
THE CONTROL FACILITIES OF IC-PROLOG

K.L. Clark and F .G. McCabe

ABSTRACT
The most significant difference between IC-PROLOG and the other PROLOG
implementations is the programmer's ability to control the computation using
program annotations. In this paper we exemplify the use of these annotations
and give them a precise semantics. We shall see that they allow a two-pass pro
gramming methodology . In the first pass the programmer concentrates on the
logic of the program , in the second pass, on the control. To make the paper
self-contained, and to lay the necessary foundations for our description of the
control facilities, we have included a general introduction to Horn clause logic
programming.

INTRODUCTION
The paper is divided into three sections. Section 1 gives a brief history oflogic
programming and defines the syntax of a special class of logic programs, the
Horn clause programs. We show how a given program can have several different
procedural uses . In Section 2 we define an abstract interpreter for Horn clause
programs. The input to the interpreter is a logic program , and a computation rule.
In Section 3 we consider ways in which the computation rule can be specified .
In IC-PROLOG it is partly implicitly given, by the text ordering of the program,
and partly explicitly given, by clause annotations . Using them the programmer
can specify a separate execution strategy for each procedural use of the program.
They also enable him to indicate that certain sub-computations should be co
routined , with the resumptions and suspensions being triggered by the flow
data through a shared variable.

I . SYNTAX OF HORN CLAUSE PROGRAMS
In this section we introduce the idea of sets of sentences of first order logic as
programs . We consider, in particular, the special case of Horn clause logic programs.

1.1 Inference as computation : a brief history
Robinson's machine-oriented resolution inference rule for the clausal notation of
predicate logic (Robinson 1965) was the first essential st3p along the road to view
ing inference as computation . Then Green (I 969) showed that a resolution theor
em prover could be used to 'simulate' a computation . However it was Hayes (1973)
and Kowalski (1974) who gave resolution inference an explicit procedural inter
pretation, Kowalski for the Horn clause subset of predicate logic and Hayes, for
the most part, for logic progr ams comprising a set of equality statements . The
final credibility was provided by the Marseilles (Roussel 1975) and Edinburgh
(Warren et al. 1977) PROLOG implementations. These are essentially computa
tionally efficient Horn clause theorem provers. The Edinburgh implementation,

The Control Facilities of IC-PROLOG 123

which borrowed and extended the implementation techniques of the Marseilles
PRO LOG, is particularly impressive. It pre-compiles much of the work of a uni
fication (the basic unit of computation of a logic program) as a sequence of
machine level instructions associated with the program clauses. For list manipula
tion programs it compares favourably with compiled pure LISP; Warren et alia
(1977) has the details. PROLOG has also been implemented in Budapest (Futo et
al. 1977) , Leuven (Bruynooghe 1976), London (Clark and McCabe 1979) and
Waterloo (Roberts 1977).

We shall follow Kowalski and use Horn clause implications as the basic pro
gramming notation. We assume some familiarity with the concepts of unification
and resolution , however we shall give a brief explanation of these ideas .

1.2 Syntax of Horn clause programs
Definiti ons
(I) A Horn clause implicati on is a sentence of the form

R(t I , . . , tn) +- A I & ... & Am m ;;;, 0 (I)
Each Ai, like R(t1 , .. , tn), is an atomic formula. When m = 0, and the ante
cedent of the implication is empty , we call the implication an assertion. We will
generally drop the '+-' when writing assertions.

(2) Something is an atomic f ormula (or atom) if it is of the form R(t I , .. , tn)
where R is an n-adic relation name (predicate) and t I , .. tn are terms .

(3) A term is~a variable, a constant, or of the form f (t1 , . . , tn), where f is an
n-adic function name (functor) and t I , .. ,tn are terms.

We assume a denumerable set of names comprising finite length strings over a
finite alphabet which does not include the logical symbols '+-' ',' '(' ')' and '&'.
Whether or not a name is a functor or a predicate can be determined by context.
To distinguish variables and constants we adopt the convention that names be
ginning with a lower case letter are variables. All other names in the context of a
variable or constant are assumed to be constants. Informally , we shall use infix
notation for both terms and atoms. For example, we shall write 'u in u.x' instead
of 'in(u ,. (u ,x))'. We shall assume that all infix functors associate to the right , so
'2.3 .NIL' is syntactic sugar for '.(2 ,. (3 ,NIL))' . We will italicise infix predicate
symbols.

Declarative reading. If x I, .. , X]c are all the variables of implication (I) we can
read it as:

For all x1 , . . . , xk, R(t1, . .. , tn) if A1 and A2 . .. and Am·
Alternatively , if YI, . .. , Yi are variables that only appear in the antecedent
A I & .. &Am, and z1 , ... , zj are all the other variables, we can read it as:

For all z 1 , . . . , Zj , R(t I , . . , tn) if
there exists YI , .. . , Yi such that A I and . . . and Am .

The alternative reading derives from the fact that a universally quantified impli
cation

(Vx) [P +- Q]
is logically equivalent to

[P +- (3x)Q]

CLARK & McCABE 124

when x does not appear in P. We use '(Vx)' when we want to explicitly indicate
a universal quantification of a variable x, '(3x)' for an existential quantification.

We shall say that implication (1) is about the predicate R, because R is the
predicate of the consequent atom of the implication.

Definition. A logic program for a predicate R comprises a set of Horn clause
implications about R, together with logic programs for any other predicates that
appear in the antecedents of these clauses.

As in all programming notations we shall assume that some predicates are pri
mitive, with a fixed 'system' provided program. An example would be the product
predicate . Atoms that use the predicate will usually be written as t3 = t 1 *t2, t 1,
t2 and t3 being the terms of the atom and ' . . = .. * .. ' being the infix relation
name. Conceptually, we treat the system provided implementation as equivalent
to the infinite set of assertions:

0=0*0
0=l*0
0=0*l
1 = 1 * 1

4=2*2

Of course, in practice only a finite subset of these assertions will be accessible,
that subset being represented procedurally so as to make use of the hardware
operations of the machine. We shall elaborate on this procedural implementation
of a set of assertions in Section 3.

1.3 Example Logic Programs
Example program - 1

append(NIL,x,x)
append(u.x,y ,u.z) +--append(x,y ,z) (2)

is a logic program for the predicate 'append'. As the mnemonic content of this
relation name indicates, the two statements of the program can be read as state
ments about appending list structures. We take 'NIL' to be the name of the empty
list , and'.' to be the name of a list constructor such that u.x is the list x with u
'consed' onto the front. With this interpretation the assertion of the program tells
us that for all x, appending the empty list onto x leaves it unchanged. The impli
cation tells us that for all x, y, z and u , if z is the result of appending x and y then
the list u.z is the result of appending u.x and y.

Recursive data structures. A term of the form t1 . t2 .' .. tn. NIL is the name of
the list [t 1,t2, .. tn]. The set of all such terms is the recursive data structure imp
licitly introduced by this logic program. Note that the 'cases' treated by each
clause are indicated by the 'patterns' of terms in the consequent atom of the
clause, the 'procedure head' as Kowalski calls it. This is a common form of logic
programs for relations on recursive data structures. Since we usually give the form
of both the 'input' and 'output' structures it corresponds to a slight generalisation

The Control Facilities of IC-PROLOG 125

of the case format proposed by Hoare (1973) for programs manipulating recursive
data structures.

Computational use. Suppose we want to compute the concatenation of two
lists, say the two unit lists [2] and [3]. We do this by asking for the (single) ins
tance of the unary relation:

x is a concatenation of [2] and [3] .
Under our assumed meaning of the 'append' predicate this relation is named by
append(2 .NIL,3 .NIL,x), and a request for an instance of this relation is expressed
by the goal clause

+--append(2.NIL,3.NIL,x)
An evaluation of this clause using the program clauses is a constructive proof,
using the program clauses as premises, that there is an x such that append
(2.NIL,3 .NIL,x) . It is constructive since it will result in x being bound to '2.3.NIL'.
That this term names the concatenation [2 ,3] of the lists [2] , [3] is guaranteed by
the fact that under our 'reading' of 'NIL' as the empty list and '.' as an add front
element list constructor each of our logic program clauses is a true statemenf
about the append relation for lists. Because the computation of the output bind
ing is an inference, which preserves truth, it must denote a true instance of the
relation:

x is a concatenation of [2] , [3] .
This truth-preserving aspect of a logic program computation is its crucial property.
It enables us to uRderstand a logic program declaratively or procedurally; to
understand it as a set of statements about the relation we want to compute, or as
a recipe for finding instances of the relation.

In the case of our append program its declarative reading is as a pair of uni
versally quantified statements about the list append relation. Its procedural read
ing depends on its intended use. As a program for appending a pair of lists it
should be read as:

to append the empty list NIL to a list y return y,
otherwise, to append a constructed list u.x to a list y first append x toy

giving z, then return u.z.
Non-deterministic use. We can use the same logic program non-deterministically

to split a list into front and back sublists. To split the list [2 ,3] we use the goal
clause

+--append(x,y,2.3.NIL)
since this names the relation

{(x,y): [2,3] is the concatenation of x,y}
As we shall see, each of the substitutions

{ x/NI L,y /2 .3 .NIL}
{ x/2 .NIL,y /3 .NIL}
{x/2 .3 .NIL,y /NIL}

is a possible answer substitution. Each correctly denotes an instance of the re
lation.· The ability to use the same set of clauses to compute both a function and
its inverse, and more generally to find an instance of any relation that can be
named by a goal clause, is a particular feature of logic programs.

CLARK & McCABE 126

As a program for decomposing a list into front and back sublists, the append
program has the procedural reading:

To decompose the empty list NIL, return (NIL,NIL),
otherwise, to decompose a constructed list u.z

either return (NIL,u.z)
or decompose z into (x,y) and return (u.x,y).

The either, or indicates a non-deterministic branch.
Most general answers. The goal clause:.

+-append(x,y ,z)
is a request for any tuple of lists in the append relation. As we might expect there
are an infinite number of possible answer substitutions. However, our goal clause
evaluator will return answers that denote not a single instance, but an infinite
set of instances. This is because the evaluator always returns 'most general answers'
whenever possible. One answer is

~x/NIL,y/y ,z/y}
which denotes the infinite set of list tuples

f ([],1,1): 1 any list3
Another answer is

f x/u.NIL,y/y ,z/u.y 1
which gives the general form of the infinite set of append instances that have a
unit list as first argument. Each answer substitution for this goal clause denotes
not just a single instance of the relation named by the clause but an infinite sub
set of the relation.

As a program for generating the general form of an instance of the append re-
lation our logic program has the procedural reading:

Either return the instance (NIL,x,x),
or find an instance (t 1, t2 ,t3) and return (u.t 1 ,t2 ,u.t3) where u is a variable
not appearing in t1.t2,t3 .

Example program-2
When we describe the abstract interpreter in the next section we shall see that the
generation and modification of answer substitutions is the data structure const
ruction and manipulation of a logic program evaluation. Viewed as data structures
answer bindings that contain variables have a special role. This is because the an- '
swer binding x/t, where t contains variables, is implicitly modified to an answer
binding x/t' whenever any variables in t are bound by a subsequent evaluation
step. This gives the effect of a data structure modification that would normally
require an explicitly programmed assignment. The following logic program is an
example of a program that can be used to manipulate most general answers in
just this way. It is a program for the predicate 'front' which is intended to name
the relation which holds between a number n and a pair of lists z,x when x comp
rises the first n elements of z. It makes use of the above program for 'append' and
an auxiliary program for the list length relation.

front(n,x,z) +-length(x,n) & append(x,y ,z)

The Control Facilities of IC-PROLOG

length(NIL,0)
length(u.x,s(n)) +-length(x,n)

127

Let us note in passing that the program implicitly 'declares' two recursive data
structures. The first is the set of lists generated from the empty list, named by
'NIL', using the list generator named by'.', which we have already come across.
The other is the recursive data structure of the natural numbers, the set of ob
jects generated from zero, named by '0', using the number generator, add 1,
named by 's'. The term 's(0)' denotes the number 1, 's(s (0))' the number 2, and
so on. We can, and we _shall, use the normal decimal notation numerals as syn
tactic sugar for these term structure names.

Returning to our example program, relative to the intended interpretation of
its predicates and function names +-front(2,A.B.C.NIL,x) names the unary re
lation that is true ofx when it names the list [a,b] of the first two elements of
the list [a,b,c]. One computational use of the program to construct the answer
substitution fx/A.B.NIL} (and as we shall see in section 3 there is another quite
different use) is equivalent to an evaluation of the goal clause +-length(2 ,x) to
produce an answer substitution fx/u.v.NIL} , followed by an evaluation of the
goal clause +-append(u.v.NIL,y,A.B.C.NIL) to produce the final answer substit
ution {x/A.B.NILJ . The first answer binding for x, gives us the general form of a
list of two elements, and the second answer binding is generated when the eval
uation of +-append(u.v.NIL,y ,A.B.C.NIL) 'fills-in' the u,v slots by generating the
substitution {u/ A,v/B} .

This two-pass style of data structure seems to be unique to logic programming.
It provides the logic programmer with an elegant and powerful programming feat
ure. (Warren et alia (1977) elaborate on this point.) It is, incidentally, an unavoid
able consequence of using a resolution theorem prover as the program executor.

Example program-3
The two sets of assertions:

Jack fathered George
Tom fathered Bili

Tom ma"ied Mary
Bill married Jane

Bo~ fat~ered To~ J~ck ma"ied Susan (3)
are a quite different kmd of logic program. They are more like a data base than a
program in the conventional sense. With the English language meaning of the re
lation names we can read them as a description of certain family relations that
prevail amongst a group of people named 'Jack', 'George', etc .

Data retrieval. We 'compute' with the data-base-style program in exactly the
same way as with the 'recursive' program for append. Thus a goal clause

+-Tom fathered x & x married Jane
is a request for an instance of the unary relation (presumably the only instance)
that is satisfied by off springs of Tom that are ·married to Jane. The evaluation of
this goal clause will be a search over the 'father-of and 'married-to' assertion sets.
One result is the binding x/Bill.

CLARK & McCABE 128

2. PROCEDURAL SEMANTICS
The abstract interpreter we shall describe in this section is a resolution theorem
prover. The unit of computation is a resolution inference of which the essential
component is a unification. Unification is the process of finding a substitution
that makes two atoms syntactically identical. Before describing the interpreter
we shall give a brief introduction to the concepts of substitution and unification.
For more detailed information the reader should consult Robinson (1965) or his
more recent book (Robinson 1979).

2.1 Substitutions and substitution instances
Definitions

(1) A substitution is a set
0 = [x 1 / t 1 , .. , Xk/ tk J

of variable/term pairs in which the x 1, .. , Xk are distinct variables. We say that
Xi is bound to the term ti.

(2) A substitution instance of a clause C is any clause that can be obtained
from C by simultaneously replacing each of the variables bound by a substitution
0, at each of its occurrences in C, by the term to which it is bound. We use C0 to
denote this substitution instance

(3) For a substitution
0 = f x1/Yl, .. , Xk/Yk}

which binds all the variables x 1, .. ,Xk of a clause C to a tuple of terms which are
just k distinct variables Yl, .. ,Yk, the substitution instance C0 is called a variant
ofC.

(4) The composition 01 *02 of two substitutions
01 = !x1/t1, • . ,xn/tnJ ,02 = h1/t'1, • • ,Yk/t'k}

is the substitution
0' 1 0'2

where
0!1 = {x1/[ti]02, .. ,xn/[tnJ02J

and 012 is 02 with any bindings for the variables x1, .. ,xn deleted.
Examples
If C is the clause

P(f(x,a),g(b,y)) +-Q(x,z)& P(y,z)
and 01 = fx/u,y/v,z/xJ

02 = {x/h(u),y/x,z/b}
03 = f u/g(b),x/h(u)J

then [C] 0 l is the C variant
P(f(u,a) ,g(b ,v)) +- Q(u,x) & P(v,x)

[CJ 02 is the substitution instance
P(f(h(u),a),g(b,x)) +-Q(h(u),b) & P(x ,b)

and 02*03 is the substitution
{ x/h(g(b)) ,Y /h(u),z/b ,u/g(b)} .

A clause variant just 'says the same thing' using different variables. The def-

The Control Facilities of IC-PROLOG 129

inition of a substitution is a little different from the standard one. Normally ident
ity bindings such as x/x are excluded as the addition of an identity binding does
not change the effect of a substitution. We allow identity bindings in substitutions
since we want to include them in answer substitutions produced by a logic pro
gram evaluation. For us two different sets of bindings 01 02 are the same subs
titution, i.e.

01 = 02
if they are identical sets of bindings after the deletion of any identity bindings.
Thus the identity substitution, the substitution that leaves any clause unchanged,
is denoted by any set of identity bindings, including the empty set. Composition
of substitutions is defined so that

[C0]0' = [C]0*0'.
It also has the property that composition is associative. In consequence we shall
leave out the brackets in expressions such as 0 l *02*03 .

Definition. A unifier of two atoms A 1 ,A2 is a substitution 0 such that [A iJ 0
and [A2] 0 are syntactically identical. It is a most general unifier (m .g.u.) if every
other unifying substitution 0' is such that 0' = 0*0" for some substitution 0

11
•

Example . The substitution
t w /2 .z,u/2 ,x/NIL,y /3 .NIL J

is an m.g.u. for the pair of atoms
append(2.NIL,3 .NIL,w) & append(u.x,y ,u.z).

When applied to each atom it produces the substitution instance
append(2 .NIL,3 .NIL,2 .z).

An algorithm which tests whether or not two atoms are unifiable, and which
returns an m.g.u. if they are, is a unification algorithm. Robinson (1965) gives
such an algorithm and proves it correct. For us unification does the work of data
structure component selection (the bindings u/2, x/NIL in the above example),
and unification and composition does the work of data structure construction
(the binding w/2.z composed with some binding for z). Most of the pairs of atoms
that must be unified during a logic program evaluation fall within the confines
of a special case for which a much faster, modified form of Robinson's algorithm
can be used .

The two atoms never have variables in c;ommon and it is nearly always the case
that one of the atoms only has a single occurrence of each of its variables. For
this special case, the expensive occur check of Robinson's algorithm is not needed.
This is the check, which must normally be performed each time a variable xis
matched against a non-variable t, that x does not occur in t. If it does then the
attempted unification fails. However for the special case we have described an
occur failure cannot arise. For this reason most PROLOG implementations never
perform the occur check , and in IC-PROLOG in must be explicitly requested.

2.2 An abstract interpreter
Any resolution theorem prover can be used as a Horn clause program executor.
However the inference system which is most obviously computational is LUSH
resolution (Hill 1974). This is the inference system that Kowalski describes when

CLARK & McCABE 130

he talks about the procedural interpretation of predicate logic (Kowalski 197 4).
The LUSH inference rule defines a search space of alternative derivations. We

prefer to think of these alternative derivations as alternative paths of a non
deterministic evaluation of a 'call' of the logic program given by some goal clause

+-B1& .. &Bn
Here, B1, .. ,Bn are all atomic formulae, and, if x1, .. ,Xk are the variables of the
clause, it is a 'call' for the computation of a substitution

0 = {x1/ei,x2/e2, .. ,xk/ek}
such that

(e 1 ,e2 , ... ,ek)
denotes an instance, or set of instances, of the relation 'named' by the con
junction B 1 & .. &Bn for any 'reading' of the program as a set of true statements.
If there are no variables in the goal clause it is a request for the confirmation that
for any such reading B 1 & .. &Bn is a true statement.

The trace of some evaluation path of the computation is given by a sequence
of goal clauses

C1 ,C2, ... ,Cn, ...
each one derived from the proceeding one by the following evaluation step. We
shall follow Kowalski (1974) and refer to the program clauses as procedures. The
consequent atoms of the clauses are then procedure heads and the antecedent
atoms are procedure calls. We shall also refer to the atoms of the goal clause as
procedure calls.

Evaluation step. Suppose the current goal comprises the conjunction of pro
cedure calls

+-B1& . . &Bk
An evaluation step is the execution of one of these calls. Which one it should be
is determined by a computation rule, a rule which for any conjunction of pro
cedure calls encountered during the evaluation uniquely determines which call
is to be executed first. For now we shall not concern ourselves with how the
computation rule is specified or applied. We shall simply assume that there is an
effective rule that will select a single call from the goal clause. Any such rule is a
possible computation rule .

Assume that the selected call is Bi, and that this is the atom R(t1, .. , tn)- An
attempt is made to execute this call using a procedure

R(t' 1, .. , t'n) +-A1& .. &Am
which is a variant of one of the program clauses for R that does not contain vari
ables appearing in the goal clause . If there is more than one program clause for R
the choosing of the procedure is a non-deterministic step in the evaluation, each
alternative procedure giving us an alternative branching of the evaluation.

We try to unify R(t 1, .. , tn) with R(t' 1, . . , t' n).
If they do not unify this branching of the evaluation path terminates with fail.
If they do unify, with most general unifier 0 , this branching of the evaluation

path leads to a new conjunction of procedure calls, a new goal clause , which is
the resolvent

+- [B1& .. &Bi- 1&A1& .. &Am&Bi+l& .. &Bk]0

The Control Facilities of IC-PROLOG 131

Note that the substitution instance of the conjunction of procedure calls in the
body of the program procedure have replaced Bi in the new goal clause. But also
note that the unifying substitution is applied to all of the procedure calls of the
new goal clause. This means that any output binding of the substitution, any
binding of a variable x that was in the executed call Bi, is immediately communic
ated to any other call Bj in which x appears. As we shall see later, we can use the
idea of data flow through the shared variables of procedure calls to specify and
implement data flow computation rules.

Finally, if there are no program procedures for R, we consider that there is just
one next step for the evaluation path that has produced the goal clause +-B1& . . &Bk
which gives an immediate fail.

Successful evaluation . An evaluation path terminates with success when the empty
goal clause is generated. This happens when the last step is the execution of the single
call of a goal clause +-Busing an assertion procedure B'+-.

Computed answer substitution. Suppose 01, . . . 0n is the sequence of unifying
substitutions of a successful evaluation, 01 being the substitution of the first step,
0n that of the last step. Let

0=01*02* . .. *0n
be the composition of these unifying substitions. The subset of 0 that gives bind-
ings for the variables of the initial goal clause C, augmented with the identity subs
titution x/x for any variable of C not bound by 0, is the answer given by that success
ful evaluation. If there are no variables in C, the answer is true.

Procedural vs. Declarative semantics . The above definition effectively provides us
with a procedural semantics for answer substitutions. It characterises answer subs
titutions in terms of a mechanism for computing them. In Van Emden and Kowalski
(197 6) and Clark (1979) a quite different declarative semantics is given. In the dec
larative semantics answer substitutions are characterised in terms of models of the
program clauses and the corresponding denotations of the goal clauses. In what
amounts to a completeness proof for LUSH resolution, first given in Hill (197 4), it
can be shown that for any computation rule the procedural and the declarative sem
antics characterise essentially the same set of answer substitutions. This independ
ence of the computation rule is a great boon . It enables the logic programmer to
select a computation rule purely on the grounds of computational efficiency. We
shall return to this point later.

Evaluation trees A logic program P, a goal clause C, and a computation rule R,
together define an evaluation tree of all the possible evaluation paths for C. The
form of the tree is as depicted in Fig. 1. Each interior node in the tree is a clause
derived from its parent by an evaluation step. Each of the children of a node are
the results of attempted executions of the selected procedure call of that node.

A ·fail node offspring records a failed unification. A success leaf node marks the
end of each successful evaluation path. Some of the evaluation paths may be in
finite .

Figs. 2 and 3 are evaluation trees for two of the calls to the logic programs of
the preceding section. The computation rule used is 'select the leftmost call'.

The very first step of the successful evaluation path of Fig. 2 requires the unific-

CLARK & McCABE

success

' ,
I

' \
infinite branch

Figure 1. An evaluation tree

<-append(2.NIL,3.NIL,w)

attempt to use/
append(NIL,x,x) <-

91 = {w/ 2.z,u / 2,x / NIL,y / 3 .NIL)

fail

<-append(NIL,3.NIL,z)

ap;;~~~~iL~~.~~~) <- I ~t;;;~~d~~ -~~ey, u.z) <-
append(x,y,z)

{x ' / 3.NIL,z / 3.NIL)

success fail

Answer: 91*92 binds w to 2 . 3.NIL

Figure 2. Evaluation of append

<-Tom fathered x & x married Jane

Jack fathered George <~ 01={x/ Bill) ~ob ~hered Tom<-

/ /Tom fathered Bill <- ~

fail • fail

<-Bill married Jane -

Tom married Mary<- /! --- Jack married

I / Bill married Jane <-
fail --- fail

success

Susan <-

Answer : leftmost successful evaluation binds x to Bill

Figure 3. Evaluation of fathered

132 The Control Facilities of IC-PROLOG 133

ation of append(2.NIL,3.NIL,w) and append(u.x,y ,u.z) . The m.g.u. binds u to 2 and
x to NIL, that is it decomposes the 'input' 2.NIL into its head and tail sublists. As
we mentioned above, the selection of components from data structures in accord
ance with a given pattern, in this case the pattern 'u.x', is one of the major roles of
unification. The other major role is the production of partial approximations, temp
lates, for the output. This is illustrated by the binding 2.z for w. This binding gives
us a first approximation to the answer substitution w /2 .3 .NIL which is the final out
put of the evaluation path. It tells us that any answer for the path will bind w to
2. 'something'. This first approximation is a partial result that could now be accessed
by another procedure call in which w appeared. We shall return to this idea of 'data
flow' activation of procedure calls in Section 3.

Both evaluation trees of Figs.2 and 3 are finite. Hence a back-tracking search,
which is a walk over an evaluation tree as depicted in Fig.4, can be used to search
for a successful evaluation.

\

\

Figure 4. Backtracking

Such a walk over the evaluation tree of Fig.3 amounts to a double loop search
over the 'fathered' and 'married' assertion sets. A similar walk over the evaluation
tree of Fig.2. does not involve significant backtracking. Each failure node is an im
mediate offspring of the one and only successful evaluation path. Evaluation trees
such as this record an essentially deterministic computation. At each step there is
only one clause whose consequent will unify with the selected call of the goal clause.

A genuinely non-deterministic use of the append program is depicted in Fig.5. It
is the evaluation tree for the goal clause +-append(x,y ,2 .3 .NIL). Each of the answer
substitutions gives one of the possible decompositions of the list [2 ,3] into front
and back sublists.

A note on implementation. A partially constructed branch of the evaluation tree
can be represented as a stack of activation records . Extending this branch to derive
a new goal clause is then a stack push operation which adds an activation record to
the stack . This contains a pointer to the program clause that was used, and a pointer
to a binding environment containing the bindings for all the new variables introduced
by that clause. This stack representation of the current and preceeding goal clauses,
which is essentially the Boyer and Moore (1972) structure sharing representation of
resolvents, corresponds to the conventional stack implementation of recursion, It
also carries an added bonus. Backtracking to try an alternative clause for the previous

CLARK & McCABE

ans=

<-append(v ,w,2.3.NIL)

su cce s/ ~
{v/NIL,w / 2. 3 .NIL) <- append(x,w, 3.NIL)

ans =

I~
su ccess

{v/ 2,NIL,w / 3.NIL)
<- append(x ' ,w,NIL)

/~
su ccess fa il

ans= {v/ 2 .3 .NIL,w / NIL)

Figure 5. Non-deterministic append evaluation

134

evaluation step is little more than a stack pop operation . So a backtracking search
for a successful evaluation is an interleaved sequence of stack pushes and stack pops.
Because backtracking is so easy to implement, all the PROLOG implementations use
backtracking as the search strategy . For more details on implementation the reader
should consult Warren (1977).

3. CONTROLLING THE EVALUATION
The search strategy and the computation rule are the control components of a logic
program . A logic programming implementation should enable the programmer to
specify, at least partly , the computation rule and the search strategy .

3.1 Search Control
As we remarked above, for reasons of efficient implementation all PROLOG systems
use backtracking as the search strategy . This leaves the programmer with limited
search control. He can only control the order in which the program clauses are tried.
He specifies this implicitly by the before-after order in which the clauses are written.
Although a fixed try order is not adequate for 'problem solving' uses of the evaluator
(Kowalski 1979b) , which in any case would usually need some sort of breadth-first
search strategy , a judicious choice of the try order is all that is required for nearly
all the LISP-style , and even the data-base-style, logic programs. A programmer
quickly learns how to exploit the backtracking, and to appreciate it as a powerful
control primitive of logic programs.

Clause ind exing . As an additional search facility we could index the clauses. The
Edinburgh PRO LOG automatically indexes all the program clauses on the constant
or top-level functor of the first argument. This cuts out much of the shallow back
tracking of the search for an applicable clause. Alternatively , one could allow the
programmer to specify which clauses should be indexed , and the degree of indexing
required .

IC-PROLOG gives the programmer just such indexing control. For any predicate
the programmer can request indexing of all the clauses for the predicate on any or
all of the argument positions. For each indexed argument the index groups together
all the clauses that have the same constant , the same top -level functor , or a variable

The Control Facilities of IC-PROLOG 135

in that argument position. The indexing is particularly useful for data-base-style
programs , By indexing the set of assertions that provide the extensional definition
of a data base relation we can access directly the subset , even the individual assertion ,
that can possibly match the call. Indexing can also be useful for the LISP-style pro
grams. It can make the try order irrelevant for most calls, the index effectively pro
viding us with a conditional branch to the appropriate clause.

Indexing f or data-base sty le programs . To see how indexing can affect the eval
uation of a goal we look again at the example program-3 from Section 1.3. In parti
cular , we see how indexing affects the evaluation of

+- Tom fathered x & x married Jane (1)
If we just index on the first argument of the fathered relation , then for the call 'Tom
fathered x' indexing 'extracts' from the fathered relation all those instances where
'Tom' is mentioned in the first argument. In other words , indexing on the first argu
ment will cause only those assertions mentioning children of Tom to be considered
by the interpreter. The backtrack search mechanism will then iterate through this set
of assertions, trying to evaluate the second call: 't married Jane' for each possible 't'.

For this second call we can have three different kinds of search behaviour depend
ing on the indexing we apply to the married relation (assuming we do some indexing) .
Ifwe index onjust the first argument , then the index access will be controlled by
the result of the first call. Indexing will extract from the married relatio .n those ins
tances where t is marr ied to someone . The interpreter will then search through
these instances to see if the someone is in fact 'Jane'. If the backtrack search fails
the next candidate child of Tom is used, a new access to the index is made, using
the new child as the key , and so on until a solution is found . The behaviour we get
by indexing on the first argument of each relation is that of the iteration :

for each child x of Tom
for each y married to x

if y = Jane , exit with x .
If instead , we index on the second argument of the married relation then access

via the index will return as candidate assertions only those where 'some-one is mar
ried to Jane '. In this case the accesses to the indexes are independent (and could be
done in parallel). The backtracking evaluation of the two call goal clause effectively
computes the intersection of the children of Tom and spouses of Jane . The behav
iour is equivalent to:

for each child x of Tom
for each spouse y of Jane

if x = y , exit with x.
Finally, suppose we have indexed on both arguments of the married relation. In

this case index access for the second call amounts to a look-up of the married re
lation to confirm (or otherwise) that the child of 'Tom' returned by the first call is
indeed married to Jane. The behaviour of the goal clause evaluation is that of the
iteration :

for each child x of Tom
if xis married to Jane, exit with x .

Compare these search behaviours with the case when no indexing is done . The

CLARK & McCABE 136

whole of the fathered relation is sequentially searched until an occurrence of 'Tom
fathered t' is found. Each time one is found the whole of the married relation is
sequentially searched to see if 'tis ma"ied to Jane'. The behaviour is that of :

for each fathered pair (x,y)
ifx=Tom,

for each married pair fy' ;z)

if z = Jane & y = y', exit with y.
For large relations this is an expensive method of searching, which indexing can el
iminate. As we have seen, indexing can be used to get some interesting search be
haviours from data-base style programs; in particular, an unacceptable sequential
search can be transformed into an acceptable direct look-up.

Indexing for LISP-style programs. Consider the length program (from example
program-2 in Section 1.3). If we index on both arguments, we get a case analysis on
both the list structure (NIL vs. u.v) and the size of the length; ie. whether the length
of the list is 0, or greater than 0 (0 vs. s(x)). This means that whether we use the pro
gram to find the length of a list., or to find a list of a given length, the abstract inter
preter always only tries to use the correct clause. In this case, the access via the index
is a conditional branch to the appropriate clause.

The notion of indexing on the top-level function names and constants, generalises
to indexing on lower-level terms as well. This would allow finer discrimination,
which would be useful for certain LISP-style programs, though rather less useful for
common data-base style programs.

Arithmetic Data Base. We can now be more specific about the nature of the built
in arithmetic relations discussed in Section 1.2. The reader will recall that the im
plementation of the addition relation was stated as being equivalent to a data base
of assertions, each of which described a single arithmetic sum. We will now say a
little about the representation of these assertions. We have already seen how indexing
can turn an apparently inefficient sequential search through a relation, into a fast
look-up into the relation. The implementation of these arithmetic predicate is in
fact equivalent to a fully indexed set of assertions.

This means, that when the interpreter is evaluating an addition procedure call,
instead of searching through all the assertions in the addition relation trying to find
the correct ones, only those portions of the relation that are directly relevant to the
call are considered. For example, in evaluating the goal:

+-x=2+3,
only the instance '5 = 2 + 3' will be looked at by the interpreter, from the whole add
ition relation. Normal evaluation, using this assertion, will cause the answer binding
x/5 to be made. For 'normal' computation the evaluation of a.rithmetic expressions
will be straight-forward. Each expression will be evaluated just as in any ordinary
programming language, there is no searching 'for the correct next step'.

Of course we do not actually have this large set of assertions stored somewhere,
nor do we actually use the indexing mechanism to sort the relation. What in fact
happens is the interpreter uses the underlying hardware to do the additions etc.,
the 'indexing' is translated into a case analysis of the call: depending on the actual
usage of the arithmetic relation, the hardware will be requested to do additions,

. The Control Facilities of IC-PROLOG 137

subtractions, multiplications and sci on.
We do not sacrifice any flexibility however, the 'arithmetic data base' still re

flects faithfully the declarative semantics of an indexed set of assertions. For ex
ample, in the evaluation of the call +-5 = x+y the instances of the addition relation
considered by the interpreter will be:

5 = 5+0 with answers for x and y:
5 = 4+1

5 = 0+5

{x/5,y/0}
{x/4, y/13

fx/0, y/5}
The interpreter will search through this set of assertions in the normal way, find
ing values for x and y, and check that they satisfy the constraints of the other
call(s) in the goal. Because of the indexing, no other instances from the addition
relation will be considered. This is an example of a non-deterministic use of the
arithmetic data-base. To our knowledge no other implemented language allows
the non-deterministic use of arithmetic primitives.

We can use this flexibility in the arithmetic data base to write some very ele
gant programs, for some examples of this, and for a more detailed explanation of
the way indexes are requested , constructed and used, the reader is referred to the
IC-PROLOG reference manual (Clark and McCabe 1979).

3.2 Computation Rule Control
The computation rule is an area in which we can more usefully exploit control
flexibility . In this, IC-PROLOG differs significantly from the Marseilles and Edin
burgh PRO LOG implementations . Both of these use a fixed, leftmost call comp
utation rule. As with the use of a fixed search strategy, this means that program
mer control is rather limited. By the left-to-right ordering of the procedure calls
of each clause he does control the order which they will be selected. However
this given order is then fixed for each use of the clause, and the sequence of calls
are always evaluated in a strictly sequential fashion. We shall see that this fixed
order, strictly sequential execution has considerable drawbacks, that it does riot
enable us to fully exploit the potential of logic programming. On the credit side,
sequential execution, being the norm for programming languages, is a control
concept that is easy to understand and use, and the leftmost call computation
rule is extremely easy to implement. If we are to allow more elaborate program
mer specified computation rules, which is possible in IC-PROLOG, we must make
sure that they embody equally intuitive control concepts. We must also make
sure that they impose the minimum run-time overhead.

Drawbacks of a fixed order strictly sequential execution. To see what sort of
control facilities might prove useful let us consider the disadvantages of the left
most call rule. There are two main disadvantages. The first is a consequence of
the fact that the textual left to right order of the procedure calls of a clause de
fines the execution order for every use of the clause. This means that, despite the
theoretical possibility of using a logic program to find any unspecified arguments
of a relation , it is usually only computationally viable for one input-output pat- ·
tern. The second disadvantage is a consequence of the depth first evaluation, the

CLARK & McCABE 138

fact that each call, once selected, is cc:,mpletely evaluated before control moves

to an adjacent call.
To illustrate these drawbacks let us consider the procedure:

R(x,z) ~P(x,y) & Q(v,z).
This tells us that x and z are in the R relation if there is some y which 'connects'
x and z via the P and Q relations.

With the given ordering of the procedure calls we can expect that the use of
this procedure is computationally viable for calls in which both x and z are given,
or for calls in which xis given and a corresponding z is to be computed. However,
for calls of the form ~R(x,t) , in which a non-variable term t supplies a value for
z and a corresponding x is to be found, the given order of the calls is far from
suitable. It will result in the call ~P(x,y), rather than the more suitable ~Q(y,t),
being used to generate the intermediary value for y. Thus, the candidate values
for y will be produced by unconstrained 'guesses', while the computation of a y
value that satisfies Q(y,t) might be essentially deterministic. To fully exploit the
input-output flexibility of logic programs we should at least make the order of
execution of the calls of a procedure dependent upon the input-output of the

invoking call.
However, even for calls of the form ~R(t,z), for ·which the given order of the

calls is satisfactory, a strictly sequential execution can be far from optimal. Let
us suppose that the evaluation for the derived call ~P(t,y) is truly non
deterministic, that there are several values for y that satisfy P(t,y). Let us further
suppose that each of these values is denoted by a term t' which is approximated
to by a sequence of partial results, t1 ,t2, .. ,tn that are produced at various stages
of the evaluation of P(t,y). We observed this partial result phenomena in Fig.2.
We saw that even the first step in the evaluation of the call ~append(2 .NIL,3.
NIL,z) produces the partial result 2.x as the first approximation of the final value
2.3.NIL. In these circumstances, which are not uncommon, the best execution
strategy is to co-routine between the P and Q evaluations . The Q evaluation is
entered, and then re-entered , whenever a new partial result is generated, and the
P evaluation is resumed whenever a new partial result is required . If at any stage
the latest partial result that is communicated to Q cannot denote any value that
satisfies the Q relation , we shall benefit from an early failure. The overall evalu
ation can then backtrack to find an alternative partial result for y, and we have
saved what might have been a lengthy computation of the complete result for the
abandoned ~P(t,y) evaluation.

3 .3 Control Annotation
In IC-PRO LOG the medium for the specification of the computation rule is pro
gram annotation. With quite simple syntactic additions to the basic Horn clause
syntax the programmer can define a computation rule which changes the try
order of the calls of program procedure in accordance with its input-output use,
and he can specify a computation rule that will result in a co-routining interaction
between certain sub-computations that is triggered by the flow of data through

shared variables.

The Control Facilities of IC-PROLOG 139

Control alternatives. In order to allow for input-output dependent use of a pro
cedure the programmer can give for each procedure an explicit list of control alter
natives. This is a list of annotated program clauses

[C1 ,C2, ... ,Ck] , k > 0,
each of which, ignoring the annotations and the order of the antecedent atoms,
is an exact copy of a single clause

B~A1& ... &An.
Declaratively, the list of control alternatives is equivalent to this single impli

cation . Procedurally , it also represents just a single alternative for the non
deterministic selection of a program clause to respond to the procedure call ~B'.
If B' unifies with B at most one of the clauses in the list may be used for the
evaluation step. Which one is used is determined by the'"','?' annotations at
tached-to terms in the procedure head of each copy of the clause.

These annotations specify extra constraints that must be satisfied by the uni
fication of B' and B before that particular clause can be used. Intuitively, the
annotated term 't?' tells us that t must be used as an input template. More form
ally it signals the requirement that each of its variables must have been matched
against a non-variable, or an input variable of the call. If t does not contain vari
ables, it signals the requirement that t must have been matched against an ident
ical variable free term. We must wait until the discussion of the data flow co
routining before we can define input variable. Roughly speaking, it is a variable
through which t11,e call will eventually 'receive' data, in the form of a non-variable
binding, generated by some other procedure call.

The annotation'"' signals the opposite use. A term t, annotated t", must be
used as an output template. More formally, in the unification it must have been
matched against an output variable of the call. An output variable is any variable
that is not an input variable.

Example-I. The list of control alternatives
[Grandparent (x? ,z) ~ Parent(x,y) & Parent(y ,z),
Grandparent(x" ,z?) ~ Parent(y,z) & Parent(x,y)]

for the clause defining grandparent would be used to indicate that the intermediary
parent y is to be found by looking up the children of the grandparent when the
grandparent is given, and by looking up the parents of the grandchild when the
grandchild is given and the grandparent is to be found.

Example-2 . Suppose we have a data-base of assertions for two binary predicates
Rand Q and that we have requested indexing on the first argument of Rand the
second argument of Q. We should use the control list :

[P(x? ,Y) ~ R(x ,y) & Q(x,y) ,
P(x" ,Y?) ~ Q(x ,y) & R(x,y)]

as a program that computes the intersection of Q and R .
Selection rule. When a clause appears as one of a list of control alternatives

then it can be selected only if all the match constraints signalled by the pro
cedure head '?' , '"' a_nnotations are satisfied. The first clause in the list with its
match constraints satisfied is the one which is used . If there are none , then the
evaluation terminates with a control error.

CLARK & McCABE 140

In the above example-I there is no clause copy for the case when both x and z
are to be found. The attempt to use this set of control alternatives for this case
will result in a control error. Thus the I/O annotation also gives the programmer
a run-time check that no unexpected input-output use will arise.

Data flow co-routining. Having found a control alternative whose input-Output
conditions are satisfied control 'enters' the body of the selected procedure. In the
absence of control annotations in the procedure body the sequence A 1 & . • &An
of calls will be executed in a strictly left-to-right order. That is, for each i the call
A- is selected only when the evaluation of A 1 & .. &Ai_ 1 is complete.

\ 0 relax this strict left-to-right evaluation, to enable the evaluation of the call
Ai to be commenced prematurely, we can attach a '?' or "' ' annot~tion to one of
the variables of Ai . The effect of this is to make the annotated variable, v, a data
channel for Ai. If the'?' annotation is used Ai is an eager consumer of the data
that will be sent down the channel by the evaluation of A 1 & . . &Ai_ l · If the
'" ' annotation is used then Ai is a lazy producer of the data that it sends down

the channel.
Ai as an eager consumer. If the channel variable v does not appear in a_t least

one of the calls A 1, .. ,Ai_ 1 the annotation 'v?' on the occurrence of v in Ai has
no effect. If it does appear , the effect is to make the evaluation of Ai a special
process that can co-routine with the evaluation of A 1 & .. &Ai - 1 ·

During the evaluation of A 1 & . . &Ai_ 1 we can expect that the final output
binding for v is approximated to by a sequence

t1,t2,··,tn
of non-variable terms. Here , t 1 is the first partial result. It is generated when the
composition of the unifying substitutions being generated by the eval~ation of
A 1 & . .. &Ai-l first gives a non-variable binding for v. There~fter, tj+ 1. 1s the
term 1 with one or more of its v~ri~bles rep~ace? by _non-variables. It 1s gen_erated
when the composition of the unifying substitutions induces such a change m the

previous binding for v.
A data call of Ai occurs whenever one of these _Partial result~ tj is generated.

A data return from A· occurs when the computation of the Ai 1s completed, or,
1 .

more usually, when it generates the 'need' for the next partial result tj+ 1 · Ai
generates the need fort ·+ 1 when the next step in its evaluation would result in
one or more of the variibles of tj being bound to non-variable terms. That is,
when it is about to 'guess' the next partial result. On the return from Ai the
evaluation of A 1 & . . &Ai- l is resumed at the point of the last data call. Similarly
the next data call of Ai, which occurs when the evaluation of A 1 & .. &Ai-1 gen
erates the required tj+ 1, will resume the required evaluation of Ai at its last sus

pension point.
The effect of the sequence of data calls and returns is to co-routine the evalu-

ation of Ai with the evaluation of A 1& .. &Ai-1 · Each slice of the evaluation of
A 1 & . . &Ai- l is the generation of a new partial output binding for v, and each
slice of the evaluation of Ai is the consumption of this partial output. We call Ai
an eager consumer because it 'runs' as soon as the next partial output is generated.

The co-routining interaction terminates if either the evaluation of A 1 & • • &Ai-1

The Control Facilities of IC-PRO LOG 141

or that of Ai is successfully completed . If it is the former default sequential execu
tion takes over but with the evaluation of Ai picked up at its last suspension point.
If it is Ai, then , following what is the last data return from Ai, the evaluation of
A1& .. &Ai-1 runs to completion, irrespective of whether or not it generates
any more partial results for v. On completion, the default sequential execution
continues with Ai+ 1 ·

Ai as a lazy producer. If the occurrence of the variable v in Ai is annotated v
much the same co-routining interaction takes place. The significant difference is
that this time it is the evaluation of Ai that generates the sequence of partial out
put bindings for v. Correspondingly, the call and return triggers are reversed.

This time a data call of Ai occurs when the evaluation of A1& . . &Ai- 1 needs
the next partial result, i.e. just before the evaluation step that would result in a
variable of the current partial result being bound to a non-variable. A data return
from Ai occurs as soon as the next partial result is generated, Le.just after the
evaluation step that so binds a variable of the current partial result. Since we re
turn from Ai as soon as it produces this next level of approximation, we call it a
lazy producer.

Nested co-routining. In the above description of the data flow co-routining we
have deliberately imposed no constraint on the 'internal' evaluations of the pro
cedure call segment +-Ai& .. &Ai-1 and the procedure call Aj,j<i, is also data
flow annotated with a'?' or a' '. (The current IC-implementation allows only one
eager consumer/la!!y producer for each variable. For lazy producers this is a reason
able restriction. For eager consumers it slightly cramps one's style.) This will cause
a co-routining interaction between the evaluation of +-A 1 & . . &Aj-1 and +-Aj,
within the evaluation of +-A 1 & .. &Aj& .. &Ai-1 . . Other, 'internal' co-routining
can take place as a result of data flow annotations in the procedure bodies of the
clauses used in the evaluation of +-A 1 & .. &Ai-1 and in the evaluation of +-Ai.
Each of these low-level co-routining interactions takes place in accordance with
the above procedural semantics.

Lazy evaluation mode. By systematically making all the producers of inter
mediary results lazy producers the programmer can signal a lazy evaluation mode
for his logic program, causing it to compute answer bindings in a lazy LISP fashion
(Henderson & Morris 1976, Friedman & Wise 1976) . Thus , where he would nor
mally use the annotated clause

R(x? ,w") +-R(x,y) & Q(y ,z) & T(z,w)
for a strictly sequential computation of the output w which corresponds to some
input x, for a lazy evaluation he can use

R(x? ,w") +-T(z,w) & Q(y ,z~) & R(x,y"').
Similarly, if the goal clause

+-P(t,x) & R(x,w)
would be used for the sequential construction of x and w bindings, it is rewritten
as

+-R(x,w) & P(t,x")
to signal the lazy construction.

Eager evaluation mode. An alternative, eager evaluation mode, can be requested

CLARK & McCABE 142

by making all the consumers of the intermediary results eager consumers. For
this, one would write the above program clause as

R(x?,w") +-R(x,y) & Q(y?,z) & T(z?,w)
and the above goal clause as

+-P(t,x) & R(x?,w).
In execution, the eager mode program contains much the same data trans

missions and requests as the lazy mode program. It just starts by doing some
work on generating the first intermediary result, whereas the lazy mode starts by
doing some work generating the final result.

Mixed Mode. The fact that lazy or eager interaction is explicitly requested by
an annotation means that they can be mixed. For example, one can signal a lazy
construction with an eager test, by the annotated clause

P(x? ,z") +-Q(y ,z) & R(x,Y"') & T(z?)
This ability to mix the execution modes offers a control dimension that we have
not yet fully explored. To our knowledge only Schwarz (1977), with his anno
tated recursion equations, offers a programming notation with the same mixed
mode facility . However, that is for an essentially deterministic programming
language. As we shall see in our later examples, the conjunction of data flow co
routining and back-tracking search is the really novel control mix offered by
IC-PRO LOG.

Input variables. We can now define input variable. To make the definition pre
cise we need the concepts of data-transmission and data request. A data trans
mission is a call of an eager consumer or an early return from a lazy producer. A
data request is a call of a lazy producer or an early return from an eager consumer.

Definition
Let v be a data channel for a call Ai.
Case (1) vis as yet unbound and Ai is a lazy producer of v. vis an input variable

of any call selected before the first data request to Ai.
Case (2) vis currently bound to a term t which is one of the partial approximations

to the final output binding and Ai is an eager consumer or lazy producer
of v. Any variable int is an input variable for any call selected after the
data transmission that communicated t but before the data request for
the next partial approximation.

Informally, input variable·s are those variables that can only be bound to a non
variable by an evaluation step involving some other call.
Delaying the data transfer as described above, a data transfer occurs immediately
after the evaluation step that generates the next partial result. However, it might
be that this evaluation step has made use of one of several clauses that would
have matched the call, a situation which arises when the 'pattern' of terms in the
procedure heads of the alternative clauses does not, on its own, determine a single
clause which must be used . In this circumstance the appropriate clause is usually
selected by one or more test calls that begin each procedure body. Any output
that the invoking unification may have produced is really conditional upon the
successful execution of the test calls. We should therefore delay any data trans
fer until after the evaluation of these calls.

The Control Facilities of IC-PROLOG 143

The annotation to request such a delay is a ':' used instead of the '&' which
immediately follows the test calls. Thus, if we write

P(f(u),g(v)) +-T(u) : R(u,v)
instead of

P(f(u),g(v)) +-T(u) & R(u,v)
this will delay any data transfers that would normally immediately follow the
~valuation step that uses this clause until after the evaluation of the call +-T(u)
1s completed. We call the' :' the clause bar.

More formally , the clause bar can be inserted at any point in the sequence of
procedure calls of a program clause, even after the last call. The effect of the bar
in a clause

B +-A1& . . &Ai:Ai+1& .. &An
is to delay any data transfers out of this procedure until the evaluation of the
call segment A 1 & . . &Ai is complete. A data transfer out of the procedure is
either a data return from a producer that is an ancestor of A 1 & .. &An (i.e. the
use of the clause was an evaluation step of the producer), or it is a data call of an
eager consumer that is a sibling of some ancestor of A 1 & .. &An. The bar has no
delaying effect on suspensions of the procedure evaluation due to data requests.

3.4 Using the Control
For further information on the syntax , and certain restrictions on the use of the
producer/consumer annotations, we refer the reader to the complete IC-PRO LOG
reference manual. We shall content ourselves with two examples of logic programs
that use the annotations , which should help to clarify the ideas.

Example-}. For our first example we shall look again at the clauses that de
scribe the relation front(n,1,1 ') which holds when 1 comprises the first n elements
of the list 1. We made use of these in example program-2 , in Section 1, to give an
example of the use of answer substitutions that contain variables. This time we
shall annotate them so that we get a co-routining construction of the list of the
front n elements that simulates the counting down transfer of elements of 1 to 1 ' .

Leaving aside considerations of their computational use we can simply write
down the implications of the program in any order, and with any ordering of the
antecedent atoms . In general , this should be the first stage of writing a logic pro
gram; we should first concentrate on the logic component of the program, using
and reading the clauses as first order statements about the input-output relation
we want to compute. As a second stage we can concern ourselves with their com
putational use, with the control component. We do this by choosing a suitable
ordering of the clauses and their antecedent atoms and by adding the approp
riate annotation for the use we have in mind. At this stage we might conceivably
revise the logic component, changing it to a more 'pragmatic' description should
a viable computational use be impossible to achieve (we shall have to do this in
the next example program) . This two-stage program writing methodology , which
is another novel feature of logic programming , is a consequence of the independ
ence of the logic and the control.

l)
I
II

CLARK & McCABE 144

Let us take the clauses
front(n,z,x) +-append(x,y ,z) & length(x ,n)

length(NIL,0)
length(u.x,s(n)) +-length(x,n)

append(NIL,x,x)
append(u.x,y ,u.z) +-append(x,y ,z)

as our first order description of the front relation.
We now address the computational use of these first order implications to strip

off the first n elements of a list in answer to a call of the form +-front(n,l ,x) in
which xis the only variable. If the clauses were to be used as they stand the back
tracking search strategy will result in pairs of candidate decompositions of the in
put list 1 being generated by the non-deterministic evaluation of +-append(x ,y ,1).
The first pair will be x = NIL, y = 1, the second x = a 1.NIL, y = l I where a 1 is the
first element of 1 and l' its tail, and so on. Each of these candidate decompo
sitions will be checked in turn by a complete evaluation of +-length(x,n). When
this fails, because the length of xis not yet n, a back-track leads to a costly comp
lete re-computation of the next candidate decomposition. This is not a viable
computational use.

What we should be doing is counting down on the length parameter n as the
recursive decomposition of 1 adds each new element to the partial output binding
for x. When we have counted down to zero this partial output, which will be of
the form a 1 ,a2 ... an.x', can be completed by a last step of the decomposition
that binds x' to NIL.

Exactly this behaviour will result if we use the annotated clause
front(n? ,z?xA) +-append(x ,y ,z) & length(x? ,n).

This makes the length call an eager consumer of the partial output bindings for
the front sublist x, and restricts the use of this control regime to calls of the ap
propriate form.

The data calls of length(x? ,n) actually serve two purposes. The sequence of the
calls is best viewed as a sequence of pairs of calls. The first call of each pair follows
each use of append(NIL ,x,x)+- in the non-deterministic evaluation of the append
call. Following this data call the next step in the suspended length evaluation can
only succeed if the length of the front sublist has reached n. This call is the 'loop'
exit test. If this step fails only the last step in the append evaluation is undone.
This is immediately followed by the use of the recursive append clause, and the
second data call of length . On this second call only the recursive clause for length
can be used and its use effectively decrements the length count by 1.

Example-2. Let us consider the problem of describing a solution to the eight
queens chess problem using only Horn clause sentences .

First , we have to find some way of naming candidate solutions , configurations
of eight queens distributed on a chess board. We can simplify our task if we only
consider configurations in which each row and columns contains only one queen,
a constraint that we know must be satisfied by any solution to the problem . A
list of the numbers 1 to 8, in soine arbitrary order, is a name for such a con-

The Control Facilities of IC-PROLOG 145

figuration if we take the ith number on the list as the column number of the
queen in the ith row; with this naming convention, the set of permutations of the
numbers 1 - 8 names the set of all the board configurations we are considering. A
solution to the problem is one of these permutations that is safe, that is one which
represents a configuration in which no queen is on a diagonal with any other.

The Horn clause:
Queen-sol(x) +-Perm(l .2 8.NIL,x) & Safe(x) (1)

is the formal statement of the condition where 'Perm' names the list permutation
relation and 'Safe ' names the unary relation which is true of a list of numbers only
if for any number on the list in position i, and any other number n on the list in
position j, j > i, Im - nl =I-j - i. This ensures that the list of numbers names a
queen configuration that is safe.

We now need to give the Horn clause descriptions, of the Perm and Safe rela
tions. Trivially the empty list is a permutation of itself. A list u.x is a permutation
of a list v.z if vis on the list u.x, and y is a permutation of u.x with v removed.
Fig.6 illustrates this recursive definition .

z

u~v

Figure 6. A permutation of lists

It is embodied in the two Horn clauses:
Perm(NIL ,NIL)
Perm(u .x,v.z) +-delete(v,u.x ,y) & Perm(y ,z)

where 'delete' names the relation that is true when y is the list u.x with v removed.
The clauses:

delete(v,v.x,x)
delete(v ,u.x,v .y) +-delete(v,x,y) (2)

are a Horn clause description of the delete relation. We leave the reader to check
that they provide a correct description which covers all the cases.

We now turn to the description of the Safe condition . Clearly an empty list of
numbers represents a safe placing of queens on consecutive rows. A constructed
list u.x will be safe if the list x of queen positions is safe and , taking into account
that it is the column position for a queen one row away from the x sequence , a
column u is not on a diagonal with any of the consecutive columns positions of
the list x. This gives us the clausal description :

Safe(NIL)
Safe(u.x) +-no-diagonal(u ,x ,l) & Safe(x) (3)

Finally we need to describe the no-diagonal relation. This is a relation satisfiied
by a column position , u, a list of column positions for consecutive rows, x , and a
number , n , when a queen placed in column u, n rows away, cannot take any of
the queens placed according to the list x. It is:

I~

CLARK & McCABE 146

no-diagonal(u,NIL,n)
no-diagonal(u,v.x,n) ~ no-take(u,v,n) & no-diagonal(u,x,s(n)) (4)
no-take(u,v,n) ~ v > u & v = u + w & w =t-n
no-take(u,v,n) ~ u > v & u = v + w & w =t-n

Here,'>',' .. = . . + . .' and '=t-' are assumed as primitive arithmetic predicates.
The clauses (1), (2), (3) and (4) constitute a Horn clause axiomatisation of the

concept of an eight queens problem solution. Note that they are much closer to
a specification than a program. The ability to use logic programs that are more
like specifications than programs is one of the bonuses of having a rich control
component. Kowalski (1979a) elaborates on this point. Let us now turn our at
tention to their computational use.

With a mind to this computational use we have already chosen a suitable try
order for the clauses of each predicate and for the procedure calls of each clause.
However the computational use of the clauses as written suffers from consider
able redundancy. The major problem is the generate and test method for finding
a safe permutation which results from the back-tracking use of the clause :

Queen-sol(x) ~ Perm(l .2 8 .NIL,x) & Safe(x)
Each time we back-track to try a new permutation the evaluator will recompute
an entire permutation. At the very least, we need to set up a co-routining inter
action between these two calls, by annotating the clause:

Queen-sol(x) ~ Perm(l .2 8.NIL,x) & Safe(x?)
The procedures that will be invoked by these two calls are:

Perm(u.x,v.z) ~delete(v ,u.x,w) & Perm(w,z)
Safe(u.x) ~no-diagonal(u,x ,l) & Safe(x)

A data call to the Safe computation will take place as soon as the shared variable
of Perm(l.2 8.NIL,x) and Safe(x?) is bound to the template 'v.z' , before the
v giving the first queen position has been computed by the delete(v,u.x,y) call. It
is better if we delay the call until vis known. We do this by changing the '&' of
the Perm procedure to a ' : ' .

There is another more serious redundancy which cannot be remedied using a
control annotation. The problem is with the recursive description of Safe, which
must be changed to a more computationally useful description. Our recursive
description implicitly involves a double recursion, since the no-diagonal relation
is itself recursively defined. Computationally this means that the evaluation of
the no-diagonal(u,x,1) call of the Safe procedure will generate a sequence of data
requests that results in the complete construction of a permutation. In other
words, a complete permutation will be constructed in order to test that the first
queen does not take any of the tail list of queens. Thus, when the third queen
position is given on some data transfer from Perm , only the diagonal constraint_
with the first queen is checked. The diagonal constraint with the second queen
is embedded in the recursive call of the Safe procedure, and will not be checked
until all the diagonal constraints involving the first queen have been checked.

A richer control regime would enable us to 'extract' a viable computation from
the program as it stands. We need to be able to signal the quasi-parallel execution
of the no-diagonal(u,x,1) and Safe(x) calls of the Safe procedure. More precisely,

The Control Facilities of IC-PROLOG 147

we want the Safe(x) evaluation to be started, and then run in parallel with the
evaluation of no-diagonal(u,x,1), when its argument becomes bound. The use of
annotations to constrain a parallel evaluation of the procedure calls of a logic
program, rather than to liberate the strictly sequential execution, has been inves
tigated by Bruynooghe & Clark (1979). There is currently no implementation of
such a control regime.

To make do with the control facilities that are available in IC-PRO LOG we
must revise the logic of our program. Behaviourally, we want the new descrip

tion of the Safe relation to be such that each newly generated queen position is
checked against all the preceeding queens rather than all the queens yet to be
positioned. Intuitively it exploits the fact that a queen list is Safe iff its reverse is
Safe.

To get this behaviour we must re-describe the Safe relation using an auxiliary
relation, Safe-pair . Safe-pair is true of pairs of queen lists y and x iff xis a Safe
list and no queen in the x sequence can take any queen in the reverse of they se
quence, when the reverse of y followed xis taken as a queen board configuration
(see Fig. 7).

rev;rse of{

placing

------------t---------------------
}

No queen in this part of
board can be taken by any
queen in lower part of board.

, phoi"9 { } Saf• plaoiog of go••••.

._ _______ _,

Figure 7. y and x are a safe-pair of queen placings

We leave the reader to check that , with this intended interpretation of the pre
dicates 'Safe' and 'Safe-pair', each of the following clauses is a true statement:

Safe(x) ~ Safe-pair (NIL,x)

Safe-pair(y ,u.x) ~ no-diagonal(u,y ,1) & Safe-pair(u.y ,x)
Safe-pair(y ,NIL)

They embody a conceptualisation of the Safe relation as a special case of the
Safe-pair relation, and a recursive description of Safe-pair.

Our final, revised and annotated program is:
Queen-sol(x) ~ Perm(l .2.3.4.5 .6.7.8 .NIL,x) & Safe(x?)

Perm(NIL,NIL)
Perm(u.x,v.z) ~ delete(v,u.x,y): Perm(y,z)

delete(u,u.x ,x)
delete(v,u.x,u .y) ~ delete(v,x,y)

Safe(x) ~ Safe-pair(NIL,x)

CLARK & McCABE 148

Safe-pair(y ,NIL)
Safe-pair(y ,u.x) +- no-diagonal(u,y ,1) & Safe-pair(u.y ,x)

no-diagonal(u,NIL,n)
no-diagonal(u,v.x ,n) +- no-take(u,v,n) & no-diagonal(u,x,s(n))

no-take(u,v,n) +- v>u & v = u+w & w:J: n
no-take(u,v ,n) +- u>v & u = v+w & w:J:n

The execution of the program corresponds to the simple-minded back-tracking
algorithm which places the queens one at a time on successive rows . It always
tries to place the next' queen on the left-most free column (because of the try
order for the 'delete' clauses). If it cannot place a queen on the next row in a posi
tion in which it cannot be taken by an earlier queen, it back-tracks and tries to
move the previous queen to the right.

ACKNOWLEDGEMENTS
Our implementation of the control facilities in IC-PROLOG built upon the ex
perience gained by Chris Stevens' pilot implementation (Stevens 1977). We have
also benefited much from discussions with Maurice Bruynooghe.

REFERENCES
Boyer, R.S. & Moore, J.S. (1972) The sharing of structure in theorem-proving programs .

Machine Intelligence 7, pp.101-16 . Edinburgh University Press.
Bruynooghe; M. (1976) An Interpreter for Predicate Logic Programs, Part 1. Report CW 10,

Applied Maths and Programming Division, Katholieke Univ., Leuven, Belgium.
Bruynooghe, M. & Clark, K.L . (1979) Parallel programming in predicate logic. Draft report ,

Applied Maths and Programming Division, Katholieke Univ., Leuven, Belgium.
Clark, K.L. (1979) Predicate logic as a computational formalism . Research Report (in prep

aration), Imperial College, London
Clark, K.L. & McCabe, F . (1979) IC-PROLOG Reference Manual. CCD Rep. 79/7, Imperial

College, London.
Friedman, D.P. & Wise, D.S. (1976) CONS should not evaluate its arguments.Automata,

Languages and Programming. Third International Colloquium. Edinburgh University
Press.

Futo, L Darvas, F. & Cholnoy, E. (1977) Practical application of an AI Language 2. Pro
ceedings of the Hungarian Conference on Computing , Budapest, pp.385-400 .

Green, C.C. (1969) Theorem-proving by resolution as a basis for question-answering systems.
Machine Intelligence 4, pp.183-205 . Edinburgh University Press.

Hayes, P.J. (1973) Computation and deduction. Proc. 2nd MFCS Symp., Czechoslovak
Academy of Sciences, pp.105-18.

Henderson , P. & Morris, J. (1976) A lazy evaluator. 3rd. Sy mp. on principl es of programming
languages. Atlanta, pp.95-103.

Hill, R. (1974) LUSH Resolution and its completeness. DCL Memo No. 78, University of
Edinburgh, School of Artificial Intelligence, August 1974.

Hoare, C.A.R . (1973) Recursive data structures . Computer Science Dept., Stanford Uni
versity, ST AN-CS-73-400.

Kowalski, R.A. (1974) Predicate logic as programming language. Proc. IFIP 74, pp.569-74 .
North Holland Publishing Co., Amsterdam .

--(1979a) Algorithm= Logic+ Control. To appear in CACM.
--(1979b) Logic for Problem Solving. To be published by North Holland, N. Y.
Robinson , J.A . (1965) A machine-oriented logic based on the resolution principle. J.A . C.M. 12

(January 1965) 23-41.
--(1979) Logic: Form and Function . Edinburgh University Press.

The Control Facilities of IC-PROLOG 149

Roberts, G. (1977) A~ implemen~ation of PROLOG. MSc Thesis. University of Waterloo.
Schwarz, J. (19'.7) _Usmg a~notat10ns to make recursion equations behave. Research Memo

Dept. of Artificial Intell1genoe, University of Edinburgh. '
Steven, C. (1977) The appl!cation of call-by-need to automatic theorem-proving . MSc Thesis.

Department of Computmg and Control, Imperial College, London.
Van Emden, M.H. & Kowalski, R.A. (197 6) The semantics of predicate logic as a programming

language.J.A.C.M. 23, no.4, 733-42.
Warren, D.H.D. (1977) Implementing PROLOG. Res. Rep. 39 40 Dept of A I u · f

Edinburgh. ' ' · · ·, mv. 0

Warren, D.!f.D ., Pereira, L._M. & Pereira, F. (1977) PROLOG - The language and its imple
mentat10n compared with LISP. Proc. Symp. on Al and Programming Languages
SIGPLAN Notices, vol.12 , no.8, and SIGART Newsletters no.64, August 1977, ~p.109-15.

