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On Implementing Prolog In Functional Programming M. Carlsson
1. Abstract

This report surveys techniques for implementing the programming language Prolog. It fo-
cuses on explaining the procedural semantics of the language in terms of functional programming
constructs. The techniques success continuations and proof streams are introduced, and it is
shown how Horn clause interpreters can be built upon them. Continuations are well known
from denotational semantics theory, in this paper it is shown that they are viable constructs in
actual programs. '

Other issues include implementation of logical variables, structure sharing vs. structure
copying, builtin predicates, and cut.

2. Achieving Backtracking

Several authors ¢, 1!, 7 have proposed abstract machinery to implement the backtracking
behavior of Prolog. Typically the abstract machine includes a set of registers and various stacks
carrying the state of the machine. Backtracking amounts to restoring parts of this state as it
was at some previous fime.

In this section, we will give a more abstract implementation of backtracking using concepts
from functional programming. Continuations °® are the workhorse for achieving the desired
control structure. Recursion is used instead of manipulation of explicit stacks, and parameter
passing is used instead of assignments to machine registers.

There are at least two fundamentally different techniques for achieving backtracking and we
will call them proof streams and success contsnuations. In this paper, the word “continuation”
denotes any function that is either passed as an argument or returned as a value.

2.1 Suecess Continuation Scheme

The idea here is that the theorem prover receives an extra argument, the success continua-
tson. If the theorem prover succeeds in proving its goal, it calls this continuation. If it fails, it
simply returns. Backtracking is achieved by the possibility that the theorem prover finds several
proofs of its goal, in which case it calls the continuation for each proof found.

2.2 Proof Sti'eam Scheme

Here, the theorem prover returns a proof stream, which conceptually is a lazily evaluated
list of environments, corresponding to the possible proofs of the given query. In a concrete -
implementation, a proof stream could be either

for failure i.e. no more proofs, or a pair
(environment . continuation)

for success i.e. a proof was found. Continuation is a function that returns a new proof stream.
Environment could be the set of variable substitutions involved in a particular proof. Backtrack-
ing is achieved by calling the continuation of successive proof streams until failure eventually
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results. To our knowledge this idea was first conceived by Abelson !. It has been used later by
Kornfeld ©.

2.3 Interpreters

We present here running implementations of the two techniques written in pure Lisp.

A continuation is implemented as a Lisp function consed {o an incomplete argument list.
The continuation is called with additional arguments that complete the argument list, which is
then passed to the Lisp function.

Prolog datatypes used are atoms, pairs, and variables. Variables are implemented as symbols
that begin with a “?”.

Variable bindings are kept in an association list éonsisting of pairs
((variable . sndezl) . (term . indez2))

where the indexes are used to distinguish between synonymous variables belonging to different
uses of the same assertion. The index is increased once per resolution step. This is essentially
the structure sharing technique of Boyer and Moore 2. It is discussed in more detail in chapter
3.

The database is only indexed on predicate symbols. The :assertions property of a symbol
contains a list of assertions.

Sucecess Continuation Interpreter

This is a MacLisp implementation of the above ideas. It defines a Horn clause interpreter
and includes predicates about appended and reversed lists.

(defun prove (env j goals i cont)
;s Proves “goals® seen through sndez “6” and calls
-~y Yeont”, °J” 4s nest available indez.
(cond ((null env) nil)
;An smpossible environment gs empty.
((null goals) (invoke cont env j))
(% (vesolve (car goals) i (assertions (car goals)) j ‘(prove ,(cdr goals) ,i ,cont) env))))

(defun resolve (goal i assertions j cont env)
,,For each proof of “goal® with respect to “asserttons”,
5 “cont” §s called.
(cond ((null assertions) nil)
((prove (unify goal i (caar essertions) j env) (1+ j) (cdar assertions) j cont))
(& (resolve goal i (cdr assertions) j cont env))))

(defun unify (x iy j €)
,,Returns a non-empty environment upon success.
(unifyl {ult (cons x i) €) (ult (cons y j) e) e))
3 ’ December 8 1083
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(defun unifyl (xi yj e)
(cond ((null ) ¢)
((a"d (eq (car i) (car yj)) (eq (cdr xi) (cdr yi)))

((and (consp (car xi)) (consp (car yj)))
(unify (cdar xi) (cdr xi) (cdar yj) (cdr yj)

(unify (;)ar wi) (edr xi) (caar yj) (cdr yj)
((variable-symbol-p (car xi)) (cons (cons % yj) e))
((variable-symbolt-p (car yj}) (cons (cons yj xi) €))

((equal (car xi) (car yj)) e)))

(defun ult (x e)
s Follows chasn of linked varsables.
(let ((pair (assot;: % €)))
(cond ((null pair) x) .
((eq x (cdr pal.r)) %)
(b (ul (cdr pair) e)))

A predicate to append two lists could for example be represented as

(defprop append
(((append (?X . 7XS) 7Y (?X . ?ZS)) (append XS ?Y 7ZS))

((append () ?X X))
:assertions)

M. Carlsson

Auxiliary functions include invoke for invoking continuations, variable-symbol-p for recogniz-
ing variables, assertions for retrieving appropriate assertions from the database, and a toplevel

function.

Proof Stream Interpreter

To arrive at an interpreter based on proof streams, the functions prove and resolve above
should take proof streams instead of continuations as arguments, and should return proof

streamns as values.

The following code implements streams as ordinary lists. Under lazy evaluation this would
result in the desired backtracking. The environment in the above discussion of proof streams is
actually implemented as a pair of (5) the variable binding alist and (s5) next available index.

(defun prove (stream goals i)
s Each goal “filters” the proof siream.
(cond ({null stream) ()) '
((null goals) stream)
(¢ (prove (resolve stream (car goals) i (assertions (car goals)))
(cdr goals)

)
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(defun unifyl (xi yj €)
(cond ((null e) €) . . ‘
((;nd (eq (car xi) (car yj)) (eq (cdr xi) (cdr yj)))
((anfi (consp (car xi)) (consp (cgr yi))) .
(unify (cdar xi) (cdr xi) (cdar yj) (cdr yj)
(unify (;:)a)ar %) (cde xi) (caar yj) (cdr yj)

((variable-symbol-p (car xi)) (cons (cons xi yj) e))
((variable-symbol-p (car yj)) (cons (cons yj xi) e))
((equal (car xi) (car yj)) €)))

(defun ult (x e)
;;Follows chain of linked variables.
(let ((pair (assoc x e)))
(cond ((null pair) x)
{(eq x (cdr pai.r)) %)
(t (ult (cdr pair) €)))))

A predicate to append two lists could for example be represented as

(defprop append
(((append (?X . ?XS) ?Y (?X . ?ZS)) (append ?XS ?Y 7ZS))

((append () ?X 7X)))
:assertions)

M. Carlsson

Auxiliary functions include invoke for invoking continuations, variable-symbol-p for recogniz-
ing variables, assertions for retrieving appropriate assertions from the database, and a toplevel

function.

Proof Stream Interpreter

To arrive at an interpreter based on proof streams, the functions prove and resolve above
should take proof streams instead of continuations as arguments, and should return proof

streams as values,

The following code implements streams as ordinary lists. Under lazy evaluation this would
result in the desired backtracking. The environment in the above discussion of proof streams is
actually implemented as a pair of () the variable binding alist and (is) next available index.

(defun prove (stream goals i)
;Each goal “filters® the proof stream.
(cond ((null stream) ()) '
((null goals) stream)
(t (prove (resolve stream (car goals) i (assertions (car goals)))
(cdr goals) '

)
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(defun resolve (stream goal i assertions)
;yEach stream element ss replaced by a new stream
,, incorporating the proofs of “goal”.
(cond ((null stream) ())
(t (2ppend (resolvel goal i assertions (cdar stream) (caar stream))
(resolve (cdr stream) goal i assertions)))))

(defun resolvel (goal i assertions j env)
(cond ((null assertions) ())
((null env) ()
(& (let ((envi (unify goal i (caar ass'ertions) j env)))
(append (prove ‘((,envl . ,(1+ j))) (cdar assertions) j)
(resolvel goal i (cdr assertions) j env))))))

A concrete implementation along the lines in Section 2.2 is given in Appendix I.

2.4 Comparison

It is fairly obvious that using success continuations recurses deeper and so consumes more
stack space, whereas using proof streams constructs more delayed objects and so consumes
more cons space. However, by introducing in the code special cases for e.g. last conjunct or last
disjunct, the behavior of both schemes improves significantly.

Moreover both interpreters contain plenty of direct and indirect tail recursion, which of
course i8 transformed to iterative form in “production” versions of the algorithms.

3. Structure Sha,fing vs. Structure Copying

A major source of inefficiency in the above interpreters is the implementation of the binding
environment. It is implemented as an association list without any indexing. To get the bound
value of a variable one may have to search the whole list. Worse, one may have to do repeated
searches in case there are variable-to-variable bindings. This means that execution times become
at least O(n?), where n is the number of nodes of the and-tree of a proof.

In structure sharing implementations such as Warren’s !! every use of an assertion has its own
activation-record like binding environment. There is then no need to search the environment
for a binding. Warren lets a base register point to the activation record and assigns offsets to -
variables. He is then able to get a variable binding in just one machine instruction. Structure
sharing is typically implemented to let unify destructively update the binding environments.

Another method is structure copying in which one uses copies of assertions. A new copy
is constructed in each resolution step. The copies contain value cells, and unify is allowed to
destructively update these. Whether it is worth while to recycle the copies is an open question.

A more sophisticated variant is unification driven structure copying, where “pure code” is
copied only when it is unified with a variable. This variant is used in the systems described by
Mellish ® and by Carlsson and Kahn 8.
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With destructive changes, the need to undo these arises. Structure sharing and structure
copying implementations typically use a reset list or traslto record all variable bindings, in order
to know what to undo upon backtracking.

The cost of constructing copies of assertions should be weighted against the relative com-
plexity of structure sharing implementations where terms always / 2nust be “seen” through an
index (a pointer to a binding environment). This means that twnce as many arguments have to
be passed around in the inner loop of the interpreter.

On computers with indirect addressing support in Lisp one can even make pointers to value
cells totally transparent. This is a very attractive feature since it drastically reduces the cost
of interfacing Prolog to Lisp, which one typically wants in a Lisp-based Prolog system. An
extensive comparison of structure sharing vs. structure copying has been done by Mellish ®,

We will now further refine the success continuation technique to use structure copying. It
is left as an exercise to the reader to implement indexed structure sharing.

8.1 Structure Copying Interpreter

Value cells are represented here as pairs
($var$. value)

The value field of an unbound value cell points to the cell itself.

The following is the central parts of a success continuation interpreter that uses “naive”
structure copying. Note here that an assertion is represented as code to construct a copy of the
assertion in question.

(defun prove (goals cont)
;yProves “goals” and calls “cont”®.
(cond (goals (resolve (car goals) ‘(prove ,(cdr goals) ,cont)))
(b (invoke cont))))

(defun resolve (goal cont)
;,For all proofs of “goal”, “cont” ss called.
(try-assertions goal (assertions goal) *trail* cont))

(defun try-assertions (goal assertions mark cont)
(cond (assertions
(cond ((try-assertion goal (car assertions) cont))
(b (reset mark)
; Reset trasl back to “mark”.
(bry-assertions goal (cdr assertions) mark cont))))))

(defun try-assertion (goal assertion cont)
(cond ((unify goal (funcall (car assertion)))
(prove (funcall (cdr assertion)) cont)))) | :
' 6 December 8 1083
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(defun unify (x y)
(cond ((eq x y))

{(2nd (consp x) (consp y))
(and (unify (dereference (car x)) (dereference (car y)))

(unify (dereference (cdr x)) (dereference (cdr Y
((variable-p x) (unify-variable x y))
((variable-p y) (unify-variable y x))

((equal x y))))

(defun unify-variable (x y)
,yUnifies a variable with a term.

(progn (push x *trail*) (rplacd x y)))

(defun dereference (x)
s Follows chasn of lsnked varsables.
(cond ((variable-p %)
(cond ((eq % (cdr x)) x)
(t (dereference (cdr x)))))
)

The global variable *trail* holds the reset stack. The function cell creates a value cell. The
function reset restores value cells to the unbound state. Vanable-p is a predlcate for recognizing
value cells. : ’

Each assertion in the database is represented by a pair of functions, where the first ele-
ment constructs the head of an assertion and the second element constructs the body. This is
exemplified by the database entry for append

(defprop append
((appf-l .)app-l=2) (app-2-1 . app-2-2))
{defun app-1-1 ()
(setq ?X (cell)) ‘(append () ,7X ,?X))
(defun app-1-2 () ‘()
(defun app-2-1 ()
(setq ?X (cell) ?XS (cell) 7Y (cell) ?ZS (cell))
"(append (,2X . ,IXS) ,IY (X . ,7ZS))
(defun app-2-2 () ‘((append ,7XS 7Y ,7ZS)))

A Note on Determinacy

It should be noted that the stack space consumption of the above interpreter can be much
reduced if prove can test whether a goal is determinate, viz.

(defun prove (goals cont)
(cond ((null goals) (invoke cont))
((determinate (car goals))
(and (resolve (car goals) ’(true)) (prove (cdr goals) cont)))
(b (resolve (car goals) ‘(prove ,(cdr goals) ,cont})))))
| 7 December 8 1083
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4. Adding Builtin Predicates

In addition to the pure Horn clause theorem proving capabilities, any Prolog implementation
needs builtin predicates. This can be done e.g. in the following way: Let the :assertsons property
of the predicate symbol be the pair

(:builtin . function)

where funclion accepts two arguments: a goal and a continuatibn Resolve needs to take care of
this case. As an example, we show here how to implement bagof with this technique.
(defun resolve (goal cont)
(let ((assertions (assertions goal)))
(cond ((eq *:builtin (car assertions))
{funcall {cdr assertions) goal cont))
(t (try-assertions goal assertions *trail* cont)))))
s (bagof 2t Pp 2b): ?b is the bag of all ¢ such that fp holds
(defprop bagof (:builtin . bagof-prover) :assertions)
(defun bagof-prover (goal cont)
(let ((mark *trail*)
(reslist (list ())) ((?t ?p 7b) (cdr goal)))
; Reslist collects the result.
(resolve ?p ‘(bagof-aux ,t ,reslist))
(reset mark)
(cond {(unify (dereference 7b)

(nreverse (car reslist)))
(invoke cont)))))

(defun bagof-aux (term reslist)
(push (instantiate (dereference term)) (car reslist))
nil)

where instantiate is a function that copies its argument, removing bound value cells and replacing
unbound value cells by fresh ones. This is necessary since different proofs of ¥p may assign
different values to value cells in 7.

Note that bagof-aux always returns nil. This is to force the theorem prover to really find
all proofs of 7p. In try-assertions, the value returned from the non-tail-recursive ¢all to prove is
tested, and if non-nil, no more assertions are tried. This is used by the toplevel function prove
so that the user can stop the search at a particular proof. It also prepares for the issue coming
up in the next section.

5. Adding Cut

The cub control primitive needs extra machinery. The test in try-assertions mentioned
above offers the control alternatives “find all proofs” vs. “find first proof” for a given goal.
Cut, however, is more complex because it is lexically scoped, and so at run time one needs
some device that can mimic lexical scoping. One such device is to keep track of the ancestor
depth of the current and-tree node. Instead of returning nil for failure, the theorem prover and
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builtin functions can return an integer specifying an ancestor depth to return to. These ideas

are implemented as follows.
(defun prove (goals cont d)

;Proves “goals” at depth “d” and calls “cont”.
(cond (goals (resolve (car goals) ‘(prove ,(cdr goals) ,cont ,d) d})

(b (invoke cont))))
(defun resolve (goal cont d)

(let ((assertions (assertions goal)))
(cond ((eq ’builtin (car assertions))
(funcall (cdr assertions) goal cont d))
(& (try-assertions goal assertions *trail* cont d)))))
(defun try-assertions (goal assertions mark cont d)
(cond (assertions
(let ((msg (try-assertion goal (car assertions) cont d)))
;s Thes code returns “msg”® to the right level.
(cond ((> msg d)
(reset mark)
(gtrye sse;ﬁ)izr;s.agoaltgcdr assertions) mark cont d))
== MSg ailure
(s msg))
(t *failure*}))

(defun try-assertion (goal assertion cont d)
(cond ((unify goal (funcall (car assertion)))
5, The depth is sncreased sn each resolutson step.
(prove (funcall (cdr assertion)) cont (1+ d)))
(& *failure*)))

(defprop cut (:builtin . cut-prover) :assertions)

(defun cut-prover (ignore cont d)
5, Upon backiracking, cut fails the parent goal.
(invoke cont) (1- d))

The constant *failure* contains a large integer.

6. Prolog

To extend the toy interpreters of this paper into full-fledged Prolog systems is straight
forward and has been done. The resulting system is comparable in speed with interpreted
DECsystem-10 Prolog and is listed in Appendix II.

7. Conclusions

We have surveyed techniques for implementing Prolog interpreters in Lisp. We have ac-
counted for the procedural semantics of the language in terms of functional programming con-
structs which can be considered a very high level abstract machine.
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Related work includes Komorowski . He gives a denotational semantics for Prolog involv-
ing configurations and stacks to hold the state of his abstract machine. He made no use of
continuations. This is surprising considering how well they suggest themselves for defining the
operational semantics of Prolog as we have tried to show in this paper.

8. Appendix I: Proof Streams With Continuations

The following is the central part of a proof stream interpreter as was discussed in section
2.2. All of these functions return proof streams which are either

for failure i.e. no more proofs, or a pair
(environment . continuation)

for success i.e. a proof was found. Continuation is a function that returns a new proof stream.
Environment is a pair of (i) the variable substitutions involved in a particular proof and (i) next
available index. Backtracking is achieved by calling the continuation of successive proof streams
until failure eventually results. All of these functions return proof streams.

(defun prove (env newi goals oldi)
,yReturns the proofs of “goals® in “env”.
(cond ((null env) ())
((null goals) ‘((,env . ,newi) . (false)))
(¢ (invoke-in-each
(resolve (car goals) oldi (assertions (car goals)) newi env)

‘(prove ,(cdr goals) ,0ldi)}))))

(defun resolve (goal oldi assertions newi env)
;,Returns the proofs of “goal” sn “env”.
(cond ((null assertions) ())
(& (invoke-after
(prove (unify goal oldi (caar assertions) newi env)
(1+ newi)
(cdar assertions)
newi)
‘(resolve ,gosl ,oldi ,(cdr assertions) ,newi ,env)))))

(defun invoke-after (stream1 cont)
,Appends “cont” onto the stream “streami”.
(cond ((null stream1) (invoke cont))
(& (cons (car stream1) ‘(invoke-after® ,(cdr stream1) ,cont))}))

(defun invoke-in-each (streaml cont)
»Invokes “cont® sn each element of a proof stream
(cond ((null stream1) ())
(t (invoke-after (invoke cont (caar streaml) (edar stream1i))
‘(invoke-in-each® ,(cdr stream1) ,cont)))))
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(defun invoke-after® (delayed continuation)
(invoke-after (invoke delayed) continuation))

(defun invoke-in-each® (delayed continuation)
(invoke-in-each (invoke delayed) continuation))

9. Appendix II: A Complete Intétpreter

We give here the source listing of a complete structure copying Prolog interpreter.
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s -%- Mode: Lisp; Base: 10.; -%-
; A structure copuing Prolog written in MacLisp. 1200-1500 LIPS unless GC.
; Written by Mats Carisson, UPHMAIL, Uppsala University, 1983,

tThis is an interpreter for “naked" Prolog. It has very few builtin predicates.
sIt°e free to use by anyons but if you make money out of it | uould |ike soms.

;A lot of direct and indirect tall recursion to be transformed to lteration
sby someone who has a good source to source optimizer,

:Syntax: Terms and predications are |ists (<functor> . <arguments>),
assertions are lists (<consequent> . <antecedente>),
variables are symbols beginning uith "?%,

Topleve! functions:
(yaq) Read-prove-print top loop.
(define <name> . <assertions>) Defines predicates.

v

sBuiltin predicates:

s (cut) Infamous control primitive.

s (call ?goal) Tries to prove ?7goal.

s (bagof 7t ?goal ?b) 7B is a bag of instances of ?T that satisfy ??oal.
: (lisp-predicate ?form) ?Form is lisp-avaluated and must return non-NiL.

s (Visp-command ?form) Form is |isp-avaluated, may return whatever.

s (lisp-value ?var ?form) ?Var is the lisp-value of ?form.

s (el ?clause) ?Clauss is an assertion in the knouledge base. Backiracks.
3 (adde| ?clause) ?Clause is added to the knouwledge base.

s (adde!| ?clause ?n) ?Clause is added after the ?n-th clause of ite

H procedure.

s (delcl| ?clause) Clauses matching ?clause are deleted. Backtracke,
;: (delc| 7predicate ?n) Deletes ?n-th clause of ?predicate.

(dectare (fixsu t) (special wecellew wvariablesg))
(defvar mtrails ()

(defvar zinferencesxu @)

(defvar xfailurex 32767)

(defmacro cell () °*(let ((x (cons °|var| nil}}) (rplacd x x)))

(defmacro consp (%) °(not (atom ,x)))

(defmacro variable-p (k) ‘(and (conep ,x) (eq °|var| (car ,x}))}
(defmacro unify-variable (¢« y) ‘(progn (push ,x xtrailx) (rplacd % ,y)))
(defmacro assertions {(goal) °*(get (car ,goal) °sassertions))

(defmacro head (assertion) *(funcall (car ,assertion)))

(defmacro body (assertion) °(funcall (cdr ,assertion)))

(defmacro invoke (x) ‘(apply (car ,%) (ecdr ,x)})

(defmacro defbuiltin (name &rest body)
{let ({g (gensym)))
*(progn 'compile
(defun ,g (goal continuation depth) ,ebody)
(defprop ,name (sbuiltin ., ,g) sassertions))))

(defun instantiate (% generator)
screate a copy of x where unbound variables are handled by generator
(let (xcellsw) (instantiate-1 x generator)))

{defun instantiate-1 (x generator)
(cond {(variable-p x)

(cond ((assq x xcellex) (cdr (assq x %cellsx)))

(t (let ({c (funcall generator x)})

(push {(cons » c) xcellek) ¢))))

({consp %) (cons (instantiate-1 (dereference {(car x)) generator)
) (instantiate-1 (dereference (cdr %)) generator)))
t x

(dafun copycel! (ignore)
t3this generator just makes a new value cell
(call))

(defun ?cel!l (ignore) ,
33 this generator creates a symbol 78 ?1...
(maknam °*(#/7? , (+ #/8 (length xcellax)))))

§3=mmmmmmmmmmemommmeematee-w KERNEL OF INTERPRETER 33







(head-name (gensym))
(body-name (gensym) )}
(push (cons head-name body-name) toplist)
‘({defun ,head-name ()
;@{mapcar °(lambda(v) °‘(setq ,v (cell})) headvars)
. headcode)
(defun ,body-name ()
,@(mapcar ° (lambdalv}) ‘(setq ,v (cell)))
_ (di §fq bodyvars headvars))
,bodycode)))})
asser tions)
(defprop ,name , (nreverse toplist) sassertions))))

(defun yaq ()
(do ((mark strailz)) (())
(format t "~%YAQ>")
(tetx {{sexpr (read))
:(e?7prvare sexprcode) (variables-and-constructor sexpr))
cells :
(ae) (mapcar ° (lambda(x) (set x (cell)}) sexprvars)))
gc
(unwind-protect
{(prove
‘(, (eval sexprcode)
(lisp-predicate-?vars
(display °,sexprvars
*(+) B)
(reset mark)))))

.calls *,%inferencess °, (runtime))))

(defmacro gprinl (x) °*(funcall (or prini ‘prinl) ,x})

(defun display (names cells inf time)
(lat ((dt (- (runtime) time)))
(format t "~%1t took ~S microseconds, ~5 LIPS." dt
(/7 (u 1000060. (- minferencess Inf)) dt))
(mapc #° (lambda (n ¢) (format t “~%8 = " n) {(gprinl €)) names calls)
{progn (format t “~%0k?") (y-or-n-p)l})

(sstatus linmode nil)
(sety base 18. ibase 18. mnopoint t)
(alloe " (list (65536. 131672. 8.25)))

P — BUILTIN PREDICATES ===m-mmocmmmmmmeme e m— e ——e $3

(define |isp-command
((lisp-command ?X} (lisp-predicats (progn ?X ¢)}))

(define |isp-value
((lisp-value ?X ?Y) (lisp-predicate (unify *?X 2Y})))

(define cl
(lel ?¢ct) {(|cl-delel] ?¢cl nit)))

(define addcl
({addc} ?¢l) (|addel| ?¢l))
((addc! ?c¢l ?2n) (Jaddecl| ?¢l ?n))) ssaftter nth, l-indexed

(define delcl
((delc! ?¢t) (|cl-delcl| ?¢l t))
({delcl ?pred ?n) (|delci-1| ?pred ?n))) sidelete nth, 1-indexed







(t %failurex)))

(defbuiltin |delcl-1]|
(letx ((name (dereference (cadr goal)))
(n (dereference (caddr goal))}
(assertions {(get name °sassertions)))
{putprop name (delq (nth (1- n) assertions) assertione) °:assertions)
(invoke continuation)))

(defbuiltin |addel|
(letx ({clause (instantiate (dereference (cadr goal)) °*?Pcell))
(n (dereference (caddr goal)))
(name (caar clause))
{save (get name °;assertions)})
(eval ‘{(define ,name ,c!lause))
(cond ((and (numberp n) (nthcdr n save))
(let ((x (nthcdr n save)))
(rplacd x (cons (car %) (edr x)))
(rplaca x (car (get name ’:assertions)))
{(putprop name save ':assertions)))
(t (putprop name (nconc save (get name °’sassertions)) °sassertions)))
(invoke continuation)))

(defbuiltin bagof
(let ((mark %trail®) (reslist (liat ()) ((?t ?p ?b) {(cdr goal)))
(resolve (dereference ?p) ‘(bagof-aux ,?t ,reslist) depth)
(reset mark)
(cond ({unify (dereference ?b) (nreverses (car reslist)))
(invoke continuation))
(t %failurex))))

(defun bagof-aux (term reslist)
(push (instantiate (dereference term) °copycell) (car reslist))
wfailurex)

(defbuiltin call (resolve (dereference (cadr goal)) continuation depth})
{defbuiltin cut (invoke continuation) (1- depth))
(defbuiltin lisp-predicate
(cond (leval (instantiate (cadr goal) ‘proegl)) (invoke continuation))
(t wfallurex)))
(defbuiltin liep-predicate-?vars
(cond ((eval (instantiate (cadr goal) "?cell)) (invoke continuation))
(t wfatlurex)))

U DEFINE MACRO & TOP LEVEL --- -y

(eval-uhen (compile eval |oad)
(defmacro syntactic-variable-p (x) .
ssan ugly way of saying (eq °? (getchar x 1))
‘{and (symbolp ,x) (= #/? (1sh (car (pnget ,x 7)) -=23.}}))

(defun variables-and-constructor (%)
ssreturns variables occurring in % and 8 form that nill create x
(letx ((mvariablesk) (code (constructor %)))
(list (nreverse #xvariablesx) cods)))

(defun constructor {(x)
ssreturns code that will create x
{cond (leq % *?) '(cell))
((syntactic-variable-p x)
(or (memq x svariablesx) {push % svariables))
x)
({ground »x} *°,x)
(t *(cons , (constructor (car %)) , (constructor (cdr %))}))))

«defun ground (x)
(cond ((syntactic-variable-p %) nil)
((atom x) t)
((ground (car x}) (ground (cdr x)})})

(defun diffg (x y)
(mapcan * (lambda {x1) (and (not (memg %1 y)) (list xi})}) x)})

(defmacro define (name 8rast assertions)
(let ((toplist))
‘{progn ‘complle
,@(mapcan
* (lambda(a) : :
(let ({(headvars headcods) (variables-and-constructor (cdar a)})
((bodyvars bodycode) {variables-and-constructer {(cdr al))







(defun dereference (x)
33 follous a chain of linked variables
(cond ((variable-p x)
((co??)((eq x {cdr %)) %) (¢t (dereference {cdr x}))))
t x

(defun unify (x y)
(cond ((variable-p »x) (unify-variable % y)
((variable-p y} (unify-variable y x)
((conap w)
(and (consp y)
(unify (dereference (car x)) (dereference (car y)})
{unify (dereference (cdr x)) (dereference {cdr y)})))
({equal x y))))

)
)

(defun reset (mark)
{cong ((not (eq mark ztrailw))
({let ((call (pop mtrailx))) (rplacd cell cell) (resaet mark)}))}

(defun prove (goals continuation depth)
{cond ({cdr goals)
(resolve
( (c?r goals) ‘(prove , (cdr goals) ,continuation ,depth) depth)}
goals
(resolve (car goals) continuation dapth))
(t (invoke continuation))))

(defun resolve (goal continuation depth)
(setq %inferences® (14 winferencesw))
(et (lassertions (assertions goal)))
{cond ((eq *sbuiltin (car assertions))
(funcall (cdr assertions) goal continuation depth))
{t (try-assertions goal assertions %xtrailk continuation depth)))))

(defun try-assertions {(goal assertions mark continuation depth)
(cond ((cdr assertions)
(tet ((msg (try-assertion goal (car assertions) continuation depth)))
(cond ({> msg depth)
(reset mark)
(try-assertions
goal (cdr assertions) mark continuation depth))

({= meg depth) %failurex)
(t msg))))

(assertions (try-assertion goal (car assertions) continuation depth))

(t %failurex)))

(defun try-assertion (goal assertion continuation depth}
(cond ((unify (cdr goal) {funcall (car assertion)))
(prove (funcall (cdr assertion)) continuation (14 depth)})
(t wfailure%)))

(defbuittin |cl-delcl|
(letw ((clause (dersference (cadr goal)))
(delcl-p (dereference (caddr goal)))
{name (caar claussl))
(lcl-delcl-clauses|
clause dalcl-p name %trailz (assertions (car clause)) continuation depth)))

(defun |cl-delcl-clauses)
(clause delcl-p name mark assertions continuation depth)
(cond ((cdr assertions)
(et ((meg (|cl-delcl-clause]|
clause dolcl-p name (car assertions) continuation}))
{cond ((> msg depth)
(reset mark) o
(lc)-delci~clauses| clause delcl-p name mark (cdr assertlions)
continuation depth))
({= msg depth) %failurex)
(t msg))))
{assertions
{Jcl-delcl-clauss| clause delcl-p name (car asesrtions) continuation))
(t wfailurex)))

(defun |cl-delcl-clauss| (clause delcl-p name assertion continuation)
{cond {(and (unify (cdar clause) (head assertion))
(unify (cdr clause) (body assertion)))
(cond (delcl-p
(putprop name
(delq assertion (get name °:assertions))
*sassertions)})
(invoke continuation))
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