Tite LuGLISP USER'TS MANUAL

JeaeaROuinson

b ot aibert

tecemper Lol

yenagud ot Lomputer ang Intormation Scrence
JL3 Lank ttald yyfracuse University

SYF 4cuse New Yorw 13210




Hote

This document descrives version
vZM3  (“version 2y moditication 3")
of LuGL ISP, It supersedes
[Robinson=-Sigert 19801}, which

describes version VIML of LOGLISP.
The LUGLISP project is a continuing
experiment and further versions and
modificatiaons of the system will be
issued from time to time as seems
appropriate. Successive versions
YiMy ot LUGLISP are essentialiy
upward compatibile, deccasionally,
noweversy wse have sacrificed upwarag
compatioility in order to install
opvVIOUS Improvemants, Ae pelieve
that the user will experience
littie or no contusion on this
iccount.,
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PREFACE

This document describes version v2M3 ot LUGLISPs an axtension of
LISP 4n which one can do 1ojic programming [Kowalski 1974, 1979]).
[t is a4 revision anag gextension ot our “LOGIC PKUGKAMMING IN LISP™
(Rooinson-Sivert 1960l,y, which descrivea previous versijons of
LUGLISP. LJGLISP is pasically UCI LISP {Meehan L1979] with a
logic programming syst2m cmoedded within ite The LUGLISP user we
have in windg is tnus {tdeall y) someoneg who is familiar with
uCl LIsSP fory 3t jeasty LISP); we do not in this manual address
the non=LISY cummunitys beyond some gyeneral discussion in the
first tew cnapters.

Ae do  not assume the user is already familiar with togic
programminy or the earlier pyackrground Invoiving resolution
theorem=provinge. The eariy chupters attempt to provide an
overat | view 0of the essential iueas In a fairly general settinge.
In particular no prior acquaintance with PROLOUG §s assumed. In
order -to distinguish our work from that of our PROLOG colleagues
(whicny, ana whomy we esteem highly) the logic programming system

within LuGLISP is called LOGIC,. Thus we have:
LOGLISP = LJGIC + LISP. The present version ot LOGLISP has bpeen
improved considaranly over earlier versionsy both in the

efficiency of tne implementation and in the incorporation of
severil nea fedtures which we nelieve will be found useful.

The reager interested in details of the implementation is
referread to the companian document “LUGLISP Implementation Notes"
[(Kovinson=-5ivart l93l) whicn is an up=to-date version of the
chaptlter on tmplementation in "LUGIC PRUGRAMMING IN LISP". The
corresponding chapter hdas dD2en removed from the present document.

LUGIC differs in a number of wdYS from the well=-known PRCLUG
inmplementations of loygic proyramming [Roussel L9751, [HWarren
197714, {ruverts 14771, (Clark 19793}, The most noteworthy
gifterence is tnat LOGIC is simply a4 set of new LISP primitives
Jesiyned to he uysedq freeiy witnhin LISP programs, These
grimitives are tnvorked in the ordinary LISP manner by function
catls from tne terminal or from witnin other LISP proyramse. They
return thetr results as LISP data objects whicn can be subjected
to anmnalysis and manipulation, tach ot the logical procedures
comprising 4 LOGIC knowledge base is a LISP oata object kept
(like tn=s agefinition of 4N ofdinary LISP procedure) on the
propacty lList ot the igdentifier which is its names

Thus one calls LUGIC from within LISP. It is also possible to
call LisP trom witnin LUGIC. Tne identifiers used as logical




pregicate symopolsy tunction sympoils and individual constants
within 1 knowledge Dase of query can pe given a LISP meaning oy
the ordinary LISP methoad of detinition or assiynment. Some
identitiers (CAR, CUnsSy PLUSy etcs) diready have a LISP medning
fmposed vy the system. Thus eavery logic construct {term, or
atomtc sentencal is capaovte of neiny interpreted as a LISP
construct. OJuriny the deguction cycie of LOGIC each logic
construct is "avaluated™ as a LISP constructs according to a
sultaply 4generailized notion of evaltuation.

The effact of this LISP=simplification step within each deduction
sten is Lo make available to the LOGIC programmer virtually the
futl powar of LISP. This miakes trivially easy the "puilging=in"
of "immediately eviluaole'™ notions = but far more than thata. In
particulary LUGIC calis can pe made from within LUGIC callsa.

The desi;n anyg implementation ot LUOGIC ~as partially supported by
the ®Kome Air Developmant Center of tne United States Air Force
under contracts F30602-77~C=0121 and F30602~-81-C=-0024y by the
National Science Foundatjon wunder grant MCS5-77-20780+ and by the
University of LJinburgh under a grant froim the Science Research

Council ot the uUnited Kingdome
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ChHAPTER O

[HNTRODUCTIUN

Since Kowalski's 1974  paoer "Predicate Logic as Programming
Language® [(Kowalski 1474} there nas veen a growing interest in
the use of w~hat he calls "logic programming” as a technigue for
specityiny coumputations.

This tzcnniggu-= consists ot tormulating computational
specifications as a set of dectarative sentencesys edacn of which
is a1 siraple assertion of same truth - conditional or

unconadttionaly general or particular - «hich one wishes to record
in a "knowladge bDase',

A conditional dssartion has the torm

in whicn o s thne c¢opelusign d4nd A is  the hypothesise The
hypothests is a tist

{ al es s AN )

of copgitians At all ot which (the assertion is saying) must be

2 n e s Lo o i

true n ordaear that the conclusion ve true. AS a3 special casey
the ti1st A may e emptys Such 4 hypolhesis is always truesy anag
SO tne Jassertion in Lhis case §is sata to be unconditional.
Kowalski writes the conditional assertion

S if Al Jee AN
as

8 <= Al sees An

and the uncondgtionat assertion
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Edech of toz A's andg the s 1S 4 sentance in subject—-predicate
tormy or "areaication®

{Y o1l ves SK)

in anich some predigals P is ascripeg to 4a subject (S1 co e Sk)
whicn tn jJensral 1S 4 tuple ot descriptive expressions each of
whicihh s erther 4 Lruper names or a varjravley or an dpplicative
cupstrugltiun

(F 51 <4 Sn)
in wintcn some gperator F is applied Le some gperang (S1L «ee SN,
The opering  of d construction is in general a tuple of
descriplive expressions ot just the same kind as the subject of a
predicatione.

An agssertion containtng one or more variablies s ggnegral (a
denecalibyl), In practicesy 1t is found that most generalities are

conuatt tunil ., Howevery unconaitional deneralities are quite
meantn jtul ang occur naturally in many applications.

An assertion containiny no variavile is particular (a
particulacityl. In practice, particularities are almost always
unconditionat. Conditionat particularities are, however,
meaningtul AN gccasional ly occur naturally. Particular

exyresstions {not Just pradications) are also called acound
ExXgr2S510N3,

Thes remirhs tead us to introduce 4 sltightly different
cliassification of assertions. An unconditional particular
4ssertion 15 sald to ve a ditume Any other assertion is said to
e g fulo. For commonly occurring assertions, this is not
diffarent from the dJivision into particul ar and general
asscert 1onsa. nut the cgistinction is important in the

implementation,

The varitiod2s in a jeneral assertion are treated as it they werle
governed oy untversal guantifiers preceding the 4ssertione. Thus,

the Jssertion

tudd (Proguct x y)) <= (Jdd x) {dven (Sum x y))




Shouid D2 wunderstood 4s being praceded oy "for alt X and y".

Unce 4 ANnowtedge base  has ve2n puidit the logic programmer can
regquust answsels Lo Jueries. [L is these raquests which invoke
the “ftojic computations” or deduglions «~hich reveal the implicit
cont nt ot tne XNowiledde DISE.

A query s essentialliy 4 Jdescription
dfl {xl eoe xk) such tnat (Al a4nNUd ees dnd AN}

of a set  of Luples ~afvich satisfy a given congunction (the
cansleainl of the qguery),

Tha constraint of o query may contain variaoles in addition to
those occurring in the answef tzmplale (xl cee xk) ot the query.
These ars Lo e understood 4s  Dbeiny noverned by existential
quantirtarers preceding the constraint.

The answer Lo sduCh 4 Juary s then the set of all tuples whaose
satisfaction ot thne yiven constrdint follows loyically from the
Knowl2dgye nDase,

Tnus the answer mway be the 2mpty sety ur a set containing just
one tupley or a4 set containing many = even infinitely many -
tuples. [f the answer set is 1ntinites then in practice some
finite subselt  of it <11t be suppliedsy or some other description
0of the sot will ve Jiven,.

A lojic conpgutatiaony tneny consists ot the seguence ot events
necessdry to counstruct the answer to some query from the
informatton esnoodied In some kKnosledge vase,

Lo PRULUG

Thass 1lJzas w~2re incorporated into a4 programming langjuiagye called
PRUL UGy desiyney and first tplementea by a group at the
University of durserlle. PRULUG has since bpeen jmplemented at
the universitias ot Edinouryn, teuveny LoOndony water loo ana
pudapest,.

PRULUG 1mplementations of logic programming go veyond the “"oure"
verston ot it Jescrived oy Kowdlskioe They provide certain
Timpurative fteatures oy which the programmer can aftact the
ceauctive conputation of the ans«~er to a gquerys and inueed Dy
whicn he can afrect the meaniny of the guery and ot the
Assertrons 1n the knowladyge vase,

These "control constructs® of PrRULUG have been found most useful




N praclticaii ipplicdations of logic programming and we are in no
sense critical of tneins Howevery we velieve that it is one of
the 2s5s5cntial 1deas  of logic programming to maxke a clean
distinction opetween the “{ogic” of one's program and its
[1] I

control,

2,0 LOGIC

Accordingly w2 nave (aplemented a programming languagye called
LECGTIC, xhich eaembodies oQur tdeza of tne "pure® version of fogic
programming testured tn  Kowdlswki's wliitings. Those who are
interested Lo experiaent with "pure™ logic programming can do so
LY working ~ith LUGIC.

For thosa ~no may wish to aviail themselves - while still in some
SeNnse working w«ithin a togic programming framework - of a greater
aegrae of alyorithmic control over eventsy we have enbedded LOGIC
within a system called LOGLISP.

3.0 LUGLISP = LUGIC + LISP
LUGLISP is a marriage of LOGIC with LISP.

A LOLLISP workspace contains everything one expects to find in a
LISP MOrKSpJdCes dNd Can be used purely as such by those who wish
to iynore tne presence of LUGIC in that wOrkspace,

The same LUGLISP workspace can also be used as a "pure" LOGIC
wOrKspacey that ISy 45 nothinyg but a basic logic programming
environmanty In Which Lhe assertion/gquery style ot computing can
be. conductea in Just tne Kowdiski manner . The fogtc programming
facifitics 4re invosed oy making suttavly~formea LISP calls on
such LIS7 functions as - ("assert™) and the query functions ALLe
ANYy THEy and SETUF. These LISP functionss togyether with turther
Juxibiary ana  supplementary  LI3P functionss, comprise the LOGIC
Systam,

A major advantage ot 2mpodyingy loyic programming within LISP in
this way is tnat the LISPY environment is available to the logic
Brogramauer ds a4 convenient host facility in which LISP functions
for edbbin gy dgispltaying, montturings debuggingy inputting and
sutputting one’s assertiuns,y queries and deductions can be
invoked iInteractively or unager proygram controd .

Sinca the puttaing of a query  is  just the submission of an
approoriaty  LI5P  function cally this can be done either (4s in
the PRULGUG systems) interactively from the terminal or internally
from ~ithin an applications programe.
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Since tn=2 answar to a query is a LISP data object it can either
{as in  PRULUG) be displayed on the termtnal as a stream or
returnea to an internal caill as its result and subjecledy if

desiredy Lo analysis and manipulation,.

Both preaicates and vperators in {ogic expressions can pe given a
LISP maaning oy suilable proyrammer=-supplied definitions of them
as LisP function names. Sone proger names Indeed have a LISP
meaning w«~hich iS5 presant in every workspace as part of LISP
ttseif.,

2y a venign extzasion of the "pure® logic proyramming paradigms
LUGLISP 45 capapla of recognizing sucn predicates and operators
dur ing tne deduction <cycle of LUGIC. The pregications and
constructions in wnose heads they occufr are thereby treated as
LiSP-meaningful function callsy and are replaced in silty by
appropriate simplificationss.

The =2ffect ot this LISP-simpiification steps, performed once In
every iteration of LUGIC's deduction cycley is to give the LOGIC
programmar the medns Lo invoke very nearly the full power of LISP
from within logic expressionss,

This facty together with the previousty mentioned fact that LOGIC
calls are simply certain LIS? calisy, means that it is very easy
to initiate suovorgdinate deductions during a deductiony by making
recursive calls on LOGIC from within LOGIC.

Thus LISP is not only 4 ricn and convenient host environment for
LOGIC programmnings out also an intimately involvea partner in the
novel hyprid style of "LOGLISP" programming in which LISP and
LUGIC call each others And themselvesy recursively.

The following chapters descrive LUGLISP in fullse The background
igedas are sxplainea in details and the design and implementation
are presanted voth "top-down" andg "pottom=-up" . Examples of
apptications of LOGLISP are given which illustrate its novel
capavilities,

LUGLISP runs on tne JEC-10 under the TOPS-10 operating system
using a wversion of futgers=-UCl LISP, essentidlly that gescribed
in Lreenan 1979},




CHAPTER 1

HUT TONS

AND NUTATIONS.

[n tnis mandal «~e are concerned «ith computations whose data are
expressions. [t wili vpe useful to have the basic ideas ana
notattonal convantions avaitable from the outset, and in this
chapter w2 discuss the most important of these. The general
frameworsk 13 that of Lise ' auymented in cartain ways to
accommodate the needs of LOGIC.

lel EXPRESSIUNS

LISP has two kKinds of expressions atoms 4dnd dotted pairse. We

divige the ataoms

Thaerefore we have

further
Names .

variables
proper names
dotted pairs

A variable is an identifier
letter, A praper name
particular strings

into two Kindss:
three kinds of

Wi

is any atom wnich
and numerals are proper

variables 4and proper
gxpression: :

with a lower case
is not a variable (in
names). A dotted pair

ch beygins

is a composiie 2xpression with two immediate constituentss called
its nead dand its tatly DOth of which dre expressionss nNe have
thr ee format predicatesy for uUse in writing algorithms, which
correspond to the three kinds of expression,.
{¥ax Al = TRUE if A is a variabley = FALSE otherwise
{riate a) = [JRUE if A is a proper namey = FALSE otherwise
{CUXSP A) = TRUE if A is a dotted pairs = FALSE otherwise

Le2 NUTATION FOR UJTTEU PAIKS AND LISTS
When A is a dotted pair whose head is B and whose tail is Cy we
write

o = hA

c = ta
using the dezcomposition funcltions h© andg t. To indicate the
compousition of 4 from 38 and C we write:s

1-1




A = (’5.C)

using the composttiun function ("dot"™) written betxe
two argumants. [n writing nested compositions with the
dot A€ miy omit pairs of parentheses with the understandin
associration ts to the rignt, Thus

r\l:ilC'i‘).E.}—.G
is short for
(A {30 (CalUelElF-G))I)Y)

A furthar notational econoimy 15 dchieved Dy identitying
Bxressions as lists and writing them without dots. Al
are uvotted pairs except for oney which (s the proper names
NIL  is Known as the empty listy and may also be written
Lists other than () 4are said Lo be nonenptly . A nonempty
any dottad pair whose taifl is a list. A nonempty {ist
Aarttten by writing its one or more components in order,
left .parenthesis vefore the first component and a
parenthesis after the last. The head of a tist s its
compoaneant s and in general the (i + 1)lst component of a
the ith componant of its tait « Thus the {ist

{(DelZalda(6.1B3e{BINGONILIIIID)
has six conponents and would be written
{0 2 4 &6 3 8INGO)

Note thnat tne taii of 4 nonempty list is just the [fist
remaining components after the head has bdeen removed.

soth fist— and got-notations afr e blended together i
convention wharebys €e9ss AeBaleUebEFalb can be written

{a 34 C U EF o G)
showing that 1t is tike a nonempty Jist in having suc
componentsy Dut untike a list in that its “final taii™
NIL In jeneratly an arvitrary right—-associated nest of
pairs

{XxLalxX2e o0 (XNaxn+tl) wae))

is writanle as the "dotted tist®

en its
infixed
g that

certain
I lists

NIL -
: () .
list is
may be
with a

right

first
list is

of its

n the

cessive

is not
dotted




{xl X2 <es xN o xn+l}
and as the list
{xl %2 44+ xn}
in the special case that xn+l is nlLe

Certain formal notions are used tor computing with Jistse. The
result of concatenating two lists L and M is written L*M and is
gefined vy

Lot o= if L ois () then M else (hlLlao({tL}*M)
Thus
(L 2 3)*(4a 5 6} = (1L 2 3 4 5 6)
The lengyth of a list is the numper of components §t has:

¢LENGTH L)Y = if L is () then O else 1 + (LENGTH tL)

1e3 PATHSs STRUCTURES. PRINTABLE EXPRESSIONS

The notion of a path is helpful in understanding the structure of
expressions.

The decomposition functions h and t are the two paths of length
1. The functions hhy hty thy tt are the four paths of length 2.
In general tne ¢Z2%%{(n+l) patns of iength n+l are all the functions
hps Lp where p is a patn of length n,. The identity function I is
the lonly) patn of length 0+ An expression is said to admit a
path p if the result of appiying p to it is defineds Thus, every
expression admits Iy anag every dotted pair also admits h and t.
variaoles and proper names admit onity [y and this fact is their
characteristic structuratl property. in general the set of atl
paths admitted Dby an expression A is called the structure of A,
and gives 4 rather direct portrayal of A's "shape',

A useful way to rapresent an expression is as a connected
directeua ygraph with two kinds of node - atoms and dotted pairs.
A node which i3 an atom has no out—arcs. A node which is a
dotted pair has exactly Lwo out—arcsy one f{apbetled "h™ and the
other lapellea "L%. gach arc impinges upon exactly one nogde.
Each node which is an atom is labelied vy its “printname”, There
is a distinguished node called the toot ot the expression, from
which there is at least one chain of arcs to every node in the
expression. Each such chain oveginning at the root node describes




in the obvious way a4 composition of the functions h and t (the
one ootainaed Ly reading the labels on the successive arcs of the
pdath in reverse order). Such a graph G represents the expression
A if the paths admitted by A are exactly those described by the
chains of Gy and if when pA is an atom Xy the chain describing p
in G npas X as its terminal node.

An expression may nave many = even infinitely many - such
representations as a graph.

Thus the expression whose head is O and whose tail is itself can
be represented by the graph:

with two nodesy one of which is a dotted pair and the rootsy the
other of whicth is the atom 0.

In such an axpression-graph two chains are equivalent if they
tead from the root to the same node. Thus in the above graph
there are two eguivalence classes of chainsy namely those
describing the paths in

{ I+ tys Lty ttty eses 2
aﬁu those descrioing the paths in
{ ny hty htty hTLUy eo ey } .

This illustrates how in general the patns admitted by a3 given
expression A dre partitioned vy each jraph G which represents A
into equivalence classes which correspond abstractly to the nodes
of G. The class containing [ aiways corresponds to the root. In
general the system of equivalence classes shows how the structure
of tne expression is "shared" when represented by a graph. The
same expression can have different sharing systemsy corresponding
to the ditferent graphs which represent it. For examples the
expression whosz head is 0O and whose tail is itself can be
represented oy many other yraphsy such as the f{infinite) tree
whose sharinyg classes are

{0 3y U pe Ut sy Cnt 2y Lttt 23 saed




that isy all singletons. In this representation there is no
shareing at ail.

The printapie expressions are those whose structure is finite.
Mot atl expressions ace printavle. For examples the dotted pair
xNose head is 0 ang whose tail is itself is not printabley since
its structure is the intinite set ot paths

{ I‘ t’ tt’ ttt’ ¢ a0 ) ht‘) htt, httty oen e ) }
It may be describeg as the expression which soives the eguation
x = JeX

and we may redson about it from this description, e may also
represent it as a finite {cyclic) graph as discussed above,
Howevery to attempt to print it would result in a nonterminating
Drocesss

lo4 ENVIRUNMENTS

A dobtted pair whose head is a variable is called a binding. A
list whose components are pbindings with distinct heads is called
an environment, Intuitively an environment is a «collection of
replacement instructions <coded as dotted pairsy each one saying
that a certain variable {its head) is to ve creplaced by a certain
exprassion Llits tailtl. An  environment which contains all the
binginygs of the envirfonent E fand perhaps other bindings) is
called an =xtensijion of E.

1.5 THE NOTIUW DEF

If £ is an environment and A is an expression we say that A s
defined in t ify and only ity there is a binding in E whose head
is A. Accordingly we introduce the function DEF by the scheme

{GEF A E) = if E is () then FALSE
else it hhE is A then TRUE
eise (DEF & tt)

which computes the truth value that A is defined in E. Note that
if A is adefinad in E then A is a variable.,

le6 THE NITIOGNS IMM AND ULT

I1f A is defined in E we say that the immediate associate of A in

E is the tatl of the binding in E whose head is As and we defline
the corresponding function [MM Dy

- l=hH -




([#% A E} = if hhe is A then thE else (IMM A tE)

With the understandging that IMM will nevar pe invoked for an A
and ¢ such that A 1s not defined in E. The immediate associate

in £ ot 4 variable A may itselt pe a variable defined in & In
such 4 case we may wish to track down the ultimate associate of A
in £ - naimely the first expression in the series

Ay LIMM A E)s (UMM {IMM A E) E) eaen

which i5 not aefined in £+ Accoraingly we define the function
uLT oy

(ULT A £) = if (DEF A E) then (ULT(IMM A EJE) else A

which computess for any expression A and environment E, the
ultimate associate of A in £E. For exampley If E is the
anvironmant

{ Xey yoZ Zo(F A (B r s)) ref{G s) 55 )

then the immediate associate of x in E is Yo but the wultimate
associate of x in E is {F A (5 r s)) .

1.7 KEALIZING EXPRESSIUNS IN ENVIRUNMENTS

Given an expression A and 3n environment £, we consider the
result of replacing each variable in A by its immediate associate
in ts This expression is called the realization of A in E. To
compute the realisation of A in E we use the function REAL,

defineda bDy:

(REAL A £) = if (CUNSP A) then (KEAL hA E).(REAL tA E)
alse if (DEF A E)} then (IMM A E)
alse A

We note that, tor exampley the realization of (PLUS x y) in the
environment

{ Xxay ysZ ZolF A (B T S)) retG s) s«5 )

is (PLUS vy  Z) . Wwe are also interested in recursive
reatizations. For exampley if we start with (PLUS x y) we optain
each of tne following expressions py repeatedly realizing the
previous one in &k

(PLUS vy 21

(PLUS z (F A (B r s)))
(PLUS (F A (3 r s)) {F A (B (G s) 5)1))

- 1-6 -




(PLUS (F & (3 (G s) 5)) (F A (8 (6 5) 5)))
(PLUS (F A (4 (6 B5) 3)) {F A (B (6 5) 51 1)

Realtzing tne final expression in E merely reproduces it. This
finai exagression  is theretora oy definition the —recursive
reatization of (PLUS x y) in Ete In general the recursive

realization ot an expression A in an envirfonment E is defined by3

(RECREAL A ©) = if {CUNSP A) tnen (RECREAL nA E).(RECREAL tA E)
else if (UEF A E)} then (RECREAL (ULT A E) E)
clse A

led UNPRINTABLE RECURSIVE REALIZATIONS OF PRINTABLE EXPRESSIONS

It can happen that a printapole expression may have an unprintable
recursive realization in a printable environment. For examples
in tha environment

{ xa(0ex) )
the expression x has the recursive realization

(J.{0.(0. ce e )))

which is the "intinite expression” whose head is 0 and whose tail
is itself.

1.9 UNIFLICATIUN

A fundamentaf notiocn in logic programming is the operation of
unifyiny two expressions A and o relative to a given environment
te This operation yields a resulty denoted by (UNIFY A 8 E) ’
“hich is either the message "IAPUSSIBLE"™ » indicating that A and
B cannot o2 unified with respect to ks or else is an extension of
E in which the recursive reatizations of A and B are identicals.
I[n the latter case ~& say that the environment {UNIFY A 8 E) is
the most general unifier {(™mgu™) of A and B with respect to E.
Ay gefinitiony we then nave that

(RECREAL A (UNIFY A 3 E)) = (RECREAL B (UNIFY A 8 E))
The computation of (UNIFY A B E) is defined Dy
(UWlFY a 8 E) =

it E is YIMPOSSIBLE™ then "IMPOSSIBLEY
else (ECUATE (ULT A E) (ULT B8 E) E)




whara
{ EGUATE A 3 E)Y =

if A is 3 then ¢

else 1f {vAR A} then U(A.3).E

atse 1 (¥AR B) Lhen (B8B.A}.E

efse it not (CONSP A) then "I#MPOSSIBLE"
sise 1f pot [CUNSP B) then “IMPUSSIBLE"
else (UNTFY tA td (UNIFY hA h8 E})

The mgu of (P (G x y) x y) and (P a (H o) ¢l with respect to the
empty environment () is

{ yot XolH 1) 3406 x y) )

and in this environment both expressions are recursively realjzed
as

(? (G (4 0y c) (H D) c)

The myu of A and B with respect to E is intuitively the most
general way that E can be extended to an environment in which A
and & can be recursively reaiized as fgentical expressions. It
is possiole that unifying A and B will make Lhem unprintables
For exampley the most general unifier of the expressions x and
{O.x) w~ith respact to tne empty environment () is the environment
{ xelOex) ) in wnich x is bound to {Dex) « This shows that in
general it is possitie for (UNIFY A B E) to be an environment In
which the recursive realizations of A and B are identical but

unprintuole.
1610 SUBSTITUTIUNS

Some readers may be more familtiar with the wusual treatment of
uniticationy «hich is developed in terms of the idea of
substitutionse A substitution is a mapping from expressions to
expressions which preserves propefr names and the dotted palir
structurc. More praciselys a mapping S5 from expressions to
expressions is a substitution ifs and only ifs it satisfies the

two conygitionss:

X5 = X tor atl proper names X »
(XeT)D [X5).(Y5]) for atl expressions X and Y. »

it

We denote the result of applying a substitution S5 to an
expression X by the postfix notation: XS 4 as illustrated above.
An important property of a substitution is that its effect upon

any expression is completely determined oy its effect on the




variadbles {if 3any) which it actually changes. By listing those
variaolesy edch equated to its image under the substitutions we
therefore jive a complete description of the substitution. But
the information in such a list of equations is just what is
provided by an environment, Tha list of equations

Vvl = Al! see YN = An
corresponds Lo the environment
{ vi.Al ve e Vn.An )

and converseily. Indeed it 5 <corresponds in this way to the
environmant ty then the image X3 of any expression X under S5 is
Just the expression (REAL X E). We Write {E] for the
substitution corresponding in this way to the environment E.
Thus we havsa

Xitl = (KEAL X EI

for 3l4 exvressions X and environments £ In this correspondence
between eanvironments and substitutionss the empty environment
corresponds to the identity substitution (which transforms every
expression into itseit)s Composition of two substitutions 5 and
T yields the suostitution STy wnich sends each expression X into
the expression X{ST) = {XS)T obtained by first applying 5§ to X
and then T to the resufte If S is (EJ] and T is [FJ » ST is (L1,
where L is the list of all distinct bindings

Vo (VICILFT)
whefe YV 1s defined in £ or in F {or voth).
An environmant ¢© may de taken as a description not only of {E]

but also of the dterate of ({E] . The iterate S~ of a
substitution S is the "timit"™ of the series

S’ SS) SSS' e sy

To find the image X(37) of an expression X under the iterate of
Sy wWe repedtediy apply S to X until no further changes occufr.
That isy X{(57) is tne tirst expression in the series

X, XS, XSS’ x5559 sen?

whichh &5 the same as Its predecessor. It turns out that it § is
£ tnen X(S~) is (RECREAL X E)e If S is {E} then S” is denoted by

{€}Ys So w2 have




A{E] = (REAL X E)
(E {(RECREAL X E)

1]

Now in  terms of suustitution mappingss a wunitier of two
expressions A aAnd b is a supstitution S «hich maps A ang B onto
the same expressions

and 3 most general unifier of A and B is a unifier U of A and 8
with the progerty that

> = US
tor atl unifi=2rs S of A and G.

Thus it U is an mgu of A and 8 ana S is any unifier of A and B we
hdve

AS = AUS = BUS = BS  and AU = BU

so that the comnon expression onto which 5 maps A and 8 is
optainanle opy applying S to the common expression onto which U
maps A and 3. The sudbstitution {{UNIFY A B E)} is the mgu of the
two expressions A{E} and 6{EY .+ Thus UNIFY is given the two
exprassions to pe unified in an indirect way.

loell IAPLICIT EXPRESSIUNS

The wday thabt th2 two expressions a{t} and B{E} are given to the
UNIFY algoritnm is indirecty in "unassemoled” torme This idea of
wOorking with expressions not vyet {or possibly never) fully
ass=moled is wused extensively in our systeme. It makes for
computatiunal economy anc also tor increased intelligibility. we
think of the list (A E) as an "implicit”™ way of giving the
expression A{E}., We sSay that A is the skeleton parts and E the
environmant parts of the implicit expression (A E). fFfor many
purposes it is more conveniznty as well as more economicaly, to
deal with such "Mimplicit expressions® than with the actual
expressions themselvess This is particularily the case when (A E)
descripes an unprintable expression even though both A and E are
printaple - as in tne example previousiy mentioned when A is x

and k is | KO(O'K) I
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leil LadTanCES

e often Wwish to consiuery for some expression As the various
exprassinns  ASs  where S is a substitution, These are known as
the 1nstances of As For exampley the expressions

(Uivides 17 85}
(Divides (Plus a ) (Times 3 ¢))

are votn ynstances of tne expression (Divides p q) o The first
ot themr is +n fact a ground instancey since it contains no
varitaoies. In jeneral w“e say that expressions which contain no
varianles die  ground axpra2ssions: so a ground instance of A is
an instance of A wnicn happens to ©be a ground expression.
Expressions ~hich contain one or more variabtes are known as
patterns, Wwe often think of a pattern as a way of representing
att of its instances.

1.13 VYaARIANTS

In the.role of 3 representative of ali its instances a pattern is
not uni:gue. Jther patterns = known as its variants = have
exaclly the same 1nstancess. For examples the expressions

(Divides p q) (Diviges x y)

have exactly the same instancese. Each is a variant of the other.
In yeneral a variant of an expression A is an instance AS of A
under a substitution which maps varidables onto variables in
one—to=one fashion., Such a substitution is called a variationy
ang is the only kind of substitution which has an inverse. It
[(£] 15 a variation then its inverse is {E']y where E' is obtainea
from £ by interchanging the head and tail of each of its
bindingse The compositions [E}J[E*'] and (E'JLE] are then both the
identity supstirtutions

In view of the identity of the set of instances of an expression
“ith that of any variant ot the expressions we often treat mutual
variants as merely different ways of writing the same thing,
Howevars in sone of the computations involving patterns (such as
the unification computation) it is sometimes necessary to take
suitaopla variants of one's data oeforehand.

To sse wity this is sos consider the proolem of finding a pattern
whose instances are exdactly those wWwhich are instances of two

given expressionss A and B




For examopley it A and ¢ are the sxpressions
(Divides (Plus x y) 2z} (Divides x (Times x y))
then amony thair common instances are the expressions

(Uivites (Plus 3 4) {Times (Plus 3 4) 61))
(vivides (Plus 0 0) (Times (Plus O O)(Exp x y}))

and SO 0N We can  get the first instance from A Dby the
substitution

Xx = 3y y = 4y z = {(Times (Plus 3 4) 6)

We can yet it from 3 by the substitution

x = (Plus 3 4)y y = ©
Howevers tnere is no single substitution S such that
AS = 58S = this conmon instance. The aifficulty is the occurrence

of the same variaoles in both A ana B. If we take a variant ot B
which has no varitaonles in common with those of A = says the
expression

(Dividas p (Times p q))

which we shall call C - then we can in fact find a pattern whose
instances 4re exactly those common to A and Be To do this we
nead only compute lhe expression

(RECREAL A (UNIFY A C O)))
or {(which i3 the samel
(RECREAL € tunlry A C ) ))

which is the “most general common instance” of A and €t = and
therefore also of A and B,

Now the environment (UNLIFY a4 C ()) s
{ pedPlus x y) ze(Tines p 4l )
and su the regquirsd expression is
(Jivices (Pius x y) (Times (Plus x y) q) )

Every expra2ssion w~hich is 4n instance both of A and of B is an
instance of this expression = and conversely. This example
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illustrates tne way in which the unification computation solves
the generai proolem of constructing a pattern whose instances are
precisely those which two given patterns have in  commone Of
courses whan the two ygiven patterns have no common instancess no
such pattern exists. The UNIFY function detects all such cases
by returning "IMPUSSISLE" instead of an environment.,
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CHAPTER 2

LUGIC PROGRAMMING IN GENERAL

Logic programming is a technique for specifying computations Dy
mak inyg Aassertions. No imperative constructs are used., The
course of events during a logic computation is determined not by
the programmer®s control instructions {for there are none) but by
the machine's pursuit of certain of the deductive consequences of
the projrammer's assertionss. For exampley the programmer might
make the faollowing assertionss

Drobny is a champion

Drobny is older than Rosewall

Kosewall is oilaer than Goolagong

If x is older than y and y is older than 2
then x is older than z _

5 It x was born before y then x is older than y
o Kelly is a child of Goolagong

7 If x i5 a child of y then y was born before x
3

\)

P S

Gootagony is female
Drobny s male

10 Rosewall is male

11 Rosewall is a champion

12 Goolagonyg is a champion

13 Connors is a champion

14 Borg is a champion

15 Connors is male

l6 dorg is male

17 pory was born before Connors

L8 Connors was born pefore Kelly

19 Kelly is female

20 Evert is a champion

21 Evert is female

22 Evert w~as born before Connors
FIGUKE 1

Some of thase assertions are of particular facts; others are

generalities invalving the use of logical variables xy yy» 2.
LOGIC is now capabls of responding to queries about the "world"
described by these assertions, In supplying answers to such
queries it must in generai deduce them from what it has been tolid
(rather tnan merely look the answers up) « For exampley the




ahtch male champions are olaer
than Kally ?

would elicit the answer

{Connurs Bory Rosewall Drobny) .
That these persons are male and champions is explicitly given
AMO N the assertionssy but that each of them is older than Kelly
must be Jdeduccda, The deductions involved cans if desiredsy be
examined Dy the users For 2xampiey one could request:

¥ Explain the fourth answer

and LUGIC would respond with tne following rationale:




To shows

Drobny is a male
Drobny is a champion
Drobny is older than Kelly

it is =nouyhy Dy assertion 9,

to show:s

dut thzan

to show«?

But then

to show:?

But then

to shows

But then

to showi

But then

to shows

gut then

to shows

But then

to shoas

But then
to shows

Orobny is a champion
Orobny is older than Kelly.

it is enoughy Dy assertion l»
Drobny is older than Keillye.
it is enoughsy by assertion 4.
(there is a y*1 such that)
Drobny is older than yil

y:l is otder than Kelly.

it is enoughy Dy assertion 2y
Rosewall is older than Kellye.
it is enoughs Dy assertion 4»
(there is a y:2 such that)
Rosawall is older than y32
y:2 is older than Kelly.

it is enoughy by assertion 3y

Goolagony is older than Kelly.

it is enoughy by assertion 5y

Goolagong was born before Kellye

it is enoughy by assertion 7,
Ketitly is 3 chilu of Goolagong.

it is enoughy DYy assertion 6
nothinge.

End ot explanation.

FIGURE 2




in the LUGIC system implemented within LOGLISPs the language of
the Qqueriesy assertions ang explapations is formaillzed and
artiticial. we shall shortiy discuss the details of its design.
Meanwhiley note that an expianation is essentially a proofs which
proceeds in steps all of ths same kKinde At each step there is a
"constraint 1ist"™ of simple propositionsy all to be shown true.
Any varianles in these propositions are considgered to be
existentially guantitied by quantifiers placed at the veginning
of the constraint 1listy and the constraint list itselt is
consideread to e the conjunction of its memberse. The empty
constraint fist (ie.2. the empty conjunction) is by convention
trues so that if at some step the jist has become emptys the
proot is compiete = there is nothinyg left to showe In generaly
each inference step consists of three stagess

(1) The selection of a proposition A from the constraint list and
of an assertion from the knowledge base whose conclusion B
will unify with A,

(2) The replacement of A in the constraint list by the
constraints comprising the hypothesis (it any) of the
seflected assertion,

(3) The application to the new constraint 1Iist of the most
general uniftier of A and 8.

The notiton of unification has peen deftined only for formal
expressionsy howevery and so to make this account precise we must
now recast it 1n terms ot the formal language of LOGIC.

Let us now survey this formal language.

2.1 PREDICATIUNS

The pasic unit ot the formal language is the predication.
Predications are simple sentences of the subject-predicate form
in which the predicate is written first and the subject second.
The predicate P may be any "proper identifier"™ - that iss an
identifiar whicnh is a proper name. {Recall that, in LISPs an
identiftier 1s an atom which 1s neither a numerai nor a stringl.
The subject is 3 list of expressions calledq termse Ground (leee
particular) terms are essentially noun-phrases which denote
things « A list A = (Al ees An) of n ground terms denotes the
n-tuple of things denoted respectively by the component terms Al,
weas AN o Predicates denote properties of tupless {Properties
ot tuples are often also called retltations). The intuitive
meaning ot a ground predication with predicate P and sub ject A is
the proposition that the tuple denoted by A has Lhe property
denoted uy P. Ae write this formally as the list whose head is P




and whose tail Is A .

Thus we might formally write:

Drobny is a champion as {Champion Drobny)

Drobny is male as {Male Droony)

Drobny is ofder than Kelly as {Older Drobny Keilly)

Evert is female as {Female Evert)

Evert was born pefore Kelly as (Before Evert Kelly)

Keily is a chiltd of Goolagong as {Child Kelly Goolagong)
2e2 TERHMS
A teri may be either a variables, or a proper namey or a
construction. Constructions have an operator-operand form. The
operator {which mday Dbe any proper identifier) denotes an

operationy and the operand may be any list of terms . When the
construction is a ground expressiony its operand denotes a tuple
of things, in just the same way as does the sub ject of a ground
predication. Constructions are indeed syntactically
indist fnguishable from predications. Their common syntactic form
reflects an underlying unity in their semantics as applicative

expressions. £ach ground construction or ground predication can
be understood as representing the resutt of applying some
function to some argument. In the case of a predication this

means construing a property or relation as a truth functiony
namely a function which yields as its result one or other of the
two truth valuess TRUEs FALSE. wWe write the construction with
operator F and¢ operand A = (Al +es ANn) as the list

{(F AL ..+ ADN)
whose head is F and whose tail is A.
Ground predicationss then, express facts and denote truth values.
Ground terms express applicative descriptions and denote things.

Both ground terms and grouna predications have the same simpley
systematic denotationat semantics based on the applicative

principle.

2.3  WORLDS

A world is a collection of facts =~ "eyverything that is the case"
in that wourfide. In iogic programming a world is represented by a
collection of ground predications. Given a collection W of

ground predications Aas such a worldy we can ask for what
substitutionsy if anys 4 given predication Q {(whether ground or
not) is "true in wW" o IfQ is a groundg predications this is




simply the gquestion whether G is a member of . If O is in Wy
the answer is then: the didentity substitution. It Q@ is a
predication patterny however, this is not quite so simple a
questions and we construe it to mean: for which substitution
operations &£ is the the instance of Q under € In W2 For example,
the worlu specitied by the assertions in our earlier example lIs
the set

(Male Urobny) {Female Goolagonyl {Champion Drobny]
(Male Kos=wall) (Female Evert) (Champion Rosewall)
(Mate Boryg) (Fematle Kellily) {Champion Borgyg)
(Maile Connors) {Champion Connors)

{Champion Goolagong)
(Champion Evert)
(Ulager Urobny Rosewalli)

{0lder Drobny Goolagong) (defore Borg Connors)
{Olaer Uroony Kellyl (Beftore Connors Kelly)
(Ctuer Rosewall Goolagong) {defore Evert Connors)
(Otaer Rosewall Kelfy) {Before Goolagong Kelly)

(Otder Goolayong Kelly)

{OVder Boryg Connors)

(Older Borg Kelly)

(Jtuer Evert Connors) {Child Kelly Goolagong)
(Diger Evert Kelly)d

(Otaer Connors Keliy)

FIGURE 3

With Lhis world as #s if we ask what are the substitutions for
which the predication

{Hale x}
is Lrue in vy we get four "solutions', namety:
=z Drobny
= Rosewall

= Borg
a Connors

» X X X
1}

there beiny four ground instances of "(Hale x)" in W s namely
those corraspondinyg to these four substitutions. More generally
we can 45k a gquestion invoiving a conjunction of predications.
1f Gls eses Qn are predicationssy we c€an ask of a world w

for what substitutions
is (AL & eee & 0QnN) true in w ?




or more ovriefily:

whnat suostitutions satisfy (QL & «sse & Qn) din W2
For example in the w of our example the question

what suostitutions satisfy

( (Male x} & (Cnhampion x) & (Older x Rosewali) )
in A?

has the 4answ<er
x = Uroony

since under this (but no other) substitution the conjunction
becomas true in wWe

2+4 UUERIES

It is useful to introduce the formal notion of a query, pased on
the precediny discussion. A query is an expression ot the form

ALL X Ul oo an}

in which Ql e« Qn are predications and X is an expression
cal led the answer template of the quety. The answer template may
be any variabley any proper name, or any iist of terms . The
list G = (Ql ..o ©On) is the constraint fist of the query. For
any worild wy Such a query has an answery which is a 1iist of
expressionss Eacn expression in this answer fist is the instance
of the anssa2f templdate under a substitution wnich satisfies the
constraint fist Gy that iss which transforms the conjunction
(Gl & ese £ On) into one which is true in We Thus the query

(ALL x (Male x}
(Champion x}
{(Older x Rosewalil) )
has the answer {(in the world of our example)

{urobny)

since the supstitution x = Orobny is the only one which satisfies
the yiven constraint, while the query

{ALL 2z {(Fematle z)lUlder ¢ Drobny))

has tnhe empty fist




t)

as i1ts answer since there are no substitutions which satisfy the
constraint

{ (Female z) (01der z Drobny) )}

2e5 SPECIFYING A WURLD BY ASSERTIOUNS

It is not expected that onz should have to specify a world by
explicitly tistingsy as in FIGURE 3, all of its predications
{althouan this would in principie bpe possible for a finite

wor ld). A world is specified indirectlyy by giving a coltection
of assertions. AN assertion has two parts: a conclusions which
is a predicationy and a hypothesiss which is a list of

predications. The hypothesis of an assertion can be the emptly
list, in which case the assertion is said to be an unconditional
assertions whereas an assertion wnose hypothesis is nonempty s
said to be a conditional assertion. An unconditional assertion
whose conclusion is B is written

B <=

while a conditional assertion with conciusion B and hypothesis
(Al «¢+ AN) is written

B <= Al ces An

A collection of assertions is called a knowledge base . Any such
collection determines a worid.

An unconditional ground assertion (i.e. a datym) B <~ intuitively
says that 3 is one of the facls in the worild being described - "B
is true" . Recall that any assertion which is not a datum is a
Lule. A rule which is a conditional ground assertion
B <= Al oo« An says that B8 is one of the facts in the worid being
descriped provided that Aly.eesAn ali are - "jif Al and «e«s and
An are true tnen B is true', A rule which is an assertion
pattern - an assertion containing one or more variables — has the
same descriptive effect 4as would the set of aill its ground
instances. In general this means that an assertion pattern is In
effect a universally quantified statement. If its variables are
Xlysawegxk (say}l then tne assertion B <= Al .. AN can be read

"ior all xly eeey xki if Al anad e and An then B"

Indeed, if some of the variables among the xi (says Zlseseszp) do
in the conclusion A whnile the rest {says yYleseseesyt) dos

not occur

s e T T




tne. assertion B <= Al +ss AN may be more intuitively (but
equivalentiy) read

"for all yls ases yt:3
if there exist 2ly eees Zp such that Al and ».s and An
then g

In the exampte of FIGURE 1 there are three such assertion
patterns, All the other assertions in FIGURE 1 are gata. FIGURE
4 shuws thz2 Knosledge base of FIGURE 1 written in the formal
notationa.

L {Champion Droony) <~
P (Ulder Drobny Rosewall) <~
3 (Ulder Rosewall Goolagong) <-
4 (3lder x z) <= (Older x yl)(Dlder y Zz)
5 (Utder x y) <— {Before x yli
6 (Chitd Kelly Goolagong) <~
7 (defore y x) <= (Child x y)
8 (Female Gootagong) <-
9 AMale Droony) <~

10 (Male Rosewall) <-

11 {Champion Rosewall) <-

12 {(Champion Gootagong) <~

13 (Champion Connors) <-

14 (Champion Borg) <-

15 (Male Connors}) <~

16 {Male Borg) <~

17 {sefore dorg Connors} <-

18 (Before Connors Kelly) <~

19 {(Female Kelly) <=

20 (Champion Evert) <-

21 {(Female Evert) <~

22 (3efore Evert Connors) K-

FIGURE 4

The knowledge pase of FIGURE 4 completely determines the worid of
FIGUKE 3, according to the following general definition.




DEFINITION

Tha worlug determined by a wnowledge pbase D is
tha smallest set w of groung predications which
satisfies the two conditions:

(1) if U contains the datum G <—
thnen G is in A

(2} if G is a ground instance of a rule in D
and the predications in the hypothesis
of G are all in Wse then the conclusion
of G is in Wa

END OF DEFINITIUN

In etfecty this definition describes a process which infers W
from D by a4 series of whotesale inference steps. Firsty by (1),
the process constructs outright the set W0s which contains Jjust
those ground predications whicn are conclusions of data in D.
Then by (2)s in generals having constructed the set Wny this
process constructs wn+l by adding to wn the conclusion of every
grouna instance & of every rule in Ds provided 1Lthat every
predication in the hypothesis of G is in dn, Thus the process
constructs a series of Digger and oigger worlilds

WAQye Wle eesy WNy oeee

which either ends (with a worid that is the same as its
predecessor) or else continues indefinitely. The worid W is then
the "{imit" of this seriesy iseey the union of all of the setls in
it iste the smaliest set whicih includes them atl. Thus the
world W is determinad Dy a knowledge base D through a "bottom up"
process of reasoning.

Given such a Dy we wish to pe aole to answer queries about |its
worla W [n doing S0 we wish to avoid the brute force method of
generating 4 pottom up and sedrching ite It is much Dbetter,
given a query about Wy to reason “top down” about W's contents
Wwithout actually constructing We This turns out to be possible
through the use of unifications buitt into a special inference
principle called LUSH resoiution. This inference principle can
be applied very efficientliy tnrough the wuse of tmpticit
expr=5s10nNsy as we shall now~ see.

%




26 IMPLICIT CUNSTRAINTS AND THEIR SULUTIONS

8y an implicit constraint we mean a pair (Q E) in which E is an
environment and U is5 a list of predications. The expression Q{E}
is the corresponding explicit constraint . Now let D be a
knowlcdje Dbase and let W be the worlg described by D. He denote
by (S0L 2 E U) tne set of "solutiuns of {4 E} in o = that iss
the set of environments A «hiich are extensions of E with the
prop=rly that all of the predications in Q{A}Y are true iIin #Ws

Wwe wish tu calculate (SOL @ € D) from (4G E) and D .

There dare two cases Lo consider. The first case 1is when Q is
empty. Then (SJOL U E D) is simply the set whose oniy member is
E., Such a (L €) is said to be solved.

The second cdase is when (0 E) is unsolvedy i.esy when Q s
nonemplys. For this case we use LUSH resofution to represent the
desired set as the union of one or more simpler sets.

2.7 LUSH RESULUTION

For any unsolvegd constraint (G E)y any xnowledge base Dy and any
positive integer K not greater than the length of Qi the set

{(RES Q9 E D K)

is a set (possioly empty) of implicit constraints called the
(L K)-resoivents of (Jd El. The interest of this set lies in the

fact Lhat we have:
(SUL 0 £ U) = (S0L Q1 E1 U) U ses U (SUL Cn En D)

where (UL El)y eeer (Un En) are the (U K)-resolvents (if any) of
(G L) This eguation holds for all the admissible values of K
(howevery the (0D K)=resolvents <ill in general pe differenty for
each valuel. In particular for some choices of K it may be that
there ars no (D Kl=resolvents of (U E)o This then means that
there are no solutions of (2 E) in Dy although other choices of K
may delay tne discovery of this fact by providing one ofr more
(0 K)-resolvents of (4 E)e.

2.8 THE CHOlCE OF K

The computition of the set (RES © E D K) involves a choice of the
numper Ko Accordingly we introduce a choice function SEL. For
each unsolived implicit gquery (i E) and knowledge base D the
numoar (3EL W E V) is a4 positive integer no farger than the
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bengtn of G, (In the LUGIC system as currently implemented in
LUGLISP, we take (SEL Q E D) = 1 throughout)e.

In generatl SEL might bpbe expected to take inte account the
evidence availavile in Qy E 3and ) so as to make an Informed choice
with uesirable pragmatic effects on the overaill computation.

2e9 SPLITTING NUNEMPTY LISTS

The purpose of the number K is to determine a decomposition of
the tist Q2 of tne form: Q = LEx(A)%R where A is the Kth
component of d,

In general we say thaty for any tist X and any positive integer K
no larger than (LENGTH X)s the K-gecomposition of X is the triple
(L A %) such that A is the Kth component of X and X =L#*(A)*R,

Thus when K = 1 we nave L = ()9 A = hXs R = tX.
2.10 SEPARATIUN OF VARIABLES

The computation of (RES G E D K) involves a further choicey
namely of a variant D' of the knowledge base De U' must have the
proper ty thiat none of its assertions contains a variavtle which
occurs in (2 E) o This "standardizing apart®™ of the variables in
the constraint from those in the assertions is necessary for the
theoretical completeness of the resolution transformatione. In
the currzant implementation U' is selected automatically and
represented implicitly and economically by techniques explained
in Chapter 13,

2.11 DEFINITION UF (RES QG E D K)

The set (RES @ E U K) is the set of all
implicit constraints of the form

( L*H*¥R (UNIFY A C E) }
for wnich H is the hypothesis of an éssertion

in U' wnose conclusion C unifies with A in &ty
and where (L A R) is the K-gecomposition of Q.
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2.11.1 Tna Computation Of (RES O E D K)

Un the tace of ity the entire knowledge base D must be sedarched
in order to extract from it every assertion whose conc lusion C
will unify in E witn the selected predication A in Q.

Fortunatelys this is not the cases For ltarge D the cost would be
prohibitive.

In fact it is possible to store D in such a way that only 4
relatively small suopset of D need bLe sedarcheds Notey firsts that
the predicate of C must be the same as that of A if C is to unify

“ith A in Lte Accordinyglys only those assertions need be
considered <hoss conclusions satisfy this conditions and it is
straigntforward to partition U into subsets of assertions

("togical procedures”) whose conclusions have the same predicate.
Euach logical procedure can be stored on the property list of the
pregicate and thus be retrievanie in time essentially independent
of the size of D.

The data of each procedure can be further fndexed on the basis of
the various proper identifiers which occur in their conclusionse.
This is hiynhly advantageousy since in oraer that a3 cdatum C unify
witn A in £+ € must in fact contain every proper identitier which
occurs in A{E}, This observation forms the basis of a gquite
selective retrieval tecnhniques In practice it is tound that
large procedures consist mainly, if not entirely, of data, so
that the retriaeval technique frequentily applies just when it will
do the most gJood.

2.12 THE VEDUCTIUN CYCLE

The heart of the LOGIC system is the pasic deduction cycles which
computes the set (SOL U E D) for a given implicit constraint
(0 E) ang a given knowledge base Use

The computation of (50L @ E D) consists of the development of two
sets of implicit constraints, SGLYEU and WAITING. Initiallys
SULYEU is empty and WAITING contains the single constraint (Q E).
These tso sets are then supjected to an iterative transformation
which correspunds intuitively to the construction of a "deduction
tree™ «hose nodes are implicit constraintsa. The root of this
tree is tne implicit constraint (U E)s The successors (if any)
of an unsolved node (X Y) are the (D Ki-resvivents of {X Y}, for
some admissible value of K which is selected oy the function SEL.
The tips of tihe deduction tree are the solved nodes {if any) and
the unsolved nodes (if any) which have no (D K)-resolvents for
the particular value of X assigned to them by the function SEL.
The output of the deduction cycle is the set of environment parts

- 2-13 -




of the solvea nodes of the tree.

As the tree devalopsy the solved nodes are collectea into the set
SULVEDs and tne nodes which have not yet been processed are kept
in the set JAITING. Thus the tree construction is finished when
WAITING finatly becomes emplye.

The deduction cycle is the following three-step algorithm:

IN: jat SULVED be the empty set and
fet WAITING be the set containing only (4 E)

RUNZ while WAITIWNG is nonempty

do 1| remove some constraint C from WAITING
and tet (X Y) be C

2 if {X ¥) is solved
then add (X Y} to SOLVED
else add the (D K)-resolvents of (X Y) to WAITING
where K = (SEL X Y D)

ouT: return the set of environment parts of SOLVED

In general (SOL Q@ E D) is computed by executing Lhe deduction
cycle and taking its output as the required set.

Several points are worth noting about the deduction cycle.
2.12.1 Failure Nodes: Immediate And Ultimate

An unsolved node of the deduction tree #shich has no solved nodes
as dascendants is known 3s a nfajlure”, There 4are two kinds of
failures AN immeaiate faiture has no descendants at altl -
because it has no (U K)-resolvents for the particular value of K
selecteg for it by SEL. An ultimate failure has one or more
successorsy but they too are failures — the entire subtree rooted
in an ultimate failure consists of nothing but failuress and its

tips are atl immediate fajlurese. It is aninteresting problem to
design implementations of the deduction cycle in which the
subtrees rooted in ultimate failures are kept as small as

possible without undue extra computation. Ideallys all failures

would be immediate and would be recoygnised as such in constant

{and short) timee.
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2+12.2 Nondeterminacy Of Deduction Cycle

There are several sources of nondeterminacy in the RUN step of
the deduction cyclee

The most opvious of these are the explicit choices called for in
steps 1 and 2. In both casesy the choice can be made uniformty
and cheaply according to default criteria which are Dbuilt into
the sSystem dasighie. For exampley in our own system the default
criterion ftor the choice of K is to <choose always the value
K = 1. In the PRULOG systemsy the selection in step 1 is In
etfect ruled by a simitar criterion = the first constraint (x Y)
is selected from a WAITING which is represented in effect as a
fist. [se have to say "in =ffect” pecause in fact the PROLOG
systems handle WAAITING dynamically in a backtrack mode of working
which never explicitly realises the whole Jist at once.l]

The selection of the node C in step 1 can (as in the PROLOG
systems) be made according to the "depth first™ criterion in
which the younger members of WAITING are chosen before the older
member e This may sometimes fead to the "depth first runaway"
situation in which one of morg nodes in WAITING are never
selected bpecause they are never the youngest. In practice other
considerations (see the discussion below of the deduction window)

precliude an infinite depth first runaways but even the tinite
versions of it which are allowed by the deduction window may ©be
thouynt wundesiraovles Avoidance of depth first runaway can be

economically achieved Dy fetting the selection in step 1 depend
upon a quantity which can ne computed once for ali for each node
when it is first generated. This quantity is the "solution cost"

o( the noda.
2.12.3 Definition Uf Solution Cost

The solution cost of a node (X Y) is simply a heuristic estimate
of the f*cost™ (in arbitrary units) of obtaining a solved
descandent of (X Yl Ordinarily we estimate this cost as the sum
of (LENGTH x) anug the depth of (X Y)Yy which is number of nodes
preceding (X Y) on its branch of the deduction tree. The user
may setect any linear combination of these two quantities as the
cost estimate (see chapter 8). The selected noge C in step 1 s
then always one whose solution cost is leasts This method
coincides with a preadth first development of the tree in the
case when the solution cost of a noae is taken to be its depth in

the deduction Lree.

We have also provided 3 "PROLUG" moge of operation in which the
search s strictly depth firste {(This mode does not incorporate
any other special features of PROUOLOG.) Details concerning mode
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selection are also given in chapter B.

2el244 Thne Function SEL

The selection of the value of K in step 2 may well affect the

total cost of computing the set of solved descendents of the
selected node (X Y) - including the particular case when this set
is empty and (X Y} is therafore a failure. Howeversy the
potential ovenefit of towering this cost is offset by the expense
ot making the choice. The least costly selection criterion is
that used by the PROLOG systems {(and by our own system as its
gefauit criterion)ly namelys K = 1. We have not provided the

normal user with any means of overridinyg the default value for K.
The present discussion is intended to highlight an opportunity
for the system designer to add a further layer of sophistication
to the dJdeduction cycie by making the choice of "which predication
to resolve away"™ depend upon particular features of (X Y)s rather
than making it independent of all such features.

213 THE ODEDUCTIUN WINDOW

Since in yeneral the deduction tree can bpe infinitey it is
necessary in some cases to truncate the deduction cycle and
accept the resulting (perhaps incomplete) set of solutions as an
approximation to the full set (which may be infinite).

It is desirable to manage this truncation gracefully and to
provide the LOGIC user with some control over its detailse This
is tne reason for the deduction winNdowe.

The deduction winaow is a collection of parameters which can be
set in various ways by the user and which have default values
which are used in the absence of user—provided alternatives.,

The geduction sindow is discussed in more detail in Chapter 8.

Each parameter in the deduction winaow is used as an upper bound
on an associated qu4antity measuring some feature of the deduction
cycle. These guantities are TREESIZEy NODESIZEy ASSERTIUNS,

RULES and DATA,

At a given moment in the execution of the deduction «cycle
TKEESIZE is tne total number of nodes which have so far been
generated., The RUN  loop s terminated as soon as TREESIZE

exceeds the bound set for it in the deduction windows

The implicit constraint (X Y) selected in step 1 of the body of
the RUN Joop s treated as an immedidte failure (hence dropped
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from AAITING without progeny) if NODESIZELX Y), ASSERTIONSI{X Y),
RULESIX Y) and DATA(X Y) are not ail within the bounds specified

for them In the deduction windowe.

NUDESTIZE(X Y) 1s (LENGTH X)s the number ot predications in the
constraint tist X of (X Y).

ASSERTIUNS{X Y) is the number of nodes which precede (X Y} on the
branch ot the deduction tree of which it is the current tipe
This number is the same as the number of assertions invoked in
its dgeductions. It is O tor the initial nodes and is 1 greater
than that of its predecessor for each derived nodes

RULESUX Y) is a quantity similar to ASSERTIONS(X Y)y but reflects
the classification of assertions into rules and datae.

RULESIX Y) is tne number of times a rule was invoked in the
deduction of (X Y)y and

DATA(X Y) is the number of times a datum was invoked in its
deduct ion. we obviously haves for each (X Y) in WAITINGy that:

DATALX Y) + RULESUX Y) = ASSERTIUNSIX Y) .

Thus the deducltion window serves as 4 truncation device which
ensures that each particular execution of the deduction cycle
will terminate. It provides the user with both a global
(TREESIZE)Y and a local (NODESIZEs ASSERTIONSs RULES ana DATA)
cutoff control. All the bounds in the deduction window are set
to system—defined default vatues in the absence of user—defined

alternatives,
2.14 RECUORDING DEDUCTIVE HISTORIES FUR LATER EXPLANATIONS

The system can pe asked to explain the logical genesis of some or

alli of the mempbers of SOLVED. The deduction cycle so far
described does not preserve the information which is needed to
proviae such explanationss. At the option of the users the

deduction cycle can be modified to include provision for keeping
a record of tne "history"” of each solved node. Such a history is
essentially tne pranch of the deduction tree whose tip is that
solved pode, Howevers eacn node in the branch {after the first)
must ve ftapelieca Jith the assertion which was invoked in deducing
it trom its predecessor node. A request to explain a given
solveo noda can then easily pe mel by constructing from its
history a text of the sort itlustrated eartier in FIGURE 2.

The extra time and space needed to operate the deduction cycle in
the historical mode 4re not so small as to be negligibles The
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user theretore «ill probably decide to switch the deduction cycle
into this mode onty «hen the availability of explanations is
wortn the cost.

Explanations are Jdiscussed in more detail in Chapter 10.
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CHAPTER 3

LOGIC PRUGRAMMING IN LISP

LUGIC is redated to LISP in two ditferent wayss

Firsty it is implemented in LISP = that isy the LOGIC system
consists of a collection of LISP tunctions which tive in a LISP
workspace and provide atl the logic programming facitities

described in this manual.

Seconds LUGIC in a certain sense contains LISPa. This means that
the LOGIC programmer can invoke LISP from within LOGIC catliss by
incorporating in assertions and queries pieces of text which can
be handed over to LISP for processinge To understand how this
wof ks we need to discuss the notion of LISP-simplificatione.

3.1 LISP-SIMPLIFICATION OF LOGIC EXPRESSIONS
The expressions encountered by the LOGIC processor during the

deduct ion cycle are terms and predications arising ujtimately
from the input constraint list and trom the assertions wused in

constructing resolvents. Howevery some of these LOGIC
expressions may also admit an interpretation as LISP programming
constructs. In that case they may have 3 LISP value,y, or if not

they may be capaple of some simplification.
For exampley the expression
{+ 3 (# 5 4))

is bpoth a LIUGIC term and a LISP constructe. {ne aliow short names
vy =4 % and % for the LISP functions PLUSy DIFFERENCEs TIMES and
QUOTIENT<) In the tatter roley it is equivalent tos and can be
replaced by its wyalue®, namely the numeral

23

within any normal expression e to produce an expression which has
the same meaning Aas £ Such replacements of expressions by
others wnich are their values are basic equivalence-preserving
transformations of ordinary computation as normailly conceiveds.
The presance of free variables does not invalidate Llhis idea.
Thus even thoujn "a' has no LISP vatue the LISP construct




(+ a (% 5 4))

can pe simplifiad; it is LISP-equivalent to and can be replaced
by the simpler expression

(v a 20)

even thouygh the Jatter is not its "vatue"™ as in the first case.
In generaly an expression may well "reduce” to another expression
even when it will noty in the wusual sense, "evaluate" to a
*va ‘he".

we refer Lo this procass of replacing a LOGIC expression by one
which is LISP-equivalent to it as “LISP-simplification” . It can
De done to any expression at any time and is always defined (but
may be merely the identity transformation).

3.2 LISP DEFINITIUNS

Certain reduction rules are built into LISP itselt and come with
the system whenever one sets up a LISP workspace. That iss
certain identifiers are defined as denoting built-in LISP
tunctions {(CARy CDRy PLUSy etc.) or as the keywords of built—in
special forms (CUNDy SETQs PRUGNs elce)s

In addition to these built—=in LISP definitionsy a LISP workspace
may contain further definitions made Dy the user« A collection
of such user—~coined LISP definitions indeed constitutes a LISP

Proyrame

3.3 REDUCTIUNSy VALUES AND SIMPLIFICATIUNS

The joint eftect of the system— and user—imposed definitions in a
LISP workspace is to determine a notion of freduction',

Each LISP construct is either reducible or irreducible. It e is
reducibite then tnere is another LISP construct called the
reduction of ey to which e is LISP-equivaient and by which it may

be replaced.

Accordingly we say that the simplification of an irreducible LISP
construct e is e itselfy whnile tne simplification of a reducible
construct ¢ is the reduction of e. Thus simplification is always
defineds, It often coincides with evaluation - that isy, the value
of e and the simplification of e are often identical. dut this
is not always tne case and the matter requires some care.,




For exampley the expression
{QUDTE (This is un S=—expression))
is evaluapie and has as its value the expression
{(This is an S—expressionl
but it is srreducible and hence is Its ouwn simpliticatione.
Tha expression
(¥ (+ 3 4) 1Z 5 x1))

has no value (since its secona argument expression contains an
occurrence ot a variaole) but simplifies to the expression

(¢ 7 (L 5 x))

In general if a LISP construct e has an atomic value v which is a
proper - names iLls simplification is also ve However, it v is not
atomicy or is a variabley the simptification of e is the
expression (WUJUTE v}, ratnher than the expression ve This is at
first a somewhat surprising feature of the simpliitication notion,
A littte reflection soon snows its naturainess.

The intuitive notion of simplification is that it always yields
an expression wnich cannot De further simplified — which is
irregucinblee. Moreovers an expression e must be LISP-equivalent
toc the simpiification of e - and this means that if e has the
value v so must the simpiitication of e These two
considerations together require that the simplification ot e be
{GUUTE v} = the value of which is v — whenever the expression v
might itsaitft pe evailuable ang have a value w gistinct from v
Cniy when v is a proper ndame is w necessarily identical with v,

Note that one effect of these definitions s to establish a
convention for guoting atoms which dgiffers somewhat from that
used in LISP. As an exampley the LUGIC expression

(MEMBER Borg (QUOTE tConnors Borgyg Evert)))

is evaluable w#itnh value T, veing analogous to the LISP expression

{MEABER {QUUTE Borg) (QUUOTE (Connors Borg Evert)})} o

The utility of tne LUGIC convention Dbecomes apparent when one
considers 4 preagication such as




it SN
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(OQtder Drobny Rosewall)
whichy hau LUGIC fotiowed the LISP convention, would have to be
written

{Dlager (GUOUTE Orobny) (QUOTE Rosewalli)) »

a distinctly unpalatacie form,.

3.4 UBJECTS IN LOGLILISP

fefore proceeding into a detalled exposition of the interaction
between LUGIC ana L1ISPy we review the classification of LISP
objects imposed by LOGIC. Recall that objects are either
composite lconstructions) or atomic. Atoms are identifierss
strings or numeralse fdentifiers beginning with a lower <case
letter are variaplass atl others are proper identifiers. Proper
identifierssy strings and numerals constitute the class of proper
names. For technical reasonss we prohibit the use of the 5
character ":"™ in variablesy except for <certain ™"subscripted g
var iaples" created by LOGICy which will be explained later., !

3.5 REDUCTIUN AND EVALUATION

Generally speakingy we consider that the "applicative! expression
e = (f el ses eiN) is eyaluaple if f is the name of a function
(defined in LISP) and els e.ess en are themselves evaluable. In
this case we also say that e is gregucipie and that the reduction
of e §is tne value of ey guoted when necessary as explained above.
The latter is obtained by applying f to the values of the

argument expressionss

The reduction of an arvitrary applicative expressiony in generaly
is obtained by replacing occurrences of its outermost reducible
subexpressions by occurrences of their reductionse.

We proceed nos to precise definitions of the notions of
evaluabiiityy raducibiiityy and reduction. We shall speak of the
expressions in question as though they were explicitly
represented. In tacty in the LOGLISP system we compute the
reduct ion of 4n expression directly from its implicit
representation, as economically as we can. The . resulting
reduction is also represented jmplicitiys with the same

environment parte.




3.5.1 Evaluable Expressions

Excepting certain special forms wnich are discussed belowy we say
that the expression ¢ = (f el ... eh) is evaluable if
(1) t is a proper identifier with property EXPRy SUBR,y LSUBR
or AACRD and els ese9 eN are evaluabley in which case the
value ot e is obtainea by applying f to the values of
eL, aney EBiNa

(2) ¢ is a proper jdentifier ~ith property FEXPR or FSUBR in
which case the value of e is the result of applying f to
the expression st {2l ase £N)s {This is Jjust the
standard notion of "application™ for FEXPR's and FSUBR's.)

A proper name is evaluable and its value is itself. variables
are not evdaluabie,

3.54¢ Raducivle Expressions

Again excepting certain special formsy an applicative expression
g = (t el sea eN) is gegducible if

{a) e is evaluable as abovey in which case the reduction of e
is the value of ey vy if v is a proper namey otherwise

(GUiTE V)
or e is not evaluables Dut
{n) ¢ is a proper jdentifier and one or more of the
expressions ely soey eN s reducibley in which case the
reduction of e is (f el' +.0 eN')y where ei' denotes the
simplification of ei.

Note thnat atomsy whether variables or nots are irreducible. Note
further that expressions (f el see eN) In which t is a variabley
3 numpers ors indeedy anything sxcept a proper identifiers are
neithar evaluable nor reducible. This convention may be
justified intuitively on the ground that one doesn't know what to
do in such a case. wWe couldy in facty extend the definitions to
allow f to be a lampdd expressiony says but have chosen not to do
so for the prasent. Such an extension would complicate matters
significantly «ith no great advantage in flexibility.
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3¢ SPECIAL FURNS

In agaition to the expressions just considered there are a numoer
of special forms which dre evaluabile or reducible or bothe Most
of these are special forms of LISP.

Since the syntax of special forms is the same as that of
applicative forms whose function designator is atomics LISP users
often slur ovar the uistinction, It issy howavery most important
to remember tnhat the LISP value of a special form is NUT obtained
by "applyiny the function denoted by its head to the object
genotead Dby its tail™ = that peing how the LISP value of an
APPLICATIVE form is obtdained.

Thers is a4 special process set up for obtaining the LISP value of
each special formy Lo which a LISP interpreter switches on
recognizing the keyword {CUNDy SETQy PROGNs QUOTE, etc.) of that
special form,

This flittle homily would not be necessary if the syntax of
applicative forms were designed in the same ways and applicative
forms werc tagged as such Dy A keywords says APP. The high
frequency of applicative forms in programs would make such a
convention burdensomes. No one wants to have to write

(APP + (APP ¥ 3 4)(APP SIN 30))

instead of

{(+ (% 3 4)}{(SIN 30))

3.6.1 Q@uotdtions
(CUUTE v) or (FUNCTION v)

These forms are always evaluable and never reducible. The value
of either forin {is v Both of these forms are "immune"™ to
instantiation, that s, (QUOTE vI{E} is (QUUTE vly tor any
environment £, even though the entity v may contain occurrences

of variaopleas.
Jabed LiStingS
{(LIST el o0 i)

LIST is treated as though it were an ordinary function {an LSUBR,
say) despite the fact that UCI LISP implements LIST by means of
an F5UHK. This is Jjust what one would naively expect.




3643 Conjunctions
{AND 21 «+a. eN)

(AND) is avaluable and reducible with vaiue {and reduction) Te
(AND e} is reducivle and its value and reduction are the value
and reductiony rospectivelys of e. 1f 2l is evaluable and its
val ue is MIL then {(AND el .ss eN) is evaluable and reducible and
its vatue and reduction are NIL. If el is evaluable with a
non=NIL value then tne evaluabilitys reducipnility, valuey and
reduction of (AND el eoe eN) are those of (AND e2 aes eN)e If el
is not evaluaple then (AND el ... eN) is reduciole just in case
el is reducibles and the reduction of it is (AND el' €2 eae enly
el? peing the reduction of el. All of this corresponds to LISP
usagey the conjuncts being evaluated in order and only as far as
necessary to determine the result.

Jebest Disjunctions
(UR EI.,JQQ {'.f\i)

(OR) is evaluable and reducible with value {and reduction) NIlL.
(OR e) is reduciole and its value and reduction are the value and
reductiony respectivelyy of es If el is evaluable and its value
is non=HIL then (0OR el ++s 2N) is evaluablie and reducibie and its
value and reduction are the atom T . If el is evaluable with
val ue NIL tnen the evaluabilitlys reducibilitys valuesy and
reduction of {JR el +es eN) are those of (OR €2 ees BN} It el
is not evaluabie then (UR el «es eN}) is reducible Jjust in case el
is reducibies and the reduction of it is (UR el €2 +ee¢ e€n)y el?
beiny the reduction of el All ot this corresponds to LISP
usayey the Jisjuncts uveing evaluateg in order and only as tar as
necessary to determine the results

3.65 Conaitionals

(COND gl ess gh)

(CONU) is evaluaple and reducible and its value and reduction are
NIL. If gl is (€0 «s» eM) then {COND gl .« gN) is reducibple
(anu possibly evaluable) just in case e0 is reducible or
evaluaple. If oG s reducible but not evaluable then (COND
Ql ees gqN) is regucible Wilh reduction (COND (80! eseeM) eee gN)
and is not svaluaodle. [f e0 is evaluahle with non=NIL value vy
then (COHD 4l ess QH) 05S reducible and its evaluabilitys
reduction and value are those of (PRUOGN (QUOTE v) el ..e eM)a I¢
eU is evaluable with value NIL then the evaluabilitysy reduction,




and yalue of (CUNU gl ses qN) are those of (CUND glees giN)e ALl
of this conforms to customary LISP practicey since PROGN mimics
the sequential gvaluation of the expressions in a conditional
“arm”?,

3.b6s6 Sequential Compositions
(PRUGH el s e @ QN)
(PRUGKN) is avaluable ang reducible with value and reduction T.

{PRGGN e) s reducible and its evaluabilitys reductiony ana value
are thosea of e. It el is reducible but not evaluable then

{PRGON el saee eN) is redgucible with reduction
{PROGN el' 22 ees ehids el? peing the reduction of el. It el s
evaluaple then {PROGN el +se eN) is reducible and its
evaluabslitys reductiony and val ue are those of

(pRUGN eZ e e eN)-
{PRUGL 2l ese ei)

(PRUGLY is evaluable and reducible with value and reduction T.
{(PROGL e) is reducible and its evaluabilitysy reductions and value
are those of e. it el is reducible but not evaluable then
(PRUGL el eos e&N) is reducible Wwith reduction
{PRUGL el!' £2 s €M)y 2l? peing the reduction of el. It el s
evaluable with value v then (PRUOGL el .+ eN) is reducible and
its evaluabtlity, reduction, and value are those of
{PRUGH 22 eee N (QUOTE v)l.

(PROG toc sl eas s}

PRUGs are neither evaluaole nor reducible. There is no
reasonaple wdy to carry out 3 reaguction of a PROG analogous to
the reduction of PRUGL or PROGN expressionsy and the necessity of
assigpment to the iocal identifiers of the PRUG would fead to
limitad utility of such a constructy even if we were to define
some notion of reducibility for PkUGs. PROG mays of course, be
used freely in the definitions of functions invoked from LOGIC.

3e6.7 Assignments
(SETY ident e)

If e is evaluaple with value v and ident is a proper identifier
then (SETY ident e) is evaluable with value vy and assigns v to
jdente Utherwise (SETU ident e} is reducible just in case e s
reducible and its reduction i5 (SETU ident e')y where e' is the
reduction of e,




ko

Note that assignment should be used with some caution in LOGIC,
since the order in which assignments are performed is determined
in part by the heuristic sedarch methodss d4nd thus is not -readily
predictaols, Ubserve too that in order to obtain the LISP value
of 4n identifier icent one must write (EVYAL ident)y, not just
ident'.

3.6.6 Selections
(SELECTU e (ql e S1) wse (QN e« SN} u)d

Here Sly eses SN aAre to be lists of expressionss The evaluation
and raduction of the SELECTY expression are basically the same as
the evaluation and reduction of

{COND ((EQ e gl) » sl)

((EQ e gN) o« sN)
(T ul}

except that reductions are expressed with SELECTQ and e is
evaluated Jjust once at the beginning. I1f one of the selection
kKeys qi is a Jist (il eee imd then the corresponding COUND

predicate is

{MEMD e (LIST il eae im))

3.7 LOGLISP SPECIAL FORMS

The remaining special forms do not correspond tec anything in
convantional LISP. They provide means by which the LOGIC
programmer may controi the interaction between LGGIC and LISP in
order to dz2al with various unusual circumstances.

(LAGIC &)

Intuitivelys the LUGIC form specifies that the result ot
evaluation is to be regarded as a logyic expression rather than as
an oojacty the effect most pften being to suppress the normal
quoting ot non—atomic values.

Mmore preciselyy, if e is evaluable witn value v then (LOGIC e) s
reducibie (LOGIC e) is avaluable according as v is evaluapnle,
and tne reduction and value of {LOGIC e) are the reduction and
vatue of v [t e is not evaluabiey (LOGIC e} is reducible
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accordiny as e is reducible and the reduction of (LOGIC e) is
(LOGIC e}y where e! is tne reduction ot e. Put differently,
when e is evaluabley we reduce or evaluate (LOGIC e) by treating
the value of €y Vy a5 a logic expression and reducing of
evatuating v. In practice it usually happens that v is neither
evaluabie nor reducibles in which case (LUGIC e) reduces to v.

(LISP e)

The form (LISP e} indicates that e is itself to be treated as the
value of (LISP e). HMore preciseiysy (LISP e) is never reducible;
it is always evaluable and its value is e. (LISP e) differs from
(UUUTE e) in  that (LISP ¢) is subject to instantiations thus
(LISP e){E} is (LISP e(E}]).

{GROUND e)

The form (GROUND e) is simiftar to (LISP e)y but Is evaluable only
if no variables occur in e. More preciselyy (GROUND el is never
reducibte; it is evaluable if no variaole occurs in ey in which
case its value is e.

(LOGIC-GR e)

(LOGIC=GR ) is precisely equivalent to (LOGIC (GROUND el It
foliows tnat it any variable occurs in e then (LOGIC-GR e) is
neither evaluaple nor reducible. If no variable occurs in e then
(LOGIC=GR ¢) is reducibile and its evaluabilitysy reductions and
value are those of e.

de shall illustrate a few applications for these forms, Firsty
consider

(LUGIC (5UBST (GRODUND x) (GRUGUND y) (GROUND z)1)

whichs as it standss is neither evaluable nor reducible. Suppose
now we instantiate to oobtain

(LUGIC (SUBST (GROUND (¢ (VAR A) 3))
(GROUND (YAR Q))
(GROUND (<= (VAR Q) 101)))
where YAR is not the name of a LISP function. Since no variables
occur in the inner expressions these are evaluabley the
expression {SUB3T «es ) is evaluabley hence the whole reduces to

{<= [+ (VAR &) 3) 10)

The aobreviation LOGIC~GR is sometimes useful in connection with




FEXPR's, If f is the name ot a FEXPR or FSUBR then
(LOGIC=GR (f @l ese €n)) is evaluable and reducible just in case
no variavle vccurs in any of the e'sy in which case the value and
reduction of (LOGIC-GR {(f el «ss eN)) are the value and reduction
of {f el sea 2i)e This treatment of FEXPR's |Is sometimes a

useful atternative to the customary procedure described earilier.

3.8 SIAPLIFYING IMPLICIT CONSTRAINTS=-THE FUNCTION SIMPLER

If C = (3 €) is an implicit constraint and D is a knowledge basey
then (SIMPLER C U) is the implicit constraint which results from
simpiifying one or more of the predications in € and dropping
them if they simplify to "true'., Specificaliyy {SIMPLER C D) is
the result of the following three—-step algorithms

1 Jet (G E) =¢C

2 while Q is nonempty

do fet (L A R) be the (SEL Q E D)-decomposition of Q
and B(E} be the simplification of A{E}

if 8(E)} is "true"
then replace Q by L*R
else return (L¥(B)%¥R E)
3 raturn (NIL EJ

By "true" w2 mean any evaluaole expression whose vaiue is not
NIL

3.9 THE EXTENDED DEDUCTIUN CYCLE

In the actual LUGIC cycle of our LOGLISP system we include a step
of LIsP-simplification in step 1 of the RUN loop. The full
gescription of the loop is thens

RUN:  while AAITING i5 nonemptly

do 1 remove some C from WAITING
and let (X Y) pbe (SIMPLER € D)

2 if (X ¥Y) is solved
then add (X Y) to SULVED
alse add the (D K)l-resolvents of (X Y) to WAITING
where K = (SEL X Y D)}
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Note that the K selected in step ¢ will be the same as that
selected in Lhe final iteration of SIMPLER. (Indeeds in LOGLISP
this is obviously so since K = L uniformty; but it is true for
every SEL function)a.

This means that the predication resolved away is the one which
was just processed by SIMPLER and that it is therefore a
LISP-irraduciple expression. In particufar it may be the
expression NIL {i.es. the LISP representation of FALSE). In this
cases Lhare witl dbe no resolvents forthcoming and (X Y) witl
therafore ne a failure.

3.10 CONTRULLING REDUCTION

It is sometimes helpful to inform LUGIC that certain expressions
are irreducioles eitner pecause it is known In advance that any
attempt at reduction w«will pe futiles or bDecause reduction would
for sowme reason be inappropriate. This can pe accompiished by
invoxing the LISP function IRREDUCIBLE {which is an FSUBR) with a
commang of the form

(IRREQUCIBLE idl eeo idn)

idlseeessidn Dbeing proper jdentifiers, Having done S0s ANy
expression of the form (idk ese) wili thereafter be irreducibles
regardiess of the nature of its subexpressions, The effect of

REDUCIBLE can be undone with
{REDUCIBLE idl s idn}

(KEDUCIBLE is also an  FS5UBKR). REDUCIBLE will nots howevers
repeal the system—mandated jrreducility of PROGs.

Thess mattars 4are Jdiscussed further in Chapter 43 Creating
Knowledyge 335¢5.

3.11 SUBSCRIPTED VARTABLES

We have mentioneg Dbefore that the wvariables occurring in
assertions aregy in effecty renamed vefore resolution so as to
prevent unintended jdentification of variables in different
assertions, Tnis is accomplished by “subscripting” the. variables
in tnhe assertions With appropriately chosen non-negative
intejerss, Ordinariiy this subscripting is hidden from the user,
and issy 1n facty, performed #¥mplicitly and quite economically.
Subscripted variables mays howevers appear in answers to queries,
and are routinely seen when monitoring deductions (see Chapter
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3). In such casesy the subscripted variable is an identifier
whose print name consists of an ordinary variable suffixed by one
or more subscriptsy each subscript consisting of a ¥ foliowed
by one or more diyitse Examptes are x:i7 and date:3:17. Such
variables, generated by the systemy are the only variables which
may contain i,

3.12 UNIFICATION Id LOGLISP

Theres are a tew points worth noting about the LOGLISP
implementation of unification.

First of ally there is no check performed to see if 2a unification
has createa any cycless Such a check wouldy if routinely madey
be time=consuming. It appears that in normal LOGIC programming
the cheack is unnecessary. Since unification is confined to the
cases whera the input expressions do not have variabtes iIn
commany cycles can arise only it assertions or gueries are

formulated in certain abnormat waysSe

The use of implicit representations throughout in any case makes
it possiote to work with infinite {(cyclic) expressions as though
they were finite (which in a suitable sense they are). It s
onty when a sophisticated user wishes to exctude such expressions

from tne domain of discourse that their detection Dbecomes
NECEesSsSary.

0Of courszy any process (such as a naive recursive realization)
Wwhicn seeks to travarse every path n such an expression will run
on indefinitelyy ana the user wiltl want to avoid this situation.
In designing LOGLISP? we have assumed that any user deliberately
creatinyg sJdch expressions will De sophisticated enough to use
LISP to protect himself witnout beiny lectured at by us. ¥®e have
further assumad tnat any user inadvertentiy <creating such
expressions will prefer to take the error messayes or other
indications of his mistake which LISP will provide — in place of
the expensive LOGLISP overhead which would be needed to protect

him from tnem.

3,12.1 Proper Names

Two propz=r namesy 53y al and a2, are considered to be wunifiable
itf (EGualL  al a2) or bolh are strings and have the same
characters., Thus the condition for unifiability can be expressed

as




(0R (EQUAL al a2)
(AHD (STRINGP al) (STRIRGP a2)
{EQual (EXPLUDE al) (EXPLOUE ad)))})

This produces just the effect one wantsy put note that distinct
jdentifiers with the same PNAME are not unifiable (it cannot be
the case that ootn ire INTERNedle The integer 1 unifies with the
floating=point numver 1.0y on the other handy ang distinct
occurrences of the same floating=-point value are unifiaplies

34122 Special Foraas

Exprassions in QUUTE and FUNCTION are treated speciallye.
{WUuTE =al} uni fies Wwith (GUUTE e2) if and only it
(EOUAL {(QUJTE el) (QUUTE e2))y and similariy for (FUNCTION fl)
with (FUNCTIUN f2) In adaditiony expressions of the form

(CONS el e2) may wunify with expressions (QUOTE (a . d)l. In
attempting to wunify two such expressions any logic variables
appearing in (a « d) «ill pe treated as "constants“, et us
detine qlv] as follows: if v is a proper name then glvl is v
otherwise ygylv) is (QUIOTE v). In attempting to unify (CUNS el e2)
with {(QUUTE (a . d)) the unifier proceeds by attempting to unify
el with glaly then, if successfuly wunifying e2 with gqldl.
Variabies in el and e2 will be bound to subexpressions of a and
dy QUUTEU when appropriate. Some examples will make things
clear. The expression

{CONS x y)

unifies with

{SUUTE (A B C))
with mgu x = Ay y = {(QUOTE (8 £}), To take a more complicated
casey

(COHS (CONS F x) (CONS u v))

unifies with
{QUOTE L((F (& B)) C D))

with mgu

{QUUTE ({Aa B))1)y u = Cy v = (QUOTE (D)) .

x
]

Expressions in JUUTE anad FUNCTION are not otherwise wunitiable.
It snould De remarked that an expression like (F A QUUTE (B))
does not contain a guotationy merely an occurrencz of the

constant WUUTL.
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3.12.3 variavles As Tails

Oradinarilys an exprassion is either an atom or a list, but one
may s in facts introduce expressions which are composite but not
lists. Tne onity usaful expressions of this class are those for
which repeated CDrR's eventuatly yield a variabley an example
being (7 (F x) . ¥ we remark that the definitions of
unification and resolution given in chapters 1 and 2 do not
actually require thal non-atomic expressions be lists. In a
sensey there s really nothing spacial about a composite
expressian  which is not a lists but such expressions are
sufficientiy unusual that a bit more discussion may be in order.
Expressions of this sort are particulariy useful in dealing with
operators which take a variable numper of arguments. To
illustratey the expression

(fXQY)
unifies with

{+ u 7}

.

with mgu

x = uy y = (7)

and also unifies with

(+ (F u 3) 7 (G AB))

with mgu

x = (F u 3)y y =7 (G A B})

Thus a simplesy but still rather flexipley rule for solving
equations involying sums may be assertey Dy

(1= (= (+ x o y) 2) <= (= x (= Z (+ yll)) .

3.12.4 The "Don't Care™ Symbol

The identifier #, called the ndon't care” symbols wunities with
any expression whatevers but such a unificatlion introduces no
bindingss Tne effect is as t hough each occurrence of # were
replaced 0y 4 NEW variable not appearing elsewhere in the
exprassions to oe unifieds except that the implementation
benefits from use of the don't care sympol.
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To illustratey, the exprassion
(P # x #)
unifies with

(P (F 1) (G A) 7}
with myu

x = {6 A)

3,13 REDUCTIUR OF EXPRESSIONS ENDING InN VARIABLES

Tha reduction of an expression (f el ssae eN o v) will now be
explainede. Such an expression is evaluable if and only if f is
the name of a FEXPK or FSUBRs in which case the value 1Is the
result ot applying f to (el e«¢s en « vls an argument ®list” with

which few FEXPRs are prepared 10 cope. If f is a proper
identifiaersy but not the name of a FEXPR or FSUBRs then the
expression is not evaluapley but s reducible it any of

ely eeey BN are reducibley in which case the reduction is
(f el’ 2e eN' N V’-

The sequentially evaluatea LISP forms, those formed with ANDs OR»
CUHDs PROGNy PROGL and SELECTOQ, may also involve variable taits.
Reduct ion proceads as described peforey stopping when a variable
tail is =2ncountered. Such expressions may be evaluable if the
veyvaluation path™ avoids variable tails entirely.

3,14 SPECIAL RULES FOR RESOLUTION

The system "automatically" incorporates a number of special rules
applicabte to certain predicate symools. In most cases these
rules are just sconomical implementations of computations that
could be achieved witn ordinary assertionsy but the rule tor
COnDitional expressions constitutes a fundamental extension of
the systemy as it introduces a form of "negation as failure™ {(see
the discussion in chapter 12, section 1.2}« Application of any
of tna rules can be enabled or disabled at will by the usere.

J.14.1 The Rules

Each of the rules is introduced by an informal, assertion—like
descriptionsy followed DY discussion ands in some instances, 4
nearly egquivatent formuilation with actual assertions.
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3.14.1.1 Eqguations -

(= el e2) <= "2l and e2 are unified"”

The rule is just the reflexive law of egqualitys and amounts to
{i= {= x x}) .

This rule is not applicabie to expressions ot the form
(EQUAL 2l 22)4 even Lhough = and EQUAL denote the same function
for purposes of simpltification.

3.14.1.2 Conjunctions =
( AND pl 'R pN’ = pl & eses & pN

Bearinyg in mind that (AND) simplifies to Ty thne rule for AND
amounts to

{i= (AND x » y) <= x & (AND « y)) .
3.14.1e3 Disjunctions =
{UR pl ess pN) {~ pi) for i = 1 «4« N

Againy bear in mind that (OR) simplifies to NIL. The rule for DR
is practically equivalent to

(1= (UR x « y) <= x)
(!= (OR x « y) <= (0OR » ¥))

exbept that resolvents for all of the disjuncts are obtained in
one step.

3.14.1.4 Conditionals -

(COND (pl gql) +e. U{pH gi)) <~ px & gky tor the first k such that
pk is provable

Let us refar to the constraint from which (COND .es) was selected
for resolution as the PMoriginal constraint". The control
mechanismy in facts begins Dy attempting to prove pl. It it
succeeds in doing soy it introduces a nNew resolvent consisting of
qk and the other preagications of the original constraint in the
environment which proved ple. {Such a resolvent will eventually
be produced for each proot of ply it tha search continues so
long.) [f all attempls to prove pl terminate in failure then the
control mechanism attempts to prove p2s and so on. All of these
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searches dre carried out within the heuristic timitations imposed
on the probiem at tne peginning, These searches ares moreovers
carried out "in paratlel” with searcnes for other solutions to
the initial proolemy in accordance with the standard heuristicss
so that depth-first runaway «ill be avoided to the extent
possinles.

The "arms"™ ot the CJINDitional expression need not have exactly
two expressions, An  arm of the form {pk) iss for purposes of
resolutiony equivalent to (pk T)y while an arm of the form
(pk 45l ses grim} is equivalent to (pk (PRUGN gkl «es qkmndd.

This treatment ot conditionals depends un a feature of the system
not nitherto mentioneds namely the ability to associate a
Yecontinuation™ with a node. The continuation is itself Jjust a
node of 4 somewnat spacial nature which is not itseif available
for computing resolvents., de write 3 node C with continuation K
as M"ILC Continuation: KI". The resolvents of [C Continuation: K]
are exactly the nodes (R Continuation: K] such that R is a
resolvent of C.

Let (X Y} be a4 node 4«hose resolvents are desired, let the
selected component of X be Py and suppose that P{Y} has the form
(COND (pl gql) «eo (pN gnN)). We obtain a "resolvent” which is

{((pl) Y) Continuation: ((#COND (ql) (p2 G2) ess I*X' Y)]

where X' consists of the wunselected predications of X, Each
proof of pl generates a resolvent (NIL Z} with the same
continuations from whicn we "pop up™ the continuation to obtain a
resolvent ((aql)#=x' ). It and when ail attempts to prove pl
faily, we pop up the continuation to obtain

((COND (p2 Q2) ses {(pN gN)IIEX' Y)
which is adaed to WAITING.

Continuations are not usually printed when explaining answers of
monitoring deductions, rather the fact that a node has a
continuation is incicated by printing YICONTINUED]I". users can
instruct the system to print continuations in full by invoking
the command {CONTINUATIGONS ON). (CUNTINUATIONS OFF) returns the
system to tne normal mode.
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3.14.2 Controliing The Special Resolution Rules

All ot the rules may be enabled or disaoled by invoking functions
of the form (AUTUx "flag") wnere flag may be either ON or UFF.
The compieta set ot control functions for the resolution rules is

(AUTO= "flag"™)

(AUTECAND "flag™)
(AUTS-UR "flag")
{AUTOCOND "flag™)

Each function returns its argumente. T or NIL may be used instead
of Ux of UFFe. «hile these function behave |ike FEXPRs for atomic
arjumentsy they evaluiate nop-—atomic arguments, so one couldys for
exampiey type

F(AUTOAND (AUTO=-UR UFFY)
to disable botn the AND rule and the OR rule. All of the rules

are enablad oy system initializations hence by RESTORE {see the
chapter, on filing knowledge bases).
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CHAPTER 4

CREATING KNOWLEUGE BASES

To create a4 knowiedge base one pegins with the empty knowledge
base and adds assertions to it one at a time as explained below.
Or onne can eaxtend an already existing knowledge base by
instaiting it in a LOGLISP workspace and adding more assertions
to it The emply knowledge base is <created by executing the
command

(START)

which discards any assartions already present and initializes the
LOGIC part ot the worxkspace (without affecting the LISP
gefinitionsy if anyy which the user may have set upl.

4,1 ADDING AN ASSERTION TUO THE KNOWLEDGE BASE

The assertion commangd

(:‘ 3 <- Al 200 An)

causes the assertion
B (‘ Al 2 e An

to be added to the current knowledge base. The symbol i- is the
assertiopn symoboi. (It is pronouncea "assert").

S e

The arrow may be omitted. we snall often omit it in the examples
in this manual.

4,1.1 MNaming An Assertion

An d4ssertion may be given a user—coined name. This is most
convenizntly done at the time the assertion is added to the
knowledga bases using an gxlended assertion commande. Execution
of the extended assertion command

(:‘ N 8 Al s e e An)

adas the assertion 8 <~ Al +s+ AN to the current Kknowledge
vasey 4s wveforas but also ascribes to it the name N. The
user-coined name N mdy De any propefr identifilera For examples




the follonwWing four transactionss:

#{(i={d0orn rervrand 12 February 1908})

ASSERTED
“(i1={luied Herbrand 27 July 1931)})

ASSERTED
(1= TUKINGL (Born Turing 23 June 19121}))

ASSERTED
#{i— TURINGZ (Uied Turing 7 June 19541})

ASSERTED
*

add four assertions to the knowledge bases the first two of which
are anonymousy and the second two of which have been named
respectively TURINGL and TURINGZ. Note that each assertion
transaction is terminated by the message ASSERTED. It the
assertion is ili-formed the message returned will be
ERRUR=Ignoreas in which case the knowledge pase is not altered by
the transaction.

The assertions making up a knowledyge Dbase are organized into
groups called procedursss A1l assertions in the knowiedge base
whose conclusions have the same predicate P are grouped together
into a procedure wnich is called "the procedure P"., It is
thought ofs intuitivelys as the portion of the knowledge base
which is ralevant to estabiishing those facts in the worid whose

predicate is P

Assuming tnat the knowli=dge base was empty before the above four
assertions were 4dddeds the contents of the knowledge base now
consists of Lwo proceduLess edach containing two assertionse.

By invokiny the PRIWTFACTS command {see the following Chapter on
Displaying Knowledge dases] the contents of the knowledge Dase
can be displayeds its clauses organised into procedures. Thus?
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#(PRINTFACTS)

FACTS—-ASSERTED

(PROCEDURE Born)

(i- (Born Herorandg 12 February 1908))
Ci= TURINGL (Born Turing 23 June 1912))
{PROCEDURE Diedg)

{i— (Died derbrand 27 July 19313))

{i—- TURINGZ (Died Turing 7 June 1%54))
END |

#*

It one adds an assertion with name N to a procedure which already
has an assertion named Ny then the name is removed from the older
assertion and attached to the npew one. A single proper
identifier mayy howevers be used to name as many assertions as
one lixkesy Provided no two of these are in the same procedure.

4.2 THE FACTS MODE

A  somewnat more convenient way of adding a succession of
assertions is providea by the FACTS mode, By executing the
commana (FACTS) the user puts the system into the FACTS mode.
This is simaply a3 wait—read-assert cycle which expects successive
assertions to bs  typed ine The prompt-message ASSERT: is
printed bpy the system to signify its readiness to receive the
next assartion. Thus the four assertions of our example could
have been adaed by means of the following excursion through the

FACTS modes




-
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*{FACTS)

ASSERT 2 ({Born Herbrand 12 February 1908))
ASSERT:((Uied Herbrand 27 Juty 19311))
ASSERTS{TURINGL (Born Turing 23 June 1912))
ASSERTS{TURING? (Died Turing 7 June 1954))
ASSERT :

DUNE

Such a FACTS session is terminated by typing a semicolon in
response to the ASSERT: prompte. It should be noted that the
format .in wnich an assertion B8 <= Al ..+ An is typed for input
to the FACTS mode is the list {8 Al ... An) o The ftirst item on
this list may pe the optional user-~coined namey as illustrated
abovee. The list format enables the system to accept inputs which
are too laryge to fit all on one lines As in the standard LISP
conventions the system reads line after line of typed input until
a syntacticalily complete object has been formed. Thus in the
foliowing FACTS transaction the three-component assertion
AGE=~FURMULA is asserted on several linesy each of which after the

first is prompted by a coloni

#{FACTS)

ASSERT : (AGE~F URAULA

(Age person given—-year a)

(8orn person # # virth-year)

{= a (- given—~year pirth-year)))

[T T Y]

ASSERT 2

DUNE

The assertion AGE=FURMULA is now installed as the sole component
ot A procadure Age which computes a person's age in a given
year oy looking up the year in which that person ®was bporn and

subtracting it from the given yedr. Note the use of the don't




. -

care symbot (8) to match the day and month of birthy neither of
which is neeqed for the deduction. The contents of the knowledge
Dase may again vbe viewed by executing {PRINTFACTS) :
F(PRINTFALTS)

FACTS=ASSERTED

(PRUCEDURE Born)

{i- (Born Harbrand 12 February 1908))

(i~ TUKINGL (Born Turing 23 June 191i2})

(PRUCEDURE Died)

{i— (Diea Herbrand 27 July 1931))

(i— TURINGZ (Uied Turing 7 June 1954))

(PROCEDURE Age)

{i- AGE-FURMULA (Age person given-year a)

<~ {Born person # # birth-year)
& {= a {~ given—-year birth-year)))

END
&

The "<=" angd "§" appearing in AGE-FORMULA are simply "syntactic
sugar" intended to assist the reader in perusing complex
1

assertions. These may also be Lyped in assertions given to i- or
FACTSs bDut we usudlly don't bother to du S0.

An ill=formed assertion typed to FACTS will De ignoredy and a
message will bDe typed to inform the user.

4.3 ADDING ASSERTIOHNS FROM LISP FUNCTIUNS

The assertion function i~ §s just a LISP FEXPR, and as such may
be invoked by any LISP function. LISP programmers will usually
find it more convenient, however, to use the SUBR-type' function
ASSERTCLS of one argument, whose value shouid ve a list as might
pe typed to FACTS {or appear as the tait of an invocdation of {-).
I[f the assertion is well-formed it will De added to the knowledge
base and ASSERTCLS will return NllL. It the assertion is
itl-formed it is ignored and ASSERTCLS returns ERROR.
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4.4 URDER UF ASSERTIUNS IN THE KNUWKLEDGE BASE

The order of the assertions within a single procedure is first
the agatay if anys in the order in which they were entereds then
the rules of Lhe procegures in the order in which they were
entereds, This is the order in which the assertions are printed
by PRINTFACTS.

The order of the procedures in the knowledye base is the order in
which assertions for the procedures were first entered. This
also is the order used by PRINTFACTS. it should be notea that
the order of procedures is frequently changed by editing (see
Chapter 6.

4.5 DECLARING ATTRIBUTES OF PROPER IDENTIFIERS

One may ascribe various attributes to proper identifiers in order
to influence the operation of LOGIC. An example is IRREDy the
attrioute w<hich indicates irreducibilitys and others will De
introducaed later. Several LISP functions are provided for
declar ing such attributes.

(PRGCEDURE "ig" "atl” ... "atn") [FEXPR]
(CONSTANT  ™id"™ "atl" ... "atn") [FEXPR]

Either of these sets the attributes of the proper identifier id
to (atle..atn)s having first erased any previous attributes.
Thus (PRUCEDURE I0) declares that 1D has no special propertiess
PROCEDURE is intended for use with predicatesy CONSTANT for use
with other identifiersy, but both names in fact invoke the same
function. PXINTFACTS will display attributes of predicates and
constants as invocations of these functions,

As mentioned earliery alternative means are provided for i
dectur ing identifiers irreducible.

(IRREQUCIBLE ™idl™ «es "idn") LFEXPR]

declares idlysseesidn to De irreaucible {attripute IRRED)»
retaining any previous attributes,

(REDUCIBLE "idl™ eee "ian™) {FEXPR]

erases the attribute IRRED trom idlseseridny without “atftecting
other attributes.




B SN B Me B G B BA As Be BE Be R R Re S ML EE B R K Re mE Bx B me me ma N e mw e

{IRREDUCIBLE* L) [EXPR]
{REDUCIBLE® L) [EXPKI

The argument L should be a 1list of proper identifierse Each
function nas the same effect as the corresponding FEXPRs for the
identifiers listed,

Une may also declare attributes of identifiers while in FACTS
mode, To 40 sos one types a line of the form

ASSERTZid atl s atn

in response to the prompt "ASSERT:%, The effect is to declare
Atlyesevatn as attributes of td jn agddgition to any previous
attrioutas, FACTS uses LINEREADs so one can type such
declarations ovar many lines if it shouid ever seem nec2ssary.
The attributes used by LOGIC are IRREDs ONERES and NOHIST. Other

attributaes may be declared and will be recordedy but have no
effect on the operation of the system,

4.6 SUBSCRIPTED VARIABLES IN ASSERTIONS

Although it rarely happens in practices, one might attempt to

enter an assertion containing subscripted variables. For
tecnnical reasonsy subscripted variabtes may not appear in the
kKnNowiladye Dase. [f ohe does attempt to enter an assertion

containing subscripted variablesy or variables in the sequence
genvar 00Ly JenvarU02y +ee9 the system wil! rename such variablesy
using varianples genvarddd,y so0 that the assertion which results in
the knowiedyge base §s a variant of the assertion which was
entereds and has no subscripted variables,
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CHAPTER 5

DISPLAYING KNUWLEDGE BASES

various commands are provided for viewing the contents of a
knowledge base,

5e¢1 DISPLAYING THE ENTIRE CONTENTS OF A KNOWLEDGE BASE

The command {(PRINTFACTS) causes the system to print out a display
of the entire current knowledge base. The display is organised
into groups of assertions preceded by the message FACTS-ASSERTED.
Each group of assertions constitutes a (logical) procedure. That
is to says the header of every assertlon in the group has the
same predicate (says P). The predicate P is used as the name of
the procedurey and the group of assertions 1is accordingly
preceded by the line: (PRUOCEDURE Pl oOrs it P has special
attributes ATlyeserAfnys the line: {PROCEDURE P ATl +se ATnNn).
The constituent assertions of the procedure P are then displayed

in tne form of assertion commandsSe. The order in which the
assertions appear in the display is data firsty, then rulesy in
the order in which they were asserted within each <class. The

display is terminated by the message END.

542 OISPLAYING A PRUCEDURE

The command (PRINTFACTSUOF P) displays the procedure P in the same
style as that of the {PRINTFACTS) display. If one wishes to
print several procedures one types {PRINTFACTSUF Pl ees PNJa
Further, the standarda function PP (synonomous with GRINDEF) has
been altered to print logic procedures in addition to the
properties ~hich it ordinarily prints. These too are in

PRINTF ACTS format.

The command (PRLENGTH P) returns the number of assertions in the
procedurs P2

#{PRLEHGTH Born)

Ze
*
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503 DISPLAYING THE SET OF DEFINED PREDICATES

The command (PREDICATES) returns a list of the predicates for
which loyic procedures are defined in the current knowledge basee.
With the example ot the preceding chapter we have:

*{PReUICATES)

(Born Died Age)
3

The command (CONSTANTS) returns a list of the <constants which
have Dpesn declared. These are proper identifiers other than
predicates «hich have special LOGIC attributes,

54 ODISPLAYING DATA IN WHICH A GIYEN PROPER IDENTIFIER OCCURS

It is often convenient to b2 able to retrieve and display the set
ot gata in a given knowledge base in which a given notion occurs
explicitly, Such a set in some sense corresponds to what the
knowledge Dase s5ays about that notion in a direct way. The
command (PRINTCREFSUF C) displays all data in which the constant
C appears somewhere. These assertions are organised into groups
by their procedure namey but the entire procedure is not
necessarily shown {only those of its assertions w#hose headers

actually contain ().

5.5 RETRIEYING A PRUCEOURE AS A LIST

The procedure P may be obtained as a LISP data objects namely, as
the list ot its constituant assertions. This tist is returned as

the vatlue of tn2 command
(ASSERTIUNSOF P)

Fach assartion B <— Al ..o An in the procedure {s represented
as the list (8 AL .es AN} It the assertion has the user—coined
name N then it is represented as the list (N B Al ... An) . For
examples (ASSERTIONSUF 8orn) returns the list

{{{80rn Herorand 12. February 1908.))
(TURINGI (3Born Turing 23. June 191Z.)))

The result of ASSERTIONSUF shares no Jist structure with the
internal reprasentation of the knowiedge basey thus list-altering
operations such as RPLACA and RPLACU performed on this list will
have no effect on the rnowledge Dase.
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5¢H RETRIEVING INDIVIDUAL ASSERTIONS

Une may display one or more individual assertions using a command
of the form

(PRINTNA dsyl «es dsgn) {FEXPR]

where dsglseessdsgn are "assertion designators"., In its simptest
form an assertion designator §s Jjust an assertion namey butl more
elaborate forwms may ve used to resolve possible ambiguitiess and
indead to designate any assertion in the knowledge bases whether
named or note.

The possible forms for assertion designators are shown below.
Here ‘'pred' depotss 3 predicates 'name?® an assertion names and
‘numb' a4 positive integer.

name {possibly ambiguous)
{prad name)
{pred numb) {(possibly ambiguous)

{pred Datum name)
{pred Rulea name)
{pred Datum numd)
(pred Rute numbd)

As indicateds some of these forms may be ambiguousy depending on
the state of the knowledyge Dase. Where a number is given,y it
specifies the ordinal position of the assertion within its <class
{rules or data) in the indicated procedures. The concise form
(pred nump) is ambiguous if the procedure for *pred' has both a
datum 'numb® and a rule *numb'e The forms (pred Datum name} and
{pred Rules name) are redundant, and either is treated as though

it were (pred namel.

PRINTNA prints tne inagicated assertions and returns the list
{dsyleeedsygnl, An appropriate error message will be printed for
any designator which is either ambiguous or fails to designate an
assertion.

Une may also retrieve an individual assertion as a list. The
function

{ASSERTIUN dsg) [EXPR]

returns a tist representing the assertion desiygnated. by {the
value of) its argumenty if there is oney NIL if the argument
fails to uesignate an assertion. Assertions are represented in
the.same manner a4s wWith ASSERTIONSOF»




CHAPTER 6

cUITING KNOWLEDGE BASES

The resident editor of the LISP system has been extended so as to
Allow the editing ot knowledge ©vpases in essentially the same
style as is used to edit LISP functions and data objects. The
edit command EDITA is used to enter the editor when LUGIL editing
is to be done. The foifowing editing session will illustrate the
wdy Lhis wOrks. We will use the editor to attach names to the
{at present) anonymous assartions in the cufrent knowledge basey
and to change the name AGE-FORMULA to AGE~RULE.

#*{EDITA Born)

EDIT
2P

({e ) (TuRINGl & )
#PP

{{{sorn Herbprang 12 Fepruary 19081})
{TURINGL {(B8o0rn Turing 23 June 19121))1}
#1 PP
{{Born Herbrand 12 February 19081}1)
#{=1 HERSKARNDL) PP
{HERBRANDL (BURN Herprand 12 February 1308))
4 0K

forn
¥ {EDITA Died 1 (-1 HEKBRANDZ) PP)

(HERBRANDZ (Died 27 July 1931))

Died
#(EDITA Agye L (L AGe—=RULE) PP)

{sorn person # # pDirth-year)

|
!
{AGE-RULE {Age person given-year a)
(= a (- given~-year birth-yeari))




This editing has produced the desired changess as may Dbe seen if
we display the resulting knowledge pases
#{PRINTFACTS)
FACTS—=ASSERTED
{PRUCEDURE dornd
{i— HERBRANDL {Born Herbrang 12 February 19038))
{i- TURINGL {8orn Turing 23 Juné 191213)
(PROCEDURE Died)
(1= HERBRANDZ {Died Herbrand 27 July 1931))
(i~ TURING2 (Died Turing 7 June 195%4))
{ PROCEDURE Age)
{AGE~RULE {Age person given—-year a)

<= {Born person # # birth—-year)

£ (= a (- given-year birth—year)))

END
%

which is what we wanted. If one wishes to edit several
procedurss simultaneousliy one types {EDITA (Pl eee PN)}. In this
case one edits the assertions for all of the procedures as a
singte list., For example:

®#{EDITA (oorn Died))

EDIT

AP

({HERBRANDL &1 (TURINGL &) {HERBRANDZ2 &) (TURINGZ E))
k0K

{Born DieQ)
%
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As with the LISP edit functions EGITF and EDITYsy one may also
specify one or more editor commands after the predicate {(or list
of predicates) to be edited, In such <cases the commands are
pertormed and the editor returns without further interaction with
the user., For this reason it is very important that one rememper
the parentheses wnen specifying several procedures.

6ol KEAUVING PRUCEDURES FRUM THE KNUWLEDGE BASE

It one wishes to rtemove one or more procedures Ply ses9 PN from
the curreaent knowledge base one invokes the command

6.2 IAPGSSIBILITY OF unNuUSUAL EXITS FROM EDITA

During an sditing sassion under control of EDITA the procedures
being edited are temporarily removed from the knowledge base. In
order to preavent accidental toss of these procedures the system
has been arranged so that unusual exits from EDITA are
impossible.

A "yusual®™ exit occurs when the user types 0K or when all of the
commands specified in an invocation of EDITA are completed
without error. An attempt at an unusual exit may result from an
BITOr from tne editor command STOPy or from the user typing
AalaD. whenaver an unusual exit is attempted the system types the
message

Editing of assertions intarrupteds Exit with CK.

and leaves the user in €DITAy positioned at the beginning of the
fist of assertions Dbeing edited. This tist witl refiect any
alterations made before the attempted exite

bed EDITING [HDIVIOUAL ASSERTIONS

When appropriate one may edit an individual assertiony using the
functions «@ are aboult to describe. This is often more
convenient than accomplishing the same result witn EDITAy and
incurs much Jass overnead when the assertion appears in a targe

procegure.
{EDITNA "pname"™ o "coms™) [FEXPRI]

edits the assertion "name" W“ith optionai edit commands Ycoms".
The name may in tact pe any assertion designators in the manner
of PRINTHAy and inappropriate designators Jtead to an error
message and immadiate return.

|
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(EDIT= Massrn® . Ycoms*) {FEXPR]

edits the assertion which is (EUUAL to} M™assraY, again with
optionatl coamands Mcoms™. {f no such assertion exists an error
message is printed and eD{T= returns NIL.

Ahen using either of these functions one actually eqits a copy of
the originatl assertion., The knowledge base is not changed until
one exits from the editor with OKs and then onily if the resulting
assertion is well-formeda It the new assertion is i1lli-formed a
message Lo that effect is printed angd one is returned to the
editory lvoking at the alter2d copy.

[f the modified assertion belonys to the same procedure as the
originaly and has not been changed from a rule to a datumy or
vice-versay than the modified assertion will occupy the same
position in the procedure as the originale In any other case the
original assertion is deleted from the knowledge bases then the
modified assertion is added {as a new assertionl.

Avnormal exits from the editor are possible when editing an
individual assezrtion. If such an exit does occur one is returned
directily to the top level and the knowledyge base is not alterecde.

6e4 DELETING ASSERTIONS

A number of special functions are provided for deleting selected
assertions from the knowiedye DbDase. These are often more
convenient to wuse than EDITAy and are considerably more
efficient, In most cases w2 provide both FEXPRs for use from the
terminaly and £XPRs intended to be caliled from LISP functions.

(DELETEN "dsyl™ ees "dsgn") [FEXPR]
deletes tne assertions designated by dsglssessdsgn,

Inappropriate designators are iygnored, and DELETEN returns a list
ot designators for assertions which were actually deleted.

{CELETENM ds59) [EXPR]

detetes the assertion designated by dséy if there is one.
DELETENA returns T if an assertion was deletedsy NIL otherwise.

{DELETE= o MYassrn®) (FEXPR]
(CELETEA= assrn} [EXPR]

Each of these functions delates the assertion which is EQUAL to
the specified assertions if there is one, Assertion names and
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Usugar™ in asscn are ignored in determining equality. Either
functton returns T {if tne specified assertion was found and
deietedy NIL olherwise.

The following examples jllustrate the use of DELETE= and DELETEA=
in the context of the example used earlier:

*{OELETE= {(Born Turing 2 June 1912))
T

#(DELETEA= *'{{Died Turing 23 Octover 19541))
T

%

The effect of these is to delete the two assertions giving dates
of wovirtn and death for Turing. Note that when usiny these to
delele rules the variavles specitied in the parameter to DELETE=
or DELETEA= must be the same as those appearing in the knowledge
basea.

(DELETEA « ™assrn™) [FEXPR]

(DELETEA* assrn) [EXPR]
The argument specifies an assertionsy as with DELETE= and

DELETEA=, All assertions which are jpstances of the specified
assertion are deleteds Elther function returns T if at least one
assertion was deletedsy NIL otherwise, The predicate of the
header of the argument must be a proper identifier, not a
variables

(CELETER « "assrn") [EEXPR ]
(CELETER® assrnl [EXPR]

These functions are tike DELETEA anu UDELETEA*, except that only
rules will be defetad.

{DELETED o M™assrn™) [FEXPR]
(DELETED* assrn) {EXPR]

The samey except Lhdt data are deleteda.
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CHAPTER 7

FILING KNUWLEUGE BASES

The current knosledge base may De preserved in a fite by the
LOGGIC primitive SAVE, The command {SAYE N) creates on the disk a
file namsd N [N is a wuser-coined name of no more than six
characters of which the ftirst is an upper-case letterls, when
this workx is completed the message DUONE is printed.

The file created by SAVE is written on the user's fite structure
DSK s 45 conventijonal textsy though not so prettily formatted as
with PRINTFACTS. An extension may be specified with the file
names in which <case the form is {(SAVE {(NAME . EXT)}}s following
the usual LISP convention. An extension is suppiliied only when
explicitiy specified.

7«1 RESTURE AND LUADLOGIC

A file which has deen created by a command {(SAVE N) may be later
read into primary storage by means of a (RESTORE N) or a
(LDADLOGIC N) command. The command (RESTORE N) restores the
knowiedg= base to its <contents as of the time the (SAYE N}
commang which created the tile was executed, The command
(LOAGCLUGIC W) adds the procedure clauses in the saved knowiedge
pase N to the procedure ctauses in the current knowiedge base.
RESTORE first cledars out the current knowledge base whereas

LUADLGGIC does not.,

File names with extensions are specified just as for SAYE. The
file in question must be found on file structure 05K:s but the
project=projrammer numper of the area from which the file is to
be read may be specified separately. The most convenient form is
{RESTURE [projsprogl) tilel)ls, Note that LOGLISP normally expects
numeric input in decimal, while ppn's are usually written in
octale. dne way around this smaitl cifficulty is to use a command

such as:

#{RESTURE [733Qy21G] PLACES)
DUONE

*

i
i




7.2 ADDTO aND sulLD

The existing primitives of LISP's ftiling system have been adapted
appropriateiy for use in LUGLISP,. In LISP the command
(ADDTU N PL . Pk} dauads the LISP objects named Ply eaa9 Pk to
the file namea N land opens 4 new file pnamed N it one does
not already exist). In LOGLISP the effact of ADDTO is extended
s0 that Lthe objects Pi can also be LUGIC objectss namely logical
.procedures, Thus the command

(ADDTO BIOBG Born vDied)

creates (assuming it does not already exist) a file named BI3G
and records that its members are the logical procedures Born and
Died. The command

{ADDTU BIGG Age)

then extends tne description of the file BIGG by recording that
the {ogical procedure Age is also a memuver, Unce a file has been
opened rand described by oneg or more AUDTO commandss it may be
constructed and written on the disk by means of the BUILD
command. Tne command (BUILD N) wWwrites out onto disk storage the
current memoers of the file N in their current condition.

743 DSKIN

Files created and stored using the ADDTU and BUILD primitives may
be read into primary storage from the disk by means of the DSKIN
primitive.s Thus if the file B8I0G had been previously written
on. the disk py execution of the command {BUILD BIUG) s it would
be read into primary storage by execution of the command
{(DSKIH BIUGSY OSKIN is analogous to LUADLUBGIC in that no prior
ciearing of the knowlz2dge base currently in primary storage takes
place pefore the asserting of the procedure clauses in the fife,
Thus oy "disking in'" several files of logical procedures one may
build wup a knowledge base containing them alt. The format of

files created by BUILD is a series of executable commands. Thus
under the current assumptions as to the description of B106 and
tne contents of its memberssy the <command {(BUILD BIOG) would

credata the fiia:
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(SETU I345c 1041
{SETU USKINATOM (wudTE 310G))
({OEFPRUP BIJG (BI0G - LSP) FILENAME)
(DEFPRUP BIUG {(Born vVied Age} MEMBERS)
(PROCEDURE Borni}
{i— HERBRAMDL {(Born nherbrand l2. February 1308,))
(31— TURIHGL (Born Turing 23. June 1912.1})
{PROCEDURE Died)
{i= HERBRANDZ2 (Diea Herorand 27. Juiy 1931.1})
(1= TURINGZ (Died Turing T« June 19544.1}1)
{PROCEQURE Age)
{i- AGE—-RULE (Age person given-year a)
<- {(3orn person # # vpirth-yeadr)
& (= a (- given—yaar Dirth-year)))
The command (PRJICEGURE P) deciares P to be a3 logical procedure
and mway Dbe used to record furtner pragmatic information about P
as explainea in the Chapter on Interacting with LOGLISP. The
DEFPRUP commands are LIS? acts of definitiony recording on the
proparty 1tist ot "gIoG" the informat ion describing BIOG's
propertias as a filename. The two SETQ commands create the

appropriate LIS? environment for the execution of the rest of the
commands in the file,

The decimal points appearing in the numerals {in this example
indicate tnhat tne vaiues in question are to be interpreted in
decimaly regardiess of the value of [BASE. The resulting numbers
are integerss not floating point.

et e ) e
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DEDUCTHNG ANSWERS TO QUERTES

The deduction machinery of LUGIC is invoked by the deduction
commandss ALLy ANYy THEy and SETUF . The first three are LISP
FSUBR's which may conveniently pe invoked from the terminal or
within assertions. SETQF is a SUBR intended for use by L1IS5P
Programs.

8.1 aLL

The command (ALL X Ci e+es Cn) returns a tist of simplifications
0f tne instancaes of the apswer template X with respect to alil of
the environments which satisfy the constraint {Cl «ee Cn) in the
current knowledge base. {These environments are called the
sojutions of the constraint (Cl +.. CN) .1

o e e e e o s S

The answer template X may be a vartabley an atom not a variabley
or a list of expressions. Ae emphasize that the answers returned
are the  expressiocns for lists of expressions) obtained by
simplifying the instances of the answer template in the solution
environmentsy not the values of those expressionss which need
noty after atis be evaluabie.

8.2 ANY

The command (ANY K X Ll +s» Cn) wpehaves in a similar mannery
excapt that no more than K instances of X are returned from among
those which the corresponding ALL command would return. K is
expected to be a nonnegative integer.

Ba3 THE

The command (THE X Cl «+¢ Cn) returns the sole member of the list
(ANY 1 X Cl +es Cn} if there is oney and is intended for use
only in contexts where it is known that .exactly one solution
existse. [f no solution exists for the given constraint, THE
returns the jdentifier No-solutions=found.
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Ba4 SPECIFYING THE DEUUCTION WINDOW

The constraints appearing in invocations of ALLs ANY ana THE need
not consist entirely of predications. They may also contain
limit spacifications which determine the deduction window to be

useda Tne form of a limit specification is
Limits Value

where "Limit:"™ is one of TREESIZEzy NUDESIZE:s ASSERTIONSS,
RULES: DATAzs ana "vatue® is a numbers the identifier INF
(denoting infinity) or a non-atomic expression whose LISP value
is a3 numoer or INF. These values determine bounds for the
corrasponding paramaters of the searcn window. Thus one mights
in the context of the “tennis" example of chapter 2, ask for

{ALL x {Champion x) (Male x) {(Oider x Pete) RULES: 5)

to ovtain tne sat of all those who can ©be deduced to be male
champions older than Pete with no more than five applications of
rules.

In the absence of any specification the limits are atl taken to
be INFy except for RULES, which is never allowed to exceed a
fimit determinead by the Implementations normally 1000,

8.5 SETUF

The preceding commands 4are special adaptations of the basic
general dgeduction primitives, SETCF. SETOF takes three arguments.,
In the command (SETOF 5 X C) the arguments Ss X and C are (LISP)
evaluated opefore the SETUF procedure is entered (SETOF is an
EXPKYa The first argument S {the "scope indicator") is an
expresstion which evaluates either to a nonnegative integer or
els2 to Lne idantifier ALL . The second argument X is an
expression which evaluates to an answer template. The third
argument C is an expression which evaluates to a constraint. The
command {(5ETBF 5 X C) returns a list of the recursive
realizations of the answer template [which is the wvaiue of] X
corresponding to the solutions which satisfy the constraint
{whicn is tne vatue of]l L in the current knowledge base. If the
value of S is ALL » tnen ali such recursive realizations are in
the tist returnad. If the vatue of S is the integer K 9 then no
more than K such recursive realizations are returned. Thus the
command (ALL (x y) (Age x 1928 y}) is equivalent to the command

{SETOF (GUJTE ALL) (QUUTE (x y)) (QUUOTE (Age x 1928 y)))

and both return the list




{{Turing 16) (Herbrand 20})

as their resutty it the current knowledge base contains onty the
assertions HERBRANUL, HERBRANDZ2,y TURINGls TURINGZ and AGE-RULE.
The commang

{THE logician (30orn logician something February 1908))
returns Lhe result: Herbrand .

Recall tnat the answer tempilate may be 4 proper namey a variable,
or a list of expressionsa In the first case the answer is just
the answar template. [f the template is a variablesy each answer
is the simplitication of the recursive realization of the answer
templiate in a solution anvironment,. If the temptate is a tist of
expressionsy the answer is a list of simplifications of recursive
realizations of expressions in the template.

8.6 NUNDETERAINACY OF DEDUCTIVE PRUCESSES

The order of the items in tne lists returned by ALLy ANY and
SETOF is not definedy nor is there defined any rule for selecting
a sunbset of all instances when less than all are requested.

This non-determinacy is accompanied by a measure of
Yconcurrancy'y in that the order in which LISP evatuations will
be performed in the course of various simplifications is also not
specified. The evaluation of a single evaluable expression iss
howevery carried out "indivisibly"Y, It is for this reason that
assignmant and other side-effect—producing operations must be
used «with caution in LUGIC,.

8e7 CONTROLLING THE DEDUCTION PRUCESS
Having =mphasized the non—-determinacy of the deduction process,
we shoutd now point out that the user cansy in facty exercise a

considerable degree of controi over ity even to the point of
making it fully deterministice.

8.741 The Heuristic Solution Cost
Recall trom chapter 2 that the node sefected for further proygress
is always one whose heuristically estimated solution cost is

feast. This cost is computed as

¥DEPTHC x ASSERTIUNSUX Y) +  #LENGTHC x NODESIZE(X Y)

where %DEPTHC and *FLENGTHL are {(glecbald) LISP identifiersy both
set initiailly to 1. These coeftficients may, however,y be set to
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any integer values one likess so long as the magnitudes of the
resulting costs are la2ss than Z2%*%*18.

The standard settings give a reasonable heuristic search schemey
put other settings may prove useful. If one puts *DEPTHC = 1y
#LENGTHC = 0y for exampley the resuilting search is preadth first,
while setting ¥OEPTHL = =1y LENMGTHC = 0 gives depth-first
searcho. In neither of the latter cases is the order specified in
which the deduction tree is exploreds

3.7-2 Thne PRULUG Mogs

As mentioned earlier, the usefr can obtain a strictly determined
deptn first searcn by placing the system in the "PROLOG"™ mode.
This is accompiished by the command {(PRULUG ON). In this mode
the search isy first of ally depth firsts, The resolvents of a
particufar node willy moreovery be explored in the order in which
the corresponding 4dassertions appear in the knowledge base {this
is the order in wnich the assertions are printed by PRINTFACTS).
It is this ordering of the search that distinguishes the PROLOG
mode from the depth first search produced Dby adjusting the
solution cost coefficients., I1f a special rute {see Chapter 3,
Section 11} is in effect for a predicate which also has
assertionsy the special rule is considered to come after any data
and bafore any ruless

The heuristic search mode is selected by {PROLOG OFF). One is
not allowed to change modes while a search is In progress. Any
attempt to da S0 will be met by the response
"(Not while searching)”. To inguire about the current search
modes usSe the command: {SEARCHMUDE ) W In heuristic mode, this
returns the messayge (HEURISTIC d m)y where d anag m are the
current vatues of *DEPTHC and *LENGTHC respectively. in PROLOG
modes Lhe response is: DEPTH=-FIRST.

8.8 PUNE RESOLVENT™ PROCEDURES

It somatimes happens that the programmer can determine that on
every calli of a particular proceaure at most one resolvent can
lead to successs. Such a determination usually depends both on
the nature of the gueries that can be expected and on the nature
of the assertions which constitute the procedures If it can
further bSe arranged that this resolvent always results from the
first assertion which yields a resolventy then one may ([inform the
system of these facts by declaring the procedure in question to
have the attrioute ONERES. This is done with the command
{PROCEDURE Pred UNERES), "pred" being the predicate of the
procedur=. 1f a speciat rule (sece Chapter 3) is in effect for
“Pred?, the special rule is considered to come belween data and
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rules.

The conditions under which one may appropriately specify a
procsdure  to De YUNERES"™ may seem rather restrictives but they
a4re not uncom@mon  in practice. An inappropriate ONERES
attrioution willy of coursey have a drastic effect on the meaning
af a procedurey since the system wiltl in any case compute at most
one resolvant for each cally even if more than one resolvent can

fead to success.

Be9 SUBSCRIPTED VARIABLES IN DEDUCTIUNS

We have alreauy mentioned that variables appearing in assertions
are {implicitiy) given subscripts when the assertions are used In
deductions spo as to avoid improper identification of variables.
Variables in the Query are given the subscript G. For an
unsubscripted variabley say x»y the system identifies x30 with x»
S0 A4S to prevent an ugly profusion of 0 subscriptse No such
identification is made for a subscripted variable such as yi2sy
howevery which would appear in the deduction as y:2:0. When
resolving an assertion with a constrainty, variables in the
assertion are given a subscript one greater than the largest
supscript used in deducing the constraint. No new sSubscript is
introduced when resoclving «“ith a datums nor by the special rules
for =5 ANOy OR ana CUONDy which introduca no variables.

Variaoles in answers regquire a bit more discussion. If a
variable from the query appears in an answer it appears in its
originat form, without the O subscript added dur ing the
deduct ion. It a variaple from an assertion appears in an answer
the treatment depends on the nature of the query. If a primaty
querys that iss one invoked from LIS5SPy the variable simply
appears with the subscript given in the deduction. It a
subsidiary gquerys that isy ona invoked recursively swithin some
far ger deductiony the query must have resulted from the reduction
of an expression whose variables were given a subscript | 2 O
white in the supsidiary deduction the variable was given a
subscript j > 0. Such a variabley say xs appears in an answer
{to the subsidiary gueryl) as xtjdi, Since subscripted variables
cannol appear in the knowledge basey this prevents unintended
identification of variaples in almost all cases »of practical
interest. Wwe should point outsy howevery that if one assertion
causes two subpsidiary deductionsy and the answers to both contain
varianles introduced in the course of these deductionss it is
conceivable that the sane variable might appear in answWwers to
both gqueries. Even in this casey such variables must appear
inside quotationsy and can enter the deductive process only if
they are "exposed” Dy means of the special construct {LOGIC J4.).

- 8=5H =
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At this point the whole subject may saam overwhelmingly
compiicateds DUt we rTemind the reader that the programmer can
ordinarity ignore the matter compietely, and that the
ymplementation achiaves these effects impticitly and quite

s

econoimically. in particulary variable tdentifiers like x33:2 are
never created in tne internal workings of deduction; they arise
only when needed for "axport'"™ to LISP.
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CHAPTER Y

HUNTTORING DEDUCTIONS

Provision has oveen made for the optional "viewing” of a deduction
process 45 L is nappening. {deally such a facility would show
the tree of constraints growing during the execution of the
geduction tycles This is however somewhat extravagant of display
spacey and LEGIC has a more modest version of this idea.

9.1 THE HMOWHITOR FACILITY

Execution of the commang (MONITOR ALL) enables the system to
display each successive selected constraint during the deduction
processs If the seiected (implicit) constraint is {(Q E) the
display shows the {(expiicit) constraint Q{t&}. In order to give
the user time to reflecty the system pauses once each cycies and
resumes on receiving 3 suitable input (normaliyy a semicolon),.
The predications comprising the query Q{E} are displayed as they
exist before any simplification is performed. It should be noted
that when viewing a developing deguction process in this way one
may observe some discontinuity in the displiay. This is because
the selection machanism may not always choose a successor of the
previousiy selected constrainty but rather "resume" some older
constraint whose turn has arrived for some more "progress™., Even
when the genetic thread remains unbrokens there may be rather
drastic cnanyges in the constraint owing to the
LISP-simplification step of the cycies The user will soon become
accustomed to the realities of the AUNITOR displays howevers and
wilti find it an entightening tool wnen sparingly used to slow
down and observe the deductive action. The command (MONITOR OFF)
disables the MINITOR facility.

ne need not simply continue from the MONITUR pausee. The
commands one can give are as follows {(the prompt is "2%"):

2%E expr - Evaluate expr and print the resuit
2%EXPLALIN =~ Explain the current state
2FQUILT -~ Apandon tne search

2RHELYP Print vrief instructions

Any other input is taken as a command to proceede £y EXPLAIN and
HELP feave the system in the MONITOR pauses. EXPLAIN may be
followed Ly qualifiers to specify the mode of expianation (see
the next chaptear).
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Gelel controdiing The MONITOR fFacitlity

One may wish to monitor only selected steps in the deaduction. To
d0 sos one executes the command {(MONITUR PlaeeePn) for some
predicatas PlesePnys Thersaftery the system will monitor just
those c¢cycies for wnhnich the selectead constraint begins with a
predication whose predicate is amonyg Pl.sPny or for which the
selected constraint is empty. We say that the ©predicates
specified have peen "flagged” for monitoring. gne <can ftlag
additional predicates py executing a similar MUNITGR commands ar
"unfiag” certain predicates with a command (UNMUNITOR PleesPnle
{UNMUNITOR ALL) unfiags all currentiy flayged predicates.,

The {MONTITUK JFF) and {MONITOR ALL) commands operate
independentiy of filayged predicatesy and without changing the
flags. The command (HMONT TOR UN) re-establishes selective

monitorinyg.

One may also wish to observe constraints after simplification as

well as ov=forz. The command (MONITUR 2) causes the system to
print the constraint after simplificationy in addition to the
normal display before simplifications provided that the
constraint was altered in some way Dy simplification. If

selective monitoring is in effecty, the decision as to whether the
cycle shoutd be monitored at all is still based on the initiai
predicate of tnes selected constrainty pbefore simplification. The
command (MINITOR 1) restores the normal modey printing the
constraint before simpltification only.

The numerals ™1™ and "2" can be included in MIUNITUR commands
which flag predicatesy in which case they have the same effect as
Wwhen they stand atone. The key words OFFs ON and ALL are not
recognizeag in such commandsy howevers 50 the commandg
(MONITOUR OFF Maile) would flag the predicates OFF and Male and
enable sefective imonitor ing.

9.2 THE PURR FACILITY

It is often desirable to be aple to see in some direct way that
the deduction process is taking places without necessarily
slowing it down to the extent that the MONITOR facility entails.
The command {(PURR ALL) enables just such a3 facilitys the PURR
facitity. Tne PUKR facility consists of a running display
accompanying the deduction process. It involves the printing of
a fesd single characters per cycles No line feed is glven after
printing {(except at the physical end of a line) so that the
characters torm a continuous string. The meaning of each
character is as follows:




e M WA B e e B W e G B e B e

Character Meaniny

{ Start of a new query

= (hyphen) Start of a4 new cycls

P Selected constraint a success

{ Selected predication is NIL (false)

R Resolvents of selected constraint obtained

X Selected constraint failed for lack of
resolvents

C A continuation poppad up

L Selected constraint fajled due to window
fimit '

1 Complation of a gquery

The PURR faciitity is disabied by the command {PURR UFF). Thus
with the PURR facility on the following transaction would occur:

#FLALL {x y) (Age x 1920 y}))
[=R=R=R-P-K-P]

{{Turing 38.) {(Herbrand 12.))
&

The "PURR string”™ shows that the deduction took six cycless
invored four procedures and found two answer environments. Note
that §f a query is invoked within the processing of another query
the PURR strinyg will contain nested bracket pairs.

Gelal Selective PURRINng

Wwhen foliowing long deductionsy two characters of sSo on every
cycle may seem excessivey and one can specify selective PURRiIng
in a manner closety arin to that used to specify selective
monitoring. As with the moniter facilityy control is based on
the initial pradicate of the selected constrainty and predicates
are flagygead for purring with commands of the form (PURR Plee.Pn),
unfliagged with commands of the form {(UNPURR PlesesPnle. Empty
constraints {successes) are always selected. The key words (OFF,
O and ALL 4are used exactiy as with MONITOR. Numerals are
allowed in PURR commandssy bult have no effects.

PURR ana MONITOR are not ordinary FEXPRss since they will
evaluate a {(first) argument which is not atomics. This allows one
to nast calils of these functionss as in (PURR (MONITOR ALL))s
which enables Doth PURKing and MOnNITORiIng on all cyclies.




CHAPTER 10

EXPLAINING DEDUCTIUNS

dnce a deduction has veen complieted and lts answer list obtaineds
one may call for an explanation of the reasoning by which some or
all of the answers were deduced, For instancey the following
transaction <consists of first constructing the answer {ist for
the guery {(ALL (x yl) (Age x 1920 y)) and then regquesting an
explanation for the second item,

*{ALL (x y) {Age x 1920 y)}
({Turing 8.) {(Herprand 12.)1}

®*{EXPLAIN 2)

To showz
(tAge x 1920 yl}

t is enoughs Dy
1— AGE~-RULE fAge x 1920. vy}
<~ (Born x # % pirth-year:1l)
& {= y (= 1920. birth—yearz:1)))

i
{

to shows
((30orn x 4 4% virth=-year:l) (= y {- 1920, birth-year:z11))

then it is enoughy Dy
(!~ HERBRANDL (Born Heroranda 12. February 1908.1)

te shows
{{= y 12.1}}

then it is enoughs Dy
{i— REFLEXIVE—-LAw (= Reflexive Law)l

to snhows
NIL
{kng of explanation)

The (EXPLAIN 2) command causes an explanation of the answer
(Herorand 1Z2.) to be printed. The successive constraints leading
to Lhe answar 4afe exhiviteds and the assertion activated to cause
edch transition is shown. The activated assertion is shown with
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respect to the environment part of the resulting constraint (l.e.
after the activation has extended the environment). Various
further inflections are oprovided with the EXPLAIN command,
{EXPLATIN ALL) provides explanations of ali aAnsS<erse
(EXPLAIN Wl +ss WHk) provides explanations of the NIsty ese9 Nk'tLh
answerse  {EXPLAIN) is the same as (EXPLAIN 11}.

Explanations can be proauced oniy when the history facility is

enabledy which normally it is not. The history facility is
enaolad by (HISTURIES UWN)s disabied by (HISTORIES OFF). Enabling
tne nistory facility can impose significant overhead on the

systemy particutarly when the deduction tree must be searched to
great deptha.

The answers which one can have explained are those produced by
the most recently completed invocation of ALLs ANYs THE or SETOF.
If there d4are no such answers EXPLAIN will simply respond
"{Nothing to explain}?, An attempt to select a non-existent
answer will be ignoredy except that a note to that effect is
Lyped, ,

10.1 ALTERHATIVE EXPLANATIUN MODES.

The EXPLAIN facility is considerably more flexible than indicated
by the exampile Jjust discussedy which illustrates only the normal
mode of expianalion. Une can obtain explanations in a variety of
styles., The variations are specified by typing gualifiers in the
command following the selection of the answers to be explaineda.
To i1liustrates the command (EXPLAIN 2 NAMES FINAL) would print a
simitar sort of explanationy except that oniy the names of the
assertions would be printeds and the constraints wouid all be
recursively realized in the solution environment.

10.1.1 Specifying Items To Be Included.

Besides constraints and assertionss one may also instruct the
system 1o print answer templates at each stage of the
explanationy instantiated and simplified, One may also print
names of assertions rather than printing assertijons in full.

Wwhen namas of assartions 4dre to be printed the system will
construct names for assertions for which the user has not
specitied names. These Mmanufactured” names have the form
{Pred Rule k) or (Pred Datuin Kl following the <cbnventions
discussed Iin chapter 5, User—-supplied names are wusualily taken
just as specifiedsy but one can regquest "1ong" namesy in which
case the name given by the user is combined with the principat
predicate symbol to form a list "(Pred Name)"™, Manufactured
nanes are always in the long format.
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The gualifiers which controf atl this are the following?

ASSERT IUNS Print assertions in full {Default]l
NAMES Print names of assertions
UNNAMED Print uassertions which lack user—supplied

namess print names where available

LONG Print att names in lony format

SHURT Print user—-suppiied names in [Defauit]
short format

CUONMSTRAINTS Print constraints {Default]

HEGCUNSTRALHTS Umit constraints

ANSHERS Print danswer templates

NUANSHERS Omit answer templates [Default]

CONTINUATIUNS Print continuations with constraints

NUCONTINUATIGNS Omit continuations {Default]

If NOCONSTRAINTS is specified the format of the explanation s
adjusted accordingly. If NOCONSTRAINTSy NUOANSWERS and NAMES are
all specitied the explanation is simply a tist of the names of
t he assertions usedy with no ornamentation. The default
selection between CUNTINUATIONS and NOCONTINUATIONS can be
changed by (CUNTINUATIONS ON) or (CUNTINUATIONS OFF).

10.1.2 Specifying Environments To e Used.
We remarked earilier that the normal expianation shows each step

of Lhe ar fvation in the environment current at that step. Une
cany howevery specify other choices as follows:

INITIAL Usa initial lempty) environment
CURKENT Use currant environment {Default]
FINAL Use final (solution) environment

When the INITIAL environment is specified constraints are shown
in Lhe current environments as nothing earlier makes dany senses
while assertions are shown in the form in which they appear in
the knowiedge pases Note that the ANSHERS option is useful only
in conjunction with CURRENT, though other compinations are
allowed,.

Anything other than a gquailifier appearing in the command will be
ignorady with a warninyg message to that effect typea to the user.

- 10-3 -
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10.2 LIAITING EXPLANATIONS

The full explanation of an answers as normallily produced by
LOGLISPy can pe guite lengthyy and one might wish to limit the
explanation by omitting certain wuninteresting stepse If one
declares the pradicate ‘'Preqd? to have the attribute NOHIST,
usings says the command (PROCEUURE Pred NOHIST) explained in
chapter 4, then histories recorded by the system will omit
deduction steps which used assertions from procedure Preds and
subseguent explanations will omit such steps as well.

The followiny =2xample shows the effect of suppressing the step
using the procedure dorn in the deduction of Herbrand's age in
19290.

*{PROCEDURE Born HUHIST)
Born

T{ALL (x y) (Age x 1920 y1))
{{Turing 8«1 {Herbrand 12.1})

*(EXPLAIN 2)

To shows
((Age x 19204 y1l)

t is enoughy Dy
i= AGE=-RULE {Age Herbrand 1920. y) <= {Born Herbrand ¥ # 1908.)

i
{

to show:
({= y 12411}

then it is enoughy Dy
(i— REFLEXKIVE=LAW (= Reflexive Law))

to show:
NIL
{End of explanation)

Une observes that the omitted steps are not entirely ignored,
since the bbindinys these introduce may influence the appearance
of the steps which are retained in the explanation,
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10,3 UBTAINING EXPLANATIUNS IN LISP,

The system contains a number of SuUBKk-type functions which allow
the LISP programmer to get at the pasic material of the
explanations, The programmer can then format explanatory
material in whatever way ne finds convenient. The first argument
to mach ot these functions is an "answer number™, which is the
number ot the answer to be explaineads, just as might be typed to
EXPLAINS The effect on these functions of predicates with the
MOHIST attripbute is analogous to the effect on EXPLAIN.

(EXPLANAMES ANSNMB)

raturns 3 tist of the namesy in tong format, of the assertions
used to derive the answery in the order used.

(EXPLASSERTIUNS ANSNMB ENV)

returns a list of the assertions usea to derive the answers in
the ordar useds. Here ENY should be one of the atoms INITIAL,
CURRENTy FINALs to specifty the environment in which the
assertions will Dbe shown. tach assertions is represented by a
list

(Preg UDatum/Rule Name/tiumber Head Tl ases TH)

where "Pred” is the principal predicate symbols "Datum/Rule"” s
either the identifier "Datum”™ or the identifier "Rule", according
to the classification of tne assertiony "HName/nNumber?” is the
user-supplied name or systeam—~manufactured numbers and the
remaining entries are the predications of the assertion.

{EXPLCONSTRALINTS ANSNMB ENY CUNTNS)

returns a3 list of the <constraints arising in the derivation,
beginning with the original query anc ending with NIL. Here ENV
specifies tne environment as obefores except that [INITIAL is
treated the samezs as LUKRENT. CONTNS should be T if continuations
are desiradsys WNIL otherwise. The entries of the list returned by
EXPLOCUNSTRAINTS are themselves lists of some complexity. If the
constraint in question has no continuation, the corresponding
entry has the forms

((ql e » qN)’

where gi is a predication. If the constraint has a continuation,
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but CONTHS is NILs the entry will have the form
({gl »es gN) CUNTINUED)

while if the constraint has a continuation and COBNTNS is Te the
entry has the form

((ql .0 J]N) (}Jl en DM) PP |

where pi is a predication of the continuationy which may itselt
pe followsd by another continuationy and so on.

UEXPLTEMPLATES ANSNMB)

feturns a Jist of answer templates shown in the successive
CURRENT environmentss beginning with the original tempfate and
ending with the actual answer.

Al) of these functions follow a common convention regarding
except ions. If the answer number specified does not correspond
to an existiny derivation the result is the atom NO-EXPLANATION.
If the most recent search was performed w~ith the history facility
disabled the result is NIL,
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CHAPTER 11

INTERACTING wITH LOUOGLISP

In the present chapter we discuss the mechanics of running
LUGLISPy obtaining informations controlling the operating modes
and default settingsy and some points dealing wWwith errors.
Before doing so we emphasize one convention:?

RESERVED IUENTIFIERS

Identifiers beginning Wwith the
character "a" are reserved for use
DYy the systema Users should
generally avoid such identifiers,
Under no circumstances should a
user assign a value to such an
identifier.,

11.1 RUNNING LOGLISP

de suppose that the user has logged in and oblained access to the
disk aresa containing the LUGLISP systems The precise method for
going so will vary from one installation to another.

To run the LOGLISP system simply type the monitor "commana®

« /LUGLSP core

where "core® is an optional core argument in the form one would
give for the RUN command,. If the core argument is omitted the

system will have a rather small WOFrking areas A good medium
alfocation is  H0K. The maximum core aliocation is 164Ky which
resutts in a fow segment of Just over 128K Core requests

outside the wusable range are adjusted to the nearest allowable
value. For jarge programs one may wish to specify the LISP
storage altocations. To do soy use a command 1ike

»/LOGLSP 140,10000 1000 1000 1000

in which the core argument is followed vy a comma and the LISP
allocationsy separated 0Oy 5pacesSe. The order of these is FULL
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WURD SPACE, BINARY PRUGRAM S5PACEsy REGULAR PDLs SPECIAL PDLs with
the ailocations veiny interpreted in octaly just as in LISP.

LGGLISP wWwill print a version message and prompt with "&" when
readys bring at the top ftevel of LISP. At this point one may
enter assertionss gueriesy and the like as described in the
earlier chapters, The system includes the optional numeric
functions {(SGRT, SIN, SINDsy etc.) loaded in binary program space.

The commands just described depend on the availability of the MIC
{Macro Interpreted Command} systema At installations not
providing MIC one must use the alternate method described in the
next sectione Some instaltations running AIC do not provide the
compact M/" commandsy in which case the longer form

+»00 LOGLSP corsa
may be used {(with allocations if desired),
11.1,1 An Alternate Method

The method of running LOGLISP to be described now is useful only
for those who desire non-standard initialization or wish to
minimize the core requirements of the systems One may also run
the system using the monitor command

+«KUN LOGLSP core

in which case LISP will ask for ailocations. The system will bDe
run uninitialized with no version messagey but stiil including
the extra numeric functions, Before assertions can be entered or
queries processad the system must be initiatized using START {(see
below)s

11e2 INITIALIZATIUN

When run in the usual way the system starts out properly
initiatized with an empty knowledge base. 0One may re—-initiatlize
the LOGIC part of the system at any time by invoking the function
START.

(START)

leaves an empty knouwliedge base and resets the operating mode
controls and system defaults to their standard values, LISP
function detinitionsy file descriptionsy and identifier values
are not changed,y except for those values which are used in system

controi,

- 11-2 -




- e BN M mE me

- e wa

113 IWFURAMATIUN

When prompted for input at any of the main interaction points the
user can obtain orief instructions by simply typing HELP.
Assistance is thus avatiaole at the top level of LISP, in the
monitor pausey and in FACTSy as well as when the deduction
machinery Asks for instructions {see below). HELP is not
available while editings put the editor is just the standard LISP
editory so no speciai giffijculties shouid te encountereda.

Abbreviated instructions for usiny any of the LOGIC interface
functions {}-s THEs ALLs ANYs etc.) can be obtained by invoking
the command (OUC fn)y where "fn" jis the name of the function in
guestion. These instructions were developed using the on—1line
documentation package described in appendix As, The documentation
pactkage itself is includeg in LOGLISP for the convenience of
USBrS.,

1i.4 CUNTRUL

The earlier chapters of this report mention a number of functions
used to control varjous operating modesy as well as several
defaulls used by the sSystem, In this section we shall summarize
the <conlrol functions and axplain the treatment of defaults in
somewhatl gre2ater detail.,

11.4.1 Control Functions

With the exception of PURR and MONITUR (see Chapter 9)y ali of
the controi functions take one arguments which should be UN or
OFF (T or NIL may be used as well)sy and return the argument after
altering tne system state appropriately. These functions will,
howeversy evaluata a non—atomic argument expressions so that calls
of tne functions may DbDe nested. To ifiustrates the command
{HISTURIES (CUNTINUATIONS GN) ) enablies both the recording of
HISTURIES and the printing of CONTIHUATIONS.

Several of these functions operate simply by setting the value of
a LISP identifiery in wnich <case WNIL rtepresents UFFy while
anything else represants 0N, {PURR and MONJTOR use ALL to
represent tne state seleacted by ALL.) The identifjers so used may
be changed directly by LISP programss or accessed by them as may
seem  useful. The table which foliows lists the names of the
control functionss the initial settingss andy where applicable,
the identifier set by the funclion.




[N T T

Function Initial Setting Identifier

PURR OFF #PURK

MONITOR OFF ¥*MONITOR
CONTINUATILINS OFF *CUNTINUATIONS
HISTORIES GrF ¥HISTORIES

ASK OnN ¥ASK

AUTO= O {Nonel
AUTGAND ON [None]
AUTG=-0R On {Nonel
AUTOCORD On [Nonel

PROLUG UFF {Nonel

Initiat settings are reestablished by START. The facility
controllad by ASK is dascrined pelow in the discussion of errors.

1la4s2 Defautlts

Both in specifying deduction windows and in requesting
explanations the wuser normalily relies on many defaults. These
are noty in facty determined rigidly by the sytems but may be
adjusted py the wuser. The standard default settings arey,
howeversy restored by (START),

1le#44241 Uszduction Window Defaults - The defaults for deduction
windows are the values of the LISP identifiers Jlisted belows
along with their initial vatues.,

[dentitier Initial value
*TREESIZE INF
*NOODES[IE I MF
#FASSERTIUNS I NF
¥RULES 1600
#*DATA I NF

Each of these gives the default value for the corresponding

window limit, Though 1000 is the normal value for *RULES, a
different initial values will be used if the system was specially
constructed., The implementation constraint on the number of

rules in a single deduction wiil be rigorously enforcedy even if
*RULES is made larger than this limit. )

The values which one may assiygn to these identifiers are the atom
INF or any non-negative integer.,
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Lle4ele2 EXPLAIN UDefauits - The default qualifiers for EXPLAIN
are similarly controtled by a coliection of LISP identifiers,
The table betow shows the identifiersy the set of values each s
altowad to takes and the initial value.

ldentitier Yalue Set Initial value
FASSERTIUNS {ALLy SOMEs NILD ALL
FLCUNSTRAINTS {Ts NIL)} T
¥ LUNGNAMES {T,s NIL} NIL
*FANSHERS {T, NIL} NIL
#CONTINUATIONS {Ty NIL} NIL
FENY IRUONMENT {FINALy CURRENTs INITIAL} CURRENT

Note that *CUNTINUATIUNS is controiled by the function
CONTINUATIUNS, and affects the monitoring facility as well as
EXPLAIN,

11.% ERRORS
Errors can arise either in LOGIC or in LISP,
11.5.1 LISP €rrors

Errors detected Dy LISP witl resuit in entry to the LISP break
package in the usuat WAYe if the error arose during
simplification a backtrace wil! show none of the workings of the
reduction machinerysy which is probably the best course the system
could takes

Ai1 of the LISP facilities for recovery and anaiysis are
avaitables There ares in additiony two special break commands
which may be helpful.

LOGBK = Prints a "loyic backtrace"™ showing the expression being
simplifieag and the constraint from which it arose.

EXPLAIN = Prints a standard expianation of the constraint being
simplifiedy provided histories are being recorded. EXPLAIN may
be followed by qualifierss as in "EXPLAIN NAMES™.

Note that misspelied function names in LOGIC terms will not lead
to undefined function errorss simply to expressions which are not

evaluabies.
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l.%.2 LOUGIC Errors

Earlier chapters explained how syntax errors are handled Dy HE

and FALTS, There is one other type of error which can be
t

detected by LOGIC -- the "undefined predicate™ error.

A pradicate is considered to pe undefined if it has neither a
LISP definition {as a function) nor a LOGIC definition (as a
procedure of one or more assertions). If such 3 predicate is
encountered duriny a searchy and if the ASK facifity is enabled
{as it s initialty)y the systers will ask the wuser for
instructionsy after first printing a message specifying the
undefined predicate.

The prompt for instructions is "ASK%", Responses are as follows:

ASK %, Continue search

ASK=*=f Execute FACTS

ASK=#*S Correct spelling automaticalliyy if possible

ASK*S prad Correct spelling to pred

ASK#*E expr Evaluate expr and print the result

ASK*p Print the current constraints {as when monitoring)
ASK=*UUIT Abandon the search

ASK®HELP Print instructions .

Anything otner than ™;" causes the system to remain in the ASK
state, If the user does anything which might conceivably alter
mattersy the system will try again to simpiify and obtain
resolvents.

The automatic speliing correction attempts to find a pregicate
{agefined py LUGGIC) which closely matches the undefined predicate.
If successful it informs the user of the chosen predicates, if not

successfut it informs the wuser of that facte. Spetling
corrections are accompiished with RPLACAy so the effect may reach
beyond the Immediate situation. when the undefined predicate

occurs 45 an instance of some variapbley spelling corrections are
probably unwises and the user 1Is warned of such circumstances,

11.5.3 FAAITING Limit Exceeded

If the timit on WAITING nodes is reached and 4 new node needs to
be entercd, the system will discard the new node and print a
messuage to that effect. No provision is made for user
intervention upon such an oCccuUurrence,
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lla5+4 txhaustion UOf Free Storaye

[f a3 deduction is terminated because of exhaustion ot

free

storage {signified vy the message NO FREE STG LEFT) there may be
many nodaes AAITING to be processedy and there may not ve enough

storaye to start another search until these nodes are erased.
d0 s0y one may give the command {(#INITHEAP 1). This invokes

To
an

internai function which accompliishes the desired resulty setting

the search mode to (HEURISTIC 1 1) as it does so. Afterwards
may help to run with (HISTURIES OFF ).

11.6 AUDITIOGNAL LISP FUMCTIGNS

it

LOGLISP includes a number of functions not provided by standard

LISP. Some of thesea have been mentioned earlier.
1lebal Short Names For Arithmetic

The snort arithmetic operators are as foliows:

(+ el +es 2XN) {MACROU]
{-— el ..+ ) {MACRO]
(% el soa 208 LMACRU]
{Z el ess 2HN) [MACRU]

These ar= the same as PLUSy DIFFERENCEs TIMES, QUOTIENT, except

for neinyg more defined, (+) = (=) = 0y while {(#%) = {Z) = 1,
li.6.2 Arithmetic Relations

The following arithmetic relations are providedy in addition
those included in LISP:

(< el e2) {SUBR]
(<= el e2] [SuBR1
{(>= =2l e2) {SUBRI
(> el a2} {SUBR])

gf course "=" js defined on numpbers as well as other objects,
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11,643 Miscellaneous Arithmetic

Two otner special arithmetic functions are provideds

(%% X N) {5UBR]

returns X&¥d for integer N,

{0Do N) [SUBR]

returns T if the integer N is oday NIL otherwise.

1l.6.4 LOGLISP Utilities

Some of the LUGLISP system utility functions may be of usa
Programners. Thne names of these functions are not reserveds

(VARIABLE &) {SUBR]

returns T if e is a LGGIC variabley NIL otherwise,

to

an

assertion one might wlite {(VARIABLE (LISP x)) to determine

whether the instantiation of x is or is not a variaplea.

{CONDH el see eN=1 eN) [AACRU]

returns thne object (vl ees viN=1 . ViND)y where vi denotes

value of gl.

{AFERPRUP MD5T" "SRC™ "KEY") (FSUBK]
makes proparty KEY of SRC aiso DbDe property KEY of §ST.

property vafue is not copiad.

{Version) {SUBR]

prints a messagye identitying the version of LOGLISP in use,

{HELP ) [SUBRI

prints a4 classified tist of logic system functions.
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11.649 Date And Time

{DATEM)

returns the date as a
"day" andg “year® are
Apr May June July Auy
{UT IMEN)

returns the time of d
"hr" and "ain® are in
{CAYTIME)

returns the date
{day month year hr 3

Functions

(SUBR]

tist of the form

integers and "month"

Sept Jct Nov Dec)a.

{SUBR]
ay as a tist of
tegers.,

{SUEBR]

and time as
minj.
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CHAPTER 12

EXAMPLES OF APPLICATIONS OF LOGLISP

Applications of fogic programming are described by
[Rowalski L9797, [Clark 19791, {van Emden 19771,
[Colmerauer 19731y and [warren 19771y to name onty the principal
references,

In this chapter we describe two non-trivial examples of logic
programming in which the spacial features of LOGLISP are
exploited.

1241 PLACES — AN WINTELLIGENT'™ DATABASE,

Logic programming lends itself naturally to the <creation and
operation of "intelligent”™ databases., Such databases are capable
of peing “told" facts and rules and of being "asked" guestions
whose ans«ers in general may reguire reasoninge

The idea is to design the datavdase 50 that both teiling and
asking can be done in a reasonably free style which does not
require conformity to pre-designag formats. Ideally both telling
and  asking would be done in ordinary informal natural language -
but this s at present a major probiems An approximation to such
4 system can pe achieved in LOGLISP by using {(formal) assertions
to telt and (formal) gqueries to dska As an example of an
“intel tigent™ databvase we put togethner a LOGLISP knowledge base
call=ad¢ PLACES. PLACES contiins several! thousand assertions most
datas isesy unconditional ground assertions,

of wnich dre

Some representative data of PLACES are shown in Figure 1. For
each predicats appearing in Figure ls PLACES has a collection of
such unconditional ground assertions = a data procedurs . All

these data proceaures are comprehensive {(they averaye several
hundred assertions eachl) and some are in 3 sense compiete.
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(PUPULATION BURMA 32200000) <-
(LATITUDE WARSAW 52.25) <=
(LUFGITUDE PYONG=YANG -12%.8) <-
{ADJUINS LAOGS VYIETNAM) (-
(CUUNTRY VIEANA AUSTRIA) (-
(PRUDUCES USSR UIL 491.0 1975) <-
{3ELUNGS [RAN OPEC) <~

(REGIUN ISRAEL MIDDLE=EAST) <~
(AREA ETHIUPIA 4717738) <=~
LOHP=PER-CAPITA NEW=-ZEALANU 4250) <~
{UPEN=wATER BALTIC=SEA) <=
(HARRG# DARLAMNELLES) <~

v ol e

Resoiving a constraint (C E) against a large data procedure P
does not in gygeneral require that each of P's many assertions be
checked to see iIf its header will wunify in E with with the
seiected predication A. The secondary indexing schene of LOGLISP
allows the efficient retrieval of Just those assertions whose
headers contain one of the proper identifiers which occur in
A{E}. In gyeneral tne smallest such subset 5 of P's assertions
will be much smaller than P itselfy and the resolution process
searches S rather than P.

The procedures PUOPULATIONy AREAy REGIONs GNP=-PER-CAPITA are
complete in the sense tnat every country in the worild is covered.

The ONP-PER~CAPITA procedure gives {in us dollars) the
gnp-pef=-capita for each country in the wortd for a gparticular
year {(1976).

The procedure ADJOUINS provides data for a procedure BURDERS

whicn §s a pair of ruless

{3URDERS x y) <= (ADJUINS x vy}
{3URDEKS x y) <= (ADJOINS y x}

which give PLACES the ability to determine which <countries {or
podies ot ovpen water) border upon which others. Since ADJUINS is
a symmetric reifation we need not assert it in both directions,
and BSURDERS uses ADJUINS accordingly.

The procaaure PRODUCES gives {(in miltions of metric tons) the
quantitiss of various pasic commogities (oily steely wheaty rice)
produced oy most of the world's countries in two particular years
{1970 ana 1975). This procedure could well have covered more

years and more commoditiess but for the purposes of an example a
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tew hundred assartions secemed enough to fliustrate the
possicilities,.

While the countries of the #orld form {at any given time) a
rather definite seat, it is Jess clear what are the bodies of
water which should be named and treated as entities in a database
such as PLACES. We took the arbitrary course of naming those
bodies of sater found on the maps of various parts of the world
in the Kand McNality Cosmopolitan World Atlas. We ignored those
bodias of water which seemed too smal i to be of much significance
Ut we strove for some sort of comprenensive description of the
boundgary of each country. For exampley the guery

LALL x {BORUERS x IRAN))
gets the answer
{(STRAITS-0F=-HORMUZ GULF~0OF=-UMAN TURKEY USSR PAKISTAN IRAQ

CASPTAN=-SEA AFGHANISTAN PERSIAN=GULF)

in which ecach of the bodies of water STRAITS-0UF~-HORMUZ,
GULF=GF=UMA CASPIAN-SEA and PERSIAN=-GULF is listed as having a
portion of its boundary in common with that of the country [RAN,

12.1.1 RULES.,

PLACES containsy in addition to these ltarge "data procedures", a
number of rutes defining predgicates useful in formulating
queries.

For example there is a procedure UDISTANCE, which consists ot the
following four rules:
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{GISTANCE

<= (= d (S5PHOST

(DISTANCE

<~ (LATITUUE q
& (LONGITUDE q
& (= d (SPHDST

{(PUSITIUN 1al fol)

fal tol Jaz lo2d))
(PUSITIGHN tal 1ol) (PLACE g) d)

tad)

fol)

tal lol tae toe2))

(OISTANCE (PLACE p) (PUSITIGN t1ag lo2) d)

<- (LATITUBE p
£ (LONGITUDE p
& (= d (SPHDST

(ODISTANCE

<= (LATITUDE p
{LATITUDE q
{LONGITUDE p
{LUNGITUDE g
{= d (SPHDST

[ 33 2 AN 1ot

This procedure can
between any L«40 C
data taplesy or
on the

{PLACE p)

Detwe28Nn ONE Such
earth's surface {given by its

14al)
fol)

ial fol 1a2 o)}

{PLACE q) a)

1al)

1az)
fol)
o2}

tal 1ol 132 fao2}))

be used to obtain t he
ities whose
city and an

betwz2en two such arpitrary positions.

The procedure

user—detinad LISP

n4dmes as operaltors.
distanca (in nautical

circle
earth's surface
fongitudeas).
Thus the query:?
{THE 4

gets the answer:

519745394

DISTANCE
functions by forming constructions using their

The LISP function JPHDST returns
any two points on the
fatitudes

(DISTANCE

illustrates the

miles) petweean

{given Dy theidr

(POSITIUN Tal

great—-circie distance
jatitudes and longitudes are
arbitrary

jatitude and tongitude) or

position

respective

(PLACE SAN=FRANCISCO){PLACE OSLO). 4))



There is a rule which serves to define the predicate LANDLOCKED.
Intuitivaly, A4 country or body ot water is tandlocked if it
borders wupon only iand. The PLACES rule which formalizes this
meaning is

{LANDLUCKED x)
<= (IS=COUNHTRY x)
5 INULL (ANY 1 T (BURDERS x 2z)(UPEN~WATER z)))

This ruie contains two features worthy of comment,.
The predicate IS~CUUNTRY,s defined by the rule

{I5S-CUUNTRY x]I
K= (CUnNDG ((YVARTABLE (LISP x))I{COUNTRY y x))
{CANY 1 T (COUNTRY z x11)1})

shows how one can use to advantage the LISP conditicnal form
Wwithin a LUGIC predication. The eftect of the congitional is to
avoid redundancy in proving that a given country is a country -
by finding ali the various cities in it - via a check to see if
the argumant x is a variable or not. If it is notsy then we need
find only one datum from the COUNTRY data procedure which has the
given country as its second argumente.

The second thing worth noting about the rule for LANDLOUCKED is
the embedded daductions The list returned by the call :

{ANY L T (BUOKDERS x z)(UPEN-WATER z))
will oe empty if and ontly if x is landlocked.
A simitariy structured rule defines the predicate DOMINATES., We

Wwish to say that a country x dominates a Ynarrow" waterway y if x
borders y but no other country does. Thus:

(OOMIHATES x vy}

<= (NARRKUW vy}

& (I5~COUNTRY x)

& {80RDEKS x y)

E {piubt (aNY 1L T (BURDERS y wl
{NOT (OGP EN=-WATER w))
{(NOT (= x wl)}))




12.1.2 NEGATIUN AS FALLURE.

The use of the pradicate NUT in the procedure DOMINATES raises an
interesting generat point,.

NGT is of coursa a LISP-defined notion and will therefore receive
appropriate treatment during the deduction cycie in the manner
explained in Chapter 3.

Howevery it is possiple to include in one's knowledge base the
rule

(NOT p) <= (NULL (ANY 1 T p))

which is known as the "negation as tatlure™ rules PLACES has the
negyation as failure rule as one of its assertionss The effect of
its presence in a knowledge base is to declare that the knowledge
base is complete - that ipapility Lo geduce p is to be treated as
tantamount to tne apility Lo deguce Lhe nggatjon of p.

The version of the negation as fallure rule shown above s
undiscriminating as between tne various predications -~ it is in
effect the declaration that all of the data procedures are
complete and that all of the general procedures are "definitions”

of their predicates. it would be possible to assert more
specialised negation as failure rulesy which declare that the
knowiledge Dpase is complete @i th respect to a particular

predication-patterns, For exampley we might assert
{807 {BELONGS x yl}) <= (NULL (ANY L T (BELONGS x y}})

in order to geciare that BELUNGS is completey even though we are
not willing to assert the negation as failure rule for ali
predications p. In general, one would expect that wusers of
LOGLISP would wisn to be selective in their appeal to negation as
failures in just this tashion. Tnese data and rules are invoked
by tne foiloding queriesy which illustrate some of the

possibilitiass.
12.1.3 Some Sample dueries For PLACES.

The tollowing examplies consist of some specimen gueries which one
can make of PLACESy together with the answers that they get. In
sach case we first state the gquery in ordinary Englishy and then
restate it in formal LUGLISP.

We are not claiming that there is a uniform procedures known to

Ussy Dy which one may transiate queries from English to LOGLISP in
this manner. At presents in order to express queries {and
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indeedy, assertions) in LOGLISPy one must know the language and be
able to axpress one’s intentions in ite In this respect LOGLISP
is like any other programming langyudge. It is in fact quite easy
to learn snouygn LOGLISP to <construct - and operate one's own
datavase In the style of PLACES.

Uuery 1.

Whal are the oil production figures for the
non-arab UPEC countries in the year 1975?

(ALl (x y)
(BELONGS x UOPEC)
{NGT (BELUMGS x ARAB-LEAGUED)
{(PRODUCES x UIL y 1975.1)

Answer 1.

({IRAN 267.59999) (NIGERIA 88.399991)
{VENEZUELA 122.19999)
(INDONESIA 6441000001}
{ECUADOR 8.2000000M)

This answer is shown just as the LISP "prettyprint” command
SPRINT types it out,. It is of course possible to dress up one's
output in any way one pleases., Note that ALL returns a Jjist of

{in tnis case) tuples.

Uuery 2

Gf all the countries which are poorer than Turkeyy

which L0 produced the most steel in the year 197572
How much steel was that? what are the populations

gof those countries?
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(FIRST 2.
(GUICKSUKRT
(ALL (x y w)
{GNP=PER=-CAPITA TURKEY v)
{GNP=PER=CAPITA x u)
{LESSP u v
{PRUDUCES x STEEL y 13754}
(PUOPULATIOGN x W)
(DECREASING)
2}

Answer 2.
{ (CHIMNA 2%.0 B30000000.) (INUDIA 7.8999999 643000000C.))

This exampie illustrates the fact that ALL (like ANYs THE, and
SETOF) returns a LISP data=-object which <can be handed as an
argument tu a LISP function, In this case QUICKSCRT and FIRST
are user-defined LISP functions which were created In order to
serve a5 ussful tools in posing inquiries to PLACES.

{QUICKSORT list relation k) returns the given Jist of tuples
ordered on the kth component with respect to the given gelation.
(FIRST p List) returns the (list of the) first n components of
the given lists (DECREASILNG) returns the LISP retation GREATERP
{and we also have (INCREASING)s wiich returns the relation LESSPy

and (ALPHASETICALLY)y which returns the relation LEXORDER).

Guery 3.

which of Franca's neighbors produced most wheat {in
metric tons) per capita in the year 19757 How much
whneatl per capita was that?

{ CARLIEST
(ALL (x y)
{(BURDERS x FRANCE)
{PRUDUCES x WHEAT 2z 1975.)
{POPULATION x ul
{= y (QUUTIENT (TIMES z 10000004) ul})
{DECKREASING)
2e)




Answer 3.
{ITALY 0.1Hh3%6329)

(EARLIEST fist relation &) returas the first tuple in Jlist after

e - — 1

it has obeen re-ordered on the kth component of each ot its tuples
with respect to the given gelation. iNote that arithmetical terms

formed with LISP's arithmetic operations are evaluated by the
simplification step of the deduction <cyclesy as explained in
Chapter 3.

Query 4.

dhich of the NATO countries is landlocked?
{ALL x {BELUNGS x HNATO) {(LANDLOCKED x))

ANSwer 4.

{LUXEMBGOURG)

query Sa

dhich waterway is dominated by Panama?
(THE x {(DOAINATES PANAMA x))

Answer 5.
P AMAMA-UANAL

Mote that THE returns PANAMA-CANAL and not {(PAMAMA-CANAL).

Query b

UJascribe the boundary of the USSK by giving




atl 1ts neighbors in afphabetical order.
{URDER {ALL x (BORDERS x USSK)) (ALPHABETICALLY))

Answer 0.
(AFGHANTISTAN ARCTIC-OCEAN BALTIC—=SEA HBERING-SEA BLACK-SEA
BULGARIA CHINA FINLAND HUNGARY IRAN MUNGOLTA NORWAY
POLAND RUMANTIA TURKEY)

{URDER List gelation) returns the given ljst after ordering it

— e e e e e e e

wilh respect to the given geiation.

Query 7.
Are tners any fandliocked countries in the far
East? If soy give an example.

{ANY 1. x (REGION x FAR-EAST) {(LANULUCKED x))

Answer T.

{ MONGOLIA)

Query B.

is there an African country which dominates an
international waterway? H®Which country?
shich waterway?

{AnY 1o {x y) (REGION x AFRICA) (DUMINATES x yl)

Answer H.

{(ECYPT SUEZ-CANAL))




dJuery 9.

rhat 1s the average distance from London

of cities in countries which have a
Mediterranesan codstiine and which are no more
densely populated than Ireland? List those
countriesy together with their poputation
densitiess from least crowded to most crowded,

(PRUGN (5ETW COUNTRIES-AND=-DENSITIES
(QUICKSURT
(ALL {x x=densijtyl}
{PUPULATIUN IRELAND irish~population)
{AREA [RELAND irisn-areal
{= irish=-density
{Z irisn=popuiation irish-area))
(BURDERS x MEDITERRANEAN-SEA)
{NUOT (UPEN-WATER x1))
(PUPULATIUN x x=population)
{AREA x x=area)
{= x-density (X x-population x—area))
{NUT {> x—=density irisn—-densityl)))
{INCREASTING)
2a))
{5ETQ AVERAGE=-OJISTANCE
{AVERAGE
(ALL distance
{MEMBER pair
{EVAL COUNTRIES-=AND-DENSITIES))
{= country (CAK pair))
{COUNTRY city country)
{DISTANCE (PLACE city)
{PLACE LONDON)
distancell))
{GIVE AYERAGE~UISTANCE)
{(GIVE COUNTRIES—-ANU-DENSITIES)
(GUOTE =)}

Ansuer ‘7.
AVERAGE-UDISTANCE is
1491.13892

CUUNTRIES=AND=DENSITIES is




{{LInvYA 3.)

{ALGERIA 20.1)

{ALBANTIA 2441

{TUNISTA LOL.)

{ELYPT 1024}

{MORGCCOD 10841)
%
This exampila shows at somewhat more length what a LISP programmer
might make of an inguiry which caiils for a more involved
investigation. Assignment to t he LISP variable
COUNTRIES=AND-DENSITIES of the answer to one LUGIC call for later
use within another {as well as for output) illustrates one more
Way in which the LUOGLISP programmer can fruitfully exploit the
interface between LOGIC and LISP. GIVe is Jjust a dressed=up
PRINT command «which not only prints the value of its argument
exprassion put also prints the expression.

12.2 A COAPILER.

de shall now present a compiler for a subset of PASCAL. The
compiler parses the "source™ programy checks typess and generates
“onject™ code which can be executed by LISP {with a few
"run-time® wutility functions). In order to keep the example
smali we have confined ourselves to a few statement formsy
provided only the types INTEGER and BOUOLEAN,y with no data
structures, and made no provision for declarationsy, simply
incorporating a handful of variable idgentifiers directly into the
fanguage. Thera are no proceduraesy no functionsy no lavels. no
Jumps. Expressions are treated rather fullyy, howevery given the
other limitations.

Even though the language 1s quite fimitedy we feel that the
example |Is sufficiant to show that we can easlly write compilers
whichy, though slows are entirely adeguate for experiments in
fanguaygye design. We  point out that the compiler is readily
moditied to prouduce an absitract representation of the program,
rather tihan an executable formey as could be used for program
anatysis or verification.

1Z.2+1 DOfsganization Uf The Compiler,

The "source” program will be represented as a list of tokens,

which are simply LI5SP atoms denoting reserved wordsy identifiers,
constantsy operator symbolss and the lixke. AN example is
(BEGIN K 2= K = 1 3 ¥ 3= Y ¥ I £ND)

which will pe wWUOTEd when it appears as an expression in LOGIC.




Such lists read nicely enoughy and the texical analyzer requireag
to produce sucn a list from a character string or text file is
easily written.

Correspondginyg to each syntactic category (nonterminal) of the
language we introduce a relation which "compiles" phrases of that
cdtegory. For examples the refation for the category <statement)
has the form (STATEMENT tokens rep rest)ly where *tokens' jis a
list of tokenss as abovey 'rep' is the object representation of
the statemant which begins 'tokens®y it there is oney and 'rest’
is the torken list obtained by removing the initial statement from
‘tokens?t, We do recursive descent parsings working from feft to
right witnout vacktrackings,

In some cases we Wwish to "parametrize” categories. The relation
for <expressiono>, for exampley has the form
(EXPRESSIUN type tokens rep restl, *type' being the result type
of the expressions, Un some calis the procedure will be used to
discover the type of the expression which begins 'tokens'y while
on others it will check that the expression in question has the
proper -type.

To see how this workssy consi der the assertion for the wWHILE
statements which is

{i— (STATEMENT (CONS WHILE t1)
{PROG NIL LOOP2 (COND (1 s (GD LOOP2))))
c}
<= (PARSE t} {({EXPRESSIUON BOUOOLEAN 1) DO (STATEMENT s)) c))

The rula applies only to non—-emply lists which begin with aMILE.
Using CUONS expressions to wunity with tists in this fashion we
avoid explicit tests for ewmpty listsy but there Is no possiditlity
that we «iill attempt to take the CAK or CDR of an atom. The
Yopject™ representation is a PRUG construct incorporating the
components of the WHILE in an obvious way.

Recall that the syntax for the AHILE statment is
AHILE <Boolean expression> DU <statement> .

Although we could express this girectdy in terms of EXPRESSION
and STATEMENTy it is more convenient to use the auxiliary
relation PARSE. PARSE has the form (PARSE tokens itéems rest).
The arguments 'tokens® and 'rest' are used as beforey but 'items!
is a list of expressions (itself an expression) which defines a
sequence of items to oe parsed. tach item has one of the forms:
tokeny (syncat var),y {(syncat parm varl. An item of the form
"tokan' simply specifies that the indicatea token should be




founds The form {syncat var) specifies that a phrase of the
category ‘'syncat’ should bpe found, its representation to be
denoted by 'var's. The form (syncat parm var) is similary, except
that 'syncat' is to e parameterized witn 'parm?s.

The assertions defining PARSE are
{i—- (PARSE x NIL x}}

{i~ (PARSE x (hd + ti1) <)
= (CUND {(LATOM (LISP nd)) {= x (CONS hd tx)))
{{= nd {(syncat var)) (syncat x var tx)}
{{= hao {syncat parm var)) {syncat parm x var tx)))
E {PARSE tx ti1 c))

Cbserve the use of the wvariable "1™ Lo deal with the
unpredictavle expression lentriaes’', The expression
{ATU® (LISP hd)) is always evaluables having the wvalue T Just
when '"hd' is a token,

12.2-2 . Tneg Compiler.

At this point we snhalli fist the compilery including the
interactive documentation which has been provided for the logic
procedur=2s. fFollowing the tisting we remark further wupon the
technigues usad. The variabtes "puilt in" to the compiler
correspond to the declarations

ydar Ty JyKeXeY s L3 INTEGERS
ByPsWeRIBOULEANS

(UEFPRUP STATEMENT
{(STATEMRENT toxens rep restl))
DGC)

(PRUCEDURE STATEMENT ONERES)

{i1= (STATEMENT (CONS IF ti) (COND (i sl) « s) c)
¢= (PARSE t1 {{EXPRESSIOM BOULEAN 1) THEN (STATEMENT sl)) tx)
£ (CUND {(= tx (CUONS ELSE txx))
(AND (STATEMENT txx s2 c) {='s ({s2)))))
(1= s NIL) (= ¢ tx})))

{1~ (STATEAENT (CONS wWHILE t1) »
(PRUOG NIL LDOP: (COND (1 s (GO LU0P2)I)I)
c)
<- {(PARSE ti ((EXPRESSION BOULEAN 1) DO (STATEMENT s)) c))




(i= (STATEAENT (CONS BEGIN t1) (PROGN « ss) c)

<= {PARSE tl ((REPEATO (STATERENT ;)

i~ (STATEMENT (COMS v tx) (2= v e) c)
<= AVAR=IDEANT Lty v)

ss) END) c))

& (PARSE tx (3= (EXPRESSION ty e)) c))

(DEFPRUOP EXPRESSION
(CEXPRESSION type tokens rep rest))
ec)

{(PRUCEDURE EXPRESSIUN)
{i—= {EXPRESSION ty x r ¢)

<= (SIHPLE-EXPR tyl x seg cg)
& (CUND ({REL-JPR tyl cc rel ccc)

(AND (SIMPLE~EXPR tyl ccc se2 c)

{= ty BOOLEAN)
(= r (rel se se2))))
(T (AND (= ty tyl) (= r se)

{DEFPRUP REL=-UPR
({REL-UPR arg—type tokens rep rest))
poc)

(PROCEDURE REL=-UPR (ONERES)

{i— {REL-UPR INTEGER {CUNS r c) v c)
<= (MEAU r (GULGTE (K <= = >= > (1))}

(1= {(REL~GPR GOOLEAN (CONS 1t ¢} fr c)
K=~ (= fr
{(53ELECTU 1
(< 8<)
(<= B<=)
(= =)
(>= i>=})
(> 8>)
(<> <>}
NiL) )
& IdEQ fr NILY)

(UEFPROP SIMPLE-EXPR
{ISIAPLE~EXPK type tokens rep rastl)
DG

{= ¢ ccl))))




{PROCEDURE SIMPLE-EXPR UNERES)

(i= (SIMPLE~EXPR INTEGER (CONS + tt) r c)
<~ (TERM INTEGER ti trm cci
& (SIAPLE=-TAIL (INTEGER trwm) cc r c¢))

{i= (S5 TMPLE=EXPR INTEGER [CONS = 1) ¢ ¢}
€= {TLCRA INTEGER ti trm cc)
E A{S5IMPLE~TAIL (IHTEGEXx (MINUS trm)) cc r ¢l

{i= (SIHMPLE-EXPR ty x t c)
<- {TERM ty x trm cc)
& (SIHPLE~TAIL (ty trm) cc r c})

{DEFPRUP SIHPLE-TAIL
{({SIHPLE~TAIL (type prev) tokens rep restl)
DLC)

(PROCEDURE SIMPLE-TAIL)

(3= (SIMPLE-TAIL {ty u) x tv c)
-~ {CUOND ((ADD-UPR Lty x opr cc)
{AND ({TERM ty cc trm ccc)
{STHPLE~-TAIL (ty {opr u trm)) ccc r c}))
{t=1 u) (= ¢ x))}

DEFPRUOP ADD-UPK
({ADD-UPR type tokens rep rest))
DUC)

{PROCEDURE AUD-0OPR UNERES)
{i= (ADD=UPR INTEGER (CONS + c¢) + ¢J)

(1= (ADD=UPR IWTEGER (CUNS = ¢) = ¢))

{i- [ADU=0PR BOULEAN (CUNS 0K c) UR c))

{DEFPROP TEKNM
{{TEKM type tokens rep restl)
Quc)

{PRUCEDURE TERHM)

(1= (TERM ty x r c) <~ (FACTOR ty x f cc)
& {(TERM=TAIL (ty f) cc r c))
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{UEFPROP TLERM=-TAIL
((TERM=TAIL (type prav)
DoCy

tokens rep rest))

(PRUCEDURE TERM=TAIL)

{i-

(TERA=-TAIL
<= (L0HO

(ty u) x r ¢}

((MUL-UPR ty x opr cc)

LAND (FACTOR ty cc trm ccc)
(TERM=-TAIL (ty {opr u trm))

{({=r u) (= ¢ x)))}

(DEFPRUP HUL-UPR
{(HAUL=UPR type tokens rep rest))
DGC)

{(PROCEDURE MUL-UPR UNERES)

(i= {MUL=-UPR INTEGER (CUNS * ¢) # c))

{MUL=-0PR INTEGER (CONS DIV ¢} % c))

(i~

(i= {AUL-0PR INTEGER (CONS M00 c) REMAINDER c})

(i~ (MUL-UPR BUOLEAN (CONS AND c) AND c¢c))

(DEFPRGP FALTGR
{{FACTUR type tokens rep rest))
DCC)

(PRUCEDURE FAUTOR UNERES)

(i— {(FACTUX BUULEAN {COnS TRUE ¢} T ¢l

{FACTUR BOULEAN {(CONS FALSE c¢) NIL c))

(CONS 00D tx) (LDU e) c)
[EXPRESSION INTEGER e) /)

BOULEAN
(/¢

(FACTOR
<— {PAKSE tx

(FACTUx BUUOLEAN {CUNS NOT tx) (NUT f) c)
<= {FACTOR B0ULEAN tx f c))

{CONS /70 tx) e c)
({EXPRESSION ty e}

(FaCTux
-

Ly

(PAKSE tx /1y cl)
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(= (FaCTUR ty (CUONS u ¢} r ¢)
C= (COUND (INUWBERP u) (AND (= ty INTEGER) (= r u)))
(IVAR-TOENT ty u) (= r (VAKX u)))))

(DEFPRUOP YAR-TUOENT
{{VAR=TIDENT Ly wvar))
5ac)

{PRUCEDURE VYAR-TDENT)

(1= (VAR=-TOUENT ty v} <= (COND (({MEMu v (QUOTE (I 4 K XY Z)))
(= ty INTEGER))
({MEMU v (QUOTE {8 P G RI})
(= ty BOULEANDD))

{DEFPRUP PARSE

({PARSE tokens items rest)

(An item may be a token or {syncat var) or {syncat parm varll)
pocH

{PROCEVLURE PARSE UNERKES)
{i1- {PARSE x NIL x))

{{- (PARSE x (hd . tl1) c)
<~ (CUND ((ATUM (LISP nd)) (= x {CONS hd tx)))
{{= hd (syncat var)) (syncat x var txi}
({= nd (syncat parm var)) (syncat parm x var tx)))

& (PARSE tx ti1 c))

(DEFPRUP REPEATO
((REPEATUO cntri tokens rep rest)
{ented is {syncat sep) or {syncat parm sep)?
(Yielas {<syncatd><sep>}*{<syncat>i }1i}

0uch

(PRUCEDURE REPEATO UNERES)

(1= (REPEATO {syncat sep) x 7 c)
<~ (CUND (l{syncat x rl txi
{COND ((= tx (CONS sep txx) .
{(AND [REPEATG (syncat sep) txx rr c)
(= r (rl » 7))
({(=r {rl})) (= ¢ tx))})

{((= r NIL} (= ¢ x)))}
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{i= (REPEATO (syncat parm sepl) x r c)
<= ACind (lsyncat parm x rl1 tx)
(COND (= tx (CONS sep txx)]
(AND (REPEATU {syncat parm sep) txx rr c)
{= 1 (rl + rr))))
(=1 {r1)) (= ¢c tx})})
{{= ¢ NIL)Y (= ¢c x})))

Nole that procedures with pore than one assertion are specified
to pe ONERES. That this is appropriate depends wupon two
circumstancess Firsty the grammar is ynambiguous (we made it
that wayls. Seconds we expect that 'tokens! really will be a list
of atoms. For the auxiliary procedures PARSE and REPEATO the
appropriateness of JNERES follows from the fact that the argument
expressions in calls of these proceaqures dare aiways specified in
sufficient detail that only one assertion will applys

REPEATOs which has the appearance of a parameterized categorys
handies constructs of the form "zero or more occurrences of
‘syncat' {(possidly with parameter) separated by 'sep'™, The
“"representation® it produces is an expression having the form of
a list of representationsy and is used as the tail of sume larger
EXpression. The assertion deating with compound statements
illustrates the use of REPEATO.

The treatment of simple expressions (rejation SIMPLE-EXPR) is
compiicated Dby the necessity of associating unparenthesized
expressions to the 1aft. "X + Y = I"y for example, means
H{X +« Y} -~ IV, To 4dccomplish this we introduce the auxiliary
relation SIHPLE-TAIL, whose parameter incliudes the representation
of tne previous portion of the expression being compiled. The
objeclt raepresentation of "X + Y =~ IV js

{- (+ (VAR X) {VAR Y)) (VAR 1))

VAR teing the run—time tunction which evaluates variables. TERM
is hanaled similarly.

“e have implemented AMD and OR wusing the corresponding L ISP
functionsy which is not entirely propers as LISP uses "short-cut"

gvafuationsy uniike PASCAL., No real harm rgsults. thoughsy since
our restricted language admits no expressions with side effects.,

12.2.3 Using The Compiler.,
One can use the compiler by simply invoking a gquerys 4s

¥(THE (r c) (STATEMENT '(x 3= Y ¢ Z + 1 3) 75 c))
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(= X vy (% (VAR Y} (VAR Z)) (VAK 1)) {QUAOTE (51 ))
*

Note that we can compile a singie expression as easiiy as an
entire proram == a useful teature for the language experimenter.

To make matters 4 {ittle easier we have written some simple LISP
proyrams Lo manage administrative choresy these being included
with Lhe run=time support programs. For our purposes a program
is Justl a statement, followed perhaps by a terminating character
such as ".", anat follows is an example involving a fess trivial

program, tne tast exponentiation alyorithm.

FLGPRINTC FASTEXP)

(BEGIN
Y:"lnp
L 1= X
K 2= 1 ,
wHILE K > 0. DO B
Ir UbU ( K ) THEN
BEGIN ¥ 2= ¥ * [ 3 K 1= K = 1. END
ELSE
BEGIN 2 2= 2 * 7 3 K 3= K DIV 2. END
END o)
NIL

¥(CUMP ILE FASTZAP)

CoMPILED
¥LSPRINT U3JECT 1)
(PRUGH (:i= Y 1l.)
(2= £ (VAR X))
(:= K (VAR [1})
{PRIG NIL
LUJP: (COND
({> (¥AR K} 0.}
(COND ((UDD (YAR K1)
{PRUGN (= Y (* (VAR Y) (VAR Z)1))
12 K {= (VAR K) 1.))))
{({PROGN (2= Z (* (YAR 1) (VAR Z}))
1= Kk (%2 (VAR K) 2431)))
(GO LOUPsI))
NIL

*{UEP X 2 [ 13)

Deposited
AU U3JIECT)
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NIL
¥EXH X 1 Y £

13.
Bl .
256,
Q.

¥ %

WO KN~ -

The obgect proyram which resuits is left as the value of the
fdentifier DBJECTs which we find to be a LISP version of the
algorithm, The function UEP (for DEPosit) is used to preset the
necessary variablesy RUN executes the object programy and EXM is
used afterwards to EXaMine the outcome, values of program
variables are actualily stored as PVAL properties of the variabie
identifiersy thus avoiding_any possibility of collision with LISP
identitiar valuess which are VALUE properties.

The techniques used in the run—time system are too primitive to
serve for the implementation of more sophisticated languages,
particutlarity those including proceduressy but the compiler itself
suffers no such defects One point regarding the compiler bears
furthar discussion, se have chosens at the expense of some
comptication in tnhe logicy to write the compiler so as to avoid
packtrackings That Lhis is the case is apparent from the use of
ONEREDS Tne resuft is a faster compiler than would be obtained
“ith backtracking, but beyond thisy when entarging the language
to encompass declarations we have the option of using imperative
technigues for sympol table management. With backtrackings hence
"concurrent®” exploration of the deduction trees this option would

be lost.
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APPENDIX A

AN INTERACTIVE DOCUMENTATION FACILITY

The tile UDUCWLSP (compiled version UNC.LAP) contains a collection
of LISP oprograms which define 3 simple facility for documenting
LISP Systems on-line. The method used is to associate
Ydocumentation™ with identifiers wunder the property DOC. This
dqocumentation may be any ifist structure whatevery although the
package sdpporls certain giementary conventions regarding
funcrtion documentation. There ares in additiony 3 ftew functions

whicn assist in the preparation of nicely formatted files with
function definitions and documentations

Aol FUNCTIUNS FUR DEFINING DOCUMENTATIUN
The pacxkage contains functions for defining documentation

properties in generaly as well as special functions for function
documentation.

(00 =iI"™ "puc™) [FEXPRI]

Inserts documentation {00C) on the property 1list of tpe
identifier [. Q0L may consist of several itemsy as in
(GO FOO (This is a) (siltly example)ly which results in

({This is a) {(sitly example)) as the documentation of FUD.
(LFO "F™ 7HaCc™) [FEXPR]

Inserts documentation for a previously defined function F. ) DFD
Jubtomaticatly inserts the argument tist and funct?on type (EXPR,
FEXPR or MACKU) at the front of the documentation so  as to
produce standard function documentations As with DU DOC may
consist of several items. OF0 returns thg.fungtion name F. Ith
i5 noty in facty a functiony DFD acts like DDs but returns the

list (DU F) to inform the user of its action.

The style of documentation produced by UFD is coqside;ed ;zi?z?;d
in the systemy and three functions are provided ot g

functions and documentation simul taneous! ya




. e e m W W A e m W M M me B e W

(OOBE "EN™ ™ARGS" ("OuC™) "ggpyn) [FEXPR]

Defines an cXPR namad FN with argument list ARGSy documentation
DOC  anu vody BULYy which s typed just as for DE. The
gocumzntation must be a single item {usually a list) as signified
hy Lhe parsntheses above, Lo which the argument list and type
(EXPR) wili be added dutomatically, DUE  actually wuses DE to
insert the definitiony sg newly defined functions are added to
the file >AVE, DDE returns FNy or (EN REDEFINED}, if FN was
previously defined to be a functions

(UDF "FL™ MARGS™ ("DUC™) “3gDpyYY) {FEXPR]

Is tike UUEy except that the function thus defined is of type
FEXPK

(OD™ RN MARGS'™ ("DOC™) "™BODY"™) {FEXPR]

[s Tixke OLEy except tnat the function thus defined is of type
MACK .,

As2 FUNCTIUNS FOR PKINTING DUCUMENTATION

(COC "I1" "I[2" sas ) [MACRU]

Prints tne documentation for Ily [Z23 see (if any) in DEFPROP
formaty, usinyg PP to obtain nice ltayout and indentation. 00C
returns an identitier with vacuous PNAME. Messages indicating
that some identifier "has no properties on PRETTYPROPS™ simply

indicate tne absence of a DUC property,

{(PPRGC X)) [EXPR]
(LR [~wBUC X))

Controls tna printing of oocumentat?oq oy PP ‘(?PDUC T), t?ablz?
orinting of gocumentationy while {PPDUL NIL) dlsagles p;tn ﬁg‘ !
PPUUC returns the new value of PRETTYPROPSy whic

docuimnentation. GRINDOC is synonomous

is the list of properties printed by PPs
with PPiUC.

Ae3  FUGCTLINS FOR EDITING DOCUMENTATION

in that egiting commands

Ly , . ax i DITF
The e¢dgiting functions are axin to £ typed outside the call on

may ve includedq in the funclion call or
the same line, if one WishesSe

{EDITY 1 "Cois™) {FEXPR]
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Ed§t§ the documentation of [, COMS is an optional sequence of
egtting commandse EUITD returns .

(EDITFD "ENT™ "CUMS"™) [FEXPK]

Edits the documentation 4and definition of the function FN
simultancsousty as a list having the form

{DUC documentation type definition)

whicn looks like a seyment of the property list of FN. Although
this bist can be edited any way one likesy the type of the
function (as specified in its property list) can not actually be
changedsy nor can the documentation property be removede. Upon
exit from the editor the function dgefinition and documentation
are checked Lo insure that arguments and type agree ands if noty
a4 messaye to that effect is printed and one is returned to the
editor. If FN is not documented EUITFD prints =tDITF and runs
EDITF. [f FN is documented but not a functiony it prints =tDITD
and runs that function. EDITFD returns Fi.

Ae4 FUNCTIUNS FOR GENERATING FILES

The functions described below provide means for writing files
with linzlangths specified at the terminal, This is particulariy
useful when genzrating files of LISP tunction definitions which
Are to be incorporated in papers typed on pages of normal size.
These functions follow certain common conventions. In each case,
the fite generated by the function is written on device DSK:Is and
the name of the file is the first argument., The name should be
atom or a dotted pairs. The linelength with which the

either an ‘
is the second aryument and should be an integery

file is written

usually in tnhe range 60 to 124,
(WK ITEPKUGS MFILE®™ PLENGTHY BELNMT) {FEXPR]

jdentifiers which are MEMBERS of FLNM on FILE with
MEMBERS of FLNM which are not identifiers are
simply PRInTeas. FLUM should be a tile name defined for BUIED, as
might Dbe constructed sith ADDTO. The properflgs recor?edwan the
file are agetermined by the current yaiue of GRINPRGPSy as ?luags.
The resulting file can be read with DSKIN» but does not include
the sort of file definition information written §y BUILD.

WRITEPRUGS returns FILE.

GRINUEFs the
lineiength LENGTH,.

(WRITEDUC "FILE™ MLENMGTH" "FLNMT) {FEXPR]

Generates a4 file much like ARITEPROGSs except that only DOC

proper ties are recorded in the files




CARET=ANY MEILE® “LENGTH"™ “OPERATION") [FEXPR]

GeqeraLeS_FILt ~ith linelenyth LENGTHy the contents of the file
beiny urstyen Dy the evaluation of UPERATION, UPERATION may be
4Ny =2xpressiton wshatever whose evaluation results in printing.
The Iocal variables of WRITEANY ail have the form #...%9y so these
are unbirkety to interfere with global wvarijables appearing in
UPERATLUNe  wRITEANY returns the value of OPERATION. *

Aed  HtlNTH Ol USING THE PACKAGE

Since SPRINT does not work particularly well on long Jists of
Atomsy it IS usually wise to diviue narrative sections of the
documentation intlo lists of wmanageable length. The next section
Jives some exdamples,

ahen devz2loping a collection of LISP programs It seems most
convaenient to perform (GRINDOC Ty so that BUILD will write
gocumzntation in the files it createsy which documentation wiil
then e retrievad when the resulting files are read with DSKIN.

One may not wish to include all the documentation In a
“"oroocuction systemy since this could require a good deal of
Storidge. In such cifrcumstances one should BUILD after (GRINDGC
NIL) 4and write a separate documentation file using WRITEDUC.
Large linel=nyths are suggested for files not intended for
pubticatione Jdne can imagine other ways of using the package as

Wf‘:l f.

Filas containing documentation may be compiled in the usual way
in which case the documentation will appear in the LAP file,
where it can be read by DSKIN. Files written by WRITEPROGS = or
Ak TEolC are  liwely to be incorporated‘in RUNOFF source files.
RUMUFF w1 i1 projuce the expected result if the text from the

program file is precceded by the command

eNfals A, Lbel4432940948 9506

U i 3¢ i kip commands in place of the

Une will usually need to insert s‘ : ‘ 7

oDiann fines appaaring in files written by these programs. ?e?are

Loé 3 f ch;rjctﬁrs suych as '#' wnich are of special significance

to RUQUFF~ }navzlso the Y which PRINT generates when atoms cross
_ s . : 2

the and ot a line.
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Aab AN EXAMPLE

A Jlve now an example consisting of a few of the functions in
the Afiie udCalSPs  alouny with tne documentation which is
dssocCtated with those functions {and included in UOC.LSP). This
tisting was generated By parforming

*(PPRUC T)

(LOC SPECIAL (READMACRO . PP=RMACS) EXPR FEXPR MACRU (VALUE « PP-—
YAULE) PRINTMACRO)

*ADUTO EXAAPL 0D DUC «“RITEPROGS)

(NEw FILE ZXAMPL)
NIL

*UARITEPRUGS (EXAMPL o TXT) 60. EXAMPL)
(EXAMPL . TxT) .

-
The resuiting fife is3

(F5UBR (0D 4RITEPROGS))

(CEFPROP DUC
(LAABDA (L)
MACRDO
(UL)‘L LD B "IZ" R
{(Prints documentation of [1 12
datfined))

-==~ in DEFPROP format if

Ll

(CEFPRUP DUC * :
(LA%gDA (L) (5UBST (COR L) 'X "{PP (P: (LOC) o X))

MACRO)

{UEFPRUOP DU

(LARBUA (L)

FExXPR

(us "I “ouc™)

(Uefine documentation for 113}
Loy




{UEFPRUP U
(LAMBOA (L) (PUTPROP (CAR L) (COR L) "DOC)Y (CAR L))
FEXPR)

(UEFPRUP #RITEPRUGS
(LAMBSDA (F)
FEXPR
LARITEPROGS M™FILE" "LENGTHY NELRMT)
(GRINGEFs all atoms which are MEMBEKS of FLNM on DSK:IEILE)
(PRINTS non-atomic MEMBERS of FLNMI
{Linelength given by LENGTH)
(FLHM shouid be a tilename defined for BUILD)Y)
gocy

(DEFPRUP WRITEPRUGS
(LARBDA (F)
(PRUG (ULUC LAB L)

{EVAL (LIST (FUNCTION OUTPUT)
YARITEPRUG
*HSK:
{CAR F)))

"(S5ETQ OLDC (DUTC "WRITEPRUG NIL))

(SETQ Lw8 (LINELENGTH NILD)

(LINELENGTH (CADR F))

(SETU L (GET (CADDR F) 'MEMBERS))

LOUP {COND

L (COND {(ATUM (CAR L))

(EVAL {(LIST 'GRINUEF (CAR L))}]}
[ITERPRI (PRINT (TERPRI (CAR L))})1)
(SETG L {CUR L))
(63 LOUPIT)

(LINELENGTH Luwis)

(GUTC OLbL T

{RETURY (CAR F) 1))

FEXPR)
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	102720431-05-001-src
	102720431-05-002-src
	102720431-05-003-src
	102720431-05-004-src
	102720431-05-005-src
	102720431-05-006-src
	102720431-05-007-src
	102720431-05-008-src
	102720431-05-009-src
	102720431-05-010-src
	102720431-05-011-src
	102720431-05-012-src
	102720431-05-013-src
	102720431-05-014-src
	102720431-05-015-src
	102720431-05-016-src
	102720431-05-017-src
	102720431-05-018-src
	102720431-05-019-src
	102720431-05-020-src
	102720431-05-021-src
	102720431-05-022-src
	102720431-05-023-src
	102720431-05-024-src
	102720431-05-025-src
	102720431-05-026-src
	102720431-05-027-src
	102720431-05-028-src
	102720431-05-029-src
	102720431-05-030-src
	102720431-05-031-src
	102720431-05-032-src
	102720431-05-033-src
	102720431-05-034-src
	102720431-05-035-src
	102720431-05-036-src
	102720431-05-037-src
	102720431-05-038-src
	102720431-05-039-src
	102720431-05-040-src
	102720431-05-041-src
	102720431-05-042-src
	102720431-05-043-src
	102720431-05-044-src
	102720431-05-045-src
	102720431-05-046-src
	102720431-05-047-src
	102720431-05-048-src
	102720431-05-049-src
	102720431-05-050-src
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