
PROLOG ENGINE ON THE 3600

Introduction

David H D Warren

Artificial Intelligence Center

SRI International

7 April 1983

This note sketches some initial ideas for how Prolog Engine could be implemented on the Symbolics
3600 Lisp Machine. The 3600 architecture seems to be almost ideal! The hardware supported tagging
and stack buffering are just what we need, and the instruction format will serve very nicely.

Data Formats (cf. Fernando Pereira's LM Prolog)

unbound variable

reference

constants
(integer,
fraction,
a.tom)

structure

functor

predicate

Code Format

A clause is encoded, roughly, as:

->

->

->

->

->

locative pointing to self

locative (or invisible pointer)

same a.s Lisp
(fixnum,
flonum,
symbol)

cdr-coded list
(functor a.rgl argN)

or fla.vor instance?

symbol (of a. special kind)
or fla.vor '?

compiled function(?)

clause address
___________ ! _________________ _

constants
I
I instructions

_________ 1_1 _______________ _

+-> next clause

Thus •big• operands will not be intermingled with instructions, but will be stored in a separate table
{one per clause), analogous to the way things are done for Lisp functions.

Instructions are simply 3600 macro-instructions, consisting of a 9-bit opcode and an optional 8-bit
operand. The instructions needed are essentially as follows:

OPCODE

{ pop } { void
{ unify } - { var
{ push }

push-pred
execute

resume
proceed

{ val
{ const
{ struct

succeed
cut-and-succeed
cut-and-proceed
cut

etc.

2

OPERAND

Number
Offset-in-stackframe
Offset-in-stackfra.me
Offset-in-clause
Offset-in-clause

Offset-in-clause
Offset-in-clause

}
}
}
}
}

Note that the opcodes for data manipulation are made up of a context (pop, unify, push) plus an
operand type (•void• (i.e. single occurrence) variable, unbo'Und variable, bound variable, constant,
structure type (i.e. •functor•)). Thus we need, as a basic minimum, 3*5 + 2 = 17 one-operand opcodes,
and rather more than 6 no-operand opcodes. If necessary, the number of one-operand opcodes could be
reduced by not encoding the context information (pop, unify, push) in the opcode. Such operations would
then need extra cycles to dispatch on the context. The number or one-operand opcodes would thereby be
reduced to 5 + 2 = 7.

Some of the operations can probably be arranged to be identical with existing 3600 instructions:

pop-void = pop-n ('?)
pop-var = pop-local
push-val = push-local
push-const = push-constant

(push-pred = push-address-local + push-constant ?)

Thus only 13 of the original 17 one-operand opcodes are actually new.

It is envisaged that the more exotic features or Prolog (i.e. evaluable predicates) will be implemented
using ordinary 3600 macro-instructions making calls to "quick• functions. Care will be needed to conform
to the Lisp conventions for stack usage, etc.

Prolog Machine State

The (local) stack will coincide with the (hardware-supported) Lisp stack, while the heap and trail will be
separate regions of main memory. (The A-memory stack buffer contains 4 pages; if these pages do not
need to be consecutive in VM, it might be possible to buffer the top of the heap and/or trail as well).

If the currently executing goal is not at the top of the stack (because there is a choice point after it),
then it will probably be necessary to copy the goal to the top of the stack so that it can be accessed via
the stack-pointer. (NB. Quick function calls and other Lisp macro-instructions we would like to use will
corrupt locations above the top-of-stack). This scheme has the side benefit that the compiler can be sure
that the current goal is being overwritten, allowing for some neat optimisations!

The layout of memory in the stack buffer will therefore probably be:

3

frame-pointer-> __________ _

current goa.l
being popped

or
new goals
being pushed

stack-pointer-> __________ _

frame-pointer+ 128

space for
temporaries

variables

This scheme allows us to use Format 2 instructions to address variables. It doesn't allow too much
room for body goals and variables, but there should be enough for most clauses in practice. An
alternative would be to have variables addressed via XBAS, but the variables would still have to share the
stack buffer space in A-memory, and access would be less swift (I think) since we would not be able to
take advantage of the hardware-supported Format 2 instruction. If we can get away with it, a better
solution would be to have the frame-pointer point directly at the base of the variables. This assumes that
there is no hardware constraint requiring the frame-pointer to point before the stack-pointer, and that we

are not going to be tripped up by the conventions of the standard microcode which we obviously want to
depend on to a large extent.

Sample or Microcoding or a Prolog Instruction

(definst unify-var (address-operand needs-stack)
(parallel

(assign vma structure-pointer)
(if (test-some-tag-bit structure-pointer)

;Read Mode
(sequential

(start-memory read)
(assign structure-pointer (1+ structure-pointer))
(parallel

(assign address-operand memory-data)
(next-instruction)))

;Write Mode
(sequential

(parallel
(start-memory write)

; [1)

; [2]
; [3]
; [4]

; [2]

(assign memory-data (set-type structure-pointer dtp-locative)))
(assign address-operand

(set-type structure-pointer dtp-locative))
(parallel

(assign structure-pointer (1+ structure-pointer)}
(next-instruction))))))

; [3]
; [4]

4

Speed Estimate for 'concatenate' Cycle

The instructions executed for one cycle of the (tail-recursive) 'concatenate' clause:

concatenate([XIL1],L2, [XlL3]) :- conca.tena.te(L1,L2,L3).

(corresponding to one call of a user-defined append in Lisp) would be as follows, with estimates of the
number of cycles needed for each instruction:

pop_list
unify_var X
unify_var L1
pop_var L2
pop_list
unify_val X
unify_var L3

(succeed)
push_val 13
push,_va.l L2
push_va.l Ll
execute •concatenate•

read predicate
read clause addr
other gunge

TOTAL

Cycles

2
4
4
2

10 = 2+4+4
4
4

1
1
1

4
4
4

45

Memory Accesses

1
1

2
1
1

1
1

8

45 * 200 ns (?) = 9.0 microseconds i.e. 110,000 lips !!!

110,000 lips is 2.5 times the performance of compiled Prolog on the DEC 2060, and is about 4 times the
performance the Japanese Fifth Generation project is predicting for its Prolog machine, Psi. This
estimate is probably somewhat optimistic, though, since we've doubtless overlooked a few steps.

Requirements and Potential Problems

To implement Prolog on the 3600 in the way discussed will require:

• about 30 spare opcodes;

• a few A-memory locations;

• some space in control store for a few hundred microinstructions;

• access to the microcode tools;

• information about the conventions etc. of the standard microcode.

The main problem is going to be dovetailing the Prolog microcode into the standard Lisp firmware, in
such a way that we can capitalise on all the standard system functions without screwing things up or
sacrificing Prolog performance. Handling of interrupts (sequence breaks) is just one area that needs to be
thought about.

