named 'concatenate' and which takes 3 arguments. We shall call
name/arity a predicate spec.

When introducing a built-in predicate, we shall present its usage with a mode spec which
has the form name(arg, ... , arg) where each arg can be of one of the forms: +ArgName - this
argument should be instantiated in calls to the predicate. -ArgName - th.is argument should not be
instantiated in calls to the predicate. ?ArgNa.me - this argument may or may not be instantiated
in calls to the predicate.

We adopt the following convention for delineating character strings in the text of this manual:
when a string is being used as a Prolog atom it is written thus: user or 'user'; but in all other
circumstances double quotes are used.

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: -A. Thus -c is the character you get by holding down the CTL key
while you type c. Finally, the special control characters carriage-return, line-feed and space are
often abbreviated to RET, LFD and SPS respectively .

i

4 SICStus

"'

...

/

"

111

How to run Prolog 5

1. How to run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incremen
tally building programs, debugging programs by following their executions, and modifying parts of
programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of the
standard text editors. The Prolog interpreter can then be instructed to read in programs from these
files; this is called consulting the file. Alternatively, the Prolog compiler can be used for compiling

the file.

1.1 Getting Started

SICStus is normally started from one of the UNIX shells. It is often convenient to run in a GNU
Emacs shell window, available by the Emacs command M-X shell. To run the Prolog interpreter,
perform the shell command (see section 7.1.[Getting Started], page 101):

Y, sicstus

The interpreter responds with a message of identification and the prompt 'I ?- ' as soon as it is
ready to accept input, thus:

SICStus V0.6(-) Mon Feb 15 11:20:57 MET 1988
Copyright (C) 1988. Swedish Institute of Computer Science.
All rights reserved.
I ?-

At this point the interpreter is expecting input of a directive, i.e. a query or command. See
section 1.4 [Directives], page 7. You cannot type in clauses immediately (see section 1.3 [Inserting

• Clauses], page 7). While typing in a directive, the prompt (on following lines) becomes ' '. That
is, the'?-' appears only for the :first line of the directive, and subsequent lines are indented .

•

1.2 Reading in Program_s
/

..
A program is made up of a sequen.Je of clauses, possibly interspersed with directives to the

interpreter. The clauses of a procedure do not have to be immediately consecutive, but remember

6 SICStus

that their relative order may be important.

To input a program from a file file, just type the file name inside list brackets (followed by
full-stop and carriage-return), thus:

?- [file].

This instructs the interpreter to read in (consult) the program. The file specification Ii.le must be
a Prolog atom. Note that it may be necessary to surround the whole file specification with single
quotes; e.g.

?- [>myfile.pl>].

?- [>/usr/prolog/somefile'].

The specified file is then read in. Clauses in the file are stored ready to be interpreted, while any
directives are obeyed as they are encountered. When the end of the file is found, the interpreter
displays on the terminal the time spent for read-in. This indicates the completion of the command.

Predicates that expect the na.me of a prolog source file as an argument use absol{ite_file_name/21
(see section 4.1.4 [Stream Pred], page 39) to look up the file. This predicate will first search for a
file with the suffix .pl added to the name given as an argument. If this fails it will look for a file
with no extra suffix added. There is also support for libraries.

In general, this directive can be any list of filenames, such as:

?- [myprog,extras,tests].

In this case all three files would be consulted.

The clauses for all the procedures in the consulted files will replace any existing clauses for those
procedures, i.e. any such previouslr:existing clauses in the database will be deleted .

...

'
Note that consult/1 in SICStus Prolog behaves like reconsult/1 in DEC-10 Prolog.

"'

:ii

•

II

How to run Prolog 7

1.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended if the
clauses will not be needed permanently, and are few in number. To enter clauses at the terminal,
you must give the special command:

?- [user] .

and the new prompt 'I ' shows that the interpreter is now in a state where it expects input of
clauses or directives. To return to interpreter top level, type -n.

1.4 Directives: Queries and Commands

Directives are either queries or commands. Both are wa.ys of directing the system to execute
some goal or goals.

In the following, suppose that list membership has been defined by:

member(X, [XI_]).
member(X, [_IL]) :- member(X, L).

(Notice the use of anonymous variables written_.)

The full syntax: of a query is '?-' followed by a sequence of goals. E.g.

?- member(b, [a,b,c]).

At interpreter top level (signified by the initial prompt of' I ?- '), a query may be abbreviated
by omitting the ?- which is already included in the prompt. Thus a query at top level looks like
this:

/
I?- member(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (.), and that therefore Prolog will

8 SICStus

not execute anything until you have typed the full stop (and then carriage-return) at the end of
the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this example,
then the system answers

yes

and execution of the query terminates.

If variables are included in the query, then the final value of each variable is displayed (except
for anonymous variables). Thus the query

I ?- member(X, [a,b,c]).

would be answered by

X = a

At this point the interpreter is waiting for input of either just a carriage-return (RET) or else a
followed by RET. Simply typing RET terminates the query; the interpreter responds with 'yes'.

However, typing ; causes the system to backtrack looking for alternative solutions. If no further
solutions can be found it outputs

no

The outcome of some queries is shown below, where a number preceded by _ 1s a system
generated name for a variable.

?- member(X, [tom,dick,harry]).

X = tom i
X = dick ;
X = harry ;

no
I ?- member(X, [a,b,f(Y,c),j), member(X, [f(b,Z) ,d]).

X f(b,c), '\ =
y = b,

I(

How to run Prolog 9

Z = C

yes
I?- member(X, [f(_),g]).

X = fL52)

yes
I ?-

Commands are like queries except that

1. Variable bindings are not displayed if and when the command succeeds.

2. You are not given the chance to backtrack through other solutions.

Commands start with the symbol : -. (At top level this is simply written after the prompted' I ?- '

which is then effectively overridden.) Any required output must be programmed explicitly; e.g. the

command:

:- member(3, [1,2,3]), write(ok).

directs the system to check whether 3 belongs to the list (1,2,3]. Execution of a command
terminates when all the goals in the command have been successfully executed. Other alternative
solutions are not sought. If no solution can be found, the system gives:

{WARNING: goal failed}

as a warning.

The principal use for commands (as opposed to queries) is to allow files to contain directives
which call various procedures, but for which you do not want to have the answers printed out.
In such cases you only want to call the procedures for their effect, i.e. you don't want terminal

• interaction in the middle of consulting the file. A useful example would be the use of a directive in
a file which consults a whole list of other files, e.g.

:- (bits, bobs, main, tests, data, junk].

If a command like this were contain~d in the file 'myprog' then typing the following at top-level
would be a quick way of reading in your~ntire program:

10 SICStus

I?- [myprog].

When simply interacting with the top-level of the Prolog interpreter this distinction between
queries and commands is not normally very important. At top-level you should just type queries
normally. In a file, if you wish to execute some goals then you should use a command; i.e. a
directive in a file must be preceded by ': -', otherwise it would be treated as a clause.

1.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or in general any term read
in by the built in procedure read that fails to comply with syntax requirements is displayed on the
terminal ·as soon as it is read. A mark indicates the point in the string of symbols where the parser
has failed to continue analysis. e.g.

gives:

member(X, X:L).

** atom follows expression**
member (X, X
here
: L)

if : has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you are
in doubt about which clause was wrong you can use the listing/ 1 predicate to list all the clauses
which were successfully read-in, e.g.

I ?- listing(member).

1.6 Undefined Predicates
;

There is a difference between predic"a.tes that have no definition and predicates that have no
clauses. The latter case is meaningful e.g. for dynamic predicates that clauses are being added to

•

I

"

..

•

How to run Prolog 11

or removed from. There are good reasons for treating calls to undefined predicates as errors, as

such calls easily arise from typing errors.

The system can optionally catch calls to predicates that have no definition. The state of the

catching facility can be:

• 'trace', which causes calls to predicates with no clauses to be reported and the debugging
system to be entered at the earliest opportunity (the default state);

• 'fail', which causes calls to such predicates to fail.

Calls to predicates that have no clauses are not caught.

The built-in predicate

unknown(?OldSta.te, ?New State)

unifies OldState with the current state and sets the state to NewState. It fails if the arguments are
not appropriate. The built-in predicate debugging/0 prints the value of this state along with its
other information.

1. 7 Program Execution And Interruption

Execution of a program is started by giving the interpreter a directive which contains a call to
one of the program's procedures.

Only when execution of one directive is complete does the interpreter become ready for another
directive. However, one may interrupt the normal execution of a directive by typing -c. This -c
interruption has the effect of suspending the execution, and the following message is displayed:

Prolog interruption (h or? for help)?

At this point the interpreter accepts one-letter commands corresponding to certain actions. To
execute an action simply type the corresponding character (lower or upper case) followed by RET.
The possible commands are:

a

C

i

abort the current command'as soon as possible.

continue the execution.

12

d

e

h

?

t

enable debugging. See chapter 2 [Debug Intro], page 15.

exit from Prolog; closing all files.

list available commands.

enable trace. See section 2.3 [Trace], page 17.

1.8 Exiting From The Interpreter

SICStus

To exit from the interpreter and return to monitor level either type -n at interpreter top level,
or call the built in procedure halt, or use thee (exit) command following a -c interruption.

1.9 Nested Executions - Break and Abort

The Prolog system provides a wa.y to suspend the execution of your program and to enter a new
incarnation of the top level where you can issue directives to solve goals etc. This is achieved by
issuing the directive (see section 1.7 [Execution], page 11): •

I ?- break.

This causes a recursive call to the command interpreter, indicated by the message:

{ Break level 1}

You can now type queries just as if the interpreter were at top level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the break
and resume the execution which was suspended, type -n. The debugger state and current input
and output streams will be restored, and execution will be resumed at the procedure call where it ,.
had been suspended after printing the message:

{ End break}

Alternatively, the suspended execntion can be aborted by calling the built-in predicate abort/0.
,.

' A suspended execution can be aborted by issuing the directive:

..

How to run Prolog 13

I ?- abort.

within a break. In this case no -n is needed to close the break; a.11 break levels are discarded and
the system returns right back to top-level. All open IO streams a.re closed, and the debugger is
switched off. abort/0 may also be called from within a program.

1.10 Saving and Restoring Program States

Once a program has been read, the interpreter will have available all the information necessary
for its execution. This information is called a program sta.te.

The state of a program may be saved on disk for future execution. To save a program into a file
File, perform the directive:

I ?- save(File).

This predicate may be called at any time, for example it may be useful to call it in a break in order
to save an intermediate execution state. The file File becomes an executable file. See section 7.1
(Getting Started], page 101.

Once a program has been saved into a file File, the following directive will restore the interpreter
to the saved state:

I ?- restore (File) .

After execution of this command, which may be given in the same session or at some future date,
the interpreter will be in exactly the same state as existed immediately prior to the call to save.
Thus if you saved a program as follows:

I?- save(myprog), vrite('myprog restored').

then on restoring you will get the message 'myprog restored' printed out.

A partial program state, containing only the user-defined procedures may also be saved with
the directive: 1

?- save_program(File) .

14 SICStus

The file File becomes an executable file. See section 7.1 [Getting Started], page 101. After
restoring a partial program state, the interpreter will reinitialise itself.

Nate that when a new version of the Prolog system is installed, all program files saved with the
old version become obsolete.

/

..
'

Debugging 15

2. Debugging

..

This chapter describes the debugging facilities that are available in the Prolog interpreter. The
purpose of these facilities is to provide information concerning the control flow of your program.
The main features of the debugging package are as follows:

• The Procedure Box model of Prolog execution which provides a simple way of visualising
control flow, especially during backtracking. Control flow is viewed at the procedure level,
rather than at the level of individual clauses.

• The ability to exhaustively trace your program or to selectively set spy-points. Spy-points
allow you to nominate interesting procedures at which the program is to pause so that you can
interact.

• The wide choice of control and information options available during debugging.

Much of the inform~tion in this chapter is also in Chapter eight of [Clocksin & Mellish 81] which
is recommended as an introduction.

2.1 The Procedure Box Control Flow Model

During debugging the interpreter prints out a sequence of goals in various states of instantiation
in order to show the state the program has reached in its execution. However, in order to understand
what is occurring it is necessary to understand when and why the interpreter prints out goals. As
in other programming languages, key points of interest are procedure entry and return, but in
Prolog there is the additional complexity of backtracking. One of the major confusions that novice
Prolog programmers have to face is the question of what actually h~ppens when a goal fails and the

" system suddenly starts backtracking. The Procedure Box model of Prolog execution views program
control flow in terms of movement about the program text. This model provides a basis for the
debugging mechanism in the interpre~er, and enables the user to view the behaviour of his program
in a consistent way. 1

Let us look at an example Prolog procedure :

16

Call Exit

---------> + descendant(X,Y) :- offspring(X,Y). + --------->

<---------+
Fail

descendant(X,Z) ·-
offspring(X,Y), descendant(Y,Z). + <--------

Redo

SICStus

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second clause ..
states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant of Y. In the
diagram a box has been drawn around the whole procedure and labelled arrows indicate the control
flow in and out of this box. There are four such arrows which we shall look at in turn.

Call This arrow represents initial invocation of the procedure. When a goal of the form
descendant (X, Y) is required to be satisfied, control passes through the Call port of the
descendant box with the intention of matching a component clause and then satisfying
any subgoals in the body of that clause. Note that this is independent of whether such
a match is possible; i.e. first the box is called, and then the attempt to match takes
place. Textually we can imagine moving to the code for descendant when meeting a
call to descendant in some other part of the code.

Exit

Redo

Fail

This arrow represents a successful return from the procedure. This occurs when the
initial goal has been unified with one of the component clauses and any subgoals have
been satisfied. Control now passes out of the Exit port of the descendant box. Textually
we stop following the code for descendant and go back to the place we came from.

This arrow indicates that a subsequent goal has failed and that the system is backtrack
ing in an attempt to find alternatives to previous solutions. Control passes through the
Redo port of the descendant box. An attempt will now be made to resatisfy one of the
component subgoals in the body of the clause that last succeeded; or, if that fails, to
completely rematch the original goal with an alternative clause and then try to satisfy
any subgoals in the body of this new clause. Textually we follow the code backwards
up the way we came looking for ri.ew ways of succeeding, possibly dropping down on to
another clause and following that if necessary.

This arrow represents a failure of the initial goal, which might occur if no clause is
matched, or if subgoals are never satisfied, or if any solution produced is always rejected
by later processing. Control now passes out of the Fail port of the descendant box and
the system continues to backtrack. Textually we move back to the code which called
this procedure and keep moving backwards up the code looking for· choice points.

In terms of this model, the information we get about the procedure box is only the control flow
through these four ports. This means ~1at at this level we are not concerned with which clause
matches, and how any subgoals are satisfied, but rather we only wish to know the initial goal and

..

Debugging 17

the final outcome. However, it can be seen that whenever we are trying to satisfy subgoals, what
we are actually doing is passing through the ports of tlieic respective boxes. If we were to follow
this, then we would have complete information about the control flow inside the procedure box.

Note that the box we have drawn round the procedure should really be seen as an invocation_box.
That is, there will be a different box for each different invocation of the procedure. Obviously, with

., something like a recursive procedure, there will be many different Calls and Exits in the control
flow, but these will be for different invocations. Since this might get confusing each invocation box
is given a unique integer identifier.

..

2.2 Basic Debugging Predicates

The interpreter provides a range of built-in predicates for control of the debugging facilities.
The most basic predicates are as follows:

debug Switches the debugger on. (It is initially off.) In order for the full range of control flow
information to be available it is necessary to have this on from the start. When it is off
the system does not remember invocations that are being executed. (This is because it
is expensive and not required for normal running of programs.) You can switch Debug
Mode on in the middle of execution, either from within your program or after a -c
(see trace below), but information prior to this will just be unavailable.

nodebug Switches the debugger off. If there are any spy-points set then they will be kept but
disabled.

debugging
Prints onto the terminal information about the current debugging state. This will
show:

1. Whether unknown procedures are being trapped.

2. Whether the debugger is swithed on.

3. What spy-points have been set (see below).

4. What mode of leashing is in force (see below).

5. What the interpreter maxdepth is (see below) .

2.3 Tracing i

The following built-in predicate may be used to commence an exhaustive trace of a program.

18

trace

SICStus

Switches the debugger on, if it is not on already, and ensures that the next time control
enters a procedure box, a message will be produced and you will be asked to interact.
The effect of trace can also be achieved by typing t after a AC interruption of a program.

At this point you have a number of options. See section 2.6 [Debug Options], page 20.
In particular, you can just type RET (carriage-return) to creep (or single-step) into your
program. If you continue to creep through your program you will see every entry and
exit to/from every invocation box. You will notice that the interpreter stops at all
ports. However, if this is not what you want, the following built-in predicate gives full
control over the ports at which you are prompted:

leash(+Mode)

notrace

Leashing Mode is set to Mode. Leashing Mode determines the ports of procedure boxes
at which you are to be prompted when you Creep through your program. At unleashed
ports a tracing message is still output, but program execution does not stop to allow
user interaction. Note that the ports of spy-points are always leashed (and cannot be
unleashed). Mode can be a a subset of the following, specified as a list:

call Prompt on Call.

exit Prompt on Exit.

redo Prompt on Redo.

fail Prompt on Fail.

The initial value of Leasl1ing Mode is [call, exit, redo, fail] (full leashing).

Equivalent to nodebug.

2.4 Spy-points

For programs of any size, it is clearly impractical to creep through the entire program. Spy
points make it possible to stop the program whenever it gets to a particular procedure which is of
interest. Once there, one can set further spy-points in order to catch the control flow a bit further
on, or one can start creeping.

Setting a spy-point on a procedure hidicates that you wish to see all control flow through the
various ports of its invocation boxes. When control passes through any port of a procedure with
a spy-point set on it, a message is output and the user is asked to interact. Note that the current
mode of leashing does not affect spy-points: user interaction is requested on every port.

i

Spy-points are set and removed DJ! the following built-in predicates which are also standard
operators:

•

Debugging

spy +Spec

19

Sets spy-points on all the procedures given by Spec. Spec is either an atom, a predicate
spec, or a list of such specifications. An atom is taken as meaning all the predicates
whose name is that atom. If you specify an atom but there is no definition for this
predicate (of any arity) then nothing will be done. If you really want to place a spy-point
on a currently non-existent procedure, then you must use the full form atom/arity; you
will get a warning message in this case. If you set some spy-points when the debugger
is switched off then it will be automatically switched on.

nospy +Spec
This is similar to spy Spec except that all the procedures given by Spec will have
previously set spy-points removed from them.

nospyall This removes all the spy-points that have been set.

The options available when you arrive at a spy-point are described later. See section 2.6 [Debug
Options), page 20.

2.5 Format of Debugging messages

We shall now look at the exact format of the message output by the system at a port. All trace
messages are output to the terminal regardless of where the current output is directed. (This allows
you to trace programs while they are performing file IO.) The basic format is as follows:

23 6 Call: foo(hello,there,_123)?

The first number is the unique invocation identifier. This is continuously incrementing regardless
of whether or not you are actually seeing the invocations (provided that the debugger is swithed
on). This number can be used to cross correlate the trace messages for the various ports, since it is
unique for every invocation. It will also give an indication of the number of procedure calls made
since the start of the execution. The invocation counter starts again for every fresh execution of a
command, and it is also reset when retries (see later) are performed.

The number following this is the current deptl1; i.e. the number of direct ancestors this goal
has.

The next word specifies the parti~ular port (Call, Exit, Redo or fail) .
...

'
The goal is then printed so that you can inspect its current instantiation state. This is done using

20 SICStus

print/1 (see section 4.1.2 [Term IO], page 33) so that all goals output by the tracing mechanism
can be pretty printed if the user desires.

The final'?' is the prompt indicating that you should type in one of the option codes allowed (see
section 2.6 [Debug Options], page 20). If this particular port is unleashed then you will obviously
not get this prompt since you have specified that you do not wish to interact at this point.

Note that not all procedure calls are traced; there are a few basic procedures which have been
made invisible since it is more convenient not to trace them. These include debugging directives
and basic control structures, including trace/0, debug/0, notrace/0, nodebug/0, spy/1, nospy/1,
nospyall/0, leash/1, debugging, true/0, !/0, ', '/2, '->' /2, ': '/2, and'\+' /1. This means
that you will never see messages concerning these predicates during debugging.

2.6 Options available during Debugging

This section describes the particular options that are available when the system prompts you
after printing out a debugging message. All the options are one letter mnemonics, some of which
can be optionally followed by a decimal integer. They are read from the terminal with any blanks
being completely ignored up to the next terminator (carriage-return, line-feed, or escape). Some
options only actually require the terminator; e.g. the creep option, as we have already seen, only
requires RET.

The only option which you really have to remember is 'h' (followed by RET). This provides help
in the form of the following list of available options.

RET creep C creep
1 leap s skip
r retry r <i> retry i
d display p print
w write
g ancestors g <n> ancestors n
n nodebug = debugging
+ spy this nospy this
a abort b break
© command u unify
< reset printdepth < <n> set printdepth

reset subterm < <n> set subtenn
? help h; help

C

"

•

Debugging 21

RET creep causes the interpreter to single-step to the very next port and print a message.

1

s

r

d

p

Then if the port is leashed (see section 2.3 [Trace], page 17), the user is prompted for
further interaction. Otherwise it continues creeping. If leashing is off, creep is the same
as leap (see below) except that a complete trace is printed on the terminal.

leap causes the interpreter to resume running your program, only stopping when a
spy-point is reached (or when the program terminates). Leaping can thus be used to
follow the execution at a higher level than exhaustive tracing. All you need to do is
to set spy-points on au evenly spread set of pertinent procedures, and then follow the
control flow through these by leaping from one to the other.

skip is only valid for Call and Redo ports. It skips over the entire execution of the
procedure. That is, you will not see anything until control comes back to this procedure
(at either the Exit port or the Fail port). Skip is particularly useful while creeping
since it guarantees that control will be returned after the (possibly complex) execution
within the box. If you skip then no message at all will appear until control returns.
This includes calls to procedures with spy-points set; they will be masked out during
the skip. There is. a way of overriding this : the t option after a -c interrupt will
disable the masking. Normally, however, this masking is just what is required!

retry can be used at any of the four ports {although at the Call port it has no effect).
It transfers control back to the Call port of the box. This allows you to restart an
invocation when, for example, you find yourself leaving with some weird result. The
state of execution is exactly the same as when you originally called, (unless you use
side effects in your program; i.e. asserts etc. will not be undone). When a retry
is performed the invocation counter is reset so that counting will continue from the
current invocation number regardless of what happened before the retry. This is in
accord with the fact·that you have, in executional terms, returned to the state before
anything else was called.

If you supply an integer after the retry command, then this is taken as specifying an
invocation number and the systerri ti·ys to get you to the Call port, not of the current
box, but of the invocation box you have specified. It does this by continuously failing
until it reaches the right place. Unfortunately this process cannot be guaranteed: it
may be the ca.se that the invocation you are looking for has been cut out of the search
space by cuts (!) in your program. The system is currently not able to detect this
situation, and the behaviour is undefined. It is hoped that this situation will improve
in future versions .

display goal displays the current goal using display/1. See Write (below).

print goal re-prints the c~rrent goal using print/1. Nested structures will be printed
to the specified printdeptl1 (below).

write goal writes the curre1;~ goal on the terminal using write/ 1. This may be useful
if your pretty print routine (portray) is not doing what you want.

22

g

n

=

+

a

b

u

<

SICStus

Print ancestor goals provides you with a list of ancestors to the current goal, i.e. all
goals that are hierarchically above the current goal in the calling sequence. It uses the
ancestors/1 built-in predicate (see section 4.6 [State Info], page 49). You can always
be sure of jumping to any goal in the ancestor list (by using retry etc). If you supply
an integer varn, then only that numbe1· of ancestors will be printed. That is to say, the
last n ancestors will be printed counting back from the current goal. The list is printed
using print/1 and each entry is preceded by the invocation number followed by the
depth number (as would be given in a trace message).

nodebug switches the debugger off. Note that this is the correct way to switch debug
ging off at a trace point. You cannot use the© orb options because they always return
to the debugger.

debugging outputs information concerning the status of the debugging package. See
section 4.13 [Debug Pred], page 60.

spy this. Set a spy-point on the current goal.

nospy tlzis. Remove spy-point from the current goal.

abort causes an abort of the current execution. All the execution states built so far are
destroyed and you are put right back at the top level of the interpreter. (This is the
same as the built-in predicate abort/0.)

break calls the built-in predicate break/0, thus putting you at interpreter top level
with the execution so far sitting underneath you. When you end the break (-n) you
will be reprompted at the port at which you broke. The new execution is completely
separate from the suspended one; the invocation numbers will start again from 1 during
the break. The debugger is temporarily switched off as you call the break and will be
re-switched on when you finish the_ break and go back to the old execution. However,
any changes to the leashing or to spy-points will remain in effect.

command gives you the ability to call arbitrary Prolog goals. It is effectively a one-off
break (see above). The initial message 'I :- ' will be output on your terminal, and a
command is then read from the terminal and executed as if you were at top level.

unify is available at the Call port and gives you the option of providing a solution to
the goal-from the terminal rather than executing the goal. This is convenient e.g. for
providing a 11stub 11 for a predicate that has not yet been written. A prompt 'I :
will be output on your terminal, and the solution is then read from the terminal and
unified with the goal.

While in the debugger, a· printdeptli is in effect for limiting the subterm nesting level
when printing the current goal using print/1. ·when displaying or writing the current
goal, all nesting levels are shown. The limit is initially 10. This command, without
arguments, resets the liriit to 10. With an argument of n, the limit is set to n.

While at a particular port"~ a current sub term of the current goal is maintained. It
is the current subterm which is displayed, printed, or written when prompting for a

Debugging

?

h

23

debugger command. Used in combination with the printdepth, this provides a means
for navigating in the current goal for focusing on the part which is of interest. The
current subterm is set to the current goal when arriving at a new port. This command,
without arguments, resets the current subterm to the current goal. With an argument
of n (> 0), the current subterm is replaced by its n:th subterm. With an argument of
0, the current subterm is replaced by its parent term.

help displays the table of options given above.

2. 7 Consulting during Debugging

It is possible, and sometimes useful, to consult a file whilst in the middle of a program execution.
However this can lead to unexpected behaviour under the following circumstances: a procedure has
been successfully executed; it is subsequently redefined by a consult, and is later reactivated by
backtracking. ·when the backtracking occurs, the new clauses for the procedure have physically
replaced the old ones, resulting in undefined behaviour. Thus large amounts of (unwanted) activity
takes place on backtracking. The problem does not arise if you do the consult when you are at the
Call port of the procedure to be redefined.

/

24 SICStus

i

..
'

•

Loading Programs 25

3. Loading Programs

Programs can be loaded in three different ways: consulted, compiled, or loaded from object
files. Loading from objects files is the fastest way of loading programs, but of course requires that
the programs have been compiled to object files first. Object files may be handy when developing
large applications consisting of many source files, but are not strictly necessary since it is possible
to save and restore entire execution states (see section 4.15 [Environ], page 65).

Consulted procedures are equivalent to, but slower than, compiled ones. The two types of
procedures can call each other freely. Consulted procedures possess the property of being dynamic
- other procedures may inspect and modify them, adding or deleting individual clauses.

The SICStus Prolog compiler produces compact and efficient code, running about 10 times faster
than interpreter code, and requiring much less runtime storage. Compiled Prolog programs are
comparable in efficiency with LISP programs for the same task. However, against this, compilation
itself takes about twice as long as 'consul ting' and some debugging aids, such as tracing, are not
applicable to compiled code. Compiled procedures are not dynamic. Spy-points can be placed on
compiled procedures, however.

3.1 Predicates which Load Code

To consult a prog-ram, issue the directive:

I?- consult(Files).

where Files is either the name of a file (including the file 'user') or a list of file names instructs the
interpreter to read-in the program which is in the files. For example:

\

I?- consult([dbase, 1 extras.pl',user]).

When a directive is read it is immediately executed. Any procedure defined in the files erases
any clauses for that procedure already present in the interpreter. If the old clauses were loaded from
a different file than the present one,1the user will be queried first whether (s)he really wants the
new definition. However, for existing p:r_edicates which have been declared as 'mul tifile' (below)
new clauses will be added to the predicat\, rather than replacing the old clauses. If clauses for some
predicate appear in more than one file, the later set will effectively overwrite the earlier set. The

26 SICStus

division of the program into separate files does not imply any module structure - any procedure
can call any other.

consult/1, used in conjunction with save/1 and restore/1, makes it possible to amend a
program without having to restart from scratch and consult all the files which make up the program.
The file 'consulted' is normally a temporary 'patch' file containing only the amended procedure(s).
Note that it is possible to call consult(user) and then enter a patch directly on the terminal
(ending with AD). This is only recommended for small, tentative patches.

I ?- [FilelFiles].

This is a shorthand way of consulting a list of files. (The case where there is just one file name
in the list was described earlier (see section 1.2 (Reading In], page 5).

To compile a program in-core, use the built-in predicate:

I ?- compile(Files).

where Files is specified just as for consult/1.

The effect of compile is very much like that of consult, except all new procedures will be
stored in compiled rather than consulted form. However, predicates explicitly declared as 'dynamic'
(below) will be stored in consulted form, even though compile/1 is used.

To compile a program to an object file, use the built-in predicate:

I ?- fcompile(Files).

where Files is specified just as for consult/ 1. For each filename in the list, the compiler will append
the string '.pl' to it and try to locate a source file with that name and compile it to an object file.
The object file name if formed by appending the string '. ql' to the specified name. The internal
state of SICStus Prolog is not changed as result of the compilation.

To load a program from a set of object files, use the built-in predicate:

I ?- load(Files). i

..
' where Files is either a single object file name (specified without the trailing '. ql ') or a list of file

Loading Programs 27

names. This directive has the same effect as if the source files had been compiled using compile/1
directly.

3.2 Declarations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of the
procedures specially. This information is supplied by including declarations about such procedures
in the source file, preceding any clauses for the procedures which they concern. A declaration is
written just as a command, beginning with ': - '. A declaration is effective from its occurrence
through the end of file.

Although declarations that affects more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately before
its first clause.

The following two declarations are relevant both in Quintus Prolog and in SICStus Prolog:

:- dynamic PredSpec, ...• PredSpec.

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic, which
implies that they have to be stored in consulted form even if a compilation is in progress. This
declaration is meaning,-ful even if the file contains no clauses for a specified predicate - the effect is
then to define a dynamic predicate with no clauses.

:- multifile PredSpec, ...• PredSpec.

causes the specified predicates to be 11multifile 11
• This means that if more clauses are subsequently

loaded from other files for the same predicate, then the new clauses will not replace the old ones, but
added at the end instead. The old clauses are erased only if the predicate is reloaded from its "home
file" (the one containing the multifile declaration), or is explicitly abolished. Tl1is declaration is
not supported for fl.le-to-file compilation.

The following two declarations are not normally relevant in any Prologs but SICStus Prolog:

i
:- parallel PredSpec, ... , PredSpec ,

enables the clauses of the specified predicates to be run in parallel. However, the execution of

28 SICStus

SICStus Prolog is strictly sequential, and this construct is reserved for future extension which have
the ability to run clauses in parallel.

:- wait PredSpec, ... , PredSpec.

introduces an exception to the rule that goals be run strictly from left to right within a clause.
Calls to the specified predicates suspend if the first argument of the call is uninstantianted. 11 As
soon as 11 (see below) that argument becomes instantiated, by some other goal binding it to a non
variable term, the suspended goal is resumed. The user top-level checks whether any goals are still
suspended when no more goals suspend. If that is the case, a warning is printed on the terminal,
to notify the user that the answer (s)he has got is really a speculative one, since it is only valid if
the suspended goal is true:

** Constraint not yet run: Goal

The behaviour of suspending goals on the first argument cannot be switched off, except by
abolishing or redefining the predicate.

A suspended goal is resumed before the next procedure call, where the following built-in predi
cates do not count as procedures in compiled code:

'C'/3
arg/3
atom/1
atomic/1
compare/3
float/1
functor/3
is/'2
integer/1
nonvar/1
number/1
var/1
·=='/2 '\=='/2 '@<'/2 '©>='/2 '©>'/2 '©=<'/2
'=:='/2 '=\='/2 '<'/2 '>='/2 '>'/2 '=<'/2
'= .. '/2 '=' /2 ' , '/2 ! /0

Note also that there is an implicit cut in the\+ and -> constructs.

Sometimes, it is crucial that the §uspended goal be resumed before a call to one of the above
built-in predicates. Since most of the abl!lve are meta-logical primitives, the semantics of them can
depend on whether a variable is currently bound etc. For example, if a unification is followed by a

Loading Programs 29

cut, and the unification may cause suspended a goal to be resumed, and the goal might fail, then
the cut should not happen. Unfortunately, with the formulation

X=Y, ! , p(Z) , ...

the cut will happen before resuming the suspended goal. Inserting a dummy goal 'true' forces
• dummy goals to be invoked. Thus the following formulation achieves the desired timing:

•

X=Y, true, !, p(Z), ...

The following two declarations are sometimes relevant in other Prologs, but are ignored by
SICStus Prolog. They are however accepted for compatibility reasons:

:- public PredSpec, ... , PredSpec.

In some Prologs, this declaration is necessary for making compiled predicates visible for the
interpreter. In SICStus Prolog, any predicate may call any other, and all are visible.

:- mode ModeSpec, ... , ModeSpec.

where each ModeSpec is a mode spec. In some Prologs, this declaration helps reduce the size of
the compiled code for a predicate, and may speed up its execution. Unfortunately, writing mode
declarations can be error-prone, and since errors in mode declaration do not show up while running
the predicates interpretively, new bugs may show up when predicates are compiled. SICStus Prolog
ignores mode declarations. However, mode declarations may be used as a commenting device, as
they express the programmer's intention of data fl.ow in predicates. If you do so, use only the atoms
'+','-',and'?' as arguments in your mode specs, as in

:- mode append(+,+,-) .

3.3 Indexing

In contrast to the interpreter, the clauses of a compiled procedure are indexed according to the
principal functor of the first argument in the head of the clause. This means that the subset of
clauses which match a given goal as faI'-(1,S the first step of unification is concerned, is found very
quickly, in practically constant time (i.e. in a time independent of the number of clauses in the
procedure). This can be very important where there is a large number of clauses in a procedure.

0

30 SICStus

Indexing also improves the Prolog system's ability to detect determinacy - important for conserving
working storage.

3.4 Tail Recursion Optimisation

The compiler incorporates tail recursion optimisation to improve the speed and space efficiency
of determinate procedures.

When execution reaches the last goal in a clause belonging to some procedure, and provided there
are no remaining backtrack points in the execution so far of that procedure, all of the procedure's
local working storage is reclaimed before the final call, and any structures it has created become
eligible for garbage collection. This means that programs can now recurse to arbitrary depths
without necessarily exceeding core limits. For example:

cycle(State) :- transform(State, State!), cycle(State1).

where transform/2 is a determinate procedure, can continue executing indefinitely, provided each
individual structure, State, is not too large. The procedure cycle is equivalent to an iterative loop
in a conventional language.

To take advantage of tail recursion optimisation one must ensure that the Prolog system can
recognise that the procedure is determinate at the point where the recursive call takes place. That
is, the system must be able to detect that there are no other solutions to the current goal to
be found by subsequent backtracking. In general this involves reliance on the Prolog compiler's
indexing and/or use of cut, see section 5.3 [Cut], page 80.

3.5 Practical Limitations

The number of arguments of a procedure may not exceed 256.

The number of variables in a clause may not exceed 256.

Compiled code cannot be traced.
i

•

•

•

•

Built-In Predicates 31

4. Built-In Predicates

It is not possible to redefine built-in predicates. An attempt to do so will give an error message.

See chapter 8 [Pred Summary], page 103.

SICStus Prolog provides a wide range of built-in predicates to perform the following tasks:

Input / Output
Reading-in Programs
Input and Output of Terms
Character IO
Stream IO
Dec-10 Prolog File IO

Arithmetic
Comparison of Terms
Convenience
Extra Control
Information about the State of the Program
Meta-Logical
Miscellaneous
Modification of the Program
Internal Database
Sets
Interface to Foreign Language Functions
Debugging
Definite Clause Grammars
Environmental

The following descriptions of the built-in predicates are grouped according to the above categori
sation of their tasks.

4.1 Input / Output

There are two sets of file manipulation predicates in Prolog. One set is inherited from DEC-10
Prolog. These predicates always refer to a file by name. The other set of predicates refer to files as
streams. Streams correpond to the file pointers used at the operating system level.

/

A stream to a file FileNa1ne can be o~ened for input or output by calling the predicate open/3.
open/3 will return a reference to a stream. The stream may then be passed as an argument
to various IO predicates. The predicate close/1 is used for closing a stream. The predicate

32 SICStus

current_stream/3 is used for retrieving information about a stream, or for finding the currently
existing streams.

There are three standard IO streams, referred to as:

user_input
The standard input stream.

user_output
The standard output stream.

user_error
The standard error stream.

The atom user denotes user_input or user_output, depending on context. Terminal output
is only guaranteed to be displayed after a newline is written or ttyflush/0 is called.

The DEC-10 Prolog IO predicates manipulate streams implicitly, by maintaining the notion of
a current input stream and a current output stream. The current input and output streams are set
to the user initially and for every new break (see section 1.9 (Nested], page 12). The predicates
see/1 and tell/1 can be used for setting the current input and output streams (respectively) to
newly opened streams for particular files. The predicates seen/0 and told/0 close the current
input and output streams (respectively), and reset them to the terminal. The predicates seeing/1
and telling/1 are used for retrieving the file name associated with the current input and output
streams (respectively).

A file is referred to by its name written as an atom, i.e. it must be surrounded by single quotes
if it is not already a legal atom. e.g.

myfile
'123'
'data.1st'
'/usr/prolog/abc.pl'

All IO errors normally cause an abort, except for the effect of the built-in predicate nofileerrors/0I
decribed below.

4.1.1 Reading-in Programs

If the predicates discussed in this section are invoked in the scope of the interactive toplevel,

•

•

Built-In Predicates 33

file names are relative to the current working directory. If invoked recursively, i.e. in the scope
of another invocation of one of these predicates, file names are relative to the directory of the file
being read in.

consult (+Files)

reconsult (+Files)

[File I Files]
Consults the source file or list of files specified by Files. See chapter 3 [Load Intro],
page 25. •

[+File I + Files]
Shorthand notation for consulting a list of files.

compile(+Files)
Compiles the source file or list of files specified by Files. The compiled code is placed
in-core, i.e. is added incrementally to the Prolog database. See chapter 3 [Load Intro],
page 25.

fcornpile(+Files)
Compiles the source file or list of files specified by Files. The suffix '.pl' is added to
the given file names to yield the real source file names. The compiled code is placed on
the object file or list of files formed by adding the suffix'. ql' to the given file names.
See chapter 3 [Load Intro], page 25.

load(+Files)

Loads the object file or list of files specified by Files. See chapter 3 [Load Intro],
page 25.

4.1.2 Input and Output of Terms

read(?Term)

The next term, delimited by a full-stop (i.e. a . followed by either a space or a control
character), is read from the current input stream and unified with Term. The syntax
of the term must agree with current operator declarations. If a call read(Term) causes
the end of the current input stream to be reached, Term is unified with the term
end_of_file. Further calls to read/1 for the same stream will then cause an error
failure.

wri ta (?Term)
;

The term Term is written t~ the current output stream according to current operator
declarations.

34 SICStus

display(?Term)
The term Term is displayed on the terminal (which is not necessarily the current output
stream) in standard parenthesised prefix notation.

write_canonical(?Term)
Similar to write (Term). The term will be written according to the standard syntax.
The output from wri te_canonical/1 can be parsed by read/1 even if the term contains
special characters or if operator declarations have changed.

wri teq (?Term)
Similar to write (Term), but the names of atoms and functors are quoted where nec
essary to make the result acceptable as input to read/1.

print (?Term)
Print Term onto the current output. This predicate provides a handle for user defined
pretty printing:

• If Term is a variable then it is output using write (Term).

• If Term is non-variable then a call is made to the user defined procedure portray/1.
If this succeeds then it is assumed that Term has been output.

• Otherwise print/1 is called recursively on the components of Term, unless Term
is atomic in which case it is written via write/1.

In particular, the debugging package prints the goals in the tracing messages, and the
interpreter top level prints the final values of variables. Thus you can vary the forms
of these messages if you wish.

Note that on lists ([_I_]) print will first give the whole list to portray/1, but if this
fails it will only give each of the (top level) elements to portray/1. That is, portray/1
will not be called on all the tails of the list.

portray(?Term)

A user defined predicate. This should either print the Term and succeed, or do nothing
and fail. In the latter case, the default printer (write/ 1) will print the Term.

portray _clause (+Clause)

This writes the clause Clause to the current output stream, exactly as listing/0,
listing/1 would have written it, including a period at the end

format (+Format, +Arguments)

Print Arguments onto the current output according to format Format. Format is a
list of formatting characters. If Format is an atom then name/2 (see section 4. 7 [Meta
Logic], page 50) will be used to translate it into a list of characters. Thus

format ("Hello world!", [])

has the same effect as /

format('Hello wor!~!', [])

format/2 is a Prolog implementation of the C stdio function printf().

•

•

•

I

•

Built-In Predicates 35

Arguments is a list of items to be printed. If there is only one item it may be supplied
as an atom. If there are no items then an empty list should be supplied.

The default action on a format character is to print it. The character - introduces a
control sequence. To print a - repeat it:

format("Hello ··world!", [])

will result in
1 Hello ·world! '

A format may be spread over several lines. The control sequence \c followed by a LFD
will translate to the empty string:

format(11Hello \c
world!", [])

will result in
1 Hello world! '

The general format of a control sequence is • Ne. The character C determines the type
of the control sequence. N is an optional numeric argument. An alternative form of
N is *· * implies that the next argument in Arguments should be used as a numeric
argument in the control sequence. Example:

format("Hello-4cworld!", [O' x])

and

format("Hello·•cworld! 11
, [4,0' x])

both produce

'Helloxxxxworld!'

The following control sequences are available.

-a The argument is an atom. The atom is printed without quoting.

- Ne (Print character.) The argument is a number that will be interpreted as an

·Ne

·NE

·Nt

·Ng

ASCII code. N defaults to one and is interpreted as the number of times
to print the character.

- NG (Print float). The argument is a float. The float and N will be passed to
the C printf () function as

print£ (11
'/, .Ne 11

, Arg)
printf (•1:14. NE11

, Arg)
printf(11'/,.Nf 11

, Arg)
printf(11

'/, .Ng 11
, Arg)

36

printf(11Y,.NG11
, Arg)

If N is not supplied the action defaults to

printf(11Y,e11
, Arg)

printf(11Y,E11
, Arg)

printf(11Y,f11
, Arg)

printf(11Y.gt1 , Arg)
printf(11Y,G11

, Arg)

SICStus

(Print decimal.) The argument is an integer. N is interpreted as the
number of digits after the decimal point. If N is O or missing, no decimal
point will be printed. Example:

format("Hello -1d world! 11
, [42])

format("Hello -d world!", [42])

will print as

'Hello 4.2 world!'
'Hello 42 world!'

respectively.

- ND (Print decimal.) The argument is an integer. Identical to - Nd except
that , will separate groups of three digits to the left of the decimal point.
Example:

format(11Hello -10 world!", [12345])

will print as

'Hello 1,234.5 world!'

- Nr (Print radix.) The argument is an integer. N is interpreted as a radix. N
should be >= 2 and <= 36. If N is missing the radix defaults to 8. The
letters a-z will denote digits larger than 9. Example:

format("Hello -2r world! 11
, [15])

format("Hello -1sr world! 11
, [15])

will print as

'Hello 1111 world!'
'Hello f world! '

respectively.

(Print radix.) The argument is an integer. Identical to -varNr except that
the letters A-Z will denote digits larger than 9. Example:

format ("Hello -1sR world! 11
, [15])

will print as

'Hello F world! •

-Ns (Print string.) ~he argument is a list of ASCII codes. Exactly N characters
will be printed. N defaults to the length of the string. Example:

•

•

•

II

•

•

•

•

Built-In Predicates

format("Hello ·4s ·4s!", [11new11
,

11world 11
])

format("Hello ·s world! 11
, ["new"])

will print as

'Hello new worl!'
'Hello new world!'

respectively.

37

(Ignore argument.) The argument may be of any type. The argument will
be ignored. Example:

format("Hello ·i·s world!", [11old 11
,

11new11
])

will print as

'Hello new world!'

·k (Print canonical.) The argument may be of any type. The argument will
be passed to wri te_canonical/1 (see section 4.1.2 [Term IO], page 33).
Example:

format("Hello ·k world! 11
, [[a, b ,c]])

will print as

'Hello .(a,.(b,.(c,[J))) world!'

·p (print.) The argument may be of any type. The argument will be passed
to print/1 (see section 4.1.2 [Term IO], page 33). Example:

assert((portray([XIY]) :
write('cons('),
print(X),
wri ta (' , ') ,
print(Y),
write(')'))).

format ("Hello ·p world! 11
, [[a, b, c]])

will print as

'Hello cons(a,cons(b,cons(c,[]))) world!'

·q (Print quoted.) The argument may be of any type. The argument will be
passed to wri teq/1 (see section 4.1.2 [Term IO], page 33). Example:

format("Hello ·q world! 11
, [['A', 'B']])

will print as .

'Hello ['A', 'B'] world!'

·w (write.) The argument may be of any type. The argument will be passed
to write/1 (see section 4.1.2 [Term IO], page 33). Example:

format("Hello ·w world! 11
, [['A', 'B']])

will pi-int as

'Hello [A,B] world!'

38

(Print newline.) Print N newlines. N defaults to 1. Example:

format(11Hello ·n world! 11, [])

will print as

'Hello
world!'

4.1.3 Character Input/Output

SICStus

There are two sets of character IO predicates. The first set uses the current input and output
streams, while the second always uses the terminal.

nl A new line is started on the current output stream.

getO(?N) N is the ASCII code of the next character from the current input stream.

get (?N) N is the ASCII code of the next non-blank printable character from the current input

stream.

skip(+N)
Skips to just past the next ASCII character code N from the current input stream. N

may be an arithmetic expression.

put (+N) ASCII character code N is output to the current output stream. N may be an arithmetic
expression.

tab(+N) N spaces are output to the current output stream. N may be an arithmetic expression.

The above predicates are the ones which are the most commonly used, as they can refer either
to files or to the user's terminal. In most cases these predicates are sufficient, but there is one
limitation: if you are outputting to the terminal via put/1 then nothing is output until such time
as you put a newline character. If this lhte by line output is inadequate, you have to use ttyflush/0
(see below).

The predicates which follow always refer to the terminal. They are convenient for writing
interactive programs which also perform file IO.

ttynl A new line is started on the terminal and the buffer is flushed.

ttyflush Flushes the terminal output buffer. Output to the terminal, using either ttyput/1

or put/1, normally simply goes into an output buffer until such time as a newline
is output. Calling this

1
predicate forces any characters in this buffer to be output

immediately. N.B. Under UNIX, it is not necessary to use this predicate, as terminal
output is not buffered.

•

'

•

Built-In Predicates 39

ttygetO (?N)
N is the ASCII code of the next character input from the terminal.

ttyget(?N)
N is the ASCII code of the next non-blank printable character from the terminal.

ttyput(+N)
The ASCII character code N is output to the terminal. N may be an arithmetic

I expression.

ttyskip(+N)
r Skips to just past the next ASCII character code N from the terminal. N may be an

arithmetic expression.

•

•

ttytab(+N)
N spaces are output to the terminal. N may be an arithmetic expression.

4.1.4 Stream IO

The following predicates manipulate streams.

open(+FileName, +Mode,-Stream)

close(+X)

Open file 'FileName' with mode Mode and unify ·the resulting stream with Stream.
Mode is one of:

read

write

append

Open the file for input.

Open the file for output. The file is created if it does not already exist, the
file will otherwise be truncated.

Open the file for output. The file is created if it does not already exist, the
file will otherwise be appended to.

If X is a stream then the stream is closed. If Xis an atom then X is assumed to be the
name of an open file. The file is closed.

absolute_file_name(+RelativeNa.me, ?AbsoluteNa.me)
If RelativeName is of the form library(Name) then absolute_file_name/2 will
search for Name (according to the suffix rules below) in the directories specified by
library_directory/1.

If 'RelativeName.pl' is found then AbsoluteName will be unified with the full path
name of this file. Absolu,·teNa.me will otherwise be unified with the full path name of

I

RelativeN ame.

current_input (?Stream)

Unify Stream with the current input stream.

40 SICStus

current_output (?Stream)
Unify Strea.m with the current output stream.

current_stream(?FileName, ?Mode, ?Stream)
FileName is unified with the name of Stream. Mode is unified with the mode of
Stream. This predicate can be used for enumerating all currently open streams through
backtracking.

set_input (+Stream) I "
Set the current input to Stream.

set_output (+Stream) 1

Set the current output to Stream.

flush_output (+Stream)
Flush all internally buffered characters to the operating system.

library _directory(?Directory)
A user defined predicate. This predicate specifies a set of directories to be searched
when a file specification of the form library(Name) is used. The directories are
searched until a file with the name 'Name.pl' or 'Name' is found.

Directories to be searched may be added by using asserta/1 or assertz/1:

asserta(library_directory((Directory)))

open_null_stream(-Stream)
Open an output stream to the null device. Everything written to this stream will be
thrown away.

stream_code(?Strea.m, ?Stream Code)

fileerrors

StreamCode is a foreign language (C) version of Stream. Under UNIX StreamCode is

a stdio FILE *·

Undoes the effect of nofileerrors/0.

nofileerrors
After a call to this predicate, failure to locate or open a file will cause the operation
to fail instead of the default action, which is to type an error message and then abort
execution.

Several IO predicates that use the streams user_input or user_output implicitly (see sec-

•

tion 4.1.2 [Term IO], page 33) (see section 4.1.3 [Char IO], page 38) are available in an alternative •
version where the stream is specified explicitly. The rule is that the stream is the first argument.

format(+Strea.m, +Format, +Arguments)

",
get(+Stream, ?C)

Built-In Predicates 41

getO(+Stream, ?C)

nl (+Stream)

print (+Stream, ?Term)

put(+Stream, +C)

read(+Stream, ?Term)

skip(+Stream, +C)

tab(+Stream,+N)

write (+Stream, ?Term)

write_ canonical (+Stream, ?Term)

wri teq (+Stream, ?Term)

4.1.5 DEC-10 Prolog File IO

The following predicates manipulate files.

see(+File)

File File becomes the current input stream. File may be a stream previously opened
by see/1 or a filename. If it is a filename, the following action is taken: If there is
a stream opened by see/1 associated with the same file already, then it becomes the
current input stream. Otherwise, the file File is opened for input and made the current
input stream.

seeing(?FileName)

FileName is unified witllthe name of the current input file, if it was opened by see/1,
otherwise with the current i\1put stream.

seen Closes the current input stream, and resets it to user_input.

42 SICStus

tell(+File)
File File becomes the current output stream. File may be a stream previously opened
by tell/ 1 or a filename. If it is a filename, the following action is taken: If there
is a stream opened by tell/1 associated with the same file already, then it becomes
the current output stream. Otherwise, the file File is opened for output and made the
current output stream.

telling(?FileNa.me)

FileNa.me is unified with the name of the current output file, if it was opened by tell/1,

otherwise with the current output stream.

told Closes the current output stream, and resets it to user_output.

4.1.6 An Example

Here is an example of a common form of file processing:

process_file(F) ·-
see(F),
repeat,

read(T),
process_terrn(T),

T = end_of_file.
seen.

4.2 Arithmetic

'I. Open file F

'I. Read a term
'I. Process it
'I. Loop back if not at end of file
'I. Close the file

• Arithmetic is performed by built-in predicates which take as arguments aritl1metic expressions
and evaluate them. An arithmetic expression is a term built from numbers, variables, and functors
that represent arithmetic functions. At the time of evaluation, each variable in an arithmetic
expression must be bound to a non-variable expression. An expression evaluates to a number,
which may be an integer or a float.

The range of integers is the one provided by the C long int type, typically [-2-31, r31-1].
Integers in the range [-2-25. 2-2s-1] are stored and computed with more efficiently than larger
integers.

;

The range of floats is the one provid~ by the C double type, typically [4. 9e-324 • 1 . 8e+308]
(plus or minus).

II

,

I

•

Built-In Predicates 43

Only certain functors are permitted in an arithmetic expression. These are listed below, to
gether with an indication of the functions they represent. X and Y are assumed to be arithmetic
expressions. Unless stated otherwise, an expression evaluates to a float if any of its arguments is a
float, otherwise to an integer.

X+ Y This evaluates to the sum of X and Y.

This evaluates to the difference of X and Y.

This evaluates to the product of X and Y.

This evaluates to the quotient of X and Y. The value is always a float.

This evaluates to the integer quotient of X and Y.

X mod Y This evaluates to the integer remainder after dividing X by Y.

-X This evaluates to the negative of X.

integer(X)
This evaluates to the nearest integer between X and O, if Xis a float, otherwise to X
itself.

float(X) This evaluates to the floating-point equivalent of X, if Xis an integer, otherwise to X
itself.

XI\Y

X\IY

X\/Y
\(X)

X«Y

X»Y

[X]

This evaluates to the bitwise conjunction of the integers X and Y.

This evaluates to the bitwise disjunction of the integers X and Y.

This evaluates to the bitwise exclusive or of the integers X and Y.

This evaluates to the bitwise negation of the integer X.

Bitwise left shift of X by Y places.

Bitwise right shift of X by Y places.

A list of just one element evaluates to X if Xis a number. Since a quoted string is just
a list of integers, this allows a quoted character to be used in place of its ASCII code;
e.g. 11A11 behaves within arithmetic expressions as the integer 65.

Variables in an arithmetic expression which is to be evaluated may be bound to other arithmetic
expressions rather than just numbers, e.g .

evaluate(Expression, Answer) ·- Answer is Expression.

?- evaluate(24*9,Ans).

This works even for compiled code.
;

Arithmetic expressions, as described\bove, are just data structures. If you want one evaluated
you must pass it as an argument to one of the built-in predicates listed below. Note that is only

44 SICStus

evaluates one of its arguments, whereas all the comparison predicates evaluate both of theirs. In
the following, X and Y stand for arithmetic expressions, and Z for some term.

Z is X

X =:= y

X =\= y

X< y

X> y

X =< y

X >= y

The arithmetic expression Xis evaluated and the result is unified with Z. Fails if Xis
not an arithmetic expression.

The numeric values of X and Y are equal.

The numeric values of X and Y are not equal.

The numeric value of Xis less than the numeric value of Y.

The numeric value of X is greater than the numeric value of Y.

The numeric value of Xis less than or equal to the arithmetic value of Y.

The numeric value of Xis greater than or equal to the arithmetic value of Y.

4.3 Comparison of Terms

These built-in predicates a.re meta-logical. T·hey treat uninstantiated variables as objects with
values which may be compared, and they never instantiate those variables. They should not be
used when what you really want is arithmetic comparison (see section 4.2 [Arithmetic], page 42)
or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:

• Variables, in a standard order (roughly, oldest first - the order is not related to the names of
variables).

• Numbers, in numeric order. An integer is put before the equivalent :floating point number (e.g.
1 is put before 1.0).

• Atoms, in alphabetical (i.e. ASCII) order.

• Compound terms, ordered first by arity, then by the name of the principal functor, then by
the arguments (in left-to-right order). Remember, lists are equivalent to compound terms with
principal functor ' . '/2.

For example, here is a list of terms in the standard order:

[X, -9, 1, 1.0, fie, foe/ fum, X = Y, fie(0,2), fie(1,1)]

' These are the basic predicates for comparison of arbitrary terms:

II

,.

Built-In Predicates 45

Terml == Term2
Tests if the terms currently instantiating Term1 and Term2 are literally identical (in
particular, variables in equivalent positions in the two terms must be identical). For
example, the query

I ?- X == Y.

fails (answers 11no 11) because X and Y are distinct uninstantiated variables. However,
the query

I ?- X = Y, X == Y.
succeeds because the first goal unifies the two variables (see section 4.4 [Convenience],
page 46).

Terml \== Term2
Tests if the terms currently instantiating Terml and Term2 are not literally identical.

Terml @< Term2
Term Terml is before term Term2 in the standard order.

Terml ©> Term2
Term Terml is after term Term2 in the standard order.

Terml @=< Term2
Term Terml is not after term Term2 in the standard order.

Terml © >= Term2
Term Terml is not before term Term2 in the standard order.

Some further predicates involving comparison of terms are:

compare (?Op, ?Terml • ?Term2)

The result of comparing terms Terml and Term2 is Op, where the possible values for
Op are:

=

<
>

if Term1 is identical to Term2,

if Terml is before Term2 in the standard order,

if Term1 is after Term2 in the standard order.

Thus compare (=, Term1 • Term2) is equivalent to Term1 == Term2.

sort (+ Listl, ?List2)

The elements of the list Listl are sorted into the standard order, and any identical (i.e.
==) elements are merged, yielding the list List2. (The time taken to do this is at worst
order (N log N) where N is the length of Listl.)

keysort (+ Listl • ?List2)
;

The list Listl must consist of items of the form Key-Value. These items are sorted into ..
order according to the valu~ of Key, yielding the list List2. No merging takes place.
(The time taken to do this is at worst order (N log N) where N is the length of Listl.)

46 SICStus

4.4 Convenience

P,Q

p Q

true

otherwise

fail

false

X=Y

dif(X, Y)

P and Q.

Por Q.

Always succeeds.

Always fails.

Defined as if by the clause Z=Z.; i.e. X and Y are unified.

Constrains X and Yto represent different terms i.e. to be non unifiable. Calls to dif/2
succeed, fail, or suspend depending on whether X and Y are sufficiently instantiated.
For example:

I ?- dif(X,a).

** Constraint not yet run: dif(_140,a)
X = _140

?- dif(X,a), X=a.

no

?- dif([Xla],[blY]), X=a.

X = a,
Y = _59

length(?List, ?Length)
If List is instantiated to a list of determinate length, then Length will be unified with
this length.

If List is of indeterminate length and Lengtl1 is instantiated to an integer, then List
will be unified with a list of length Lengtli. The list elements are unique variables.

H Length is unbound then Length will be unified with all possible lengths of List.

prolog_flag(+Fla.gNa.me, ?OldVa.lue, ?NewValue)

Unify OldVa.lue with the value of FlagName, then set the value of FlagName to New
Value. The possible FlagNames and values are:

character_escapes

debugging

on or off. 1'.Enable or disable character escaping. Presently this has no
effect in SICSt~ Prolog.

..

•

Built-In Predicates 47

fileerrors

gc

gc_margin

trace: turn on trace mode. debug: turn on the debugger. off: turn off
trace and the debugger.

on: equivalent to fileerrors/0. off: equivalent to nofileerrors/0.

on or off. Turn garbage collection on or off.

Margin: number of kilobytes. If less than Margin kilobytes are reclaimed
in a garbage collection then the size of the garbage collected area should
be increased. Also, no garbage collection is attempted unless the garbage
collected area has at least Margin kilobytes.

gc_ trace verbose: turn on verbose tracing of garbage collection. terse: turn on
terse tracing of garbage collection. off: turn off tracing of garbage collec
tion.

redefine_warnings
on or off. Enable or disable warning messages when a predicate is being
redefined from a different file than its previous definition. Initially on.

unknown trace: cause calls to predicates with no definition to be reported and the
debugging system to be entered at the earliest opportunity. fail: cause
calls to such predicates to fail.

prolog_flag(+FlagName, ?Old Value)
This is a shorthand for

prolog_flag(FlagName, OldValue, OldValue)

4.5 Extra Control

\+ p

See section 5.3 (Cut], page 80.

If the goal P has a solution, fail, otherwise succeed. This is not real negation ('P is
false'), but a kind of pseudo-negation meaning 'P is not provable'. It is defined
as if by

\+(P) :- P, ! , faiL
\+(_).

Remember that with prefix operators such as this one it is necessary to be careful about
spaces if the argument starts with a (. For example:

I ?- \+ (P, Q). 1

is this operator applied to ihe conjunction of P and Q, but

I ?- \+(P,Q).

48 SICStus

would require a predicate\+ of arity 2 for its solution. The prefix operator can however
be written as a functor of one argument; thus

I ?- \+((P,Q)).

is also correct.

p -> Q R

Analogous to

p -> Q

if(P, Q ,R)

repeat

if P then Q else R

i.e. defined as if by

(P -> Q; R) ·- P, ! , Q.
(P -> Q; R) • - R.

Note that this form of if-then-else only explores tl1e first solution I
to the goal P.

When occurring other than as one of the alternatives of a disjunction, is equivalent to

P -> Q; fail.

Analogous to

if P then Q else R

but differs from P -> Q ; R in that if(P, Q, R) explores all solutions to the goal
P. There is a small time penalty for this - if P is known to have only one solution of
interest, the form P -> Q ; R should be preferred.

Generates an infinite sequence of backtracking choices. It behaves as if defined by the
clauses:

repeat.
repeat:- repeat.

freeze (+Goal)

Suspend Goa.l until Goal is ground. This can be used e.g. for defining a sound form of
negation by:

not(Goal) :- freeze((\+ Goal)).

(not/1 is not a. built-in predicate.)

freeze (? X, + Goal)

Suspend Goal until nonvar(X). This is defined as if by:

:- wait freeze/2.
freeze(_, Goal) . : - Goal.

frozen(-X, ?Goal) i

If some goal is suspended --~n the variable Var, then that
Otherwise, Goal is unified with the atom true.

goal is unified with Goal.

.,

II

"

Built-In Predicates 49

call(+Goal, ?Vars)
The Goal is executed as if by call/ 1. If after the execution there are still some subgoals
of Goal that are suspended on some variables, then Vars is unified with the list of such
variables. Otherwise, Vars is unified with the empty list [].

4.6 Information about the State of the Program

listing Lists in the current output stream all the clauses in the current interpreted program.
Clauses listed to a file can be consulted back.

listing(+A)
If A is just an atom, then the interpreted procedures for all predicates of that name
are listed as for listing/0. The argument A may also be a predicate spec in which
case only the clauses for the specified predicate are listed. Finally, it is possible for A
to be a list of specifications of either type, e.g.

:- listing([concatenate/3, reverse, go/0]).

ancestors (?Goals)
Unifies Goals with a list of ancestor goals for the current clause. The list starts with the
parent goal and ends with the most recent ancestor coming from a call in a compiled
clause.

Only available when the debugger is switched on.

subgoal_of (?S)
Equivalent to the sequence of goals:

ancestors(Goals), member(S, Goals)

where the predicate member/2 (not a built-in predicate) successively matches its first

argument with each of the elements of its second argument. See section 1.4 [Directives],
page 7.

Only available when the debugger is switched on.

current_atom(? Atom)

. If Atom is instantiated then test if Atom is an Atom.

If Atom is unbound then generate (through backtracking) all currently known atoms,
and return each one as Atom.

current_predicate (?Na.me, ?Head)

Name is the name of a user defined predicate, and Head is the most general form of
that predicate. This preslicate can be used to enumerate all user defined predicates
through backtracking. ,.

I\
predicate_property(? Head, ?Prnperty)

Term is the most general form of an existing predicate, and Property is a property of

50 SICStus

that predicate, where the possible properties are

• one of the atoms built-in (for built-in predicates) or compiled or interpreted
(for user defined predicates).

• zero or more of the atoms dynamic, mul tifile, parallel, and wait, for predicates
that have been declared to have these properties (see section 3.2 [Declarations],
page 27).

A predicate is dynamic iff it is interpreted. This predicate can be used to enumerate •
all existing predicates and their properties through backtracking.

4. 7 Meta-Logical

var(? X) Tests whether Xis currently uninstantiated ('var' is short for variable). An uninstan
tiated variable is one which has not been bound to anything, except possibly another
uninstantiated variable. Note that a structure with some components which are unin
stantiated is not itself considered to be uninstantiated. Thus the command

:- var(foo(X, Y)).

always fails, despite the fact that X and Y are uninstantiated.

nonvar(?X)
Tests whether Xis currently instantiated. This is the opposite of var/1.

atom(?X) Checks that Xis currently instantiated to an atom (i.e. a non-variable term of arity O,
other than a number). ..__

float(?X)
Checks that Xis currently instantiated to a float.

integer(?X)
Checks that Xis currently instantiated to an integer.

number(?X)

Checks that Xis currently instantiated to a number.

atomic(?X)

Checks that Xis currently instantiated to an a.tom or number.

functor(?Term, ?Name, ?Arity)
The principal functor of term Term has name Name and arity Arity, where Name
is either an atom or, provided Arity is 0, an integer. Initially, either Term must be
instantiated, or Name and Arity must be instantiated to, respectively, either an atom
and a non-negative intege:,; or an integer and 0. If these conditions are not satisfied, an
error message is given. Iii the case where Term is initially uninstantiated, the result of
the call is to instantiate Tenn to the most general term having the principal functor
indicated.

•

•

Built-In Predicates 51

arg(+ArgNo, +Term, ?Arg)

?Term -..

Initially, ArgNo must be instantiated to a positive integer and Term to a compound
term. The result of the call is to unify Arg with the argument ArgNo of term Term.
(The argument~ are numbered from 1 upwards.) If the initial conditions are not satisfied
or ArgNo is out of range, the call merely fails.

?List
List is a list whose head is the atom corresponding to the principal functor of Term,
and whose tail is a list of the arguments of Term. E.g.

product(0, N, N-1) = .. [product, 0, N, N-1]

N-1 = .. [-, N, 1]

product= [product]

If Term is uninstantiated, then List must be instantiated either to a list of determinate
length whose head is an atom, or to a list of length 1 whose head is a number. Note
that this predicate is not strictly necessary, since its functionality can be provided by
arg/3 and functor/3, and using the latter two is usually more efficient.

name (?Const, ?Char List)
If Const is an atom or number then CharList is a list of the ASCII codes of the
characters comprising the name of Const. E.g.

name(product,[112,114,111,100,117,99,116])

i.e. name(product,"product")

name(1976,[49,57,55,54])

name('1976',[49,57,55,54])

name((:-),(58,45])

If Const is uninstantiated, Clia.rList must be instantiated to a list of ASCII character
codes. If ClrnrList can be interpreted as a number, Const is unified with that number,
otherwise with the atom whose name is Clia.rList. E.g.

?- name(X, [58,45]) .

X = ·-
?- name(X, II:-")•

X = :-

?- name(X, [49 1
, 50, 51]) .

..
X 123 ' =

Note that there atoms are for which name(Const, CharList) is true, but which will not

52 SICStus

be constructed if name/2 is called with Const uninstantiated. One such atom is the atom
, 1976 1 • It is recommended that new programs use atorn_chars/2 or nurnber_chars/2,
as these predicates do not have this inconsistency.

atom_chars (?Const, ?CharList)
The same as name (?Const, ?CJ1arList), but Const is constrained to be an atom.

number _chars (?Const, ?CJ1arList)
The same as name(?Const, ?Char List), but Const is constrained to be a number.

call(+Term)

incore (+Term)

+Term

If Term is instantiated to a term which would be acceptable as the body of a clause,
then the goal call(Term) is executed exactly as if that term appeared textually in its
place, except that any cut (!) occurring in Term only cuts alternatives in the execution
of Term.

If Term is not instantiated as described above, an error message is printed and call
fails.

(where Term is a variable) Exactly the same as call(Term).

4.8 Miscellaneous Predicates

copy_ term(?Term, ?CopyOfTerm)
CopyOtTerm is an independent copy of Term, with new variables substituted for all
variables in Term. It is defined as if by

copy_terrn(X,Y) :
recorda(.,X,Ref),
instance(Ref,Y),
erase(Ref).

numbervars(?Term,+N, ?M)

Unifies each of the variables in term Term with a special term, so that write (Term)
(or writeq(Term)) prints those variables as (A+ (i mod 26))(i/26) where i ranges
from N to M-1. N must be instantiated to an intl'!ger. If it is O you get the variable
names A, B, ... , Z, Al, Bl, etc. This predicate is used by listing/0, listing/1.

setarg(+ArgNo, +CompoundTerm, ?NewArg)
Replace destructively argument ArgNo irt CompoundTerm with NewArg. The assign-
ment is undone on backttacking. ,

undo(+Term) ",

The goal call (Term) is executed on backtracking.

•

Built-In Predicates 53

4.9 Modification of the Program

The predicates defined in this section allow modification of the program as it is actually running.
Clauses can be added to the program (asserted) or removed from the program (retracted).

assert (+Clause)
The current insta.nce of Clause is interpreted as a clause and is added to the current in
terpreted program (with new private variables replacing any uninstantiated variables).
The position of the new clause within the procedure concerned is implementation
defined.

asserta(+Clause)
Like assert/1, except that the new clause becomes the first clause for the procedure
concerned.

assertz(+Clause)
Like assert/1, except that the new clause becomes the last clause for the procedure
concerned.

clause (+Head, ?Body)
Head must be bound' to a non-variable term, and the current interpreted program is
searched for a clause whose head matches Head. The head and body of those clauses
are unified with Head and Body respectively. If one of the clauses is a unit clause,
Body will be unified with true.

retract (+Clause)

The first clause in the current interpreted program that matches Clause is erased.
Clause must be initially instantiated; it is first translated into a clause, which is then
matched to the database. This means that

retract((p(X) :- Y))

matches only clauses whose body is call (Y), and not all clauses for p (X). The
predicate may be used in a non-determinate fashion, i.e. it will successively retract
clauses matching the argument through backtracking.

The space occupied by a i:etracted clause will be recovered when instances of the clause
are no longer in use.

retract all (+Head)

~ Erase all clauses whose head matches Head. The predicate definition is retained.

abolish(+Spec)

I

abolish(+Name, +Arity) \

Erase all clauses of the predicate specified by the predicate spec Spec or Name/ Arity.
Spec may also be a list of predicate specs. The predicate definition and all associ-

54 SICStus

ated information such as spy-points is also erased. This is only legal for user de
fined predicates. For user defined predicates that are called by built-in predicates (e.g.
term_expansion/2), any clauses are erased but the predicate definition is retained.

4.10 Internal Database

The predicates described in this section are primarily concerned with providing efficient means
of performing operations on large quantities of data. Most users will not need to know about these
predicates.

These predicates make it possible to store arbitrary terms in the database without interfering
with the clauses which make up the program. The terms which are stored in this way can sub
sequently be retrieved via the key on which they were stored. Many terms may be stored on the
same key, and they can be individually accessed by pattern matching.

Alternatively, access can be achieved via a special identifier which uniquely identifies each
recorded term and which is returned when the term is stored. This special identifier is actu
ally a pointer into the database and needs to be treated with some caution. For safety reasons
it is not possible to store the pointers themselves in the database: the term to which the pointer
referred might be erased.

Note the difference between this facility and that provided by assert/1 and related predicates:
the latter actually alter the running program. Also the recording predicates use an extra level of
indirection, the Key, which allows greater flexibility.

recorded(+Key, ?Term, ?Ref)
The internal database is searched for terms recorded under the key Key. These terms
are successively unified with Term in the order they occur in the database. At the same
time, Ref is unified with the implementation-defined identifier uniquely identifying the
recorded item. The key must be given, and may be an atom, number or compound
term. If it is a compound term, only the principal functor is significant.

recorda(+Key, ?Term,-Ref)
The term Term is recorded in the internal database as the :first item for the key Key,
where Ref is its implementation-defined identifier. The key must be given, and only its
principal functor is significant.

recordz(+Key, ?Term,-Ref) \

The term Term is recorded in the internal da.tabase as the last item for the key Key,

"

..

Built-In Predicates 55

where Refis its implementation-defined identifier. The key must be given, and only its
principal functor is significant.

erase(+Ret)
The recorded item (or interpreted clause (see section 4.10 [Database], page 54)) whose
implementation-defined identifier is Ref is effectively erased from the internal database
or interpreted program.

instance(+Ref, ?Term)
A (most general) instance of the recorded term or clause whose implementation-defined
identifier is Ref is unified with Term. Ref must be instantiated to a legal identifier .

current_key(?KeyName, ?KeyTerm)
KeyTerm is the most general form of the key for a currently recorded term, and Key
Name is the name of that key. This predicate can be used to enumerate all keys for
currently recorded terms through backtracking.

Like recorded terms, the clauses of an interpreted program also have a unique implementation
defined identifier. A new set of the predicates (see section 4.9 [Modify Prog], page 53) is given
below, each predicate having an additional argument which is this identifier. Th.is identifier makes
it possible to access clauses directly instead of requiring a normal database (hash-table) lookup.
However it should be stressed that use of these predicates requires some extra care.

assert(+Clause, -Rei)
Equivalent to assert/1 where Refis the implementation-defined identifier of the clause
asserted.

asserta(+Clause,-Ret)
Equivalent to asserta/1 where Ref is the implementation-defined identifier of the
clause asserted.

assertz(+Clause,-Ret)

Equivalent to assertz/1 where Ref is the implementation-defined identifier of the
clause asserted.

clause(?Head, ?Body, ?Rei)

Equivalent to clause/2 where Ref is the implementation-defined term which uniquely
identifies the clause concerned. If Ref is not given at the time of the call, Head must be
instantiated to a. non-variable term. Thus this predicate can have two different modes
of use, depending on whether the identifier of the clause is known or unknown.

4.11 Sets
i

When there are many solutions to a problem, and when all those solutions are required to be

56 SICStus

collected together, this can be achieved by repeatedly backtracking and gradually building up a list
of the solutions. The following built-in predicates are provided to automate this process.

setof(?Template, +Goal, ?Set)
Read this as Set is tlie set of all instances of Template sucl1 that Goal is provable, where
that set is 11011-empty. The term Goal specifies a goal or goals as in call (Goal). Set is
a set of ~erms represented as a list of those terms, without duplicates, in the standard
order for terms (see section 4.3 [Term Compare], page 44)f. If there are no instances
of Template such that Goal is satisfied then the predicate fails.

The variables appearing in the term Template should not appear anywhere else in the
clause except within the term Goal. Obviously, the set to be enumerated should be
finite, and should be enumerable by Prolog in finite time. It is possible for the provable
instances to contain variables, but in this case the list Set will only provide a!l imperfect
representation of what is in reality an infinite set.

If there are uninstantiated variables in Goal which do not also appear in Template,
then a call to this built-in predicate may backtrack, generating alternative values for
Set corresponding to different instantiations of the free variables of Goal. (It is to cater
for such usage that the set Set is constrained to be non,empty.) For example, the call:

I ?- setof(X, X likes Y, S).

might produce two alternative solutions via backtracking:

Y = beer, S = [dick, harry, tom]
Y = cider, S = [bill, jan, tom]

The call:

I ?- setof((Y,S), setof(X, X likes Y, S), SS).

would then produce:

SS = [(beer,[dick,harry,tom]), (cider,[bill,jan,tom])]

Variables occurring in Goal will not be treated as free if they are explicitly bound
within Goal by an existential quantifier. An existential quantification is written:

y-q
meaning tl1ere exists a Y sucl1 tliat Q is true, where Y is some Prolog variable.

For example:

I ?- setof(X, y-(x likes Y), S).

would produce the single result:

X = [bill, dick, harry, jan, tom]

in contrast to the earlier ~xample.

bagof (?Template, +Goa.l, ?Ba.g) \

This is exactly the same as setof/3 except that the list (or alternative lists) returned

"

..

..

Built-In Predicates 57

will not be ordered, and may contain duplicates. The effect of this relaxation is to save
considerable time and space in execution.

x~ P The interpreter recognises this as meaning tliere exists an X sucl1 tliat P is true, and
treats it as equivalent to call (P). The use of this explicit existential quantifier outside
the setof/3 and bagof/3 constructs is superfluous.

findall (?Template, +Goal, ?Bag)
A special case of bagof/3, where all free variables in the goal are taken to be existen

tially quantified .

4.12 Interface to Foreign Language Functions

Functions written in the C language (or any other language that uses the same calling conven
tions) may be called from Prolog. Foreign language modules may be linked in as needed. However:
once a module has been linked in to the prolog load image it is not possible to unlink the module.

foreign_file(+ObjectFile, +Functions)
A user defined predicate. Specifies that a set of C language functions, to be called
from Prolog, are to be found in ObjectFile. Functions is a list of functions exported
by ObjectFile. Only functions that are to be called from Prolog should be listed. For
example

foreign_file('terminal.o', [scroll,pos_cursor,ask]).

specifies that functions scroll O, pos_cursor() and ask() are to be found in object
file 'terminal .o'.

foreign(+CFunctionName, +Predicate)

foreign(+CFunctionN ame, +Language, + Predicate)
User defined predicates. They specify the Prolog interface to a C function. Language
is at present constrained to the atom c. CFunctionName is the name of a C function.
Predicate specifies the name of the Prolog predicate that will be used to call CFunc
tion(). Predicate also specifies how the predicate arguments are to be translated into
the corresponding C arguments .

foreign(pos_cursor, c, move_cursor(+integer, +integer)).

The above example says. that the C function pos_cursor() has two integer value
arguments and that we will use the predicate move_cursor/2 to call this function:

move_cursor(5, 23):,

would translate into the C call pos_cursor(S,23) ;.

58 SICStus

load_foreign_f iles (+ObjectFiles, + Libraries)
Load (link) ObjectFiles into the Prolog load image. ObjectFiles is a list of C object
files. Libraries is a'list of libraries, the C library '-le• will always be used and need
not be specified. Example:

load_foreign_files(['terrninal.o'], []).

The third argument of the predicate foreign/3 specifies how to translate between Prolog ar- ,.
guments and C arguments.

Prolog: +integer

C: long The argument should be instantiated to an integer or a float. The call will otherwise
fail.

Prolog: +float

C: double
The argument should be instantiated to an integer or a float. The call will otherwise

fail.

Prolog: +atom

C: unsigned long
The argument should be instantiated to an atom. The call will otherwise fail. Each
atom in SICStus is associated with a unique integer. This integer is passed as an
unsigned long to the C function. Note that the mapping between atoms and integers
depends on the execution history.

Prolog: +string

C: char*
The argument should be instantiated to an atom. The call will otherwise fail. The C
function will be passed the address of a text string containing the printed representation
of the atom. The C function should not overwrite the string.

Prolog: +string(N)

C: char*

Prolog:

C: char*

The argument should be instantiated to an atom. The call will otherwise fail. The
printable representation of the string will be copied into a newly allocated buffer. The
string will be truncated if it is longer than N characters. The string will be blank
padded on the right if it is shorter than N characters. The C function will be passed
the address of the buffer. The C function may overwrite the buffer.

+address
/

The argument should be hi'~tantiated to an integer. The call will otherwise fail. The
C function will be passed a long, type converted to (char *).

..

•

..

..

Built-In Predicates 59

Pro log: +address (TypeN ame)

C: TypeN ame *
The argument should be instantiated to an integer. The call will otherwise fail. The
C function will be passed a long, type converted to (TypeName •).

Prolog: -integer

C: long*

Prolog:

C: double

The C function is passed a reference to an uninitialized long. The value returned will
be converted to a Prolog integer. The Prolog integer will be unified with the Prolog
argument .

-float

*
The C function is passed a reference to an uninitialized double. The value returned
will be converted to a Prolog fl.oat. The Prolog fl.oat will be unified with the Prolog

argument.

Prolog: -atom

C: unsigned long*
The C function is passed a reference to an uninitialized long. The value returned
should have been obtained earlier from a +atom type argument. Prolog will attempt to
associate an atom with the returned value. The atom will be unified with the Prolog
argument.

Prolog: -string

C: char**
The C function is passed the address of an uninitialized char *· The returned string
will be converted to a Prolog atom. The atom will be unified with the Prolog argument.
C may reuse or destroy the string buffer during later calls.

Prolog: -string(N)

C: char*
The C function is passed a reference to a character buffer large enough to store an N
character string. The returned string will be stripped of trailing blanks and converted
to a Prolog atom. The atom will be unified with the Prolog "argument.

Prolog: -address

C: char**

The C function is passed the address of au uninitialized char *· The returned value
will be converted to a Prolog integer and unified with the Prolog argument.

Prolog: -address(TypeName)
1

C: TypeName ** ~ .,
The C function is passed the address of an uninitialized TypeName *· The returned
value will be converted to a Prolog integer and unified with the Prolog argument.

60 SICStus

Prolog: [-integer]

C: long FO
The C function should return a long. The value returned will be converted to a Prolog
integer. The Prolog integer will be unified with the Prolog argument.

Prolog: [-float]

C: double FO
The C function should return a double. The value returned will be converted to a •
Prolog float. The Prolog float will be unified with the Prolog argument.

Prolog: [-atom]

C: unsigned long FO
The C function should return an unsigned long. The value returned should have been
obtained earlier from a +atom type argument. Prolog will attempt to associate an atom
with the returned value. The atom will be unified with the Prolog argument.

Prolog: [-string]

C: char •FO
The C function should return a char *· The returned string will be converted to a
Prolog atom. The atom will be unified with the Prolog argument. C may reuse or
destroy the string buffer during later calls.

Prolog: [-string(N)]

C: char •FO
The C function should return a char *· The first N characters of the string will be
copied and the copied string will be stripped of trailing blanks. The stripped string will
be converted to a Prolog atom. The atom will be unified with the Prolog argument. C
may reuse or destroy the string buffer during later calls.

Prolog: [-address]

C: char •FO
The C function should return a char *· The returned value will be converted to a
Prolog integer and unified with the Prolog argument.

Prolog: [-address(TypeName)]

C: TypeName •FO
The C function should return a TypeName *· The returned value will be converted to
a Prolog integer and unified with the Prolog argument.

4.13 Debugging
/

unknown(?OldState, ?NewState) \

Unifies OldSta.te with the current state of the Action on unknown procedures flag,

•

Built-In Predicates 61

and sets the flag to NewState. This flag determines whether or not the system is to
catch calls to predicates which are undefined (see section 1.6 [Undefined Predicates],
page 10). The possible states of the flag are:

debug

nodebug

notrace

trace Causes calls to predicates with no definition to be reported and the debug
ging system to be entered at the earliest opportunity (the default state).

fail Causes calls to such predicates to fail.

The debugger is switched on with tracing disabled. See section 2.2 [Basic), page 17 .

The debugger is switched off. See section 2.2 [Basic], page 17. debugging.

trace The debugger is switched on with tracing enabled. See section 2.3 [Trace], page 17.

leash(+Mode)

spy +Spec

Leashing Mode is set to Mode. See section 2.3 [Trace], page 17.

Spy-points are placed on all the procedures given by Spec. See section 2.4 [Spy-Point],
page 18.

nospy +Spec
Spy-points are removed from all the procedures given by Spec. See section 2.4 [Spy
Point], page 18.

nospyall This removes all the spy-points that have been set.

debugging
Displays information about the debugger. See section 2.2 [Basic], page 17.

4.14 Definite Clause Grammars

• Prolog's grammar rules provide a convenient notation for expressing definite clause grammars
[Colmerauer 75] [Pereira & Warren 80]. Definite clause grammars are an extension of the well-known
context-free grammars. A grammar rule in Prolog takes the general form

head--> body.

meaning a. possible form for head is body. Both body and Jiead are sequences of one or more
items linked by the standard Prolog conjunction operator , .

Definite clause grammars extend
1
~0:1text-free grammars in the following ways:

'
l. A non-terminal symbol may be any Prolog term (other than a variable or number).

62 SICStus

2. A terminal symbol may be any Prolog term. To distinguish terminals from non-terminals, a
sequence of one or more terminal symbols is written within a grammar rule as a Prolog list. An
empty sequence is written as the empty list []. If the terminal symbols are ASCII character
codes, such lists can be written (as elsewhere) as strings. An empty sequence is written as the
empty list, [] or 1111

•

3. Extra conditions, in the form of Prolog procedure calls, may be included in the right-hand side
of a grammar rule. Such procedure calls are written enclosed in {} brackets.

4. The left-hand side of a grammar rule consists of a non-terminal, optionally followed by a
sequence of terminals (again written as a Prolog list).

5. Alternatives may be stated explicitly in the right-hand side of a grammar rule, using the
disjunction operator ; as in Prolog.

6. The cut symbol may be included in the right-hand side of a grammar rule, as in a Prolog
clause. The cut symbol does not need to be enclosed in{} brackets.

As an example, here is a simple grammar which parses an arithmetic expression (made up of
digits and operators) and computes its value.

expr(Z) --> terrn(X), 11+11
, expr(Y), {Z is X + Y}.

expr(Z) --> term(X), 11
-

11
, expr(Y), {Z is X - Y}.

expr(X) --> term(X).

term(Z) --> number(X), 11*", term(Y), {Z is X * Y}.
term(Z) --> number(X), 11

/
11

, term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> 11+11
, number(C).

number(C) --> 11
-

11
, nurnber(X), {C is -X}.

number(X) --> [CJ, {11011=<C, C=<11911
, X is C - 11011

} •

. In the last rule, C is the ASCII code of some digit.

The query

I?- expr(Z, 11-2+3•5+1 11
, []).

will compute Z=14. The two extra arguments are explained below.

Now, in fact, grammar rules are. merely a convenient 11syntactic sugar 11 for ordinary Prolog
clauses. Each grammar rule takes art input string, analyses some initial portion, and produces the
remaining portion (possibly enlarged) ~ output for further analysis. The arguments required for
the input and output strings are not written explicitly in a grammar rule, but the syntax implicitly

..

•

..

Built-In Predicates 63

defines them. We now show how to translate grammar rules into ordinary clauses by making explicit

the extra arguments.

A rule such as

p(X) --> q(X) .

translates into

p(X, SO, S) :- q(X, SO, S).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) --> q(X), r(X, Y), s(Y).

then corresponding input and output arguments are identified, as in

p(X, Y, SO, S) :- q(X, SO, S1), r(X, Y, S1, S2), r(Y, S2, S).

Terminals are translated using the built-in predicate 'C'(S1, X, S2), read as point S1 is
connec;ted by terminal X to point S2, and defined by the single clause

'C' ([XIS], X, S).

(This predicate is not normally useful in itself; it has been given the name upper-case c simply
to avoid using up a more useful name.) Then, for instance

p(X) --> [go,to], q(X), [stop].

is translated by

p(X, SO, S) :-
'C'(SO, go, S1), 'C'(S1, to, S2), q(X, S2, S3), 'C'(S3, stop, S).

Extra conditions expressed as exp.licit procedure calls naturally translate as themselves, e.g.
\ •

p(X) --> [X], {integer(X), X>O}, q(X).

64 SICStus

translates to

p(X, SO, S) :- 'C'(SO, X, S1), intager(X), X>O, q(X, S1, S).

Similarly, a cut is translated literally.

Terminals on the left-hand side of a rule translate into an explicit list in the output argument

of the main non-terminal, e.g.

is(N), [not]--> [aint].

becomes

is(N, SO, [notlS]) :- 'C'(SO, aint, S).

Disjunction has a fairly obvious translation, e.g.

args(X, Y) --> dir(X), [to], indir(Y); indir(Y), dir(X).

translates to

args(X, Y, SO, S) :-
dir(X, SO, S1), 'C'(S1, to, S2), indir(Y, S2, S);
indir(Y, SO, S1), dir(X, S1, S).

The built-in predicates which are concerned with grammars are as follows.

expand_ term(+ Term1, ?Term2)
When a program is read in, some of the terms read are transformed before being stored
as clauses. If Terml is a term that can be transformed, Term2 is the result. Other
wise Term2 is just Terinl unchanged. This transformation takes place automatically
when grammar rules are read in, but sometimes it is useful to be able to perform it
explicitly. Grammar rule expansion is not the only transformation available, the user
may define clauses for the predicate term_expansion/2 to perform other transforma
tions. term_ exp ans ion (Terml , Term2) is called first, and only if it fails is the standard
expansion used. /

term_ exp ans ion (+ Term1 , ?Term2) ,

A user defined predicate, which overrules the default grammar rule expansion of clauses

..

•

..

Built-In Predicates

to be consulted or compiled.

phrase(+Phrase, ?List)

phrase(+Pl1rase, ?List, ?Remainder)

65

The list List is a phrase of type Phrase (according to the current grammar rules), where
Phrase is either a non-terminal or more generally a grammar rule body. Remainder is
what remains of the list after a phrase has been found. If called with 2 arguments, the
remainder has to be the empty list.

'C' (?S1, ?Terminal, ?S2)
Not normally of direct use to the user, this built-in predicate is used in the expansion
of grammar rules (see above). It is defined by the clause 'C' ([XIS], X, S).

4.15 Environmental

halt Causes an irreversible exit from Prolog back to the Monitor.

op(+Precedence, +Type, +Name)
Declares the atom Name to be an operator of the stated Type and Precedence (see
section 5.4 (Operators], page 82). Name may also be a list of atoms in which case all
of them are declared to be operators. If Precedence is 0 then the operator properties
of Name (if any) are cancelled.

current_op(?Precedence, ?Type, ?Op)
The atom Op is currently an operator of type Type and precedence Precedence. Neither
Op nor the other arguments need be instantiated at the time of the call; i.e. this
predicate can be used to generate as well as to test.

break Calls the command interpreter recursively. See section 1.9 (Nested], page 12.

abort Aborts the current execution. See section 1.9 [Nested], page 12.

save(+File)

The system saves the current state of the system into file File. When it is restored,
Prnlog will resume execution that called save/1. See section 1.10 [Saving], page 13.

save(+File, ?Return)

Saves the current system state in File just as save(File), but in addition unifies Return
to O or 1 depending on whether the return from the call occurs in the original incarnation
of the state or through a.call restore(File) (respectively).

I

save_program(+File) .. . ,
The system saves the currently defined predicates into file File. When it is restored,
Prolog will reinitialise itself. See section 1.10 (Saving], page 13.

66 SICStus

restore (+File)
The system is returned to the system state previously saved to file File. See section 1.10
[Saving], page 13.

reinitialise
This predicate can be used to force the initialisation behaviour to take place at any
time.

maxdepth(+Depth)
Positive integer DeptJ1 specifies the maximum depth, i.e. the maximum number of
nested interpreted calls, beyond which the interpreter will induce an automatic failure.
Top level has zero depth. This is useful for guarding against loops in an untested
program, or for curtailing infinite execution branches. Note that calls to compiled
procedures are not included in the computation of the depth. The interpreter will
check for maximum depth only if the debugger is switched on.

depth(?Depth)
Unifies Deptl1 with the current depth, i.e. the number of currently active interpreted
procedure calls. Depth information is only available when the debugger is switched on.

garbage_collect
Preform a garbage collection of the global stack immediately.

gc Enables garbage collection of the global stack (the default).

nogc Disables garbage collection of the global stack.

statistics
Display on the terminal statistics relating to memory usage, run time, garbage collection
of the global stack and stack shifts.

statistics (?Key, ?Value)
This allows a program to gather various execution statistics. For each of the possible
keys Key, Value is unified with a list of values, as follows:

garbage_collection
[no. of GCs,bytes freed,time spent]

global_stack
[size used , free]

local_stack

core

memory

heap

program

runtime

[.dze used, free]

[size used, 0 J
;

[size used, OJ \

[since start of Prolog, sfoce previous statistics]

...

ti

Built-In Predicates 67

stack_shifts

trail

choice

[no. of loca.1 sl1ifts, no. of trail sl1ifts, time spent]

[size used, free]

[size used, free]

Times are in milliseconds, sizes of areas in bytes.

prompt(?Old, ?New)

version

The sequence of characters (prompt) which indicates that the system is waiting for
user input is represented as an atom, and matched to Old; the atom bound to New
specifies the new prompt. In particular, the goal

prompt(X, X)

matches the current prompt to X, without changing it. Note that this predicate only
affects the prompt given when a user's program is trying to read from the terminal
(e.g. by calling read). Notice also that the prompt is reset to the default 'I : ' on
return to top-level.

Displays the introductory messages for all the component parts of the current system.

Prolog will display its own introductory message when initially run but not normally
at any time after this. If this message is required at some other time it can be ob
tained using this predicate which displays a list of introductory messages; initially
this list comprises only one message (Prolog's), but you can add more messages using
version/1.

version(+Message)
This takes a message, in the form of an atom, as its argument and appends it to the
end of the message list which is output by version/0.

The idea of this message list is that, as systems are constructed on top of other systems,
each can add its own identification to the message list. Thus version/0 should always
indicate which modules make up a particular package. It is not possible to remove
messages from the list.

help Displays basic information, or a user-defined help message. It first calls user_help/1,
and only if that call fails is a default help message printed on the current output stream.

user_help

A user defined predicate. This may be defined by the user to print a help message on
the current output stream.

unix(+Term)

Allows certain interactions with the operating system.
of Term are as follows:

argv(? Args)
i

Under UNIX the possible forms

Args is unified,_ with a list of the program arguments supplied when the
current SICStus' process was started. For example, if SICStus were invoked
with

68

cd(+Path)

cd

¼ sicstus hello world

then Args will be unified with

[hello, world]

Change the current working directory to Patli.

Change the current working directory to the home directory.

SICStus

shell Start a new interactive UNIX shell. The control is returned to Prolog upon
termination of the shell ..

shell (+Command)
Pass Command to a new UNIX shell for execution.

system(+Command)
Pass Command to a new UNIX sh process for execution.

4.16 Compatibility

This section lists predicates which have no effect in SICStus Prolog, but which exist for com
patibility with other Prologs.

'LC'

'NOLC'

character_count(S,N)

current_functor(X,Y)

current_module(M)

current_module(M,F)

ensure_loaded(F)

gcguide(F,O,N)

help(T)

line_count(S,N)

..

•

..

Built-In Predicates

line_position(S,N)

log

manual

manual(X)

module(M)

no_style_check(A)

nolog

plsys(X) This predicate has one meaningful use: if called as in

I ?- plsys(mktemp(Template, Filename))

69

then Filename will be unified with a unique filename constructed from the atom Tem
plate. This is an interface to mktemp(3) in the Unix C library.

restore(S,X)

revive(X,Y)

source_file(F)

source_file(P,F)

stream_position(S,P)

stream_position(S,O,N)

style_check(A)

trimcore

use_module(F)

use_module(F,I)

vms(T)
i

70 SICStus

I

'"

..

The Prolog Language 71

5. The Prolog Language

This chapter provides a brief introduction to the syntax and semantics of a certain subset of
logic (definite clauses, also known as Horn clauses), and indicates how this subset forms the basis
of Prolog. A much fuller introduction to Prolog may be found in [Sterling & Shapiro 86]. For a
more general introduction to the field of Logic Programming see [Kowalski 79].

5.1 Syntax, Terminology and Informal Semantics

5.1.1 Terms

The data objects of the language are called terms. A term is either a constant, a variable or a
compound term.

The constants include integers such as

0 1 999 -512

Besides the usual decimal, or base 10, notation, integers may also be written in any base from
2 to 9, of which base 2 (binary) and base 8 (octal) are probably the most useful. E.g.

15 2'1111 8'17

all represent the integer fifteen.

There is also a special notation for character constants. E.g.

O'A

is equivalent to 65 (the numerical value of the ASCII code for A).

Constants also include floats sucl{ as

1.0 -3.141 4.5E7 -0.12e+8 12.0e-9

72 SICStus

Note that there must be a decimal point in floats written with an exponent, and that there must
be at least one digit before and after the decimal point.

Constants also include atoms such as

a void = .- 'Algol-68' 0

Constants are definite elementary objects, and correspond to proper nouns in natural language.
For reference purposes, here is a list of the possible forms which an atom may take: •

1. Any sequence of alphanumeric characters (including_), starting with a lower case letter.

2. Any sequence from the following set of characters: +-•/\-<>='-:. ?©#$&:

3. Any sequence of characters delimited by single quotes. If the single quote character is included
in the sequence it must be written twice, e.g. , can,, t'.

4. Any of: ! ; [] {}

Note that the bracket pairs are special: [] and{} are atoms but [] {} are not. However, when
they are used as functors (see below) the form {X} is allowed as an alternative to '{}' (X).

The form [X] is the normal notation for lists.

Variables may be written as any sequence of alphanumeric characters (including_) starting with
either a capital letter or _; e.g.

X Value A A1 _3 _RESULT

If a variable is only referred to once in a clause, it does not need to be named and may be
written as an anonymous variable, indicated by the underline character _. A clause may contain
several anonymous variables; they are all read and treated as distinct variables.

A variable should be thought of as standing for some definite but unidentified object. This
is analogous to the use of a pronoun in natural language. Note that a variable is not simply a
writeable storage location as in most programming languages; rather it is a local name for some
data object, cf. the variable of pure LISP and identity declarations in Algol68.

The structured data objects of the language are the compound terms. A compound term
comprises a functor (called the princ_ipal functor of the term) and a sequence of one or more terms
called a.rguro.ents. A functor is chara'cterised by its name, which is an atom, and its arity or number
of arguments. For example the comp~und term whose functor is named point of arity 3, with
arguments X, Y and Z, is written

•

The Prolog Language 73

point(X, Y, Z)

Note that an atom is considered to be a functor of arity 0.

Functors are generally analogous to common nouns in natural language. One may think of a

functor as a record type and the arguments of a compound term as the fields of a record. Compound
• terms are usefully pictured as trees. For example, the term

• s(np(john),vp(v(likes),np(mary)))

would be pictured as the structure

s
I \

np vp
I I \

john V np
I I

likes mary

Sometimes it is convenient to write certain functors as operators - 2-ary functors may be declared
as infix operators and 1-ary functors as prefix or postfix operators. Thus it is possible to write, e.g.

X+Y (P;Q) X<Y +X P;

as optional alternatives to

+(X,Y) ; (P • Q) <(X,Y) +(X) ; (P)

The use of operators is described fully in Section I.4 below.

Lists form an important class of data structures in Prolog. They are essentially the same as the
lists of LISP: a list either is the atom

[]

;

representing the empty list, or is a co~pound term with functor . and two arguments which are
respectively the head and tail of the ll~t. Thus a list of the first three natural numbers is the
structure

74

I \
1

I \
2

I \
3 []

which could be written, using the standard syntax, as

.(1,.(2,.(3,(])))

but which is normally written, in a special list notation, as

(1,2,3]

The special list notation in the case when the tail of a list is a variable is exemplified by

[XIL] [a, bl L]

representing

I \ I \
X L a

I \
b L

respectively.

SICStus

Note that this notation does not add any new power to the language; it simply makes it more
readable. E.g. the above examples could equally be written

.(X,L) .(a,.(b,L))

For convenience, a further notatio~al variant is allowed for lists of integers which correspond to
ASCII character codes. Lists writte1dn this notation are called strings. E.g .

..
' 11SICStus 11

,..

The Prolog Language 75

which represents exactly the same list as

[83,73,67,83,116,117,115]

• 5.1.2 Programs

..

A fundamental unit of a logic program is the goal or procedure call. E.g.

gives(tom, apple, teacher) reverse([1,2,3], L) X<Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The (principal) functor of a goal is called a predicate. It corresponds roughly to a
verb in natural language, or to a procedure name in a con':'.:entional programming language.

A logic program consists simply of a sequence of statements called sentences, which are analogous
to sentences of natural language. A sentence comprises a head and a body. The head either consists
of a single goal or is empty. The body consists of a sequence of zero or niore goals (i.e. it too may
be empty). If the head is not empty, the sentence is called a clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the form

P.

where Pis the head goal. We interpret this declaratively as

Pis true.

and procedurally as

Goal P is satisfied.

If the body of a clause is non-empty, the clause is called a non-unit clause, and is written in the
form 1

P :- Q R S , . .

76 SICStus

where Pis the head goal and Q, Rand Sare the goals which make up the body. We can read such

a clause either declaratively as

P is true if Q and R and S are true.

or procedurally as

To satisfy goal P, satisfy goals Q, Rand S.

A sentence with an empty head is called a directive (see section 1.4 [Directives], page 7), of
which the most important kind is called a query and is written in the form

?- P, Q.

where P and Q are the goals of the body. Such a query is read declaratively as

Are P and Q true?

and procedurally as

Satisfy goals P and Q.

Sentences generally contain variables. Note that variables in different sentences are completely
independent, even if they have the same name - i.e. the lexical scope of a variable is limited
to a single sentence. Each distinct variable in a sentence should be interpreted as standing for
an arbitrary entity, or value. To illustrate this, here are some examples of sentences containing
variables, with possible declarative and procedural readings:

1. employed(X) :- employs(Y,X).

Any X is employed if any Y employs X.

To find whether a person X is employed, find whetlier any Y employs X.

2. derivative(X,X, 1).

For any X, the derivative of X witl1 respect to X is 1.

The goal of finding a derivative for tl1e expression X with respect to X itself is satisfied by the
result 1. ;

3. ?- ungulate(X), aquatic(X). \

Is it true, for any X, tl1at Xis an ungulate and X is aquatic?

•

..

,.

'

•

4

•

The Prolog Language 77

Find an X wl1icl1 is both an ungulate and aqua.tic.

In any program, the procedure for a particular predicate is the sequence of clauses in the program
whose head goals have that predicate as principal furi.ctor. For example, the procedure for a 3-ary
predicate concatenate/3 might well consist of the two clauses

concatenate([], L, L) .
concatenate([XIL1], L2, [XIL3]) :- concatenate(L1, L2, L3).

where concatenate (Ll, L2, L3) means tl1e list Ll concatenated witll the list L2 is tlie list L3. Nate
that for predicates with clauses corresponding to a base case and a recursive case, the preferred
style is to write the base case clause :first.

In Prolog, several predicates may have the same name but different arities. Therefore, when it is
important to specify a predicate unambiguously, the form <name> /<arity> is used; e.g. concatenate/3.I

Certain predicates are predefined by built-in predicates supplied by the Prolog system. Such
predicates are called built-in predicates.

As we have seen, the goals in the body of a sentence are linked by the operator , which can
be interpreted as conjunction ('and'). It is sometimes convenient to use an additional operator ; ,
standing for disjunction ('or'). (The precedence of ; is such that it dominates , but is dominated
by : - .) An example is the clause

grandfather(X, Z) :-
(mother(X, Y); father(X, Y)), father(Y, Z).

which can be read as

For any X, Y alld Z,
X has Z as a grandfather if

eitl1er the motlier of X is Y or the fatlier of X is Y,
and tlie fatl1er of Y is Z .

Such uses of disjunction can always be eliminated by defining an extra predicate - for instance
the previous example is equivalent to

;

grandfather(X,Z) :- parent(~,Y), father(Y,Z).
parent(X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).

78 SICStus

. and so disjunction will not be mentioned further i11 the following, more formal, description of the

semantics of clauses.

The token I, when used outside a list, is an alias for ; . The aliasing is performed when terms
are read in, so that

a-:- b I c.

is read as if it were

a :- b c.

Note the double use of the . character. On the one hand it is used as a sentence terminator,
while on the other it may be used in a string of symbols which make up an atom (e.g. the list functor
.). The rule used to disambiguate terms is that a . followed by a layout-character is regarded as a
sentence terminator, where a layout-character is defined to be any character less than or equal to
ASCII 32 (this includes space, tab, newline and all control characters).

5.2 Declarative and Procedural Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations already
given. However it is useful to have a precise definition. The declarative semantics of definite clauses
tells us which goals can be considered true according to a given program, and is defined recursively
as follows.

A goal is true if it is the head of some clause instance and each of the goals (if any)
in the body of that clause instance is true, where an instance of a clause (or term) is
obtained by substituting for each of zero or m01·e of its variables, a new term for all
occurrences of the variable.

For example, if a program contains the preceding procedure for concatenate/3, then the declar-

..

ative semantics tells us that •

concatenate([a], [b], [a, 9])
;

is true, because this goal is the head 6f a certain instance of the first clause for concatenate/3,
namely,

•

•

..

•

The Prolog Language 79

concatenate([a] , [b] , [a, b]) : - concatenate ([] , [b] , [b]) .

and we know that the only goal in the body of this clause instance is true, since it is an instance
of the unit clause which is the second clause for concatenate/3.

Note that the declarative semantics makes no reference to the sequencing of goals within the
body of a clause, nor to the sequencing of clauses within a program. This sequencing information
is, however, very relevant for the procedural semantics which Prolog gives to definite clauses. The
procedural semantics defines exactly how the Prolog system will execute a goal, and the sequencing
information is the means by which the Prolog programmer directs the system to execute his program
in a sensible way. The effect of executing a goal is to enumerate, one by one, its true instances.
Here then is an informal definition of the procedural semantics.

To execute a goal, the system searches forwards from the beginning of the program for
the first clause whose head matches or unifies with the goal. The unification process
(Robinson 1965] finds the most general common instance of the two terms, which is
unique if it exists. If a match is found, the matching clause instance is then activated
by executing in turn, from left to right, each of the goals (if any) in its body. If at any
time the system fails to find a match for a goal, it backtracks, i.e. it rejects the most
recently activated clause, undoing any substitutions made by the match with the head
of the clause. Next it reconsiders the original goal which activated the rejected clause,
and tries to find a subsequent clause which also matches the goal.

For example, if we execute the goal expressed by the query

?- concatenate(X, Y, [a,b]).

we find that it matches the head of the first clause for concatenate/3, with X instantiated to
(alXl]. The new variable Xl is constrained by the new goal produced, which is the recursive
procedure call

ccmcatenate(X1, Y, (b])

Again this goal matches the first clause, instantiating Xl to [b I X2], and yielding the new goal

concatenate(X2, Y, [])

Now this goal will only match th~· second clause, instantiating both X2 and Y to []. Since there
are no further goals to be executed, wJ'11ave a solution

80 SICStus

X = [a, b]
y = []

i.e. a true instance of the original goal is

concatenate([a,b], [], [a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]
y = [b]

X = []
Y = [a, b]

in that order, by re-matching, against the second clause for concatenate, goals already solved once
using the first clause.

5.2.1 Occur Check

It is possible, and sometimes useful, to write programs which unify a variable to a term in
which that variable occurs, thus creating a cyclic term. The usual mathematical theory behind
Logic Programming [Lloyd 85] forbids the creation of cyclic terms, dictating that an occur check
should be done each time a variable is unified with a term. Unfortunately, an occur check would
so expensive as to render Prolog impractical as a programming language. Thus cyclic terms may
be created and may cause loops trying to print them.

SICStus Prolog mitigates the problem by its ability to unify cyclic terms without looping. Loops
in the printer can be interrupted by typing -c.

5.3 The Cut Symbol

Besides the sequencing of goals and clauses, Prolog provides one other very important facility
for specifying control information. Tl1is is the cut symbol, written ! . It is inserted in the program
just like a goal, but is not to be regarde'"d as part of the logic of the program and should be ignored
as far as the declarative semantics is concerned.

The Prolog Language 81

The effect of the cut symbol is as follows. When first encountered as a goal, cut succeeds
immediately. If backtracking should later return to the cut, the effect is to fail the parent goal,
i.e. that goal which matched the head of the clause containing the cut, and caused the clause to
be activated. In other words, the cut operation commits the system to all choices made since the
parent goal was invoked, and causes other alternatives to be discarded. The goals thus rendered
determinate are the parent goal itself, any goals occurring before the cut in the clause containing
the cut, and any subgoals which were executed during the execution of those preceding goals.

E.g.

member(X, [XI_]).
member(X, [_IL]) :- member(X, L).

This procedure can be used to test whether a given term is in a list. e.g.

?- member(b, [a,b,c]).

returns the answer 'yes'. The procedure can also be used to extract elements from a list, as in

?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that the
first clause had been written instead:

member(X, [XI_]) ·- !.

In this case, the above call would extract only the first element of the list (d). On backtracking,
the cut would immediately fail the whole procedure.

X : - p, ! • q.
X •- r.

This is equivalent to

/ x := if p then q else r;

in an Algol-like language.

82 SICStus

It should be noticed that a cut discards all the alternatives since the parent goal, even when the
cut appears within a disjunction. This means that the normal method for eliminating a disjunction
by defining an extra predicate cannot be applied to a disjunction containing a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. We would like to advise all users to
follow these general rules. Also see chapter 6 (Example Intro], page 95.

• Write each clause as a self-contained logic rule which just defines the truth of goals which
match its head. Then add cuts to remove any fruitless alternative computation paths that
may tie up store.

• Cuts are usually placed right after the head, sometimes preceded by simple tests.

• Cuts are hardly ever needed in the last clause of a procedure.

5.4 Operators

Operators in Prolog are simply a notational convenience. For example, the expression

2 + 1

could also be written +(2, 1). This expression represents the data structure

+
I \

2 1

and not the number 3. The addition would only be performed if the structure were passed as an
argument to an appropriate procedure such as is/2 (see section 4.2 (Arithmetic], page 42).

The Prolog syntax caters for operators of three main kinds - infix, prefix and postfix. An infix
operator appears between its two arguments, while a prefix operator precedes its single argument
and a postfix operator is written after its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used to
disambiguate expressions where the ~tructure of the term denoted is not made explicit through the
use of brackets. The general rule is tha;& it is the operator with the liighest precedence that is the
principal functor. Thus if+ has a higher precedence than /, then

•

..

The Prolog Language 83

a+b/c a+(b/c)

are equivalent and denote the term +(a,/(b,c)). Note that the infix form of the term /(+(a, b) ,c)I

must be written with explicit brackets, i.e.

(a+b)/c

If there are two operators in the subexpression having the same highest precedence, the ambi
guity must be resolved from the types of the operators. The possible types for an infix operator
are

xfx xfy yfx

Operators of type xfx are not associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than the operator itself, i.e.
their principal functors must be oflower precedence, unless the subexpression is explicitly bracketed
(which gives it zero :precedence).

Operators of type xfy are right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence as the main operator.
Left-associative operators (type yfx) are the other way around.

A functor named name is declared as an operator of type type and precedence precedence by
the command

·- op(precedence, type, name).

The argument name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of different
kinds, i.e. infix, prefix or postfix. An operator of any kind may be redefined by a new declaration of
the same kind. This applies equally to operators which are provided as standard. Declarations of
all the standard operators can be found elsewhere (see chapter 9 [S_tandard Operators], page 115).

For example, the standard operat~rs + and - are declared by
'\

:- op(500, yfx, [+, -]).

84 SICStus

so that

a-b+c

is valid syntax, and means

(a-b)+c

i.e.

+
I \

C

I \
a b

The list functor , . , is not a standard operator, but we could declare it thus:

:- op(900, xfy, 1
.').

Then

a.b.c

would represent the structure

I \
a

I \
b c

Contrasting this with the diagram above for a-b+c shows the difference betweeen yfx operators
where the tree grows to the left, and xfy operators where it grows to the right. The tree cannot
grow at all for xfx operators; it is simply illegal-to combine xfx operators having equal precedences
in this way.

/

The possible types for a prefix opera¼>r are

..

•

..

•

The Prolog Language 85

fx fy

and for a postfix operator they are

xf yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were 'fx', the preceding expression

would not be legal, although

not P

would still be a permissible form for not(P).

If these precedence and associativity rules seem rather complex, remember that you can always
use brackets when in any doubt.

Note that the arguments of a compound term written in standard syntax must be expressions
of precedence below 1000. Thus it is necessary to bracket the expression P • - Q in

assert((P • - Q))

5.5 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguity
associated with prefix operators .

1. In a term written in standard sy~1tax, the principal functor and its following (must not be
separated by any intervening spa!ces, newlines etc. Thus

point (X,Y,Z)

is invalid syntax.

86 SICStus

2. If the argument of a prefix operator starts with a (, this (must be separated from the operator
by at least one space or other non-printable character. Thus

:-(p;q),r.

(where:- is the prefix operator) is invalid syntax. The system would try to interpret it as the

structure:

•
I \

r

I \
p q

That is, it would take : - to be a functor of arity 1. However, since the arguments of a functor
are required to be expressions of precedence below 1000, this interpretation would fail as soon
as the ; (precedence 1100) was encountered.

In contrast, the term:

:- (p;q),r.

is valid syntax and represents the following structure.

·-
,

I \
; r

I \
p q

3. If a prefix operator is written without an argument, as an ordinary atom, the atom is treated as
an expression of the same precedence as the prefix operator, and must therefore be bracketed
where necessary. Thus the brackets are necessary in

X = (?-)

5.6 Comments

"

Comments have no effect on the execution of a program, but they are very useful for making •
programs more readily comprehensible. Two forms of comment are allowed in Prolog:

1. The character¼ followed by any'sequence of characters up to end of line. The first character
after the Y. may not be a (or a) , O\lcause the symbols ¼(and ¼) are reserved.

2. The symbol/* followed by any sequence of characters (including new lines) up to*/.

The Prolog Language 87

5. 7 Full Prolog Syntax

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
terms are interpreted as sentences is defined below (see section 5.7.2 [Sentence], page 88). Note
that a term representing a sentence may be written in any of its equivalent syntactic forms. For
example, the 2-ary functor : - could be written in standard prefix notation instead of as the usual

,.· infix operator.

Terms are written as sequences of tokens. Tokens are sequences of characters which are treated
as separate symbols. Tokens include the symbols for variables, constants and functors, as well as
punctuation characters such as brackets and commas.

We define below how lists of tokens are interpreted as terms (see section 5.7.3 [Term Token],
page 89). Each list of tokens which is read in (for interpretation as a term or sentence) has to
be terminated by a full-stop token. Two tokens must be separated by a space token if they could
otherwise be interpreted as a single token. Both space tokens and comment tokens are ignored
when interpreting the token list as a term. A comment may appear at any point in a token list
(separated from other tokens by spaces where necessary).

We define below defines how tokens are represented as strings of characters (see section 5.7.4
[Token String], page 90). But we start by describing the notation used in the formal definition of
Prolog syntax (see section 5.7.1 [Syntax Notation], page 87).

5. 7.1 Notation

1. Syntactic categories (or 'non-terminals') are written thus: item. Depending on the section,
a category may represent a class of either terms, token lists, or character strings.

2. A syntactic rule takes the general form

C --> Fl I F2 I F3

which states that an entity of category C may take any of the alternative forms Fl, F2, F3,
etc.

• 3. Certain definitions and restrictions are given in ordinary English, enclosed in { } brackets.

4. A category written as C . .. denotes a sequence of one or more Cs.

5. A category written as ?C denot~ an optional C. Therefore ?C ... denotes a sequence of zero
or more Cs.

1

6. A few syntactic categories have n:rii~s with arguments, and rules in which they appear may
contain meta-variables looking thus: X. The meaning of such rules should be clear from analogy

88 SICStus

with the definite clause grammars (see section 4.14 [Definite], page 61).

7. In the section describing the syntax of terms and tokens (see section 5.7.3 [Term Token],
page 89) particular tokens of the category name are written thus: name, while tokens which
are individual punctuation characters are written literally.

5. 7 .2 Syntax of Sentences as Terms

sentence

clause

directive

non-unit-clause

unit-clause

command

query

head

goals

goal

grammar-rule

gr-head

gr-body

non-terminal

--> clause I directive I grammar-rule

--> non-unit-clause I unit-clause

--> command I query

--> (head ·- goals) .
--> head

{ where head is not otherwise a sentence}

--> (·- goals)

--> (?- goals)

--> term
{ where term is not an number or variable}

--> (goals , goals)
I (goals goals)
I goal

--> term
{ where term is not a number

and is not otherwise a goals}

--> (gr-head--> gr-body)

--> non-terminal
I (non-terminal, terminals)

--> (gr-body, gr-body)
I (gr-body; gr-body)
I non-terminal
I tenninals
I gr-c_ondi tion

;

-->term~
{ where term is not a number or variable

and is not otherwise a gr-body}

•

•

The Prolog Language

terminals

gr-condition

--> list I string

--> {goals}

5.7.3 Syntax of Terms as Tokens

term-read-in

subterm(N)

term(N)

term(1000)

term(O)

op(N, T)

arguments

list

--> subterm(1200) full-stop

--> term(M)
{ where M is less than or equal to N }

--> op(N,fx)
op(N,fy) .
op(N ,fx) subterm(N-1)

{ except the case - number}
{ if subterm starts with a(,

op must be followed by a space}
op(N,fy) subterm(N)

{ if subterm starts with a(,
op must be followed by a space}

subterm(N-1) op(N,xfx) subterm(N-1)
subterm(N-1) op(N,xfy) subterm(N)
subterm(N) op(N,yfx) subterm(N-1)
subterm(N-1) op(N,xf)
subterm(N) op(N, yf)

--> subterm(999) , subterm(1000)

--> functor (arguments)
{ provided there is no space between

the functor and the (}
(subterm(1200))
{ subterm(1200)}
list
string
constant
variable

--> name
{ where name has been declared as an

operator of type T and precedence N }

--> subterm(999)
I subferm(999) , arguments

--> []
I [listexpr]

89

90

listexpr --> subterm(999)
I subterm(999) , listexpr
I subterm(999) 'I' subterm(999)

constant --> atom I number

number --> integer I float

atom --> name
{ where name is not a prefix operator}

integer --> natural-number
I - natural-number

float --> unsigned-float
I - unsigned-float

functor --> name

5. 7.4 Syntax of Tokens a~ Character Strings

token

name

quoted-name

quoted-item

word

symbol

--> name
I natural-number
I unsigned-float
I variable
I string
I punctuation-char
I space
I comment
I full-stop

--> quoted-name
I word
I symbol
I solo-char
I [?layout-char ...]
I { ?layout-char ... }

--> , quoted-i tern ...)

--> char { other than , }
I , ,

--> smail-letter ?alpha ...

--> symboi~char ...
{ except in the case of a full-stop

SICStus

•

"

•

..

The Prolog Language

natural-number

base

unsigned-float

simple-float

exp

exponent

variable

variable

string

string-item

space

comment

rest-of-line

not-end-of-line

newline

full-stop

char

or where the first 2 chars are I*}

--> digit ...
I digit' digit ...

{ where digit> 0}
0' char

--> digit ...

--> simple-float
I simple-float exp exponent

--> digit ... digit ...

--> e E

--> digit ... I - digit ... I+ digit ...

--> underline ?alpha .. .

--> capital-letter ?alpha ..

--> 11 ?string-item ... 11

--> char { other than 11
}

I 1111

--> layout-char ...

--> I* ?char ... *I
{ where ?char ... must not contain *I}

¼ rest-of-line

--> newline
I ?not-end-of-line ... newline

--> { any character except newline

--> { LFD }

--> layout-char

--> { any ASCII character, i.e.}
layout-char
alpha
symbol-char
solo~char

I

punctuation-char
quote-char

}

91

92

layout-char

alpha

letter

capital-letter

small-letter

digit

symbol-char

solo-char

punctuation-char

quote-char

underline

5.7.5 Notes

--> { any ASCII character code up to 32,
includes SPS, RET and LFD}

--> letter I digit underline

--> capital-letter small-letter

--> { any character from the list
ABCDEFGHIJKLMN0PQRSTUVWXYZ}

--> { any character from the list
abcdefghijklmnopqrstuvwxyz}

--> { any character from the list
012346789}

--> { any character from the list
+-*/\~<>='-:.?©#$&}

--> { any character from the list
: ! }

--> { any character from the list
0 []{}•I }

--> { any character from the list
)II }

--> { the character_}

SICStus

1. The exP,ression of precedence 1000 (i.e. belonging to syntactic category term(lO00)) which is
written

X,Y

denotes the term ',' (X, 1") in standard synta..x.

2. The bracketed expression (belonging to syntactic category term(0))

(X)

denotes simply the term X.

3. The curly-bracketed expression (belonging to syntactic category term(D))
{X}

denotes the term '{}' (X) in standard syntax.

4. Note that, for example, -3 denotes"'a number whereas -(3) denotes a compound term which
has the 1-ary functor - as its principal functor.

•

•

The Prolog Language 93

5. The character II within a string must be written duplicated. Similarly for the character '
within a quoted atom .

i

94 SICStus

i

'

•

•

•

•

Programming Examples 95

6. Programming Examples

Some simple examples of Prolog programming are given below. They exemplify typical applica
tions of Prolog. We are trying to convey a flavour of Prolog programming style as well, by following
the simple rules:

• Base case before 1·ecursive cases.

• Input arguments before output arguments .

• Use cuts sparingly, and at proper places (see section 5.3 [Cut], page 80).

6.1 Simple List Processing

The goal concatenate(11, 12, 13) is true if list 13 consists of the elements of list 11 concate
nated with the elements of list 12. The goal rnernber(X,1) is true if Xis one of the elements of list
1. The goal reverse (11, 12) is true if list 12 consists of the elements of list 11 in reverse order.

concatenate([], L, L).
concatenate([XILi], L2, [XIL3]) ·- concatenate(Li, L2, L3).

member(X, [XI_]).
member(X, [_IL]) :- member(X, L).

reverse(L, Li) :- reverse_concatenate(L, [], Li).

reverse_concatenate([], L, L).
reverse_concatenate([XILi], L2, L3) :-

reverse_concatenate(L1, [XIL2], L3).

6.2 A Small Database

The goal descendant (X, Y) is true if Y is a descendant of X .

descendant(X, Y) :- offspring(X, Y).
dascendant(X, Z) :- offsp~ing(X, Y), descendant(Y, Z).

I

offspring(abraham, ishmael):-,
offspring(abraham, isaac).
offspring(isaac, esau).

96 SICStus

offspring(isaac, jacob).

If for example the query

?- descendant(abraham, X).

is executed, Prolog's backtracking results in different descendants of Abraham being returned as •
successive instances of the variable X, i.e.

X = ishrnael
X = isaac
X = esau
X = jacob

6.3 Quick-Sort

The goal qsort (L, D , R) is true if list R is a sorted version of list L. More generally, the goal
qsort(L. RO. R) is true if list R consists of the members of list L sorted into order, followed by
the members of list RO. The algorithm used is a variant of Hoare's Quick Sort.

·- mode qsort(+, +, -).
mode partition(+,+. - -).

qsort([], R. R).
qsort([Xl1], RO, R) :

partition(1, X, 11. 12),
qsort(12, RO, R1),
qsort(11, [XIR1]. R).

partition([] , _, [] , D) .
partition([Xl1], Y, [XIL1], 12) :- X =< Y. !,

partition(L, Y. L1, L2).
partition([Xl1], Y, L1. [XIL2]) :- X > Y,

partition(L, Y. L1, L2).

6.4 Differentiation
;

The goal d(E1, X, E2) is true if extJl'ession E2 is a possible form for the derivative of expression
El with respect to X.

"

•

Programming Examples

·- mode d(+, +, -).
·- op(300, xfy, **).

d(X. X, 1) :- atomic(X). ! .
d(C, X, 0) :- atomic(C) • ! .
d(U+V, X, DU+DV) :- d(U, X, DU), d(V, X, DV).
d(U-V, X, DU-DV) :- d(U, X, DU), d(V, X, DV).
d(U*V, X, DU*V+U*DV) :- d(U, X, DU), d(V, X, DV).
d(U**N, X, N*U**N1*DU) :- integer(N), N1 is N-1, d(U, X, DU) .
d(-U, X, -DU) :- d(U, X, DU).

6.5 Mapping a List of Items into a List of Serial Numbers

97

The goal serialise(L1, L2) is true if L2 is a list of serial numbers corresponding to the
members of list Ll, where the members of Ll are numbered (from 1 upwards) in order of increasing
size. e.g.?- serialise([1,9,7,7]. X). gives'X = [1,3,2,2]'.

serialise(Items, SerialNos) :
pairlists(Items, SerialNos, Pairs),
arrange(Pairs, Tree),
numbered(Tree, 1, N).

pairlists ([] , [] , []).
pairlists([XIL1], [YIL2], [pair(X,Y)IL3]) ·

pairlists(L1, L2, L3).

arrange([], void).
arrange([XIL], tree(T1,X,T2)) ·

split(L, X, L1, L2),
arrange(L1, T1),
arrange(L2, T2).

split ([] , _, [] • []) .
split([XIL], X, L1, L2) :- !,

split(L, X, L1, L2).
split([XIL], Y, [XIL1], L2) :- before(X, Y), !,

split(L, Y, L1, L2).
split([XIL], Y, L1, [XIL2]) :- before(Y, X),

split(L, Y, L1, L2).

before(pair(X1,Y1), pair(X2,Y2)) ·- X1 < X2.

/ numbered(void, N, N).
numbered(tree(T1,pair(X,N1),T~).

numbered(T1, NO, N1),
N2 is N1+1,

NO, N) • -

98 SICStus

numbered(T2, N2, N).

6.6 Use of Meta-Predicates

This example illustrates the use of the meta-predicates var/1, arg/3, and functor/3. The

procedure call

variables (Term, L, [])

instantiates variable L to a list of all the variable occurrences in the term Term. e.g.

variables(d(U*V, X, DU*V+U*DV), [U,V,X,DU,V,U,DV], [])

variables(X, [XIL], L) :- var(X), !.
variables(!, LO, L) ·-

functor(!,_, A),
variables(O, A, T, LO, L).

variables(A, A,_, L, L) :- !.
variables(AO, A, T, LO, L) :- AO<A,

A1 is A0+1,
arg(A1, T, X),
variables(X, LO, L1),
variables(A1, A, T, L1, L).

6. 7 Prolog in Prolog

This example shows how simple it is to write a Prolog interpreter in Prolog, and illustrates the
use of a variable goal. In this mini-interpreter, goals and clauses are represented as ordinary Prolog "
data structures (i.e. terms). Terms representing clauses are specified using the unary predicate

,my_clause, e.g. 1

my_clause((grandparent(X, Z) :- parent(X, Y), parent(Y, Z))).

i

A unit clause will be represented bj\il, term such as

ti

Programming Examples

my_clause((parent(john, mary) :- true))

The mini-interpreter consists of three clauses:

execute((P,Q)) :- !, execute(P), execute(Q).
execute(P) ·- predicate_property(P, built_in), !, P.
execute(P) :- my_clause((P :- Q)), execute(Q).

99

The second clause enables the mini-interpreter to cope with calls to ordinary Prolog predicates,
e.g. built-in predicates.

6.8 Translating English Sentences into Logic Formulae

The following example of a definite clause grammar defines in a formal way the traditional
mapping of simple English sentences into formulae of classical logic. By way of illustration, if the
sentence

Every man that lives loves a woman.

is parsed as a sentence by the call

I ?- phrase(sentence(P), [every,man,that,lives,loves,a,woman]).

then P will get instantiated to

all(X):(man(X)&:lives(X) => exists(Y):(woman(Y)&:loves(X,Y)))

where : , &: and => are infix operators defined by

·- op(900, xfx, =>).
:- ~p(800, xfy, &).
:- op(300, xfx, :).

The grammar follows:

/

sentence(P) --> noun_phrase~, P1, P), verb_phrase(X, P1).

noun_phrase(X, P1, P) -->

100

determiner(X, P2, P1, P), noun(X, P3), rel_clause(X, P3, P2).
noun_phrase(X, P, P) --> name(X).

verb_phrase(X, P) --> trans_verb(X, Y, P1), noun_phrase(Y, P1, P).
verb_phrase(X, P) --> intrans_verb(X, P).

rel_clause(X, P1, P1&P2) --> [that], verb_phrase(X, P2).
rel_clause(_, P, P) --> [].

determiner(X, P1, P2, all(X):(P1=>P2)) --> [every].
determiner(X, P1, P2, exists(X):(P1&P2)) --> [a].

noun(X, man(X)) --> [man].
noun(X, woman(X)) --> [woman].

name(john) --> [john].

trans_verb(X, Y, loves(X,Y)) --> [loves].
intrans_verb(X, lives(X)) --> [lives].

i

SICStus

•

,.

"

•

•

•

Installation Dependencies 101

7. Installation Dependencies

7.1 Getting Started

To start SICStus issue the shell command:

¼ sicstus options arguments

The only option currently available is to raise the size limit of terms which may be stored using
recorda/3, asserta/1, setof/3, and related predicates. The default limit is 256. The "size" is
approximately defined as the number of distinct variables in a term plus its maximum nesting level.
If the limit is exceeded during an execution, Prolog will print the message

ERROR: term too large in assert or record

and the execution will be aborted.

To raise the limit to 1000, issue the shell command:

¼ sicstus -x 1000 arguments

If given, the a.rguments can be retrieved from Prolog by unix(argv(?Args)).

To start SICStus from a saved state file, issue the shell comand:

¼ file options arguments

i

102 SICStus

.,

..

i

•

..

Summary of Built-In Predicates

8. Summary of Built-In Predicates

abolish(+Preds)
Make the predicate(s) specified by Preds undefined.

abolish(+Atom, +Arity)
Make the predicate specified by Atom/ Arity undefined .

abort Abort execution of the current directive.

absolute_file_name (+Rela.tiveName,? AbsoluteName)
AbsoluteNa.me is the full path of RelativeName.

ancestors (?Goals)
The ancestor list of the current clause is Goals.

arg(+ArgNo, +Term, ?Arg)
Argument ArgNo of term Term is Arg.

assert (+Clause)
Assert clause Clause.

assert (+Clause,-Ref)
Assert clause Clause, reference Ref.

asserta(+Clause)
Assert Clause as first clause.

asserta(+Clause,-Ref)
Assert Clause as first clause, reference Ref.

assertz(+Clause)

Assert Clause as last clause.

assertz(+Clause, -Ref)

Assert Clause as last clause, reference Ref.

atom(?X) Xis an atom.

atom_chars (?Atom, ?Cha.rList)

The name of atom Atom is string CliarList.

atornic(?X)

X is an atom or number.

bagof (?Template, +Goal, ?Bag)

, The bag of instances of Template such that Goal is provable is Bag.

break Break at the next interpreted procedure call.

'C' (?Sl, ?Terminal, ?S2)
/

(grammar rules) S1 is connected by the terminal Terminal to S2 . ..
\

call(+Term)

Execute the procedure call Term.

103

104 SICStus

call(+Term, ?Vars)
Execute the procedure call Term. Any subgoals are suspended on the variables in Vars.

character_count(X,Y)
Dummy routine for compatibility.

clause(+Head, ?Body)
There is an interpreted clause, head Head, body Body.

clause(?Head, ?Body, ?Ref)
There is an interpreted clause, head Head, body Body, ref Ref.

close(+File)
Close stream File.

compare (?Op, ?Terml , ?Term2)
Op is the result of comparing terms Terml and Term2.

compile(+File)
Compile in-core the procedures in text file(s) File.

consult (+File)
Update the program with interpreted clauses from file(s) File.

copy_ term(?Term, ?CopyOITerm)
CopyOITerm is an independent copy of Term.

current_atom(? Atom)
One of the currently defined atoms is Atom.

current_functor(X,Y)
Dummy routine for compatibility.

current_input (?Stream)
Stream is the current input stream.

current_key(?KeyName, ?KeyTerm)

KeyName is the atom or number which is the name of KeyTerm.

current_module(?Module)

Dummy routine for compatibility.

current_op(?Precedence, ?Type, ?Op)

Atom Op is an operator type Type precedence Precedence.

current_output (?Stream)

Stream is the current output stream.

current_predicate (?Na.me, ?Head)
A current predicate is named Name, most general goal Head.

current_stream(?FileName, ?Mode"~ ?Stream)

FileName and Mode are as~~ciated with Stream.

debug Switch on debugging.

•

Summary of Built-In Predicates 105

debugging
Output debugging status information.

depth(?Depth)
The current invocation depth is Depth.

dif(?X, ?Y)
The terms X and Y are different.

display(?Term)
Display term Term on the terminal.

ensure_loaded (File)
Dummy routine for compatibility.

erase (+ Ret)
Erase the clause or record, reference Ref.

expand_ term(+ Terml, ?Term2)
Term Terml is a shorthand which expands to term Term2.

fail

false Backtrack immediately.

fcompile(+File)
Compile file-to-file procedures in text file(s) File.

fileerrors
Enable reporting of file errors.

findall (?Template, +Goa.I, ?Bag)
The bag of instances of Template such that an instance of Goal is provable is Bag.

float(?X)
Xis a float.

flush_output (+Stream)
Flush the buffers associated with Stream.

foreign(+CFunctionName, +Predicate)

foreign(+CFunctionN ame, +Language, + Predicate)
User defined, they tell Prolog how to translate Predicate to call of CFunctionName.

foreign_file (+ObjectFile, +Functions)
User defined, tells Prolog that foreign functions Functions are in file ObjectFile.

• format(+Format, +Arguments)

Write Arguments according to Format on the current output.

format(+Stream, +Format, +Argu~ents)
I

Write Arguments accordin~ to Format on the stream Stream.

freeze (+Goal) '
Suspend Goal until Goal is ground.

106

freeze(?X, +Goal)
Suspend Goal until nonvar(X).

frozen(-Var, ?Goal)
The goal Goal is suspended on the variable Var.

functor(?Term, ?Name, ?Arity)
The principal functor of term Term has name Name, arity Arity.

garbage_collect
Perform a garbage collection.

gc Enable garbage collection.

gcguide(X,Y,Z)
Dummy routine for compatibility.

get(?C) The next non-blank character from the current input is C.

get (+Stream, ?C)
The next non-blank character from the stream Stream is C.

getO(?C) The next character fro the current input is C.

getO(+Stream, ?C)

The next character from the stream Stream is C.

halt Halt Prolog, exit to the monitor.

help Print a help message.

if(+P, +Q, +R)

If P then Q else R, exploring all solutions of P.

incore (+Term)
Execute the procedure call Term.

instance(+Ref, ?Term)

A most general instance of the record reference Ref is Term.

integer(?X)

X is an integer.

Y is X Y is the value of the arithmetic expression X.

keysort (+ Listl , ? List2)
The list Listl sorted by key yields List2.

'LC' Dummy routine for compatibility.

leash(+Mode)

Set leashing mode to Mode.

length(?List, ?Lengtl1)

The length of list List i§ Lengtl1 .
..

library_directory(?Directory) ,

User defined, Directory is a directory in the search path.

SICStus

..

Summary of Built-In Predicates

line_count(X,Y)
Dummy routine for compatibility.

line_position(X,Y)
Dummy routine for compatibility.

listing List the current interpreted program.

listing(+A)
11 List the interpreted procedure(s) specified by A.

load(+File)
., Load compiled object file(s) File into Prolog.

load_foreign_files (+ObjectFiles, + Libraries)
Load (link) files ObjectFiles into Prolog.

log Dummy routine for compatibility.

manual

manual (+Topic)
Dummy routines for compatibility.

maxdepth(+Deptl1)
Limit invocation depth to Deptl1.

module(?Module)
Dummy routine for compatibility.

name(?Const, ?CharList)
The name of atom or number Const is string CharList.

nl Output a new line on the current output stream.

nl (+Stream)

Output a new line on stream Stream.

no_style_check(X)

Dummy routine for compatibility.

nodebug Switch off debugging.

nofileerrors

nogc

'NOLC'

Disable reporting of file errors.

Disable garbage collection.

Dummy routine for compatibility.

nolog Dummy routine for compatibility.

nonvar(?X)

Xis a non-variable.

nospy +Spec •
Remove spy-points from thi procedure(s) specified by Spec.

nospyall Remove all spy-points.

107

108 SICStus

notrace Switch off debugging.

number(?X)
Xis a number.

number_chars(?Number, ?CharList)
The name of number Number is string Cl1arList.

numbervars (?Term, +N, ?M)
Number the variables in term Term from N to M-1.

op (+Precedence, +Type, +Name)
Make atom Name an operator of type Type precedence Precedence.

open(+FileName, +Mode,-Stream)
Open file FileName in mode Mode as stream Stream.

open_nulLstream(-Stream)
Open an output stream to the null device.

otherwise
Succeed.

phrase (+ P l1rase, ?List)

phrase (+Phrase, ? List, ? Remainder)
List List can be parsed as a phrase of type Phrase. The rest of the list is Remainder
or empty.

plsys (mktemp(+Template, -Filename))
Filename is a unique filename constructed from the a.tom Template.

portray (+Term)
User defined, tells print/ 1 what to do.

predicate_property(?Head,?Prop)
Head is the most general goal of a currently defined predicate that has the property
Prop.

print (?Term)

Portray or else write the term Term on the current output.

print (+Stream, ?Term)

Portray or else write the term Term on the stream Stream.

prolog_flag(+Fla.gName, ?Va.Jue)

Value is the current value of Fla.gName.

prolog_flag(+FlagName, ?OldValue, ?NewValue)

OldValue and NewValue are the old and new values of FlagName.

prompt(?Old, ?New) /

Change the prompt from 01(1 to New.

put(+C) The next character sent to the current output is C.

..

Summary of Built-In Predicates

put(+Stream, +C)
The next character sent to the stream Stream is C.

read(?Term)
Read term Term from the current input.

read(+Stream, ?Term)
Read term Term from the stream Stream.

" reconsult(+File)
Update the program with interpreted clauses from file File.

recorda (+Key, ?Term, -ReD
Make term Term the first record under key Key, reference Ref.

recorded(+Key, ?Term, ?ReD
Term Term is recorded under key Key, reference Ref.

recordz(+Key, ?Term,-ReD
Make term Term the last record under key Key, reference Ref.

reinitialise
Initialisation.

repeat Succeed repeatedly.

restore (+File)
Restore the state saved in file File.

restore(X,Y)

Dummy routine for compatibility.

retract (+Clause)

Erase the first interpreted clause of form Clause.

retract all (+Head)
Erase all clauses whose head matches Head.

revive(X,Y)

Dummy routine for compatibility.

save(+File)

Save the current state of Prolog in file File.

save(+File, ?Return)

As save(File) but Return is O first time, 1 after a restore.

• save_program(+File)

Save the current state of the Prolog data base in file File.

see(+File) ·
i '

Make file File the current input stream.

seeing(?File) • \

The current input stream is named File.

109

110 SICStus

seen Close the current input stream.

set_input (+Stream)
Set the current input to Stream.

set_output (+Stream)
Set the current output to Stream.

setarg(+ArgNo, +CompoundTerm • ?NewArg)
Replace destructively argument ArgNo in CompoundTerm with NewArg and undo on
backtracking.

setof (?Template, +Goal, ?Set)
The set of instances of Template such that Goal is provable is Set.

skip(+C)
Skip characters from the current input until after character C.

skip(+Stream, +C)
Skip characters from Stream until after character C.

sort(+Listl ,List2)
The list Listl sorted into order yields List2.

source_file(X)

source_file(X, Y)
Dummy routines for compatibility.

spy +Spec
Set spy-points on the procedure(s) specified by Spec.

statistics
Output various execution statistics.

statistics (?Key, ?Value)
The execution statistic key Key has value Value.

stream_code(?Stream. ?Stream Code)
StreamCode is a foreign language (C) version of Stream.

stream_position(X,Y)

stream_position(X,Y,Z)
Dummy routines for compatibility.

style_check(X)
Dummy routine for compatibility.

subgoal_of (?Goal)

An ancestor goal of the current clause is Goal.

tab(+N) Send N spaces to the cutrent output.

tab(+Stream, +N) ~,

Send N spaces to the stream Stream.

..

Summary of Built-In Predicates

tell (+File)
Make file File the current output stream.

telling(?File)
The current output stream is named File.

term_expansion(+Term1, ?Term2)
User defined, tells expand_ term/2 what to do.

told Close the current output stream.

trace Switch on debugging and start tracing immediately.

trimcore Dummy routine for compatibility.

true Succeed.

ttyflush Transmit all outstanding terminal output.

ttyget(?C)

The next non-blank character input from the terminal is C.

ttygetO(?C)

The next character input from the terminal is C.

ttynl Output a new line on the terminal.

ttyput(+C)

The next character output to the terminal is C.

ttyskip(+C)

Skip over terminal input until after character C.

ttytab(+N)

Output N spaces to the terminal.

undo (+Term)

The goal call (Term) is executed on backtracking.

unix (+Term)

Interact with the operating system.

unknown(?OldState, ?NewState)

Change action on unknown procedures from OldState to NewState.

use_module(X)

use_module(X,Y)

Dummy routines for compatibility.

user_help

var(X)

User defined, tells help/0 what to do.

X is a variable.
/

version Displays introductory and/?r system identification messages.

version(+Message) '

Adds the atom l\~essage to the list of introductory messages.

111

112

vms (X) Dummy routine for compatibility.

write (?Term)
Write the term Term on the current output.

write (+Stream, ?Term)
Write the term Term on the stream Stream.

write_canonical(?Term)
Write Term on the current output so it may be read back.

wri te_canonical (+Stream, ?Term)
Write Term on the stream Stream so it may be read back.

wri teq (?Term)
Write the term Term on the current output, quoting names where necessary.

wri teq (+Stream, ?Term)
Write the term Term on the stream Stream, quoting names where necessary.

Cut any choices taken in the current procedure.

(+P, +Q) P and Q.

(+P; +Q) P or Q.

(+P -> +Q ; +R)
If P then Q else R, using first solution of P only.

(+P -> +Q)
If P then Q else fail, using first solution of P only.

\+ +P Goal P is not provable.

?X~+P There exists an X such that Pis provable.

+X =:= +Y
As numeric values, Xis equal to Y.

+X =\= +Y
As numeric values, X is not equal to Y.

+X<+ Y As numeric values, Xis less than Y.

+X=<+ Y As numeric values, Xis less than or equal to Y.

+X>+ Y As numeric values, Xis greater than Y.

+X>=+ Y As numeric values, Xis greater than or equal to Y.

?X=?Y Terms X and Y are equal (i.e. unified).

?Term =. . ?List

The functor and arguments of term Term comprise the list List.

?Terml == ?Term2

Terms Terml and Term:i are strictly identical.

?Terml \== ?Term2 .. ,

Terms Terml and Term2 are not strictly identical.

SICStus

..

•

Summary of Built-In Predicates 113

?Terml ©< ?Term2
Term Terml precedes term Term2.

?Terml @=< ?Term2
Term Terml precedes or is identical to term Term2.

?Terml ©> ?Term2
Term Terml follows term Term2.

• ?Terml ©>= ?Term2
Term Terml follows or is identical to term Term2.

[+File I + Files]
Perform consult(s) on the listed files .

•

i

..
'

114 SICStus

;

•

Standard Operators 115

9. Standard Operators

·- op(1200, xfx, [·-• -->]).
·- op(1200, fx, [·- • ?-]) .

·- op(1150, fx, [mode, public, dynamic,
multifile, parallel, wait]) .

·- op(1100, xfy, [;]) .
·- op(1050, xfy, [->]) .
·- op(1000, xfy, [J J]) . I* See note below *I ,
·- op(900, fy, [\+, spy, nospy]).
·- op(700, xfx, [=, is, -.. ' ==, \==, ©<. @>' ©=<, ©>=,

=·= • =\=, <, >, =<:' >=]).
·- op(500, yfx, [+, -' I\, \/]) .
·- op(500, fx, [+, -]) .
·- op(400, yfx, [*' /, II' <<, »]) .
·- op(300, xfx, [mod]) .
·- op(200, xfy, [A]) .

Note that a comma written literally as a punctuation character can be used as though it were

an infix operator of precedence 1000 and type xfy, i.e.

X,Y ','(X,Y)

represent the same compound term. But note that a comma written as a quoted atom is not a
standard operator .

i

..
\

116 SICStus

;

•

•

•

References

References

(Clocksin & Mellish 81]
Clocksin W.F. and Mellish C.S.
Programming in Prolog.
Springer- Verlag, 1981.

(Colmerauer 75]
Colmerauer A.
Les Grammaires de Metamorphose .

• 117

Technical Report, Groupe d'Intelligence Artificielle, Marseille- Luminy, November,
1975.
Appears as "Metamorphosis Grammars" in "Natural Language Communication with
Computers", Springer Verlag, 1978.

[Kowalski 7 4]
Kowalski R.A.
Logic for Problem Solving.
DCL Memo 75, Dept of Artificial Intelligence, University of Edinburgh, March, 1974.

[Kowalski 79]
Kowalski R.A.
Artificial Intelligence: Logic for Problem Solving.
North Holland, 1979.

[Pereira & Warren 80]

[Roussel 75]

Pereira F.C.N. and Warren D.H.D.
Definite clause grammars for language analysis - a survey of the· formalism and a
comparison with augmented transition networks.
Artificial Intelligence 13:231-278, 1980.
Also available as Research Paper 116, Dept of Artificial Intelligence, University of
Edinburgh.

Roussel P.
Prolog : Manuel de Reference et d'Utilisation
Groupe d'Intelligence Artificielle, Marseille-Luminy, 1975.

(Sterling & Shapiro 86]
Sterling L. and Shapiro E .
The Art of Prolog
The MIT Press, Cambriq..ge MA, 1986.

I

..
[van Emden 75] '

van Emden M.H.

118

[Warren 83]

SICStus

Programming with Resolution Logic.
Technical Report CS-75-30, Dept of Computer Science, University of Waterloo, Canada,
November, 1975.

Warren D.H.D.
An Abstract Prolog Instruction Set.
Tech. Nate 309, SRI International
Menlo Park, CA, 1983.

i

'

•

•

•

Predicate Index

Predicate Index

!I0, cut

*

47, 80

• 12, multiplication 43

+
+12, addition 43

' ,12, conjunction 46

-11, unary minus

-12, subtraction .

-> 12 ;12, if then else

-> 12, if then

43

43

48

48

-12, consult 33

I
I 12, floating division

I I 12, integer division

I\ 12, bitwise conjunction

43

43

43

;12, disjunction 46

= .. 12, univ

=12, unification

=:= 12, arithmetic equal .

== 12, equality of terms .

= \= 12, arithmetic not equal

=< 12, arithmetic less or equal

>
> 12, arithmetic greater than

>
>= 12, arithmetic greater or equal

./.

51

46

44

45

44

44

. 44

. 44

119

>
» 12, right shift 43

~ 12, bitwise exclusive or 43

~ 12, existential quantifier 57

\
\ ll, bitwise negation 43

\
\+ ll, not provable 47

\
\/ 12, bitwise disjunction , 43

\
\== 12, inequality of terms 45

<
< 12, arithmetic less than , . . 44

<
« 12, left shift 43

©=< 12, term less or equal 45

©> 12, term greater than 45

©>= 12, term greater or equal 45

©< 12, term less than 45

120 SICStus

A D
abolish/I 53 debug/0 17, 61

abolish/2 53 debugging/0 17, 61

abort/0 12, 65 depth/I 66

absolute_file_name/2 39 dif/2 46

ancestors/I 49 display/I 34

arg/3 51

assert/I 53 E
"

assert/2 55 ensure_ loaded/ 1 68

asserta/1 53 erase/I 55
•

asserta/2 55 expand_term/2 64

assertz/1 . 53
F assertz/2 . 55

atom/1 50 fail/0 46

atom_chars/2 52 false/0 . 46

atomic/I . 50 fcompile/1 26, 33

fileerrors / 0 40

B findall/3 . 57

float/I . 50
bagof/3 . 56

float/I, coercion 43
break/0 12, 65

flush_output/1 40

C
foreign/2 . 57

foreign/3 . 57
C/3 65 foreign_ file/2 57
call/1 52 format/2 . 34
call/2 49 format/3 . 40
character_count/2 68 freeze/I 48
clause/2 53 freeze/2 48
cla.use/3 55 frozen/2 48
close/I 39 functor/3 50
compare/3 45

compile/I 26, 33 G
consult/I 25, 33 ga.r bage_ collect/ 0 66
copy_ term/2 52 gc/0 . 66
current_a.tom/1 .

,
49 gcguide/3 68

current_functor/2 68 get/1 38
current_input/1 39 get/2 41
current_key/2 55 geto/1 38 "' current_module/1 . 68 geto/2 - 41
current_module/2 . 68

current_op/3 . 65 H
i

current_output/1 . 40 ha.lt/0 65
curreut_predica.te/2 ~ 49 help/0 67
current_stream/3 . 40 help/I 68

Predicate Index 121

I notrace/0 18, 61

if/3 48 number/I 50

incore/1 52 number_chars/2 52

instance/2 55 numbervars/3 52

integer/I . 50
0 integer/I, coercion 43

is/2 44 op/3 65, 83

• open/3 39

K open_nulLstream/1 . 40

keysort/2 . 45 otherwise/0 46

L p
LC/o 68 phrase/2 65

leash/1 18, 61 phrase/3 65

length/2 46 plsys/1 69

library _directory /1 40 portray/I 34

line_count/2 68 portray _clause/I 34

line_ posi tion/2 69 predica te_property /2 49

listing/0 49 print/1 34

listing/I 49 print/2 41

load/1 . 26, 33 prolog_:flag/2 47

load_foreign_files/2 58 prolog_flag/3 46

log/0 69 prompt/2 67

put/1 38
M put/2 41
manual/0 69

manual/I 69 R
maxdepth/1 66 read/1 33
mod/2 . 43 read/2 41
module/I 69 reconsult/I . 33

N
recorda/3 54

recorded/3 54
name/2 51 recordz/3 54
nl/0 . 38 reinitialise/ 0 66
nl/1 . 41 repeat/0 . 48

' no_style_check/1 69 restore/I . 13, 66
nodebug/0 17, 61 restore/2 . 69
nofileerrors/0 40 retract/I . 53
nogc/0 . 66 retractall/ 1 53
NOLC/o. 68 revive/2 69
nolog/0 J 69
nonvar/1 50 s
nospy/1 ' 19, 61 save/1 13, 65
nospyall/0 19, (il save/2 . 65

122 SICStus

save_ program/ 1 13, 65 true/0 . 46

see/1 41 ttyfluslt/0 38

seeing/I 41 ttyget/1 39

seen/0 . 41 ttyget0/1 39

set_input/1 40 ttynl/0 38

set_output/1 40 ttyput/1 . 39

setarg/3 52 ttyskip/1 39

setof/3 56 ttytab/1 39

skip/I 38

skip/2 . 41 u
'II

sort/2 45 undo/1 52
source_fi.le/1 69 unix/1 . 67
source_fi.le/2 69 unknown/2. 10, 60
spy/1 19, 61 use_module/1 69
statistics/0 . 66 use_module/2 69
statistics/2 . 66 user_help/0 67
stream_code/2 40

stream_position/2 69 V
stream_position/3 69

var/1 50
style_check/1 . 69

version/0 67
subgoal_of/1 49

version/1 67

T vms/1 69

tab/1 38

tab/2 41 w
tell/I 42 write/I 33

telling/1 42 write/2 41
term_expansion/2 . 64 write_ canonical/ 1 34

told/0 42 write_canonical/2 41

trace/0 18, 61 writeq/1 34
trimcore/0 69 writeq/2 . 41

•

;

\

Concept Index • 123

Concept Index

A F
abort 12, 22 fcompile 26

anonymous variable 72 file 31

arithmetic 42 foreign . 57

a.rity 72 functor 72

B G
• body 75 goal 75

break 12, 22 grammars 61
built-in predicate 77

C
H
head 75

char io . 38
Horn clause 71

clause 75

command 5, 22 I
com pa tibili ty 68
compilation 33 indexing 29

compile 26 input 31

constant 71

consulting 5, 25, 33 K
creep 21 keyboard 3
current input stream 32
current output stream 32 L
cut 80 leap 21

D load 26
loading 25, 33

da. ta. base 54
debug messages 19 M
debug options 20
debugging 15

meta-logical 50

debugging predicates 17
mode spec 3

decla.ra. tion . 27
decla.ra. ti ve sema.n tics 78 N •
defininte clause 71 nested execution 12
directive 7 nospy 22
dynamic predicates 25 notation 3

E
i 0

environment .. 65 occur clteck 80
execution ' 11 opera.tors 82
exiting . 12 output . 31

124 SICStus

p stream. 31

predicate 75 string 74

predicate spec 3 subterm 22

printdepth 22 suspension 28

procedural semantics 79 syntax errors 10

procedure 77 syntax notation 87

procedure box 15 syntax of sentences 88

program 75 syn tax of terms . 89

program state 13, 49 syntax of tokens 90

Q
syntax restrictions 85

•
query 5 T

R tail recursion 30

term 71
reading in 5

reconsult .
term compare 44

6, 23
term io 33

restoring 13
top level 5

retry 21
tracing

running
17

5

s u
saving 13 undefined predicate 10

semantics 78 unify 22

sentence 75, 88 user 7

sets 55

skip 21 w
spy 22 wait declaration 28

spy-point 18 WAM 1

•

•

•

Table of Contents

Table of Contents

Introduction

Notational Conventions

1. How to run Prolog .
1.1 Getting Started .
1.2 Reading in Progrnms
1.3 Inserting Clauses at the Terminal
1.4 Directives: Queries and Commands
1.5 Syntax Errors
1.6 U ndefi.ned Predicates
1.7 Program Executien And Interruption.
1.8 Exiting From The Interpreter
1.9 Nested Executions - Break and Abort
1.10 Saving and Restoring Program States

2. Debugging
2.1 The Procedure Box Control Flow Model

2.2 Basic Debugging Predicates
2.3 Tracing
2.4 Spy-points
2.5 Format of Debugging messages
2.6 Options available during Debugging
2.7 Consulting during Debugging

3. Loading Programs
3.1 Predicates which Load Code
3.2 Declarations
3.3 Indexing
3.4 Tail Recursion Optimisation .
3.5 Practical Limitations

4. Built-In Predicates . .
4.1 Input / Output . .

4.1.1 Reading-in Programs
4.1.2 Input and Output of Terms
4.1.3 Character Input/Output
4.1.4 Stream IO
4.1.5 DEC-10 Prolog File IO /.
4.1.6 An Example . . .

4.2 Arithmetic
4.3 Comparison of Terms

1

3

5

5

5

7
7

10
10

11

12
12
13

15
15
17
17
18
19
20

23

25
25

27
29
30

30

31
31
32
33

38
39
41
42

42
44

ii

4.4 Convenience
4.5 Extra Control
4.6 Information about the State of the Program .
4. 7 Meta-Logical
4.8 Miscellaneous Predicates . .
4.9 Modification of the Program
4.10 Internal Database
4.11 Sets
4.12 Interface to Foreign Language Functions
4.13 Debugging
4.14 Definite Clause Grammars
4.15 Environmental
4.16 Compatibility

5. The Prolog Language
5.1 Syntax, Terminology and Informal Semantics

5.1.1 Terms
5.1.2 Programs

5.2 Declarative and Procedural Semantics
5.2.1 Occur Check

5.3 The Cut Symbol . .
5.4 Operators
5.5 Syntax Restrictions
5.6 Comments
5. 7 Full Prolog Syntax .

5.7.1 Notation
5.7.2 Syntax of Sentences as Terms
5.7.3 Syntax of Terms as Tokens
5.7.4 Syntax of Tokens as Character Strings
5.7.5 Notes

6. Programming Examples
6.1 Simple List Processing
6.2 A Small Database
6.3 Quick-Sort
6.4 Differentiation . .
6.5 Mapping a List of Items into a List of Serial Numbers
6.6 Use of Meta-Predicates
6. 7 Prolog in Prolog
6.8 Translating English Sentences· into Logic Formulae

7. Installation Dependencies
7.1 Getting Started . . .

SICStus

46
47
4;9

50

52
53
54
55
57
60
61
65
68

71
71

71
75
78

80
80

82

85

86
87

87

88
89
90

92

95

95

95

96

96

97
98
98
99

101
101

•

Table of Contents

8. Summary of Built-In Predicates

9. Standard Opera tors

References . . .

Predicate Index .

Concept Index .

i

iii

103

115

117

119

123

•

I

r

SICS Research Reports
Box 1263
S-164 28 Kista
Sweden

R 86001

R 86002

R 869()3

R 86004

R 86005

R 86005B

R 86006

R 86006B

R 86007

R 86008

R 86009

R 86010

R 86011

R 86012

R 86013

R 87001

R 87002

R 87003

R 87004

R 87005

Yoeli, M. and B. Pehrson, Behavior-Preserving Reductions of
Communicating System Nets, 1986

Hausman, B., A Simulator of the OR-Parallel Token Machine, 1986

Ciepielewski, A. and B. Hausman, Performance Evaluation of a
Storage Model/or OR-Parallel Execution of Logic Programs, 1986

Karjoth, G., P. Sjodin and S. Weckner, A Sophisticated Environment for
Protocol Simulation and Testing, 1987

Hallnas, L., On the Interpretation of Inductive Definitions, 1986
(Not available, see R 86005B)

Hallnas, L., Partial Inductive Definitions, 1987 (Revised version ofR 86005)

Mohamed Ali, K., A., OR-Parallel Execution of Prolog on a
Multi-Sequential Machine, 1986 (Not available, see R 86006B)

Mohamed Ali, K., A., OR-Parallel Execution of Prolog on a
Multi-Sequential Machine, 1986 (Revised version of R 86006)

Wrem, A., Process Models of Logic Programs: a Comparison, 1987

Mathieu, P., On the Learning of Functional Dependencies in Deductive
Databases, 1986 (an extended abstract)

Appleby, K., S. Haridi and D. Sahlin, Garbage Collection/or Prolog
Based on WAM, 1987

Hallnas, L., Generalized Horn Clauses, 1986 (No longer distributed;
see R 88005)

Carlsson, M., On Compiling Indexing and Cut/or the WAM, 1987

Carlsson, M.,An implementation of"dif' and ''freeze" in the WAM, 1986

Elshiewy, N., Time, Clocks and Committed Choice Parallelism for
Logic Programming of Real Time Computations, 1987

Mohamed Ali, K., A., A Method for Implementing Cut in Parallel
Execution of Prolog, 1987

Rayner, M. and S. Janson, Epistemic Reasoning, Logic Programming,
and the Interpretat!,on of Questions, 1987

I

Gunningberg, P., InnQvative Communication Processors: A Survey, 1987

Gadener, C., M. Liden and J. Riboe, ORPWAM An Implementation
Study, Part 1, 1987

Mohamed Ali, K., A. and S. Haridi, Global Garbage Collection for Distributed
Heap Storage Systems, 1987

R87006

R 87007

R 87008

R87009

R 87010

R 87010B

R 88001

R 88002

R 88003

R 88004

R 88005

R88006

R 88007

Hausman, B., A. Ciepielewski and S. Haridi, OR~parallel Prolog Made
Efficient on Shared Memory Multiprocessors, 1987

Holmgren, F. and A. Wrem, A Scheme/or Compiling GHC to Prolog
Using Freeze, 1987

Sahlin, D., Making Garbage Collection Independent of the Amount of
Garbage, 1987 (Appendix to SICS Research Report R 86009)

Sjodin, P., Optimizing Protocol Implementations/or Performance -A
Case Study, 1987

Franzen, T., Aigorithmic Aspects of Intuitionistic Propositional Logic, 1987
(Not available, see R 87010B)

Franzen, T., Algorithmic Aspects of Intuitionistic Propositional Logic, 1988
(Revised version of R 87010)

Rayner, M., A. Hugosson and G. Hagert, Using a Logic Grammar to Learn a
Lexicon, 1988

Franzen, T., Logic Programming and the Intuitionistic Sequent Calculus, 1988

Rayner, M. and A. Hugosson, Reasoning about Procedural Programs in a
Chess Ending, 1988

Wrem, A., An Implementation Technique/or the Abstract Interpretation of
Prolog, 1988.

Hallnas, Lars and Peter Schroeder-Heister, A Proof-Theoretic Approach to Logic
Programming. I. Generalized Horn Clauses, 1988

Nordmark, Erik and Per Gunningberg, SP/MS: A tool for protocol
implementation performance measurements, to be published

Carlsson, Mats and Johan Widen, SICStus Prolog User's Manual, 1988

i

•

i',

l

·'
I

\

SICStus Prolog User's Manual

Errata

April 29, 1988

page O Quintus and Quintus Prolog are trademarks of Quintus Computer
Systems, Inc.
UNIX is a trademark of Bell Laboratories.
DEC is a trademark of Digital Equipment Corporation.

page 20 Replace 11 < <n> set subterrn 11 by 11 ~ <n> set subterrn 1
'.

page 34 The predicate format/2 is due to Quintus Prolog [1].

page 45 The predicate keysort/2 is stable, i.e. if K-A occurs before K-B in
the input, then K-A will occur before K-B in the output.

page 46 The predicate dif/2 is due to Prolog II [2).

page 57 The foreign language function interface is due to Quintus Prolog
[l).

page 101 The following environment variables can be set before starting
SICStus to override the default sizes of certain areas. The sizes are
given in cells:

GLOBALSTKSIZE Governs the initial size of the global stack.

LOCALSTKSIZE Governs the initial size of the local stack.

CHOICESTKSIZE Governs the initial size of the choicepoint stack.

TRAILSTKSIZE Governs the initial size of the trail stack.

XREGBANKSIZE Governs the initial size of the temporary regis-
ter bank. Same as the -x option.

i

,.
i
I

References

[1] Quintus Prolog Reference Manual version JO. Quintus Computer Sy&
tems, Inc. 1987.

[2) A. Colmerauer. Prolog II: Manuel de Reference et Modele Theonque..
Groupe Intelligence Artificielle. U niversite Aix-Marseille II. 1982.

i

2

SICStus Prolog User's Manual

Errata

September 29, 1988

page O Quintus and Quintus Prolog are trademarks of Quintus Computer Systems,
Inc.
UNIX is a trademark of Bell Laboratories.
DEC is a trademark of Digital Equipment Corporation.

page 5 and 66 When SICStus is initialised it looks for a file pro log. ini in your
home directory. If one is found, it is consulted.

page 11 There is one more "C option: b - call the command interpreter recursively.

page20 Replace"< <n> set subterm" by"" <n> set subterm".

page 21 The retry <n> keeps backtracking until it finds an invocation box whose
invocation number is less than or equal to n.

page 23 Section 2.7 should read: "It is possible, and sometimes useful, to consult
a file whilst in the middle of program execution. Procedures, which have
been successfully executed and are subsequently redefined by a consult and
are later reactivated by backtracking, will not notice the change of their def
initions. In other words, it is as if every procedure, when called, creates a
virtual copy of its definition for backtracking purposes."

page 34 The predicate format/2 is due to Quintus Prolog [l].

page 43 The bitwise exclusive or operator is written ".

page 45 The predicate keysort/2 is stable, i.e. if K-A occurs before K-B in the
input, then K-A will occur before K-B in the output.

page 46 The predicate dif/2 is due to Prolog II [2].

1

page 47 No cuts are allowed in P in the predicates

\+ p

p -> Q

p -> Q R

if(P, Q, R)

page 50 The arity of compound terms created by functor/3 cannot be greater
than 255.

page 51 The length of the string of characters comprising the name of an atom
cannot be greater than 512.

page 53 For the predicates in section 4.9, the argument Head must be instantiated
to an atom or a compound term. The argument Clause must be instantiated
either to a term Head:- Body or, if the body part is empty, to Head. An
empty body part is represented as true.

Note that a term Head :- Body must be enclosed in parentheses when it
occurs as an argument of a compound term.

The definition of retract/1 should read: "The first clause in the current
intetpreted program that matches Clause is erased. The predicate may be
used in a non-determinate fashion, i.e. it will successively retract clauses
matching the argument through backtracking. If reactivated by backtracking,
invocations of the procedure whose clauses are being retracted will proceed
unaffected by the retracts. This is also true for invocations of clause/2
for the same procedure. The space occupied by a retracted clause will be
recovered when instances of the clause are no longer in use."

page 56 The predicates bagof/3 and setof/3 generate alternative solutions cor
responding to different instantiations of the free variables, where two instan
tiations are different iff no renaming of variables can make them literally
identical.

page 57 The foreign language function interface is due to Quintus Prolog [l].

page 5 and 66 When SICStus is initialised it looks for a file prolog. ini in your
home directory. If one is found, it is consulted.

page 71 Based integers may be written in any base from 2 to 16.

;
2

page 86 The character % followed by any sequence of characters up to end of line
is a comment.

page 91 The syntax for natural-number and base is:

natural-number --> digit ...

base

I b~se' alpha ...
{ where each alpha must be less than

the base }
0' char
{ yielding the ASCII code for 'char'

--> digit ... { in the range [2 .. 16] }

page 101 The following environment variables can be set before starting SICStus
to override the default sizes of certain areas. The sizes are given in cells:

GLOBALSTKSIZE Governs the initial size of the global stack.

LOCALSTKSIZE Governs the initial size of the local stack.

CHOICESTKSIZE Governs the initial size of the choicepoint stack.

TRAILSTKSIZE Governs the initial size of the trail stack.

XREGBANKSIZE Governs the initial size of the temporary register bank.
Same as the -x option.

References

[1] Quintus Prolog Reference Manual version JO. Quintus Computer Systems,
Inc, 1987.

[2] A. Colmerauer. Prolog II: Manuel de Reference et Modele Theorique. Groupe If
Intelligence Artificielle, Universite Aix-Marseille II, 1982.

i

3

'

SICStus Prolog User's Manual

Errata

December 22, 1988

page 70 The predicate unix/1 has been extended to accept the following arguments in addition
to the ones listed in the manual:

shell (+Command, ?Status) Command is passed to a new UNIX shell for execution, and
Status is unified with the value returned by the shell.

system(+Command, ?Status) Command is passed to a new UNIX sh process for execu
tion, and Status is unified with the value returned by the process.

exit (+Status) The SICStus process is exited, returning the integer value Status.

mktemp (+Template, ? Filename) Filename is unified with a unique filename constructed
from the atom Template. This is an interface to the UNIX C library function
mktemp (3).

access (+Path, +Mode) The pathname Path and the integer Mode are passed to the UNIX
C library function access (2). The call succeeds if access is granted.

chmod(+Path, ?Old, ?New) The path name Path and the integer New are passed to the
UNIX C library function chmod (2) . 0 ld is unified with the old file mode. The call
succeeds if access is granted.

umask (?Old, ?New) The integer New are passed to the UNIX C library function umask (2).
Old is unified with the old file mode creation mask.

The predicate plsys/1 has been made synonymous with unix/1.

page 73 For integers written in hexadecimal notation, the letters A .. F denote the numbers 10 .. 15.

I

1

11

I

SICStus Prolog User's Manual

Errata

September 4, 1989

page 70 The predicate unix/ 1 has been extended to accept the following arguments in
addition to the ones listed in the manual:

shell(+Command, ?Status) Command is passed to a new UNIX shell for execution,
and Status is unified with the value returned by the shell.

system(+Command, ?Status) Command is passed to a new UNIX sh process for
execution, and Status is unified with the value returned by the process.

exit (+Status) The SICStus process is exited, returning the integer value Status.

mktemp(+Template, ?Filename) Filename is unified with a unique filename con
structed from the atom Template. This is an interface to the UNIX C library
function mkt emp (3) .

access(+Path, +Mode) The path name Path and the integer Mode are passed to
the UNIX C library function access (2). The call succeeds if access is granted. -

chmod(+Path, ?Old, ?New) The path name Path and the integer New are passed to
the UNIX C library function chmod(2). Old is unified with the old file mode.
The call succeeds if access is granted.

umask(?Old, ?New) The integer New are passed to the UNIX C library function
umask(2). Old is unified with the old file mode creation mask.

page 71 The predicate plsys/1 has been made synonymous with unix/1.

The predicates source_file(?File) and source_file(?Pred, ?File) exist and hold if
the predicate Pred is defined in the file File.

page 73 For integers written in hexadecimal notation, the letters A .. F denote the numbers
10 .. 15.

i

1

SICStus Prolog User's Manual

Errata

October 23, 1989

page 36 The following control sequences have been added for compatibility:

- N Print a newline unless at the beginning of a line.

- NI Set a tab stop at position N, where N defaults to the current position.

- N+ Set a tab stop at N positions past the current position, where N defaults to 8.

- I - Nt Dummy, for compatibility.

1..1 page 48 The predicate call/2 has been renamed to call_residue/2 for compatibility

■ •

reasons.

page 66 There is another prolog..flag flag name:

single_var_,:,rnrnings on or off. Enable or disable warning messages when, a clause
containing non-anonymous variables occurring once only is compiled or con
sulted. Initially on.

page 70 The predicate unix/ 1 has been extended to accept the following arguments in
addition to the ones listed in the manual:

shell(+Command, ?Status) Command is passed to a new UNIX shell for execution,
and Status is unified with the value returned by the shell.

system(+Command, ?Status) Command is passed to a new UNIX sh process for
execution, and Status is unified with the value returned by the process.

exit (+Status) The SICStus process is exited, returning the integer value Status.

mktemp(+Template, ?Filename) Filename is unified with a unique filename con
structed from the atom Template. This is an interface to the UNIX C library

· function mkt ernp (3) .

access (+Path, +Mode) The path name Path and the integer Mode are passed to
the UNIX C library function access (2). The call succeeds if access is granted.

chmod(+Path, ?Old, ?New) The path name Path and the integer New are passed to
the UNIX C.library function chmod(2). Old is unified with the old file mode.
The call suc'ceeds if access is granted.

umask(?O/d, ?New)~"l'he integer New are passed to the UNIX C library function
umask(2). Old is unified with the old file mode creation mask.

1

page 71 The predicate plsys/1 has been made synonymous with unix/1.

The following new predicates exist:

source_file (?File)

source_file(?Pred, ?File) The predicate Predis defined in the file File.

character_count(?Stream, ?Count) Count characters have been read from or writ-
ten to the stream Stream.

line_count (?Stream, ?Count) Count lines have been read from or written to the
stream Stream.

line..posi tion(?Stream, ?Count) Count characters have been read from or written
to the current line of the stream Stream.

page 73 For integers written in hexadecimal notation, the letters A .. F denote the numbers
10 .. 15.

;

\

2

	Table of Contents
	Introduction
	Notational Conventions
	1. How to run Prolog
	2. Debugging
	3. Loading Programs
	4. Built-In Predicates
	5. The Prolog Language
	6. Programming Examples
	7. Installation Dependencies
	8. Summary of Built-In Predicates
	9. Standard Operators
	References
	Predicate Index
	Concept Index

